Oracle8 i

Application Developer’'s Guide - Large Objects (LOBs) Using C/C++ (Pro*C/C++)

Release 2 (8.1.6)

December 1999
Part No. A77001-01

ORrRACLE

Oracle8i Application Developer’s Guide - Large Objects (LOBs) Using C/C++ (Pro*C/C++), Release 2
(8.1.6)

Part No. A77001-01
Copyright © 1996, 1999, Oracle Corporation. All rights reserved.
Primary Authors: Shelley Higgins, Susan Kotsovolos, Den Raphaely

Contributing Authors: Geeta Arora, Sandeepan Banerjee, Thomas Chang, Chandrasekharan lyer,
Ramkumar Krishnan, Dan Mullen, Visar Nimani, Anindo Roy, Rosanne Toohey, Guhan Viswana

Contributors: Jeya Balaji, Maria Chien, Christian Shay, Ali Shehade, Sundaram Vedala, Eric Wan, Joyce
Yang

Graphics: Valerie Moore, Charles Keller

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and PL/SQL, Pro*Ada, Pro*C, Pro*C/C++ , Pro*COBOL, SQL*Forms,
SQL*Loader, SQL*Plus,Oracle7, Oracle8, Oracle8i are trademarks or registered trademarks of Oracle
Corporation. All other company or product names mentioned are used for identification purposes only
and may be trademarks of their respective owners.

Contents

Send US YOUr COMMENTS ...ttt XXVii
PIEIACE ...t XXiX
INFOrmMation iN THIS GUIEcoi i e s sbe e sre e e XXX
Feature Coverage and AVailability ... XXX
INEW LOB FEATUIES......cctiiiiiieitie ittt sttt sttt sttt sb ettt e b e et e e sabe e beessaeebeesbbeebeenebeans XXX
What's New in ThiS ManUALccooiiiii e e e XXXi
REIALIEA GUIAESc.veiiiiiecccee ettt et e et e b e e st e sbe e st e sbeenbesbeetesbeeseesreeseen XXXil
How This BOOK IS OFganizZed...........ccceiiiiiiiieieieeee et sttt ere e XXXV
Conventions Used iN thiS GUIE...........ccoiiiiiiiiice et XXXVI
How to Interpret the Use Case DIagrams ..o XXXViii
Use Cases Diagram EIBMENTS..........cooiiiiiieie sttt b e et ns xli
Hot Links From Use Case Diagram to Use Case Diagramccoccoereieieneieiecieecnesese e Xlviii
Your CommENTS ArE WEICOIMEoouiiiicieee ettt ettt et e re s be b sbeestesre et xlix

1 Introduction

WY USE LOBS? ...ttt ettt bbb bbbt btk e ekt bkttt bt e abeseebene s 1-2
UNSEFUCTUIEA DALA.....c.cuevivciiiiiieieee bbbt 1-2
LOB Datatype Helps Support Internet Applicationscccccoeiirineiiieiceeeeese e 1-2

WHY NOT USE LONGS? ..ottt sb et b et eb et eb ekttt sb et sn bbb e b sbe e 1-3

LOBS Help Control SEMANTICScccieieiiicicieeee ettt e st te e sresresresre s 14

LOBS ENable INTErMEDIIA ...ttt ettt sttt b b e nne s 1-4

LOB "DEMO" DITECLOTY ..ottt ettt sttt b et b et b ettt ekt se bt se bbb e b e b 1-5

Compatibility and Migration ISSUEScccceiiiiiiieiiir ettt sre s 1-5

Examples in This Manual Use Multimedia_Tabccccooiiiiiiiin e 1-6
FOr FUrther INFOrMAatioN ..ot 1-6

Basic Components

THE LOB DAALYPE ..ottt bbbttt b bbb bbbttt 2-2
INTEINAI LOBS......cctiictiice bbb bbbttt et 2-2
EXternal LOBS (BFILES)......c.cciiieiiiieie sttt sttt ettt sne e a e st e e nneanes 2-2
Internal LOBs Use Reference Semantics, External LOBs Use Copy Semantics................... 2-3

Varying-Width CharaCter Data..........cccccveieiieiciciece st sne e 2-4

THE LOB LOCALOKiviitiiieiteete sttt ettt bbb bbb bbbt et e st et e e bt bt eb e st e sbe b e 2-5
LOB ValUe @Nd LOCALOISccuiiuiiiiieieiieie ettt st sttt s e ne st be b sneneas 2-5
(@] = W0 Tor=1 0] @@ 01T - £ [o] o 13RS 2-5

Creating Tables that Contain LOBS ..ot 2-8
Initializing Internal LOBS t0 NULL OF EMPLY ..o 2-8
Initializing Internal LOB Columns t0 @ ValUE..........ccciviviiiiie e 2-10
Initializing External LOBs to NULL or a File Name.........c..cccooeiiveiiiicsn e 2-10

LOB Programmatic Environments

Six Programmatic Environments Operate 0N LOBS..........ccccoviiiinineieneee e 3-2
Comparison of the SiX LOB INTErTACESccoeiiiiiiiiiiiieiie st 3-3
Using C/C++ (Pro*C/C++) t0 WOrk With LOBScoiiviicresc e 3-6
First Provide an Allocated Input Locator Pointer that Represents LOBcccccocenenene 3-6
Pro*C/C++ Statements that Operate on BLOBs, CLObs, NCLOBs, and BFILEs................ 3-6
Pro*C/C++ Embedded SQL Statements To Modify Internal LOBs (BLOB, CLOB,
ANA NCLOB) VAIUES ..ottt be e s e et s e e sae e e saenraens 3-7
Pro*C/C++ Embedded SQL Statements To Read or Examine Internal and External
LOB VAIUES ..ottt et e bbbt st e et bbb e sbe e 3-7
Pro*C/C++ Embedded SQL Statements For Temporary LOBS...........cccccoeiiirininieninenee 3-8
Pro*C/C++ Embedded SQL Statements FOr BFILES...........ccccoooirininiieeeeee e 3-8
Pro*C/C++ Embedded SQL Statements FOr LOB LOCAtOrS..........ccocevverievreiieieciecre e 3-8
Pro*C/C++ Embedded SQL Statements For LOB BUfferingccccccevvevvieie i, 3-9
Pro*C/C++ Embedded SQL Statements To Open and Close Internal LOBs
and EXternal LOBS (BFILES)......cccciiviiiireriericiesese sttt st ene e sne e 3-9

4 Managing LOBs

DBA Actions Required Prior to Working With LOBS..........c.ccociiiiiiiiniineeneescesee s 4-2
Set Maximum Number of Open BFILES ... 4-2
Using SQL DML for Basic Operations 0N LOBSccocoiiiiiineieeeceese e 4-2
Changing Tablespace Storage for @ LOB ... 4-3

Managing TEMPOTrary LOBS.......cccc ettt e e resnesresresnenrens 4-4

Using SQL Loader t0 LOAA LOBS........cccciiieecee ettt ae et sae e see s 4-5
LOBRFILES.......cotiteititctstet stttk ettt ettt ettt s bbb s st s e b s et et e et et be s nennenen 4-5

Loading InLine and Out-Of-Line Data into Internal LOBs Using SQL Loader.................... 4-6
SQL Loader Performance: Loading Into Internal LOBS...........cccocceiiiievicieneccc e 4-6

LoAdiNg INTINE LOB DALA........cciiiiieiiieiiite ettt ettt nn e sn e ane e 4-7
Loading Inline LOB Data in Predetermined Size FieldS........c..ccoccvviniivencncieecrccesece e 4-7
Loading Inline LOB Data in Delimited Fields...........c.ccovoviiiiii i 4-8
Loading Inline LOB Data in Length-Value Pair Fields ..o 4-8

Loading Out-Of-LiNe LOB Dalaccccccuerieieieieicesese e stesie e a e e e sneseessenes 4-10
Loading ONe LOB Per File.......cciiiiiiei ettt sttt 4-10
Loading Out-of-Line LOB Data in Predetermined Size Fieldsccccoviiiennicniicincnns 4-11
Loading Out-of-Line LOB Data in Delimited Fieldscccccooviviiiinnencnceccsece e 4-12
Loading Out-of-Line LOB Data in Length-Value Pair Fieldscccccoovvvviviviini e, 4-13

SQL Loader LOB LOAAING TS ..tuiirieiriiiitiiaieietiseeie st seeie et ssese bbb snese s nnenes 4-14

LOB RESIIICLIONS ...ttt ettt b et b et b ettt sttt et et bbb 4-15

ReMOVEA RESIIICLIONS ... bbbttt b et e 4-16

5 Advanced Topics

REAd-CONSISIENT LOCATOIS.ctiiiieieieeeie ettt bttt ettt eb bbb e 5-2
A Selected Locator Becomes a Read ConsiStent LOCALONcc.eovveirieiieninincenecniecneenns 5-2
Updating LOBs and Read-CONSISLENCYc..ccveieiiieiiiie e siese e seeseseesee e eesesesne e e snens 5-3
Example of an Update Using Read ConsiStent LOCALOrS..........ccooerierieiieiciiiicisenescsenie s 5-3
Updated LObS Via Updated LOCALOISccoueirieirieiriiirieisesie e 5-5
Example of Updating a LOB Using SQL DML and DBMS _LOBccccceieveivivienininiennens 5-6
Example of Using One Locator to Update the Same LOB Value............cccoeoevniniininnnns 5-8
Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable....................... 5-10
LOB Locators Cannot Span TranSaCtiONS...........ccevereeveinieiesesesesese e seeseeeseeseesessesessenees 5-13
Example of Locator Not Spanning @ TranSactionc.ccocverireneienene e 5-13

LOB Locators and Transaction BOUNGAIIES............cocviiiiiiiiiine e 5-16

Locators Contain Transaction IDS WHhEN...coociiiieieicii et 5-16

Locators Do Not Contain Transaction IDS WHEN...cccviiiiiiiiienenere e 5-16
Transaction IDs: Reading and Writing to a LOB Using LoCators..........ccccocevvvverievvenennnnnn, 5-16
Non-Serializable Example: Selecting the Locator with No Current Transaction.............. 5-17
Non-Serializable Example: Selecting the Locator within a Transaction.............c.ccccocee.nee. 5-18
LOBS iN the OBJECt CACNEocvvcie e e nne s 5-20
LOB BUTFEring SUDSYSTEIMooiiiieiiee et sttt e e nne e sre e 5-21
Advantages 0f LOB BUFEIING. ..o 5-21
Guidelines for Using LOB BUTfEIING......ccccviviiviniecce s 5-21
LOB BUFfering UsSage NOLEScccueiiiieiiee ettt e e nne e 5-23
FIushing the LOB BUTTEIE ..ot 5-25
Flushing the Updated LOB...........cccciiiiiieieieeee ettt ene e 5-26
Using Buffer-ENabled LOCALOIS..........ccocoiiiiiie sttt 5-27
Saving Locator State to AvOid @ RESEIECTcoiiiiiiii e 5-27
OCI Example of LOB BUFFEIINGccviiiiiiie et 5-28
Creating a Varray Containing References to LOBSccccccv i 5-32

Frequently Asked Questions

Converting Data Types t0 LOB Data TYPEScccuriieiirireie sttt 6-3
Can I Insert or Update Any Length Data Into a LOB Column?...........ccoviriiniineincininn 6-3
Does COPY LONG to LOB Work if Data is > B4K? ... 6-3

LCT=T =T =Y TSSOSO P TSP PP PP PRPEPRPEPRPPRPON 6-4
How Do | Determine if the LOB Column with a Trigger is Being Updated?...................... 6-4
Reading and Loading LOB Data: What Should Amount Parameter Size Be?..................... 6-4

Index-Organized Tables (IOTS) aNd LOBS.........ccccooi i 6-6
Is Inline Storage Allowed for LOBs in Index-Organized Tables?..........cccoovvenieniencennne 6-6

LoV AT T4 L o [@ = o Tor | o S 6-7
When Do | Use EMPTY_BLOB() and EMPTY_CLOB()?.....cccovuiteirriiieiiinnieieensieiee e 6-7
How Do | Initialize a BLOB Attribute Using EMPTY_BLOB() inJava?cccccoveneenen. 6-8

JDBC, JPUBIISNEr @and LOBS.........ccooiiiiirere s 6-8
How Do | Insert a Row With Empty LOB Locator into Table Using JDBC?............ccccccue.... 6-8
How Do | setData to EMPTY_BLOB() Using JPUBIISher?...........cccoooiiniinnininceee 6-9
JDBC: Do OracleBlob and OracleClob Work in 8.1.X7.......cccoouiiriiiinnniennseeeesneees 6-9
How Do | Manipulate LOBs With the 8.1.5 JDBC Thin Driver?.......cccccoceveieiiiiininiennns 6-10
Is the FOR UPDATE Clause Needed on SELECT When Writingto a LOB? 6-11

Loading LOBs and Data INt0 LOBS..........cccccviiiiicc ettt 6-12

How do | Load a 1Mb File into @ CLOB COIUMN?........ccooiiiiiiiiinise e 6-12
How Do We Improve BLOB and CLOB Performance When Using JDBC Driver To Load?.....
6-12

(@ = 3 1 g T [T T SO 6-16
Is LOB Index Created in Same Tablespace as LOB Data?ccccoceovennennenseneeneeee 6-16
Indexing: Why is a BLOB Column Removed on DELETing but not a BFILE Column?.. 6-16
Which Views Can | Query to Find Out About a LOB INdeX?.......c.cccecvevviieiecieie e, 6-16

LOB Storage and SPACE ISSUESc.ciiuiiiiiiieieieeie ettt sttt b ettt 6-18
What Happens If | Specify LOB Tablespace and ENABLE STORAGE IN ROW?............ 6-18
What Are the Pros and Cons of Storing Images in a BFILE Versus a BLOB?.................... 6-18
When Should | Specify DISABLE STORAGE IN ROW?ccccovviiiiiiiieieie e 6-19

Do <4K BLOBs Go Into the Same Segment as Table Data, >4K BLOBs Go Into a Specified
Segment? 6-19

R G O3] o] g=To I [] 1T [T 6-20

How is a LOB Locator Stored If the LOB Column is EMPTY_CLOB() or EMPTY_BLOBY()
Instead of NULL? Are Extra Data Blocks Used For This? 6-21

Migrating From Other Database SYStEMS.........ccvcvviviiiini e 6-22
Is Implicit LOB Conversion Between Different LOB Types Allowed in Oracle8i?........... 6-22
PEITOINANCE ... ettt e bbbt eb et e b et et e e et e s e e b e eseaneebeneenes 6-23

What Can We Do To Improve the Poor LOB Loading Performance When Using Veritas File
System on Disk Arrays, UNIX, and Oracle? 6-23

Is There a Difference in Performance When Using DBMS_LOB.SUBSTR Versus DBMS _
LOB.READ? 6-24

Are There Any White Papers or Guidelines on Tuning LOB Performance?...................... 6-24
When Should | Use Chunks Over Reading the Whole Thing?.........ccccovveievevcicisncnn, 6-25
Is Inlining the LOB a Good Idea and If SO WheN?.........ccccveiiiieii e 6-25
How Can | Store LOBs >4Gb in the Database? ..o 6-26

Modeling and Design

SEIECTING @ DALALYPE ... ettt bbbt b ettt 7-2
LOBs in Comparison to LONG and LONG RAW TYPEScccvcvrvrinerereerieiereeeeeseseseesee s 7-2
Character Set Conversions: Working with Varying-Width Character Data........................ 7-3

Selecting @ Table ArCHITECTUIE ..o 7-4

[= 3057 o] = o [SRS 7-5
Where are NULL Values in a LOB Column Stored? ... 7-5

vi

Defining Tablespace and Storage Characteristics for Internal LOBScccccceciinienennne. 7-5

LOB Storage Characteristics for LOB Column or Attribute ... 7-6
TABLESPACE anNd LOB INUEX ...ttt e 7-7
PCTVERSION ...ttt sttt e b ettt ettt et et e st et e st e s e sbeseebeseabe e 7-7
CACHE 7/ NOCACHE 7/ CACHE READSctiitetet ettt 7-8
LOGGING 7 NOLOGGING... ..ottt sttt ettt sttt 7-9
CHUNK Lot b e bbbttt e b et e st et e st et e st et e st e s e ebe s e et e e ebe e ete e ete e 7-10
ENABLE | DISABLE STORAGE IN ROWcoociiiiiiiitcet et 7-11
HOW t0 Create Gigabyte LOBScccivii ettt st eenesre e nneas 7-13
Example: Creating a Tablespace and Table to Store Gigabyte LOBS.........ccccccceiviiiinne. 7-13
LOB Locators and Transaction BOUNGAITES............ccoeieiriiiiinine e 7-15
Binds Greater Than 4,000 Bytes in INSERTS and UPDATES........ccccvovvievinineneneeeese e 7-16
Binds Greater than 4,000 Bytes are Now Allowed For LOB INSERTs and UPDATEs..... 7-16
Binds of More Than 4,000 Bytes ... No HEX to RAW or RAW to HEX Conversion 7-16
4,000 Byte Limit On Results of SQL OPEratorccccovviviirierienieseseseseseseeseeeeseeseeeeese s 7-17
Binds of More Than 4,000 Bytes: ReStFICIONS..........cccocveiiiieiieie e 7-18

Example: PL/SQL - Using Binds of More Than 4,000 Bytes in INSERT and UPDATE... 7-18
Example: PL/SQL - Binds of More Than 4,000 Bytes -- Inserts Not Supported

Because Hex to Raw/Raw to Hex Conversion is Not Supportedcccoceovvevrenene 7-19
Example: PL/SQL - 4,000 Byte Result Limit in Binds of More than 4,000 Bytes
When Data Includes SQL OPEIAtOrc..cceveieieieese e sesie e e e s esesresnes 7-20
Example: C (OCI) - Binds of More than 4,000 Bytes For INSERT and UPDATE 7-20
Open, Close and IsOpen Interfaces for Internal LOBScccocooieiiinienienseeee e 7-24
LOBs in Index Organized Tables (IOT). ... nne 7-27
Example of Index Organized Table (IOT) with LOB Columns..........cccooeieiiiiininiencce, 7-27
Manipulating LOBs in Partitioned Tables...........cccooiiiiie s 7-29
Creating and Partitioning a Table Containing LOB Data............ccccceevvevvnenererieieieee e 7-31
Creating an Index on a Table Containing LOB COlUMNSccccceiivieiiiiecc e, 7-33
Exchanging Partitions Containing LOB Data...........ccccoeiireiiiiiiennensenee e 7-33
Adding Partitions to Tables Containing LOB Datacccccocvvvvvievenene e 7-34
Moving Partitions ContaiNing LOBS..........ccccciviiiiicicsce e 7-34
Splitting Partitions ContaiNing LOBS ...t 7-34
FaTe (=3 q] aTo Jr= W K@= 3 @1o] 1] s o] o 1S 7-36
BeSt PerfOrmManCe PraCliCeS........coiiiiiiiiiiie ettt bbbttt ebe s 7-37
USING SQL LOAAETciiiiiteitieeesie ettt ettt b ettt bbb 7-37

Guidelines for BeSt PerfOrmanCe..........ccoiiiiiiiiiisis e 7-37
Moving Data to LOB in Threaded ENVIrONMENTccooiiiiiiinieeceeseese e 7-38

Sample Application

A SAMPIE APPIICALION. ...oiiiiiicii bbbttt 8-2
The Multimedia Content-Collection SYStEMcccvviiiiiirire e e 8-2
Applying an Object-Relational Design to the Application...........ccccoceiiniiiiiiiiini 8-4
Structure of Multimedia_tab Table ... 8-5

Internal Persistent LOBs

Use Case Model: Internal Persistent LOBS..........ccociiiiiiiiieie e 9-2
Three Ways to Create a Table Containing @a LOBccccvoviiiiniie v 9-6
L0 ES=To [NN [0 PO RPR VRPN 9-7
CREATE a Table Containing One or More LOB COIUMNScccoceiiiriineiiececsese e 9-8
81010 L] SRS 9-8
(O S7=To (oI Ao (PSR PROURRTIN 9-8
SYNTAX ..ttt 9-9
Kol o = U o J OO SO PR 9-9
EXAIMIPIES ...ttt bbb e bbbttt ettt bbb e 9-10
SQL: Create a Table Containing One or More LOB COIUMNScccocevniinennenneneeee 9-10
CREATE a Table Containing an Object Type with a LOB Attribute...........ccccoceoviviiiivinne 9-13
PUIIOSE .. b bbbt b e e e bt et b e bt bt e b ne e nn e ne e ne s 9-13
USBGE INOTES ... e ettt 9-13
Y11= G 9-13
R 1=] o F- 1 o SO TP STUTOPRURURPRURTIN 9-14
EXAIMPIES ...ttt bt 9-15
SQL.: Create a Table Containing an Object Type with a LOB Attribute...........c..ccccevvvenine 9-15
CREATE a Nested Table ContainiNg a LOBccoci it 9-18
PUIPOSE ...ttt 9-18
LT Vo =30 A 0] (=SSR 9-18
)Y 1] - PRSPPI 9-18
R 1o3=] o F= L o OSSPSR PRPRTRRN 9-19
ez 10 0] 0] TS 9-19
SQL.: Create a Nested Table Containing a LOB...........c.cccoovveiiiiiie s 9-20

Vii

viii

Three Ways Of Inserting One or More LOB Values into a ROW.........c.ccccoev e, 9-21

UASAGE INOTES ...ttt e e ettt sreerenns 9-22
INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB() ...ccvovvvvevereieeseeeenees 9-23
PUIIOSE ...t bt b bt b e bt b e bt e b b e bt R e e e bt e e Rt e e b e e nnenbeennenreen 9-24
USBGE INOTES ...t ettt 9-24
31 = SR 9-24
R1x=] o F- 1 o TSP TP RSOOSR 9-25
EXBMPIES ...t b ettt 9-25
SQL.: Insert a Value Using EMPTY_CLOB() Z/ EMPTY_BLOB()cccovvivvvrerierieieeieeeeeeen 9-25
INSERT a Row by Selecting a LOB From Another Table ... 9-26
PUIDOSE...... e e e ettt 9-26
LT Vo L= 3N A0 (P PRSP 9-26
)Y] - PSPPI 9-27
R 1or=] o T= U o TSSOSO PRTRR 9-27
ez 10 0] o] TSR 9-27
SQL.: Insert a Row by Selecting a LOB from Another Table..........cccccoveviiieivcccin e, 9-27
INSERT Row by Initializing a LOB Locator Bind Variablecccoccoviiniiiiniies 9-28
101017 PSSR 9-28
LU ST= T (oI AN Lo (L PP TP TOPRRURI 9-28
SYNTAX ..ttt bRttt 9-29
RS 1o0=T o =T o T OO URTUURPPRPRPTN 9-29
EXAIMPIES ...ttt bbb bbb e b e ettt n bbb e 9-29
C/C++ (Pro*C): Insert Row by Initializing a LOB Locator Bind Variable.......................... 9-29
Load Data into an Internal LOB (BLOB, CLOB, NCLOB)ccccviviiiniiniineverieereeeeneeseanens 9-31
PUIIOSE ...ttt bbbt e bbb e bt b b e bt R e e e Rt e e ehe e e b e nne b e e nnenreen 9-31
Usage NOtes and EXAMPIES ..o 9-31
31 = ST TT 9-32
R1x=] o F- 1 o TSP U PSR PRPRUPUR 9-32
Load a LOB with Data from @ BFILE...........cccooiiiiiiee e 9-33
101017 PSSR 9-34
LU S7= T (oI AN L0 (L TP P R PPR R 9-34
SYNTAX ..ttt bRttt 9-34
RS 1ol=T o =T o TS O TR URTUURPPRPRN 9-34
EXAIMPIES ...t b bt bbb e bt ettt ettt b b e 9-35
C/C++ (Pro*C): Load a LOB with Data from a BFILE.............cccoccoiiiiiinicccceee 9-35

SEE IT A LOB IS OPBN ...ttt ettt bbb b bbbt e e s e e bt ebe st sbe b 9-37

PUIDOSE ...ttt ettt 9-37
LT Vo =30 A 0] (2SS 9-37
)Y] - PRSPPI 9-37
R 1o3=] o F- L o OSSOSO USRI 9-37
e 10 0] 0] TSP 9-38
C/C++ (Pro*C): See if @ LOB IS OPBN ..ottt sne e 9-38
COPY LONG 10 LOB ...ttt sttt sttt b ettt e bt et es e s e aneebestesreanen 9-40
PUIIOSE ..o ettt ettt et sae e s e s te e s e s te e s e st e e s e ne e e s e eR e et e eR e e reeneenne e e nreaneen 9-40
(O S7= T (oI N0 (L T PP TPUPRTR 9-41
SYNTAX 1.ttt nre s 9-41
Kol = o SO 9-41
EXAIMIPIES ..ot b b bbb e bbbttt et b bbb 9-42
SQL: COPY LONG 10 LOB ..ottt sttt st ne s e snesne s 9-42
CRECKOUL 8 LOB ...ttt ettt b et bt bbbttt n e 9-45
PUIIOSE .. b e bbbt b et b et b e b bt e r e ne e nn e e reennas 9-45
USBGE INOTES ... e ettt 9-46
Y11= G 9-46
R 1=] o F- 1 o TSP STUSOPRURURPRURIN 9-46
EXAIMPIES ...ttt 9-46
C/C++ (Pro*C): CheCKOUL @ LOBcccceiiiieieieeee ettt nne s 9-46
CRECKIN B LOB......ei et b bbbt bt bbb et st e e s e b e bt ebesbeabe b 9-49
PUIDOSE ...ttt ettt 9-49
LT Vo =30 A 0] (2SS 9-50
)Y 1] - VPRSPPI 9-50
R 1o3=] o F- L o OSSOSO USRI 9-50
ez 10 0] 0] TS 9-50
C/C++ (Pro*C): CheCKiN @ LOBccccoeiicieiece ettt sne s 9-50
DiSPIAY LOB DALA......cceieeiiiieiiiieiiiiee ettt b et b et b et bbbt 9-54
PUIIOSE ..ottt ettt et sae s e s te e s e s te e s e nte e s e nR e e s e nR e e st e eR e e eeeneeneeeneenreaneen 9-55
(O S7=To (oI Ao (o ST PTTP PR TR 9-55
SYNITAX 1.ttt 9-55
1ol = o J SO 9-55
EXAIMIPIES ...ttt bbb b b e b b bbbttt b b 9-55
C/C++ (Pro*C): DiSplay LOB Data........c.cccurueiriiiriiisieisieisiesieies et 9-55

BT (ol D (=N (o] 0 1 O] = TR 9-58

PrOCEAUIE ... ettt sttt bt b et sb et et st e e e s e e st e st ene et e e besbeebeneas 9-59
LT Vo =30 A 0] (PSSR 9-59
)Y - TP UPRRIN 9-60
R 1or=] o T= U o TSSOSO 9-60
ez 10 0] o TSP 9-60
C/C++ (Pro*C/C++): Read Data from LOB..........cccoov it 9-61
Read a Portion of the LOB (SUDSEI)........cooiiiiiii e 9-63
1010 L] PSPPSR 9-64
LU S7= T (oI Ao (L PP R R OPRRURI 9-64
SYNTAX ..ttt bRttt 9-64
RS 1ol=T o =T o T OO TRTUURPPRRN 9-64
EXAIMPIES ...t b b b bbb e bt b ettt bbb e 9-64
C/C++ (Pro*C/C++): Read a Portion of the LOB (SUDSEI)cccoviiiiniiieiieisc e 9-64
Compare All or Part 0f TWO LOBS ... 9-67
PUIIOSE ...ttt b bbbt e bt b e bt b b e bt Rt e e Rt e e e Rt e ebeennenbeenrenreen 9-67
USBGE INOTES ...t e e ettt 9-68
311 = ST 9-68
R1x=] o F- 1 o T O P U TP SOPRPRUPUR 9-68
EXBMPIES ...ttt 9-68
C/C++ (Pro*C/C++): Compare All or Part of TWO LOBS........ccccvcvvvvevinenerceeese e 9-68
See If a Pattern EXists in the LOB (INSE)cooiiiiicccce e 9-70
PUIDOSE. ... e ettt 9-71
LT Vo L= 3N A 0] (PSSR 9-71
)Y - PSPPI 9-71
R 1or=] o T= L o TSSOSO 9-71
ez 10 0] o] TSR 9-71
C/C++ (Pro*C/C++): See If a Pattern Exists in the LOB (iNStr)cccccoovvvvevveccirccccen, 9-71
Getthe LENGEN OF @ LOBot 9-73
101017 PSSR 9-73
LU ST= T [AN Lo (L TP P R OPRRURI 9-74
SYNTAX ..ttt bRt 9-74
RS 1ol=T o =T o TSSOSO RTUURPPRRN 9-74
EXAIMPIES ...t bbb bbb e bt e ettt ettt b b e 9-74

C/C++ (Pro*C/C++): Getthe Length 0f @ LOB ..ot 9-74

Copy All or Part of a LOB t0 ANOhEr LOB ..o 9-76

PUIDOSE ...ttt ettt 9-76
LT Vo =30 A 0] (2SS 9-77
)Y] - PRSPPI 9-77
R 1o3=] o F- L o OSSOSO USRI 9-77
e 10 0] 0] TSP 9-77
C/C++ (Pro*C/C++): Copy All or Part of a LOB to Another LOB...........cccccoviiiiininennne 9-77
COPY @ LOB LOCALON ...ttt e e et en e sre s 9-79
PUIIOSE ..o ettt ettt et sae e s e s te e s e s te e s e st e e s e ne e e s e eR e et e eR e e reeneenne e e nreaneen 9-79
(O S7= T (oI N0 (L T PP TPUPRTR 9-79
SYNTAX 1.ttt nre s 9-79
Kol = o SO 9-80
EXAIMIPIES ..ot b b bbb e bbbttt et b bbb 9-80
C/C++ (Pro*C/C++): COPY @ LOB LOCALONcuiuiiiiiirieiienieiesiee et 9-80
See If One LOB Locator Is Equal t0 ANOLNEN ..o 9-82
PUIIOSE .. b e bbbt b et b et b e b bt e r e ne e nn e e reennas 9-82
USBGE INOTES ... e ettt 9-82
Y11= G 9-82
R 1=] o F- 1 o TSP STUSOPRURURPRURIN 9-83
... 9-83
C/C++ (Pro*C/C++): See If One LOB Locator Is Equal to Another.........cccccevveeviiviivinnnne 9-83
See If a LOB Locator IS INItIaliZEd ..o 9-85
PUIDOSE ...ttt ettt 9-85
LT Vo =30 A 0] (2SS 9-86
)Y 1] - VPRSPPI 9-86
R 1o3=] o F- L o OSSOSO USRI 9-86
ez 10 0] 0] TS 9-86
C/C++ (Pro*C/C++): See If a LOB Locator Is Initialized............cccccoovvviiiviiciieece e, 9-86
GEL ChAraCter SEU D ...ttt b ettt b et et es e s e e neebesbesresne s 9-88
PUIIOSE ..ottt ettt et sae s e s te e s e s te e s e nte e s e nR e e s e nR e e st e eR e e eeeneeneeeneenreaneen 9-88
(O S7=To (oI Ao (L PP PP 9-89
SYNTAX 1.ttt 9-89
Kol = o TSRO RTS ST 9-89
EXAIMIPIE. ..t b bbb e b ettt b bbb e 9-89

Xi

Xii

PUIDOSE. ... e ettt 9-90
LT Vo =30 A 0] (PSSR 9-90
)Y - TP UPRRIN 9-91
R 1or=] o T= U o TSSOSO 9-91
AppPend ONE LOB t0 ANOLNET ... e 9-92
PUIIOSE ...ttt b bbbt e bt b e bt b b e bt Rt e e Rt e e e Rt e ebeennenbeenrenreen 9-93
USBGE INOTES ...ttt 9-93
31 = SR 9-93
R1x=] o F- 1 o T O P U TP SOPRPRUPUR 9-93
EXBMPIES ...ttt 9-93
C/C++ (Pro*C/C++): Append One LOB t0 ANONENccocv i 9-94
WIItE APPEN 10 @ LOB ...ttt bttt e b b ettt ae bbb 9-96
PUIDOSE. ... e e ettt 9-96
LT Vo L= 3N A 0] (PSSR 9-97
)Y - PSPPI 9-97
R 1or=] o T= L o TSSOSO 9-98
e 10 0] o TSP 9-98
C/C++ (Pro*C/C++): Write Append t0 @ LOB ... 9-98
WIILE DAta t0 @ LOBottt bt sttt s er e ne e 9-100
81010 L] SR 9-101
LU EST=To (oI Ao (L PRSPPI 9-101
SYNTAX ..ttt e et 9-102
3ol =T o T OO 9-103
EXAIMPIES ...ttt b bbbt b e bbb ettt b e 9-103
C/C++ (Pro*C/C++): Write Datato @ LOBccooiiiiiiceceee e 9-103
TEIM LOB DALA.....c.eiieiiiieiitecie ettt bbbt b bbb bbbt st 9-106
PUIIOSE ...ttt b bt bt b e bt R e bt bt b e s eb e e nn e n e ene s 9-107
USBGE INOTES ...t 9-107
Y11= GO 9-107
13T o F- L o LSOO P TUTPOTPRORPRPRON 9-107
EXBMPIES ..o 9-107
C/C++ (Pro*C/C++): Trim LOB Dat@......cccccoceviiriiericieieiese e se s e e ssenseeanaaneas 9-108
Erase Part OF @ LOB ... bbb bbb et ene 9-110
PUIMPOSE.....c.cc et 9-111

SYNTAX .. et 9-111
3ol =T o J OSSO 9-111
EXAIMIPIES ..ottt bbb bbb bbbt n et r s 9-111
C/C++ (Pro*C/C++): Erase Part 0f a LOBccoeiiiiiiiiiicee s 9-112
ENable LOB BUTFFEIING ..ovoieecceese sttt na e enenns 9-113
PUIIOSE ...ttt bbbt bbbt s e bt ab e eb e e e e ebe e teene e b e e nrenreen 9-114
USBGE INOTES ... 9-114
Y11= G ST 9-114
R 1=] o F- 1 o BT TP SOPR PRSPPI 9-114
EXAIMPIES ..o bbbt b et 9-115
C/C++ (Pro*C/C++): Enable LOB BUFfEringccovivivivvinie e 9-115
FIUSI BUTTEE ...ttt bbb bbbttt eb e 9-117
PUIPOSE ...t 9-118
LT Vo =30 A 0] (PSS 9-118
)Y] - PP PSPPI 9-118
1] o T= L o SRRSO PR PSR 9-118
oG 10 0] o TSRS 9-119
C/C++ (Pro*C/C++): FIUSN BUFTEE ... 9-119
Disable LOB BUTTEINGcuiiiiiiieiiee bbb 9-121
1010 L] PSS 9-122
L0 ST= T (oI AN L0 (L PP PPRURTI 9-122
SYNTAX .. 9-122
RS 1o0=T o =T o J OSSR 9-122
EXAIMIPIES ..ottt bbb bbb bbbt et b bbbt 9-122
C/C++ (Pro*C/C++): Disable LOB BUFfEring.........cccccovviiiiiiiiiiicieneceesieens 9-123
Three Ways to Update a LOB or Entire LOB Data........cccccovvivviviinininnenene e seeeeeseseanens 9-125
UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()....cccccvviiinisiineeneiesee e 9-127
PUIPOSE ...t 9-127
LT Vo =30 A 0] (PSS 9-128
)Y 1] - PRSPPI 9-128
31T o T= L o SRS RSOPR PSP 9-128
TG 10 0] o TSRS 9-128
SQL: UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()....ccccecvvrririririeiriiinienns 9-128

Xiii

PUIPOSE.....c.cce et 9-130
LT Vo T= 3N AN 0] (SR 9-130
)Y] - SRR 9-130
R 1o3=] o T= U o LTSRS 9-131
= 10 0] 0] TSP 9-131
SQL: Update a Row by Selecting a LOB From Another Table..........ccocoiiiiiiiiiiiins 9-131
UPDATE by Initializing a LOB Locator Bind Variablec.ccccoooniiiiiniiice, 9-132
8T 010 L] -SSR 9-132
L EST=To (oI Ao (L PRSPPI 9-132
SYNTAX ..ttt et 9-132
RS 1o0T o =T o T OO OSSOSO PRSP 9-133
EXAIMPIES ...ttt bbbt bbb bbbt b e ne e 9-133
SQL: Update by Initializing a LOB Locator Bind Variable.............c.ccccooeoniiniininicnnn. 9-133
C/C++ (Pro*C/C++): Update by Initializing a LOB Locator Bind Variable 9-133
DELETE the Row of a Table Containing a LOB.........cc.cccoiiiiiiicc e 9-135
PUIPOSE.....c.cec et 9-135
LT Vo =30 AN 0 (TS 9-135
)Y] - PR OPP PR 9-136
R 1o3=] o T= U o LTSRS 9-136
e 10 0] 0] TSP 9-136
SQL: DEIELE @ LOB ..ottt bbb 9-136

10 Temporary LOBs

Use Case Model: Internal Temporary LOBS ... 10-3
Programmatic ENVIFONIMENTS ..ottt 10-7
[0 Tor 1 (o] =TSPTSRO 10-7
Temporary LOB Locators Can be IN ValUues ... 10-7
Can You Use the Same Functions for Temporary and Internal Persistent LOBS?............ 10-8
Temporary LOB Data is Stored in Temporary Tablespace...........cccccvcvvivrerercrcnerecnennnns 10-8
Lifetime and Duration of TEMPOrary LOBS.........ccccoiiiiiiniiinie e 10-9
MEMOFY HANAIING ...t 10-9
LOCALOrs aNd SEMANTICS.........oeiirireiiirsr s 10-10
Features Specific t0 TEMPOrary LOBScocoiiiiiiiicieeeee et 10-11
Security Issues With TEMPOrary LOBS ..o 10-12

Xiv

N[O 0@] = 2 = (TS { g Tox (0] [10-13

Managing TemPOrary LOBS ...ttt 10-13
Create @ TEMPOTArY LOBoooiie ettt te e aesta e tenseensenneenes 10-14
PUIIOSE ...t ettt b e bbbt s e bt e bt e bt e n e ebe e e e ae e b e e nrenreen 10-14
USBGE INOTES ..o 10-14
Y11= G ST 10-15
R 1=] o F- 1 o BT TP SOPR PRSPPI 10-15
EXAIMPIES ..o bbbt b et 10-15
C/C++ (Pro*C/C++): Create a Temporary LOB ... i 10-15
SEE IT @ LOB IS TEMPOIANY ...cuiiiiiiiitiitiiie ettt b e bt bbb ettt ne et eee e 10-17
PUIPOSE ...t 10-17
LT Vo =30 A 0] (PSS 10-17
)Y] - PP PSPPI 10-17
1] o T= L o SRRSO PR PSR 10-18
oG 10 0] o TSRS 10-18
C/C++ (Pro*C/C++): See If a LOB iS TEMPOFAIYccccooiieiiiiieie e 10-18
Free a TEMPOrary LOBoooi e s 10-20
1010 L] PSS 10-20
L0 ST= T (oI AN L0 (L PP PPRURTI 10-20
SYNTAX .. 10-21
RS 1o0=T o =T o J OSSR 10-21
EXAIMIPIES ..ottt bbb bbb bbbt n et r s 10-21
C/C++ (Pro*C/C++): Free a TempPOorary LOB ..ot 10-21
Load a Temporary LOB with Data from a BFILE...........c.ccccceiviiiiiinene e 10-23
PUIIOSE ...ttt bbbt s e bt e a bt eb e e e e bt et e neenne e e nrenreen 10-23
USBGE INOTES ...t 10-24
Y11= G ST 10-24
1=] o F- 1 o BT PO RSO PR PRSPPI 10-24
EXAIMPIES ..o bbbt b et 10-24
C/C++ (Pro*C/C++): Load a Temporary LOB with Data from a BFILE......................... 10-24
See If a TemMpPOorary LOB IS OPENcciiiiiiiieieeee ettt e 10-26
PUIPOSE ...t 10-26
LT Vo =30 A 0] (PSS 10-26
)Y 1] - PRSPPI 10-26
31T o T= L o SRS RSOPR PSP 10-27

XV

XVi

EXAIMPIES ...ttt bbbt bbb bbbt b e ne e 10-27

C/C++ (Pro*C/C++): See if a Temporary LOB iS OPEeNcccccevverieneinee e 10-27
Display Temporary LOB Data.........ccccviviiiiiiieiinire e ie sttt ssese e nsesassensenns 10-29
PUIIOSE ...ttt b e bbb e bt b e bt st bt s eb e nr e ne e n e ne s 10-30
USBGE INOTES ...ttt 10-30
Y11= PSS 10-30
1] o F- L o T OO PTUTPOTPRORPRPRN 10-30
EXAMPIES ..o 10-30
C/C++ (Pro*C/C++): Display Temporary LOB Data.........ccccoovvivivninneseneneseeniesieiesneneas 10-30
Read Data from a TemMPOrary LOB ..o 10-33
PUIPOSE.....c.cce et 10-34
LT Vo =30 AN 0 (TS 10-34
)Y] - PR OPP PR 10-35
R 1o3=] o T= U o LTSRS 10-35
e 10 0] 0] TSP 10-35
C/C++ (Pro*C/C++): Read Data from a Temporary LOBc.ccocoiiiienineiceceseeas 10-35
Read Portion of Temporary LOB (SUDSIF).......ccoeiiiiiiiiiiiieeeseseeeee i 10-38
8T 01017 SR 10-38
L EST=To (oI Ao (L PRSPPI 10-39
SYNTAX ..ttt e et 10-39
RS 1o0T o =T o T OO OSSOSO PRSP 10-39
EXAIMPIES ...ttt bbbt bbb bbbt b e ne e 10-39
C/C++ (Pro*C/C++): Read a Portion of Temporary LOB (SUDSEr)........ccccccvneiinciicinen. 10-39
Compare All or Part of TWo (TEMPOrary) LOBS........ccccovviviiiinire e 10-42
PUIIOSE ...ttt e et b e b e bt b e bt e st bt e s eb e e nn e neen e ene s 10-42
USBGE INOTES ...ttt 10-43
Y11= G SS 10-43
1] o F- o TSSO TSP TP TP SPRORURPRUN 10-43
EXAMPIES ..o bbb 10-43
C/C++ (Pro*C/C++): Compare All or Part of Two (Temporary) LOBSccccccevvenennns 10-43
See If a Pattern Exists in a Temporary LOB (INStr)cccociiiiiiiniiine e 10-46
PUIMPOSE.....c.cce et 10-46
LT Vo =30 AN 0] (TS 10-47
)Y - G PO PPPPR 10-47
R 1or=] o T= U o TP SSRSSRRRPRPRIN 10-47

EXAIMIPIES ..ottt bbb bbb bbbt n et r s 10-47

C/C++ (Pro*C/C++): See If a Pattern Exists in a Temporary LOB (inStr)..........cc.cccvveene. 10-47
Get the Length of a TEMPOrary LOB ... 10-50
PUIIOSE ...t ettt b e bbbt s e bt e bt e bt e n e ebe e e e ae e b e e nrenreen 10-51
USBGE INOTES ..o 10-51
Y11= G ST 10-51
R 1=] o F- 1 o BT TP SOPR PRSPPI 10-51
EXAIMPIES ..o bbbt b et 10-51
C/C++ (Pro*C/C++): Get the Length of a Temporary LOB.........ccccecvvevvvcicrccecee, 10-51
Copy All or Part of One (Temporary) LOB to ANOthEr...........ccoooiiiiiiiininc e 10-54
PUIPOSE ...t 10-54
LT Vo =30 A 0] (PSS 10-55
)Y] - PP PSPPI 10-55
1] o T= L o SRRSO PR PSR 10-55
oG 10 0] o TSRS 10-55
C/C++ (Pro*C/C++): Copy All or Part of One (Temporary) LOB to Another-............... 10-55
Copy a LOB Locator for a Temporary LOB ...t 10-58
1010 L] PSS 10-58
L0 ST= T (oI AN L0 (L PP PPRURTI 10-59
SYNTAX .. 10-59
RS 1o0=T o =T o J OSSR 10-59
EXAIMIPIES ..ottt bbb bbb bbbt n et r s 10-59
C/C++ (Pro*C/C++): Copy a LOB Locator for a Temporary LOB...........cccoceoriininnnenn 10-59
Is One Temporary LOB Locator Equal to ANOLhEr ... 10-61
PUIIOSE ...ttt bbbt s e bt e a bt eb e e e e bt et e neenne e e nrenreen 10-61
USBGE INOTES ...t 10-61
Y11= G ST 10-62
1=] o F- 1 o BT PO RSO PR PRSPPI 10-62
EXAIMPIES ..o bbbt b et 10-62
C/C++ (Pro*C/C++): See If One LOB Locator for a Temporary LOB Is Equal to
F N g T0] 1 0 T=] SO TP PP UT PSP 10-62
See If a LOB Locator for a Temporary LOB Is Initialized..............ccocoeiniiiininiiiciees 10-65
1010 L] PSS 10-65
L0 ST= T (oI A L0 (L PP PPRSTI 10-65
SYNTAX .. 10-65

XVii

Xviii

Yot =] o PV [0 T 10-66

EXBMPIES ..o 10-66
C/C++ (Pro*C/C++): See If a LOB Locator for a Temporary LOB Is Initialized............ 10-66
Get Character Set 1D of a TeEMPOrary LOB.........cocooiiiiiiiie e 10-68
PUIPOSE.....c.cce et 10-68
LT Vo T= 3N AN 0] (SR 10-69
)Y] - PR OPP PR 10-69
R 1o3=] o T= U o LTSRS 10-69
e 10 0] 0] TSP 10-69
Get Character Set Form of @ Temporary LOB ..o 10-70
PUIPOSE.....c.cce et 10-70
LT Vo =30 AN 0 (TS 10-70
)Y] - PR OPP PR 10-71
R 1o3=] o T= U o LTSRS 10-71
e 10 0] 0] TSP 10-71
Append One (Temporary) LOB t0 ANOTNETc.ooiiiiie e 10-72
PUIPOSE.....c.cec et 10-72
LT Vo =30 AN 0 (TS 10-73
)Y] - PR OPP PR 10-73
R 1o3=] o T= U o LTSRS 10-73
e 10 0] 0] TSP 10-73
C/C++ (Pro*C/C++): Append One (Temporary) LOB to Another ..., 10-73
Write Append to a TEMPOFAIY LOBccooiiiiiiiiiie ettt 10-76
8T 01017 SR 10-77
LU EST-To (oI Ao (L PSR OPPPRP 10-77
SYNTAX ..ttt e et 10-77
RS 1o0T o =T o T OO OSSOSO PRSP 10-77
EXAIMPIES ...ttt bbb bbb e bttt b e 10-77
C/C++ (Pro*C/C++): Write Append to a Temporary LOB ... 10-77
Write Data to a TeEMPOrary LOB ...t ne e 10-80
PUIIOSE ...ttt h e et h e bt b e bt b e bt st b e s b en e e nn e ne e ene s 10-81
USBGE INOTES ..ottt 10-81
Y11= G SS 10-82
1] o F- o TSSO TSP TP TP SPRORURPRUN 10-82
EXAMPIES ..o bbb 10-82

C/C++ (Pro*C/C++): Write Data to a Temporary LOB ... 10-82

Trim TemPorary LOB Data........ccccouiiiiiiiiiciieiie et 10-86
1010 L] PSSR 10-87
L0 ST- T (oI AN L0 (L PRSP UPPTPPRURTI 10-87
SYNTAX .. e 10-87
3ol =T o J OSSO 10-87
EXAIMIPIES ..ottt bbb bbb bbbt n et r s 10-87
C/C++ (Pro*C/C++): Trim Temporary LOB Data..........cccocvoiiriiniiieincinccscseiens 10-87
Erase Part of a TEMPOKrary LOB ...t ne e enenns 10-90
PUIIOSE ...ttt bbbt bbbt s e bt ab e eb e e e e ebe e teene e b e e nrenreen 10-90
USBGE INOTES ... 10-91
Y11= G ST 10-91
1=] o F- 1 o BTSSP UR PRSPPI 10-91
EXAIMPIES ..o bbbt b et 10-91
C/C++ (Pro*C/C++): Erase Part of a Temporary LOBcccccocvvvviniieveceeee e 10-91
Enable LOB Buffering for a Temporary LOB ... 10-94
PUIPOSE ...t 10-94
LT Vo =30 A 0] (PSS 10-94
)Y] - PP PSPPI 10-95
1] o T= L o SRRSO PR PSR 10-95
oG 10 0] o TSRS 10-95
C/C++ (Pro*C/C++): Enable LOB Buffering for a Temporary LOB.........ccccccviiinennene. 10-95
Flush Buffer for a TeEmMPorary LOB ... 10-97
1010 L] PSS 10-97
L0 ST= T (oI AN L0 (L PP PPRURTI 10-97
SYNTAX .. 10-97
RS 1o0=T o =T o J OSSR 10-98
EXAIMIPIES ..ottt bbb bbb bbbt et b bbbt 10-98
C/C++ (Pro*C/C++): Flush Buffer for a Temporary LOB.........ccccovoiiiineiniiniinenens 10-98
Disable LOB Buffering for a Temporary LOBccccccoeviieieiecicese e 10-100
PUIIOSE ...ttt etttk e e bt b e bt s bt e s bbb n e e neene e 10-100
USBGE INOTES ... e ene 10-100
311 €= GO 10-101
R1=] o F- 1 o BSOSO UURPRPRPR 10-101
EXAMPIES ...t bbbt 10-101

Xix

11

XX

C/C++ (Pro*C/C++): Disable LOB Buffering for a Temporary LOBccccccceovnenee 10-101

External LOBs (BFILES)
Use Case Model: External LOBS (BFILES)cccooiiiiiiiiiiecec e 11-2
Accessing EXternal LOBS (BFILES)ccciiiiiiiiiecneiictsesiest et 11-5
(D L= To1 (0] YA @ 1 o =T o SRRSO 11-5
INiItializiNg @ BFILE LOCALOT......cc.cciiiiiciccie ettt 11-5
How to Associate Operating System Files with Database Recordscccocovvvveniinennnne 11-6
BFILENAME(Q) and INitialization..........ccccoeveieiiiseieccse s 11-7
DIRECTORY Name SPeCIfiCAtION........cccoiiiiieiiieiiiseiesis et 11-8
B ILE SECUNTLY ...ttt bbbt bbbttt 11-9
OWNErSiP N PrIVIIEESc.ocviciiie ettt ene e 11-9
Read Permission 0N DireCtory ODJECL.......c.cciiiiii et 11-9
SQL DDL fOr BFILE SECUIILY.....ciiiiieiiiieieriee ettt e 11-10
SQL DML fOr BFEILE SECUTILY ...vvcvviece sttt st naanneneas 11-10
Catalog VIEWS ON DIFECIOIIES......ccuiieeie ettt sttt ena e 11-10
Guidelines for DIRECTORY USAJE.......cccoetrieirieinieisie sttt 11-11
BFILEs in Multi-Threaded Server (MTS) MOAEccceoeieiciiecise e 11-12
External LOB (BFILE) LOCALOIS.......c.cciiiieiiiiiecie ettt sne e 11-12
Three Ways to Create a Table Containing a BFILE ... 11-14
CREATE a Table Containing One or More BFILE Columnscccccocevvvinenencnceeceeeen 11-15
PUIIOSE ...ttt b bt bt b e bt R e bt bt b e s eb e e nn e n e ene s 11-15
USBGE INOTES ...t 11-15
Y11= G SS 11-15
1] o F- L o T OSSR PTUSPOTPRORORPRN 11-16
EXBMPIES ..o 11-16
SQL.: Create a Table Containing One or More BFILE ColumNS........c.cccocvvvevenciiciennennns 11-16
CREATE a Table of an Object Type with a BFILE Attribute ..., 11-18
PUIMPOSE.....c.cc et 11-18
LT Vo =30 AN 0] (SR 11-18
)Y] - PO OPP PR 11-18
R 1o3=] o T= U o TP TSSRRSRSPRPRN 11-19
D= 10 0] 0] TSP 11-19
SQL: Create a Table of an Object Type with a BFILE Attribute...........ccocooiiiiiiiiiniins 11-19
CREATE a Table with a Nested Table Containing a BFILEccocooviiiniiniiiee 11-21

USBGE INOTES ..o 11-21
Y11= G ST 11-21
R 1=] o F- 1 o BT TP SOPR PRSPPI 11-22
EXAIMPIES ..o bbbt b et 11-22
SQL.: Create a Table with a Nested Table Containing a BFILE...........cccccocvvvveiiicicnnnnn, 11-22
Three Ways to Insert a Row Containing a BFILEcccccooiiiiiiiiccccece e 11-23
INSERT a ROW USIiNg BFILENAME()ooviiiiiei e ssens 11-24
1010 L] PSS 11-25
L0 ST- T (oI AN L0 (L PRSP UPPTPPRURTI 11-25
SYNTAX .. e 11-26
3ol =T o J OSSO 11-26
EXAIMIPIES ..ottt bbb bbb bbbt n et r s 11-26
SQL: Insert a Row by means of BFILENAME()cocoeiiiiiiiiiiceese s 11-26
C/C++ (Pro*C/C++): Insert a Row by means of BFILENAME(Q)cccccovvvvevereiecieennenn, 11-27
INSERT a BFILE Row by Selecting a BFILE From Another Table...........ccccooviiiiiiicinnne 11-29
PUIPOSE ...t 11-29
LT Vo =30 A 0] (PSS 11-29
)Y] - PP PSPPI 11-29
1] o T= L o SRRSO PR PSR 11-30
oG 10 0] o TSRS 11-30
SQL.: Insert a Row Containing a BFILE by Selecting a BFILE From Another Table....... 11-30
INSERT Row With BFILE by Initializing BFILE LOCATONccooiiiiiiiinieiriciniecseeis 11-31
1010 L] PSS 11-32
L0 ST= T (oI AN L0 (L PP PPRURTI 11-32
SYNTAX .. 11-32
RS 1o0=T o =T o J OSSR 11-32
C/C++ (Pro*C/C++): Insert a Row Containing a BFILE by Initializing a BFILE
[0 ToF= | (0] GRS TP UUTPRUPTPROT 11-32
Load Data Into External LOB (BFILE)c.cccovoiiicieeccsese e 11-34
PUIIOSE ...t ettt b e bbbt s e bt e bt e bt e e e ebe e neeheenbesneenrenreen 11-34
USBGE INOTES ...t 11-35
Y11= G 11-35
1=] o F- 1 o BT PO RSO PR PRSPPI 11-35
EXAIMPIES ..o bbbt b et 11-36

XXi

XXii

Loading Data Into BFILES: File Name Only is Specified Dynamicallyc.ccccee..... 11-36
Loading Data into BFILES: File Name and DIRECTORY Object Dynamically

3] =T o7 1= o OSSP 11-37

Load @ LOB With BFILE Data........c.cccovieiiiiiieiieiisie ettt sbe st seene e 11-38
PUIPOSE.....c.cce et 11-39
LT Vo T= 3N AN 0] (SR 11-39
)Y] - PR OPP PR 11-40

R 1o3=] o T= U o LTSRS 11-40
e 10 0] 0] TSP 11-40
C/C++ (Pro*C/C++): Load a LOB with BFILE Dataccoeceveeneieneieneiesee e 11-40
Two Ways to0 Open @ BFILE ... 11-42
Recommendation: Use OPEN to Open BFILE ... 11-42
Specify the Maximum Number of Open BFILES: SESSION_MAX_OPEN_FILES 11-43
Open a BFILE With FILEOPENc.ccoiiiiiieeses e 11-44
U] oo 1S OO T T TP PRSP P PPPTPPRPN 11-44

L ST=To (oI Ao (L PSPPI 11-45
SYNTAX ..ttt e et 11-45

RS 1o0T o =T o T OO OSSOSO PRSP 11-45
EXAIMPIES ...ttt bbbt bbb bbbt b e ne e 11-45
OpeN a BFILE WIth OPENccciiiiici et a e snens 11-46
8T 01017 SR 11-46

L EST-To (oI Ao (L RSP OPPPRP 11-47
SYNTAX ..ttt e et 11-47

RS 1o0T o =T o T OO OSSOSO PRSP 11-47
EXAIMPIES ...ttt bbb bbb e bttt b e 11-47
C/C++ (Pro*C/C++): Open a BFILE With OPEN ..o 11-47
Two Ways t0 See IT a BFILE 1S OPENocviviicice et e 11-49
Recommendation: Use OPEN to Open BFILE ... 11-49
Specify the Maximum Number of Open BFILEs: SESSION_MAX_OPEN_FILES 11-49
See If the BFILE is Open With FILEISOPENcccccooiiiiiirin e 11-51
PUIIOSE ...ttt h e et h e bt b e bt b e bt st b e s b en e e nn e ne e ene s 11-51
USBGE INOTES ..ottt 11-51
Y11= G SS 11-51
1] o F- o TSSO TSP TP TP SPRORURPRUN 11-52
EXAMPIES ..o bbb 11-52

See If a BFILE is Open UsSiNg ISOPEN.. ...t 11-53

PUIPOSE ...t 11-53
LT Vo =30 A 0] (PSS 11-53
)Y 1] - PPV UPRT 11-53
1] o T= L o SRRSO PR PSR 11-54
oG 10 0] o] TSRS 11-54
C/C++ (Pro*C/C++): See If the BFILE is Open with ISOPENc.ccccvviviinninininienn 11-54
DiSPlay BFILE DAta........cccoiiiiiiiiiiiieeiiiee sttt 11-56
1010 L] PSS 11-56
L0 ST- T (oI AN L0 (L PRSP UPPTPPRURTI 11-57
SYNTAX .. e 11-57
3ol =T o J OSSO 11-57
These examples open and display BFILE data. ExXamples...........cccoovviiiiniieiciccnenenn 11-57
C/C++ (Pro*C/C++): Display BFILE Data..........cccoviiiiiiiiiieisc s 11-57
Read Data from @ BFILEccooiiiiiiie et s 11-59
PUIIOSE ...ttt bbbt bbbt s e bt ab e eb e e e e ebe e teene e b e e nrenreen 11-59
USBGE INOTES ... 11-60
Y11= G ST 11-60
1=] o F- 1 o BT PO RSO PR PRSPPI 11-61
EXAIMPIES ..o bbbt b et 11-61
C/C++ (Pro*C/C++): Read Data from a BFILEc.cccovviviiviinie e 11-61
Read a Portion of BFILE Data (SUDSLI) ..o 11-63
PUIPOSE ...t 11-63
LT Vo =30 A 0] (PSS 11-64
)Y 1] 2= PPV UPRTR 11-64
1] o T= L o SRRSO PR PSR 11-64
... 11-64
C/C++ (Pro*C/C++): Read a Portion of BFILE Data (SUBStr)ccccccevvevevvciciccc e, 11-64
Compare All or Parts of TWO BFILES...........cccoiiiiiii e 11-66
1010 L] PSS 11-67
L0 ST= T (oI AN L0 (L PP PPRURTI 11-67
SYNTAX .. 11-67
RS 1o0=T o =T o J OSSR 11-67
EXAIMIPIES ..ottt bbb bbb bbbt et b bbbt 11-67
C/C++ (Pro*C/C++): Compare All or Parts of Two BFILES............ccccccveiiniiniinenn, 11-67

XXili

XXV

PUIPOSE.....c.cce et 11-71
USAGE INOLES ...ttt b et sb e st e s kb e et e e s bb e e beenbe e et e e sbeennbeenees 11-71
)Y] - SRR 11-71
R 1o3=] o T= U o LTSRS 11-71
... 11-71
C/C++ (Pro*C/C++): See If a Pattern Exists (instr) in the BFILE...........c..ccccoevvvvevinennnne, 11-71
SEE 1T the BFILE EXISTS ..ottt st ettt ne e eneenas 11-74
PUIDOSE ..ttt b bbb et bbb et nre e e eee 11-74
LU EST=To (oI Ao (L SRR OPPR PR 11-75
SYNTAX ..ttt et 11-75
1ol =T o T O OO OSSPSR 11-75
EXAIMPIES ..ottt bbbt bbb bbb ettt b 11-75
C/C++ (Pro*C/C++): See If the BFILE EXISES......ccccooiiiiiieriienieeseeee e 11-75
Getthe Length OF @ BFILE ...t e 11-77
PUIIOSE ...ttt bbbt b e bt b e bt st bt s eb e nr bt e n e ene s 11-78
USBGE INOTES ...ttt 11-78
Y11= PSS 11-78
13T o F- o T SO PTUSPSPRORPRPRUN 11-78
EXBMPIES ..o b bbb 11-78
C/C++ (Pro*C/C++): Getthe Length of a BFILEc.ocvoviiiicncec e 11-78
Copy @ LOB LoCAtor fOr @ BFILEccccoiiiieeicee e e 11-80
PUIPOSE.....c.cce e 11-81
LT Vo =3 AN 0] (SR 11-81
)Y - PO ROPPPR 11-81
R 1o3=] o T= U o TP URSPRRRRPRN 11-81
s 10 0] 0 TSP 11-81
C/C++ (Pro*C/C++): Copy a LOB Locator for a BFILE............ccccooiiiiiininicccecas 11-81
See If a LOB Locator for a BFILE Is Initialized...........c.cccooiiiiiiniiiniii e 11-83
8T 010 L] SR 11-83
L ES7=To (oI Ao (L PRSPPI 11-84
SYNTAX ..ttt et 11-84
1ol =T o T O OO OSSPSR 11-84
EXAIMPIES ...ttt bbb bR bbbttt b b 11-84
C/C++ (Pro*C/C++): See If a LOB Locator for a BFILE Is Initialized..............c.cccoenee. 11-84

See If One LOB Locator for a BFILE Is Equal to ANOthEr ... 11-86

PUIPOSE ...t 11-87
LT Vo =30 A 0] (PSS 11-87
)Y 1] - PPV UPRT 11-87
1] o T= L o SRRSO PR PSR 11-87
... 11-87
C/C++ (Pro*C/C++): See If One LOB Locator for a BFILE Is Equal to Another............ 11-87
Get DIRECTORY Alias and FIlENAMEccooiiiiiiecieeee e 11-89
1010 L] PSS 11-89
L0 ST- T (oI AN L0 (L PRSP UPPTPPRURTI 11-90
SYNTAX .. e 11-90
3ol =T o J OSSO 11-90
EXAIMIPIES ... b et bbb ettt b bbb b e 11-90
C/C++ (Pro*C/C++): Get Directory Alias and Filename............cccoccovrvininiineinennenn, 11-90
Three Ways to Update a Row Containing a BFILE..........c.cccooviv i 11-92
UPDATE a BFILE USing BFILENAME() ...ccooeiiiiiieieseitseiese e 11-93
USBGE INOTES ... 11-93
Y11= G ST 11-94
1=] o F- 1 o BT PO RSO PR PRSPPI 11-95
EXAIMPIES ..o bbbt b et 11-95
SQL: Update a BFILE by means of BEILENAME().......c.cccoovviviiininnieninene e 11-95
UPDATE a BFILE by Selecting a BFILE From Another Table..........ccccooeiiiiieiiccice, 11-96
PUIPOSE ...t 11-96
LT Vo =30 A 0] (PSS 11-96
)Y 1] 2= PPV UPRTR 11-96
1] o T= L o SRRSO PR PSR 11-97
oGz 10 0] o TSRS 11-97
SQL: Update a BFILE by Selecting a BFILE From Another Table.........ccccoooeeiiiininnn 11-97
UPDATE a BFILE by Initializing @ BFILE LOCATONcccoeiiiiiiiieninieieieeeee e 11-98
1010 L] PSS 11-98
L0 ST= T (oI AN L0 (L PP PPRURTI 11-99
SYNTAX .. 11-99
RS 1o0=T o =T o J OSSR 11-99
C/C++ (Pro*C/C++): Update a BFILE by Initializing a BFILE Locator................cc........ 11-99

XXV

TWo Ways t0 Cl0SE @ BFILE ..ot 11-101

Close a BFILE With FILECLOSEccooveiiiiiiiceseesee sttt 11-103
1010 L] ST 11-103
L ES7=To (oI AN Lo (L TR PUPPRIN 11-104
SYNTAX ..ttt et 11-104
RS 1ol=T o = U o TSSOSO PO PRPTRTPTRITRN 11-104
Close a BFILE With CLOSE ...ttt 11-105
PUIPOSE. ... ettt 11-105
LT To =N A 0] (=SSP 11-106
3 1 7= OO RTSTRTSPRIN 11-106
RS Tor=] o T- L o TSRS PRSPPI 11-106
s 10 0] o] TSP 11-106
C/C++ (Pro*C/C++): Close a BFile With CLOSEcccocvoiiiiiniineieseesene et 11-106
ClOSE AL OPEN BFILES ...ttt 11-108
1010 L] ST 11-109
L ES7=To (oI N0 (L ST PURPRIN 11-109
SYNTAX ..ttt ettt 11-109
RS 1ol=T o = U o TSSOSO PO PRPITRTPPRPRIN 11-109
EXAIMPIES ...t bbb bbbt e ettt b e nae 11-109
C/C++ (Pro*C/C++): Close All Open BRIles ...t 11-109
DELETE the Row of a Table Containing a BFILE.........c..ccccooviii v 11-111
PUIIOSE ...t b e bbbt b et b e bRt e r et nn e nre s 11-111
USBGE INOTES ...t ettt 11-111
R3] €= G 11-112
RTe=] o F- 1 o TSP TS PRURUPPRURTIN 11-112
EXAMPIES ...ttt 11-112
SQL: Delete a ROW from @ Table........coovoviiiiiicicece et 11-112
Index

XXVi

Send Us Your Comments

Application Developer’'s Guide - Large Objects (LOBs) Using C/C++ (Pro*C/C++), Release 2
(8.1.6)

Part No. A77001-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

« Didyou find any errors?

