
Oracle8 i

Application Developer’s Guide - Large Objects (LOBs) Using C/C++ (Pro*C/C++)

Release 2 (8.1.6)

December 1999

Part No. A77001-01

Oracle8i Application Developer’s Guide - Large Objects (LOBs) Using C/C++ (Pro*C/C++), Release 2
(8.1.6)

Part No. A77001-01

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.

Primary Authors: Shelley Higgins, Susan Kotsovolos, Den Raphaely

Contributing Authors: Geeta Arora, Sandeepan Banerjee, Thomas Chang, Chandrasekharan Iyer,
Ramkumar Krishnan, Dan Mullen, Visar Nimani, Anindo Roy, Rosanne Toohey, Guhan Viswana

Contributors: Jeya Balaji, Maria Chien, Christian Shay, Ali Shehade, Sundaram Vedala, Eric Wan, Joyce
Yang

Graphics: Valerie Moore, Charles Keller

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and PL/SQL, Pro*Ada, Pro*C, Pro*C/C++ , Pro*COBOL, SQL*Forms,
SQL*Loader, SQL*Plus,Oracle7, Oracle8, Oracle8i are trademarks or registered trademarks of Oracle
Corporation. All other company or product names mentioned are used for identification purposes only
and may be trademarks of their respective owners.

Contents

Send Us Your Comments .. xxvii

Preface .. xxix

Information in This Guide... xxx
Feature Coverage and Availability .. xxx
New LOB Features.. xxx
What’s New in This Manual .. xxxi
Related Guides .. xxxii
How This Book Is Organized... xxxiv
Conventions Used in this Guide.. xxxvi
How to Interpret the Use Case Diagrams .. xxxviii
Use Cases Diagram Elements... xli
Hot Links From Use Case Diagram to Use Case Diagram .. xlviii
Your Comments Are Welcome ... xlix

1 Introduction

Why Use LOBs?... 1-2
Unstructured Data.. 1-2
LOB Datatype Helps Support Internet Applications .. 1-2

Why Not Use LONGs? ... 1-3
LOBs Help Control Semantics ... 1-4
LOBS Enable interMEDIA .. 1-4
LOB "Demo" Directory .. 1-5
Compatibility and Migration Issues ... 1-5
i

Examples in This Manual Use Multimedia_Tab .. 1-6
For Further Information... 1-6

2 Basic Components

The LOB Datatype .. 2-2
Internal LOBs... 2-2
External LOBs (BFILEs).. 2-2
Internal LOBs Use Reference Semantics, External LOBs Use Copy Semantics 2-3

Varying-Width Character Data ... 2-4
The LOB Locator ... 2-5

LOB Value and Locators .. 2-5
LOB Locator Operations .. 2-5

Creating Tables that Contain LOBs ... 2-8
Initializing Internal LOBs to NULL or Empty.. 2-8
Initializing Internal LOB Columns to a Value.. 2-10
Initializing External LOBs to NULL or a File Name.. 2-10

3 LOB Programmatic Environments

Six Programmatic Environments Operate on LOBs ... 3-2
Comparison of the Six LOB Interfaces ... 3-3
Using C/C++ (Pro*C/C++) to Work with LOBs ... 3-6

First Provide an Allocated Input Locator Pointer that Represents LOB 3-6
Pro*C/C++ Statements that Operate on BLOBs, CLObs, NCLOBs, and BFILEs................ 3-6
Pro*C/C++ Embedded SQL Statements To Modify Internal LOBs (BLOB, CLOB,

 and NCLOB) Values ... 3-7
Pro*C/C++ Embedded SQL Statements To Read or Examine Internal and External

 LOB Values .. 3-7
Pro*C/C++ Embedded SQL Statements For Temporary LOBs... 3-8
Pro*C/C++ Embedded SQL Statements For BFILEs... 3-8
Pro*C/C++ Embedded SQL Statements For LOB Locators .. 3-8
Pro*C/C++ Embedded SQL Statements For LOB Buffering ... 3-9
Pro*C/C++ Embedded SQL Statements To Open and Close Internal LOBs

 and External LOBs (BFILEs)... 3-9
ii

4 Managing LOBs

DBA Actions Required Prior to Working with LOBs .. 4-2
Set Maximum Number of Open BFILEs ... 4-2
Using SQL DML for Basic Operations on LOBs .. 4-2
Changing Tablespace Storage for a LOB... 4-3

Managing Temporary LOBs.. 4-4
Using SQL Loader to Load LOBs... 4-5

LOBFILES... 4-5
Loading InLine and Out-Of-Line Data into Internal LOBs Using SQL Loader..................... 4-6

SQL Loader Performance: Loading Into Internal LOBs.. 4-6
Loading Inline LOB Data .. 4-7

Loading Inline LOB Data in Predetermined Size Fields... 4-7
Loading Inline LOB Data in Delimited Fields.. 4-8
Loading Inline LOB Data in Length-Value Pair Fields ... 4-8

Loading Out-Of-Line LOB Data .. 4-10
Loading One LOB Per File... 4-10
Loading Out-of-Line LOB Data in Predetermined Size Fields .. 4-11
Loading Out-of-Line LOB Data in Delimited Fields ... 4-12
Loading Out-of-Line LOB Data in Length-Value Pair Fields .. 4-13

SQL Loader LOB Loading Tips .. 4-14
LOB Restrictions ... 4-15
Removed Restrictions .. 4-16

5 Advanced Topics

Read-Consistent Locators.. 5-2
A Selected Locator Becomes a Read Consistent Locator .. 5-2
Updating LOBs and Read-Consistency... 5-3
Example of an Update Using Read Consistent Locators .. 5-3
Updated LObs Via Updated Locators ... 5-5
Example of Updating a LOB Using SQL DML and DBMS_LOB .. 5-6
Example of Using One Locator to Update the Same LOB Value... 5-8
Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable....................... 5-10
LOB Locators Cannot Span Transactions.. 5-13
Example of Locator Not Spanning a Transaction .. 5-13

LOB Locators and Transaction Boundaries.. 5-16
iii

Locators Contain Transaction IDs When... ... 5-16
Locators Do Not Contain Transaction IDs When... ... 5-16
Transaction IDs: Reading and Writing to a LOB Using Locators.. 5-16
Non-Serializable Example: Selecting the Locator with No Current Transaction.............. 5-17
Non-Serializable Example: Selecting the Locator within a Transaction............................. 5-18

LOBs in the Object Cache ... 5-20
LOB Buffering Subsystem .. 5-21

Advantages of LOB Buffering... 5-21
Guidelines for Using LOB Buffering.. 5-21
LOB Buffering Usage Notes .. 5-23
Flushing the LOB Buffer ... 5-25
Flushing the Updated LOB.. 5-26
Using Buffer-Enabled Locators... 5-27
Saving Locator State to Avoid a Reselect .. 5-27
OCI Example of LOB Buffering .. 5-28

Creating a Varray Containing References to LOBs .. 5-32

6 Frequently Asked Questions

Converting Data Types to LOB Data Types ... 6-3
Can I Insert or Update Any Length Data Into a LOB Column?... 6-3
Does COPY LONG to LOB Work if Data is > 64K? ... 6-3

General .. 6-4
How Do I Determine if the LOB Column with a Trigger is Being Updated?...................... 6-4
Reading and Loading LOB Data: What Should Amount Parameter Size Be?..................... 6-4

Index-Organized Tables (IOTs) and LOBs ... 6-6
Is Inline Storage Allowed for LOBs in Index-Organized Tables?.. 6-6

Initializing LOB Locators .. 6-7
When Do I Use EMPTY_BLOB() and EMPTY_CLOB()?... 6-7
How Do I Initialize a BLOB Attribute Using EMPTY_BLOB() in Java? 6-8

JDBC, JPublisher and LOBs.. 6-8
How Do I Insert a Row With Empty LOB Locator into Table Using JDBC?........................ 6-8
How Do I setData to EMPTY_BLOB() Using JPublisher?.. 6-9
JDBC: Do OracleBlob and OracleClob Work in 8.1.x?... 6-9
How Do I Manipulate LOBs With the 8.1.5 JDBC Thin Driver? .. 6-10
Is the FOR UPDATE Clause Needed on SELECT When Writing to a LOB? 6-11
iv

Loading LOBs and Data Into LOBs... 6-12
How do I Load a 1Mb File into a CLOB Column?... 6-12
How Do We Improve BLOB and CLOB Performance When Using JDBC Driver To Load?

6-12
LOB Indexing .. 6-16

Is LOB Index Created in Same Tablespace as LOB Data? .. 6-16
Indexing: Why is a BLOB Column Removed on DELETing but not a BFILE Column? .. 6-16
Which Views Can I Query to Find Out About a LOB Index? .. 6-16

LOB Storage and Space Issues ... 6-18
What Happens If I Specify LOB Tablespace and ENABLE STORAGE IN ROW?............ 6-18
What Are the Pros and Cons of Storing Images in a BFILE Versus a BLOB?.................... 6-18
When Should I Specify DISABLE STORAGE IN ROW? .. 6-19
Do <4K BLOBs Go Into the Same Segment as Table Data, >4K BLOBs Go Into a Specified

Segment? 6-19
Is 4K LOB Stored Inline?.. 6-20
How is a LOB Locator Stored If the LOB Column is EMPTY_CLOB() or EMPTY_BLOB()

Instead of NULL? Are Extra Data Blocks Used For This? 6-21
Migrating From Other Database Systems.. 6-22

Is Implicit LOB Conversion Between Different LOB Types Allowed in Oracle8i?........... 6-22
Performance ... 6-23

What Can We Do To Improve the Poor LOB Loading Performance When Using Veritas File

System on Disk Arrays, UNIX, and Oracle? 6-23
Is There a Difference in Performance When Using DBMS_LOB.SUBSTR Versus DBMS_

LOB.READ? 6-24
Are There Any White Papers or Guidelines on Tuning LOB Performance? 6-24
When Should I Use Chunks Over Reading the Whole Thing? .. 6-25
Is Inlining the LOB a Good Idea and If So When?... 6-25
How Can I Store LOBs >4Gb in the Database? .. 6-26

7 Modeling and Design

Selecting a Datatype... 7-2
LOBs in Comparison to LONG and LONG RAW Types ... 7-2
Character Set Conversions: Working with Varying-Width Character Data........................ 7-3

Selecting a Table Architecture.. 7-4
LOB Storage ... 7-5

Where are NULL Values in a LOB Column Stored? ... 7-5
v

Defining Tablespace and Storage Characteristics for Internal LOBs 7-5
LOB Storage Characteristics for LOB Column or Attribute ... 7-6
TABLESPACE and LOB Index.. 7-7
PCTVERSION.. 7-7
CACHE / NOCACHE / CACHE READS.. 7-8
LOGGING / NOLOGGING.. 7-9
CHUNK.. 7-10
ENABLE | DISABLE STORAGE IN ROW ... 7-11

How to Create Gigabyte LOBs ... 7-13
 Example: Creating a Tablespace and Table to Store Gigabyte LOBs 7-13

LOB Locators and Transaction Boundaries .. 7-15
Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs .. 7-16

Binds Greater than 4,000 Bytes are Now Allowed For LOB INSERTs and UPDATEs..... 7-16
Binds of More Than 4,000 Bytes ... No HEX to RAW or RAW to HEX Conversion 7-16
4,000 Byte Limit On Results of SQL Operator .. 7-17
Binds of More Than 4,000 Bytes: Restrictions... 7-18
Example: PL/SQL - Using Binds of More Than 4,000 Bytes in INSERT and UPDATE... 7-18
Example: PL/SQL - Binds of More Than 4,000 Bytes -- Inserts Not Supported

 Because Hex to Raw/Raw to Hex Conversion is Not Supported 7-19
Example: PL/SQL - 4,000 Byte Result Limit in Binds of More than 4,000 Bytes

 When Data Includes SQL Operator .. 7-20
Example: C (OCI) - Binds of More than 4,000 Bytes For INSERT and UPDATE 7-20

Open, Close and IsOpen Interfaces for Internal LOBs ... 7-24
LOBs in Index Organized Tables (IOT).. 7-27

Example of Index Organized Table (IOT) with LOB Columns.. 7-27
Manipulating LOBs in Partitioned Tables ... 7-29

Creating and Partitioning a Table Containing LOB Data ... 7-31
Creating an Index on a Table Containing LOB Columns ... 7-33
Exchanging Partitions Containing LOB Data ... 7-33
Adding Partitions to Tables Containing LOB Data ... 7-34
Moving Partitions Containing LOBs.. 7-34
Splitting Partitions Containing LOBs .. 7-34

Indexing a LOB Column.. 7-36
Best Performance Practices.. 7-37

Using SQL Loader... 7-37
vi

Guidelines for Best Performance.. 7-37
Moving Data to LOB in Threaded Environment ... 7-38

8 Sample Application

A Sample Application.. 8-2
The Multimedia Content-Collection System .. 8-2
Applying an Object-Relational Design to the Application... 8-4
Structure of Multimedia_tab Table .. 8-5

9 Internal Persistent LOBs

Use Case Model: Internal Persistent LOBs .. 9-2
Three Ways to Create a Table Containing a LOB ... 9-6
Usage Notes.. 9-7
CREATE a Table Containing One or More LOB Columns ... 9-8

Purpose .. 9-8
Usage Notes... 9-8
Syntax ... 9-9
Scenario .. 9-9
Examples.. 9-10
SQL: Create a Table Containing One or More LOB Columns ... 9-10

CREATE a Table Containing an Object Type with a LOB Attribute 9-13
Purpose .. 9-13
Usage Notes... 9-13
Syntax ... 9-13
Scenario .. 9-14
Examples.. 9-15
SQL: Create a Table Containing an Object Type with a LOB Attribute 9-15

CREATE a Nested Table Containing a LOB .. 9-18
Purpose .. 9-18
Usage Notes... 9-18
Syntax ... 9-18
Scenario .. 9-19
Examples.. 9-19
SQL: Create a Nested Table Containing a LOB.. 9-20
vii

Three Ways Of Inserting One or More LOB Values into a Row.. 9-21
Uasage Notes ... 9-22

INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB() ... 9-23
Purpose... 9-24
Usage Notes ... 9-24
Syntax ... 9-24
Scenario .. 9-25
Examples .. 9-25
SQL: Insert a Value Using EMPTY_CLOB() / EMPTY_BLOB() .. 9-25

INSERT a Row by Selecting a LOB From Another Table ... 9-26
Purpose... 9-26
Usage Notes ... 9-26
Syntax ... 9-27
Scenario .. 9-27
Examples .. 9-27
SQL: Insert a Row by Selecting a LOB from Another Table... 9-27

INSERT Row by Initializing a LOB Locator Bind Variable ... 9-28
Purpose... 9-28
Usage Notes ... 9-28
Syntax ... 9-29
Scenario .. 9-29
Examples .. 9-29
C/C++ (Pro*C): Insert Row by Initializing a LOB Locator Bind Variable 9-29

Load Data into an Internal LOB (BLOB, CLOB, NCLOB) .. 9-31
Purpose... 9-31
Usage Notes and Examples ... 9-31
Syntax ... 9-32
Scenario .. 9-32

Load a LOB with Data from a BFILE... 9-33
Purpose... 9-34
Usage Notes ... 9-34
Syntax ... 9-34
Scenario .. 9-34
Examples .. 9-35
C/C++ (Pro*C): Load a LOB with Data from a BFILE.. 9-35
viii

See If a LOB Is Open.. 9-37
Purpose .. 9-37
Usage Notes... 9-37
Syntax ... 9-37
Scenario .. 9-37
Examples.. 9-38
C/C++ (Pro*C): See if a LOB is Open.. 9-38

Copy LONG to LOB ... 9-40
Purpose .. 9-40
Usage Notes... 9-41
Syntax ... 9-41
Scenario .. 9-41
Examples.. 9-42
SQL: Copy LONG to LOB ... 9-42

Checkout a LOB .. 9-45
Purpose .. 9-45
Usage Notes... 9-46
Syntax ... 9-46
Scenario .. 9-46
Examples.. 9-46
C/C++ (Pro*C): Checkout a LOB... 9-46

Checkin a LOB... 9-49
Purpose .. 9-49
Usage Notes... 9-50
Syntax ... 9-50
Scenario .. 9-50
Examples.. 9-50
C/C++ (Pro*C): Checkin a LOB ... 9-50

Display LOB Data... 9-54
Purpose .. 9-55
Usage Notes:.. 9-55
Syntax ... 9-55
Scenario .. 9-55
Examples.. 9-55
C/C++ (Pro*C): Display LOB Data.. 9-55
ix

Read Data from LOB .. 9-58
Procedure ... 9-59
Usage Notes ... 9-59
Syntax ... 9-60
Scenario .. 9-60
Examples .. 9-60
C/C++ (Pro*C/C++): Read Data from LOB... 9-61

Read a Portion of the LOB (substr).. 9-63
Purpose... 9-64
Usage Notes ... 9-64
Syntax ... 9-64
Scenario .. 9-64
Examples .. 9-64
C/C++ (Pro*C/C++): Read a Portion of the LOB (substr) ... 9-64

Compare All or Part of Two LOBs ... 9-67
Purpose... 9-67
Usage Notes ... 9-68
Syntax ... 9-68
Scenario .. 9-68
Examples .. 9-68
C/C++ (Pro*C/C++): Compare All or Part of Two LOBs.. 9-68

See If a Pattern Exists in the LOB (instr) .. 9-70
Purpose... 9-71
Usage Notes ... 9-71
Syntax ... 9-71
Scenario .. 9-71
Examples .. 9-71
C/C++ (Pro*C/C++): See If a Pattern Exists in the LOB (instr) .. 9-71

Get the Length of a LOB .. 9-73
Purpose... 9-73
Usage Notes ... 9-74
Syntax ... 9-74
Scenario .. 9-74
Examples .. 9-74
C/C++ (Pro*C/C++): Get the Length of a LOB ... 9-74
x

Copy All or Part of a LOB to Another LOB ... 9-76
Purpose .. 9-76
Usage Notes... 9-77
Syntax ... 9-77
Scenario .. 9-77
Examples.. 9-77
C/C++ (Pro*C/C++): Copy All or Part of a LOB to Another LOB..................................... 9-77

Copy a LOB Locator.. 9-79
Purpose .. 9-79
Usage Notes... 9-79
Syntax ... 9-79
Scenario .. 9-80
Examples.. 9-80
C/C++ (Pro*C/C++): Copy a LOB Locator.. 9-80

See If One LOB Locator Is Equal to Another .. 9-82
Purpose .. 9-82
Usage Notes... 9-82
Syntax ... 9-82
Scenario .. 9-83
... 9-83
C/C++ (Pro*C/C++): See If One LOB Locator Is Equal to Another................................... 9-83

See If a LOB Locator Is Initialized .. 9-85
Purpose .. 9-85
Usage Notes... 9-86
Syntax ... 9-86
Scenario .. 9-86
Examples.. 9-86
C/C++ (Pro*C/C++): See If a LOB Locator Is Initialized... 9-86

Get Character Set ID .. 9-88
Purpose .. 9-88
Usage Notes... 9-89
Syntax ... 9-89
Scenario .. 9-89
Example.. 9-89
xi

Get Character Set Form .. 9-90
Purpose... 9-90
Usage Notes ... 9-90
Syntax ... 9-91
Scenario .. 9-91

Append One LOB to Another... 9-92
Purpose... 9-93
Usage Notes ... 9-93
Syntax ... 9-93
Scenario .. 9-93
Examples .. 9-93
C/C++ (Pro*C/C++): Append One LOB to Another.. 9-94

Write Append to a LOB.. 9-96
Purpose... 9-96
Usage Notes ... 9-97
Syntax ... 9-97
Scenario .. 9-98
Examples .. 9-98
C/C++ (Pro*C/C++): Write Append to a LOB.. 9-98

Write Data to a LOB .. 9-100
Purpose... 9-101
Usage Notes ... 9-101
Syntax ... 9-102
Scenario .. 9-103
Examples .. 9-103
C/C++ (Pro*C/C++): Write Data to a LOB .. 9-103

Trim LOB Data... 9-106
Purpose... 9-107
Usage Notes ... 9-107
Syntax ... 9-107
Scenario .. 9-107
Examples .. 9-107
C/C++ (Pro*C/C++): Trim LOB Data... 9-108

Erase Part of a LOB ... 9-110
Purpose... 9-111
xii

Usage Notes... 9-111
Syntax ... 9-111
Scenario .. 9-111
Examples.. 9-111
C/C++ (Pro*C/C++): Erase Part of a LOB ... 9-112

Enable LOB Buffering ... 9-113
Purpose .. 9-114
Usage Notes... 9-114
Syntax ... 9-114
Scenario .. 9-114
Examples.. 9-115
C/C++ (Pro*C/C++): Enable LOB Buffering ... 9-115

Flush Buffer ... 9-117
Purpose .. 9-118
Usage Notes... 9-118
Syntax ... 9-118
Scenario .. 9-118
Examples.. 9-119
C/C++ (Pro*C/C++): Flush Buffer .. 9-119

Disable LOB Buffering .. 9-121
Purpose .. 9-122
Usage Notes... 9-122
Syntax ... 9-122
Scenario .. 9-122
Examples.. 9-122
C/C++ (Pro*C/C++): Disable LOB Buffering.. 9-123

Three Ways to Update a LOB or Entire LOB Data.. 9-125
UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()... 9-127

Purpose .. 9-127
Usage Notes... 9-128
Syntax ... 9-128
Scenario .. 9-128
Examples.. 9-128
SQL: UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()..................................... 9-128
xiii

UPDATE a Row by Selecting a LOB From Another Table.. 9-130
Purpose... 9-130
Usage Notes ... 9-130
Syntax ... 9-130
Scenario .. 9-131
Examples .. 9-131
SQL: Update a Row by Selecting a LOB From Another Table... 9-131

UPDATE by Initializing a LOB Locator Bind Variable ... 9-132
Purpose... 9-132
Usage Notes ... 9-132
Syntax ... 9-132
Scenario .. 9-133
Examples .. 9-133
SQL: Update by Initializing a LOB Locator Bind Variable... 9-133
C/C++ (Pro*C/C++): Update by Initializing a LOB Locator Bind Variable 9-133

DELETE the Row of a Table Containing a LOB.. 9-135
Purpose... 9-135
Usage Notes ... 9-135
Syntax ... 9-136
Scenario .. 9-136
Examples .. 9-136
SQL: Delete a LOB .. 9-136

10 Temporary LOBs

Use Case Model: Internal Temporary LOBs .. 10-3
Programmatic Environments .. 10-7

Locators .. 10-7
Temporary LOB Locators Can be IN Values .. 10-7
Can You Use the Same Functions for Temporary and Internal Persistent LOBs? 10-8
Temporary LOB Data is Stored in Temporary Tablespace... 10-8
Lifetime and Duration of Temporary LOBs.. 10-9
Memory Handling .. 10-9
Locators and Semantics.. 10-10

Features Specific to Temporary LOBs ... 10-11
Security Issues with Temporary LOBs .. 10-12
xiv

NOCOPY Restrictions.. 10-13
Managing Temporary LOBs ... 10-13

Create a Temporary LOB ... 10-14
Purpose .. 10-14
Usage Notes... 10-14
Syntax ... 10-15
Scenario .. 10-15
Examples.. 10-15
C/C++ (Pro*C/C++): Create a Temporary LOB ... 10-15

See If a LOB is Temporary .. 10-17
Purpose .. 10-17
Usage Notes... 10-17
Syntax ... 10-17
Scenario .. 10-18
Examples.. 10-18
C/C++ (Pro*C/C++): See If a LOB is Temporary ... 10-18

Free a Temporary LOB ... 10-20
Purpose .. 10-20
Usage Notes... 10-20
Syntax ... 10-21
Scenario .. 10-21
Examples.. 10-21
C/C++ (Pro*C/C++): Free a Temporary LOB ... 10-21

Load a Temporary LOB with Data from a BFILE.. 10-23
Purpose .. 10-23
Usage Notes... 10-24
Syntax ... 10-24
Scenario .. 10-24
Examples.. 10-24
C/C++ (Pro*C/C++): Load a Temporary LOB with Data from a BFILE......................... 10-24

See If a Temporary LOB Is Open ... 10-26
Purpose .. 10-26
Usage Notes... 10-26
Syntax ... 10-26
Scenario .. 10-27
xv

Examples .. 10-27
C/C++ (Pro*C/C++): See if a Temporary LOB is Open ... 10-27

Display Temporary LOB Data .. 10-29
Purpose... 10-30
Usage Notes ... 10-30
Syntax ... 10-30
Scenario .. 10-30
Examples .. 10-30
C/C++ (Pro*C/C++): Display Temporary LOB Data ... 10-30

Read Data from a Temporary LOB .. 10-33
Purpose... 10-34
Usage Notes ... 10-34
Syntax ... 10-35
Scenario .. 10-35
Examples .. 10-35
C/C++ (Pro*C/C++): Read Data from a Temporary LOB ... 10-35

Read Portion of Temporary LOB (substr)... 10-38
Purpose... 10-38
Usage Notes ... 10-39
Syntax ... 10-39
Scenario .. 10-39
Examples .. 10-39
C/C++ (Pro*C/C++): Read a Portion of Temporary LOB (substr)................................... 10-39

Compare All or Part of Two (Temporary) LOBs.. 10-42
Purpose... 10-42
Usage Notes ... 10-43
Syntax ... 10-43
Scenario .. 10-43
Examples .. 10-43
C/C++ (Pro*C/C++): Compare All or Part of Two (Temporary) LOBs 10-43

See If a Pattern Exists in a Temporary LOB (instr) ... 10-46
Purpose... 10-46
Usage Notes ... 10-47
Syntax ... 10-47
Scenario .. 10-47
xvi

Examples.. 10-47
C/C++ (Pro*C/C++): See If a Pattern Exists in a Temporary LOB (instr)....................... 10-47

Get the Length of a Temporary LOB ... 10-50
Purpose .. 10-51
Usage Notes... 10-51
Syntax ... 10-51
Scenario .. 10-51
Examples.. 10-51
C/C++ (Pro*C/C++): Get the Length of a Temporary LOB .. 10-51

Copy All or Part of One (Temporary) LOB to Another.. 10-54
Purpose .. 10-54
Usage Notes... 10-55
Syntax ... 10-55
Scenario .. 10-55
Examples.. 10-55
C/C++ (Pro*C/C++): Copy All or Part of One (Temporary) LOB to Another 10-55

Copy a LOB Locator for a Temporary LOB .. 10-58
Purpose .. 10-58
Usage Notes... 10-59
Syntax ... 10-59
Scenario .. 10-59
Examples.. 10-59
C/C++ (Pro*C/C++): Copy a LOB Locator for a Temporary LOB................................... 10-59

Is One Temporary LOB Locator Equal to Another ... 10-61
Purpose .. 10-61
Usage Notes... 10-61
Syntax ... 10-62
Scenario .. 10-62
Examples.. 10-62
C/C++ (Pro*C/C++): See If One LOB Locator for a Temporary LOB Is Equal to

 Another ... 10-62
See If a LOB Locator for a Temporary LOB Is Initialized... 10-65

Purpose .. 10-65
Usage Notes... 10-65
Syntax ... 10-65
xvii

Scenario .. 10-66
Examples .. 10-66
C/C++ (Pro*C/C++): See If a LOB Locator for a Temporary LOB Is Initialized............ 10-66

Get Character Set ID of a Temporary LOB... 10-68
Purpose... 10-68
Usage Notes ... 10-69
Syntax ... 10-69
Scenario .. 10-69
Examples .. 10-69

Get Character Set Form of a Temporary LOB .. 10-70
Purpose... 10-70
Usage Notes ... 10-70
Syntax ... 10-71
Scenario .. 10-71
Examples .. 10-71

Append One (Temporary) LOB to Another ... 10-72
Purpose... 10-72
Usage Notes ... 10-73
Syntax ... 10-73
Scenario .. 10-73
Examples .. 10-73
C/C++ (Pro*C/C++): Append One (Temporary) LOB to Another 10-73

Write Append to a Temporary LOB ... 10-76
Purpose... 10-77
Usage Notes ... 10-77
Syntax ... 10-77
Scenario .. 10-77
Examples .. 10-77
C/C++ (Pro*C/C++): Write Append to a Temporary LOB ... 10-77

Write Data to a Temporary LOB ... 10-80
Purpose... 10-81
Usage Notes ... 10-81
Syntax ... 10-82
Scenario .. 10-82
Examples .. 10-82
xviii

C/C++ (Pro*C/C++): Write Data to a Temporary LOB ... 10-82
Trim Temporary LOB Data.. 10-86

Purpose .. 10-87
Usage Notes... 10-87
Syntax ... 10-87
Scenario .. 10-87
Examples.. 10-87
C/C++ (Pro*C/C++): Trim Temporary LOB Data.. 10-87

Erase Part of a Temporary LOB .. 10-90
Purpose .. 10-90
Usage Notes... 10-91
Syntax ... 10-91
Scenario .. 10-91
Examples.. 10-91
C/C++ (Pro*C/C++): Erase Part of a Temporary LOB .. 10-91

Enable LOB Buffering for a Temporary LOB .. 10-94
Purpose .. 10-94
Usage Notes... 10-94
Syntax ... 10-95
Scenario .. 10-95
Examples.. 10-95
C/C++ (Pro*C/C++): Enable LOB Buffering for a Temporary LOB................................ 10-95

Flush Buffer for a Temporary LOB ... 10-97
Purpose .. 10-97
Usage Notes... 10-97
Syntax ... 10-97
Scenario .. 10-98
Examples.. 10-98
C/C++ (Pro*C/C++): Flush Buffer for a Temporary LOB... 10-98

Disable LOB Buffering for a Temporary LOB .. 10-100
Purpose .. 10-100
Usage Notes... 10-100
Syntax ... 10-101
Scenario .. 10-101
Examples.. 10-101
xix

C/C++ (Pro*C/C++): Disable LOB Buffering for a Temporary LOB 10-101

11 External LOBs (BFILEs)

Use Case Model: External LOBs (BFILEs) .. 11-2
Accessing External LOBs (BFILEs) .. 11-5
Directory Object .. 11-5

Initializing a BFILE Locator... 11-5
How to Associate Operating System Files with Database Records 11-6
BFILENAME() and Initialization.. 11-7
DIRECTORY Name Specification... 11-8

BFILE Security ... 11-9
Ownership and Privileges ... 11-9
Read Permission on Directory Object .. 11-9
SQL DDL for BFILE Security... 11-10
SQL DML for BFILE Security.. 11-10
Catalog Views on Directories.. 11-10
Guidelines for DIRECTORY Usage.. 11-11
BFILEs in Multi-Threaded Server (MTS) Mode ... 11-12
External LOB (BFILE) Locators... 11-12

Three Ways to Create a Table Containing a BFILE... 11-14
CREATE a Table Containing One or More BFILE Columns .. 11-15

Purpose... 11-15
Usage Notes ... 11-15
Syntax ... 11-15
Scenario .. 11-16
Examples .. 11-16
SQL: Create a Table Containing One or More BFILE Columns... 11-16

CREATE a Table of an Object Type with a BFILE Attribute .. 11-18
Purpose... 11-18
Usage Notes ... 11-18
Syntax ... 11-18
Scenario .. 11-19
Examples .. 11-19
SQL: Create a Table of an Object Type with a BFILE Attribute... 11-19

CREATE a Table with a Nested Table Containing a BFILE .. 11-21
xx

Purpose .. 11-21
Usage Notes... 11-21
Syntax ... 11-21
Scenario .. 11-22
Examples.. 11-22
SQL: Create a Table with a Nested Table Containing a BFILE.. 11-22

Three Ways to Insert a Row Containing a BFILE ... 11-23
INSERT a Row Using BFILENAME() ... 11-24

Purpose .. 11-25
Usage Notes... 11-25
Syntax ... 11-26
Scenario .. 11-26
Examples.. 11-26
SQL: Insert a Row by means of BFILENAME() ... 11-26
C/C++ (Pro*C/C++): Insert a Row by means of BFILENAME()...................................... 11-27

INSERT a BFILE Row by Selecting a BFILE From Another Table .. 11-29
Purpose .. 11-29
Usage Notes... 11-29
Syntax ... 11-29
Scenario .. 11-30
Examples.. 11-30
SQL: Insert a Row Containing a BFILE by Selecting a BFILE From Another Table 11-30

INSERT Row With BFILE by Initializing BFILE Locator ... 11-31
Purpose .. 11-32
Usage Notes... 11-32
Syntax ... 11-32
Scenario .. 11-32
C/C++ (Pro*C/C++): Insert a Row Containing a BFILE by Initializing a BFILE

 Locator.. 11-32
Load Data Into External LOB (BFILE) .. 11-34

Purpose .. 11-34
Usage Notes... 11-35
Syntax ... 11-35
Scenario .. 11-35
Examples.. 11-36
xxi

Loading Data Into BFILES: File Name Only is Specified Dynamically 11-36
Loading Data into BFILES: File Name and DIRECTORY Object Dynamically

 Specified .. 11-37
Load a LOB with BFILE Data.. 11-38

Purpose... 11-39
Usage Notes ... 11-39
Syntax ... 11-40
Scenario .. 11-40
Examples .. 11-40
C/C++ (Pro*C/C++): Load a LOB with BFILE Data .. 11-40

Two Ways to Open a BFILE ... 11-42
Recommendation: Use OPEN to Open BFILE.. 11-42
Specify the Maximum Number of Open BFILEs: SESSION_MAX_OPEN_FILES 11-43

Open a BFILE with FILEOPEN .. 11-44
Purpose... 11-44
Usage Notes ... 11-45
Syntax ... 11-45
Scenario .. 11-45
Examples .. 11-45

Open a BFILE with OPEN ... 11-46
Purpose... 11-46
Usage Notes ... 11-47
Syntax ... 11-47
Scenario .. 11-47
Examples .. 11-47
C/C++ (Pro*C/C++): Open a BFILE with OPEN.. 11-47

Two Ways to See If a BFILE is Open ... 11-49
Recommendation: Use OPEN to Open BFILE.. 11-49
Specify the Maximum Number of Open BFILEs: SESSION_MAX_OPEN_FILES 11-49

See If the BFILE is Open with FILEISOPEN ... 11-51
Purpose... 11-51
Usage Notes ... 11-51
Syntax ... 11-51
Scenario .. 11-52
Examples .. 11-52
xxii

See If a BFILE is Open Using ISOPEN... 11-53
Purpose .. 11-53
Usage Notes... 11-53
Syntax ... 11-53
Scenario .. 11-54
Examples.. 11-54
C/C++ (Pro*C/C++): See If the BFILE is Open with ISOPEN .. 11-54

Display BFILE Data .. 11-56
Purpose .. 11-56
Usage Notes... 11-57
Syntax ... 11-57
Scenario .. 11-57
These examples open and display BFILE data. Examples.. 11-57
C/C++ (Pro*C/C++): Display BFILE Data... 11-57

Read Data from a BFILE .. 11-59
Purpose .. 11-59
Usage Notes... 11-60
Syntax ... 11-60
Scenario .. 11-61
Examples.. 11-61
C/C++ (Pro*C/C++): Read Data from a BFILE... 11-61

Read a Portion of BFILE Data (substr).. 11-63
Purpose .. 11-63
Usage Notes... 11-64
Syntax ... 11-64
Scenario .. 11-64
... 11-64
C/C++ (Pro*C/C++): Read a Portion of BFILE Data (substr) ... 11-64

Compare All or Parts of Two BFILES.. 11-66
Purpose .. 11-67
Usage Notes... 11-67
Syntax ... 11-67
Scenario .. 11-67
Examples.. 11-67
C/C++ (Pro*C/C++): Compare All or Parts of Two BFILES... 11-67
xxiii

See If a Pattern Exists (instr) in the BFILE ... 11-70
Purpose... 11-71
Usage Notes ... 11-71
Syntax ... 11-71
Scenario .. 11-71
... 11-71
C/C++ (Pro*C/C++): See If a Pattern Exists (instr) in the BFILE...................................... 11-71

See If the BFILE Exists ... 11-74
Purpose... 11-74
Usage Notes ... 11-75
Syntax ... 11-75
Scenario .. 11-75
Examples .. 11-75
C/C++ (Pro*C/C++): See If the BFILE Exists... 11-75

Get the Length of a BFILE ... 11-77
Purpose... 11-78
Usage Notes ... 11-78
Syntax ... 11-78
Scenario .. 11-78
Examples .. 11-78
C/C++ (Pro*C/C++): Get the Length of a BFILE .. 11-78

Copy a LOB Locator for a BFILE .. 11-80
Purpose... 11-81
Usage Notes ... 11-81
Syntax ... 11-81
Scenario .. 11-81
Examples .. 11-81
C/C++ (Pro*C/C++): Copy a LOB Locator for a BFILE... 11-81

See If a LOB Locator for a BFILE Is Initialized ... 11-83
Purpose... 11-83
Usage Notes ... 11-84
Syntax ... 11-84
Scenario .. 11-84
Examples .. 11-84
C/C++ (Pro*C/C++): See If a LOB Locator for a BFILE Is Initialized.............................. 11-84
xxiv

See If One LOB Locator for a BFILE Is Equal to Another... 11-86
Purpose .. 11-87
Usage Notes... 11-87
Syntax ... 11-87
Scenario .. 11-87
... 11-87
C/C++ (Pro*C/C++): See If One LOB Locator for a BFILE Is Equal to Another............ 11-87

Get DIRECTORY Alias and Filename .. 11-89
Purpose .. 11-89
Usage Notes... 11-90
Syntax ... 11-90
Scenario .. 11-90
Examples... 11-90
C/C++ (Pro*C/C++): Get Directory Alias and Filename... 11-90

Three Ways to Update a Row Containing a BFILE... 11-92
UPDATE a BFILE Using BFILENAME() .. 11-93

Usage Notes... 11-93
Syntax ... 11-94
Scenario .. 11-95
Examples.. 11-95
SQL: Update a BFILE by means of BFILENAME().. 11-95

UPDATE a BFILE by Selecting a BFILE From Another Table.. 11-96
Purpose .. 11-96
Usage Notes... 11-96
Syntax ... 11-96
Scenario .. 11-97
Examples.. 11-97
SQL: Update a BFILE by Selecting a BFILE From Another Table 11-97

UPDATE a BFILE by Initializing a BFILE Locator ... 11-98
Purpose .. 11-98
Usage Notes... 11-99
Syntax ... 11-99
Scenario .. 11-99
C/C++ (Pro*C/C++): Update a BFILE by Initializing a BFILE Locator........................... 11-99
xxv

Two Ways to Close a BFILE .. 11-101
Close a BFILE with FILECLOSE ... 11-103

Purpose.. 11-103
Usage Notes .. 11-104
Syntax .. 11-104
Scenario ... 11-104

Close a BFILE with CLOSE .. 11-105
Purpose.. 11-105
Usage Notes .. 11-106
Syntax .. 11-106
Scenario ... 11-106
Examples ... 11-106
C/C++ (Pro*C/C++): Close a BFile with CLOSE ... 11-106

Close All Open BFILEs ... 11-108
Purpose.. 11-109
Usage Notes .. 11-109
Syntax .. 11-109
Scenario ... 11-109
Examples ... 11-109
C/C++ (Pro*C/C++): Close All Open BFiles .. 11-109

 DELETE the Row of a Table Containing a BFILE... 11-111
Purpose.. 11-111
Usage Notes .. 11-111
Syntax .. 11-112
Scenario ... 11-112
Examples ... 11-112
SQL: Delete a Row from a Table.. 11-112

Index
xxvi

Send Us Your Comments

Application Developer’s Guide - Large Objects (LOBs) Using C/C++ (Pro*C/C++), Release 2
(8.1.6)

Part No. A77001-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,

section, and page number (if available). You can send comments to us in the following ways:

■ E-mail - infodev@us.oracle.com

■ FAX - 650-506-7228. Attn:ST/Oracle8i Generic Documentation

■ Postal service:

Oracle Corporation

ST/Oracle8i Generic Documentation

500 Oracle Parkway, 4op12

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, and telephone number below.
xxvii

If you have problems with the software, please contact your local Oracle Support Services.
xxviii

Preface

This Guide describes Oracle8i application development features that deal with Large
Objects (LOBs). The information applies to versions of Oracle Server that run on all

platforms, and does not include system-specific information.

The Preface includes the following sections:

■ Information in This Guide

■ Feature Coverage and Availability

■ New LOB Features

■ What’s New in This Manual

■ Related Guides

■ How This Book Is Organized

■ Conventions Used in this Guide

■ How to Interpret the Use Case Diagrams

■ Your Comments Are Welcome
xxix

Information in This Guide
The Oracle8i Application Developer’s Guide - Large Objects (LOBs) is intended for

programmers developing new applications that use LOBs, as well as those who

have already implemented this technology and now wish to take advantage of new

features.

The increasing importance of multimedia data as well as unstructured data has led

to this topic being presented as an independent volume within the Oracle

Application Developers documentation set.

Feature Coverage and Availability
Oracle8i Application Developer’s Guide - Large Objects (LOBs) contains

information that describes the features and functionality of Oracle8i and Oracle8i
Enterprise Edition products.

Oracle8i and Oracle8i Enterprise Edition have the same basic features. However,

several advanced features are available only with the Enterprise Edition, and some

of these are optional. For example, to use object functionality, you must have the

Enterprise Edition and the Objects Option.

What You Need To Use LOBs?
There are no special restrictions when dealing with LOBs. See Chapter 4, "Managing

LOBs", for further information about restrictions. You will need the following

options:

■ Oracle Partitioning option: to use LOBs in partitioned tables.

■ Oracle Object option: to use LOBs with object types

For information about the differences between Oracle8i and the Oracle8i Enterprise

Edition and the features and options that are available to you, see the following:

■ Getting to Know Oracle8i.

■ http://www.oracle.com/database/availability/ and download the "Oracle8i: A

Family of Database Products" document.

New LOB Features
New LOB Features, Introduced with Oracle8i, Release 2 (8.1.6)

New LOB features included in the Oracle8i, release 2 (8.1.6) are as follows:
xxx

■ A CACHE READS option for LOB columns has been added

■ The 4,000 byte restriction for bind variables binding to an internal LOB has been

removed

LOB Features, Introduced with Oracle8i, Release 8.1.5

New LOB features included in the Oracle8i, release 8.1.5 are as follows:

■ Temporary LOBs

■ Varying width CLOB and NCLOB support

■ Support for LOBs in partitioned tables

■ New API for LOBs (open /close /isopen , writeappend , getchunksize)

■ Support for LOBs in non-partitioned index-organized tables

■ Copying the value of a LONG to a LOB

What’s New in This Manual
This manual has undergone the following changes for Oracle8i Release 2 (8.1.6):

■ Reorganization: The manual has been re-organized, as described later in the

Preface. Previous chapter contents, for example, the prior content for Chapter 1

has been split off into new chapters.

■ New FAQ Chapter: Chapter 6, "Frequently Asked Questions" is a new chapter.

■ Graphic Hyperlinking: Where possible graphics have been hyperlinked for the

html and pdf versions so that users can go with ease to the ’parent’ or ’child’

use case diagram, or use case diagram. How to use the new use case diagram

hyperlinking is described in "Hot Links From Use Case Diagram to Use Case

Diagram"

■ "Why Use LOBs": In Chapter 1, the need for LOBs and LOB advantages are

newly described.

■ Use Cases: To introduce use case consistency throughout the Application

Developer Guide series, each use case now has a similar structure, with

Purpose, Usage Notes, Syntax, Scenarios, and Examples delineated. The use

case ’master’ tables have been updated to include available programmatic

environment examples for each use case.

■ Syntax References: Each use case in Chapter 9, 10, and 11, now has a fairly

detailed syntax reference for each programmatic environment, directing you to
xxxi

the appropriate manual, chapter, and section, or online menu, for more syntax

information.

■ New Notes: New notes added to this manual include the following:

■ "How to Create Gigabyte LOBs" in Chapter 7.

■ "JDBC: OracleBlob and OracleClob Do Not Work in 8.1.x and Future

Releases" in Chapter 3, "LOB Programmatic Environments".

■ "Creating a Varray Containing References to LOBs" in Chapter 5,

"Advanced Topics".

■ Removed restriction: is listed in Chapter 4, "Managing LOBs" and described

in detail with examples in Chapter 7, "Modeling and Design", under

Chapter , "Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs".

■ Guidelines for using DBMS_LOB.WRITE in Chapter 10, "Temporary LOBs"

under "Using DBMS_LOB.WRITE() to Write Data to a Temporary BLOB"

under the Write Data to a Temporary LOB section.

■ CACHE READS has been added as a storage option for LOBs. This is

described in "LOB Storage"— "CACHE / NOCACHE / CACHE READS" in

Chapter 7, "Modeling and Design". See these notes for information about

how using this option affects downgrading from 8.1.6 to prior releases.

■ Reference to NOCOPY restrictions and guidelines has been added in

Chapter 10, "Temporary LOBs" under Chapter , "NOCOPY Restrictions".

■ TO_LOB function: A note was added to the section, "Copy LONG to LOB",

in Chapter 9, "Internal Persistent LOBs" to remind users that TO_LOB can

be used to copy data to CLOBs but not NCLOBs.

Related Guides
You will find the following manuals helpful for detail on syntax and

implementation:

■ Oracle8i Supplied PL/SQL Packages Reference: Use this to learn PL/SQL and to

get a complete description of this high-level programming language, which is

Oracle Corporation’s procedural extension to SQL.

■ Oracle Call Interface Programmer’s Guide : Describes Oracle Call Interface

(OCI). You can use OCI to build third-generation language (3GL) applications

in C or C++ that access Oracle Server.
xxxii

■ Pro*C/C++ Precompiler Programmer’s Guide: Oracle Corporation also provides

the Pro* series of precompilers, which allow you to embed SQL and PL/SQL in

your application programs.

■ Pro*COBOL Precompiler Programmer’s Guide : Pro*COBOL precompiler allows

you to embed SQL and PL/SQL in your COBOL programs for access to Oracle

Server.

■ Programmer’s Guide to the Oracle Precompilers [Release 7.3.4] and Pro*Fortran
Supplement to the Oracle Precompilers Guide [Release 7.3.4]: Use these manuals

for Fortran precompiler programming to access Oracle Server.

■ SQL*Module for Ada Programmer’s Guide : This is a stand alone manual for use

when programming in Ada to access Oracle Server.

■ Java: Oracle 8i offers the opportunity of working with Java in the database. The

Oracle Java documentation set includes the following:

■ Oracle8i Enterprise JavaBeans and CORBA Developer’s Guide

■ Oracle8i JDBC Developer’s Guide and Reference

■ Oracle8i Java Developer’s Guide

■ Oracle8i JPublisher User’s Guide

■ Oracle8i Java Stored Procedures Developer’s Guide.

Multimedia

You can access Oracle’s development environment for multimedia technology in a

number of different ways.

■ To build self-contained applications that integrate with the database, you can

learn about how to use Oracle’s extensibility framework in Oracle8i Data
Cartridge Developer’s Guide

■ To utilize Oracle’s own intermedia applications, refer to the following:

■ Oracle8i interMedia Audio, Image, and Video User’s Guide and Reference.

■ Oracle8i interMedia Audio, Image, and Video Java Client User’s Guide and
Reference

■ Oracle8i interMedia Locator User’s Guide and Reference

■ Using Oracle8i interMedia with the Web

Basic References
xxxiii

■ For SQL information, see the Oracle8i SQL Reference and Oracle8i Administrator’s
Guide

■ For information about Oracle replication with LOB data, refer to Oracle8i
Replication. LOBs

■ For basic Oracle concepts, see Oracle8i Concepts.

How This Book Is Organized
The Oracle8i Application Developer’s Guide - Large Objects (LOBs) contains eleven

chapters organized into two volumes. A brief summary of what you will find in

each chapter follows:

VOLUME I

Chapter 1, "Introduction"
Chapter 1 describes the need for unstructured data and the advantages of using

LOBs. We discuss the use of LOBs to promote internationalization by way of

CLOBS, and the advantages of using LOBs over LONGs. Chapter 1 also describes the

LOB demo file and where to find the supplied LOB sample scripts.

Chapter 2, "Basic Components"
Chapter 2 describes the LOB datatype, including internal persistent and temporary

LOBs and external LOBs, (BFILEs). The need to initialize LOBs to NULL or Empty

is described. The LOB locator and how to use it is also discussed.

Chapter 3, "LOB Programmatic Environments"
Chapter 3 describes the six programmatic environments used to operate on LOBs

and includes a listing of their available LOB-related methods or procedures:

■ PL/SQL by means of the DBMS_LOB package as described in Oracle8i Supplied
PL/SQL Packages Reference.

■ C by means of Oracle Call Interface (OCI) described in the Oracle Call Interface
Programmer’s Guide

■ C++ by means of Pro*C/C++ precompiler as described in the Pro*C/C++
Precompiler Programmer’s Guide

■ COBOL by means of Pro*COBOL precompiler as described in the Pro*COBOL
Precompiler Programmer’s Guide
xxxiv

■ Visual Basic by means of Oracle Objects For OLE (OO4O) as described in its

accompanying online documentation.

■ Java by means of the JDBC Application Programmers Interface (API) as

described in the Oracle8i JDBC Developer’s Guide and Reference.

Chapter 4, "Managing LOBs"
Chapter 4 describes how to use SQL*Loader, DBA actions required prior to working

with LOBs, and LOB restrictions.

Chapter 5, "Advanced Topics"
Chapter 5 covers advanced topics that touch on all the other chapters. Specifically,

we focus on read consistent locators, the LOB buffering subsystem, and LOBs in the

object cache.

Chapter 6, "Frequently Asked Questions"
Chapter 6 includes a list of LOB-related questions and answers received from

customers.

Chapter 7, "Modeling and Design"
Chapter 7 covers issues related to selecting a datatype and includes a comparison of

LONG and LONG RAW properties. Table architecture design criteria are discussed

and include tablespace and storage issues, reference versus copy semantics,

index-organized tables, and partitioned tables. Other topics are indexing a LOB

column and best performance practices.

Chapter 8, "Sample Application"
Chapter 8 provides a sample multimedia case study and solution. It includes the

design of the multimedia application architecture in the form of table

Multimedia_tab and associated objects, types, and references.

Chapter 9, "Internal Persistent LOBs"
The basic operations concerning internal persistent LOBs are discussed, along with

pertinent issues in the context of the scenario outlined in Chapter 8. We introduce

the Unified Modeling Language (UML) notation with a special emphasis on use
cases. Specifically, each basic operation is described as a use case. A full description

of UML is beyond the scope of this book, but the small set of conventions used in

this book appears later in the Preface. Wherever possible, we provide the same

example in each programmatic environment.
xxxv

VOLUME II

Chapter 10, "Temporary LOBs"
This chapter follows the same pattern as Chapter 9 but here focuses on the new

feature of temporary LOBs. The new API and its attendant issues are discussed in

detail. Visual Basic (OO4O) and Java (JDBC) example scripts for temporary LOBs

are not provided in this release but will be available in a future release.

Chapter 11, "External LOBs (BFILEs)"
The focus in this chapter is on external LOBs, also known as BFILEs. The same

treatment is provided here as in Chapters 9 and 10, namely, every operation is

treated as a use case, and we provide matching code examples in every available

programmatic environment.

Conventions Used in this Guide
The following notational and text formatting conventions are used in this guide:

[]
Square brackets indicate that the enclosed item is optional. Do not type the brackets.

{ }
Braces enclose items of which only one is required.

|
A vertical bar separates items within braces, and may also be used to indicate that

multiple values are passed to a function parameter.

...
In code fragments, an ellipsis means that code not relevant to the discussion has

been omitted.

font change
SQL or C code examples are shown in monospaced font.

italics
Italics are used for OCI parameters, OCI routines names, file names, data fields,

comments, and the titles of other Oracle manuals.

UPPERCASE
Uppercase is used for SQL keywords, like SELECT or UPDATE.
xxxvi

This guide uses special text formatting to draw the reader’s attention to some

information. A paragraph that is indented and begins with a bold text label may

have special meaning. The following paragraphs describe the different types of

information that are flagged this way.

Note: The "Note" flag indicates that the reader should pay particular attention

to the information to avoid a common problem or increase understanding of a

concept.

Warning: An item marked as "Warning" indicates something that an OCI

programmer must be careful to do or not do in order for an application to work

correctly.

See Also: Text marked "See Also" points you to another section of this guide, or

to other documentation, for additional information about the topic being

discussed.
xxxvii

How to Interpret the Use Case Diagrams
The use case diagrams used in the manual, specifically in Chapters 9, 10, and 11, are

based on UML (Unified Modeling Language).

Why Employ Visual Modelling?
When application developers gather together to discuss a project, it is only a matter

of minutes before someone starts sketching on a white board or pad in order to

describe the problems and outline solutions. They do so because they instinctively

recognize that a mixture of graphics and text is the fastest way to delineate the

complex relationships entailed in software development. Participants in these

meetings often end up copying down these sketches as a basis for later code

development.

Unified Modelling Language
One problem with this process is that whoever creates the diagrams has to invent a

notation to adequately represent the issues under discussion. Fortunately, many of

the types of problems are familiar, and everyone who is in the room can ask

questions about what is meant by the lines and edges. But this raises further

problems: What about members of a development team who are not present?

Indeed, even people who were there may later lose track of the logic underlying

their notes.

To counter these difficulties, this Application Developer’s documentation set uses a

graphic notation defined by the Unified Modelling Language (UML), an

industry-wide standard specifically created for modelling software systems.

Describing the UML in its entirety is beyond the scope of the book. However, we do

explain the small subset of the UML notation that we employ.

Illustrations and Diagrams
Software documentation has always contained figures. What, then, is the difference

between UML-based diagrams used for modelling software development and the

figures that have traditionally been used to illustrate different topics? We make a

distinction between two kinds of figures in this book:

■ Illustrations — used to describe technology to make it more understandable.

■ Diagrams — used for actual software modelling.

The two different types are always distinguished in the figure title. The term

diagram is always used for the following examples:
xxxviii

Example of an Illustration
Figure 0–1 illustrates the macro-steps entailed in creating a multimedia application.

While it may be useful in planning software development from an organizational

standpoint, it does not provide any help for the actual coding.

Figure 0–1 Example of an Illustration: The Multimedia Authoring Process

Example of A Use Case Diagram
Note: The following use case diagrams illustrate advanced queuing functionality rather than
large objects (LOBs) functionality. For your convenience, these example use case diagrams
will be changed to illustrate large objects (LOBs) functionality in a future release.

In contrast to Figure 0–1, Figure 0–2 describes what you must do to enqueue a

message using Oracle Advanced Queuing: You must specify a queue name, specify

the message properties, specify from among various options, and add the message

payload. This diagram is then complemented by further diagrams, as indicated by

the drop shadows around the latter three ellipses.

Story
Board

Development

Media
Content

Collection

Programming
the

Composition

Media
Experience
xxxix

Figure 0–2 Use Case Diagram: Enqueue a Message

Operational Interface

User/
Program

specify
options

add
payload

specify
message
properties

specify
queue name

ENQUEUE
a message
xl

Use Cases Diagram Elements
Use cases are generally employed to describe the set of activities that comprise the

sum of the application scenarios.

Figure 0–3 Use Cases

The following sections describe how to interpret how the elements of a use case

diagram as applied in different cases.

Buy / Sell Securities

Agent

Customer

Stock
Exchange

Security
House

Confirm
Order

Cancel
Order

Complete
Order

Check Order
Status

Place
Order
xli

Graphic Element Description

 Each primary use case is instigated by
an actor (’stickman’) that could be a
human user, an application, or a
sub-program.

The actor is connected to the primary
use case which is depicted as an oval
(bubble) enclosing the use case action.

The totality of primary use cases is
described by means of a Use Case
Model Diagram.

Primary use cases may require other
operations to complete them. In this
diagram fragment:

■ specify queue name

Is one of the sub-operations, or
secondary use cases, necessary to
complete

■ ENQUEUE a message

Has the downward lines from the
primary use case that lead to the other
required operations (not shown)

User/
Program

DELETE
the row

Operational Interface

User/
Program

specify
queue name

ENQUEUE
a message
xlii

Secondary use cases that have drop
shadows expand (they are described
by means of their own use case
diagrams). There are two reasons for
this:

(a) It makes it easier to understand the
logic of the operation.

 (b) It would not have been possible to
place all the operations and
sub-operations on the same page.

In this example, specify message
properties, specify options, and add
payload are all expanded in separate
use case diagrams.

This diagram fragment shows the use
case diagram expanded. While the
standard diagram has the actor as the
initiator), here the use case itself is the
point of departure for the
sub-operation.

In this example, the expanded view of
add payload represents a constituent
operation of ENQUEUE a message.

Graphic Element Description

Operational Interface

User/
Program

specify
options

add
payload

specify
message
properties

specify
queue name

ENQUEUE
a message

Operational Interface

add
payload

ENQUEUE
a message
xliii

This convention (a, b, c) shows that
there are three different ways of
creating a table that contains LOBs.

This fragment shows use of a NOTE
box, here distinguishing which of the
three ways of creating a table
containing LOBs.

Graphic Element Description

b
c

a

Internal persistent LOBs

CREATE
a table
(LOB)

User/
Program

a CREATE table with one or more LOBs
CREATE

a table (LOB
columns)
xliv

Graphic Element

Description

This drawing shows two other common sees of NOTE boxes:

(a) A way of presenting an alternative name, as in this case the action SELECT propagation schedules in the
user schema is represented by the view USER_QUEUE_SCHEDULES

(b) The action list attribute names is qualified by the note to the user that you must list at least one attribute if
you elect not to list all the propagation schedule attributes.

User/
Program

OR

list
all propogation

schedule
attributes

List at
least one
attribute

User view:
USER_QUEUE_
SCHEDULES

SELECT
propag schedules
in user schema

list
attribute
names
xlv

Graphic Element Description

The dotted arrow in the use case
diagram indicates dependency. In
this example, free a temporary
LOBrequires that you first create a
temporary LOB.

This means that you should not
execute the free operation on a
LOB that is not temporary.

What you need to remember is
that the target of the arrow shows
the operation that must be
performed first.

Use cases and their sub-operations
can be linked in complex
relationships.

In this example of a callback, you
must first REGISTER for
notification in order to later
receive a notification.

Graphic Element

Description

In this case, the branching paths of an OR condition are shown. In invoking the view, you may either choose to
list all the attributes or to view one or more attributes. The fact that you can stipulate which of the attributes
you want made visible is indicated by the grayed arrow.

User/
Program

create
a temporary

LOB

free
a temporary

LOB

REGISTER
for

notification

receive
notification

User/
Program

OR

list
all propogation

schedule
attributes

List at
least one
attribute

User view:
USER_QUEUE_
SCHEDULES

SELECT
propag schedules
in user schema

list
attribute
names
xlvi

Graphic Element

Description

Not all lined operations are mandatory. While the black dashed-line and arrow indicate that you must perform
the targeted operation to complete the use case, actions that are optional are shown by the grey dashed-line and
arrow.

In this example, executing WRITEAPPEND on a LOB requires that you first SELECT a LOB.

As a facilitating operations, you may choose to OPEN a LOB and/or GETCHUNKSIZE.

However, note that if you OPEN a LOB, you will later have to CLOSE it.

OPEN
a LOB

User/
Program

SELECT
a LOB

get
chunk size

CLOSE
a LOB

write
append
xlvii

Hot Links From Use Case Diagram to Use Case Diagram
The html and pdf versions of the use case diagrams include hot link buttons.When

you need the following:

■ To Jump Back:

To the referring use case diagram , or to the "Use Case Model Diagram" (the

’parent’ of all diagrams), click on the middle or left blue buttons respectively.

■ To Jump Forward:

From each use case, to the ’child’ diagram, typically noted as ’a’, ’b’, or ’c’, click

on the [a], [b], or [c] blue button respectively. From the Use Case Model

Diagram (’parent’ diagram) to specific use cases, click on the blue-circled use

case of interest.

Note there is one "Use Case Model Diagram" ("parent") in each of chapters 9, 10,

and 11, namely:

■ Use Case Model Diagram: Internal Persistent LOBs (part 1 of 2), Use Case

Model Diagram: Internal Persistent LOBs (part 2 of 2)

■ Use Case Model Diagram: Internal Temporary LOBs (part 1 of 2), Use Case

Model Diagram: Internal temporary LOBs (part 2 of 2)

■ Use Case Model Diagram: External LOBs (BFILEs)

Graphic Element Description

Use Case Model Diagrams summarize all
the use cases in a particular domain,
such as Internal temporary LOBs .
Often, these diagrams are too complex
to contain within a single page.

When that happens we resort to
dividing the diagram into two parts.
Please note that there is no sequence
implied in this division.

In some cases, we have had to split a
diagram simply because it is too long
for the page. In such cases, we have
included this marker.

Internal temporary LOBs (part 1 of 2)

continued on next page
xlviii

Your Comments Are Welcome
We value and appreciate your comment as an Oracle user and reader of our

manuals. As we write, revise, and evaluate our documentation, your opinions are

the most important feedback we receive.

You can send comments and suggestions about this manual to the information

development department at following e-mail address:

infodev@us.oracle.com

If you prefer, you can send letters or faxes containing your comments to the

following address:

ST/Oracle8i Generic Documentation

Oracle Corporation

500 Oracle Parkway

Redwood Shores, CA 94065

Fax: (650) 506-7228
xlix

l

Introdu
1

Introduction

This chapter discusses the following topics:

■ Why Use LOBs?

■ Unstructured Data

■ LOB Datatype Helps Support Internet Applications

■ Why Not Use LONGs?

■ LOBs Help Control Semantics

■ LOBS Enable interMEDIA

■ LOB "Demo" Directory

■ Location of Demo Directories?

■ Compatibility and Migration Issues

■ Examples in This Manual Use Multimedia_Tab
ction 1-1

Why Use LOBs?
Why Use LOBs?
As applications evolve to encompass increasingly richer semantics, they encounter

the need to deal with various kinds of data -- simple structured data, complex

structured data, semi-structured data, unstructured data. Traditionally, the

Relational model has been very successful at dealing with simple structured data --

the kind which can be fit into simple tables. Oracle has added Object-Relational

features so that applications can deal with complex structured data -- collections,

references, user-defined types and so on. Our queuing technologies deal with

Messages and other semi-structured data. LOBs are designed to support the last

piece - unstructured data.

Unstructured Data

Unstructured Data Cannot be Decomposed Into Standard Components
Unstructured data cannot be decomposed into standard components. Data about an

Employee can be ’structured’ into a Name (probably a character string), an Id (likely

a number), a Salary and so on. But if we are given a Photo, we find that the data

really consists of a long stream of 0s and 1s.These 0s and 1s are used to switch pixels

on or off so that we see the Photo on a display, but they can’t be broken down into

any finer structure in terms of database storage.

Unstructured Data is Large
Also interesting is that unstructured data such as text, graphic images, still video

clips, full motion video, and sound waveforms tend to be large -- a typical employee

record may be a few hundred bytes, but even small amounts of multimedia data

can be thousands of times larger.

Unstructured Data in System Files Need Accessing from the Database
Finally, some multimedia data may reside on operating system files, and it is

desirable to access them from the database.

LOB Datatype Helps Support Internet Applications
Lately, with the growth of the internet and content-rich applications, it has become

imperative that the database support a datatype that fulfills the following:

■ Can store unstructured data

■ Is optimized for large amounts of such data
1-2 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Why Not Use LONGs?
■ Provides a uniform way of accessing large unstructured data within the

database or outside.

Two Type of LOBs Supported
Oracle8i supports the following two types of LOBs

■ Those stored in the database either in-line in the table or in a separate

tablespace (such as BLOB, CLOB, and NCLOB)

■ Those stored as operating system files (such as BFILEs)

Why Not Use LONGs?
 In Oracle7, most applications storing large amounts of unstructured data used the

LONG or LONG RAW data type.

Oracle8i’s support for LOB data types is preferred over support for LONG and

LONG RAWs in Oracle7 in the following ways:

■ LOB Capacity: With Oracle8i, LOBs can store up to 4GB of data. This doubles

the 2GB of data that LONG and LONG RAW data types could store.

■ Number of LOB columns per table: An Oracle8i table can have multiple LOB

columns. Each LOB column in the same table can be of a different type. in

Oracle7 Release 7.3, tables are limited to a single LONG or LONG RAW

column.

■ Random piece-wise access: LOBs support random access to data, but LONGs

support only sequential access. Further, to improve the speed with which a LOB

can be brought from the server-side to the client, the LOB can be broken into

chunks that can then be brought in a single round trip back to the client.

LOB Type Columns
LOB (BLOB, CLOB, NCLOB, or BFILE) column types store values or references,

called ’locators’, that specify the location of large objects stored out-of-line or in an

external file.

LOB Type Columns Do Not Only Store Locators! In LOB type columns, the LOB locator

is stored in-line in the row, however, depending on user-specified SQL Data

Definition Language (DDL), Oracle8i can store small LOBs, less than 4K in-line in
the table. Once the LOB grows bigger than approximately 4K Oracle8i moves the

LOB out of the table into a different segment and possibly even into a different
Introduction 1-3

LOBs Help Control Semantics
tablespace. Hence, Oracle8i sometimes stores LOB data, not just LOB locators,

in-line in the row.

BLOB, CLOB, and NCLOB data is stored out-of-line inside the database. BFILE data

is stored in operating system files outside the database. Oracle8i provides

programmatic interfaces and PL/SQL support for access to and operation on LOBs.

LOBs Help Control Semantics
 With respect to SQL, data residing in Oracle8i LOBs is opaque and not query-able.

You can write functions (including methods of object types) to access and

manipulate parts of LOBs. In this way the structure and semantics of data residing

in large objects can be supplied by application developers.

For example, you may want to store the resumes of Employees as character LOBs.

In such a case, you can write a routine that interprets the resume, say that pulls out

the names of the companies where the Employee has worked before, using your

application-specific knowledge of the structure of resumes. You can also use an

interMedia Text (Context) index to index keywords in the resume.

LOBS Enable inter MEDIA
 While LOBs provide the infrastructure within the database to store multimedia

data, Oracle8i also provides developers with additional functionality for the most

commonly used multimedia types. The multimedia types include text, image,

locator and audio or video data.

Oracle8i introduces the interMedia bundle, a collection of specialized data types

also called data cartridges. Text data, spatial location, images, audio and video data

are all supported. Users can access objects of the type using efficient SQL queries,

manipulate its contents (trim an image), read and write its contents, and convert

data from one format to another.

Data cartridges in turn use Oracle8i’s infrastructure to define the object types,

methods, and LOBs necessary to represent these specialized types of data in the

database.

Oracle8i’s data cartridges provide a predefined set of objects and operations. This

facilitates application development with these types.

See also http://www.oracle.com/intermedia
1-4 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compatibility and Migration Issues
LOB "Demo" Directory
LOB demonstration sample scripts are currently provided in this manual in

Chapters 9, 10, and 11 primarily. The vast majority of these scripts have been tested

and run successfully. The syntax for the sample multimedia schema described in

Chapter 8, is provided in:

■ Chapter 9, "Internal Persistent LOBs", under "CREATE a Table Containing One

or More LOB Columns" on on page 9-8

■ Chapter 10, "Temporary LOBs", under "Create a Temporary LOB" on

page 10-14

■ Chapter 11, "External LOBs (BFILEs)", under Chapter , "CREATE a Table

Containing One or More BFILE Columns" on page 11-15

The SQL set up syntax for the above schema is also provided in the Oracle8i "demo"

directory in the following files:

■ lobdemo.sql

■ adloci.sql.

Location of Demo Directories?
Demonstration scripts are available with your Oracl8i installation. The location,

names, and availability of the programs may vary on different platforms. See your

platform specific documentation. For UNIX and Windows NT

■ Unix: On a Unix workstation, the programs are installed in the ORACLE_
HOME/rdbms/demo directory.

■ Windows NT: On a WindowsNT machine, the programs are located in the

ORACLE_HOME\Oci\Samples directory, for example, for OCI code examples.

Compatibility and Migration Issues
The following LOB related compatibility and migration issues are described in

detail in Oracle8i Migration. The chapters and sections noted below refer to the

release 8.1.6 Oracle8i Migration manual.

■ “Varying Width Character Sets for CLOBs or NCLOBs”, in Chapter 9,

“Compatibility and Interpretability Issues”, under “Datatypes”
Introduction 1-5

Examples in This Manual Use Multimedia_Tab
■ Downgrading with CACHE READs Defined: See Chapter 13, "Downgrading

to an Older Version 8 Release", under "Remove Incompatibilities", "Schema

Objects", "Discontinue Use of Cache Reads Specified for LOBs"

■ Downgrading - Removing LOB Columns from Partitioned Table: See Chapter

13, "Downgrading to an Older Version 8 Release", under "Remove

Incompatibilities", "Datatypes", "Remove LOB Columns from Partitioned

Tables"

■ Downgrading - LOBs and Varrays in Index Organized Tales: See Chapter 13,

"Downgrading to an Older Version 8 Release", under "Remove

Incompatibilities, "Schema Objects", "Discontinue Use of LOBs and Varrays in

Index Organized Tables"

■ Downgrading - Varying Width Character Sets for CLOBs or NCLOBs: See

Chapter 13, "Downgrading to an Older Version 8 Release", under "Remove

Incompatibilities", under "Datatypes", "Remove CLOBs and NCLOBs from

Tables in Database with Varying-Width Character Set"

Examples in This Manual Use Multimedia_Tab
Multimedia data is increasingly being used on web pages, CD-ROMs, in film and

television, for education, entertainment, security, and other industries. Typical

multimedia data is large and can be comprised of audio, video, scripts, resumes,

graphics, photographs, etc. Much of this data is unstructured.

LOBs have been designed to handle large unstructured data. "Unstructured Data" is

described earlier in this chapter.

 A sample application based on a 'multimedia' table, called Multimedia_tab , is

described in detail in Chapter 8, "Sample Application". All examples presented in

this manual are based on table Multimedia_tab .Where applicable, any deviations

or extensions to this table are described in the appropriate sections.

For Further Information
See the following url for information about LOBs:

http://www.technet.oracle.com/products
1-6 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Basic Compo
2

Basic Components

This chapter discusses the following topics:

■ The LOB Datatype

■ Internal LOBs

■ External LOBs (BFILEs)

■ Internal LOBs Use Reference Semantics, External LOBs Use Copy Semantics

■ Varying-Width Character Data

■ The LOB Locator

■ LOB Value and Locators

■ LOB Locator Operations

■ Creating Tables that Contain LOBs

■ Initializing Internal LOBs to NULL or Empty

■ Initializing Internal LOB Columns to a Value

■ Initializing External LOBs to NULL or a File Name

Note: Examples in this chapter are based on the Multimedia_tab schema and table
Multimedia_tab , which are described in Chapter 8, "Sample Application".
nents 2-1

The LOB Datatype
The LOB Datatype
Oracle8i regards LOBs as being of two kinds depending on their location with

regard to the database — internal LOBs and external LOBs, also referred to as

BFILEs (binary files). Note that when we discuss some aspect of working with

LOBs without specifying whether the LOB is internal or external, the characteristic

under discussion pertains to both internal and external LOBs.

Internal LOBs are further divided into those that are persistent and those that are

temporary.

Internal LOBs
Internal LOBs, as their name suggests, are stored inside database tablespaces in a

way that optimizes space and provides efficient access. Internal LOBs use copy

semantics and participate in the transactional model of the server. You can recover

internal LOBs in the event of transaction or media failure, and any changes to a

internal LOB value can be committed or rolled back. In other words, all the ACID

properties that pertain to using database objects pertain to using internal LOBs.