« Isthe information clearly presented?

« Do you need more information? If so, where?

= Are the examples correct? Do you need more examples?
« What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

« E-mail - infodev@us.oracle.com
« FAX-650-506-7228. Attn:ST/Oracle8i Generic Documentation
« Postal service:

Oracle Corporation

ST/Oracle8i Generic Documentation

500 Oracle Parkway, 40p12

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, and telephone humber below.

XXVil

If you have problems with the software, please contact your local Oracle Support Services.

XXViii

Preface

This Guide describes Oracle8i application development features that deal with Large
Objects (LOBs). The information applies to versions of Oracle Server that run on all
platforms, and does not include system-specific information.

The Preface includes the following sections:

Information in This Guide

Feature Coverage and Availability

New LOB Features

What’s New in This Manual

Related Guides

How This Book Is Organized
Conventions Used in this Guide

How to Interpret the Use Case Diagrams

Your Comments Are Welcome

XXiX

Information in This Guide

The Oracle8i Application Developer’s Guide - Large Objects (LOBs) is intended for
programmers developing new applications that use LOBs, as well as those who
have already implemented this technology and now wish to take advantage of new
features.

The increasing importance of multimedia data as well as unstructured data has led
to this topic being presented as an independent volume within the Oracle
Application Developers documentation set.

Feature Coverage and Availability

Oracle8i Application Developer’s Guide - Large Objects (LOBs) contains
information that describes the features and functionality of Oracle8i and Oracle8i
Enterprise Edition products.

Oracle8i and Oracle8i Enterprise Edition have the same basic features. However,
several advanced features are available only with the Enterprise Edition, and some
of these are optional. For example, to use object functionality, you must have the
Enterprise Edition and the Objects Option.

What You Need To Use LOBs?

There are no special restrictions when dealing with LOBs. See Chapter 4, "Managing
LOBs", for further information about restrictions. You will need the following
options:

« Oracle Partitioning option: to use LOBs in partitioned tables.
« Oracle Object option: to use LOBs with object types

For information about the differences between Oracle8i and the Oracle8i Enterprise
Edition and the features and options that are available to you, see the following:

« Getting to Know Oracle8i.

« http://www.oracle.com/database/availability/ and download the "Oracle8i: A
Family of Database Products" document.

New LOB Features
New LOB Features, Introduced with Oracle8i, Release 2 (8.1.6)

New LOB features included in the Oracle8i, release 2 (8.1.6) are as follows:

XXX

A CACHE READS option for LOB columns has been added

The 4,000 byte restriction for bind variables binding to an internal LOB has been
removed

LOB Features, Introduced with Oracle8i, Release 8.1.5

New LOB features included in the Oracle8i, release 8.1.5 are as follows:

Temporary LOBs

Varying width CLOBand NCLOBsupport

Support for LOBs in partitioned tables

New API for LOBs (open /close /isopen , writeappend , getchunksize)
Support for LOBs in non-partitioned index-organized tables

Copying the value of a LONG to a LOB

What's New in This Manual

This manual has undergone the following changes for Oracle8i Release 2 (8.1.6):

Reorganization: The manual has been re-organized, as described later in the
Preface. Previous chapter contents, for example, the prior content for Chapter 1
has been split off into new chapters.

New FAQ Chapter: Chapter 6, "Frequently Asked Questions" is a new chapter.

Graphic Hyperlinking: Where possible graphics have been hyperlinked for the
html and pdf versions so that users can go with ease to the 'parent’ or "child’
use case diagram, or use case diagram. How to use the new use case diagram
hyperlinking is described in "Hot Links From Use Case Diagram to Use Case
Diagram"

"Why Use LOBs": In Chapter 1, the need for LOBs and LOB advantages are
newly described.

Use Cases: To introduce use case consistency throughout the Application
Developer Guide series, each use case now has a similar structure, with
Purpose, Usage Notes, Syntax, Scenarios, and Examples delineated. The use
case 'master’ tables have been updated to include available programmatic
environment examples for each use case.

Syntax References: Each use case in Chapter 9, 10, and 11, now has a fairly
detailed syntax reference for each programmatic environment, directing you to

XXXi

Related Guides

XXX

the appropriate manual, chapter, and section, or online menu, for more syntax
information.

New Notes: New notes added to this manual include the following:

"How to Create Gigabyte LOBs" in Chapter 7.

"JDBC: OracleBlob and OracleClob Do Not Work in 8.1.x and Future
Releases" in Chapter 3, "LOB Programmatic Environments".

"Creating a Varray Containing References to LOBs" in Chapter 5,
"Advanced Topics".

Removed restriction: is listed in Chapter 4, "Managing LOBs" and described
in detail with examples in Chapter 7, "Modeling and Design”, under
Chapter, "Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs".

Guidelines for using DBMS_LOB.WRITE in Chapter 10, "Temporary LOBs"
under "Using DBMS_LOB.WRITE() to Write Data to a Temporary BLOB"
under the Write Data to a Temporary LOB section.

CACHE READS has been added as a storage option for LOBs. This is
described in "LOB Storage"— "CACHE / NOCACHE / CACHE READS" in
Chapter 7, "Modeling and Design". See these notes for information about
how using this option affects downgrading from 8.1.6 to prior releases.

Reference to NOCOPY restrictions and guidelines has been added in
Chapter 10, "Temporary LOBs" under Chapter, "NOCOPY Restrictions".

TO_LOB function: A note was added to the section, "Copy LONG to LOB",
in Chapter 9, "Internal Persistent LOBs" to remind users that TO_LOB can
be used to copy data to CLOBs but not NCLOB:s.

You will find the following manuals helpful for detail on syntax and
implementation;

Oracle8i Supplied PL/SQL Packages Reference: Use this to learn PL/SQL and to
get a complete description of this high-level programming language, which is
Oracle Corporation’s procedural extension to SQL.

Oracle Call Interface Programmer’s Guide : Describes Oracle Call Interface

(OCI). You can use OCI to build third-generation language (3GL) applications
in C or C++ that access Oracle Server.

Pro*C/C++ Precompiler Programmer’s Guide: Oracle Corporation also provides
the Pro* series of precompilers, which allow you to embed SQL and PL/SQL in
your application programs.

Pro*COBOL Precompiler Programmer’s Guide : Pro*COBOL precompiler allows
you to embed SQL and PL/SQL in your COBOL programs for access to Oracle
Server.

Programmer’s Guide to the Oracle Precompilers [Release 7.3.4] and Pro*Fortran
Supplement to the Oracle Precompilers Guide [Release 7.3.4]: Use these manuals
for Fortran precompiler programming to access Oracle Server.

SQL*Module for Ada Programmer’s Guide : This is a stand alone manual for use
when programming in Ada to access Oracle Server.

Java: Oracle 8i offers the opportunity of working with Java in the database. The
Oracle Java documentation set includes the following:

« Oracle8i Enterprise JavaBeans and CORBA Developer’s Guide
« Oracle8i JDBC Developer’s Guide and Reference

« Oracle8i Java Developer’s Guide

« Oracle8i JPublisher User’s Guide

« Oracle8i Java Stored Procedures Developer’s Guide.

Multimedia

You can access Oracle’s development environment for multimedia technology in a
number of different ways.

To build self-contained applications that integrate with the database, you can
learn about how to use Oracle’s extensibility framework in Oracle8i Data
Cartridge Developer’s Guide

To utilize Oracle’s own intermedia applications, refer to the following:
« Oracle8i interMedia Audio, Image, and Video User’s Guide and Reference.

« Oracle8i interMedia Audio, Image, and Video Java Client User’s Guide and
Reference

« Oracle8i interMedia Locator User’s Guide and Reference

« Using Oracle8i interMedia with the Web

Basic References

Xxxiii

« For SQL information, see the Oracle8i SQL Reference and Oracle8i Administrator’s
Guide

« For information about Oracle replication with LOB data, refer to Oracle8i
Replication. LOBs

« For basic Oracle concepts, see Oracle8i Concepts.

How This Book Is Organized

XXXIV

The Oracle8i Application Developer’s Guide - Large Objects (LOBs) contains eleven
chapters organized into two volumes. A brief summary of what you will find in
each chapter follows:

VOLUME |

Chapter 1, "Introduction”

Chapter 1 describes the need for unstructured data and the advantages of using
LOBs. We discuss the use of LOBs to promote internationalization by way of
CLOBS and the advantages of using LOBs over LONG. Chapter 1 also describes the
LOB demo file and where to find the supplied LOB sample scripts.

Chapter 2, "Basic Components"

Chapter 2 describes the LOB datatype, including internal persistent and temporary
LOBs and external LOBs, (BFILES). The need to initialize LOBs to NULL or Empty
is described. The LOB locator and how to use it is also discussed.

Chapter 3, "LOB Programmatic Environments"

Chapter 3 describes the six programmatic environments used to operate on LOBs
and includes a listing of their available LOB-related methods or procedures:

« PL/SQL by means of the DBMS_LOB package as described in Oracle8i Supplied
PL/SQL Packages Reference.

« C by means of Oracle Call Interface (OCI) described in the Oracle Call Interface
Programmer’s Guide

« C++ by means of Pro*C/C++ precompiler as described in the Pro*C/C++
Precompiler Programmer’s Guide

« COBOL by means of Pro*COBOL precompiler as described in the Pro*COBOL
Precompiler Programmer’s Guide

« Visual Basic by means of Oracle Objects For OLE (O0O40Q) as described in its
accompanying online documentation.

« Java by means of the JDBC Application Programmers Interface (API) as
described in the Oracle8i JDBC Developer’s Guide and Reference.

Chapter 4, "Managing LOBs"

Chapter 4 describes how to use SQL*Loader, DBA actions required prior to working
with LOBs, and LOB restrictions.

Chapter 5, "Advanced Topics"

Chapter 5 covers advanced topics that touch on all the other chapters. Specifically,
we focus on read consistent locators, the LOBbuffering subsystem, and LOBs in the
object cache.

Chapter 6, "Frequently Asked Questions"

Chapter 6 includes a list of LOB-related questions and answers received from
customers.

Chapter 7, "Modeling and Design”

Chapter 7 covers issues related to selecting a datatype and includes a comparison of
LONG and LONG RAW properties. Table architecture design criteria are discussed
and include tablespace and storage issues, reference versus copy semantics,
index-organized tables, and partitioned tables. Other topics are indexing a LOB
column and best performance practices.

Chapter 8, "Sample Application”

Chapter 8 provides a sample multimedia case study and solution. It includes the
design of the multimedia application architecture in the form of table
Multimedia_tab and associated objects, types, and references.

Chapter 9, "Internal Persistent LOBs"

The basic operations concerning internal persistent LOBs are discussed, along with
pertinent issues in the context of the scenario outlined in Chapter 8. We introduce
the Unified Modeling Language (UML) notation with a special emphasis on use
cases. Specifically, each basic operation is described as a use case. A full description
of UML is beyond the scope of this book, but the small set of conventions used in
this book appears later in the Preface. Wherever possible, we provide the same
example in each programmatic environment.

XXXV

VOLUME I

Chapter 10, "Temporary LOBs"

This chapter follows the same pattern as Chapter 9 but here focuses on the new
feature of temporary LOBs. The new API and its attendant issues are discussed in
detail. Visual Basic (O040) and Java (JDBC) example scripts for temporary LOBs
are not provided in this release but will be available in a future release.

Chapter 11, "External LOBs (BFILES)"

The focus in this chapter is on external LOBs, also known as BFILEs. The same
treatment is provided here as in Chapters 9 and 10, namely, every operation is
treated as a use case, and we provide matching code examples in every available
programmatic environment.

Conventions Used in this Guide

XXXVI

The following notational and text formatting conventions are used in this guide:

[]

Square brackets indicate that the enclosed item is optional. Do not type the brackets.

{}

Braces enclose items of which only one is required.

A vertical bar separates items within braces, and may also be used to indicate that
multiple values are passed to a function parameter.

In code fragments, an ellipsis means that code not relevant to the discussion has
been omitted.

font change
SQL or C code examples are shown in monospaced font.

italics
Italics are used for OCI parameters, OCI routines names, file names, data fields,
comments, and the titles of other Oracle manuals.

UPPERCASE
Uppercase is used for SQL keywords, like SELECTor UPDATE

This guide uses special text formatting to draw the reader’s attention to some
information. A paragraph that is indented and begins with a bold text label may
have special meaning. The following paragraphs describe the different types of
information that are flagged this way.

Note: The "Note" flag indicates that the reader should pay particular attention
to the information to avoid a common problem or increase understanding of a
concept.

Warning: An item marked as "Warning" indicates something that an OCI
programmer must be careful to do or not do in order for an application to work
correctly.

See Also: Text marked "See Also" points you to another section of this guide, or
to other documentation, for additional information about the topic being
discussed.

XXXVii

How to Interpret the Use Case Diagrams

XXXViii

The use case diagrams used in the manual, specifically in Chapters 9, 10, and 11, are
based on UML (Unified Modeling Language).

Why Employ Visual Modelling?

When application developers gather together to discuss a project, it is only a matter
of minutes before someone starts sketching on a white board or pad in order to
describe the problems and outline solutions. They do so because they instinctively
recognize that a mixture of graphics and text is the fastest way to delineate the
complex relationships entailed in software development. Participants in these
meetings often end up copying down these sketches as a basis for later code
development.

Unified Modelling Language

One problem with this process is that whoever creates the diagrams has to invent a
notation to adequately represent the issues under discussion. Fortunately, many of
the types of problems are familiar, and everyone who is in the room can ask
guestions about what is meant by the lines and edges. But this raises further
problems: What about members of a development team who are not present?
Indeed, even people who were there may later lose track of the logic underlying
their notes.

To counter these difficulties, this Application Developer’s documentation set uses a
graphic notation defined by the Unified Modelling Language (UML), an
industry-wide standard specifically created for modelling software systems.
Describing the UML in its entirety is beyond the scope of the book. However, we do
explain the small subset of the UML notation that we employ.

lllustrations and Diagrams

Software documentation has always contained figures. What, then, is the difference
between UML-based diagrams used for modelling software development and the
figures that have traditionally been used to illustrate different topics? We make a
distinction between two kinds of figures in this book:

« lllustrations — used to describe technology to make it more understandable.
« Diagrams — used for actual software modelling.

The two different types are always distinguished in the figure title. The term
diagram is always used for the following examples:

Example of an Illustration

Figure 0-1 illustrates the macro-steps entailed in creating a multimedia application.
While it may be useful in planning software development from an organizational
standpoint, it does not provide any help for the actual coding.

Figure 0-1 Example of an Illustration: The Multimedia Authoring Process

Story Media Programming Media
Board Content the Experience
Development Collection Composition

Example of A Use Case Diagram

Note: The following use case diagrams illustrate advanced queuing functionality rather than
large objects (LOBS) functionality. For your convenience, these example use case diagrams
will be changed to illustrate large objects (LOBs) functionality in a future release.

In contrast to Figure 0-1, Figure 0-2 describes what you must do to enqueue a
message using Oracle Advanced Queuing: You must specify a queue name, specify
the message properties, specify from among various options, and add the message
payload. This diagram is then complemented by further diagrams, as indicated by
the drop shadows around the latter three ellipses.

XXXIX

X

Figure 0-2 Use Case Diagram: Enqueue a Message

Operational Interface

specify

ENQUEUE
queue name

a message

S

User/
Program

specify

message
properties

specify
options

Use Cases Diagram Elements

Use cases are generally employed to describe the set of activities that comprise the
sum of the application scenarios.

Figure 0-3 Use Cases

Buy / Sell Securities

Place
Order
Confirm
Agent Order Stock
Exchange
Cancel
\ Order
r :():
i Check Order)
Status Security
Customer House

Complete
Order

The following sections describe how to interpret how the elements of a use case
diagram as applied in different cases.

xli

Graphic Element

Description

User/
Program

User/
Program

xlii

Operational Interface

specify
gueue name

ENQUEUE
a message

S

Each primary use case is instigated by
an actor (’stickman’) that could be a
human user, an application, or a
sub-program.

The actor is connected to the primary
use case which is depicted as an oval
(bubble) enclosing the use case action.

The totality of primary use cases is
described by means of a Use Case
Model Diagram.

Primary use cases may require other
operations to complete them. In this
diagram fragment:

« specify queue name

Is one of the sub-operations, or
secondary use cases, necessary to
complete

« ENQUEUR message

Has the downward lines from the
primary use case that lead to the other
required operations (not shown)

Graphic Element

Description

User/
Program

ENQUEUE
a message

Operational Interface

specify

ENQUEUE
queue name

a message

e

specify

properties

.
H
.
H
: message
.
H
.
.

specify
options

add
payload

Operational Interface

add
payload

Secondary use cases that have drop
shadows expand (they are described
by means of their own use case
diagrams). There are two reasons for
this:

(a) It makes it easier to understand the
logic of the operation.

(b) It would not have been possible to
place all the operations and
sub-operations on the same page.

In this example, specify message
properties, specify options, and add
payload are all expanded in separate
use case diagrams.

This diagram fragment shows the use
case diagram expanded. While the
standard diagram has the actor as the
initiator), here the use case itself is the
point of departure for the
sub-operation.

In this example, the expanded view of
add payload represents a constituent
operation of ENQUEUR message.

xliii

Graphic Element

Description

Internal persistent LOBs

CREATE
a table
(LOB)

User/
Program

CREATE
a table (LOB

- _|é| e CREATE table with one or more LOBs
columns)

This convention (a, b, ¢) shows that
there are three different ways of
creating a table that contains LOBs.

This fragment shows use of a NOTE
box, here distinguishing which of the
three ways of creating a table
containing LOBs.

xliv

Graphic Element

list i List at
SELECT - . list
. propag schedules)- - BgeEer I%\%EUE all prcr:pc()jg?tlon attribute _ Ieas,tt) one
User/ in user schema SCHEDULES — schedule names attribute
Program attributes
: A A
:OR :
Description

This drawing shows two other common sees of NOTE boxes:

(a) A way of presenting an alternative name, as in this case the action SELECTpropagation schedules in the
user schema is represented by the view USER_QUEUE_SCHEDULES

(b) The action list attribute names is qualified by the note to the user that you must list at least one attribute if
you elect not to list all the propagation schedule attributes.

xlv

Graphic Element

v

User/
Program

REGISTER
for
notification

create
a temporary
LOB

free
a temporary
LOB

receive

notification

Description

The dotted arrow in the use case
diagram indicates dependency. In
this example, free a temporary
LOBrequires that you first create a
temporary LOB

This means that you should not
execute the free operation on a
LOBthat is not temporary.

What you need to remember is
that the target of the arrow shows
the operation that must be
performed first.

Use cases and their sub-operations
can be linked in complex
relationships.

In this example of a callback, you
must first REGISTERfor
notification in order to later
receive a notification.

Graphic Element

£

User/
Program

Description

list
SELECT : .
_ _f— Userview: all propogation
pomgsees)= - U Sleve | (M ERRRaE
SCHEDULES attributes
e eeemeeemseeenseenseeesseenseennseenns A

list List at
attribute _ least one
attribute

names

In this case, the branching paths of an ORcondition are shown. In invoking the view, you may either choose to
list all the attributes or to view one or more attributes. The fact that you can stipulate which of the attributes
you want made visible is indicated by the grayed arrow.

xlvi

Graphic Element

OPEN
alLOB

CLOSE
alLOB

SELECT
alLOB

Description

get
chunk size

User/
Program

Not all lined operations are mandatory. While the black dashed-line and arrow indicate that you must perform
the targeted operation to complete the use case, actions that are optional are shown by the grey dashed-line and

arrow.

In this example, executing WRITEAPPENDN a LOBrequires that you first SELECTa LOB
As a facilitating operations, you may choose to OPENa LOBand/or GETCHUNKSIZE
However, note that if you OPENa LOB you will later have to CLOSEIt.

xIvii

Graphic Element

Internal temporary LOBs (part 1 of 2)

continued on next page

Description

Use Case Model Diagrams summarize all
the use cases in a particular domain,
such as Internal temporary LOBs
Often, these diagrams are too complex
to contain within a single page.

When that happens we resort to
dividing the diagram into two parts.
Please note that there is no sequence
implied in this division.

In some cases, we have had to splita
diagram simply because it is too long
for the page. In such cases, we have
included this marker.

Hot Links From Use Case Diagram to Use Case Diagram

The html and pdf versions of the use case diagrams include hot link buttons.When

xlviii

you need the following:

« ToJump Back:

To the referring use case diagram , or to the "Use Case Model Diagram” (the
‘parent’ of all diagrams), click on the middle or left blue buttons respectively.

« ToJump Forward:

From each use case, to the 'child’ diagram, typically noted as 'a’, ’b’, or ’c’, click
on the [a], [b], or [c] blue button respectively. From the Use Case Model
Diagram (’parent’ diagram) to specific use cases, click on the blue-circled use

case of interest.

Note there is one "Use Case Model Diagram" ("parent") in each of chapters 9, 10,

and 11, namely:

« Use Case Model Diagram: Internal Persistent LOBs (part 1 of 2), Use Case
Model Diagram: Internal Persistent LOBs (part 2 of 2)

« Use Case Model Diagram: Internal Temporary LOBs (part 1 of 2), Use Case
Model Diagram: Internal temporary LOBs (part 2 of 2)

« Use Case Model Diagram: External LOBs (BFILES)

Your Comments Are Welcome

We value and appreciate your comment as an Oracle user and reader of our
manuals. As we write, revise, and evaluate our documentation, your opinions are
the most important feedback we receive.

You can send comments and suggestions about this manual to the information
development department at following e-mail address:

infodev@us.oracle.com

If you prefer, you can send letters or faxes containing your comments to the
following address:

ST/Oracle8i Generic Documentation
Oracle Corporation

500 Oracle Parkway

Redwood Shores, CA 94065

Fax: (650) 506-7228

xlix

1

Introduction

This chapter discusses the following topics:
Why Use LOBs?

Unstructured Data

LOB Datatype Helps Support Internet Applications
Why Not Use LONGs?

LOBs Help Control Semantics

LOBS Enable interMEDIA

LOB "Demqo" Directory

Location of Demo Directories?

Compatibility and Migration Issues

Examples in This Manual Use Multimedia_Tab

Introduction 1-1

Why Use LOBs?

Why Use LOBs?

As applications evolve to encompass increasingly richer semantics, they encounter
the need to deal with various kinds of data -- simple structured data, complex
structured data, semi-structured data, unstructured data. Traditionally, the
Relational model has been very successful at dealing with simple structured data --
the kind which can be fit into simple tables. Oracle has added Object-Relational
features so that applications can deal with complex structured data -- collections,
references, user-defined types and so on. Our queuing technologies deal with
Messages and other semi-structured data. LOBs are designed to support the last
piece - unstructured data.

Unstructured Data

Unstructured Data Cannot be Decomposed Into Standard Components

Unstructured data cannot be decomposed into standard components. Data about an
Employee can be ’structured’ into a Name (probably a character string), an Id (likely
a number), a Salary and so on. But if we are given a Photo, we find that the data
really consists of a long stream of Os and 1s.These 0s and 1s are used to switch pixels
on or off so that we see the Photo on a display, but they can’t be broken down into
any finer structure in terms of database storage.

Unstructured Data is Large

Also interesting is that unstructured data such as text, graphic images, still video
clips, full motion video, and sound waveforms tend to be large -- a typical employee
record may be a few hundred bytes, but even small amounts of multimedia data
can be thousands of times larger.

Unstructured Data in System Files Need Accessing from the Database

Finally, some multimedia data may reside on operating system files, and it is
desirable to access them from the database.

LOB Datatype Helps Support Internet Applications

Lately, with the growth of the internet and content-rich applications, it has become
imperative that the database support a datatype that fulfills the following:

« Can store unstructured data

« Is optimized for large amounts of such data

1-2 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Why Not Use LONGs?

« Provides a uniform way of accessing large unstructured data within the
database or outside.

Two Type of LOBs Supported
Oracle8i supports the following two types of LOBs

« Those stored in the database either in-line in the table or in a separate
tablespace (such as BLOB, CLOB, and NCLOB)

« Those stored as operating system files (such as BFILES)

Why Not Use LONGs?

In Oracle7, most applications storing large amounts of unstructured data used the
LONG or LONG RAW data type.

Oracle8i’s support for LOB data types is preferred over support for LONG and
LONG RAWSs in Oracle7 in the following ways:

« LOB Capacity: With Oracle8i, LOBs can store up to 4GB of data. This doubles
the 2GB of data that LONG and LONG RAW data types could store.

« Number of LOB columns per table: An Oracle8i table can have multiple LOB
columns. Each LOB column in the same table can be of a different type. in
Oracle7 Release 7.3, tables are limited to a single LONG or LONG RAW
column.

« Random piece-wise access: LOBs support random access to data, but LONGs
support only sequential access. Further, to improve the speed with which a LOB
can be brought from the server-side to the client, the LOB can be broken into
chunks that can then be brought in a single round trip back to the client.

LOB Type Columns

LOB (BLOB, CLOB, NCLOB, or BFILE) column types store values or references,
called ’locators’, that specify the location of large objects stored out-of-line or in an
external file.

LOB Type Columns Do Not Only Store Locators! In LOB type columns, the LOB locator
is stored in-line in the row, however, depending on user-specified SQL Data
Definition Language (DDL), Oracle8i can store small LOBSs, less than 4K in-line in
the table. Once the LOB grows bigger than approximately 4K Oracle8i moves the
LOB out of the table into a different segment and possibly even into a different

Introduction 1-3

LOBs Help Control Semantics

tablespace. Hence, Oracle8i sometimes stores LOB data, not just LOB locators,
in-line in the row.

BLOB, CLOB, and NCLOB data is stored out-of-line inside the database. BFILE data
is stored in operating system files outside the database. Oracle8i provides
programmatic interfaces and PL/SQL support for access to and operation on LOBs.

LOBs Help Control Semantics

With respect to SQL, data residing in Oracle8i LOBs is opaque and not query-able.
You can write functions (including methods of object types) to access and
manipulate parts of LOBs. In this way the structure and semantics of data residing
in large objects can be supplied by application developers.

For example, you may want to store the resumes of Employees as character LOBs.
In such a case, you can write a routine that interprets the resume, say that pulls out
the names of the companies where the Employee has worked before, using your
application-specific knowledge of the structure of resumes. You can also use an
interMedia Text (Context) index to index keywords in the resume.

LOBS Enable inter MEDIA

While LOBs provide the infrastructure within the database to store multimedia
data, Oracle8i also provides developers with additional functionality for the most
commonly used multimedia types. The multimedia types include text, image,
locator and audio or video data.

Oracle8i introduces the interMedia bundle, a collection of specialized data types
also called data cartridges. Text data, spatial location, images, audio and video data
are all supported. Users can access objects of the type using efficient SQL queries,
manipulate its contents (trim an image), read and write its contents, and convert
data from one format to another.

Data cartridges in turn use Oracle8i’s infrastructure to define the object types,
methods, and LOBs necessary to represent these specialized types of data in the
database.

Oracle8i’s data cartridges provide a predefined set of objects and operations. This
facilitates application development with these types.

See also http://www.oracle.com/intermedia

1-4 Oracle8i Application Developer’s Guide - Large Objects (LOBS)

Compatibility and Migration Issues

LOB "Demo" Directory

LOB demonstration sample scripts are currently provided in this manual in
Chapters 9, 10, and 11 primarily. The vast majority of these scripts have been tested
and run successfully. The syntax for the sample multimedia schema described in
Chapter 8, is provided in:

« Chapter 9, "Internal Persistent LOBs", under "CREATE a Table Containing One
or More LOB Columns" on on page 9-8

« Chapter 10, "Temporary LOBs", under "Create a Temporary LOB" on
page 10-14

« Chapter 11, "External LOBs (BFILES)", under Chapter, "CREATE a Table
Containing One or More BFILE Columns" on page 11-15

The SQL set up syntax for the above schema is also provided in the Oracle8i "demo”
directory in the following files:

« lobdemo.sql

« adloci.sql.

Location of Demo Directories?

Demonstration scripts are available with your Oracl8i installation. The location,
names, and availability of the programs may vary on different platforms. See your
platform specific documentation. For UNIX and Windows NT

« Unix: On a Unix workstation, the programs are installed in the ORACLE_
HOME/rdbms/demo directory.

« Windows NT: On a WindowsNT machine, the programs are located in the
ORACLE_HOME\Oci\Samples directory, for example, for OCI code examples.

Compatibility and Migration Issues

The following LOB related compatibility and migration issues are described in
detail in Oracle8i Migration. The chapters and sections noted below refer to the
release 8.1.6 Oracle8i Migration manual.

« “Varying Width Character Sets for CLOBs or NCLOBs”, in Chapter 9,
“Compatibility and Interpretability Issues”, under “Datatypes”

Introduction 1-5

Examples in This Manual Use Multimedia_Tab

« Downgrading with CACHE READs Defined: See Chapter 13, "Downgrading
to an Older Version 8 Release”, under "Remove Incompatibilities”, "Schema
Objects”, "Discontinue Use of Cache Reads Specified for LOBSs"

« Downgrading - Removing LOB Columns from Partitioned Table: See Chapter
13, "Downgrading to an Older Version 8 Release"”, under "Remove
Incompatibilities”, "Datatypes”, "Remove LOB Columns from Partitioned
Tables"

« Downgrading - LOBs and Varrays in Index Organized Tales: See Chapter 13,
"Downgrading to an Older Version 8 Release"”, under "Remove
Incompatibilities, "Schema Objects”, "Discontinue Use of LOBs and Varrays in
Index Organized Tables"

« Downgrading - Varying Width Character Sets for CLOBs or NCLOBs: See
Chapter 13, "Downgrading to an Older Version 8 Release"”, under "Remove
Incompatibilities”, under "Datatypes”, "Remove CLOBs and NCLOBs from
Tables in Database with Varying-Width Character Set"

Examples in This Manual Use Multimedia_Tab

Multimedia data is increasingly being used on web pages, CD-ROMs, in film and
television, for education, entertainment, security, and other industries. Typical
multimedia data is large and can be comprised of audio, video, scripts, resumes,
graphics, photographs, etc. Much of this data is unstructured.

LOBs have been designed to handle large unstructured data. "Unstructured Data" is
described earlier in this chapter.

A sample application based on a 'multimedia’ table, called Multimedia_tab , is
described in detail in Chapter 8, "Sample Application”. All examples presented in
this manual are based on table Multimedia_tab .Where applicable, any deviations
or extensions to this table are described in the appropriate sections.

For Further Information
See the following url for information about LOBSs:

http://www.technet.oracle.com/products

1-6 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

2

Basic Components

This chapter discusses the following topics:
« The LOB Datatype
« Internal LOBs
« External LOBs (BFILES)
« Internal LOBs Use Reference Semantics, External LOBs Use Copy Semantics
« Varying-Width Character Data
« The LOB Locator
« LOB Value and Locators
« LOB Locator Operations
« Creating Tables that Contain LOBs
« Initializing Internal LOBs to NULL or Empty
« Initializing Internal LOB Columns to a Value

« Initializing External LOBs to NULL or a File Name

Note: Examples in this chapter are based on the Multimedia_tab schema and table
Multimedia_tab , which are described in Chapter 8, *'Sample Application™.

Basic Components 2-1

The LOB Datatype

The LOB Datatype

Internal LOBs

Oracle8i regards LOBs as being of two kinds depending on their location with
regard to the database — internal LOBs and external LOBs, also referred to as
BFILEs (binary files). Note that when we discuss some aspect of working with
LOBs without specifying whether the LOB is internal or external, the characteristic
under discussion pertains to both internal and external LOBs.

Internal LOBs are further divided into those that are persistent and those that are
temporary.

Internal LOBs, as their name suggests, are stored inside database tablespaces in a
way that optimizes space and provides efficient access. Internal LOBs use copy
semantics and participate in the transactional model of the server. You can recover
internal LOBs in the event of transaction or media failure, and any changes to a
internal LOBvalue can be committed or rolled back. In other words, all the ACID
properties that pertain to using database objects pertain to using internal LOBs.

Internal LOB Datatypes
There are three SQL datatypes for defining instances of internal LOB:s:

« BLOB a LOBwhose value is composed of unstructured binary ("raw") data.

« CLOBalLOBwhose value is composed of character data that corresponds to the
database character set defined for the Oracle8i database.

« NCLOBaLOBwhose value is composed of character data that corresponds to
the national character set defined for the Oracle8i database.

External LOBs (BFILEs)

External LOBs (BFILES) are large binary data objects stored in operating system files
outside database tablespaces. These files use reference semantics. Apart from
conventional secondary storage devices such as hard disks, BFILEs may also be
located on tertiary block storage devices such as CD-ROMs, PhotoCDs and DVDs.

The BFILE datatype allows read-only byte stream access to large files on the
filesystem of the database server.

The Oracle Server can access BFILE s provided the underlying server operating
system supports stream-mode access to these operating system (OS) files.

2-2 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

The LOB Datatype

Note:

« External LOBs do not participate in transactions. Any support
for integrity and durability must be provided by the
underlying file system as governed by the operating system.

« You cannot locate a single BFILE on more than one device, for
instance, striped across a disk array.

External LOB Datatypes
There is one datatype, BFILE, for declaring instances of external SQL LOBs.

« BFILE, a LOBwhose value is composed of binary ("raw") data, and is stored
outside the database tablespaces in a server-side operating system file.

Internal LOBs Use Reference Semantics, External LOBs Use Copy Semantics
« Copy semantics: Both LOB locator and value are copied

« Reference semantics: Only LOB locator is copied

Copy Semantics

Internal LOBs, namely BLOBs, CLOBs, NCLOBSs, whether persistent or temporary,
use copy semantics.

When you insert or update a LOB with a LOB from another row in the same table,
the LOB value is copied so that each row has a different copy of the LOB value.

Internal LOBs have copy semantics so that if the LOB in the row of the table is copied
to another LOB, in a different row or perhaps in the same row but in a different
column, then the actual LOB value is copied, not just the LOB locator. This means in
this case that there will be two different LOB locators and two copies of the LOB
value.

Reference Semantics

External LOBs (BFILES) use reference semantics. When the BFILE in the row of the
table is copied to another BFILE, only the BFILE locator is copied, not the actual
BFILE data, i.e., not the actual operating system file.

Basic Components 2-3

Varying-Width Character Data

Varying-Width Character Data

= You can create the following tables:

« With CLOB/NCLOBcolumns even if you use a varying-width CHARFNCHAR
database character set

« With a type that has a CLOBattribute irrespective of whether you use a
varying-width CHARdatabase character set

= You cannot create the following tables:
« With NCLOBsas attributes of object types

CLOB, NCLOB Values are Stored Using 2 Byte Unicode for Varying-Width
Character Sets

CLOB/NCLOBvalues are stored in the database using the fixed width 2 byte
Unicode character set if the database CHAR/NCHARharacter set is varying-width.

« Inserting Data. When you insert data into CLOBs the data input can be in a
varying-width character set. This varying-width character data is implicitly
converted into Unicode before data is stored in the database.

« Reading the LOB. Conversely, when reading the LOB value, the stored Unicode
value is translated to the (possibly varying-width) character set that you request
on either the client or server.

Note that all translations to and from Unicode are implicitly performed by Oracle.
NCLOBs store fixed-width data.

You can perform all LOB operations on CLOB (read , write , trim , erase ,
compare , e.t.c.) All programmatic environments that provide access to CLOB work
on CLOB in databases where the CHARRNCHARharacter set is of varying-width.
This includes SQL, PL/SQL, OCI, PRO*C, DBMS_LOBRand so on.

For varying-width CLOB data you need to also consider whether the parameters
are specified in characters or bytes.

2-4 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

The LOB Locator

The LOB Locator

LOB Value and Locators

Inline storage of the LOB value

Data stored in a LOBis termed the LOBSs value. The value of an internal LOBmay or
may not be stored inline with the other row data. If you do not set DISABLE
STORAGE IN ROWANd the internal LOBvalue is less than approximately 4,000
bytes, then the value is stored inline; otherwise it is stored outside the row. Since
LOBs are intended to be large objects, inline storage will only be relevant if your
application mixes small and large LOB:s.

As mentioned in Chapter 7, "Modeling and Design", "ENABLE | DISABLE
STORAGE IN ROW" on page 7-11, the LOBvalue is automatically moved out of the
row once it extends beyond approximately 4,000 bytes.

LOB Locators

Regardless of where the value of the internal LOBis stored, a locator is stored in the
row. You can think of a LOBlocator as a pointer to the actual location of the LOB
value. A LOBIocator is a locator to an internal LOBwhile a BFILE locator is a locator
to an external LOB When the term locator is used without an identifying prefix term,
it refers to both LOBIlocators and BFILE locators.

« Internal LOB Locators. For internal LOBs, the LOBcolumn stores a locator to
the LOB’s value which is stored in a database tablespace. Each LOB
column/attribute for a given row has its own distinct LOBlocator and also a
dinstinct copy of the LOBvalue stored in the database tablespace.

« External LOB Locators. For external LOBs (BFILEs), the LOB column stores a
BFILE locator to the external operating system file. Each BFILE
column/attribute for a given row has its own BFILE locator. However, two
different rows can contain a BFILE locator that points to the same operating
system file.

LOB Locator Operations

Setting the LOB Column/Attribute to Contain a Locator

« Internal LOBs: Before you can start writing data to an internal LOB via one of
the six programmatic environment interfaces! (PL/SQL, OCI, Pro*C, Pro*Cobol,

Basic Components 2-5

The LOB Locator

Visual Basic, or Java), the LOBcolumn/attribute must be made non-null, that is,
it must contain a locator. You can accomplish this by initializing the internal
LOBto empty in an INSERT/UPDATEstatement using the functions EMPTY _
BLOR) for BLOB or EMPTY_CLO@ for CLOB and NCLOB.

See Also "INSERT a LOB Value using EMPTY_CLOB() or EMPTY _
BLOB()" in Chapter 9, "Internal Persistent LOBs"

External LOBs: Before you can start accessing the external LOB (BFILE) value
via one of the six programmatic environment interfaces, the BFILE
column/attribute must be made non-null. You can initialize the BFILE column
to point to an external operating system file by using the BFILENAME)
function.

See Also "INSERT a Row Using BFILENAME()" in Chapter 11,
"External LOBs (BFILEs)"

Invoking the EMPTY_BLOB or EMPTY_CLO@ function in and of itself does not
raise an exception. However, using a LOBIlocator that was set to empty to access or
manipulate the LOBvalue in any PL/SQL DBMS_LOBr OCI routine will raise an
exception.

Valid places where empty LOBlocators may be used include the VALUESclause of an
INSERT statement and the SET clause of an UPDATEstatement.

The following INSERT statement:

— Populates story with the character string "JFK interview’,
— Sets flsub, frame and sound to an empty value,
— Sets photo to NULL, and

— Initializes music to point to the file 'JFK_interview’ located under the logical
directory 'TAUDIO_DIR’ (see the CREATE DIRECTORMatementstatement in
Oracle8i Reference.).

Note that character strings are inserted using the default character set for
the instance.

See Chapter 8, "Sample Application"”, for the definition of table Multimedia_tab.

Note:You could use SQL to populate a LOB column with data even if it contained NULL,
i.e., unless its a LOB attribute. However, you cannot use one of the six programmatic
environment interfaces on a NULL LOB!

2-6 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

The LOB Locator

INSERT INTO Mulimedia._tab VALUES (101, "JFK interview’, EMPTY_CLOB(), NULL,
EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL,
BFILENAME(AUDIO_DIR,, "JFK_interview’), NULL);

Similarly, the LOBattributes for the Map_typ column in Multimedia_tab can be
initialized to NULL or set to empty as shown below. Note that you cannot initialize a
LOB object attribute with a literal.

INSERT INTO Mutimedia_ tab
VALUES (1, EMPTY_CLOB(), EMPTY_CLOB(), NULL, EMPTY_BLOB(),
EMPTY_BLOB(), NULL, NULL, NULL,
Map_typ(Moon Mountair, 23, 34, 45, 56, EMPTY_BLOB(), NULL);

Accessing a LOB Through a Locator

SELECTing a LOB Performing a SELECTon a LOBreturns the locator instead of the
LOBvalue. In the following PL/SQL fragment you select the LOBlocator for story
and place it in the PL/SQL locator variable Imagel defined in the program block.
When you use PL/SQL DBMS_LOBunctions to manipulate the LOBvalue, you refer
to the LOBusing the locator.

DECLARE

Imagel BLOB;
ImageNum INTEGER :=101;
BEGIN

SELECT story INTO Imagel FROM Mulimedia_tab
WHERE clip_id = ImageNum;
DBMS_OUTPUT.PUT_LINE('Size of the Imageis:” ||
DBMS_LOB.GETLENGTH(Imagel));
Fmore LOB routines */
END;

In the case of OCI, locators are mapped to locator pointers which are used to
manipulate the LOBvalue. The OCI LOBinterface is described Chapter 3, "LOB
Programmatic Environments” and in the Oracle Call Interface Programmer’s Guide.

Using LOB locators and transaction boundaries, and read consistent locators are
described in Chapter 5, "Advanced Topics".

Basic Components 2-7

Creating Tables that Contain LOBs

Creating Tables that Contain LOBs

When creating tables that contain LOBs use the guidelines described in the
following sections:

« Initializing Internal LOBs to NULL or Empty
« Initializing Internal LOB Columns to a Value
« Initializing External LOBs to NULL or a File Name

« Defining tablespace and storage characteristics. See Chapter 7, "Modeling and
Design", "Defining Tablespace and Storage Characteristics for Internal LOBs".

Initializing Internal LOBs to NULL or Empty

You can set an internal LOB— that is, a LOBcolumn in a table, or a LOBattribute in
an object type defined by you— to be NULL or empty:

« Setting an Internal LOB to NULL: A LOB set to NULL has no locator. A NULL
value is stored in the row in the table, not a locator. This is the same process as
for all other datatypes.

» Setting an Internal LOB to Empty: By contrast, an empty LOBstored in a table is a
LOBof zero length that has a locator. So, if you SELECTfrom an empty LOB
column or attribute, you get back a locator which you can use to populate the
LOBwith data via one of the six programmatic environments, such as OCI or
PL/SQL(DBMS_LOB. See Chapter 3, "LOB Programmatic Environments".

These options are discussed in more detail below.

As discussed below, an external LOB(i.e. BFILE) can be initialized to NULLor to
a filename.

Setting an Internal LOB to NULL

You may want to set the internal LOBvalue to NULL upon inserting the row in cases
where you do not have the LOBdata at the time of the INSERT and/or if you want
to issue a SELECTstatement at some later time such as:

SELECT COUNT (¥ FROM Voiced_tab WHERE Recording IS NOT NULL;

because you want to see all the voice-over segments that have been recorded, or
SELECT COUNT (¥) FROM Voiced_tab WHERE Recording IS NULL;

if you wish to establish which segments still have to be recorded.

2-8 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Creating Tables that Contain LOBs

You Cannot Call OCIl or DBMS_LOB Functionsona NULLLOB ~ However, the drawback to
this approach is that you must then issue a SQL UPDATEstatement to reset the null
LOBcolumn — to EMPTY_BLOB or EMPTY_CLO@ or to a value (e.g. 'Denzel
Washington’) for internal LOBs, or to a filename for external LOBs.

The point is that you cannot call one of the six programmatic environments (for
example, OCI or PL/SQL (DBMS_LOBfunctions on a LOBthat is NULL. These
functions only work with a locator, and if the LOBcolumn is NULL, there is no
locator in the row.

Setting an Internal LOB to Empty

If you do not want to set an internal LOBcolumn to NULL, you can set the LOBvalue
to empty using the function EMPTY_BLOB) or EMPTY_CLO@ in the INSERT
statement:

INSERT INTO a_table VALUES (EMPTY_BLOBY();

Even better is to use the returning clause (thereby eliminating a round trip that is
necessary for the subsequent SELECT), and then immediately call OCI or the
PL/SQL DBMS_LOBunctions to populate the LOBwith data.

DECLARE
Lob_loc BLOB;

BEGIN
INSERT INTO a_table VALUES (EMPTY_BLOB()) RETURNING blob_col INTO Lob_loc;
/*Now use the locator Lob _loc to populate the BLOB with data %/

END;

Example Using Table Multimedia_tab

You can initialize the LOBs in Multimedia_tab by using the following INSERT
statement:

INSERT INTO Mulimedia._tab VALUES (1001, EMPTY_CLOB(), EMPTY_CLOB(), NULL,
EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

This sets the value of story, flsub, frame and sound to an empty value, and sets photo,
and music to NULL

Basic Components 2-9

Creating Tables that Contain LOBs

Initializing Internal LOB Columns to a Value

Alternatively, LOBcolumns, but not LOBattributes, may be initialized to a value.
Which is to say — internal LOBattributes differ from internal LOBcolumns in that
LOBattributes may not be initialized to a value other than NULL or empty.

Note that you can initialize the LOB column to a value that contains more than 4K
data. See Chapter 7.

Initializing External LOBs to NULL or a File Name

An external LOB (BFILE) can be initialized to NULL or to a filename via the
BFILENAME() function.

See Chapter 11, "External LOBs (BFILES)", "Directory Object" — "Initializing a BFILE
Locator".

2-10 Oracle8i Application Developer’s Guide - Large Objects (LOBS)

3

LOB Programmatic Environments

This chapter discusses the following topics:
« Six Programmatic Environments Operate on LOBs

« Using C/C++ (Pro*C) to Work with LOBs

Note: Examples in this chapter are based on the multimedia schema and table
Multimedia_tab described in Chapter 8, "'Sample Application™.

LOB Programmatic Environments 3-1

Six Programmatic Environments Operate on LOBs

Six Programmatic Environments Operate on LOBs

Oracle8i now offers six different environments (languages) for operating on LOB:s.
These are listed in Table 3-1, "LOBs’ Six Programmatic Environments".

Table 3-1 LOBs’ Six Programmatic Environments

Language Syntax Reference In This Chapter See ...

Precompiler or
Interface Program

PL/SQL DBMS_LOB Package Oracle8i Supplied PL/SQL Packages

Reference
C Oracle Call Interface Oracle Call Interface Programmer’s
((e]e3)] Guide
C++ Pro*C/C++ Pro*C/C++ Precompiler "Using C/C++ (Pro*C) to Work with
precompiler Programmer’s Guide LOBs" on page 3-6
COBOL Pro*COBOL Pro*COBOL Precompiler
precompiler Programmer’s Guide
Visual Basic Oracle Objects For Oracle Objects for OLE (O040) is
OLE (O040) a Windows-based product
included with Oracle8i Client for
Windows NT.

There are no manuals for this
product, only online help. Online
help is available through the
Application Development
submenu of the Oracle8i

installation.
Java JDBC Application Oracle8i SQLJ Developer’s Guide
Programmatic and Reference and Oracle8i JDBC
Interface (API) Developer’s Guide and Reference

3-2 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Comparison of the Six LOB Interfaces

Comparison of the Six LOB Interfaces

Table 3-2, "Comparison of Interfaces for Working With LOBs" compares the six LOB
interfaces by listing their available functions and methods used to operate on LOBs.

Table 3-2 Comparison of Interfaces for Working With LOBs

PL/SQL: DBMS_LOB Pro"C & Visual Basic
(dbmslob.sql) OCI (ociap.h) Pro*COBOL (0040) Java (JDBC)
DBMS_LOB.COMPARE N/A N/A ORALOB.Compare Use DBMS_
LOB.COMPARE
DBMS_LOB.INSTR N/A N/A ORALOB.Matchpos position
DBMS_LOB.SUBSTR N/A N/A N/A getBytes for BLOBs or
BFILEs
getSubString for
CLOBs
DBMS_LOB.APPEND OCILobAppend APPEND ORALOB.Append Use length and then
putBytes or PutString
NZ/A [use PI/SQL assign OCILobAssign ASSIGN ORALOB.Clone N/A [use equal sign]
operator]
N/A OCIlLobCharSetForm N/A N/A N/A
N/A OClLobCharSetid N/A N/A N/A
DBMS_LOB.CLOSE OClLobClose CLOSE N/A use DBMS_
LOB.CLOSE
DBMS_LOB.COPY OClLobCopy COPY ORALOB.Copy Use read and write
N/A OClLobDisableBufferin DISABLE ORALOB. N/A
9 BUFFERING DisableBuffering
N/A OClILobEnableBufferin ENABLE ORALOB. N/A
g BUFFERING EnapleBuffering
DBMS_LOB.ERASE OClILobErase ERASE ORALOB.Erase Use DBMS_
LOB.ERASE
DBMS_LOB.FILECLOSE OCILobFileClose CLOSE ORABFILE.Close closeFile
DBMS_ OCILobFileCloseAll FILE CLOSE ORABFILE.CloseAll Use DBMS _
LOB.FILECLOSEALL ALL LOB.FILECLOSEALL
DBMS_LOB.FILEEXISTS OCILobFileExists DESCRIBE ORABFILE.Exist fileExists
[FILEEXISTS]
DBMS_ OCIlLobGetChunkSize DESCRIBE N/A getChunkSize
LOB.GETCHUNKSIZE [CHUNKSIZE
]
DBMS_ OCILobFileGetName DESCRIBE ORABFILE. getDirAlias
LOB.FILEGETNAME [DIRECTORY, ~:
FILENAME] DirectoryName getName
ORABFILE.
FileName

LOB Programmatic Environments 3-3

Comparison of the Six LOB Interfaces

Table 3-2 Comparison of Interfaces for Working With LOBs (Cont.)

~PL/SQL. DBMS_LOB ProC & Visual Basic
(dbmslob.sql) OCI (ociap.h) Pro*COBOL (0040) Java (JDBC)
DBMS_LOB.FILEISOPEN OCILobFilelsOpen DESCRIBE ORABFILE.IsOpen Use DBMS_
[ISOPEN] LOB.ISOPEN
DBMS_LOB.FILEOPEN OCILobFileOpen OPEN ORABFILE.Open openFile
NZ/A (use BFILENAME OCILobFileSetName FILE SET DirectoryName Use BFILENAME
operator) FileName
N/A OClILobFlushBuffer FLUSH ORALOB.FlushBuffe N/A
BUFFER r
DBMS_LOB.GETLENGTH OCILobGetLength DESCRIBE ORALOB.Size length
[LENGTH]
N/A OCIlLoblsEqual N/ZA N/A equals
DBMS_LOB.ISOPEN OClILoblsOpen DESCRIBE ORALOB.IsOpen use
[ISOPEN] DBMS_LOB.ISOPEN
DBMS_ OClLobLoadFromFile LOAD FROM ORALOB. Use read and then
LOB.LOADFROMFILE FILE CopyFromBfile write
N/A [always initialize] OClILobLocatorlslInit N/A N/A N/A
DBMS_LOB.OPEN OCILobOpen OPEN ORALOB.open Use DBMS_
LOB.OPEN
DBMS_LOB.READ OClLobRead READ ORALOB.Read BLOB or BFILE:
getBytes and
getBinaryStream
CLOB: getString and
getSubString and
getCharacterStream
DBMS_LOB.TRIM OCILobTrim TRIM ORALOB.Trim Use DBMS_
LOB.TRIM
DBMS_LOB.WRITE OClLobWrite WRITEORAL ORALOB.Write BLOB or BFILE:
OB. putBytes and
getBinaryOutputStrea
m
CLOB: putString and
getCharacterOutputSt
ream
DBMS_ OClILobWriteAppend WRITE N/A Use length and then
LOB.WRITEAPPEND APPEND putString or putBytes
DBMS_LOB. OClILobCreateTempora N/A
CREATETEMPORARY ry

3-4 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Comparison of the Six LOB Interfaces

Table 3-2 Comparison of Interfaces for Working With LOBs (Cont.)

~PL/SQL: D_BMS_LO§ Pro*C & Visual Basic
(dbmslob.sql) OCI (ociap.h) Pro*COBOL (0040) Java (JDBC)
DBMS_LOB. OCILobFree Temporary N/A
FREETEMPORARY
DBMS OClLoblsTemporary N/A

LOB.ISTEMPORARY
OCILobLocatorAssign N/A

The following sections describe each of the above interfaces in more detail.

LOB Programmatic Environments 3-5

Using C/C++ (Pro*C) to Work with LOBs

Using C/C++ (Pro*C) to Work with LOBs

You can make changes to an entire internal LOB, or to pieces of the beginning,
middle or end of a LOB by using embedded SQL. You can access both internal and
external LOBs for read purposes, and you can write to internal LOBs.

Embedded SQL statements allow you to access data stored in BLOB, CLOB,
NCLOB, and BFILE s. These statements are listed in the tables below, and are
discussed in greater detail later in the chapter.

See Also: Pro*C/C++ Precompiler Programmer’s Guide for detailed
documentation, including syntax, host variables, host variable
types and example code.

First Provide an Allocated Input Locator Pointer that Represents LOB

Unlike locators in PL/SQL, locators in Pro*C/C++ are mapped to locator pointers
which are then used to refer to the LOB or BFILE value.

To successfully complete an embedded SQL LOB statement you must do the
following:

1. Provide an allocated input locator pointer that represents a LOB that exists in the
database tablespaces or external file system before you execute the statement.

2. SELECT a LOB locator into a LOB locator pointer variable

3. Use this variable in the embedded SQL LOB statement to access and
manipulate the LOB value

Examples provided with each embedded SQL LOB statement are illustrated in:
« Chapter 9, "Internal Persistent LOBs"

« Chapter 10, "Temporary LOBs"

« Chapter 11, "External LOBs (BFILEs)"

You will also be able to access these example scripts from your Oracle8i software
CD /rdbams/demo directory in a future release.

Pro*C/C++ Statements that Operate on BLOBs, CLObs, NCLOBs, and BFILEs
Pro*C statements that operate on BLOBs, CLOBs, and NCLOB:s are listed below:

« To modify internal LOBs, see Table 3-3

3-6 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Using C/C++ (Pro*C) to Work with LOBs

« Toread or examine LOB values, see Table 3-4

« To create or free temporary LOB, or check if Temporary LOB exists, see
Table 3-5

« To operate close and ’see if file exists’ functions on BFILES, see Table 3-6
« To operate on LOB locators, see Table 3-7

« For LOB buffering, see Table 3-8

« Toopen or close LOBs or BFILES, see Table 3-9

Pro*C/C++ Embedded SQL Statements To Modify Internal LOBs (BLOB, CLOB, and
NCLOB) Values

Table 3-3 Pro*C/C++: Embedded SQL Statements To Modify Internal LOB (BLOB,
CLOB, and NCLOB) Values

Statement Description

APPEND Appends a LOB value to another LOB

COPY Copies all or a part of a LOB into another LOB

ERASE Erases part of a LOB starting at a specified offset.

LOAD FROM FILE Loads BFILE data into an internal LOB at a specified offset.
TRIM Truncates a LOB

WRITE Writes data from a buffer into a LOBat a specified offset.
WRITE APPEND Writes data from a buffer into a LOB at the end of the LOB.

Pro*C/C++ Embedded SQL Statements To Read or Examine Internal and External
LOB Values

Table 3-4 Pro*C/C++: Embedded SQL Statements To Read or Examine Internal and
External LOB Values

Statement Description

DESCRIBE [CHUNKSIZE] Gets the Chunk size used when writing. This works for
internal LOBs only. It does not apply to external LOBs
(BFILEsS).

DESCRIBE [LENGTH] Returns the length of a LOBor a BFILE .

LOB Programmatic Environments 3-7

Using C/C++ (Pro*C) to Work with LOBs

Table 3-4 Pro*C/C++: Embedded SQL Statements To Read or Examine Internal and
External LOB Values

Statement Description
READ reads a specified portion of a non-null LOBor a BFILE into a
buffer.

Pro*C/C++ Embedded SQL Statements For Temporary LOBs

Table 3-5 Pro*C/C++: Embedded SQL Statements For Temporary LOBs

Statement Description

CREATE TEMPORARY Creates a temporary LOB.

DESCRIBE Sees if a LOB locator refers to a temporary LOB.
[[STEMPORARY]
FREE TEMPORARY Frees a temporary LOB.

Pro*C/C++ Embedded SQL Statements For BFILES

Table 3-6 Pro*C/C++: Embedded SQL Statements For BFILES

Statement Description

FILE CLOSE ALL Closes all open BFILE s.

DESCRIBE Checks whether a BFILE exists.

[FILEEXISTS]

DESCRIBE Returns the directory alias and/or filename of a BFILE .

[DIRECTORY,FILENAME]

Pro*C/C++ Embedded SQL Statements For LOB Locators

Table 3-7 Pro*C/C++ Embedded SQL Statements for LOB Locators

Statement Description
ASSIGN Assigns one LOBIlocator to another.
FILE SET Sets the directory alias and filename of a BFILE in a locator.

3-8 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Using C/C++ (Pro*C) to Work with LOBs

Pro*C/C++ Embedded SQL Statements For LOB Buffering

Table 3-8 Pro*C/C++ Embedded SQL Statements for LOB Buffering

Statement Description

DISABLE BUFFERING Disables the use of the buffering subsystem.

ENABLE BUFFERING Uses the LOBbuffering subsystem for subsequent reads and
writes of LOBdata.

FLUSH BUFFER Flushes changes made to the LOBbuffering subsystem to
the database (server)

Pro*C/C++ Embedded SQL Statements To Open and Close Internal LOBs and
External LOBs (BFILES)

Table 3-9 Pro*C/C++ Embedded SQL Statements To Open and Close Internal LOBs
and External LOBs (BFILEs)

Statement Description

OPEN Opens a LOB or BFILE.
DESCRIBE [ISOPEN] Sees if a LOB or BFILE is open.
CLOSE Closes a LOB or BFILE.