Internal LOB Datatypes
There are three SQL datatypes for defining instances of internal LOBs:

■ BLOB, a LOB whose value is composed of unstructured binary ("raw") data.

■ CLOB, a LOB whose value is composed of character data that corresponds to the

database character set defined for the Oracle8i database.

■ NCLOB, a LOB whose value is composed of character data that corresponds to

the national character set defined for the Oracle8i database.

External LOBs (BFILEs)
External LOBs (BFILES) are large binary data objects stored in operating system files

outside database tablespaces. These files use reference semantics. Apart from

conventional secondary storage devices such as hard disks, BFILEs may also be

located on tertiary block storage devices such as CD-ROMs, PhotoCDs and DVDs.

The BFILE datatype allows read-only byte stream access to large files on the

filesystem of the database server.

The Oracle Server can access BFILE s provided the underlying server operating

system supports stream-mode access to these operating system (OS) files.
2-2 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

The LOB Datatype
External LOB Datatypes
There is one datatype, BFILE, for declaring instances of external SQL LOBs.

■ BFILE , a LOB whose value is composed of binary ("raw") data, and is stored

outside the database tablespaces in a server-side operating system file.

Internal LOBs Use Reference Semantics, External LOBs Use Copy Semantics
■ Copy semantics: Both LOB locator and value are copied

■ Reference semantics: Only LOB locator is copied

Copy Semantics
Internal LOBs, namely BLOBs, CLOBs, NCLOBs, whether persistent or temporary,

use copy semantics.

When you insert or update a LOB with a LOB from another row in the same table,

the LOB value is copied so that each row has a different copy of the LOB value.

Internal LOBs have copy semantics so that if the LOB in the row of the table is copied

to another LOB, in a different row or perhaps in the same row but in a different

column, then the actual LOB value is copied, not just the LOB locator. This means in

this case that there will be two different LOB locators and two copies of the LOB

value.

Reference Semantics
External LOBs (BFILEs) use reference semantics. When the BFILE in the row of the

table is copied to another BFILE, only the BFILE locator is copied, not the actual

BFILE data, i.e., not the actual operating system file.

Note:

■ External LOBs do not participate in transactions. Any support

for integrity and durability must be provided by the

underlying file system as governed by the operating system.

■ You cannot locate a single BFILE on more than one device, for

instance, striped across a disk array.
Basic Components 2-3

Varying-Width Character Data
Varying-Width Character Data
■ You can create the following tables:

■ With CLOB/NCLOB columns even if you use a varying-width CHAR/NCHAR
database character set

■ With a type that has a CLOB attribute irrespective of whether you use a

varying-width CHAR database character set

■ You cannot create the following tables:

■ With NCLOBs as attributes of object types

CLOB, NCLOB Values are Stored Using 2 Byte Unicode for Varying-Width
Character Sets
CLOB/NCLOB values are stored in the database using the fixed width 2 byte

Unicode character set if the database CHAR/NCHAR character set is varying-width.

■ Inserting Data. When you insert data into CLOBs, the data input can be in a

varying-width character set. This varying-width character data is implicitly

converted into Unicode before data is stored in the database.

■ Reading the LOB. Conversely, when reading the LOB value, the stored Unicode

value is translated to the (possibly varying-width) character set that you request

on either the client or server.

Note that all translations to and from Unicode are implicitly performed by Oracle.

NCLOBs store fixed-width data.

You can perform all LOB operations on CLOBs (read , write , trim , erase ,

compare , e.t.c.) All programmatic environments that provide access to CLOBs work

on CLOBs in databases where the CHAR/NCHAR character set is of varying-width.

This includes SQL, PL/SQL, OCI, PRO*C, DBMS_LOB, and so on.

For varying-width CLOB data you need to also consider whether the parameters

are specified in characters or bytes.
2-4 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

The LOB Locator
The LOB Locator

LOB Value and Locators

Inline storage of the LOB value
Data stored in a LOB is termed the LOB’s value. The value of an internal LOB may or

may not be stored inline with the other row data. If you do not set DISABLE
STORAGE IN ROW and the internal LOB value is less than approximately 4,000

bytes, then the value is stored inline; otherwise it is stored outside the row. Since

LOBs are intended to be large objects, inline storage will only be relevant if your

application mixes small and large LOBs.

As mentioned in Chapter 7, "Modeling and Design", "ENABLE | DISABLE

STORAGE IN ROW" on page 7-11, the LOBvalue is automatically moved out of the

row once it extends beyond approximately 4,000 bytes.

LOB Locators
Regardless of where the value of the internal LOB is stored, a locator is stored in the

row. You can think of a LOB locator as a pointer to the actual location of the LOB
value. A LOB locator is a locator to an internal LOB while a BFILE locator is a locator

to an external LOB. When the term locator is used without an identifying prefix term,

it refers to both LOB locators and BFILE locators.

■ Internal LOB Locators. For internal LOBs, the LOB column stores a locator to

the LOB’s value which is stored in a database tablespace. Each LOB
column/attribute for a given row has its own distinct LOB locator and also a

dinstinct copy of the LOB value stored in the database tablespace.

■ External LOB Locators. For external LOBs (BFILEs), the LOB column stores a

BFILE locator to the external operating system file. Each BFILE

column/attribute for a given row has its own BFILE locator. However, two

different rows can contain a BFILE locator that points to the same operating

system file.

LOB Locator Operations

Setting the LOB Column/Attribute to Contain a Locator
■ Internal LOBs: Before you can start writing data to an internal LOB via one of

the six programmatic environment interfaces1 (PL/SQL, OCI, Pro*C, Pro*Cobol,
Basic Components 2-5

The LOB Locator
Visual Basic, or Java), the LOBcolumn/attribute must be made non-null, that is,

it must contain a locator. You can accomplish this by initializing the internal

LOB to empty in an INSERT/UPDATE statement using the functions EMPTY_
BLOB() for BLOBs or EMPTY_CLOB() for CLOBs and NCLOBs.

■ External LOBs: Before you can start accessing the external LOB (BFILE) value

via one of the six programmatic environment interfaces, the BFILE
column/attribute must be made non-null. You can initialize the BFILE column

to point to an external operating system file by using the BFILENAME()

function.

Invoking the EMPTY_BLOB() or EMPTY_CLOB() function in and of itself does not

raise an exception. However, using a LOB locator that was set to empty to access or

manipulate the LOB value in any PL/SQL DBMS_LOB or OCI routine will raise an

exception.

Valid places where empty LOBlocators may be used include the VALUESclause of an

INSERT statement and the SET clause of an UPDATE statement.

The following INSERT statement:

– Populates story with the character string ’JFK interview’,

– Sets flsub, frame and sound to an empty value,

– Sets photo to NULL, and

– Initializes music to point to the file ’JFK_interview’ located under the logical

directory ’AUDIO_DIR’ (see the CREATE DIRECTORYstatementstatement in

Oracle8i Reference.).

Note that character strings are inserted using the default character set for

the instance.

See Chapter 8, "Sample Application", for the definition of table Multimedia_tab.

1 Note:You could use SQL to populate a LOB column with data even if it contained NULL,
i.e., unless its a LOB attribute. However, you cannot use one of the six programmatic
environment interfaces on a NULL LOB!

See Also "INSERT a LOB Value using EMPTY_CLOB() or EMPTY_
BLOB()" in Chapter 9, "Internal Persistent LOBs" .

See Also "INSERT a Row Using BFILENAME()" in Chapter 11,
"External LOBs (BFILEs)" .
2-6 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

The LOB Locator
INSERT INTO Multimedia_tab VALUES (101, ’JFK interview’, EMPTY_CLOB(), NULL,
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL,
 BFILENAME(’AUDIO_DIR’, ’JFK_interview’), NULL);

Similarly, the LOB attributes for the Map_typ column in Multimedia_tab can be

initialized to NULLor set to empty as shown below. Note that you cannot initialize a

LOB object attribute with a literal.

INSERT INTO Multimedia_tab
 VALUES (1, EMPTY_CLOB(), EMPTY_CLOB(), NULL, EMPTY_BLOB(),
 EMPTY_BLOB(), NULL, NULL, NULL,
 Map_typ(’Moon Mountain’, 23, 34, 45, 56, EMPTY_BLOB(), NULL);

Accessing a LOB Through a Locator

SELECTing a LOB Performing a SELECT on a LOB returns the locator instead of the

LOB value. In the following PL/SQL fragment you select the LOB locator for story
and place it in the PL/SQL locator variable Image1 defined in the program block.

When you use PL/SQL DBMS_LOBfunctions to manipulate the LOBvalue, you refer

to the LOB using the locator.

DECLARE
 Image1 BLOB;
 ImageNum INTEGER := 101;
BEGIN
 SELECT story INTO Image1 FROM Multimedia_tab
 WHERE clip_id = ImageNum;
 DBMS_OUTPUT.PUT_LINE(’Size of the Image is: ’ ||
 DBMS_LOB.GETLENGTH(Image1));
 /* more LOB routines */
END;

In the case of OCI, locators are mapped to locator pointers which are used to

manipulate the LOB value. The OCI LOB interface is described Chapter 3, "LOB

Programmatic Environments" and in the Oracle Call Interface Programmer’s Guide.

Using LOB locators and transaction boundaries, and read consistent locators are

described in Chapter 5, "Advanced Topics".
Basic Components 2-7

Creating Tables that Contain LOBs
Creating Tables that Contain LOBs
When creating tables that contain LOBs use the guidelines described in the

following sections:

■ Initializing Internal LOBs to NULL or Empty

■ Initializing Internal LOB Columns to a Value

■ Initializing External LOBs to NULL or a File Name

■ Defining tablespace and storage characteristics. See Chapter 7, "Modeling and

Design", "Defining Tablespace and Storage Characteristics for Internal LOBs".

Initializing Internal LOBs to NULL or Empty
You can set an internal LOB — that is, a LOB column in a table, or a LOB attribute in

an object type defined by you— to be NULL or empty:

■ Setting an Internal LOB to NULL: A LOB set to NULL has no locator. A NULL

value is stored in the row in the table, not a locator. This is the same process as

for all other datatypes.

■ Setting an Internal LOB to Empty: By contrast, an empty LOB stored in a table is a

LOB of zero length that has a locator. So, if you SELECT from an empty LOB
column or attribute, you get back a locator which you can use to populate the

LOB with data via one of the six programmatic environments, such as OCI or

PL/SQL(DBMS_LOB). See Chapter 3, "LOB Programmatic Environments".

These options are discussed in more detail below.

As discussed below, an external LOB (i.e. BFILE) can be initialized to NULL or to

a filename.

Setting an Internal LOB to NULL
You may want to set the internal LOB value to NULL upon inserting the row in cases

where you do not have the LOB data at the time of the INSERT and/or if you want

to issue a SELECT statement at some later time such as:

SELECT COUNT (*) FROM Voiced_tab WHERE Recording IS NOT NULL;

 because you want to see all the voice-over segments that have been recorded, or

SELECT COUNT (*) FROM Voiced_tab WHERE Recording IS NULL;

if you wish to establish which segments still have to be recorded.
2-8 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Creating Tables that Contain LOBs
You Cannot Call OCI or DBMS_LOB Functions on a NULL LOB However, the drawback to

this approach is that you must then issue a SQL UPDATE statement to reset the null

LOB column — to EMPTY_BLOB() or EMPTY_CLOB() or to a value (e.g. ’Denzel

Washington’) for internal LOBs, or to a filename for external LOBs.

The point is that you cannot call one of the six programmatic environments (for

example, OCI or PL/SQL (DBMS_LOB) functions on a LOB that is NULL. These

functions only work with a locator, and if the LOB column is NULL, there is no

locator in the row.

Setting an Internal LOB to Empty
If you do not want to set an internal LOBcolumn to NULL, you can set the LOBvalue

to empty using the function EMPTY_BLOB () or EMPTY_CLOB() in the INSERT
statement:

INSERT INTO a_table VALUES (EMPTY_BLOB());

Even better is to use the returning clause (thereby eliminating a round trip that is

necessary for the subsequent SELECT), and then immediately call OCI or the

PL/SQL DBMS_LOB functions to populate the LOB with data.

DECLARE
 Lob_loc BLOB;
BEGIN
 INSERT INTO a_table VALUES (EMPTY_BLOB()) RETURNING blob_col INTO Lob_loc;
 /* Now use the locator Lob_loc to populate the BLOB with data */
END;

Example Using Table Multimedia_tab
You can initialize the LOBs in Multimedia_tab by using the following INSERT
statement:

INSERT INTO Multimedia_tab VALUES (1001, EMPTY_CLOB(), EMPTY_CLOB(), NULL,
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

This sets the value of story, flsub, frame and sound to an empty value, and sets photo,
and music to NULL.
Basic Components 2-9

Creating Tables that Contain LOBs
Initializing Internal LOB Columns to a Value
Alternatively, LOBcolumns, but not LOBattributes, may be initialized to a value.

Which is to say — internal LOBattributes differ from internal LOBcolumns in that

LOB attributes may not be initialized to a value other than NULL or empty.

Note that you can initialize the LOB column to a value that contains more than 4K

data. See Chapter 7.

Initializing External LOBs to NULL or a File Name
An external LOB (BFILE) can be initialized to NULL or to a filename via the

BFILENAME() function.

See Chapter 11, "External LOBs (BFILEs)", "Directory Object" — "Initializing a BFILE

Locator".
2-10 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Programmatic Environm
3

LOB Programmatic Environments

This chapter discusses the following topics:

■ Six Programmatic Environments Operate on LOBs

■ Using C/C++ (Pro*C) to Work with LOBs

Note: Examples in this chapter are based on the multimedia schema and table
Multimedia_tab described in Chapter 8, "Sample Application".
ents 3-1

Six Programmatic Environments Operate on LOBs
Six Programmatic Environments Operate on LOBs
Oracle8i now offers six different environments (languages) for operating on LOBs.

These are listed in Table 3–1, "LOBs’ Six Programmatic Environments".

Table 3–1 LOBs’ Six Programmatic Environments

Language
Precompiler or
Interface Program

Syntax Reference In This Chapter See ...

PL/SQL DBMS_LOB Package Oracle8i Supplied PL/SQL Packages
Reference

C Oracle Call Interface
(OCI)

Oracle Call Interface Programmer’s
Guide

C++ Pro*C/C++
precompiler

Pro*C/C++ Precompiler
Programmer’s Guide

"Using C/C++ (Pro*C) to Work with
LOBs" on page 3-6

COBOL Pro*COBOL
precompiler

 Pro*COBOL Precompiler
Programmer’s Guide

Visual Basic Oracle Objects For
OLE (OO4O)

Oracle Objects for OLE (OO4O) is
a Windows-based product
included with Oracle8i Client for
Windows NT.

There are no manuals for this
product, only online help. Online
help is available through the
Application Development
submenu of the Oracle8i
installation.

Java JDBC Application
Programmatic
Interface (API)

Oracle8i SQLJ Developer’s Guide
and Reference and Oracle8i JDBC
Developer’s Guide and Reference
3-2 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Comparison of the Six LOB Interfaces
Comparison of the Six LOB Interfaces
Table 3–2, "Comparison of Interfaces for Working With LOBs" compares the six LOB

interfaces by listing their available functions and methods used to operate on LOBs.

Table 3–2 Comparison of Interfaces for Working With LOBs
PL/SQL: DBMS_LOB

(dbmslob.sql) OCI (ociap.h)
Pro*C &

Pro*COBOL
Visual Basic

(OO4O) Java (JDBC)
DBMS_LOB.COMPARE N/A N/A ORALOB.Compare Use DBMS_

LOB.COMPARE

DBMS_LOB.INSTR N/A N/A ORALOB.Matchpos position

DBMS_LOB.SUBSTR N/A N/A N/A getBytes for BLOBs or
BFILEs

getSubString for
CLOBs

DBMS_LOB.APPEND OCILobAppend APPEND ORALOB.Append Use length and then
putBytes or PutString

N/A [use Pl/SQL assign
operator]

OCILobAssign ASSIGN ORALOB.Clone N/A [use equal sign]

N/A OCILobCharSetForm N/A N/A N/A

N/A OCILobCharSetId N/A N/A N/A

DBMS_LOB.CLOSE OCILobClose CLOSE N/A use DBMS_
LOB.CLOSE

DBMS_LOB.COPY OCILobCopy COPY ORALOB.Copy Use read and write

N/A OCILobDisableBufferin
g

DISABLE
BUFFERING

ORALOB.

DisableBuffering

N/A

N/A OCILobEnableBufferin
g

ENABLE
BUFFERING

ORALOB.

EnableBuffering

N/A

DBMS_LOB.ERASE OCILobErase ERASE ORALOB.Erase Use DBMS_
LOB.ERASE

DBMS_LOB.FILECLOSE OCILobFileClose CLOSE ORABFILE.Close closeFile

DBMS_
LOB.FILECLOSEALL

OCILobFileCloseAll FILE CLOSE
ALL

ORABFILE.CloseAll Use DBMS_
LOB.FILECLOSEALL

DBMS_LOB.FILEEXISTS OCILobFileExists DESCRIBE
[FILEEXISTS]

ORABFILE.Exist fileExists

DBMS_
LOB.GETCHUNKSIZE

OCILobGetChunkSize DESCRIBE
[CHUNKSIZE
]

N/A getChunkSize

DBMS_
LOB.FILEGETNAME

OCILobFileGetName DESCRIBE
[DIRECTORY,
FILENAME]

ORABFILE.

DirectoryName

ORABFILE.

FileName

getDirAlias

getName
LOB Programmatic Environments 3-3

Comparison of the Six LOB Interfaces
DBMS_LOB.FILEISOPEN OCILobFileIsOpen DESCRIBE
[ISOPEN]

ORABFILE.IsOpen Use DBMS_
LOB.ISOPEN

DBMS_LOB.FILEOPEN OCILobFileOpen OPEN ORABFILE.Open openFile

N/A (use BFILENAME
operator)

OCILobFileSetName FILE SET DirectoryName

FileName

Use BFILENAME

N/A OCILobFlushBuffer FLUSH
BUFFER

ORALOB.FlushBuffe
r

N/A

DBMS_LOB.GETLENGTH OCILobGetLength DESCRIBE
[LENGTH]

ORALOB.Size length

N/A OCILobIsEqual N/A N/A equals

DBMS_LOB.ISOPEN OCILobIsOpen DESCRIBE
[ISOPEN]

ORALOB.IsOpen use
DBMS_LOB.ISOPEN

DBMS_
LOB.LOADFROMFILE

OCILobLoadFromFile LOAD FROM
FILE

ORALOB.

CopyFromBfile

Use read and then
write

N/A [always initialize] OCILobLocatorIsInit N/A N/A N/A

DBMS_LOB.OPEN OCILobOpen OPEN ORALOB.open Use DBMS_
LOB.OPEN

DBMS_LOB.READ OCILobRead READ ORALOB.Read BLOB or BFILE:
getBytes and
getBinaryStream

CLOB: getString and
getSubString and
getCharacterStream

DBMS_LOB.TRIM OCILobTrim TRIM ORALOB.Trim Use DBMS_
LOB.TRIM

DBMS_LOB.WRITE OCILobWrite WRITEORAL
OB.

ORALOB.Write BLOB or BFILE:
putBytes and
getBinaryOutputStrea
m

CLOB: putString and
getCharacterOutputSt
ream

DBMS_
LOB.WRITEAPPEND

OCILobWriteAppend WRITE
APPEND

N/A Use length and then
putString or putBytes

DBMS_LOB.

CREATETEMPORARY

OCILobCreateTempora
ry

N/A

Table 3–2 Comparison of Interfaces for Working With LOBs (Cont.)
PL/SQL: DBMS_LOB

(dbmslob.sql) OCI (ociap.h)
Pro*C &

Pro*COBOL
Visual Basic

(OO4O) Java (JDBC)
3-4 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Comparison of the Six LOB Interfaces
The following sections describe each of the above interfaces in more detail.

DBMS_LOB.

FREETEMPORARY

OCILobFree Temporary N/A

DBMS_
LOB.ISTEMPORARY

OCILobIsTemporary N/A

OCILobLocatorAssign N/A

Table 3–2 Comparison of Interfaces for Working With LOBs (Cont.)
PL/SQL: DBMS_LOB

(dbmslob.sql) OCI (ociap.h)
Pro*C &

Pro*COBOL
Visual Basic

(OO4O) Java (JDBC)
LOB Programmatic Environments 3-5

Using C/C++ (Pro*C) to Work with LOBs
Using C/C++ (Pro*C) to Work with LOBs
You can make changes to an entire internal LOB, or to pieces of the beginning,

middle or end of a LOB by using embedded SQL. You can access both internal and

external LOBs for read purposes, and you can write to internal LOBs.

Embedded SQL statements allow you to access data stored in BLOBs, CLOBs,

NCLOBs, and BFILE s. These statements are listed in the tables below, and are

discussed in greater detail later in the chapter.

First Provide an Allocated Input Locator Pointer that Represents LOB
Unlike locators in PL/SQL, locators in Pro*C/C++ are mapped to locator pointers

which are then used to refer to the LOB or BFILE value.

To successfully complete an embedded SQL LOB statement you must do the

following:

1. Provide an allocated input locator pointer that represents a LOB that exists in the

database tablespaces or external file system before you execute the statement.

2. SELECT a LOB locator into a LOB locator pointer variable

3. Use this variable in the embedded SQL LOB statement to access and

manipulate the LOB value

Examples provided with each embedded SQL LOB statement are illustrated in:

■ Chapter 9, "Internal Persistent LOBs"

■ Chapter 10, "Temporary LOBs"

■ Chapter 11, "External LOBs (BFILEs)"

You will also be able to access these example scripts from your Oracle8i software

CD /rdbams/demo directory in a future release.

Pro*C/C++ Statements that Operate on BLOBs, CLObs, NCLOBs, and BFILEs
Pro*C statements that operate on BLOBs, CLOBs, and NCLOBs are listed below:

■ To modify internal LOBs, see Table 3–3

See Also: Pro*C/C++ Precompiler Programmer’s Guide for detailed

documentation, including syntax, host variables, host variable

types and example code.
3-6 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Using C/C++ (Pro*C) to Work with LOBs
■ To read or examine LOB values, see Table 3–4

■ To create or free temporary LOB, or check if Temporary LOB exists, see

Table 3–5

■ To operate close and ’see if file exists’ functions on BFILEs, see Table 3–6

■ To operate on LOB locators, see Table 3–7

■ For LOB buffering, see Table 3–8

■ To open or close LOBs or BFILEs, see Table 3–9

Pro*C/C++ Embedded SQL Statements To Modify Internal LOBs (BLOB, CLOB, and
NCLOB) Values

Pro*C/C++ Embedded SQL Statements To Read or Examine Internal and External
LOB Values

Table 3–3 Pro*C/C++: Embedded SQL Statements To Modify Internal LOB (BLOB,
CLOB, and NCLOB) Values

Statement Description

APPEND Appends a LOB value to another LOB.

COPY Copies all or a part of a LOB into another LOB.

ERASE Erases part of a LOB, starting at a specified offset.

LOAD FROM FILE Loads BFILE data into an internal LOB at a specified offset.

TRIM Truncates a LOB.

WRITE Writes data from a buffer into a LOB at a specified offset.

WRITE APPEND Writes data from a buffer into a LOB at the end of the LOB.

Table 3–4 Pro*C/C++: Embedded SQL Statements To Read or Examine Internal and
External LOB Values

Statement Description

DESCRIBE [CHUNKSIZE] Gets the Chunk size used when writing. This works for
internal LOBs only. It does not apply to external LOBs
(BFILEs).

DESCRIBE [LENGTH] Returns the length of a LOB or a BFILE .
LOB Programmatic Environments 3-7

Using C/C++ (Pro*C) to Work with LOBs
Pro*C/C++ Embedded SQL Statements For Temporary LOBs

Pro*C/C++ Embedded SQL Statements For BFILEs

Pro*C/C++ Embedded SQL Statements For LOB Locators

READ reads a specified portion of a non-null LOB or a BFILE into a
buffer.

Table 3–5 Pro*C/C++: Embedded SQL Statements For Temporary LOBs

Statement Description

CREATE TEMPORARY Creates a temporary LOB.

DESCRIBE
[ISTEMPORARY]

Sees if a LOB locator refers to a temporary LOB.

FREE TEMPORARY Frees a temporary LOB.

Table 3–6 Pro*C/C++: Embedded SQL Statements For BFILES

Statement Description

FILE CLOSE ALL Closes all open BFILE s.

DESCRIBE
[FILEEXISTS]

Checks whether a BFILE exists.

DESCRIBE
[DIRECTORY,FILENAME]

Returns the directory alias and/or filename of a BFILE .

Table 3–7 Pro*C/C++ Embedded SQL Statements for LOB Locators

Statement Description

ASSIGN Assigns one LOB locator to another.

FILE SET Sets the directory alias and filename of a BFILE in a locator.

Table 3–4 Pro*C/C++: Embedded SQL Statements To Read or Examine Internal and
External LOB Values

Statement Description
3-8 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Using C/C++ (Pro*C) to Work with LOBs
Pro*C/C++ Embedded SQL Statements For LOB Buffering

Pro*C/C++ Embedded SQL Statements To Open and Close Internal LOBs and
External LOBs (BFILEs)

Table 3–8 Pro*C/C++ Embedded SQL Statements for LOB Buffering

Statement Description

DISABLE BUFFERING Disables the use of the buffering subsystem.

ENABLE BUFFERING Uses the LOBbuffering subsystem for subsequent reads and
writes of LOB data.

FLUSH BUFFER Flushes changes made to the LOB buffering subsystem to
the database (server)

Table 3–9 Pro*C/C++ Embedded SQL Statements To Open and Close Internal LOBs
and External LOBs (BFILEs)

Statement Description

OPEN Opens a LOB or BFILE.

DESCRIBE [ISOPEN] Sees if a LOB or BFILE is open.

CLOSE Closes a LOB or BFILE.
LOB Programmatic Environments 3-9

Using C/C++ (Pro*C) to Work with LOBs
3-10 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Managing
4

Managing LOBs

This chapter describes the following topics:

n DBA Actions Required Prior to Working with LOBs

n Using SQL DML for Basic Operations on LOBs

n Changing Tablespace Storage for a LOB

n Managing Temporary LOBs

n Using SQL Loader to Load LOBs

n Loading InLine and Out-Of-Line Data into Internal LOBs Using SQL Loader

n SQL Loader LOB Loading Tips

n LOB Restrictions

n Removed Restrictions

Note: Examples in this chapter are based on the multimedia schema and table
Multimedia_tab described inChapter 8, "Sample Application".
LOBs 4-1

DBA Actions Required Prior to Working with LOBs

 at
e

he
DBA Actions Required Prior to Working with LOBs

Set Maximum Number of Open BFILEs
A limited number ofBFILE s can be open simultaneously per session. The initialization
parameter,SESSION_MAX_OPEN_FILES defines an upper limit on the number of
simultaneously open files in a session.

The default value for this parameter is 10. That is, you can open a maximum of 10 files
the same time per session if the default value is utilized. If you want to alter this limit, th
database administrator can change the value of this parameter in theinit.ora file. For
example:

SESSION_MAX_OPEN_FILES=20

If the number of unclosed files reaches theSESSION_MAX_OPEN_FILES value then you
will not be able to open any more files in the session. To close all open files, use the
FILECLOSEALL call.

Using SQL DML for Basic Operations on LOBs
SQL Data Manipulation Language (DML) includes basic operations, such as,INSERT,
UPDATE, DELETE— that let you make changes to the entire value ofinternalLOBs within
Oracle RDBMS.

n Internal LOBs: To work with parts of internal LOBs, you will need to use one of the
interfaces described inChapter 3, "LOB Programmatic Environments", that have been
developed to handle more complex requirements. For use case examples refer to t
following sections inChapter 9, "Internal Persistent LOBs":

n INSERT:

* INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB() on
page 9-23

* INSERT a Row by Selecting a LOB From Another Table on page 9-26

* INSERT Row by Initializing a LOB Locator Bind Variable on page 9-28

n UPDATE:

* UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB() on page 9-127

* UPDATE a Row by Selecting a LOB From Another Table on page 9-130

* UPDATE by Initializing a LOB Locator Bind Variable on page 9-132
4-2 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

DBA Actions Required Prior to Working with LOBs

.3,
n DELETE:

* DELETE the Row of a Table Containing a LOB on page 9-135

n External LOBs (BFILEs): Oracle8i supports read-only operations on external LOBs.
SeeChapter 11, "External LOBs (BFILEs)":

n INSERT:

* INSERT a Row Using BFILENAME() on page 11-24

* INSERT a BFILE Row by Selecting a BFILE From Another Table on
page 11-29

* INSERT Row With BFILE by Initializing BFILE Locator on page 11-31

n UPDATE: You can use the following methods to UPDATE or ’write to’ a BFILE:

* UPDATE a BFILE Using BFILENAME() on page 11-96

* UPDATE a BFILE by Selecting a BFILE From Another Table on page 11-96

* UPDATE a BFILE by Initializing a BFILE Locator on page 11-98

n DELETE:

* DELETE the Row of a Table Containing a BFILE on page 11-111

Changing Tablespace Storage for a LOB
It is possible to change the default storage for a LOB after the table has been created.

Oracle8 Release 8.0.4.3
To move the CLOB column from tablespace A to tablespace B, in Oracle8 release 8.0.4
requires the following statement:

ALTER TABLE test lob(test) STORE AS (tablespace tools);

However, this returns the following error message:

ORA-02210: no options specified for ALTER TABLE

Oracle8i
n Using ALTER TABLE... MODIFY : You can change LOB tablespace storage as

follows:
Managing LOBs 4-3

Managing Temporary LOBs
ALTER TABLE test MODIFY
 LOB (lob1)
 STORAGE (
 NEXT 4M
 MAXEXTENTS 100
 PCTINCREASE 50

)

n Using ALTER TABLE ... MOVE : In Oracle8i, you can also use the MOVE clause of
the ALTER TABLE statement to change LOB tablespace storage. For example:

ALTER TABLE test MOVE
 TABLESPACE tbs1
 LOB (lob1, lob2)
 STORE AS (
 TABLESPACE tbs2
 DISABLE STORAGE IN ROW);

Managing Temporary LOBs
Management and security issues of temporary LOBs are discussed inChapter 10,
"Temporary LOBs",

n Managing Temporary LOBs on page 10-13

n Security Issues with Temporary LOBs on page 10-12

Note: TheALTER TABLE syntax for modifying an existing LOB
column uses theMODIFY LOB clause not theLOB .. STORE AS
clause. TheLOB...STORE AS clause is only for newly added LOB
columns.
4-4 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Using SQL Loader to Load LOBs

es.

ut-
Using SQL Loader to Load LOBs
You can use SQL Loader to bulk load LOBs. See "Loading LOBs" inOracle8i Utilitiesfor
details on using SQL*Loader control file data definition language (DDL) to load LOB typ

Data loaded into LOBs can be lengthy and it is likely that you will want to have the data o
of-line from the rest of the data. LOBFILES provide a method to separate lengthy data.

LOBFILES
LOBFILES are simple datafiles that facilitate LOB loading. LOBFILEs are distinguished
from primary datafiles in that in LOBFILEs there is no concept of arecord. In LOBFILEs
the data is of any of the following types:

n Predetermined size fields (fixed length fields)

n Delimited fields, i.e., TERMINATED BY or ENCLOSED BY

n Length-Value pair fields (variable length fields) -- VARRAW, VARCHAR, or
VARCHARC loader datatypes are used for loading from this type of fields.

n A single LOB field into which the entire contents of a file can be read.

Note: The clause PRESERVE BLANKS is not applicable to fields read
from a LOBFILE.

Note: A field read from a LOBFILE cannot be used as an argument to a
clause (for example, the NULLIF clause).
Managing LOBs 4-5

Loading InLine and Out-Of-Line Data into Internal LOBs Using SQL Loader

.

Loading InLine and Out-Of-Line Data into Internal LOBs
Using SQL Loader

The following sections describe procedures for loading differently formated inline and
out-of-line data into internal LOBs:

n Loading InLine LOB Data

n Loading Inline LOB Data in Predetermined Size Fields

n Loading Inline LOB Data in Delimited Fields

n Loading Inline LOB Data in Length-Value Pair Fields

n Loading Out-Of-Line LOB Data

n Loading One LOB Per File

n Loading Out-of-Line LOB Data in Predetermined Size Fields

n Loading Out-of-Line LOB Data in Delimited Fields

n Loading Out-of-Line LOB Data in Length-Value Pair Fields

Other topics discussed are

n SQL Loader LOB Loading Tips

SQL Loader Performance: Loading Into Internal LOBs
SeeTable 4–1, "SQL Loader Performance: Loading Data Into Internal LOBs" for the
relative performance when using the above methods of loading data into internal LOBs

Table 4–1 SQL Loader Performance: Loading Data Into Internal LOBs

Loading Method For In-Line or Out-Of-Line Data Relative Performance

In Predetermined Size Fields Highest

In Delimited Fields Slower

In Length Value-Pair Fields High

One LOB Per File High
4-6 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Loading Inline LOB Data
Loading Inline LOB Data
n Loading Inline LOB Data in Predetermined Size Fields

n Loading Inline LOB Data in Delimited Fields

n Loading Inline LOB Data in Length-Value Pair Fields

Loading Inline LOB Data in Predetermined Size Fields
This is a very fast and simple way to loadLOBs. Unfortunately, the LOBs to be loaded are
not usually the same size.

To load LOBs using this format, use eitherCHAR or RAW as the loading datatype. For
example:

Control File
LOAD DATA
INFILE ’sample.dat’ "fix 21"
INTO TABLE Multimedia_tab
 (Clip_ID POSITION(1:3) INTEGER EXTERNAL,
 Story POSITION(5:20) CHAR DEFAULTIF Story=BLANKS)

Data File (sample.dat)
007 Once upon a time

If the datafield containing the story is empty, then an emptyLOB instead of a NULLLOB is
produced. A NULLLOB is produced if theNULLIF directive was used instead of the
DEFAULTIF directive. Also note that you can use loader datatypes other thanCHAR to load
LOBS. Use the RAW datatype when loadingBLOBs.

Note: A possible work-around is to padLOB data with white space to
make allLOBs the same length within the particular datafield; for
information on trimming of trailing white spaces see "Trimming of Blanks
and Tabs" inOracle8i Utilities).

Note: One space separates theClip_ID,(O07) from the beginning of
the story. The story is 15 bytes long.
Managing LOBs 4-7

Loading Inline LOB Data

he

. For

 is, it
Loading Inline LOB Data in Delimited Fields
Loading different sizeLOBs in the same column (that is, datafile field) is not a problem. T
trade-off for this added flexibility is performance. Loading in this format is somewhat
slower because the loader has to scan through the data, looking for the delimiter string
example:

Control File
LOAD DATA
INFILE ’sample1.dat’ "str ’<endrec>\n’"
INTO TABLE Multimedia_tab
FIELDS TERMINATED BY ’,’
(
Clip_ID CHAR(3),
 Story CHAR(507) ENCLOSED BY ’<startlob>’ AND ’<endlob>’
)

Data File (sample1.dat)
007, <startlob> Once upon a time,The end. <endlob>|
008, <startlob> Once upon another timeThe end. <endlob>|

Loading Inline LOB Data in Length-Value Pair Fields
You could useVARCHAR(seeOracle8i Utilities), VARCHARC, or VARRAWdatatypes to load
LOB data organized in this way. Note that this method of loading produces better
performance over the previous method, however, it removes some of the flexibility, that
requires you to know theLOB length for eachLOB before loading. For example:

Control File
LOAD DATA
INFILE ’sample2.dat’ "str ’<endrec>\n’"
INTO TABLE Multimedia_tab
FIELDS TERMINATED BY ’,’
(
Clip_ID INTEGER EXTERNAL (3),
 Story VARCHARC (3, 500)
)

4-8 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Loading Inline LOB Data
Data File (sample2.dat)
007,041 Once upon a time... The end. <endrec>
008,000 <endrec>

Note:

n Story is a field corresponding to aCLOB column. In the control
file, it is described as aVARCHARC (3, 500) whose length field is 3
bytes long and maximum size is 500 bytes. This tells the Loader that
it can find the length of the LOB data in the first 3 bytes.

n The length subfield of theVARCHARC is 0 (that is, the value subfield
is empty); consequently, theLOB instance is initialized to empty.

n Make sure the last character of the last line of the data file above is a
line feed.
Managing LOBs 4-9

Loading Out-Of-Line LOB Data

a

Loading Out-Of-Line LOB Data
n Loading One LOB Per File

n Loading Out-of-Line LOB Data in Predetermined Size Fields

n Loading Out-of-Line LOB Data in Delimited Fields

n Loading Out-of-Line LOB Data in Length-Value Pair Fields

As mentioned earlier,LOB data can be so large that it is reasonable to want to load it from
secondary datafile(s).

In LOBFILEs,LOB data instances are still thought to be in fields (predetermined size,
delimited, length-value), but these fields are not organized into records (the concept of
record does not exist withinLOBFILES); thus, the processing overhead of dealing with
records is avoided. This type of organization of data is ideal forLOB loading.

Loading One LOB Per File
EachLOBFILE contains a single LOB. For example:

Control File
LOAD DATA
INFILE ’sample3.dat’
INTO TABLE Multimedia_tab
REPLACE
FIELDS TERMINATED BY ’,’
(
 Clip_ID INTEGER EXTERNAL(5),
 ext_FileName FILLER CHAR(40),
 Story LOBFILE(ext_FileName) TERMINATED BY EOF
)

Data File (sample3.dat)
007,FirstStory.txt,
008,/tmp/SecondStory.txt,

Secondary Data File (FirstStory.txt)
Once upon a time ...
The end.
4-10 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Loading Out-Of-Line LOB Data

e.

:

Secondary Data File (SecondStory.txt)
Once upon another time
The end.

Loading Out-of-Line LOB Data in Predetermined Size Fields
In the control file, the size of theLOBs to be loaded into a particular column is specified.
During the load, anyLOB data loaded into that column is assumed to be the specified siz
The predetermined size of the fields allows the dataparser to perform very well.
Unfortunately, it is often hard to guarantee that all theLOBs are the same size. For example

Control File
LOAD DATA
INFILE ’sample4.dat’
INTO TABLE Multimedia_tab
FIELDS TERMINATED BY ’,’
(
 Clip_ID INTEGER EXTERNAL(5),
 Story LOBFILE (CONSTANT ’FirstStory1.txt’) CHAR(32)
)

Data File (sample4.dat)
007,
008,

Secondary Data File (FirstStory1.txt)
Once upon the time ...
The end,
Upon another time ...
The end,

Note:

n STORY tells the Loader that it can find the LOB data in the file whose
name is stored in theext_FileName field.

n TERMINATED BY EOF tells the Loader that the LOB will span the
entire file.

n See alsoOracle8i Utilities
Managing LOBs 4-11

Loading Out-Of-Line LOB Data

n

Loading Out-of-Line LOB Data in Delimited Fields
LOB data instances in LOBFILE files are delimited. In this format, loading different size
LOBs into the same column is not a problem. The trade-off for this added flexibility is
performance. Loading in this format is somewhat slower because the loader has to sca
through the data, looking for the delimiter string. For example:

Control File
LOAD DATA
INFILE ’sample5.dat’
INTO TABLE Multimedia_tab
FIELDS TERMINATED BY ’,’
(Clip_ID INTEGER EXTERNAL(5),
Story LOBFILE (CONSTANT ’FirstStory2.txt’) CHAR(2000)
TERMINATED BY "<endlob>")

Data File (sample5.dat)
007,
008,

Secondary Data File (FirstStory2.txt)
Once upon a time...
The end.<endlob>
Once upon another time...
The end.<endlob>

Note: nSQL Loader loads 2000 bytes of data from theFirstStory.
txt LOBFILE , usingCHAR datatype, starting with the byte
following the byte loaded last during the current loading session.

Note: TheTERMINATED BY clause specifies the string that terminates
theLOBs.

You can also use theENCLOSED BY clause. TheENCLOSED BY clause
allows a bit more flexibility as to the relative positioning of theLOBs in
theLOBFILE, that is, theLOBs in theLOBFILE wouldn't have to follow
one after another.
4-12 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Loading Out-Of-Line LOB Data

 time
Loading Out-of-Line LOB Data in Length-Value Pair Fields
EachLOB in theLOBFILE is preceded by its length. You can useVARCHAR (see Oracle8
Utilities), VARCHARC, orVARRAW datatypes to load LOB data organized in this way. The
controllable syntax for loading length-value pair specified LOBs is quite simple.

Note that this method of loading performs better than the previous one, but at the same
it takes some of the flexibility away, that is, it requires that you know the length of eachLOB
before loading. For example:

Control File
LOAD DATA
INFILE ’sample6.dat’
INTO TABLE Multimedia_tab
FIELDS TERMINATED BY ’,’
(
Clip_ID INTEGER EXTERNAL(5),
Story LOBFILE (CONSTANT ’FirstStory3.txt’) VARCHARC(4,2000)
)

Data File (sample6.dat)
007,
008,

Secondary Data File (FirstStory3.txt)
0031
Once upon a time ... The end.
0000

Note: VARCHARC(4,2000) tells the loader that theLOBs in the
LOBFILE are in length-value pair format and that the first four bytes
should be interpreted as length. Themax_length part (that is, 2000)
gives the hint to the loader as to the maximum size of the field.

n 0031 tells the loader that the next 31 bytes belong to the specified
LOB.

n 0000 results in an emptyLOB (not a NULLLOB).
Managing LOBs 4-13

SQL Loader LOB Loading Tips

g

ng
p
 not
SQL Loader LOB Loading Tips
n Failure to load a particularLOB does not result in the rejection of the record containin

thatLOB; instead, the record ends up containing an emptyLOB.

n When loading from LOBFILEs specify the maximum length of the field correspondi
to aLOB-type column. If the maximum length is specified, it is taken as a hint to hel
optimize memory usage. It is important that the maximum length specification does
underestimate the true maximum length.

See Also: Oracle8i Utilities
4-14 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Restrictions

e

t

ut
LOB Restrictions
The use ofLOBs are subject to some restrictions:

n Distributed LOBs are not supported. Specifically, this means that the user cannot us
a remote locator in theSELECT andWHERE clauses. This includes usingDBMS_LOB
package functions. In addition, references to objects in remote tables with or withou
LOB attributes are not allowed.

Invalid operations. For example, the following operations are invalid:

– SELECT lobcol from table1@remote_site;

– INSERT INTO lobtable select type1.lobattr from table1@remote_site;

– SELECT dbms_lob.getlength(lobcol) from table1@remote_site;

Valid operations. Valid operations onLOB columns inremote tables include:

– CREATE TABLE t as select * from table1@remote_site;

– INSERT INTO t select * from table1@remote_site;

– UPDATE t set lobcol = (select lobcol from table1@remote_site);

– INSERT INTO table1@remote...

– UPDATE table1@remote...

– DELETE table1@remote...

n Table type and clauses not supporting LOBs

LOBs are not supported in the following table types and clauses:

n Clustered tables and thus LOBs cannot be a cluster key.

n GROUP BY, ORDER BY, SELECT DISTINCT, aggregates andJOINS. However,
UNION ALL is allowed on tables withLOBs.UNION, MINUS, andSELECT
DISTINCT are allowed onLOB attributes if the object type has aMAP or ORDER
function.

n Index organized tables. LOBs however, are supported innon-partitioned index
organized tables.

n VARRAYs.

n NCLOBs are not allowed as attributes in object types when you create tables, b
NCLOBparameters are allowed in methods. NCLOBs store fixed-width data.
Managing LOBs 4-15

Removed Restrictions

ct

have

our
s.
ur
n ANALYZE and ESTIMATE. LOBS are not supported in theANALYZE... COMPUTE
or ESTIMATE STATISTICS statements.

n Trigger Body. You can use the LOB column or LOB attribute in a trigger body subje
to the following conditions. In general, the :new and :old LOB values bound in the
trigger are read-only which means that you cannot write to theLOB. More specifically:

a. In before row and after row triggers -

* you can read the :old value of a LOB in both the triggers.

* you can read the :new value of theLOB only in an after-row trigger.

b. In INSTEAD OF triggers on views, you can read both the :new and :old values.

c. You cannot specify theLOB column in anOF clause (Note that aBFILE can be
modified without updating the underlying tables on which it is based).

d. If you use OCI functions orDBMS_LOB routines to updateLOB values orLOB
attributes on object columns, the functions or routines will not fire the triggers
defined on the tables containing the columns or attributes.

n Client-side PL/SQL procedures.These may not callDBMS_LOB package routines.
However, you can use server-side PL/SQL procedures or anonymous blocks in
Pro*C/C++ to callDBMS_LOB package routines.

n Read-Only Support for External LOBs (BFILEs). Oracle8i supports read-only
operations on external LOBs. If you need to update or write to external LOBs, you
to develop client side applications suited to your needs

n CACHE / NOCACHE / CACHE READS . CACHE READS LOBs are supported in
this release. If you use CACHE READS LOBs and then downgrade to 8.0 or 8.1.5, y
CACHE READS LOBs generates a warning and becomes CACHE LOGGING LOB
You can explicitly alter the LOBs' storage characteristics later if you do not want yo
LOBs to be CACHE LOGGING.

SeeChapter 7, "Modeling and Design", "CACHE / NOCACHE / CACHE READS" on
page 7-8.

Removed Restrictions
The following restriction has been removed.

See Also: Oracle8i Data Cartridge Developer’s Guide,for more
information about firing triggers on domain indexes.
4-16 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Removed Restrictions

n

ata

nd
nt

ns
Binding More Than 4,000 Bytes of Data
Oracle8i now supports binding more than 4,000 bytes of data to internal LOB columns i
INSERT and UPDATE statements.

n If a table has LONG and LOB columns, you can bind more than 4,000 bytes of d
for either the LONG column or the LOB columns, but not both in the same
statement.

n You cannot bind data of any size to LOB attributes in ADTs. This restriction from
prior releases still exists. For LOB attributes, first insert an empty LOB locator a
then modify the contents of the LOB using one of the programmatic environme
interfaces.

n In an INSERT AS SELECT operation, binding of any length data to LOB colum
is not allowed. This restriction from prior releases still exists.
Managing LOBs 4-17

Removed Restrictions
4-18 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Advanced T
5

Advanced Topics

The material in this chapter is a supplement and elaboration of the use cases

described in the following chapters.You will probably find the topics discussed here

to be more relevant once you have explored the use cases.

■ Read-Consistent Locators

■ A Selected Locator Becomes a Read Consistent Locator

■ Updated LObs Via Updated Locators

■ Example of Updating a LOB Using SQL DML and DBMS_LOB

■ Example of Using One Locator to Update the Same LOB Value

■ Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable

■ LOB Locators Cannot Span Transactions

■ LOB Locators and Transaction Boundaries

■ LOBs in the Object Cache

■ LOB Buffering Subsystem

■ Advantages of LOB Buffering

■ Guidelines for Using LOB Buffering

■ LOB Buffering Usage Notes

■ OCI Example of LOB Buffering

■ Creating a Varray Containing References to LOBs

Note: Examples in this chapter are based on the multimedia schema and table
Multimedia_tab described in Chapter 8, "Sample Application".
opics 5-1

Read-Consistent Locators
Read-Consistent Locators
Oracle provides the same read consistency mechanisms for LOBs as for all other

database reads and updates of scalar quantities. Refer to s, for general information

about read consistency. However, read consistency has some special applications to

LOB locators that need to be understood.

A Selected Locator Becomes a Read Consistent Locator
A SELECTed locator, regardless of the existence of the FOR UPDATE clause, becomes

a read consistent locator, and remains a read consistent locator until the LOB value is

updated through that locator. A read consistent locator contains the snapshot

environment as of the point in time of the SELECT.

This has some complex implications. Let us say that you have created a read

consistent locator (L1) by way of a SELECT operation. In reading the value of the

internal LOB through L1, note the following:

■ The LOB is read as of the point in time of the SELECT statement even if the

SELECT statement includes a FOR UPDATE.

■ If the LOB value is updated through a different locator (L2) in the same

transaction, L1 does not see L2's updates.

■ L1 will not see committed updates made to the LOB through another transaction.

■ If the read consistent locator L1 is copied to another locator L2 (for example, by

a PL/SQL assignment of two locator variables — L2:= L1), then L2 becomes a

read consistent locator along with L1 and any data read is read as of the point
in time of the SELECT for L1.

Clearly you can utilize the existence of multiple locators to access different

transformations of the LOB value. However, in taking this course, you must be

careful to keep track of the different values accessed by different locators.
5-2 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read-Consistent Locators
Updating LOBs and Read-Consistency

Example of an Update Using Read Consistent Locators

Read Consistent Locators Provide Same LOB Value Regardless of When the
SELECT Occurs
The following code demonstrates the relationship between read-consistency and

updating in a simple example. Using Multimedia_tab, as defined in Chapter 8,

"Sample Application", and PL/SQL, three CLOBs are created as potential locators:

■ clob_selected

■ clob_update

■ clob_copied

Observe these progressions in the code, from times t1 through t6:

■ At the time of the first SELECT INTO (at t1), the value in story is associated with

the locator clob_selected.

■ In the second operation (at t2), the value in story is associated with the locator

clob_updated. Since there has been no change in the value of story between t1 and

t2, both clob_selected and clob_updated are read consistent locators that effectively

have the same value even though they reflect snapshots taken at different

moments in time.

■ The third operation (at t3) copies the value in clob_selected to clob_copied. At this

juncture, all three locators see the same value. The example demonstrates this

with a series of DBMS_LOB.READ() calls.

■ At time t4, the program utilizes DBMS_LOB.WRITE() to alter the value in clob_
updated, and a DBMS_LOB.READ() reveals a new value.

■ However, a DBMS_LOB.READ() of the value through clob_selected (at t5) reveals

that it is a read consistent locator, continuing to refer to the same value as of the

time of its SELECT.

■ Likewise, a DBMS_LOB.READ() of the value through clob_copied (at t6) reveals

that it is a read consistent locator, continuing to refer to the same value as clob_
selected.

Example
INSERT INTO Multimedia_tab VALUES (1, ’abcd’, EMPTY_CLOB(), NULL,
Advanced Topics 5-3

Read-Consistent Locators
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_selected CLOB;
 clob_updated CLOB;
 clob_copied CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);

BEGIN
 -- At time t1:
 SELECT story INTO clob_selected
 FROM Multimedia_tab
 WHERE clip_id = 1;

 -- At time t2:
 SELECT story INTO clob_updated
 FROM Multimedia_tab
 WHERE clip_id = 1
 FOR UPDATE;

 -- At time t3:
 clob_copied := clob_selected;
 -- After the assignment, both the clob_copied and the
 -- clob_selecte d have the same snapshot as of the point in time
 -- of the SELECT into clob_selected

 -- Reading from the clob_selected and the clob_copied will
 -- return the same LOB value . clob_updated also sees the same
 -- LOB value as of its select:
 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_selected, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
5-4 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read-Consistent Locators
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t4:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset,
 buffer);

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcdefg'

 -- At time t5:
 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t6:
 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'
END;
/

Updated LObs Via Updated Locators
When you update the value of the internal LOB through the LOB locator (L1), L1

(that is, the locator itself) is updated to contain the current snapshot environment as
of the point in time after the operation was completed on the LOB value through the

locator L1. L1 is then termed an updated locator. This operation allows you to see

your own changes to the LOB value on the next read through the same locator, L1.
Advanced Topics 5-5

Read-Consistent Locators
Any committed updates made by a different transaction are seen by L1 only if your

transaction is a read-committed transaction and if you use L1 to update the LOB
value after the other transaction committed.

Updating the value of the internal LOB through any of the available methods, such

as via OCI LOB APIs or the PL/SQL DBMS_LOB package, can be thought of as

updating the LOB value and then reselecting the locator that refers to the new LOB
value.

Note that updating the LOBvalue through SQL is merely an UPDATEstatement. It is

up to you to do the reselect of the LOB locator or use the RETURNING clause in the

UPDATE statement so that the locator can see the changes made by the UPDATE
statement. Unless you reselect the LOB locator or use the RETURNING clause, you

may think you are reading the latest value when this is not the case. For this reason

you should avoid mixing SQL DML with OCI and DBMS_LOB piecewise
operations.

See Also: PL/SQL User’s Guide and Reference.

Example of Updating a LOB Using SQL DML and DBMS_LOB
Using table Multimedia_tab as defined previously, a CLOB locator is created:

■ clob_selected .

Note the following progressions in the following example PL/SQL (DBMS_LOB)

code, from times t1 through t3:

■ At the time of the first SELECT INTO (at t1), the value in story is associated with

the locator clob_selected.

■ In the second operation (at t2), the value in story is modified through the SQL
UPDATE statement, bypassing the clob_selected locator. The locator still sees the

Note: The snapshot environment in the locator is not updated if

the locator is used to merely read the LOB value. It is only updated

when you modify the LOB value through the locator via the PL/SQL

DBMS_LOB package or the OCI LOB APIs.

Note: When you update an internal LOB’s value, the modification

is always made to the most current LOB value.
5-6 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read-Consistent Locators
value of the LOB as of the point in time of the original SELECT. In other words,

the locator does not see the update made via the SQL UPDATEstatement. This is

illustrated by the subsequent DBMS_LOB.READ() call.

■ The third operation (at t3) re-selects the LOB value into the locator clob_selected.

The locator is thus updated with the latest snapshot environment which allows

the locator to see the change made by the previous SQL UPDATE statement.

Therefore, in the next DBMS_LOB.READ(), an error is returned because the LOB
value is empty (i.e., it does not contain any data).

Example
INSERT INTO Multimedia_tab VALUES (1, ’abcd’, EMPTY_CLOB(), NULL,
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_selected CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 buffer VARCHAR2(20);

BEGIN

 -- At time t1:
 SELECT story INTO clob_selected
 FROM Multimedia_tab
 WHERE clip_id = 1;

 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_selected, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t2:
 UPDATE Multimedia_tab SET story = empty_clob()
 WHERE clip_id = 1;
 -- although the most current current LOB value is now empty,
 -- clob_selected still sees the LOB value as of the point
 -- in time of the SELECT
Advanced Topics 5-7

Read-Consistent Locators
 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t3:
 SELECT story INTO clob_selected FROM Multimedia_tab WHERE
 clip_id = 1;
 -- the SELECT allows clob_selected to see the most current
 -- LOB value

 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset,
 buffer);
 -- ERROR: ORA-01403: no data found
END;
/

Example of Using One Locator to Update the Same LOB Value

Using table Multimedia_tab as defined previously, two CLOBs are created as potential

locators:

■ clob_updated

■ clob_copied

Note these progressions in the following example PL/SQL (DBMS_LOB) code at

times t1 through t5:

■ At the time of the first SELECT INTO (at t1), the value in story is associated with

the locator clob_updated.

■ The second operation (at t2) copies the value in clob_updated to clob_copied. At

this juncture, both locators see the same value. The example demonstrates this

with a series of DBMS_LOB.READ() calls.

Note: Avoid updating the same LOB with different locators! You

will avoid many pitfalls if you use only one locator to update the

same LOB value.
5-8 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read-Consistent Locators
■ At this juncture (at t3), the program utilizes DBMS_LOB.WRITE() to alter the

value in clob_updated, and a DBMS_LOB.READ() reveals a new value.

■ However, a DBMS_LOB.READ() of the value through clob_copied (at t4) reveals

that it still sees the value of the LOB as of the point in time of the assignment

from clob_updated (at t2).

■ It is not until clob_updated is assigned to clob_copied (t5) that clob_copied sees the

modification made by clob_updated.

Example
INSERT INTO Multimedia_tab VALUES (1,’abcd’, EMPTY_CLOB(), NULL,
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_updated CLOB;
 clob_copied CLOB;
 read_amount INTEGER; ;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);
BEGIN

-- At time t1:
 SELECT story INTO clob_updated FROM Multimedia_tab
 WHERE clip_id = 1
 FOR UPDATE;

 -- At time t2:
 clob_copied := clob_updated;
 -- after the assign, clob_copied and clob_updated see the same
 -- LOB value

 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcd'

 read_amount := 10;
Advanced Topics 5-9

Read-Consistent Locators
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t3:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset,
 buffer);

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcdefg'

 -- At time t4:
 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t5:
 clob_copied := clob_updated;

 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcdefg'
END;
/

Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable
When a LOB locator is used as the source to update another internal LOB (as in a

SQL INSERT or UPDATE statement, the DBMS_LOB.COPY() routine, and so on), the

snapshot environment in the source LOB locator determines the LOB value that is

used as the source. If the source locator (for example L1) is a read consistent locator,

then the LOB value as of the point in time of the SELECT of L1 is used. If the source

locator (for example L2) is an updated locator, then the LOB value associated with

L2’s snapshot environment at the time of the operation is used.
5-10 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read-Consistent Locators
Using the table Multimedia_tab as defined previously, three CLOBs are created as

potential locators:

■ clob_selected

■ clob_updated

■ clob_copied

Note these progressions in the following example code at the various times t1

through t5:

■ At the time of the first SELECT INTO (at t1), the value in story is associated with

the locator clob_updated.

■ The second operation (at t2) copies the value in clob_updated to clob_copied. At

this juncture, both locators see the same value.

■ Then (at t3), the program utilizes DBMS_LOB.WRITE() to alter the value in clob_
updated, and a DBMS_LOB.READ() reveals a new value.

■ However, a DBMS_LOB.READ of the value through clob_copied (at t4) reveals that

clob_copied does not see the change made by clob_updated.

■ Therefore (at t5), when clob_copied is used as the source for the value of the

INSERT statement, we insert the value associated with clob_copied (i.e. without

the new changes made by clob_updated). This is demonstrated by the subsequent

DBMS_LOB.READ() of the value just inserted.

Example
INSERT INTO Multimedia_tab VALUES (1, ’abcd’, EMPTY_CLOB(), NULL,
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_selected CLOB;
 clob_updated CLOB;
 clob_copied CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);
BEGIN
Advanced Topics 5-11

Read-Consistent Locators
 -- At time t1:
 SELECT story INTO clob_updated FROM Multimedia_tab
 WHERE clip_id = 1
 FOR UPDATE;

 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t2:
 clob_copied := clob_updated;

 -- At time t3:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset,
 buffer);

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcdefg'
 -- note that clob_copied doesn’t see the write made before
 -- clob_updated

 -- At time t4:
 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t5:
 -- the insert uses clob_copied view of the LOB value which does
 -- not include clob_updated changes
 INSERT INTO Multimedia_tab VALUES (2, clob_copied, EMPTY_CLOB(), NULL,
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL)
 RETURNING story INTO clob_selected;
5-12 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read-Consistent Locators
 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'
END;
/

LOB Locators Cannot Span Transactions
Modifying an internal LOB’s value through the LOB locator via DBMS_LOB, OCI, or

SQL INSERT or UPDATE statements changes the locator from a read consistent

locator to an updated locator. Further, the INSERT or UPDATE statement

automatically starts a transaction and locks the row. Once this has occurred, the

locator may not be used outside the current transaction to modify the LOB value. In

other words, LOB locators that are used to write data cannot span transactions.

However, the locator may be used to read the LOB value unless you are in a

serializable transaction.

Using table Multimedia_tab defined previously, a CLOB locator is created: clob_
updated .

■ At the time of the first SELECT INTO (at t1), the value in story is associated with

the locator clob_updated.

■ The second operation (at t2), utilizes the DBMS_LOB.WRITE() command to alter

the value in clob_updated, and a DBMS_LOB.READ() reveals a new value.

■ The commit statement (at t3) ends the current transaction.

■ Therefore (at t4), the subsequent DBMS_LOB.WRITE() operation fails because the

clob_updated locator refers to a different (already committed) transaction. This is

noted by the error returned. You must re-select the LOBlocator before using it in

further DBMS_LOB (and OCI) modify operations.

Example of Locator Not Spanning a Transaction
INSERT INTO Multimedia_tab VALUES (1, ’abcd’, EMPTY_CLOB(), NULL,

See Also: "LOB Locators and Transaction Boundaries" on

page 5-16, for more information about the relationship between

LOBs and transaction boundaries.
Advanced Topics 5-13

Read-Consistent Locators
 EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_updated CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);

BEGIN
 -- At time t1:

 SELECT story
 INTO clob_updated
 FROM Multimedia_tab
 WHERE clip_id = 1
 FOR UPDATE;
 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_updated, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- This produces the output 'abcd'

 -- At time t2:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset,
 buffer);
 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- This produces the output 'abcdefg'

 -- At time t3:
 COMMIT;

 -- At time t4:
 dbms_lob.write(clob_updated , write_amount, write_offset,
 buffer);
5-14 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read-Consistent Locators
 -- ERROR: ORA-22990: LOB locators cannot span transactions
END;
/

Advanced Topics 5-15

LOB Locators and Transaction Boundaries
LOB Locators and Transaction Boundaries
A basic description of LOB locators and their operations is given in Chapter 2,

"Basic Components".

This section discusses the use of LOB locators in transactions, and transaction IDs.

Locators Contain Transaction IDs When...
■ You Begin the Transaction, Then Select Locator. If you begin a transaction and then

select a locator, the locator contains the transaction ID. Note that you can

implicitly be in a transaction without explicitly beginning one. For example,

SELECT ... FOR UPDATE implicitly begins a transaction. In such a case, the

locator will contain a transaction ID.

Locators Do Not Contain Transaction IDs When...
■ You are Outside the Transaction, Then Select Locator. By contrast, if you select a

locator outside of a transaction, the locator does not contain a transaction ID.

■ Locators Do Not Contain Transaction IDs When Selected Prior to DML Statement
Execution. A transaction ID will not be assigned until the first DML statement

executes. Therefore, locators that are selected prior to such a DML statement

will not contain a transaction ID.

Transaction IDs: Reading and Writing to a LOB Using Locators
You can always read the LOB data using the locator irrespective of whether the

locator contains a transaction ID.

■ Cannot Write Using Locator: If the locator contains a transaction ID, you cannot

write to the LOB outside of that particular transaction.

■ Can Write Using Locator: If the locator does not contain a transaction ID, you can

write to the LOB after beginning a transaction either explicitly or implicitly.

■ Cannot Read or Write Using Locator With Serializable Transactions: If the locator

contains a transaction ID of an older transaction, and the current transaction is

serializable, you cannot read or write using that locator.

■ Can Read, Not Write Using Locator With Non-Serializable Transactions: If the

transaction is non-serializable, you can read, but not write outside of that

transaction.
5-16 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Locators and Transaction Boundaries
The following examples show the relationship between locators and non-serializable
transactions

Non-Serializable Example: Selecting the Locator with No Current Transaction

Case 1:
1. Select the locator with no current transaction. At this point, the locator does

not contain a transaction id.

2. Begin the transaction.

3. Use the locator to read data from the LOB.

4. Commit or rollback the transaction.

5. Use the locator to read data from the LOB.

6. Begin a transaction. The locator does not contain a transaction id.

7. Use the locator to write data to the LOB. This operation is valid because the

locator did not contain a transaction id prior to the write. After this call, the

locator contains a transaction id.

Case 2:
1. Select the locator with no current transaction. At this point, the locator does

not contain a transaction id.

2. Begin the transaction. The locator does not contain a transaction id.

3. Use the locator to read data from the LOB. The locator does not contain a

transaction id.

4. Use the locator to write data to the LOB. This operation is valid because the

locator did not contain a transaction id prior to the write. After this call, the

locator contains a transaction id. You can continue to read from and/or

write to the LOB.

5. Commit or rollback the transaction. The locator continues to contain the

transaction id.

6. Use the locator to read data from the LOB. This is a valid operation.

7. Begin a transaction. The locator already contains the previous transaction’s

id.
Advanced Topics 5-17

LOB Locators and Transaction Boundaries
8. Use the locator to write data to the LOB. This write operation will fail

because the locator does not contain the transaction id that matches the

current transaction.

Non-Serializable Example: Selecting the Locator within a Transaction

Case 3:
1. Select the locator within a transaction. At this point, the locator contains the

transaction id.

2. Begin the transaction. The locator contains the previous transaction’s id.

3. Use the locator to read data from the LOB. This operation is valid even

though the transaction id in the locator does not match the current

transaction.

4. Use the locator to write data to the LOB. This operation fails because the

transaction id in the locator does not match the current transaction.

Case 4:
1. Begin a transaction.

2. Select the locator. The locator contains the transaction id because it was

selected within a transaction.

3. Use the locator to read from and/or write to the LOB. These operations are

valid.

4. Commit or rollback the transaction. The locator continues to contain the

transaction id.

5. Use the locator to read data from the LOB. This operation is valid even

though there’s a transaction id in the locator and the transaction was

previously committed or rolled back.

See Also: "Read-Consistent Locators" on page 5-2 for more

information about using hte locator to read LOB data.

See Also: "Read-Consistent Locators" on page 5-2 for more

information on the using the locator to read LOB data.
5-18 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Locators and Transaction Boundaries
6. Use the locator to write data to the LOB. This operation fails because the

transaction id in the locator is for a transaction that was previously

committed or rolled back.
Advanced Topics 5-19

LOBs in the Object Cache
LOBs in the Object Cache
■ Internal LOB attributes: Creating an object in object cache, sets the LOB

attribute to empty

When you create an object in the object cache that contains an internal LOB
attribute, the LOB attribute is implicitly set to empty. You may not use this

empty LOB locator to write data to the LOB. You must first flush the object,

thereby inserting a row into the table and creating an empty LOB — that is, a

LOB with 0 length. Once the object is refreshed in the object cache (use OCI_
PIN_LATEST), the real LOB locator is read into the attribute, and you can then

call the OCI LOB API to write data to the LOB.

■ External LOB attrcibutes: Creating an object in object cache, sets the BFILE
attribute to NULL

When creating an object with an excternal LOB (BFILE) attribute, the BFILE is

set to NULL. It must be updated with a valid directory alias and filename before

reading from the file.

When you copy one object to another in the object cache with a LOB locator

attribute, only the LOBlocator is copied. This means that the LOB attribute in these

two different objects contain exactly the same locator which refers to one and the
same LOBvalue. Only when the target object is flushed is a separate, physical copy of

the LOB value made, which is distinct from the source LOB value.

Therefore, in cases where you want to modify the LOB that was the target of the

copy, you must flush the target object, refresh the target object, and then write to

the LOB through the locator attribute.

See Also: "Example of an Update Using Read Consistent

Locators" on page 5-3 for a description of what version of the LOB
value will be seen by each object if a write is performed through

one of the locators.
5-20 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem
LOB Buffering Subsystem
Oracle8i provides a LOB buffering subsystem (LBS) for advanced OCI based

applications such as DataCartridges, Web servers, and other client-based

applications that need to buffer the contents of one or more LOBs in the client’s

address space. The client-side memory requirement for the buffering subsystem

during its maximum usage is 512K bytes. It is also the maximum amount that you

can specify for a single read or write operation on a LOB that has been enabled for

buffered access.

Advantages of LOB Buffering
The advantages of buffering, especially for client applications that perform a series

of small reads and writes (often repeatedly) to specific regions of the LOB, are:

■ Buffering enables deferred writes to the server. You can buffer up several writes

in the LOB’s buffer in the client’s address space and eventually flush the buffer

to the server. This reduces the number of network roundtrips from your client

application to the server, and hence, makes for better overall performance for

LOB updates.

■ Buffering reduces the overall number of LOB updates on the server, thereby

reducing the number of LOB versions and amount of logging. This results in

better overall LOB performance and disk space usage.

Guidelines for Using LOB Buffering
The following caveats apply to buffered LOB operations:

■ Oracle8i provides a simple buffering subsystem, and not a cache. To be specific,

Oracle8i does not guarantee that the contents of a LOB’s buffer are always in

synch with the LOBvalue in the server. Unless you explicitly flush the contents of

a LOB’s buffer, you will not see the results of your buffered writes reflected in

the actual LOB on the server.

■ Error recovery for buffered LOB operations is your responsibility. Owing to the

deferred nature of the actual LOB update, error reporting for a particular

buffered read or write operation is deferred until the next access to the server

based LOB.

■ Transactions involving buffered LOB operations cannot migrate across user

sessions — the LBS is a single user, single threaded system.
Advanced Topics 5-21

LOB Buffering Subsystem
■ Oracle8i does not guarantee transactional support for buffered LOB operations.

To ensure transactional semantics for buffered LOB updates, you must maintain

logical savepoints in your application to rollback all the changes made to the

buffered LOB in the event of an error. You should always wrap your buffered

LOBupdates within a logical savepoint (see "OCI Example of LOB Buffering" on

page 5-28).

■ In any given transaction, once you have begun updating a LOB using buffered

writes, it is your responsibility to ensure that the same LOB is not updated

through any other operation within the scope of the same transaction that
bypasses the buffering subsystem.

You could potentially do this by using an SQL statement to update the

server-based LOB. Oracle8i cannot distinguish, and hence prevent, such an

operation. This will seriously affect the correctness and integrity of your

application.

■ Buffered operations on a LOB are done through its locator, just as in the

conventional case. A locator that is enabled for buffering will provide a

consistent read version of the LOB, until you perform a write operation on the

LOB through that locator.

Once the locator becomes an updated locator by virtue of its being used for a

buffered write, it will always provide access to the most up-to-date version of

the LOBas seen through the buffering subsystem. Buffering also imposes an

additional significance to this updated locator — all further buffered writes to

the LOB can be done only through this updated locator. Oracle8i will return an

error if you attempt to write to the LOB through other locators enabled for

buffering.

■ You can pass an updated locator that was enabled for buffering as an IN
parameter to a PL/SQL procedure. However, passing an IN OUT or an OUT
parameter will produce an error, as will an attempt to return an updated

locator.

■ You cannot assign an updated locator that was enabled for buffering to another

locator. There are a number of different ways that assignment of locators may

occur — through OCILobAssign (), through assignment of PL/SQL variables,

See Also: "Read-Consistent Locators" on page 5-2.

See Also: "Updated LObs Via Updated Locators" on page 5-5.
5-22 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem
through OCIObjectCopy () where the object contains the LOB attribute, and so

on. Assigning a consistent read locator that was enabled for buffering to a

locator that did not have buffering enabled, turns buffering on for the target

locator. By the same token, assigning a locator that was not enabled for

buffering to a locator that did have buffering enabled, turns buffering off for the

target locator.

Similarly, if you SELECT into a locator for which buffering was originally

enabled, the locator becomes overwritten with the new locator value, thereby

turning buffering off.

■ Appending to the LOB value using buffered write(s) is allowed, but only if the

starting offset of these write(s) is exactly one byte (or character) past the end of

the BLOB (or CLOB/NCLOB). In other words, the buffering subsystem does not

support appends that involve creation of zero-byte fillers or spaces in the server

based LOB.

■ For CLOBs, Oracle8i requires that the character set form for the locator bind

variable on the client side be the same as that of the LOB in the server. This is

usually the case in most OCI LOB programs. The exception is when the locator

is SELECTed from a remote database, which may have a different character set

form from the database which is currently being accessed by the OCI program.

In such a case, an error is returned. If there is no character set form input by the

user, then we assume it is SQLCS_IMPLICIT .

LOB Buffering Usage Notes

LOB Buffer Physical Structure
Each user session has the following structure:

■ Fixed page pool of 16 pages, shared by all LOBs accessed in buffering mode

from that session.

■ Each page has a fixed size of up to 32K bytes (not characters) where pagesize = n

x CHUNKSIZE ~= 32K.

A LOB’s buffer consists of one or more of these pages, up to a maximum of 16 per

session. The maximum amount that you ought to specify for any given buffered

read or write operation is 512K bytes, remembering that under different

circumstances the maximum amount you may read/write could be smaller.
Advanced Topics 5-23

LOB Buffering Subsystem
Example of Using the LOB Buffering System (LBS)
Consider that a LOB is divided into fixed-size, logical regions. Each page is mapped

to one of these fixed size regions, and is in essence, their in-memory copy.

Depending on the input offset and amount specified for a read or write

operation, Oracle8i allocates one or more of the free pages in the page pool to the

LOB’s buffer. A free page is one that has not been read or written by a buffered read

or write operation.

For example, assuming a page size of 32K:

■ For an input offset of 1000 and a specified read/write amount of 30000, Oracle8i

reads the first 32K byte region of the LOB into a page in the LOB’s buffer.

■ For an input offset of 33000 and a read/write amount of 30000, the second 32K

region of the LOB is read into a page.

■ For an input offset of 1000, and a read/write amount of 35000, the LOB’s buffer

will contain two pages — the first mapped to the region 1 — 32K, and the

second to the region 32K+1 — 64K of the LOB.

This mapping between a page and the LOB region is temporary until Oracle8i maps

another region to the page. When you attempt to access a region of the LOB that is

not already available in full in the LOB’s buffer, Oracle8i allocates any available free

page(s) from the page pool to the LOB’s buffer. If there are no free pages available in

the page pool, Oracle8i reallocates the pages as follows. It ages out the least recently
used page among the unmodified pages in the LOB’s buffer and reallocates it for the

current operation.

If no such page is available in the LOB’s buffer, it ages out the least recently used

page among the unmodified pages of other buffered LOBs in the same session. Again,

if no such page is available, then it implies that all the pages in the page pool are

dirty (i.e. they have been modified), and either the currently accessed LOB, or one of

the other LOBs, need to be flushed. Oracle8i notifies this condition to the user as an

error. Oracle8i never flushes and reallocates a dirty page implicitly — you can either

flush them explicitly, or discard them by disabling buffering on the LOB.

To illustrate the above discussion, consider two LOBs being accessed in buffered

mode — L1 and L2, each with buffers of size 8 pages. Assume that 6 of the 8 pages

in L1’s buffer are dirty, with the remaining 2 containing unmodified data read in

from the server. Assume similar conditions in L2’s buffer. Now, for the next

buffered operation on L1, Oracle8i will reallocate the least recently used page from

the two unmodified pages in L1’s buffer. Once all the 8 pages in L1’s buffer are used

up for LOB writes, Oracle8i can service two more operations on L1 by allocating the
5-24 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem
two unmodified pages from L2’s buffer using the least recently used policy. But for

any further buffered operations on L1 or L2, Oracle8i returns an error.

If all the buffers are dirty and you attempt another read from or write to a buffered

LOB, you will receive the following error:

 Error 22280: no more buffers available for operation

There are two possible causes:

1. All buffers in the buffer pool have been used up by previous operations.

In this case, flush the LOB(s) through the locator that is being used to

update the LOB.

2. You are trying to flush a LOB without any previous buffered update

operations.

In this case, write to the LOB through a locator enabled for buffering before

attempting to flush buffers.

Flushing the LOB Buffer
The term flush refers to a set of processes. Writing data to the LOB in the buffer

through the locator transforms the locator into an updated locator. Once you have

updated the LOB data in the buffer through the updated locator, a flush call will

■ Write the dirty pages in the LOB’s buffer to the server-based LOB, thereby

updating the LOB value,

■ Reset the updated locator to be a read consistent locator, and

■ Free the flushed buffers or turn the status of the buffer pages back from dirty to

unmodified.

After the flush, the locator becomes a read consistent locator and can be assigned to

another locator (L2 := L1).

For instance, suppose you have two locators, L1 and L2. Let us say that they are

both read consistent locators and consistent with the state of the LOB data in the

server. If you then update the LOBby writing to the buffer, L1 becomes an updated

locator. L1 and L2 now refer to different versions of the LOB value. If you wish to

update the LOB in the server, you must use L1 to retain the read consistent state

captured in L2. The flush operation writes a new snapshot environment into the

locator used for the flush. The important point to remember is that you must use the

updated locator (L1), when you flush the LOB buffer. Trying to flush a read

consistent locator will generate an error.
Advanced Topics 5-25

LOB Buffering Subsystem
This raises the question: What happens to the data in the LOB buffer? There are two

possibilities. In the default mode, the flush operation retains the data in the pages

that were modified. In this case, when you read or write to the same range of bytes

no roundtrip to the server is necessary. Note that flush in this context does not clear

the data in the buffer. It also does not return the memory occupied by the flushed

buffer to the client address space.

In the second case, you set the flag parameter in OCILobFlushBuffer () to OCI_
LOB_BUFFER_FREE to free the buffer pages, and so return the memory to the client

address space. Note that flush in this context updates the LOB value on the server,

returns a read consistent locator, and frees the buffer pages.

Flushing the Updated LOB
It is very important to note that you must flush a LOB that has been updated

through the LBS in the following situations:

■ Before committing the transaction,

■ Before migrating from the current transaction to another,

■ Before disabling buffering operations on a LOB

■ Before returning from an external callout execution into the calling

function/procedure/method in PL/SQL.

Note: When the external callout is called from a PL/SQL block and the locator is passed as
a parameter, all buffering operations, including the enable call, should be made within the
callout itself. In other words, adhere to the following sequence:

■ Call the external callout,

■ Enable the locator for buffering,

■ Read/write using the locator,

■ Flush the LOB,

■ Disable the locator for buffering

■ Return to the calling function/procedure/method in PL/SQL

Remember that Oracle8i never implicitly flushes the LOB.

Note: Unmodified pages may now be aged out if necessary.
5-26 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem
Using Buffer-Enabled Locators
Note that there are several cases in which you can use buffer-enabled locators and

others in which you cannot.

■ When it is OK to Use Buffer-Enabled Locators:

■ OCI — A locator that is enabled for buffering can only be used with the

following OCI APIs:

OCILobRead (), OCILobWrite (), OCILobAssign (), OCILobIsEqual (),

OCILobLocatorIsInit (), OCILobCharSetId (),

OCILobCharSetForm ().

■ When it is Not OK to Use Buffer-Enabled Locators: The following OCI APIs

will return errors if used with a locator enabled for buffering:

■ OCI — OCILobCopy (), OCILobAppend (), OCILobErase (),

OCILobGetLength (), OCILobTrim (), OCILobWriteAppend().

These APIs will also return errors when used with a locator which has not

been enabled for buffering, but the LOB that the locator represents is

already being accessed in buffered mode through some other locator.

■ PL/SQL (DBMS_LOB) — An error is returned from DBMS_LOB APIs if the

input lob locator has buffering enabled.

■ As in the case of all other locators, buffer-enabled locators cannot span

transactions.

Saving Locator State to Avoid a Reselect
Suppose you want to save the current state of the LOB before further writing to the

LOBbuffer. In performing updates while using LOBbuffering, writing to an existing

buffer does not make a roundtrip to the server, and so does not refresh the snapshot

environment in the locator. This would not be the case if you were updating the LOB
directly without using LOB buffering. In that case, every update would involve a

roundtrip to the server, and so would refresh the snapshot in the locator.

Therefore to save the state of a LOB that has been written through the LOB buffer,

follow these steps:

1. Flush the LOB, thereby updating the LOB and the snapshot environment in the

locator (L1). At this point, the state of the locator (L1) and the LOBare the same.
Advanced Topics 5-27

LOB Buffering Subsystem
2. Assign the locator (L1) used for flushing and updating to another locator (L2).

At this point, the states of the two locators (L1 and L2), as well as the LOB are

all identical.

L2 now becomes a read consistent locator with which you are able to access the

changes made through L1 up until the time of the flush, but not after! This

assignment avoids incurring a roundtrip to the server to reselect the locator into L2.

OCI Example of LOB Buffering
The following pseudocode for an OCI program based on the Multimedia_tab
schema illustrates the issues described above.

OCI_BLOB_buffering_program ()
{
 int amount;
 int offset;
 OCILobLocator lbs_loc1, lbs_loc2, lbs_loc3;
 void *buffer;
 int bufl;

 -- Standard OCI initialization operations - logging on to
 -- server, creating and initializing bind variables etc.

 init_OCI ();

 -- Establish a savepoint before start of LBS operations
 exec_statement("savepoint lbs_savepoint");

 -- Initialize bind variable to BLOB columns from buffered
-- access:

 exec_statement("select frame into lbs_loc1 from Multimedia_tab
 where clip_id = 12");
 exec_statement("select frame into lbs_loc2 from Multimedia_tab
 where clip_id = 12 for update");
 exec_statement("select frame into lbs_loc2 from Multimedia_tab
 where clip_id = 12 for update");

 -- Enable locators for buffered mode access to LOB:
 OCILobEnableBuffering(lbs_loc1);
 OCILobEnableBuffering(lbs_loc2);
 OCILobEnableBuffering(lbs_loc3);

 -- Read 4K bytes through lbs_loc1 starting from offset 1:
 amount = 4096; offset = 1; bufl = 4096;
5-28 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem
 OCILobRead(.., lbs_loc1, offset, &amount, buffer, bufl,
 ..);
 if (exception)
 goto exception_handler;
 -- This will read the first 32K bytes of the LOB from
 -- the server into a page (call it page_A) in the LOB’s
 -- client-side buffer.
 -- lbs_loc1 is a read consistent locator.

 -- W rite 4K of the LOB throgh lbs_loc2 starting from
 -- offset 1:
 amount = 4096; offset = 1; bufl = 4096;
 buffer = populate_buffer(4096);
 OCILobWrite(.., lbs_loc2, offset, amount, buffer,
 bufl, ..);

 if (exception)
 goto exception_handler;
 -- This will read the first 32K bytes of the LOB from
 -- the server into a new page (call it page_B) in the
 -- L OB’s buffer, and modify the contents of this page
 -- with input buffer contents.
 -- lbs_loc2 is an updated locator.

 -- Read 20K bytes through lbs_loc1 starting from
 -- offset 10K
 amount = 20480; offset = 10240;
 OCILobRead(.., lbs_loc1, offset, &amount, buffer,
 bufl, ..);

 if (exception)
 goto exception_handler;
 -- Read directly from page_A into the user buffer.
 -- There is no round-trip to the server because the
 -- data is already in the client-side buffer.

 -- Wri te 20K bytes through lbs_loc2 starting from offset
 -- 10K
 amount = 20480; offset = 10240; bufl = 20480;
 buffer = populate_buffer(20480);
 OCILobWrite(.., lbs_loc2, offset, amount, buffer,
 bufl, ..);

 if (exception)
 goto exception_handler;
Advanced Topics 5-29

LOB Buffering Subsystem
 -- The contents of the user buffer will now be written
 -- into page_B without involving a round-trip to the
 -- server. This avoids making a new LOB version on the
 -- server and writing redo to the log.

 -- The following write through lbs_loc3 will also
 -- result in an error:
 amount = 20000; offset = 1000; bufl = 20000;
 buffer = populate_buffer(20000);
 OCILobWrite(.., lbs_loc3, offset, amount, buffer,
 bufl, ..);

 if (exception)
 goto exception_handler;
 -- No two locators can be used to update a buffered LOB
 -- through the buffering subsystem

 -- The following update through lbs_loc3 will also
 -- result in an error
 OCILobFileCopy(.., lbs_loc3, lbs_loc2, ..);

 if (exception)
 goto exception_handler;

-- Locators enabled for buffering cannot be used with
 -- operations like Append, Copy, Trim etc.
 -- When done, flush LOB’s buffer to the server:
 OCILobFlushBuffer(.., lbs_loc2, OCI_LOB_BUFFER_NOFREE);

 if (exception)
 goto exception_handler;
 -- This flushes all the modified pages in the LOB’s buffer,
 -- and resets lbs_loc2 from updated to read consistent
 -- locator. The modified pages remain in the buffer
 -- without freeing memory. These pages can be aged
 -- out if necessary.

 -- Disable locators for buffered mode access to LOB */
 OCILobDisableBuffering(lbs_loc1);
 OCILobDisableBuffering(lbs_loc2);
 OCILobDisableBuffering(lbs_loc3);

 if (exception)
 goto exception_handler;
 -- This disables the three locators for buffered access,
 -- and frees up the LOB’s buffer resources.
5-30 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem
 exception_handler:
 handle_exception_reporting ();
 exec_statement("rollback to savepoint lbs_savepoint");
}

Advanced Topics 5-31

Creating a Varray Containing References to LOBs
Creating a Varray Containing References to LOBs
LOBs, or rather references to LOBs, can also be created using VARRAYs. To create a
VARRAY containing references to LOBs read the following:

Column, MAP_OBJ of type MAP_TYP, already exists in tableMultimedia_tab . See
Chapter 8, "Sample Application" for a description of tableMultimedia_tab . Column
MAP_OBJ contains a BLOB column named DRAWING.

The syntax for creating the associated types and table Multimedia_tab is

described in Chapter 9, "Internal Persistent LOBs", SQL: Create a Table Containing

One or More LOB Columns, on page 9-10.

Example
Suppose you need to store multiple map objects per multimedia clip. To do that

follow these steps:

1. Define a VARRAY of type REF MAP_TYP.

For example:

CREATE TYPE MAP_TYP_ARR AS
 VARRAY(10) OF REF MAP_TYP;

2. Define a column of the array type in Multimedia_tab.

For example:

CREATE TABLE MULTIMEDIA_TAB (......etc. [list all columns here]
 ... MAP_OBJ_ARR MAP_TYP_ARR)
 VARRAY MAP_OBJ_ARR STORE AS LOB MAP_OBJ_ARR_STORE;
5-32 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Frequently Asked Que
6

Frequently Asked Questions

This chapter includes the following Frequently Asked Questions (FAQs):

■ Converting Data Types to LOB Data Types

■ Can I Insert or Update Any Length Data Into a LOB Column?

■ Does COPY LONG to LOB Work if Data is > 64K?

■ General

■ How Do I Determine if the LOB Column with a Trigger is Being Updated?

■ Reading and Loading LOB Data: What Should Amount Parameter Size Be?

■ Index-Organized Tables (IOTs) and LOBs

■ Is Inline Storage Allowed for LOBs in Index-Organized Tables?

■ Initializing LOB Locators

■ When Do I Use EMPTY_BLOB() and EMPTY_CLOB()?

■ How Do I Initialize a BLOB Attribute Using EMPTY_BLOB() in Java?

■ JDBC, JPublisher and LOBs

■ How Do I Insert a Row With Empty LOB Locator into Table Using JDBC?

■ JDBC: Do OracleBlob and OracleClob Work in 8.1.x?

■ How Do I Manipulate LOBs With the 8.1.5 JDBC Thin Driver?

■ Is the FOR UPDATE Clause Needed on SELECT When Writing to a LOB?

■ Loading LOBs and Data Into LOBs

■ How do I Load a 1Mb File into a CLOB Column?
stions 6-1

■ How Do We Improve BLOB and CLOB Performance When Using JDBC

Driver To Load?

■ LOB Indexing

■ Is LOB Index Created in Same Tablespace as LOB Data?

■ Indexing: Why is a BLOB Column Removed on DELETing but not a BFILE

Column?

■ Which Views Can I Query to Find Out About a LOB Index?

■ LOB Storage and Space Issues

■ What Happens If I Specify LOB Tablespace and ENABLE STORAGE IN

ROW?

■ What Are the Pros and Cons of Storing Images in a BFILE Versus a BLOB?

■ When Should I Specify DISABLE STORAGE IN ROW?

■ Do <4K BLOBs Go Into the Same Segment as Table Data, >4K BLOBs Go

Into a Specified Segment?

■ Is 4K LOB Stored Inline?

■ How is a LOB Locator Stored If the LOB Column is EMPTY_CLOB() or

EMPTY_BLOB() Instead of NULL? Are Extra Data Blocks Used For This?

■ Migrating From Other Database Systems

■ Is Implicit LOB Conversion Between Different LOB Types Allowed in

Oracle8i?

■ Performance

■ What Can We Do To Improve the Poor LOB Loading Performance When

Using Veritas File System on Disk Arrays, UNIX, and Oracle?

■ Is There a Difference in Performance When Using DBMS_LOB.SUBSTR

Versus DBMS_LOB.READ?

■ Are There Any White Papers or Guidelines on Tuning LOB Performance?

■ When Should I Use Chunks Over Reading the Whole Thing?

■ Is Inlining the LOB a Good Idea and If So When?

■ Are There Any White Papers or Guidelines on Tuning LOB Performance?

■ How Can I Store LOBs >4Gb in the Database?
6-2 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Converting Data Types to LOB Data Types
Converting Data Types to LOB Data Types

Can I Insert or Update Any Length Data Into a LOB Column?

Question
Can I insert or update any length of data for a LOB column? Am I still restricted to

4K. How about LOB attributes

Answer
When inserting or updating a LOB column you are now not restricted to 4K.

For LOB attributes, you must use the following two steps:

1. INSERT empty LOB with the RETURNING clause

2. Call OCILobWrite to write all the data

Does COPY LONG to LOB Work if Data is > 64K?

Question
Example: Copy Long to LOB Using SQL :

INSERT INTO Multimedia_tab (clip_id,sound) SELECT id, TO_LOB(SoundEffects)

Does this work if the data in LONG or LONGRAW is > 64K?

Answer
Yes. All data in the LONG is copied to the LOB regardless of size.
Frequently Asked Questions 6-3

General
General

How Do I Determine if the LOB Column with a Trigger is Being Updated?

Question
The project that I'm working on requires a trigger on a LOB column. The

requirement is that when this column is updated, we want to check some

conditions. How do I check whether there is any value in the NEW for this LOB

column? Null does not work, since you can't compare BLOB with NULL.

Answer
You can use the UPDATING clause inside of the trigger to find out if the LOB

column is being updated or not.

CREATE OR REPLACE TRIGGER......
...
 IF UPDATING('lobcol')
 THEN
...

Note: The above works only for top-level lob columns.

Reading and Loading LOB Data: What Should Amount Parameter Size Be?

Question
I read in one of the prior release Application Developer's Guides the following:

"When reading the LOB value, it is not an error to try to read beyond the end of the

LOB. This means that you can always specify an input amount of 4Gb regardless of

the starting offset and the amount of data in the LOB. You do need to incur a

round-trip to the server to call OCILobGetLength() to find out the length of the LOB

value in order to determine the amount to read. "

And again, under the DBMS_LOB.LOADFROMFILE() procedure...

"It is not an error to specify an amount that exceeds the length of the data in the

source BFILE. Thus, you can specify a large amount to copy from the BFILE which

will copy data from the src_offset to the end of the BFILE. "

However, the following code...

 declare
6-4 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

General
 cursor c is
 select id, text from bfiles;
 v_clob clob;
 begin
 for j in c
 loop
 Dbms_Lob.FileOpen (j.text, Dbms_Lob.File_Readonly);
 insert into clobs (id, text)
 values (j.id, empty_clob())
 returning text into v_clob;
 Dbms_Lob.LoadFromFile
 (
 dest_lob => v_clob,
 src_lob => j.text,
 amount => 4294967296, /* = 4Gb */
 dest_offset => 1,
 src_offset => 1
);
 Dbms_Lob.FileClose (j.text);
 end loop;
 commit;
 end;
 /

causes the following error message:

ORA-21560: argument 3 is null, invalid, or out of range

Reducing the amount by 1 to 4294967295 causes the following error message:

ORA-22993: specified input amount is greater than actual source amount

Please help me understand why I am getting errors.

Answer
■ PL/SQL:

■ For DBMS_LOB.LOADFROMFILE, you cannot specify the amount more

than the size of the BFILE. So the code example you gave returns an error.

■ For DBMS_LOB.READ, the amount can be larger than the size of the data.

But then, since PL/SQL limits the size of the buffer to 32K, and given the
Frequently Asked Questions 6-5

Index-Organized Tables (IOTs) and LOBs
fact that the amount should be no larger than the size of the buffer, the

amount is restricted to 32K.

Please note that in PL/SQL, if the amount is larger than the buffer size, it

returns an error. In any case, the amount cannot exceed 4Gig-1 because that is

the limit of a ub4 variable.

■ OCI: Again, you cannot specify amount larger than the length of the BFILE in

OCILobLoadFromFile. However, in OCILobRead, you can specify

amount =4Gig-1, and it will read to the end of the LOB.

Index-Organized Tables (IOTs) and LOBs

Is Inline Storage Allowed for LOBs in Index-Organized Tables?

Question
Is inline storage allowed for LOBs in index-organized tables?

Answer
For LOBs in index organized tables, inline LOB storage is allowed only if the table is

created with an overflow segment.
6-6 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Initializing LOB Locators
Initializing LOB Locators

When Do I Use EMPTY_BLOB() and EMPTY_CLOB()?

Question
When must I use EMPTY_BLOB() and EMBPTY_CLOB()? I always thought it was

mandatory for each insert of a CLOB or BLOB to initialize the LOB locator first with

either EMPTY_CLOB() or EMPTY_BLOB().

Answer
In Oracle8i release 8.1.5, you can initialize a LOB with data via the insert statement

as long as the data is <4K. This is why your insert statement worked. Note that you

can also update a LOB with data that is <4K via the UPDATE statement. If the LOB

is larger than 4K perform the following steps:

1. Insert into the table initializing the LOB via EMPTY_BLOB() or EMPTY_

CLOB() and use the returning clause to get back the locator

2. For LOB attributes, call ocilobwrite() to write the entire data to the LOB. For

other than LOB attributes, you can insert all the data via the INSERT

statement.

Note the following:

■ We've removed the <4K restriction and you can insert >4K worth of data into

the LOB via the insert or even the update statement for LOB columns. Note

however, that you cannot initialize a LOB attribute which is part of an object

type with data and you must use EMPTY_BLOB()/EMPTY_CLOB().

■ Also you cannot use >4K as the default value for a LOB even though you can

use >4k when inserting or updating the LOB data.

■ Initializing the LOB value with data or via EMPTY_BLOB()/EMPTY_CLOB() is

orthogonal to how the data is stored. If the LOB value is less than

approximately 4K, then the value is stored inline (as long as the user doesn't

specify DISABLE STORAGE IN ROW) and once it grows larger than 4K, it is

moved out of line.
Frequently Asked Questions 6-7

JDBC, JPublisher and LOBs
How Do I Initialize a BLOB Attribute Using EMPTY_BLOB() in Java?

Question
From java we want to insert a complete object with a BLOB attribute into an

Oracle8.1.5 object table. The problem is - in order to do that - we have somehow to

initialize the blob attribute with EMPTY_BLOB(). Is there any way to initialize the

BLOB attribute with EMPTY_BLOB() in java ?

What I am doing at the moment is:

First I insert the object with null in the BLOB attribute. Afterwards I update the

object with an EMPTY_BLOB(), then select it again, get the BLOB locator and finally

write my BLOB.

Is this the only way it works ? Is there a way to initialize the BLOB directly in my

toDatum method of the Custom Datum interface implementation?

Answer
Here is the SQLJ equivalent...

 BLOB myblob = null;
 #sql { select empty_blob() into :myblob from dual } ;

and use myblob in your code wherever the BLOB needed to be initialized to null.

See also the question and answer under the section, "JDBC, JPublisher and LOBs",

"How Do I setData to EMPTY_BLOB() Using JPublisher?"

JDBC, JPublisher and LOBs

How Do I Insert a Row With Empty LOB Locator into Table Using JDBC?

Question
Is it possible to insert a row with an empty LOB locator into a table using JDBC?

Answer
You can use the EMPTY_BLOB() in JDBC also.
6-8 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

JDBC, JPublisher and LOBs
 Statement stmt = conn.createStatement() ;
 try {
 stmt.execute ("insert into lobtable values (empty_blob())");
 }
 catch{ ...}

Another example is:

 stmt.execute ("drop table lobtran_table");
 stmt.execute ("create table lobtran_table (b1 blob, b2 blob, c1 clob,
 c2 clob, f1 bfile, f2 bfile)");
 stmt.execute ("insert into lobtran_table values
 ('010101010101010101010101010101', empty_blob(),
 'onetwothreefour', empty_clob(),
 bfilename('TEST_DIR','tkpjobLOB11.dat'),
 bfilename ('TEST_DIR','tkpjobLOB12.dat'))");

How Do I setData to EMPTY_BLOB() Using JPublisher?

Question
How do I setData to EMPTY_BLOB() Using JPublisher? Is there something like

EMPTY_BLOB() and EMPTY_CLOB() in a Java statement, not a SQL statement

processed by JDBC? How do we setData to an EMPTY_BLOB() using JPublisher?

Answer
One way to build an empty LOB in JPublisher would be as follows:

BLOB b1 = new BLOB(conn, null) ;

You can use b1 in set method for data column.

JDBC: Do OracleBlob and OracleClob Work in 8.1.x?

Question
Do OracleBlob and OracleClob work in 8.1.x?
Frequently Asked Questions 6-9

JDBC, JPublisher and LOBs
Answer
OracleBlob and OracleClob were Oracle specific functions used in JDBC 8.0.x

drivers to access LOB data. In 8.1.x and future releases, OracleBlob and OracleClob

are deprecated.

If you use OracleBlob or OracleClob to access LOB data, you will receive the

following typical error message, for example, when attempting to manipulate LOBs

with Oracle8i release 8.1.5 JDBC Thin Driver :

"Dumping lobs java.sql.SQLException: ORA-03115: unsupported network datatype or
representation etc."

See release 8.1.5 Oracle8i JDBC Developer’s Guide and Referencefor a description of

these non-supported functions and alternative and improved JDBC methods.

For further ideas on working with LOBs with Java, refer to the LOB Example

sample shipped with Oracle8i or get a LOB example from

http://www.oracle.com/java/jdbc.

How Do I Manipulate LOBs With the 8.1.5 JDBC Thin Driver?

Question
Has anyone come across the following error when attempting to manipulate LOBs

with the 8.1.5 JDBC Thin Driver:

Dumping lobs
java.sql.SQLException: ORA-03115: unsupported network datatype or representation
at oracle.jdbc.ttc7.TTIoer.processError(TTIoer.java:181)
at oracle.jdbc.ttc7.Odscrarr.receive(Compiled Code)
at oracle.jdbc.ttc7.TTC7Protocol.describe(Compiled Code)
at oracle.jdbc.ttc7.TTC7Protocol.parseExecuteDescribe(TTC7Protocol.java: 516)
at oracle.jdbc.driver.OracleStatement.doExecuteQuery(OracleStatement.java:1002)
at oracle.jdbc.driver.OracleStatement.doExecute(OracleStatement.java:1163)
at oracle.jdbc.driver.OracleStatement.doExecuteWithTimeout(OracleStateme
nt.java:1211)
at oracle.jdbc.driver.OracleStatement.executeQuery(OracleStatement.java: 201)
at LobExample.main(Compiled Code)

The code I'm using is the LobExample.java shipped with 8.0.5. This sample was

initially and OCI8 sample. One difference is that I am using the 8.1.5 Thin Driver

against an 8.1.5 instance.
6-10 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

JDBC, JPublisher and LOBs
Answer
You are using a wrong sample. OracleBlob and OracleClob have been deprecated

and they no longer work. Try with the LobExample sample with Oracle8i or you

can get it from http://www.oracle.com/java/jdbc

Is the FOR UPDATE Clause Needed on SELECT When Writing to a LOB?

Question
I am running a Java stored procedure that writes a CLOB and am getting an

exception as follows:

ORA-22920: row containing the LOB value is not locked

ORA-06512: at "SYS.DBMS_LOB", line 708

ORA-06512: at line 1

Once I added a 'FOR UPDATE' clause to my SELECT statement, this exception did

not occur.

I feel that the JDBC Developer's Guide and Reference(8.1.5) should be updated to

reflect the need for the 'FOR UPDATE' clause on the SELECT. Specifically, I think

the two sections under Working with LOBs, Getting BLOB and CLOB Locators

(page 4-46 to 4-47) and Creating and Populating a BLOB or CLOB Column (pages

4-52 to 4-54), should be updated.

Answer
This is not a JDBC issue in specific. This is how LOBs work! This got manifested in

the JSP because by default autoCommit is false. You would also see the same

exception when autoCommit is set to false on the client side. You didn't see the

exception when used with 'For Update' because locks are acquired explicitly.
Frequently Asked Questions 6-11

Loading LOBs and Data Into LOBs
Loading LOBs and Data Into LOBs

How do I Load a 1Mb File into a CLOB Column?

Question
How do I insert a file of 1Mb which is stored on disk, into a CLOB column of my

table. I thought DBMS_LOB.LOADFROMFILE should do the trick, but, the

document says it is valid for BFILE only. How do I do this?

Answer
You can use SQL*Loader. See Oracle8i Utilities or in this manual, Chapter 4,
"Managing LOBs", Using SQL Loader to Load LOBs on on page 4-5.

You can use loadfromfile() to load data into a CLOB, but the data is transferred

from the BFILE as raw data -- i.e., no character set conversions are performed. It is

up to you to do the character set conversions yourself before calling loadfromfile().

Use OCILobWrite() with a callback. The callback can read from the operating

system (OS) file and convert the data to the database character set (if it's different

than the OS file's character set) and then write the data to the CLOB.

How Do We Improve BLOB and CLOB Performance When Using JDBC Driver To
Load?

Question
We are facing a performance problem concerning BLOBs and CLOBs. Much time is

consumed when loading data into the BLOB or CLOB using JDBC Driver.

Answer
It's true that inserting data into LOBs using JDBC Thin driver is slower as it still

uses the DBMS_LOB package and this adds the overhead of a full JDBC

CallableStatement execution for each LOB operation.

With the JDBC OCI and JDBC server-side internal drivers, the inserts are faster

because native LOB APIs are used. There is no extra overhead from JDBC driver

implementation.

It's recommended that you use InputStream and OutputStream for accessing and
manipulating LOB data. By using streaming access of LOBs, JDBC driver will handle the
6-12 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Loading LOBs and Data Into LOBs
buffering of the LOB data properly to reduce the number of network round-trips and ensure
that each database operation uses a data size as a multiple of the LOB's natural chunk size.

Here is an example that uses OutputStream to write data to a BLOB:

/*

 * This sample writes the GIF file john.gif to a BLOB.

 */

import java.sql.*;
import java.io.*;
import java.util.*;

// Importing the Oracle Jdbc driver package makes the code more readable
import oracle.jdbc.driver.*;

//needed for new CLOB and BLOB classes
import oracle.sql.*;

public class LobExample
{
 public static void main (String args [])
 throws Exception
 {
 // Register the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You can put a database name after the @ sign in the connection URL.
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");

 // It's faster when auto commit is off
 conn.setAutoCommit (false);

 // Create a Statement
 Statement stmt = conn.createStatement ();

 try
 {
 stmt.execute ("drop table persons");
 }
 catch (SQLException e)
 {
 // An exception could be raised here if the table did not exist already.
Frequently Asked Questions 6-13

Loading LOBs and Data Into LOBs
 }

 // Create a table containing a BLOB and a CLOB
 stmt.execute ("create table persons (name varchar2 (30), picture blob)");

 // Populate the table
 stmt.execute ("insert into persons values ('John', EMPTY_BLOB())");

 // Select the BLOB
 ResultSet rset = stmt.executeQuery ("select picture from persons where name
= 'John'");
 if (rset.next ())
 {
 // Get the BLOB locator from the table
 BLOB blob = ((OracleResultSet)rset).getBLOB (1);

 // Declare a file handler for the john.gif file
 File binaryFile = new File ("john.gif");

 // Create a FileInputStream object to read the contents of the GIF file
 FileInputStream istream = new FileInputStream (binaryFile);

 // Create an OutputStram object to write the BLOB as a stream
 OutputStream ostream = blob.getBinaryOutputStream ();

 // Create a tempory buffer
 byte[] buffer = new byte[1024];
 int length = 0;

 // Use the read() method to read the GIF file to the byte
 // array buffer, then use the write() method to write it to
 // the BLOB.
 while ((length = istream.read(buffer)) != -1)
 ostream.write(buffer, 0, length);

 // Close the inputstream and outputstream
 istream.close();
 ostream.close();

 // Check the BLOB size
 System.out.println ("Number of bytes written = "+blob.length());
 }

 // Close all resources
 rset.close();
6-14 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Loading LOBs and Data Into LOBs
 stmt.close();
 conn.close();
 }
}

Note that you'll get even better performance if you use DBMS_

LOB.LOADFROMFILE() instead of using DBMS_LOB.WRITE().

In order to be able to use DBMS_LOB.LOADFROMFILE(), the data to be written

into the LOB must be in a server-side file.
Frequently Asked Questions 6-15

LOB Indexing
LOB Indexing

Is LOB Index Created in Same Tablespace as LOB Data?

Question
Is the LOB index created for the LOB in the same tablespace as the LOB data?

Answer
The LOB index is created on the LOB column and it indexes the LOB data. The LOB

index resides in the same tablespace as the locator.

Indexing: Why is a BLOB Column Removed on DELETing but not a BFILE Column?

Question
The promotion column could be defined and indexed as a BFILE, but if for

example, a row is DELETEd, the Word document is removed with it when the

promotion column is defined as BLOB, but it is not removed when the column is

defined as a BFILE. Why?

Answer
We don't create an index for BFILE data. Also note that internal persistent LOBs are

automatically backed up with the database whereas external BFILEs are not and

modifications to the internal persistent LOB can be placed in the redo log for future

recovery.

Which Views Can I Query to Find Out About a LOB Index?

Question
Which views can I query to find out about a LOB index?

Answer
■ Internal Persistent LOBs:

■ ALL_INDEXES View: Contains all the indexes the current user has the

ability to modify in any way. You will not see the LOB index in this view

because LOB indexes cannot be renamed, rebuilt, or modified.
6-16 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Indexing
■ DBA_INDEXES View: Contains all the indexes that exist. Query this view

to find information about the LOB index.

■ USER_INDEXES View: Contains all the indexes that the user owns. The

LOB index will be in this view if the user querying it is the same user that

created it.

■ Temporary LOBs:

For temporary LOBs, the LOB index information can be retrieved from the

view, V$SORT_USAGE.

For example:

SELECT USER#, USERNAME, SEGTYPE, EXTENTS, BLOCKS
 FROM v$sort_usage, v$session
 WHERE SERIAL#=SESSION_NUM;
Frequently Asked Questions 6-17

LOB Storage and Space Issues
LOB Storage and Space Issues

What Happens If I Specify LOB Tablespace and ENABLE STORAGE IN ROW?

Question
What happens if I specify a LOB TABLESPACE, but also say ENABLE STORAGE

IN ROW?

Answer
If the length of the LOB value is less than approximately 4K, then the data is stored

inline in the table. When it grows to beyond approximately 4K, then the LOB value

is moved to the specified tablespace.

What Are the Pros and Cons of Storing Images in a BFILE Versus a BLOB?

Question
I am looking for information on the pros and cons of storing images in a BFILE

versus a BLOB.

Answer
Here's some basic information.

■ Security:

■ BFILEs are inherently insecure, as insecure as your operating system (OS).

■ Features:

■ BFILEs are not writable from typical database APIs whereas BLOBs are.

■ One of the most important features is that BLOBs can participate in

transactions and are recoverable. Not so for BFILEs.

■ Performance:

■ Roughly the same.

■ Upping the size of your buffer cache can make a BIG improvement in BLOB

performance.

■ BLOBs can be configured to exist in Oracle's cache which should make

repeated/multiple reads faster.
6-18 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Storage and Space Issues
■ Piece wise/non-sequential access of a BLOB is known to be faster than a

that of a BFILE.

■ Manageability:

■ Only the BFILE locator is stored in an Oracle BACKUP. One needs to do a

separate backup to save the OS file that the BFILE locator points to. The

BLOB data is backed up along with the rest of the database data.

■ Storage:

■ The amount of table space required to store file data in a BLOB will be

larger than that of the file itself due to LOB index which is the reason for

better BLOB performance for piece wise random access of the BLOB value.

When Should I Specify DISABLE STORAGE IN ROW?

Question
Should DISABLE STORAGE IN ROW always be specified if many UPDATEs, or

SELECTs including full table scans are anticipated?

 Answer
Use DISABLE STORAGE IN ROW if the other table data will be updated or selected

frequently, not if the LOB data is updated or selected frequently.

Do <4K BLOBs Go Into the Same Segment as Table Data, >4K BLOBs Go Into a
Specified Segment?

Question
If I specify a segment and tablespace for the BLOB, and specify ENABLE STORAGE
IN ROW then look in USER_LOBS, I see that the BLOB is defined as IN_ROW and it

shows that it has a segment specified. What does this mean? That all BLOBs 4K and

under will go into the same segment as the table data, but the ones larger than that

go into the segment I specified?

Answer
Yes.
Frequently Asked Questions 6-19

LOB Storage and Space Issues
Is 4K LOB Stored Inline?

Question
Release 8.1.5 Oracle8i SQL Reference, Chapter 4, states the following:

 "ENABLE STORAGE IN ROW--specifies that the LOB value is stored in the row

(inline) if its length is less than approximately 4K bytes minus system control

information. This is the default. "

If an inline LOB is > 4K, which of the following possibilities is true?

1. The first 4K gets stored in the structured data, and the remainder gets stored

elsewhere

2. The whole LOB is stored elsewhere

It sounds to me like #2, but I need to check.

Answer
You are correct -- it's number 2. Some meta information is stored inline in the row

so that accessing the LOB value is faster. However, the entire LOB value is stored

elsewhere once it grows beyond approximately 4K bytes.

1. If you have a NULL value for the BLOB locator, i.e., you have done the

following:

INSERT INTO blob_table (key, blob_column) VALUES (1, null);

In this case I expect that you do not use any space, like any other NULL value,

as we do not have any pointer to a BLOB value at all.

2. If you have a NULL in the BLOB, i.e., you have done the following:

INSERT INTO blob_table (key, blob_column) VALUES (1, empty_blob());

In this case you would be right, that we need at least a chunk size of space.

We distinguish between when we use BLOBs between NULL values and empty

strings.
6-20 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Storage and Space Issues
How is a LOB Locator Stored If the LOB Column is EMPTY_CLOB() or EMPTY_
BLOB() Instead of NULL? Are Extra Data Blocks Used For This?

Question
If a LOB column is EMPTY_CLOB() or EMPTY_BLOB() instead of NULL, how is the

LOB locator stored in the row and are extra data blocks used for this?

Answer
See also Chapter 7, "Modeling and Design", in this manual, under "LOB Storage".

You can run a simple test that creates a table with a LOB column with attribute

DISABLE STORAGE IN ROW. Insert thousands of rows with NULL LOBs.

Note that Oracle8i does not consume thousands of chunks to store NULLs!
Frequently Asked Questions 6-21

Migrating From Other Database Systems
Migrating From Other Database Systems

Is Implicit LOB Conversion Between Different LOB Types Allowed in Oracle 8i?

Question
There are no implicit LOB conversions between different LOB types? For example,

in PL/SQL, I cannot use:

 INSERT INTO t VALUES ('abc');
 WHERE t CONTAINS a CLOB column.....

Do you know if this restriction still exists in Oracle8i? I know that this restriction

existed in PL/SQL for Oracle8 but users could issue the INSERT statement in SQL as

long as data to insert was <4K. My understanding is that this <4K restriction has

now been removed in SQL.

Answer
The PL/SQL restriction has been removed in Oracle8i and you can now insert more

than 4K worth of data.
6-22 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Performance
Performance

What Can We Do To Improve the Poor LOB Loading Performance When Using Veritas
File System on Disk Arrays, UNIX, and Oracle?

Question 1
We were experiencing a load time of 70+ seconds when attempting to populate a

BLOB column in the database with 250MB of video content. Compared to the 15

seconds transfer time using the UNIX copy, this seemed unacceptable. What can we
do to improve this situation?

The BLOB was being stored in partitioned tablespace and NOLOGGING,

NOCACHE options were specified to maximize performance.

The INITIAL and NEXT extents for the partition tablespace and partition storage

were defined as 300M, with MINEXTENTS set to 1 in order to incur minimal

overhead when loading the data.

CHUNK size was set to 32768 bytes - maximum for Oracle.

INIT.ORA parameters for db_block_buffers were increased as well as decreased.

All the above did very little to affect the load time - this stayed consistently around

the 70-75 seconds range suggesting that there was minimal effect with these

settings.

Answer 1
First examine the I/O storage devices and paths.

Question 2

I/O Devices/Paths 4 SUN AS5200 disk arrays were being used for data storage, i.e.,

the devices where the BLOB was to be written to. Disks on this array were RAID

(0+1) with 4 stripes of (9+9). Veritas VxFS 3.2.1 was the file system on all disks.

In order to measure the effect of using a different device, the tablespace for the

BLOB was defined on /tmp. /tmp is the swap space.

Needless to say, loading the BLOB now only took 14 seconds, implying a data

transfer rate of 1.07GIG per minute - a performance rating as close, if not higher

than the UNIX copy!
Frequently Asked Questions 6-23

Performance
This prompted a closer examination of what was happening when the BLOB was

being loaded to a tablespace on the disk arrays. SAR output indicated significant

waits for I/O, gobbling up of memory, high CPU cycles and yes, the ever-consistent

load time of 70 seconds. Any suggestions on how to resolve this?

Answer 2

Install the Veritas QuickIO Option! Obviously, there seems to be an issue with Veritas,

UNIX, and Oracle operating together. I have come up with supporting

documentation on this. For acceptable performance with Veritas file-system on your

disk arrays with Oracle, we recommend that you install the Veritas QuickIO
option.

A Final Note: Typically when customers complain that writing LOBs is slow, the

problem is usually not how Oracle writes LOBs. In the above case, you were using

Veritas File System, which uses UNIX file caching, so performance was very poor.

After disabling UNIX caching, performance should improve over that with the

native file copy.

Is There a Difference in Performance When Using DBMS_LOB.SUBSTR Versus
DBMS_LOB.READ?

Question
Is there a difference in performance when using DBMS_LOB.SUBSTR vs. DBMS_

LOB.READ?

Answer
DBMS_LOB.SUBSTR is there because it's a function and you can use it in a SQL

statement. There is no performance difference.

Are There Any White Papers or Guidelines on Tuning LOB Performance?

Question
I was wondering if anyone had any white papers or guidelines on tuning LOB

performance.
6-24 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Performance
Answer
Chapter 7, "Modeling and Design" in this manual, has a short section called "Best

Performance Practices". Also see "Selecting a Table Architecture" in Chapter 7.

There was a web site with some information about LOB Performance but it is out of

date. Check back periodically as there is a plan to update it!

When Should I Use Chunks Over Reading the Whole Thing?

Question
When should I use chunks over reading the whole thing?

Answer
If you intend to read more than one chunk of the LOB, then use OCILobRead with

the streaming mechanism either via polling or a callback. If you only need to read a

small part of the LOB that will fit in one chunk, then only read that chunk. Reading

more will incur extra network overhead.

Is Inlining the LOB a Good Idea and If So When?

Question
Is inlining the LOB a good idea. If so, then when?

Answer
Inlining the LOB is the default and is recommended most of the time. Oracle8i
stores the LOB inline if the value is less than approximately 4K thus providing

better performance than storing the value out of line. Once the LOB grows larger

than 4K, the LOB value is moved into a different storage segment but meta

information that allows quick lookup of the LOB value is still stored inline. So,

inlining provides the best performance most of the time.

However, you probably don't want to inline the LOB if you'll be doing a lot of base

table processing such as full table scans, multi-row accesses (range scans) or many

updates/selects of columns other than the LOB columns.
Frequently Asked Questions 6-25

Performance
How Can I Store LOBs >4Gb in the Database?

Question
How can I store LOBs that are >4Gb in the database?

Answer
Your alternatives for storing >4Gb LOBs are:

■ Compressing the LOB so that it fits in 4Gb

■ Breaking up the LOB into 4Gb chunks as separate LOB columns or as separate

rows.
6-26 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Modeling and D
7

Modeling and Design

This chapter discusses the following topics:

■ Selecting a Datatype

■ LOBs in Comparison to LONG and LONG RAW Types

■ Character Set Conversions: Working with Varying-Width Character Data

■ Selecting a Table Architecture

■ Where are NULL Values in a LOB Column Stored?

■ Defining Tablespace and Storage Characteristics for Internal LOBs

■ LOB Storage Characteristics for LOB Column or Attribute

■ TABLESPACE and LOB Index

■ How to Create Gigabyte LOBs

■ LOB Locators and Transaction Boundaries

■ Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs

■ Open, Close and IsOpen Interfaces for Internal LOBs

■ LOBs in Index Organized Tables (IOT)

■ Manipulating LOBs in Partitioned Tables

■ Indexing a LOB Column

■ Best Performance Practices

■ Moving Data to LOB in Threaded Environment

Note: Examples used in this chapter are based on the multimedia schema and table
Multimedia_tab described in Chapter 8, "Sample Application".
esign 7-1

Selecting a Datatype
Selecting a Datatype

LOBs in Comparison to LONG and LONG RAW Types
LOBs are similar to LONG and LONG RAW types, but differ in the following ways:

Existing LONG columns can be converted to LOBs using the TO_LOB() function (see

"Copy LONG to LOB" on page 9-40 in Chapter 9, "Internal Persistent LOBs").

Note that Oracle8i does not support conversion of LOBs back to LONGs.

Table 7–1 LOBs Vs. LONG RAW

LOBs Data Type LONG and LONG RAW Data Type

You can store multiple LOBs in a single row You can store only one LONG or LONG RAW
per row.

LOBs can be attributes of a user-defined
datatype

This is not possible with either a LONG or
LONG RAW

Only the LOB locator is stored in the table
column; BLOBand CLOBdata can be stored
in separate tablespaces and BFILE data is
stored as an external file.

For inline LOBs, Oracle will store LOBs
that are less than approximately 4,000 bytes
of data in the table column.

In the case of a LONG or LONG RAW the
entire value is stored in the table column.

When you access a LOB column, it is the
locator which is returned.

When you access a LONGor LONG RAW,the
entire value is returned.

A LOB can be up to 4 gigabytes in size. The
BFILE maximum is operating system
dependent, but cannot exceed 4 gigabytes.

The valid accessible range is 1 to (232-1).

By contrast, a LONG or LONG RAW is limited
to 2 gigabytes.

There is greater flexibility in manipulating
data in a random, piece-wise manner with
LOBs. LOBs can be accessed at random
offsets.

Less flexibility in manipulating data in a
random, piece-wise manner with LONG or
LONG RAW data. LONGs must be
accessed from the beginning to the desired
location.

You can replicate LOBs in both local and
distributed environments.

Replication in both local and distributed
environments is not possible with aLONGor

LONG RAW (see Oracle8i Replication)
7-2 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Selecting a Datatype
Character Set Conversions: Working with Varying-Width Character Data
In using OCI (Oracle Call Interface), or any of the programmatic environments that

access OCI functionality, character set conversions are implicitly performed when

translating from one character set to another.

However, no implicit translation is ever performed from binary data to a character

set. When you use the loadfromfile operation to populate a CLOBor NCLOB, you

are populating the LOBwith binary data from the BFILE . In that case, you will need

to perform character set conversions on the BFILE data before executing

loadfromfile .

See: Oracle8i National Language Support Guide, for more detail on

character set conversions.
Modeling and Design 7-3

Selecting a Table Architecture
Selecting a Table Architecture
When designing your table, consider the following design criteria:

■ LOB storage

■ Where are NULL Values in a LOB Column Stored?

■ Defining Tablespace and Storage Characteristics for Internal LOBs

■ LOB Storage Characteristics for LOB Column or Attribute

■ TABLESPACE and LOB Index

* PCTVERSION

* CACHE / NOCACHE / CACHE READS

* LOGGING / NOLOGGING

* CHUNK

* ENABLE | DISABLE STORAGE IN ROW

■ How to Create Gigabyte LOBs

■ LOBs in Index Organized Tables (IOT)

■ Manipulating LOBs in Partitioned Tables

■ Indexing a LOB Column
7-4 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Storage
LOB Storage

Where are NULL Values in a LOB Column Stored?

NULL LOB Column Storage: NULL Value is Stored
If a LOB column is NULL, no data blocks are used to store the information. The

NULL value is stored in the row just like any other NULL value. This is true even

when you specify DISABLE STORAGE IN ROW for the LOB.

EMPTY_CLOB() or EMPTY_BLOB() Column Storage: LOB Locator is Stored
If a LOB column is initialized with EMPTY_CLOB() or EMPTY_BLOB(), instead of

NULL, a LOB locator is stored in the row. No additional storage is used.

■ DISABLE STORAGE IN ROW: If you have a LOB with one byte of data, there

will be a LOB locator in the row. This is true whether or not the LOB was

created as ENABLE or DISABLE STORAGE IN ROW. In addition, an entire

chunksize of data blocks is used to store the one byte of data if the LOB column

was created as DISABLE STORAGE IN ROW.

■ ENABLE STORAGE IN ROW: If the LOB column was created as ENABLE
STORAGE IN ROW, Oracle8i only consumes one extra byte of storage in the row

to store the one byte of data. If you have a LOB column created with ENABLE
STORAGE IN ROW and the amount of data to store is larger than will fit in the

row (approximately 4,000 bytes) Oracle8i uses a multiple of chunksizes to store

it.

Defining Tablespace and Storage Characteristics for Internal LOBs
When defining LOBs in a table, you can explicitly indicate the tablespace and

storage characteristics for each internal LOB.

For example:

CREATE TABLE ContainsLOB_tab (n NUMBER, c CLOB)
 lob (c) STORE AS (CHUNK 4096
 PCTVERSION 5
 NOCACHE LOGGING
 STORAGE (MAXEXTENTS 5)
);
There are no extra tablespace or storage characteristics for external LOBs since they

are not stored in the database.
Modeling and Design 7-5

LOB Storage
If you later wish to modify the LOB storage parameters, use the MODIFY LOB

clause of the ALTER TABLE statement.

Assigning a LOB Data Segment Name
As shown in the previous example, specifying a name for the LOB data segment

makes for a much more intuitive working environment. When querying the LOB
data dictionary views USER_LOBS, ALL_LOBS, DBA_LOBS (see Oracle8i Reference),

you see the LOB data segment that you chose instead of system-generated names.

LOB Storage Characteristics for LOB Column or Attribute
LOBstorage characteristics that can be specified for a LOBcolumn or a LOBattribute

include the following:

■ TABLESPACE

■ PCTVERSION

■ CACHE/NOCACHE/CACHE READS

■ LOGGING/NOLOGGING

■ CHUNK

■ ENABLE/DISABLE STORAGE IN ROW

■ STORAGE. See the "STORAGE clause" in Oracle8i SQL Reference for more

information.

For most users, defaults for these storage characteristics will be sufficient. If you

want to fine-tune LOB storage, you should consider the following guidelines.

Note: Only some storage parameters may be modified! For

example, you can use the ALTER TABLE ... MODIFY LOB

statement to change PCTVERSION, CACHE/NO CACHE

LOGGING/NO LOGGING, and the STORAGE clause.

You can also change the TABLESPACE via the ALTER TABLE

...MOVE statement.

However, once the table has been created, you cannot change the

CHUNK size, or the ENABLE/DISABLE STORAGE IN ROW

settings.
7-6 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Storage
TABLESPACE and LOB Index
Best performance for LOBs can be achieved by specifying storage for LOBs in a

tablespace different from the one used for the table that contains the LOB. If many

different LOBs will be accessed frequently, it may also be useful to specify a separate

tablespace for each LOB column or attribute in order to reduce device contention.

The LOB index is an internal structure that is strongly associated with LOB storage.

This implies that a user may not drop the LOB index and rebuild it.

The system determines which tablespace to use for LOB data and LOB index

depending on the user specification in the LOB storage clause:

■ If you do not specify a tablespace for the LOB data, the table's tablespace is used

for the LOB data and index.

■ If you specify a tablespace for the LOB data, both the LOB data and index use

the tablespace that was specified.

Tablespace for LOB Index in Non-Partitioned Table
If in creating tables in 8.1 you specify a tablespace for the LOB index for a

non-partitioned table, your specification of the tablespace will be ignored and the

LOB index will be co-located with the LOB data. Partitioned LOBs do not include the

LOB index syntax.

Specifying a separate tablespace for the LOB storage segments will allow for a

decrease in contention on the table's tablespace.

PCTVERSION
When a LOB is modified, a new version of the LOB page is made in order to support

consistent read of prior versions of the LOB value.

PCTVERSION is the percentage of all used LOB data space that can be occupied by

old versions of LOB data pages. As soon as old versions of LOB data pages start to

occupy more than the PCTVERSION amount of used LOB space, Oracle tries to

reclaim the old versions and reuse them. In other words, PCTVERSION is the

percent of used LOB data blocks that is available for versioning old LOB data.

 Default: 10 (%) Minimum: 0 (%) Maximum: 100 (%)

Note: The LOB index cannot be altered.
Modeling and Design 7-7

LOB Storage
In order to decide what value PCTVERSION should be set to, consider how often

LOBs are updated, and how often you read the updated LOBs.

Table 7–2, "Recommended PCTVERSION Settings" provides some guidelines for

determining a suitable PCTVERSION value.

Example 1:
 Several LOB updates concurrent with heavy reads of LOBs.

 set PCTVERSION = 20%

Setting PCTVERSION to twice the default allows more free pages to be used for old

versions of data pages. Since large queries may require consistent reads of LOBs, it

may be useful to retain old versions of LOB pages. In this case LOB storage may

grow because Oracle will not reuse free pages aggressively.

Example 2:
LOBs are created and written just once and are primarily read-only afterwards.

Updates are infrequent.

 set PCTVERSION = 5% or lower

The more infrequent and smaller the LOB updates are, the less space needs to be

reserved for old copies of LOB data. If existing LOBs are known to be read-only, you

could safely set PCTVERSION to 0% since there would never be any pages needed

for old versions of data.

CACHE / NOCACHE / CACHE READS
When creating tables that contain LOBs, use the cache options according to the

guidelines in Table 7–3, "When to Use CACHE, NOCACHE, and CACHE READS":

Table 7–2 Recommended PCTVERSION Settings

LOB Update Pattern LOB Read Pattern PCTVERSION

Updates XX% of LOB data Reads updated LOBs XX%

Updates XX% of LOB data Reads LOBs but not the updated LOBs 0%

Updates XX% of LOB data Reads both LOBs and non-updated LOBs XX%

Never updates LOB Reads LOBs 0%
7-8 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Storage
CACHE / NOCACHE / CACHE READS: LOB Values and Buffer Cache
■ CACHE: Oracle places LOB pages in the buffer cache for faster access.

■ NOCACHE: As a parameter in the LOB_storage_clause, NOCACHE specifies

that LOB values are either not brought into the buffer cache or are brought into

the buffer cache and placed at the least recently used end of the LRU list.

■ CACHE READS: LOB values are brought into the buffer cache only during read

and not during write operations.

Downgrading to 8.1.5 or 8.0.x
If you have CACHE READS set for LOBs in 8.1.6 and you downgrade to 8.1.5 or

8.0.x, your CACHE READS LOBs generate a warning and become CACHE LOGGING
LOBs.

You can explicitly alter the LOBs' storage characteristics later if you do not want

your LOBs to be CACHE LOGGING. For example, if you want the LOBs to be

NOCACHE, use ALTER TABLE to clearly modify them to NOCACHE.

LOGGING / NOLOGGING
[NO] LOGGING has a similar application with regard to using LOBs as it does for

other table operations. In the normal case, if the [NO]LOGGINGclause is omitted, this

means that neither NO LOGGING nor LOGGING is specified and the logging attribute

of the table or table partition defaults to the logging attribute of the tablespace in

which it resides.

For LOBs, there is a further alternative depending on how CACHE is stipulated.

■ CACHE is specified and [NO]LOGGING clause is omitted, LOGGING is
automatically implemented (because you cannot have CACHE NOLOGGING).

■ CACHEis not specified and [NO]LOGGINGclause is omitted, the process defaults

in the same way as it does for tables and partitioned tables. That is, the

Table 7–3 When to Use CACHE, NOCACHE, and CACHE READS

Cache Mode Read ... Written To ...

CACHE Frequently Frequently

NOCACHE(default) Once or occasionally Never

CACHE READS Frequently Once or occasionally
Modeling and Design 7-9

LOB Storage
[NO]LOGGING value is obtained from the tablespace in which the LOB value

resides.

The following issues should also be kept in mind.

LOBs Will Always Generate Undo for LOB Index Pages
Regardless of whether LOGGING or NOLOGGING is set LOBs will never generate

rollback information (undo) for LOB data pages because old LOB data is stored in

versions. Rollback information that is created for LOBs tends to be small because it

is only for the LOB index page changes.

When LOGGING is Set Oracle Will Generate Full Redo for LOB Data Pages
NOLOGGING is intended to be used when a customer does not care about media

recovery. Thus, if the disk/tape/storage media fails, you will not be able to recover

your changes from the log since the changes were never logged.

An example of when NOLOGGING is useful is bulk loads or inserts. For instance,

when loading data into the LOB, if you don't care about redo and can just start the

load over if it fails, set the LOB's data segment storage characteristics to NOCACHE
NOLOGGING. This will give good performance for the initial load of data. Once you

have completed loading the data, you can use ALTER TABLE to modify the LOB
storage characteristics for the LOB data segment to be what you really want for

normal LOB operations -- i.e. CACHE or NOCACHE LOGGING.

CHUNK
Set CHUNK to the number of blocks of LOB data that will be accessed at one time i.e.

the number of blocks that will be read or written via OCILobRead() ,

OCILobWrite() , DBMS_LOB.READ() , or DBMS_LOB.WRITE() during one access of

the LOB value.

If only one block of LOB data is accessed at a time, set CHUNK to the size of one

block. For example, if the database block size is 2K, then set CHUNK to 2K.

Note: CACHE implies that you also get LOGGING.

Note: The default value for CHUNK is one Oracle block and does

not vary across platforms.
7-10 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Storage
Set INITIAL and NEXT to Larger than CHUNK
If you explicitly specify storage characteristics for the LOB, make sure that INITIAL
and NEXT for the LOB data segment storage are set to a size that is larger than the

CHUNK size. For example, if the database block size is 2K and you specify a CHUNK
of 8K, make sure that INITIAL and NEXT are bigger than 8K and preferably

considerably bigger (for example, at least 16K).

Put another way: If you specify a value for INITIAL, NEXT or the LOB CHUNK
size, make sure that:

■ CHUNK <= NEXT

and

■ CHUNK <= INITIAL

ENABLE | DISABLE STORAGE IN ROW
You use the ENABLE | DISABLE STORAGE IN ROW clause to indicate whether the

LOB should be stored inline (i.e. in the row) or out of line.

The default is ENABLE STORAGE IN ROW.

Small (ENABLE or DISABLE STORAGE) Versus Large (ENABLE STORAGE) LOBs
The maximum amount of LOBdata stored in the row is the maximum VARCHARsize

(4000). This includes the control information as well as the LOB value. If you

indicate that the LOB should be stored in the row, once the LOB value and control

information is larger than 4000, the LOB value is automatically moved out of the

row.

This suggests the following guidelines:

■ Small LOBs: If the LOBis small (i.e. < 4000 bytes), then storing the LOBdata out

of line will decrease performance. However, storing the LOB in the row

increases the size of the row. This will impact performance if the user is doing a

lot of base table processing, such as full table scans, multi-row accesses (range

scans) or many UPDATE/SELECT to columns other than the LOB columns.

Note: You may not alter this specification once you have made it:

if you ENABLE STORAGE IN ROW, you cannot alter it to

DISABLE STORAGE IN ROW and vice versa.
Modeling and Design 7-11

LOB Storage
■ Large LOBs: If you do not expect LOB data to be < 4000 bytes, i.e. if all LOBs are

big, then the default, ENABLE STORAGE IN ROW, is the best choice for the

following reasons:

* LOB data is automatically moved out of line once it gets bigger than

4000 (which will be the case here since the LOB data is big to begin

with), and

* Performance will be slightly better since we still store some control

information in the row even after we move the LOB data out of the row.
7-12 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

How to Create Gigabyte LOBs
How to Create Gigabyte LOBs
LOBs in Oracle8i can be up to 4 gigabytes. To create gigabyte LOBs, use the

following guidelines to make use of all available space in the tablespace for LOB

storage:

■ Single Datafile Size Restrictions: There are restrictions on the size of a single

datafile for each operating system (OS). For example, Solaris 2.5 only allows OS

files of up to 2 gigabytes. Hence, add more datafiles to the tablespace when the

LOB grows larger than the maximum allowed file size of the OS on which your

Oracle database runs.

■ Set PCT INCREASE Parameter to Zero: PCTINCREASE parameter in the LOB

storage clause specifies the percent growth of the new extent size. When a LOB

is being filled up piece by piece in a tablespace, numerous new extents get

created in the process. If the extent sizes keep increasing by the default value of

50 percent every time, extents will become unmanageably big and eventually

will waste unnecessary space in the tablespace. Therefore, the PCTINCREASE

parameter should be set to zero or a small value.

■ Set MAXEXTENTS to Suitable Value or UNLIMITED: MAXEXTENTS in the

LOB storage clause should be set to a reasonable value to suit the projected size

of the LOB, or set it to UNLIMITED for safety.

■ Use a Large Extent Size: For every new extent created, Oracle8i generates undo

information for the header and other meta data for the extent. If the number of

extents is large, the rollback segment can be saturated. To get around this,

choose a large extent size, say 100 megabytes, to reduce the frequency of extent

creation, or commit the transaction more often to reuse the space in the rollback

segment.

 Example: Creating a Tablespace and Table to Store Gigabyte LOBs
A working example of creating a tablespace and a table that can store gigabyte

LOBs follows. The case applies to the multimedia application example in Chapter 8,

"Sample Application", if the video Frame in the multimedia table is expected to be

huge in size, i.e., gigabytes.

CREATE TABLESPACE lobtbs1 datafile '/your/own/data/directory/lobtbs_1.dat' size
2000M reuse online nologging default storage (maxextents unlimited);
CREATE TABLESPACE lobtbs1 add datafile '/your/own/data/directory/lobtbs_2.dat'
size 2000M reuse;
ALTER TABLESPACE lobtbs1 add datafile '/your/own/data/directory/lobtbs_2.dat'
size 1000M reuse;
Modeling and Design 7-13

How to Create Gigabyte LOBs
CREATE TABLE Multimedia_tab (
 Clip_ID NUMBER NOT NULL,
 Story CLOB default EMPTY_CLOB(),
 FLSub NCLOB default EMPTY_CLOB(),
 Photo BFILE default NULL,
 Frame BLOB default EMPTY_BLOB(),
 Sound BLOB default EMPTY_BLOB(),
 Voiced_ref REF Voiced_typ,
 InSeg_ntab InSeg_tab,
 Music BFILE default NULL,
 Map_obj Map_typ
 Comments LONG
)
 NESTED TABLE InSeg_ntab STORE AS InSeg_nestedtab
 LOB(Frame) store as (tablespace lobtbs1 chunk 32768 pctversion 0 NOCACHE
NOLOGGING
 storage(initial 100M next 100M maxextents unlimited pctincrease 0));
7-14 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Locators and Transaction Boundaries
LOB Locators and Transaction Boundaries
See Chapter 2, "Basic Components" for a basic description of LOB locators and their

operations.

See Chapter 5, "Advanced Topics" for a description of LOB locator transaction

boundaries and using read consistent locators.
Modeling and Design 7-15

Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs

an

of
 of

sure
ngths
Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs

Binds Greater than 4,000 Bytes are Now Allowed For LOB INSERTs and UPDATEs
This release supports binds of more than 4,000 bytes of data for LOB INSERTs and
UPDATEs. In previous releases this feature was allowed for LONG columns only. You c
now bind the followingfor INSERT or UPDATE into a LOB column:

■ Up to 4GB data using OCIBindByPos(), OCIBindByName()

■ Up to 32,767 bytes data using PL/SQL binds

Since you can have multiple LOBs in a row, you can bind up to 4GB data for each one
those LOBs in the same INSERT or UPDATE statement. In other words, multiple binds
more than 4,000 bytes in size are allowed in a single statement.

Ensure Your Temporary Tablespace is Large Enough! The bind of more than
4,000 bytes of data to a LOB column uses space from temporary tablespace. Hence en
that your temporary tablespace is large enough to hold at least the sum of all the bind le
for LOBs.

If your temporary tablespace is extendable, it will be extended automatically after

the existing space is fully consumed. Use the following statement:

CREATE TABLESPACE .. AUTOEXTEND ON ... TEMPORARY ..;

to create an extendable temporary tablespace.

Binds of More Than 4,000 Bytes ... No HEX to RAW or RAW to HEX Conversion
Table Multimedia_tab is described in Chapter 8, "Sample Application". The

following examples use an additional column called Comments. You will need to

add the Comments column to table Multimedia_tab’s CREATE TABLE syntax

with the following line:

Comments LONG -- stores the comments of viewers on this clip

Oracle does not do any implicit conversion, such as HEX to RAW or RAW to HEX

e.t.c., for data of more than 4000 bytes.

Note: The length of the default values you specify for LOBs still has the
4,000 byte restriction.
7-16 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs

s"
The

of an

to
declare
 charbuf varchar(32767);
 rawbuf raw(32767);
begin
 charbuf := lpad ('a', 12000, 'a');
 rawbuf := utl_raw.cast_to_raw(charbuf);

Table 7–4, "Binds of More Than 4,000 Bytes: Allowed INSERT and UPDATE Operation,
outlines which INSERT operations are allowed in the above example and which are not.
same cases also apply to UPDATE operations.

4,000 Byte Limit On Results of SQL Operator
If you bind more than 4,000 bytes of data to a BLOB or a CLOB, and the data consists
SQL operator, then Oracle limits the size of the result to at most 4,000 bytes.

The following statement inserts only 4,000 bytes because the result of LPAD is limited
4,000 bytes:

INSERT INTO Multimedia_tab (story) VALUES (lpad('a', 5000, 'a'));

Table 7–4 Binds of More Than 4,000 Bytes: Allowed INSERT and UPDATE Operations

Allowed INSERTs/UPDATEs ... Non-Allowed INSERTs/UPDATEs ...

INSERT INTO
 Multimedia_tab (story, sound)
 VALUES (charbuf, rawbuf);

INSERT INTO
 Multimedia_tab(sound)
 VALUES(charbuf);

This does not work because Oracle won't do
implicit hex to raw conversion.

INSERT INTO
 Multimedia_tab(story)
 VALUES (rawbuf);

This does not work because Oracle won't do
implicit hex to raw conversion.

INSERT INTO
 Multimedia_tab(sound)
 VALUES(
 utl_raw.cast_to_raw(charbuf));

This does not work because we cannot combine
utl_raw.cast_to_raw() operator with binds of
more than 4,000 bytes.
Modeling and Design 7-17

Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs

to
ata:

s of

s

The following statement inserts only 2,000 bytes because the result of LPAD is limited
4,000 bytes, and the implicit hex to raw conversion converts it to 2,000 bytes of RAW d

INSERT INTO Multimedia_tab (sound) VALUES (lpad('a', 5000, 'a'));

Binds of More Than 4,000 Bytes: Restrictions
The following lists the restrictions for binds of more than 4,000 bytes:

■ If a table has both LONG and LOB columns then you can bind more than 4,000 byte
data to either the LONG or LOB columns, but not both in the same statement.

■ You cannot bind data of any size to LOB attributes in ADTs. This restriction in prior
releases still exists. For LOB attributes, first insert an empty LOB locator and then
modify the contents of the LOB using OCILob* functions.

■ In an INSERT AS SELECT operation, binding of any length data to LOB columns i
not allowed. This restriction in prior releases still exists.

Example: PL/SQL - Using Binds of More Than 4,000 Bytes in INSERT and UPDATE
CREATE TABLE foo (a INTEGER);
DECLARE
 bigtext VARCHAR(32767);
 smalltext VARCHAR(2000);
 bigraw RAW (32767);
BEGIN
 bigtext := LPAD('a', 32767, 'a');
 smalltext := LPAD('a', 2000, 'a');
 bigraw := utlraw.cast_to_raw (bigtext);

/* The following is allowed: */
 INSERT INTO Multimedia_tab(clip_id, story, frame, comments)
 VALUES (1,bigtext, bigraw,smalltext);
/* The following is allowed: */
 INSERT INTO Multimedia_tab (clip_id, story, comments)
 VALUES (2,smalltext, bigtext);

 bigtext := LPAD('b', 32767, 'b');
 smalltext := LPAD('b', 20, 'a');
 bigraw := utlraw.cast_to_raw (bigtext);

/* The following is allowed: */
 UPDATE Multimedia_tab SET story = bigtext, frame = bigraw,
 comments = smalltext;
7-18 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs
/* The following is allowed */
 UPDATE Multimedia_tab set story = smalltext, comments = bigtext;

/* The following is NOT allowed because we are trying to insert more than
 4000 bytes of data in a LONG and a LOB column: */
 I NSERT INTO Multimedia_tab (clip_id, story, comments)
 VALUES (5, bigtext, bigtext);

/* The following is NOT allowed because we are trying to insert
 data into LOB attribute */
 INSERT into Multimedia_tab (clip_id,map_obj)
 VALUES (10,map_typ(NULL, NULL, NULL, NULL, NULL,bigtext, NULL));

/* The following is not allowed because we try to perform INSERT AS
 SELECT data INTO LOB */
 INSERT INTO Multimedia_tab (story) AS SELECT bigtext FROM foo;
 END;

Example: PL/SQL - Binds of More Than 4,000 Bytes -- Inserts Not Supported Because
Hex to Raw/Raw to Hex Conversion is Not Supported

/* Oracle does not do any implicit conversion (e.g., HEX to RAW or RAW to HEX
 etc.) for data of more than 4000 bytes. Hence, the following cases will not
 work : */

 declare
 charbuf varchar(32767);
 rawbuf raw(32767);
 begin
 charbuf := lpad ('a', 12000, 'a');
 rawbuf := utl_raw.cast_to_raw(charbuf);

/* The following is allowed ... */
 INSERT INTO Multimedia_tab (story, sound) VALUES (charbuf, rawbuf);

/* The following is not allowed because Oracle won't do implicit
 hex to raw conversion. */
 INSERT INTO Multimedia_tab (sound) VALUES (charbuf);

/* The following is not allowed because Oracle won't do implicit
 raw to hex conversion. */
 INSERT INTO Multimedia_tab (story) VALUES (rawbuf);
Modeling and Design 7-19

Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs
/* The following is not allowed because we can't combine the
 utl_raw.cast_to_raw() operator with the bind of more than 4,000 bytes. */
 INSERT INTO Multimedia_tab (sound) VALUES (utl_raw.cast_to_raw(charbuf));

end;
/

Example: PL/SQL - 4,000 Byte Result Limit in Binds of More than 4,000 Bytes When
Data Includes SQL Operator

If you bind more than 4,000 bytes of data to a BLOB or a CLOB, and the data

actually consists of a SQL operator, then Oracle8i limits the size of the result to 4,000

bytes.