LOB Programmatic Environments 3-9

Using C/C++ (Pro*C) to Work with LOBs

3-10 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

A

Managing LOBs

This chapter describes the following topics:

n

n

n

DBA Actions Required Prior to Working with LOBs

Using SQL DML for Basic Operations on LOBs

Changing Tablespace Storage for a LOB

Managing Temporary LOBs

Using SQL Loader to Load LOBs

» Loading InLine and Out-Of-Line Data into Internal LOBs Using SQL Loader
» SQL Loader LOB Loading Tips

LOB Restrictions

Removed Restrictions

Note Examples in this chapter are based on the multimedia schema and table
Multimedia_tab described irChapter 8, "Sample Application”

Managing LOBs 4-1

DBA Actions Required Prior to Working with LOBs

DBA Actions Required Prior to Working with LOBs

Set Maximum Number of Open BFILEs

A limited number oBFILE s can be open simultaneously per session. The initialization
parameterSESSION_MAX_OPEN_FILESlefines an upper limit on the number of
simultaneously open files in a session.

The default value for this parameter is 10. That is, you can open a maximum of 10 files at
the same time per session if the default value is utilized. If you want to alter this limit, the
database administrator can change the value of this parameteirii. tina file. For
example:

SESSION_MAX_OPEN_FILES=20
If the number of unclosed files reaches &S SION_MAX_OPEN_FILESalue then you

will not be able to open any more files in the session. To close all open files, use the
FILECLOSEALL call.

Using SQL DML for Basic Operations on LOBs

SQL Data Manipulation Language (DML) includes basic operations, sUtHSERT,
UPDATE, DELETE— that let you make changes to the entire valuatédrnal LOBs within
Oracle RDBMS.

» Internal LOBs: To work with parts of internal LOBs, you will need to use one of the
interfaces described i@hapter 3, "LOB Programmatic Environmentgiat have been
developed to handle more complex requirements. For use case examples refer to the
following sections irChapter 9, "Internal Persistent LOBs"

n INSERT:

* INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB@n
page 9-23

* INSERT a Row by Selecting a LOB From Another Tadohepage 9-26
* INSERT Row by Initializing a LOB Locator Bind Variablen page 9-28
» UPDATE:
* UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB(on page 9-127
* UPDATE a Row by Selecting a LOB From Another Table on page 9-130
* UPDATE by Initializing a LOB Locator Bind Variable on page 9-132

4-2 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

DBA Actions Required Prior to Working with LOBs

~ DELETE:
* DELETE the Row of a Table Containing a LO&h page 9-135

» External LOBs (BFILES). Oracle3i supports read-only operations on external LOBs.
SeeChapter 11, "External LOBs (BFILEs)"

» INSERT:
* INSERT a Row Using BFILENAME()on page 11-24

* INSERT a BFILE Row by Selecting a BFILE From Another Table
page 11-29

* INSERT Row With BFILE by Initializing BFILE Locatoion page 11-31
» UPDATE: You can use the following methods to UPDATE or 'write to’ a BFILE:
* UPDATE a BFILE Using BFILENAME() on page 11-96
* UPDATE a BFILE by Selecting a BFILE From Another Talda page 11-96
* UPDATE a BFILE by Initializing a BFILE Locatoon page 11-98
»~ DELETE:
* DELETE the Row of a Table Containing a BFILdh page 11-111

Changing Tablespace Storage for a LOB

It is possible to change the default storage for a LOB after the table has been created.

Oracle8 Release 8.0.4.3

To move the CLOB column from tablespace A to tablespace B, in Oracle8 release 8.0.4.3,
requires the following statement:

ALTER TABLE test lob(test) STORE AS (tablespace tools);

However, this returns the following error message:
ORA-02210: no options specified for ALTER TABLE

Oracle8i
» Using ALTER TABLE... MODIFY : You can change LOB tablespace storage as
follows:

Managing LOBs 4-3

Managing Temporary LOBs

Note: TheALTER TABLE syntax for modifying an existing LOB
column uses th1ODIFY LOBclause not theOB .. STORE AS
clause. Thé. OB...STORE AS clause is only for newly added LOB
columns.

ALTER TABLE test MODIFY
LOB (ob1)
STORAGE (
NEXT 4M
MAXEXTENTS 100
PCTINCREASE 50

n Using ALTER TABLE ... MOVE : In Oraclei, you can also use the MOVE clause of
the ALTER TABLE statement to change LOB tablespace storage. For example:

ALTER TABLE test MOVE
TABLESPACE thsl
LOB (obd, lob2)
STOREAS (
TABLESPACE ths2
DISABLE STORAGE IN ROW);

Managing Temporary LOBs

Management and security issues of temporary LOBs are discusskdpter 10,
"Temporary LOBSs;'

» Managing Temporary LOB®n page 10-13
n Security Issues with Temporary LOBm page 10-12

4-4 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Using SQL Loader to Load LOBs

Using SQL Loader to Load LOBs

LOBFILES

You can use SQL Loader to bulk load LOBs. See "Loading LOBStétle8i Utilitiesfor
details on using SQL*Loader control file data definition language (DDL) to load LOB types.

Data loaded into LOBs can be lengthy and it is likely that you will want to have the data out-
of-line from the rest of the data. LOBFILES provide a method to separate lengthy data.

LOBFILES are simple datafiles that facilitate LOB loading. LOBFILEs are distinguished
from primary datafiles in that in LOBFILEs there is no conceptretard In LOBFILES
the data is of any of the following types:

n Predetermined size fields (fixed length fields)
n Delimited fields, i.e., TERMINATED BY or ENCLOSED BY

Note: The clause PRESERVE BLANKS is not applicable to fields read
from a LOBFILE.

» Length-Value pair fields (variable length fields) -- VARRAW, VARCHAR, or
VARCHARC loader datatypes are used for loading from this type of fields.

» A single LOB field into which the entire contents of a file can be read.

Note: A field read from a LOBFILE cannot be used as an argument to a
clause (for example, the NULLIF clause).

Managing LOBs 4-5

Loading InLine and Out-Of-Line Data into Internal LOBs Using SQL Loader

Loading InLine and Out-Of-Line Data into Internal LOBs

Using SQL Loader

The following sections describe procedures for loading differently formated inline and

out-of-line data into internal LOBs:
» Loading InLine LOB Data

n Loading Inline LOB Data in Predetermined Size Fields

» Loading Inline LOB Data in Delimited Fields

n Loading Inline LOB Data in Length-Value Pair Fields

» Loading Out-Of-Line LOB Data
» Loading One LOB Per File

n Loading Out-of-Line LOB Data in Predetermined Size Fields
n Loading Out-of-Line LOB Data in Delimited Fields
n Loading Out-of-Line LOB Data in Length-Value Pair Fields

Other topics discussed are
n SQL Loader LOB Loading Tips

SQL Loader Performance: Loading Into Internal LOBs

SeeTable 4-1, "SQL Loader Performance: Loading Data Into Internal L&Bghe
relative performance when using the above methods of loading data into internal LOBs.

Table 4-1 SQL Loader Performance: Loading Data Into Internal LOBs

Loading Method For In-Line or Out-Of-Line Data

Relative Performance

In Predetermined Size Fields
In Delimited Fields

In Length Value-Pair Fields
One LOB Per File

Highest
Slower
High
High

4-6 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Loading Inline LOB Data

Loading Inline LOB Data
n Loading Inline LOB Data in Predetermined Size Fields
» Loading Inline LOB Data in Delimited Fields
n Loading Inline LOB Data in Length-Value Pair Fields

Loading Inline LOB Data in Predetermined Size Fields

This is a very fast and simple way to Ida@Bs. Unfortunately, the LOBs to be loaded are
not usually the same size.

Note: A possible work-around is to pa@Bdata with white space to
make allLOBs the same length within the particular datafield; for
information on trimming of trailing white spaces see "Trimming of Blanks
and Tabs" inOracle8i Utilities).

To load LOBs using this format, use eitl@ARor RAWas the loading datatype. For
example:

Control File

LOAD DATA
INFILE 'sample.dat "fix 21"
INTO TABLE Muttimedia_tab
(Clip_ID POSITION(L:3) INTEGER EXTERNAL,
Story POSITION(5:20) CHAR DEFAULTIF Story=BLANKS)

Data File (sample.dat)

007 Once upon a time

Note: One space separates tkp_1D,(007) from the beginning of
the story. The story is 15 bytes long.

If the datafield containing the story is empty, then an etnP®instead of a NULLLOBIs
produced. A NULLLOBIs produced if th&lULLIF directive was used instead of the
DEFAULTIF directive. Also note that you can use loader datatypes otheCthaRto load
LOBS. Use the RAW datatype when loadiBHOB.

Managing LOBs 4-7

Loading Inline LOB Data

Loading Inline LOB Data in Delimited Fields

Loading different siz& OBs in the same column (that is, datafile field) is not a problem. The
trade-off for this added flexibility is performance. Loading in this format is somewhat

slower because the loader has to scan through the data, looking for the delimiter string. For
example:

Control File

LOAD DATA

INFILE 'samplel.dat’ "str '<endrec>\n™"
INTO TABLE Multimedia_tab

FIELDS TERMINATED BY ’/

(
Clip_ID CHAR(3),
Story CHAR(507) ENCLOSED BY ’<startlob>" AND '<endlob>’

)

Data File (samplel.dat)

007, <stariob> Onceuponatime,Theend. <endliob>|
008, <stariob> Once uponanothertime...Theend. <endiob>|

Loading Inline LOB Data in Length-Value Pair Fields

You could use/ARCHARseeOracle8i Utilities), VARCHAR®r VARRAW atatypes to load
LOBdata organized in this way. Note that this method of loading produces better
performance over the previous method, however, it removes some of the flexibility, that is, it
requires you to know theOBlength for eact.OBbefore loading. For example:

Control File

LOAD DATA

INFILE 'sample2.dat’ "str '<endrec>\n""
INTO TABLE Mulimedia_tab
FELDS TERMINATED BY’;

(

Clip_ID INTEGER EXTERNAL (3),
Story VARCHARC (3,500)

)

4-8 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Loading Inline LOB Data

Data File (sample2.dat)

007,041 Onceuponatme.. ... The end. <endrec>
008,000 <endrec>

Note:

n Story is a field corresponding toGLOBcolumn. In the control
file, it is described as\MARCHAR(3, 500) whose length field is 3
bytes long and maximum size is 500 bytes. This tells the Loader that
it can find the length of the LOB data in the first 3 bytes.

» The length subfield of théARCHARG 0 (that is, the value subfield
is empty); consequently, th®Binstance is initialized to empty.

» Make sure the last character of the last line of the data file above is a
line feed.

Managing LOBs 4-9

Loading Out-Of-Line LOB Data

Loading Out-Of-Line LOB Data
» Loading One LOB Per File
n Loading Out-of-Line LOB Data in Predetermined Size Fields
n Loading Out-of-Line LOB Data in Delimited Fields
n Loading Out-of-Line LOB Data in Length-Value Pair Fields

As mentioned earliet,OBdata can be so large that it is reasonable to want to load it from
secondary datafile(s).

In LOBFILESs,LOBdata instances are still thought to be in fields (predetermined size,
delimited, length-value), but these fields are not organized into records (the concept of a
record does not exist withitOBFILES); thus, the processing overhead of dealing with
records is avoided. This type of organization of data is ide&lG&loading.

Loading One LOB Per File
EachLOBFILE contains a single LOB. For example:

Control File

LOAD DATA

INFILE 'sample3.dat

INTO TABLE Mutimedia_ tab

REPLACE

FIELDS TERMINATED BY)

(

Clip ID INTEGER EXTERNAL(),

ext_ FieName FILLER CHAR(0),

Story LOBFILE(ext FieName) TERMINATED BY EOF

)

Data File (sample3.dat)

007 FirstStory.txt,
008,ffimp/SecondStory.txt,

Secondary Data File (FirstStory.txt)

Once uponatime...
Theend.

4-10 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Loading Out-Of-Line LOB Data

Secondary Data File (SecondStory.txt)

Once upon another time ...
Theend.

Note:

» STORMYtells the Loader that it can find the LOB data in the file whose
name is stored in thext_FileName field.

» TERMINATED BY EOFtells the Loader that the LOB will span the
entire file.

» See alsoOracle8i Utilities

Loading Out-of-Line LOB Data in Predetermined Size Fields

In the control file, the size of theOBs to be loaded into a particular column is specified.
During the load, aniOBdata loaded into that column is assumed to be the specified size.
The predetermined size of the fields allows the dataparser to perform very well.
Unfortunately, it is often hard to guarantee that allid&s are the same size. For example:

Control File

LOAD DATA

INFILE 'sample4.dat’

INTO TABLE Multimedia._tab

FIELDS TERMINATED BY *;

(

Clip ID INTEGER EXTERNAL(5),

Story LOBFILE (CONSTANT 'FirstStory1.txt) CHAR(32)

)

Data File (sample4.dat)

007,
008,

Secondary Data File (FirstStoryl.txt)

Once uponthetime ...
Theend,

Upon another time ...
Theend,

Managing LOBs 4-11

Loading Out-Of-Line LOB Data

Note: SQL Loader loads 2000 bytes of data fromFRirstStory.
txt LOBFILE , usingCHARdatatype, starting with the byte
following the byte loaded last during the current loading session.

Loading Out-of-Line LOB Data in Delimited Fields

LOB data instances in LOBFILE files are delimited. In this format, loading different size
LOBs into the same column is not a problem. The trade-off for this added flexibility is
performance. Loading in this format is somewhat slower because the loader has to scan
through the data, looking for the delimiter string. For example:

Control File

LOAD DATA
INFILE 'sample5.dat

INTO TABLE Mutimedia_tab

FIELDS TERMINATED BY’,

(Clip_ ID INTEGER EXTERNAL(5),

Story LOBFILE (CONSTANT FirstStory2.txt) CHAR(2000)
TERMINATED BY "<endiob>")

Data File (sample5.dat)

007,
008,

Secondary Data File (FirstStory2.txt)
Once upon atime...

The end.<endlob>

Once upon another time...

The end.<endlob>

Note: TheTERMINATED BYclause specifies the string that terminates
the LOBs.

You can also use tHENCLOSED BYclause. Th&ENCLOSED Btlause
allows a bit more flexibility as to the relative positioning of ti@Bs in
the LOBFILE, that is, thd.OBs in theLOBFILE wouldn't have to follow
one after another.

4-12 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Loading Out-Of-Line LOB Data

Loading Out-of-Line LOB Data in Length-Value Pair Fields

EachLOBin theLOBFILE is preceded by its length. You can ¥98RCHARsee Oracle8
Utilities), VARCHARMr VARRAWatatypes to load LOB data organized in this way. The
controllable syntax for loading length-value pair specified LOBs is quite simple.

Note that this method of loading performs better than the previous one, but at the same time
it takes some of the flexibility away, that is, it requires that you know the length ofle@gh
before loading. For example:

Control File

LOAD DATA

INFILE 'sample6.dat

INTO TABLE Mulimedia._tab

FIELDS TERMINATED BY ’;

(

Clip_ID INTEGER EXTERNAL(S),

Story LOBFILE (CONSTANT 'FirstStory3.txt) VARCHARC(4,2000)

)

Data File (sample6.dat)

007,
008,

Secondary Data File (FirstStory3.txt)

0031
Once uponatime ... The end.
0000

Note: VARCHARC(4,2000) tells the loader that tHeOBs in the
LOBFILE are in length-value pair format and that the first four bytes
should be interpreted as length. Thax_length part (that is, 2000)
gives the hint to the loader as to the maximum size of the field.

» 0031 tells the loader that the next 31 bytes belong to the specified
LOB.

» 0000 results in an empbyOB(not a NULLLOB).

Managing LOBs 4-13

SQL Loader LOB Loading Tips

SQL Loader LOB Loading Tips

» Failure to load a particul&ftOBdoes not result in the rejection of the record containing
thatLOB instead, the record ends up containing an et

» When loading from LOBFILEs specify the maximum length of the field corresponding
to aLOBtype column. If the maximum length is specified, it is taken as a hint to help
optimize memory usage. It is important that the maximum length specification does not
underestimate the true maximum length.

See Also: Oracle8i Utilities

4-14 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

LOB Restrictions

LOB Restrictions

The use of.OBs are subject to some restrictions:

n

Distributed LOBs are not supported.Specifically, this means that the user cannot use
a remote locator in th8ELECTandWHERIElauses. This includes usindMS_LOB
package functions. In addition, references to objects in remote tables with or without
LOBattributes are not allowed.

Invalid operations.For example, the following operations are invalid:

SELECTIlobcol from tablel@remote_site;
INSERT INTO lobtable select typel.lobattr from tablel@remote_site;
SELECTdbms_lob.getlength(lobcol) from tablel@remote_site;

Valid operations Valid operations om.OB columns inremotetables include:

CREATE TABLE as select * from tablel@remote_site;
INSERT INTO t select * from tablel@remote_site;

UPDATHE set lobcol = (select lobcol from tablel@remote_site);
INSERT INTO tablel@remote...

UPDATRablel@remote...

DELETEtablel@remote...

Table type and clauses not supporting LOBs

LOBs are not supported in the following table types and clauses:

n

n

Clustered tables and thus LOBs cannot be a cluster key.

GROUP BYORDER BYSELECT DISTINCT, aggregates antDINS. However,
UNION ALLis allowed on tables withOBs. UNION MINUS andSELECT
DISTINCT are allowed oi.OBattributes if the object type hasviAPor ORDER
function.

Index organized tables. LOBs however, are supportadnnpartitionedindex
organized tables.

VARRAYs

NCLORB are not allowed as attributes in object types when you create tables, but
NCLOBparametersare allowed in methods. NCLOBSs store fixed-width data.

Managing LOBs 4-15

Removed Restrictions

ANALYZE and ESTIMATE. LOBS are not supported in tA&NALYZE.. COMPUTE
or ESTIMATE STATISTICS statements.

Trigger Body. You can use the LOB column or LOB attribute in a trigger body subject
to the following conditions. In general, theew and old LOB values bound in the
trigger are read-only which means that you cannot write tb@ More specifically:

a. In before row and after row triggers -
* you can read theltd value of a LOB in both the triggers.
* you can read theanew value of the_OBonly in an after-row trigger.
b. InINSTEAD OFtriggers on views, you can read both thew and old values.

c. You cannot specify theOB column in arOF clause (Note thatBFILE can be
modified without updating the underlying tables on which it is based).

d. If you use OCI functions d®dBMS_LOBoutines to updateOBvalues olLOB
attributes on object columns, the functions or routines will not fire the triggers
defined on the tables containing the columns or attributes.

See Also: Oracle8i Data Cartridge Developer’'s Guid@r more
information about firing triggers on domain indexes.

Client-side PL/SQL procedures.These may not caDBMS_LORBackage routines.
However, you can use server-side PL/SQL procedures or anonymous blocks in
Pro*C/C++ to calDBMS_LOBRackage routines.

Read-Only Support for External LOBs (BFILES). Oracle8i supports read-only
operations on external LOBs. If you need to update or write to external LOBs, you have
to develop client side applications suited to your needs

CACHE / NOCACHE / CACHE READS. CACHE READS LOBs are supported in

this release. If you use CACHE READS LOBs and then downgrade to 8.0 or 8.1.5, your
CACHE READS LOBs generates a warning and becomes CACHE LOGGING LOBs.
You can explicitly alter the LOBs' storage characteristics later if you do not want your
LOBs to be CACHE LOGGING.

SeeChapter 7, "Modeling and Desigi'CACHE / NOCACHE / CACHE READS"on
page 7-8.

Removed Restrictions

The

following restriction has been removed.

4-16 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Removed Restrictions

Binding More Than 4,000 Bytes of Data

Oracle8i now supports binding more than 4,000 bytes of data to internal LOB columns in
INSERT and UPDATE statements.

n

If a table has LONG and LOB columns, you can bind more than 4,000 bytes of data
for either the LONG column or the LOB columns, but not both in the same
statement.

You cannot bind data of any size to LOB attributes in ADTs. This restriction from
prior releases still exists. For LOB attributes, first insert an empty LOB locator and
then modify the contents of the LOB using one of the programmatic environment
interfaces.

In an INSERT AS SELECT operation, binding of any length data to LOB columns
is not allowed. This restriction from prior releases still exists.

Managing LOBs 4-17

Removed Restrictions

4-18 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

D

Advanced Topics

The material in this chapter is a supplement and elaboration of the use cases
described in the following chapters.You will probably find the topics discussed here
to be more relevant once you have explored the use cases.

« Read-Consistent Locators
« A Selected Locator Becomes a Read Consistent Locator
« Updated LObs Via Updated Locators
« Example of Updating a LOB Using SQL DML and DBMS_LOB
« Example of Using One Locator to Update the Same LOB Value
« Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable
« LOB Locators Cannot Span Transactions
« LOB Locators and Transaction Boundaries
« LOBs in the Object Cache
« LOB Buffering Subsystem
« Advantages of LOB Buffering
« Guidelines for Using LOB Buffering
« LOB Buffering Usage Notes
« OCI Example of LOB Buffering
« Creating a Varray Containing References to LOBs

Note: Examples in this chapter are based on the multimedia schema and table
Multimedia_tab described in Chapter 8, "'Sample Application™.

Advanced Topics 5-1

Read-Consistent Locators

Read-Consistent Locators

Oracle provides the same read consistency mechanisms for LOBs as for all other
database reads and updates of scalar quantities. Refer to s, for general information
about read consistency. However, read consistency has some special applications to
LOBIlocators that need to be understood.

A Selected Locator Becomes a Read Consistent Locator

A SELEC®Ed locator, regardless of the existence of the FOR UPDATElause, becomes
a read consistent locator, and remains a read consistent locator until the LOBvalue is
updated through that locator. A read consistent locator contains the snapshot
environment as of the point in time of the SELECT

This has some complex implications. Let us say that you have created a read
consistent locator (L1) by way of a SELECToperation. In reading the value of the
internal LOBthrough L1, note the following:

« The LOBis read as of the point in time of the SELECTstatement even if the
SELECTstatement includes a FOR UPDATE

« If the LOBvalue is updated through a different locator (L2) in the same
transaction, L1 does not see L2's updates.

« L1 will not see committed updates made to the LOBthrough another transaction.

« If the read consistent locator L1 is copied to another locator L2 (for example, by
a PL/SQL assignment of two locator variables — L2:= L1), then L2 becomes a
read consistent locator along with L1 and any data read is read as of the point
in time of the SELECTfor L1.

Clearly you can utilize the existence of multiple locators to access different
transformations of the LOBvalue. However, in taking this course, you must be
careful to keep track of the different values accessed by different locators.

5-2 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Read-Consistent Locators

Updating LOBs and Read-Consistency

Example of an Update Using Read Consistent Locators

Read Consistent Locators Provide Same LOB Value Regardless of When the

SELECT Occurs
The following code demonstrates the relationship between read-consistency and
updating in a simple example. Using Multimedia_tab, as defined in Chapter 8,

"Sample Application”, and PL/SQL, three CLOB are created as potential locators:
« clob_selected

« clob_update

« clob_copied

Observe these progressions in the code, from times t1 through t6:

« At the time of the first SELECT INTO(at t1), the value in story is associated with
the locator clob_selected.

« Inthe second operation (at t2), the value in story is associated with the locator
clob_updated. Since there has been no change in the value of story between t1 and
t2, both clob_selected and clob_updated are read consistent locators that effectively
have the same value even though they reflect snapshots taken at different
moments in time.

« The third operation (at t3) copies the value in clob_selected to clob_copied. At this
juncture, all three locators see the same value. The example demonstrates this
with a series of DBMS_LOBREAD) calls.

« Attime t4, the program utilizes DBMS_LOBVRITK) to alter the value in clob_
updated, and a DBMS_LOHMREAL) reveals a new value.

« However, a DBMS_LOBREA) of the value through clob_selected (at t5) reveals
that it is a read consistent locator, continuing to refer to the same value as of the
time of its SELECT

« Likewise, a DBMS_LOHBREAL) of the value through clob_copied (at t6) reveals
that it is a read consistent locator, continuing to refer to the same value as clob_
selected.

Example
INSERT INTO Mulimedia_tab VALUES (1, ’abed’, EMPTY_CLOB(), NULL,

Advanced Topics 5-3

Read-Consistent Locators

EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);
COMMIT;

DECLARE
num_var INTEGER,;
clob_selected CLOB;
clob_updated CLOB;
clob_copied CLOB;
read amount INTEGER;
read offset INTEGER,;
write_amount INTEGER;
wite_offset INTEGER;
buffer VARCHAR2(20);

BEGIN
- Attmetl:
SELECT story INTO clob_selected
FROM Mulimedia_tab
WHERE clip_id=1;

- Attmet:

SELECT story INTO clob_updated
FROM Multimedia,_tab
WHERE clip_id=1
FOR UPDATE;

- Attimet3:

clob_copied :=clob_selected;

-~ Afterthe assignment, both the clob_copied andthe
—clob_selecte d have the same snapshot as of the point in time
- ofthe SELECT into clob_selected

- Reading from the clob_selected andthe clob_copied — will
- retum the same LOB value .clob_updated also sees the same
— LOB value as of its select:
read_amount :=10;
read offset:=1;
dbms_lob.read(clob_selected, read_amount, read_offset,
buffer);
dbms_outputput_line(clob_selected value: ' || buffer);
-~ Produces the output ‘abed'

read_amount = 10;
dbms_lob.read(clob_copied, read_amount, read _offset, buffer);

5-4 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Read-Consistent Locators

dbms_output.put_line(clob_copied value: ' || buffer);
-~ Produces the outpuit ‘abed

read_amount :=10;

dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
dbms_output.put_line(clob_updated value: ' || buffer);

-~ Produces the output ‘abed

- Attmed:

write_amount ;= 3;

write_offset :=5;

buffer :="efg);

dbms_lob.write(clob_updated, write_amount, write_offset,
buffer);

read_amount :=10;

dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
dbms_outputput_line(clob_updated value: ' || buffer);

-~ Produces the output ‘abedefy’

- Attimets:

read_amount :=10;

dbms_lob.read(clob_selected, read_amount, read_offset,
buffer);

dbms_outputput_line(clob_selected value: ' || buffer);

— Produces the output ‘abed'

- Attimet6:
read_amount :=10;
dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
dbms_output.put_line(clob_copied value: ' || buffer);
— Produces the output ‘abed'
END;
/

Updated LODbs Via Updated Locators

When you update the value of the internal LOBthrough the LOBIlocator (L1), L1
(that is, the locator itself) is updated to contain the current snapshot environment as
of the point in time after the operation was completed on the LOBvalue through the
locator L1. L1 is then termed an updated locator. This operation allows you to see
your own changes to the LOBvalue on the next read through the same locator, L1.

Advanced Topics 5-5

Read-Consistent Locators

Note: The snapshot environment in the locator is not updated if
the locator is used to merely read the LOBvalue. It is only updated
when you modify the LOBvalue through the locator via the PL/SQL
DBMS_LOBRackage or the OCI LOBAPIs.

Any committed updates made by a different transaction are seen by L1 only if your
transaction is a read-committed transaction and if you use L1 to update the LOB
value after the other transaction committed.

Note: When you update an internal LOB’s value, the modification
is always made to the most current LOBvalue.

Updating the value of the internal LOBthrough any of the available methods, such
as via OCI LOBAPIs or the PL/SQL DBMS_LOBRackage, can be thought of as
updating the LOBvalue and then reselecting the locator that refers to the new LOB
value.

Note that updating the LOBvalue through SQL is merely an UPDATEstatement. It is
up to you to do the reselect of the LOBIlocator or use the RETURNING lause in the
UPDATEstatement so that the locator can see the changes made by the UPDATE
statement. Unless you reselect the LOBlocator or use the RETURNING:lause, you
may think you are reading the latest value when this is not the case. For this reason
you should avoid mixing SQL DML with OCI and DBMS_LOBpiecewise
operations.

See Also: PL/SQL User’s Guide and Reference

Example of Updating a LOB Using SQL DML and DBMS_LOB

Using table Multimedia_tab as defined previously, a CLOBIocator is created:
« clob_selected

Note the following progressions in the following example PL/SQL (DBMS_LOB)
code, from times t1 through t3:

« Atthe time of the first SELECT INTO(at t1), the value in story is associated with
the locator clob_selected.

« Inthe second operation (at t2), the value in story is modified through the SQL
UPDATEstatement, bypassing the clob_selected locator. The locator still sees the

5-6 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Read-Consistent Locators

value of the LOBas of the point in time of the original SELECT In other words,
the locator does not see the update made via the SQL UPDATEstatement. This is
illustrated by the subsequent DBMS_LOBREAL) call.

« The third operation (at t3) re-selects the LOBvalue into the locator clob_selected.
The locator is thus updated with the latest snapshot environment which allows
the locator to see the change made by the previous SQL UPDATEstatement.
Therefore, in the next DBMS_LOBREAL), an error is returned because the LOB
value is empty (i.e., it does not contain any data).

Example

INSERT INTO Muttimedia._tab VALUES (1, 'abed’, EMPTY_CLOB(), NULL,
EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
num_var INTEGER;
clob selected CLOB;
read amount INTEGER;
read ofset INTEGER,;
buffer VARCHAR2(20);

BEGIN

- Attmetl:

SELECT story INTO clob_selected
FROM Mulimedia_tab

WHERE clip_id =1,

read amount = 10;

read_offset:=1;

dbms_lob.read(clob_selected, read_amount, read_offset,
buffer);

dbms_output.put_line(clob_selected value: ' || buffer);

- Produces the output ‘abed!

- Attmet?:

UPDATE Mulimedia_tab SET story = empty_clob()
WHERE clip_id =1,

- although the most current currentt LOB value is now emply,

—clob_selected stil sees the LOB value as of the point

—intime ofthe SELECT

Advanced Topics 5-7

Read-Consistent Locators

read_amount :=10;

dbms_lob.read(clob_selected, read_amount, read_offset,
buffer);

dbms_outputput_line(clob_selected value: ' || buffer);

- Produces the ouput abed'

- Attimet3:

SELECT story INTO clob_selected FROM Multimedia._tab WHERE
cip_id=1;

—the SELECT allows clob_selected to see the most current

- LOB value

read_amount :=10;
dbms_lob.read(clob_selected, read_amount, read_offset,
buffer);
— ERROR: ORA-01403: no data found
END;
/

Example of Using One Locator to Update the Same LOB Value

Note: Avoid updating the same LOBwith different locators! You
will avoid many pitfalls if you use only one locator to update the
same LOBvalue.

Using table Multimedia_tab as defined previously, two CLOB are created as potential
locators:

« clob_updated
« clob_copied

Note these progressions in the following example PL/SQL (DBMS_LOB) code at
times t1 through t5:

« Atthe time of the first SELECT INTO(at t1), the value in story is associated with
the locator clob_updated.

« The second operation (at t2) copies the value in clob_updated to clob_copied. At
this juncture, both locators see the same value. The example demonstrates this
with a series of DBMS_LOBREAL) calls.

5-8 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Read-Consistent Locators

« Atthis juncture (at t3), the program utilizes DBMS_LOBVRITE) to alter the
value in clob_updated, and a DBMS_LOB.READ reveals a new value.

« However,a DBMS_LOBREAL) of the value through clob_copied (at t4) reveals
that it still sees the value of the LOBas of the point in time of the assignment
from clob_updated (at t2).

« Itis notuntil clob_updated is assigned to clob_copied (t5) that clob_copied sees the
modification made by clob_updated.

Example

INSERT INTO Muttimedia_tab VALUES (1,abcd’, EMPTY_CLOB(), NULL,
EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
num_var INTEGER;
clob_updated CLOB;
clob_copied CLOB;
read amount INTEGER;;
read offset INTEGER,;
write_amount INTEGER;
wite_offset INTEGER;
buffer VARCHAR2(20);
BEGIN

—-Attme t1:
SELECT story INTO clob_updated FROM Mulimedia._tab
WHERE clip_ id=1
FOR UPDATE;

—-Attime 2:

clob_copied :=clob_updated;

— after the assign, clob_copied and clob_upadated see the same
- LOB value

read_amount :=10;

read_offset:=1;

dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
dbms_output.put_line(clob_updated value: ' || buffer);

- Produces the output abed'

read_amount :=10;

Advanced Topics 5-9

Read-Consistent Locators

dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
dbms_output.put_line(clob_copied value: ' || buffer);
— Produces the output abcd'

—-Attime t3:

write_amount = 3;

write_offset :=5;

buffer :='efg’;

dbms_lob.write(clob_updated, write_amount, write_offset,
buffer);

read_amount :=10;

dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
dbms_output.put_line(clob_updated value: ' || buffer);

— Produces the output abedefy'

- Attime t4:

read_amount :=10;

dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
dbms_outputput_line(clob_copied value: ' || buffer);

- Produces the output abed'

- Attime t5:
clob_copied :=clob_updated;

read_amount :=10;
dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
dbms_output.put_line(clob_copied value: ' || buffer);
- Produces the output abcdefy’
END;
/

Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable

When a LOBIlocator is used as the source to update another internal LOB(as in a
SQL INSERT or UPDATEstatement, the DBMS_LOECOPY) routine, and so on), the
snapshot environment in the source LOBlocator determines the LOBvalue that is
used as the source. If the source locator (for example L1) is a read consistent locator,
then the LOBvalue as of the point in time of the SELECTof L1 is used. If the source
locator (for example L2) is an updated locator, then the LOBvalue associated with
L2’s snapshot environment at the time of the operation is used.

5-10 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read-Consistent Locators

Using the table Multimedia_tab as defined previously, three CLOB are created as
potential locators:

« clob_selected
« clob_updated
« clob_copied

Note these progressions in the following example code at the various times t1
through t5:

« Atthe time of the first SELECT INTO(at t1), the value in story is associated with
the locator clob_updated.

« The second operation (at t2) copies the value in clob_updated to clob_copied. At
this juncture, both locators see the same value.

« Then (at t3), the program utilizes DBMS_LOBVRITE) to alter the value in clob_
updated, and a DBMS_LOBREAL) reveals a new value.

« However,a DBMS_LOBREADof the value through clob_copied (at t4) reveals that
clob_copied does not see the change made by clob_updated.

« Therefore (at t5), when clob_copied is used as the source for the value of the
INSERT statement, we insert the value associated with clob_copied (i.e. without
the new changes made by clob_updated). This is demonstrated by the subsequent
DBMS_LOBREAL) of the value just inserted.

Example

INSERT INTO Muttimedia._tab VALUES (1, 'abed’, EMPTY_CLOB(), NULL,
EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);

COMMIT;

DECLARE
num_var INTEGER;
clob selected CLOB;
clob_updated CLOB;
clob_copied CLOB;
read amount INTEGER;
read offset INTEGER,;
write_amount INTEGER;
wiite_offset INTEGER,;
buffer VARCHAR2(20);

BEGIN

Advanced Topics 5-11

Read-Consistent Locators

—~Attimetl:

SELECT story INTO clob_updated FROM Muttimedia._tab
WHERE clip_id=1
FOR UPDATE;

read_amount :=10;

read offset:=1;

dbms_lob.read(clob_updated, read_amount, read _offset, buffer);
dbms_outputput_line(clob_updated value: ' || buffer);

- Produces the output abed'

—-Attime ©2:
clob_copied :=clob_updated;

-Attime t3:

write_amount = 3;

write_offset :=5;

buffer .= 'efg’;

dbms_lob.write(clob_updated, write_amount, write_offset,
buffer);

read_amount :=10;

dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
dbms_outputput_line(clob_updated value: ' || buffer);

- Produces the output abedefy'

—note that clob_copied doesn't see the write made before
—clob_updated

—-Attime 4.

read_amount :=10;

dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
dbms_output.put_line(clob_copied value: ' || buffer);

- Produces the output abed'

- Attime t5:

—the insert uses clob_copied view of the LOB value which does

- notinclude clob_updated changes

INSERT INTO Mutimedia_tab VALUES (2, clob_copied, EMPTY_CLOB(), NULL,
EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL)
RETURNING story INTO clob_selected;

5-12 Oracle8i Application Developer’s Guide - Large Objects (LOBS)

Read-Consistent Locators

read amount = 10;
dbms_lob.read(clob_selected, read_amount, read_offset,
buffer);
dbms_output.put_line(clob_selected value: ' || buffer);
— Produces the output abed'
END;
/

LOB Locators Cannot Span Transactions

Modifying an internal LOB's value through the LOBIlocator via DBMS_LOBOCI, or
SQL INSERT or UPDATEstatements changes the locator from a read consistent
locator to an updated locator. Further, the INSERT or UPDATEstatement
automatically starts a transaction and locks the row. Once this has occurred, the
locator may not be used outside the current transaction to modify the LOBvalue. In
other words, LOBIlocators that are used to write data cannot span transactions.
However, the locator may be used to read the LOBvalue unless you are in a
serializable transaction.

See Also: "LOB Locators and Transaction Boundaries" on
page 5-16, for more information about the relationship between
LOBs and transaction boundaries.

Using table Multimedia_tab defined previously, a CLOBIlocator is created: clob
updated .

« Atthe time of the first SELECT INTO(at t1), the value in story is associated with
the locator clob_updated.

« The second operation (at t2), utilizes the DBMS_LOBVRITH) command to alter
the value in clob_updated, and a DBMS_LOBREAL) reveals a new value.

« Thecommit statement (at t3) ends the current transaction.

« Therefore (at t4), the subsequent DBMS_LOBVRITH) operation fails because the
clob_updated locator refers to a different (already committed) transaction. This is
noted by the error returned. You must re-select the LOBlocator before using itin
further DBMS_LORand OCI) modify operations.

Example of Locator Not Spanning a Transaction
INSERT INTO Mulimedia._tab VALUES (1, 'abed’, EMPTY_CLOB(), NULL,

Advanced Topics 5-13

Read-Consistent Locators

EMPTY_BLOB(), EMPTY_BLOB(), NULL, NULL, NULL, NULL);
COMMIT;

DECLARE
num_var INTEGER;
clob_updated CLOB;
read amount INTEGER,;
read offset INTEGER,;
write_amount INTEGER;
wite_offset INTEGER,;
buffer VARCHAR2(20);

BEGIN
—Attime t1:
SELECT story
INTO clob_updated
FROM Mutimedia_tab
WHERE clp id=1
FOR UPDATE;
read_amount :=10;
read offset:=1;
dbms_lob.read(clob_updated, read_amount, read_offset,
buffer);
dbms_outputput_line(clob_updated value: ' || buffer);
- This prodlces the output ‘abed'

—-Attime 2:

write_amount = 3;

wiite_offset :=5;

buffer :='efg’;

dbms_lobwrite(clob_updated, write_amount, write_offset,
buffer);

read_amount :=10;

dbms_lob.read(clob_updated, read_amount, read_offset,
buffer);

dbms_outputput_line(clob_updated value: ' || buffer);

- This prodlces the output ‘abcdefy’

—Attimet3:
COMMIT;

—Attime &4:

dbms_lob.write(clob_updated , write_amount, write_offset,
buffer);

5-14 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read-Consistent Locators

— ERROR: ORA-22990: LOB locators cannot span transactions
END;
/

Advanced Topics 5-15

LOB Locators and Transaction Boundaries

LOB Locators and Transaction Boundaries

A basic description of LOB locators and their operations is given in Chapter 2,
"Basic Components".

This section discusses the use of LOB locators in transactions, and transaction IDs.

Locators Contain Transaction IDs When...

You Begin the Transaction, Then Select Locator. If you begin a transaction and then
select a locator, the locator contains the transaction ID. Note that you can
implicitly be in a transaction without explicitly beginning one. For example,
SELECT... FOR UPDATHmplicitly begins a transaction. In such a case, the
locator will contain a transaction ID.

Locators Do Not Contain Transaction IDs When...

You are Outside the Transaction, Then Select Locator. By contrast, if you select a
locator outside of a transaction, the locator does not contain a transaction ID.

Locators Do Not Contain Transaction 1Ds When Selected Prior to DML Statement
Execution. A transaction ID will not be assigned until the first DML statement
executes. Therefore, locators that are selected prior to such a DML statement
will not contain a transaction ID.

Transaction IDs: Reading and Writing to a LOB Using Locators

You can always read the LOBdata using the locator irrespective of whether the
locator contains a transaction ID.

Cannot Write Using Locator: If the locator contains a transaction ID, you cannot
write to the LOBoutside of that particular transaction.

Can Write Using Locator: If the locator does not contain a transaction 1D, you can
write to the LOBafter beginning a transaction either explicitly or implicitly.

Cannot Read or Write Using Locator With Serializable Transactions: If the locator
contains a transaction ID of an older transaction, and the current transaction is
serializable, you cannot read or write using that locator.

Can Read, Not Write Using Locator With Non-Serializable Transactions: If the
transaction is non-serializable, you can read, but not write outside of that
transaction.

5-16 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Locators and Transaction Boundaries

The following examples show the relationship between locators and non-serializable
transactions

Non-Serializable Example: Selecting the Locator with No Current Transaction

Case 1:
1.

N o oo s woN

Case 2:

Select the locator with no current transaction. At this point, the locator does
not contain a transaction id.

Begin the transaction.

Use the locator to read data from the LOB.

Commit or rollback the transaction.

Use the locator to read data from the LOB.

Begin a transaction. The locator does not contain a transaction id.

Use the locator to write data to the LOB. This operation is valid because the
locator did not contain a transaction id prior to the write. After this call, the
locator contains a transaction id.

Select the locator with no current transaction. At this point, the locator does
not contain a transaction id.

Begin the transaction. The locator does not contain a transaction id.

Use the locator to read data from the LOB. The locator does not contain a
transaction id.

Use the locator to write data to the LOB. This operation is valid because the
locator did not contain a transaction id prior to the write. After this call, the
locator contains a transaction id. You can continue to read from and/or
write to the LOB.

Commit or rollback the transaction. The locator continues to contain the
transaction id.

Use the locator to read data from the LOB. This is a valid operation.

Begin a transaction. The locator already contains the previous transaction’s
id.

Advanced Topics 5-17

LOB Locators and Transaction Boundaries

8.

Use the locator to write data to the LOB. This write operation will fail
because the locator does not contain the transaction id that matches the
current transaction.

Non-Serializable Example: Selecting the Locator within a Transaction

Case 3:
1.

Case 4:

Select the locator within a transaction. At this point, the locator contains the
transaction id.

Begin the transaction. The locator contains the previous transaction’s id.

Use the locator to read data from the LOB. This operation is valid even
though the transaction id in the locator does not match the current
transaction.

See Also: "Read-Consistent Locators" on page 5-2 for more
information about using hte locator to read LOB data.

Use the locator to write data to the LOB. This operation fails because the
transaction id in the locator does not match the current transaction.

Begin a transaction.

Select the locator. The locator contains the transaction id because it was
selected within a transaction.

Use the locator to read from and/or write to the LOB. These operations are
valid.

Commit or rollback the transaction. The locator continues to contain the
transaction id.

Use the locator to read data from the LOB. This operation is valid even
though there’s a transaction id in the locator and the transaction was
previously committed or rolled back.

See Also: "Read-Consistent Locators" on page 5-2 for more
information on the using the locator to read LOB data.

5-18 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Locators and Transaction Boundaries

6. Use the locator to write data to the LOB. This operation fails because the
transaction id in the locator is for a transaction that was previously
committed or rolled back.

Advanced Topics 5-19

LOBs in the Object Cache

LOBs in the Object Cache

Internal LOB attributes: Creating an object in object cache, sets the LOB
attribute to empty

When you create an object in the object cache that contains an internal LOB
attribute, the LOBattribute is implicitly set to empty. You may not use this
empty LOBIlocator to write data to the LOB You must first flush the object,
thereby inserting a row into the table and creating an empty LOB— that is, a
LOBwith 0 length. Once the object is refreshed in the object cache (use OCI_
PIN_LATEST), the real LOBlocator is read into the attribute, and you can then
call the OCI LOBAPI to write data to the LOB

External LOB attrcibutes: Creating an object in object cache, sets the BFILE
attribute to NULL

When creating an object with an excternal LOB (BFILE) attribute, the BFILE is
set to NULL It must be updated with a valid directory alias and filename before
reading from the file.

When you copy one object to another in the object cache with a LOBlocator
attribute, only the LOBIocator is copied. This means that the LOBattribute in these
two different objects contain exactly the same locator which refers to one and the
same LOBvalue. Only when the target object is flushed is a separate, physical copy of
the LOBvalue made, which is distinct from the source LOBvalue.

See Also: "Example of an Update Using Read Consistent
Locators" on page 5-3 for a description of what version of the LOB
value will be seen by each object if a write is performed through
one of the locators.

Therefore, in cases where you want to modify the LOBthat was the target of the
copy, you must flush the target object, refresh the target object, and then write to
the LOBthrough the locator attribute.

5-20 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem

LOB Buffering Subsystem

Oracle8i provides a LOBbuffering subsystem (LBS) for advanced OCI based
applications such as DataCartridges, Web servers, and other client-based
applications that need to buffer the contents of one or more LOBs in the client’s
address space. The client-side memory requirement for the buffering subsystem
during its maximum usage is 512K bytes. It is also the maximum amount that you
can specify for a single read or write operation on a LOBthat has been enabled for
buffered access.

Advantages of LOB Buffering

The advantages of buffering, especially for client applications that perform a series
of small reads and writes (often repeatedly) to specific regions of the LOB are:

Buffering enables deferred writes to the server. You can buffer up several writes
in the LOBs buffer in the client’s address space and eventually flush the buffer
to the server. This reduces the number of network roundtrips from your client
application to the server, and hence, makes for better overall performance for
LOBupdates.

Buffering reduces the overall number of LOBupdates on the server, thereby
reducing the number of LOBversions and amount of logging. This results in
better overall LOBperformance and disk space usage.

Guidelines for Using LOB Buffering
The following caveats apply to buffered LOBoperations:

Oracle8i provides a simple buffering subsystem, and not a cache. To be specific,
Oracle8i does not guarantee that the contents of a LOBs buffer are always in
synch with the LOBvalue in the server. Unless you explicitly flush the contents of
a LOBs buffer, you will not see the results of your buffered writes reflected in
the actual LOBon the server.

Error recovery for buffered LOBoperations is your responsibility. Owing to the
deferred nature of the actual LOBupdate, error reporting for a particular
buffered read or write operation is deferred until the next access to the server
based LOB

Transactions involving buffered LOBoperations cannot migrate across user
sessions — the LBS is a single user, single threaded system.

Advanced Topics 5-21

LOB Buffering Subsystem

« Oracle8i does not guarantee transactional support for buffered LOBoperations.
To ensure transactional semantics for buffered LOBupdates, you must maintain
logical savepoints in your application to rollback all the changes made to the
buffered LOBin the event of an error. You should always wrap your buffered
LOBupdates within a logical savepoint (see "OCI Example of LOB Buffering" on
page 5-28).

« Inany given transaction, once you have begun updating a LOBusing buffered
writes, it is your responsibility to ensure that the same LOBis not updated
through any other operation within the scope of the same transaction that
bypasses the buffering subsystem.

You could potentially do this by using an SQL statement to update the
server-based LOB Oracle8i cannot distinguish, and hence prevent, such an
operation. This will seriously affect the correctness and integrity of your
application.

« Buffered operations on a LOBare done through its locator, just as in the
conventional case. A locator that is enabled for buffering will provide a
consistent read version of the LOB until you perform a write operation on the
LOBthrough that locator.

See Also: "Read-Consistent Locators" on page 5-2.

Once the locator becomes an updated locator by virtue of its being used for a
buffered write, it will always provide access to the most up-to-date version of
the LOBas seen through the buffering subsystem. Buffering also imposes an
additional significance to this updated locator — all further buffered writes to
the LOBcan be done only through this updated locator. Oracle8i will return an
error if you attempt to write to the LOBthrough other locators enabled for
buffering.

See Also: "Updated LObs Via Updated Locators" on page 5-5.

= You can pass an updated locator that was enabled for buffering as an IN
parameter to a PL/SQL procedure. However, passing an IN OUT or an OUT
parameter will produce an error, as will an attempt to return an updated
locator.

« You cannot assign an updated locator that was enabled for buffering to another
locator. There are a number of different ways that assignment of locators may
occur — through OCILobAssign (), through assignment of PL/SQL variables,

5-22 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem

through OCIObjectCopy () where the object contains the LOBattribute, and so
on. Assigning a consistent read locator that was enabled for buffering to a
locator that did not have buffering enabled, turns buffering on for the target
locator. By the same token, assigning a locator that was not enabled for
buffering to a locator that did have buffering enabled, turns buffering off for the
target locator.

Similarly, if you SELECTinto a locator for which buffering was originally
enabled, the locator becomes overwritten with the new locator value, thereby
turning buffering off.

Appending to the LOBvalue using buffered write(s) is allowed, but only if the
starting offset of these write(s) is exactly one byte (or character) past the end of
the BLOB(or CLOB/NCLOB. In other words, the buffering subsystem does not
support appends that involve creation of zero-byte fillers or spaces in the server
based LOB

For CLOB, Oracle8i requires that the character set form for the locator bind
variable on the client side be the same as that of the LOBin the server. This is
usually the case in most OCI LOBprograms. The exception is when the locator
is SELECEd from a remote database, which may have a different character set
form from the database which is currently being accessed by the OCI program.
In such a case, an error is returned. If there is no character set form input by the
user, then we assume it is SQLCS _IMPLICIT.

LOB Buffering Usage Notes

LOB Buffer Physical Structure
Each user session has the following structure:

Fixed page pool of 16 pages, shared by all LOBs accessed in buffering mode
from that session.

Each page has a fixed size of up to 32K bytes (not characters) where pagesize = n
x CHUNKSIZE~= 32K.

A LOBs buffer consists of one or more of these pages, up to a maximum of 16 per
session. The maximum amount that you ought to specify for any given buffered
read or write operation is 512K bytes, remembering that under different
circumstances the maximum amount you may read/write could be smaller.

Advanced Topics 5-23

LOB Buffering Subsystem

Example of Using the LOB Buffering System (LBS)

Consider that a LOBis divided into fixed-size, logical regions. Each page is mapped
to one of these fixed size regions, and is in essence, their in-memory copy.
Depending on the input offset and amount specified for a read or write
operation, Oracle8i allocates one or more of the free pages in the page pool to the
LOBs buffer. A free page is one that has not been read or written by a buffered read
or write operation.

For example, assuming a page size of 32K:

« Foran input offset of 1000 and a specified read/write amount of 30000, Oracle8i
reads the first 32K byte region of the LOBIinto a page in the LOBs buffer.

« For an input offset of 33000 and a read/write amount of 30000, the second 32K
region of the LOBIs read into a page.

« For an input offset of 1000, and a read/write amount of 35000, the LOB's buffer
will contain two pages — the first mapped to the region 1 — 32K, and the
second to the region 32K+1 — 64K of the LOB

This mapping between a page and the LOBregion is temporary until Oracle8i maps
another region to the page. When you attempt to access a region of the LOBthat is
not already available in full in the LOBs buffer, Oracle8i allocates any available free
page(s) from the page pool to the LOBs buffer. If there are no free pages available in
the page pool, Oracle8i reallocates the pages as follows. It ages out the least recently
used page among the unmodified pages in the LOBs buffer and reallocates it for the
current operation.

If no such page is available in the LOBs buffer, it ages out the least recently used
page among the unmodified pages of other buffered LOBs in the same session. Again,
if no such page is available, then it implies that all the pages in the page pool are
dirty (i.e. they have been modified), and either the currently accessed LOB or one of
the other LOBs, need to be flushed. Oracle8i notifies this condition to the user as an
error. Oracle8i never flushes and reallocates a dirty page implicitly — you can either
flush them explicitly, or discard them by disabling buffering on the LOR

To illustrate the above discussion, consider two LOBs being accessed in buffered
mode — L1 and L2, each with buffers of size 8 pages. Assume that 6 of the 8 pages
in L1’s buffer are dirty, with the remaining 2 containing unmodified data read in
from the server. Assume similar conditions in L2’s buffer. Now, for the next
buffered operation on L1, Oracle8i will reallocate the least recently used page from
the two unmodified pages in L1’s buffer. Once all the 8 pages in L1’s buffer are used
up for LOBwrites, Oracle8i can service two more operations on L1 by allocating the

5-24 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem

two unmodified pages from L2’s buffer using the least recently used policy. But for
any further buffered operations on L1 or L2, Oracle8i returns an error.

If all the buffers are dirty and you attempt another read from or write to a buffered
LOB you will receive the following error:

Error 22280: no more buffers available for operation

There are two possible causes:
1. All buffers in the buffer pool have been used up by previous operations.

In this case, flush the LOB(S) through the locator that is being used to
update the LOB

2. You are trying to flush a LOBwithout any previous buffered update
operations.

In this case, write to the LOBthrough a locator enabled for buffering before
attempting to flush buffers.

Flushing the LOB Buffer

The term flush refers to a set of processes. Writing data to the LOBin the buffer
through the locator transforms the locator into an updated locator. Once you have
updated the LOBdata in the buffer through the updated locator, a flush call will

« Write the dirty pages in the LOBs buffer to the server-based LOB thereby
updating the LOBvalue,

« Reset the updated locator to be a read consistent locator, and

« Free the flushed buffers or turn the status of the buffer pages back from dirty to
unmodified.

After the flush, the locator becomes a read consistent locator and can be assigned to
another locator (L2 := L1).

For instance, suppose you have two locators, L1 and L2. Let us say that they are
both read consistent locators and consistent with the state of the LOBdata in the
server. If you then update the LOBby writing to the buffer, L1 becomes an updated
locator. L1 and L2 now refer to different versions of the LOBvalue. If you wish to
update the LOBIn the server, you must use L1 to retain the read consistent state
captured in L2. The flush operation writes a new snapshot environment into the
locator used for the flush. The important point to remember is that you must use the
updated locator (L1), when you flush the LOBbuffer. Trying to flush a read
consistent locator will generate an error.

Advanced Topics 5-25

LOB Buffering Subsystem

This raises the question: What happens to the data in the LOBbuffer? There are two
possibilities. In the default mode, the flush operation retains the data in the pages
that were modified. In this case, when you read or write to the same range of bytes
no roundtrip to the server is necessary. Note that flush in this context does not clear
the data in the buffer. It also does not return the memory occupied by the flushed
buffer to the client address space.

Note: Unmodified pages may now be aged out if necessary.

In the second case, you set the flag parameter in OCILobFlushBuffer () to OCI_
LOB_BUFFER_FREHo free the buffer pages, and so return the memory to the client
address space. Note that flush in this context updates the LOBvalue on the server,
returns a read consistent locator, and frees the buffer pages.

Flushing the Updated LOB

It is very important to note that you must flush a LOBthat has been updated
through the LBS in the following situations:

« Before committing the transaction,
« Before migrating from the current transaction to another,
« Before disabling buffering operations on a LOB

« Before returning from an external callout execution into the calling
function/procedure/method in PL/SQL.

Note: When the external callout is called from a PL/SQL block and the locator is passed as
a parameter, all buffering operations, including the enable call, should be made within the
callout itself. In other words, adhere to the following sequence:

« Call the external callout,

« Enable the locator for buffering,

« Read/write using the locator,

« Flush the LOR

« Disable the locator for buffering

« Return to the calling function/procedure/method in PL/SQL
Remember that Oracle8i never implicitly flushes the LOB

5-26 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem

Using Buffer-Enabled Locators

Note that there are several cases in which you can use buffer-enabled locators and
others in which you cannot.

When it is OK to Use Buffer-Enabled Locators:

OCI — A locator that is enabled for buffering can only be used with the
following OCI APIs:

OClILobRead (), OCILobWrite (), OCILobAssign (), OCILoblsEqual (),
OClILobLocatorlslnit (), OClILobCharSetld (),
OCILobCharSetForm ().

When it is Not OK to Use Buffer-Enabled Locators: The following OCI APls
will return errors if used with a locator enabled for buffering:

OCI — OCIlLobCopy (), OCILobAppend (), OCILobErase (),
OClILobGetLength (), OCILobTrim (), OCILobWriteAppend().

These APIs will also return errors when used with a locator which has not
been enabled for buffering, but the LOBthat the locator represents is
already being accessed in buffered mode through some other locator.

PL/SQL (DBMS_LOB) — An error is returned from DBMS_LOBAPIs if the
input lob locator has buffering enabled.

As in the case of all other locators, buffer-enabled locators cannot span
transactions.

Saving Locator State to Avoid a Reselect

Suppose you want to save the current state of the LOBbefore further writing to the
LOBbuffer. In performing updates while using LOBbuffering, writing to an existing
buffer does not make a roundtrip to the server, and so does not refresh the snapshot
environment in the locator. This would not be the case if you were updating the LOB
directly without using LOBbuffering. In that case, every update would involve a
roundtrip to the server, and so would refresh the snapshot in the locator.

Therefore to save the state of a LOBthat has been written through the LOBbuffer,
follow these steps:

1.

Flush the LOR thereby updating the LOBand the snapshot environment in the
locator (L1). At this point, the state of the locator (L1) and the LOBare the same.

Advanced Topics 5-27

LOB Buffering Subsystem

2. Assign the locator (L1) used for flushing and updating to another locator (L2).
At this point, the states of the two locators (L1 and L2), as well as the LOB are
all identical.

L2 now becomes a read consistent locator with which you are able to access the
changes made through L1 up until the time of the flush, but not after! This
assignment avoids incurring a roundtrip to the server to reselect the locator into L2.

OCI Example of LOB Buffering

The following pseudocode for an OCI program based on the Multimedia_tab
schema illustrates the issues described above.

OCI_BLOB_buffering_program ()

{
int amount,
int offset;
OClLobLocator Ibs_locl, Ibs_loc2, Ibs_loc3;
void *buffer;
int bufl;
- Standard OCI initialization operations - logging on to
- senver, creating and initializing bind variables etc.
init_OCI 0;

- Establish a savepoint before start of LBS operations
exec_statement('savepoint lbs_savepoint);

- Initalize bind variable to BLOB columns from buffered
—access:

exec_statement('select frame into Ibs_loc1 from Mulimedia._tab
where clip_id =12";

exec_statement('select frame into lbs_loc2 from Mulimedia_tab
where clip_id = 12 for update”);

exec_statement("select frame into Ibs_loc2 from Multimedia._tab
where clip_id =12 for update");

- Enabile locators for buffered mode access to LOB:
OCILobEnableBuffering(lbs_locl);
OCILobEnableBuffering(lbs_loc2);
OClLobEnableBuffering(lbs_loc3);

- Read 4K bytes through Ibs _loc1 starting from offset 1:
amount = 4096; offset = 1; bufl = 4096;

5-28 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem

OClLaobRead(.., Ibs_loc1, offset, &amount, buffer, buf,
-
if (exception)
goto exception_handler;
- This will read the first 32K bytes of the LOB from
—the server into a page (call it page_A) inthe LOB's

— client-side buiffer.

-lbs_locl is aread consistent locator.

-W nite 4K of the LOB throgh lbs loc2 starting from
—offset 1:

amount =4096; offset = 1; bufl = 4096;

buffer = populate_buffer(4096);

OCILobWrite(.., Ibs_loc2, offset, amount, buffer,
bufl,),

if (exception)
goto exception_handler;
- This will read the first 32K bytes of the LOB from
- the server into a new page (call it page_B) in the

-L OB's buffer, and modiify the contents of this page
- with inputt buffer contents.
—Ibs_loc2 is an updated locator.

- Read 20K bytes through Ibs_locl Starting from
- offset 10K
amount = 20480; offset = 10240;
OCILobRead(.., Ibs_locl, offset, &amount, buffer,
bufl, .);

if (exception)
goto exception_handler;
- Read directly from page A into the user bufffer.
— There is no round-irip to the server because the

—data is alreadly in the client-side buiffer.
—Wh te 20K bytes through Ibs loc2 starting from offset
- 10K

amount = 20480; offset = 10240; bufl = 20480;

buffer = populate_buiffer(20480);

OCILobWrite(.., Ibs_loc2, offset, amount, buffer,
buf, ..),

if (exception)
goto exception_handler,

Advanced Topics 5-29

LOB Buffering Subsystem

- The conttents of the user buffer will now be wiitten

- into page_B without involving a round-trip to the

- server. This avoids making a new LOB version on the
- server and writing redo to the log.

- The following write through Ibs_loc3 will also
- resultin an error:
amount = 20000; offset = 1000; bufl = 20000;
buffer = populate_buffer(20000);
OCILobWrite(.., Ibs_loc3, offset, amount, buffer,
buf, ..);

if (exception)
goto exception_handler;
- No two locators can be used to update a buffered LOB
— through the buffering subsysterm

- The following update through Ibs loc3 wilalso
- resultin aneror
OCILobFieCapy(.., Ibs_loc3, Ibs_loc2, ..);

if (exception)
goto exception_handler;
- Locators enabled for buffering cannot be used with
- gperations like Append, Copy, Trim etc.
- When done, flush LOB's buffer to the server:
OClILobHushBuffer(.., los_loc2, OCI_LOB_BUFFER_NOFREE);

if (exception)
goto exception_handler;
- This flushes all the modiiied pages in the LOB's buffer,
- andresets Ibs loc2 from updated to read consistent
- locator. The modiiied pages remain in the buffer
- without freeing memory. These pages can be aged
—outifnecessary.

— Disable locators for buffered mode access to LOB */
OClLobDisableBuffering(lbs_locl);
OClLobDisableBuffering(lbs_loc2);
OClLobDisableBuffering(lbs_loc3);

if (exception)
goto exception_handler;
- This disables the three locators for buffered access,
- and frees up the LOB's buiffer resouirces.