For example,
/* The following command inserts only 4,000 bytes because the result of
 LPAD is limited to 4,000 bytes */
 INSERT INTO Multimedia_tab (story) VALUES (lpad('a', 5000, 'a'));

/* The following command inserts only 2,000 bytes because the result of
 LPAD is limited to 4,000 bytes, and the implicit hex to raw conversion
 converts it to 2,000 bytes of RAW data. */
 INSERT INTO Multimedia_tab (sound) VALUES (lpad('a', 5000, 'a'));

Example: C (OCI) - Binds of More than 4,000 Bytes For INSERT and UPDATE
CREATE TABLE foo(a INTEGER);
void insert() /* A function in an OCI program */
{
/* The following is allowed */
 ub1 buffer[8000];
 text *insert_sql = "INSERT INTO Multimedia_tab(story, frame, comments)
 VALUES (:1, :2, :3)";
 OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[1], errhp, 2, (dvoid *)buffer, 8000,
 SQLT_LBI, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[2], errhp, 3, (dvoid *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, OCI_DEFAULT);
}

7-20 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs
void insert()
{
/* The following is allowed */
 ub1 buffer[8000];
 text *insert_sql = "INSERT INTO Multimedia_tab (story,comments)
 VALUES (:1, :2)";
 OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[1], errhp, 2, (dvoid *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, OCI_DEFAULT);
}

void insert()
{
/* The following is allowed, no matter how many rows it updates */
 ub1 buffer[8000];
 text *insert_sql = (text *)"UPDATE Multimedia_tab SET
 story = :1, sound=:2, comments=:3";
 OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[1], errhp, 2, (dvoid *)buffer, 8000,
 SQLT_LBI, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[2], errhp, 3, (dvoid *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, OCI_DEFAULT);
}

void insert()
{
/* The following is allowed, no matter how many rows it updates */
 ub1 buffer[8000];
 text *insert_sql = (text *)"UPDATE Multimedia_tab SET
 story = :1, sound=:2, comments=:3";
 OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[1], errhp, 2, (dvoid *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
Modeling and Design 7-21

Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs
 OCIBindByPos(stmthp, &bindhp[2], errhp, 3, (dvoid *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, OCI_DEFAULT);
}

void insert()
{
/* Piecewise, callback and array insert/update operations similar to
 the allowed regular insert/update operations are also allowed */
}

void insert()
{
/* The following is NOT allowed because we try to insert >4000 bytes
 to both LOB and LONG columns */
ub1 buffer[8000];
text *insert_sql = (text *)"INSERT INTO Multimedia_tab (story, comments)
 VALUES (:1, :2)";
OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
OCIBindByPos(stmthp, &bindhp[1], errhp, 2, (dvoid *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
OCIStmtExecute(svchp, stmthp, errhp, 1, 0, OCI_DEFAULT);
}

void insert()
{
/* The following is NOT allowed because we try to insert data into
 LOB attributes */
 ub1 buffer[8000];
 text *insert_sql = (text *)"INSERT INTO Multimedia_tab (map_obj)
 VALUES (map_typ(NULL, NULL, NULL, NULL, NULL,:1, NULL))";
 OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, OCI_DEFAULT);
}

void insert()
{
/* The following is NOT allowed because we try to do insert as
 select character data into LOB column */
7-22 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs
 ub1 buffer[8000];
 text *insert_sql = (text *)"INSERT INTO Multimedia_tab (story)
 SELECT :1 from FOO";
 OCIStmtPrepare(stmthp, errhp, insert_sql,strlen((char*)insert_sql),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
 OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 8000,
 SQLT_LNG, 0, 0, 0, 0, 0, (ub4) OCI_DEFAULT);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, OCI_DEFAULT);
}

void insert()
{
/* Other update operations similar to the disallowed insert operations are also
 not allowed. Piecewise and callback insert/update operations similar to the
 disallowed regular insert/update operations are also not allowed */
}

Modeling and Design 7-23

Open, Close and IsOpen Interfaces for Internal LOBs
Open, Close and IsOpen Interfaces for Internal LOBs
These interfaces let you open and close an internal LOBand test whether an internal

LOB is already open.

It is not mandatory that you wrap all LOB operations inside the Open/Close APIs.

The addition of this feature will not impact already-existing applications that write

to LOBs without first opening them, since these calls did not exist in 8.0.

It is important to note that openness is associated with the LOB, not the locator. The

locator does not save any information as to whether the LOB to which it refers is

open.

Wrap LOB Operations Inside an Open / Close Call !
■ If you do not wrap LOB operations inside an Open/Close call operation: Each

modification to the LOB will implicitly open and close the LOB thereby firing

any triggers on an domain index. Note that in this case, any domain indexes on

the LOBwill become updated as soon as LOBmodifications are made. Therefore,

domain LOB indexes are always valid and may be used at any time.

■ If you wrap your LOB operations inside the Open/Close operation: Triggers will not

be fired for each LOB modification. Instead, the trigger on domain indexes will

be fired at the Close call. For example, you might design your application so

that domain indexes are not be updated until you call Close . However, this

means that any domain indexes on the LOB will not be valid in-between the

Open/Close calls.

What is a ’Transaction’ Within Which an Open LOB Value is Closed?
Note that the definition of a ’transaction’ within which an open LOB value must be

closed is one of the following:

■ Between ’DML statements that start a transaction (including SELECT ... FOR
UPDATE)’ and COMMIT

■ Within an autonomous transaction block

A LOB opened when there is no transaction, must be closed before the end of the

session. If there are still open LOBs at the end of the session, the openness will be

discarded and no triggers on domain indexes will be fired.
7-24 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Open, Close and IsOpen Interfaces for Internal LOBs
Close All Opened LOBs Before Committing the Transaction !
It is an error to commit the transaction before closing all opened LOBs that were

opened by the transaction. When the error is returned, the openness of the open

LOBs is discarded, but the transaction is successfully committed.

Hence, all the changes made to the LOB and non-LOB data in the transaction are

committed but the triggers for domain indexing are not fixed.

At transaction rollback time, the openness of all open LOBs that are still open for

that transaction will be discarded. Discarding the openness means that the LOBs

won't be closed, and that triggers on domain indexes will not be fired.

Do Not Open or Close Same LOB Twice!
It is also an error to open/close the same LOB twice either with different locators or

with the same locator.

Example 1: Correct Use of Open/Close Calls in a Transaction
This example shows the correct us of open and close calls to LOBs inside and

outside a transaction.

DECLARE
 Lob_loc1 CLOB;
 Lob_loc2 CLOB;
 Buffer VARCHAR2(32767);
 Amount BINARY_INTEGER := 32767;
 Position INTEGER := 1;
BEGIN
 /* Select a LOB: */
 SELECT Story INTO Lob_loc1 FROM Multimedia_tab WHERE Clip_ID = 1;

 /* The following statement opens the LOB outside of a transaction
 so it must be closed before the session ends: */
 DBMS_LOB.OPEN(Lob_loc1, DBMS_LOB.LOB_READONLY);

/* The following statement begins a transaction. Note that Lob_loc1 and
 Lob_loc2 point to the same LOB: */
 SELECT Story INTO Lob_loc2 FROM Multimedia_tab WHERE Clip_ID = 1 for update;
 /* The following LOB open operation is allowed since this lob has
 not been opened in this transaction: */

Note: Changes to the LOB are not discarded if the COMMIT returns

an error.
Modeling and Design 7-25

Open, Close and IsOpen Interfaces for Internal LOBs
 DBMS_LOB.OPEN(Lob_loc2, DBMS_LOB.LOB_READWRITE);
 /* Fill the buffer with data to write to the LOB */

 buffer := 'A good story';
 Amount := 12;

 /* Write the buffer to the LOB: */
 DBMS_LOB.WRITE(Lob_loc2, Amount, Position, Buffer);

 /* Closing the LOB is mandatory if you have opened it: */
 DBMS_LOB.CLOSE(Lob_loc2);
 /* The COMMIT ends the transaction. It is allowed because all LOBs
 opened in the transaction were closed. */
 COMMIT;
 /* The the following statement closes the LOB that was opened
 before the transaction started: */
 DBMS_LOB.CLOSE(Lob_loc1);
END;

Example 2: Incorrect Use of Open/Close Calls in a Transaction
This example the incorrect use of open and close calls to a LOB and illustrates how

committing a transaction which has open LOBs returns an error.

DECLARE
 Lob_loc CLOB;
BEGIN
 /* Note that the FOR UPDATE clause starts a transaction: */
 SELECT Story INTO Lob_loc FROM Multimedia_tab WHERE Clip_ID = 1 for update;
 DBMS_LOB.OPEN(Lob_loc, DBMS_LOB.LOB_READONLY);
 /* COMMIT returns an error because there is still an open LOB associated
 with this transaction: */
 COMMIT;
END;
7-26 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOBs in Index Organized Tables (IOT)
LOBs in Index Organized Tables (IOT)
Index Organized Tables (IOT) now support internal and external LOB columns. The

SQL DDL, DML and piece wise operations on LOBs in index organized tables

exhibit the same behavior as that observed in conventional tables. The only

exception is the default behavior of LOBs during creation. The main differences are:

■ Tablespace Mapping: By default, or unless specified otherwise, the LOB's data

and index segments will be created in the tablespace in which the primary key

index segments of the index organized table are created.

■ Inline as Compared to Out-of-Line Storage: By default, all LOBs in an index

organized table created without an overflow segment will be stored out of line.

In other words, if an index organized table is created without an overflow

segment, the LOBs in this table have their default storage attributes as DISABLE
STORAGE IN ROW. If you forcibly try to specify an ENABLE STORAGE IN ROW
clause for such LOBs, SQL will raise an error.

On the other hand, if an overflow segment has been specified, LOBs in index

organized tables will exactly mimic their behavior in conventional tables (see

"Defining Tablespace and Storage Characteristics for Internal LOBs" on

page 7-5).

Example of Index Organized Table (IOT) with LOB Columns
Consider the following example:

CREATE TABLE iotlob_tab (c1 INTEGER primary key, c2 BLOB, c3 CLOB, c4
VARCHAR2(20))
 ORGANIZATION INDEX
 TABLESPACE iot_ts
 PCTFREE 10 PCTUSED 10 INITRANS 1 MAXTRANS 1 STORAGE (INITIAL 4K)
 PCTTHRESHOLD 50 INCLUDING c2
 OVERFLOW
 TABLESPACE ioto_ts
 PCTFREE 10 PCTUSED 10 INITRANS 1 MAXTRANS 1 STORAGE (INITIAL 8K) LOB (c2)
 STORE AS lobseg (TABLESPACE lob_ts DISABLE STORAGE IN ROW
 CHUNK 1 PCTVERSION 1 CACHE STORAGE (INITIAL 2m)
 INDEX LOBIDX_C1 (TABLESPACE lobidx_ts STORAGE (INITIAL
 4K)));

Executing these statements will result in the creation of an index organized table

iotlob_tab with the following elements:

■ A primary key index segment in the tablespace iot_ts ,
Modeling and Design 7-27

LOBs in Index Organized Tables (IOT)
■ An overflow data segment in tablespace ioto_ts

■ Columns starting from column C3 being explicitly stored in the overflow data

segment

■ BLOB (column C2) data segments in the tablespace lob_ts

■ BLOB (column C2) index segments in the tablespace lobidx_ts

■ CLOB (column C3) data segments in the tablespace iot_ts

■ CLOB (column C3) index segments in the tablespace iot_ts

■ CLOB (column C3) stored in line by virtue of the IOT having an overflow

segment

■ BLOB (column C2) explicitly forced to be stored out of line

Other LOB features, such as BFILE s and varying character width LOBs, are also

supported in index organized tables, and their usage is the same as conventional

tables.

Note: If no overflow had been specified, both C2 and C3 would

have been stored out of line by default.

Note: Support for LOBs in partitioned index organized tables will

be provided in a future release.
7-28 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Manipulating LOBs in Partitioned Tables
Manipulating LOBs in Partitioned Tables
You can partition tables with LOBs. As a result, LOBs can take advantage of all of the

benefits of partitioning. For example, LOB segments can be spread between several

tablespaces to balance I/O load and to make backup and recovery more

manageable. LOBs in a partitioned table also become easier to maintain.

This section describes some of the ways you can manipulate LOBs in partitioned

tables.

As an extension to the example multimedia application described in Chapter 8,

"Sample Application", let us suppose that makers of a documentary are producing

multiple clips relating to different Presidents of the United States. The clips consist

of photographs of the presidents accompanied by spoken text and background

music. The photographs come from the PhotoLib_Tab archive. To make the most

efficient use of the presidents’ photographs, they are loaded into a database

according to the structure illustrated in Figure 7–1.

The columns in Multimedia_tab are described in Table 7–5, "Multimedia_tab

Columns".
Modeling and Design 7-29

Manipulating LOBs in Partitioned Tables
Figure 7–1 Table Multimedia_tab structure Showing Inclusion of PHOTO_REF
Reference

Table MULTIMEDIA_TAB

Column Name

STORY FLSUB PHOTO_REF FRAME SOUND INSEG_NTAB MUSIC

Kind of Data

Text
CLOB

CLIP_ID

PK

Number
NUMBER

Text
NCLOB

Photo
PHOTO_TYP

Video
BLOB

Audio
BLOB

Nested Table
INSEG_TYP

VOICED_REF

Reference
VOICED_TYP

MAP_OBJ

Object Type
MAP_TYP

Audio
BFILE

Key Type

Table PRESIDENTPHOTO_TAB (of PHOTO_TYP)

PHOTODATE PHOTONAME SCRIPT

Date
DATE

PRESNAME

Text
VARCHAR2(30)

Text
VARCHAR2(30)

ACTOR

Text
VARCHAR2(30)

Text
CLOB

MUSIC

Audio
BFILE

PRESPHOTO

Photo
BLOB

PK

Reference to a row
object of a table of
the defined type
7-30 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Manipulating LOBs in Partitioned Tables
Creating and Partitioning a Table Containing LOB Data
To isolate the photographs associated with a given president, a partition is created

for each president by the ending dates of their terms of office. For example, a

president who served two terms would have two partitions: the first partition

bounded by the end date of the first term and a second partition bounded by the

end date of the second term.

Note: In the following examples, the extension 1 refers to a president’s first term and 2
refers to a president’s second term. For example, GeorgeWashington1_part refers to
the partition created for George Washington’s first term and RichardNixon2_part
refers to the partition created for Richard Nixon’s second term.

Table 7–5 Multimedia_tab Columns

Column Name Description

PRESNAME President’s name. This lets the documentary producers select data for clips
organized around specific presidents. PRESNAME is also chosen as a primary
key because it holds unique values.

PRESPHOTO Contains photographs in which a president appears. This category also
contains photographs of paintings and engravings of presidents who lived
before the advent of photography.

PHOTODATE Contains the date on which the photograph was taken. In the case of
presidents who lived before the advent of photography, PHOTODATE
pertains to the date when the painting or engraving was created.

This column is chosen as the partition key to make it easier to add partitions
and to perform MERGEs and SPLITs of the data based on some given date
such as the end of a president’s first term. This will be illustrated later in this
section.

PHOTONAME Contains the name of the photograph. An example name might be
something as precise as "Bush Addresses UN - June 1990" or as general as
"Franklin Rooseveld - Inauguration".

SCRIPT Contains written text associated with the photograph. This could be text
describing the event portrayed by the photograph or perhaps segments of a
speech by the president.

ACTOR Contains the name of the actor reading the script.

MUSIC Contains background music to be played during the viewing of the
photographs.
Modeling and Design 7-31

Manipulating LOBs in Partitioned Tables
CREATE TABLE Presidentphoto_tab(PresName VARCHAR2(30), PhotoDate DATE,
 PhotoName VARCHAR2(30), PresPhoto BLOB,
 Script CLOB, Actor VARCHAR2(30), Music BFILE)
 STORAGE (INITIAL 100K NEXT 100K PCTINCREASE 0)
 LOB (PresPhoto) STORE AS (CHUNK 4096)
 LOB (Script) STORE AS (CHUNK 2048)
 PARTITION BY RANGE(PhotoDate)
(PARTITION GeorgeWashington1_part

Note: You may need to set up data structures for certain examples

to work; such as:

CONNECT system/manager
GRANT CREATE TABLESPACE, DROP TABLESPACE TO scott;
CONNECT scott/tiger
CREATE TABLESPACEEarlyPresidents_tbs DATAFILE
’disk1:moredata01’ SIZE 1M;
CREATE TABLESPACEEarlyPresidentsPhotos_tbs DATAFILE
’disk1:moredata99’ SIZE 1M;
CREATE TABLESPACEEarlyPresidentsScripts_tbs DATAFILE
’disk1:moredata03’ SIZE 1M;
CREATE TABLESPACERichardNixon1_tbs DATAFILE
’disk1:moredata04’ SIZE 1M;
CREATE TABLESPACEPost1960PresidentsPhotos_tbs DATAFILE
’disk1:moredata05’ SIZE 1M;
CREATE TABLESPACEPost1960PresidentsScripts_tbs DATAFILE
’disk1:moredata06’ SIZE 1M;
CREATE TABLESPACERichardNixon2_tbs DATAFILE
’disk1:moredata07’ SIZE 1M;
CREATE TABLESPACEGeraldFord1_tbs DATAFILE
’disk1:moredata97’ SIZE 1M;
CREATE TABLESPACE RichardNixonPhotos_tbs DATAFILE
’disk1:moredata08’ SIZE 2M;
CREATE TABLESPACE RichardNixonBigger2_tbs DATAFILE
’disk1:moredata48’ SIZE 2M;
CREATE TABLE Mirrorlob_tab(
 PresName VARCHAR2(30),
 PhotoDate DATE,
 PhotoName VARCHAR2(30),
 PresPhoto BLOB,
 Script CLOB,
 Actor VARCHAR2(30),
 Music BFILE);
7-32 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Manipulating LOBs in Partitioned Tables
 /* Use photos to the end of Washington's first term */
 VALUES LESS THAN (TO_DATE('19-mar-1792', 'DD-MON-YYYY'))
 TABLESPACE EarlyPresidents_tbs
 LOB (PresPhoto) store as (TABLESPACE EarlyPresidentsPhotos_tbs)
 LOB (Script) store as (TABLESPACE EarlyPresidentsScripts_tbs),
PARTITION GeorgeWashington2_part
 /* Use photos to the end of Washington's second term */
 VALUES LESS THAN (TO_DATE('19-mar-1796', 'DD-MON-YYYY'))
 TABLESPACE EarlyPresidents_tbs
 LOB (PresPhoto) store as (TABLESPACE EarlyPresidentsPhotos_tbs)
 LOB (Script) store as (TABLESPACE EarlyPresidentsScripts_tbs),
PARTITION JohnAdams1_part
 /* Use photos to the end of Adams' only term */
 VALUES LESS THAN (TO_DATE('19-mar-1800', 'DD-MON-YYYY'))
 TABLESPACE EarlyPresidents_tbs
 LOB (PresPhoto) store as (TABLESPACE EarlyPresidentsPhotos_tbs)
 LOB (Script) store as (TABLESPACE EarlyPresidentsScripts_tbs),
/* ...intervening presidents... */
PARTITION RichardNixon1_part
 /* Use photos to the end of Nixon's first term */
 VALUES LESS THAN (TO_DATE('20-jan-1972', 'DD-MON-YYYY'))
 TABLESPACE RichardNixon1_tbs
 LOB (PresPhoto) store as (TABLESPACE Post1960PresidentsPhotos_tbs)
 LOB (Script) store as (TABLESPACE Post1960PresidentsScripts_tbs)
);

Creating an Index on a Table Containing LOB Columns
To improve the performance of queries which access records by a President's name

and possibly the names of photographs, a UNIQUE local index is created:

CREATE UNIQUE INDEX PresPhoto_idx
 ON PresidentPhoto_tab (PresName, PhotoName, Photodate) LOCAL;

Exchanging Partitions Containing LOB Data
As a part of upgrading from Oracle8.0 to 8.1, data was exchanged from an existing

non-partitioned table containing photos of Bill Clinton's first term into the

appropriate partition:

ALTER TABLE PresidentPhoto_tab EXCHANGE PARTITION RichardNixon1_part
 WITH TABLE Mirrorlob_tab INCLUDING INDEXES;
Modeling and Design 7-33

Manipulating LOBs in Partitioned Tables
Adding Partitions to Tables Containing LOB Data
To account for Richard Nixon’s second term, a new partition was added to

PresidentPhoto_tab :

ALTER TABLE PresidentPhoto_tab ADD PARTITION RichardNixon2_part
 VALUES LESS THAN (TO_DATE('20-jan-1976', 'DD-MON-YYYY'))
 TABLESPACE RichardNixon2_tbs
 LOB (PresPhoto) store as (TABLESPACE Post1960PresidentsPhotos_tbs)
 LOB (Script) store as (TABLESPACE Post1960PresidentsScripts_tbs);

Moving Partitions Containing LOBs
During his second term, Richard Nixon had so many photo-opportunities, that the

partition containing information on his second term is no longer adequate. It was

decided to move the data partition and the corresponding LOB partition of

PresidentPhoto_tab into a different tablespace, with the corresponding LOB
partition of Script remaining in the original tablespace:

ALTER TABLE PresidentPhoto_tab MOVE PARTITION RichardNixon2_part
 TABLESPACE RichardNixonBigger2_tbs
 LOB (PresPhoto) STORE AS (TABLESPACE RichardNixonPhotos_tbs);

Splitting Partitions Containing LOBs
When Richard Nixon was re-elected for his second term, a partition with bounds

equal to the expected end of his term (20-jan-1976) was added to the table (see

above example.) Since Nixon resigned from office on 9 August 1974, that partition

had to be split to reflect the fact that the remainder of the term was served by

Gerald Ford:

ALTER TABLE PresidentPhoto_tab SPLIT PARTITION RichardNixon2_part
 AT (TO_DATE('09-aug-1974', 'DD-MON-YYYY'))
 INTO (PARTITION RichardNixon2_part,
 PARTITION GeraldFord1_part TABLESPACE GeraldFord1_tbs
 LOB (PresPhoto) STORE AS (TABLESPACE Post1960PresidentsPhotos_tbs)
 LOB (Script) STORE AS (TABLESPACE Post1960PresidentsScripts_tbs));

Merging Partitions Containing LOBs
Despite the best efforts of the documentary producers in searching for photographs

of paintings or engravings of George Washington, the number of photographs that

were found was inadequate to justify a separate partition for each of his two terms.

Accordingly, it was decided to merge these two partition into one named

GeorgeWashington8Years_part :
7-34 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Manipulating LOBs in Partitioned Tables
ALTER TABLE PresidentPhoto_tab
 MERGE PARTITIONS GeorgeWashington1_part, GeorgeWashington2_part
 INTO PARTITION GeorgeWashington8Years_part TABLESPACE EarlyPresidents_tbs
 LOB (PresPhoto) store as (TABLESPACE EarlyPresidentsPhotos_tbs)
 LOB (Script) store as (TABLESPACE EarlyPresidentsScripts_tbs);
Modeling and Design 7-35

Indexing a LOB Column
Indexing a LOB Column
You cannot build B-tree or bitmap indexes on a LOB column. However, depending

on your application and its usage of the LOB column, you might be able to improve

the performance of queries by building indexes specifically attuned to your domain.

Oracle8i’s extensibility interfaces allow for domain indexing, a framework for

implementing such domain specific indexes.

Depending on the nature of the contents of the LOB column, one of the Oracle8i
interMedia options could also be used for building indexes. For example, if a text

document is stored in a CLOB column, you can build a text index (provided by

Oracle) to speed up the performance of text-based queries over the CLOB column.

See Also: Oracle8i Data Cartridge Developer’s Guide, for

information on building domain specific indexes.

See Also: Oracle8i interMedia Audio, Image, and Video User’s Guide
and Referenceand Oracle8i interMedia Text Reference, for more

information regarding Oracle’s intermedia options.
7-36 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Best Performance Practices
Best Performance Practices

Using SQL Loader
You can use SQL*Loader to bulk load LOBs.

Guidelines for Best Performance
Use the following guidelines to achieve maximum performance with LOBs:

■ When Possible, Read/Write Large Data Chunks at a Time: Since LOBs are big,

you can obtain the best performance by reading and writing large chunks of a

LOB value at a time. This helps in several respects:

a. If accessing the LOB from the client side and the client is at a different node

than the server, large reads/writes reduce network overhead.

b. If using the 'NOCACHE' option, each small read/write incurs an I/O.

Reading/writing large quantities of data reduces the I/O.

c. Writing to the LOB creates a new version of the LOB CHUNK. Therefore,

writing small amounts at a time will incur the cost of a new version for each

small write. If logging is on, the CHUNK is also stored in the redo log.

■ Use LOB Buffering to Read/Write Small Chunks of Data: If you need to

read/write small pieces of LOB data on the client, use LOB buffering — see

OCILobEnableBuffering (), OCILobDisableBuffering (),

OCILobFlushBuffer (), OCILobWrite (), OCILobRead (). Basically, turn on

LOB buffering before reading/writing small pieces of LOB data.

■ Use OCILobRead () and OCILobWrite () with Callback: So that data is

streamed to and from the LOB. Ensure the length of the entire write is set in the

See:

■ Chapter 4, "Managing LOBs", "Using SQL Loader to Load

LOBs", for a description of SQL*Loader

■ Oracle8i Utilitiesfor a more comprehensive description of

SQL*Loader

See Also: Chapter 5, "Advanced Topics", "LOB Buffering

Subsystem" on page 5-21 for more information on LOB buffering.
Modeling and Design 7-37

Best Performance Practices
'amount ' parameter on input. Whenever possible, read and write in multiples of

the LOBchunk size.

■ Use a Checkout/Checkin Model for LOBs: LOBs are optimized for the following

operations:

a. SQL UPDATE which replaces the entire LOB value

b. Copy the entire LOB data to the client, modify the LOB data on the client

side, copy the entire LOB data back to the database. This can be done using

OCILobRead () and OCILobWrite () with streaming.

Moving Data to LOB in Threaded Environment

Incorrect procedure
The following sequence, requires a new connection when using a threaded

environment, adversely affects performance, and is inaccurate:

1. Create an empty (non-NULL) LOB

2. INSERT using the empty LOB

3. SELECT-FOR-UPDATE of the row just entered

4. Move data into the LOB

5. COMMIT. This releases the SELECT-FOR-UPDATE locks and makes the LOB

data persistent.

The Correct Procedure
Note the following:

■ There is no need to 'create' an empty LOB.

■ You can use the RETURNING clause as part of the insert/update statement to

return a locked LOB locator. This eliminates the need for doing a select for

update as mentioned in step 3.

Hence the preferred procedure is as follows:

1. INSERT an empty LOB, RETURNING the LOB locator.

2. Move data into the LOB using this locator.

3. COMMIT. This releases the SELECT-FOR-UPDATE locks, and makes the LOB

data persistent.
7-38 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Best Performance Practices
Alternatively, you can insert >4,000 byte of data directly for the LOB columns but

not the LOB attributes.
Modeling and Design 7-39

Best Performance Practices
7-40 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Sample Applic
8

Sample Application

This chapter describes the following topics:

■ The Multimedia Content-Collection System

■ Applying an Object-Relational Design to the Application

■ Structure of Multimedia_tab Table
ation 8-1

A Sample Application
A Sample Application
Oracle8i supports LOBs, large objects which can hold up to 4 gigabytes of binary or

character data. What does this mean for you, the application developer?

Consider the following hypothetical application:

The Multimedia Content-Collection System
Multimedia data is used in an increasing variety of media channels — film,

television, webpages, and CD-ROM being the most prevalent. The media

experiences having to do with these different channels vary in many respects

(interactivity, physical environment, the structure of information, to name a few).

Yet despite these differences, there is often considerable similarity in the multimedia

authoring process, especially with regard to assembling content.

Figure 8–1 The Multimedia Authoring Process

For instance, a television station that creates complex documentaries, an advertising

agency that produces advertisements for television, and a software production

house that specializes in interactive games for the web could all make good use of a

database management system for collecting and organizing the multimedia data.

Presumably, they each have sophisticated editing software for composing these

elements into their specific products, but the complexity of such projects creates a

need for a pre-composition application for organizing the multimedia elements into

appropriate groups.

Taking our lead from movie-making, our hypothetical application for collecting

content uses the clip as its basic unit of organization. Any clip is able to include one

or more of the following media types:

■ Character text (e.g.,storyboard, transcript, subtitles,),

■ Images (e.g., photographs, video frames),

■ Line drawings (e.g., maps),

Story
Board

Development

Media
Content

Collection

Programming
the

Composition

Media
Experience
8-2 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

A Sample Application
■ Audio (e.g., sound-effects, music, interviews)

Since this is a pre-editing application, the precise relationship of elements within a

clip (such as the synchronization of voice-over audio with a photograph) and

between clips (such as the sequence of clips) is not defined.

The application should allow multiple editors working simultaneously to store,

retrieve and manipulate the different kinds of multimedia data. We assume that

some material is gathered from in-house databases. At the same time, it should also

be possible to purchase and download data from professional services.

Note: The Example is Only An Example
Our mission in this chapter is not to create this real-life application, but to describe

everything you need to know about working with LOBs. Consequently, we only

implement the application sufficiently to demonstrate the technology. For example,

we deal with only a limited number of multimedia types. We make no attempt to

create the client-side applications for manipulating the LOBs. And we do not deal

with deployment issues such as, the fact that you should implement disk striping of
LOB files, if possible, for best performance.

See Figure 8–2, "Schema Plan for Table MULTIMEDIA_TAB".
Sample Application 8-3

A Sample Application
Applying an Object-Relational Design to the Application

Figure 8–2 Schema Plan for Table MULTIMEDIA_TAB

Table MULTIMEDIA_TAB

Column Name

STORY FLSUB PHOTO FRAME SOUND INSEG_NTAB MUSIC

Kind of Data

Text
CLOB

CLIP_ID

PK

Number
NUMBER

Text
NCLOB

Photo
BFILE

Video
BLOB

Audio
BLOB

Nested Table
INSEG_TYP

VOICED_REF

Reference
VOICED_TYP

MAP_OBJ

Object Type
MAP_TYP

Audio
BFILE

Key Type

Table VOICEOVER_TAB (of VOICED_TYP)

SCRIPT ACTOR RECORDING

Text
CLOB

ORIGINATOR

Text
VARCHAR2(30)

Text
VARCHAR2(30)

Audio
BFILE

Table INTERVIEWSEGMENTS_NTAB

INTERVIEW_DATE

Date
DATE

INTERVIEWER

Text
VARCHAR2(30)

TRANSCRIPT

Text
CLOB

INTERVIEWEE

Text
VARCHAR2(30)

RECORDING

Audio
BFILE

SEGMENT

Number
NUMBER

Column Object MAP_OBJ (of MAP_TYP)

NW

Number
NUMBER

NE

Number
NUMBER

SW

Number
NUMBER

SE

Number
NUMBER

DRAWING

Map
BLOB

AERIAL

Photo
BFILE

REGION

Text
VARCHAR2(30)

TAKE

Number
NUMBER

PKPK

PK

Reference to a row
object of a table of
the defined type

Nested Table of the
defined type

Column Object of
the defined type
8-4 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

A Sample Application
Structure of Multimedia_tab Table

Figure 8–3 Schema Plan for Table MULTIMEDIA_TAB

Figure 8–3, "Schema Plan for Table MULTIMEDIA_TAB" shows table

MULTIMEDIA_TAB’s structure. Its columns are described below:

■ CLIP_ID: Every row (clip object) must have a number which identifies the clip.

This number is generated by the Oracle number SEQUENCER as a matter of

convenience, and has nothing to do with the eventual ordering of the clip.

■ STORY: The application design requires that every clip must also have text, that

is a storyboard, that describes the clip. Since we do not wish to limit the length

of this text, or restrict its format, we use a CLOB datatype.

■ FLSUB: Subtitles have many uses — for closed-captioning, as titles, as overlays

that draw attention, and so on. A full-fledged application would have columns

for each of these kinds of data but we are considering only the specialized case

of a foreign language subtitle, for which we use the NCLOB datatype.

■ PHOTO: Photographs are clearly a staple of multimedia products. We assume

there is a library of photographs stored in the PhotoLib_tab archive. Since a

large database of this kind would be stored on tertiary storage that was

periodically updated, the column for photographs makes use of the BFILE

datatype.

■ FRAME: It is often necessary to extract elements from dynamic media sources for

further processing For instance, VRML game-builders and animation

cartoonists are often interested in individual cells. Our application takes up the

need to subject film/video to frame-by-frame analysis such as was performed

on the film of the Kennedy assassination. While it is assumed that the source is

Table MULTIMEDIA_TAB

Column Name

STORY FLSUB PHOTO FRAME SOUND INSEG_NTAB MUSIC

Kind of Data

Text
CLOB

CLIP_ID

PK

Number
NUMBER

Text
NCLOB

Photo
BFILE

Video
BLOB

Audio
BLOB

Nested Table
INSEG_TYP

VOICED_REF

Reference
VOICED_TYP

MAP_OBJ

Object Type
MAP_TYP

Audio
BFILE

Key Type
Sample Application 8-5

A Sample Application
on persistent storage, our application allows for an individual frame to be

stored as a BLOB.

■ SOUND: A BLOB column for sound-effects.

■ VOICED_REF: This column allows for a reference to a specific row in a table

which must be of the type Voiced_typ . In our application, this is a reference

to a row in the table VoiceOver_tab whose purpose is to store audio

recordings for use as voice-over commentaries. For instance, these might be

readings by actors of words spoken or written by people for whom no audio

recording can be made, perhaps because they are no longer alive, or because

they spoke or wrote in a foreign language.

This structure offers the application builder a number of different strategies

from those discussed thus far. Instead of loading material into the row from an

archival source, an application can simply reference the data. This means that

the same data can be referenced from other tables within the application, or by

other applications. The single stipulation is that the reference can only be to tables
of the same type. Put another way: the reference, Voiced_ref , can refer to row

objects in any table which conforms to the type, Voiced_typ .

Note that Voiced_typ combines the use of two LOB datatypes:

■ CLOB to store the script which the actor reads

■ BFILE for the audio recordings.

Figure 8–4, "Schema Design for Inclusion of VOICED_REF Reference" shows

VOICED_REF column referencing the Voiced_typ row in table VoiceOver_tab.
8-6 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

A Sample Application
Figure 8–4 Schema Design for Inclusion of VOICED_REF Reference

■ INSEG_NTAB: While it is not possible to store a Varray of LOBs, application

builders can store a variable number of multimedia elements in a single row

using nested tables. In our application, nested table InSeg_ntab of predefined

type InSeg_typ can be used to store zero, one, or many interview segments in

a given clip. So, for instance, a hypothetical user could use this facility to collect

together one or more interview segments having to do with the same theme

that occurred at different times.

See Figure 8–5, "Schema Design for Inclusion of Nested Table INSEG_NTAB".

In this case, nested table, interviewsegments_ntab , makes use of the

following two LOB datatypes:

■ BFILE to store the audio recording of the interview

■ CLOB for transcript.

Since such segments might be of great length, it is important to keep in mind

that LOBs cannot be more than 4 gigabytes.

Table MULTIMEDIA_TAB

Column Name

STORY FLSUB PHOTO FRAME SOUND INSEG_NTAB MUSIC

Kind of Data

Text
CLOB

CLIP_ID

PK

Number
NUMBER

Text
NCLOB

Photo
BFILE

Video
BLOB

Audio
BLOB

Nested Table
INSEG_TYP

VOICED_REF

Reference
VOICED_TYP

MAP_OBJ

Object Type
MAP_TYP

Audio
BFILE

Key Type

Table VOICEOVER_TAB (of VOICED_TYP)

SCRIPT ACTOR RECORDING

Text
CLOB

ORIGINATOR

Text
VARCHAR2(30)

Text
VARCHAR2(30)

Audio
BFILE

TAKE

Number
NUMBER

PKPK

Reference to a row
object of a table of
the defined type
Sample Application 8-7

A Sample Application
Figure 8–5 Schema Design for Inclusion of Nested Table INSEG_NTAB

■ MUSIC: The ability to handle music must be one of the basic requirements of

any multimedia database management system. In this case, the BFILE datatype

is used to store the audio as an operating system file.

■ MAP_OBJ: Multimedia applications must be be able to handle many different

kinds of line art — cartoons, diagrams, and fine art, to name a few. In our

application, provision is made for a clip to contain a map as a column object,

MAP_OBJ, of the object type MAP_TYP. In this case, the object is contained by

value, being embedded in the row.

As defined in our application, MAP_TYP has only one LOB in its structure — a

BLOB for the drawing itself. However, as in the case of the types underlying

REFs and nested tables, there is no restriction on the number of LOBs that an

object type may contain. See Figure 8–6, "Schema Design for Inclusion of

Column Object MAP_OBJ".

Table MULTIMEDIA_TAB

Column Name

STORY FLSUB PHOTO FRAME SOUND INSEG_NTAB MUSIC

Kind of Data

Text
CLOB

CLIP_ID

PK

Number
NUMBER

Text
NCLOB

Photo
BFILE

Video
BLOB

Audio
BLOB

Nested Table
INSEG_TYP

VOICED_REF

Reference
VOICED_TYP

MAP_OBJ

Object Type
MAP_TYP

Audio
BFILE

Key Type

Table INTERVIEWSEGMENTS_NTAB

INTERVIEW_DATE

Date
DATE

INTERVIEWER

Text
VARCHAR2(30)

TRANSCRIPT

Text
CLOB

INTERVIEWEE

Text
VARCHAR2(30)

RECORDING

Audio
BFILE

SEGMENT

Number
NUMBER

PK

Nested Table of the
defined type
8-8 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

A Sample Application
Figure 8–6 Schema Design for Inclusion of Column Object MAP_OBJ

See Also: For further LOB examples:

■ Oracle8i interMedia Audio, Image, and Video User’s Guide and
Reference.

■ Oracle8i interMedia Audio, Image, and Video Java Client User’s
Guide and Reference

■ Oracle8i interMedia Locator User’s Guide and Reference

■ Using Oracle8i interMedia with the Web

■ Oracle8i interMedia Text Migration

■ Oracle8i interMedia Text Reference

Table MULTIMEDIA_TAB

Column Name

STORY FLSUB PHOTO FRAME SOUND INSEG_NTAB MUSIC

Kind of Data

Text
CLOB

CLIP_ID

PK

Number
NUMBER

Text
NCLOB

Photo
BFILE

Video
BLOB

Audio
BLOB

Nested Table
INSEG_TYP

VOICED_REF

Reference
VOICED_TYP

MAP_OBJ

Object Type
MAP_TYP

Audio
BFILE

Key Type

Column Object MAP_OBJ (of MAP_TYP)

NW

Number
NUMBER

NE

Number
NUMBER

SW

Number
NUMBER

SE

Number
NUMBER

DRAWING

Map
BLOB

AERIAL

Photo
BFILE

REGION

Text
VARCHAR2(30)

Reference to a row
object of a table of
the defined type

Column Object of
the defined type
Sample Application 8-9

A Sample Application
8-10 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

 Internal Persistent
9

Internal Persistent LOBs

Use Case Model
In this chapter we describe how to work with Internal Persistent LOBs in terms of

use cases. We discuss each operation on a LOB (such as "Write Data to a LOB") in

terms of a use case by that name. Table 9–1, "Use Case Model: Internal Persistent

LOBs Basic Operations", lists all use cases.

Graphic Summary of Use Case Model
A summary figure, Figure 9–1, "Use Case Model Diagram: Internal Persistent LOBs

(part 1 of 2)" , locates all use cases in a single drawing. In the HTML version of this

document, use this figure to navigate to the use case by clicking on the use case title.

Individual Use Cases
Each detailed internal persistent LOB use case operation description is laid out as

follows:

■ Use case figure. A figure that depicts the use case (see the "How to Interpret the

Use Case Diagrams" in the Preface, for a description of how to interpret these

diagrams).

■ Purpose. The purpose of this use case with regards to LOBs.

■ Usage Notes. Guidelines to assist your implementation of the LOB operation.

■ Syntax. The main syntax used to perform the LOBs related activity.

■ Scenario. Portrays one implementation of the use case in terms of the

hypothetical multimedia application. See Chapter 8, "Sample Application".

■ Examples. Examples in each programmatic environment which illustrate the

use case.These are based on the multimedia application and table

Multimedia_tab described in Chapter 8, "Sample Application".
LOBs 9-1

Use Case Model: Internal Persistent LOBs
Use Case Model: Internal Persistent LOBs
Table 7-1, indicates with a + where examples are provided for specific use cases

and in which programmatic environment. An "S" indicates that SQL is used directly

for that use case and applicable programmatic environment(s).

We refer to programmatic environments by means of the following abbreviations:

■ P — PL/SQL using the DBMS_LOB Package

■ O — C using OCI (Oracle Call Interface)

■ B — COBOL using Pro*COBOL precompiler

■ C — C/C++ using Pro*C/C++ precompiler

■ V — Visual Basic using OO4O (Oracle Objects for OLE)

■ J — Java using JDBC (Java Database Connectivity)

■ S — SQL

Table 9–1 Use Case Model: Internal Persistent LOBs Basic Operations

Use Case and Page
Programmatic Environment

Examples

P O B C V J

Three Ways to Create a Table Containing a LOB on page 9-6

CREATE a Table Containing One or More LOB Columns on page 9-8 S S S S S S

CREATE a Table Containing an Object Type with a LOB Attribute on
page 9-13

S S S S S S

CREATE a Nested Table Containing a LOB on page 9-18 S S S S S S

 (Creating a Varray Containing References to LOBs See Chapter 5, "Advanced
Topics")

S S S S S S

Three Ways Of Inserting One or More LOB Values into a Row on page 9-21

INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB() on page 9-23 S S S S S +

INSERT a Row by Selecting a LOB From Another Table on page 9-26 S S S S S S

INSERT Row by Initializing a LOB Locator Bind Variable on page 9-28 S + + + + +

Load Data into an Internal LOB (BLOB, CLOB, NCLOB) on page 9-31 +

Load a LOB with Data from a BFILE on page 9-33 + + + + + +

See If a LOB Is Open on page 9-37 + + + + +
9-2 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Use Case Model: Internal Persistent LOBs
Copy LONG to LOB on page 9-40 S S S S S S

Checkout a LOB on page 9-45 + + + + + +

Checkin a LOB on page 9-49 + + + + + +

Display LOB Data on page 9-54 + + + + + +

Read Data from LOB on page 9-58 + + + + + +

Read a Portion of the LOB (substr) on page 9-63 + + + + +

Compare All or Part of Two LOBs on page 9-67 + + + + +

See If a Pattern Exists in the LOB (instr) on page 9-70 + + + +

Get the Length of a LOB on page 9-73 + + + + + +

Copy All or Part of a LOB to Another LOB on page 9-76 + + + + + +

Copy a LOB Locator on page 9-79 + + + + + +

See If One LOB Locator Is Equal to Another on page 9-82 + + +

See If a LOB Locator Is Initialized on page 9-85 + +

Get Character Set ID on page 9-88 +

Get Character Set Form on page 9-90 +

Append One LOB to Another on page 9-92 + + + + + +

Write Append to a LOB on page 9-96 + + + + +

Write Data to a LOB on page 9-100 + + + + + +

Trim LOB Data on page 9-106 + + + + + +

Erase Part of a LOB on page 9-110 + + + + + +

Enable LOB Buffering on page 9-113 + + +

Flush Buffer on page 9-117 + + +

Disable LOB Buffering on page 9-121 + + + +

Three Ways to Update a LOB or Entire LOB Data on page 9-125

UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB() on page 9-127 S S S S S S

UPDATE a Row by Selecting a LOB From Another Table on page 9-130 S S S S S S

UPDATE by Initializing a LOB Locator Bind Variable on page 9-132 S + + + + +

DELETE the Row of a Table Containing a LOB on page 9-135 S S S S S S

Use Case and Page (Cont.)
Programmatic Environment

Examples

P O B C V J
 Internal Persistent LOBs 9-3

Use Case Model: Internal Persistent LOBs
Figure 9–1 Use Case Model Diagram: Internal Persistent LOBs (part 1 of 2)

Internal persistent LOBs (part 1 of 2)

OPEN
a LOB

User/
Program

SELECT
a LOB

get
chunk size

flush
buffer

OCI Lob
FileSet Name

SELECT
BFILE OR

INITIALIZE
BFILE
locator

CLOSE
a LOB

display
the LOB

data

close
all BFILES

checkin
a LOB

checkout
a LOB

read data
from the LOB

enable
buffering

load a LOB
with data

from a BFILE

write data
to the LOB

close
a BFILE

b

a

b

c

a

CREATE
a table
(LOB)

User/
Program

UPDATE
the row/entire

LOB data

DELETE
the row

INSERT
a row b

c

c

a

disable
buffering

write
append

OR

open
a BFILE
9-4 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Use Case Model: Internal Persistent LOBs
Figure 9–2 Use Case Model Diagram: Internal Persistent LOBs (part 2 of 2)

Internal persistent LOBs (part 2 of 2)

User/
Program

User/
Program

SELECT
a LOB

erase part
of a LOB

OPEN
a LOB

CLOSE
a LOB

get the
length of
the LOB

append one
LOB to
another

copy all or
part of a LOB to

another LOB

trim the
LOB data

see if
LOB is open

get character
set ID

see if locator
is initialized

read a
portion of the
LOB from the
table (substr)

get character
set form

compare all
or parts of

2 LOBs

see if locators
are equal

copy
LOB locator

load
initial data into

the LOB

copy
LONG to LOB

see where/if
a pattern exists

in the LOB
(instr)
 Internal Persistent LOBs 9-5

Three Ways to Create a Table Containing a LOB
Three Ways to Create a Table Containing a LOB

Figure 9–3 Use Case Diagram: Four ways to Create a Table Containing a LOB

It is possible to incorporate LOBs into tables in three ways.

a. As columns in a table — see CREATE a Table Containing One or More LOB

Columns on page 9-8.

b. As attributes of an object type — see CREATE a Table Containing an Object

Type with a LOB Attribute on page 9-13.

c. Within a nested table — see CREATE a Nested Table Containing a LOB on

page 9-18.

A fourth method using a Varray — Creating a Varray Containing References to

LOBs is described in Chapter 5, "Advanced Topics" on page 5-32.

In all cases SQL Data Definition Language (DDL) is used — to define LOB columns

in a table and LOB attributes in an object type.

See: "Use Case Model: Internal Persistent LOBs Basic

Operations", for all basic operations of Internal Persistent LOBs.

CREATE
a Table

User/
Program

CREATE table with one or more LOBs

CREATE table with an object type containing a LOB

CREATE table with an nested table containing a LOB

: Internal Persistent
LOBs CREATE a Table

b

c

a

9-6 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Usage Notes
Usage Notes
When creating tables that contain LOBs use the guidelines and examples described

in the following sections and these chapters:

■ Chapter 2, "Basic Components", "Initializing Internal LOBs to NULL or Empty"

■ Chapter 4, "Managing LOBs"

■ Chapter 7, "Modeling and Design"
 Internal Persistent LOBs 9-7

CREATE a Table Containing One or More LOB Columns
CREATE a Table Containing One or More LOB Columns

Figure 9–4 Use Case Diagram: CREATE a Table Containing a LOB Column

Purpose
This procedure describes how to create a table containing one or more LOB

columns.

Usage Notes
■ The result of using the functions EMPTY_BLOB() and EMPTY_CLOB() means that

the LOB is initialized, but not populated with data. LOBs that are empty are not

null, and vice versa. This topic is discussed in more detail in "INSERT a LOB

Value using EMPTY_CLOB() or EMPTY_BLOB()" on page 9-23.

See: "Use Case Model: Internal Persistent LOBs Basic Operations"

on page 9-2, for all basic operations of Internal Persistent LOBs.

User/
Program

a CREATE table with one or more LOBsCREATE
a Table

: Internal Persistent
LOBs CREATE a Table a
9-8 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table Containing One or More LOB Columns
■ For information about creating nested tables that have ore or more columns of

LOB datatype see "CREATE a Nested Table Containing a LOB" on page 9-18

■ The creation of an object column containing one or more LOBs is discussed

under the heading "CREATE a Table Containing an Object Type with a LOB

Attribute" on page 9-13.

Syntax
Use the following syntax reference:

■ SQL: Oracle8i SQL Reference , "Chapter 7, SQL Statements" — CREATE TABLE

Scenario
The heart of our hypothetical application is the table Multimedia_tab . The varied

types which make up the columns of this table make it possible to collect together

the many different kinds multimedia elements used in the composition of clips.

See also:

 Oracle8i SQL Reference for a complete specification of syntax for

using LOBs in CREATE TABLE and ALTER TABLE with:

- BLOB , CLOB, NCLOB and BFILE columns

- EMPTY_BLOB and EMPTY_CLOB functions

- LOB storage clause for internal LOB columns, and LOB attributes

of embedded objects
 Internal Persistent LOBs 9-9

CREATE a Table Containing One or More LOB Columns
Figure 9–5 MULTIMEDIA_TAB as an Example of Creating a Table Containing a LOB
Column

Examples

Examples that illustrate how to create a table containing a LOB column are

provided in SQL:

■ SQL: Create a Table Containing One or More LOB Columns

SQL: Create a Table Containing One or More LOB Columns
You may need to set up the following data structures for certain examples to work:

CONNECT system/manager;
DROP USER samp CASCADE;
DROP DIRECTORY AUDIO_DIR;
DROP DIRECTORY FRAME_DIR;
DROP DIRECTORY PHOTO_DIR;
DROP TYPE InSeg_typ force;
DROP TYPE InSeg_tab;
DROP TABLE InSeg_table;
CREATE USER samp identified by samp;
GRANT CONNECT, RESOURCE to samp;
CREATE DIRECTORY AUDIO_DIR AS ’/tmp/’;
CREATE DIRECTORY FRAME_DIR AS ’/tmp/’;
CREATE DIRECTORY PHOTO_DIR AS ’/tmp/’;
GRANT READ ON DIRECTORY AUDIO_DIR to samp;
GRANT READ ON DIRECTORY FRAME_DIR to samp;
GRANT READ ON DIRECTORY PHOTO_DIR to samp;
CONNECT samp/samp
CREATE TABLE a_table (blob_col BLOB);
CREATE TYPE Voiced_typ AS OBJECT (

Table MULTIMEDIA_TAB

Column Name

STORY FLSUB PHOTO FRAME SOUND INSEG_NTAB MUSIC

Kind of Data

Text
CLOB

CLIP_ID

PK

Number
NUMBER

Text
NCLOB

Photo
BFILE

Video
BLOB

Audio
BLOB

Nested Table
INSEG_TYP

VOICED_REF

Reference
VOICED_TYP

MAP_OBJ

Object Type
MAP_TYP

Audio
BFILE

Key Type
9-10 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table Containing One or More LOB Columns
 Originator VARCHAR2(30),
 Script CLOB,
 Actor VARCHAR2(30),
 Take NUMBER,
 Recording BFILE
);

CREATE TABLE VoiceoverLib_tab of Voiced_typ (
Script DEFAULT EMPTY_CLOB(),
 CONSTRAINT TakeLib CHECK (Take IS NOT NULL),
 Recording DEFAULT NULL
);

CREATE TYPE InSeg_typ AS OBJECT (
 Segment NUMBER,
 Interview_Date DATE,
 Interviewer VARCHAR2(30),
 Interviewee VARCHAR2(30),
 Recording BFILE,
 Transcript CLOB
);

CREATE TYPE InSeg_tab AS TABLE of InSeg_typ;
CREATE TYPE Map_typ AS OBJECT (
 Region VARCHAR2(30),
 NW NUMBER,
 NE NUMBER,
 SW NUMBER,
 SE NUMBER,
 Drawing BLOB,
 Aerial BFILE
);
CREATE TABLE Map_Libtab of Map_typ;
CREATE TABLE Voiceover_tab of Voiced_typ (
Script DEFAULT EMPTY_CLOB(),
 CONSTRAINT Take CHECK (Take IS NOT NULL),
 Recording DEFAULT NULL
);

Since one can use SQL DDL directly to create a table containing one or more LOB
columns, it is not necessary to use the DBMS_LOB package.
CREATE TABLE Multimedia_tab (
 Clip_ID NUMBER NOT NULL,
 Story CLOB default EMPTY_CLOB(),
 FLSub NCLOB default EMPTY_CLOB(),
 Internal Persistent LOBs 9-11

CREATE a Table Containing One or More LOB Columns
 Photo BFILE default NULL,
 Frame BLOB default EMPTY_BLOB(),
 Sound BLOB default EMPTY_BLOB(),
 Voiced_ref REF Voiced_typ,
 InSeg_ntab InSeg_tab,
 Music BFILE default NULL,
 Map_obj Map_typ
) NESTED TABLE InSeg_ntab STORE AS InSeg_nestedtab;
9-12 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table Containing an Object Type with a LOB Attribute
CREATE a Table Containing an Object Type with a LOB Attribute

Figure 9–6 Use Case Diagram: Create a Table Containing an Object Type with a LOB
Attribute

Purpose
This procedure describes how to create a table containing an object type with an

LOB attribute.

Usage Notes
Not applicable.

Syntax
See the following specific reference for a detailed syntax description:

See: "Use Case Model: Internal Persistent LOBs Basic

Operations", or all basic operations having to do with Internal

Persistent LOBs.

CREATE
a Table

User/
Program

b CREATE table with an object
type containing a LOB

CREATE
Object Type

: Internal Persistent
LOBs CREATE a Table b
 Internal Persistent LOBs 9-13

CREATE a Table Containing an Object Type with a LOB Attribute
■ SQL: Oracle8i SQL Reference , "Chapter 7, SQL Statements" — CREATE TABLE.

Scenario
As shown in the diagram, you must create the object type that contains LOB

attributes before you can proceed to create a table that makes use of that object type.

Our example application includes two ways in which object types can contain

LOBs:

■ Voiced_typ datatype uses CLOB for script and BFILE for
audio: Table Multimedia_tab contains column Voiced_ref that

references row objects in the table VoiceOver_tab which is based on the type

Voiced_typ . This type contains two kinds of LOBs — a CLOB to store the

script that’s read by the actor, and a BFILE to hold the audio recording.

■ Map_obj column uses BLOB for storing maps: Table
Multimedia_tab contains column Map_obj that contains column objects of

the type Map_typ. This type utilizes the BLOB datatype for storing maps in the

form of drawings.

See Also: Chapter 8, "Sample Application" for a description of the

multimedia application and table Multimedia_tab .
9-14 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table Containing an Object Type with a LOB Attribute
Figure 9–7 VOICED_TYP As An Example of Creating a Type Containing a LOB

Examples

The example is provided in SQL and applies to all programmatic environments:

■ SQL: Create a Table Containing an Object Type with a LOB Attribute

SQL: Create a Table Containing an Object Type with a LOB Attribute
/* Create type Voiced_typ as a basis for tables that can contain recordings of
 voice-over readings using SQL DDL: */
CREATE TYPE Voiced_typ AS OBJECT (
 Originator VARCHAR2(30),
 Script CLOB,
 Actor VARCHAR2(30),
 Take NUMBER,
 Recording BFILE
);

/* Create table Voiceover_tab Using SQL DDL: */
CREATE TABLE Voiceover_tab of Voiced_typ (

Table MULTIMEDIA_TAB

Column Name

STORY FLSUB PHOTO FRAME SOUND INSEG_NTAB MUSIC

Kind of Data

Text
CLOB

CLIP_ID

PK

Number
NUMBER

Text
NCLOB

Photo
BFILE

Video
BLOB

Audio
BLOB

Nested Table
INSEG_TYP

VOICED_REF

Reference
VOICED_TYP

MAP_OBJ

Object Type
MAP_TYP

Audio
BFILE

Key Type

Table VOICEOVER_TAB (of VOICED_TYP)

SCRIPT ACTOR RECORDING

Text
CLOB

ORIGINATOR

Text
VARCHAR2(30)

Text
VARCHAR2(30)

Audio
BFILE

TAKE

Number
NUMBER

PKPK

Reference to a row
object of a table of
the defined type
 Internal Persistent LOBs 9-15

CREATE a Table Containing an Object Type with a LOB Attribute
Script DEFAULT EMPTY_CLOB(),
 CONSTRAINT Take CHECK (Take IS NOT NULL),
 Recording DEFAULT NULL
);

Figure 9–8 MAP_TYP As An Example of Creating a Type Containing a LOB

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

Table MULTIMEDIA_TAB

Column Name

STORY FLSUB PHOTO FRAME SOUND INSEG_NTAB MUSIC

Kind of Data

Text
CLOB

CLIP_ID

PK

Number
NUMBER

Text
NCLOB

Photo
BFILE

Video
BLOB

Audio
BLOB

Nested Table
INSEG_TYP

VOICED_REF

Reference
VOICED_TYP

MAP_OBJ

Object Type
MAP_TYP

Audio
BFILE

Key Type

Column Object MAP_OBJ (of MAP_TYP)

NW

Number
NUMBER

NE

Number
NUMBER

SW

Number
NUMBER

SE

Number
NUMBER

DRAWING

Map
BLOB

AERIAL

Photo
BFILE

REGION

Text
VARCHAR2(30)

Reference to a row
object of a table of
the defined type

Column Object of
the defined type
9-16 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table Containing an Object Type with a LOB Attribute
/* Create Type Map_typ using SQL DDL as a basis for the table that will contain
 the column object: */
CREATE TYPE Map_typ AS OBJECT (
 Region VARCHAR2(30),
 NW NUMBER,
 NE NUMBER,
 SW NUMBER,
 SE NUMBER,
 Drawing BLOB,
 Aerial BFILE
);

/* Create support table MapLib_tab as an archive of maps using SQL DDL: */
CREATE TABLE MapLib_tab of Map_typ;

See Also: Oracle8i SQL Reference for a complete specification of

the syntax for using LOBs in DDL commands CREATE TYPE and

ALTER TYPE with BLOB, CLOB, and BFILE attributes.

Note: NCLOBs cannot be attributes of an object type.
 Internal Persistent LOBs 9-17

CREATE a Nested Table Containing a LOB
CREATE a Nested Table Containing a LOB

Figure 9–9 Use Case Diagram: Create a Nested Table Containing a LOB

Purpose
This procedure creates a nested table containing a LOB.

Usage Notes
Not applicable.

Syntax
Use the following syntax reference:

■ SQL: Oracle8i SQL Reference , "Chapter 7, SQL Statements" — CREATE TABLE.

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

CREATE
a Table

User/
Program

c CREATE table with an nested
table containing a LOB

CREATE
Object Type

: Internal Persistent
LOBs CREATE a Table c
9-18 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Nested Table Containing a LOB
Scenario
Create the object type that contains the LOB attributes before you create a nested

table based on that object type. In our example, table Multimedia_tab contains

nested table Inseg_ntab that has type InSeg_typ . This type uses two LOB

datatypes:

■ BFILE for audio recordings of the interviews

■ CLOB should the user wish to make transcripts of the recordings

We have already described how to create a table with LOB columns in the previous

section (see "CREATE a Table Containing One or More LOB Columns" on page 9-8),

so here we only describe the syntax for creating the underlying object type:

Figure 9–10 INTERVIEWSEGMENTS_NTAB as an Example of Creating a Nested Table
Containing a LOB

Examples

The example is provided in SQL and applies to all the programmatic environments:

Table MULTIMEDIA_TAB

Column Name

STORY FLSUB PHOTO FRAME SOUND INSEG_NTAB MUSIC

Kind of Data

Text
CLOB

CLIP_ID

PK

Number
NUMBER

Text
NCLOB

Photo
BFILE

Video
BLOB

Audio
BLOB

Nested Table
INSEG_TYP

VOICED_REF

Reference
VOICED_TYP

MAP_OBJ

Object Type
MAP_TYP

Audio
BFILE

Key Type

Table INTERVIEWSEGMENTS_NTAB

INTERVIEW_DATE

Date
DATE

INTERVIEWER

Text
VARCHAR2(30)

TRANSCRIPT

Text
CLOB

INTERVIEWEE

Text
VARCHAR2(30)

RECORDING

Audio
BFILE

SEGMENT

Number
NUMBER

PK

Nested Table of the
defined type
 Internal Persistent LOBs 9-19

CREATE a Nested Table Containing a LOB
■ SQL: Create a Nested Table Containing a LOB

SQL: Create a Nested Table Containing a LOB
/* Create a type InSeg_typ as the base type for the nested table containing
 a LOB: */
DROP TYPE InSeg_typ force;
DROP TYPE InSeg_tab;
DROP TABLE InSeg_table;
CREATE TYPE InSeg_typ AS OBJECT (
 Segment NUMBER,
 Interview_Date DATE,
 Interviewer VARCHAR2(30),
 Interviewee VARCHAR2(30),
 Recording BFILE,
 Transcript CLOB
);

/* Type created, but need a nested table of that type to embed in
 multi_media_tab; so: */
CREATE TYPE InSeg_tab AS TABLE of Inseg_typ;
CREATE TABLE InSeg_table (
 id number,
 InSeg_ntab Inseg_tab)
NESTED TABLE InSeg_ntab STORE AS InSeg_nestedtab;

The actual embedding of the nested table is accomplished when the structure of the

containing table is defined. In our example, this is effected by means of the NESTED
TABLE statement at the time that Multimedia_tab is created.
9-20 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Three Ways Of Inserting One or More LOB Values into a Row
Three Ways Of Inserting One or More LOB Values into a Row

Figure 9–11 Three Ways of Inserting LOB Values into a Row

There are three different ways of inserting LOB values into a row:

a. LOBs may be inserted into a row by first initializing a locator — see

INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB() on

page 9-23

b. LOBs may be inserted by selecting a row from another table— see INSERT

a Row by Selecting a LOB From Another Table on page 9-26.

c. LOBs may be inserted by first initializing a LOB locator bind variable — see

INSERT Row by Initializing a LOB Locator Bind Variable on page 9-28.

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

User/
Program

INSERT
a Row INSERT using Empty_CLOB() or Empty_BLOB()

INSERT as SELECT

INSERT by Initializing a LOB locator bind variable

a

: Internal persistent
LOBS INSERT a Row

b

c

a

 Internal Persistent LOBs 9-21

Three Ways Of Inserting One or More LOB Values into a Row
Uasage Notes

For Binds of More Than 4,000 Bytes
For guidelines on how to INSERT into a LOB when binds of more than 4,000 bytes

are involved, see the following sections in Chapter 7, "Modeling and Design":

■ Binds Greater than 4,000 Bytes are Now Allowed For LOB INSERTs and

UPDATEs on page 7-16

■ Binds of More Than 4,000 Bytes ... No HEX to RAW or RAW to HEX Conversion

on page 7-16

■ Example: PL/SQL - Using Binds of More Than 4,000 Bytes in INSERT and

UPDATE on page 7-18

■ Example: PL/SQL - Binds of More Than 4,000 Bytes -- Inserts Not Supported

Because Hex to Raw/Raw to Hex Conversion is Not Supported on page 7-19

■ Example: C (OCI) - Binds of More than 4,000 Bytes For INSERT and UPDATE

on page 7-20
9-22 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()
INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()

Figure 9–12 Use Case Diagram: INSERT a Row Using EMPTY_CLOB() or EMPTY_
BLOB()

User/
Program

EMPTY
_CLOB() or

_BLOB()

a INSERT using Empty_CLOB() or Empty_BLOB()INSERT
a Row

: Internal persistent
LOBs INSERT a Row a
 Internal Persistent LOBs 9-23

INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()
Purpose
This procedure describes how to insert a LOB value using EMPTY_CLOB() or

EMPTY_BLOB().

Usage Notes

Making a LOB Column Non-Null
Before you write data to an internal LOB, make the LOBcolumn non-null; that is, the

LOB column must contain a locator that points to an empty or populated LOBvalue.

You can initialize a BLOB column’s value by using the function EMPTY_BLOB() as a

default predicate. Similarly, a CLOB or NCLOB column’s value can be initialized by

using the function EMPTY_CLOB().

You can also initialize a LOB column with a character or raw string less than 4,000

bytes in size. For example:

INSERT INTO Multimedia_tab (clip_id, story)
 VALUES (1,’This is a One Line Story’);

You can perform this initialization during CREATE TABLE(see "CREATE a Table

Containing One or More LOB Columns") or, as in this case, by means of an INSERT.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ SQL: Oracle8i SQL Reference , "Chapter 7, SQL Statements" — INSERT.

■ C/C++ (Pro*C/C++): There is no applicable syntax reference for this use case.

Oracle8i JDBC Developer’s Guide and Reference

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.
9-24 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()
Scenario

Examples
Examples are provided in the following programmatic environments:

■ SQL: Insert a Value Using EMPTY_CLOB() / EMPTY_BLOB() on page 9-25

■ C/C++ (Pro*C): No example is provided with this release.

SQL: Insert a Value Using EMPTY_CLOB() / EMPTY_BLOB()
These functions are available as special functions in Oracle8 SQL DML, and are not

part of the DBMS_LOB package.

/* In the new row of table Multimedia_tab,
 the columns STORY and FLSUB are initialized using EMPTY_CLOB(),
 the columns FRAME and SOUND are initialized using EMPTY_BLOB(),
 the column TRANSSCRIPT in the nested table is initialized using EMPTY_CLOB(),

the column DRAWING in the column object is initialized using EMPTY_BLOB(): */
INSERT INTO Multimedia_tab
 VALUES (1, EMPTY_CLOB(), EMPTY_CLOB(), NULL, EMPTY_BLOB(), EMPTY_BLOB(),
 NULL, InSeg_tab(InSeg_typ(1, NULL, ’Ted Koppell’, ’Jimmy Carter’, NULL,
 EMPTY_CLOB())), NULL, Map_typ(’Moon Mountain’, 23, 34, 45, 56, EMPTY_BLOB(),
 NULL));

/* In the new row of table Voiceover_tab, the column SCRIPT is initialized using
 EMPTY_CLOB(): */
INSERT INTO Voiceover_tab
 VALUES (’Abraham Lincoln’, EMPTY_CLOB(), ’James Earl Jones’, 1, NULL);

See: Chapter 8, "Sample Application" for a description of the

multimedia application and table Multimedia_tab .
 Internal Persistent LOBs 9-25

INSERT a Row by Selecting a LOB From Another Table
INSERT a Row by Selecting a LOB From Another Table

Figure 9–13 Use Case Diagram: Insert a Row by Selecting a LOB From Another Table

Purpose
This procedure describes how to insert a row containing a LOB as SELECT.

Usage Notes

For example, assuming Voiceover_tab and VoiceoverLib_tab have identical

schemas, the statement creates a new LOBlocator in the table Voiceover_tab , and

copies the LOB data from VoiceoverLib_tab to the location pointed to by a new

LOB locator which is inserted in table Voiceover_tab .

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

Note: Internal LOB types — BLOB, CLOB, and NCLOB — use copy
semantics, as opposed to reference semantics that apply to BFILE s.

When a BLOB, CLOB, or NCLOBis copied from one row to another in

the same table or a different table, the actual LOB value is copied,

not just the LOB locator.

User/
Program

SELECT
a LOB

b INSERT as SELECTINSERT
a Row

: Internal Persistent
LOBs INSERT a Row b
9-26 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row by Selecting a LOB From Another Table
Syntax
Use the following syntax reference:

■ SQL: Oracle8i SQL Reference , "Chapter 7, SQL Statements" — INSERT.

Scenario
With regard to LOBs, one of the advantages of utilizing an object-relational

approach is that you can define a type as a common template for related tables. For

instance, it makes sense that both the tables that store archival material and the

working tables that use those libraries share a common structure.

The following code fragment is based on the fact that a library table

VoiceoverLib_tab is of the same type (Voiced_typ) as Voiceover_tab
referenced by the Voiced_ref column of the Multimedia_tab table. It inserts

values into the library table, and then inserts this same data into Multimedia_tab
by means of a SELECT.

Examples
The following example is provided in SQL and applies to all the programmatic

environments:

■ SQL: Insert a Row by Selecting a LOB from Another Table on page 9-27

SQL: Insert a Row by Selecting a LOB from Another Table
/* Store records in the archive table VoiceoverLib_tab: */
INSERT INTO VoiceoverLib_tab
 VALUES (’George Washington’, EMPTY_CLOB(), ’Robert Redford’, 1, NULL);

/* Insert values into Voiceover_tab by selecting from VoiceoverLib_tab: */
INSERT INTO Voiceover_tab
 (SELECT * from VoiceoverLib_tab
 WHERE Take = 1);

See Also: Chapter 8, "Sample Application" for a description of the

multimedia application and table Multimedia_tab .
 Internal Persistent LOBs 9-27

INSERT Row by Initializing a LOB Locator Bind Variable
INSERT Row by Initializing a LOB Locator Bind Variable

Figure 9–14 Use Case Diagram: INSERT Row by Initializing a LOB Locator Bind
Variable

Purpose
This procedure inserts a row by initializing a LOB locator bind variable.

Usage Notes
See Chapter 7, "Modeling and Design", "Binds Greater Than 4,000 Bytes in INSERTs

and UPDATEs", for usage notes and examples on using binds greater then 4,000

bytes in INSERTs and UPDATEs.

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

User/
Program

SELECT
a LOB

Initialize
a LOB locator
bind variable

c INSERT by Initializing a LOB locator bind variableINSERT
a Row

: Internal Persistent
LOBs INSERT a Row c
9-28 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT Row by Initializing a LOB Locator Bind Variable
Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ SQL: Oracle8i SQL Reference , "Chapter 7, SQL Statements" — INSERT

■ C/C++ (Pro*C): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — INSERT

Scenario
In the following examples we use a LOB locator bind variable to take Sound data in

one row of Multimedia_tab and insert it into another row.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C): Insert Row by Initializing a LOB Locator Bind Variable on

page 9-29

C/C++ (Pro*C): Insert Row by Initializing a LOB Locator Bind Variable
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void insertUseBindVariable_proc(Rownum, Lob_loc)
 int Rownum;
 OCIBlobLocator *Lob_loc;
{
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL INSERT INTO Multimedia_tab (Clip_ID, Sound)
 VALUES (:Rownum, :Lob_loc);
}

 Internal Persistent LOBs 9-29

INSERT Row by Initializing a LOB Locator Bind Variable
void insertBLOB_proc()
{
 OCIBlobLocator *Lob_loc;

 /* Initialize the BLOB Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 /* Select the LOB from the row where Clip_ID = 1: */
 EXEC SQL SELECT Sound INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1;
 /* Insert into the row where Clip_ID = 2: */
 insertUseBindVariable_proc(2, Lob_loc);
 /* Release resources held by the locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 insertBLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

9-30 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load Data into an Internal LOB (BLOB, CLOB, NCLOB)
Load Data into an Internal LOB (BLOB, CLOB, NCLOB)

Figure 9–15 Use Case Diagram: Load Initial Data into an Internal LOB

Purpose
This procedure describes how to load data into an internal LOB.

Usage Notes and Examples
For detailed information and tips on using SQL Loader for loading data into an

internal LOB see Chapter 4, "Managing LOBs", "Using SQL Loader to Load LOBs":

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

User/
Program

LOAD
Initial Data into

the LOB

: Internal Persistent
LOBs LOAD Initial Data into the LOB
 Internal Persistent LOBs 9-31

Load Data into an Internal LOB (BLOB, CLOB, NCLOB)
■ Loading Inline LOB Data

■ Loading Inline LOB Data in Predetermined Size Fields

■ Loading Inline LOB Data in Delimited Fields

■ Loading Inline LOB Data in Length-Value Pair Fields

■ Loading Out-Of-Line LOB Data

■ Loading One LOB Per File

■ Loading Out-of-Line LOB Data in Predetermined Size Fields

■ Loading Out-of-Line LOB Data in Delimited Fields

■ Loading Out-of-Line LOB Data in Length-Value Pair Fields

Syntax
See Usage Notes and Examples above.

Scenario
Since LOBs can be quite large in size, it makes sense that SQL*Loader can load LOB
data from either the main datafile (that is, inline with the rest of the data) or from

one or more secondary datafiles.

To load LOBdata from the main datafile, the usual SQL*Loader formats can be used.

The LOB data instances can be in predetermined size fields, delimited fields, or

length-value pair fields.

See Also: Oracle8i Utilities— "SQL Loader"
9-32 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a LOB with Data from a BFILE
Load a LOB with Data from a BFILE
Figure 9–16 Use Case Diagram: Load a LOB with Data from a BFILE

OPEN
a LOB

User/
Program

OCI Lob
FileSet NameSELECT

BFILE OR

INITIALIZE
BFILE
locator

CLOSE
a LOB

close
all BFILES

load a LOB
with data

from a BFILE

close
a BFILE

OR

open
a BFILE

SELECT
a LOB

: Internal Persistent
LOBs LOAD LOB with Data From a BFILE
 Internal Persistent LOBs 9-33

Load a LOB with Data from a BFILE
Purpose
This procedure describes how to load a LOB with data from a BFILE.

Usage Notes

Binary Data to Character Set Conversion is Needed on BFILE Data
In using OCI, or any of the programmatic environments that access OCI

functionality, character set conversions are implicitly performed when translating

from one character set to another. However, no implicit translation is ever

performed from binary data to a character set.

When you use the LOADFROMFILEprocedure to populate a CLOBor NCLOB, you are

populating the LOB with binary data from the BFILE . In that case, you will need to

perform character set conversions on the BFILE data before executing

LOADFROMFILE.

Specify Amount to be Less than the Size of BFILE!
■ DBMS_LOB.LOADFROMFILE: You cannot specify the amount larger than the

size of the BFILE.

■ OCILobLoadFromFile: You cannot specify amount larger than the length of the

BFILE.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOAD

Scenario
The examples assume that there is an operating system source file (Washington_
audio) that contains LOB data to be loaded into the target LOB (Music). The

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.
9-34 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a LOB with Data from a BFILE
examples also assume that directory object AUDIO_DIR already exists and is

mapped to the location of the source file.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C): Load a LOB with Data from a BFILE on page 9-35

C/C++ (Pro*C): Load a LOB with Data from a BFILE
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void loadLOBFromBFILE_proc()
{
 OCIBlobLocator *Dest_loc;
 OCIBFileLocator *Src_loc;
 char *Dir = "FRAME_DIR", *Name = "Washington_frame";
 int Amount = 4000;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Initialize the BFILE Locator */
 EXEC SQL ALLOCATE :Src_loc;
 EXEC SQL LOB FILE SET :Src_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Initialize the BLOB Locator */
 EXEC SQL ALLOCATE :Dest_loc;
 EXEC SQL SELECT frame INTO :Dest_loc FROM Multimedia_tab
 WHERE Clip_ID = 3 FOR UPDATE;
 /* Opening the BFILE is Mandatory */
 EXEC SQL LOB OPEN :Src_loc READ ONLY;
 /* Opening the BLOB is Optional */
 EXEC SQL LOB OPEN :Dest_loc READ WRITE;
 Internal Persistent LOBs 9-35

Load a LOB with Data from a BFILE
 EXEC SQL LOB LOAD :Amount FROM FILE :Src_loc INTO :Dest_loc;
 /* Closing LOBs and BFILEs is Mandatory if they have been OPENed */
 EXEC SQL LOB CLOSE :Dest_loc;
 EXEC SQL LOB CLOSE :Src_loc;
 /* Release resources held by the Locators */
 EXEC SQL FREE :Dest_loc;
 EXEC SQL FREE :Src_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 loadLOBFromBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

9-36 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB Is Open
See If a LOB Is Open

Figure 9–17 Use Case Diagram: See If a LOB Is Open

Purpose
This procedure describes how to see if LOB is open.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB DESCRIBE ... ISOPEN ...

■

Scenario
The following "See if a LOB is Open" examples open a Video frame (Frame), and

then evaluate it to see if the LOB is open.

User/
Program

SELECT
a LOB

SEE if
LOB is Open

: Internal Persistent
LOBs SEE if LOB is Open
 Internal Persistent LOBs 9-37

See If a LOB Is Open
Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C): See if a LOB is Open on page 9-38

■

C/C++ (Pro*C): See if a LOB is Open
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void seeIfLOBIsOpen()
{
 OCIBlobLocator *Lob_loc;
 int isOpen = 1;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Frame INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1;
 /* See if the LOB is Open: */
 EXEC SQL LOB DESCRIBE :Lob_loc GET ISOPEN INTO :isOpen;
 if (isOpen)
 printf("LOB is open\n");
 else
 printf("LOB is not open\n");
 /* Note that in this example, the LOB is not open */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 seeIfLOBIsOpen();
9-38 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB Is Open
 EXEC SQL ROLLBACK WORK RELEASE;
}

 Internal Persistent LOBs 9-39

Copy LONG to LOB
Copy LONG to LOB

Figure 9–18 Use Case Diagram: Copy LONG to LOB

Purpose
This procedure describes how to copy a LONG to a LOB.

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

User/
Program

COPY
LONG to LOB

: Internal Persistent
LOBs COPY LONG to LOB
9-40 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy LONG to LOB
Usage Notes
Use of TO_LOB is subject to the following limitations:

■ You can use TO_LOB to copy data to a LOB column, but not to a LOB attribute.

■ You cannot use TO_LOB with any remote table. Consequently, all the following

statements will fail:

INSERT INTO tb1@dblink (lob_col) SELECT TO_LOB(long_col) FROM tb2;
INSERT INTO tb1 (lob_col) SELECT TO_LOB(long_col) FROM tb2@dblink;
CREATE table tb1 AS SELECT TO_LOB(long_col) FROM tb2@dblink;

■ If the target table (the table with the lob column) has a trigger — such as

BEFORE INSERT or INSTEAD OF INSERT — the :NEW.lob_col variable can't

be referenced in the trigger body.

■ You cannot deploy TO_LOB inside any PL/SQL block.

■ The TO_LOB function can be used to copy data to a CLOB but not a NCLOB.

This is because LONG datatypes have the database CHAR character set and can

only be converted to a CLOB which also uses the database CHAR character set.

NCLOB on the other hand, use the database NCHAR character set.

Syntax
Use the following syntax reference:

■ SQL: Oracle8i SQL Reference , Chapter 4, "Functions" — TO_LOB.

Scenario
Assume that the following archival source table SoundsLib_tab was defined and

contains data:

CREATE TABLE SoundsLib_tab
(
 Id NUMBER,
 Description VARCHAR2(30),
 SoundEffects LONG RAW
);

The example assumes that you want to copy the data from the LONG RAW column

(SoundEffects) into the BLOB column (Sound) of the multimedia table, and uses

the SQL function TO_LOB to accomplish this.
 Internal Persistent LOBs 9-41

Copy LONG to LOB
Examples
The example is provided in SQL and applies to all six programmatic environments:

■ "SQL: Copy LONG to LOB"

SQL: Copy LONG to LOB
INSERT INTO Multimedia_tab (clip_id,sound) SELECT id, TO_LOB(SoundEffects)
 FROM SoundsLib_tab WHERE id =1;

This functionality is based on using an operator on LONGs called TO_LOB that

converts the LONG to a LOB. The TO_LOB operator copies the data in all the rows of

the LONG column to the corresponding LOB column, and then lets you apply the

LOBfunctionality to what was previously LONGdata. Note that the type of data that

is stored in the LONG column must match the type of data stored in the LOB. For

example, LONG RAW data must be copied to BLOB data, and LONG data must be

copied to CLOB data.

Once you have completed this one-time only operation and are satisfied that the

data has been copied correctly, you could then drop the LONG column. However,

this will not reclaim all the storage originally required to store LONGsin the table. In

order to avoid unnecessary, excessive storage, you are better advised to copy the

LONG data to a LOB in a new or different table. Once you have made sure that the

data has been accurately copied, you should then drop the original table.

One simple way to effect this transposing of LONGs to LOBs is to use the CREATE
TABLE... SELECTstatement, using the TO_LOBoperator on the LONGcolumn as part

of the SELECT statement. You can also use INSERT... SELECT.

In the examples in the following procedure, the LONG column named LONG_COL in
table LONG_TAB is copied to a LOB column named LOB_COL in table LOB_TAB.
These tables include an ID column that contains identification numbers for each

row in the table.

Complete the following steps to copy data from a LONG column to a LOB column:

Note: in order for the above to succeed, execute:

CREATE TABLE SoundsLib_tab (
 id NUMBER,
 SoundEffects LONG RAW);
9-42 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy LONG to LOB
1. Create a new table with the same definition as the table that contains the LONG
column, but use a LOB datatype in place of the LONG datatype.

For example, if you have a table with the following definition:

CREATE TABLE Long_tab (
 id NUMBER,
 long_col LONG);

Create a new table using the following SQL statement:

CREATE TABLE Lob_tab (
 id NUMBER,
 blob_col BLOB);

2. Issue an INSERT command using the TO_LOB operator to insert the data from

the table with the LONG datatype into the table with the LOB datatype.

For example, issue the following SQL statement:

INSERT INTO Lob_tab
SELECT id,
TO_LOB(long_col)
FROM long_tab;

3. When you are certain that the copy was successful, drop the table with the

LONG column.

For example, issue the following SQL command to drop the LONG_TAB table:

DROP TABLE Long_tab;

4. Create a synonym for the new table using the name of the table with LONGdata.

The synonym ensures that your database and applications continue to function

properly.

For example, issue the following SQL statement:

CREATE SYNONYM Long_tab FOR Lob_tab;

Note: When you create the new table, make sure you preserve the

table’s schema, including integrity constraints, triggers, grants, and

indexes. The TO_LOB operator only copies data; it does not

preserve the table’s schema.
 Internal Persistent LOBs 9-43

Copy LONG to LOB
Once the copy is complete, any applications that use the table must be modified to

use the LOB data.

You can use the TO_LOB operator to copy the data from the LONG to the LOB in

statements that employ CREATE TABLE...AS SELECT or INSERT...SELECT. In the

latter case, you must have already ALTERed the table and ADDed the LOB column

prior to the UPDATE. If the UPDATE returns an error (because of lack of undo space),

you can incrementally migrate LONG data to the LOB using the WHERE clause. The

WHERE clause cannot contain functions on the LOB but can test the LOB’s nullness.
9-44 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkout a LOB
Checkout a LOB

Figure 9–19 Use Case Diagram: Checkout a LOB

Purpose
This procedure describes how to checkout a LOB.

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

OPEN
a LOB

User/
Program

SELECT
a LOB

get
chunk size

CLOSE
a LOB

CHECKOUT
a LOB

read data
from the LOB

: Internal Persistent
LOBs CHECKOUT a LOB
 Internal Persistent LOBs 9-45

Checkout a LOB
Usage Notes

Streaming Mechanism
The most efficient way to read large amounts of LOB data is to use OCILobRead ()

with the streaming mechanism enabled via polling or callback. Use OCI or PRO*C

interfaces with streaming for the underlying read operation. Using DBMS_LOB.READ
will result in non-optimal performance.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB OPEN, LOB READ

Scenario
In the typical use of the checkout-checkin operation, the user wants to checkout a

version of the LOB from the database to the client, modify the data on the client

without accessing the database, and then in one fell swoop, checkin all the

modifications that were made to the document on the client side.

Here we portray the checkout portion of the scenario: the code lets the user read the CLOB

Transcript from the nested table InSeg_ntab which contains interview segments for the purpose

of processing in some text editor on the client. The checkin portion of the scenario is described in

"Checkin a LOB" on page 9-49.Examples
The following examples are similar to examples provided in "Display LOB Data".

Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C): Checkout a LOB on page 9-46

C/C++ (Pro*C): Checkout a LOB
/* This example will READ the entire contents of a CLOB piecewise into a
 buffer using a standard polling method, processing each buffer piece
 after every READ operation until the entire CLOB has been read: */
#include <oci.h>
#include <stdio.h>
9-46 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkout a LOB
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 256

void checkOutLOB_proc()
{
 OCIClobLocator *Lob_loc;
 int Amount;
 int Clip_ID, Segment;
 VARCHAR Buffer[BufferLength];

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;

 /* Use Dynamic SQL to retrieve the LOB: */
 EXEC SQL PREPARE S FROM
 'SELECT Intab.Transcript \
 FROM TABLE(SELECT Mtab.InSeg_ntab FROM Multimedia_tab Mtab \
 WHERE Mtab.Clip_ID = :cid) Intab \
 WHERE Intab.Segment = :seg';
 EXEC SQL DECLARE C CURSOR FOR S;
 Clip_ID = Segment = 1;
 EXEC SQL OPEN C USING :Clip_ID, :Segment;
 EXEC SQL FETCH C INTO :Lob_loc;
 EXEC SQL CLOSE C;

 /* Open the LOB: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* Setting Amount = 0 will initiate the polling method: */
 Amount = 0;
 /* Set the maximum size of the Buffer: */
 Buffer.len = BufferLength;
 EXEC SQL WHENEVER NOT FOUND DO break;
 while (TRUE)
 {
 /* Read a piece of the LOB into the Buffer: */
 EXEC SQL LOB READ :Amount FROM :Lob_loc INTO :Buffer;
 Internal Persistent LOBs 9-47

Checkout a LOB
 printf("Checkout %d characters\n", Buffer.len);
 }
 printf("Checkout %d characters\n", Amount);

 /* Closing the LOB is mandatory if you have opened it: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 checkOutLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

9-48 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkin a LOB
Checkin a LOB

Figure 9–20 Use Case Diagram: Checkin a LOB

Purpose
This procedure describes how to checkin a LOB.

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

OPEN
a LOB

User/
Program

SELECT
a LOB

CLOSE
a LOB

CHECKIN
a LOB

write data
to the LOB

: Internal Persistent
LOBs CHECKIN a LOB
 Internal Persistent LOBs 9-49

Checkin a LOB
Usage Notes

Streaming Mechanism
The most efficient way to write large amounts of LOB data is to use

OCILobWrite () with the streaming mechanism enabled via polling or callback

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB WRITE

Scenario
The checkin operation demonstrated here follows from "Checkout a LOB" on

page 9-45. In this case, the procedure writes the data back into the CLOB
Transcript column within the nested table InSeg_ntab that contains interview

segments. As noted above, you should the OCI or PRO*C interface with streaming

for the underlying write operation; using DBMS_LOB.WRITE will result in

non-optimal performance.

The following examples illustrate how to checkin a LOB using various

programmatic environments:

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C): Checkin a LOB on page 9-50

C/C++ (Pro*C): Checkin a LOB
/* This example demonstrates how Pro*C/C++ provides for the ability to WRITE
 arbitrary amounts of data to an Internal LOB in either a single piece
 or in multiple pieces using a Streaming Mechanism that utilizes standard
 polling. A static Buffer is used to hold the data being written: */

#include <oci.h>
#include <stdio.h>
#include <string.h>
9-50 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkin a LOB
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 512

void checkInLOB_proc(multiple) int multiple;
{
 OCIClobLocator *Lob_loc;
 VARCHAR Buffer[BufferLength];
 unsigned int Total;
 unsigned int Amount;
 unsigned int remainder, nbytes;
 boolean last;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Initialize the Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Story INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1 FOR UPDATE;
 /* Open the LOB: */
 EXEC SQL LOB OPEN :Lob_loc READ WRITE;
 Total = Amount = (multiple * BufferLength);
 if (Total > BufferLength)
 nbytes = BufferLength; /* We will use streaming via standard polling */
 else
 nbytes = Total; /* Only a single WRITE is required */
 /* Fill the Buffer with nbytes worth of data: */
 memset((void *)Buffer.arr, 32, nbytes);
 Buffer.len = nbytes; /* Set the Length */
 remainder = Total - nbytes;
 if (0 == remainder)
 {
 /* Here, (Total <= BufferLength) so we can WRITE in ONE piece: */
 EXEC SQL LOB WRITE ONE :Amount FROM :Buffer INTO :Lob_loc;
 printf("Write ONE Total of %d characters\n", Amount);
 }
 else
 {
 Internal Persistent LOBs 9-51

Checkin a LOB
 /* Here (Total > BufferLength) so use streaming via standard polling:
 WRITE the FIRST piece. Specifying FIRST initiates polling: */
 EXEC SQL LOB WRITE FIRST :Amount FROM :Buffer INTO :Lob_loc;
 printf("Write FIRST %d characters\n", Buffer.len);
 last = FALSE;
 /* WRITE the NEXT (interim) and LAST pieces: */
 do
 {
 if (remainder > BufferLength)
 nbytes = BufferLength; /* Still have more pieces to go */
 else
 {
 nbytes = remainder;
 last = TRUE; /* This is going to be the Final piece */
 }
 /* Fill the Buffer with nbytes worth of data: */
 memset((void *)Buffer.arr, 32, nbytes);
 Buffer.len = nbytes; /* Set the Length */
 if (last)
 {
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Specifying LAST terminates polling: */
 EXEC SQL LOB WRITE LAST :Amount FROM :Buffer INTO :Lob_loc;
 printf("Write LAST Total of %d characters\n", Amount);
 }
 else
 {
 EXEC SQL WHENEVER SQLERROR DO break;
 EXEC SQL LOB WRITE NEXT :Amount FROM :Buffer INTO :Lob_loc;
 printf("Write NEXT %d characters\n", Buffer.len);
 }
 /* Determine how much is left to WRITE: */
 remainder = remainder - nbytes;
 } while (!last);
 }
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* At this point, (Amount == Total), the total amount that was written */
 /* Close the LOB: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
9-52 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkin a LOB
 EXEC SQL CONNECT :samp;
 checkInLOB_proc(1);
 EXEC SQL ROLLBACK WORK;
 checkInLOB_proc(4);
 EXEC SQL ROLLBACK WORK RELEASE;
}

 Internal Persistent LOBs 9-53

Display LOB Data
Display LOB Data

Figure 9–21 Use Case Diagram: Display LOB Data

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

OPEN
a LOB

User/
Program

SELECT
a LOB

CLOSE
a LOB

DISPLAY
a LOB

read data
from the LOB

: Internal Persistent
LOBs DISPLAY a LOB
9-54 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display LOB Data
Purpose
This procedure describes how to display LOB data.

Usage Notes:

Streaming Mechanism
The most efficient way to read large amounts of LOB data is to use OCILobRead ()

with the streaming mechanism enabled.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB READ

Scenario
As an example of displaying a LOB, our scenario stream-reads the image Drawing
from the column object Map_obj onto the client-side in order to view the data.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C): Display LOB Data on page 9-55

■

C/C++ (Pro*C): Display LOB Data
/* This example will READ the entire contents of a BLOB piecewise into a
 buffer using a standard polling method, processing each buffer piece
 after every READ operation until the entire BLOB has been read: */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>
 Internal Persistent LOBs 9-55

Display LOB Data
void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 32767

void displayLOB_proc()
{
 OCIBlobLocator *Lob_loc;
 int Amount;
 struct {
 unsigned short Length;
 char Data[BufferLength];
 } Buffer;
 /* Datatype equivalencing is mandatory for this datatype: */
 EXEC SQL VAR Buffer IS VARRAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 /* Select the BLOB: */
 EXEC SQL SELECT m.Map_obj.Drawing INTO Lob_loc
 FROM Multimedia_tab m WHERE m.Clip_ID = 1;
 /* Open the BLOB: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* Setting Amount = 0 will initiate the polling method: */
 Amount = 0;
 /* Set the maximum size of the Buffer: */
 Buffer.Length = BufferLength;
 EXEC SQL WHENEVER NOT FOUND DO break;
 while (TRUE)
 {
 /* Read a piece of the BLOB into the Buffer: */
 EXEC SQL LOB READ :Amount FROM :Lob_loc INTO :Buffer;
 /* Process (Buffer.Length == BufferLength) amount of Buffer.Data */
 }
 /* Process (Buffer.Length == Amount) amount of Buffer.Data */
 /* Closing the BLOB is mandatory if you have opened it: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

9-56 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display LOB Data
void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 displayLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

 Internal Persistent LOBs 9-57

Read Data from LOB
Read Data from LOB

Figure 9–22 Use Case Diagram: Read Data from LOB

OPEN
a LOB

User/
Program

SELECT
a LOB

get
chunk size

flush
buffer

CLOSE
a LOB

READ Data
From the LOB

enable
buffering

disable
buffering

: Internal Persistent
LOBs READ Data From the LOB
9-58 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read Data from LOB
Procedure
This procedure describes how to read data from LOBs.

Usage Notes

Stream Read
The most efficient way to read large amounts of LOB data is to use OCILobRead ()

with the streaming mechanism enabled via polling or callback.

When reading the LOB value, it is not an error to try to read beyond the end of the

LOB. This means that you can always specify an input amount of 4 gigabytes - 1

regardless of the starting offset and the amount of data in the LOB. Hence, you do

not need to incur a round-trip to the server to call OCILobGetLength () to find out

the length of the LOB value to determine the amount to read.

Example
Assume that the length of a LOB is 5,000 bytes and you want to read the entire LOB

value starting at offset 1,000. Also assume that you do not know the current length

of the LOB value. Here's the OCI read call, excluding the initialization of all

parameters:

#define MAX_LOB_SIZE 4294967295
ub4 amount = MAX_LOB_SIZE;
ub4 offset = 1000;
OCILobRead(svchp, errhp, locp, &amount, offset, bufp, bufl, 0, 0, 0, 0)

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

Note:

■ In DBMS_LOB.READ, the amount can be larger than the size of

the data. In PL/SQL, the amount should be less than or equal

to the size of the buffer, and the buffer size is limited to 32K.

■ In OCILobRead, you can specify amount = 4 gigabytes-1, and it

will read to the end of the LOB.
 Internal Persistent LOBs 9-59

Read Data from LOB
■ When using polling mode, be sure to look at the value of the 'amount ' parameter

after each OCILobRead () call to see how many bytes were read into the buffer

since the buffer may not be entirely full.

■ When using callbacks, the 'len ' parameter, which is input to the callback, will

indicate how many bytes are filled in the buffer. Be sure to check the 'len '

parameter during your callback processing since the entire buffer may not be

filled with data (see Oracle Call Interface Programmer’s Guide.).

Chunksize
A chunk is one or more Oracle blocks. You can specify the chunk size for the LOB
when creating the table that contains the LOB. This corresponds to the chunk size

used by Oracle when accessing or modifying the LOB value. Part of the chunk is

used to store system-related information and the rest stores the LOB value. The

getchunksize function returns the amount of space used in the LOB chunk to

store the LOB value.

You will improve performance if you execute read requests using a multiple of this

chunk size. The reason for this is that you are using the same unit that the Oracle

database uses when reading data from disk. If it is appropriate for your application,

you should batch reads until you have enough for an entire chunk instead of

issuing several LOB read calls that operate on the same LOB chunk.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB READ

Scenario
The examples read data from a single video frame.

Examples
Examples are provided in the following programmatic environments:
9-60 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read Data from LOB
■ C/C++ (Pro*C/C++): Read Data from LOB on page 9-61

C/C++ (Pro*C/C++): Read Data from LOB
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 32767

void readLOB_proc()
{
 OCIBlobLocator *Lob_loc;
 int Amount = BufferLength;
 /* Here (Amount == BufferLength) so only one READ is needed: */
 char Buffer[BufferLength];
 /* Datatype equivalencing is mandatory for this datatype: */
 EXEC SQL VAR Buffer IS RAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Frame INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1;
 /* Open the BLOB: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL WHENEVER NOT FOUND CONTINUE;
 /* Read the BLOB data into the Buffer: */
 EXEC SQL LOB READ :Amount FROM :Lob_loc INTO :Buffer;
 printf("Read %d bytes\n", Amount);
 /* Close the BLOB: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{

 Internal Persistent LOBs 9-61

Read Data from LOB
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 readLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

9-62 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read a Portion of the LOB (substr)
Read a Portion of the LOB (substr)

Figure 9–23 Use Case Diagram: Read a Portion of the LOB (substr)

User/
Program

SELECT
a LOB

OPEN
a LOB

CLOSE
a LOB

read a
portion of the
LOB from the
table (substr)

: Internal Persistent
LOBs READ a Portion of the LOB from a Table (Substr.)
 Internal Persistent LOBs 9-63

Read a Portion of the LOB (substr)
Purpose
This procedure describes how to read portion of the LOB (substring).

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB READ. See PL/SQL

DBMS_LOB.SUBSTR.

Scenario
This example demonstrates reading a portion from sound-effect Sound .

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Read a Portion of the LOB (substr) on page 9-64

■ on page 9-66

C/C++ (Pro*C/C++): Read a Portion of the LOB (substr)
/* Pro*C/C++ lacks an equivalent embedded SQL form for the DBMS_LOB.SUBSTR()
 function. However, Pro*C/C++ can interoperate with PL/SQL using anonymous
 PL/SQL blocks embedded in a Pro*C/C++ program as this example shows: */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>
void Sample_Error()

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.
9-64 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read a Portion of the LOB (substr)
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 32767

void substringLOB_proc()
{
 OCIBlobLocator *Lob_loc;
 int Position = 1;
 int Amount = BufferLength;
 struct {
 unsigned short Length;
 char Data[BufferLength];
 } Buffer;
 /* Datatype equivalencing is mandatory for this datatype: */
 EXEC SQL VAR Buffer IS VARRAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Sound INTO Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1;
 /* Open the BLOB: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* Invoke SUBSTR() from within an anonymous PL/SQL block: */
 EXEC SQL EXECUTE
 BEGIN
 :Buffer := DBMS_LOB.SUBSTR(:Lob_loc, :Amount, :Position);
 END;
 END-EXEC;
 /* Close the BLOB: */
 EXEC SQL LOB CLOSE :Lob_loc;
 /* Process the Data */
 /* Release resources used by the locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 substringLOB_proc();
 Internal Persistent LOBs 9-65

Read a Portion of the LOB (substr)
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(0);
}

9-66 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Part of Two LOBs
Compare All or Part of Two LOBs

Figure 9–24 Use Case Diagram: Compare All or Part of Two LOBs

Purpose
This procedure describes how to compare all or part of two LOBs.

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

User/
Program

SELECT
a LOB

OPEN
a LOB

CLOSE
a LOB

COMPARE All
or Parts of

2 LOBs

: Internal Persistent
LOBs COMPARE All or Parts of Two LOBS
 Internal Persistent LOBs 9-67

Compare All or Part of Two LOBs
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Appendix F,

"Embedded SQL Statements and Directives" — LOB OPEN, LOB CLOSE. Also

reference PL/SQL DBMS_LOB.COMPARE.

Scenario
The following examples compare two frames from the archival table

VideoframesLib_tab to see whether they are different and, depending on the

result of the comparison, inserts the Frame into the Multimedia_tab .

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Compare All or Part of Two LOBs on page 9-68

C/C++ (Pro*C/C++): Compare All or Part of Two LOBs
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void compareTwoLobs_proc()
{
 OCIBlobLocator *Lob_loc1, *Lob_loc2;
9-68 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Part of Two LOBs
 int Amount = 32767;
 int Retval;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate the LOB locators: */
 EXEC SQL ALLOCATE :Lob_loc1;
 EXEC SQL ALLOCATE :Lob_loc2;
 /* Select the LOBs: */
 EXEC SQL SELECT Frame INTO :Lob_loc1
 FROM Multimedia_tab WHERE Clip_ID = 1;
 EXEC SQL SELECT Frame INTO :Lob_loc2
 FROM Multimedia_tab WHERE Clip_ID = 2;
 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc1 READ ONLY;
 EXEC SQL LOB OPEN :Lob_loc2 READ ONLY;
 /* Compare the two Frames using DBMS_LOB.COMPARE() from within PL/SQL: */
 EXEC SQL EXECUTE
 BEGIN
 :Retval := DBMS_LOB.COMPARE(:Lob_loc1, :Lob_loc2, :Amount, 1, 1);
 END;
 END-EXEC;
 if (0 == Retval)
 printf("The frames are equal\n");
 else
 printf("The frames are not equal\n");
 /* Closing the LOBs is mandatory if you have opened them: */
 EXEC SQL LOB CLOSE :Lob_loc1;
 EXEC SQL LOB CLOSE :Lob_loc2;
 /* Release resources held by the locators: */
 EXEC SQL FREE :Lob_loc1;
 EXEC SQL FREE :Lob_loc2;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 compareTwoLobs_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

 Internal Persistent LOBs 9-69

See If a Pattern Exists in the LOB (instr)
See If a Pattern Exists in the LOB (instr)

Figure 9–25 Use Case Diagram: See If a Pattern Exists in the LOB (instr)

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

User/
Program

SELECT
a LOB

OPEN
a LOB

CLOSE
a LOB

SEE where/if
a pattern exists

in the LOB
(instr)

: Internal Persistent
LOBs SEE Where/if a Pattern Exists in the LOB (Instr.)
9-70 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Pattern Exists in the LOB (instr)
Purpose
This procedure describes how to see if a pattern exists in the LOB (instr).

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB OPEN, LOB CLOSE. Also

reference PL/SQL DBMS_LOB.INSTR.

Scenario
The examples examine the storyboard text to see if the string "children" is present.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): See If a Pattern Exists in the LOB (instr) on page 9-71

C/C++ (Pro*C/C++): See If a Pattern Exists in the LOB (instr)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

 Internal Persistent LOBs 9-71

See If a Pattern Exists in the LOB (instr)
void instringLOB_proc()
{
 OCIClobLocator *Lob_loc;
 char *Pattern = "The End";
 int Position = 0;
 int Offset = 1;
 int Occurrence = 1;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Story INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1;
 /* Opening the LOB is Optional: */
 EXEC SQL LOB OPEN :Lob_loc;
 /* Seek the Pattern using DBMS_LOB.INSTR() in a PL/SQL block: */
 EXEC SQL EXECUTE
 BEGIN
 :Position := DBMS_LOB.INSTR(:Lob_loc, :Pattern, :Offset, :Occurrence);
 END;
 END-EXEC;
 if (0 == Position)
 printf("Pattern not found\n");
 else
 printf("The pattern occurs at %d\n", Position);
 /* Closing the LOB is mandatory if you have opened it: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 instringLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

9-72 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get the Length of a LOB
Get the Length of a LOB

Figure 9–26 Use Case Diagram: Get the Length of a LOB

Purpose
This procedure describes how to determine the length of a LOB.

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

User/
Program

SELECT
a LOB

OPEN
a LOB

CLOSE
a LOB

GET the
Length of
the LOB

: Internal Persistent
LOBs GET the Length of the LOB
 Internal Persistent LOBs 9-73

Get the Length of a LOB
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB DESCRIBE ...GET

LENGTH...

Scenario
These examples demonstrate how to determine the length of a LOB in terms of the

foreign language subtitle (FLSub).

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Get the Length of a LOB on page 9-74

C/C++ (Pro*C/C++): Get the Length of a LOB
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}
void getLengthLOB_proc()
{
 OCIClobLocator *Lob_loc;
 unsigned int Length;
9-74 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get the Length of a LOB
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Story INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1;
 /* Opening the LOB is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* Get the Length: */
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;
 /* If the LOB is NULL or unitialized, then Length is Undefined: */
 printf("Length is %d characters\n", Length);
 /* Closing the LOB is mandatory if you have Opened it: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 getLengthLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

 Internal Persistent LOBs 9-75

Copy All or Part of a LOB to Another LOB
Copy All or Part of a LOB to Another LOB

Figure 9–27 Use Case Diagram: Copy All or Part of a LOB to Another LOB

Purpose
This procedure describes how to copy all or part of a LOB to another LOB.

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

User/
Program

SELECT
a LOB

OPEN
a LOB

CLOSE
a LOB

COPY
All or Part of a
LOB to Another

Copy

: Internal Persistent
LOBs COPY All or Part of a LOB to Another Copy
9-76 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy All or Part of a LOB to Another LOB
Usage Notes

Locking the Row Prior to Updating
Prior to updating a LOB value via the PL/SQL DBMS_LOB package or OCI, you

must lock the row containing the LOB. While the SQL INSERT and UPDATE
statements implicitly lock the row, locking is done explicitly by means of a SQL

SELECT FOR UPDATE statement in SQL and PL/SQL programs, or by using an OCI
pin or lock function in OCI programs.

For more details on the state of the locator after an update, refer to "Updated LObs

Via Updated Locators" on page 5-5 in Chapter 5, "Advanced Topics".

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB COPY

Scenario
The code in these examples show you how to copy a portion of Sound from one

clip to another.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Copy All or Part of a LOB to Another LOB on page 9-77

C/C++ (Pro*C/C++): Copy All or Part of a LOB to Another LOB
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 Internal Persistent LOBs 9-77

Copy All or Part of a LOB to Another LOB
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void copyLOB_proc()
{
 OCIBlobLocator *Dest_loc, *Src_loc;
 int Amount = 5;
 int Dest_pos = 10;
 int Src_pos = 1;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate the LOB locators: */
 EXEC SQL ALLOCATE :Dest_loc;
 EXEC SQL ALLOCATE :Src_loc;
 /* Select the LOBs: */
 EXEC SQL SELECT Sound INTO :Dest_loc
 FROM Multimedia_tab WHERE Clip_ID = 2 FOR UPDATE;
 EXEC SQL SELECT Sound INTO :Src_loc
 FROM Multimedia_tab WHERE Clip_ID = 1;
 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Dest_loc READ WRITE;
 EXEC SQL LOB OPEN :Src_loc READ ONLY;
 /* Copies the specified Amount from the source position in the source
 LOB to the destination position in the destination LOB: */
 EXEC SQL LOB COPY :Amount
 FROM :Src_loc AT :Src_pos TO :Dest_loc AT :Dest_pos;
 /* Closing the LOBs is mandatory if they have been opened: */
 EXEC SQL LOB CLOSE :Dest_loc;
 EXEC SQL LOB CLOSE :Src_loc;
 /* Release resources held by the locators: */
 EXEC SQL FREE :Dest_loc;
 EXEC SQL FREE :Src_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 copyLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

9-78 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy a LOB Locator
Copy a LOB Locator

Figure 9–28 Use Case Diagram: Copy a LOB Locator

Purpose
This procedure describes how to copy a LOB locator.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

User/
Program

SELECT
a LOB

COPY
LOB Locator

: Internal Persistent
LOBs COPY LOB Locator
 Internal Persistent LOBs 9-79

Copy a LOB Locator
■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — SELECT, LOB ASSIGN

Scenario
These examples show how to copy one locator to another involving the video frame

(Frame). Note how different locators may point to the same or different, current or

outdated data.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Copy a LOB Locator on page 9-80

C/C++ (Pro*C/C++): Copy a LOB Locator
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void lobAssign_proc()
{
 OCIBlobLocator *Lob_loc1, *Lob_loc2;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc1;
 EXEC SQL ALLOCATE :Lob_loc2;
 EXEC SQL SELECT Frame INTO :Lob_loc1
 FROM Multimedia_tab WHERE Clip_ID = 1 FOR UPDATE;
 /* Assign Lob_loc1 to Lob_loc2 thereby saving a copy of the value of the
 LOB at this point in time: */
 EXEC SQL LOB ASSIGN :Lob_loc1 TO :Lob_loc2;
 /* When you write some data to the LOB through Lob_loc1, Lob_loc2 will not
 see the newly written data whereas Lob_loc1 will see the new data: */
}

9-80 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy a LOB Locator
void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 lobAssign_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

 Internal Persistent LOBs 9-81

See If One LOB Locator Is Equal to Another
See If One LOB Locator Is Equal to Another

Figure 9–29 Use Case Diagram: See If One LOB Locator Is Equal to Another

Purpose
This procedure describes how to see if one LOB locator is equal to another.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB ASSIGN

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

SELECT
a LOB

SEE if LOB
Locators are

Equal

: Internal Persistent
LOBs SEE if LOB Locators are Equal
9-82 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If One LOB Locator Is Equal to Another
Scenario
If two locators are equal, this means that they refer to the same version of the LOB

data (see "Read-Consistent Locators" on page 5-2). In this example, the locators are

equal. However, it may be as important to determine that locators do not refer to

same version of the LOB data.

Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): See If One LOB Locator Is Equal to Another on page 9-83

C/C++ (Pro*C/C++): See If One LOB Locator Is Equal to Another
/* Pro*C/C++ does not provide a mechanism to test the equality of two
 locators. However, by using the OCI directly, two locators can be
 compared to determine whether or not they are equal as this example
 demonstrates: */

#include <sql2oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void LobLocatorIsEqual_proc()
{
 OCIBlobLocator *Lob_loc1, *Lob_loc2;
 OCIEnv *oeh;
 boolean isEqual;
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc1;
 EXEC SQL ALLOCATE :Lob_loc2;
 EXEC SQL SELECT Frame INTO Lob_loc1
 FROM Multimedia_tab where Clip_ID = 1 FOR UPDATE;
 /* Assign Lob_loc1 to Lob_loc2 thereby saving a copy of the value of the
 Internal Persistent LOBs 9-83

See If One LOB Locator Is Equal to Another
 LOB at this point in time: */
 EXEC SQL LOB ASSIGN :Lob_loc1 TO :Lob_loc2;
 /* When you write some data to the lob through Lob_loc1, Lob_loc2 will
 not see the newly written data whereas Lob_loc1 will see the new
 data. */
 /* Get the OCI Environment Handle using a SQLLIB Routine: */
 (void) SQLEnvGet(SQL_SINGLE_RCTX, &oeh);
 /* Call OCI to see if the two locators are Equal: */
 (void) OCILobIsEqual(oeh, Lob_loc1, Lob_loc2, &isEqual);
 if (isEqual)
 printf("The locators are equal\n");
 else
 printf("The locators are not equal\n");
 /* Note that in this example, the LOB locators will be Equal */
 EXEC SQL FREE :Lob_loc1;
 EXEC SQL FREE :Lob_loc2;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 LobLocatorIsEqual_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

9-84 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB Locator Is Initialized
See If a LOB Locator Is Initialized

Figure 9–30 Use Case Diagram: See If a LOB Locator Is Initialized

Purpose
This procedure describes how to see if a LOB locator is initialized.

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

User/
Program

SEE if
LOB Locator is

Initialized

: Internal Persistent
LOBs SEE if LOB Locator is Initialized
 Internal Persistent LOBs 9-85

See If a LOB Locator Is Initialized
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Appendix F,

"Embedded SQL Statements and Directives". See C(OCI), OciLobLocatorIsInit.

Scenario
The operation allows you to determine if the locator has been initialized or not. In

the example shown both locators are found to be initialized.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): See If a LOB Locator Is Initialized on page 9-86

C/C++ (Pro*C/C++): See If a LOB Locator Is Initialized
/* Pro*C/C++ has no form of embedded SQL statement to determine if a LOB
 locator is initialized. Locators in Pro*C/C++ are initialized when they
 are allocated via the EXEC SQL ALLOCATE statement. However, an example
 can be written that uses embedded SQL and the OCI as is shown here: */

#include <sql2oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void LobLocatorIsInit_proc()
9-86 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB Locator Is Initialized
{
 OCIBlobLocator *Lob_loc;
 OCIEnv *oeh;
 OCIError *err;
 boolean isInitialized;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Frame INTO Lob_loc
 FROM Multimedia_tab where Clip_ID = 1;
 /* Get the OCI Environment Handle using a SQLLIB Routine: */
 (void) SQLEnvGet(SQL_SINGLE_RCTX, &oeh);
 /* Allocate the OCI Error Handle: */
 (void) OCIHandleAlloc((dvoid *)oeh, (dvoid **)&err,
 (ub4)OCI_HTYPE_ERROR, (ub4)0, (dvoid **)0);
 /* Use the OCI to determine if the locator is Initialized: */
 (void) OCILobLocatorIsInit(oeh, err, Lob_loc, &isInitialized);
 if (isInitialized)
 printf("The locator is initialized\n");
 else
 printf("The locator is not initialized\n");
 /* Note that in this example, the locator is initialized */
 /* Deallocate the OCI Error Handle: */
 (void) OCIHandleFree(err, OCI_HTYPE_ERROR);
 /* Release resources held by the locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 LobLocatorIsInit_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

 Internal Persistent LOBs 9-87

Get Character Set ID
Get Character Set ID

Figure 9–31 Use Case Diagram: Get Character Set ID

Purpose
This procedure describes how to get the character set ID.

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

User/
Program

SELECT
a LOB

GET Character
Set ID

: Internal Persistent
LOBs GET Character Set ID
9-88 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get Character Set ID
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): There is no applicable syntax reference for this use case.

Scenario
The use case demonstrates how to determine the character set ID of the foreign

language subtitle (FLSub).

Example
This functionality is currently available only in OCI:

■ C/C++ (Pro*C/C++): No example is provided with this release.

See Also: Chapter 3, "LOB Programmatic Environments" for a list

of available functions in each programmatic environment.
 Internal Persistent LOBs 9-89

Get Character Set Form
Get Character Set Form

Figure 9–32 Use Case Diagram: Get Character Set Form

Purpose
This procedure describes how to get the character set form.

Usage Notes
Not applicable.

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

User/
Program

SELECT
a LOB

GET Character
Set Form

: Internal Persistent
LOBs GET Character Set Form
9-90 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get Character Set Form
Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): There is no applicable syntax reference for this use case.

Scenario
The use case demonstrates how to determine the character set form of the foreign

language subtitle (FLSub).

This functionality is currently available only in OCI:

■ C/C++ (Pro*C/C++): No example is provided with this release.
 Internal Persistent LOBs 9-91

Append One LOB to Another
Append One LOB to Another

Figure 9–33 Use Case Diagram: Append One LOB to Another

User/
Program

SELECT
a LOB

OPEN
a LOB

CLOSE
a LOB

APPEND One
LOB to
Another

: Internal Persistent
LOBs APPEND One LOB to Another
9-92 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Append One LOB to Another
Purpose
This procedure describes how to append one LOB to another.

Usage Notes

Locking the Row Prior to Updating
Prior to updating a LOB value via the PL/SQL DBMS_LOB package or the OCI, you

must lock the row containing the LOB. While the SQL INSERT and UPDATE
statements implicitly lock the row, locking is done explicitly by means of a SQL

SELECT FOR UPDATE statement in SQL and PL/SQL programs, or by using an OCI
pin or lock function in OCI programs. For more details on the state of the locator

after an update, refer to "Updated LObs Via Updated Locators" on page 5-5 in

Chapter 5, "Advanced Topics".

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide):Appendix F,

"Embedded SQL Statements and Directives" — LOB APPEND

Scenario
These examples deal with the task of appending one segment of Sound to another.

We assume that you use sound-specific editing tools to match the wave-forms.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Append One LOB to Another on page 9-94

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.
 Internal Persistent LOBs 9-93

Append One LOB to Another
C/C++ (Pro*C/C++): Append One LOB to Another
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void appendLOB_proc()
{
 OCIBlobLocator *Dest_loc, *Src_loc;
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();

 /* Allocate the locators: */
 EXEC SQL ALLOCATE :Dest_loc;
 EXEC SQL ALLOCATE :Src_loc;

 /* Select the destination locator: */
 EXEC SQL SELECT Sound INTO :Dest_loc
 FROM Multimedia_tab WHERE Clip_ID = 2 FOR UPDATE;

 /* Select the source locator: */
 EXEC SQL SELECT Sound INTO :Src_loc
 FROM Multimedia_tab WHERE Clip_ID = 1;

 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Dest_loc READ WRITE;
 EXEC SQL LOB OPEN :Src_loc READ ONLY;

 /* Append the source LOB to the end of the destination LOB: */
 EXEC SQL LOB APPEND :Src_loc TO :Dest_loc;

 /* Closing the LOBs is mandatory if they have been opened: */
 EXEC SQL LOB CLOSE :Dest_loc;
 EXEC SQL LOB CLOSE :Src_loc;

 /* Release resources held by the locators: */
 EXEC SQL FREE :Dest_loc;
 EXEC SQL FREE :Src_loc;
9-94 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Append One LOB to Another
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 appendLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

 Internal Persistent LOBs 9-95

Write Append to a LOB
Write Append to a LOB

Figure 9–34 Use Case Diagram: Write Append to a LOB

Purpose
This procedure describes how to WRITE APPEND to a LOB.

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

OPEN
a LOB

User/
Program

SELECT
a LOB

get
chunk size

CLOSE
a LOB

WRITE
Append

: Internal Persistent
LOBs WRITE Append
9-96 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Append to a LOB
Usage Notes

Writing Singly or Piecewise
The writeappend operation writes a buffer to the end of a LOB.

For OCI, the buffer can be written to the LOB in a single piece with this call;

alternatively, it can be rendered piecewise using callbacks or a standard polling

method.

Writing Piecewise: When to Use Callbacks or Polling? If the value of the piece parameter

is OCI_FIRST_PIECE , data must be provided through callbacks or polling.

■ If a callback function is defined in the cbfp parameter, then this callback

function will be invoked to get the next piece after a piece is written to the pipe.

Each piece will be written from bufp.

■ If no callback function is defined, then OCILobWriteAppend () returns the

OCI_NEED_DATAerror code. The application must call OCILobWriteAppend ()

again to write more pieces of the LOB. In this mode, the buffer pointer and the

length can be different in each call if the pieces are of different sizes and from

different locations. A piece value of OCI_LAST_PIECE terminates the

piecewise write.

Locking the Row Prior to Updating
Prior to updating a LOB value via the PL/SQL DBMS_LOB package or the OCI, you

must lock the row containing the LOB. While the SQL INSERT and UPDATE
statements implicitly lock the row, locking is done explicitly by means of a SQL

SELECT FOR UPDATE statement in SQL and PL/SQL programs, or by using an OCI
pin or lock function in OCI programs.

For more details on the state of the locator after an update, refer to "Updated LObs

Via Updated Locators" on page 5-5 in Chapter 5, "Advanced Topics".

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB WRITE APPEND
 Internal Persistent LOBs 9-97

Write Append to a LOB
Scenario
These examples demonstrate writing to the end of a video frame (Frame).

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Write Append to a LOB on page 9-98

C/C++ (Pro*C/C++): Write Append to a LOB
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 128

void LobWriteAppend_proc()
{
 OCIBlobLocator *Lob_loc;
 int Amount = BufferLength;
 /* Amount == BufferLength so only a single WRITE is needed: */
 char Buffer[BufferLength];
 /* Datatype equivalencing is mandatory for this datatype: */
 EXEC SQL VAR Buffer IS RAW(BufferLength);
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Frame INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1 FOR UPDATE;
 /* Opening the LOB is Optional: */
 EXEC SQL LOB OPEN :Lob_loc;
 memset((void *)Buffer, 1, BufferLength);
 /* Write the data from the buffer at the end of the LOB: */
 EXEC SQL LOB WRITE APPEND :Amount FROM :Buffer INTO :Lob_loc;
 /* Closing the LOB is mandatory if it has been opened: */
9-98 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Append to a LOB
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 LobWriteAppend_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

 Internal Persistent LOBs 9-99

Write Data to a LOB
Write Data to a LOB

Figure 9–35 Use Case Diagram: Write Data to a LOB

OPEN
a LOB

SELECT
a LOB

get
chunk size

CLOSE
a LOB

enable
buffering

WRITE Data
to the LOB

User/
Program

disable
buffering

flush
buffer

: Internal Persistent
LOBs WRITE Data to the LOB
9-100 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Data to a LOB
Purpose
This procedure describes how to write data to a LOB.

Usage Notes

Stream Write
The most efficient way to write large amounts of LOB data is to use

OCILobWrite () with the streaming mechanism enabled via polling or a callback. If

you know how much data will be written to the LOB, specify that amount when

calling OCILobWrite (). This will allow for the contiguity of the LOB data on disk.

Apart from being spatially efficient, the contiguous structure of the LOB data will

make for faster reads and writes in subsequent operations.

Chunksize
A chunk is one or more Oracle blocks. As noted previously, you can specify the

chunk size for the LOB when creating the table that contains the LOB. This

corresponds to the chunk size used by Oracle when accessing/modifying the LOB
value. Part of the chunk is used to store system-related information and the rest

stores the LOB value. The getchunksize function returns the amount of space

used in the LOB chunk to store the LOB value.

Use a Multiple of Chunksize to Improve Write Performance. You will improve

performance if you execute write requests using a multiple of this chunk size. The

reason for this is that the LOB chunk is versioned for every write operation. If all

writes are done on a chunk basis, no extra or excess versioning is incurred or

duplicated. If it is appropriate for your application, you should batch writes until

you have enough for an entire chunk instead of issuing several LOB write calls that

operate on the same LOB chunk.

Locking the Row Prior to Updating
Prior to updating a LOB value via the PL/SQL DBMS_LOB package or OCI, you

must lock the row containing the LOB. While the SQL INSERT and UPDATE
statements implicitly lock the row, locking is done explicitly by means of a SQL

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.
 Internal Persistent LOBs 9-101

Write Data to a LOB
SELECT FOR UPDATE statement in SQL and PL/SQL programs, or by using an OCI
pin or lock function in OCI programs.

For more details on the state of the locator after an update, refer to "Updated LObs

Via Updated Locators" on page 5-5 in Chapter 5, "Advanced Topics".

Using DBMS_LOB.WRITE() to Write Data to a BLOB
When you are passing a hexadecimal string to DBMS_LOB.WRITE() to write data to

a BLOB, use the following guidelines:

■ The amount parameter should be <= the buffer length parameter

■ The length of the buffer should be ((amount *2) - 1). This guideline exists

because the two characters of the string are seen as one hexadecimal character

(and an implicit hexadecimal-to-raw conversion takes place), i.e., every two

bytes of the string are converted to one raw byte.

The following example is correct:

declare
 blob_loc BLOB;
 rawbuf RAW(10);
 an_offset INTEGER := 1;
 an_amount BINARY_INTEGER := 10;
begin
 select blob_col into blob_loc from a_table
where id = 1;
 rawbuf := '1234567890123456789';
 dbms_lob.write(blob_loc, an_amount, an_offset,
rawbuf);
 commit;
end;

Replacing the value for 'an_amount' in the previous example with the following

values, yields error message, ora_21560:

 an_amount BINARY_INTEGER := 11;
or

 an_amount BINARY_INTEGER := 19;

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:
9-102 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Data to a LOB
■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB WRITE

Scenario
The following examples allow the STORY data (the storyboard for the clip) to be

updated by writing data to the LOB.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Write Data to a LOB on page 9-103

C/C++ (Pro*C/C++): Write Data to a LOB
/* This example demonstrates how Pro*C/C++ provides for the ability to write
 arbitrary amounts of data to an Internal LOB in either a single piece
 of in multiple pieces using a Streaming Mechanism that utilizes standard
 polling. A dynamically allocated Buffer is used to hold the data being
 written to the LOB: */
#include <oci.h>
#include <stdio.h>
#include <string.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 1024

void writeDataToLOB_proc(multiple) int multiple;
{
 OCIClobLocator *Lob_loc;
 varchar Buffer[BufferLength];
 unsigned int Total;
 unsigned int Amount;
 unsigned int remainder, nbytes;
 boolean last;
 Internal Persistent LOBs 9-103

Write Data to a LOB
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Initialize the Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Story INTO Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1 FOR UPDATE;
 /* Open the CLOB: */
 EXEC SQL LOB OPEN :Lob_loc READ WRITE;
 Total = Amount = (multiple * BufferLength);
 if (Total > BufferLength)
 nbytes = BufferLength; /* We will use streaming via standard polling */
 else
 nbytes = Total; /* Only a single write is required */
 /* Fill the buffer with nbytes worth of data: */
 memset((void *)Buffer.arr, 32, nbytes);
 Buffer.len = nbytes; /* Set the Length */
 remainder = Total - nbytes;
 if (0 == remainder)
 {
 /* Here, (Total <= BufferLength) so we can write in one piece: */
 EXEC SQL LOB WRITE ONE :Amount FROM :Buffer INTO :Lob_loc;
 printf("Write ONE Total of %d characters\n", Amount);
 }
 else
 {
 /* Here (Total > BufferLength) so we streaming via standard polling */
 /* write the first piece. Specifying first initiates polling: */
 EXEC SQL LOB WRITE FIRST :Amount FROM :Buffer INTO :Lob_loc;
 printf("Write first %d characters\n", Buffer.len);
 last = FALSE;
 /* Write the next (interim) and last pieces: */
 do
 {
 if (remainder > BufferLength)
 nbytes = BufferLength; /* Still have more pieces to go */
 else
 {
 nbytes = remainder; /* Here, (remainder <= BufferLength) */
 last = TRUE; /* This is going to be the Final piece */
 }
 /* Fill the buffer with nbytes worth of data: */
 memset((void *)Buffer.arr, 32, nbytes);
 Buffer.len = nbytes; /* Set the Length */
 if (last)
 {
9-104 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Data to a LOB
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Specifying LAST terminates polling: */
 EXEC SQL LOB WRITE LAST :Amount FROM :Buffer INTO :Lob_loc;
 printf("Write LAST Total of %d characters\n", Amount);
 }
 else
 {
 EXEC SQL WHENEVER SQLERROR DO break;
 EXEC SQL LOB WRITE NEXT :Amount FROM :Buffer INTO :Lob_loc;
 printf("Write NEXT %d characters\n", Buffer.len);
 }
 /* Determine how much is left to write: */
 remainder = remainder - nbytes;
 } while (!last);
 }
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* At this point, (Amount == Total), the total amount that was written */
 /* Close the CLOB: */
 EXEC SQL LOB CLOSE :Lob_loc;
 /* Free resources held by the Locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 writeDataToLOB_proc(1);
 EXEC SQL ROLLBACK WORK;
 writeDataToLOB_proc(4);
 EXEC SQL ROLLBACK WORK RELEASE;
}

:

 Internal Persistent LOBs 9-105

Trim LOB Data
Trim LOB Data
Figure 9–36 Use Case Diagram: Trim LOB Data

User/
Program

SELECT
a LOB

OPEN
a LOB

CLOSE
a LOB

TRIM the
LOB Data

: Internal Persistent
LOBs TRIM the LOB Data
9-106 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Trim LOB Data
Purpose
This procedure describes how to trim LOB data.

Usage Notes

Locking the Row Prior to Updating
Prior to updating a LOB value via the PL/SQL DBMS_LOB package or OCI, you

must lock the row containing the LOB. While the SQL INSERT and UPDATE
statements implicitly lock the row, locking is done explicitly by means of a SQL

SELECT FOR UPDATE statement in SQL and PL/SQL programs, or by using an OCI
pin or lock function in OCI programs. For more details on the state of the locator

after an update, refer to "Updated LObs Via Updated Locators" on page 5-5 in

Chapter 5, "Advanced Topics".

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL and Precompiler Directives" — LOB TRIM

Scenario
These examples access text (CLOB data) referenced in the Script column of table

Voiceover_tab , and trim it.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Trim LOB Data on page 9-108

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.
 Internal Persistent LOBs 9-107

Trim LOB Data
C/C++ (Pro*C/C++): Trim LOB Data
/*In addition to the data structures set up above in the section “Examples”, you
should use DML like this:
INSERT INTO multimedia_tab VALUES (2, ’The quick brown fox jumped over the lazy
dog’, empty_clob(), NULL, empty_blob(), empty_blob(), NULL, NULL, NULL, NULL);
INSERT INTO voiceover_tab VALUES (voiced_typ(’hello’, (SELECT story FROM
multimedia_tab WHERE clip_id = 2), ’world’, 1, NULL))
UPDATE multimedia_tab SET voiced_ref = (SELECT REF(r) FROM voiceover_tab r WHERE
r.take = 1) WHERE clip_id = 2
Then create this text file, pers_trim.typ, containing:
case=lower
type voiced_typ
Then run this Object Type Translator command:
ott intyp=pers_trim.typ outtyp=pers_trim_o.typ
hfile=pers_trim.h code=c user=samp/samp
*/
#include "pers_trim.h"
#include <stdio.h>
#include <sqlca.h>
void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("sqlcode = %ld\n", sqlca.sqlcode);
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void trimLOB_proc()
{
 voiced_typ_ref *vt_ref;
 voiced_typ *vt_typ;
 OCIClobLocator *Lob_loc;
 unsigned int Length, trimLength;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL ALLOCATE :vt_ref;
 EXEC SQL ALLOCATE :vt_typ;

 /* Retrieve the REF using Associative SQL */
 EXEC SQL SELECT Mtab.Voiced_ref INTO :vt_ref
 FROM Multimedia_tab Mtab WHERE Mtab.Clip_ID = 2 FOR UPDATE;
9-108 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Trim LOB Data
 /* Dereference the Object using the Navigational Interface */
 EXEC SQL OBJECT DEREF :vt_ref INTO :vt_typ FOR UPDATE;
 Lob_loc = vt_typ->script;

 /* Opening the LOB is Optional */
 EXEC SQL LOB OPEN :Lob_loc READ WRITE;
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;
 printf("Old length was %d\n", Length);
 trimLength = (unsigned int)(Length / 2);

 /* Trim the LOB to its new length */
 EXEC SQL LOB TRIM :Lob_loc TO :trimLength;

 /* Closing the LOB is mandatory if it has been opened */
 EXEC SQL LOB CLOSE :Lob_loc;

 /* Mark the Object as Modified (Dirty) */
 EXEC SQL OBJECT UPDATE :vt_typ;

 /* Flush the changes to the LOB in the Object Cache */
 EXEC SQL OBJECT FLUSH :vt_typ;

 /* Display the new (modified) length */
 EXEC SQL SELECT Mtab.Voiced_ref.Script INTO :Lob_loc
 FROM Multimedia_tab Mtab WHERE Mtab.Clip_ID = 2;
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;
 printf("New length is now %d\n", Length);

 /* Free the Objects and the LOB Locator */
 EXEC SQL FREE :vt_ref;
 EXEC SQL FREE :vt_typ;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 trimLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

 Internal Persistent LOBs 9-109

Erase Part of a LOB
Erase Part of a LOB

Figure 9–37 Use Case Diagram: Erase Part of a LOB

User/
Program

SELECT
a LOB

ERASE Part
of a LOB

OPEN
a LOB

CLOSE
a LOB

: Internal Persistent
LOBs ERASE Part of a LOB
9-110 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Erase Part of a LOB
Purpose
This procedure describes how to erase part of a LOB.

Usage Notes

Locking the Row Prior to Updating
Prior to updating a LOB value via the PL/SQL DBMS_LOB package or OCI, you

must lock the row containing the LOB. While INSERT and UPDATE statements

implicitly lock the row, locking is done explicitly by means of a SELECT FOR
UPDATEstatement in SQL and PL/SQL programs, or by using the OCI pin or lock
function in OCI programs.

For more details on the state of the locator after an update, refer to "Updated LObs

Via Updated Locators" on page 5-5 in Chapter 5, "Advanced Topics".

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL and Precompiler Directives" — LOB ERASE

Scenario
The examples demonstrate erasing a portion of sound (Sound).

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Erase Part of a LOB on page 9-112

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.
 Internal Persistent LOBs 9-111

Erase Part of a LOB
C/C++ (Pro*C/C++): Erase Part of a LOB
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void eraseLob_proc()
{
 OCIBlobLocator *Lob_loc;
 int Amount = 5;
 int Offset = 5;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Sound INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1 FOR UPDATE;
 /* Opening the LOB is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ WRITE;
 /* Erase the data starting at the specified Offset: */
 EXEC SQL LOB ERASE :Amount FROM :Lob_loc AT :Offset;
 printf("Erased %d bytes\n", Amount);
 /* Closing the LOB is mandatory if it has been opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 eraseLob_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

9-112 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Enable LOB Buffering
Enable LOB Buffering

Figure 9–38 Use Case Diagram: Enable LOB Buffering

OPEN
a LOB

User/
Program

SELECT
a LOB

flush
buffer

CLOSE
a LOB

read data
from the LOB

ENABLE
Buffering

write data
to the LOB

disable
buffering

: Internal Persistent
LOBs ENABLE Buffering
 Internal Persistent LOBs 9-113

Enable LOB Buffering
Purpose
This procedure describes how to enable LOB buffering.

Usage Notes
Enable buffering when performing a small read or write of data. Once you have

completed these tasks, you must disable buffering before you can continue with any

other LOB operations.

For more information, refer to "LOB Buffering Subsystem" on page 5-21 in

Chapter 5, "Advanced Topics".

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL and Precompiler Directives" — LOB ENABLE BUFFERING

■

Scenario
This scenario is part of the management of a buffering example related to Sound
that is developed in this and related methods.

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

Note:

■ You must flush the buffer in order to make your modifications

persistent.

■ Do not enable buffering for the stream read and write involved

in checkin and checkout.
9-114 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Enable LOB Buffering
Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Enable LOB Buffering on page 9-115

C/C++ (Pro*C/C++): Enable LOB Buffering
#include <oci.h>
#include <stdio.h>
#include <string.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 256

void enableBufferingLOB_proc()
{
 OCIBlobLocator *Lob_loc;
 int Amount = BufferLength;
 int multiple, Position = 1;
 /* Datatype equivalencing is mandatory for this datatype: */
 char Buffer[BufferLength];
 EXEC SQL VAR Buffer is RAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Initialize the LOB: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Sound INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1 FOR UPDATE;

 /* Enable use of the LOB Buffering Subsystem: */
 EXEC SQL LOB ENABLE BUFFERING :Lob_loc;
 memset((void *)Buffer, 0, BufferLength);
 for (multiple = 0; multiple < 8; multiple++)
 {
 /* Write data to the LOB: */
 EXEC SQL LOB WRITE ONE :Amount
 Internal Persistent LOBs 9-115

Enable LOB Buffering
 FROM :Buffer INTO :Lob_loc AT :Position;
 Position += BufferLength;
 }
 /* Flush the contents of the buffers and Free their resources: */
 EXEC SQL LOB FLUSH BUFFER :Lob_loc FREE;
 /* Turn off use of the LOB Buffering Subsystem: */
 EXEC SQL LOB DISABLE BUFFERING :Lob_loc;
 /* Release resources held by the Locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 enableBufferingLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

9-116 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Flush Buffer
Flush Buffer

Figure 9–39 Use Case Diagram: Flush Buffer

OPEN
a LOB

User/
Program

SELECT
a LOB

FLUSH
the Buffer

CLOSE
a LOB

read data
from the LOB

enable
buffering

write data
to the LOB

disable
buffering

: Internal Persistent
LOBs FLUSH the Buffer
 Internal Persistent LOBs 9-117

Flush Buffer
Purpose
This procedure describes how to flush the LOB buffer.

Usage Notes
Enable buffering when performing a small read or write of data. Once you have

completed these tasks, you must disable buffering before you can continue with any

other LOB operations.

For more information, refer to "LOB Buffering Subsystem" on page 5-21 in

Chapter 5, "Advanced Topics".

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB FLUSH BUFFER.

■

Scenario
This scenario is part of the management of a buffering example related to Sound
that is developed in this and related methods. The associated examples are

provided in the following programmatic environments:

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

Notes:

■ You must flush the buffer in order to make your modifications

persistent.

■ Do not enable buffering for the stream read and write involved

in checkin and checkout.
9-118 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Flush Buffer
Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Flush Buffer on page 9-119

C/C++ (Pro*C/C++): Flush Buffer
#include <oci.h>
#include <stdio.h>
#include <string.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 256

void flushBufferingLOB_proc()
{
 OCIBlobLocator *Lob_loc;
 int Amount = BufferLength;
 int multiple, Position = 1;

 /* Datatype equivalencing is mandatory for this datatype: */
 char Buffer[BufferLength];
 EXEC SQL VAR Buffer is RAW(BufferLength);
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();

 /* Allocate and Initialize the LOB: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Sound INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1 FOR UPDATE;

 /* Enable use of the LOB Buffering Subsystem: */
 EXEC SQL LOB ENABLE BUFFERING :Lob_loc;
 memset((void *)Buffer, 0, BufferLength);
 for (multiple = 0; multiple < 8; multiple++)
 {
 Internal Persistent LOBs 9-119

Flush Buffer
 /* Write data to the LOB: */
 EXEC SQL LOB WRITE ONE :Amount
 FROM :Buffer INTO :Lob_loc AT :Position;
 Position += BufferLength;
 }
 /* Flush the contents of the buffers and Free their resources: */
 EXEC SQL LOB FLUSH BUFFER :Lob_loc FREE;
 /* Turn off use of the LOB Buffering Subsystem: */
 EXEC SQL LOB DISABLE BUFFERING :Lob_loc;
 /* Release resources held by the Locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 flushBufferingLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

9-120 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Disable LOB Buffering
Disable LOB Buffering

Figure 9–40 Use Case Diagram: Disable LOB Buffering

OPEN
a LOB

User/
Program

SELECT
a LOB

flush
buffer

CLOSE
a LOB

read data
from the LOB

enable
buffering

write data
to the LOB

DISABLE
Buffering

: Internal Persistent
LOBs DISABLE Buffering
 Internal Persistent LOBs 9-121

Disable LOB Buffering
Purpose
This procedure describes how to disable LOB buffering.

Usage Notes
Enable buffering when performing a small read or write of data. Once you have

completed these tasks, you must disable buffering before you can continue with any

other LOB operations.

For more information, refer to "LOB Buffering Subsystem" on page 5-21 in

Chapter 5, "Advanced Topics".

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB DISABLE BUFFER

Scenario
This scenario is part of the management of a buffering example related to Sound
that is developed in this and related methods.

Examples
Examples are provided in the following programmatic environments:

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

Note:

■ You must flush the buffer in order to make your modifications

persistent.

■ Do not enable buffering for the stream read and write involved

in checkin and checkout.
9-122 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Disable LOB Buffering
■ C/C++ (Pro*C/C++): Disable LOB Buffering on page 9-123

C/C++ (Pro*C/C++): Disable LOB Buffering
#include <oci.h>
#include <stdio.h>
#include <string.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 256

void disableBufferingLOB_proc()
{
 OCIBlobLocator *Lob_loc;
 int Amount = BufferLength;
 int multiple, Position = 1;
 /* Datatype equivalencing is mandatory for this datatype: */
 char Buffer[BufferLength];
 EXEC SQL VAR Buffer is RAW(BufferLength);
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();

/* Allocate and Initialize the LOB: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Sound INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1 FOR UPDATE;
 /* Enable use of the LOB Buffering Subsystem: */
 EXEC SQL LOB ENABLE BUFFERING :Lob_loc;
 memset((void *)Buffer, 0, BufferLength);
 for (multiple = 0; multiple < 7; multiple++)
 {
 /* Write data to the LOB: */
 EXEC SQL LOB WRITE ONE :Amount
 FROM :Buffer INTO :Lob_loc AT :Position;
 Position += BufferLength;
 }
 /* Flush the contents of the buffers and Free their resources: */
 Internal Persistent LOBs 9-123

Disable LOB Buffering
 EXEC SQL LOB FLUSH BUFFER :Lob_loc FREE;
 /* Turn off use of the LOB Buffering Subsystem: */
 EXEC SQL LOB DISABLE BUFFERING :Lob_loc;
 /* Write APPEND can only be done when Buffering is Disabled: */
 EXEC SQL LOB WRITE APPEND ONE :Amount FROM :Buffer INTO :Lob_loc;
 /* Release resources held by the Locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 disableBufferingLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

9-124 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Three Ways to Update a LOB or Entire LOB Data
Three Ways to Update a LOB or Entire LOB Data

Figure 9–41 Use Case Diagram: Three Ways to Update a LOB or Entire LOB Data

a. UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB() on page 9-128

b. UPDATE a Row by Selecting a LOB From Another Table on page 9-131

c. UPDATE by Initializing a LOB Locator Bind Variable on page 9-133

For Binds of More Than 4,000 Bytes
For information on how to UPDATE a LOB when binds of more than 4,000 bytes are

involved, see the following sections in Chapter 7, "Modeling and Design":

■ Binds Greater than 4,000 Bytes are Now Allowed For LOB INSERTs and

UPDATEs on page 7-16

■ Binds of More Than 4,000 Bytes ... No HEX to RAW or RAW to HEX Conversion

on page 7-16

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

User/
Program

UPDATE
the Row or
Entire LOB

Data

UPDATE using Empty_CLOB() or Empty BLOB()

UPDATE as SELECT

UPDATE by initializing a LOB
Locator Bind Variable

: Internal persistent
LOBS UPDATE the Row or Entire LOB Data

b

a

c

 Internal Persistent LOBs 9-125

Three Ways to Update a LOB or Entire LOB Data
■ Example: PL/SQL - Using Binds of More Than 4,000 Bytes in INSERT and

UPDATE on page 7-18

■ Example: PL/SQL - Binds of More Than 4,000 Bytes -- Inserts Not Supported

Because Hex to Raw/Raw to Hex Conversion is Not Supported on page 7-19

■ Example: C (OCI) - Binds of More than 4,000 Bytes For INSERT and UPDATE

on page 7-20
9-126 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()
UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()

Figure 9–42 Use Case Diagram: UPDATE using EMPTY_CLOB() or EMPTY_BLOB()

Purpose

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

User/
Program

EMPTY
_CLOB() or

_BLOB()

a UPDATE using Empty_CLOB() or Empty BLOB()
UPDATE

the Row or
Entire LOB

Data

: Internal Persistent
LOBs

UPDATE the Row or
Entire LOB Data

a

 Internal Persistent LOBs 9-127

UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()
This procedure describes how to UPDATE a LOB with EMPTY_CLOB() or EMPTY_

BLOB().

Usage Notes

Making a LOB Column Non-Null
Before you write data to an internal LOB, make the LOBcolumn non-null; that is, the

LOB column must contain a locator that points to an empty or populated LOB
value. You can initialize a BLOB column’s value by using the function EMPTY_
BLOB() as a default predicate. Similarly, a CLOB or NCLOB column’s value can be

initialized by using the function EMPTY_CLOB().

You can also initialize a LOB column with a character or raw string less than 4,000

bytes in size. For example:

UPDATE Multimedia_tab
 SET story = ’This is a One Line Story’
 WHERE clip_id = 2;

You can perform this initialization during CREATE TABLE(see "CREATE a Table

Containing One or More LOB Columns") or, as in this case, by means of an INSERT.

Syntax
Use the following syntax reference:

■ SQL: Oracle8i SQL Reference Chapter 7, "SQL Statements" — UPDATE

Scenario
The following example shows a series of updates via the EMPTY_CLOB operation to

different data types of the first clip:

Examples
The example is provided in SQL and applies to all the programmatic environments:

■ SQL: UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()

SQL: UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()
UPDATE Multimedia_tab SET Story = EMPTY_CLOB() WHERE Clip_ID = 1;
9-128 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()
UPDATE Multimedia_tab SET FLSub = EMPTY_CLOB() WHERE Clip_ID = 1;

UPDATE multimedia_tab SET Sound = EMPTY_BLOB() WHERE Clip_ID = 1;
 Internal Persistent LOBs 9-129

UPDATE a Row by Selecting a LOB From Another Table
UPDATE a Row by Selecting a LOB From Another Table

Figure 9–43 Use Case Diagram: UPDATE a Row by Selecting a LOB from Another
Table

Purpose
This procedure describes how to use UPDATE as SELECT with LOBs.

Usage Notes
Not applicable.