5-30 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Buffering Subsystem

exception_handler:
handle_exception_reporting 0;
exec_statement('rollback to savepoint lbs_savepoint);
}

Advanced Topics 5-31

Creating a Varray Containing References to LOBs

Creating a Varray Containing References to LOBs

LOBs, or rather references to LOBs, can also be created using VARRAYSs. To create a
VARRAY containing references to LOBs read the following:

Column, MAP_OBJ of type MAP_TYP, already exists in ta¥lldtimedia_tab . See
Chapter 8, "Sample Applicatioritr a description of tabl®lultimedia_tab . Column
MAP_OBJ contains a BLOB column named DRAWING.

The syntax for creating the associated types and table Multimedia_tab is
described in Chapter 9, "Internal Persistent LOBs", SQL: Create a Table Containing
One or More LOB Columns, on page 9-10.

Example

Suppose you need to store multiple map objects per multimedia clip. To do that
follow these steps:

1. Define a VARRAY of type REF MAP_TYP.
For example:
CREATE TYPE MAP_TYP_ARRAS
VARRAY(10) OF REF MAP_TYP;
2. Define a column of the array type in Multimedia_tab.
For example:

CREATE TABLE MULTIMEDIA_TAB(......etc. [list all columns here]
..MAP_OBJ_ARR MAP_TYP_ARR)
VARRAY MAP_OBJ_ARR STORE ASLOB MAP_OBJ_ARR_STORE;

5-32 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

6

Frequently Asked Questions

This chapter includes the following Frequently Asked Questions (FAQS):

Converting Data Types to LOB Data Types

« CanlInsert or Update Any Length Data Into a LOB Column?

« Does COPY LONG to LOB Work if Data is > 64K?

General

« How Do I Determine if the LOB Column with a Trigger is Being Updated?
« Reading and Loading LOB Data: What Should Amount Parameter Size Be?
Index-Organized Tables (I0Ts) and LOBs

« IsInline Storage Allowed for LOBs in Index-Organized Tables?
Initializing LOB Locators

« When Do | Use EMPTY_BLOB() and EMPTY_CLOB()?

« How Do I Initialize a BLOB Attribute Using EMPTY_BLOB() in Java?
JDBC, JPublisher and LOBs

« How Do I Insert a Row With Empty LOB Locator into Table Using JDBC?
« JDBC: Do OracleBlob and OracleClob Work in 8.1.x?

« How Do I Manipulate LOBs With the 8.1.5 JDBC Thin Driver?

« Isthe FOR UPDATE Clause Needed on SELECT When Writing to a LOB?
Loading LOBs and Data Into LOBs

« Howdo I Load a 1Mb File into a CLOB Column?

Frequently Asked Questions 6-1

« How Do We Improve BLOB and CLOB Performance When Using JDBC
Driver To Load?

« LOB Indexing
« IsLOB Index Created in Same Tablespace as LOB Data?

« Indexing: Why is a BLOB Column Removed on DELETing but not a BFILE
Column?

« Which Views Can | Query to Find Out About a LOB Index?
« LOB Storage and Space Issues

« What Happens If | Specify LOB Tablespace and ENABLE STORAGE IN
ROW?

« What Are the Pros and Cons of Storing Images in a BFILE Versus a BLOB?
« When Should | Specify DISABLE STORAGE IN ROW?

« Do <4K BLOBs Go Into the Same Segment as Table Data, >4K BLOBs Go
Into a Specified Segment?

« Is4K LOB Stored Inline?

« How isaLOB Locator Stored If the LOB Column is EMPTY_CLOB() or
EMPTY_BLOB() Instead of NULL? Are Extra Data Blocks Used For This?

« Migrating From Other Database Systems

« IsImplicit LOB Conversion Between Different LOB Types Allowed in
Oracle8i?

« Performance

« What Can We Do To Improve the Poor LOB Loading Performance When
Using Veritas File System on Disk Arrays, UNIX, and Oracle?

« Is There a Difference in Performance When Using DBMS_LOB.SUBSTR
Versus DBMS_LOB.READ?

« Are There Any White Papers or Guidelines on Tuning LOB Performance?
« When Should I Use Chunks Over Reading the Whole Thing?

« IsInlining the LOB a Good Idea and If So When?

« Are There Any White Papers or Guidelines on Tuning LOB Performance?
« How Can | Store LOBs >4Gb in the Database?

6-2 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Converting Data Types to LOB Data Types

Converting Data Types to LOB Data Types

Can | Insert or Update Any Length Data Into a LOB Column?

Question

Can | insert or update any length of data for a LOB column? Am I still restricted to
4K. How about LOB attributes

Answer
When inserting or updating a LOB column you are now not restricted to 4K.

For LOB attributes, you must use the following two steps:
1. INSERT empty LOB with the RETURNING clause
2. Call OCILobWrite to write all the data

Does COPY LONG to LOB Work if Data is > 64K?

Question
Example: Copy Long to LOB Using SQL :

INSERT INTO Mulimedia_tab (ciip_id,sound) SELECT id, TO_LOB(SoundEffects)

Does this work if the data in LONG or LONGRAW is > 64K?

Answer
Yes. All data in the LONG is copied to the LOB regardless of size.

Frequently Asked Questions 6-3

General

General

How Do | Determine if the LOB Column with a Trigger is Being Updated?

Question

The project that I'm working on requires a trigger on a LOB column. The
requirement is that when this column is updated, we want to check some
conditions. How do | check whether there is any value in the NEW for this LOB
column? Null does not work, since you can't compare BLOB with NULL.

Answer

You can use the UPDATING clause inside of the trigger to find out if the LOB
column is being updated or not.

CREATE OR REPLACE TRIGGER......

IF UPDATING(lobcol)

Note: The above works only for top-level lob columns.

Reading and Loading LOB Data: What Should Amount Parameter Size Be?

Question
| read in one of the prior release Application Developer's Guides the following:

"When reading the LOB value, it is not an error to try to read beyond the end of the
LOB. This means that you can always specify an input amount of 4Gb regardless of
the starting offset and the amount of data in the LOB. You do need to incur a
round-trip to the server to call OCILobGetLength() to find out the length of the LOB
value in order to determine the amount to read. "

And again, under the DBMS_LOB.LOADFROMFILE() procedure...

"It is not an error to specify an amount that exceeds the length of the data in the
source BFILE. Thus, you can specify a large amount to copy from the BFILE which
will copy data from the src_offset to the end of the BFILE. "

However, the following code...

declare

6-4 Oracle8i Application Developer's Guide - Large Objects (LOBS)

General

cursor cis
selectid, text from bfiles;
v_clob clob;
begin
forjinc
loop
Dbms_Lob.FileOpen (jtext, Dbms_Lob.File_Readonly);
insert into clobs (id, text)
values (jid, empty_clob())
retuming textinto v_clob;
Dbms_Lob.LoadFromFile

(
dest lob =>v clob,
sic lob =>jtext,
amount => 4294967296, *=4Gb*/
dest_offset=>1,
src_offset =>1
)
Dbms_Lob.FileClose (jtext);
end loop;
commit;
end;

/

causes the following error message:

ORA-21560: argument 3is null, invalid, or out of range

Reducing the amount by 1 to 4294967295 causes the following error message:

ORA-22993: specified input amount is greater than actual source amount

Please help me understand why | am getting errors.

Answer
= PL/SQL:

« For DBMS_LOB.LOADFROMFILE, you cannot specify the amount more
than the size of the BFILE. So the code example you gave returns an error.

« For DBMS_LOB.READ, the amount can be larger than the size of the data.
But then, since PL/SQL limits the size of the buffer to 32K, and given the

Frequently Asked Questions 6-5

Index-Organized Tables (I0Ts) and LOBs

fact that the amount should be no larger than the size of the buffer, the
amount is restricted to 32K.

Please note that in PL/SQL, if the amount is larger than the buffer size, it
returns an error. In any case, the amount cannot exceed 4Gig-1 because that is
the limit of a ub4 variable.

« OCI: Again, you cannot specify amount larger than the length of the BFILE in
OCILobLoadFromFile. However, in OCILobRead, you can specify
amount =4Gig-1, and it will read to the end of the LOB.

Index-Organized Tables (IOTs) and LOBs

Is Inline Storage Allowed for LOBs in Index-Organized Tables?

Question
Is inline storage allowed for LOBs in index-organized tables?

Answer

For LOBs in index organized tables, inline LOB storage is allowed only if the table is
created with an overflow segment.

6-6 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Initializing LOB Locators

Initializing LOB Locators

When Do | Use EMPTY_BLOB() and EMPTY_CLOB()?

Question

When must | use EMPTY_BLOB() and EMBPTY_CLOB()? | always thought it was
mandatory for each insert of a CLOB or BLOB to initialize the LOB locator first with
either EMPTY_CLOB() or EMPTY_BLOB().

Answer

In Oracle8i release 8.1.5, you can initialize a LOB with data via the insert statement
as long as the data is <4K. This is why your insert statement worked. Note that you
can also update a LOB with data that is <4K via the UPDATE statement. If the LOB
is larger than 4K perform the following steps:

1. Insert into the table initializing the LOB via EMPTY_BLOB() or EMPTY_
CLOB() and use the returning clause to get back the locator

2. For LOB attributes, call ocilobwrite() to write the entire data to the LOB. For
other than LOB attributes, you can insert all the data via the INSERT
statement.

Note the following:

We've removed the <4K restriction and you can insert >4K worth of data into
the LOB via the insert or even the update statement for LOB columns. Note
however, that you cannot initialize a LOB attribute which is part of an object
type with data and you must use EMPTY_BLOB()/EMPTY_CLOB().

Also you cannot use >4K as the default value for a LOB even though you can
use >4k when inserting or updating the LOB data.

Initializing the LOB value with data or via EMPTY_BLOB()/EMPTY_CLOB() is
orthogonal to how the data is stored. If the LOB value is less than
approximately 4K, then the value is stored inline (as long as the user doesn't
specify DISABLE STORAGE IN ROW) and once it grows larger than 4K it is
moved out of line.

Frequently Asked Questions 6-7

JDBC, JPublisher and LOBs

How Do | Initialize a BLOB Attribute Using EMPTY_BLOB() in Java?

Question

From java we want to insert a complete object with a BLOB attribute into an
Oracle8.1.5 object table. The problem is - in order to do that - we have somehow to
initialize the blob attribute with EMPTY_BLOB(). Is there any way to initialize the
BLOB attribute with EMPTY_BLOB() in java ?

What | am doing at the moment is:

First | insert the object with null in the BLOB attribute. Afterwards | update the
object with an EMPTY_BLOB(), then select it again, get the BLOB locator and finally
write my BLOB.

Is this the only way it works ? Is there a way to initialize the BLOB directly in my
toDatum method of the Custom Datum interface implementation?

Answer
Here is the SQLJ equivalent...
BLOB myblob = null;
#sql{ select empty_blob() into :myblob from dual } ;

and use myblob in your code wherever the BLOB needed to be initialized to null.

See also the question and answer under the section, "JDBC, JPublisher and LOBs",
"How Do | setData to EMPTY_BLOB() Using JPublisher?"

JDBC, JPublisher and LOBs

How Do I Insert a Row With Empty LOB Locator into Table Using JDBC?

Question
Is it possible to insert a row with an empty LOB locator into a table using JDBC?

Answer
You can use the EMPTY_BLOB() in JDBC also.

6-8 Oracle8i Application Developer's Guide - Large Objects (LOBS)

JDBC, JPublisher and LOBs

Staternent stmt = conn.createStatement() ;

ty{
stmtexecute ('insert into lobtable values (empty_blob())");

}
catchf ..}

Another example is:

stmt.execute ("drop table lobtran_table');
stmt.execute (“create table lobtran_table (b1 blob, b2 blob, c1 clob,
2 clob, f1 bfile, 2 bfie)");

stmt.execute (‘insertinto lobtran_table values
(010101010101010101010101010101", empty_bloby(),
‘onetwothreefour’, empty_clob(),
bflename(TEST_DIR', tkpjobLOB11.dat),
bflename (TEST_DIR!, tkpjobLOB12.dat))');

How Do | setData to EMPTY_BLOB() Using JPublisher?

Question

How do | setData to EMPTY_BLOB() Using JPublisher? Is there something like
EMPTY_BLOB() and EMPTY_CLOB() in a Java statement, not a SQL statement
processed by JDBC? How do we setData to an EMPTY_BLOB() using JPublisher?

Answer
One way to build an empty LOB in JPublisher would be as follows:

BLOB b1 =new BLOB(conn, null) ;
You can use b1 in set method for data column.
JDBC: Do OracleBlob and OracleClob Work in 8.1.x?

Question
Do OracleBlob and OracleClob work in 8.1.x?

Frequently Asked Questions 6-9

JDBC, JPublisher and LOBs

Answer

OracleBlob and OracleClob were Oracle specific functions used in JDBC 8.0.x
drivers to access LOB data. In 8.1.x and future releases, OracleBlob and OracleClob
are deprecated.

If you use OracleBlob or OracleClob to access LOB data, you will receive the
following typical error message, for example, when attempting to manipulate LOBs
with Oracle8i release 8.1.5 JDBC Thin Driver :

"Dumping lobs java.sql.SQLException: ORA-03115; unsupported network datatype or
representation etc."

See release 8.1.5 Oracle8i JDBC Developer’s Guide and Referefarea description of
these non-supported functions and alternative and improved JDBC methods.

For further ideas on working with LOBs with Java, refer to the LOB Example
sample shipped with Oracle8i or get a LOB example from
http://www.oracle.com/java/jdbc.

How Do | Manipulate LOBs With the 8.1.5 JDBC Thin Driver?

Question

Has anyone come across the following error when attempting to manipulate LOBs
with the 8.1.5 JDBC Thin Driver:

Dumping lobs

java.sgl.SQLEXxception: ORA-03115: unsupported network datatype or representation
at oracle jdbc.ttc7. TTloer.processEnor(TTloer java:181)

at oracle jdbc ttc7.Odscrarr.receive(Compiled Code)

at oracle jdbc ttc7. TTC7Protocol.describe(Compied Code)

at oracle jdbc tc7.TTC7Protocol.parseExecuteDescribe(TTC7Protocol java: 516)

at oracle jdbc.driver.OracleStatement.doExecuteQuery(OracleStatement java:1002)
at oracle jdbc driver.OracleStatement.doExecute(OracleStatement java:1163)

at oracle jdbc.driver.OracleStatement doExecuteWithTimeout(OracleStateme
ntjava:1211)

at oracle jdbc.driver.OracleStatement.executeQuery(OracleStatement java: 201)

at LobExample.main(Compiled Code)

The code I'm using is the LobExample.java shipped with 8.0.5. This sample was
initially and OCI8 sample. One difference is that | am using the 8.1.5 Thin Driver
against an 8.1.5 instance.

6-10 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

JDBC, JPublisher and LOBs

Answer

You are using a wrong sample. OracleBlob and OracleClob have been deprecated
and they no longer work. Try with the LobExample sample with Oracle8i or you
can get it from http://www.oracle.com/java/Zjdbc

Is the FOR UPDATE Clause Needed on SELECT When Writing to a LOB?

Question

I am running a Java stored procedure that writes a CLOB and am getting an
exception as follows:

ORA-22920: row containing the LOB value is not locked

ORA-06512; at "SYS.DBMS_LOB", line 708

ORA-06512: at line 1

Once | added a 'FOR UPDATE' clause to my SELECT statement, this exception did
not occur.

| feel that the JDBC Developer's Guide and Reference(8.1.5) should be updated to
reflect the need for the 'FOR UPDATE' clause on the SELECT. Specifically, | think
the two sections under Working with LOBs, Getting BLOB and CLOB Locators
(page 4-46 to 4-47) and Creating and Populating a BLOB or CLOB Column (pages
4-52 to 4-54), should be updated.

Answer

This is not a JDBC issue in specific. This is how LOBs work! This got manifested in
the JSP because by default autoCommit is false. You would also see the same
exception when autoCommit is set to false on the client side. You didn't see the
exception when used with 'For Update' because locks are acquired explicitly.

Frequently Asked Questions 6-11

Loading LOBs and Data Into LOBs

Loading LOBs and Data Into LOBs

How do | Load a 1Mb File into a CLOB Column?

Question

How do | insert a file of LMb which is stored on disk, into a CLOB column of my
table. | thought DBMS_LOB.LOADFROMFILE should do the trick, but, the
document says it is valid for BFILE only. How do | do this?

Answer
You can use SQL*Loader. See Oracle8i Utilitiesor in this manual, Chapter 4,
"Managing LOBs", Using SQL Loader to Load LOBs on on page 4-5.

You can use loadfromfile() to load data into a CLOB, but the data is transferred
from the BFILE as raw data -- i.e., no character set conversions are performed. It is
up to you to do the character set conversions yourself before calling loadfromfile().

Use OCILobWrite() with a callback. The callback can read from the operating
system (OS) file and convert the data to the database character set (if it's different
than the OS file's character set) and then write the data to the CLOB.

How Do We Improve BLOB and CLOB Performance When Using JDBC Driver To
Load?

Question

We are facing a performance problem concerning BLOBs and CLOBs. Much time is
consumed when loading data into the BLOB or CLOB using JDBC Driver.

Answer

It's true that inserting data into LOBs using JDBC Thin driver is slower as it still
uses the DBMS_LOB package and this adds the overhead of a full JDBC
CallableStatement execution for each LOB operation.

With the JDBC OCI and JDBC server-side internal drivers, the inserts are faster
because native LOB APIs are used. There is no extra overhead from JDBC driver
implementation.

It's recommended that you use InputStream and OutputStream for accessing and
manipulating LOB data. By using streaming access of LOBs, JDBC driver will handle the

6-12 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Loading LOBs and Data Into LOBs

buffering of the LOB data properly to reduce the number of network round-trips and ensure
that each database operation uses a data size as a multiple of the LOB's natural chunk size.

Here is an example that uses OutputStream to write data to a BLOB:
/*

* This sample writes the GIF file john.gif to a BLOB.

*/

import java.sgl.*;

import javaiio*;
import java.util;

/lmporting the Oracle Jdbc driver package makes the code more readable
import oracle jdbc.driver*;

/Ineeded for new CLOB and BLOB classes
import oracle.sql*;

public class LobExample
{
public static void main (String args [])
throws Exception
{
I/ Register the Oracle JDBC driver
DriverManager.registerDriver(new oracle jdbc.driver.OracleDriver());

/I Connect to the database
/I'You can put a database name after the @ sign in the connection URL.
Connection conn=

DriverManager.getConnection (jdbc:oracle:oci8:@", "scott’, "tiger”);

I'lts faster when auto commitis off
conn.setAutoCommit (false);

Il Create a Statement
Statement stmt = conn.createStatement ();

try
{
stmt.execute ("drop table persons’);
}
catch (SQLException €)

{
Il An exception could be raised here if the table did not exist alreadly.

Frequently Asked Questions 6-13

Loading LOBs and Data Into LOBs

}

Il Create a table containing a BLOB and a CLOB
stmt.execute (create table persons (name varchar2 (30), picture blob)");

I/ Populate the table
stmtexecute (‘insert into persons values (John', EMPTY_BLOB())");

I/ Select the BLOB
ResultSet rset = stmt.executeQuery ('select picture from persons where name
='John™);
if (rsetnext ()
{
1 Getthe BLOB locator from the table
BLOB hlob = ((OracleResultSet)rset).getBLOB (1);

I/ Declare afile handler for the john.gif file
File binaryFile = new File (john.gif);

I/ Create a FilelnputStream object to read the contents of the GIF file
FilelnputStream istream = new FilelnputStream (binaryFile);

I/ Create an OutputStram object to write the BLOB as a stream
OutputStream ostream = blob.getBinaryOutputStream ();

I/ Create atempory buffer
byte(] buffer = new byte[1024];
intlength=0;

Il Use the read() method to read the GIF file to the byte

Il array buffer, then use the write() method to write it to

//the BLOB.

while ((length = istream.read(buffer)) 1= -1)
ostreamwite(ouffer, 0, length);

I/ Close the inputstream and outputstream
istream.close();
ostream.close();

I/ Check the BLOB size
System.out.printin (‘Number of bytes written ="+blob.length();
}

/I Close all resources

rset.close();

6-14 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Loading LOBs and Data Into LOBs

stmt.close();
conn.close();
}
}

Note that you'll get even better performance if you use DBMS _
LOB.LOADFROMFILE() instead of using DBMS_LOB.WRITE().

In order to be able to use DBMS_LOB.LOADFROMFILE(), the data to be written
into the LOB must be in a server-side file.

Frequently Asked Questions 6-15

LOB Indexing

LOB Indexing

Is LOB Index Created in Same Tablespace as LOB Data?

Question
Is the LOB index created for the LOB in the same tablespace as the LOB data?

Answer

The LOB index is created on the LOB column and it indexes the LOB data. The LOB
index resides in the same tablespace as the locator.

Indexing: Why is a BLOB Column Removed on DELETing but not a BFILE Column?

Question

The promotion column could be defined and indexed as a BFILE, but if for
example, a row is DELETEd, the Word document is removed with it when the
promotion column is defined as BLOB, but it is not removed when the column is
defined as a BFILE. Why?

Answer

We don't create an index for BFILE data. Also note that internal persistent LOBs are
automatically backed up with the database whereas external BFILEs are not and
modifications to the internal persistent LOB can be placed in the redo log for future
recovery.

Which Views Can | Query to Find Out About a LOB Index?

Question
Which views can | query to find out about a LOB index?

Answer
« Internal Persistent LOBs:

« ALL_INDEXES View: Contains all the indexes the current user has the
ability to modify in any way. You will not see the LOB index in this view
because LOB indexes cannot be renamed, rebuilt, or modified.

6-16 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Indexing

-« DBA_INDEXES View: Contains all the indexes that exist. Query this view
to find information about the LOB index.

« USER_INDEXES View: Contains all the indexes that the user owns. The
LOB index will be in this view if the user querying it is the same user that
created it.

Temporary LOBs:

For temporary LOBs, the LOB index information can be retrieved from the
view, V$SORT_USAGE.

For example:

SELECT USER#, USERNAME, SEGTYPE, EXTENTS, BLOCKS
FROM v$sort_usage, vésession
WHERE SERIAL#=SESSION_NUM;

Frequently Asked Questions 6-17

LOB Storage and Space Issues

LOB Storage and Space Issues

What Happens If | Specify LOB Tablespace and ENABLE STORAGE IN ROW?

Question

What happens if | specify a LOB TABLESPACE, but also say ENABLE STORAGE
IN ROW?

Answer

If the length of the LOB value is less than approximately 4K, then the data is stored
inline in the table. When it grows to beyond approximately 4K, then the LOB value
is moved to the specified tablespace.

What Are the Pros and Cons of Storing Images in a BFILE Versus a BLOB?

Question

I am looking for information on the pros and cons of storing images in a BFILE
versus a BLOB.

Answer
Here's some basic information.

« Security:

« BFILEs are inherently insecure, as insecure as your operating system (OS).
« Features:

« BFILEs are not writable from typical database APIs whereas BLOBs are.

« One of the most important features is that BLOBSs can participate in
transactions and are recoverable. Not so for BFILEs.

« Performance:
« Roughly the same.

« Upping the size of your buffer cache can make a BIG improvement in BLOB
performance.

« BLOBs can be configured to exist in Oracle's cache which should make
repeated/multiple reads faster.

6-18 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Storage and Space Issues

« Piece wise/non-sequential access of a BLOB is known to be faster than a
that of a BFILE.

« Manageability:

« Only the BFILE locator is stored in an Oracle BACKUP. One needs to do a
separate backup to save the OS file that the BFILE locator points to. The
BLOB data is backed up along with the rest of the database data.

. Storage:

« The amount of table space required to store file data in a BLOB will be
larger than that of the file itself due to LOB index which is the reason for
better BLOB performance for piece wise random access of the BLOB value.

When Should | Specify DISABLE STORAGE IN ROW?

Question

Should DISABLE STORAGE IN ROW always be specified if many UPDATEs, or
SELECTSs including full table scans are anticipated?

Answer

Use DISABLE STORAGE IN ROW:if the other table data will be updated or selected
frequently, not if the LOB data is updated or selected frequently.

Do <4K BLOBs Go Into the Same Segment as Table Data, >4K BLOBs Go Into a
Specified Segment?

Question

If | specify a segment and tablespace for the BLOB, and specify ENABLE STORAGE
IN ROWthen look in USER_LORBS, | see that the BLOB is defined as IN_ROW and it
shows that it has a segment specified. What does this mean? That all BLOBs 4K and
under will go into the same segment as the table data, but the ones larger than that
go into the segment I specified?

Answer
Yes.

Frequently Asked Questions 6-19

LOB Storage and Space Issues

Is 4K LOB Stored Inline?

Question
Release 8.1.5 Oracle8i SQL Referenc€hapter 4, states the following:

"ENABLE STORAGE IN ROW--specifies that the LOB value is stored in the row
(inline) if its length is less than approximately 4K bytes minus system control
information. This is the default. "

If an inline LOB is > 4K, which of the following possibilities is true?

1. The first 4K gets stored in the structured data, and the remainder gets stored
elsewhere

2. The whole LOB is stored elsewhere

It sounds to me like #2, but | need to check.

Answer

You are correct -- it's number 2. Some meta information is stored inline in the row
so that accessing the LOB value is faster. However, the entire LOB value is stored
elsewhere once it grows beyond approximately 4K bytes.

1. Ifyou have a NULL value for the BLOB locator, i.e., you have done the
following:

INSERT INTO blob_table (key, blob_column) VALUES (1, null);

In this case | expect that you do not use any space, like any other NULL value,
as we do not have any pointer to a BLOB value at all.

2. If you have a NULL in the BLOB, i.e., you have done the following:
INSERT INTO blob_table (key, blob_column) VALUES (1, empty_blob();

In this case you would be right, that we need at least a chunk size of space.

We distinguish between when we use BLOBs between NULL values and empty
strings.

6-20 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Storage and Space Issues

How is a LOB Locator Stored If the LOB Column is EMPTY_CLOB() or EMPTY _
BLOB() Instead of NULL? Are Extra Data Blocks Used For This?

Question

If a LOB column is EMPTY_CLOB() or EMPTY_BLOB() instead of NULL, how is the
LOB locator stored in the row and are extra data blocks used for this?

Answer
See also Chapter 7, "Modeling and Design"”, in this manual, under "LOB Storage".

You can run a simple test that creates a table with a LOB column with attribute
DISABLE STORAGE IN ROW Insert thousands of rows with NULL LOBs.

Note that Oracle8i does not consume thousands of chunks to store NULLS!

Frequently Asked Questions 6-21

Migrating From Other Database Systems

Migrating From Other Database Systems

Is Implicit LOB Conversion Between Different LOB Types Allowed in Oracle 8i?

Question
There are no implicit LOB conversions between different LOB types? For example,
in PL/SQL, | cannot use:

INSERT INTO t VALUES (abc);
WHERE t CONTAINS a CLOB column.....

Do you know if this restriction still exists in Oracle8i? | know that this restriction
existed in PL/SQL for Oracle8 but users could issue the INSERT statement in SQL as
long as data to insert was <4K. My understanding is that this <4K restriction has
now been removed in SQL.

Answer

The PL/SQL restriction has been removed in Oracle8i and you can now insert more
than 4K worth of data.

6-22 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Performance

Performance

What Can We Do To Improve the Poor LOB Loading Performance When Using Veritas
File System on Disk Arrays, UNIX, and Oracle?

Question 1

We were experiencing a load time of 70+ seconds when attempting to populate a
BLOB column in the database with 250MB of video content. Compared to the 15
seconds transfer time using the UNIX copy, this seemed unacceptable. What can we
do to improve this situation?

The BLOB was being stored in partitioned tablespace and NOLOGGING,
NOCACHE options were specified to maximize performance.

The INITIAL and NEXT extents for the partition tablespace and partition storage
were defined as 300M, with MINEXTENTS set to 1 in order to incur minimal
overhead when loading the data.

CHUNK size was set to 32768 bytes - maximum for Oracle.
INIT.ORA parameters for db_block_buffers were increased as well as decreased.

All the above did very little to affect the load time - this stayed consistently around
the 70-75 seconds range suggesting that there was minimal effect with these
settings.

Answer 1
First examine the 1/0 storage devices and paths.

Question 2

I/O Devices/Paths 4 SUN AS5200 disk arrays were being used for data storage, i.e.,
the devices where the BLOB was to be written to. Disks on this array were RAID
(0+1) with 4 stripes of (9+9). Veritas VXFS 3.2.1 was the file system on all disks.

In order to measure the effect of using a different device, the tablespace for the
BLOB was defined on /tmp. /tmp is the swap space.

Needless to say, loading the BLOB now only took 14 seconds, implying a data
transfer rate of 1.07GIG per minute - a performance rating as close, if not higher
than the UNIX copy!

Frequently Asked Questions 6-23

Performance

This prompted a closer examination of what was happening when the BLOB was
being loaded to a tablespace on the disk arrays. SAR output indicated significant
waits for 1/0, gobbling up of memory, high CPU cycles and yes, the ever-consistent
load time of 70 seconds. Any suggestions on how to resolve this?

Answer 2

Install the Veritas QuicklO Option! ~ Obviously, there seems to be an issue with Veritas,
UNIX, and Oracle operating together. | have come up with supporting
documentation on this. For acceptable performance with Veritas file-system on your
disk arrays with Oracle, we recommend that you install the Veritas QuicklO
option.

A Final Note: Typically when customers complain that writing LOBs is slow, the
problem is usually not how Oracle writes LOBs. In the above case, you were using
Veritas File System, which uses UNIX file caching, so performance was very poor.

After disabling UNIX caching, performance should improve over that with the
native file copy.

Is There a Difference in Performance When Using DBMS_LOB.SUBSTR Versus
DBMS_LOB.READ?

Question

Is there a difference in performance when using DBMS_LOB.SUBSTR vs. DBMS _
LOB.READ?

Answer

DBMS_LOB.SUBSTR is there because it's a function and you can use it in a SQL
statement. There is no performance difference.

Are There Any White Papers or Guidelines on Tuning LOB Performance?

Question

I was wondering if anyone had any white papers or guidelines on tuning LOB
performance.

6-24 Oracle8i Application Developer’s Guide - Large Objects (LOBS)

Performance

Answer
Chapter 7, "Modeling and Design" in this manual, has a short section called "Best
Performance Practices". Also see "Selecting a Table Architecture" in Chapter 7.

There was a web site with some information about LOB Performance but it is out of
date. Check back periodically as there is a plan to update it!

When Should | Use Chunks Over Reading the Whole Thing?

Question
When should I use chunks over reading the whole thing?

Answer

If you intend to read more than one chunk of the LOB, then use OCILobRead with
the streaming mechanism either via polling or a callback. If you only need to read a
small part of the LOB that will fit in one chunk, then only read that chunk. Reading
more will incur extra network overhead.

Is Inlining the LOB a Good Idea and If So When?

Question
Is inlining the LOB a good idea. If so, then when?

Answer

Inlining the LOB is the default and is recommended most of the time. Oracle8i
stores the LOB inline if the value is less than approximately 4K thus providing
better performance than storing the value out of line. Once the LOB grows larger
than 4K, the LOB value is moved into a different storage segment but meta
information that allows quick lookup of the LOB value is still stored inline. So,
inlining provides the best performance most of the time.

However, you probably don't want to inline the LOB if you'll be doing a lot of base
table processing such as full table scans, multi-row accesses (range scans) or many
updates/selects of columns other than the LOB columns.

Frequently Asked Questions 6-25

Performance

How Can | Store LOBs >4Gb in the Database?

Question
How can | store LOBs that are >4Gb in the database?

Answer
Your alternatives for storing >4Gb LOBs are:

« Compressing the LOB so that it fits in 4Gb

« Breaking up the LOB into 4Gb chunks as separate LOB columns or as separate
rows.

6-26 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

v

Modeling and Design

This chapter discusses the following topics:
« Selecting a Datatype
« LOBsin Comparison to LONG and LONG RAW Types
« Character Set Conversions: Working with Varying-Width Character Data
« Selecting a Table Architecture
« Where are NULL Values in a LOB Column Stored?
« Defining Tablespace and Storage Characteristics for Internal LOBs
« LOB Storage Characteristics for LOB Column or Attribute
» TABLESPACE and LOB Index
« How to Create Gigabyte LOBs
« LOB Locators and Transaction Boundaries
« Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs
« Open, Close and IsOpen Interfaces for Internal LOBs
« LOBs in Index Organized Tables (10T)
« Manipulating LOBs in Partitioned Tables
« Indexing a LOB Column
« Best Performance Practices
« Moving Data to LOB in Threaded Environment

Note: Examples used in this chapter are based on the multimedia schema and table
Multimedia_tab described in Chapter 8, "'Sample Application™.

Modeling and Design 7-1

Selecting a Datatype

Selecting a Datatype

LOBs in Comparison to LONG and LONG RAW Types
LOBsare similar to LONGand LONG RAWypes, but differ in the following ways:

Table 7-1 LOBs Vs. LONG RAW

LOBs Data Type

I

LONG and LONG RAW Data Type

You can store multiple LOBs in a single row

'You can store only one LONGor LONG RAW
per row.

LOBs can be attributes of a user-defined
datatype

IThis is not possible with either a LONGor
LONG RAW

Only the LOB locator is stored in the table
column; BLOBand CLOBdata can be stored
in separate tablespaces and BFILE data is
stored as an external file.

For inline LOBs, Oracle will store LOBs
that are less than approximately 4,000 bytes
of data in the table column.

In the case of a LONGor LONG RA\We
entire value is stored in the table column.

When you access a LOBcolumn, it is the
locator which is returned.

\When you access a LONGor LONG RAWthe
entire value is returned.

A LOB can be up to 4 gigabytes in size. The
BFILE maximum is operating system
dependent, but cannot exceed 4 gigabytes.

The valid accessible range is 1 to (2°2-1).

By contrast, a LONGor LONG RAV¥ limited
to 2 gigabytes.

There is greater flexibility in manipulating
data in a random, piece-wise manner with
LOBs. LOBs can be accessed at random
offsets.

Less flexibility in manipulating data in a
random, piece-wise manner with LONG or
LONG RAW data. LONGs must be
accessed from the beginning to the desired
location.

You can replicate LOBs in both local and
distributed environments.

Replication in both local and distributed
environments is not possible with aLONCor
LONG RAV¢ee Oracle8i Replicatioh

Existing LONGcolumns can be converted to LOBs using the TO_LOR) function (see
"Copy LONG to LOB" on page 9-40 in Chapter 9, "Internal Persistent LOBs").

Note that Oracle8i does not support conversion of LOB back to LONG.

7-2 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Selecting a Datatype

Character Set Conversions: Working with Varying-Width Character Data

In using OCI (Oracle Call Interface), or any of the programmatic environments that
access OCI functionality, character set conversions are implicitly performed when
translating from one character set to another.

However, no implicit translation is ever performed from binary data to a character
set. When you use the loadfromfile operation to populate a CLOBor NCLOByou
are populating the LOBwith binary data from the BFILE . In that case, you will need
to perform character set conversions on the BFILE data before executing
loadfromfile

See: Oracle8i National Language Support Gujder more detail on
character set conversions.

Modeling and Design 7-3

Selecting a Table Architecture

Selecting a Table Architecture
When designing your table, consider the following design criteria:
« LOB storage
« Where are NULL Values in a LOB Column Stored?
« Defining Tablespace and Storage Characteristics for Internal LOBs
« LOB Storage Characteristics for LOB Column or Attribute
« TABLESPACE and LOB Index
* PCTVERSION
* CACHE / NOCACHE /7 CACHE READS
* LOGGING /7 NOLOGGING
* CHUNK
* ENABLE | DISABLE STORAGE IN ROW
« How to Create Gigabyte LOBs
« LOBs in Index Organized Tables (10T)
« Manipulating LOBs in Partitioned Tables

» Indexing a LOB Column

7-4 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

LOB Storage

LOB Storage

Where are NULL Values in a LOB Column Stored?

NULL LOB Column Storage: NULL Value is Stored

If a LOB column is NULL, no data blocks are used to store the information. The
NULL value is stored in the row just like any other NULL value. This is true even
when you specify DISABLE STORAGE IN ROW for the LOB.

EMPTY_CLOB() or EMPTY_BLOB() Column Storage: LOB Locator is Stored

If a LOB column is initialized with EMPTY_CLOB() or EMPTY_BLOB(), instead of
NULL, a LOB locator is stored in the row. No additional storage is used.

« DISABLE STORAGE IN ROW: If you have a LOB with one byte of data, there
will be a LOB locator in the row. This is true whether or not the LOB was
created as ENABLEor DISABLE STORAGE IN ROW In addition, an entire
chunksize of data blocks is used to store the one byte of data if the LOB column
was created as DISABLE STORAGE IN ROW.

« ENABLE STORAGE IN ROW: If the LOB column was created as ENABLE
STORAGE IN RQWracle8i only consumes one extra byte of storage in the row
to store the one byte of data. If you have a LOB column created with ENABLE
STORAGE IN ROWand the amount of data to store is larger than will fit in the
row (approximately 4,000 bytes) Oracle8i uses a multiple of chunksizes to store
it.

Defining Tablespace and Storage Characteristics for Internal LOBs

When defining LOBs in a table, you can explicitly indicate the tablespace and
storage characteristics for each internal LOB.

For example:

CREATE TABLE ContainsLOB_tab (n NUMBER, ¢ CLOB)
lob (c) STORE AS (CHUNK 4096

PCTVERSION 5
NOCACHE LOGGING
STORAGE (MAXEXTENTS 5)

)
There are no extra tablespace or storage characteristics for external LOBs since they
are not stored in the database.

Modeling and Design 7-5

LOB Storage

If you later wish to modify the LOB storage parameters, use the MODIFY LOB
clause of the ALTER TABLE statement.

Note: Only some storage parameters may be modified! For
example, you can use the ALTER TABLE ... MODIFY LOB
statement to change PCTVERSION, CACHE/NO CACHE
LOGGING/NO LOGGING, and the STORAGE clause.

You can also change the TABLESPACE via the ALTER TABLE
...MOVE statement.

However, once the table has been created, you cannot change the
CHUNK size, or the ENABLE/DISABLE STORAGE IN ROW
settings.

Assigning a LOB Data Segment Name

As shown in the previous example, specifying a name for the LOBdata segment
makes for a much more intuitive working environment. When querying the LOB
data dictionary views USER_LOBSALL _LOBS DBA_LOBSsee Oracle8i Reference),
you see the LOBdata segment that you chose instead of system-generated names.

LOB Storage Characteristics for LOB Column or Attribute

LOBstorage characteristics that can be specified for a LOBcolumn or a LOBattribute
include the following:

« TABLESPACE

« PCTVERSION

« CACHENOCACHE/CACHE READS

« LOGGING/NOLOGGING

« CHUNK

« ENABLEDISABLE STORAGE IN ROW

« STORAGE. See the "STORAGE clause” in Oracle8i SQL Reference for more
information.

For most users, defaults for these storage characteristics will be sufficient. If you
want to fine-tune LOB storage, you should consider the following guidelines.

7-6 Oracle8i Application Developer's Guide - Large Objects (LOBS)

LOB Storage

TABLESPACE and LOB Index

PCTVERSION

Best performance for LOBs can be achieved by specifying storage for LOBs in a
tablespace different from the one used for the table that contains the LOB If many
different LOBs will be accessed frequently, it may also be useful to specify a separate
tablespace for each LOBcolumn or attribute in order to reduce device contention.

The LOBindex is an internal structure that is strongly associated with LOBstorage.
This implies that a user may not drop the LOBindex and rebuild it.

Note: The LOB index cannot be altered.

The system determines which tablespace to use for LOBdata and LOBindex
depending on the user specification in the LOBstorage clause:

« If you do not specify a tablespace for the LOBdata, the table's tablespace is used
for the LOBdata and index.

« Ifyou specify a tablespace for the LOBdata, both the LOBdata and index use
the tablespace that was specified.

Tablespace for LOB Index in Non-Partitioned Table

If in creating tables in 8.1 you specify a tablespace for the LOBindex for a
non-partitioned table, your specification of the tablespace will be ignored and the
LOBindex will be co-located with the LOBdata. Partitioned LOBs do not include the
LOBindex syntax.

Specifying a separate tablespace for the LOBstorage segments will allow for a
decrease in contention on the table's tablespace.

When a LOBis modified, a new version of the LOBpage is made in order to support
consistent read of prior versions of the LOBvalue.

PCTVERSIONSs the percentage of all used LOBdata space that can be occupied by
old versions of LOBdata pages. As soon as old versions of LOBdata pages start to
occupy more than the PCTVERSIONamount of used LOBspace, Oracle tries to
reclaim the old versions and reuse them. In other words, PCTVERSIONS the
percent of used LOBdata blocks that is available for versioning old LOBdata.

Default: 10 (%) Minimum: 0 (%) Maximum: 100 (%)

Modeling and Design 7-7

LOB Storage

In order to decide what value PCTVERSIONshould be set to, consider how often
LOBs are updated, and how often you read the updated LOBs.

Table 7-2, "Recommended PCTVERSION Settings" provides some guidelines for
determining a suitable PCTVERSIONvalue.

Table 7-2 Recommended PCTVERSION Settings

LOB Update Pattern LOB Read Pattern PCTVERSION
Updates XX% of LOBdata Reads updated LOBs XX%
Updates XX% of LOBdata Reads LOBs but not the updated LOBs 0%

Updates XX% of LOBdata Reads both LOBs and non-updated LOB ~ XX%
Never updates LOB Reads LOBs 0%

Example 1:
Several LOB updates concurrent with heavy reads of LOBs.

set PCTVERSION= 20%

Setting PCTVERSIONo twice the default allows more free pages to be used for old
versions of data pages. Since large queries may require consistent reads of LOBs, it
may be useful to retain old versions of LOBpages. In this case LOBstorage may
grow because Oracle will not reuse free pages aggressively.

Example 2:

LOBs are created and written just once and are primarily read-only afterwards.
Updates are infrequent.

set PCTVERSION = 5% or lower

The more infrequent and smaller the LOBupdates are, the less space needs to be
reserved for old copies of LOBdata. If existing LOBs are known to be read-only, you
could safely set PCTVERSIONO 0% since there would never be any pages needed
for old versions of data.

CACHE / NOCACHE / CACHE READS

When creating tables that contain LOBs, use the cache options according to the
guidelines in Table 7-3, "When to Use CACHE, NOCACHE, and CACHE READS":

7-8 Oracle8i Application Developer's Guide - Large Objects (LOBS)

LOB Storage

Table 7-3 When to Use CACHE, NOCACHE, and CACHE READS

Cache Mode Read ... Written To ...

CACHE Frequently Frequently
NOCACHHdefault) Once or occasionally Never

CACHE READS Frequently Once or occasionally

CACHE / NOCACHE / CACHE READS: LOB Values and Buffer Cache
« CACHE: Oracle places LOB pages in the buffer cache for faster access.

« NOCACHE: As a parameter in the LOB_storage_clause, NOCACHE specifies
that LOB values are either not brought into the buffer cache or are brought into
the buffer cache and placed at the least recently used end of the LRU list.

« CACHE READS: LOB values are brought into the buffer cache only during read
and not during write operations.

Downgrading to 8.1.5 or 8.0.x

If you have CACHE READSet for LOBs in 8.1.6 and you downgrade to 8.1.5 or
8.0.x, your CACHE READS.0OBs generate a warning and become CACHE LOGGING
LOBs.

You can explicitly alter the LOBs' storage characteristics later if you do not want
your LOBs to he CACHE LOGGINGFor example, if you want the LOBs to be
NOCACHHise ALTER TABLE to clearly modify them to NOCACHE

LOGGING / NOLOGGING

[N LOGGINGhas a similar application with regard to using LOBs as it does for
other table operations. In the normal case, if the [NQLOGGING:lause is omitted, this
means that neither NO LOGGIN@or LOGGINGS specified and the logging attribute
of the table or table partition defaults to the logging attribute of the tablespace in
which it resides.

For LOBs, there is a further alternative depending on how CACHBHs stipulated.

« CACHSHSs specified and [NQLOGGINCG:lause is omitted, LOGGINGs
automatically implemented (because you cannot have CACHE NOLOGGING

« CACHSHSs not specified and [NQLOGGINGlause is omitted, the process defaults
in the same way as it does for tables and partitioned tables. That is, the

Modeling and Design 7-9

LOB Storage

CHUNK

[NQLOGGINGvalue is obtained from the tablespace in which the LOBvalue
resides.

The following issues should also be kept in mind.

LOBs Will Always Generate Undo for LOB Index Pages

Regardless of whether LOGGINGor NOLOGGINGs set LOBs will never generate
rollback information (undo) for LOBdata pages because old LOBdata is stored in
versions. Rollback information that is created for LOBs tends to be small because it
is only for the LOBindex page changes.

When LOGGING is Set Oracle Will Generate Full Redo for LOB Data Pages

NOLOGGINGs intended to be used when a customer does not care about media
recovery. Thus, if the disk/tape/storage media fails, you will not be able to recover
your changes from the log since the changes were never logged.

An example of when NOLOGGINGs useful is bulk loads or inserts. For instance,
when loading data into the LORB if you don't care about redo and can just start the
load over if it fails, set the LOBs data segment storage characteristics to NOCACHE
NOLOGGINGT his will give good performance for the initial load of data. Once you
have completed loading the data, you can use ALTER TABLEto modify the LOB
storage characteristics for the LOBdata segment to be what you really want for
normal LOBoperations -- i.e. CACHEor NOCACHE LOGGING

Note: CACHEmplies that you also get LOGGING

Set CHUNKo the number of blocks of LOBdata that will be accessed at one time i.e.
the number of blocks that will be read or written via OClLobRead() ,
OClLobWrite() ,DBMS_LOBREAD(), or DBMS_LOBVRITE() during one access of
the LOBvalue.

Note: The default value for CHUNHKs one Oracle block and does
not vary across platforms.

If only one block of LOBdata is accessed at a time, set CHUNKo the size of one
block. For example, if the database block size is 2K, then set CHUNHKo 2K.

7-10 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Storage

Set INITIAL and NEXT to Larger than CHUNK

If you explicitly specify storage characteristics for the LOB make sure that INITIAL
and NEXTfor the LOBdata segment storage are set to a size that is larger than the
CHUNKsize. For example, if the database block size is 2K and you specify a CHUNK
of 8K, make sure that INITIAL and NEXTare bigger than 8K and preferably
considerably bigger (for example, at least 16K).

Put another way: If you specify a value for INITIAL, NEXT or the LOB CHUNK
size, make sure that:

. CHUNK= NEXT
and
. CHUNK= INITIAL

ENABLE | DISABLE STORAGE IN ROW

You use the ENABLE] DISABLE STORAGE IN ROWAuse to indicate whether the
LOBshould be stored inline (i.e. in the row) or out of line.

Note: You may not alter this specification once you have made it:
if you ENABLE STORAGE IN ROW, you cannot alter it to
DISABLE STORAGE IN ROW and vice versa.

The default is ENABLE STORAGE IN ROW

Small (ENABLE or DISABLE STORAGE) Versus Large (ENABLE STORAGE) LOBs

The maximum amount of LOBdata stored in the row is the maximum VARCHARIize
(4000). This includes the control information as well as the LOBvalue. If you
indicate that the LOBshould be stored in the row, once the LOBvalue and control
information is larger than 4000, the LOBvalue is automatically moved out of the
row.

This suggests the following guidelines:

« Small LOBs: If the LOBis small (i.e. < 4000 bytes), then storing the LOBdata out
of line will decrease performance. However, storing the LOBin the row
increases the size of the row. This will impact performance if the user is doing a
lot of base table processing, such as full table scans, multi-row accesses (range
scans) or many UPDATE SELECTto columns other than the LOBcolumns.

Modeling and Design 7-11

LOB Storage

« Large LOBs: If you do not expect LOBdata to be < 4000 bytes, i.e. if all LOBs are
big, then the default, ENABLE STORAGE IN ROW, is the best choice for the
following reasons:

* LOBdata is automatically moved out of line once it gets bigger than
4000 (which will be the case here since the LOBdata is big to begin
with), and

* Performance will be slightly better since we still store some control
information in the row even after we move the LOBdata out of the row.

7-12 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

How to Create Gigabyte LOBs

How to Create Gigabyte LOBs

LOBs in Oracle8i can be up to 4 gigabytes. To create gigabyte LOBs, use the
following guidelines to make use of all available space in the tablespace for LOB
storage:

Single Datafile Size Restrictions: There are restrictions on the size of a single
datafile for each operating system (OS). For example, Solaris 2.5 only allows OS
files of up to 2 gigabytes. Hence, add more datafiles to the tablespace when the
LOB grows larger than the maximum allowed file size of the OS on which your
Oracle database runs.

Set PCT INCREASE Parameter to Zero: PCTINCREASE parameter in the LOB
storage clause specifies the percent growth of the new extent size. When a LOB
is being filled up piece by piece in a tablespace, numerous new extents get
created in the process. If the extent sizes keep increasing by the default value of
50 percent every time, extents will become unmanageably big and eventually
will waste unnecessary space in the tablespace. Therefore, the PCTINCREASE
parameter should be set to zero or a small value.

Set MAXEXTENTS to Suitable Value or UNLIMITED: MAXEXTENTS in the
LOB storage clause should be set to a reasonable value to suit the projected size
of the LOB, or set it to UNLIMITED for safety.

Use a Large Extent Size: For every new extent created, Oracle8i generates undo
information for the header and other meta data for the extent. If the number of
extents is large, the rollback segment can be saturated. To get around this,
choose a large extent size, say 100 megabytes, to reduce the frequency of extent
creation, or commit the transaction more often to reuse the space in the rollback
segment.

Example: Creating a Tablespace and Table to Store Gigabyte LOBs

A working example of creating a tablespace and a table that can store gigabyte
LOBs follows. The case applies to the multimedia application example in Chapter 8,
"Sample Application”, if the video Frame in the multimedia table is expected to be
huge in size, i.e., gigabytes.

CREATE TABLESPACE lohths1 datafile Avourfown/data/directory/lobtbs_1.dat' size
2000M reuse online nologging default storage (maxextents unlimited);

CREATE TABLESPACE lobths1 add datafile yourfown/data/directory/lobtbs_2.dat
size 2000M reuse;

ALTER TABLESPACE lobths1 add datafile yourfown/data/directory/lobtbs_2.dat
size 1000M reuse;

Modeling and Design 7-13

How to Create Gigabyte LOBs

CREATE TABLE Mulimedia_tab (

Clip ID NUMBER NOT NULL,

Story CLOB default EMPTY_CLOB(),

FLSub NCLOB default EMPTY_CLOB(),

Photo BFILE default NULL,

Frame BLOB default EMPTY_BLOB(),

Sound BLOB default EMPTY_BLOBY(),

Voiced ref REF Voiced_typ,

InNSeg_ntab InSeg_tab,

Music BFILE default NULL,

Map obj Map_typ

Comments LONG
)
NESTED TABLE InSeg_ntab STORE AS InSeg_nestedtab
LOB(Frame) store as (tablespace lobths1 chunk 32768 pctversion 0 NOCACHE
NOLOGGING
storage(initial 200M next 100M maxextents unlimited pctincrease 0));

7-14 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOB Locators and Transaction Boundaries

LOB Locators and Transaction Boundaries

See Chapter 2, "Basic Components" for a basic description of LOB locators and their
operations.

See Chapter 5, "Advanced Topics" for a description of LOB locator transaction
boundaries and using read consistent locators.

Modeling and Design 7-15

Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs

Binds Greater Than 4,000 Bytes in INSERTs and UPDATES

Binds Greater than 4,000 Bytes are Now Allowed For LOB INSERTs and UPDATES

This release supports binds of more than 4,000 bytes of data for LOB INSERTs and
UPDATESs. In previous releases this feature was allowed for LONG columns only. You can
now bind the followingor INSERT or UPDATE into a LOB column:

« Up to 4GB data using OCIBindByPos(), OCIBindByName()
« Up to 32,767 bytes data using PL/SQL binds

Since you can have multiple LOBs in a row, you can bind up to 4GB data for each one of
those LOBs in the same INSERT or UPDATE statement. In other words, multiple binds of
more than 4,000 bytes in size are allowed in a single statement.

Note: The length of the default values you specify for LOBs still has the
4,000 byte restriction.

Ensure Your Temporary Tablespace is Large Enough! The bind of more than

4,000 bytes of data to a LOB column uses space from temporary tablespace. Hence ensure
that your temporary tablespace is large enough to hold at least the sum of all the bind lengths
for LOBs.

If your temporary tablespace is extendable, it will be extended automatically after
the existing space is fully consumed. Use the following statement:

CREATE TABLESPACE .. AUTOEXTEND ON ... TEMPORARY ..;

to create an extendable temporary tablespace.

Binds of More Than 4,000 Bytes ... No HEX to RAW or RAW to HEX Conversion

Table Multimedia_tab is described in Chapter 8, "Sample Application”. The
following examples use an additional column called Comments. You will need to
add the Comments column to table Multimedia_tab’s CREATE TABLE syntax
with the following line;

Comments LONG - stores the comments of viewers on this clip

Oracle does not do any implicit conversion, such as HEX to RAW or RAW to HEX
e.t.c., for data of more than 4000 bytes.

7-16 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Binds Greater Than 4,000 Bytes in INSERTs and UPDATES

declare
charbuf varchar(32767);
rawbuf raw(32767);
begin
charbuf :=Ipad (&, 12000, ');
rawbuf :=utl_raw.cast to_raw(charbuf);

Table 7-4, "Binds of More Than 4,000 Bytes: Allowed INSERT and UPDATE Operations"
outlines which INSERT operations are allowed in the above example and which are not. The
same cases also apply to UPDATE operations.

Table 7-4 Binds of More Than 4,000 Bytes: Allowed INSERT and UPDATE Operations

Allowed INSERTs/UPDATEsS ... Non-Allowed INSERTs/UPDATES ...
INSERT INTO INSERT INTO
Multimedia_tab (story, sound) Multimedia_tab(sound)
VALUES (charbuf, rawbuf); VALUES(charbuf);

This does not work because Oracle won't do
implicit hex to raw conversion.

INSERT INTO

Multimedia_tab(story)

VALUES (rawburf);
IThis does not work because Oracle won't do
implicit hex to raw conversion.

INSERT INTO

Multimedia_tab(sound)

VALUES(

utl_raw.cast to_raw(charbuf));
This does not work because we cannot combine

utl_raw.cast_to_raw() operator with binds of
more than 4,000 bytes.

4,000 Byte Limit On Results of SQL Operator

If you bind more than 4,000 bytes of data to a BLOB or a CLOB, and the data consists of an
SQL operator, then Oracle limits the size of the result to at most 4,000 bytes.

The following statement inserts only 4,000 bytes because the result of LPAD is limited to
4,000 bytes:

INSERT INTO Mulimedia_tab (story) VALUES (Ipad(a, 5000, 'a));

Modeling and Design 7-17

Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs

The following statement inserts only 2,000 bytes because the result of LPAD is limited to
4,000 bytes, and the implicit hex to raw conversion converts it to 2,000 bytes of RAW data:

INSERT INTO Multimedia._tab (sound) VALUES (Ipad(a, 5000, ‘a));

Binds of More Than 4,000 Bytes: Restrictions

The following lists the restrictions for binds of more than 4,000 bytes:

« Ifatable has both LONG and LOB columns then you can bind more than 4,000 bytes of
data to either the LONG or LOB columns, but not both in the same statement.

= You cannot bind data of any size to LOB attributes in ADTs. This restriction in prior
releases still exists. For LOB attributes, first insert an empty LOB locator and then
modify the contents of the LOB using OCILob* functions.

. In an INSERT AS SELECT operation, binding of any length data to LOB columns is
not allowed. This restriction in prior releases still exists.

Example: PL/SQL - Using Binds of More Than 4,000 Bytes in INSERT and UPDATE

CREATE TABLE foo (aINTEGER);
DECLARE
bigtext VARCHAR(32767);
smalitext VARCHAR(2000);
bigraw RAW (32767);
BEGIN
bigtext =LPAD(a, 32767, 'd);
smalitext :=LPAD(a, 2000, 'a);
bigraw = utiraw.cast_to_raw (bigtext);

/* The following is allowed: %/
INSERT INTO Mulimedia._tab(clip_id, story, frame, comments)
VALUES (1,bigtext, bigraw,smalttext);
/* The following is allowed.: %/
INSERT INTO Mulimedia_tab (clip_id, story, comments)
VALUES (2,smalltext, bigtext);

bigtext :=LPAD(b', 32767, bY);
smalitext .= LPAD(b', 20, ‘a);
bigraw = utlraw.cast to_raw (bigtext);

/* The following is allowed: %/

UPDATE Mulimedia_tab SET story = bigtext, frame = bigraw,
comments = smalltext;

7-18 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Binds Greater Than 4,000 Bytes in INSERTs and UPDATES

/* The following is allowed %
UPDATE Mulimedia_tab set story = smalltext, comments = bigtext;

/* The following is NOT allowed because we are trying to insert more than
4000 bytes of data in a LONG and a LOB column: %
| NSERT INTO Mulimedia_tab (cljp_id, story, comments)
VALUES (5, bigtext, bigtext);

/* The following is NOT allowed because we are trying to insert
data into LOB attribute %/
INSERT into Mulimedia_tab (clip_id,map _obj)
VALUES (10,map_typ(NULL, NULL, NULL, NULL, NULL bigtext, NULL));

/* The following is not allowed because we try to perform INSERT AS
SELECT dataINTOLOB Y
INSERT INTO Mulimedia._tab (story) AS SELECT bigtext FROM foo;
END;

Example: PL/SQL - Binds of More Than 4,000 Bytes -- Inserts Not Supported Because
Hex to Raw/Raw to Hex Conversion is Not Supported

/* Oracle does not do any impilicit conversion (e.g., HEX to RAW or RAW to HEX
etc.) for data of more than 4000 bytes. Hence, the following cases will not
work: %

declare
charbuf varchar(32767);
rawbuf raw(32767);
begin
charbuf = Ipad (a, 12000, 'a);
rawbuf :=utl_raw.cast to_raw(charbuf);

/* The following is allowed ... %/
INSERT INTO Multimedia_tab (story, sound) VALUES (charbuf, rawbuf);

/* The following is not allowed because Oracle won't do implicit
hex to raw conversion. ¥/
INSERT INTO Multimedia._tab (sound) VALUES (charbuf);

/* The following is not allowed becauise Oracle won't do implicit

raw to hex conversion. %/
INSERT INTO Mulimedia_tab (story) VALUES (rawbuf);

Modeling and Design 7-19

Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs

/* The following is not allowed becavise we cant combine the
utl_raw.cast to_raw() operator with the bind of more than 4,000 bytes. %/
INSERT INTO Multimedia_tab (sound) VALUES (utl_raw.cast _to_raw(charbur));

end;
/

Example: PL/SQL - 4,000 Byte Result Limit in Binds of More than 4,000 Bytes When
Data Includes SQL Operator

If you bind more than 4,000 bytes of data to a BLOB or a CLOB, and the data
actually consists of a SQL operator, then Oracle8i limits the size of the result to 4,000
bytes.

For example,

/* The following command inserts only 4,000 bytes because the resullt of
LPAD is limited to 4,000 bytes %/
INSERT INTO Muttimedia_tab (story) VALUES (Ipad(a’, 5000, ‘a));

/* The following command inserts only 2,000 bytes because the resullt of
LPAD is limited to 4,000 bytes, and the implicit hex to raw conversion
converts itto 2,000 bytes of RAW data. ¥/

INSERT INTO Muttimedia,_tab (sound) VALUES (Ipad(', 5000, 'a);

Example: C (OCI) - Binds of More than 4,000 Bytes For INSERT and UPDATE

CREATE TABLE foo(a INTEGER);
void insert() /* A function in an OCl program ¥
{
/* The following is allowed %
ubl buffer{8000];
text *insert_sgl="INSERT INTO Multimedia._tab(story, frame, comments)
VALUES (1, :2,:3)"
OCISmtPrepare(stmthp, errhp, insert_sql, strlen((char®)insert_sq),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
OCIBindByPos(stmthp, &bindhp[0], erhp, 1, (dvoid *)buffer, 8000,
SQLT_LNG,0,0,0,0,0, (ub4) OCI_DEFAULT);
OCIBindByPos(stmthp, &indhp[1], errhp, 2, (dvoid *)buffer, 8000,
SQLT_LBI,0,0,0,0,0, (ub4) OCl_DEFAULT);
OCIBindByPos(stmthp, &indhp[2], errhp, 3, (dvoid *)buffer, 2000,
SQLT_LNG, 0,0,0,0,0, (ub4) OCI_DEFAULT);
OCIStmtExecute(svchp, stmthp, errhp, 1,0, OCl_ DEFAULT);

7-20 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Binds Greater Than 4,000 Bytes in INSERTs and UPDATES

void insert()
{
/* The following is allowed %/
ubl buffer{8000];
text*insert_sql="INSERT INTO Multimedia_tab (story,comments)
VALUES (1, :2)";
OCIStmtPrepare(stmthp, errhp, insert_sq, strien((char*)insert_sq),
(ubd) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
SQLT_LNG, 0,0,0,0,0, (ub4) OCI_DEFAULT);
OCIBindByPaos(stmthp, &bindhp[1], errhp, 2, (dvoid *)buffer, 8000,
SQLT_LNG, 0,0, 0,0,0, (ub4) OCI_DEFAULT);
OCIStmtExecute(svchp, stmthp, errhp, 1, 0, OCI_DEFAULT);
}

void insert()
{
/* The following is allowed, no matter how many rows it updates %
ub1 bufferf8000];
text *insert_sql = (text *)'UPDATE Mulimedia_tab SET
story =1, sound=:2, comments=:3";
OCIStmtPrepare(stmthp, errhp, insert_sql, strien((chart)insert_sq),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
OCIBindByPos(stmthp, &indhp|0], errhp, 1, (dvoid *)buffer, 8000,
SQLT_LNG,0,0,0,0,0, (ub4) OCI_DEFAULT);
OCIBindByPos(stmthp, &indhp[1], errhp, 2, (dvoid *)buffer, 8000,
SQLT_LBI,0,0,0,0,0, (ub4) OCl_DEFAULT);
OCIBindByPos(stmthp, &bindhp[2], emhp, 3, (dvoid *)buffer, 2000,
SQLT_LNG,0,0,0,0,0, (ub4) OCI_DEFAULT);
OCIStmtExecute(svchp, stmthp, errhp, 1, 0, OCI_DEFAULT);
}

void insert()
{
/* The following is allowed, no matter how many rows it updates %/
ubl buffer{8000];
text *insert_sql = (text *)"'UPDATE Mulimedia_tab SET
story =1, sound=:2, comments=:3";
OCIStmtPrepare(stmthp, errhp, insert_sql, strlen((char®)insert_sq),
(ub4) OCI_NTV_SYNTAX, (ub4) OCl_DEFAULT);
OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
SQLT_LNG,0,0,0,0,0, (ub4) OCI_DEFAULT);
OCIBindByPos(stmthp, &indhp[1], errhp, 2, (dvoid *)buffer, 2000,
SQLT_LNG, 0,0,0,0,0, (ub4) OCl_ DEFAULT);

Modeling and Design 7-21

Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs

OCIBindByPos(stmthp, &bindhp[2], errhp, 3, (dvoid *)buffer, 8000,
SQLT_LNG,0,0,0,0,0, (ub4) OCI_DEFAULT);
OCIStmtExecute(svchp, stmthp, errhp, 1,0, OCl_ DEFAULT);
}

void insert()

{

/* Piecewise, callback and array insertupdate operations similar to
the allowed regular insert/update operations are also allowed ¥

}

void insert()

{

/* The following is NOT allowed because we try to insert >4000 bytes

to both LOB and LONG columns %

ub1 bufferf8000];

text *insert_sql = (text *)'INSERT INTO Mulimedia_tab (Story, comments)
VALUES (1, 2)";

OCIStmtPrepare(stmthp, errhp, insert_sq, strlen((charinsert_sql),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

OCIBindByPos(stmithp, &bindhp[0], erp, 1, (dvoid *)buffer, 8000,
SQLT_LNG, 0,0,0,0,0, (ub4) OCI_ DEFAULT);

OCIBindByPos(stmthp, &bindhp([1], entp, 2, (dvoid *)buffer, 8000,
SQOLT LNG, 0,0,0,0,0, (ub4) OCI_DEFAULT);

OCIStmitExecute(svchp, stmthp, entip, 1, 0, OCl_DEFAULT);

}

void insert()
{
/* The following is NOT allowed because we try to insert data into
LOB attributes %
ub1 bufferf8000];
text *insert_sql = (text *)'INSERT INTO Mulimedia_tab (map_obyj)
VALUES (map_typ(NULL, NULL, NULL, NULL, NULL,:1, NULL))"
OCIStmtPrepare(stmthp, emrhp, insert_sq, strlen((charinsert_sql),
(Ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
OCIBindByPos(stmithp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
SQLT LNG, 0,00, 0,0, (ub4) OCl DEFAULT);
OCIStmtExecute(svehp, stmithp, entip, 1, 0, OCl_DEFAULT);
}

void insert()

{

/* The following is NOT allowed because we try to do insert as
select character data into LOB column %

7-22 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Binds Greater Than 4,000 Bytes in INSERTs and UPDATES

ubl buffer{8000];

text *insert_sql = (text *)'INSERT INTO Multimedia_tab (story)
SELECT :1 from FOO",

OCIStmtPrepare(stmthp, errhp, insert_sq,strlen((char®)insert_sq),
(ub4) OCI_NTV_SYNTAX, (ub4) OC|_DEFAULT);

OCIBindByPaos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 8000,
SQLT_LNG,0,0,0,0,0, (ub4) OCI_DEFAULT);

OCIStmtExecute(svchp, stmthp, errhp, 1, 0, OCI_DEFAULT);

}

void insert()

{

/* Other update operations similar to the disallowed insert operations are also
not allowed. Piecewise and callback insertiupdate operations similar to the
disallowed regular insert/update operations are also not allowed %

}

Modeling and Design 7-23

Open, Close and IsOpen Interfaces for Internal LOBs

Open, Close and IsOpen Interfaces for Internal LOBs

These interfaces let you open and close an internal LOBand test whether an internal
LOBis already open.

It is not mandatory that you wrap all LOBoperations inside the Open/Close APIs.
The addition of this feature will not impact already-existing applications that write
to LOBs without first opening them, since these calls did not exist in 8.0.

It is important to note that openness is associated with the LOB not the locator. The
locator does not save any information as to whether the LOBto which it refers is
open.

Wrap LOB Operations Inside an Open / Close Call !

« If you do not wrap LOBoperations inside an Open/Close call operation: Each
modification to the LOBwill implicitly open and close the LOBthereby firing
any triggers on an domain index. Note that in this case, any domain indexes on
the LOBwill become updated as soon as LOBmodifications are made. Therefore,
domain LOBindexes are always valid and may be used at any time.

« If you wrap your LOBoperations inside the Open/Close operation: Triggers will not
be fired for each LOBmodification. Instead, the trigger on domain indexes will
be fired at the Close call. For example, you might design your application so
that domain indexes are not be updated until you call Close . However, this
means that any domain indexes on the LOBwill not be valid in-between the
Open/Close calls.

What is a "Transaction’ Within Which an Open LOB Value is Closed?

Note that the definition of a 'transaction’ within which an open LOBvalue must be
closed is one of the following:

« Between ‘DML statements that start a transaction (including SELECT... FOR
UPDATE) and COMMIT

« Within an autonomous transaction block

A LOBopened when there is no transaction, must be closed before the end of the
session. If there are still open LOBs at the end of the session, the openness will be
discarded and no triggers on domain indexes will be fired.

7-24 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Open, Close and IsOpen Interfaces for Internal LOBs

Close All Opened LOBs Before Committing the Transaction !

It is an error to commit the transaction before closing all opened LOBs that were
opened by the transaction. When the error is returned, the openness of the open
LOBs is discarded, but the transaction is successfully committed.

Hence, all the changes made to the LOB and non-LOB data in the transaction are
committed but the triggers for domain indexing are not fixed.

Note: Changes to the LOBare not discarded if the COMMITreturns
an error.

At transaction rollback time, the openness of all open LOBs that are still open for
that transaction will be discarded. Discarding the openness means that the LOBs
won't be closed, and that triggers on domain indexes will not be fired.

Do Not Open or Close Same LOB Twice!

It is also an error to open/close the same LOBtwice either with different locators or
with the same locator.

Example 1: Correct Use of Open/Close Calls in a Transaction

This example shows the correct us of open and close calls to LOBs inside and
outside a transaction.

DECLARE
Lob_locl CLOB;
Lob loc2 CLOB;
Buffer VARCHAR2(32767);
Amount BINARY_INTEGER :=32767;
Position INTEGER =1,
BEGIN
/*Selecta LOB: %/
SELECT Story INTO Lob_loc1 FROM Mulimedia_tab WHERE Clip_ID=1;

/* The following staterment opens the LOB outside of a transaction

so it must be closed before the session ends: %
DBMS_LOB.OPEN(Lob locl, DBMS LOB.LOB_READONLY);

/* The following statement begins a transaction. Note that Lob_loc1 and

Lob_loc2 point to the same LOB: %
SELECT Story INTO Lob_loc2 FROM Mulimedia._tab WHERE Clip_ID = 1 for update;
/* The following LOB open gperation is allowed since this lob has

ot been opened in this transaction: %/

Modeling and Design 7-25

Open, Close and IsOpen Interfaces for Internal LOBs

DBMS_LOB.OPEN(Lob loc2, DBMS LOB.LOB_READWRITE);
/*Fill the buffer with data to write to the LOB %/

buffer .= 'A good story’;

Amount :=12;
/*White the buffer to the LOB: %/

DBMS_LOB.WRITE(Lob_loc2, Amount, Position, Buffer);
/*Closing the LOB is mandatory if you have opened it %/

DBMS_LOB.CLOSE(Lob _loc2);

FThe COMMIT ends the transaction. It is allowed because all LOBs
opened in the transaction were closed. */

COMMIT;

/* The the following statement closes the LOB that was opened
before the transaction started: %/

DBMS_LOB.CLOSE(Lob_locl);

END;

Example 2: Incorrect Use of Open/Close Calls in a Transaction

This example the incorrect use of open and close calls to a LOB and illustrates how

committing a transaction which has open LOBSs returns an error.

DECLARE
Lob_loc CLOB;
BEGIN
/* Note that the FOR UPDATE clause starts a transaction: ¥/
SELECT Story INTO Lob_loc FROM Muttimedia._tab WHERE Clip_ID =1 for update;
DBMS_LOB.OPEN(Lob loc, DBMS_LOB.LOB_READONLY);
/*COMMIT retums an error because there is still an gpen LOB associated
with this transaction: %/
COMMIT;
END;

7-26 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

LOBs in Index Organized Tables (10T)

LOBs in Index Organized Tables (IOT)

Index Organized Tables (I0T) now support internal and external LOB columns. The
SQL DDL, DML and piece wise operations on LOBs in index organized tables
exhibit the same behavior as that observed in conventional tables. The only
exception is the default behavior of LOBs during creation. The main differences are:

« Tablespace Mapping: By default, or unless specified otherwise, the LOBs data
and index segments will be created in the tablespace in which the primary key
index segments of the index organized table are created.

« Inline as Compared to Out-of-Line Storage: By default, all LOBs in an index
organized table created without an overflow segment will be stored out of line.
In other words, if an index organized table is created without an overflow
segment, the LOBs in this table have their default storage attributes as DISABLE
STORAGE IN RQVWY you forcibly try to specify an ENABLE STORAGE IN ROW
clause for such LOBs, SQL will raise an error.

On the other hand, if an overflow segment has been specified, LOBs in index
organized tables will exactly mimic their behavior in conventional tables (see
"Defining Tablespace and Storage Characteristics for Internal LOBs" on

page 7-5).

Example of Index Organized Table (I0T) with LOB Columns
Consider the following example:

CREATE TABLE iotiob_tab (c1 INTEGER primary key, c2 BLOB, c3 CLOB, c4
VARCHAR2(20))
ORGANIZATION INDEX
TABLESPACE iot ts
PCTFREE 10 PCTUSED 10 INITRANS 1 MAXTRANS 1 STORAGE (INITIAL 4K)
PCTTHRESHOLD 50 INCLUDING c2
OVERFLOW
TABLESPACE ioto_ts
PCTFREE 10 PCTUSED 10 INITRANS 1 MAXTRANS 1 STORAGE (INITIAL 8K) LOB (c2)
STORE AS lobseg (TABLESPACE lob_ts DISABLE STORAGE IN ROW
CHUNK 1 PCTVERSION 1 CACHE STORAGE (INITIAL 2m)
INDEX LOBIDX_C1 (TABLESPACE lobicx_ts STORAGE (INITIAL
AK));

Executing these statements will result in the creation of an index organized table
iotlob_tab with the following elements:

« A primary key index segment in the tablespace iot_ts

Modeling and Design 7-27

LOBs in Index Organized Tables (10T)

« An overflow data segment in tablespace ioto_ts

« Columns starting from column C3 being explicitly stored in the overflow data
segment

« BLOB (column C2) data segments in the tablespace lob_ts

« BLOB (column C2) index segments in the tablespace lobidx_ts
« CLOB (column C3) data segments in the tablespace iot_ts

« CLOB (column C3) index segments in the tablespace iot_ts

« CLOB (column C3) stored in line by virtue of the IOT having an overflow
segment

« BLOB (column C2) explicitly forced to be stored out of line

Note: If no overflow had been specified, both C2 and C3 would
have been stored out of line by default.

Other LOBfeatures, such as BFILE s and varying character width LOBs, are also
supported in index organized tables, and their usage is the same as conventional
tables.

Note: Support for LOBs in partitioned index organized tables will
be provided in a future release.

7-28 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Manipulating LOBs in Partitioned Tables

Manipulating LOBs in Partitioned Tables

You can partition tables with LOBs. As a result, LOBs can take advantage of all of the
benefits of partitioning. For example, LOBsegments can be spread between several
tablespaces to balance 1/0 load and to make backup and recovery more
manageable. LOBs in a partitioned table also become easier to maintain.

This section describes some of the ways you can manipulate LOBs in partitioned
tables.

As an extension to the example multimedia application described in Chapter 8,
"Sample Application”, let us suppose that makers of a documentary are producing
multiple clips relating to different Presidents of the United States. The clips consist
of photographs of the presidents accompanied by spoken text and background
music. The photographs come from the PhotoLib_Tab archive. To make the most
efficient use of the presidents’ photographs, they are loaded into a database
according to the structure illustrated in Figure 7-1.

The columns in Multimedia_tab are described in Table 7-5, "Multimedia_tab
Columns".

Modeling and Design 7-29

Manipulating LOBs in Partitioned Tables

Figure 7-1 Table Multimedia_tab structure Showing Inclusion of PHOTO_REF
Reference

Column Name Kind of Data

Table MULTIMEDIA_TAB

FCLIP_ID | STORY | FLSUB | PHOTO_REF | FRAME | SOUND | VOICED_REF| INSEG_NTAB | MUSIC | MAP_OBJ

Number | Text Text Photo Video Audio Reference Nested Table | Audio |Object Type
NUMBER| CLOB NCLOB| PHOTO_TYP| BLOB BLOB VOICED_TYP| INSEG_TYP BFILE [MAP_TYP—

If-PK |

Key

Reference to a row Type
object of a table of
the defined type

|
Table PRESIDENTPHOTO_TAB (of PHOTO_TYP)

PRESNAME | PHOTODATE | PHOTONAME | PRESPHOTO | SCRIPT | ACTOR MUSIC
Text Date Text Photo Text Text Audio
VARCHAR2(30) | DATE VARCHAR2(30) | BLOB CLOB | VARCHAR2(30) | BFILE
PK

7-30 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Manipulating LOBs in Partitioned Tables

Table 7-5 Multimedia_tab Columns

Column Name Description

PRESNAME President’s name. This lets the documentary producers select data for clips
organized around specific presidents. PRESNAMIS also chosen as a primary
key because it holds unique values.

PRESPHOTO Contains photographs in which a president appears. This category also
contains photographs of paintings and engravings of presidents who lived
before the advent of photography.

PHOTODATE Contains the date on which the photograph was taken. In the case of
presidents who lived before the advent of photography, PHOTODATE
pertains to the date when the painting or engraving was created.

This column is chosen as the partition key to make it easier to add partitions
and to perform MERGE&nd SPLITs of the data based on some given date
such as the end of a president’s first term. This will be illustrated later in this
section.

PHOTONAME Contains the name of the photograph. An example name might be
something as precise as "Bush Addresses UN - June 1990" or as general as
"Franklin Rooseveld - Inauguration”.

SCRIPT Contains written text associated with the photograph. This could be text
describing the event portrayed by the photograph or perhaps segments of a
speech by the president.

ACTOR Contains the name of the actor reading the script.
MUSIC Contains background music to be played during the viewing of the
photographs.

Creating and Partitioning a Table Containing LOB Data

To isolate the photographs associated with a given president, a partition is created
for each president by the ending dates of their terms of office. For example, a
president who served two terms would have two partitions: the first partition
bounded by the end date of the first term and a second partition bounded by the
end date of the second term.

Note: In the following examples, the extension 1 refers to a president’s first term and 2
refers to a president’s second term. For example, GeorgeWashingtonl_part refers to
the partition created for George Washington’s first term and RichardNixon2_part

refers to the partition created for Richard Nixon’s second term.

Modeling and Design 7-31

Manipulating LOBs in Partitioned Tables

Note: You may need to set up data structures for certain examples
to work; such as:

CONNECT system/manager

GRANT CREATE TABLESPACE, DROP TABLESPACE TO scott;
CONNECT scottftiger

CREATE TABLESPACEEaryPresidents_ths DATAFILE
'disk1l:moredata0l’ SIZE 1M;

CREATE TABLESPACEEaryPresidentsPhotos_tbs DATAFILE
‘diskl:moredata99’ SIZE 1M;

CREATE TABLESPACEEaryPresidentsScripts_ths DATAFILE

'disk1:moredata03’ SIZE 1M;
CREATE TABLESPACERIchardNixonl tbs DATAFILE
'disk1l:moredata04’ SIZE 1M;

CREATE TABLESPACEPost1960PresidentsPhotos _ths DATAFILE
‘diskl:moredata05’ SIZE 1M;
CREATE TABLESPACEPost1960PresidentsScripts_ths DATAFILE

'disk1:moredata06’ SIZE 1M;

CREATE TABLESPACERIchardNixon2_tbs DATAFILE
'disk1l:moredata07’ SIZE 1M;

CREATE TABLESPACEGeraldFordl_tbs DATAFILE
‘diskl:moredata97’ SIZE 1M;

CREATE TABLESPACE RichardNixonPhotos_ths DATAFILE

'disk1:moredata08’ SIZE 2M;
CREATE TABLESPACE RichardNixonBigger2_tbs DATAFILE
'disk1l:moredata48’ SIZE 2M;
CREATE TABLE Mirroriob_tab(

PresName VARCHAR2(30),

PhotoDate DATE,

PhotoName VARCHAR2(30),

PresPhoto BLOB,

Script CLOB,

Actor VARCHAR2(30),

Music BFILE);

CREATE TABLE Presidentphoto_tab(PresName VARCHAR2(30), PhotoDate DATE,
PhotoName VARCHAR2(30), PresPhoto BLOB,
Script CLOB, Actor VARCHAR2(30), Music BFILE)
STORAGE (INITIAL 100K NEXT 100K PCTINCREASE 0)
LOB (PresPhoto) STORE AS (CHUNK 4096)
LOB (Script) STORE AS (CHUNK 2048)
PARTITION BY RANGE(PhotoDate)
(PARTITION GeorgeWashingtonl_part

7-32 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Manipulating LOBs in Partitioned Tables

/*Use photos to the end of Washington's first term %/
VALUES LESS THAN (TO_DATE(19-mar-1792, ' DD-MON-YYYYY)
TABLESPACE EartyPresidents_ths
LOB (PresPhoto) store as (TABLESPACE EarlyPresidentsPhotos_ths)
LOB (Script) store as (TABLESPACE EarlyPresidentsScripts_tbs),
PARTITION GeorgeWashington2_part
/*Use photos to the end of Washington's second term %/
VALUES LESS THAN (TO_DATE(19-mar-1796', ' DD-MON-YYYYY)
TABLESPACE EartyPresidents_ths
LOB (PresPhoto) store as (TABLESPACE EarlyPresidentsPhotos_ths)
LOB (Script) store as (TABLESPACE EarlyPresidentsScripts_tbs),
PARTITION JohnAdams1_part
/*Use photos to the end of Adams' only term %/
VALUES LESS THAN (TO_DATE(19-mar-1800, 'DD-MON-YYYYY)
TABLESPACE EartyPresidents_ths
LOB (PresPhoto) store as (TABLESPACE EarlyPresidentsPhotos_ths)
LOB (Script) store as (TABLESPACE EarlyPresidentsScripts_tbs),
/*...Intervening presidents... %/
PARTITION RichardNixon1_part
/*Use photos to the end of Nixon's first term %
VALUES LESS THAN (TO_DATE(204an-1972, ' DD-MON-YYYY?)
TABLESPACE RichardNixon1._tbs
LOB (PresPhoto) store as (TABLESPACE Post1960PresidentsPhotos_ths)
LOB (Script) store as (TABLESPACE Post1960PresidentsScripts_ths)
)

Creating an Index on a Table Containing LOB Columns

To improve the performance of queries which access records by a President's name
and possibly the names of photographs, a UNIQUElocal index is created:

CREATE UNIQUE INDEX PresPhoto _idx
ON PresidentPhoto_tab (PresName, PhotoName, Photodate) LOCAL;

Exchanging Partitions Containing LOB Data

As a part of upgrading from Oracle8.0 to 8.1, data was exchanged from an existing
non-partitioned table containing photos of Bill Clinton's first term into the
appropriate partition:

ALTER TABLE PresidentPhoto_tab EXCHANGE PARTITION RichardNixonl_part
WITH TABLE Mirrorlob_tab INCLUDING INDEXES;

Modeling and Design 7-33

Manipulating LOBs in Partitioned Tables

Adding Partitions to Tables Containing LOB Data

To account for Richard Nixon’s second term, a new partition was added to
PresidentPhoto_tab

ALTER TABLE PresidentPhoto_tab ADD PARTITION RichardNixon2_part
VALUES LESS THAN (TO_DATE(204an-1976, DD-MON-YYYY)
TABLESPACE RichardNixon2_tbs
LOB (PresPhoto) store as (TABLESPACE Post1960PresidentsPhotos_ths)
LOB (Script) store as (TABLESPACE Post1960PresidentsScripts_ths);

Moving Partitions Containing LOBs

During his second term, Richard Nixon had so many photo-opportunities, that the
partition containing information on his second term is no longer adequate. It was
decided to move the data partition and the corresponding LOBpartition of
PresidentPhoto_tab into a different tablespace, with the corresponding LOB
partition of Script remaining in the original tablespace:

ALTER TABLE PresidentPhoto_tab MOVE PARTITION RichardNixon2_part
TABLESPACE RichardNixonBigger2_tbs
LOB (PresPhoto) STORE AS (TABLESPACE RichardNixonPhotos_ths);

Splitting Partitions Containing LOBs

When Richard Nixon was re-elected for his second term, a partition with bounds
equal to the expected end of his term (20-jan-1976) was added to the table (see
above example.) Since Nixon resigned from office on 9 August 1974, that partition
had to be split to reflect the fact that the remainder of the term was served by
Gerald Ford:

ALTER TABLE PresidentPhoto_tab SPLIT PARTITION RichardNixon2_part
AT (TO_DATE(09-aug-1974, DD-MON-YYYY?)
INTO (PARTITION RichardNixon2_patt,
PARTITION GeraldFordl_part TABLESPACE GeraldFordL ths
LOB (PresPhoto) STORE AS (TABLESPACE Post1960PresidentsPhotos_ths)
LOB (Script) STORE AS (TABLESPACE Post1960PresidentsScripts ths));

Merging Partitions Containing LOBs

Despite the best efforts of the documentary producers in searching for photographs
of paintings or engravings of George Washington, the number of photographs that
were found was inadequate to justify a separate partition for each of his two terms.
Accordingly, it was decided to merge these two partition into one named
GeorgeWashington8Years_part

7-34 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Manipulating LOBs in Partitioned Tables

ALTER TABLE PresidentPhoto_tab
MERGE PARTITIONS GeorgeWashingtonl_part, George\Washington2_part
INTO PARTITION GeorgeWashington8Years_part TABLESPACE EarlyPresidents_ths
LOB (PresPhoto) store as (TABLESPACE EarlyPresidentsPhotos_ths)
LOB (Script) store as (TABLESPACE EartyPresidentsScripts_ths);

Modeling and Design 7-35

Indexing a LOB Column

Indexing a LOB Column

You cannot build B-tree or bitmap indexes on a LOB column. However, depending
on your application and its usage of the LOB column, you might be able to improve
the performance of queries by building indexes specifically attuned to your domain.
Oracle8i’s extensibility interfaces allow for domain indexing, a framework for
implementing such domain specific indexes.

See Also: Oracle8i Data Cartridge Developer’'s Guidir
information on building domain specific indexes.

Depending on the nature of the contents of the LOB column, one of the Oracle8i
interMedia options could also be used for building indexes. For example, if a text
document is stored in a CLOB column, you can build a text index (provided by
Oracle) to speed up the performance of text-based queries over the CLOB column.

See Also: Oracle8i interMedia Audio, Image, and Video User's Guide
and Referencand Oracle8i interMedia Text Referender more
information regarding Oracle’s intermedia options.

7-36 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Best Performance Practices

Best Performance Practices

Using SQL Loader

You can use SQL*Loader to bulk load LOBs.

See:

« Chapter 4, "Managing LOBs", "Using SQL Loader to Load
LOBs", for a description of SQL*Loader

« Oracle8i Utilitiesfor a more comprehensive description of
SQL*Loader

Guidelines for Best Performance
Use the following guidelines to achieve maximum performance with LOBSs:

When Possible, Read/Write Large Data Chunks at a Time: Since LOBs are big,
you can obtain the best performance by reading and writing large chunks of a
LOBvalue at a time. This helps in several respects:

a. If accessing the LOBfrom the client side and the client is at a different node
than the server, large reads/writes reduce network overhead.

b. If using the 'NOCACHBption, each small read/write incurs an 1/0.
Reading/writing large quantities of data reduces the 1/0.

c. Writing to the LOBcreates a new version of the LOB CHUNKTherefore,
writing small amounts at a time will incur the cost of a new version for each
small write. If logging is on, the CHUNKs also stored in the redo log.

Use LOB Buffering to Read/Write Small Chunks of Data: If you need to
read/write small pieces of LOBdata on the client, use LOBbuffering — see
OClLobEnableBuffering (), OClLobDisableBuffering 0,
OCILobFlushBuffer (), OClLobWrite (), OCILobRead (). Basically, turn on
LOBbuffering before reading/writing small pieces of LOBdata.

See Also: Chapter 5, "Advanced Topics", "LOB Buffering
Subsystem™ on page 5-21 for more information on LOBbuffering.

Use OCILobRead () and OCILobWrite () with Callback: So that data is
streamed to and from the LOB Ensure the length of the entire write is set in the

Modeling and Design 7-37

Best Performance Practices

‘amount ' parameter on input. Whenever possible, read and write in multiples of
the LOBchunk size.

Use a Checkout/Checkin Model for LOBs: LOBs are optimized for the following
operations:

a. SQL UPDATEwhich replaces the entire LOBvalue

b. Copy the entire LOBdata to the client, modify the LOBdata on the client
side, copy the entire LOBdata back to the database. This can be done using
OClILobRead () and OCILobWrite () with streaming.

Moving Data to LOB in Threaded Environment

Incorrect procedure

The following sequence, requires a new connection when using a threaded
environment, adversely affects performance, and is inaccurate:

1.

2
3
4.
5

Create an empty (non-NULL) LOB

INSERT using the empty LOB
SELECT-FOR-UPDATE of the row just entered
Move data into the LOB

COMMIT. This releases the SELECT-FOR-UPDATE locks and makes the LOB
data persistent.

The Correct Procedure
Note the following:

There is no need to ‘create’ an empty LOB.

You can use the RETURNING clause as part of the insert/update statement to
return a locked LOB locator. This eliminates the need for doing a select for
update as mentioned in step 3.

Hence the preferred procedure is as follows:

1.
2.
3.

INSERT an empty LOB, RETURNING the LOB locator.
Move data into the LOB using this locator.

COMMIT. This releases the SELECT-FOR-UPDATE locks, and makes the LOB
data persistent.

7-38 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Best Performance Practices

Alternatively, you can insert >4,000 byte of data directly for the LOB columns but
not the LOB attributes.

Modeling and Design 7-39

Best Performance Practices

7-40 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

8

Sample Application

This chapter describes the following topics:
« The Multimedia Content-Collection System
« Applying an Object-Relational Design to the Application

« Structure of Multimedia_tab Table

Sample Application 8-1

A Sample Application

A Sample Application

Oracle8i supports LOBs, large objects which can hold up to 4 gigabytes of binary or
character data. What does this mean for you, the application developer?

Consider the following hypothetical application:

The Multimedia Content-Collection System

Multimedia data is used in an increasing variety of media channels — film,
television, webpages, and CD-ROM being the most prevalent. The media
experiences having to do with these different channels vary in many respects
(interactivity, physical environment, the structure of information, to name a few).
Yet despite these differences, there is often considerable similarity in the multimedia
authoring process, especially with regard to assembling content.

Figure 8—1 The Multimedia Authoring Process

Story Media Programming Media
Board Content the Experience
Development Collection Composition

For instance, a television station that creates complex documentaries, an advertising
agency that produces advertisements for television, and a software production
house that specializes in interactive games for the web could all make good use of a
database management system for collecting and organizing the multimedia data.
Presumably, they each have sophisticated editing software for composing these
elements into their specific products, but the complexity of such projects creates a
need for a pre-composition application for organizing the multimedia elements into
appropriate groups.

Taking our lead from movie-making, our hypothetical application for collecting
content uses the clip as its basic unit of organization. Any clip is able to include one
or more of the following media types:

« Character text (e.g.,storyboard, transcript, subtitles,),
« Images (e.g., photographs, video frames),

« Line drawings (e.g., maps),

8-2 Oracle8i Application Developer's Guide - Large Objects (LOBS)

A Sample Application

« Audio (e.g., sound-effects, music, interviews)

Since this is a pre-editing application, the precise relationship of elements within a
clip (such as the synchronization of voice-over audio with a photograph) and
between clips (such as the sequence of clips) is not defined.

The application should allow multiple editors working simultaneously to store,
retrieve and manipulate the different kinds of multimedia data. We assume that
some material is gathered from in-house databases. At the same time, it should also
be possible to purchase and download data from professional services.

Note: The Example is Only An Example

Our mission in this chapter is not to create this real-life application, but to describe
everything you need to know about working with LOBs. Consequently, we only
implement the application sufficiently to demonstrate the technology. For example,
we deal with only a limited number of multimedia types. We make no attempt to
create the client-side applications for manipulating the LOBs. And we do not deal
with deployment issues such as, the fact that you should implement disk striping of
LOBfiles, if possible, for best performance.

See Figure 8-2, "Schema Plan for Table MULTIMEDIA_TAB".

Sample Application 8-3

A Sample Application

Applying an Object-Relational Design to the Application

Figure 8-2 Schema Plan for Table MULTIMEDIA TAB

Column Name

Kind of Data
Table MULTIMEDIA_TAB
rCLIP_ID | STORY | FLSUB | PHOTO | FRAME | SOUND | VOICED_REF | INSEG_NTAB | MUSIC | MAP_OBJ
Number Text Text Photo Video Audio Reference Nested Table Audio | Object Type 4
NUMBER | CLOB NCLOB | BFILE BLOB BLOB VOICED_TYP | INSEG_TYP BFILE | MAP_TYP—f
"' PK ‘
Key Reference to a row Type

object of a table of
the defined type

l

Column Object of

; the defined type
Table VOICEOVER_TAB (of VOICED_TYP)
ORIGINATOR | SCRIPT | ACTOR TAKE RECORDING
Text Text Text Number Audio ed Table of the
VARCHAR2(30) | CLOB | VARCHAR2(30) | NUMBER [BFILE ed type
PK PK
Table INTERVIEWSEGMENTS_NTAB
SEGMENT INTERVIEW_DATE | INTERVIEWER | INTERVIEWEE RECORDING | TRANSCRIPT
Number Date Text Text Audio Text
NUMBER DATE VARCHAR2(30) [VARCHAR2(30) | BFILE CLOB
PK
Column Object MAP_OBJ (of MAP_TYP)
REGION | NwW | NE | SW | SE | DRAWING | AERIAL
Text Number Number Number Number Map Photo
VARCHAR2(30) [NUMBER NUMBER NUMBER NUMBER BLOB BFILE

8-4 Oracle8i Application Developer's Guide - Large Objects (LOBS)

A Sample Application

Structure of Multimedia_tab Table

Column Name

Figure 8-3 Schema Plan for Table MULTIMEDIA TAB

Kind of Data

Table MULTIMEDIA_TAB

CLIP_ID | STORY | FLSUB | PHOTO | FRAME | SOUND | VOICED_REF | INSEG_NTAB | MUSIC | MAP_OBJ
Number | Text Text Photo [Video | Audio | Reference Nested Table | Audio | Object Type ¢
NUMBER | CLOB | NCLOB | BFILE | BLOB BLOB | VOICED_TYP | INSEG_TYP | BFILE |MAP_TYP—};

(PK

Key

Type

Figure 8-3, "Schema Plan for Table MULTIMEDIA_TAB" shows table
MULTIMEDIA_TAB’s structure. Its columns are described below:

CLIP_ID: Every row (clip object) must have a number which identifies the clip.
This number is generated by the Oracle number SEQUENCERs a matter of
convenience, and has nothing to do with the eventual ordering of the clip.

STORYThe application design requires that every clip must also have text, that
is a storyboard, that describes the clip. Since we do not wish to limit the length
of this text, or restrict its format, we use a CLOBdatatype.

FLSUB Subtitles have many uses — for closed-captioning, as titles, as overlays
that draw attention, and so on. A full-fledged application would have columns
for each of these kinds of data but we are considering only the specialized case
of a foreign language subtitle, for which we use the NCLOBdatatype.

PHOTOPhotographs are clearly a staple of multimedia products. We assume
there is a library of photographs stored in the PhotoLib_tab archive. Since a
large database of this kind would be stored on tertiary storage that was
periodically updated, the column for photographs makes use of the BFILE
datatype.

FRAMEIt is often necessary to extract elements from dynamic media sources for
further processing For instance, VRML game-builders and animation
cartoonists are often interested in individual cells. Our application takes up the
need to subject film/video to frame-by-frame analysis such as was performed
on the film of the Kennedy assassination. While it is assumed that the source is

Sample Application 8-5

A Sample Application

on persistent storage, our application allows for an individual frame to be
stored as a BLOB.

SOUND A BLOB column for sound-effects.

VOICED_REEFE This column allows for a reference to a specific row in a table
which must be of the type Voiced typ . In our application, this is a reference
to arow in the table VoiceOver_tab whose purpose is to store audio
recordings for use as voice-over commentaries. For instance, these might be
readings by actors of words spoken or written by people for whom no audio
recording can be made, perhaps because they are no longer alive, or because
they spoke or wrote in a foreign language.

This structure offers the application builder a number of different strategies
from those discussed thus far. Instead of loading material into the row from an
archival source, an application can simply reference the data. This means that
the same data can be referenced from other tables within the application, or by
other applications. The single stipulation is that the reference can only be to tables
of the same type. Put another way: the reference, Voiced_ref , can refer to row
objects in any table which conforms to the type, Voiced_typ

Note that Voiced_typ combines the use of two LOB datatypes:
« CLOB to store the script which the actor reads
« BFILE for the audio recordings.

Figure 8-4, "Schema Design for Inclusion of VOICED_REF Reference" shows
VOICED_REF column referencing the Voiced_typ row in table VoiceOver_tab.

8-6 Oracle8i Application Developer's Guide - Large Objects (LOBS)

A Sample Application

Figure 8—-4 Schema Design for Inclusion of VOICED_REF Reference

Column Name Kind of Data

Table MULTIMEDIA_TAB

CLIP_ID | STORY | FLSUB | PHOTO | FRAME | SOUND | VOICED_REF | INSEG_NTAB | MUSIC | MAP_OBJ

Number | Text Text Photo [Video | Audio | Reference Nested Table | Audio | Object Type§
NUMBER | CLOB | NCLOB| BFILE | BLOB | BLOB [VOICED_TYP [INSEG_TYP [BFILE [MAP_TYP—

"PK

Key

Reference to a row Type
object of a table of
the defined type

Table VOICEOVER_TAB (of VOICED_TYP)

ORIGINATOR | SCRIPT | ACTOR TAKE RECORDING

Text Text | Text Number | Audio
VARCHAR2(30) | CLOB | VARCHAR2(30)| NUMBER | BFILE

PK PK

« INSEG_NTAB While it is not possible to store a Varray of LOBs, application
builders can store a variable number of multimedia elements in a single row
using nested tables. In our application, nested table InSeg_ntab of predefined
type InSeg_typ can be used to store zero, one, or many interview segments in
a given clip. So, for instance, a hypothetical user could use this facility to collect
together one or more interview segments having to do with the same theme

that occurred at different times.

See Figure 8-5, "Schema Design for Inclusion of Nested Table INSEG_NTAB".

In this case, nested table, interviewsegments_ntab , makes use of the

following two LOB datatypes:
« BFILE to store the audio recording of the interview
« CLOB for transcript.

Since such segments might be of great length, it is important to keep in mind

that LOBs cannot be more than 4 gigabytes.

Sample Application 8-7

A Sample Application

Figure 8-5 Schema Design for Inclusion of Nested Table INSEG_NTAB

Column Name Kind of Data
Table MULTIMEDIA_TAB
CLIP_ID | STORY | FLSUB | PHOTO | FRAME | SOUND | VOICED_REF | INSEG_NTAB | MUSIC | MAP_OBJ
Number | Text [Text | Photo | Video | Audio | Reference Nested Table | Audio | Object Type
NUMBER | CLOB | NCLOB| BFILE [BLOB | BLOB | VOICED_TYP| INSEG_TYP | BFILE |MAP_TYP—]
(PK ‘

Key

Type
Nested Table of the
defined type

SEGMENT

Table INTERVIEWSEGMENTS_NTAB

INTERVIEW_DATE

INTERVIEWER | INTERVIEWEE | RECORDING | TRANSCRIPT

Number
NUMBER

Date
DATE

Text Text Audio Text
VARCHAR2(30)| VARCHAR2(30) | BFILE CLOB

PK

MUSIC The ability to handle music must be one of the basic requirements of
any multimedia database management system. In this case, the BFILE datatype
is used to store the audio as an operating system file.

MAP_OBJMultimedia applications must be be able to handle many different
kinds of line art — cartoons, diagrams, and fine art, to name a few. In our
application, provision is made for a clip to contain a map as a column object,
MAP_OBJof the object type MAP_TYPIn this case, the object is contained by
value, being embedded in the row.

As defined in our application, MAP_TYFhas only one LOB in its structure — a
BLOB for the drawing itself. However, as in the case of the types underlying
REFs and nested tables, there is no restriction on the number of LOBs that an
object type may contain. See Figure 8-6, "Schema Design for Inclusion of
Column Object MAP_OBJ".

8-8 Oracle8i Application Developer's Guide - Large Objects (LOBS)

A Sample Application

Figure 8-6 Schema Design for Inclusion of Column Object MAP_OBJ

Column Name Kind of Data
Table MULTIMEDIA TAB
CLIP_ID | STORY | FLSUB | PHOTO | FRAME | SOUND | VOICED_REF | INSEG_NTAB | MUSIC | MAP_OBJ
Number | Text Text Photo | Video | Audio | Reference Nested Table [Audio | Object Type§
NUMBER | CLOB | NCLOB| BFILE | BLOB | BLOB | VOICED_TYP | INSEG_TYP | BFILE |MAP_TYP—
" PK ‘
Key Reference to a row Type
object of a table of
the defined type }
Column Object of
the defined type
Column Object MAP_OBJ (of MAP_TYP)
REGION | NW | NE | SW | SE | DRAWING | AERIAL
Text Number Number Number Number Map Photo
VARCHAR2(30) | NUMBER NUMBER NUMBER NUMBER BLOB BFILE

See Also:

For further LOB examples:

« Oracle8i interMedia Audio, Image, and Video User’s Guide and
Reference

« Oracle8i interMedia Audio, Image, and Video Java Client User’s
Guide and Reference

« Oracle8i interMedia Locator User’s Guide and Reference

« Using Oracle8i interMedia with the Web

« Oracle8i interMedia Text Migration

=« Oracle8i interMedia Text Reference

Sample Application 8-9

A Sample Application

8-10 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

9

Internal Persistent LOBS

Use Case Model

In this chapter we describe how to work with Internal Persistent LOBs in terms of
use cases. We discuss each operation on a LOB (such as "Write Data to a LOB") in
terms of a use case by that name. Table 9-1, "Use Case Model: Internal Persistent
LOBs Basic Operations", lists all use cases.

Graphic Summary of Use Case Model

A summary figure, Figure 9-1, "Use Case Model Diagram: Internal Persistent LOBs
(part 1 of 2)", locates all use cases in a single drawing. In the HTML version of this
document, use this figure to navigate to the use case by clicking on the use case title.

Individual Use Cases

Each detailed internal persistent LOB use case operation description is laid out as
follows:

« Use case figure. A figure that depicts the use case (see the "How to Interpret the
Use Case Diagrams" in the Preface, for a description of how to interpret these
diagrams).

« Purpose. The purpose of this use case with regards to LOBs.
« Usage Notes. Guidelines to assist your implementation of the LOB operation.
« Syntax. The main syntax used to perform the LOBs related activity.

« Scenario. Portrays one implementation of the use case in terms of the
hypothetical multimedia application. See Chapter 8, "Sample Application".

« Examples. Examples in each programmatic environment which illustrate the
use case.These are based on the multimedia application and table
Multimedia_tab described in Chapter 8, "Sample Application”.

Internal Persistent LOBs 9-1

Use Case Model: Internal Persistent LOBs

Use Case Model: Internal Persistent LOBS

Table 7-1, indicates with a + where examples are provided for specific use cases
and in which programmatic environment. An "S" indicates that SQL is used directly
for that use case and applicable programmatic environment(s).

We refer to programmatic environments by means of the following abbreviations:

P — PL/SQL using the DBMS_LOB Package

O — C using OCI (Oracle Call Interface)

B — COBOL using Pro*COBOL precompiler

C — C/C++ using Pro*C/C++ precompiler

V — Visual Basic using O040 (Oracle Objects for OLE)
J— Java using JDBC (Java Database Connectivity)
S—SQL

Table 9-1 Use Case Model: Internal Persistent LOBs Basic Operations

Use Case and Page

Programmatic Environment
Examples

p O B C VvV J

Three Ways to Create a Table Containing a LOB on page 9-6

CREATE a Table Containing One or More LOB Columns on page 9-8

wn

CREATE a Table Containing an Object Type with a LOB Attribute on

page 9-13

CREATE a Nested Table Containing a LOB on page 9-18

(Creating a Varray Containing References to LOBs See Chapter 5, "Advanced

Topics")

wn

Three Ways Of Inserting One or More LOB Values into a Row on page 9-21
INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB() on page 9-23 S
INSERT a Row by Selecting a LOB From Another Table on page 9-26 s § S S s s
S
+

INSERT Row by Initializing a LOB Locator Bind Variable on page 9-28

Load Data into an Internal LOB (BLOB, CLOB, NCLOB) on page 9-31

Load a LOB with Data from a BFILE on page 9-33

+
+
+
+
+
+

See If a LOB Is Open on page 9-37 + o+ + o+ +

9-2 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Use Case Model: Internal Persistent LOBs

Programmatic Environment

Use Case and Page (Cont.) Examples

B C V
Copy LONG to LOB on page 9-40 s §S S S S S
Checkout a LOB on page 9-45 + o+ o+ o+ o+ 4+
Checkin a LOB on page 9-49 + + o+ o+ o+ 4+
Display LOB Data on page 9-54 + o+ o+ o+ o+ 4+
Read Data from LOB on page 9-58 + + o+ o+ o+ o+
Read a Portion of the LOB (substr) on page 9-63 + + o+ o+ o+
Compare All or Part of Two LOBs on page 9-67 + + o+ o+ o+
See If a Pattern Exists in the LOB (instr) on page 9-70 + + o+ +
Get the Length of a LOB on page 9-73 + + o+ o+ o+ 4+
Copy All or Part of a LOB to Another LOB on page 9-76 + o+ + o+ + o+
Copy a LOB Locator on page 9-79 + o+ + o+ + o+
See If One LOB Locator Is Equal to Another on page 9-82 + + +
See If a LOB Locator Is Initialized on page 9-85 + +
Get Character Set ID on page 9-88 +
Get Character Set Form on page 9-90 +
Append One LOB to Another on page 9-92 + o+ o+ o+ o+ 4+
Write Append to a LOB on page 9-96 + o+ o+ o+ +
Write Data to a LOB on page 9-100 + o+ + o+ + o+
Trim LOB Data on page 9-106 + o+ o+ o+ o+ 4+
Erase Part of a LOB on page 9-110 + o+ 4+ o+ o+ 4+
Enable LOB Buffering on page 9-113 + o+ o+
Flush Buffer on page 9-117 + o+ 4+
Disable LOB Buffering on page 9-121 + o+ o+ O+

Three Ways to Update a LOB or Entire LOB Data on page 9-125
UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB() on page 9-127 S
UPDATE a Row by Selecting a LOB From Another Table on page 9-130 S
UPDATE by Initializing a LOB Locator Bind Variable on page 9-132 S
DELETE the Row of a Table Containing a LOB on page 9-135 S

nw + 0 »w
" + 0 om
nw + 0 »w
" + 0 m
nw + 0 »w

Internal Persistent LOBs 9-3

Use Case Model: Internal Persistent LOBs

Figure 9-1 Use Case Model Diagram: Internal Persistent LOBs (part 1 of 2)

Internal persistent LOBs (part 1 of 2)

load a LOB
with data
from a BFILE

INITIALIZE
BFILE
locator

OCI Lob
FileSet Name

checkin

alLOB

5

checkout

alLOB

write data
to the LOB

L L L L ET]

read data
from the LOB

CREATE

Lensgdunnnnnnnnnmnunnnnr

I
k

User/

a table
(LOB)

enable

.
-------I-'-- ammut

T

get
" chunk size

Program

bufferin
2 T IGUUREREE SEEEEEEEEEEEE ¢}
] b
User/
Program C

display
the LOB
data

UPDATE
the row/entire
LOB data

disable
buffering

DELETE
the row

close

all BFILES

9-4 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Use Case Model: Internal Persistent LOBs

User/
Program

Figure 9-2 Use Case Model Diagram

: Internal Persistent LOBs (part 2 of 2)

Internal persistent LOBs (part 2 of 2)

OPEN
aloOB
A
CLOSE
alLOB
:"<'.'.'.".'.'.'.'.'.'.'.'”.'.'.'.'.'."
< Cemummmmmmmsspubadaddenns
Kimunnnnn
SELECT \<:mm::
alLoB onnn
<
<----
Lamn
<

load
initial data into

the LOB

co

py
LONG to LOB

get character
set ID

get character
set form

see if locator
is initialized

copy
LOB locator

see if locators
are equal

get the
length of
the LOB

see if
LOB is open

1

----------------- L) User/
Program
copy all or compare all
part of a LOB to] - or ;?arts of |

another LOB 2 LOBs

portion of the
LOB from the
table (substr

erase part
of a LOB

append one
LOB to
another

trim the
LOB data .

Internal Persistent LOBs 9-5

Three Ways to Create a Table Containing a LOB

Three Ways to Create a Table Containing a LOB

Figure 9-3 Use Case Diagram: Four ways to Create a Table Containing a LOB

Internal Persistent .
LOBs I . CREATE a Table

CREATE --- 1A el CREATE table with one or more LOBs
aTable

[
% [‘|éI @I CREATE table with an object type containing a LOB

User/] o
Program | 0 0— - - - - --- Q CREATE table with an nested table containing a LOB

See: "Use Case Model: Internal Persistent LOBs Basic
Operations”, for all basic operations of Internal Persistent LOBs.
It is possible to incorporate LOBs into tables in three ways.

a. Ascolumnsin atable — see CREATE a Table Containing One or More LOB
Columns on page 9-8.

b. Asattributes of an object type — see CREATE a Table Containing an Object
Type with a LOB Attribute on page 9-13.

c. Within a nested table — see CREATE a Nested Table Containing a LOB on
page 9-18.

A fourth method using a Varray — Creating a Varray Containing References to
LOBs is described in Chapter 5, "Advanced Topics" on page 5-32.

In all cases SQL Data Definition Language (DDL) is used — to define LOBcolumns
in a table and LOBattributes in an object type.

9-6 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Usage Notes

Usage Notes

When creating tables that contain LOBs use the guidelines and examples described
in the following sections and these chapters:

« Chapter 2, "Basic Components”, "Initializing Internal LOBs to NULL or Empty"
« Chapter 4, "Managing LOBs"
« Chapter 7, "Modeling and Design"

Internal Persistent LOBs 9-7

CREATE a Table Containing One or More LOB Columns

CREATE a Table Containing One or More LOB Columns

Figure 9—4 Use Case Diagram: CREATE a Table Containing a LOB Column

Internal Persistent .
e I " CREATE a Table | —0

CREATE - e CREATE table with one or more LOBs
a Table

X

User/
Program

See: "Use Case Model: Internal Persistent LOBs Basic Operations"
on page 9-2, for all basic operations of Internal Persistent LOBs.

Purpose
This procedure describes how to create a table containing one or more LOB
columns.

Usage Notes

« The result of using the functions EMPTY_BLOR) and EMPTY_CLO@ means that
the LOB is initialized, but not populated with data. LOBs that are empty are not
null, and vice versa. This topic is discussed in more detail in "INSERT a LOB
Value using EMPTY_CLOB() or EMPTY_BLOB()" on page 9-23.

9-8 Oracle8i Application Developer's Guide - Large Objects (LOBS)

CREATE a Table Containing One or More LOB Columns

« For information about creating nested tables that have ore or more columns of
LOB datatype see "CREATE a Nested Table Containing a LOB" on page 9-18

« The creation of an object column containing one or more LOBs is discussed
under the heading "CREATE a Table Containing an Object Type with a LOB
Attribute” on page 9-13.

See also:

Oracle8i SQL Reference for a complete specification of syntax for
using LOBs in CREATE TABLEnNd ALTER TABLEwith:

- BLOB , CLOB NCLOBand BFILE columns
- EMPTY_BLOB and EMPTY_CLOBRunctions

- LOB storage clause for internal LOBcolumns, and LOBattributes
of embedded objects

Syntax

Use the following syntax reference:
« SQL: Oracle8i SQL Reference , "Chapter 7, SQL Statements" — CREATE TABLE

Scenario

The heart of our hypothetical application is the table Multimedia_tab . The varied
types which make up the columns of this table make it possible to collect together
the many different kinds multimedia elements used in the composition of clips.

Internal Persistent LOBs 9-9

CREATE a Table Containing One or More LOB Columns

Figure 9-5 MULTIMEDIA_TAB as an Example of Creating a Table Containing a LOB
Column

Examples

Column Name Kind of Data
Table MULTIMEDIA_TAB
CLIP_ID STORY | FLSUB | PHOTO | FRAME | SOUND | VOICED_REF | INSEG_NTAB | MUSIC | MAP_OBJ
Number Text Text Photo Video Audio Reference Nested Table Audio | Object Type §
NUMBER | CLOB NCLOB | BFILE BLOB BLOB VOICED_TYP | INSEG_TYP BFILE | MAP_TYP—H

I’ PK

Key Type

SQL: Create a Table Containing One or More LOB Columns

9-10 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Examples that illustrate how to create a table containing a LOB column are

provided in SQL:

« SQL: Create a Table Containing One or More LOB Columns

You may need to set up the following data structures for certain examples to work:

CONNECT system/manager,

DROP USER samp CASCADE;

DROP DIRECTORY AUDIO_DIR;

DROP DIRECTORY FRAME_DIR;

DROP DIRECTORY PHOTO DIR;

DROP TYPE InSeg_typ force;

DROP TYPE InSeg_tab;

DROP TABLE InSeg_table;

CREATE USER samp identified by samp;

GRANT CONNECT, RESOURCE to samp;

CREATE DIRECTORY AUDIO_DIR AS 'fmp/;
CREATE DIRECTORY FRAME_DIR AS 'fmp/;
CREATE DIRECTORY PHOTO_DIR AS fmp/;
GRANT READ ON DIRECTORY AUDIO_DIR to samp;
GRANT READ ON DIRECTORY FRAME_DIR to samp;
GRANT READ ON DIRECTORY PHOTO_DIR to samp;
CONNECT samp/samp

CREATE TABLE a_table (blob_col BLOB);

CREATE TYPE Voiced_typ AS OBJECT (

CREATE a Table Containing One or More LOB Columns

Originator VARCHAR2(30),
Scipt CLOB,

Actor VARCHAR2(30),
Take NUMBER,
Recording BFILE

)

CREATE TABLE VoiceoverLib_tab of Voiced_typ (
Script DEFAULT EMPTY_CLOB(),
CONSTRAINT TakeLib CHECK (Take IS NOT NULL),
Recording DEFAULT NULL

)

CREATE TYPE InSeg_typ AS OBJECT (
Segment NUMBER,
Interview_Date DATE,
Interviewer VARCHAR2(30),
Interviewee VARCHAR2(30),
Recording BFILE,
Transcript CLOB

)

CREATE TYPE InSeg_tab AS TABLE of InSeg_typ;
CREATE TYPE Map_typ AS OBJECT (
Region VARCHAR2(30),
NW NUMBER,
NE NUMBER,
SW NUMBER,
SE NUMBER,
Drawing BLOB,
Aerial BFILE
)
CREATE TABLE Map_Libtab of Map_typ;
CREATE TABLE Voiceover_tab of Voiced typ (
Script DEFAULT EMPTY_CLOB),
CONSTRAINT Take CHECK (Take IS NOT NULL),
Recording DEFAULT NULL

)

Since one can use SQL DDL directly to create a table containing one or more LOB
columns, itis not necessary to use the DBMS_LOB package.
CREATE TABLE Mulimedia._tab (

Clip_ID NUMBER NOT NULL,

Story CLOB default EMPTY_CLOBY),

FLSub NCLOB default EMPTY_CLOB(),

Internal Persistent LOBs

9-11

CREATE a Table Containing One or More LOB Columns

Photo BFILE default NULL,
Frame BLOB default EMPTY_BLOBY(),
Sound BLOB default EMPTY_BLOBY(),
Voiced ref REF Voiced typ,
INSeg_ntab InSeg_tab,
Music BFILE default NULL,
Map_obj Map_typ
)NESTED TABLE InSeg_ntab STORE AS InSeg_nestedtab;

9-12 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table Containing an Object Type with a LOB Attribute

CREATE a Table Containing an Object Type with a LOB Attribute

Figure 9—6 Use Case Diagram: Create a Table Containing an Object Type with a LOB
Attribute

Internal Persistent I .

ks CREATE a Table I —0

CREATE
a Table

- @ CREATE table with an object
type containing a LOB

CREATE
-> Object Type

User/
Program

See: "Use Case Model: Internal Persistent LOBs Basic
Operations", or all basic operations having to do with Internal
Persistent LOBs.

Purpose

This procedure describes how to create a table containing an object type with an
LOB attribute.

Usage Notes
Not applicable.

Syntax

See the following specific reference for a detailed syntax description:

Internal Persistent LOBs 9-13

CREATE a Table Containing an Object Type with a LOB Attribute

« SQL: Oracle8i SQL Reference , "Chapter 7, SQL Statements" — CREATE TABLE.

Scenario

As shown in the diagram, you must create the object type that contains LOB
attributes before you can proceed to create a table that makes use of that object type.

Our example application includes two ways in which object types can contain
LOBs:

« Voiced_typ datatype uses CLOB for script and BFILE for
audio: Table Multimedia_tab contains column Voiced_ref that
references row objects in the table VoiceOver_tab which is based on the type
Voiced_typ . This type contains two kinds of LOBs — a CLOBto store the
script that’s read by the actor, and a BFILE to hold the audio recording.

« Map_obj column uses BLOB for storing maps: Table
Multimedia_tab contains column Map_obj that contains column objects of
the type Map_typ. This type utilizes the BLOBdatatype for storing maps in the
form of drawings.

See Also: Chapter 8, "Sample Application” for a description of the
multimedia application and table Multimedia_tab

9-14 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table Containing an Object Type with a LOB Attribute

Figure 9—7 VOICED_TYP As An Example of Creating a Type Containing a LOB

Examples

Column Name Kind of Data
Table MULTIMEDIA_TAB
CLIP_ID | STORY | FLSUB | PHOTO | FRAME | SOUND | VOICED_REF | INSEG_NTAB | MUSIC | MAP_OBJ
Number Text Text Photo Video Audio Reference Nested Table | Audio | Object Type§
NUMBER | CLOB NCLOB | BFILE BLOB BLOB VOICED_TYP | INSEG_TYP BFILE | MAP_TYP—H

|— PK |

Key Reference to a row Type

object of a table of
the defined type

Table VOICEOVER_TAB (of VOICED_TYP)

ORIGINATOR | SCRIPT | ACTOR TAKE RECORDING
Text Text Text Number Audio
VARCHAR2(30)| CLOB | VARCHAR2(30) [NUMBER | BFILE

PK PK

The example is provided in SQL and applies to all programmatic environments;
SQL.: Create a Table Containing an Object Type with a LOB Attribute

SQL.: Create a Table Containing an Object Type with a LOB Attribute

/*Create type Voiced typ as a basis for tables that can contain recordings of
voice-over readings using SQL DDL: %
CREATE TYPE Voiced_typ AS OBJECT (

Originator VARCHAR2(30),
Script CLOB,

Actor VARCHAR2(30),
Take NUMBER,

Recording BFILE

)

/*Create table Voiceover_tab Using SQL DDL: %
CREATE TABLE Voiceover_tab of Voiced typ (

Internal Persistent LOBs 9-15

CREATE a Table Containing an Object Type with a LOB Attribute

Script DEFAULT EMPTY_CLOBY),
CONSTRAINT Take CHECK (Take IS NOT NULL),
Recording DEFAULT NULL

)

Figure 9-8 MAP_TYP As An Example of Creating a Type Containing a LOB

Column Name

Kind of Data
Table MULTIMEDIA_TAB
CLIP_ID STORY | FLSUB | PHOTO | FRAME | SOUND | VOICED_REF | INSEG_NTAB | MUSIC | MAP_OBJ
Number Text Text Photo Video Audio Reference Nested Table Audio | Object Type §
NUMBER | CLOB NCLOB | BFILE BLOB BLOB VOICED_TYP | INSEG_TYP BFILE | MAP_TYP—f
|— PK |
Key Reference to a row Type

object of a table of
the defined type

Column Object of

the

defined type

Column Object MAP_OBJ (of MAP_TYP)

REGION [Nw | NE | sw | SE | DRAWING | AERIAL

Text Number Number Number Number Map Photo

VARCHAR2(30) [NUMBER NUMBER NUMBER NUMBER BLOB BFILE
See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal
Persistent LOBs.

9-16 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Table Containing an Object Type with a LOB Attribute

/*Create Type Map _typ using SQL DDL as a basis for the table that will contain
the column object:
CREATE TYPE Map_typ AS OBJECT (
Region VARCHAR2(30),
NW NUMBER,
NE NUMBER,
SW NUMBER,
SE NUMBER,
Drawing BLOB,
Aerial BFILE
)

/*Create support table MapLib_tab as an archive of maps using SQL DDL: %
CREATE TABLE MapLib_tab of Map_typ;

See Also: Oracle8i SQL Reference for a complete specification of
the syntax for using LOBs in DDL commands CREATE TYPENnd
ALTER TYPEBEwith BLOB CLOB and BFILE attributes.

Note: NCLORB cannot be attributes of an object type.

Internal Persistent LOBs 9-17

CREATE a Nested Table Containing a LOB

CREATE a Nested Table Containing a LOB

Figure 9-9 Use Case Diagram: Create a Nested Table Containing a LOB

Internal Persistent | -
v I . | CREATE a Table I — 0

CREATE
a Table

- O CREATE table with an nested
table containing a LOB

CREATE
-> Object Type

User/
Program

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal
Persistent LOBs.

Purpose
This procedure creates a nested table containing a LOB.

Usage Notes
Not applicable.

Syntax

Use the following syntax reference:

« SQL: Oracle8i SQL Reference , "Chapter 7, SQL Statements" — CREATE TABLE.

9-18 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

CREATE a Nested Table Containing a LOB

Scenario
Create the object type that contains the LOB attributes before you create a nested
table based on that object type. In our example, table Multimedia_tab contains
nested table Inseg_ntab that has type InSeg_typ . This type uses two LOB
datatypes:
« BFILE for audio recordings of the interviews
» CLOBshould the user wish to make transcripts of the recordings
We have already described how to create a table with LOB columns in the previous
section (see "CREATE a Table Containing One or More LOB Columns" on page 9-8),
so here we only describe the syntax for creating the underlying object type:
Figure 9-10 INTERVIEWSEGMENTS_NTAB as an Example of Creating a Nested Table
Containing a LOB
Examples
Column Name Kind of Data
Table MULTIMEDIA_TAB
CLIP_ID | STORY | FLSUB | PHOTO | FRAME | SOUND | VOICED_REF | INSEG_NTAB | MUSIC | MAP_OBJ
Number Text Text Photo Video Audio Reference Nested Table | Audio | Object Type ¢
NUMBER | CLOB | NCLOB| BFILE | BLOB | BLOB | VOICED_TYP | INSEG_TYP | BFILE |MAP_TYP—k
I’ PK
Key Type
Nested Table of the
defined type
Table INTERVIEWSEGMENTS_NTAB
SEGMENT INTERVIEW_DATE | INTERVIEWER | INTERVIEWEE | RECORDING | TRANSCRIPT
Number Date Text Text Audio Text
NUMBER DATE VARCHAR2(30) | VARCHAR2(30) | BFILE CLOB
PK

The example is provided in SQL and applies to all the programmatic environments:

Internal Persistent LOBs 9-19

CREATE a Nested Table Containing a LOB

« SQL: Create a Nested Table Containing a LOB

SQL: Create a Nested Table Containing a LOB

/*Create atype InSeq_typ as the base type for the nested table containing
alLoB:%

DROP TYPE InSeg_typ force;

DROP TYPE InSeg_tab

DROP TABLE InSeg_table;

CREATE TYPE InSeg_typ AS OBJECT (
Segment NUMBER,
Interview_Date DATE,
Interviewer VARCHAR2(30),
Interviewee VARCHAR2(30),
Recording BFILE,
Transcript CLOB

)

/* Type created, but need a nested table of that type to embed in
multi_media_tab; so: ¥
CREATE TYPE InSeg_tab AS TABLE of Inseg_typ;
CREATE TABLE InSeg_table (
id number,
InSeg_ntab Inseg_tab)
NESTED TABLE InSeg_ntab STORE AS InSeg_nestedtab;

The actual embedding of the nested table is accomplished when the structure of the
containing table is defined. In our example, this is effected by means of the NESTED
TABLEstatement at the time that Multimedia_tab is created.