Syntax
Use the following syntax reference:

■ SQL: Oracle8i SQL Reference , Chapter 7, "SQL Statements" — UPDATE

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

User/
Program

SELECT
a LOB

UPDATE as SELECT
UPDATE

the Row or
Entire LOB

Data

b

: Internal Persistent
LOBs bUPDATE the Row or

Entire LOB Data
9-130 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE a Row by Selecting a LOB From Another Table
Scenario
This example updates voice-over data from archival storage (VoiceoverLib_tab) by

means of a reference:

Examples
The examples are provided in SQL and apply to all six programmatic environments:

■ SQL: Update a Row by Selecting a LOB From Another Table

SQL: Update a Row by Selecting a LOB From Another Table
UPDATE Voiceover_tab SET (Originator, Script, Actor, Take, Recording) =
 (SELECT * FROM VoiceoverLib_tab T2 WHERE T2.Take = 101);

UPDATE Multimedia_tab Mtab
 SET Voiced_ref =
 (SELECT REF(Vref) FROM Voiceover_tab Vref
 WHERE Vref.Actor = ’James Earl Jones’ AND Vref.Take = 1)
 WHERE Mtab.Clip_ID = 1;
 Internal Persistent LOBs 9-131

UPDATE by Initializing a LOB Locator Bind Variable
UPDATE by Initializing a LOB Locator Bind Variable

Figure 9–44 Use Case Diagram: UPDATE by Initializing a LOB Locator Bind Variable

Purpose
This procedure describes how to UPDATE by initializing a LOB locator bind

variable.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ SQL: Oracle8i SQL Reference , Chapter 7, "SQL Statements" — UPDATE

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

User/
Program

SELECT
a LOB

c UPDATE by initializing a LOB
Locator Bind Variable

UPDATE
the Row or
Entire LOB

Data

: Internal Persistent
LOBs

UPDATE the Row or
Entire LOB Data

c

9-132 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE by Initializing a LOB Locator Bind Variable
■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives".

Scenario
These examples update Sound data by means of a locator bind variable.

Examples
Examples are provided in the following programmatic environments:

■ SQL: Update by Initializing a LOB Locator Bind Variable on page 9-133

■ C/C++ (Pro*C/C++): Update by Initializing a LOB Locator Bind Variable on

page 9-133

SQL: Update by Initializing a LOB Locator Bind Variable
/* Note that the example procedure updateUseBindVariable_proc is not part of the
 DBMS_LOB package: */
CREATE OR REPLACE PROCEDURE updateUseBindVariable_proc (Lob_loc BLOB) IS
BEGIN
 UPDATE Multimedia_tab SET Sound = lob_loc WHERE Clip_ID = 2;
END;

DECLARE
 Lob_loc BLOB;
BEGIN
 /* Select the LOB: */
 SELECT Sound INTO Lob_loc
 FROM Multimedia_tab
 WHERE Clip_ID = 1;
 updateUseBindVariable_proc (Lob_loc);
 COMMIT;
END;

C/C++ (Pro*C/C++): Update by Initializing a LOB Locator Bind Variable
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>
 Internal Persistent LOBs 9-133

UPDATE by Initializing a LOB Locator Bind Variable
void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void updateUseBindVariable_proc(Lob_loc)
 OCIBlobLocator *Lob_loc;
{
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL UPDATE Multimedia_tab SET Sound = :Lob_loc WHERE Clip_ID = 2;
}

void updateLOB_proc()
{
 OCIBlobLocator *Lob_loc;

 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Sound INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1;
 updateUseBindVariable_proc(Lob_loc);
 EXEC SQL FREE :Lob_loc;
 EXEC SQL COMMIT WORK;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 updateLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

9-134 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

DELETE the Row of a Table Containing a LOB
DELETE the Row of a Table Containing a LOB

Figure 9–45 Use Case Diagram: DELETE the Row of a Table Containing a LOB

Purpose
This procedure describes how to delete the row of a table containing a LOB.

Usage Notes
To delete a row that contains an internal LOB column or attribute use one of the

following commands

■ SQL DML: DELETE

■ SQL DDL that effectively deletes it:

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

User/
Program

DELETE
the Row

: Internal Persistent
LOBs DELETE the Row
 Internal Persistent LOBs 9-135

DELETE the Row of a Table Containing a LOB
■ DROP TABLE

■ TRUNCATE TABLE

■ DROP TABLESPACE.

In either case you delete the LOB locator and the LOB value as well.

Distinct LOB Locators for Distinct Rows
Of course, two distinct rows of a table with a LOB column have their own distinct

LOB locators and distinct copies of the LOB values irrespective of whether the LOB
values are the same or different. This means that deleting one row has no effect on

the data or LOB locator in another row even if one LOB was originally copied from

another row.

Syntax
Use the following syntax reference:

■ SQL: Oracle8i SQL Reference , Chapter 7, "SQL Statements" — DELETE, DROP

TABLE, TRUNCATE TABLE

Scenario
In the three examples provided in the following section, all data associated with

Clip 10 is deleted.

Examples
The examples are provided in SQL and apply to all six programmatic environments:

■ SQL: Delete a LOB on page 9-136

SQL: Delete a LOB
DELETE FROM Multimedia_tab WHERE Clip_ID = 10;

Note: Due to the consistent read mechanism, the old LOB value

remains accessible with the value that it had at the time of

execution of the statement (such as SELECT) that returned the LOB
locator. This is an advanced topic. It is discussed in more detail

with regard to "Read-Consistent Locators" on page 5-2.
9-136 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

DELETE the Row of a Table Containing a LOB
DROP TABLE Multimedia_tab;

TRUNCATE TABLE Multimedia_tab;
 Internal Persistent LOBs 9-137

DELETE the Row of a Table Containing a LOB
9-138 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Temporar
10

Temporary LOBs

Use Case Model
In this chapter we discuss each operation on a Temporary LOB (such as "See If a

Temporary LOB Is Open") in terms of a use case. Table 10–1, "Use Case Model

Overview: Internal Temporary LOBs" lists all the use cases.

Graphic Summary of Use Case Model
Two figures, "Use Case Model Diagram: Internal Temporary LOBs (part 1 of 2)" and

"Use Case Model Diagram: Internal temporary LOBs (part 2 of 2)", show the use

cases and their interrelation graphically. If you are using an online version of this

document, you can use this figure to navigate to specific use cases.

Individual Use Cases
Each Internal Persistent LOB use case is described as follows:

■ Use case figure. A figure that depicts the use case (see "How to Interpret the Use

Case Diagrams" in the Preface, for a description of how to interpret these

diagrams).

■ Purpose. The purpose of this use case with regards to LOBs.

■ Usage Notes. Where applicable, guidelines or techniques to assist your

implementation of the LOB operation.

■ Syntax. Pointers to the syntax in different programmatic environments that

underlies the LOBs related activity for the use case.

■ Scenario. A scenario that portrays one implementation of the use case in terms

of the hypothetical multimedia application (see Chapter 8, "Sample

Application" for detailed syntax).
y LOBs 10-1

■ Examples. Examples, based on table Multimedia_tab described in Chapter 8,

in each programmatic environment which can be utilized to implement the use

case.
10-2 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Use Case Model: Internal Temporary LOBs
Use Case Model: Internal Temporary LOBs
Table 10–1, "Use Case Model Overview: Internal Temporary LOBs", indicates with +
where examples are provided for specific use cases and in which programmatic

environment (see Chapter 3, "LOB Programmatic Environments" for a complete

discussion and references to related manuals).

We refer to programmatic environments by means of the following abbreviations:

■ P — PL/SQL using the DBMS_LOB Package

■ O — C using OCI (Oracle Call Interface)

■ B — COBOL using Pro*COBOL precompiler

■ C — C/C++ using Pro*C/C++ precompiler

■ V — Visual Basic using OO4O (Oracle Objects for OLE)

■ J — Java using JDBC (Java Database Connectivity)

■ S — SQL

Table 10–1 Use Case Model Overview: Internal Temporary LOBs

Use Case and Page
Programmatic Environment

Examples

P O B C V J

Create a Temporary LOB on page 10-14 + + + +

See If a LOB is Temporary on page 10-17 + + + +

Free a Temporary LOB on page 10-20 + + + +

Load a Temporary LOB with Data from a BFILE on page 10-23 + + + +

See If a Temporary LOB Is Open on page 10-26 + + + +

Display Temporary LOB Data on page 10-29 + + + +

Read Data from a Temporary LOB on page 10-33 + + + +

Read Portion of Temporary LOB (substr) on page 10-38 + + +

Compare All or Part of Two (Temporary) LOBs on page 10-42 + + +

See If a Pattern Exists in a Temporary LOB (instr) on page 10-46 + + +

Get the Length of a Temporary LOB on page 10-50 + + + +

Copy All or Part of One (Temporary) LOB to Another on page 10-54 + + + +

Copy a LOB Locator for a Temporary LOB on page 10-58 + + + +
Temporary LOBs 10-3

Use Case Model: Internal Temporary LOBs
Is One Temporary LOB Locator Equal to Another on page 10-61 + +

See If a LOB Locator for a Temporary LOB Is Initialized on page 10-65 + +

Get Character Set ID of a Temporary LOB on page 10-68 +

Get Character Set Form of a Temporary LOB on page 10-70 +

Append One (Temporary) LOB to Another on page 10-72 + + + +

Write Append to a Temporary LOB on page 10-76 + + + +

Write Data to a Temporary LOB on page 10-80 + + + +

Trim Temporary LOB Data on page 10-86 + + + +

Erase Part of a Temporary LOB on page 10-90 + + + +

Enable LOB Buffering for a Temporary LOB on page 10-94 + + +

Flush Buffer for a Temporary LOB on page 10-97 + + +

Disable LOB Buffering for a Temporary LOB on page 10-100 + + +

Use Case and Page (Cont.)
Programmatic Environment

Examples

P O B C V J
10-4 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Use Case Model: Internal Temporary LOBs
Figure 10–1 Use Case Model Diagram: Internal Temporary LOBs (part 1 of 2)

Internal temporary LOBs (part 1 of 2)

User/
Program

User/
Progra m

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

display the
LOB data

see if locator
is initialized

read data
from the LOB

free
a temporary

LOB

see where/if
a pattern exists

in the LOB
(instr)

compare all
or parts of

2 LOBs

get the
length of
the LOB

read a
portionof the LOB

from the table
(substr)

see if locators
are equal

get character
set ID

get character
set form

flush
buffer

enable
buffering

disable
buffering

write data
to the LOB
Temporary LOBs 10-5

Use Case Model: Internal Temporary LOBs
Figure 10–2 Use Case Model Diagram: Internal temporary LOBs (part 2 of 2)

Internal temporary LOBs (part 2 of 2)

User/
Program

User/
Program

create
a temporary

LOB

close
a BFILE

specify
BFILE name

SELECT
BFILE OR

INITIALIZE
a BFILE
locator

open
a BFILE

OPEN
a LOB

CLOSE
a LOB

load a LOB
with data

from a BFILE

erase part
of a LOB

trim the
LOB data

copy all or
part of a LOB to

another LOB

append one
LOB to
another

see if LOB
is temporary

free
a temporary

LOB

see
if LOB is open

write
append

copy
LOB locator
10-6 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Programmatic Environments
Programmatic Environments

Oracle8i supports the definition, creation, deletion, access, and update of temporary

LOBs in the following programmatic environments or ’interfaces’:

■ PL/SQL, using the DBMS_LOB package

■ C/C++, using PRO*C precompiler

■ COBOL, using Pro*COBOL precompiler

■ C, using OCI

Locators
The ’interfaces’ listed above, operate on temporary LOBs through locators in the

same way that they do for permanent LOBs. Since temporary LOBs are never part of

any table, you cannot use SQL DML to operate on them. You must manipulate them

using the DBMS_LOB package, OCI, or the other programmatic interfaces.

Temporary LOB Locators Can be IN Values
SQL support for temporary LOBs is available in that temporary LOB locators can be

used as IN values, with values accessed through a locator. Specifically, they can be

used as follows:

■ As a value in a WHERE clause for INSERT, UPDATE, DELETE, or SELECT. For
example :

SELECT pattern FROM composite_image WHERE temp_lob_pattern_id =
somepattern_match_function(lobvalue);

■ As a variable in a SELECT INTO... statement. For example:

SELECT PermanentLob INTO TemporaryLob_loc FROM Demo_tab WHERE Column1 := 1;

Note: No Visual Basic or Java support for temporary LOBs is

planned for the 8.1 release.
Temporary LOBs 10-7

Programmatic Environments
Can You Use the Same Functions for Temporary and Internal Persistent LOBs?
Compare the use case model diagrams for temporary LOBs with the Figure 10–1,

"Use Case Model Diagram: Internal Temporary LOBs (part 1 of 2)", and Figure 10–2,

"Use Case Model Diagram: Internal temporary LOBs (part 2 of 2)". Observe that you

can use the following functions for internal persistent LOBs and temporary LOBs:

■ DBMS_LOB package PL/SQL procedures (COMPARE, INSTR, SUBSTR)

■ DBMS_LOB package PL/SQL procedures and corresponding OCI functions

(Append , Copy, Erase , Getlength , Loadfromfile , Read, Trim , Write,
WriteAppend).

■ OCI functions (OCILobAssign , OCILobLocatorIsInit , etc.).

In addition, you can use the ISTEMPORARY function to determine if a LOB is

temporarily based on its locator.

Temporary LOB Data is Stored in Temporary Tablespace
Temporary LOBs are not stored permanently in the database like other data. The

data is stored in temporary tablespaces and is not stored in any tables. This means

you can CREATE an internal temporary LOB (BLOB,CLOB, NCLOB) on the server

independent of any table, but you cannot store that LOB.

Since temporary LOBs are not associated with table schema, there is no meaning to

the terms "inline" and "out-of-line" for temporary LOBs.

Note: Selecting a permanent LOB into a LOB locator that points to

a temporary LOB will cause the locator to point to a permanent

LOB. It does not cause a copy of the permanent LOB to be put in the

temporary LOB.

Note: One thing to keep in mind is that temporary LOBs do not

support transactions and consistent reads.
10-8 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Programmatic Environments
Lifetime and Duration of Temporary LOBs
The default lifetime of a temporary LOB is a session.

The interface for creating temporary LOBs includes a parameter that lets you specify

the default scope of the life of the temporary LOB. By default, all temporary LOBs

are deleted at the end of the session in which they were created. If a process dies

unexpectedly or the database crashes, all temporary LOBs are deleted.

OCI Can Group Temporary LOBs into Logical Buckets
OCI users can group temporary LOBs together into a logical bucket.

"OCIDuration" represents a store for temporary LOBs. There is a default duration

for every session into which temporary LOBs are placed if you do not specify a

specific duration. The default duration ends when your session ends. Also, you can

perform an OCIDurationEnd operation which frees all OCIDuration contents.

Memory Handling

LOB Buffering and CACHE, NOCACHE, CACHE READS
Temporary LOBs are especially useful when you want to perform transformational

operations on a LOB — such as morphing an image, or changing a LOB from one

format to another — and then return it to the database.

These transformational operations can use LOB Buffering. You can specify

CACHE,NOCACHE,or CACHE READSfor each temporary LOB, and FREE an

individual temporary LOB when you have no further need for it.

Temporary Tablespace
Your temporary tablespace is used to store temporary LOB data. Data storage

resources are controlled by the DBA through control of a user’s access to temporary

tablespaces, and by the creation of different temporary tablespaces.

Note: All temporary LOBs reside on the server. There is no support

for client-side temporary LOBs.
Temporary LOBs 10-9

Programmatic Environments
Explicitly Free Temporary LOB Space to Reuse It
Memory usage increases incrementally as the number of temporary LOBs grows.

You can reuse temporary LOB space in your session by freeing temporary LOBs

explicitly.

■ When the Session Finishes: Explicitly freeing one or more temporary LOBs does

not result in all of the space being returned to the temporary tablespace for

general re-consumption. Instead, it remains available for reuse in the session.

■ When the Session Dies: If a process dies unexpectedly or the database crashes, the

space for temporary LOBs is freed along with the deletion of the temporary

LOBs. In all cases, when a user’s session ends, space is returned to the

temporary tablespace for general reuse.

Selecting a Permanent LOB INTO a Temporary LOB Locator
We previously noted that if you perform the following:

SELECT permanent_lob INTO temporary_lob_locator FROM y_blah WHERE x_blah

the temporary_lob_locator will get overwritten with the permanent_lob ’s

locator. The temporary_lob_locator now points to the LOB stored in the table.

Since CR and rollbacks are not supported for temporary LOBs, you will have to free

the temporary LOB and start over again if you run into an error.

Locators and Semantics
Creation of a temporary LOB instance by a user causes the engine to create, and

return a locator to LOB data. Temporary LOBs do not support any operations that

are not supported for persistent LOB locators, but temporary LOB locators have

specific features.

Note: Unless you saved the temporary_lob 's locator in another

variable, you will lose track of the LOB that temporary_lob_
locator originally pointed at before the SELECT INTO operation.

In this case the temporary LOBwill not get implicitly freed. If you do

not wish to waste space, explicitly free a temporary LOB before

overwriting it with a permanent LOB locator.
10-10 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Features Specific to Temporary LOBs
Features Specific to Temporary LOBs
The following features are specific to temporary LOBs:

■ Temporary LOB Locator is Overwritten by Permanent LOB Locator

For instance, when you perform the following query:

SELECT permanent_lob INTO temporary_lob_locator FROM y_blah
 WHERE x_blah = a_number;

temporary_lob_locator is overwritten by the permanent_lob ’s locator.

This means that unless you have a copy of temporary_lob ’s locator that

points to the temporary LOB that was overwritten, you no longer have a locator

with which to access the temporary LOB.

■ Assigning Multiple Locators to Same Temporary LOB Impacts Performance

Temporary LOBs adhere to value semantics in order to be consistent with

permanent LOBs and to conform to the ANSI standard for LOBs. Since CR,

undo, and versions are not generated for temporary LOBs, there may be an

impact on performance if you assign multiple locators to the same temporary

LOB because semantically each locator will have its own copy of the temporary

LOB. Each time a user does an OCILobAssign , or the equivalent assignment in

PL/SQL, the database makes a copy of the temporary LOB (although it may be

done lazily for performance reasons) .

Each locator points to its own LOB value. If one locator is used to create a

temporary LOB, and another LOB locator is assigned to that temporary LOB
using OCILobAssign , the database copies the original temporary LOB and

cause the second locator to point to the copy, not the original temporary LOB.

■ Avoid Using More than One Locator Per Temporary LOB

In order for multiple users to modify the same LOB, they must go through

the same locator. Although temporary LOBs use value semantics, you can

apply pseudo-reference semantics by using pointers to locators in OCI, and

having multiple pointers to locators point to the same temporary LOB

locator if necessary. In PL/SQL, you can have the same effect by passing the

temporary LOB locator "by reference" between modules. This will help

avoid using more than one locator per temporary LOB, and prevent these

modules from making local copies of the temporary LOB.

Here are two examples of situations where a user will incur a copy, or at

least an extra roundtrip to the server:

* Assigning one temporary LOB to another
Temporary LOBs 10-11

Features Specific to Temporary LOBs
DECLARE
 Va BLOB;
 Vb BLOB;
BEGIN
 DBMS_LOB.CREATETEMPORARY(Vb,TRUE);
 DBMS_LOB.CREATETEMPORARY(Va,TRUE);
 Va := Vb;
END;

This causes Oracle to create a copy of Vb and point the locator Va to it.

We also frees the temporary LOB that Va used to point to.

* Assigning one collection to another collection

If a temporary LOB is an element in a collection and you assign one col-

lection to another, you will incur copy overhead and free overhead for

the temporary LOB locators that get updated. This is also true for the

case where you assign an object type containing a temporary LOB as an

attribute to another such object type, and they have temporary LOB
locators that get assigned to each other because the object types have

LOB attributes that are pointing to temporary LOB locators.

If your application involves several such assignments and copy opera-

tions of collections or complex objects, and you seek to avoid the above

overheads, then persistent internal LOBs may be more suitable for such

applications. More precisely:

* Do not use temporary LOBs inside collections or complex objects

when you are doing assignments or copies of those collections or com-

plex objects.

* Do not select LOB values into temporary LOB locators.

Security Issues with Temporary LOBs
Security is provided through the LOB locator.

■ Only the user who created the temporary LOB can access it.

See Also:

■ Oracle8i Concepts

■ Oracle8i Application Developer’s Guide - Fundamentals

for more information about collections.
10-12 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Features Specific to Temporary LOBs
■ Locators are not designed to be passed from one user’s session to another. If

you did manage to pass a locator from one session to another:

■ You would not be able to access temporary LOBs in the new session from the

original session.

■ You would not be able to access a temporary LOB in the original session

from the new (current) session to which the locator was migrated.

■ Temporary LOBlookup is localized to each user’s own session. Someone using a

locator from another session would only be able to access LOBs within his own

session that had the same lobid . Users of your application should not try to do

this, but if they do, they will still not be able to affect anyone else’s data.

NOCOPY Restrictions
See PL/SQL User’s Guide and Reference , Chapter 7: "SUBPROGRAMS" — NOCOPY

COMPILER HINT, for guidelines, restrictions, and tips on using NOCOPY.

Managing Temporary LOBs
Oracle keeps track of temporary LOBs per session, and provides a v$ view called

v$temporary_lobs . From the session the application can determine which user

owns the temporary LOBs. This view can be used by DBAs to monitor and guide

any emergency cleanup of temporary space used by temporary LOBs.
Temporary LOBs 10-13

Create a Temporary LOB
Create a Temporary LOB

Figure 10–3 Use Case Diagram: Create a Temporary LOB

Purpose
This procedure describes how to create a temporary LOB.

Usage Notes
A temporary LOB is empty when it is created.

Temporary LOBs do not support the EMPTY_BLOB()or EMPTY_CLOB() functions

that are supported for permanent LOBs. The EMPTY_BLOB() function specifies the

fact that the LOB is initialized, but not populated with any data.

See: "Use Case Model Overview: Internal Temporary LOBs" on

page 10-3 , for all basic operations of Internal Temporary LOBs.

CREATE
a Temporary

LOB

free
a temporary

LOB

: Internal Temporary
LOBs CREATE a Temporary LOB
10-14 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Create a Temporary LOB
Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB DESCRIBE, LOB COPY

Scenario
These examples read in a single video Frame from the Multimedia_tab table.

Then they create a temporary LOB to be used to convert the video image from

MPEG to JPEG format. The temporary LOB is read through the CACHE, and is

automatically cleaned up at the end of the user’s session, if it is not explicitly freed

sooner.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Create a Temporary LOB on page 10-15

C/C++ (Pro*C/C++): Create a Temporary LOB
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void createTempLOB_proc()
{
 OCIBlobLocator *Lob_loc, *Temp_loc;
 int Amount;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
Temporary LOBs 10-15

Create a Temporary LOB
 /* Allocate the LOB Locators: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL ALLOCATE :Temp_loc;

 /* Create the Temporary LOB: */
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 EXEC SQL SELECT Frame INTO :Lob_loc FROM Multimedia_tab WHERE Clip_ID = 1;

 /* Copy the full length of the source LOB into the Temporary LOB: */
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Amount;
 EXEC SQL LOB COPY :Amount FROM :Lob_loc TO :Temp_loc;

 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;

 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 createTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

10-16 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB is Temporary
See If a LOB is Temporary

Figure 10–4 Use Case Diagram: See If a LOB is Temporary

Purpose
This procedure describes how to see if a LOB is temporary.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,

for all basic operations of Internal Temporary LOBs.

User/
Program

SEE if LOB
is Temporary

: Internal Temporary
LOBs SEE if LOB is Temporary
Temporary LOBs 10-17

See If a LOB is Temporary
■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB DESCRIBE

...ISTEMPORARY

Scenario
These are generic examples that query whether the locator is associated with a

temporary LOB or not.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): See If a LOB is Temporary on page 10-18

■

C/C++ (Pro*C/C++): See If a LOB is Temporary
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void lobIsTemp_proc()
{
 OCIBlobLocator *Temp_loc;
 int isTemporary = 0;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Determine if the Locator is a Temporary LOB Locator: */
 EXEC SQL LOB DESCRIBE :Temp_loc GET ISTEMPORARY INTO :isTemporary;

 /* Note that in this example, isTemporary should be 1 (TRUE) */
10-18 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB is Temporary
 if (isTemporary)
 printf("Locator is a Temporary LOB locator\n");

/* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locator: */
 EXEC SQL FREE :Temp_loc;
else
 printf("Locator is not a Temporary LOB locator \n");

}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 lobIsTemp_proc();
 EXEC SQL ROLLBACK WORK RELEASE;

 }
Temporary LOBs 10-19

Free a Temporary LOB
Free a Temporary LOB

Figure 10–5 Use Case Diagram: Free a Temporary LOB

Purpose
This procedure describes how to free a temporary LOB.

Usage Notes
A temporary LOB instance can only be destroyed for example, in OCI or the DBMS_
LOB package by using the appropriate FREETEMPORARY or OCIDurationEnd or

OCILOBFreeTemporary statements.

To make a temporary LOB permanent, the user must explicitly use the OCI or

DBMS_LOB copy() command and copy the temporary LOB into a permanent one.

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,

for all basic operations of Internal Temporary LOBs.

User/
Program

create
a temporary

LOB

FREE
a Temporary

LOB

: Internal Temporary
LOBs FREE a Temporary LOB
10-20 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Free a Temporary LOB
Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB

Scenario
Not applicable.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Free a Temporary LOB on page 10-21

C/C++ (Pro*C/C++): Free a Temporary LOB
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void freeTempLob_proc()
{
 OCIBlobLocator *Temp_loc;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Do something with the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 EXEC SQL FREE :Temp_loc;
}

Temporary LOBs 10-21

Free a Temporary LOB
void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 freeTempLob_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

10-22 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a Temporary LOB with Data from a BFILE
Load a Temporary LOB with Data from a BFILE

Figure 10–6 Use Case Diagram: Load a LOB with Data from a BFILE

Purpose
This procedure describes how to load a temporary LOB with data from a BFILE.

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,

for all basic operations of Internal Temporary LOBs.

User/
Progra m

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

LOAD a LOB
with Data

from a BFILE

free
a temporary

LOB

: Internal Temporary
LOBs LOAD a LOB with Data from a BFILE
Temporary LOBs 10-23

Load a Temporary LOB with Data from a BFILE
Usage Notes
In using OCI, or any programmatic environments that access OCI functionality,

character set conversions are implicitly performed when translating from one

character set to another. However, no implicit translation is ever performed from

binary data to a character set. When you use the loadfromfile operation to

populate a CLOB or NCLOB, you are populating the LOB with binary data from the

BFILE . In that case, you will need to perform character set conversions on the

BFILE data before executing loadfromfile .

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB LOAD

Scenario
The example procedures assume that there is an operating system source directory

(AUDIO_DIR) that contains the LOB data to be loaded into the target LOB.

Examples
Examples are provided in the following programmatic environments:

■ Table , "C/C++ (Pro*C/C++): Load a Temporary LOB with Data from a BFILE"

on page 10-24

■

■

C/C++ (Pro*C/C++): Load a Temporary LOB with Data from a BFILE
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{

10-24 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a Temporary LOB with Data from a BFILE
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void loadTempLobFromBFILE_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIBFileLocator *Lob_loc;
 char *Dir = "AUDIO_DIR", *Name = "Washington_audio";
 int Amount = 4096;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Opening the BFILE is mandatory; */

/* Opening the LOB is optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;
 /* Load the data from the BFILE into the Temporary LOB: */
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;
 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Temp_loc;
 EXEC SQL LOB CLOSE :Lob_loc;
 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locators: */
 EXEC SQL FREE :Temp_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 loadTempLobFromBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;

 }
Temporary LOBs 10-25

See If a Temporary LOB Is Open
See If a Temporary LOB Is Open

Figure 10–7 Use Case Diagram: See If a Temporary LOB Is Open

Purpose
This procedure describes how to see if a temporary LOB is open.

Usage Notes
Not applicable.

Syntax
sSee Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB DESCRIBE ...ISOPEN

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,

for all basic operations of Internal Temporary LOBs.

User/
Program

create
a temporary

LOB

SEE
if LOB is Open

free
a temporary

LOB

: Internal Temporary
LOBs SEE if LOB is Open
10-26 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Temporary LOB Is Open
Scenario
These generic examples takes a locator as input, create a temporary LOB, open it

and test if the LOB is open.

Examples
Examples are provided in the following programmatic environments:

■ : C/C++ (Pro*C/C++): See if a Temporary LOB is Open on page 10-27

■

■

: C/C++ (Pro*C/C++): See if a Temporary LOB is Open
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void tempLobIsOpen_proc()
{
 OCIBlobLocator *Temp_loc;
 int isOpen = 0;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOB */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Open the Temporary LOB */
 EXEC SQL LOB OPEN :Temp_loc READ ONLY;
 /* Determine if the LOB is Open */
 EXEC SQL LOB DESCRIBE :Temp_loc GET ISOPEN INTO :isOpen;
 if (isOpen)
 printf("Temporary LOB is open\n");
 else
Temporary LOBs 10-27

See If a Temporary LOB Is Open
 printf("Temporary LOB is not open\n");
 /* Note that in this example, the LOB is Open so isOpen == 1 (TRUE) */
 /* Close the LOB */
 EXEC SQL LOB CLOSE :Temp_loc;
 /* Free the Temporary LOB */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locator */
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 tempLobIsOpen_proc();
 EXEC SQL ROLLBACK WORK RELEASE;

 }
10-28 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display Temporary LOB Data
Display Temporary LOB Data

Figure 10–8 Use Case Diagram: Display Temporary LOB Data

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

DISPLAY the
LOB Data

read data
from the LOB

free
a temporary

LOB

: Internal Temporary
LOBs DISPLAY the LOB Data
Temporary LOBs 10-29

Display Temporary LOB Data
Purpose
This procedure describes how to display temporary LOB data.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB READ

Scenario
As an instance of displaying a LOB, our example stream-reads the image Drawing
from the column object Map_obj onto the client-side in order to view the data.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Display Temporary LOB Data on page 10-30

C/C++ (Pro*C/C++): Display Temporary LOB Data
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,

for all basic operations of Internal Temporary LOBs.
10-30 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display Temporary LOB Data
#define BufferLength 1024

void displayTempLOB_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIBFileLocator *Lob_loc;
 char *Dir = "PHOTO_DIR", *Name = "Lincoln_photo";
 int Amount;
 struct {
 unsigned short Length;
 char Data[BufferLength];
 } Buffer;
 int Position = 1;
 /* Datatype Equivalencing is Mandatory for this Datatype */
 EXEC SQL VAR Buffer IS VARRAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Initialize the LOB Locators */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Opening the LOBs is Optional */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;
 /* Load a specified amount from the BFILE into the Temporary LOB */
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Amount;
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc AT :Position INTO :Temp_loc;
 /* Setting Amount = 0 will initiate the polling method */
 Amount = 0;
 /* Set the maximum size of the Buffer */
 Buffer.Length = BufferLength;
 EXEC SQL WHENEVER NOT FOUND DO break;
 while (TRUE)
 {
 /* Read a piece of the BLOB into the Buffer */
 EXEC SQL LOB READ :Amount FROM :Temp_loc INTO :Buffer;
 printf("Display %d bytes\n", Buffer.Length);
 }
 printf("Display %d bytes\n", Amount);
 /* Closing the LOBs is mandatory if you have opened them */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc;
 /* Free the Temporary LOB */
Temporary LOBs 10-31

Display Temporary LOB Data
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locator */
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 displayTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;

 }
10-32 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read Data from a Temporary LOB
Read Data from a Temporary LOB
Figure 10–9 Use Case Diagram: Read Data from a Temporary LOB

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

flush
buffer

disable
buffering

free
a temporary

LOB

enable
buffering

READ Data
from the LOB

: Internal Temporary
LOBs READ Data from the LOB
Temporary LOBs 10-33

Read Data from a Temporary LOB
Purpose
This procedure describes how to read data from a temporary LOB.

Usage Notes

Stream Read
The most efficient way to read large amounts of LOB data is to use OCILobRead ()

with the streaming mechanism enabled via polling or a callback.

When reading the LOB value, it is not an error to try to read beyond the end of the

LOB. This means that you can always specify an input amount of 4 gigabytes

regardless of the starting offset and the amount of data in the LOB. You do not need

to incur a round-trip to the server to call OCILobGetLength () to find out the

length of the LOB value in order to determine the amount to read.

For example, assume that the length of a LOB is 5,000 bytes and you want to read

the entire LOB value starting at offset 1,000. Also assume that you do not know the

current length of the LOB value. Here's the OCI read call, excluding the

initialization of the parameters:

#define MAX_LOB_SIZE 4294967295
ub4 amount = MAX_LOB_SIZE;
ub4 offset = 1000;
OCILobRead(svchp, errhp, locp, &amount, offset, bufp, bufl, 0, 0, 0, 0)

When using polling mode, be sure to look at the value of the 'amount ' parameter

after each OCILobRead () call to see how many bytes were read into the buffer since

the buffer may not be entirely full.

When using callbacks, the 'len ' parameter, which is input to the callback, will

indicate how many bytes are filled in the buffer. Be sure to check the 'len '

parameter during your callback processing since the entire buffer may not be filled

with data (see theOracle Call Interface Programmer’s Guide.).

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,

for all basic operations of Internal Temporary LOBs.
10-34 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read Data from a Temporary LOB
Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB READ

Scenario
Our examples read the data from a single video Frame.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Read Data from a Temporary LOB on page 10-35

C/C++ (Pro*C/C++): Read Data from a Temporary LOB
/* Read Data from a Temporary LOB */
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 1024

void readTempLOB_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIBFileLocator *Lob_loc;
 char *Dir = "AUDIO_DIR", *Name = "Washington_audio";
 int Length, Amount;
 struct {
 unsigned short Length;
 char Data[BufferLength];
Temporary LOBs 10-35

Read Data from a Temporary LOB
 } Buffer;

 /* Datatype Equivalencing is Mandatory for this Datatype */
 EXEC SQL VAR Buffer IS VARRAW(BufferLength);
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();

 /* Allocate and Initialize the BFILE Locator */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;

 /* Determine the Length of the BFILE */
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;

 /* Allocate and Create the Temporary LOB */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

 /* Open the BFILE for Reading */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;

 /* Load the BFILE into the Temporary LOB */
 Amount = Length;
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;

 /* Close the BFILE */
 EXEC SQL LOB CLOSE :Lob_loc;
 Buffer.Length = BufferLength;
 EXEC SQL WHENEVER NOT FOUND DO break;
 while (TRUE)
 {
 /* Read a piece of the Temporary LOB into the Buffer */
 EXEC SQL LOB READ :Amount FROM :Temp_loc INTO :Buffer;
 printf("Read %d bytes\n", Buffer.Length);
 }
 printf("Read %d bytes\n", Amount);

 /* Free the Temporary LOB */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;

 /* Release resources held by the Locators */
 EXEC SQL FREE :Temp_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
10-36 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read Data from a Temporary LOB
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 readTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 10-37

Read Portion of Temporary LOB (substr)
Read Portion of Temporary LOB (substr)

Figure 10–10 Use Case Diagram: Read Portion of Temporary LOB from the Table
(substr)

Purpose
This procedure describes how to read portion of a temporary LOB (substr).

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,

for all basic operations of Internal Temporary LOBs.

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

READ a
Portion of the LOB

from theTable
(Substr.)free

a temporary
LOB

: Internal Temporary
LOBs READ a Portion of the LOB from a Table (Substr.)
10-38 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read Portion of Temporary LOB (substr)
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB LOAD. See also PL/SQL

DBMS_LOB.SUBSTR.

Scenario
These examples show the operation in terms of reading a portion from sound-effect

Sound .

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Read a Portion of Temporary LOB (substr) on page 10-39

■

C/C++ (Pro*C/C++): Read a Portion of Temporary LOB (substr)
/* Pro*C/C++ lacks an equivalent embedded SQL form for the DBMS_LOB.SUBSTR()
 function. However, Pro*C/C++ can interoperate with PL/SQL using
 anonymous PL/SQL blocks embedded in a Pro*C/C++ program as this example
 shows. */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
Temporary LOBs 10-39

Read Portion of Temporary LOB (substr)
}

#define BufferLength 4096

void substringTempLOB_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIBFileLocator *Lob_loc;
 char *Dir = "AUDIO_DIR", *Name = "Washington_audio";
 int Position = 1024;
 unsigned int Length;
 int Amount = BufferLength;
 struct {
 unsigned short Length;
 char Data[BufferLength];
 } Buffer;
 /* Datatype Equivalencing is Mandatory for this Datatype: */
 EXEC SQL VAR Buffer IS VARRAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Open the LOBs: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;
 /* Determine the length of the BFILE and load it into the Temporary LOB: */
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;
 EXEC SQL LOB LOAD :Length FROM FILE :Lob_loc INTO :Temp_loc;
 /* Invoke SUBSTR() on the Temporary LOB inside a PL/SQL block: */
 EXEC SQL EXECUTE
 BEGIN
 :Buffer := DBMS_LOB.SUBSTR(:Temp_loc, :Amount, :Position);
 END;
 END-EXEC;
 /* Process the Data in the Buffer. */
 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc;
 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources used by the locators: */
10-40 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read Portion of Temporary LOB (substr)
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 substringTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;

 }
Temporary LOBs 10-41

Compare All or Part of Two (Temporary) LOBs
Compare All or Part of Two (Temporary) LOBs

Figure 10–11 Use Case Diagram: Compare All or Part of Two Temporary LOBs

Purpose
This procedure describes how to compare all or part of two temporary LOBs.

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,

for all basic operations of Internal Temporary LOBs.

User/
Progra m

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

COMPARE
All or Parts of

2 LOBs

free
a temporary

LOB

: Internal Temporary
LOBs COMPARE All or Parts of Two LOBs
10-42 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Part of Two (Temporary) LOBs
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB COPY. See also PL/SQL

DBMS_LOB.COMPARE.

Scenario
The following examples compare two frames from the archival table

VideoframesLib_tab to see whether they are different. Depending on the result

of comparison, the examples insert the Frame into the Multimedia_tab .

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Compare All or Part of Two (Temporary) LOBs on

page 10-43

C/C++ (Pro*C/C++): Compare All or Part of Two (Temporary) LOBs
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void compareTwoTempOrPersistLOBs_proc()
{
 OCIBlobLocator *Lob_loc1, *Lob_loc2, *Temp_loc;
Temporary LOBs 10-43

Compare All or Part of Two (Temporary) LOBs
 int Amount = 128;
 int Retval;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate the LOB locators: */
 EXEC SQL ALLOCATE :Lob_loc1;
 EXEC SQL ALLOCATE :Lob_loc2;
 /* Select the LOBs: */
 EXEC SQL SELECT Frame INTO :Lob_loc1
 FROM Multimedia_tab WHERE Clip_ID = 1;
 EXEC SQL SELECT Frame INTO :Lob_loc2
 FROM Multimedia_tab WHERE Clip_ID = 2;
 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc1 READ ONLY;
 EXEC SQL LOB OPEN :Lob_loc2 READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;
 /* Copy the Persistent LOB into the Temporary LOB: */
 EXEC SQL LOB COPY :Amount FROM :Lob_loc2 TO :Temp_loc;

 /* Compare the two Frames using DBMS_LOB.COMPARE() from within PL/SQL: */
 EXEC SQL EXECUTE
 BEGIN
 :Retval := DBMS_LOB.COMPARE(:Lob_loc1, :Temp_loc, :Amount, 1, 1);
 END;
 END-EXEC;
 if (0 == Retval)
 printf("Frames are equal\n");
 else
 printf("Frames are not equal\n");
 /* Closing the LOBs is mandatory if you have opened them: */
 EXEC SQL LOB CLOSE :Lob_loc1;
 EXEC SQL LOB CLOSE :Lob_loc2;
 EXEC SQL LOB CLOSE :Temp_loc;
 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;

 /* Release resources held by the locators: */
 EXEC SQL FREE :Lob_loc1;
 EXEC SQL FREE :Lob_loc2;
 EXEC SQL FREE :Temp_loc;
}

10-44 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Part of Two (Temporary) LOBs
void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 compareTwoTempOrPersistLOBs_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 10-45

See If a Pattern Exists in a Temporary LOB (instr)
See If a Pattern Exists in a Temporary LOB (instr)

Figure 10–12 Use Case Diagram: See If a Pattern Exists in a Temporary LOB (instr)

Purpose
This procedure describes how to see if a pattern exists in a temporary LOB (instr).

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,

for all basic operations of Internal Temporary LOBs.

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

SEE Where/if
a Pattern Exists

in the LOB
(Instr)

create
a temporary

LOB

free
a temporary

LOB

: Internal Temporary
LOBs SEE Where/if a Pattern Exists in the LOB (Instr.)
10-46 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Pattern Exists in a Temporary LOB (instr)
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB COPY. See also DBMS_

LOB.INSTR.

Scenario
The following examples examine the storyboard text to see if the string "children" is

present.

Examples
Examples are provided in the following programmatic environments:

■ Table , "C/C++ (Pro*C/C++): See If a Pattern Exists in a Temporary LOB (instr)"

on page 10-47

C/C++ (Pro*C/C++): See If a Pattern Exists in a Temporary LOB (instr)
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void instringTempLOB_proc()
{
 OCIClobLocator *Lob_loc, *Temp_loc;
 char *Pattern = "The End";
Temporary LOBs 10-47

See If a Pattern Exists in a Temporary LOB (instr)
 unsigned int Length;
 int Position = 0;
 int Offset = 1;
 int Occurrence = 1;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Initialize the Persistent LOB: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Story INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1;
 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;
 /* Determine the Length of the Persistent LOB: */
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH into :Length;
 /* Copy the Persistent LOB into the Temporary LOB: */
 EXEC SQL LOB COPY :Length FROM :Lob_loc TO :Temp_loc;
 /* Seek the Pattern using DBMS_LOB.INSTR() in a PL/SQL block: */
 EXEC SQL EXECUTE
 BEGIN
 :Position :=
 DBMS_LOB.INSTR(:Temp_loc, :Pattern, :Offset, :Occurrence);
 END;
 END-EXEC;
 if (0 == Position)
 printf("Pattern not found\n");
 else
 printf("The pattern occurs at %d\n", Position);
 /* Closing the LOBs is mandatory if you have opened them: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc;
 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
10-48 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Pattern Exists in a Temporary LOB (instr)
 instringTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 10-49

Get the Length of a Temporary LOB
Get the Length of a Temporary LOB

Figure 10–13 Use Case Diagram: Get the Length of a Temporary LOB

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

GET the
Length of
the LOB

free
a temporary

LOB

: Internal Temporary
LOBs GET the Length of the LOB
10-50 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get the Length of a Temporary LOB
Purpose
This procedure describes how to get the length of a temporary LOB.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB DESCRIBE ...GET

LENGTH

Scenario
The following examples get the length of interview to see if it will run over the 4

gigabyte limit.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Get the Length of a Temporary LOB on page 10-51

C/C++ (Pro*C/C++): Get the Length of a Temporary LOB
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,

for all basic operations of Internal Temporary LOBs.
Temporary LOBs 10-51

Get the Length of a Temporary LOB
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void getLengthTempLOB_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIBFileLocator *Lob_loc;
 char *Dir = "AUDIO_DIR", *Name = "Washington_audio";
 int Length, Amount;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();

 /* Allocate and Create the Temporary LOB */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;

 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;

 /* Load a specified amount from the BFILE into the Temporary LOB */
 Amount = 4096;
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;

 /* Get the length of the Temporary LOB: */
 EXEC SQL LOB DESCRIBE :Temp_loc GET LENGTH INTO :Length;

 /* Note that in this example, Length == Amount == 4096: */
 printf("Length is %d bytes\n", Length);

 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc;

 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc;
}

10-52 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get the Length of a Temporary LOB
void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 getLengthTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 10-53

Copy All or Part of One (Temporary) LOB to Another
Copy All or Part of One (Temporary) LOB to Another

Figure 10–14 Use Case Diagram: Copy All or Part of One (Temporary) LOB to Another

Purpose
This procedure describes how to copy all or part of one temporary LOB to another.

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,

for all basic operations of Internal Temporary LOBs.

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

COPY All or
Part of a LOB to

Another LOBfree
a temporary

LOB

: Internal Temporary
LOBs COPY All or Part of a LOB to Another LOB
10-54 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy All or Part of One (Temporary) LOB to Another
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB COPY

Scenario
Assume the following table:

CREATE TABLE VoiceoverLib_tab of VOICED_TYP;

Note that this VoiceoverLib_tab is of the same type as the Voiceover_tab
which is referenced by the Voiced_ref column of table Multimedia_tab .

INSERT INTO Voiceover_tab
 (SELECT * FROM VoiceoverLib_tab Vtab1
 WHERE T2.Take = 101);

This creates a new LOB locator in table Voiceover_tab , and copies the LOB data

from Vtab1 to the location pointed to by a new LOB locator which is inserted into

table Voiceover_tab.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Copy All or Part of One (Temporary) LOB to Another on

page 10-55

C/C++ (Pro*C/C++): Copy All or Part of One (Temporary) LOB to Another
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{

Temporary LOBs 10-55

Copy All or Part of One (Temporary) LOB to Another
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void copyTempLOB_proc()
{
 OCIBlobLocator *Temp_loc1, *Temp_loc2;
 OCIBFileLocator *Lob_loc;
 char *Dir = "AUDIO_DIR", *Name = "Washington_audio";
 int Amount;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOBs: */
 EXEC SQL ALLOCATE :Temp_loc1;
 EXEC SQL ALLOCATE :Temp_loc2;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc1;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc2;
 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc1 READ WRITE;
 EXEC SQL LOB OPEN :Temp_loc2 READ WRITE;
 /* Load a specified amount from the BFILE into one of the
 Temporary LOBs: */
 Amount = 4096;
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc1;
 /* Copy a specified amount from one Temporary LOB to another: */
 EXEC SQL LOB COPY :Amount FROM :Temp_loc1 TO :Temp_loc2;
 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Temp_loc1;
 EXEC SQL LOB CLOSE :Temp_loc2;
 EXEC SQL LOB CLOSE :Lob_loc;
 /* Free the Temporary LOBs: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc1;
 EXEC SQL LOB FREE TEMPORARY :Temp_loc2;
 /* Release resources held by the Locators: */
 EXEC SQL FREE :Temp_loc1;
 EXEC SQL FREE :Temp_loc2;
 EXEC SQL FREE :Lob_loc;
}

10-56 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy All or Part of One (Temporary) LOB to Another
void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 copyTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;

 }
Temporary LOBs 10-57

Copy a LOB Locator for a Temporary LOB
Copy a LOB Locator for a Temporary LOB

Figure 10–15 Use Case Diagram: Copy a LOB Locator for a Temporary LOB

Purpose
This procedure describes how to copy a LOB locator for a temporary LOB.

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,

for all basic operations of Internal Temporary LOBs.

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

READ a
Portion of the LOB

from theTable
(Substr.)free

a temporary
LOB

: Internal Temporary
LOBs READ a Portion of the LOB from a Table (Substr.)
10-58 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy a LOB Locator for a Temporary LOB
Usage Notes
Not applicable.

Syntax
Use the following syntax references for each programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB ASSIGN

Scenario
This generic operation copies one temporary LOB locator to another.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Copy a LOB Locator for a Temporary LOB on page 10-59

C/C++ (Pro*C/C++): Copy a LOB Locator for a Temporary LOB
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void copyTempLobLocator_proc()
{
 OCIBlobLocator *Temp_loc1, *Temp_loc2;
 OCIBFileLocator *Lob_loc;
 char *Dir = "AUDIO_DIR", *Name = "Washington_audio";
 int Amount = 4096;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
Temporary LOBs 10-59

Copy a LOB Locator for a Temporary LOB
 /* Allocate and Create the Temporary LOBs: */
 EXEC SQL ALLOCATE :Temp_loc1;
 EXEC SQL ALLOCATE :Temp_loc2;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc1;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc2;

 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;

 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc1 READ WRITE;
 EXEC SQL LOB OPEN :Temp_loc2 READ WRITE;

 /* Load a specified amount from the BFILE into the Temporary LOB: */
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc1;
 /* Assign Temp_loc1 to Temp_loc2 thereby creating a copy of the value of
 the Temporary LOB referenced by Temp_loc1 at this point in time: */
 EXEC SQL LOB ASSIGN :Temp_loc1 TO :Temp_loc2;

 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc1;
 EXEC SQL LOB CLOSE :Temp_loc2;

 /* Free the Temporary LOBs: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc1;
 EXEC SQL LOB FREE TEMPORARY :Temp_loc2;

 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc1;
 EXEC SQL FREE :Temp_loc2;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 copyTempLobLocator_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

10-60 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Is One Temporary LOB Locator Equal to Another
Is One Temporary LOB Locator Equal to Another

Figure 10–16 Use Case Diagram: See If One (Temporary) LOB Locator Is Equal to
Another

Purpose
This procedure describes how to see if one LOB locator for a temporary LOB is

equal to another.

Usage Notes
If two locators are equal, this means that they refer to the same version of the LOB
data (see "Read-Consistent Locators" in Chapter 5, "Advanced Topics").

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,

for all basic operations of Internal Temporary LOBs.

User/
Program

create
a temporary

LOB

SEE if
LOB locators

are equal

free
a temporary

LOB

: Internal Temporary
LOBs SEE if LOB Locators are Equal
Temporary LOBs 10-61

Is One Temporary LOB Locator Equal to Another
Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB ASSIGN. See also C(OCI)

function, OCILobIsEqual

Scenario
Not applicable.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): See If One LOB Locator for a Temporary LOB Is Equal to

Another on page 10-62

C/C++ (Pro*C/C++): See If One LOB Locator for a Temporary LOB Is Equal to Another
#include <sql2oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("sqlcode = %ld\n", sqlca.sqlcode);
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void seeTempLobLocatorsAreEqual_proc()
{
 OCIBlobLocator *Temp_loc1, *Temp_loc2;
 OCIBFileLocator *Lob_loc;
 char *Dir = "AUDIO_DIR", *Name = "Washington_audio";
 int Amount = 4096;
 OCIEnv *oeh;
10-62 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Is One Temporary LOB Locator Equal to Another
 int isEqual = 0;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOBs: */
 EXEC SQL ALLOCATE :Temp_loc1;
 EXEC SQL ALLOCATE :Temp_loc2;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc1;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc2;
 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc1 READ WRITE;
 EXEC SQL LOB OPEN :Temp_loc2 READ WRITE;

 /* Load a specified amount from the BFILE into one of the Temporary LOBs: */
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc1;
 /* Retrieve the OCI Environment Handle: */
 (void) SQLEnvGet(SQL_SINGLE_RCTX, &oeh);

 /* Now assign Temp_loc1 to Temp_loc2 using Embedded SQL: */
 EXEC SQL LOB ASSIGN :Temp_loc1 TO :Temp_loc2;

 /* Determine if the Temporary LOBs are Equal: */
 (void) OCILobIsEqual(oeh, Temp_loc1, Temp_loc2, &isEqual);

 /* This time, isEqual should be 0 (FALSE): */
 printf("Locators %s equal\n", isEqual ? "are" : "are not");

 /* Assign Temp_loc1 to Temp_loc2 using C pointer assignment: */
 Temp_loc2 = Temp_loc1;

 /* Determine if the Temporary LOBs are Equal again: */
 (void) OCILobIsEqual(oeh, Temp_loc1, Temp_loc2, &isEqual);

 /* The value of isEqual should be 1 (TRUE) in this case: */
 printf("Locators %s equal\n", isEqual ? "are" : "are not");

 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 /* Note that because Temp_loc1 and Temp_loc2 are now equal, closing
 and freeing one will implicitely do the same to the other: */
 EXEC SQL LOB CLOSE :Temp_loc1;
 EXEC SQL LOB FREE TEMPORARY :Temp_loc1;
Temporary LOBs 10-63

Is One Temporary LOB Locator Equal to Another
 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc1;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 seeTempLobLocatorsAreEqual_proc();
 EXEC SQL ROLLBACK WORK RELEASE;

 }
10-64 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB Locator for a Temporary LOB Is Initialized
See If a LOB Locator for a Temporary LOB Is Initialized

Figure 10–17 Use Case Diagram: See If a LOB Locator for a Temporary LOB Is
Initialized

Purpose
This procedure describes how to see if a LOB locator for a temporary LOB is

initialized.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,

for all basic operations of Internal Temporary LOBs.

User/
Program

SEE if
LOB Locator
is initialized

: Internal Temporary
LOBs SEE if LOB Locator is Initialized
Temporary LOBs 10-65

See If a LOB Locator for a Temporary LOB Is Initialized
■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB CREATE TEMPORARY.

See also C(OCI) function, OCILobLocatorIsInit

Scenario
This generic function takes a LOB locator and checks if it is initialized. If it is

initialized, then it prints out a message saying "LOB is initialized". Otherwise, it

reports "LOB is not initialized".

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): See If a LOB Locator for a Temporary LOB Is Initialized

on page 10-66

C/C++ (Pro*C/C++): See If a LOB Locator for a Temporary LOB Is Initialized
#include <sql2oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}
void tempLobLocatorIsInit_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIEnv *oeh;
 OCIError *err;
 boolean isInitialized = 0;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Get the OCI Environment Handle using a SQLLIB Routine: */
 (void) SQLEnvGet(SQL_SINGLE_RCTX, &oeh);
10-66 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB Locator for a Temporary LOB Is Initialized
 /* Allocate the OCI Error Handle: */
 (void) OCIHandleAlloc((dvoid *)oeh, (dvoid **)&err,
 (ub4)OCI_HTYPE_ERROR, (ub4)0, (dvoid **)0);
 /* Use the OCI to determine if the locator is Initialized */
 (void) OCILobLocatorIsInit(oeh, err, Temp_loc, &isInitialized);
 if (isInitialized)
 printf("Locator is initialized\n");
 else
 printf("Locator is not initialized\n");
 /* Note that in this example, the locator is initialized. */
 /* Deallocate the OCI Error Handle: */
 (void) OCIHandleFree(err, OCI_HTYPE_ERROR);
 /* Free the Temporary LOB */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the locator: */
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 tempLobLocatorIsInit_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 10-67

Get Character Set ID of a Temporary LOB
Get Character Set ID of a Temporary LOB

Figure 10–18 Use Case Diagram: Get Character Set ID for a Temporary LOB

Purpose
This procedure describes how to get the character set ID of a temporary LOB.

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,

for all basic operations of Internal Temporary LOBs.

User/
Program

create
a temporary

LOB

GET Character
Set ID

free
a temporary

LOB

: Internal Temporary
LOBs GET Character Set ID
10-68 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get Character Set ID of a Temporary LOB
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ PL/SQL (DBMS_LOB): A syntax reference is not applicable with this release.

■ C/C++ (Pro*C/C++): There is no applicable syntax reference for this use case.

Scenario
This function takes a LOB locator and prints the character set id of the LOB.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): No example is provided with this release.
Temporary LOBs 10-69

Get Character Set Form of a Temporary LOB
Get Character Set Form of a Temporary LOB

Figure 10–19 Use Case Diagram: Get Character Set Form of a Temporary LOB

Purpose
This procedure describes how to get the character set form of a temporary LOB.

Usage Notes
Not applicable.

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,

for all basic operations of Internal Temporary LOBs.

User/
Program

create
a temporary

LOB

GET Character
Set Form

create
a temporary

LOB

free
a temporary

LOB

: Internal Temporary
LOBs GET Character Set Form
10-70 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get Character Set Form of a Temporary LOB
Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): There is no applicable syntax reference for this use case.

Scenario
This function takes a LOB locator and prints the character set form for the LOB.

Examples
Examples are provided in the following programmatic environments:

■ COBOL (Pro*Cobol)No example is provided with this release.

■ C/C++ (Pro*C/C++): No example is provided with this release.

■

■

Temporary LOBs 10-71

Append One (Temporary) LOB to Another
Append One (Temporary) LOB to Another

Figure 10–20 Use Case Diagram: Append One (Temporary) LOB to Another

Purpose
This procedure describes how to append one (temporary) LOB to another.

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,

for all basic operations of Internal Temporary LOBs.

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

APPEND One
LOB to
Another

free
a temporary

LOB

: Internal Temporary
LOBs APPEND One LOB to Another
10-72 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Append One (Temporary) LOB to Another
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB APPEND

Scenario
These examples deal with the task of appending one segment of sound to another.

Use sound-specific editing tools to match the wave-forms.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Append One (Temporary) LOB to Another

C/C++ (Pro*C/C++): Append One (Temporary) LOB to Another
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void appendTempLOB_proc()
{
 OCIBlobLocator *Temp_loc1, *Temp_loc2;
 OCIBFileLocator *Lob_loc;
Temporary LOBs 10-73

Append One (Temporary) LOB to Another
 char *Dir = "AUDIO_DIR", *Name = "Washington_audio";
 int Amount = 2048;
 int Position = 1;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOBs: */
 EXEC SQL ALLOCATE :Temp_loc1;
 EXEC SQL ALLOCATE :Temp_loc2;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc1;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc2;
 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;

 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc1 READ WRITE;
 EXEC SQL LOB OPEN :Temp_loc2 READ WRITE;

 /* Load a specified amount from the BFILE into the first Temporary LOB: */
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc AT :Position INTO :Temp_loc1;

 /* Set the Position for the next load from the same BFILE: */
 Position = Amount + 1;

 /* Load a second amount from the BFILE into the second Temporary LOB: */
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc AT :Position INTO :Temp_loc2;

 /* Append the second Temporary LOB to the end of the first one: */
 EXEC SQL LOB APPEND :Temp_loc2 TO :Temp_loc1;

 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc1;
 EXEC SQL LOB CLOSE :Temp_loc2;

 /* Free the Temporary LOBs: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc1;
 EXEC SQL LOB FREE TEMPORARY :Temp_loc2;

 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc1;
 EXEC SQL FREE :Temp_loc2;
}

10-74 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Append One (Temporary) LOB to Another
void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 appendTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 10-75

Write Append to a Temporary LOB
Write Append to a Temporary LOB
Figure 10–21 Use Case Diagram: Write Append to a Temporary LOB

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

free
a temporary

LOB

User/
Program

WRITE
Append

: Internal Temporary
LOBs WRITE Append
10-76 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Append to a Temporary LOB
Purpose
This procedure describes how to write append to a temporary LOB.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB WRITE APPEND

Scenario
These examples read in 32767 bytes of data from the Washington_audio file

starting at offset 128, and append it to a temporary LOB.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Write Append to a Temporary LOB on page 10-77

C/C++ (Pro*C/C++): Write Append to a Temporary LOB
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,

for all basic operations of Internal Temporary LOBs.
Temporary LOBs 10-77

Write Append to a Temporary LOB
 exit(1);
}

#define BufferLength 256

void writeAppendTempLOB_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIBFileLocator *Lob_loc;
 char *Dir = "AUDIO_DIR", *Name = "Washington_audio";
 int Amount;
 struct {
 unsigned short Length;
 char Data[BufferLength];
 } Buffer;
 EXEC SQL VAR Buffer IS VARRAW(BufferLength);
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();

 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;

 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;

 /* Load a specified amount from the BFILE into the Temporary LOB: */
 Amount = 2048;
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;
 strcpy((char *)Buffer.Data, "afafafafafaf");
 Buffer.Length = 6;

 /* Write the contents of the Buffer to the end of the Temporary LOB: */
 Amount = Buffer.Length;
 EXEC SQL LOB WRITE APPEND :Amount FROM :Buffer INTO :Temp_loc;

 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc;

 /* Free the Temporary LOB */
10-78 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Append to a Temporary LOB
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 writeAppendTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;

 }
Temporary LOBs 10-79

Write Data to a Temporary LOB
Write Data to a Temporary LOB

Figure 10–22 Use Case Diagram: Write Data to a Temporary LOB

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

flush
buffer

free
a temporary

LOB

enable
buffering

disable
buffering

WRITE Data
to the LOB

: Internal Temporary
LOBs WRITE Data to the LOB
10-80 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Data to a Temporary LOB
Purpose
This procedure describes how to write data to a temporary LOB.

Usage Notes

Stream Write
The most efficient way to write large amounts of LOB data is to use

OCILobWrite () with the streaming mechanism enabled via polling or a callback. If

you know how much data will be written to the LOB specify that amount when

calling OCILobWrite (). This will allow for the contiguity of the LOB data on disk.

Apart from being spatially efficient, contiguous structure of the LOB data will make

for faster reads and writes in subsequent operations.

Using DBMS_LOB.WRITE() to Write Data to a Temporary BLOB
When you are passing a hexadecimal string to DBMS_LOB.WRITE() to write data to

a BLOB, use the following guidelines:

■ The amount parameter should be <= the buffer length parameter

■ The length of the buffer should be ((amount *2) - 1). This guideline exists

because the two characters of the string are seen as one hexadecimal character

(and an implicit hexadecimal-to-raw conversion takes place), i.e., every two

bytes of the string are converted to one raw byte.

The following example is correct:

declare
 blob_loc BLOB;
 rawbuf RAW(10);
 an_offset INTEGER := 1;
 an_amount BINARY_INTEGER := 10;
begin
 select blob_col into blob_loc from a_table
where id = 1;
 rawbuf := '1234567890123456789';
 dbms_lob.write(blob_loc, an_amount, an_offset,
rawbuf);
 commit;

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,

for all basic operations of Internal Temporary LOBs.
Temporary LOBs 10-81

Write Data to a Temporary LOB
end;

Replacing the value for 'an_amount' in the previous example with the following

values, yields error message, ora_21560:

 an_amount BINARY_INTEGER := 11;
or

 an_amount BINARY_INTEGER := 19;

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB WRITE

Scenario
The example procedures allow the STORY data (the storyboard for the clip) to be

updated by writing data to the LOB.

Examples
Examples are provided in the following programmatic environments:

■

■ C/C++ (Pro*C/C++): Write Data to a Temporary LOB on page 10-82

C/C++ (Pro*C/C++): Write Data to a Temporary LOB
#include <oci.h>
#include <stdio.h>
#include <string.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
10-82 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Data to a Temporary LOB
 exit(1);
}

#define BufferLength 1024

void writeDataToTempLOB_proc(multiple) int multiple;
{
 OCIClobLocator *Temp_loc;
 varchar Buffer[BufferLength];
 unsigned int Total;
 unsigned int Amount;
 unsigned int remainder, nbytes;
 boolean last;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Initialize the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Open the Temporary LOB: */
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;
 Total = Amount = (multiple * BufferLength);
 if (Total > BufferLength)
 nbytes = BufferLength; /* We will use Streaming via Standard Polling */
 else
 nbytes = Total; /* Only a single WRITE is required */
 /* Fill the Buffer with nbytes worth of Data: */
 memset((void *)Buffer.arr, 32, nbytes);
 Buffer.len = nbytes; /* Set the Length */
 remainder = Total - nbytes;
 if (0 == remainder)
 {
 /* Here, (Total <= BufferLength) so we can WRITE in ONE piece: */
 EXEC SQL LOB WRITE ONE :Amount FROM :Buffer INTO :Temp_loc;
 printf("Write ONE Total of %d characters\n", Amount);
 }
 else
 {
 /* Here (Total > BufferLength) so use Streaming via Standard Polling */
 /* WRITE the FIRST piece. Specifying FIRST initiates Polling: */
 EXEC SQL LOB WRITE FIRST :Amount FROM :Buffer INTO :Temp_loc;
 printf("Write FIRST %d characters\n", Buffer.len);
 last = FALSE;
 /* WRITE the NEXT (interim) and LAST pieces: */
 do
 {
Temporary LOBs 10-83

Write Data to a Temporary LOB
 if (remainder > BufferLength)
 nbytes = BufferLength; /* Still have more pieces to go */
 else
 {
 nbytes = remainder; /* Here, (remainder <= BufferLength) */
 last = TRUE; /* This is going to be the Final piece */
 }
 /* Fill the Buffer with nbytes worth of Data: */
 memset((void *)Buffer.arr, 32, nbytes);
 Buffer.len = nbytes; /* Set the Length */
 if (last)
 {
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Specifying LAST terminates Polling: */
 EXEC SQL LOB WRITE LAST :Amount FROM :Buffer INTO :Temp_loc;
 printf("Write LAST Total of %d characters\n", Amount);
 }
 else
 {
 EXEC SQL WHENEVER SQLERROR DO break;
 EXEC SQL LOB WRITE NEXT :Amount FROM :Buffer INTO :Temp_loc;
 printf("Write NEXT %d characters\n", Buffer.len);
 }
 /* Determine how much is left to WRITE: */
 remainder = remainder - nbytes;
 } while (!last);
 }
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* At this point, (Amount == Total), the total amount that was written. */
 /* Close the Temporary LOB: */
 EXEC SQL LOB CLOSE :Temp_loc;
 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Free resources held by the Locator: */
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 writeDataToTempLOB_proc(1); /* Write One Piece */
 writeDataToTempLOB_proc(4); /* Write Multiple Pieces using Polling */
 EXEC SQL ROLLBACK WORK RELEASE;

 }
10-84 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Data to a Temporary LOB
Temporary LOBs 10-85

Trim Temporary LOB Data
Trim Temporary LOB Data

Figure 10–23 Use Case Diagram: Trim Temporary LOB Data

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,

for all basic operations of Internal Temporary LOBs.

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

TRIM the
LOB Data

free
a temporary

LOB

: Internal Temporary
LOBs TRIM the LOB Data
10-86 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Trim Temporary LOB Data
Purpose
This procedure describes how to trim temporary LOB data.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB TRIM

Scenario
The following examples access text (CLOB data) referenced in the Script column

of table Voiceover_tab , and trim it.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Trim Temporary LOB Data on page 10-87

C/C++ (Pro*C/C++): Trim Temporary LOB Data
void trimTempLOB_proc()
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
Temporary LOBs 10-87

Trim Temporary LOB Data
}

void trimTempLOB_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIBFileLocator *Lob_loc;
 char *Dir = "AUDIO_DIR", *Name = "Washington_audio";
 int Amount = 4096;
 int trimLength;

 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;

 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;

 /* Load the specified amount from the BFILE into the Temporary LOB: */
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;

 /* Set the new length of the Temporary LOB: */
 trimLength = (int) (Amount / 2);

 /* Trim the Temporary LOB to its new length: */
 EXEC SQL LOB TRIM :Temp_loc TO :trimLength;

 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc;

 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;

 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc;
}

void main()
{

10-88 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Trim Temporary LOB Data
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 trimTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 10-89

Erase Part of a Temporary LOB
Erase Part of a Temporary LOB

Figure 10–24 Use Case Diagram: Erase Part of a Temporary LOB

Purpose
This procedure describes how to erase part of a temporary LOB.

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,

for all basic operations of Internal Temporary LOBs.

User/
Program

create
a temporary

LOB

OPEN
a LOB

CLOSE
a LOB

ERASE Part
of a LOB

free
a temporary

LOB

: Internal Temporary
LOBs ERASE Part of a LOB
10-90 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Erase Part of a Temporary LOB
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB ERASE

Scenario
Not applicable.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Erase Part of a Temporary LOB on page 10-91

C/C++ (Pro*C/C++): Erase Part of a Temporary LOB
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void eraseTempLOB_proc()
{
 OCIBlobLocator *Temp_loc;
 OCIBFileLocator *Lob_loc;
Temporary LOBs 10-91

Erase Part of a Temporary LOB
 char *Dir = "AUDIO_DIR", *Name = "Washington_audio";
 int Amount;
 int Position = 1024;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();

 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

 /* Allocate and Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;

 /* Opening the LOBs is Optional: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL LOB OPEN :Temp_loc READ WRITE;

 /* Load a specified amount from the BFILE into the Temporary LOB: */
 Amount = 4096;
 EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;

 /* Erase a specified amount from the Temporary LOB at a given position: */
 Amount = 2048;
 EXEC SQL LOB ERASE :Amount FROM :Temp_loc AT :Position;

 /* Closing the LOBs is Mandatory if they have been Opened: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL LOB CLOSE :Temp_loc;

 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;

 /* Release resources held by the Locators: */
 EXEC SQL FREE :Lob_loc;
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 eraseTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

10-92 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Erase Part of a Temporary LOB
Temporary LOBs 10-93

Enable LOB Buffering for a Temporary LOB
Enable LOB Buffering for a Temporary LOB

Figure 10–25 Use Case Diagram: Enable LOB Buffering for a Temporary LOB

Purpose
This procedure describes how to enable LOB buffering for a temporary LOB.

Usage Notes
Enable buffering when performing a small series of reads or writes. Once you have

completed these tasks, you must disable buffering before you can continue with any

other LOB operations.

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,

for all basic operations of Internal Temporary LOBs.

User/
Program

ENABLE
Buffering

flush
buffer

disable
buffering

: Internal Temporary
LOBs ENABLE Buffering
10-94 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Enable LOB Buffering for a Temporary LOB
Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB ENABLE BUFFERING

Scenario
Not applicable.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Enable LOB Buffering for a Temporary LOB on

page 10-95

■

C/C++ (Pro*C/C++): Enable LOB Buffering for a Temporary LOB
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 1024

Note: Do not enable buffering to perform the stream read and

write involved in checkin and checkout.
Temporary LOBs 10-95

Enable LOB Buffering for a Temporary LOB
void enableBufferingTempLOB_proc()
{
 OCIClobLocator *Temp_loc;
 varchar Buffer[BufferLength];
 int Amount = BufferLength;
 int multiple, Length = 0, Position = 1;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

 /* Enable use of the LOB Buffering Subsystem: */
 EXEC SQL LOB ENABLE BUFFERING :Temp_loc;
 memset((void *)Buffer.arr, 42, BufferLength);
 Buffer.len = BufferLength;
 for (multiple = 0; multiple < 8; multiple++)
 {
 /* Write Data to the Temporary LOB: */
 EXEC SQL LOB WRITE ONE :Amount
 FROM :Buffer INTO :Temp_loc AT :Position;
 Position += BufferLength;
 }

 /* Flush the contents of the buffers and Free their resources: */
 EXEC SQL LOB FLUSH BUFFER :Temp_loc FREE;
 /* Turn off use of the LOB Buffering Subsystem: */
 EXEC SQL LOB DISABLE BUFFERING :Temp_loc;
 EXEC SQL LOB DESCRIBE :Temp_loc GET LENGTH INTO :Length;
 printf("Wrote %d characters using the Buffering Subsystem\n", Length);

 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locator: */
 EXEC SQL FREE :Temp_loc;
}
void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 enableBufferingTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;

 }
10-96 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Flush Buffer for a Temporary LOB
Flush Buffer for a Temporary LOB

Figure 10–26 Use Case Diagram: Flush Buffer for a Temporary LOB

Purpose
This procedure describes how to flush the buffer for a temporary LOB.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,

for all basic operations of Internal Temporary LOBs.

User/
Program

disable
buffering

enable
buffering

FLUSH
Buffer

: Internal Temporary
LOBs FLUSH Buffer
Temporary LOBs 10-97

Flush Buffer for a Temporary LOB
■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB FLUSH BUFFER

Scenario
Not applicable.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): See If a Pattern Exists in a Temporary LOB (instr) on

page 10-47

C/C++ (Pro*C/C++): Flush Buffer for a Temporary LOB
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 1024

void flushBufferingTempLOB_proc()
{
 OCIClobLocator *Temp_loc;
 varchar Buffer[BufferLength];
 int Amount = BufferLength;
 int multiple, Length = 0, Position = 1;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
 /* Enable use of the LOB Buffering Subsystem: */
10-98 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Flush Buffer for a Temporary LOB
 EXEC SQL LOB ENABLE BUFFERING :Temp_loc;
 memset((void *)Buffer.arr, 42, BufferLength);
 Buffer.len = BufferLength;
 for (multiple = 0; multiple < 8; multiple++)
 {
 /* Write Data to the Temporary LOB: */
 EXEC SQL LOB WRITE ONE :Amount
 FROM :Buffer INTO :Temp_loc AT :Position;
 Position += BufferLength;
 }
 /* Flush the contents of the buffers and Free their resources: */
 EXEC SQL LOB FLUSH BUFFER :Temp_loc FREE;

 /* Turn off use of the LOB Buffering Subsystem: */
 EXEC SQL LOB DISABLE BUFFERING :Temp_loc;
 EXEC SQL LOB DESCRIBE :Temp_loc GET LENGTH INTO :Length;
 printf("Wrote %d characters using the Buffering Subsystem\n", Length);

 /* Free the Temporary LOB */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;
 /* Release resources held by the Locator: */
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 flushBufferingTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 10-99

Disable LOB Buffering for a Temporary LOB
Disable LOB Buffering for a Temporary LOB

Figure 10–27 Use Case Diagram: Disable LOB Buffering

Purpose
This procedure describes how to disable temporary LOB buffering.