9-20 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Three Ways Of Inserting One or More LOB Values into a Row

Three Ways Of Inserting One or More LOB Values into a Row

Figure 9-11 Three Ways of Inserting LOB Values into a Row

Internal persistent .
LOBS I . INSERT a Row

INSERT
2 Row - 1él @I INSERT using Empty_CLOB() or Empty_BLOB()

|
Como o A @I INSERT as SELECT

;< E b= GI INSERT by Initializing a LOB locator bind variable

User/
Program

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal
Persistent LOBs.

There are three different ways of inserting LOB values into a row:

a. LOBs may be inserted into a row by first initializing a locator — see
INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB() on
page 9-23

b. LOBs may be inserted by selecting a row from another table— see INSERT
a Row by Selecting a LOB From Another Table on page 9-26.

c. LOBs may be inserted by first initializing a LOB locator bind variable — see
INSERT Row by Initializing a LOB Locator Bind Variable on page 9-28.

Internal Persistent LOBs 9-21

Three Ways Of Inserting One or More LOB Values into a Row

Uasage Notes

For Binds of More Than 4,000 Bytes

For guidelines on how to INSERT into a LOB when binds of more than 4,000 bytes
are involved, see the following sections in Chapter 7, "Modeling and Design™:

« Binds Greater than 4,000 Bytes are Now Allowed For LOB INSERTs and
UPDATESs on page 7-16

« Binds of More Than 4,000 Bytes ... No HEX to RAW or RAW to HEX Conversion
on page 7-16

« Example: PL/SQL - Using Binds of More Than 4,000 Bytes in INSERT and
UPDATE on page 7-18

« Example: PL/SQL - Binds of More Than 4,000 Bytes -- Inserts Not Supported
Because Hex to Raw/Raw to Hex Conversion is Not Supported on page 7-19

« Example: C (OCI) - Binds of More than 4,000 Bytes For INSERT and UPDATE
on page 7-20

9-22 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()

INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()

Figure 9-12 Use Case Diagram: INSERT a Row Using EMPTY _CLOB() or EMPTY _
BLOB()

Internal persistent
LOBs

INSERT a Row I — 0

X

User/
Program

INSERT -
o ISERT) - |é| @ NSERT using Empty_CLOB() or Empty_BLOB()

Internal Persistent LOBs 9-23

INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()

Purpose

Usage Notes

Syntax

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal
Persistent LOBs.

This procedure describes how to insert a LOB value using EMPTY_CLOB() or
EMPTY_BLOBY().

Making a LOB Column Non-Null

Before you write data to an internal LOB make the LOBcolumn non-null; that is, the
LOB column must contain a locator that points to an empty or populated LOBvalue.
You can initialize a BLOBcolumn’s value by using the function EMPTY_BLOB as a
default predicate. Similarly, a CLOBor NCLOBcolumn’s value can be initialized by
using the function EMPTY_CLO@.

You can also initialize a LOB column with a character or raw string less than 4,000
bytes in size. For example:

INSERT INTO Multimedia_tab (clip_id, story)
VALUES (1, Thisis a One Line Story);

You can perform this initialization during CREATE TABLE(see "CREATE a Table
Containing One or More LOB Columns") or, as in this case, by means of an INSERT.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« SQL: Oracle8i SQL Reference , "Chapter 7, SQL Statements" — INSERT.
« C/C++ (Pro*C/C++): There is no applicable syntax reference for this use case.

Oracle8i JDBC Developer’s Guide and Reference

9-24 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()

Scenario

See: Chapter 8, "Sample Application” for a description of the
multimedia application and table Multimedia_tab

Examples
Examples are provided in the following programmatic environments:
« SQL: Insert a Value Using EMPTY_CLOB() / EMPTY_BLOB() on page 9-25

« C/C++ (Pro*C): No example is provided with this release.

SQL: Insert a Value Using EMPTY_CLOB() / EMPTY_BLOB()

These functions are available as special functions in Oracle8 SQL DML, and are not
part of the DBMS_LOBRackage.

/*Inthe new row of table Multimedia_tab,
the columns STORY and FLSUB are initalized using EMPTY_CLOB(),
the columns FRAME and SOUND are initalized using EMPTY _BLOB(),
the column TRANSSCRIPT in the nested table is iniialized using EMPTY _CLOB(),
the column DRAWING in the column object is Iniialized using EMPTY _BLOB(): %
INSERT INTO Mulimedia._tab
VALUES (1, EMPTY_CLOB(), EMPTY_CLOB(), NULL, EMPTY_BLOB(), EMPTY_BLOB(),
NULL, InSeg_tab(InSeg_typ(1, NULL, Ted Koppell, 'Jimmy Carter, NULL,
EMPTY_CLOB()), NULL, Map_typ(Moon Mountair, 23, 34, 45, 56, EMPTY_BLOB(),
NULL));

/*Inthe new row of table Voiceover _tab, the column SCRIPT is initialized using
EMPTY CLOB():%

INSERT INTO Voiceover_tab
VALUES (Abraham Lincaln’, EMPTY_CLOB(), James Earl Jones', 1, NULL);

Internal Persistent LOBs 9-25

INSERT a Row by Selecting a LOB From Another Table

INSERT a Row by Selecting a LOB From Another Table

Figure 9-13 Use Case Diagram: Insert a Row by Selecting a LOB From Another Table

Internal Persistent -
e I . | INSERT aRow | — @)

INSERT
a Row

SELECT
alLOB

- |éI @ NSERT as SELECT

O

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal
Persistent LOBs.

Purpose
This procedure describes how to insert a row containing a LOB as SELECT.

Usage Notes

Note: Internal LOBtypes — BLOB CLOB and NCLOB— use copy
semantics, as opposed to reference semantics that apply to BFILE s.
When a BLOB CLOB or NCLOBs copied from one row to another in
the same table or a different table, the actual LOBvalue is copied,
not just the LOBlocator.

For example, assuming Voiceover_tab and VoiceoverlLib_tab have identical
schemas, the statement creates a new LOBJlocator in the table Voiceover_tab , and
copies the LOBdata from VoiceoverLib_tab to the location pointed to by a new
LOBIocator which is inserted in table Voiceover_tab

9-26 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT a Row by Selecting a LOB From Another Table

Syntax

Scenario

Examples

Use the following syntax reference:
« SQL: Oracle8i SQL Reference , "Chapter 7, SQL Statements” — INSERT.

With regard to LOBSs, one of the advantages of utilizing an object-relational
approach is that you can define a type as a common template for related tables. For
instance, it makes sense that both the tables that store archival material and the
working tables that use those libraries share a common structure.

The following code fragment is based on the fact that a library table
VoiceoverLib_tab is of the same type (Voiced_typ) as Voiceover_tab
referenced by the Voiced_ref column of the Multimedia_tab table. It inserts
values into the library table, and then inserts this same data into Multimedia_tab
by means of a SELECT

See Also: Chapter 8, "Sample Application" for a description of the
multimedia application and table Multimedia_tab

The following example is provided in SQL and applies to all the programmatic
environments:

« SQL: Insert a Row by Selecting a LOB from Another Table on page 9-27

SQL: Insert a Row by Selecting a LOB from Another Table

/*Store records in the archive table VoiceoverLib_tab: %/
INSERT INTO VoiceoverLib_tab
VALUES (George Washington', EMPTY_CLOB(), 'Robert Redford’, 1, NULL);

/*Insert values into Voiceover_tab by selecting from VoiceoverLib_tab: %/
INSERT INTO Voiceover_tab
(SELECT *from VoiceoverLib_tab
WHERE Take = 1);

Internal Persistent LOBs 9-27

INSERT Row by Initializing a LOB Locator Bind Variable

INSERT Row by Initializing a LOB Locator Bind Variable

Purpose

Usage Notes

a Row

Figure 9-14 Use Case Diagram: INSERT Row by Initializing a LOB Locator Bind
Variable

Internal Persistent .
el I . | INSERT a Row I — 0

INSERT - IA O INSERT by Initializing a LOB locator bind variable

Initialize
a LOB locator
bind variable

SELECT
alLOB

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal
Persistent LOBs.

This procedure inserts a row by initializing a LOB locator bind variable.

See Chapter 7, "Modeling and Design", "Binds Greater Than 4,000 Bytes in INSERTSs
and UPDATEs", for usage notes and examples on using binds greater then 4,000
bytes in INSERTs and UPDATEs.

9-28 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

INSERT Row by Initializing a LOB Locator Bind Variable

Syntax

Scenario

Examples

C/C++ (Pro*C):

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« SQL: Oracle8i SQL Reference , "Chapter 7, SQL Statements” — INSERT

« C/C++ (Pro*C): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — INSERT

In the following examples we use a LOBlocator bind variable to take Sound data in
one row of Multimedia_tab and insert it into another row.

Examples are provided in the following programmatic environments:

« C/C++ (Pro*C): Insert Row by Initializing a LOB Locator Bind Variable on
page 9-29

Insert Row by Initializing a LOB Locator Bind Variable

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf("%.*s\n", sglca.sglemm.salenml, sglca.sglemm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void insertUseBindVariable_proc(Rownum, Lob_loc)
int Rownum;
OCIBlobLocator *L.ob loc;
{
EXEC SQL WHENEVER SQLERROR DO Sample_Error();
EXEC SQL INSERT INTO Mulimedia_tab (Clip_ID, Sound)
VALUES (:Rownum, :Lob_loc);
}

Internal Persistent LOBs 9-29

INSERT Row by Initializing a LOB Locator Bind Variable

void insertBLOB_proc()

{
OCIBlobLocator *Lob loc;

/ Initalize the BLOB Locator: %/

EXEC SQL ALLOCATE :Lob_loc;

/*Select the LOB from the rowwhere Clip ID=1:%

EXEC SQL SELECT Sound INTO :Lob_loc
FROM Multimedia_tab WHERE Clip_ID=1;

/*Insertinto the rowwhere Clip_ID=2:%

insertUseBindVariable_proc(2, Lob_loc);

/* Release resources held by the locator: %/

EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
insertBLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

9-30 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load Data into an Internal LOB (BLOB, CLOB, NCLOB)

Load Data into an Internal LOB (BLOB, CLOB, NCLOB)

Figure 9-15 Use Case Diagram: Load Initial Data into an Internal LOB

Internal Persistent | - " .
LOBs I . LOAD Initial Data into the LOB

X

User/
Program

LOAD
Initial Data into
the LOB

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal
Persistent LOBs.

Purpose
This procedure describes how to load data into an internal LOB.

Usage Notes and Examples

For detailed information and tips on using SQL Loader for loading data into an
internal LOB see Chapter 4, "Managing LOBs", "Using SQL Loader to Load LOBs":

Internal Persistent LOBs 9-31

Load Data into an Internal LOB (BLOB, CLOB, NCLOB)

« Loading Inline LOB Data

Loading Inline LOB Data in Predetermined Size Fields
Loading Inline LOB Data in Delimited Fields
Loading Inline LOB Data in Length-Value Pair Fields

« Loading Out-Of-Line LOB Data

Syntax

Loading One LOB Per File

Loading Out-of-Line LOB Data in Predetermined Size Fields
Loading Out-of-Line LOB Data in Delimited Fields

Loading Out-of-Line LOB Data in Length-Value Pair Fields

See Also: Oracle8i Utilities— "SQL Loader"

See Usage Notes and Examples above.

Scenario

Since LOBs can be quite large in size, it makes sense that SQL*Loader can load LOB
data from either the main datafile (that is, inline with the rest of the data) or from
one or more secondary datafiles.

To load LOBdata from the main datafile, the usual SQL*Loader formats can be used.
The LOBdata instances can be in predetermined size fields, delimited fields, or
length-value pair fields.

9-32 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a LOB with Data from a BFILE

Load a LOB with Data from a BFILE

Figure 9-16 Use Case Diagram: Load a LOB with Data from a BFILE

Internal Persistent
LOBs

OPEN
alLOB

CLOSE
alLOB

SELECT
alLOB

A

L]

I . LOAD LOB with Data From a BFILE

INITIALIZE
BFILE
locator

memennae >

open
a BFILE

OCI Lob
FileSet Name

O;'"
X....

load a LOB
with data
from a BFILE

close close
a BFILE

all BFILES

OR

User/
Program

Internal Persistent LOBs 9-33

Load a LOB with Data from a BFILE

Purpose

Usage Notes

Syntax

Scenario

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal
Persistent LOBs.

This procedure describes how to load a LOB with data from a BFILE.

Binary Data to Character Set Conversion is Needed on BFILE Data

In using OCI, or any of the programmatic environments that access OCI
functionality, character set conversions are implicitly performed when translating
from one character set to another. However, no implicit translation is ever
performed from binary data to a character set.

When you use the LOADFROMFILBprocedure to populate a CLOBor NCLOByou are
populating the LOBwith binary data from the BFILE . In that case, you will need to
perform character set conversions on the BFILE data before executing
LOADFROMFILE

Specify Amount to be Less than the Size of BFILE!

« DBMS_LOB.LOADFROMFILE: You cannot specify the amount larger than the
size of the BFILE.

» OCILobLoadFromFile: You cannot specify amount larger than the length of the
BFILE.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOAD

The examples assume that there is an operating system source file (Washington_
audio) that contains LOB data to be loaded into the target LOB (Music). The

9-34 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Load a LOB with Data from a BFILE

examples also assume that directory object AUDIO_DIR already exists and is
mapped to the location of the source file.

Examples
Examples are provided in the following programmatic environments:
« C/C++ (Pro*C): Load a LOB with Data from a BFILE on page 9-35

C/C++ (Pro*C): Load a LOB with Data from a BFILE

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Eror()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglenm, sgica.sglenm.sglermc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

void loadLOBFromBFILE_proc()
{
OCIBlobLocator *Dest_loc;
OCIBFileLocator *Src_loc;
char *Dir ="FRAME_DIR", *Name ="Washington_frame";
int Amount = 4000;

EXEC SQL WHENEVER SQLERROR DO Sample_Eror();

F Initialize the BFILE Locator */

EXEC SQL ALLOCATE :Src_loc;

EXEC SQL LOB FILE SET :Src_loc DIRECTORY = :Dir, FILENAME = :Name;

F Initialize the BLOB Locator */

EXEC SQL ALLOCATE :Dest loc;

EXEC SQL SELECT frame INTO :Dest_loc FROM Mulimedia_tab
WHERE Clip_ID =3 FOR UPDATE;

F Opening the BFILE is Mandatory */

EXEC SQL LOB OPEN :Src_loc READ ONLY;

F Opening the BLOB is Optional */

EXEC SQL LOB OPEN :Dest_loc READ WRITE;

Internal Persistent LOBs 9-35

Load a LOB with Data from a BFILE

EXEC SQL LOB LOAD :Amount FROM FILE :Src_loc INTO :Dest loc;
 Closing LOBs and BFILES is Mandatory if they have been OPENed */
EXEC SQL LOB CLOSE :Dest loc;

EXEC SQL LOB CLOSE :Src _loc;

P Release resources held by the Locators */

EXEC SQL FREE :Dest _loc;

EXEC SQL FREE :Src_loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
loadLOBFromBFILE._proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

9-36 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See Ifa LOB Is Open

See If a LOB Is Open

Figure 9-17 Use Case Diagram: See If a LOB Is Open

'L“(gegga' Persistent IZ SEE if LOB is Open
SELECT
alop) <wmereretees .

H . SEE if
"""""" LOB is Open
User/
Program

Purpose

Usage Notes

Syntax

Scenario

This procedure describes how to see if LOB is open.

Not applicable.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB DESCRIBE ... ISOPEN ...

The following "See if a LOB is Open" examples open a Video frame (Frame), and
then evaluate it to see if the LOBis open.

Internal Persistent LOBs 9-37

See Ifa LOB Is Open

Examples

CIC++ (Pro*C):

Examples are provided in the following programmatic environments:
« C/C++ (Pro*C): See if a LOB is Open on page 9-38

Seeifa LOB is Open

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglerm.sglenml, sglca.sglerm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void seelfLOBIsOpen()

{
OCIBlobLocator *Lob _loc;
intisOpen=1;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
EXEC SQL ALLOCATE :Lab_loc;
EXEC SQL SELECT Frame INTO :Lob_loc
FROM Multimedia_tab WHERE Clip_ID =1,

/*Seeifthe LOBIs Open: ¥
EXEC SQL LOB DESCRIBE :Lob_loc GET ISOPEN INTO :isOpen;
if (sOpen)

printf("LOB is open\n’);
else

printf("LOB is not open\n';
/*Note that in this example, the LOB is not open ¥
EXEC SQL FREE :Lob loc;

}

void main()

{
char*samp ="samp/samp";
EXEC SQL CONNECT :samp;
seelfLOBIsOpen();

9-38 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See Ifa LOB Is Open

EXEC SQL ROLLBACK WORK RELEASE;
}

Internal Persistent LOBs 9-39

Copy LONG to LOB

Copy LONG to LOB

Figure 9-18 Use Case Diagram: Copy LONG to LOB

Internal Persistent .
LOBs I . COPY LONG to LOB
User/
Program
COPY
LONG to LOB
See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal
Persistent LOBs.
Purpose

This procedure describes how to copy a LONG to a LOB.

9-40 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy LONG to LOB

Usage Notes

Syntax

Scenario

Use of TO_LOBIs subject to the following limitations:
« You can use TO_LOBto copy data to a LOB column, but not to a LOB attribute.

« You cannot use TO_LOBwith any remote table. Consequently, all the following
statements will fail:

INSERT INTO th1@dbiink (lob_col) SELECT TO_LOB(ong_col) FROM th2;
INSERT INTO th1 (ob_col) SELECT TO_LOB(ong_col) FROM th2@dbiink;
CREATE table th1 AS SELECT TO_LOB(ong_col) FROM th2@dblink;

« If the target table (the table with the lob column) has a trigger — such as
BEFORE INSERDr INSTEAD OF INSERT— the :NEW.lob_col variable can't
be referenced in the trigger body:.

=« You cannot deploy TO_LOBinside any PL/SQL block.

« The TO_LOB function can be used to copy data to a CLOB but not a NCLOB.
This is because LONG datatypes have the database CHAR character set and can
only be converted to a CLOB which also uses the database CHAR character set.
NCLOB on the other hand, use the database NCHAR character set.

Use the following syntax reference:

« SQL: Oracle8i SQL Reference , Chapter 4, "Functions" — TO_LOB.

Assume that the following archival source table SoundsLib_tab was defined and
contains data:

CREATE TABLE SoundsLib_tab

(
Id NUMBER,

Description VARCHAR2(30),
SoundEffects LONG RAW
)

The example assumes that you want to copy the data from the LONG RAWbIumn
(SoundEffects) into the BLOBcolumn (Sound) of the multimedia table, and uses
the SQL function TO_LOBto accomplish this.

Internal Persistent LOBs 9-41

Copy LONG to LOB

Examples
The example is provided in SQL and applies to all six programmatic environments:
=« "SQL: Copy LONG to LOB"

SQL: Copy LONG to LOB

INSERT INTO Mulimedia_tab (clip_id,sound) SELECT id, TO_LOB(SoundEffects)
FROM SoundsLib_tab WHERE id =1;

Note: in order for the above to succeed, execute:

CREATE TABLE SoundsLib_tab (
id NUMBER,
SoundEffects LONG RAW);

This functionality is based on using an operator on LONG called TO_LOBthat
converts the LONGo a LOB The TO_LOBoperator copies the data in all the rows of
the LONGcolumn to the corresponding LOBcolumn, and then lets you apply the
LOBfunctionality to what was previously LONGdata. Note that the type of data that
is stored in the LONCGcolumn must match the type of data stored in the LOB For
example, LONG RAWata must be copied to BLOBdata, and LONGdata must be
copied to CLOBdata.

Once you have completed this one-time only operation and are satisfied that the
data has been copied correctly, you could then drop the LONGcolumn. However,
this will not reclaim all the storage originally required to store LONGsin the table. In
order to avoid unnecessary, excessive storage, you are better advised to copy the
LONGdata to a LOBin a new or different table. Once you have made sure that the
data has been accurately copied, you should then drop the original table.

One simple way to effect this transposing of LONGSs to LOBs is to use the CREATE
TABLE.. SELECTstatement, using the TO_LOBoperator on the LONGcolumn as part
of the SELECTstatement. You can also use INSERT... SELECT

In the examples in the following procedure, the LONGcolumn named LONG_ COlin
table LONG_TAHSs copied to a LOBcolumn named LOB_COLin table LOB_TAB
These tables include an ID column that contains identification numbers for each
row in the table.

Complete the following steps to copy data from a LONGcolumn to a LOBcolumn:

9-42 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy LONG to LOB

Create a new table with the same definition as the table that contains the LONG
column, but use a LOBdatatype in place of the LONGdatatype.

For example, if you have a table with the following definition:

CREATE TABLE Long_tab (
id NUMBER,
long_col LONG);

Create a new table using the following SQL statement:

CREATE TABLE Lob _tab (
id NUMBER,
blob_col BLOB);

Note: When you create the new table, make sure you preserve the
table’s schema, including integrity constraints, triggers, grants, and
indexes. The TO_LOBoperator only copies data; it does not
preserve the table’s schema.

Issue an INSERT command using the TO_LOBoperator to insert the data from
the table with the LONGdatatype into the table with the LOBdatatype.

For example, issue the following SQL statement:

INSERT INTO Lob _tab
SELECT d,
TO_LOB(long_cal)
FROM long_tab;

When you are certain that the copy was successful, drop the table with the
LONGCcolumn.

For example, issue the following SQL command to drop the LONG_TARBable:
DROP TABLE Long_tab;

Create a synonym for the new table using the name of the table with LONCGdata.
The synonym ensures that your database and applications continue to function

properly.
For example, issue the following SQL statement:
CREATE SYNONYM Long_tab FOR Lob tab;

Internal Persistent LOBs 9-43

Copy LONG to LOB

Once the copy is complete, any applications that use the table must be modified to
use the LOBdata.

You can use the TO_LOBoperator to copy the data from the LONGo the LOB in
statements that employ CREATE TABLEAS SELECTor INSERT...SELECT In the
latter case, you must have already ALTERed the table and ADed the LOBcolumn
prior to the UPDATEIf the UPDATEeturns an error (because of lack of undo space),
you can incrementally migrate LONGdata to the LOBusing the WHERElause. The
WHEREIlause cannot contain functions on the LOBbut can test the LOBSs nullness.

9-44 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkout a LOB

Checkout a LOB

Figure 9-19 Use Case Diagram: Checkout a LOB

Internal Persistent .
LOBs I . CHECKOUT a LOB
OPEN
alLOB
=={ CHECKOUT
CLOSE :
a LOB : alLOB
SELECT :
aLoB J<]rreee : :
E read data :
Tmmmmmmmmman e ————— from the LOB) <===" %
User/
Program
get
chunk size

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal
Persistent LOBs.

Purpose
This procedure describes how to checkout a LOB.

Internal Persistent LOBs 9-45

Checkout a LOB

Usage Notes

Syntax

Scenario

Streaming Mechanism

The most efficient way to read large amounts of LOB data is to use OCILobRead ()
with the streaming mechanism enabled via polling or callback. Use OCI or PRO*C
interfaces with streaming for the underlying read operation. Using DBMS_LOBREAD
will result in non-optimal performance.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB OPEN, LOB READ

In the typical use of the checkout-checkin operation, the user wants to checkout a
version of the LOB from the database to the client, modify the data on the client
without accessing the database, and then in one fell swoop, checkin all the
modifications that were made to the document on the client side.

Here we portray the checkout portion of the scenario: the code lets the user read the CLOB
Transcript ~ from the nested table InSeg_ntab which contains interview segments for the purpose

of processing in some text editor on the client. The checkin portion of the scenario is described in
"Checkin a LOB" on page 9-49.Examples

CIC++ (Pro*C):

The following examples are similar to examples provided in "Display LOB Data".
Examples are provided in the following programmatic environments:

« C/C++ (Pro*C): Checkout a LOB on page 9-46

Checkout a LOB

/* This example will READ the entire contents of a CLOB piecewise into a
buffer using a standard polling method, processing each buffer piece
after every READ operation until the entire CLOB has been read: %/

#include <oci.h>

#include <stdio.n>

9-46 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkout a LOB

#include <sglca.h>

void Sample_Eror()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglenm.sglenml, sgica.sglenm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

#define BufferLength 256

void checkOutLOB_proc()
{
OCIClobLocator *Lob loc;
int Amount;
int Clip_ID, Segment;
VARCHAR Buffer{BufferLengthl;

EXEC SQL WHENEVER SQLERROR DO Sample_Ermor();
EXEC SQL ALLOCATE :Lob_loc;

/*Use Dynamic SQL to retrieve the LOB: %/
EXEC SQL PREPARE S FROM
'SELECT Intab.Transcript\
FROM TABLE(SELECT Mtab.InSeg_ntab FROM Mulimedia._tab Mtab\
WHERE Mtab.Clip_ID = :cid) Intab\

WHERE Intab.Segment = :seg;

EXEC SQL DECLARE C CURSOR FORSS;

Clip_ID=Segment=1,

EXEC SQL OPEN C USING Clip_ID, :Segment;

EXEC SQL FETCHCINTO :Laob _loc;

EXEC SQL CLOSE C;

#Openthe LOB: %/
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
/* Setting Amounit = 0 will initiate the polling method: %
Amount=0;
/* Set the maximum size of the Buffer: %/
Buffer.len = BufferLength;
EXEC SQL WHENEVER NOT FOUND DO break;
while (TRUE)
{
/*Read a piece of the LOB into the Buffer: %/
EXEC SQL LOB READ :Amount FROM :Lob_loc INTO :Buffer;

Internal Persistent LOBs 9-47

Checkout a LOB

printf("Checkout %d characters\n®, Buffer.len);

}
printf("Checkout %d characters\n', Amount);

/*Closing the LOB is mandatory if you have opened it %/
EXEC SQL LOB CLOSE :Lab _loc;
EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
checkOutLOB_procy();
EXEC SQL ROLLBACK WORK RELEASE;
}

9-48 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkin a LOB

Checkin a LOB

Figure 9-20 Use Case Diagram: Checkin a LOB

Internal Persistent

LOBs I . CHECKIN a LOB

OPEN
alLOB

N

CLOSE
alLOB

write data

to the LOB

SELECT
alLOB

CHECKIN
alLOB

X

User/
Program

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

Purpose

This procedure describes how to checkin a LOB.

Internal Persistent LOBs 9-49

Checkin a LOB

Usage Notes

Syntax

Scenario

Examples

CIC++ (Pro*C):

Streaming Mechanism

The most efficient way to write large amounts of LOB data is to use
OCIlLobWrite () with the streaming mechanism enabled via polling or callback

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB WRITE

The checkin operation demonstrated here follows from "Checkout a LOB" on
page 9-45. In this case, the procedure writes the data back into the CLOB
Transcript ~ column within the nested table InSeg_ntab that contains interview
segments. As noted above, you should the OCI or PRO*C interface with streaming
for the underlying write operation; using DBMS_LOB.WRITBEwill result in
non-optimal performance.

The following examples illustrate how to checkin a LOB using various
programmatic environments:

Examples are provided in the following programmatic environments:

» C/C++ (Pro*C): Checkin a LOB on page 9-50

Checkin a LOB

/* This example demonstrates how Pro*C/C++ provides for the ability to WRITE
arbitrary amounts of data to an Intemal LOB in either a single piece
or in multiple pieces using a Streaming Mechanism that utilizes standard
poling. A static Buffer is used to hold the data being written: %/

#include <oci.h>
#include <stdio.h>
#include <string.h>

9-50 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkin a LOB

#include <sglca.h>

void Sample_Eror()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglenm.sglenml, sgica.sglenm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

#define BufferLength 512

void checkinLOB_proc(multtiple) int muttiple;
{

OCIClobLocator *Lob loc;

VARCHAR BufferiBufferLength];

unsigned int Total;

unsigned int Amount;

unsigned int remainder, nbytes;

boolean last;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
* Allocate and Initialize the Locator: */
EXEC SQL ALLOCATE :Lob_loc;
EXEC SQL SELECT Story INTO :Lob loc
FROM Mulimedia._tab WHERE Clip_ID =1 FOR UPDATE;
/Openthe LOB: %/
EXEC SQL LOB OPEN :Lob_loc READ WRITE;
Total = Amount = (multiple * BufferL_ength);

if (Total > BufferLength)
nbytes = BufferLength; /*We will use streaming via standard polling */
else
nbytes = Total; /*Only a single WRITE is required %/

/* Fill the Buffer with nbytes worth of data: %/
memset((void *)Buffer.ar, 32, nbytes);
Buffer.len = nbytes; /*Setthe Length %/
remainder = Total - nbytes;
if (0 == remainder)
{
/*Here, (Total <= Bufferi_ength) so we can WRITE in ONE piece: ¥
EXEC SQL LOB WRITE ONE :Amount FROM :Buffer INTO :Lob loc;
printf(Write ONE Total of %d characters\n”, Amount);
}

else

{

Internal Persistent LOBs 9-51

Checkin a LOB

/*Here (Total > BufferLength) so use streaming via standard polling:
WRITE the FIRST piece. Specifying FIRST initiates polling: */

EXEC SQL LOB WRITE FIRST :Amount FROM :Buffer INTO :Lob_loc;

printf("Write FIRST %d characters\n”, Buffer.len);

last = FALSE;

A WRITE the NEXT (interim) and LAST pieces: %/

do

if ('emainder > BufferLength)

nbytes = BufferLength; /* Still have more pieces togo ¥
else

{

nbytes = remainder;

last=TRUE; /*This is going to be the Final piece ¥

}
/* Fill the Buffer with nbytes worth of data: %/
memset((void *Buffer.ar, 32, nbytes);
Bufferlen=nbytes, /* Setthe Length*
if{(last)
EXEC SQL WHENEVER SQLERROR DO Sample_Eror();
/* Specifying LAST tenminates poling: %/
EXEC SQL LOB WRITE LAST :Amount FROM :Buffer INTO :Lob_loc;
printf("Write LAST Total of %d characters\n”, Amount);
}
else
{
EXEC SQL WHENEVER SQLERROR DO break;
EXEC SQL LOB WRITE NEXT :Amount FROM :Buffer INTO :Lob_loc;
printf(White NEXT %d characters\n”, Buffer.len);
}
/*Determine how much is left to WRITE: %/
remainder = remainder - nbytes;
}while (llast);
}
EXEC SQL WHENEVER SQLERROR DO Sample_Error();
/* At this poirtt, (Amount == Total), the total amount that was written %/
/Close the LOB: %/
EXEC SQL LOB CLOSE :Lab _loc;
EXEC SQL FREE :Lob loc;

}

void main()
{

char *samp ="samp/samp";

9-52 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Checkin a LOB

EXEC SQL CONNECT :samp;
checkinLOB_proc(1);

EXEC SQL ROLLBACK WORK;
checkinLOB_proc(4);

EXEC SQL ROLLBACK WORK RELEASE;

Internal Persistent LOBs 9-53

Display LOB Data

Display LOB Data

Figure 9-21 Use Case Diagram: Display LOB Data

Internal Persistent .
LOBs I . DISPLAY a LOB

OPEN
alLOB

N

CLOSE
alLOB

SELECT
aLop J<mroet :

read data

from the LOB) <+

DISPLAY
alLOB

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

9-54 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

X

User/
Program

Display LOB Data

Purpose

Usage Notes:

Syntax

Scenario

Examples

CIC++ (Pro*C):

This procedure describes how to display LOB data.

Streaming Mechanism

The most efficient way to read large amounts of LOB data is to use OCILobRead ()
with the streaming mechanism enabled.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB READ

As an example of displaying a LOB, our scenario stream-reads the image Drawing
from the column object Map_obj onto the client-side in order to view the data.

Examples are provided in the following programmatic environments:
« C/C++ (Pro*C): Display LOB Data on page 9-55

Display LOB Data

/* This example will READ the entire contents of a BLOB piecewise into a
buffer using a standard polling method, processing each buffer piece
after every READ ogperation unti the entire BLOB has been read.: ¥/

#include <ocih>

#include <stdio.h>
#include <sglca.h>

Internal Persistent LOBs 9-55

Display LOB Data

void Sample_Eror()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglenm.sglenml, sgica.sglemm.sglenmmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 32767

void displayLOB_proc()
{
OClBlobLocator*Lob _loc;
int Amount;
struct{
unsigned short Length;
char Data[BufferLength];
}Buffer;
/* Datatype equivalencing is mandatory for this datatype: %/
EXEC SQL VAR Buffer IS VARRAW/(BufferLengthy;

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
EXEC SQL ALLOCATE :Lob loc;
/*Select the BLOB: %/
EXEC SQL SELECT m.Map_obj.Drawing INTO Lob loc
FROM Mulimedia_tab m WHERE m.Clip_ID=1;
/Openthe BLOB: %/
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
/* Setting Amount = 0 will initiate the polling method: %/
Amount=0;
/* Set the maximum size of the Buiffer: %/
Buffer.Length = BufferLength;
EXEC SQL WHENEVER NOT FOUND DO break;
while (TRUE)
{
/*Read a piece of the BLOB into the Buffier: %/
EXEC SQL LOB READ :Amount FROM :Lob_loc INTO :Buffer;
/* Process (Buiffer.Length = Buiffer_ength) amount of Buffer.Data ¥/
}
/* Process (Buffer.Length = Amount) amount of Buffer.Data %
/*Closing the BLOB is mandatory if you have opened it %/
EXEC SQL LOB CLOSE :Lab _loc;
EXEC SQL FREE :Lob loc;

9-56 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Display LOB Data

void main()
{
char*samp ="samp/samp";
EXEC SQL CONNECT :samp;
displayLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Internal Persistent LOBs 9-57

Read Data from LOB

Read Data from LOB

Figure 9-22 Use Case Diagram: Read Data from LOB

Internal Persistent

LOBs I . READ Data From the LOB

OPEN
alLOB

D

CLOSE
alLOB

SELECT
alop J<reeeee

READ Data
From the LOB

User/
Program

get
chunk size

enable
buffering

disable
buffering

9-58 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read Data from LOB

Procedure

Usage Notes

See: "Use Case Model: Internal Persistent LOBs Basic
Operations™ on page 9-2, for all basic operations of Internal
Persistent LOBs.

This procedure describes how to read data from LOBs.

Stream Read

The most efficient way to read large amounts of LOB data is to use OCILobRead ()
with the streaming mechanism enabled via polling or callback.

When reading the LOBvalue, it is not an error to try to read beyond the end of the
LORB This means that you can always specify an input amount of 4 gigabytes - 1
regardless of the starting offset and the amount of data in the LOB. Hence, you do
not need to incur a round-trip to the server to call OCILobGetLength () to find out
the length of the LOB value to determine the amount to read.

Example

Assume that the length of a LOB is 5,000 bytes and you want to read the entire LOB
value starting at offset 1,000. Also assume that you do not know the current length
of the LOB value. Here's the OCI read call, excluding the initialization of all
parameters:

#define MAX_LOB_SIZE 4294967295

ub4 amount= MAX_LOB_SIZE;

ub4 offset=1000;

OCILobRead(svchp, errhp, locp, &amount, offset, bufp, bufl, 0, 0, 0, 0)

Note:

« InDBMS_LOB.READ, the amount can be larger than the size of
the data. In PL/SQL, the amount should be less than or equal
to the size of the buffer, and the buffer size is limited to 32K.

« In OCIlLobRead, you can specify amount = 4 gigabytes-1, and it
will read to the end of the LOB.

Internal Persistent LOBs 9-59

Read Data from LOB

Syntax

Scenario

Examples

« When using polling mode, be sure to look at the value of the 'amount ' parameter
after each OCILobRead () call to see how many bytes were read into the buffer
since the buffer may not be entirely full.

« When using callbacks, the ‘len ' parameter, which is input to the callback, will
indicate how many bytes are filled in the buffer. Be sure to check the 'len *
parameter during your callback processing since the entire buffer may not be
filled with data (see Oracle Call Interface Programmer’s Guide.).

Chunksize

A chunk is one or more Oracle blocks. You can specify the chunk size for the LOB
when creating the table that contains the LOB This corresponds to the chunk size
used by Oracle when accessing or modifying the LOBvalue. Part of the chunk is
used to store system-related information and the rest stores the LOBvalue. The
getchunksize function returns the amount of space used in the LOBchunk to
store the LOBvalue.

You will improve performance if you execute read requests using a multiple of this
chunk size. The reason for this is that you are using the same unit that the Oracle
database uses when reading data from disk. If it is appropriate for your application,
you should batch reads until you have enough for an entire chunk instead of
issuing several LOBread calls that operate on the same LOBchunk.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB READ

The examples read data from a single video frame.

Examples are provided in the following programmatic environments:

9-60 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read Data from LOB

« C/C++ (Pro*C/C++): Read Data from LOB on page 9-61

C/C++ (Pro*C/C++): Read Data from LOB

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenmm.sglenm, sgica.sglenmm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 32767

void readLOB_proc()
{
OCIBlobLocator *Lob_loc;
int Amount = BufferLength;
/*Here (Amount = BulfferLength) so only one READ is needed.
char BufferBufferLengthy;
/* Datatype equivalencing is mandatory for this datatype: ¥/
EXEC SQL VAR Buffer IS RAW(BufferLength);

EXEC SQL WHENEVER SQLERROR DO Sample_Emor();
EXEC SQL ALLOCATE :Lob loc;
EXEC SQL SELECT Frame INTO :Lob loc

FROM Mulimedia_tab WHERE Clip_ID=1,
/Openthe BLOB: %/
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
EXEC SQL WHENEVER NOT FOUND CONTINUE;
/*Read the BLOB aata into the Buiffer: %/
EXEC SQL LOB READ :Amount FROM :Lob_loc INTO :Buffer;
printf("Read %d bytes\n", Amount);
/*Close the BLOB: %/
EXEC SQL LOB CLOSE :Lab _loc;
EXEC SQL FREE :Lob loc;

}

void main()

{

Internal Persistent LOBs 9-61

Read Data from LOB

char*samp = "samp/samp’,
EXEC SQL CONNECT :samp;

readLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;

9-62 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read a Portion of the LOB (substr)

Read a Portion of the LOB (substr)

Figure 9-23 Use Case Diagram: Read a Portion of the LOB (substr)

:—néeégal persistent I . READ a Portion of the LOB from a Table (Substr.)

OPEN
alLOB

CLOSE
alLOB

SELECT
alop)<t

X

User/
Program

read a
portion of the
LOB from the
table (substr’

Internal Persistent LOBs 9-63

Read a Portion of the LOB (substr)

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal
Persistent LOBs.

Purpose
This procedure describes how to read portion of the LOB (substring).

Usage Notes
Not applicable.

Syntax

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB READ. See PL/SQL
DBMS_LOB.SUBSTR.

Scenario
This example demonstrates reading a portion from sound-effect Sound.

Examples
Examples are provided in the following programmatic environments:
« C/C++ (Pro*C/C++): Read a Portion of the LOB (substr) on page 9-64
« 0N page 9-66

C/C++ (Pro*C/C++): Read a Portion of the LOB (substr)

/* Pro*C/C++ lacks an equivalent embedded SQL form for the DBMS _LOB.SUBSTR()
function. However, Pro*C/C++ can interoperate with PL/SQL using anonyrmous
PL/SQL blocks embedded in a Pro*C/C++ program as this example shows: ¥/

#include <oci.h>
#include <stdio.h>
#include <sglca.h>
void Sample_Error()

9-64 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Read a Portion of the LOB (substr)

{

}

EXEC SQL WHENEVER SQLERROR CONTINUE;
printf("%.*s\n", sglca.sglemm.salenm, sglca.sglemm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;

exit(1);

#define BufferLength 32767

void substringLOB_proc()

{

}

OCIBlobLocator *Lob_loc;
int Posiion=1;
int Amount = BufferLength;
struct{
unsigned short Length;
char Data[BufferLength];
}Buffer;
/* Datatype equivalencing is mandatory for this datatype: %/
EXEC SQL VAR Buffer IS VARRAW/(BufferLength);

EXEC SQL WHENEVER SQLERROR DO Sample_Emor();
EXEC SQL ALLOCATE :Lob_loc;
EXEC SQL SELECT Sound INTO Lob_loc
FROM Mulimedia_tab WHERE Clip_ID=1,

/Openthe BLOB: %
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
/*Invoke SUBSTRY() from within an anonymous PL/SQL block: %/
EXEC SQL EXECUTE

BEGIN

‘Buffer :=DBMS_LOB.SUBSTR(:.Lob_loc, :Amount, :Pasition);

END;
END-EXEC;
/*Close the BLOB: %/
EXEC SQL LOB CLOSE :Lob loc;
/*Process the Data ¥
/* Release resources used by the locator: %/
EXEC SQL FREE :Lob loc;

void main()

{

char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
substringLOB_proc();

Internal Persistent LOBs 9-65

Read a Portion of the LOB (substr)

EXEC SQL ROLLBACK WORK RELEASE;
exit(0);
}

9-66 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Part of Two LOBs

Compare All or Part of Two LOBs

Figure 9-24 Use Case Diagram: Compare All or Part of Two LOBs

nternal Persistent I * COMPARE All or Parts of Two LOBS
OPEN
alLOB
CLOSE
alLoB
SELECT
aloB J<mmmmmee . %
User/
. Program
e eeeeeeemeesenseenenssenneennennns COMPARE All
or Parts of
2 LOBs

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal
Persistent LOBs.

Purpose
This procedure describes how to compare all or part of two LOBs.

Internal Persistent LOBs 9-67

Compare All or Part of Two LOBs

Usage Notes

Syntax

Scenario

Examples

Not applicable.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Appendix F,
"Embedded SQL Statements and Directives” — LOB OPEN, LOB CLOSE. Also
reference PL/SQL DBMS_LOB.COMPARE.

The following examples compare two frames from the archival table
VideoframesLib_tab to see whether they are different and, depending on the
result of the comparison, inserts the Frame into the Multimedia_tab

Examples are provided in the following programmatic environments:
« C/C++ (Pro*C/C++): Compare All or Part of Two LOBs on page 9-68

C/C++ (Pro*C/C++): Compare All or Part of Two LOBs

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglermm.sglenm, sgica.sglemm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

void compareTwolLobs_proc()

{
OCIBlobLocator *Lob_loc1,*Lob _loc2;

9-68 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Compare All or Part of Two LOBs

int Amount = 32767,
int Retval;

EXEC SQL WHENEVER SQLERROR DO Sample_Eror();
/* Allocate the LOB locators: %/
EXEC SQL ALLOCATE :Lob locl,;
EXEC SQL ALLOCATE :Lob loc2;
/*Selectthe LOBs: %/
EXEC SQL SELECT Frame INTO :Lob locl
FROM Mulimedia_tab WHERE Clip_ID =1,
EXEC SQL SELECT Frame INTO :Lob_loc2
FROM Mulimedia_tab WHERE Clip_ID=2;
/*Opening the LOBs is Optional: */
EXEC SQL LOB OPEN :Lab_loc1 READ ONLY;
EXEC SQL LOB OPEN :Lob_loc2 READ ONLY;
/*Compare the o Frames using DBMS _LOB.COMPARE() from within PL/SQL.: %
EXEC SQL EXECUTE
BEGIN
‘Retval =DBMS_LOB.COMPARE(.Lob locl, :Lob_loc2, :Amount, 1, 1);
END;
END-EXEC;
if 0 = Retval)
printf(The frames are equaln’’;
else
printf{ The frames are not equaln’’);
/*Closing the LOBSs is mandatory if you have opened them: %
EXEC SQL LOB CLOSE :Lab _locy;
EXEC SQL LOB CLOSE :Lab_loc2;
/* Release resources held by the locators: %
EXEC SQL FREE :Lob locl;
EXEC SQL FREE :Lob loc2;
}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
compareTwolobs_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Internal Persistent LOBs 9-69

See If a Pattern Exists in the LOB (instr)

See If a Pattern Exists in the LOB (instr)

Figure 9-25 Use Case Diagram: See If a Pattern EXxists in the LOB (instr)

:_n(t)eégal Persistent I . SEE Wherel/if a Pattern Exists in the LOB (Instr.)

OPEN
alLOB

CLOSE
alLOB

SELECT
aLlop)<mreees H

X

User/
Program

SEE wherefif
a pattern exists
in the LOB
(instr)

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal
Persistent LOBs.

9-70 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a Pattern Exists in the LOB (instr)

Purpose

Usage Notes

Syntax

Scenario

Examples

This procedure describes how to see if a pattern exists in the LOB (instr).

Not applicable.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB OPEN, LOB CLOSE. Also
reference PL/SQL DBMS_LOB.INSTR.

The examples examine the storyboard text to see if the string "children" is present.

Examples are provided in the following programmatic environments:
« C/C++ (Pro*C/C++): See If a Pattern Exists in the LOB (instr) on page 9-71

CIC++ (Pro*C/C++): See If a Pattern Exists in the LOB (instr)

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Eror()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglenml, sgica.sglemm.sglermc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

Internal Persistent LOBs 9-71

See If a Pattern Exists in the LOB (instr)

void instringLOB_proc()

{
OCIClobLocator *Lob loc;
char *Pattem ="The End",
int Position =0;
int Offset=1;
int Occurrence =1;

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
EXEC SQL ALLOCATE :Lob _loc;
EXEC SQL SELECT Story INTO :Lob_loc
FROM Mulimedia_tab WHERE Clip_ID=1,

/*Opening the LOB is Optional: %/
EXEC SQL LOB OPEN :Lab loc;
/* Seek the Pattern using DBMS_LOB.INSTR() in a PL/SQL block: %
EXEC SQL EXECUTE

BEGIN

‘Position =DBMS_LOB.INSTR(:Lob_loc, :Pattem, :Offset, :Occurrence);

END;
END-EXEC;
if (0 == Position)

printf("Pattem not found\n’);
else

printf(The pattem occurs at %od\n', Position);
/*Closing the LOB is mandatory if you have opened it %/
EXEC SQL LOB CLOSE :Lab _loc;
EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
instringLOB_procy();
EXEC SQL ROLLBACK WORK RELEASE;
}

9-72 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get the Length of a LOB

Get the Length of a LOB

Figure 9-26 Use Case Diagram: Get the Length of a LOB

Internal Persistent

LOBs I . GET the Length of the LOB

OPEN
alLOB

CLOSE
alLOB

SELECT
aloB Qemmmmnees H

GET the
Length of
the LOB

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal
Persistent LOBs.

Purpose
This procedure describes how to determine the length of a LOB.

Internal Persistent LOBs 9-73

Get the Length of a LOB

Usage Notes
Not applicable.

Syntax

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives” — LOB DESCRIBE ...GET
LENGTH...

Scenario

These examples demonstrate how to determine the length of a LOBin terms of the
foreign language subtitle (FLSub).

Examples
Examples are provided in the following programmatic environments:

« C/C++ (Pro*C/C++): Get the Length of a LOB on page 9-74

C/C++ (Pro*C/C++): Get the Length of a LOB

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglemm, sgica.sglemm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

void getlLengthLOB_proc()

{

OCIClobLocator *Lob _loc;
unsigned int Length;

9-74 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get the Length of a LOB

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
EXEC SQL ALLOCATE :Lob loc;
EXEC SQL SELECT Story INTO :Lob loc

FROM Mulimedia_tab WHERE Clip_ID=1,
/*Opening the LOB is Optional: */
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
/Getthe Length: ¥/
EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;
/Ifthe LOB is NULL or unialized, then Length is Undefined: %/
printf("Length is %d characters\n”, Length);
/*Closing the LOB is mandatory if you have Opened it: %/
EXEC SQL LOB CLOSE :Lob loc;
EXEC SQL FREE :Lob loc;

}

void main()

{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;

getlLengthLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Internal Persistent LOBs 9-75

Copy All or Part of a LOB to Another LOB

Copy All or Part of a LOB to Another LOB

Figure 9-27 Use Case Diagram: Copy All or Part of a LOB to Another LOB

:_n(t)eégal Persistent I . COPY All or Part of a LOB to Another Copy
OPEN
alLOB
CLOSE
alLOB
SELECT
aLoB J<remmeeees .
User/
: COPY Program
et All or Part of a
LOB to Another
Copy

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal
Persistent LOBs.

Purpose
This procedure describes how to copy all or part of a LOB to another LOB.

9-76 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy All or Part of a LOB to Another LOB

Usage Notes

Syntax

Scenario

Examples

Locking the Row Prior to Updating

Prior to updating a LOBvalue via the PL/SQL DBMS_LORackage or OCI, you
must lock the row containing the LOB While the SQL INSERT and UPDATE
statements implicitly lock the row, locking is done explicitly by means of a SQL
SELECT FOR UPDAT#atement in SQL and PL/SQL programs, or by using an OCI
pin orlock function in OCI programs.

For more details on the state of the locator after an update, refer to "Updated LObs
Via Updated Locators" on page 5-5 in Chapter 5, "Advanced Topics".

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB COPY

The code in these examples show you how to copy a portion of Sound from one
clip to another.

Examples are provided in the following programmatic environments:

« C/C++ (Pro*C/C++): Copy All or Part of a LOB to Another LOB on page 9-77

C/C++ (Pro*C/C++): Copy All or Part of a LOB to Another LOB

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;

Internal Persistent LOBs 9-77

Copy All or Part of a LOB to Another LOB

printf('%.*s\n", sglca.sglermm.sglenml, sglca.sglerm.saglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void copyLOB_proc()
{
OClBlobLocator *Dest loc, *Src_loc;

int Amount=>5;
int Dest_pos =10;
intSrc_pos=1,

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
/*Allocate the LOB locators: %/
EXEC SQL ALLOCATE :Dest loc;
EXEC SQL ALLOCATE :Src_loc;
/*Selectthe LOBs: %/
EXEC SQL SELECT Sound INTO :Dest_loc
FROM Muitimedia_tab WHERE Clip_ID =2 FOR UPDATE;
EXEC SQL SELECT Sound INTO :Src_loc
FROM Mulimedia_tab WHERE Clip_ID=1,
/*Opening the LOBs is Optional: %/
EXEC SQL LOB OPEN :Dest_loc READ WRITE;
EXEC SQL LOB OPEN :Src_loc READ ONLY;
/* Copies the specified Amount from the source position in the source
LOB to the destination position in the destination LOB: %/
EXEC SQL LOB COPY :Amount
FROM :Src_loc AT :Src_pos TO :Dest _loc AT :Dest_pos;
/*Closing the LOBSs is mandatory if they have been opened: ¥/
EXEC SQL LOB CLOSE :Dest _loc;
EXEC SQL LOB CLOSE :Src_loc;
/* Release resources held by the locators: %
EXEC SQL FREE Dest_loc;
EXEC SQL FREE :Src_loc;
}

void main()
{
char *samp ="samp/samp”;
EXEC SQL CONNECT :samp;
copyLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

9-78 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy a LOB Locator

Copy a LOB Locator

Figure 9-28 Use Case Diagram: Copy a LOB Locator

L”éeég‘a' Persistent I ' COPY LOB Locator

COPY

LOB Locator

SELECT
alLOB

User/
Program

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal
Persistent LOBs.

Purpose
This procedure describes how to copy a LOB locator.

Usage Notes
Not applicable.

Syntax

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

Internal Persistent LOBs 9-79

Copy a LOB Locator

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — SELECT, LOB ASSIGN

Scenario
These examples show how to copy one locator to another involving the video frame
(Frame). Note how different locators may point to the same or different, current or
outdated data.

Examples

Examples are provided in the following programmatic environments:
« C/C++ (Pro*C/C++): Copy a LOB Locator on page 9-80

C/C++ (Pro*C/C++): Copy a LOB Locator

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.sglenm, sglca.sglemm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void lobAssign_proc()

{
OCIBlobLocator *Lob loc1,*Lob loc2;

EXEC SQL WHENEVER SQLERROR DO Sample_Emor();

EXEC SQL ALLOCATE :Lob loct,;

EXEC SQL ALLOCATE :Lob_loc2;

EXEC SQL SELECT Frame INTO :Lob locl

FROM Multimedia_tab WHERE Clip_ID =1 FOR UPDATE;

/*Assign Lob_locl to Lob _loc2 thereby saving a copy of the value of the
LOB atthis point in time: %/

EXEC SQL LOB ASSIGN :Lab _loc1 TO:Lab loc2;

/*When you write some data to the LOB through Lob loc1, Lob_loc2 will not
see the newly written data whereas Lob_loc1 will see the new data: %

}

9-80 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Copy a LOB Locator

void main()
{
char*samp ="samp/samp";
EXEC SQL CONNECT :samp;
lobAssign_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Internal Persistent LOBs 9-81

See If One LOB Locator Is Equal to Another

See If One LOB Locator Is Equal to Another

Figure 9-29 Use Case Diagram: See If One LOB Locator Is Equal to Another

:_néeégal Persistent I . SEE if LOB Locators are Equal

SEE if LOB
Locators are
Equal

SELECT .]
aLOB <.

See: "Use Case Model: Internal Persistent LOBs Basic
Operations™ on page 9-2, for all basic operations of Internal
Persistent LOBs.

Purpose
This procedure describes how to see if one LOB locator is equal to another.

Usage Notes
Not applicable.

Syntax

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB ASSIGN

9-82 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If One LOB Locator Is Equal to Another

Scenario

If two locators are equal, this means that they refer to the same version of the LOB
data (see "Read-Consistent Locators" on page 5-2). In this example, the locators are
equal. However, it may be as important to determine that locators do not refer to
same version of the LOB data.

Examples are provided in the following programmatic environments:
« C/C++ (Pro*C/C++): See If One LOB Locator Is Equal to Another on page 9-83

C/C++ (Pro*C/C++): See If One LOB Locator Is Equal to Another

/* Pro*C/C++ does not provide a mechanism to test the equality of two
locators. However, by using the OCI directly, two locators can be
compared to determine whether or not they are equial as this example
demonstiates: ¥/

#include <sgl2oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglenm, sgica.sglenmm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void LobLocatorlsEqual_proc()

OCIBlobLocator *Lob loc1,*Lob loc2;
OCIEnv *oeh;
boolean isEqual;
EXEC SQL WHENEVER SQLERROR DO Sample_Emor();
EXEC SQL ALLOCATE :Lob locl,;
EXEC SQL ALLOCATE :Lob_loc2;
EXEC SQL SELECT Frame INTO Lob_locl
FROM Mulimedia_tab where Clip_ID =1 FOR UPDATE;
/*Assign Lob_locl to Lob_loc2 thereby saving a copy of the value of the

Internal Persistent LOBs 9-83

See If One LOB Locator Is Equal to Another

LOB at this point in time: %/

EXEC SQL LOB ASSIGN :Lob _loc1 TO :Lob_loc2;

/*When you write some data to the lob through Lob _loc1, Lob_loc2 will
not see the newly written data whereas Lob _loc1 will see the new
data. ¥/

/* Get the OCI Environment Handle using a SQLLIB Routine: %/

(void) SQLENvGet(SQL_SINGLE_RCTX, &oeh);

/*Call OCl to see ifthe two locators are Equal: %/

(void) OClLoblsEqual(oeh, Lob locl, Lob_loc2, &isEqual);

if (sSEqual)

printf(The locators are equal\n');
else
printf(The locators are not equaln’);

/* Note that in this example, the LOB locators will be Equal %/

EXEC SQL FREE :Lob loci;

EXEC SQL FREE :Lob loc2;

}

void main()
{
char *samp ="samp/samp”;
EXEC SQL CONNECT :samp;
LobLocatorlsEqual_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

9-84 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB Locator Is Initialized

See If a LOB Locator Is Initialized

Figure 9-30 Use Case Diagram: See If a LOB Locator Is Initialized

:_n(t)eégal Persistent I . SEE if LOB Locator is Initialized

SEE if
LOB Locator is
Initialized

X

User/
Program

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

Purpose

This procedure describes how to see if a LOB locator is initialized.

Internal Persistent LOBs 9-85

See If a LOB Locator Is Initialized

Usage Notes

Syntax

Scenario

Examples

Not applicable.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Appendix F,
"Embedded SQL Statements and Directives"”. See C(OCI), OciLobLocatorlsInit.

The operation allows you to determine if the locator has been initialized or not. In
the example shown both locators are found to be initialized.

Examples are provided in the following programmatic environments:
« C/C++ (Pro*C/C++): See If a LOB Locator Is Initialized on page 9-86

C/C++ (Pro*C/C++): See If a LOB Locator Is Initialized

/* Pro*C/C++ has no form of embedded SQL staterment to determine ifa LOB
locator is initalized. Locators in Pro*C/C++ are iniialized when they
are allocated via the EXEC SQL ALLOCATE statement. However, an example
can be written that uses embedded SQL and the OCl as is shown here; ¥/

#include <sgl2oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglermm.sglenml, sglca.sglerm.salenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void LobLocatorlsnit_proc()

9-86 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

See If a LOB Locator Is Initialized

OCliBlobLocator*Lob _loc;
OCIEnv *oeh;

OCIEror *err,

boolean isinitialized;

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
EXEC SQL ALLOCATE :Lob loc;
EXEC SQL SELECT Frame INTO Lob _loc
FROM Mulimedia_tab where Clip_ID=1;
/*Get the OCI Environment Handle using a SQLLIB Routine:
(void) SQLENvGet(SQL_SINGLE_RCTX, &oeh);
/* Allocate the OCI Error Handle: %/
(void) OCIHandleAlloc((dvoid *)oeh, (dvoid *)&err,
(ub4)OCI_HTYPE_ERROR, (ub4)0, (dvoid **)0);
/*Use the OCl to determine if the locator is Initialized: %/
(void) OCILobLocatorlsInit(oeh, err, Lob_loc, &islnitialized);
if (islnitialized)
printf(The locator is initialized\n');
else
printf("The locator is not initialized\n");
/*Note that in this example, the locator is initialized */
/* Deallocate the OCI Error Handle: %/
(void) OCIHandleFree(err, OCI_HTYPE_ERROR);
/* Release resouirces held by the locator: %
EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
LobLocatorlsInit_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Internal Persistent LOBs 9-87

Get Character Set ID

Get Character Set ID

Figure 9-31 Use Case Diagram: Get Character Set ID

Internal Persistent .
LOBs I . GET Character Set ID

GET Character

Set ID

SELECT
a LOB P GLEEE PP

X

User/
Program

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal
Persistent LOBs.

Purpose
This procedure describes how to get the character set ID.

9-88 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get Character Set ID

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:
« C/C++ (Pro*C/C++): There is no applicable syntax reference for this use case.
Scenario
The use case demonstrates how to determine the character set ID of the foreign
language subtitle (FLSub).
Example

This functionality is currently available only in OCI:

« C/C++ (Pro*C/C++): No example is provided with this release.

See Also: Chapter 3, "LOB Programmatic Environments" for a list
of available functions in each programmatic environment.

Internal Persistent LOBs 9-89

Get Character Set Form

Get Character Set Form

Figure 9-32 Use Case Diagram: Get Character Set Form

:_néeégal Persistent I . GET Character Set Form

GET Character

Set Form

SELECT
a LOB PG LT PR

X

User/
Program

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal
Persistent LOBs.

Purpose
This procedure describes how to get the character set form.

Usage Notes
Not applicable.

9-90 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Get Character Set Form

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:
« C/C++ (Pro*C/C++): There is no applicable syntax reference for this use case.
Scenario

The use case demonstrates how to determine the character set form of the foreign
language subtitle (FLSub).

This functionality is currently available only in OCI:

« C/C++ (Pro*C/C++): No example is provided with this release.

Internal Persistent LOBs 9-91

Append One LOB to Another

Append One LOB to Another

Figure 9-33 Use Case Diagram: Append One LOB to Another

Internal Persistent
LOBs

I . APPEND One LOB to Another

OPEN
alLOB

CLOSE
alLOB

SELECT
aLOB <

APPEND One
LOB to
Another

X

User/
Program

9-92 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Append One LOB to Another

Purpose

Usage Notes

Syntax

Scenario

Examples

See: "Use Case Model: Internal Persistent LOBs Basic
Operations™ on page 9-2, for all basic operations of Internal
Persistent LOBs.

This procedure describes how to append one LOB to another.

Locking the Row Prior to Updating

Prior to updating a LOBvalue via the PL/SQL DBMS_L ORackage or the OCI, you
must lock the row containing the LOB While the SQL INSERT and UPDATE
statements implicitly lock the row, locking is done explicitly by means of a SQL
SELECT FOR UPDAT$&atement in SQL and PL/SQL programs, or by using an OCI
pin orlock function in OCI programs. For more details on the state of the locator
after an update, refer to "Updated LObs Via Updated Locators" on page 5-5 in
Chapter 5, "Advanced Topics".

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide):Appendix F,
"Embedded SQL Statements and Directives" — LOB APPEND

These examples deal with the task of appending one segment of Sound to another.
We assume that you use sound-specific editing tools to match the wave-forms.