Usage Notes
You enable buffering when performing a small series of reads or writes. Once you

have completed these tasks, you must disable buffering before you can continue

with any other LOB operations.

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,

for all basic operations of Internal Temporary LOBs.

User/
Program

flush
buffer

DISABLE
Buffering

enable
buffering

: Internal Temporary
LOBs DISABLE Buffering
10-100 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Disable LOB Buffering for a Temporary LOB
Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,

"Embedded SQL Statements and Directives" — LOB DISABLE BUFFERING

Scenario
Not applicable.

Examples
Examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): Disable LOB Buffering for a Temporary LOB on

page 10-101

C/C++ (Pro*C/C++): Disable LOB Buffering for a Temporary LOB
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 1024

void disableBufferingTempLOB_proc()
{
 OCIClobLocator *Temp_loc;
 varchar Buffer[BufferLength];

Note: Do not enable buffering to perform the stream read and

write involved in checkin and checkout.
Temporary LOBs 10-101

Disable LOB Buffering for a Temporary LOB
 int Amount = BufferLength;
 int multiple, Length = 0, Position = 1;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();

 /* Allocate and Create the Temporary LOB: */
 EXEC SQL ALLOCATE :Temp_loc;
 EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

 /* Enable use of the LOB Buffering Subsystem: */
 EXEC SQL LOB ENABLE BUFFERING :Temp_loc;
 memset((void *)Buffer.arr, 42, BufferLength);
 Buffer.len = BufferLength;
 for (multiple = 0; multiple < 7; multiple++)
 {

 /* Write Data to the Temporary LOB: */
 EXEC SQL LOB WRITE ONE :Amount
 FROM :Buffer INTO :Temp_loc AT :Position;
 Position += BufferLength;
 }

 /* Flush the contents of the buffers and Free their resources: */
 EXEC SQL LOB FLUSH BUFFER :Temp_loc FREE;

 /* Turn off use of the LOB Buffering Subsystem: */
 EXEC SQL LOB DISABLE BUFFERING :Temp_loc;

 /* Write APPEND can only be done when Buffering is Disabled: */
 EXEC SQL LOB WRITE APPEND ONE :Amount FROM :Buffer INTO :Temp_loc;
 EXEC SQL LOB DESCRIBE :Temp_loc GET LENGTH INTO :Length;

 printf("Wrote a total of %d characters\n", Length);

 /* Free the Temporary LOB: */
 EXEC SQL LOB FREE TEMPORARY :Temp_loc;

 /* Release resources held by the Locator: */
 EXEC SQL FREE :Temp_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
10-102 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Disable LOB Buffering for a Temporary LOB
 disableBufferingTempLOB_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 10-103

Disable LOB Buffering for a Temporary LOB
10-104 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

External LOBs (B
11

External LOBs (BFILEs)

Use Case Model
In this chapter we discuss each operation on External LOBs (such as "Read Data

from a BFILE") in terms of a use case. Table 11–1, "Use Case Model: External LOBs

(BFILEs)" lists all the use cases.

Graphic Summary of Use Case Model
A summary figure, "Use Case Model Diagram: External LOBs (BFILEs)", shows the

use cases and their interrelation graphically. If you are using an online version of

this document, you can use this figure to navigate to specific use cases.

Individual Use Cases
Each External LOB (BFILE) use case is described as follows:

■ Use case figure. A figure that depicts the use case (see "How to Interpret the Use

Case Diagrams" in the Preface, for a description of how to interpret these

diagrams).

■ Purpose. The purpose of this use case with regards to LOBs.

■ Usage Notes. Guidelines to assist your implementation of the LOB operation.

■ Syntax. Pointers to the syntax in different programmatic environments that

underlies the LOBs related activity for the use case.

■ Scenario. A scenario that portrays one implementation of the use case in terms

of the hypothetical multimedia application (see Chapter 8, "Sample

Application" for detailed syntax).

■ Examples. In each programmatic environment illustrating the use case. These

are based on the multimedia application and table Multimedia_tab described

in Chapter 8, "Sample Application".
FILEs) 11-1

Use Case Model: External LOBs (BFILEs)
Use Case Model: External LOBs (BFILEs)
Table 11–1, "Use Case Model: External LOBs (BFILEs)", indicates with + where

examples are provided for specific use cases and in which programmatic

environment (see Chapter 3, "LOB Programmatic Environments" for a complete

discussion and references to related manuals).

Programmatic environment abbreviations used in the following table, are as

follows:

■ P — PL/SQL using the DBMS_LOB Package

■ O — C using OCI (Oracle Call Interface)

■ B — COBOL using Pro*COBOL precompiler

■ C — C/C++ using Pro*C/C++ precompiler

■ V — Visual Basic using OO4O (Oracle Objects for OLE)

■ J — Java using JDBC (Java Database Connectivity)

■ S — SQL

Table 11–1 Use Case Model: External LOBs (BFILEs)

Use Case and Page
Programmatic

Environment Examples

P O B C V J

Three Ways to Create a Table Containing a BFILE on page 11-14

CREATE a Table Containing One or More BFILE Columns on page 11-15 S S S S S S

CREATE a Table of an Object Type with a BFILE Attribute

 on page 11-18

S S S S S S

CREATE a Table with a Nested Table Containing a BFILE

 on page 11-21 on page 11-21

S S S S S S

Three Ways to Insert a Row Containing a BFILE on page 11-23

INSERT a Row Using BFILENAME() on page 11-24 S + + + + +

INSERT a BFILE Row by Selecting a BFILE From Another Table on
page 11-29

S S S S S S

INSERT Row With BFILE by Initializing BFILE Locator on page 11-31 + + + + + +

Load Data Into External LOB (BFILE) on page 11-34 S S S S S S

Load a LOB with BFILE Data on page 11-38 + + + + + +
11-2 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Use Case Model: External LOBs (BFILEs)
Two Ways to Open a BFILE on page 11-42

Open a BFILE with FILEOPEN on page 11-44 + + +

Open a BFILE with OPEN on page 11-46 + + + + + +

Two Ways to See If a BFILE is Open on page 11-49

See If the BFILE is Open with FILEISOPEN on page 11-51 + + +

See If a BFILE is Open Using ISOPEN on page 11-53 + + + + + +

Display BFILE Data on page 11-56n + + + + + +

Read Data from a BFILE on page 11-59n + + + + + +

Read a Portion of BFILE Data (substr) on page 11-63 + + + + +

Compare All or Parts of Two BFILES on page 11-66 + + + + +

See If a Pattern Exists (instr) in the BFILE on page 11-70 + + + +

See If the BFILE Exists on page 11-74 + + + + + +

Get the Length of a BFILE on page 11-77 + + + + + +

Copy a LOB Locator for a BFILE on page 11-80 + + + + +

See If a LOB Locator for a BFILE Is Initialized on page 11-83 + +

See If One LOB Locator for a BFILE Is Equal to Another on page 11-86 + + +

Get DIRECTORY Alias and Filename on page 11-89n + + + + + +

Three Ways to Update a Row Containing a BFILE on page 11-92

UPDATE a BFILE Using BFILENAME() on page 11-93 S S S S S S

UPDATE a BFILE by Selecting a BFILE From Another Table on page 11-96 S S S S S S

UPDATE a BFILE by Initializing a BFILE Locator on page 11-98 + + + + + +

Two Ways to Close a BFILE on page 11-101

Close a BFILE with FILECLOSE on page 11-103n + + + +

Close a BFILE with CLOSE on page 11-105 + + + + + +

Close All Open BFILEs on page 11-108 + + + + + +

DELETE the Row of a Table Containing a BFILE on page 11-111 S S S S S S

Use Case and Page (Cont.)
Programmatic

Environment Examples

P O B C V J
External LOBs (BFILEs) 11-3

Use Case Model: External LOBs (BFILEs)
Figure 11–1 Use Case Model Diagram: External LOBs (BFILEs)

b

a

b

c

a
CREATE
a table
(BFILE)

User/
Program

User/
Program

read a
portion of the
BFILE data

(substr)

load a LOB
with data from

a BFILE

see where/if
a pattern exists

in the BFILE
(instr)

compare all
or parts of 2

BFILE

read data
from the BFILE

display the
BFILE data

SELECT
a LOB

see if the
BFILE is open

get the length
of the BFILE

see if the
BFILE exists

OR

b

c

a

b

c

a

DELETE
the row

INSERT
a row

UPDATE
a BFILE with a

diff. OS file

see
if locator

is initialized

get directory
alias and
filename

copy
LOB

locator

see
if locators
are equal

External LOBs

SELECT
a BFILE

Specify
BFILE name

OR

Load
initial data into

LOB

Initialize
a BFILE locator

close all
opened files

b

a

b

a
close

a BFILE

open
a BFILE
11-4 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Directory Object
Accessing External LOBs (BFILEs)
To access external LOBs (BFILEs) use one of the following interfaces:

■ Precompilers, such as Pro*C/C++ and Pro*COBOL

■ OCI (Oracle Call Interface)

■ PL/SQL via DBMS_LOB package

■ JDBC

■ Oracle Objects for OLE (OO4O)

Directory Object
The DIRECTORY object facilitates administering access and usage of BFILE s in an

Oracle Server (see CREATE DIRECTORY in Oracle8i SQL Reference). A DIRECTORY
specifies a logical alias name for a physical directory on the server’s filesystem under

which the file to be accessed is located. You can access a file in the server’s

filesystem only if granted the required access privilege on DIRECTORY object.

Initializing a BFILE Locator
DIRECTORY object also provides the flexibility to manage the locations of the files,

instead of forcing you to hardcode the absolute pathnames of physical files in your

applications. A DIRECTORY alias is used in conjunction with the BFILENAME()

function, in SQL and PL/SQL, or the OCILobFileSetName (), in OCI for

initializing a BFILE locator.

See Also: Chapter 3, "LOB Programmatic Environments" for

information about the six interfaces used to access external LOBs

(BFILEs) and their available functions.

Note: Oracle does not verify that the directory and pathname you

specify actually exist. You should take care to specify a valid

directory in your operating system. If your operating system uses

case-sensitive pathnames, be sure you specify the directory in the

correct format. There is no need to specify a terminating slash (e.g.,

/tmp/ is not necessary, simply use /tmp).
External LOBs (BFILEs) 11-5

Directory Object
How to Associate Operating System Files with Database Records
To associate an operating system (OS) file to a BFILE , first create a DIRECTORY
object which is an alias for the full pathname to the operating system file.

To associate existing operating system files with relevant database records of a

particular table use Oracle SQL DML (Data Manipulation Language). For example:

■ Use INSERT to initialize a BFILE column to point to an existing file in the

server’s filesystem

■ Use UPDATE to change the reference target of the BFILE

■ Initialize a BFILE to NULL and then update it later to refer to an operating

system file via the BFILENAME() function.

■ OCI users can also use OCILobFileSetName () to initialize a BFILE locator

variable that is then used in the VALUES clause of an INSERT statement.

Examples
The following statements associate the files Image1.gif and image2.gif with records

having key_value of 21 and 22 respectively. ’IMG’ is a DIRECTORY object that

represents the physical directory under which Image1.dif and image2.dif are stored.

INSERT INTO Lob_table VALUES
 (21, BFILENAME(’IMG’, ’Image1.gif’));
 INSERT INTO Lob_table VALUES
 (22, BFILENAME(’IMG’, ’image2.gif’));

The UPDATE statement below changes the target file to image3.gif for the row with

key_value 22.

 UPDATE Lob_table SET f_lob = BFILENAME(’IMG’, ’image3.gif’)
 WHERE Key_value = 22;

Note: You may need to set up data structures similar to the

following for certain examples to work:

CREATE TABLE Lob_table (
 Key_value NUMBER NOT NULL,
 F_lob BFILE)
11-6 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Directory Object
BFILENAME() and Initialization
BFILENAME() is a built-in function that is used to initialize the BFILE column to

point to the external file.

Once physical files are associated with records using SQL DML, subsequent read

operations on the BFILE can be performed using PL/SQL DBMS_LOB package and

OCI. However, these files are read-only when accessed through BFILES , and so

they cannot be updated or deleted through BFILES .

As a consequence of the reference-based semantics for BFILEs , it is possible to have

multiple BFILE columns in the same record or different records referring to the

same file. For example, the UPDATE statements below set the BFILE column of the

row with key_value 21 in lob_table to point to the same file as the row with

key_value 22.

UPDATE lob_table
 SET f_lob = (SELECT f_lob FROM lob_table WHERE key_value = 22)
 WHERE key_value = 21;

Think of BFILENAME() in terms of initialization — it can initialize the value for the

following:

■ BFILE column

■ BFILE (automatic) variable declared inside a PL/SQL module

Advantages. This has the following advantages:

■ If your need for a particular BFILE is temporary, and scoped just within the

module on which you are working, you can utilize the BFILE related APIs on

the variable without ever having to associate this with a column in the

database.

■ Since you are not forced to create a BFILE column in a server side table,

initialize this column value, and then retrieve this column value via a SELECT,
you save a round-trip to the server.

For more information, refer to the example given for DBMS_LOB.LOADFROMFILE
(see "Load a LOB with BFILE Data" on page 11-38).

The OCI counterpart for BFILENAME() is OCILobFileSetName (), which can be

used in a similar fashion.
External LOBs (BFILEs) 11-7

Directory Object
DIRECTORY Name Specification
The naming convention for DIRECTORY objects is the same as that for tables and

indexes. That is, normal identifiers are interpreted in uppercase, but delimited

identifiers are interpreted as is. For example, the following statement:

CREATE DIRECTORY scott_dir AS '/usr/home/scott';

creates a directory object whose name is ’SCOTT_DIR’ (in uppercase). But if a

delimited identifier is used for the DIRECTORY name, as shown in the following

statement

CREATE DIRECTORY "Mary_Dir" AS '/usr/home/mary';

the directory object’s name is ’Mary_Dir ’. Use ’SCOTT_DIR’ and ’Mary_Dir ’

when calling BFILENAME(). For example:

BFILENAME(’SCOTT_DIR’, ’afile’)
BFILENAME(’Mary_Dir’, ’afile’)

On WindowsNT Platforms
On WindowsNT, for example, the directory names are case-insensitive. Therefore

the following two statements refer to the same directory:

CREATE DIRECTORY "big_cap_dir" AS "g:\data\source";

CREATE DIRECTORY "small_cap_dir" AS "G:\DATA\SOURCE";
11-8 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

BFILE Security
BFILE Security
This section introduces the BFILE security model and associated SQL statements.

The main SQL statements associated with BFILE security are:

■ SQL DDL: CREATE and REPLACE or ALTER a DIRECTORY object

■ SQL DML: GRANT and REVOKE the READ system and object privileges on

DIRECTORY objects

Ownership and Privileges
The DIRECTORYobject is a system owned object. For more information on system

owned objects, see Oracle8i SQL Reference. Oracle8i supports two new system

privileges, which are granted only to DBA:

■ CREATE ANY DIRECTORY — for creating or altering the directory object creation

■ DROP ANY DIRECTORY — for deleting the directory object

Read Permission on Directory Object
READ permission on the DIRECTORY object allows you to read files located under

that directory. The creator of the DIRECTORY object automatically earns the READ
privilege.

If you have been granted the READ permission with GRANT option, you may in turn

grant this privilege to other users/roles and add them to your privilege domains.

The physical directory that it represents may or may not have the corresponding

operating system privileges (read in this case) for the Oracle Server process.

It is the DBA’s responsibility to ensure the following:

■ That the physical directory exists

■ Read permission for the Oracle Server process is enabled on the file, the

directory, and the path leading to it

■ The directory remains available, and read permission remains enabled, for the

entire duration of file access by database users

Note: The READ permission is defined only on the DIRECTORY
object, not on individual files. Hence there is no way to assign

different privileges to files in the same directory.
External LOBs (BFILEs) 11-9

BFILE Security
The privilege just implies that as far as the Oracle Server is concerned, you may

read from files in the directory. These privileges are checked and enforced by the

PL/SQL DBMS_LOB package and OCI APIs at the time of the actual file operations.

SQL DDL for BFILE Security
Refer to the Oracle8i SQL Reference for information about the following SQL DDL

statements that create, replace, and drop directory objects:

■ CREATE DIRECTORY

■ DROP DIRECTORY

SQL DML for BFILE Security
Refer to the Oracle8i SQL Reference for information about the following SQL DML

statements that provide security for BFILE s:

■ GRANT (system privilege)

■ GRANT (object privilege)

■ REVOKE (system privilege)

■ REVOKE (object privilege)

■ AUDIT (new statements)

■ AUDIT (schema objects)

Catalog Views on Directories
Catalog views are provided for DIRECTORY objects to enable users to view object

names and corresponding paths and privileges. Supported views are:

■ ALL_DIRECTORIES (OWNER, DIRECTORY_NAME, DIRECTORY_PATH)

This view describes all directories accessible to the user.

■ DBA_DIRECTORIES(OWNER, DIRECTORY_NAME, DIRECTORY_PATH)

WARNING: Because CREATE ANY DIRECTORY and DROP ANY
DIRECTORY privileges potentially expose the server filesystem to
all database users, the DBA should be prudent in granting these
privileges to normal database users to prevent security breach.
11-10 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

BFILE Security
This view describes all directories specified for the entire database.

Guidelines for DIRECTORY Usage
The main goal of the DIRECTORY feature is to enable a simple, flexible,

non-intrusive, yet secure mechanism for the DBA to manage access to large files in

the server filesystem. But to realize this goal, it is very important that the DBA

follow these guidelines when using DIRECTORY objects:

■ Do Not Map DIRECTORY to Directories of Data Files Etc. A DIRECTORY
should not be mapped to physical directories which contain Oracle data files,

control files, log files, and other system files. Tampering with these files

(accidental or otherwise) could potentially corrupt the database or the server

operating system.

■ Only DBA Should Have System Privileges. The system privileges such as

CREATE ANY DIRECTORY (granted to the DBA initially) should be used

carefully and not granted to other users indiscriminately. In most cases, only the

database administrator should have these privileges.

■ Use Caution When Granting DIRECTORY Object Privilege. Privileges on

DIRECTORY objects should be granted to different users carefully. The same

holds for the use of the WITH GRANT OPTIONclause when granting privileges to

users.

■ Do not Drop or Replace DIRECTORY Objects When Database is in Operation.
DIRECTORY objects should not be arbitrarily dropped or replaced when the

database is in operation. If this were to happen, operations from all sessions on

all files associated with this directory object will fail. Further, if a DROP or

REPLACE command is executed before these files could be successfully closed,

the references to these files will be lost in the programs, and system resources

associated with these files will not be released until the session(s) is shutdown.

The only recourse left to PL/SQL users, for example, will be to either execute a

program block that calls DBMS_LOB.FILECLOSEALL() and restart their file

operations, or exit their sessions altogether. Hence, it is imperative that you use

these commands with prudence, and preferably during maintenance

downtimes.

■ Caution When Revoking User’s Privilege on DIRECTORY Objects. Revoking a

user’s privilege on a DIRECTORY object using the REVOKE statement causes all

subsequent operations on dependent files from the user’s session to fail. Either

you must re-acquire the privileges to close the file, or execute a

FILECLOSEALL() in the session and restart the file operations.
External LOBs (BFILEs) 11-11

BFILE Security
In general, using DIRECTORY objects for managing file access is an extension of

system administration work at the operating system level. With some planning, files

can be logically organized into suitable directories that have READ privileges for

the Oracle process.

DIRECTORY objects can be created with READ privileges that map to these physical

directories, and specific database users granted access to these directories.

BFILEs in Multi-Threaded Server (MTS) Mode
Oracle8i does not support session migration for BFILE s in Multi-threaded Server

(MTS) mode. This implies that operations on open BFILE s can persist beyond the

end of a call to an MTS server.

In MTS, sessions involving BFILE operations will be bound to one shared server,

they cannot migrate from one server to another. This restriction will be removed in

the next release.

External LOB (BFILE) Locators
For BFILE s, the value is stored in a server-side operating system file; i.e., external to

the database. The BFILE locator that refers to that file is stored in the row.

When Two Rows in a BFILE Table Refer to the Same File If a BFILE locator variable that is

used in a DBMS_LOB.FILEOPEN() (for example L1) is assigned to another locator

variable, (for example L2), both L1 and L2 point to the same file. This means that

two rows in a table with a BFILE column can refer to the same file or to two distinct

files — a fact that the canny developer might turn to advantage, but which could

well be a pitfall for the unwary.

BFILE Locator Variable A BFILE locator variable behaves like any other automatic

variable. With respect to file operations, it behaves like a file descriptor available as

part of the standard I/O library of most conventional programming languages. This

implies that once you define and initialize a BFILE locator, and open the file

pointed to by this locator, all subsequent operations until the closure of this file

must be done from within the same program block using this locator or local copies

of this locator.

Guidelines
■ Open and Close a File From Same Program Block at Same Nesting Level. The

BFILE locator variable can be used, just as any scalar, as a parameter to other

procedures, member methods, or external function callouts. However, it is
11-12 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

BFILE Security
recommended that you open and close a file from the same program block at

the same nesting level.

■ Set the BFILE Value Before Flushing Object to Database. If the object contains

a BFILE , you must set the BFILE value before flushing the object to the

database, thereby inserting a new row. In other words, you must call

OCILobFileSetName () after OCIObjectNew () and before

OCIObjectFlush ().

■ Indicate Directory Alias and Filename Before INSERT or UPDATE of BFILE.
It is an error to INSERT or UPDATE a BFILE without indicating a directory

alias and filename.

This rule also applies to users using an OCI bind variable for a BFILE in an

insert/update statement. The OCI bind variable must be initialized with a

directory alias and filename before issuing the insert or update statement.

■ Initialize BFILE Before INSERT or UPDATE

General Rule
Before using SQL to insert or update a row with a BFILE , the user must initialize

the BFILE to one of the following:

■ NULL (not possible if using an OCI bind variable)

■ A directory alias and filename

Note: OCISetAttr () does not allow the user to set a BFILE
locator to NULL.
External LOBs (BFILEs) 11-13

Three Ways to Create a Table Containing a BFILE
Three Ways to Create a Table Containing a BFILE

Figure 11–2 Use Case Diagram: Three Ways to Create a Table Containing One or
More BFILE Columns

You can incorporate BFILE s into tables in the following three ways:

a. As columns in a table — see CREATE a Table of an Object Type with a

BFILE Attribute on page 11-15

b. As attributes of an object type — see CREATE a Table of an Object Type

with a BFILE Attribute on page 11-18

c. Contained within a nested table — see CREATE a Table with a Nested Table

Containing a BFILE on page 11-21

In all cases SQL Data Definition Language (DDL) is used — to define BFILE
columns in a table and BFILE attributes in an object type.

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

CREATE
a Table
(BFILE)

User/
Program

CREATE table with one or more BFILEs

CREATE table with an object type
containing a BFILE

CREATE table with a nested table
containing one or more BFILEs

: External LOBS CREATE a Table
(BFILE)

b

c

a

11-14 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table Containing One or More BFILE Columns
CREATE a Table Containing One or More BFILE Columns

Figure 11–3 Use Case Diagram: CREATE a Table Containing One or More BFILE
Columns

Purpose
This procedure describes how to create a table containing one or more BFILE

columns.

Usage Notes
Not applicable.

Syntax
Use the following syntax references:

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

CREATE
a Table

(BFILEs)

User/
Program

a CREATE table with one or more BFILEs

: External LOBS CREATE a Table
(BFILEs) a
External LOBs (BFILEs) 11-15

CREATE a Table Containing One or More BFILE Columns
■ SQL (Oracle8i SQL Reference), Chapter 7, "SQL Statements" — CREATE TABLE

Scenario
The heart of our hypothetical application is table Multimedia_tab . The varied

types which make up the columns of this table make it possible to collect together

the many different kinds multimedia elements used in the composition of clips.

Examples
The following example is provided in SQL and applies to all programmatic

environments:

■ SQL: Create a Table Containing One or More BFILE Columns on page 11-16

SQL: Create a Table Containing One or More BFILE Columns
You may need to set up the following data structures for certain examples in this

chapter to work:

CONNECT system/manager;
DROP USER samp CASCADE;
DROP DIRECTORY AUDIO_DIR;
DROP DIRECTORY FRAME_DIR;
DROP DIRECTORY PHOTO_DIR;

CREATE USER samp identified by samp;
GRANT CONNECT, RESOURCE to samp;
CREATE DIRECTORY AUDIO_DIR AS ’/tmp/’;
CREATE DIRECTORY FRAME_DIR AS ’/tmp/’;
CREATE DIRECTORY PHOTO_DIR AS ’/tmp/’;
GRANT READ ON DIRECTORY AUDIO_DIR to samp;
GRANT READ ON DIRECTORY FRAME_DIR to samp;
GRANT READ ON DIRECTORY PHOTO_DIR to samp;

CREATE TABLE VoiceoverLib_tab of Voiced_typ
(Script DEFAULT EMPTY_CLOB(),
 CONSTRAINT TakeLib CHECK (Take IS NOT NULL),
 Recording DEFAULT NULL
);
CONNECT samp/samp
CREATE TABLE a_table (blob_col BLOB);
CREATE TYPE Voiced_typ AS OBJECT
(Originator VARCHAR2(30),
11-16 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table Containing One or More BFILE Columns
 Script CLOB,
 Actor VARCHAR2(30),
 Take NUMBER,
 Recording BFILE);

CREATE TYPE InSeg_typ AS OBJECT
(Segment NUMBER,
 Interview_Date DATE,
 Interviewer VARCHAR2(30),
 Interviewee VARCHAR2(30),
 Recording BFILE,
 Transcript CLOB);

CREATE TYPE InSeg_tab AS TABLE of InSeg_typ;

CREATE TYPE Map_typ AS OBJECT
(Region VARCHAR2(30),
 NW NUMBER,
 NE NUMBER,
 SW NUMBER,
 SE NUMBER,
 Drawing BLOB,
 Aerial BFILE);
CREATE TABLE Map_Libtab of Map_typ;
CREATE TABLE Voiceover_tab of Voiced_typ
(Script DEFAULT EMPTY_CLOB(),
 CONSTRAINT Take CHECK (Take IS NOT NULL),
 Recording DEFAULT NULL);

Because you can use SQL DDL directly to create a table containing one or more LOB
columns, it is not necessary to use the DBMS_LOB package.

CREATE TABLE Multimedia_tab
(Clip_ID NUMBER NOT NULL,
 Story CLOB default EMPTY_CLOB(),
 FLSub NCLOB default EMPTY_CLOB(),
 Photo BFILE default NULL,
 Frame BLOB default EMPTY_BLOB(),
 Sound BLOB default EMPTY_BLOB(),
 Voiced_ref REF Voiced_typ,
 InSeg_ntab InSeg_tab,
 Music BFILE default NULL,
 Map_obj Map_typ
) NESTED TABLE InSeg_ntab STORE AS InSeg_nestedtab;
External LOBs (BFILEs) 11-17

CREATE a Table of an Object Type with a BFILE Attribute
CREATE a Table of an Object Type with a BFILE Attribute

Figure 11–4 Use Case Diagram: CREATE a Table Containing a BFILE

Purpose
This procedure describes how to create a table of an object type with a BFILE

attribute.

Usage Notes
As shown in the diagram, you must create the object type that contains the BFILE
attributes before you can proceed to create a table that makes use of that object type.

Syntax
Use the following syntax references:

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

CREATE
a Table

(Object Type)

User/
Program

b CREATE table with an object
type containing a BFILE

CREATE
Object Type

: External LOBS CREATE a Table
(Object Type) b
11-18 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table of an Object Type with a BFILE Attribute
■ SQL (Oracle8i SQL Reference), Chapter 7, "SQL Statements" — CREATE TABLE,

CREATE TYPE

Note that NCLOBs cannot be attributes of an object type.

Scenario
Our example application contains examples of two different ways in which object

types can contain BFILEs :

■ Multimedia_tab contains a column Voiced_ref that references row objects

in the table VoiceOver_tab which is based on the type Voiced_typ . This

type contains two kinds of LOBs — a CLOB to store the script that’s read by the

actor, and a BFILE to hold the audio recording.

■ Multimedia_tab contains column Map_obj that contains column objects of

the type Map_typ. This type utilizes the BFILE datatype for storing aerial

pictures of the region.

Examples
The following example is provided in SQL and applies to all programmatic

environments:

■ SQL: Create a Table of an Object Type with a BFILE Attribute on page 11-19

SQL: Create a Table of an Object Type with a BFILE Attribute
/* Create type Voiced_typ as a basis for tables that can contain recordings of
 voice-over readings using SQL DDL: */
CREATE TYPE Voiced_typ AS OBJECT
(Originator VARCHAR2(30),
 Script CLOB,
 Actor VARCHAR2(30),
 Take NUMBER,
 Recording BFILE
);

/* Create table Voiceover_tab Using SQL DDL: */
CREATE TABLE Voiceover_tab OF Voiced_typ
(Script DEFAULT EMPTY_CLOB(),
 CONSTRAINT Take CHECK (Take IS NOT NULL),
 Recording DEFAULT NULL
);
External LOBs (BFILEs) 11-19

CREATE a Table of an Object Type with a BFILE Attribute
/* Create Type Map_typ using SQL DDL as a basis for the table that will contain
 the column object: */
CREATE TYPE Map_typ AS OBJECT
(Region VARCHAR2(30),
 NW NUMBER,
 NE NUMBER,
 SW NUMBER,
 SE NUMBER,
 Drawing BLOB,
 Aerial BFILE
);

/* Create support table MapLib_tab as an archive of maps using SQL DDL: */
CREATE TABLE Map_tab of MapLib_typ;
11-20 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table with a Nested Table Containing a BFILE
CREATE a Table with a Nested Table Containing a BFILE

Figure 11–5 Use Case Diagram: CREATE a Table with a Nested Table Containing a
BFILE

Purpose
This procedure describes how to create a table with nested table containing a BFILE.

Usage Notes
As shown in the use case diagram, you must create the object type that contains

BFILE attributes before you create a nested table that uses that object type.

Syntax
Use the following syntax references:

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

CREATE
a Table

(Nested Table)

User/
Program

c CREATE table with a nested
table containing one or
more BFILEs

CREATE
Object Type

: External LOBS CREATE a Table
(Nested) c
External LOBs (BFILEs) 11-21

CREATE a Table with a Nested Table Containing a BFILE
■ SQL (Oracle8i SQL Reference), Chapter 7, "SQL Statements" — CREATE TABLE,

CREATE TYPE

Scenario
In our example, Multimedia_tab contains a nested table Inseg_ntab that

includes type InSeg_typ . This type makes use of two LOB datatypes — a BFILE
for audio recordings of the interviews, and a CLOB for transcripts of the recordings.

We have already described how to create a table with BFILE columns (see "CREATE

a Table Containing One or More BFILE Columns" on page 11-15), so here we only

describe the SQL syntax for creating the underlying object type.

Examples
The following example is provided in SQL and applies to all programmatic

environments:

■ SQL: Create a Table with a Nested Table Containing a BFILE on page 11-22

SQL: Create a Table with a Nested Table Containing a BFILE
Because you use SQL DDL directly to create a table, the DBMS_LOB package is not

relevant.

CREATE TYPE InSeg_typ AS OBJECT
(Segment NUMBER,
 Interview_Date DATE,
 Interviewer VARCHAR2(30),
 Interviewee VARCHAR2(30),
 Recording BFILE,
 Transcript CLOB
);

Embedding the nested table is accomplished when the structure of the containing

table is defined. In our example, this is done by the following statement when

Multimedia_tab is created:

NESTED TABLE InSeg_ntab STORE AS InSeg_nestedtab;
11-22 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Three Ways to Insert a Row Containing a BFILE
Three Ways to Insert a Row Containing a BFILE

Figure 11–6 Use Case Diagram: Three Ways to Insert a Row Containing a BFILE

 The following are three ways to insert a row containing a BFILE:

a. INSERT a Row Using BFILENAME() on page 11-24

b. INSERT a BFILE Row by Selecting a BFILE From Another Table on

page 11-31

c. INSERT Row With BFILE by Initializing BFILE Locator on page 11-31

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

Note: Before you insert, you must initialize the BFILE either to

NULL or to a directory alias and filename.

User/
Program

INSERT
a Row INSERT using BFILENAME()

INSERT as SELECT

INSERT by Initializing BFILE locator

: External LOBS INSERT a Row

b

c

a

External LOBs (BFILEs) 11-23

INSERT a Row Using BFILENAME()
INSERT a Row Using BFILENAME()

Figure 11–7 Use Case Diagram: INSERT a Row Using BILENAME()

User/
Program

BFILENAME()

a INSERT using BFILENAME()INSERT
a Row

: External LOBS Insert a Row a
11-24 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row Using BFILENAME()
Purpose
This procedure describes how to insert a row using BFILENAME().

Usage Notes
Call BFILENAME () function as part of an INSERT to initialize a BFILE column or

attribute for a particular row, by associating it with a physical file in the server’s

filesystem.

Although DIRECTORY object, represented by the directory_alias parameter to

BFILENAME(), need not already be defined before BFILENAME() is called by a SQL

or PL/SQL program, the DIRECTORYobject and operating system file must exist by

the time you actually use the BFILE locator. For example, when used as a

parameter to one of the following operations:

■ OCILobFileOpen()

■ DBMS_LOB.FILEOPEN()

■ OCILobOpen()

■ DBMS_LOB.OPEN()

Ways BFILENAME() is Used to Initialize BFILE Column or Locator Variable
You can use BFILENAME() in the following ways to initialize a BFILE column:

■ As part of an SQL INSERT statement

■ As part of an UPDATE statement

You can use BFILENAME() to initialize a BFILE locator variable in one of the

programmatic interface programs, and use that locator for file operations. However,

if the corresponding directory alias and/or filename does not exist, then for

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

Note: BFILENAME() does not validate privileges on this

DIRECTORY object, or check if the physical directory that the

DIRECTORY object represents actually exists. These checks are

performed only during file access using the BFILE locator that was

initialized by BFILENAME().
External LOBs (BFILEs) 11-25

INSERT a Row Using BFILENAME()
example, PL/SQL DBMS_LOB or other relevant routines that use this variable, will

generate errors.

The directory_alias parameter in the BFILENAME() function must be specified

taking case-sensitivity of the directory name into consideration.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ SQL Oracle8i SQL Reference, Chapter 7, "SQL Statements" — INSERT

■ C/C++ (Pro*C/C++) Pro*C/C++ Precompiler Programmer’s Guide: Chapter 16,

"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,

"Embedded SQL Statements and Directives". See Oracle8i SQL Reference, Chapter
7, "SQL Statements" — INSERT

Scenario
Examples are provided in the following six programmatic environments:

■ SQL: Insert a Row by means of BFILENAME() on page 11-26

■ C/C++ (Pro*C/C++): Insert a Row by means of BFILENAME() C/C++

(Pro*C/C++): Insert a Row by means of BFILENAME() on page 11-27

■ on page 11-28

Examples
The following examples illustrate how to insert a row using BFILENAME().

SQL: Insert a Row by means of BFILENAME()
/* Note that this is the same insert statement as applied to internal persistent

LOBs but with the BFILENAME() function added to initialize the BFILE columns:
*/

INSERT INTO Multimedia_tab VALUES (1, EMPTY_CLOB(), EMPTY_CLOB(),
 FILENAME(’PHOTO_DIR’, ’LINCOLN_PHOTO’),
 EMPTY_BLOB(), EMPTY_BLOB(),

See Also: "DIRECTORY Name Specification". on page 11-8
11-26 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row Using BFILENAME()
VOICED_TYP(’Abraham Lincoln’, EMPTY_CLOB(),’James Earl Jones’, 1, NULL),
 NULL, BFILENAME(’AUDIO_DIR’,’LINCOLN_AUDIO’),
 MAP_TYP(’Gettysburg’, 23, 34, 45, 56,EMPTY_BLOB(), NULL));

C/C++ (Pro*C/C++): Insert a Row by means of BFILENAME()
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void BFILENAMEInsert_proc()
{
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL WHENEVER NOT FOUND CONTINUE;
 /* Delete any existing row: */
 EXEC SQL DELETE FROM Multimedia_tab WHERE Clip_ID = 1;
 /* Insert a new row using the BFILENAME() function for BFILEs: */
 EXEC SQL INSERT INTO Multimedia_tab
 VALUES (1, EMPTY_CLOB(), EMPTY_CLOB(),
 BFILENAME('PHOTO_DIR', 'Lincoln_photo'),
 EMPTY_BLOB(), EMPTY_BLOB(), NULL,
 InSeg_tab(InSeg_typ(1, NULL, 'Ted Koppell', 'Abraham Lincoln',
 BFILENAME('AUDIO_DIR', 'Lincoln_audio'),
 EMPTY_CLOB())),
 BFILENAME('AUDIO_DIR', 'Lincoln_audio'),
 Map_typ('Moon Mountain', 23, 34, 45, 56, EMPTY_BLOB(),
 BFILENAME('PHOTO_DIR', 'Lincoln_photo')));
 printf("Inserted %d row\n", sqlca.sqlerrd[2]);
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 BFILENAMEInsert_proc();
External LOBs (BFILEs) 11-27

INSERT a Row Using BFILENAME()
 EXEC SQL ROLLBACK WORK RELEASE;
 }
11-28 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a BFILE Row by Selecting a BFILE From Another Table
INSERT a BFILE Row by Selecting a BFILE From Another Table

Figure 11–8 Use Case Diagram: INSERT a Row Containing a BFILE by Selecting a
BFILE From Another Table (INSERT ... AS ... SELECT)

Purpose
This procedure describes how to INSERT a row containing a BFILE by selecting a

BFILE from another table.

Usage Notes
With regard to LOBs, one of the advantages of utilizing an object-relational

approach is that you can define a type as a common template for related tables. For

instance, it makes sense that both the tables that store archival material and the

working tables that use those libraries share a common structure. See the following

"Scenario".

Syntax
See the following syntax reference:

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

User/
Program

SELECT
a BFILE

INSERT
a Row b INSERT as SELECT

: External LOBS Insert a Row b
External LOBs (BFILEs) 11-29

INSERT a BFILE Row by Selecting a BFILE From Another Table
■ SQL (Oracle8i SQL Reference): Chapter 7, "SQL Statements" — INSERT

Scenario
The following code fragment is based on the fact that a library table

VoiceoverLib_tab is of the same type (Voiced_typ) as Voiceover_tab
referenced by column Voiced_ref of Multimedia_tab table.

It inserts values from the library table into Multimedia_tab by means of a

SELECT.

Examples
The example is provided in SQL and applies to all programmatic environments:

■ SQL: Insert a Row Containing a BFILE by Selecting a BFILE From Another

Table on page 11-30

SQL: Insert a Row Containing a BFILE by Selecting a BFILE From Another Table
 INSERT INTO Voiceover_tab
 (SELECT * from VoiceoverLib_tab
 WHERE Take = 12345);
11-30 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT Row With BFILE by Initializing BFILE Locator
INSERT Row With BFILE by Initializing BFILE Locator

Figure 11–9 Use Case Diagram: INSERT Row by Initializing BFILE Locator

User/
Program

BFILENAME
OCI LOB File

Set Name

SELECT
a BFILE

OR

INSERT
a Row

Initialize
a BFILE locator

c INSERT by Initializing BFILE locator

: External LOBS Insert a Row c
External LOBs (BFILEs) 11-31

INSERT Row With BFILE by Initializing BFILE Locator
Purpose
This procedure describes how to INSERT a row containing a BFILE by initializing a

BFILE locator.

Usage Notes

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ SQL(Oracle8i SQL Reference, Chapter 7 "SQL Statements" — INSERT: PL/SQL

Oracle8i Supplied PL/SQL Packages Reference BFILENAME()

■ C/C++ (Pro*C/C++) Pro*C/C++ Precompiler Programmer’s Guide: Chapter 16,

"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,

"Embedded SQL Statements and Directives" — LOB FILE SET. See also (Oracle8i
SQL Reference), Chapter 7 "SQL Statements" — INSERT

Scenario
In these examples we insert a Photo from an operating system source file (PHOTO_
DIR). Examples in the following programmatic environments are provided:

■ C/C++ (Pro*C/C++): Insert a Row Containing a BFILE by Initializing a BFILE

Locator on page 11-32

C/C++ (Pro*C/C++): Insert a Row Containing a BFILE by Initializing a BFILE Locator
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>
void Sample_Error()

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

Note: You must initialize the BFILE locator bind variable to a

directory alias and filename before issuing the insert statement.
11-32 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT Row With BFILE by Initializing BFILE Locator
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void insertBFILELocator_proc()
{
 OCIBFileLocator *Lob_loc;
 char *Dir = "PHOTO_DIR", *Name = "Washington_photo";
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Allocate the input Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 /* Set the Directory and Filename in the Allocated (Initialized) Locator: */
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 EXEC SQL INSERT INTO Multimedia_tab (Clip_ID, Photo) VALUES (4, :Lob_loc);
 /* Release resources held by the Locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 insertBFILELocator_proc();
 EXEC SQL ROLLBACK WORK RELEASE;

 }

IJ
External LOBs (BFILEs) 11-33

Load Data Into External LOB (BFILE)
Load Data Into External LOB (BFILE)

Figure 11–10 Use Case Diagram: Load Initial Data into External LOB (BFILE)

Purpose
This procedure describes how to load initial data into a BFILE and the BFILE data

into a table.

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

User/
Program

LOAD
BFILE Data into

a Table

: External LOBS LOAD BFILE Data into a Table
11-34 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load Data Into External LOB (BFILE)
Usage Notes
The BFILE datatype stores unstructured binary data in operating-system files

outside the database.

A BFILE column or attribute stores a file locator that points to a server-side external

file containing the data.

The SQL Loader assumes that the necessary DIRECTORY objects (a logical alias

name for a physical directory on the server's filesystem) have already been created.

A control file field corresponding to a BFILE column consists of column name

followed by the BFILE directive.

The BFILE directive takes as arguments a DIRECTORYobject name followed by a

BFILE name. Both of these can be provided as string constants, or they can be

dynamically sourced through some other field.

Syntax
Use the following syntax references:

■ SQL Loader (Oracle8i Utilities)

■ Chapter 4, "Managing LOBs", Using SQL Loader to Load LOBs

Scenario
The following two examples illustrate the loading of BFILES . In the first example

only the file name is specified dynamically. In the second example, the BFILE and

the DIRECTORY object are specified dynamically.

Note: A particular file to be loaded as a BFILE does not have to

actually exist at the time of loading.

See Also: Oracle8i Application Developer’s Guide - Fundamentals for

more information on BFILES.
External LOBs (BFILEs) 11-35

Load Data Into External LOB (BFILE)
Examples
The following examples load data into BFILES:

■ Loading Data Into BFILES: File Name Only is Specified Dynamically

■ Loading Data into BFILES: File Name and DIRECTORY Object Dynamically

Specified

Loading Data Into BFILES: File Name Only is Specified Dynamically

Control File
LOAD DATA
INFILE sample9.dat
INTO TABLE Multimedia_tab
FIELDS TERMINATED BY ’,’
(Clip_ID INTEGER EXTERNAL(5),
 FileName FILLER CHAR(30),
 Photo BFILE(CONSTANT "DETECTIVE_PHOTO", FileName))

Data file (sample9.dat)
007, JamesBond.jpeg,
008, SherlockHolmes.jpeg,
009, MissMarple.jpeg,

Note: You may need to set up the following data structures for

certain examples to work:

CONNECT system/manager
GRANT CREATE ANY DIRECTORY to samp;
CONNECT samp/samp
CREATE OR REPLACE DIRECTORY detective_photo as ’/tmp’;
CREATE OR REPLACE DIRECTORY photo_dir as ’/tmp’;
11-36 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load Data Into External LOB (BFILE)
Loading Data into BFILES: File Name and DIRECTORY Object Dynamically Specified

Control File
LOAD DATA
INFILE sample10.dat
INTO TABLE Multimedia_tab
replace
FIELDS TERMINATED BY ','
(
 Clip_ID INTEGER EXTERNAL(5),
 Photo BFILE (DirName, FileName),
 FileName FILLER CHAR(30),
 DirName FILLER CHAR(30)
)

Data file (sample10.dat)
007,JamesBond.jpeg,DETECTIVE_PHOTO,
008,SherlockHolmes.jpeg,DETECTIVE_PHOTO,
009,MissMarple.jpeg,PHOTO_DIR,

Note: Clip_ID defaults to (255) if a size is not specified. It is

mapped to the file names in the datafile. DETECTIVE_PHOTO is the

directory where all files are stored. DETECTIVE_PHOTO is a

DIRECTORY object created previously.

Note: DirName FILLER CHAR (30) is mapped to the datafile

field containing the directory name corresponding to the file being

loaded.
External LOBs (BFILEs) 11-37

Load a LOB with BFILE Data
Load a LOB with BFILE Data

Figure 11–11 Use Case Diagram: Load a LOB with BFILE Data

User/
Program

LOAD a LOB
with Data from

a BFILE

SELECT
a LOB

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

b

a

b

a
close

a BFILE

open
a BFILE

OR

: External LOBS LOAD a LOB with Data from a BFILE
11-38 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a LOB with BFILE Data
Purpose
This procedure describes how to load a LOB with BFILE data.

Usage Notes

Character Set Conversion
In using OCI, or any of the programmatic environments that access OCI

functionality, character set conversions are implicitly performed when translating

from one character set to another.

BFILE to CLOB or NCLOB: Converting From Binary Data to a Character Set
When you use the DBMS_LOB.LOADFROMFILE procedure to populate a CLOB or

NCLOB, you are populating the LOB with binary data from the BFILE . No implicit
translation is performed from binary data to a character set.

Hence, when loading data into a CLOB or NCLOB from a BFILE ensure the

following for the BFILE data before you use loadfromfile :

■ It is in the same character set as the CLOB or NCLOB data already in the

database, i.e., is in the char/nchar character set

■ It is encoded in the correct endian format of the server machine

Specify Amount Parameter to be Less than the Size of the BFILE!
■ DBMS_LOB.LOADFROMFILE: You cannot specify the amount parameter to

be larger than the size of the BFILE.

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

Note: If the CLOB or NCLOB database char/nchar character set is

varying-width, then the data in the BFILE must contain ucs-2

character data because we store CLOB and NCLOB data in ucs-2

format when the database char/nchar char set is varying-width.

See Also: Oracle8i National Language Support Guide, for character

set conversion issues.
External LOBs (BFILEs) 11-39

Load a LOB with BFILE Data
■ OCILobLoadFromFile: You cannot specify the amount parameter to be larger

than the length of the BFILE.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,

"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,

"Embedded SQL Statements and Directives" — LOB LOAD

Scenario
These example procedures assume there is a directory object (AUDIO_DIR) that

contains the LOB data to be loaded into the target LOB (Music). Examples are

provided in the following six programmatic environments:

Examples
■ C/C++ (Pro*C/C++): Load a LOB with BFILE Data on page 11-40

C/C++ (Pro*C/C++): Load a LOB with BFILE Data
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void loadLOBFromBFILE_proc()
{
 OCIBlobLocator *Dest_loc;
 OCIBFileLocator *Src_loc;
 char *Dir = "AUDIO_DIR", *Name = "Washington_audio";
 int Amount = 4096;
11-40 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a LOB with BFILE Data
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();

 /* Initialize the BFILE Locator: */
 EXEC SQL ALLOCATE :Src_loc;
 EXEC SQL LOB FILE SET :Src_loc DIRECTORY = :Dir, FILENAME = :Name;

 /* Initialize the BLOB Locator: */
 EXEC SQL ALLOCATE :Dest_loc;
 EXEC SQL SELECT Sound INTO :Dest_loc FROM Multimedia_tab
 WHERE Clip_ID = 3 FOR UPDATE;

 /* Opening the BFILE is Mandatory: */
 EXEC SQL LOB OPEN :Src_loc READ ONLY;

 /* Opening the BLOB is Optional: */
 EXEC SQL LOB OPEN :Dest_loc READ WRITE;
 EXEC SQL LOB LOAD :Amount FROM FILE :Src_loc INTO :Dest_loc;

 /* Closing LOBs and BFILEs is Mandatory if they have been OPENed: */
 EXEC SQL LOB CLOSE :Dest_loc;
 EXEC SQL LOB CLOSE :Src_loc;

 /* Release resources held by the Locators: */
 EXEC SQL FREE :Dest_loc;
 EXEC SQL FREE :Src_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 loadLOBFromBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;

 }
External LOBs (BFILEs) 11-41

Two Ways to Open a BFILE
Two Ways to Open a BFILE

Figure 11–12 Use Case Diagram: Two Ways to Open a BFILE

Recommendation: Use OPEN to Open BFILE
As you can see by comparing the code, these alternative methods are very similar.

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

User/
ProgramSELECT

a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

OPEN
a BFILE

Open a BFILE
with FILEOPEN

Open a BFILE
with OPEN

: External LOBS OPEN a BFILE

b

a

11-42 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Two Ways to Open a BFILE
However, while you can continue to use the older FILEOPEN form, we strongly
recommend that you switch to using OPEN because this facilitates future extensibility.

a. "Open a BFILE with FILEOPEN" on page 11-44

b. "Open a BFILE with OPEN" on page 11-46

Specify the Maximum Number of Open BFILEs: SESSION_MAX_OPEN_FILES
A limited number of BFILE s can be open simultaneously per session. The

maximum number is specified by using the initialization parameter SESSION_
MAX_OPEN_FILES.

SESSION_MAX_OPEN_FILES defines an upper limit on the number of

simultaneously open files in a session. The default value for this parameter is 10.

That is, a maximum of 10 files can be opened simultaneously per session if the

default value is utilized. The database administrator can change the value of this

parameter in the init.ora file. For example:

SESSION_MAX_OPEN_FILES=20

If the number of unclosed files exceeds the SESSION_MAX_OPEN_FILESvalue then

you will not be able to open any more files in the session.

To close all open files, use the FILECLOSEALL call.

Close Files After Use!
It is good practice to close files after use to keep the SESSION_MAX_OPEN_FILES

value small. Choosing a larger value would entail a higher memory usage.
External LOBs (BFILEs) 11-43

Open a BFILE with FILEOPEN
Open a BFILE with FILEOPEN

Figure 11–13 Use Case Diagram: Open a BFILE with FILEOPEN

Purpose
This procedure describes how to open a BFILE using FILEOPEN.

See Also: "Use Case Model: External LOBs (BFILEs)" on page 11-2

for all basic operations of External LOBs (BFILES).

User/
Program

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

a Open a BFILE
with FILEOPEN

open
a BFILE

: External LOBS Open a BFILE with
FILEOPEN a
11-44 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Open a BFILE with FILEOPEN
Usage Notes
While you can continue to use the older FILEOPEN form, we strongly recommend
that you switch to using OPEN, because this facilitates future extensibility.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): A syntax reference is not applicable in this release.

Scenario
These examples open a Lincoln_photo in operating system file PHOTO_DIR. Examples

are provided in the following four programmatic environments:

Examples
■ C/C++ (Pro*C/C++): No example is provided with this release.
External LOBs (BFILEs) 11-45

Open a BFILE with OPEN
Open a BFILE with OPEN

Figure 11–14 Use Case Diagram: Open a BFILE with OPEN

Purpose
This procedure describes how to open a BFILE with OPEN.

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

User/
Program

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

b Open a BFILE
with OPEN

OPEN
a BFILE

: External LOBS OPEN a BFILE b
11-46 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Open a BFILE with OPEN
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,

"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,

"Embedded SQL Statements and Directives" — LOB OPEN

Scenario
 These examples open a Lincoln_photo in operating system file PHOTO_DIR. Examples

are provided in the following six programmatic environments:

Examples
■ C/C++ (Pro*C/C++): Open a BFILE with OPEN on page 11-47

C/C++ (Pro*C/C++): Open a BFILE with OPEN
/* In Pro*C/C++ there is only one form of OPEN that is used for OPENing
 BFILEs. There is no FILE OPEN, only a simple OPEN statement: */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>
void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void openBFILE_proc()
{
 OCIBFileLocator *Lob_loc;
 char *Dir = "PHOTO_DIR", *Name = "Lincoln_photo";
External LOBs (BFILEs) 11-47

Open a BFILE with OPEN
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 /* Initialize the Locator: */
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 /* Open the BFILE: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* ... Do some processing: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 openBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;

 }

:

11-48 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Two Ways to See If a BFILE is Open
Two Ways to See If a BFILE is Open

Figure 11–15 Use Case Diagram: Two Ways to See If a BFILE is Open

Recommendation: Use OPEN to Open BFILE
As you can see by comparing the code, these alternative methods are very similar.

However, while you can continue to use the older FILEISOPEN form, we strongly

recommend that you switch to using ISOPEN, because this facilitates future

extensibility.

a. See If the BFILE is Open with FILEISOPEN on page 11-51

b. See If a BFILE is Open Using ISOPEN on page 11-53

Specify the Maximum Number of Open BFILEs: SESSION_MAX_OPEN_FILES
A limited number of BFILE s can be open simultaneously per session. The

maximum number is specified by using the SESSION_MAX_OPEN_FILES
initialization parameter.

SESSION_MAX_OPEN_FILES defines an upper limit on the number of

simultaneously open files in a session. The default value for this parameter is 10.

That is, a maximum of 10 files can be opened simultaneously per session if the

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

b

a
User/

Program

SEE if the
BFILE is Open

SEE if the BFILE is Open
Using FILEISOPEN

SEE if the BFILE is Open
Using ISOPEN

: External LOBs SEE if the BFILE is Open

b

a

External LOBs (BFILEs) 11-49

Two Ways to See If a BFILE is Open
default value is utilized. The database administrator can change the value of this

parameter in the init .ora file. For example:

SESSION_MAX_OPEN_FILES=20

If the number of unclosed files exceeds the SESSION_MAX_OPEN_FILESvalue then

you will not be able to open any more files in the session. To close all open files, use

the FILECLOSEALL call.
11-50 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If the BFILE is Open with FILEISOPEN
See If the BFILE is Open with FILEISOPEN

Figure 11–16 Use Case Diagram: See If BFILE is Open Using FILEISOPEN

Purpose
This procedure describes how to see if a BFILE is OPEN with FILEISOPEN .

Usage Notes
While you can continue to use the older FILEISOPEN form, we strongly recommend
that you switch to using ISOPEN, because this facilitates future extensibility.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): A syntax reference is not applicable in this release.

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

User/
Program

a SEE if the BFILE is Open
Using FILEISOPEN

See if the
BFILE is Open

a

: External LOBs See if the BFILE is
Open a
External LOBs (BFILEs) 11-51

See If the BFILE is Open with FILEISOPEN
Scenario
These examples query whether a BFILE associated with Music is open. Examples

are provided in the following four programmatic environments:

Examples
■ C/C++ (Pro*C/C++): No example is provided with this release.
11-52 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a BFILE is Open Using ISOPEN
See If a BFILE is Open Using ISOPEN

Figure 11–17 Use Case Diagram: See If a BFILE is Open Using ISOPEN

Purpose
This procedure describes how to see if a BFILE is open using ISOPEN.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,

"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,

"Embedded SQL Statements and Directives" — LOB DESCRIBE ... ISOPEN

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

User/
Program

b SEE if the BFILE is Open
Using ISOPEN

See if the
BFILE is Open

: External LOBs See if the BFILE is
Open b
External LOBs (BFILEs) 11-53

See If a BFILE is Open Using ISOPEN
Scenario
These examples query whether the a BFILE is open that is associated with Music .

Examples
Examples are provided in the following six programmatic environments:

■ C/C++ (Pro*C/C++): See If the BFILE is Open with ISOPEN on page 11-54

C/C++ (Pro*C/C++): See If the BFILE is Open with ISOPEN
/* In Pro*C/C++, there is only one form of ISOPEN used to determine whether
 or not a BFILE is OPEN. There is no FILE IS OPEN, only a simple ISOPEN.
 This is an attribute used in the DESCRIBE statement: */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void seeIfOpenBFILE_proc()
{
 OCIBFileLocator *Lob_loc;
 int isOpen;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 /* Select the BFILE into the locator: */
 EXEC SQL SELECT Music INTO :Lob_loc FROM Multimedia_tab
 WHERE Clip_ID = 3;
 /* Determine if the BFILE is OPEN or not: */
 EXEC SQL LOB DESCRIBE :Lob_loc GET ISOPEN into :isOpen;
 if (isOpen)
 printf("BFILE is open\n");
 else
 printf("BFILE is not open\n");
 /* Note that in this example, the BFILE is not open: */
11-54 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a BFILE is Open Using ISOPEN
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 seeIfOpenBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;

 }
External LOBs (BFILEs) 11-55

Display BFILE Data
Display BFILE Data

Figure 11–18 Use Case Diagram: Display BFILE Data

Purpose
This procedure describes how to display BFILE data.

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

User/
ProgramDISPLAY

 the BFILE

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

b

a

b

a
close

a BFILE

open
a BFILE

OR

: External LOBs DISPLAY the BFILE
11-56 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display BFILE Data
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,

"Large Objects (LOBs)", "LOB Statements" — LOB READ

Scenario

These examples open and display BFILE data. Examples
Examples are provided in six programmatic environments:

■ C/C++ (Pro*C/C++): Display BFILE Data on page 11-57

■

C/C++ (Pro*C/C++): Display BFILE Data
/* This example will READ the entire contents of a BFILE piecewise into a
 buffer using a streaming mechanism via standard polling, displaying each
 buffer piece after every READ operation until the entire BFILE has been
 read: */
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 1024

void displayBFILE_proc()
External LOBs (BFILEs) 11-57

Display BFILE Data
{
 OCIBFileLocator *Lob_loc;
 int Amount;
 struct {
 short Length;
 char Data[BufferLength];
 } Buffer;
 /* Datatype Equivalencing is Mandatory for this Datatype: */
 EXEC SQL VAR Buffer is VARRAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 /* Select the BFILE: */
 EXEC SQL SELECT Music INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 3;
 /* Open the BFILE: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* Setting Amount = 0 will initiate the polling method: */
 Amount = 0;
 /* Set the maximum size of the Buffer: */
 Buffer.Length = BufferLength;
 EXEC SQL WHENEVER NOT FOUND DO break;
 while (TRUE)
 {
 /* Read a piece of the BFILE into the Buffer: */
 EXEC SQL LOB READ :Amount FROM :Lob_loc INTO :Buffer;
 printf("Display %d bytes\n", Buffer.Length);
 }
 printf("Display %d bytes\n", Amount);
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 displayBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;

 }
11-58 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read Data from a BFILE
Read Data from a BFILE

Figure 11–19 Use Case Diagram: Read Data from a BFILE

Purpose
This procedure describes how to read data from a BFILE.

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

b

a

close
a BFILE

open
a BFILE

OR

User/
Program

READ Data
from the BFILE

: External LOBs READ Data from the BFILE
External LOBs (BFILEs) 11-59

Read Data from a BFILE
Usage Notes

Always Specify 4 Gb - 1 Regardless of LOB Size
When reading the LOB value, it is not an error to try to read beyond the end of the

LOB. This means that you can specify an input amount of 4 Gb -1 regardless of the

starting offset and the amount of data in the LOB. Hence, you do not need to

incur a round-trip to the server to call OCILobGetLength () to find out the length

of the LOB value in order to determine the amount to read.

Example
For example, assume that the length of a LOB is 5,000 bytes and you want to read

the entire LOB value starting at offset 1,000. Also assume that you do not know

the current length of the LOB value. Here is the OCI read call, excluding the

initialization of all parameters:

#define MAX_LOB_SIZE 4294967295
ub4 amount = MAX_LOB_SIZE;
ub4 offset = 1000;
OCILobRead(svchp, errhp, locp, &amount, offset, bufp, bufl, 0, 0, 0, 0)

The Amount Parameter
■ In DBMS_LOB.READ, the amount parameter can be larger than the size of the

data. In PL/SQL, the amount parameter should be less than or equal to the size

of the buffer, and the buffer size is limited to 32K.

■ In OCILobRead, you can specify amount = 4 Gb - 1, and it will read to the end

of the LOB.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

Note: The most efficient way to read large amounts of LOB data is

to use OCILobRead () with the streaming mechanism enabled via

polling or a callback. See Also: Chapter 9, "Internal Persistent

LOBs", "Read Data from a BFILE", Usage Notes.
11-60 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read Data from a BFILE
■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,

"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,

"Embedded SQL Statements and Directives" — LOB READ

■ Java (JDBC) (Oracle8i JDBC Developer’s Guide and Reference): Chapter 7, "Working

With LOBs" — Creating and Populating a BLOB or CLOB Column. Further

extensions are available in (Oracle8i SQLJ Developer’s Guide and Reference):
Chapter 5, "Type Support", Oracle Type Support, Support for BLOB, CLOB, and

BFILE.

Scenario
The following examples read a photograph into PHOTO from a BFILE ’PHOTO_
DIR’ .

Examples
Examples are provided in these six programmatic environments:

■ C/C++ (Pro*C/C++): Read Data from a BFILE on page 11-61

C/C++ (Pro*C/C++): Read Data from a BFILE
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 4096

void readBFILE_proc()
{
 OCIBFileLocator *Lob_loc;
 /* Amount and BufferLength are equal so only one READ is necessary: */
 int Amount = BufferLength;
 char Buffer[BufferLength];
 /* Datatype Equivalencing is Mandatory for this Datatype: */
External LOBs (BFILEs) 11-61

Read Data from a BFILE
 EXEC SQL VAR Buffer IS RAW(BufferLength);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Photo INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 3;
 /* Open the BFILE: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 EXEC SQL WHENEVER NOT FOUND CONTINUE;
 /* Read data: */
 EXEC SQL LOB READ :Amount FROM :Lob_loc INTO :Buffer;
 printf("Read %d bytes\n", Amount);
 /* Close the BFILE: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 readBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;

 }
11-62 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read a Portion of BFILE Data (substr)
Read a Portion of BFILE Data (substr)

Figure 11–20 Use Case Diagram: Read a Portion of BFILE Data (substr)

Purpose
This procedure describes how to read portion of BFILE data (substr).

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

User/
Program

READ a
Portion of the
BFILE Data

(Substr.)

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

b

a

b

a
close

a BFILE

open
a BFILE

OR

: External LOBs READ a Portion of the BFILE Data (Substr.)
External LOBs (BFILEs) 11-63

Read a Portion of BFILE Data (substr)
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,

"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,

"Embedded SQL Statements and Directives" — LOB OPEN. See also PL/SQL

DBMS_LOB.SUBSTR

Scenario
The following examples read an audio recording into RECORDING from BFILE
’AUDIO_DIR’ .

Examples are provided in these five programmatic environments:

■ C/C++ (Pro*C/C++): Read a Portion of BFILE Data (substr) on page 11-64

C/C++ (Pro*C/C++): Read a Portion of BFILE Data (substr)
/* Pro*C/C++ lacks an equivalent embedded SQL form for the DBMS_LOB.SUBSTR()
 function. However, Pro*C/C++ can interoperate with PL/SQL using anonymous
 PL/SQL blocks embedded in a Pro*C/C++ program as this example shows: */
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>
void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define BufferLength 256
void substringBFILE_proc()
11-64 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read a Portion of BFILE Data (substr)
{
 OCIBFileLocator *Lob_loc;
 int Position = 1;
 char Buffer[BufferLength];
 EXEC SQL VAR Buffer IS RAW(BufferLength);
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Mtab.Voiced_ref.Recording INTO :Lob_loc
 FROM Multimedia_tab Mtab WHERE Mtab.Clip_ID = 3;
 /* Open the BFILE: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* Invoke SUBSTR() from within an anonymous PL/SQL block: */
 EXEC SQL EXECUTE
 BEGIN
 :Buffer := DBMS_LOB.SUBSTR(:Lob_loc, 256, :Position);
 END;
 END-EXEC;
 /* Close the BFILE: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 substringBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;

 }
External LOBs (BFILEs) 11-65

Compare All or Parts of Two BFILES
Compare All or Parts of Two BFILES

Figure 11–21 Use Case Diagram: Compare All or Parts of Two BFILES

User/
Program

COMPARE
All or Parts of 2

BFILEs

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

b

a

b

a
close

a BFILE

open
a BFILE

OR

: External LOBs COMPARE All or Parts of Two BFILEs
11-66 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Parts of Two BFILES
Purpose
This procedure describes how to compare all or parts of two BFILES.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,

"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,

"Embedded SQL Statements and Directives" — LOB OPEN. See PL/SQL

DBMS_LOB.COMPARE.

Scenario
The following examples determine whether a photograph in file, ’PHOTO_DIR’,
has already been used as a specific PHOTO by comparing each data entity bit by bit.

Examples
Examples are provided in these five programmatic environments:

■ C/C++ (Pro*C/C++): Compare All or Parts of Two BFILES on page 11-67

C/C++ (Pro*C/C++): Compare All or Parts of Two BFILES
/* Pro*C/C++ lacks an equivalent embedded SQL form for the
 DBMS_LOB.COMPARE() function. Like the DBMS_LOB.SUBSTR() function,
 however, Pro*C/C++ can invoke DBMS_LOB.COMPARE() in an anonymous PL/SQL
 block as is shown here: */

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

Note: LOBMAXSIZE is set at 4 Gb so that you do not have to find

out the length of each BFILE before beginning the comparison.
External LOBs (BFILEs) 11-67

Compare All or Parts of Two BFILES
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void compareBFILEs_proc()
{
 OCIBFileLocator *Lob_loc1, *Lob_loc2;
 int Retval = 1;
 char *Dir1 = "PHOTO_DIR", *Name1 = "RooseveltFDR_photo";

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc1;
 EXEC SQL LOB FILE SET :Lob_loc1 DIRECTORY = :Dir1, FILENAME = :Name1;
 EXEC SQL ALLOCATE :Lob_loc2;
 EXEC SQL SELECT Photo INTO :Lob_loc2 FROM Multimedia_tab
 WHERE Clip_ID = 3;
 /* Open the BFILEs: */
 EXEC SQL LOB OPEN :Lob_loc1 READ ONLY;
 EXEC SQL LOB OPEN :Lob_loc2 READ ONLY;
 /* Compare the BFILEs in PL/SQL using DBMS_LOB.COMPARE() */
 EXEC SQL EXECUTE
 BEGIN
 :Retval := DBMS_LOB.COMPARE(
 :Lob_loc2, :Lob_loc1, DBMS_LOB.LOBMAXSIZE, 1, 1);
 END;
 END-EXEC;
 /* Close the BFILEs: */
 EXEC SQL LOB CLOSE :Lob_loc1;
 EXEC SQL LOB CLOSE :Lob_loc2;
 if (0 == Retval)
 printf("BFILEs are the same\n");
 else
 printf("BFILEs are not the same\n");
 /* Release resources used by the locators: */
 EXEC SQL FREE :Lob_loc1;
 EXEC SQL FREE :Lob_loc2;
11-68 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Parts of Two BFILES
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 compareBFILEs_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

External LOBs (BFILEs) 11-69

See If a Pattern Exists (instr) in the BFILE
See If a Pattern Exists (instr) in the BFILE

Figure 11–22 Use Case Diagram: See If a Pattern Exists in the BFILE

User/
Program

SEE Where/if
a Pattern Exists

in the BFILE
(Instr.)

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

b

a

b

a
close

a BFILE

open
a BFILE

OR

: External LOBs SEE Where/if a Pattern Exists in the BFILE (Instr.)
11-70 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Pattern Exists (instr) in the BFILE
Purpose
This procedure describes how to see if a pattern exists (instr) in the BFILE.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,

"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,

"Embedded SQL Statements and Directives" — LOB OPEN. See PL/SQL

DBMS_LOB.INSTR.

Scenario
The following examples search for the occurrence of a pattern of audio data within

an interview Recording . This assumes that an audio signature is represented by

an identifiable bit pattern.

These examples are provided in the following four programmatic environments:

■ C/C++ (Pro*C/C++): See If a Pattern Exists (instr) in the BFILE on page 11-71

C/C++ (Pro*C/C++): See If a Pattern Exists (instr) in the BFILE
/* Pro*C lacks an equivalent embedded SQL form of the DBMS_LOB.INSTR()
 function. However, like SUBSTR() and COMPARE(), Pro*C/C++ can call
 DBMS_LOB.INSTR() from within an anonymous PL/SQL block as shown here: */
#include <sql2oci.h>
#include <stdio.h>
#include <string.h>
#include <sqlca.h>

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).
External LOBs (BFILEs) 11-71

See If a Pattern Exists (instr) in the BFILE
void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

#define PatternSize 5

void instringBFILE_proc()
{
 OCIBFileLocator *Lob_loc;
 unsigned int Position = 0;
 int Clip_ID = 3, Segment = 1;
 char Pattern[PatternSize];
 /* Datatype Equivalencing is Mandatory for this Datatype: */
 EXEC SQL VAR Pattern IS RAW(PatternSize);

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 /* Use Dynamic SQL to retrieve the BFILE Locator: */
 EXEC SQL PREPARE S FROM
 'SELECT Intab.Recording \
 FROM TABLE(SELECT Mtab.InSeg_ntab FROM Multimedia_tab Mtab \
 WHERE Clip_ID = :cid) Intab \
 WHERE Intab.Segment = :seg';
 EXEC SQL DECLARE C CURSOR FOR S;
 EXEC SQL OPEN C USING :Clip_ID, :Segment;
 EXEC SQL FETCH C INTO :Lob_loc;
 EXEC SQL CLOSE C;
 /* Open the BFILE: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 memset((void *)Pattern, 0, PatternSize);
 /* Find the first occurrance of the pattern starting from the
 beginning of the BFILE using PL/SQL: */
 EXEC SQL EXECUTE
 BEGIN
 :Position := DBMS_LOB.INSTR(:Lob_loc, :Pattern, 1, 1);
 END;
 END-EXEC;
 /* Close the BFILE: */
 EXEC SQL LOB CLOSE :Lob_loc;
 if (0 == Position)
11-72 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Pattern Exists (instr) in the BFILE
 printf("Pattern not found\n");
 else
 printf("The pattern occurs at %d\n", Position);
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 instringBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;

 }
External LOBs (BFILEs) 11-73

See If the BFILE Exists
See If the BFILE Exists

Figure 11–23 Use Case Diagram: See If the BFILE Exists

Purpose
This procedure describes how to see if a BFILE exists.

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

SEE if the
BFILE Exists

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator
b

User/
Program

: External LOBs SEE if the BFILE Exists
11-74 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If the BFILE Exists
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++) Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,

"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,

"Embedded SQL Statements and Directives" — LOB DESCRIBE ...GET

FILEEXISTS

Scenario
This example queries whether a BFILE that is associated with Recording .