Examples are provided in the following programmatic environments:
« C/C++ (Pro*C/C++): Append One LOB to Another on page 9-94

Internal Persistent LOBs 9-93

Append One LOB to Another

C/C++ (Pro*C/C++): Append One LOB to Another

#include <oci.h>
#include <stdio.h>
#include <sgica.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglermm.sglenml, sglca.sglerm.salenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void appendLOB_proc()
{
OClBlobLocator *Dest _loc, *Src_loc;
EXEC SQL WHENEVER SQLERROR DO Sample_Enor();

/* Allocate the locators: %/
EXEC SQL ALLOCATE :Dest loc;
EXEC SQL ALLOCATE :Src_loc;

/* Select the destination locator: %/
EXEC SQL SELECT Sound INTO :Dest _loc
FROM Multimedia._tab WHERE Clip_ID =2 FOR UPDATE;

/* Select the source locator: %/
EXEC SQL SELECT Sound INTO :Src_loc
FROM Mulimedia_tab WHERE Clip_ID=1;

/*Opening the LOBs is Optional: %/
EXEC SQL LOB OPEN :Dest_loc READ WRITE;
EXEC SQL LOB OPEN :Src_loc READ ONLY;

/*Append the source LOB to the end of the destination LOB: %/
EXEC SQL LOB APPEND :Src_loc TO :Dest loc;

/*Closing the LOBs is mandatory if they have been opened.:
EXEC SQL LOB CLOSE :Dest loc;
EXEC SQL LOB CLOSE :Src _loc;

/* Release resources held by the locators: %

EXEC SQL FREE :Dest loc;
EXEC SQL FREE :Src_loc;

9-94 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Append One LOB to Another

}

void main()
{
char*samp ="samp/samp";
EXEC SQL CONNECT :samp;
appendLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Internal Persistent LOBs 9-95

Write Append to a LOB

Write Append to a LOB

Figure 9-34 Use Case Diagram: Write Append to a LOB

Internal Persistent .
LOBs I . WRITE Append
OPEN
alLOB
CLOSE
alLOB
WRITE
Append
SELECT \/iuueuuuuccceananseessaasssssssssssssssassssssssassssssnnsnscs O
alLOB
get
chunk size

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal
Persistent LOBs.

Purpose
This procedure describes how to WRITE APPEND to a LOB.

9-96 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

User/
Program

Write Append to a LOB

Usage Notes

Syntax

Writing Singly or Piecewise
The writeappend operation writes a buffer to the end of a LOB.

For OCI, the buffer can be written to the LOBin a single piece with this call;
alternatively, it can be rendered piecewise using callbacks or a standard polling
method.

Writing Piecewise: When to Use Callbacks or Polling? If the value of the piece parameter
is OCI_FIRST_PIECE , data must be provided through callbacks or polling.

« If acallback function is defined in the cbfp parameter, then this callback
function will be invoked to get the next piece after a piece is written to the pipe.
Each piece will be written from bufp.

« If no callback function is defined, then OCILobWriteAppend () returns the
OCI_NEED_DAT£rror code. The application must call OCILobWriteAppend ()
again to write more pieces of the LOR In this mode, the buffer pointer and the
length can be different in each call if the pieces are of different sizes and from
different locations. A piece value of OCI_LAST_PIECE terminates the
piecewise write.

Locking the Row Prior to Updating

Prior to updating a LOBvalue via the PL/SQL DBMS_LOBRackage or the OCI, you
must lock the row containing the LOB While the SQL INSERT and UPDATE
statements implicitly lock the row, locking is done explicitly by means of a SQL
SELECT FOR UPDAT$atement in SQL and PL/SQL programs, or by using an OCI
pin orlock function in OCI programs.

For more details on the state of the locator after an update, refer to "Updated LObs
Via Updated Locators" on page 5-5 in Chapter 5, "Advanced Topics".

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB WRITE APPEND

Internal Persistent LOBs 9-97

Write Append to a LOB

Scenario
These examples demonstrate writing to the end of a video frame (Frame).

Examples
Examples are provided in the following programmatic environments:
« C/C++ (Pro*C/C++): Write Append to a LOB on page 9-98

C/C++ (Pro*C/C++): Write Append to a LOB

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.salenm, sglca.sglemm.saglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 128

void LobWriteAppend_proc()
{
OCIBlobLocator *Lob_loc;
int Amount = BufferLength;
/*Amount = BufferL_ength so only a single WRITE is needed: %/
char Buffer{BufferLength];
/* Datatype equivalencing is mandatory for this datatype: %/
EXEC SQL VAR Buffer IS RAW(BufferLength);
EXEC SQL ALLOCATE :Lob loc;
EXEC SQL SELECT Frame INTO :Lob loc
FROM Mulimedia_tab WHERE Clip_ID =1 FOR UPDATE;
/*Opening the LOB s Optional: %/
EXEC SQL LOB OPEN :Lob _loc;
memset((void *)Buffer, 1, BufferLength);
/*Wiite the data from the buffer at the end of the LOB: %/
EXEC SQL LOB WRITE APPEND :Amount FROM :Buffer INTO :Lab _loc;
/*Closing the LOB is mandatory if it has been opened.: %/

9-98 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Append to a LOB

EXEC SQL LOB CLOSE :Lab _loc;
EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
LobWiiteAppend_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Internal Persistent LOBs 9-99

Write Data to a LOB

Write Data to a LOB

Figure 9-35 Use Case Diagram: Write Data to a LOB

Internal Persistent
LOBs

OPEN
alLOB

N

CLOSE
alLOB

SELECT
alLOB

. WRITE Data to the LOB

WRITE Data
to the LOB

enable
buffering

disable
buffering

get
chunk size

X

User/
Program

9-100 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Write Data to a LOB

Purpose

Usage Notes

See: "Use Case Model: Internal Persistent LOBs Basic
Operations™ on page 9-2, for all basic operations of Internal
Persistent LOBs.

This procedure describes how to write data to a LOB.

Stream Write

The most efficient way to write large amounts of LOB data is to use

OClLobWrite () with the streaming mechanism enabled via polling or a callback. If
you know how much data will be written to the LOB, specify that amount when
calling OClLobWrite (). This will allow for the contiguity of the LOBdata on disk.
Apart from being spatially efficient, the contiguous structure of the LOBdata will
make for faster reads and writes in subsequent operations.

Chunksize

A chunk is one or more Oracle blocks. As noted previously, you can specify the
chunk size for the LOBwhen creating the table that contains the LOB This
corresponds to the chunk size used by Oracle when accessing/modifying the LOB
value. Part of the chunk is used to store system-related information and the rest
stores the LOBvalue. The getchunksize function returns the amount of space
used in the LOBchunk to store the LOBvalue.

Use a Multiple of Chunksize to Improve Write Performance. You will improve
performance if you execute write requests using a multiple of this chunk size. The
reason for this is that the LOBchunk is versioned for every write operation. If all
writes are done on a chunk basis, no extra or excess versioning is incurred or
duplicated. If it is appropriate for your application, you should batch writes until
you have enough for an entire chunk instead of issuing several LOBwrite calls that
operate on the same LOBchunk.

Locking the Row Prior to Updating

Prior to updating a LOBvalue via the PL/SQL DBMS_LORackage or OCI, you
must lock the row containing the LOB While the SQL INSERT and UPDATE
statements implicitly lock the row, locking is done explicitly by means of a SQL

Internal Persistent LOBs 9-101

Write Data to a LOB

Syntax

SELECT FOR UPDAT#atement in SQL and PL/SQL programs, or by using an OCI
pin orlock function in OCI programs.

For more details on the state of the locator after an update, refer to "Updated LObs
Via Updated Locators" on page 5-5 in Chapter 5, "Advanced Topics".

Using DBMS_LOB.WRITE() to Write Data to a BLOB

When you are passing a hexadecimal string to DBMS_LOB.WRITE() to write data to
a BLOB, use the following guidelines:

« Theamount parameter should be <= the buffer length parameter

« Thelength of the buffer should be ((amount *2) - 1). This guideline exists
because the two characters of the string are seen as one hexadecimal character
(and an implicit hexadecimal-to-raw conversion takes place), i.e., every two
bytes of the string are converted to one raw byte.

The following example is correct:

declare
blob_loc BLOB;
rawbuf RAW(10);
an _offsetINTEGER =1,
an_amount BINARY_INTEGER := 10;
begin
select blob_colinto blob_loc from a_table
whereid=1;
rawbuf :='1234567890123456789;,
dbms_lob.write(blob _loc, an_amount, an_offset,
rawbuf);
commit;
end;
Replacing the value for ‘an_amount' in the previous example with the following
values, yields error message, ora_21560:

an_amount BINARY _INTEGER =11,
or

an_amount BINARY_INTEGER := 19;

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

9-102 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Write Data to a LOB

Scenario

Examples

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB WRITE

The following examples allow the STORYdata (the storyboard for the clip) to be
updated by writing data to the LOB

Examples are provided in the following programmatic environments:
« C/C++ (Pro*C/C++): Write Data to a LOB on page 9-103

C/C++ (Pro*C/C++): Write Data to a LOB

/* This example demonstrates how Pro*C/C++ provides for the ability to write
arbitrary amounts of data to an Intemal LOB in either a single piece
of in multiple pieces using a Streaming Mechanism that utilizes standard
poling. A dynamically allocated Buffer is used to hold the data being
written to the LOB: %

#include <oci.h>

#include <stdio.h>

#include <string.h>

#include <sgica.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.salenm, sglca.sglemm.saglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 1024

void witeDataToLOB_proc(multtiple) int multiple;
{

OCIClobLocator *Lob _loc;

varchar Buffer[BufferLength;

unsigned int Total;

unsigned int Amount;

unsigned int remainder, nbytes;

boolean last;

Internal Persistent LOBs 9-103

Write Data to a LOB

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
/* Allocate and Initalize the Locator: %
EXEC SQL ALLOCATE :Lob _loc;
EXEC SQL SELECT Story INTO Lob_loc
FROM Mulimedia_tab WHERE Clip_ID =1 FOR UPDATE;
/Openthe CLOB: ¥
EXEC SQL LOB OPEN :Lob_loc READ WRITE;
Total = Amount = (multiple * BufferLength);
if (Total > BufferLength)
nbytes = BufferLength; /*We will use streaming via standard polling */
else
nbytes = Total; F Only a single write is required */
/* Fill the buffer with nbytes worth of data: %/
memset((void *)Buffer.arr, 32, nbytes);
Bufferlen=nbytes; /* Setthe Length*/
remainder = Total - nbytes;
if (0 == remainder)
{
/*Here, (Total <= BufferLength) so we can wiite in one piece: ¥/
EXEC SQL LOB WRITE ONE :Amount FROM :Buffer INTO :Lob _loc;
printf("Write ONE Total of %d characters\n”, Amount);
}
else
{
/*Here (Total > BufferLength) so we streaming via standard polling %
Fwrite the first piece. Specifying first initiates polling: %/
EXEC SQL LOB WRITE FIRST :Amount FROM :Buffer INTO :Lob_loc;
printf("Write first %d characters\n”, Buffer.len);
last=FALSE;
/*White the next (interim) and last pieces: %/
do

if (remainder > BufferL_ength)
nbytes = BufferLength; /* Still have more piecesto go*/
else
{
nbytes =remainder; /*Here, (remainder <= BufferLength) */
last=TRUE; /*Thisis going to be the Final piece *

}

/* Fill the buffer with nbytes worth of data: %
memset((void *)Buffer.arr, 32, nbytes);
Bufferlen=nbytes; /* Setthe Length*/
if{(last)

9-104 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Write Data to a LOB

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
 Specifying LAST terminates poling: */

EXEC SQL LOB WRITE LAST :Amount FROM :Buffer INTO :Lob_loc;

printf("Write LAST Total of %d characters\n”, Amount);
}
else

{
EXEC SQL WHENEVER SQLERROR DO break;

EXEC SQL LOB WRITE NEXT :Amount FROM :Buffer INTO :Lob_loc;

printf("Wirite NEXT %d characters\n”, Buffer.len);
}
* Determine how much is left to write: */
remainder = remainder - nbytes,
}while (llast);

}
EXEC SQL WHENEVER SQLERROR DO Sample_Enor();
/*Atthis poirtt, (Amount = Total), the total amount that was written %/
/*Close the CLOB: %/

EXEC SQL LOB CLOSE :Lab _loc;
/* Free resources held by the Locator: %/

EXEC SQL FREE :Lob loc;

}

void main()

{
char *samp ="samp/samp’;
EXEC SQL CONNECT :samp;
writeDataToLOB_proc(1);
EXEC SQL ROLLBACK WORK;
writeDataToLOB_proc(4);
EXEC SQL ROLLBACK WORK RELEASE;

Internal Persistent LOBs 9-105

Trim LOB Data

Trim LOB Data

Figure 9-36 Use Case Diagram: Trim LOB Data

Internal Persistent .
LOBs I . TRIM the LOB Data

OPEN
alLOB

CLOSE
alLOB

SELECT
aloB)<===:

X

User/
Program

TRIM the
LOB Data

9-106 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Trim LOB Data

Purpose

Usage Notes

Syntax

Scenario

Examples

See: "Use Case Model: Internal Persistent LOBs Basic
Operations™ on page 9-2, for all basic operations of Internal
Persistent LOBs.

This procedure describes how to trim LOB data.

Locking the Row Prior to Updating

Prior to updating a LOBvalue via the PL/SQL DBMS_L ORackage or OCI, you
must lock the row containing the LOB While the SQL INSERT and UPDATE
statements implicitly lock the row, locking is done explicitly by means of a SQL
SELECT FOR UPDAT$&atement in SQL and PL/SQL programs, or by using an OCI
pin orlock function in OCI programs. For more details on the state of the locator
after an update, refer to "Updated LObs Via Updated Locators" on page 5-5 in
Chapter 5, "Advanced Topics".

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL and Precompiler Directives" — LOB TRIM

These examples access text (CLOBdata) referenced in the Script column of table
Voiceover_tab , and trim it.

Examples are provided in the following programmatic environments:
« C/C++ (Pro*C/C++): Trim LOB Data on page 9-108

Internal Persistent LOBs 9-107

Trim LOB Data

C/C++ (Pro*C/C++): Trim LOB Data

An addiion to the data structures set up above in the section ‘Examples’; you
should use DML like this:
INSERT INTO mulimedia_tab VALUES (2, 'The quick brown fox jurmped over the lazy
dog, empty _clob(), NULL, empty_blob(), empty_blob(), NULL, NULL, NULL, NULL);
INSERT INTO voiceover_tab VVALUES (voiced_typ(hello’, (SELECT story FROM
mulimedia_tab WHERE clip_id = 2), world’, 1, NULL))
UPDATE multimedia_tab SET voiced ref = (SELECT REFH{r) FROM voiceover_tab r WHERE
riake=1) WHERE clp id=2
Then create this text file, pers_trim.typ, containing:
case=lower
type voiced _typ
Then run this Object Type Translator command:
ott intyp=pers_trim.typ outtyp=pers_tm_o.typ
hiile=pers_trim.h code=c user=samp/samp
*
#include "pers_trim.h"
#include <stdio.h>
#include <sglca.h>
void Sample_Error()
{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('sglcode = %ld\n", sqlca.sqlcode);
printf('%6.*s\n", sglca.sglerm.sglenml, sglca.sglerm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);
}

void timLOB_proc()

{
voiced_typ_ref*wt_ref;
voiced_typ*vt typ;
OCIClobLocator *Lob_loc;
unsigned int Length, timLength;

EXEC SQL WHENEVER SQLERROR DO Sample_Ermor();
EXEC SQL ALLOCATE :Lob_loc;

EXEC SQL ALLOCATE Mt ref;

EXEC SQL ALLOCATE M_typ;

/* Retrieve the REF using Associative SQL %/

EXEC SQL SELECT Mtab.Voiced_ref INTO M ref
FROM Mutimedia,_tab Mtab WHERE Mtab.Clip_ID =2 FOR UPDATE;

9-108 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Trim LOB Data

/* Dereference the Object using the Navigational Interface %/
EXEC SQL OBJECT DEREF vt _refINTO :vt_typ FOR UPDATE;
Lob_loc=vt typ->script;

/*Opening the LOB is Optional %/

EXEC SQL LOB OPEN :Lob_loc READ WRITE;

EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;
printf("Old length was %d\n”, Length);

timLength = (unsigned int)(Length/ 2);

/ Tnmthe LOB to its new length %/
EXEC SQL LOB TRIM :Lob_loc TO :trimLength;

/*Closing the LOB is mandatory if it has been opened
EXEC SQL LOB CLOSE :Lob _loc;

/*Mark the Object as Modified (Dirty) /
EXEC SQL OBJECT UPDATE M _typ;

/*Flush the changes to the LOB in the Object Cache ¥/
EXEC SQL OBJECT FLUSH vt _typ;

/* Display the new (modiiied) length %/
EXEC SQL SELECT Mtab.Voiced_ref.Script INTO :Lob loc
FROM Mulimedia_tab Mtab WHERE Mtab.Clip_ID=2;
EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;
printf("New length is now %d\n”, Length);

/* Free the Objects and the LOB Locator %/
EXEC SQL FREE vt _ref;

EXEC SQL FREE vt _typ;

EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
timLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Internal Persistent LOBs 9-109

Erase Part of a LOB

Erase Part of a LOB

Figure 9-37 Use Case Diagram: Erase Part of a LOB

Internal Persistent

LOBs I . ERASE Part of a LOB

OPEN
alLOB

CLOSE
alLOB

SELECT
aLoB J<mmmees

X

User/
Program

ERASE Part
ofaLOB

9-110 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Erase Part of a LOB

Purpose

Usage Notes

Syntax

Scenario

Examples

See: "Use Case Model: Internal Persistent LOBs Basic
Operations™ on page 9-2, for all basic operations of Internal
Persistent LOBs.

This procedure describes how to erase part of a LOB.

Locking the Row Prior to Updating

Prior to updating a LOBvalue via the PL/SQL DBMS_L ORackage or OCI, you
must lock the row containing the LOB While INSERT and UPDATEstatements
implicitly lock the row, locking is done explicitly by means of a SELECT FOR
UPDATEstatement in SQL and PL/SQL programs, or by using the OCI pin or lock
function in OCI programs.

For more details on the state of the locator after an update, refer to "Updated LObs
Via Updated Locators" on page 5-5 in Chapter 5, "Advanced Topics".

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL and Precompiler Directives" — LOB ERASE

The examples demonstrate erasing a portion of sound (Sound).

Examples are provided in the following programmatic environments:
« C/C++ (Pro*C/C++): Erase Part of a LOB on page 9-112

Internal Persistent LOBs 9-111

Erase Part of a LOB

CIC++ (Pro*C/C++): Erase Part of a LOB

#include <oci.h>
#include <stdio.h>
#include <sgica.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglermm.sglenml, sglca.sglerm.salenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void eraseLob_proc()

{
OCliBlobLocator*Lob _loc;
int Amount=5;
int Offset=5;

EXEC SQL WHENEVER SQLERROR DO Sample_Emor();
EXEC SQL ALLOCATE :Lob loc;
EXEC SQL SELECT Sound INTO :Lob loc
FROM Mulimedia_tab WHERE Clip_ID =1 FOR UPDATE;
/*Opening the LOB s Optional: %/
EXEC SQL LOB OPEN :Lob_loc READ WRITE;
/* Erase the data starting at the specified Offset: %/
EXEC SQL LOB ERASE :Amount FROM :Lob_loc AT :Offset,
printf('Erased %d bytes\n", Amount);
/*Closing the LOB is mandatory if it has been opened: ¥/
EXEC SQL LOB CLOSE :Lob loc;
EXEC SQL FREE :Lob loc;
}

void main()

{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;

eraseLob_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

9-112 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Enable LOB Buffering

Enable LOB Buffering

Figure 9-38 Use Case Diagram: Enable LOB Buffering

'ant)eéga' Persistent . ENABLE Buffering

OPEN
alLOB

CLOSE
alLOB

ENABLE
Buffering

write data
to the LOB
SELECT
alLOB J&N°==0r H
H read data
. from the LOB
H User/
: Program
.

disable
buffering

Internal Persistent LOBs 9-113

Enable LOB Buffering

Purpose

Usage Notes

Syntax

Scenario

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal
Persistent LOBs.

This procedure describes how to enable LOB buffering.

Enable buffering when performing a small read or write of data. Once you have
completed these tasks, you must disable buffering before you can continue with any
other LOBoperations.

Note:

« You must flush the buffer in order to make your modifications
persistent.

« Do not enable buffering for the stream read and write involved
in checkin and checkout.

For more information, refer to "LOB Buffering Subsystem" on page 5-21 in
Chapter 5, "Advanced Topics".

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL and Precompiler Directives" — LOB ENABLE BUFFERING

This scenario is part of the management of a buffering example related to Sound
that is developed in this and related methods.

9-114 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Enable LOB Buffering

Examples
Examples are provided in the following programmatic environments:

« C/C++ (Pro*C/C++): Enable LOB Buffering on page 9-115

C/C++ (Pro*C/C++): Enable LOB Buffering

#include <oci.h>

#include <stdio.h>
#include <string.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.salenm, sglca.sglemm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 256

void enableBufferingLOB_proc()
{
OCIBlobLocator *Lob_loc;
int Amount = BufferLength;
int multiple, Position = 1;
/* Datatype equivalencing is mandatory for this datatype: ¥/
char Buffer{BufferLength];
EXEC SQL VAR Buffer is RAW(BufferLength);

EXEC SQL WHENEVER SQLERROR DO Sample_Ermor();
/+Allocate and Initialize the LOB: %/
EXEC SQL ALLOCATE :Lob_loc;
EXEC SQL SELECT Sound INTO :Lob loc
FROM Mulimedia._tab WHERE Clip_ID =1 FOR UPDATE;

/* Enable use of the LOB Buffering Subsystem: %
EXEC SQL LOB ENABLE BUFFERING :Lab _loc;
memset((void *)Buffer, 0, BufferLength);
for (multtiple = 0; multiple < 8; multiple++)
{
P Wihite data to the LOB: ¥/
EXEC SQL LOB WRITE ONE :Amount

Internal Persistent LOBs 9-115

Enable LOB Buffering

FROM :Buffer INTO :Lob_loc AT :Pasition;
Position += BufferLength;
}
/*Flush the contents of the buffers and Free their resources:;
EXEC SQL LOB FLUSH BUFFER :Lob _loc FREE;
/* Tum off use of the LOB Buffering Subsystem: %/
EXEC SQL LOB DISABLE BUFFERING :Lob_loc;
/* Release resouirces held by the Locator: %
EXEC SQL FREE :Lob loc;
}

void main()
{
char *samp = "samp/samp’;
EXEC SQL CONNECT :samp;
enableBufferingLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

9-116 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Flush Buffer

Flush Buffer

Figure 9-39 Use Case Diagram: Flush Buffer

:—néeégal Persistent I * FLUSH the Buffer

OPEN
alLOB

D>

CLOSE
alLOB

write data

enable
buffering

tothe LOB)<+
SELECT _......
alLOB H
read data
' from the LOB
User/
. Program

FLUSH
the Buffer

disable
buffering

Internal Persistent LOBs 9-117

Flush Buffer

Purpose

Usage Notes

Syntax

Scenario

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal
Persistent LOBs.

This procedure describes how to flush the LOB buffer.

Enable buffering when performing a small read or write of data. Once you have
completed these tasks, you must disable buffering before you can continue with any
other LOBoperations.

Notes:

« You must flush the buffer in order to make your modifications
persistent.

« Do not enable buffering for the stream read and write involved
in checkin and checkout.

For more information, refer to "LOB Buffering Subsystem" on page 5-21 in
Chapter 5, "Advanced Topics".

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB FLUSH BUFFER.

This scenario is part of the management of a buffering example related to Sound
that is developed in this and related methods. The associated examples are
provided in the following programmatic environments:

9-118 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Flush Buffer

Examples
Examples are provided in the following programmatic environments:

« C/C++ (Pro*C/C++): Flush Buffer on page 9-119

C/C++ (Pro*C/C++): Flush Buffer

#include <oci.h>

#include <stdio.h>
#include <string.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.salenm, sglca.sglemm.salenrmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

#define BufferLength 256

void flushBufferingLOB_proc()
{
OClBlobLocator*Lob _loc;
int Amount = BufferLength;
int multiple, Position =1;

/* Datatype equivalencing is mandatory for this datatype: %/
char Buffer{BufferLength];

EXEC SQL VAR Buffer is RAW(BufferLength);

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();

/*Allocate and Initialize the LOB: %/
EXEC SQL ALLOCATE :Lob_loc;
EXEC SQL SELECT Sound INTO :Lob_loc
FROM Mutimedia_tab WHERE Clip_ID = 1 FOR UPDATE;

/* Enable use of the LOB Buffering Subsystem: %/
EXEC SQL LOB ENABLE BUFFERING :Lob _loc;
memset((void *)Buffer, 0, BufferLength);
for (muttiple = 0; multiple < 8; multiple++)

{

Internal Persistent LOBs 9-119

Flush Buffer

/*Wiite data to the LOB:
EXEC SQL LOB WRITE ONE :Amount
FROM :Buffer INTO :Lob loc AT :Pasition;
Position += BufferLength;
}
/*Flush the contents of the buffers and Free their resources: %
EXEC SQL LOB FLUSH BUFFER :Lob _loc FREE;
/* Tum off use of the LOB Buffering Subsystem: %/
EXEC SQL LOB DISABLE BUFFERING :Lob _loc;
/* Release resources held by the Locator: %
EXEC SQL FREE :Lob loc;
}

void main()
{
char*samp ="samp/samp";
EXEC SQL CONNECT :samp;
flushBufferingLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

9-120 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Disable LOB Buffering

Disable LOB Buffering

Figure 9—40 Use Case Diagram: Disable LOB Buffering

'L”(t)eéga' Persistent I * DISABLE Buffering

OPEN
alLOB

D>

CLOSE
alLOB

enable
buffering

write data
to the LOB
SELECT
aloB <eee- i
: read data
' from the LOB
E User/
. Program

DISABLE
Buffering

Internal Persistent LOBs 9-121

Disable LOB Buffering

Purpose

Usage Notes

Syntax

Scenario

Examples

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal
Persistent LOBs.

This procedure describes how to disable LOB buffering.

Enable buffering when performing a small read or write of data. Once you have
completed these tasks, you must disable buffering before you can continue with any
other LOBoperations.

Note:

« You must flush the buffer in order to make your modifications
persistent.

« Do not enable buffering for the stream read and write involved
in checkin and checkout.

For more information, refer to "LOB Buffering Subsystem" on page 5-21 in
Chapter 5, "Advanced Topics".

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB DISABLE BUFFER

This scenario is part of the management of a buffering example related to Sound
that is developed in this and related methods.

Examples are provided in the following programmatic environments:

9-122 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Disable LOB Buffering

« C/C++ (Pro*C/C++): Disable LOB Buffering on page 9-123

C/C++ (Pro*C/C++): Disable LOB Buffering

#include <oci.h>

#include <stdio.h>
#include <string.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.sglenm, sglca.sglemm.saglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 256

void disableBufferingLOB_proc()
{
OCIBlobLocator *Lob_loc;
int Amount = BufferLength;
int multiple, Position = 1;
/* Datatype equivalencing is mandatory for this datatype: ¥/
char Buffer{BufferLength];
EXEC SQL VAR Buffer is RAW(BufferLength);
EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();

/*Allocate and Initalize the LOB: %/
EXEC SQL ALLOCATE :Lob _loc;
EXEC SQL SELECT Sound INTO :Lob loc
FROM Mulimedia_tab WHERE Clip_ID =1 FOR UPDATE;
/* Enable use of the LOB Buffering Subsystem: %
EXEC SQL LOB ENABLE BUFFERING :Lab _loc;
memset((void *)Buffer, 0, BufferLength);
for (multtiple = 0; multiple < 7; multiple++)
{
FWiite data to the LOB: */
EXEC SQL LOB WRITE ONE :Amount
FROM :Buffer INTO :Lob_loc AT :Position;
Position += BufferLength;

}
/*Flush the contents of the buffers and Free their resources:;

Internal Persistent LOBs 9-123

Disable LOB Buffering

EXEC SQL LOB FLUSH BUFFER :Lob _loc FREE;

/* Tum off use of the LOB Buiffering Subsystem: %/

EXEC SQL LOB DISABLE BUFFERING :Lob _loc;

/*Wihite APPEND can only be done when Buffering is Disabled. %/

EXEC SQL LOB WRITE APPEND ONE :Amount FROM :Buffer INTO :Lob_loc;
/* Release resources held by the Locator: %

EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
disableBufferingLOB_procy();
EXEC SQL ROLLBACK WORK RELEASE;

}

9-124 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Three Ways to Update a LOB or Entire LOB Data

Three Ways to Update a LOB or Entire LOB Data

Figure 9—41 Use Case Diagram: Three Ways to Update a LOB or Entire LOB Data

:_”(t)eéga' persistent I . UPDATE the Row or Entire LOB Data

% ————————— a @I UPDATE using Empty_CLOB() or Empty BLOB()

User/
________ A @I UPDATE as SELECT

Program

o oS A UPDATE by initializing a LOB
the Rowor Y} _ _ _ _ | 0 | 3
Entire LOB Locator Bind Variable

Data

See: "Use Case Model: Internal Persistent LOBs Basic

Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.
a. UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB() on page 9-128
b. UPDATE a Row by Selecting a LOB From Another Table on page 9-131
c. UPDATE by Initializing a LOB Locator Bind Variable on page 9-133

For Binds of More Than 4,000 Bytes

For information on how to UPDATE a LOB when binds of more than 4,000 bytes are
involved, see the following sections in Chapter 7, "Modeling and Design":

« Binds Greater than 4,000 Bytes are Now Allowed For LOB INSERTs and
UPDATES on page 7-16

« Binds of More Than 4,000 Bytes ... No HEX to RAW or RAW to HEX Conversion
on page 7-16

Internal Persistent LOBs 9-125

Three Ways to Update a LOB or Entire LOB Data

« Example: PL/SQL - Using Binds of More Than 4,000 Bytes in INSERT and
UPDATE on page 7-18

« Example: PL/SQL - Binds of More Than 4,000 Bytes -- Inserts Not Supported
Because Hex to Raw/Raw to Hex Conversion is Not Supported on page 7-19

« Example: C (OCI) - Binds of More than 4,000 Bytes For INSERT and UPDATE
on page 7-20

9-126 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()

UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()

Figure 9-42 Use Case Diagram: UPDATE using EMPTY_CLOB() or EMPTY_BLOB()

Internal Persistent . | UPDATE the Row or ,
LOBs I - | Entire LOB Data I e

X

User/
Program

L

UPDATE
the Row or
Entire LOB
Data

- fl @ UPDATE using Empty_CLOB() or Empty BLOB()

EMPTY
CLOB() or

A eSS NS SRS NS S SN EE S SRS SRS R A SRR RN EEEE R

\4

~_BLOB()

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal
Persistent LOBs.

Purpose

Internal Persistent LOBs 9-127

UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()

Usage Notes

Syntax

Scenario

Examples

This procedure describes how to UPDATE a LOB with EMPTY_CLOB() or EMPTY_
BLOB().

Making a LOB Column Non-Null

Before you write data to an internal LOB make the LOBcolumn non-null; that is, the
LOB column must contain a locator that points to an empty or populated LOB
value. You can initialize a BLOBcolumn’s value by using the function EMPTY_
BLOR) as a default predicate. Similarly, a CLOBor NCLOBcolumn’s value can be
initialized by using the function EMPTY_CLO@.

You can also initialize a LOB column with a character or raw string less than 4,000
bytes in size. For example:

UPDATE Mutimedia._tab
SET story = "This is a One Line Story’
WHERE clip_id=2;

You can perform this initialization during CREATE TABLE(see "CREATE a Table
Containing One or More LOB Columns") or, as in this case, by means of an INSERT.

Use the following syntax reference:
« SQL: Oracle8i SQL Reference Chapter 7, "SQL Statements" — UPDATE

The following example shows a series of updates via the EMPTY_CLOBperation to
different data types of the first clip:

The example is provided in SQL and applies to all the programmatic environments:
« SQL: UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()

SQL: UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()

UPDATE Mulimedia._tab SET Story = EMPTY_CLOB() WHERE Clip_ID=1;

9-128 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()

UPDATE Mutimedia._tab SET FLSub =EMPTY_CLOB() WHERE Clip_ID=1,

UPDATE mulimedia._tab SET Sound = EMPTY_BLOB() WHERE Clip_ID=1;

Internal Persistent LOBs 9-129

UPDATE a Row by Selecting a LOB From Another Table

UPDATE a Row by Selecting a LOB From Another Table

Figure 9-43 Use Case Diagram: UPDATE a Row by Selecting a LOB from Another
Table

Internal Persistent . | UPDATE the Row or
LOBs I - | Entire LOB Data I > @

SELECT
alLOB

v

X

User/
Program

L

UPDATE
the Row or
Entire LOB
Data

- ‘A @ uPDATE as SELECT

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal
Persistent LOBs.

Purpose
This procedure describes how to use UPDATE as SELECT with LOBs.

Usage Notes
Not applicable.

Syntax

Use the following syntax reference:
« SQL: Oracle8i SQL Reference , Chapter 7, "SQL Statements" — UPDATE

9-130 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

UPDATE a Row by Selecting a LOB From Another Table

Scenario

This example updates voice-over data from archival storage (Voiceoverlib tab) by
means of a reference:

Examples
The examples are provided in SQL and apply to all six programmatic environments:

« SQL: Update a Row by Selecting a LOB From Another Table

SQL: Update a Row by Selecting a LOB From Another Table

UPDATE Voiceover_tab SET (Originator, Script, Actor, Take, Recording) =
(SELECT * FROM VoiceoverLib_tab T2 WHERE T2.Take = 101);

UPDATE Mulimedia_tab Mtab
SET Voiced_ref=
(SELECT REF(Vref) FROM Voiceover_tab Vref
WHERE Vref Actor ="James Earl Jones’ AND Vref.Take = 1)
WHERE Miab.Clip_ID=1;

Internal Persistent LOBs 9-131

UPDATE by Initializing a LOB Locator Bind Variable

UPDATE by Initializing a LOB Locator Bind Variable

Figure 9-44 Use Case Diagram: UPDATE by Initializing a LOB Locator Bind Variable

Internal Persistent

UPDATE the Row or ;
Entire LOB Data I G

LOBs
SELECT
gé e aloB
User/ :
Program :
H UPDATE
bl the Row or
Entire LOB

Data

o

UPDATE by initializing a LOB
Locator Bind Variable

See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal

Persistent LOBs.

Purpose

This procedure describes how to UPDATE by initializing a LOB locator bind

variable.

Usage Notes
Not applicable.

Syntax

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

« SQL: Oracle8i SQL Reference , Chapter 7, "SQL Statements" — UPDATE

9-132 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

UPDATE by Initializing a LOB Locator Bind Variable

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives".

Scenario

These examples update Sound data by means of a locator bind variable.

Examples
Examples are provided in the following programmatic environments:
« SQL: Update by Initializing a LOB Locator Bind Variable on page 9-133

« C/C++ (Pro*C/C++): Update by Initializing a LOB Locator Bind Variable on
page 9-133

SQL: Update by Initializing a LOB Locator Bind Variable

/* Note that the example procedure updateUseBindVariable_proc is not part of the
DBMS _LOB package: ¥/

CREATE OR REPLACE PROCEDURE updateUseBindVariable_proc (Lob_loc BLOB) IS

BEGIN
UPDATE Mulimedia_tab SET Sound =lob_loc WHERE Clip_ID=2;

END;

DECLARE
Lob loc BLOB;
BEGIN
/*Selectthe LOB: %/
SELECT Sound INTO Lob loc
FROM Mulimedia_tab
WHERE Clip ID=1;
updateUseBindVariable_proc (Lob_loc);
COMMIT;
END;

C/C++ (Pro*C/C++): Update by Initializing a LOB Locator Bind Variable

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

Internal Persistent LOBs 9-133

UPDATE by Initializing a LOB Locator Bind Variable

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.salenm, sglca.sglemm.saglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

void updateUseBindVariable_proc(Lob_loc)
OCIBlobLocator *Lob_loc;
{
EXEC SQL WHENEVER SQLERROR DO Sample_Error();
EXEC SQL UPDATE Mulimedia_tab SET Sound =:Lob_loc WHERE Clip ID=2;

}

void updateLOB_proc()

{
OCIBlobLocator *Lob_loc;

EXEC SQL ALLOCATE :Lob loc;

EXEC SQL SELECT Sound INTO :Lob loc
FROM Multimedia_tab WHERE Clip ID=1;

updateUseBindVariable_proc(Lob_loc);

EXEC SQL FREE :Lob loc;

EXEC SQL COMMIT WORK;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
updateLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

9-134 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

DELETE the Row of a Table Containing a LOB

DELETE the Row of a Table Containing a LOB

Figure 9-45 Use Case Diagram: DELETE the Row of a Table Containing a LOB

Internal Persistent .
LOBs I " DELETE the Row
User/
Program
DELETE
the Row
See: "Use Case Model: Internal Persistent LOBs Basic
Operations" on page 9-2, for all basic operations of Internal
Persistent LOBs.
Purpose

This procedure describes how to delete the row of a table containing a LOB.

Usage Notes
To delete a row that contains an internal LOBcolumn or attribute use one of the
following commands

« SQL DML: DELETE
« SQL DDL that effectively deletes it:

Internal Persistent LOBs 9-135

DELETE the Row of a Table Containing a LOB

« DROP TABLE
« TRUNCATE TABLE
« DROP TABLESPACE

In either case you delete the LOBIlocator and the LOBvalue as well.

Note: Due to the consistent read mechanism, the old LOBvalue
remains accessible with the value that it had at the time of
execution of the statement (such as SELECT) that returned the LOB
locator. This is an advanced topic. It is discussed in more detail
with regard to "Read-Consistent Locators" on page 5-2.

Distinct LOB Locators for Distinct Rows

Of course, two distinct rows of a table with a LOBcolumn have their own distinct
LOBIlocators and distinct copies of the LOBvalues irrespective of whether the LOB
values are the same or different. This means that deleting one row has no effect on
the data or LOBIlocator in another row even if one LOBwas originally copied from
another row.

Syntax
Use the following syntax reference:
« SQL: Oracle8i SQL Reference , Chapter 7, "SQL Statements” — DELETE, DROP
TABLE, TRUNCATE TABLE
Scenario
In the three examples provided in the following section, all data associated with
Clip 10 is deleted.
Examples

The examples are provided in SQL and apply to all six programmatic environments:

« SQL: Delete a LOB on page 9-136

SQL: Delete a LOB
DELETE FROM Multimedia_tab WHERE Clip_ID =10;

9-136 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

DELETE the Row of a Table Containing a LOB

DROP TABLE Mulimedia_tab;

TRUNCATE TABLE Muttimedia._tab;

Internal Persistent LOBs 9-137

DELETE the Row of a Table Containing a LOB

9-138 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

10

Temporary LOBs

Use Case Model

In this chapter we discuss each operation on a Temporary LOB (such as "See If a
Temporary LOB Is Open") in terms of a use case. Table 10-1, "Use Case Model
Overview: Internal Temporary LOBs" lists all the use cases.

Graphic Summary of Use Case Model

Two figures, "Use Case Model Diagram: Internal Temporary LOBs (part 1 of 2)" and
"Use Case Model Diagram: Internal temporary LOBs (part 2 of 2)", show the use
cases and their interrelation graphically. If you are using an online version of this
document, you can use this figure to navigate to specific use cases.

Individual Use Cases
Each Internal Persistent LOB use case is described as follows:

= Use case figure. A figure that depicts the use case (see "How to Interpret the Use
Case Diagrams" in the Preface, for a description of how to interpret these
diagrams).

« Purpose. The purpose of this use case with regards to LOBs.

« Usage Notes. Where applicable, guidelines or techniques to assist your
implementation of the LOB operation.

« Syntax. Pointers to the syntax in different programmatic environments that
underlies the LOBs related activity for the use case.

« Scenario. A scenario that portrays one implementation of the use case in terms
of the hypothetical multimedia application (see Chapter 8, "Sample
Application” for detailed syntax).

Temporary LOBs 10-1

« Examples. Examples, based on table Multimedia_tab described in Chapter 8,
in each programmatic environment which can be utilized to implement the use
case.

10-2 Oracle8i Application Developer’s Guide - Large Objects (LOBS)

Use Case Model: Internal Temporary LOBs

Use Case Model: Internal Temporary LOBs

Table 10-1, "Use Case Model Overview: Internal Temporary LOBs", indicates with +
where examples are provided for specific use cases and in which programmatic
environment (see Chapter 3, "LOB Programmatic Environments" for a complete

discussion and references to related manuals).

We refer to programmatic environments by means of the following abbreviations:

« P —PL/SQL using the DBMS_L OB Package

« O — Cusing OCI (Oracle Call Interface)

« B —COBOL using Pro*COBOL precompiler

« C— C/C++ using Pro*C/C++ precompiler

« V — Visual Basic using O040 (Oracle Objects for OLE)

« J—Java using JDBC (Java Database Connectivity)

« S—SQL

Table 10-1 Use Case Model Overview: Internal Temporary LOBs

Programmatic Environment

Use Case and Page Examples
P 0] B C \% J
Create a Temporary LOB on page 10-14 + + + +
See If a LOB is Temporary on page 10-17 + + + +
Free a Temporary LOB on page 10-20 + + + +
Load a Temporary LOB with Data from a BFILE on page 10-23 + + + +
See If a Temporary LOB Is Open on page 10-26 + + + +
Display Temporary LOB Data on page 10-29 + + + +
Read Data from a Temporary LOB on page 10-33 + + + +
Read Portion of Temporary LOB (substr) on page 10-38 + + +
Compare All or Part of Two (Temporary) LOBs on page 10-42 + + +
See If a Pattern Exists in a Temporary LOB (instr) on page 10-46 + + +
Get the Length of a Temporary LOB on page 10-50 + + + +
Copy All or Part of One (Temporary) LOB to Another on page 10-54 + + + +
Copy a LOB Locator for a Temporary LOB on page 10-58 + + + +

Temporary LOBs 10-3

Use Case Model: Internal Temporary LOBs

Programmatic Environment
Use Case and Page (Cont.) Examples

P @) B C \Y

Is One Temporary LOB Locator Equal to Another on page 10-61 + +
See If a LOB Locator for a Temporary LOB Is Initialized on page 10-65 + +
Get Character Set ID of a Temporary LOB on page 10-68 +

Get Character Set Form of a Temporary LOB on page 10-70 +

Append One (Temporary) LOB to Another on page 10-72 + + + +
Write Append to a Temporary LOB on page 10-76 + + + +
Write Data to a Temporary LOB on page 10-80 + + + +
Trim Temporary LOB Data on page 10-86 + + + +
Erase Part of a Temporary LOB on page 10-90 + + + +
Enable LOB Buffering for a Temporary LOB on page 10-94 + + +
Flush Buffer for a Temporary LOB on page 10-97 + + +
Disable LOB Buffering for a Temporary LOB on page 10-100 + + +

10-4 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Use Case Model: Internal Temporary LOBs

Figure 10-1 Use Case Model Diagram: Internal Temporary LOBs (part 1 of 2)

Internal temporary LOBs (part 1 of 2)
get character

set ID
OPEN
alLOB
get character
x set form
see if locator
%LI?OSBI‘E is initialized

see if locators
are equal

compare all
or parts of
2 LOBs

create
-->{ atemporary
LOB

-

see wherel/if

User/ a pattern exists

Program

User/
Program

enable
buffering

free
a temporary
LOB

display the

LOB data

get the
length of
the LOB

disable -
buffering

write data
to the LOB

read data
from the LOB

Temporary LOBs 10-5

Use Case Model: Internal Temporary LOBs

Figure 10-2 Use Case Model Diagram: Internal temporary LOBs (part 2 of 2)

Internal temporary LOBs (part 2 of 2) INITIALIZE
:.. --------------- > a BF”_E
: locator
i il specify
gfgg : "OR ~\ BFILE name
A i
. L.
H pe=> open
L > a BFILE
CLOSE i
alOB H
: load a LOB
-8 with data
from a BFILE,
create
— a temporary
LOB <
User/ Py append one
Progl’am T ST Ty LOB to
another
User/
""" Program
copy all or see
part of a LOB tof) ~ ==== if LOB is open
another LOB
free
a temporary
LOB
erase part _see if LOB
of a LOB Is temporary
trim the Copy
LOBdata A4 ™ LOB locator
. close write
a BFILE append
[

10-6 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Programmatic Environments

Programmatic Environments

Note: No Visual Basic or Java support for temporary LOBs is
planned for the 8.1 release.

Oracle8i supports the definition, creation, deletion, access, and update of temporary
LOBs in the following programmatic environments or ’interfaces’:

Locators

PL/SQL, using the DBMS_LOBRackage
C/C++, using PRO*Cprecompiler
COBOL, using Pro*COBOL precompiler
C, using OCI

The ’interfaces’ listed above, operate on temporary LOBs through locators in the
same way that they do for permanent LOBs. Since temporary LOBs are never part of
any table, you cannot use SQL DML to operate on them. You must manipulate them
using the DBMS_LOBRBackage, OCI, or the other programmatic interfaces.

Temporary LOB Locators Can be IN Values

SQL support for temporary LOBs is available in that temporary LOBIlocators can be
used as IN values, with values accessed through a locator. Specifically, they can be
used as follows:

As a value in a WHEREIlause for INSERT, UPDATEDELETE or SELECT. For
example :

SELECT pattem FROM composite_image WHERE temp_lob_pattem id =
somepattem_match_function(lobvalue);

As a variable in a SELECT INTQ.. statement. For example:
SELECT PermanentLob INTO TemporaryLob_loc FROM Demo_tab WHERE Columnl :=1;

Temporary LOBs 10-7

Programmatic Environments

Note: Selecting a permanent LOB into a LOBlocator that points to
a temporary LOB will cause the locator to point to a permanent
LORB It does not cause a copy of the permanent LOBto be put in the
temporary LOB

Can You Use the Same Functions for Temporary and Internal Persistent LOBs?

Compare the use case model diagrams for temporary LOBs with the Figure 10-1,
"Use Case Model Diagram: Internal Temporary LOBs (part 1 of 2)", and Figure 10-2,
"Use Case Model Diagram: Internal temporary LOBs (part 2 of 2)". Observe that you
can use the following functions for internal persistent LOBs and temporary LOBs:

« DBMS_LOBackage PL/SQL procedures (COMPARHENSTR, SUBSTR

« DBMS_LORackage PL/SQL procedures and corresponding OCI functions
(Append, Copy, Erase , Getlength , Loadfromfile , Read, Trim , Write,
WriteAppend).

« OCI functions (OCILobAssign , OClLobLocatorlsInit , etc.).

In addition, you can use the ISTEMPORARYunction to determine if a LOB is
temporarily based on its locator.

Note: One thing to keep in mind is that temporary LOBs do not
support transactions and consistent reads.

Temporary LOB Data is Stored in Temporary Tablespace

Temporary LOBs are not stored permanently in the database like other data. The
data is stored in temporary tablespaces and is not stored in any tables. This means
you can CREATEan internal temporary LOB(BLOBCLOB NCLOB on the server
independent of any table, but you cannot store that LOB.

Since temporary LOBs are not associated with table schema, there is no meaning to
the terms "inline" and "out-of-line" for temporary LOBs.

10-8 Oracle8i Application Developer’s Guide - Large Objects (LOBs)

Programmatic Environments

Note: All temporary LOBs reside on the server. There is no support
for client-side temporary LOBs.

Lifetime and Duration of Temporary LOBs
The default lifetime of a temporary LOBIs a session.

The interface for creating temporary LOBs includes a parameter that lets you specify
the default scope of the life of the temporary LOB By default, all temporary LOBs
are deleted at the end of the session in which they were created. If a process dies
unexpectedly or the database crashes, all temporary LOBs are deleted.

OCI Can Group Temporary LOBs into Logical Buckets
OCI users can group temporary LOBs together into a logical bucket.

"OClIDuration" represents a store for temporary LOBs. There is a default duration
for every session into which temporary LOBs are placed if you do not specify a
specific duration. The default duration ends when your session ends. Also, you can
perform an OCIDurationEnd operation which frees all OCIDuration contents.

Memory Handling

LOB Buffering and CACHE, NOCACHE, CACHE READS

Temporary LOBs are especially useful when you want to perform transformational
operations on a LOB — such as morphing an image, or changing a LOBfrom one
format to another — and then return it to the database.

These transformational operations can use LOBBuffering. You can specify
CACHE,NOCACHE,or CACHE READSfor each temporary LOB and FREEan
individual temporary LOBwhen you have no further need for it.

Temporary Tablespace

Your temporary tablespace is used to store temporary LOBdata. Data storage
resources are controlled by the DBA through control of a user’s access to temporary
tablespaces, and by the creation of different temporary tablespaces.

Temporary LOBs 10-9

Programmatic Environments

Explicitly Free Temporary LOB Space to Reuse It

Memory usage increases incrementally as the number of temporary LOBs grows.
You can reuse temporary LOBspace in your session by freeing temporary LOBs
explicitly.

= When the Session Finishes: Explicitly freeing one or more temporary LOBs does
not result in all of the space being returned to the temporary tablespace for
general re-consumption. Instead, it remains available for reuse in the session.

= When the Session Dies: If a process dies unexpectedly or the database crashes, the
space for temporary LOBs is freed along with the deletion of the temporary
LOBs. In all cases, when a user’s session ends, space is returned to the
temporary tablespace for general reuse.

Selecting a Permanent LOB INTO a Temporary LOB Locator
We previously noted that if you perform the following:

SELECT permanent_lob INTO temporary_lob_locator FROMy_blah WHERE x_blah

the temporary_lob_locator will get overwritten with the permanent_lob
locator. The temporary_lob_locator now points to the LOB stored in the table.

Note: Unless you saved the temporary_lob ‘s locator in another
variable, you will lose track of the LOBthat temporary_lob_
locator originally pointed at before the SELECT INTOoperation.

In this case the temporary LOBwill not get implicitly freed. If you do
not wish to waste space, explicitly free a temporary LOBbefore
overwriting it with a permanent LOBlocator.

Since CR and rollbacks are not supported for temporary LOBs, you will have to free
the temporary LOBand start over again if you run into an error.

Locators and Semantics

Creation of a temporary LOBinstance by a user causes the engine to create, and
return a locator to LOBdata. Temporary LOBs do not support any operations that
are not supported for persistent LOBIlocators, but temporary LOBlocators have
specific features.

10-10 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Features Specific to Temporary LOBs

Features Specific to Temporary LOBs

The following features are specific to temporary LOBs:

Temporary LOB Locator is Overwritten by Permanent LOB Locator
For instance, when you perform the following query:

SELECT permanent_lob INTO temporary_lob_locator FROMy_blah
WHERE x_blah =a_number;

temporary_lob_locator is overwritten by the permanent_lob ’s locator.
This means that unless you have a copy of temporary lob ’slocator that
points to the temporary LOBthat was overwritten, you no longer have a locator
with which to access the temporary LOBR

Assigning Multiple Locators to Same Temporary LOB Impacts Performance

Temporary LOBs adhere to value semantics in order to be consistent with
permanent LOBs and to conform to the ANSI standard for LOBs. Since CR,
undo, and versions are not generated for temporary LOBs, there may be an
impact on performance if you assign multiple locators to the same temporary
LOBbecause semantically each locator will have its own copy of the temporary
LOB Each time a user does an OCILobAssign , or the equivalent assignment in
PL/SQL, the database makes a copy of the temporary LOB (although it may be
done lazily for performance reasons) .

Each locator points to its own LOBvalue. If one locator is used to create a
temporary LOB and another LOBIlocator is assigned to that temporary LOB
using OCILobAssign , the database copies the original temporary LOBand
cause the second locator to point to the copy, not the original temporary LOB

« Avoid Using More than One Locator Per Temporary LOB

In order for multiple users to modify the same LOB they must go through
the same locator. Although temporary LOBs use value semantics, you can
apply pseudo-reference semantics by using pointers to locators in OCI, and
having multiple pointers to locators point to the same temporary LOB
locator if necessary. In PL/SQL, you can have the same effect by passing the
temporary LOB locator "by reference" between modules. This will help
avoid using more than one locator per temporary LOB and prevent these
modules from making local copies of the temporary LOB

Here are two examples of situations where a user will incur a copy, or at
least an extra roundtrip to the server:

* Assigning one temporary LOB to another

Temporary LOBs 10-11

Features Specific to Temporary LOBs

DECLARE
Va BLOB;

Vb BLOB;

BEGIN
DBMS_LOB.CREATETEMPORARY(Vb,TRUE);
DBMS_LOB.CREATETEMPORARY(Va,TRUE);
Va :=Vb;

END;

This causes Oracle to create a copy of Vb and point the locator Vato it.
We also frees the temporary LOB that Va used to point to.
* Assigning one collection to another collection

If a temporary LOBis an element in a collection and you assign one col-
lection to another, you will incur copy overhead and free overhead for
the temporary LOBIlocators that get updated. This is also true for the
case where you assign an object type containing a temporary LOB as an
attribute to another such object type, and they have temporary LOB
locators that get assigned to each other because the object types have
LOBattributes that are pointing to temporary LOBIlocators.

See Also:

« Oracle8i Concepts

« Oracle8i Application Developer’s Guide - Fundamentals

for more information about collections.
If your application involves several such assignments and copy opera-
tions of collections or complex objects, and you seek to avoid the above

overheads, then persistent internal LOBs may be more suitable for such
applications. More precisely:

* Do not use temporary LOBs inside collections or complex objects
when you are doing assignments or copies of those collections or com-
plex objects.

* Do not select LOBvalues into temporary LOBIlocators.

Security Issues with Temporary LOBs
Security is provided through the LOBIlocator.

« Only the user who created the temporary LOBcan access it.

10-12 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Features Specific to Temporary LOBs

« Locators are not designed to be passed from one user’s session to another. If
you did manage to pass a locator from one session to another:

« You would not be able to access temporary LOBs in the new session from the
original session.

« You would not be able to access a temporary LOBIn the original session
from the new (current) session to which the locator was migrated.

« Temporary LOBlookup is localized to each user’s own session. Someone using a
locator from another session would only be able to access LOBs within his own
session that had the same lobid . Users of your application should not try to do
this, but if they do, they will still not be able to affect anyone else’s data.

NOCOPY Restrictions

See PL/SQL User’s Guide and Reference , Chapter 7: "SUBPROGRAMS" — NOCOPY
COMPILER HINT, for guidelines, restrictions, and tips on using NOCOPY.

Managing Temporary LOBS

Oracle keeps track of temporary LOBs per session, and provides a v$ view called
v$temporary_lobs . From the session the application can determine which user
owns the temporary LOBs. This view can be used by DBAs to monitor and guide
any emergency cleanup of temporary space used by temporary LOBs.

Temporary LOBs 10-13

Create a Temporary LOB

Create a Temporary LOB

Figure 10-3 Use Case Diagram: Create a Temporary LOB

%

internal Temporary I | CREATE a Temporary LOB

CREATE
a Temporary
LOB

free
a temporary
LOB

Purpose

Usage Notes

See: "Use Case Model Overview: Internal Temporary LOBs" on
page 10-3, for all basic operations of Internal Temporary LOBs.

This procedure describes how to create a temporary LOB.

A temporary LOBis empty when it is created.

Temporary LOBs do not support the EMPTY_BLOB(Jor EMPTY_CLOB() functions
that are supported for permanent LOBs. The EMPTY_BLOB() function specifies the
fact that the LOBIs initialized, but not populated with any data.

10-14 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Create a Temporary LOB

Syntax

Scenario

Examples

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives” — LOB DESCRIBE, LOB COPY

These examples read in a single video Frame from the Multimedia_tab table.
Then they create a temporary LOBto be used to convert the video image from
MPEG to JPEG format. The temporary LOBis read through the CACHEand is
automatically cleaned up at the end of the user’s session, if it is not explicitly freed
sooner.

Examples are provided in the following programmatic environments:
« C/C++ (Pro*C/C++): Create a Temporary LOB on page 10-15

C/C++ (Pro*C/C++): Create a Temporary LOB

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.salenm, sglca.sglemm.saglenrmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

void create TempLOB_proc()

{
OCIBlobLocator *Lob_loc, *Temp_loc;
int Amount;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();

Temporary LOBs 10-15

Create a Temporary LOB

/*Allocate the LOB Locators: ¥/
EXEC SQL ALLOCATE :Lob loc;
EXEC SQL ALLOCATE :Temp_loc;

/* Create the Temporary LOB: ¥
EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
EXEC SQL SELECT Frame INTO :Lob_loc FROM Muttimedia._tab WHERE Clip_ID=1;

/*Copy the full length of the source LOB into the Temporary LOB: %/
EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Amount,
EXEC SQL LOB COPY :Amount FROM :Lob_loc TO :Temp _loc;

/* Free the Temporary LOB: ¥/
EXEC SQL LOB FREE TEMPORARY :Temp_loc;

/* Release resources held by the Locators: %
EXEC SQL FREE :Lob loc;
EXEC SQL FREE :Temp_loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
createTempLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

10-16 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

See If a LOB is Temporary

See If a LOB is Temporary

Figure 10-4 Use Case Diagram: See If a LOB is Temporary

Lnéeégal Temporary I . SEE if LOB is Temporary

X

User/
Program

SEE if LOB
is Temporary

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,
for all basic operations of Internal Temporary LOBs.

Purpose
This procedure describes how to see if a LOB is temporary.

Usage Notes
Not applicable.

Syntax

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

Temporary LOBs 10-17

See If a LOB is Temporary

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB DESCRIBE

..ISTEMPORARY
Scenario
These are generic examples that query whether the locator is associated with a
temporary LOBor not.
Examples

Examples are provided in the following programmatic environments:
« C/C++ (Pro*C/C++): See If a LOB is Temporary on page 10-18

C/C++ (Pro*C/C++): See If a LOB is Temporary

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.sglenm, sglca.sglemm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

void loblsTemp_proc()

{
OCIBlobLocator *Temp_loc;
intisTemporary =0;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();

/* Allocate and Create the Temporary LOB: ¥/

EXEC SQL ALLOCATE :Temp_loc;

EXEC SQL LOB CREATE TEMPORARY :Temp loc;

/*Determine ifthe Locator is a Temporary LOB Locator: ¥

EXEC SQL LOB DESCRIBE :Temp_loc GET ISTEMPORARY INTO :isTemporary;

/* Note that in this example, isTemporary should be 1 (TRUE) %/

10-18 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

See If a LOB is Temporary

if (STemporary)
printf("Locator is a Temporary LOB locaton\n”);
/*Free the Temporary LOB: %

EXEC SQL LOB FREE TEMPORARY :Temp _loc;

/* Release resources held by the Locator: %
EXEC SQL FREE :Temp_loc;
else
printf("Locator is not a Temporary LOB locator \n');

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
loblsTemp_proc();
EXEC SQL ROLLBACK WORK RELEASE;

Temporary LOBs 10-19

Free a Temporary LOB

Free a Temporary LOB

Figure 10-5 Use Case Diagram: Free a Temporary LOB

Internal Temporary I . FREE a Temporary LOB

LOBs
create
->(atemporary
LOB
User/
Program

FREE
a Temporary
LOB

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,
for all basic operations of Internal Temporary LOBs.

Purpose
This procedure describes how to free a temporary LOB.

Usage Notes

A temporary LOBinstance can only be destroyed for example, in OCI or the DBMS _
LOBpackage by using the appropriate FREETEMPORARX OCIDurationEnd or
OCILOBFreeTemporary statements.

To make a temporary LOBpermanent, the user must explicitly use the OCI or
DBMS_LOB copy) command and copy the temporary LOBinto a permanent one.

10-20 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Free a Temporary LOB

Syntax

Scenario

Examples

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB

Not applicable.

Examples are provided in the following programmatic environments:
« C/C++ (Pro*C/C++): Free a Temporary LOB on page 10-21

C/C++ (Pro*C/C++): Free a Temporary LOB

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.salenm, sglca.sglemm.saglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void freeTempLob_proc()

{
OCIBlobLocator *Temp_loc;

EXEC SQL WHENEVER SQLERROR DO Sample_Eror();
EXEC SQL ALLOCATE :Temp_loc;

EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

/* Do something with the Temporary LOB: %

EXEC SQL LOB FREE TEMPORARY :Temp_loc;

EXEC SQL FREE :Temp_loc;

Temporary LOBs 10-21

Free a Temporary LOB

void main()
{
char *samp ="samp/samp”;
EXEC SQL CONNECT :samp;
freeTempLob_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

10-22 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Load a Temporary LOB with Data from a BFILE

Load a Temporary LOB with Data from a BFILE

Figure 10-6 Use Case Diagram: Load a LOB with Data from a BFILE

e nal Temporary I : LOAD a LOB with Data from a BFILE

OPEN
alLOB

>

CLOSE
alLOB

LOAD a LOB
with Data
from a BFILE

create

=>(atemporary)<l===-* '
LOB

7

User/
Program

free
b a temporary
LOB

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,
for all basic operations of Internal Temporary LOBs.

Purpose
This procedure describes how to load a temporary LOB with data from a BFILE.