Examples
The examples are provided in the following six programmatic environments:

■ C/C++ (Pro*C/C++): See If the BFILE Exists on page 11-75

C/C++ (Pro*C/C++): See If the BFILE Exists
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void seeIfBFILEExists_proc()
{
 OCIBFileLocator *Lob_loc;
 unsigned int Exists = 0;
External LOBs (BFILEs) 11-75

See If the BFILE Exists
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Mtab.Voiced_ref.Recording INTO :Lob_loc
 FROM Multimedia_tab Mtab WHERE Mtab.Clip_ID = 3;
 /* See if the BFILE Exists: */
 EXEC SQL LOB DESCRIBE :Lob_loc GET FILEEXISTS INTO :Exists;
 printf("BFILE %s exist\n", Exists ? "does" : "does not");
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 seeIfBFILEExists_proc();
 EXEC SQL ROLLBACK WORK RELEASE;

 }
11-76 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get the Length of a BFILE
Get the Length of a BFILE

Figure 11–24 Use Case Diagram: Get the Length of the BFILE

User/
Program

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

b

a

b

a
close

a BFILE

open
a BFILE

GET the Length
of the BFILE

OR

: External LOBs GET the Length of the BFILE
External LOBs (BFILEs) 11-77

Get the Length of a BFILE
Purpose
This procedure describes how to get the length of a BFILE.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,

"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,

"Embedded SQL Statements and Directives" — LOB DESCRIBE ... GET

LENGTH INTO ...

Scenario
This example gets the length of a BFILE that is associated with Recording .

Examples
The examples are provided in six programmatic environments:

■ C/C++ (Pro*C/C++): Get the Length of a BFILE on page 11-78

C/C++ (Pro*C/C++): Get the Length of a BFILE
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).
11-78 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get the Length of a BFILE
 exit(1);
}

void getLengthBFILE_proc()
{
 OCIBFileLocator *Lob_loc;
 unsigned int Length = 0;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Mtab.Voiced_ref.Recording INTO :Lob_loc
 FROM Multimedia_tab Mtab WHERE Mtab.Clip_ID = 3;
 /* Open the BFILE: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* Get the Length: */
 EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;
 /* If the BFILE is NULL or unitialized, then Length is Undefined: */
 printf("Length is %d bytes\n", Length);
 /* Close the BFILE: */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 getLengthBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;

 }
External LOBs (BFILEs) 11-79

Copy a LOB Locator for a BFILE
Copy a LOB Locator for a BFILE

Figure 11–25 Use Case Diagram: Copy a LOB Locator for a BFILE

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

User/
Program

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

COPY
a LOB
Locator

: External LOBs COPY a LOB Locator
11-80 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy a LOB Locator for a BFILE
Purpose
This procedure describes how to copy a LOB locator for a BFILE.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ SQL (Oracle8i SQL Reference): Chapter 7, "SQL Statements" — CREATE

PROCEDURE

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,

"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,

"Embedded SQL Statements and Directives" — LOB ASSIGN

Scenario
This example assigns one BFILE locator to another related to Photo .

Examples
The examples are provided in the following five programmatic environments:

■ C/C++ (Pro*C/C++): Copy a LOB Locator for a BFILE on page 11-81

C/C++ (Pro*C/C++): Copy a LOB Locator for a BFILE
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

External LOBs (BFILEs) 11-81

Copy a LOB Locator for a BFILE
void BFILEAssign_proc()
{
 OCIBFileLocator *Lob_loc1, *Lob_loc2;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc1;
 EXEC SQL ALLOCATE :Lob_loc2;
 EXEC SQL SELECT Photo INTO :Lob_loc1
 FROM Multimedia_tab WHERE Clip_ID = 3;
 /* Assign Lob_loc1 to Lob_loc2 so that they both refer to the same
 operating system file: */
 EXEC SQL LOB ASSIGN :Lob_loc1 TO :Lob_loc2;
 /* Now you can read the BFILE from either Lob_loc1 or Lob_loc2 */
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 BFILEAssign_proc();
 EXEC SQL ROLLBACK WORK RELEASE;

 }
11-82 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB Locator for a BFILE Is Initialized
See If a LOB Locator for a BFILE Is Initialized

Figure 11–26 Use Case Diagram: See If a LOB Locator Is Initialized

Purpose
This procedure describes how to determine if a BFILE LOB locator is initialized.

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

User/
Progra m

SEE
if Locator

is Initialized

: External LOBs SEE if Locator is Initialized
External LOBs (BFILEs) 11-83

See If a LOB Locator for a BFILE Is Initialized
Usage Notes
On the client side, before you call any OCILob* interfaces (such as OCILobWrite),

or any programmatic environments that use OCILob* interfaces, first initialize the

LOB locator, via a SELECT, for example.

If your application requires a locator to be passed from one function to another, you

may want to verify that the locator has already been initialized. If the locator is not

initialized, you could design your application either to return an error or to perform

the SELECT before calling the OCILob* interface.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,

"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,

"Embedded SQL Statements and Directives". See also C(OCI) function,

OCILobLocatorIsInit

Scenario
Not applicable.

Examples
The examples are provided in the following programmatic environments:

■ C/C++ (Pro*C/C++): See If a LOB Locator for a BFILE Is Initialized on

page 11-84

C/C++ (Pro*C/C++): See If a LOB Locator for a BFILE Is Initialized
/* Pro*C/C++ has no form of embedded SQL statement to determine if a BFILE
 locator is initialized. Locators in Pro*C/C++ are initialized when they
 are allocated via the EXEC SQL ALLOCATE statement. However, an example
 can be written that uses embedded SQL and the OCI as is shown here: */
#include <sql2oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
11-84 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB Locator for a BFILE Is Initialized
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void BFILELocatorIsInit_proc()
{
 OCIBFileLocator *Lob_loc;
 OCIEnv *oeh;
 OCIError *err;
 boolean isInitialized = 0;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Mtab.Voiced_ref.Recording INTO :Lob_loc
 FROM Multimedia_tab Mtab WHERE Mtab.Clip_ID = 3;
 /* Get the OCI Environment Handle using a SQLLIB Routine: */
 (void) SQLEnvGet(SQL_SINGLE_RCTX, &oeh);
 /* Allocate the OCI Error Handle: */
 (void) OCIHandleAlloc((dvoid *)oeh, (dvoid **)&err,
 (ub4)OCI_HTYPE_ERROR, (ub4)0, (dvoid **)0);
 /* Use the OCI to determine if the locator is Initialized: */
 (void) OCILobLocatorIsInit(oeh, err, Lob_loc, &isInitialized);
 if (isInitialized)
 printf("Locator is initialized\n");
 else
 printf("Locator is not initialized\n");
 /* Note that in this example, the locator is initialized: */
 /* Deallocate the OCI Error Handle: */
 (void) OCIHandleFree(err, OCI_HTYPE_ERROR);
 /* Release resources held by the locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 BFILELocatorIsInit_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

External LOBs (BFILEs) 11-85

See If One LOB Locator for a BFILE Is Equal to Another
See If One LOB Locator for a BFILE Is Equal to Another

Figure 11–27 Use Case Diagram: See If One LOB Locator for a BFILE Is Equal to
Another

User/
Progra m

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

SEE
if Locators
are Equal

: External LOBs SEE if Locators are Equal
11-86 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If One LOB Locator for a BFILE Is Equal to Another
Purpose
This procedure describes how to see if one BFILE LOB locator is equal to another.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,

"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,

"Embedded SQL Statements and Directives" — LOB ASSIGN. See also C(OCI)

function, OCILobIsEqual

Scenario
If two locators are equal, this means that they refer to the same version of the LOB
data (see "Read-Consistent Locators" in Chapter 5, "Advanced Topics").

The examples are provided in the following three programmatic environments:

■ C/C++ (Pro*C/C++): See If One LOB Locator for a BFILE Is Equal to Another

on page 11-87

C/C++ (Pro*C/C++): See If One LOB Locator for a BFILE Is Equal to Another
/* Pro*C/C++ does not provide a mechanism to test the equality of two
 locators However, by using the OCI directly, two locators can be
 compared to determine whether or not they are equal as this example
 demonstrates: */

#include <sql2oci.h>
#include <stdio.h>

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).
External LOBs (BFILEs) 11-87

See If One LOB Locator for a BFILE Is Equal to Another
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void BFILELocatorIsEqual_proc()
{
 OCIBFileLocator *Lob_loc1, *Lob_loc2;
 OCIEnv *oeh;
 boolean isEqual = 0;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc1;
 EXEC SQL ALLOCATE :Lob_loc2;
 EXEC SQL SELECT Photo INTO :Lob_loc1
 FROM Multimedia_tab WHERE Clip_ID = 3;
 EXEC SQL LOB ASSIGN :Lob_loc1 TO :Lob_loc2;
 /* Now you can read the BFILE from either Lob_loc1 or Lob_loc2 */
 /* Get the OCI Environment Handle using a SQLLIB Routine: */
 (void) SQLEnvGet(SQL_SINGLE_RCTX, &oeh);
 /* Call OCI to see if the two locators are Equal: */
 (void) OCILobIsEqual(oeh, Lob_loc1, Lob_loc2, &isEqual);
 if (isEqual)
 printf("Locators are equal\n");
 else
 printf("Locators are not equal\n");
 /* Note that in this example, the LOB locators will be Equal: */
 EXEC SQL FREE :Lob_loc1;
 EXEC SQL FREE :Lob_loc2;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 BFILELocatorIsEqual_proc();
 EXEC SQL ROLLBACK WORK RELEASE;

 }
11-88 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get DIRECTORY Alias and Filename
Get DIRECTORY Alias and Filename

Figure 11–28 Use Case Diagram: Get DIRECTORY Alias and Filename

Purpose

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

User/
Program

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

GET Directory
Alias and
Filename

: External LOBs GET Directory Alias and Filename
External LOBs (BFILEs) 11-89

Get DIRECTORY Alias and Filename
This procedure describes how to get DIRECTORY alias and filename.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,

"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,

"Embedded SQL Statements and Directives" — LOB DESCRIBE ...GET

DIRECTORY ...

Scenario

This example retrieves the DIRECTORY alias and filename related to the BFILE , Music .

The examples are provided in the following six programmatic environments:

■ C/C++ (Pro*C/C++): Get Directory Alias and Filename on page 11-90

C/C++ (Pro*C/C++): Get Directory Alias and Filename
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

11-90 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get DIRECTORY Alias and Filename
void getBFILEDirectoryAndFilename_proc()
{
 OCIBFileLocator *Lob_loc;
 char Directory[31], Filename[255];
 /* Datatype Equivalencing is Optional: */
 EXEC SQL VAR Directory IS STRING;
 EXEC SQL VAR Filename IS STRING;
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;

 /* Select the BFILE: */
 EXEC SQL SELECT Photo INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 3;
 /* Open the BFILE: */
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* Get the Directory Alias and Filename: */
 EXEC SQL LOB DESCRIBE :Lob_loc
 GET DIRECTORY, FILENAME INTO :Directory, :Filename;

 /* Close the BFILE: */
 EXEC SQL LOB CLOSE :Lob_loc;
 printf("Directory Alias: %s\n", Directory);
 printf("Filename: %s\n", Filename);
 /* Release resources held by the locator: */
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 getBFILEDirectoryAndFilename_proc();
 EXEC SQL ROLLBACK WORK RELEASE;

 }
External LOBs (BFILEs) 11-91

Three Ways to Update a Row Containing a BFILE
Three Ways to Update a Row Containing a BFILE

Figure 11–29 Use Case Diagram: Three Ways to Update a Row Containing a BFILE

Note that you must initialize the BFILE either to NULL or to a directory alias and

filename.

a. UPDATE a BFILE Using BFILENAME() on page 11-93

b. UPDATE a BFILE by Selecting a BFILE From Another Table on page 11-96

c. UPDATE a BFILE by Initializing a BFILE Locator on page 11-98

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

User/
Program

UPDATE
a BFILE with a

diff. OS File

UPDATE a BFILE with a different OS File Using
BFILENAME()

UPDATE a BFILE with a different OS File as SELECT

UPDATE a BFILE with a different OS File by
Initializing a BFILE Locator

: External LOBs UPDATE a BFILE with a different OS File

b

c

a

11-92 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE a BFILE Using BFILENAME()
UPDATE a BFILE Using BFILENAME()

Figure 11–30 Use Case Diagram: UPDATE a BFILE Using BFILENAME()

Fe describes how to UPDATE a BFILE using BFILENAME().

Usage Notes

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

User/
Program

BFILENAME()

UPDATE
a BFILE with a

diff. OS file
a UPDATE a BFILE with a different OS File

Using BFILENAME()

: External LOBS Update a BFILE
with a diff. OS File a
External LOBs (BFILEs) 11-93

UPDATE a BFILE Using BFILENAME()
BFILENAME() Function
The BFILENAME() function can be called as part of SQL INSERT or UPDATE to
initialize a BFILE column or attribute for a particular row by associating it with a

physical file in the server’s filesystem.

The DIRECTORY object represented by the directory_alias parameter to this

function need not already be defined using SQL DDL before the BFILENAME()
function is called in SQL DML or a PL/SQL program. However, the directory object

and operating system file must exist by the time you actually use the BFILE locator

(for example, as having been used as a parameter to an operation such as

OCILobFileOpen() , DBMS_LOB.FILEOPEN() , OCILobOpen() , or DBMS_
LOB.OPEN()) .

Note that BFILENAME() does not validate privileges on this DIRECTORY object, or

check if the physical directory that the DIRECTORY object represents actually exists.

These checks are performed only during file access using the BFILE locator that

was initialized by the BFILENAME() function.

You can use BFILENAME() as part of a SQL INSERT and UPDATE statement to

initialize a BFILE column. You can also use it to initialize a BFILE locator variable

in a PL/SQL program, and use that locator for file operations. However, if the

corresponding directory alias and/or filename does not exist, then PL/SQL DBMS_
LOB routines that use this variable will generate errors.

The directory_alias parameter in the BFILENAME() function must be specified

taking case-sensitivity of the directory name into consideration.

Syntax
FUNCTION BFILENAME(directory_alias IN VARCHAR2,
 filename IN VARCHAR2)
RETURN BFILE;

Syntax
Use the following syntax references:

■ SQL (Oracle8i SQL Reference):Chapter 7, "SQL Statements" — UPDATE. Chapter

4, "Functions" — BFILENAME()

See Also: "DIRECTORY Name Specification" on page 11-8 for

information about the use of uppercase letters in the directory

name, and OCILobFileSetName () in Oracle Call Interface
Programmer’s Guide for an equivalent OCI based routine.
11-94 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE a BFILE Using BFILENAME()
Scenario
This example updates Multimedia_tab by means of the BFILENAME function.

Examples
The example is provided in SQL syntax and applies to all programmatic

environments:

■ SQL: Update a BFILE by means of BFILENAME() on page 11-95

SQL: Update a BFILE by means of BFILENAME()
UPDATE Multimedia_tab
 SET Photo = BFILENAME(’PHOTO_DIR’, ’Nixon_photo’) where Clip_ID = 3;
External LOBs (BFILEs) 11-95

UPDATE a BFILE by Selecting a BFILE From Another Table
UPDATE a BFILE by Selecting a BFILE From Another Table

Figure 11–31 Use Case Diagram: UPDATE a BFILE by Selecting a BFILE From
Another Table

Purpose
This procedure describes how to UPDATE a BFILE by selecting a BFILE from

another table.

Usage Notes
There is no copy function for BFILE s, so you have to use UPDATE as SELECT if you

want to copy a BFILE from one location to another. Because BFILE s use reference

semantics instead of copy semantics, only the BFILE locator is copied from one row

to another row. This means that you cannot make a copy of an external LOB value

without issuing an operating system command to copy the operating system file.

Syntax
Use the following syntax references:

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

User/
Program

b UPDATE a BFILE with a different OS File as SELECT

SELECT
a BFILE

UPDATE
a BFILE with a

diff. OS File

: External LOBs bUpdate a BFILE
with a diff. OS File
11-96 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE a BFILE by Selecting a BFILE From Another Table
■ SQL (Oracle8i SQL Reference), Chapter 7, "SQL Statements" — UPDATE

Scenario
This example updates the table, Voiceover_tab by selecting from the archival storage

table, VoiceoverLib_tab./

Examples
The example is provided in SQL and applies to all programmatic environments:

■ SQL: Update a BFILE by Selecting a BFILE From Another Table on page 11-97

SQL: Update a BFILE by Selecting a BFILE From Another Table
UPDATE Voiceover_tab
 SET (originator,script,actor,take,recording) =
 (SELECT * FROM VoiceoverLib_tab VLtab WHERE VLtab.Take = 101);
External LOBs (BFILEs) 11-97

UPDATE a BFILE by Initializing a BFILE Locator
UPDATE a BFILE by Initializing a BFILE Locator

Figure 11–32 Use Case Diagram: UPDATE a BFILE by Initializing a BFILE Locator

Purpose

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

User/
Program

OCILOBFileSet
NAME()

SELECT
a BFILE

OR
Initialize

a BFILE locator

c UPDATE a BFILE with a different OS File by
Initializing a BFILE LocatorUPDATE

a BFILE with a
diff. OS File

: External LOBs cUpdate a BFILE
with a diff. OS File
11-98 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE a BFILE by Initializing a BFILE Locator
This procedure describes how to UPDATE a BFILE by initializing a BFILE locator.

Usage Notes
You must initialize the BFILE locator bind variable to a directory alias and filename

before issuing the update statement.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,

"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,

"Embedded SQL Statements and Directives". See also (Oracle8i SQL Reference),
Chapter 7, "SQL Statements" — UPDATE

Scenario
Not applicable.

The examples are provided in six programmatic environments:

■ C/C++ (Pro*C/C++): Update a BFILE by Initializing a BFILE Locator on

page 11-99

C/C++ (Pro*C/C++): Update a BFILE by Initializing a BFILE Locator
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

External LOBs (BFILEs) 11-99

UPDATE a BFILE by Initializing a BFILE Locator
void updateUseBindVariable_proc(Lob_loc)
 OCIBFileLocator *Lob_loc;
{
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL UPDATE Multimedia_tab SET Photo = :Lob_loc WHERE Clip_ID = 3;
}

void updateBFILE_proc()
{
 OCIBFileLocator *Lob_loc;

 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL SELECT Photo INTO :Lob_loc
 FROM Multimedia_tab WHERE Clip_ID = 1;
 updateUseBindVariable_proc(Lob_loc);
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 updateBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;

 }
11-100 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Two Ways to Close a BFILE
Two Ways to Close a BFILE

Figure 11–33 Use Case Diagram: Two Ways to Close a BFILE

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

SELECT
a BFILE

Initialize
a BFILE locator

open
a BFILE

User/
Program

CLOSE
the BFILE

: External LOBs CLOSE the BFILE
External LOBs (BFILEs) 11-101

Two Ways to Close a BFILE
As you can see by comparing the code, these alternative methods are very similar.

However, while you can continue to use the older FILECLOSE form, we strongly

recommend that you switch to using CLOSE, because this facilitates future

extensibility.

a. Close a BFILE with FILECLOSE on page 11-103

b. Close a BFILE with CLOSE on page 11-105
11-102 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Close a BFILE with FILECLOSE
Close a BFILE with FILECLOSE

Figure 11–34 Use Case Diagram: Close a BFILE with FILECLOSE

Purpose
This procedure describes how to close a BFILE with FILECLOSE.

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

User/
Program

a Close a BFILE
with FILECLOSE

close
the BFILE

User/
Program

a Close the BFILE
with FILECLOSE

close all
opened files

open
a BFILE

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

b

a
open

a BFILE

CLOSE
the BFILE

: External LOBS CLOSE the BFILE a
External LOBs (BFILEs) 11-103

Close a BFILE with FILECLOSE
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++): A syntax reference is not applicable in this release.

Scenario
While you can continue to use the older FILECLOSE form, we strongly recommend
that you switch to using CLOSE, because this facilitate future extensibility. This

example can be read in conjunction with the example of opening a BFILE .

■ C/C++ (Pro*C/C++): No example is provided with this release.
11-104 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Close a BFILE with CLOSE
Close a BFILE with CLOSE

Figure 11–35 Use Case Diagram: Close an Open BFILE with CLOSE

Purpose
This procedure describes how to close a BFILE with CLOSE.

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

User/
Program

b Close the BFILE
with CLOSE

close
the BFILE

close all
opened files

open
a BFILE

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

close all
opened files

b

a

CLOSE
the BFILE

open
a BFILE

: External LOBS CLOSE the BFILE b
External LOBs (BFILEs) 11-105

Close a BFILE with CLOSE
Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,

"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,

"Embedded SQL Statements and Directives" — LOB CLOSE

Scenario
This example should be read in conjunction with the example of opening a BFILE
— in this case, closing the BFILE associated with Lincoln_photo .

Examples
■ C/C++ (Pro*C/C++): Close a BFile with CLOSE on page 11-106

C/C++ (Pro*C/C++): Close a BFile with CLOSE
/* Pro*C/C++ has only one form of CLOSE for BFILEs. Pro*C/C++ has no
 FILE CLOSE statement. A simple CLOSE statement is used instead: */

#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void closeBFILE_proc()
{
 OCIBFileLocator *Lob_loc;
 char *Dir = "PHOTO_DIR", *Name = "Lincoln_photo";
11-106 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Close a BFILE with CLOSE
 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc;
 EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;
 EXEC SQL LOB OPEN :Lob_loc READ ONLY;
 /* ... Do some processing */
 EXEC SQL LOB CLOSE :Lob_loc;
 EXEC SQL FREE :Lob_loc;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 closeBFILE_proc();
 EXEC SQL ROLLBACK WORK RELEASE;
}

External LOBs (BFILEs) 11-107

Close All Open BFILEs
Close All Open BFILEs

Figure 11–36 Use Case Diagram: Close All Open BFILEs

It is the user’s responsibility to close any opened file(s) after normal or abnormal

termination of a PL/SQL program block or OCI program. So, for instance, for every

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

User/
Program

SELECT
a BFILE

Specify
BFILE name

OR
Initialize

a BFILE locator

CLOSE All
Opened Files

: External LOBs CLOSE All Opened Files
11-108 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Close All Open BFILEs
DBMS_LOB.FILEOPEN() or DBMS_LOB.OPEN() call on a BFILE , there must be a

matching DBMS_LOB.FILECLOSE() or DBMS_LOB.CLOSE() call. You should close

open files before the termination of a PL/SQL block or OCI program, and also in

situations which have raised errors. The exception handler should make provisions

to close any files that were opened before the occurrence of the exception or

abnormal termination.

If this is not done, Oracle will consider these files unclosed.

Purpose
This procedure describes how to close all BFILEs.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

■ C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,

"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,

"Embedded SQL Statements and Directives" — LOB FILE CLOSE ALL

Scenario

Examples
■ C/C++ (Pro*C/C++): Close All Open BFiles on page 11-109

C/C++ (Pro*C/C++): Close All Open BFiles
#include <oci.h>
#include <stdio.h>
#include <sqlca.h>

See Also: "Specify the Maximum Number of Open BFILEs:

SESSION_MAX_OPEN_FILES" on page 11-43
External LOBs (BFILEs) 11-109

Close All Open BFILEs
void Sample_Error()
{
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 printf("%.*s\n", sqlca.sqlerrm.sqlerrml, sqlca.sqlerrm.sqlerrmc);
 EXEC SQL ROLLBACK WORK RELEASE;
 exit(1);
}

void closeAllOpenBFILEs_proc()
{
 OCIBFileLocator *Lob_loc1, *Lob_loc2;

 EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 EXEC SQL ALLOCATE :Lob_loc1;
 EXEC SQL ALLOCATE :Lob_loc2;
 /* Populate the Locators: */
 EXEC SQL SELECT Music INTO :Lob_loc1
 FROM Multimedia_tab WHERE Clip_ID = 3;
 EXEC SQL SELECT Mtab.Voiced_ref.Recording INTO Lob_loc2
 FROM Multimedia_tab Mtab WHERE Mtab.Clip_ID = 3;
 /* Open both BFILEs: */
 EXEC SQL LOB OPEN :Lob_loc1 READ ONLY;
 EXEC SQL LOB OPEN :Lob_loc2 READ ONLY;
 /* Close all open BFILEs: */
 EXEC SQL LOB FILE CLOSE ALL;
 /* Free resources held by the Locators: */
 EXEC SQL FREE :Lob_loc1;
 EXEC SQL FREE :Lob_loc2;
}

void main()
{
 char *samp = "samp/samp";
 EXEC SQL CONNECT :samp;
 closeAllOpenBFILEs_proc();
 EXEC SQL ROLLBACK WORK RELEASE;

 }
11-110 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

DELETE the Row of a Table Containing a BFILE
DELETE the Row of a Table Containing a BFILE

Figure 11–37 Use Case Diagram: DELETE the Row of a Table Containing a BFILE

Purpose
This procedure describes how to DELETE the row of a table containing a BFILE.

Usage Notes
Unlike internal persistent LOBs, the LOB value in a BFILE does not get deleted by

using SQL DDL or SQL DML commands — only the BFILE locator is deleted.

Deletion of a record containing a BFILE column amounts to de-linking that record

from an existing file, not deleting the physical operating system file itself. An SQL

DELETE statement on a particular row deletes the BFILE locator for the particular

row, thereby removing the reference to the operating system file.

See Also: "Use Case Model: External LOBs (BFILEs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

User/
Program

DELETE
the Row

: External LOBs DELETE the Row
External LOBs (BFILEs) 11-111

DELETE the Row of a Table Containing a BFILE
Syntax
See the following syntax reference:

■ SQL (Oracle8i SQL Reference), Chapter 7, "SQL Statements" — DELETE, DROP,

TRUNCATE

Scenario
The following DELETE, DROP TABLE, or TRUNCATE TABLE statements delete the

row, and hence the BFILE locator that refers to Image1 .gif , but leave the

operating system file undeleted in the filesystem.

Examples
The following examples are provided in SQL and apply to all programmatic

environments:

■ "SQL: Delete a Row from a Table"

SQL: Delete a Row from a Table

DELETE
DELETE FROM Multimedia_tab
 WHERE Clip_ID = 3;

DROP
DROP TABLE Multimedia_tab;

TRUNCATE
TRUNCATE TABLE Multimedia_tab;
11-112 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Index

A
accessing external LOBs, 11-5

amount parameter

reading and loading LOB data, the size of, 6-4

used with BFILEs, 11-39

ANSI standard for LOBs, 10-11

appending

one LOB to another

internal persistent LOBs, 9-92

one temporary LOB to another, 10-72

write appending to a LOB

internal persistent LOBs, 9-96

assigning

one collection to another collection in temporary

LOBs, 10-12

one temporary LOB to another, 10-11

B
BFILENAME(), 11-24, 11-94

advantages of using, 11-7

BFILEs

accessing, 11-5

closing, 11-101

converting to CLOB or NCLOB, 11-39

creating an object in object cache, 5-20

datatype, 2-2, 2-3

equal locators, check for, 11-86

initializing using BFILENAME(), 2-6

locators, 2-5

maximum number of open, 4-2, 11-77

multi-threaded server (MTS), 11-12

Pro*C/C++ precompiler statements, 3-8

read-only support, 4-16

reference semantics, 2-3

security, 11-8, 11-9

storage devices, 2-2

using Pro*C/C++ precompiler to open and

close, 3-9

binding data to internal LOBs, restriction

removal, 4-17

binds

HEX to RAW or RAW to HEX conversion, 7-16

updating more than 4,000 bytes

internal persistent LOBs, 9-125

See also INSERT statements and UPDATE

statements

BLOBs

datatype, 2-2

buffering

disable

internal persistent LOBs, 9-121

enable

internal persistent LOBs, 9-113

flush

internal persistent LOBs, 9-117

C
C++, See Pro*C/C++ precompiler

C, See OCI

CACHE / NOCACHE, 7-8

caches

object cache, 5-20

callback, 9-46, 9-50, 9-60, 9-97, 10-81

catalog views

v$temporary_lobs, 10-13
Index-1

character data

varying width, 2-4

character set form

getting

internal persistent LOBs, 9-90

character set ID

getting the

internal persistent LOBs, 9-88

temporary LOB of, getting the, 10-68

checking in a LOB

internal persistent LOBs, 9-49

checking out a LOB

internal persistent LOBs, 9-45

CHUNK, 7-10

chunksize, 9-101

multiple of, to improve performance, 9-60

CLOBs

columns

varying- width character data, 2-4

datatype, 2-2

varying-width columns, 2-4

varying-width, 2-4

closing

all open BFILEs, 11-108

BFILEs, 11-101

BFILEs with CLOSE, 11-105

BFILEs with FILECLOSE, 11-103

COBOL, See Pro*COBOL precompiler

code

example programs, 1-5

list of demonstration programs, 1-5

comparing

all or part of two LOBs

internal persistent LOBs, 9-67

all or part of two temporary LOBs, 10-42

all or parts of two BFILEs, 11-66

compatibility, 1-5

conversions

character set, 11-39

character set conversions needed on BFILE before

using LOADFROMFILE(), 10-24

from binary data to character set, 11-39

See also binds HEX to RAW

converting to LOB data types, 6-3

copy semantics, 2-3

internal LOBs, 9-26

copying

all or part of a LOB to another LOB

internal persistent LOBs, 9-76

all or part of one temporary LOB to

another, 10-54

for BFILEs there is no copy function, 11-96

LOB locator

internal persistent LOBs, 9-79

LOB locator for BFILE, 11-80

LONG to LOB, 6-3, 9-40

temporary LOB locator, 10-58

TO_LOB limitations, 9-41

creating a temporary LOB, 10-14

creating tables

containing an object type with LOB attribute

internal Persistent LOBs, 9-13

containing BFILEs, 11-14

containing one or more LOB columns

internal persistent LOBs, 9-8

containing one ore more BFILE columns, 11-15

nested, containing LOB

internal persistent LOBs, 9-18

of an object type with BFILE attribute, 11-18

with a nested table containing a BFILE, 11-21

creating VARRAYs

containing references to LOBs, 5-32

D
datatypes

converting to LOBs FAQ, 6-3

DBMS_LOB

WRITE()

passing hexadecimal string to, 9-102

DBMS_LOB package

available LOB procedures/functions, 3-3

LOADFROMFILE(), 11-39

multi-threaded server (MTS), 11-12

WRITE()

guidelines, 9-102

guidelines for temporary LOBs, 10-81

passing hexadecimal string to, 10-81

DBMS_LOB()

READ, 9-59
Index-2

deleting

row containing LOB

internal persistent LOBs, 9-135

demonstration programs, 1-5

directories

catalog views, 11-10

guidelines for usage, 11-11

ownership and privileges, 11-9

DIRECTORY name specification, 11-8

DIRECTORY object, 11-5

catalog views, 11-10

getting the alias and filename, 11-89

guidelines for usage, 11-11

names on WindowsNT, 11-8

naming convention, 11-8

OS file must exist before locator use, and, 11-25

READ permission on object not individual

files, 11-9

directory objects, 11-5

directory_alias parameter, 11-26

disable buffering, See LOB buffering

disk striping of LOB files, 8-3

displaying

LOB data for internal persistent LOBs, 9-54

temporary LOB data, 10-29

downgrading to 8.0 or 8.1.5, using CACHE READS

LOBs, 4-16

E
embedded SQL statements, See Pro*C/C++

precompiler and Pro*COBOL precompiler

EMPTY_BLOB()/EMPTY_CLOB()

when to use FAQ, 6-7

EMPTY_CLOB()/BLOB()

to initialize a BFILE, 2-6

to initialize internal LOB

equal

one LOB locator to another

internal persistent LOBs, 9-82

one temporary LOB locator, to another, 10-61

equal locators

checking if one BFILE LOB locator equals

another, 11-86

erasing

part of LOB

internal persistent LOBs, 9-110

part of temporary LOBs, 10-90

examples

demonstration programs, 1-5

read consistent locators, 5-3

repercussions of mixing SQL DML with

DBMS_LOB, 5-6

updated LOB locators, 5-8

updating a LOB with a PL/SQL variable, 5-10

existance

check for BFILE, 11-74

external callout, 5-26

external LOBs (BFILEs)

See BFILEs

external LOBs (BFILEs), See BFILEs

F
FILECLOSEALL(), 11-11, 11-43, 11-50

flushing buffer, 5-21

temporary LOB, 10-97

FOR UPDATE clause

LOBs, 2-7

LOBs locator, 5-2

freeing

temporary LOBs, 10-20

FREETEMPORARY(), 10-20

H
hexadecimal string

passing to DBMS_LOB.WRITE(), 9-102, 10-81

I
index-organized tables

inline storage for LOBs and, 6-6

initialized

checking if BFILE LOB locator is, 11-83

initializing

BFILE column or locator variable using

BFILENAME(), 11-25

BLOB attribute using EMPTY_BLOB() FAQ, 6-8

during CREATE TABLE or INSERT, 9-24
Index-3

external LOBs, 2-6

internal LOBs, See LOBs

internal LOBs

using EMPTY_CLOB(), EMPTY_BLOB()

INSERT statements

binds of greater than 4000 bytes, 7-16

inserting

a row by initializing a LOB locator

internal persistent LOBs, 9-28

a row by initializing BFILE locator, 11-31

a row by selecting a LOB from another table

internal persistent LOBs, 9-26

a row containing a BFILE, 11-23

a row containing a BFILE by selecting BFILE

from another table, 11-29

a row using BFILENAME(), 11-24

binds of more than 4,000 bytes, 9-22

LOB value using EMPTY_CLOB()/

EMPTY_BLOB()

internal persistent LOBs, 9-23

one or more LOB values into a row, 9-21

interfaces for LOBs, see programmatic environments

J
Java, See JDBC

JDBC

available LOB methods/properties, 3-3

inserting a row with empty LOB locator into

table, 6-8

JPublisher

building an empty LOB in, 6-9

L
LBSLOB Buffering Subsystem (LBS)

length

an internal persistent LOB, 9-73

getting BFILE, 11-77

temporary LOB, 10-50

LOADFROMFILE()

BFILE character set conversions needed before

using, 10-24

loading

a LOB with BFILE data, 11-38

data into internal LOB, 9-31

external LOB (BFILE) data into table, 11-34

LOB with data from a BFILE, 9-33

temporary LOB with data from BFILE, 10-23

LOB, 5-13

LOB buffering

buffer-enabled locators, 5-27

disable for temporaryLOBs, 10-100

example, 5-24

flushing for temporary LOBs, 10-97

flushing the buffer, 5-25

flushing the updated LOB through LBS, 5-26

guidelines, 5-21

OCI example, 5-28

OCILobFlushBuffer(), 5-26

physical structure of buffer, 5-23

Pro*C/C++ precompiler statements, 3-9

temporary LOBs

CACHE, NOCACHE, CACHE READS, 10-9

usage notes, 5-23

LOB Buffering SubSystem (LBS)

LOB Buffering Subsystem (LBS)

advantages, 5-21

buffer-enabled locators, 5-26

buffering example using OCI, 5-28

example, 5-24

flushing the buffer, 5-25

flushing the updated LOB, 5-26

guidelines, 5-21

saving the state of locator to avoid reselect, 5-27

usage, 5-23

LOB locator

copy semantics, 2-3

external LOBs (BFILEs), 2-3

internal LOBs, 2-3

reference semantics, 2-3

LOBs, 5-20

accessing through a locator, 2-7

attributes and object cache, 5-20

buffering

caveats, 5-21

pages can be aged out, 5-26

buffering subsystem, 5-21

buffering usage notes, 5-23

compatibility, 1-5
Index-4

datatypes versus LONG, 1-3

external (BFILEs), 2-2

flushing, 5-21

in partitioned tables, 7-29

in the object cache, 5-20

inline storage, 2-5

interfaces, See programmatic environments

interMEDIA, 1-4

internal

creating an object in object cache, 5-20

internal LOBs

CACHE / NOCACHE, 7-8

CHUNK, 7-10

copy semantics, 2-3

ENABLE | DISABLE STORAGE IN

ROW, 7-11

initializing, 11-59

locators, 2-5

locking before updating, 9-77, 9-93, 9-97,

9-101, 9-107, 9-111

LOGGING / NOLOGGING, 7-9

PCTVERSION, 7-7

setting to empty, 2-9

tablespace and LOB index, 7-7

tablespace and storage characteristics, 7-5

transactions, 2-2

locators, 2-5, 5-2

cannot span transactions, 7-15

migration issues, 1-5

object cache, 5-20

performance, best practices, 7-37

performing SELECT on, 2-7

piecewise operations, 5-6

read consistent locators, 5-2

reason for using, 1-2

setting to contain a locator, 2-5

setting to NULL, 2-8

tables

adding partitions, 7-34

creating, 7-31

creating indexes, 7-33

exchanging partitions, 7-33

merging partitions, 7-34

moving partitions, 7-34

partitioning, 7-31

splitting partitions, 7-34

typical uses, 8-2

unstructured data, 1-2

updated LOB locators, 5-5

value, 2-5

varying-width character data, 7-3

locators, 2-5

accessing a LOB through, 2-7

BFILEs, 11-12

guidelines, 11-12

two rows can refer to the same file, 11-12

buffer-enabled, 5-27

cannot span transactions, 7-15

copying temporary LOB, 10-58

external LOBs (BFILEs), 2-5

initializing LOB or BFILE to contain, 2-6

LOB, cannot span transactions, 5-13

multiple, 5-2

read consistent, 5-2, 5-3, 5-10, 5-13, 5-25, 5-28,

5-29, 5-30

read consistent locators, 5-2

read consistent locators provide same LOB value

regardless when SELECT occurs, 5-3

reading and writing to a LOB using, 5-16

saving the state to avoid reselect, 5-27

see if LOB locator is initialized

internal persistent LOBs, 9-85

selecting, 2-7

setting column or attribute to contain, 2-5

temporary, SELECT permanent LOB

INTO, 10-10

transaction boundaries, 5-16

updated, 5-2, 5-5, 5-10, 5-13, 5-25

LOGGING / NOLOGGING, 7-9

LONG versus LOB datatypes, 1-3

M
migration, 1-5

multimedia

content-collection, 8-2

Multimedia_tab, 9-1

table structure, 8-5

multi-threaded server (MTS)

BFILEs, 11-12
Index-5

N
national language support

NCLOBs, 2-2

NCLOBs

datatype, 2-2

varying-width, 2-4

NOCOPY restrictions, 10-13

non-NULL

before writing to LOB column make it

internal persistent LOBs, 9-128

O
object cache, 5-20

creating an object in, 5-20

LOBs, 5-20

object-relational design, 8-4

OCI

available LOB functions, 3-3

buffering example, 5-28

locators, 2-7

temporary lobs can be grouped into logical

buckets, 10-9

using to work LOBs, 3-6

OCIBindByName(), 7-16

OCIBindByPos(), 7-16

OCIDuration(), 10-9

OCIDurationEnd(), 10-9, 10-20

OCILobAssign(), 5-22, 10-11

OCILobFileSetName(), 11-7, 11-13

OCILobFlushBuffer(), 5-26

OCILOBFreeTemporary(), 10-20

OCILobGetLength(), 11-60

OCILobLoadFromFile(), 11-40

OCILobRead(), 9-55, 9-59, 10-34, 11-60

amount, 6-6

to read large amounts of LOB data, 9-46

OCILobWrite(), 10-81

to write large amounts of LOB data, 9-50

OCILobWriteAppend(), 9-97

OCIObjectFlush(), 11-13

OCIObjectNew(), 11-13

OCISetAttr(), 11-13

OO4O, See Oracle Objects for OLE (OO4O)

open

checking for open BFILEs, 11-49

checking for open BFILEs with

FILEISOPEN(), 11-51

checking if BFILE is open with ISOPEN, 11-53

checking if temporary LOB is, 10-26

seeing if a LOB is open, 9-37

opening

BFILEs, 11-42

BFILEs using FILEOPEN, 11-44

BFILEs with OPEN, 11-46

Oracle Call Interface, See OCI

Oracle Objects for OLE (OO4O)

available LOB methods/properties, 3-3

P
pattern

check if it exists in BFILE using instr, 11-70

see if it exists IN LOB using (instr)

internal persistent LOBs, 9-70

temporary LOBs

checking if it exists, 10-46

PCTVERSION, 7-7

performance

assigning multiple locators to same temporary

LOB, impacts, 10-11

PL/SQL, 3-2

PL/SQL procedures

client-side cannot call DBMS_LOB, 4-16

polling, 9-46, 9-50, 9-60, 9-97, 10-81

Pro*C/C++ precompiler

available LOB functions, 3-3

LOB buffering, 3-9

locators, 3-8

modifying internal LOB values, 3-7

opening and closing internal LOBs and external

LOBs (BFILEs), 3-9

providing an allocated input locator

pointer, 3-6

reading or examining internal and external LOB

values, 3-7

statements for BFILEs, 3-8

statements for temporary LOBs, 3-8

Pro*COBOL precompiler
Index-6

available LOB functions, 3-3

programmatic environments, 3-2

available functions, 3-3

compared, 3-3

R
read consistency

LOBs, 5-2

read consistent locators, 5-2, 5-3, 5-10, 5-13, 5-25,

5-28, 5-29, 5-30

reading

BFILES

specify 4 Gb-1 regardless of LOB, 11-60

data fom temporary LOB, 10-33

data from a LOB

internal persistent LOBs, 9-58

large amounts of LOB data using

streaming, 9-46

portion of BFILE data using substr, 11-63

portion of LOB using substr

internal persistent LOBs, 9-63

portion of temporary LOB, 10-38

small amounts of data,enable buffering, 9-114

reference semantics, 2-3, 9-26

BFILEs enables multiple BFILE columns per

record, 11-7

restrictions

binding of data, removed for INSERTS and

UPDATES, 4-17

binds of more than 4000 bytes, 7-18

roundtrips to the server, avoiding, 5-21, 5-28

S
sample programs, 1-5

security

BFILEs, 11-8, 11-9

BFILEs using SQL DDL, 11-10

BFILEs using SQL DML, 11-10

SELECT statement

FOR UPDATE, 2-7

read consistency, 5-2

selecting a permanent LOB INTO a temporary LOB

locator, 10-10

semantics

copy-based for internal LOBs, 9-26

pseudo-reference, 10-11

reference based for BFILEs, 11-7

value, 10-11

SESSION_MAX_OPEN_FILES parameter, 4-2,

11-43, 11-49

setData

setting to EMPTY_BLOB() using JPublisher, 6-9

setting

internal LOBs to empty, 2-9

LOBs to NULL, 2-8

SQL DDL

BFILE security, 11-10

SQL DML

BFILE security, 11-10

SQL Loader

loading InLine LOB data, 4-7

performance for internal LOBs, 4-6

stream

reading

temporary LOBs, 10-34

writing, 10-81

streaming, 9-50, 9-55

do not enable buffering, when using, 9-114

write, 9-101

system owned object, See DIRECTORY object

T
tablespace

temporary, 10-9

temporary LOB data stored in temporary, 10-8

temporary LOBs

character set ID, 10-68

checking if LOB is temporary, 10-17

data stored in temporary tablespace, 10-8

disable buffering

explcitly freeing before overwriting it with

permanent LOB locator, 10-10

features, 10-11

inline and out-of-line not used, 10-8

lifetime and duration, 10-9

locators can be IN values, 10-7

locators operate as with permanent LOBs, 10-7
Index-7

memory handling, 10-9

OCI and logical buckets, 10-9

performance, 10-11

Pro*C/C++ precompiler embedded SQL

statements, 3-8

reside on server not client, 10-9

similar functions used to permanent LOBs, 10-8

SQL DML does not operate on, 10-7

transactions and consistent reads not

suuported, 10-8

trimming, 10-86

write append to, 10-76

temporary tablespace

for binds of more than 4000 bytes, 7-16

TO_LOB

limitations, 9-41

transaction boundaries

LOB locators, 5-16

transactions

external LOBs do not participate in, 2-3

IDs of locators, 5-16

internal LOBs participate fully, 2-2

LOB locators cannot span, 5-13

LOBs locators cannot span, 7-15

locators with non-serializable, 5-16

locators with serializable, 5-16

migrating from, 5-26

triggers

LOB columns with, how to tell when

updated, 6-4

trimming

LOB data

internal persistent LOBs, 9-106

temporary LOB data, 10-86

U
unstructured data, 1-2

UPDATE statements

binds of greater than 4000 bytes, 7-16

updated locators, 5-2, 5-5, 5-10, 5-13, 5-25

updating

a row containing a BFILE, 11-92

avoid the LOB with different locators, 5-8

BFILEs by selecting a BFILE from another

table, 11-96

BFILEs using BFILENAME(), 11-93

by initializinga LOB locator bind variable

internal persistent LOBs, 9-132

by selecting a LOB from another table

internal persistent LOBs, 9-130

LOB with PL/SQL bind variable, 5-10

locking before, 9-77

locking prior to, 9-93, 9-107, 9-111

with EMPTY_CLOB()/EMPTY_BLOB()

internal persistent LOBs, 9-127

use cases

full list of internal persistent LOBs, 9-2

how to interpret the diagrams, xxxviii

model, graphic summary of, 9-1

V
value of LOBs, 2-5

VARRAYs

LOBS are not supported by, 4-15

See creating VARRAYs

varying-width character data, 2-4

views on DIRECTORY object, 11-10

Visual Basic, See Oracle Objects for OLE(OO4O)

W
write

streaming, 10-81

write appending

to temporary LOBs, 10-76

writing

data to a LOB

internal persistent LOBs, 9-100

data to a temporary LOB, 10-80

singly or piecewise, 9-97

small amounts of data, enable buffering, 9-114
Index-8

	PDF Directory
	Send Us Your Comments
	Preface
	Example of A Use Case Diagram
	Use Cases Diagram Elements

	1 Introduction
	Why Use LOBs?
	Unstructured Data
	Unstructured Data Cannot be Decomposed Into Standard Components
	Unstructured Data is Large
	Unstructured Data in System Files Need Accessing from the Database

	LOB Datatype Helps Support Internet Applications
	Two Type of LOBs Supported

	Why Not Use LONGs?
	LOB Type Columns
	LOB Type Columns Do Not Only Store Locators!

	LOBs Help Control Semantics
	LOBS Enable interMEDIA
	LOB "Demo" Directory
	Location of Demo Directories?

	Compatibility and Migration Issues
	Examples in This Manual Use Multimedia_Tab
	For Further Information

	2 Basic Components
	The LOB Datatype
	Internal LOBs
	Internal LOB Datatypes

	External LOBs (BFILEs)
	External LOB Datatypes

	Internal LOBs Use Reference Semantics, External LOBs Use Copy Semantics
	Copy Semantics
	Reference Semantics

	Varying-Width Character Data
	CLOB, NCLOB Values are Stored Using 2 Byte Unicode for Varying-Width Character Sets

	The LOB Locator
	LOB Value and Locators
	Inline storage of the LOB value
	LOB Locators

	LOB Locator Operations
	Setting the LOB Column/Attribute to Contain a Locator
	Accessing a LOB Through a Locator
	SELECTing a LOB

	Creating Tables that Contain LOBs
	Initializing Internal LOBs to NULL or Empty
	Setting an Internal LOB to NULL
	You Cannot Call OCI or DBMS_LOB Functions on a NULL LOB

	Setting an Internal LOB to Empty
	Example Using Table Multimedia_tab

	Initializing Internal LOB Columns to a Value
	Initializing External LOBs to NULL or a File Name

	3 LOB Programmatic Environments
	Six Programmatic Environments Operate on LOBs
	Comparison of the Six LOB Interfaces
	Using C/C++ (Pro*C) to Work with LOBs
	First Provide an Allocated Input Locator Pointer that Represents LOB
	Pro*C/C++ Statements that Operate on BLOBs, CLObs, NCLOBs, and BFILEs
	Pro*C/C++ Embedded SQL Statements To Modify Internal LOBs (BLOB, CLOB, and NCLOB) Values
	Pro*C/C++ Embedded SQL Statements To Read or Examine Internal and External LOB Values
	Pro*C/C++ Embedded SQL Statements For Temporary LOBs
	Pro*C/C++ Embedded SQL Statements For BFILEs
	Pro*C/C++ Embedded SQL Statements For LOB Locators
	Pro*C/C++ Embedded SQL Statements For LOB Buffering
	Pro*C/C++ Embedded SQL Statements To Open and Close Internal LOBs and External LOBs (BFILEs)

	4 Managing LOBs
	DBA Actions Required Prior to Working with LOBs
	Set Maximum Number of Open BFILEs
	Using SQL DML for Basic Operations on LOBs
	Changing Tablespace Storage for a LOB
	Oracle8 Release 8.0.4.3
	Oracle8i

	Managing Temporary LOBs
	Using SQL Loader to Load LOBs
	LOBFILES

	Loading InLine and Out-Of-Line Data into Internal LOBs Using SQL Loader
	SQL Loader Performance: Loading Into Internal LOBs

	Loading Inline LOB Data
	Loading Inline LOB Data in Predetermined Size Fields
	Control File
	Data File (sample.dat)

	Loading Inline LOB Data in Delimited Fields
	Control File
	Data File (sample1.dat)

	Loading Inline LOB Data in Length-Value Pair Fields
	Control File
	Data File (sample2.dat)

	Loading Out-Of-Line LOB Data
	Loading One LOB Per File
	Control File
	Data File (sample3.dat)
	Secondary Data File (FirstStory.txt)
	Secondary Data File (SecondStory.txt)

	Loading Out-of-Line LOB Data in Predetermined Size Fields
	Control File
	Data File (sample4.dat)
	Secondary Data File (FirstStory1.txt)

	Loading Out-of-Line LOB Data in Delimited Fields
	Control File
	Data File (sample5.dat)
	Secondary Data File (FirstStory2.txt)

	Loading Out-of-Line LOB Data in Length-Value Pair Fields
	Control File
	Data File (sample6.dat)
	Secondary Data File (FirstStory3.txt)

	SQL Loader LOB Loading Tips
	LOB Restrictions
	Removed Restrictions
	Binding More Than 4,000 Bytes of Data

	5 Advanced Topics
	Read-Consistent Locators
	A Selected Locator Becomes a Read Consistent Locator
	Updating LOBs and Read-Consistency
	Example of an Update Using Read Consistent Locators
	Read Consistent Locators Provide Same LOB Value Regardless of When the SELECT Occurs
	Example

	Updated LObs Via Updated Locators
	Example of Updating a LOB Using SQL DML and DBMS_LOB
	Example

	Example of Using One Locator to Update the Same LOB Value
	Example

	Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable
	Example

	LOB Locators Cannot Span Transactions
	Example of Locator Not Spanning a Transaction

	LOB Locators and Transaction Boundaries
	Locators Contain Transaction IDs When...
	Locators Do Not Contain Transaction IDs When...
	Transaction IDs: Reading and Writing to a LOB Using Locators
	Non-Serializable Example: Selecting the Locator with No Current Transaction
	Case 1:
	Case 2:

	Non-Serializable Example: Selecting the Locator within a Transaction
	Case 3:
	Case 4:

	LOBs in the Object Cache
	LOB Buffering Subsystem
	Advantages of LOB Buffering
	Guidelines for Using LOB Buffering
	LOB Buffering Usage Notes
	LOB Buffer Physical Structure
	Example of Using the LOB Buffering System (LBS)

	Flushing the LOB Buffer
	Flushing the Updated LOB
	Using Buffer-Enabled Locators
	Saving Locator State to Avoid a Reselect
	OCI Example of LOB Buffering

	Creating a Varray Containing References to LOBs
	Example

	6 Frequently Asked Questions
	Converting Data Types to LOB Data Types
	Can I Insert or Update Any Length Data Into a LOB Column?
	Question
	Answer

	Does COPY LONG to LOB Work if Data is > 64K?
	Question
	Answer

	General
	How Do I Determine if the LOB Column with a Trigger is Being Updated?
	Question
	Answer

	Reading and Loading LOB Data: What Should Amount Parameter Size Be?
	Question
	Answer

	Index-Organized Tables (IOTs) and LOBs
	Is Inline Storage Allowed for LOBs in Index-Organized Tables?
	Question
	Answer

	Initializing LOB Locators
	When Do I Use EMPTY_BLOB() and EMPTY_CLOB()?
	Question
	Answer

	How Do I Initialize a BLOB Attribute Using EMPTY_BLOB() in Java?
	Question
	Answer

	JDBC, JPublisher and LOBs
	How Do I Insert a Row With Empty LOB Locator into Table Using JDBC?
	Question
	Answer

	How Do I setData to EMPTY_BLOB() Using JPublisher?
	Question
	Answer

	JDBC: Do OracleBlob and OracleClob Work in 8.1.x?
	Question
	Answer

	How Do I Manipulate LOBs With the 8.1.5 JDBC Thin Driver?
	Question
	Answer

	Is the FOR UPDATE Clause Needed on SELECT When Writing to a LOB?
	Question
	Answer

	Loading LOBs and Data Into LOBs
	How do I Load a 1Mb File into a CLOB Column?
	Question
	Answer

	How Do We Improve BLOB and CLOB Performance When Using JDBC Driver To Load?
	Question
	Answer

	LOB Indexing
	Is LOB Index Created in Same Tablespace as LOB Data?
	Question
	Answer

	Indexing: Why is a BLOB Column Removed on DELETing but not a BFILE Column?
	Question
	Answer

	Which Views Can I Query to Find Out About a LOB Index?
	Question
	Answer

	LOB Storage and Space Issues
	What Happens If I Specify LOB Tablespace and ENABLE STORAGE IN ROW?
	Question
	Answer

	What Are the Pros and Cons of Storing Images in a BFILE Versus a BLOB?
	Question
	Answer

	When Should I Specify DISABLE STORAGE IN ROW?
	Question
	Answer

	Do <4K BLOBs Go Into the Same Segment as Table Data, >4K BLOBs Go Into a Specified Segment?
	Question
	Answer

	Is 4K LOB Stored Inline?
	Question
	Answer

	How is a LOB Locator Stored If the LOB Column is EMPTY_CLOB() or EMPTY_ BLOB() Instead of NULL? A...
	Question
	Answer

	Migrating From Other Database Systems
	Is Implicit LOB Conversion Between Different LOB Types Allowed in Oracle8i?
	Question
	Answer

	Performance
	What Can We Do To Improve the Poor LOB Loading Performance When Using Veritas File System on Disk...
	Question 1
	Answer 1
	Question 2
	I/O Devices/Paths

	Answer 2
	Install the Veritas QuickIO Option!
	A Final Note:

	Is There a Difference in Performance When Using DBMS_LOB.SUBSTR Versus DBMS_LOB.READ?
	Question
	Answer

	Are There Any White Papers or Guidelines on Tuning LOB Performance?
	Question
	Answer

	When Should I Use Chunks Over Reading the Whole Thing?
	Question
	Answer

	Is Inlining the LOB a Good Idea and If So When?
	Question
	Answer

	How Can I Store LOBs >4Gb in the Database?
	Question
	Answer

	7 Modeling and Design
	Selecting a Datatype
	LOBs in Comparison to LONG and LONG RAW Types
	Character Set Conversions: Working with Varying-Width Character Data

	Selecting a Table Architecture
	LOB Storage
	Where are NULL Values in a LOB Column Stored?
	NULL LOB Column Storage: NULL Value is Stored
	EMPTY_CLOB() or EMPTY_BLOB() Column Storage: LOB Locator is Stored

	Defining Tablespace and Storage Characteristics for Internal LOBs
	Assigning a LOB Data Segment Name

	LOB Storage Characteristics for LOB Column or Attribute
	TABLESPACE and LOB Index
	Tablespace for LOB Index in Non-Partitioned Table

	PCTVERSION
	CACHE / NOCACHE / CACHE READS
	CACHE / NOCACHE / CACHE READS: LOB Values and Buffer Cache
	Downgrading to 8.1.5 or 8.0.x

	LOGGING / NOLOGGING
	LOBs Will Always Generate Undo for LOB Index Pages
	When LOGGING is Set Oracle Will Generate Full Redo for LOB Data Pages

	CHUNK
	Set INITIAL and NEXT to Larger than CHUNK

	ENABLE | DISABLE STORAGE IN ROW
	Small (ENABLE or DISABLE STORAGE) Versus Large (ENABLE STORAGE) LOBs

	How to Create Gigabyte LOBs
	Example: Creating a Tablespace and Table to Store Gigabyte LOBs

	LOB Locators and Transaction Boundaries
	Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs
	Binds Greater than 4,000 Bytes are Now Allowed For LOB INSERTs and UPDATEs
	Ensure Your Temporary Tablespace is Large Enough!

	Binds of More Than 4,000 Bytes ... No HEX to RAW or RAW to HEX Conversion
	4,000 Byte Limit On Results of SQL Operator
	Binds of More Than 4,000 Bytes: Restrictions
	Example: PL/SQL - Using Binds of More Than 4,000 Bytes in INSERT and UPDATE
	Example: PL/SQL - Binds of More Than 4,000 Bytes -- Inserts Not Supported Because Hex to Raw/Raw ...
	Example: PL/SQL - 4,000 Byte Result Limit in Binds of More than 4,000 Bytes When Data Includes SQ...
	Example: C (OCI) - Binds of More than 4,000 Bytes For INSERT and UPDATE

	Open, Close and IsOpen Interfaces for Internal LOBs
	Wrap LOB Operations Inside an Open / Close Call !
	What is a ’Transaction’ Within Which an Open LOB Value is Closed?
	Close All Opened LOBs Before Committing the Transaction !
	Do Not Open or Close Same LOB Twice!
	Example 1: Correct Use of Open/Close Calls in a Transaction
	Example 2: Incorrect Use of Open/Close Calls in a Transaction

	LOBs in Index Organized Tables (IOT)
	Example of Index Organized Table (IOT) with LOB Columns

	Manipulating LOBs in Partitioned Tables
	Creating and Partitioning a Table Containing LOB Data
	Creating an Index on a Table Containing LOB Columns
	Exchanging Partitions Containing LOB Data
	Adding Partitions to Tables Containing LOB Data
	Moving Partitions Containing LOBs
	Splitting Partitions Containing LOBs
	Merging Partitions Containing LOBs

	Indexing a LOB Column
	Best Performance Practices
	Using SQL Loader
	Guidelines for Best Performance
	Moving Data to LOB in Threaded Environment
	Incorrect procedure
	The Correct Procedure

	8 Sample Application
	A Sample Application
	The Multimedia Content-Collection System
	Applying an Object-Relational Design to the Application
	Structure of Multimedia_tab Table

	9 Internal Persistent LOBs
	Use Case Model: Internal Persistent LOBs
	Three Ways to Create a Table Containing a LOB
	Usage Notes
	CREATE a Table Containing One or More LOB Columns
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Create a Table Containing One or More LOB Columns

	CREATE a Table Containing an Object Type with a LOB Attribute
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Create a Table Containing an Object Type with a LOB Attribute

	CREATE a Nested Table Containing a LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Create a Nested Table Containing a LOB

	Three Ways Of Inserting One or More LOB Values into a Row
	Uasage Notes

	INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Insert a Value Using EMPTY_CLOB() / EMPTY_BLOB()

	INSERT a Row by Selecting a LOB From Another Table
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Insert a Row by Selecting a LOB from Another Table

	INSERT Row by Initializing a LOB Locator Bind Variable
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C): Insert Row by Initializing a LOB Locator Bind Variable

	Load Data into an Internal LOB (BLOB, CLOB, NCLOB)
	Purpose
	Usage Notes and Examples
	Syntax
	Scenario

	Load a LOB with Data from a BFILE
	Purpose
	Usage Notes
	Binary Data to Character Set Conversion is Needed on BFILE Data
	Specify Amount to be Less than the Size of BFILE!

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C): Load a LOB with Data from a BFILE

	See If a LOB Is Open
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C): See if a LOB is Open

	Copy LONG to LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Copy LONG to LOB

	Checkout a LOB
	Purpose
	Usage Notes
	Streaming Mechanism

	Syntax
	Scenario
	Here we portray the checkout portion of the scenario: the code lets the user read the CLOB Transc...
	C/C++ (Pro*C): Checkout a LOB

	Checkin a LOB
	Purpose
	Usage Notes
	Streaming Mechanism

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C): Checkin a LOB

	Display LOB Data
	Purpose
	Usage Notes:
	Streaming Mechanism

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C): Display LOB Data

	Read Data from LOB
	Procedure
	Usage Notes
	Stream Read
	Example
	Chunksize

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Read Data from LOB

	Read a Portion of the LOB (substr)
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Read a Portion of the LOB (substr)

	Compare All or Part of Two LOBs
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Compare All or Part of Two LOBs

	See If a Pattern Exists in the LOB (instr)
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): See If a Pattern Exists in the LOB (instr)

	Get the Length of a LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Get the Length of a LOB

	Copy All or Part of a LOB to Another LOB
	Purpose
	Usage Notes
	Locking the Row Prior to Updating

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Copy All or Part of a LOB to Another LOB

	Copy a LOB Locator
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Copy a LOB Locator

	See If One LOB Locator Is Equal to Another
	Purpose
	Usage Notes
	Syntax
	Scenario
	C/C++ (Pro*C/C++): See If One LOB Locator Is Equal to Another

	See If a LOB Locator Is Initialized
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): See If a LOB Locator Is Initialized

	Get Character Set ID
	Purpose
	Usage Notes
	Syntax
	Scenario
	Example

	Get Character Set Form
	Purpose
	Usage Notes
	Syntax
	Scenario

	Append One LOB to Another
	Purpose
	Usage Notes
	Locking the Row Prior to Updating

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Append One LOB to Another

	Write Append to a LOB
	Purpose
	Usage Notes
	Writing Singly or Piecewise
	Writing Piecewise: When to Use Callbacks or Polling?

	Locking the Row Prior to Updating

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Write Append to a LOB

	Write Data to a LOB
	Purpose
	Usage Notes
	Stream Write
	Chunksize
	Use a Multiple of Chunksize to Improve Write Performance.

	Locking the Row Prior to Updating
	Using DBMS_LOB.WRITE() to Write Data to a BLOB

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Write Data to a LOB

	Trim LOB Data
	Purpose
	Usage Notes
	Locking the Row Prior to Updating

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Trim LOB Data

	Erase Part of a LOB
	Purpose
	Usage Notes
	Locking the Row Prior to Updating

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Erase Part of a LOB

	Enable LOB Buffering
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Enable LOB Buffering

	Flush Buffer
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Flush Buffer

	Disable LOB Buffering
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Disable LOB Buffering

	Three Ways to Update a LOB or Entire LOB Data
	For Binds of More Than 4,000 Bytes

	UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()
	Purpose
	Usage Notes
	Making a LOB Column Non-Null

	Syntax
	Scenario
	Examples
	SQL: UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()

	UPDATE a Row by Selecting a LOB From Another Table
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Update a Row by Selecting a LOB From Another Table

	UPDATE by Initializing a LOB Locator Bind Variable
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Update by Initializing a LOB Locator Bind Variable
	C/C++ (Pro*C/C++): Update by Initializing a LOB Locator Bind Variable

	DELETE the Row of a Table Containing a LOB
	Purpose
	Usage Notes
	Distinct LOB Locators for Distinct Rows

	Syntax
	Scenario
	Examples
	SQL: Delete a LOB

	10 Temporary LOBs
	Use Case Model: Internal Temporary LOBs
	Programmatic Environments
	Locators
	Temporary LOB Locators Can be IN Values
	Can You Use the Same Functions for Temporary and Internal Persistent LOBs?
	Temporary LOB Data is Stored in Temporary Tablespace
	Lifetime and Duration of Temporary LOBs
	OCI Can Group Temporary LOBs into Logical Buckets

	Memory Handling
	LOB Buffering and CACHE, NOCACHE, CACHE READS
	Temporary Tablespace
	Explicitly Free Temporary LOB Space to Reuse It
	Selecting a Permanent LOB INTO a Temporary LOB Locator

	Locators and Semantics

	Features Specific to Temporary LOBs
	Security Issues with Temporary LOBs
	NOCOPY Restrictions
	Managing Temporary LOBs

	Create a Temporary LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Create a Temporary LOB

	See If a LOB is Temporary
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): See If a LOB is Temporary

	Free a Temporary LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Free a Temporary LOB

	Load a Temporary LOB with Data from a BFILE
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Load a Temporary LOB with Data from a BFILE

	See If a Temporary LOB Is Open
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	: C/C++ (Pro*C/C++): See if a Temporary LOB is Open

	Display Temporary LOB Data
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Display Temporary LOB Data

	Read Data from a Temporary LOB
	Purpose
	Usage Notes
	Stream Read

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Read Data from a Temporary LOB

	Read Portion of Temporary LOB (substr)
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Read a Portion of Temporary LOB (substr)

	Compare All or Part of Two (Temporary) LOBs
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Compare All or Part of Two (Temporary) LOBs

	See If a Pattern Exists in a Temporary LOB (instr)
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): See If a Pattern Exists in a Temporary LOB (instr)

	Get the Length of a Temporary LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Get the Length of a Temporary LOB

	Copy All or Part of One (Temporary) LOB to Another
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Copy All or Part of One (Temporary) LOB to Another

	Copy a LOB Locator for a Temporary LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Copy a LOB Locator for a Temporary LOB

	Is One Temporary LOB Locator Equal to Another
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): See If One LOB Locator for a Temporary LOB Is Equal to Another

	See If a LOB Locator for a Temporary LOB Is Initialized
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): See If a LOB Locator for a Temporary LOB Is Initialized

	Get Character Set ID of a Temporary LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples

	Get Character Set Form of a Temporary LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples

	Append One (Temporary) LOB to Another
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Append One (Temporary) LOB to Another

	Write Append to a Temporary LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Write Append to a Temporary LOB

	Write Data to a Temporary LOB
	Purpose
	Usage Notes
	Stream Write
	Using DBMS_LOB.WRITE() to Write Data to a Temporary BLOB

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Write Data to a Temporary LOB

	Trim Temporary LOB Data
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Trim Temporary LOB Data

	Erase Part of a Temporary LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Erase Part of a Temporary LOB

	Enable LOB Buffering for a Temporary LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Enable LOB Buffering for a Temporary LOB

	Flush Buffer for a Temporary LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Flush Buffer for a Temporary LOB

	Disable LOB Buffering for a Temporary LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Disable LOB Buffering for a Temporary LOB

	11 External LOBs (BFILEs)
	Use Case Model: External LOBs (BFILEs)
	Accessing External LOBs (BFILEs)
	Directory Object
	Initializing a BFILE Locator
	How to Associate Operating System Files with Database Records
	Examples

	BFILENAME() and Initialization
	Advantages.

	DIRECTORY Name Specification
	On WindowsNT Platforms

	BFILE Security
	Ownership and Privileges
	Read Permission on Directory Object
	SQL DDL for BFILE Security
	SQL DML for BFILE Security
	Catalog Views on Directories
	Guidelines for DIRECTORY Usage
	BFILEs in Multi-Threaded Server (MTS) Mode
	External LOB (BFILE) Locators
	When Two Rows in a BFILE Table Refer to the Same File
	BFILE Locator Variable
	Guidelines
	General Rule

	Three Ways to Create a Table Containing a BFILE
	CREATE a Table Containing One or More BFILE Columns
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Create a Table Containing One or More BFILE Columns

	CREATE a Table of an Object Type with a BFILE Attribute
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Create a Table of an Object Type with a BFILE Attribute

	CREATE a Table with a Nested Table Containing a BFILE
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Create a Table with a Nested Table Containing a BFILE

	Three Ways to Insert a Row Containing a BFILE
	INSERT a Row Using BFILENAME()
	Purpose
	Usage Notes
	Ways BFILENAME() is Used to Initialize BFILE Column or Locator Variable

	Syntax
	Scenario
	Examples
	SQL: Insert a Row by means of BFILENAME()
	C/C++ (Pro*C/C++): Insert a Row by means of BFILENAME()

	INSERT a BFILE Row by Selecting a BFILE From Another Table
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Insert a Row Containing a BFILE by Selecting a BFILE From Another Table

	INSERT Row With BFILE by Initializing BFILE Locator
	Purpose
	Usage Notes
	Syntax
	Scenario
	C/C++ (Pro*C/C++): Insert a Row Containing a BFILE by Initializing a BFILE Locator

	Load Data Into External LOB (BFILE)
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	Loading Data Into BFILES: File Name Only is Specified Dynamically
	Control File
	Data file (sample9.dat)

	Loading Data into BFILES: File Name and DIRECTORY Object Dynamically Specified
	Control File
	Data file (sample10.dat)

	Load a LOB with BFILE Data
	Purpose
	Usage Notes
	Character Set Conversion
	BFILE to CLOB or NCLOB: Converting From Binary Data to a Character Set
	Specify Amount Parameter to be Less than the Size of the BFILE!

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Load a LOB with BFILE Data

	Two Ways to Open a BFILE
	Recommendation: Use OPEN to Open BFILE
	Specify the Maximum Number of Open BFILEs: SESSION_MAX_OPEN_FILES
	Close Files After Use!

	Open a BFILE with FILEOPEN
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples

	Open a BFILE with OPEN
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Open a BFILE with OPEN

	Two Ways to See If a BFILE is Open
	Recommendation: Use OPEN to Open BFILE
	Specify the Maximum Number of Open BFILEs: SESSION_MAX_OPEN_FILES

	See If the BFILE is Open with FILEISOPEN
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples

	See If a BFILE is Open Using ISOPEN
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): See If the BFILE is Open with ISOPEN

	Display BFILE Data
	Purpose
	Usage Notes
	Syntax
	Scenario
	These examples open and display BFILE data. Examples
	C/C++ (Pro*C/C++): Display BFILE Data

	Read Data from a BFILE
	Purpose
	Usage Notes
	Always Specify 4 Gb - 1 Regardless of LOB Size
	Example
	The Amount Parameter

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Read Data from a BFILE

	Read a Portion of BFILE Data (substr)
	Purpose
	Usage Notes
	Syntax
	Scenario
	C/C++ (Pro*C/C++): Read a Portion of BFILE Data (substr)

	Compare All or Parts of Two BFILES
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Compare All or Parts of Two BFILES

	See If a Pattern Exists (instr) in the BFILE
	Purpose
	Usage Notes
	Syntax
	Scenario
	C/C++ (Pro*C/C++): See If a Pattern Exists (instr) in the BFILE

	See If the BFILE Exists
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): See If the BFILE Exists

	Get the Length of a BFILE
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Get the Length of a BFILE

	Copy a LOB Locator for a BFILE
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Copy a LOB Locator for a BFILE

	See If a LOB Locator for a BFILE Is Initialized
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): See If a LOB Locator for a BFILE Is Initialized

	See If One LOB Locator for a BFILE Is Equal to Another
	Purpose
	Usage Notes
	Syntax
	Scenario
	C/C++ (Pro*C/C++): See If One LOB Locator for a BFILE Is Equal to Another

	Get DIRECTORY Alias and Filename
	Purpose
	Usage Notes
	Syntax
	Scenario
	This example retrieves the DIRECTORY alias and filename related to the BFILE, Music.
	C/C++ (Pro*C/C++): Get Directory Alias and Filename

	Three Ways to Update a Row Containing a BFILE
	UPDATE a BFILE Using BFILENAME()
	Usage Notes
	BFILENAME() Function
	Syntax

	Syntax
	Scenario
	Examples
	SQL: Update a BFILE by means of BFILENAME()

	UPDATE a BFILE by Selecting a BFILE From Another Table
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Update a BFILE by Selecting a BFILE From Another Table

	UPDATE a BFILE by Initializing a BFILE Locator
	Purpose
	Usage Notes
	Syntax
	Scenario
	C/C++ (Pro*C/C++): Update a BFILE by Initializing a BFILE Locator

	Two Ways to Close a BFILE
	Close a BFILE with FILECLOSE
	Purpose
	Usage Notes
	Syntax
	Scenario

	Close a BFILE with CLOSE
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Close a BFile with CLOSE

	Close All Open BFILEs
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Close All Open BFiles

	DELETE the Row of a Table Containing a BFILE
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Delete a Row from a Table
	DELETE
	DROP
	TRUNCATE

	Index