Temporary LOBs 10-23

Load a Temporary LOB with Data from a BFILE

Usage Notes

Syntax

Scenario

Examples

In using OCI, or any programmatic environments that access OCI functionality,
character set conversions are implicitly performed when translating from one
character set to another. However, no implicit translation is ever performed from
binary data to a character set. When you use the loadfromfile operation to
populate a CLOBor NCLOByou are populating the LOBwith binary data from the
BFILE . In that case, you will need to perform character set conversions on the
BFILE data before executing loadfromfile

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB LOAD

The example procedures assume that there is an operating system source directory
(AUDIO_DIR) that contains the LOBdata to be loaded into the target LOB

Examples are provided in the following programmatic environments:

« Table,"C/C++ (Pro*C/C++): Load a Temporary LOB with Data from a BFILE"
on page 10-24

C/C++ (Pro*C/C++): Load a Temporary LOB with Data from a BFILE

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()
{

10-24 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Load a Temporary LOB with Data from a BFILE

EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglerm.sglenml, sglca.sglerm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void loadTempLobFromBFILE._proc()
{
OCIBlobLocator *Temp_loc;
OCIBFileLocator *Lob loc;
char*Dir ="AUDIO_DIR", *Name = "Washington_audio";
int Amount = 4096;

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
/*Allocate and Create the Temporary LOB: ¥/
EXEC SQL ALLOCATE :Temp_loc;
EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
/*Allocate and Initialize the BFILE Locator: %/
EXEC SQL ALLOCATE :Lob loc;
EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME =:Name;
/*Opening the BFILE is mandatory; %/
/*QOpening the LOB is optional: %/
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
EXEC SQL LOB OPEN :Temp_loc READ WRITE;
/*Load the data from the BFILE into the Temporary LOB: %
EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;
/*Closing the LOBs is Mandatory if they have been Opened: %/
EXEC SQL LOB CLOSE :Temp _loc;
EXEC SQL LOB CLOSE :Lob loc;
/* Free the Temporary LOB: %/
EXEC SQL LOB FREE TEMPORARY :Temp_loc;
/* Release resources held by the Locators: %
EXEC SQL FREE :Temp_loc;
EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
loadTempLobFromBFILE_proc();
EXEC SQL ROLLBACK WORK RELEASE;

Temporary LOBs 10-25

See If a Temporary LOB Is Open

See If a Temporary LOB Is Open

Figure 10-7 Use Case Diagram: See If a Temporary LOB Is Open

niernal Temporary I - see if Lo is Open

create
=>(atemporary
LOB

X

User/
Program

SEE

if LOB is Open

free
a temporary
LOB

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,
for all basic operations of Internal Temporary LOBs.

Purpose
This procedure describes how to see if a temporary LOB is open.

Usage Notes
Not applicable.

Syntax

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

«» C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB DESCRIBE ...ISOPEN

10-26 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

See If a Temporary LOB Is Open

Scenario

These generic examples takes a locator as input, create a temporary LOB open it
and test if the LOB is open.

Examples
Examples are provided in the following programmatic environments:
« :C/C++ (Pro*C/C++): See if a Temporary LOB is Open on page 10-27

: CIC++ (Pro*C/C++): See if a Temporary LOB is Open

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglenm, sgica.sglenmm.sglermmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void tempLoblsOpen_proc()
{
OCIBlobLocator *Temp_loc;
intisOpen=0;

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
/*Allocate and Create the Temporary LOB ¥/
EXEC SQL ALLOCATE :Temp_loc;
EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
/*Openthe Temporary LOB ¥
EXEC SQL LOB OPEN :Temp_loc READ ONLY;
/*Determine ifthe LOB is Open ¥/
EXEC SQL LOB DESCRIBE :Temp_loc GET ISOPEN INTO :isOpen;
if (sOpen)

printf(" Temporary LOB is open\n');
else

Temporary LOBs 10-27

See If a Temporary LOB Is Open

printf(Temporary LOB is not open\n’);
/* Note that in this example, the LOB is Open so isOpen — 1 (TRUE) %
/Closethe LOB%
EXEC SQL LOB CLOSE :Temp_loc;
/*Free the Temporary LOB*
EXEC SQL LOB FREE TEMPORARY :Temp_loc;
/* Release resources held by the Locator %/
EXEC SQL FREE :Temp_loc;
}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
tempLoblsOpen_proc();
EXEC SQL ROLLBACK WORK RELEASE;

10-28 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Display Temporary LOB Data

Display Temporary LOB Data

Figure 10-8 Use Case Diagram: Display Temporary LOB Data

Internal Temporary | -
LOBs I . DISPLAY the LOB Data

OPEN
alLOB

>

CLOSE
aLOB

create
a temporary
LOB

v

X

User/
Program

free
a temporary
LOB

DISPLAY the
LOB Data

read data
from the LOB

Temporary LOBs 10-29

Display Temporary LOB Data

Purpose

Usage Notes

Syntax

Scenario

Examples

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,
for all basic operations of Internal Temporary LOBs.

This procedure describes how to display temporary LOB data.

Not applicable.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB READ

As an instance of displaying a LOB our example stream-reads the image Drawing
from the column object Map_obj onto the client-side in order to view the data.

Examples are provided in the following programmatic environments:

« C/C++ (Pro*C/C++): Display Temporary LOB Data on page 10-30

C/C++ (Pro*C/C++): Display Temporary LOB Data

#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.salenm, sglca.sglemm.sglenrmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

10-30 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Display Temporary LOB Data

#define BufferLength 1024

void displayTempLOB_proc()
{
OCIBlobLocator *Temp_loc;
OCIBFileLocator*Lob _loc;
char*Dir="PHOTO_DIR", *Name ="Lincoln_photo";
int Amount;
struct{
unsigned short Length;
char Data[BufferLength];
}Buffer;
int Position=1;
F Datatype Equivalencing is Mandatory for this Datatype */
EXEC SQL VAR Buffer IS VARRAW/(BufferLength);

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
* Allocate and Initialize the LOB Locators */
EXEC SQL ALLOCATE :Lob loc;
EXEC SQL ALLOCATE :Temp_loc;
EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME =:Name;
F Opening the LOBs is Optional */
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
EXEC SQL LOB OPEN :Temp_loc READ WRITE;
F Load a specified amount from the BFILE into the Temporary LOB ¥/
EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Amount;
EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc AT :Position INTO :Temp_loc;
 Setting Amount = O will initiate the polling method */
Amount=0;
 Set the maximum size of the Buffer */
Buffer.Length = BufferLength;
EXEC SQL WHENEVER NOT FOUND DO break;
while (TRUE)
{
FRead a piece of the BLOB into the Buffer */
EXEC SQL LOB READ :Amount FROM :Temp_loc INTO :Buffer;
printf{'Display %od bytes\n", Buffer.Length);

printf(' Display %ed bytes\n", Amount);

F Closing the LOBs is mandatory if you have opened them */
EXEC SQL LOB CLOSE :Lab _loc;

EXEC SQL LOB CLOSE :Temp _loc;

 Free the Temporary LOB */

Temporary LOBs 10-31

Display Temporary LOB Data

EXEC SQL LOB FREE TEMPORARY :Temp_loc;
* Release resources held by the Locator */
EXEC SQL FREE :Temp_loc;

}

void main()
{
char*samp = "samp/samp’,
EXEC SQL CONNECT :samp;
displayTempLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;

10-32 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Read Data from a Temporary LOB

Read Data from a Temporary LOB

Figure 10-9 Use Case Diagram: Read Data from a Temporary LOB

LOBs

Internal Temporary

. READ Data from the LOB

OPEN
alLOB

CLOSE
alLOB

create
->| atemporary
LOB

free
a temporary
LOB

enable
buffering

disable
buffering

X

User/
Program

READ Data

from the LOB

Temporary LOBs 10-33

Read Data from a Temporary LOB

Purpose

Usage Notes

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,
for all basic operations of Internal Temporary LOBs.

This procedure describes how to read data from a temporary LOB.

Stream Read

The most efficient way to read large amounts of LOB data is to use OCILobRead ()
with the streaming mechanism enabled via polling or a callback.

When reading the LOBvalue, it is not an error to try to read beyond the end of the
LOB This means that you can always specify an input amount of 4 gigabytes
regardless of the starting offset and the amount of data in the LOB. You do not need
to incur a round-trip to the server to call OCILobGetLength () to find out the
length of the LOB value in order to determine the amount to read.

For example, assume that the length of a LOB is 5,000 bytes and you want to read
the entire LOB value starting at offset 1,000. Also assume that you do not know the
current length of the LOB value. Here's the OCI read call, excluding the
initialization of the parameters:

#define MAX_LOB_SIZE 4294967295

ub4 amount= MAX_LOB_SIZE;

ub4 offset=1000;

OCILobRead(svchp, errhp, locp, &amount, offset, bufp, bufl, 0, 0, 0, 0)

When using polling mode, be sure to look at the value of the ‘amount ' parameter
after each OClLobRead () call to see how many bytes were read into the buffer since
the buffer may not be entirely full.

When using callbacks, the 'len ' parameter, which is input to the callback, will
indicate how many bytes are filled in the buffer. Be sure to check the 'len *
parameter during your callback processing since the entire buffer may not be filled
with data (see theOracle Call Interface Programmer’s Guide.).

10-34 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Read Data from a Temporary LOB

Syntax

Scenario

Examples

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB READ

Our examples read the data from a single video Frame.

Examples are provided in the following programmatic environments:
« C/C++ (Pro*C/C++): Read Data from a Temporary LOB on page 10-35

C/C++ (Pro*C/C++): Read Data from a Temporary LOB

/¥ Read Data from a Temporary LOB */
#include <oci.h>

#include <stdio.h>

#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.salenm, sglca.sglemm.saglenrmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 1024

void readTempLOB_proc()
{
OCIBlobLocator *Temp_loc;
OCIBFileLocator*Lob_loc;
char*Dir="AUDIO_DIR", *Name ="Washington_audio";
int Length, Amount,
struct{
unsigned short Length;
char Data[Bufferength];

Temporary LOBs 10-35

Read Data from a Temporary LOB

}Buffer;

 Datatype Equivalencing is Mandatory for this Datatype */
EXEC SQL VAR Buffer IS VARRAW(BUfferLength);
EXEC SQL WHENEVER SQLERROR DO Sample_Ermor();

* Allocate and Initialize the BFILE Locator */
EXEC SQL ALLOCATE :Lob loc;
EXEC SQL LOBFILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;

 Determine the Length of the BFILE */
EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;

* Allocate and Create the Temporary LOB */
EXEC SQL ALLOCATE :Temp _loc;
EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

F Open the BFILE for Reading */
EXEC SQL LOB OPEN :Lob _loc READ ONLY;

Load the BFILE into the Temporary LOB */
Amount =Length;
EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;

 Close the BFILE */

EXEC SQL LOB CLOSE :Lab _loc;

Buffer.Length = BufferLength;

EXEC SQL WHENEVER NOT FOUND DO break;

while (TRUE)

{

F*Read a piece of the Temporary LOB into the Buffer */
EXEC SQL LOB READ :Amount FROM :Temp_loc INTO :Buffer;
printf("Read %d bytes\n", Buffer.Length);

}
printf("Read %d bytes\n", Amount);

 Free the Temporary LOB */
EXEC SQL LOB FREE TEMPORARY :Temp_loc;

F Release resources held by the Locators */

EXEC SQL FREE :Temp_loc;
EXEC SQL FREE :Lob _loc;

}

void main()

10-36 Oracle8/ Application Developer's Guide - Large Objects (LOBS)

Read Data from a Temporary LOB

char *samp ="samp/samp’;

EXEC SQL CONNECT :samp;
readTempLOB_proc();

EXEC SQL ROLLBACK WORK RELEASE;

Temporary LOBs 10-37

Read Portion of Temporary LOB (substr)

Read Portion of Temporary LOB (substr)

Figure 10-10 Use Case Diagram: Read Portion of Temporary LOB from the Table
(substr)

Internal Temporary

LOBs I . READ a Portion of the LOB from a Table (Substr.)

OPEN
alLOB

CLOSE
alLOB

create
atemporary)<ases=
LOB

v

X

User/
Program

||

READ a
Portion of the LOB
from theTable
(Substr.)

free
a temporary
LOB

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,
for all basic operations of Internal Temporary LOBs.

Purpose
This procedure describes how to read portion of a temporary LOB (substr).

10-38 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Read Portion of Temporary LOB (substr)

Usage Notes

Syntax

Scenario

Examples

Not applicable.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB LOAD. See also PL/SQL
DBMS_LOB.SUBSTR.

These examples show the operation in terms of reading a portion from sound-effect
Sound.

Examples are provided in the following programmatic environments:
« C/C++ (Pro*C/C++): Read a Portion of Temporary LOB (substr) on page 10-39

C/C++ (Pro*C/C++): Read a Portion of Temporary LOB (substr)

/* Pro*C/C++ lacks an equivalent embedded SQL form for the DBMS _LOB.SUBSTR()
function. However, Pro*C/C++ can intteroperate with PL/SQL using
anonymous PL/SQL blocks embedded in a Pro*C/C++ program as this example
shows. %/

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenmm.sglenm, sgica.sglenmm.sglermc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

Temporary LOBs 10-39

Read Portion of Temporary LOB (substr)

}

#define BufferLength 4096

void substringTempLOB_proc()
{
OCIBlobLocator *Temp_loc;
OCIBFileLocator*Lob _loc;
char*Dir="AUDIO_DIR", *Name ="Washington_audio";
int Position = 1024;
unsigned int Length;
int Amount = BufferLength;
struct {
unsigned short Length;
char Data[BufferLength];
}Buffer;
/* Datatype Equivalencing is Mandatory for this Datatype: %/
EXEC SQL VAR Buffer IS VARRAW/(BufferLength);

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
/* Allocate and Create the Temporary LOB: %/
EXEC SQL ALLOCATE :Temp_loc;
EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
/* Allocate and Initalize the BFILE Locator: %/
EXEC SQL ALLOCATE :Lob loc;
EXEC SQL LOBFILE SET :Lob_loc DIRECTORY = :Dir, FILENAME =:Name;
#Openthe LOBs: ¥
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
EXEC SQL LOB OPEN :Temp_loc READ WRITE;
/* Determine the length of the BFILE and load it into the Temporary LOB: %/
EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;
EXEC SQL LOB LOAD :Length FROM FILE :Lob _loc INTO :Temp_loc;
/Invoke SUBSTR() on the Temporary LOB inside a PL/SQL block: %/
EXEC SQL EXECUTE
BEGIN
‘Buffer = DBMS_LOB.SUBSTR(:-Temp_loc, :Amount, :Position);
END;
END-EXEC;
/*Process the Data in the Buiffer. %/
/*Closing the LOBs is Mandatory if they have been Opened: %
EXEC SQL LOB CLOSE :Lob loc;
EXEC SQL LOB CLOSE :Temp _loc;
/* Free the Temporary LOB: %/
EXEC SQL LOB FREE TEMPORARY :Temp_loc;
/* Release resources used by the locators: %/

10-40 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Read Portion of Temporary LOB (substr)

EXEC SQL FREE :Lob loc;
EXEC SQL FREE :Temp_loc;
}

void main()

{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
substringTempLOB_procy();

EXEC SQL ROLLBACK WORK RELEASE;

Temporary LOBs 10-41

Compare All or

Part of Two (Temporary) LOBs

Compare

All or Part of Two (Temporary) LOBs

Figure 10-11 Use Case Diagram: Compare All or Part of Two Temporary LOBs

Internal Temporary

LOBsS I . COMPARE All or Parts of Two LOBs

OPEN
alLOB

CLOSE
alLOB

COMPARE
All or Parts of
2 LOBs

create

> a temporary REEE LR e e e L e EEEEEERELEREEETE o
LOB

free
a temporary
LOB

Purpose

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,
for all basic operations of Internal Temporary LOBs.

This procedure describes how to compare all or part of two temporary LOBs.

10-42 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Compare All or Part of Two (Temporary) LOBs

Usage Notes

Syntax

Scenario

Examples

Not applicable.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB COPY. See also PL/SQL
DBMS_LOB.COMPARE.

The following examples compare two frames from the archival table
VideoframesLib_tab to see whether they are different. Depending on the result
of comparison, the examples insert the Frame into the Multimedia_tab

Examples are provided in the following programmatic environments:

« C/C++ (Pro*C/C++): Compare All or Part of Two (Temporary) LOBs on
page 10-43

C/C++ (Pro*C/C++): Compare All or Part of Two (Temporary) LOBs

#include <oci.h>
#include <stdio.h>
#include <sgica.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.sglenm, sglca.sglemm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void compareTwoTempOrPersistLOBs_proc()

{
OCIBlobLocator *Lob locl,*Lob_loc2, *Temp_loc;

Temporary LOBs 10-43

Compare All or Part of Two (Temporary) LOBs

int Amount =128;
int Retval;

EXEC SQL WHENEVER SQLERROR DO Sample_Emor();
/*Allocate the LOB locators: %/
EXEC SQL ALLOCATE :Lob_loct,
EXEC SQL ALLOCATE :Lob loc2;
/*Selectthe LOBs: %/
EXEC SQL SELECT Frame INTO :Lob locl
FROM Mulimedia_tab WHERE Clip_ID =1,
EXEC SQL SELECT Frame INTO :Lob_loc2
FROM Mulimedia_tab WHERE Clip_ID =2,
/*Allocate and Create the Temporary LOB: %/
EXEC SQL ALLOCATE :Temp_loc;
EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

/*Opening the LOBs is Optional: */

EXEC SQL LOB OPEN :Lob _loc1 READ ONLY;

EXEC SQL LOB OPEN :Lob _loc2 READ ONLY;

EXEC SQL LOB OPEN :Temp_loc READ WRITE;

/*Copy the Persistent LOB into the Temporary LOB: %

EXEC SQL LOB COPY :Amount FROM :Lob _loc2 TO :Temp _loc;

/* Compare the wo Frames using DBMS _LOB.COMPARE() from within PL/SQL: %
EXEC SQL EXECUTE
BEGIN
‘Retval = DBMS_LOB.COMPARE(.Lob _locl, :Temp_loc, :Amount, 1, 1);
END;
END-EXEC;
if 0 — Retval)
printf("Frames are equaln’’);
else
printf("Frames are not equaln”);
/*Closing the LOBSs is mandatory if you have opened them: %/
EXEC SQL LOB CLOSE :Lob locl;
EXEC SQL LOB CLOSE :Lob loc2;
EXEC SQL LOB CLOSE :Temp _loc;
/* Free the Temporary LOB: ¥/
EXEC SQL LOB FREE TEMPORARY :Temp_loc;

/* Release resources held by the locators: %
EXEC SQL FREE :Lob locl;

EXEC SQL FREE :Lob loc2;

EXEC SQL FREE :Temp_loc;

10-44 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Compare All or Part of Two (Temporary) LOBs

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
compareTwoTempOrPersist_LOBs_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 10-45

See If a Pattern Exists in a Temporary LOB (instr)

See If a Pattern Exists in a Temporary LOB (instr)

Figure 10-12 Use Case Diagram: See If a Pattern Exists in a Temporary LOB (instr)

Internal Temporary

LOBs I . SEE Wherefif a Pattern Exists in the LOB (Instr.)

OPEN
alLOB

CLOSE
alLOB

create
a temporary
LOB

v

SEE Wherelif
a Pattern Exists |
inthe LOB
User/
Program

free
a temporary
LOB

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,
for all basic operations of Internal Temporary LOBs.

Purpose
This procedure describes how to see if a pattern exists in a temporary LOB (instr).

10-46 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

See If a Pattern Exists in a Temporary LOB (instr)

Usage Notes

Syntax

Scenario

Examples

Not applicable.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB COPY. See also DBMS _
LOB.INSTR.

The following examples examine the storyboard text to see if the string "children” is
present.

Examples are provided in the following programmatic environments:

« Table,"C/C++ (Pro*C/C++): See If a Pattern Exists in a Temporary LOB (instr)"
on page 10-47

CIC++ (Pro*C/C++): See If a Pattern Exists in a Temporary LOB (instr)

#include <oci.h>
#include <stdio.h>
#include <sgica.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sqlca.sglemm.sglenm, sglca.sglemm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

void instringTempLOB_proc()

{
OCIClobLocator *Lob_loc, *Temp_loc;
char *Pattem ="The End",

Temporary LOBs 10-47

See If a Pattern Exists in a Temporary LOB (instr)

unsigned int Length;
int Posiion=0;

int Offset=1;

int Occurrence =1;

EXEC SQL WHENEVER SQLERROR DO Sample_Emor();
/* Allocate and Initialize the Persistent LOB: %/
EXEC SQL ALLOCATE :Lob_loc;
EXEC SQL SELECT Story INTO :Lob loc

FROM Multimedia._tab WHERE Clip_ID =1,
/* Allocate and Create the Temporary LOB: %/
EXEC SQL ALLOCATE :Temp_loc;
EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
/*Opening the LOBs is Optional: %/
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
EXEC SQL LOB OPEN :Temp_loc READ WRITE;
/* Determine the Length of the Persistent LOB: %/
EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH into :Length;
/*Copy the Persistent LOB into the Temporary LOB: %/
EXEC SQL LOB COPY :Length FROM :Lob loc TO :Temp_loc;
/* Seek the Pattem using DBMS_LOB.INSTR() in a PL/SQL block: %/
EXEC SQL EXECUTE

BEGIN

‘Position =
DBMS_LOB.INSTR(:-Temp_loc, :Pattem, :Offset, :Occurrence);

END;
END-EXEC;
if (0 == Position)

printf("Pattem not found\n");
else

printf(The pattem occurs at %od\n", Position);
/*Closing the LOBSs is mandatory if you have opened them: %/
EXEC SQL LOB CLOSE :Lob loc;
EXEC SQL LOB CLOSE :Temp_loc;
/* Free the Temporary LOB: %
EXEC SQL LOB FREE TEMPORARY :Temp_loc;
/* Release resources held by the Locators:
EXEC SQL FREE :Lob loc;
EXEC SQL FREE :Temp_loc;

}

void main()

{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;

10-48 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

See If a Pattern Exists in a Temporary LOB (instr)

instingTempLOB_procy();
EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 10-49

Get the Length of a Temporary LOB

Get the Length of a Temporary LOB

Figure 10-13 Use Case Diagram: Get the Length of a Temporary LOB

Internal Temporary I * GET the Length of the LOB

OPEN
alLOB

N

CLOSE
alLOB

create
~->(atemporary)J<=+t»
LOB

free
a temporary
LOB

GET the
Length of
the LOB

X

User/
Program

10-50 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Get the Length of a Temporary LOB

Purpose

Usage Notes

Syntax

Scenario

Examples

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,
for all basic operations of Internal Temporary LOBs.

This procedure describes how to get the length of a temporary LOB.

Not applicable.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB DESCRIBE ...GET
LENGTH

The following examples get the length of interview to see if it will run over the 4
gigabyte limit.

Examples are provided in the following programmatic environments:

« C/C++ (Pro*C/C++): Get the Length of a Temporary LOB on page 10-51

CIC++ (Pro*C/C++): Get the Length of a Temporary LOB

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Emor()

{
EXEC SQL WHENEVER SQLERROR CONTINUE,;

printf('%.*s\n", sglca.sglenm.sglenml, sgica.sglenm.sglenmc);

Temporary LOBs 10-51

Get the Length of a Temporary LOB

EXEC SQL ROLLBACK WORK RELEASE;
exit(1);
}

void getlengthTempLOB_proc()
{
OCIBlobLocator *Temp_loc;
OCIBFileLocator*Lob _loc;
char*Dir="AUDIO_DIR", *Name ="Washington_audio";
int Length, Amount,

EXEC SQL WHENEVER SQLERROR DO Sample_Etror();

/* Allocate and Create the Temporary LOB ¥/
EXEC SQL ALLOCATE :Temp_loc;
EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

/*Allocate and Initialize the BFILE Locator: %/
EXEC SQL ALLOCATE :Lob_loc;
EXEC SQL LOB FILE SET :Lob_loc DIRECTORY =:Dir, FILENAME = :Name;

/*Opening the LOBs is Optional: %/
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
EXEC SQL LOB OPEN :Temp_loc READ WRITE;

 Load a specified amount from the BFILE into the Temporary LOB */
Amount =4096;
EXEC SQL LOB LOAD :Amount FROM FILE :Lob loc INTO :Temp_loc;

/*Getthe length of the Temporary LOB: %/
EXEC SQL LOB DESCRIBE :Temp_loc GET LENGTH INTO :Length;

/*Note that in this example, Length = Amount == 4096 %
printf("Length is %d bytes\n', Length);

/*Closing the LOBSs is Mandatory if they have been Opened: %/
EXEC SQL LOB CLOSE :Lab _loc;
EXEC SQL LOB CLOSE :Temp _loc;

/*Free the Temporary LOB: ¥

EXEC SQL LOB FREE TEMPORARY :Temp_loc;
/* Release resources held by the Locators:

EXEC SQL FREE :Lob loc;

EXEC SQL FREE :Temp_loc;

10-52 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Get the Length of a Temporary LOB

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
getlLengthTempLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 10-53

Copy All or Part of One (Temporary) LOB to Another

Copy All or Part of One (Temporary) LOB to Another

Figure 10-14 Use Case Diagram: Copy All or Part of One (Temporary) LOB to Another

Internal Temporary

LOBs I . COPY All or Part of a LOB to Another LOB

OPEN
alLOB

CLOSE
alLOB

create
a temporary
LOB

X

User/
Program

COPY All or
Part of a LOB to
Another LOB

free
a temporary
LOB

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,
for all basic operations of Internal Temporary LOBs.

Purpose
This procedure describes how to copy all or part of one temporary LOB to another.

10-54 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Copy All or Part of One (Temporary) LOB to Another

Usage Notes

Syntax

Scenario

Examples

Not applicable.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB COPY

Assume the following table;

CREATE TABLE VoiceoverlLib_tab of VOICED TYP;

Note that this VoiceoverLib_tab is of the same type as the Voiceover_tab
which is referenced by the Voiced_ref column of table Multimedia_tab

INSERT INTO Voiceover_tab
(SELECT * FROM VoiceoverLib_tab Vtabl
WHERE T2.Take =101);

This creates a new LOB locator in table Voiceover_tab , and copies the LOB data
from Vtabl to the location pointed to by a new LOB locator which is inserted into
table Voiceover _tab.

Examples are provided in the following programmatic environments:

« C/C++ (Pro*C/C++): Copy All or Part of One (Temporary) LOB to Another on
page 10-55

CIC++ (Pro*C/C++): Copy All or Part of One (Temporary) LOB to Another

#include <oci.h>
#include <stdio.h>
#include <sgica.h>

void Sample_Error()
{

Temporary LOBs 10-55

Copy All or Part of One (Temporary) LOB to Another

EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglerm.sglenml, sglca.sglerm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void copyTempLOB_proc()

{
OCIBlobLocator *Temp_locl, *Temp_loc2;
OCIBFileLocator *Lob loc;
char*Dir ="AUDIO_DIR", *Name = "Washington_audio";
int Amount;

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
/* Allocate and Create the Temporary LOBs: %
EXEC SQL ALLOCATE :Temp_locl;
EXEC SQL ALLOCATE :Temp_loc2;
EXEC SQL LOB CREATE TEMPORARY :Temp_locl;
EXEC SQL LOB CREATE TEMPORARY :Temp_loc2;
/* Allocate and Initalize the BFILE Locator: %
EXEC SQL ALLOCATE :Lob loc;
EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME =:Name;
/*Opening the LOBs is Optional: %/
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
EXEC SQL LOB OPEN :Temp_locl READ WRITE;
EXEC SQL LOB OPEN :Temp_loc2 READ WRITE;
/*Load a specified amount from the BFILE into one of the
Temporary LOBs: %/
Amount =4096;
EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_locd;
/*Copy a specified amount from one Temporary LOB to ancther: %/
EXEC SQL LOB COPY :Amount FROM :Temp_loc1 TO :Temp_loc2;
/*Closing the LOBs is Mandatory if they have been Opened: ¥
EXEC SQL LOB CLOSE :Temp_locl;
EXEC SQL LOB CLOSE :Temp_loc2;
EXEC SQL LOB CLOSE :Lob_loc;
/* Free the Temporary LOBs: %/
EXEC SQL LOB FREE TEMPORARY :Temp_locl;
EXEC SQL LOB FREE TEMPORARY :Temp_loc2;
/* Release resources held by the Locators: %
EXEC SQL FREE :Temp_loc1;
EXEC SQL FREE :Temp_loc2;
EXEC SQL FREE :Lob loc;

10-56 Oracle8i Application Developer’s Guide - Large Objects (LOBS)

Copy All or Part of One (Temporary) LOB to Another

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
copyTempLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;

Temporary LOBs 10-57

Copy a LOB Locator for a Temporary LOB

Copy a LOB Locator for a Temporary LOB

Figure 10-15 Use Case Diagram: Copy a LOB Locator for a Temporary LOB

Internal Temporary

LOBs I . READ a Portion of the LOB from a Table (Substr.)

OPEN
alLOB

CLOSE
alLOB

create
a temporary
LOB

v

X

User/
Program

||

from theTable
(Substr.)

free
a temporary
LOB

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,
for all basic operations of Internal Temporary LOBs.

Purpose
This procedure describes how to copy a LOB locator for a temporary LOB.

10-58 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Copy a LOB Locator for a Temporary LOB

Usage Notes

Syntax

Scenario

Examples

Not applicable.

Use the following syntax references for each programmatic environment;

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB ASSIGN

This generic operation copies one temporary LOB locator to another.

Examples are provided in the following programmatic environments:

« C/C++ (Pro*C/C++): Copy a LOB Locator for a Temporary LOB on page 10-59

C/C++ (Pro*C/C++): Copy a LOB Locator for a Temporary LOB

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglenm.sglenml, sgica.sglemm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

void copyTempLobLocator_proc()

{
OCIBlobLocator *Temp_locl, *Temp_loc2;
OCIBFileLocator *Lob loc;
char*Dir="AUDIO_DIR", *Name ="Washington_audio";
int Amount = 4096;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();

Temporary LOBs 10-59

Copy a LOB Locator for a Temporary LOB

/*Allocate and Create the Temporary LOBs: %/

EXEC SQL ALLOCATE :Temp_loc;

EXEC SQL ALLOCATE :Temp_loc2;

EXEC SQL LOB CREATE TEMPORARY :Temp_locl;
EXEC SQL LOB CREATE TEMPORARY :Temp_loc2;

/*Allocate and Initialize the BFILE Locator: %/
EXEC SQL ALLOCATE :Lob_loc;
EXEC SQL LOBFILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;

/*Opening the LOBs is Optional: */

EXEC SQL LOB OPEN :Lob_loc READ ONLY;
EXEC SQL LOB OPEN :Temp_locl READ WRITE;
EXEC SQL LOB OPEN :Temp_loc2 READ WRITE;

/*Load a specified amount from the BFILE into the Temporary LOB: %/
EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_locd;
/*Assign Temp_locl to Temp_loc2 thereby creating a copy of the value of

the Temporary LOB referenced by Temp_locl at this point in time: %/
EXEC SQL LOB ASSIGN :Temp_loc1 TO :Temp_loc2;

/*Closing the LOBSs is Mandatory if they have been Opened: %
EXEC SQL LOB CLOSE :Lob_loc;

EXEC SQL LOB CLOSE :Temp_locl;

EXEC SQL LOB CLOSE :Temp_loc2;

/*Free the Temporary LOBs: %/
EXEC SQL LOB FREE TEMPORARY :Temp_locl,;
EXEC SQL LOB FREE TEMPORARY :Temp_loc2;

/* Release resources held by the Locators: %
EXEC SQL FREE :Lob loc;
EXEC SQL FREE :Temp_loc1;
EXEC SQL FREE :Temp_loc2;
}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
copyTempLobLocator_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

10-60 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Is One Temporary LOB Locator Equal to Another

Is One Temporary LOB Locator Equal to Another

Figure 10-16 Use Case Diagram: See If One (Temporary) LOB Locator Is Equal to

Another

Internal Temporary

LOBs I . SEE if LOB Locators are Equal

create
==>(atemporary
LOB

<emmanns

free
a temporary
LOB

SEE if
LOB locators
are equal

User/
Program

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,
for all basic operations of Internal Temporary LOBs.

Purpose

This procedure describes how to see if one LOB locator for a temporary LOB is

equal to another.

Usage Notes

If two locators are equal, this means that they refer to the same version of the LOB
data (see "Read-Consistent Locators" in Chapter 5, "Advanced Topics").

Temporary LOBs 10-61

Is One Temporary LOB Locator Equal to Another

Syntax

Scenario

Examples

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives” — LOB ASSIGN. See also C(OCI)
function, OCILoblsEqual

Not applicable.

Examples are provided in the following programmatic environments:

« C/C++ (Pro*C/C++): See If One LOB Locator for a Temporary LOB Is Equal to
Another on page 10-62

C/C++ (Pro*C/C++): See If One LOB Locator for a Temporary LOB Is Equal to Another

#include <sglRocih>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf{'sglcode = %ld\n", sglca.sgicode);
printf('%6.*s\n", sglca.sglenm.sglenml, sgica.sglenmm.sglermc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

void seeTempLobLocatorsAreEqual_proc()

{
OCIBlobLocator *Temp_locl, *Temp_loc2;
OCIBFileLocator *Lob loc;
char*Dir="AUDIO_DIR", *Name ="Washington_audio";
int Amount = 4096;
OCIEnv *oeh;

10-62 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Is One Temporary LOB Locator Equal to Another

intisEqual =0;

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
/*Allocate and Create the Temporary LOBs: %/

EXEC SQL ALLOCATE :Temp_locl;

EXEC SQL ALLOCATE :Temp _loc2;

EXEC SQL LOB CREATE TEMPORARY :Temp_locl,;
EXEC SQL LOB CREATE TEMPORARY :Temp_loc2;

/* Allocate and Initalize the BFILE Locator: %

EXEC SQL ALLOCATE :Lob_loc;

EXEC SQL LOBFILE SET :Lob_loc DIRECTORY = :Dir, FILENAME =:Name;
/*Opening the LOBs is Optional: %/

EXEC SQL LOB OPEN :Lob_loc READ ONLY;

EXEC SQL LOB OPEN :Temp_locl READ WRITE;

EXEC SQL LOB OPEN :Temp_loc2 READ WRITE;

/*Load a specified amount from the BFILE into one of the Temporary LOBs: %/
EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_locl;

/* Retrieve the OCI Environment Handle: %/

(void) SQLENVGet(SQL_SINGLE_RCTX, &oeh);

/*Now assign Temp_loc1 to Temp_loc2 using Embedded SQL: %
EXEC SQL LOB ASSIGN :Temp_loc1 TO :Temp_loc2;

/*Determine ifthe Temporary LOBs are Equal: %/
(void) OCILoblIsEqual(oeh, Temp_locl, Temp_loc2, &isEqual);

/* This time, isEqual should be O (FALSE): %/
printf{'Locators %s equal\n”, isEqual ? "are" : "are not'’);

/*Assign Temp_locl to Temp_loc2 using C pointer assignment: %/
Temp_loc2 =Temp_locl;

/*Determine ifthe Temporary LOBs are Equal again: ¥/
(void) OCILoblsEqual(oeh, Temp_locl, Temp_loc2, &isEqual);

/* The value of isEqual should be 1 (TRUE) in this case: %/
printf('Locators %s equaln’, isEqual ? "are" : "are not");

/*Closing the LOBSs is Mandatory if they have been Opened: %

EXEC SQL LOB CLOSE :Lob_loc;

/* Note that because Temp_loc1 and Temp_loc2 are now equal, closing
and freeing one will implicitely do the same to the other: %/

EXEC SQL LOB CLOSE :Temp_locl;

EXEC SQL LOB FREE TEMPORARY :Temp_locl;

Temporary LOBs 10-63

Is One Temporary LOB Locator Equal to Another

/* Release resources held by the Locators:
EXEC SQL FREE :Lob loc;
EXEC SQL FREE :Temp_locl;

}

void main()

{
char*samp = "samp/samp’,
EXEC SQL CONNECT :samp;
seeTempLobLocatorsAreEqual_proc();
EXEC SQL ROLLBACK WORK RELEASE;

10-64 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

See If a LOB Locator for a Temporary LOB s Initialized

See If a LOB Locator for a Temporary LOB Is Initialized

Figure 10-17 Use Case Diagram: See If a LOB Locator for a Temporary LOB Is
Initialized

:—n(t)eégal UGN I . SEE if LOB Locator is Initialized

SEE if
LOB Locator
is initialized

X

User/
Program

Purpose

Usage Notes

Syntax

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,
for all basic operations of Internal Temporary LOBs.

This procedure describes how to see if a LOB locator for a temporary LOB is
initialized.

Not applicable.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

Temporary LOBs 10-65

See If a LOB Locator for a Temporary LOB Is Initialized

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB CREATE TEMPORARY.
See also C(OCI) function, OCILobLocatorlsInit

Scenario
This generic function takes a LOBlocator and checks if it is initialized. If it is
initialized, then it prints out a message saying "LOBIs initialized". Otherwise, it
reports "LOBIs not initialized".

Examples

Examples are provided in the following programmatic environments:

«» C/C++ (Pro*C/C++): See If a LOB Locator for a Temporary LOB Is Initialized
on page 10-66

C/C++ (Pro*C/C++): See If a LOB Locator for a Temporary LOB Is Initialized

#include <sgl2oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()
{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglenm, sgica.sglemm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);
}
void tempLobLocatorlsinit_proc()
{
OCIBlobLocator *Temp_loc;
OCIENv *oeh;
OCIEmor*err;
boolean isinitialized = 0;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
EXEC SQL ALLOCATE :Temp_loc;

EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

/*Get the OCI Environment Handlle using a SQLLIB Routine: %/
(void) SQLENvGet(SQL_SINGLE_RCTX, &oeh);

10-66 Oracle8/ Application Developer's Guide - Large Objects (LOBS)

See If a LOB Locator for a Temporary LOB s Initialized

/*Allocate the OCI Eiror Handle: ¥/
(void) OCIHandleAlloc((dvoid *)oeh, (dvoid *)&err,
(Ub4)OCI_HTYPE_ERROR, (ub4)0, (dvoid **)0);
FUse the OCl to determine if the locator is Initialized */
(void) OClLobLocatorlsInit(oeh, err, Temp_loc, &isInitialized);
if (islnitialized)
printf("Locator is initialized\n');
else
printf("Locator is not initialized\n");
/*Note that in this example, the locator is initialized. */
/* Deallocate the OCI Error Handle: %/
(void) OCIHandleFree(err, OCI_HTYPE_ERROR);
* Free the Temporary LOB */
EXEC SQL LOB FREE TEMPORARY :Temp_loc;
/* Release resources held by the locator: %
EXEC SQL FREE :Temp_loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
tempLobLocatorlsInit_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Temporary LOBs 10-67

Get Character Set ID of a Temporary LOB

Get Character Set ID of a Temporary LOB

Figure 10-18 Use Case Diagram: Get Character Set ID for a Temporary LOB

Internal Temporary | -
LOBs I . GET Character Set ID

GET Character

Set ID

create
->| atemporary
> LOB

DCLUITITEETEEETETPERLEE]

X

User/
Program

free

a temporary
LOB

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,
for all basic operations of Internal Temporary LOBs.

Purpose
This procedure describes how to get the character set ID of a temporary LOB.

10-68 Oracle8/ Application Developer's Guide - Large Objects (LOBS)

Get Character Set ID of a Temporary LOB

Usage Notes
Not applicable.

Syntax

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in

each programmatic environment. Use the following syntax references for each

programmatic environment:

« PL/SQL (DBMS_LOB): A syntax reference is not applicable with this release.

« C/C++ (Pro*C/C++): There is no applicable syntax reference for this use case.
Scenario

This function takes a LOBlocator and prints the character set id of the LOB
Examples

Examples are provided in the following programmatic environments:

« C/C++ (Pro*C/C++): No example is provided with this release.

Temporary LOBs 10-69

Get Character Set Form of a Temporary LOB

Get Character Set Form of a Temporary LOB

Figure 10-19 Use Case Diagram: Get Character Set Form of a Temporary LOB

Ln(t)eégal USTI[EUE! I . GET Character Set Form

GET Character

Set Form

create
-=-=>(atemporary
LOB

X

User/
Program

free

a temporary
LOB

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,
for all basic operations of Internal Temporary LOBs.

Purpose
This procedure describes how to get the character set form of a temporary LOB.

Usage Notes
Not applicable.

10-70 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Get Character Set Form of a Temporary LOB

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:
« C/C++ (Pro*C/C++): There is no applicable syntax reference for this use case.
Scenario
This function takes a LOBlocator and prints the character set form for the LOB
Examples

Examples are provided in the following programmatic environments:
« COBOL (Pro*Cobol)No example is provided with this release.
« C/C++ (Pro*C/C++): No example is provided with this release.

Temporary LOBs 10-71

Append One (Temporary) LOB to Another

Append One (Temporary) LOB to Another

Figure 10-20 Use Case Diagram: Append One (Temporary) LOB to Another

Internal Temporary

LOBs - APPEND One LOB to Another

OPEN
alLOB

create
a temporary
LOB

X

User/
Program

Another

free
a temporary
LOB

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,
for all basic operations of Internal Temporary LOBs.

Purpose
This procedure describes how to append one (temporary) LOB to another.

10-72 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Append One (Temporary) LOB to Another

Usage Notes

Syntax

Scenario

Examples

Not applicable.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB APPEND

These examples deal with the task of appending one segment of sound to another.
Use sound-specific editing tools to match the wave-forms.

Examples are provided in the following programmatic environments:
« C/C++ (Pro*C/C++): Append One (Temporary) LOB to Another

C/C++ (Pro*C/C++): Append One (Temporary) LOB to Another

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Eror()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglenm, sgica.sglenm.sglenmmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

void appendTempLOB_proc()

{
OCIBlobLocator *Temp_locl, *Temp_loc2;

OCIBFileLocator*Lob_loc;

Temporary LOBs 10-73

Append One (Temporary) LOB to Another

char*Dir="AUDIO_DIR", *Name ="Washington_audio";
int Amount = 2048;
int Position=1;

EXEC SQL WHENEVER SQLERROR DO Sample_Emor();

/* Allocate and Create the Temporary LOBs: %/

EXEC SQL ALLOCATE :Temp_locl;

EXEC SQL ALLOCATE :Temp_loc2;

EXEC SQL LOB CREATE TEMPORARY :Temp_locl;

EXEC SQL LOB CREATE TEMPORARY :Temp_loc2;

/*Allocate and Initialize the BFILE Locator: ¥

EXEC SQL ALLOCATE :Lob_loc;

EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME =:Name;

/*Opening the LOBs is Optional: %/

EXEC SQL LOB OPEN :Lob_loc READ ONLY;
EXEC SQL LOB OPEN :Temp_locl READ WRITE;
EXEC SQL LOB OPEN :Temp_loc2 READ WRITE;

/*Load a specified amount from the BFILE into the first Temporary LOB: %
EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc AT :Position INTO :Temp_locl;

/* Set the Position for the next load from the same BFILE: %/
Position = Amount +1;

/*Load a second amount from the BFILE into the second Temporary LOB: %/
EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc AT :Position INTO :Temp_loc2;

/* Append the second Temporary LOB to the end of the first one: %/
EXEC SQL LOB APPEND :Temp_loc2 TO :Temp_locl;

/*Closing the LOBs is Mandatory if they have been Opened: %/
EXEC SQL LOB CLOSE :Lab _loc;

EXEC SQL LOB CLOSE :Temp_locl;

EXEC SQL LOB CLOSE :Temp_loc2;

/* Free the Temporary LOBs: %/
EXEC SQL LOB FREE TEMPORARY :Temp_locl;
EXEC SQL LOB FREE TEMPORARY :Temp_loc2;

/* Release resources held by the Locators: %/
EXEC SQL FREE :Lob loc;

EXEC SQL FREE :Temp_locl;

EXEC SQL FREE :Temp_loc2;

10-74 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Append One (Temporary) LOB to Another

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
appendTempLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Temporary LOBs 10-75

Write Append to a Temporary LOB

Write Append to a Temporary LOB
Figure 10-21 Use Case Diagram: Write Append to a Temporary LOB

Internal Temporary

LOBS . WRITE Append

OPEN
alLOB

N

CLOSE
alLOB

create
a temporary
LOB

o

User/
Program

free
a temporary
LOB

10-76 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Write Append to a Temporary LOB

Purpose

Usage Notes

Syntax

Scenario

Examples

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,
for all basic operations of Internal Temporary LOBs.

This procedure describes how to write append to a temporary LOB.

Not applicable.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB WRITE APPEND

These examples read in 32767 bytes of data from the Washington_audio file
starting at offset 128, and append it to a temporary LOB.

Examples are provided in the following programmatic environments:

« C/C++ (Pro*C/C++): Write Append to a Temporary LOB on page 10-77

CIC++ (Pro*C/C++): Write Append to a Temporary LOB

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglenm.sglenm, sgica.sglenm.sglenmmc);
EXEC SQL ROLLBACK WORK RELEASE;

Temporary LOBs 10-77

Write Append to a Temporary LOB

exit(1);
}

#define BufferLength 256

void writeAppendTempLOB_proc()
{
OCIBlobLocator *Temp_loc;
OCIBFileLocator *Lob loc;
char*Dir="AUDIO_DIR", *Name ="Washington_audio";
int Amount;
struct{
unsigned short Length;
char Data[Bufferength);
} Buffer;
EXEC SQL VAR Buffer IS VARRAW/(BufferLength);
EXEC SQL WHENEVER SQLERROR DO Sample_Ermor();

/*Allocate and Create the Temporary LOB: %/
EXEC SQL ALLOCATE :Temp_loc;
EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

/*Allocate and Initialize the BFILE Locator: %/
EXEC SQL ALLOCATE :Lob_loc;
EXEC SQL LOBFILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;

/*Opening the LOBs is Optional: %/
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
EXEC SQL LOB OPEN :Temp_loc READ WRITE;

/*Load a specified amount from the BFILE into the Temporary LOB: %/
Amount =2048;

EXEC SQL LOB LOAD :Amount FROM FILE :Lob loc INTO :Temp_loc;
strepy((char *)Buffer.Data, “afafafafafaf”);

Buffer.Length =6;

/*White the conttentts of the Buffer to the end of the Temporary LOB: %
Amount = Buffer.Length;

EXEC SQL LOB WRITE APPEND :Amount FROM :Buffer INTO :Temp_loc;
/*Closing the LOBSs is Mandatory if they have been Opened: %

EXEC SQL LOB CLOSE :Lob_loc;

EXEC SQL LOB CLOSE :Temp _loc;

/* Free the Temporary LOB ¥/

10-78 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Write Append to a Temporary LOB

EXEC SQL LOB FREE TEMPORARY :Temp_loc;
/* Release resources held by the Locators: %
EXEC SQL FREE :Lob loc;
EXEC SQL FREE :Temp_loc;
}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
writeAppendTempLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;

Temporary LOBs 10-79

Write Data to a Temporary LOB

Write Data to a Temporary LOB

Figure 10-22 Use Case Diagram: Write Data to a Temporary LOB

LOBs

Internal Temporary

v

a temporary

a temporary
LOB

OPEN
alLOB

create

<e--
LOB

free

I . WRITE Data to the LOB

enable
buffering

disable
buffering

WRITE Data

to the LOB

X

User/
Program

10-80 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Write Data to a Temporary LOB

Purpose

Usage Notes

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,
for all basic operations of Internal Temporary LOBs.

This procedure describes how to write data to a temporary LOB.

Stream Write

The most efficient way to write large amounts of LOB data is to use

OClLobWrite () with the streaming mechanism enabled via polling or a callback. If
you know how much data will be written to the LOBspecify that amount when
calling OClLobWrite (). This will allow for the contiguity of the LOBdata on disk.
Apart from being spatially efficient, contiguous structure of the LOBdata will make
for faster reads and writes in subsequent operations.

Using DBMS_LOB.WRITE() to Write Data to a Temporary BLOB

When you are passing a hexadecimal string to DBMS_LOB.WRITE() to write data to
a BLOB, use the following guidelines:

« Theamount parameter should be <= the buffer length parameter

« Thelength of the buffer should be ((amount *2) - 1). This guideline exists
because the two characters of the string are seen as one hexadecimal character
(and an implicit hexadecimal-to-raw conversion takes place), i.e., every two
bytes of the string are converted to one raw byte.

The following example is correct:

declare

blob_loc BLOB;

rawbuf RAW(10);

an_offsetINTEGER =1;

an_amount BINARY _INTEGER = 10;
begin

select blob_colinto blob_loc from a_table
whereid=1,

rawbuf :="'1234567890123456789;

dbms_lob.write(blob_loc, an_amount, an_offset,
rawbuf);

commit;

Temporary LOBs 10-81

Write Data to a Temporary LOB

Syntax

Scenario

Examples

end;
Replacing the value for ‘an_amount' in the previous example with the following
values, yields error message, ora_21560:

an_amount BINARY_INTEGER = 11;
or

an_amount BINARY_INTEGER := 19;

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB WRITE

The example procedures allow the STORYdata (the storyboard for the clip) to be
updated by writing data to the LOB.

Examples are provided in the following programmatic environments:

« C/C++ (Pro*C/C++): Write Data to a Temporary LOB on page 10-82

C/C++ (Pro*C/C++): Write Data to a Temporary LOB

#include <oci.h>

#include <stdio.h>
#include <string.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.salenm, sglca.sglemm.salenmc);
EXEC SQL ROLLBACK WORK RELEASE;

10-82 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Write Data to a Temporary LOB

exit(1);
}

#define BufferLength 1024

void wiiteDataToTempLOB_proc(multiple) int muttiple;
{

OCIClobLocator *Temp_loc;

varchar Buffer[BufferLength;

unsigned int Total;

unsigned int Amount;

unsigned int remainder, nbytes;

boolean last;

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
/*Allocate and Initialize the Temporary LOB: %

EXEC SQL ALLOCATE :Temp_loc;

EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
/*Openthe Temporary LOB: %

EXEC SQL LOB OPEN :Temp_loc READ WRITE;

Total = Amount = (multiple * BufferL_engthy;

if (Total > BufferLength)

nbytes = BufferLength; /*We will use Streaming via Standard Polling */
else

nbytes = Total; /*Only a single WRITE Is required %/

/* Fill the Buffer with nbytes worth of Data: %/
memset((void *)Buffer.arr, 32, nbytes);
Bufferlen=nbytes; /* Setthe Length*/
remainder = Total - nbytes;
if (0 == remainder)
{
/*Here, (Total <= BufferL_ength) so we can WRITE in ONE piece: ¥/
EXEC SQL LOB WRITE ONE :Amount FROM :Buffer INTO :Temp_loc;
printf("Write ONE Total of %d characters\n”, Amount);
}
else
{
/*Here (Total > BufferLength) so use Streaming via Standard Polling %
FHWRITE the FIRST piece. Specifying FIRST initiates Poling: %
EXEC SQL LOB WRITE FIRST :Amount FROM :Buffer INTO :Temp_loc;
printf(\White FIRST %d characters\n”, Buffer.len);

last = FALSE;
AWRITE the NEXT (interim) and LAST pieces: %
do

{

Temporary LOBs 10-83

Write Data to a Temporary LOB

if ('emainder > BufferLength)
nbytes = BufferLength; /* Still have more pieces to go ¥
else
{
nbytes =remainder; /*Here, (remainder <= BufferLength) %
last=TRUE; /This Is going to be the Final piece

}
/* Fill the Buffer with nbytes worth of Data: %/
memset((void *)Buffer.arr, 32, nbytes);
Buffer.len = nbytes; /*Setthe Length %
if (last)
{
EXEC SQL WHENEVER SQLERROR DO Sample_Eror();
/* Specifying LAST terminates Polling: %
EXEC SQL LOB WRITE LAST :Amount FROM :Buffer INTO :Temp_loc;
printf("Write LAST Total of %d characters\n”, Amount);
}
else
{
EXEC SQL WHENEVER SQLERROR DO break;
EXEC SQL LOB WRITE NEXT :Amount FROM :Buffer INTO :Temp_loc;
printf("Wirite NEXT %d characters\n”, Buffer.len);
}
/* Determine how much is left to WRITE: %
remainder = remainder - nbytes;
}while (llast);
}
EXEC SQL WHENEVER SQLERROR DO Sample_Emor();
/*Atthis poirtt, (Amount = Total), the total amount that was written. %/
/* Close the Temporary LOB: %
EXEC SQL LOB CLOSE :Temp _loc;
/* Free the Temporary LOB: ¥/
EXEC SQL LOB FREE TEMPORARY :Temp_loc;
/* Free resources held by the Locator: %/
EXEC SQL FREE :Temp_loc;

}
void main()
{
char*samp ="samp/samp";
EXEC SQL CONNECT :samp;
writeDataToTempLOB_proc(2); /*Wiite One Piece ¥/
writeDataToTempLOB_proc(4); /*Wiite Multiple Pieces using Polling

EXEC SQL ROLLBACK WORK RELEASE;

10-84 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Write Data to a Temporary LOB

Temporary LOBs 10-85

Trim Temporary LOB Data

Trim Temporary LOB Data

Figure 10-23 Use Case Diagram: Trim Temporary LOB Data

L”éeE{Qa' Temporary ¥ - 1piM the LOB Data

OPEN
alLOB

CLOSE
alLOB

create
a temporary
LOB

User/
Program

free
a temporary
LOB

TRIM the

LOB Data

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,
for all basic operations of Internal Temporary LOBs.

10-86 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Trim Temporary LOB Data

Purpose

Usage Notes

Syntax

Scenario

Examples

This procedure describes how to trim temporary LOB data.

Not applicable.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB TRIM

The following examples access text (CLOBdata) referenced in the Script column
of table Voiceover_tab ,and trim it.

Examples are provided in the following programmatic environments:
« C/C++ (Pro*C/C++): Trim Temporary LOB Data on page 10-87

C/C++ (Pro*C/C++): Trim Temporary LOB Data

void timTempLOB_proc()
#include <oci.h>

#include <stdio.h>
#include <sgica.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglermm.sglenml, sglca.sglerm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

Temporary LOBs 10-87

Trim Temporary LOB Data

}

void imTempLOB_proc()
{
OCIBlobLocator *Temp_loc;
OCIBFileLocator *Lob loc;
char*Dir="AUDIO_DIR", *Name ="Washington_audio";
int Amount =4096;
int timLength;

/*Allocate and Create the Temporary LOB: %/
EXEC SQL ALLOCATE :Temp_loc;
EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

/*Allocate and Initialize the BFILE Locator: %/
EXEC SQL ALLOCATE :Lob _loc;
EXEC SQL LOBFILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;

/*Opening the LOBs is Optional: %/
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
EXEC SQL LOB OPEN :Temp_loc READ WRITE;

/*Load the specified amount from the BFILE into the Temporary LOB: %/
EXEC SQL LOB LOAD :Amount FROM FILE :Lob_loc INTO :Temp_loc;

/* Set the new length of the Temporary LOB: %/
timLength = (int) (Amount/ 2);

/*Trim the Temporary LOB to its new length: %/
EXEC SQL LOB TRIM :Temp_loc TO :rimLength;

/*Closing the LOBs is Mandatory if they have been Opened: %/
EXEC SQL LOB CLOSE :Lob loc;
EXEC SQL LOB CLOSE :Temp_loc;

/* Free the Temporary LOB: %/
EXEC SQL LOB FREE TEMPORARY :Temp_loc;

/* Release resources held by the Locators: %/
EXEC SQL FREE :Lob loc;
EXEC SQL FREE :Temp_loc;

}

void main()

{

10-88 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Trim Temporary LOB Data

char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
trimTempLOB_proc();

EXEC SQL ROLLBACK WORK RELEASE;

Temporary LOBs 10-89

Erase Part of a Temporary LOB

Erase Part of a Temporary LOB

Figure 10-24 Use Case Diagram: Erase Part of a Temporary LOB

Internal Temporary |§ -
LOBs . ERASE Part of a LOB

OPEN
alLOB

create

a temporary
LOB

User/
Program

free
a temporary
LOB

ERASE Part

of a LOB

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,
for all basic operations of Internal Temporary LOBs.

Purpose
This procedure describes how to erase part of a temporary LOB.

10-90 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Erase Part of a Temporary LOB

Usage Notes

Syntax

Scenario

Examples

Not applicable.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB ERASE

Not applicable.

Examples are provided in the following programmatic environments:

« C/C++ (Pro*C/C++): Erase Part of a Temporary LOB on page 10-91

C/C++ (Pro*C/C++): Erase Part of a Temporary LOB

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Ermor()
{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf(%.*s\n", sglca.sglenm.sglenm, sgica.sglenm.sglenmmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);
}

void eraseTempLOB_proc()

{
OCIBlobLocator *Temp_loc;

OCIBFileLocator*Lob_loc;

Temporary LOBs 10-91

Erase Part of a Temporary LOB

char*Dir="AUDIO_DIR", *Name ="Washington_audio";
int Amount;
int Position = 1024;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();

/*Allocate and Create the Temporary LOB: %/
EXEC SQL ALLOCATE :Temp_loc;
EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

/*Allocate and Initialize the BFILE Locator: %/
EXEC SQL ALLOCATE :Lob_loc;
EXEC SQL LOBFILE SET :Lob_loc DIRECTORY = :Dir, FILENAME = :Name;

/*Opening the LOBs is Optional: %/
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
EXEC SQL LOB OPEN :Temp_loc READ WRITE;

/*Load a specified amount from the BFILE into the Temporary LOB: %/
Amount =4096;
EXEC SQL LOB LOAD :Amount FROM FILE :Lob _loc INTO :Temp_loc;

/* Erase a specified amount from the Temporary LOB at a given position:
Amount =2048;
EXEC SQL LOB ERASE :Amount FROM :Temp_loc AT :Position;

/*Closing the LOBs is Mandatory if they have been Opened: ¥
EXEC SQL LOB CLOSE :Lab _loc;
EXEC SQL LOB CLOSE :Temp_loc;

/* Free the Temporary LOB: %/
EXEC SQL LOB FREE TEMPORARY :Temp_loc;

/* Release resources held by the Locators: %
EXEC SQL FREE :Lob loc;
EXEC SQL FREE :Temp_loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
eraseTempLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

10-92 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Erase Part of a Temporary LOB

Temporary LOBs 10-93

Enable LOB Buffering for a Temporary LOB

Enable LOB Buffering for a Temporary LOB

Figure 10-25 Use Case Diagram: Enable LOB Buffering for a Temporary LOB

Internal Temporary
LOBs

| . ENABLE Buffering

X

User/
Program

ENABLE
Buffering

disable
buffering

Purpose

Usage Notes

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,
for all basic operations of Internal Temporary LOBs.

This procedure describes how to enable LOB buffering for a temporary LOB.

Enable buffering when performing a small series of reads or writes. Once you have
completed these tasks, you must disable buffering before you can continue with any
other LOBoperations.

10-94 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Enable LOB Buffering for a Temporary LOB

Syntax

Scenario

Examples

Note: Do not enable buffering to perform the stream read and
write involved in checkin and checkout.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB ENABLE BUFFERING

Not applicable.

Examples are provided in the following programmatic environments:

« C/C++ (Pro*C/C++): Enable LOB Buffering for a Temporary LOB on
page 10-95

C/C++ (Pro*C/C++): Enable LOB Buffering for a Temporary LOB

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.salenm, sglca.sglemm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 1024

Temporary LOBs 10-95

Enable LOB Buffering for a Temporary LOB

void enableBufferingTempLOB_proc()
{

OCIClobLocator *Temp_loc;

varchar Buffer[BufferLength;

int Amount = BufferLength;

int multiple, Length =0, Position = 1;

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
/* Allocate and Create the Temporary LOB: %/

EXEC SQL ALLOCATE :Temp_loc;

EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

/* Enable use of the LOB Buffering Subsystem: %
EXEC SQL LOB ENABLE BUFFERING :Temp _loc;
memset((void *)Buffer.arr, 42, BufferLength);
Buffer.len = BufferLength;
for (multtiple = 0; multiple < 8; multiple++)
{
/*White Data to the Temporary LOB: %/
EXEC SQL LOB WRITE ONE :Amount
FROM :Buffer INTO :Temp_loc AT :Position;
Position += BufferLength;
}

/*Flush the contents of the buffers and Free their resources: %/

EXEC SQL LOB FLUSH BUFFER :Temp_loc FREE;

/* Tum off use of the LOB Buiffering Subsystem: %/

EXEC SQL LOB DISABLE BUFFERING :Temp_loc;

EXEC SQL LOB DESCRIBE :Temp_loc GET LENGTH INTO :Length;
printf("Wrote %d characters using the Buffering Subsystemin', Length);

/* Free the Temporary LOB: ¥/
EXEC SQL LOB FREE TEMPORARY :Temp_loc;
/* Release resources held by the Locator: %/
EXEC SQL FREE :Temp_loc;

}

void main()

{
char *samp ="samp/samp”;
EXEC SQL CONNECT :samp;
enableBufferingTempLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;

10-96 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Flush Buffer for a Temporary LOB

Flush Buffer for a Temporary LOB

Figure 10-26 Use Case Diagram: Flush Buffer for a Temporary LOB

Internal Temporary

LOBs . FLUSH Buffer

x

User/
Program

enable
buffering

disable
buffering

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,
for all basic operations of Internal Temporary LOBs.

Purpose
This procedure describes how to flush the buffer for a temporary LOB.

Usage Notes
Not applicable.

Syntax

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

Temporary LOBs 10-97

Flush Buffer for a Temporary LOB

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives” — LOB FLUSH BUFFER

Scenario
Not applicable.

Examples
Examples are provided in the following programmatic environments:

« C/C++ (Pro*C/C++): See If a Pattern Exists in a Temporary LOB (instr) on
page 10-47

C/C++ (Pro*C/C++): Flush Buffer for a Temporary LOB

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglenml, sgica.sglemm.sglermc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 1024

void flushBufferingTempLOB_proc()
{
OCIClobLocator *Temp_loc;
varchar Buffer[BufferLength;
int Amount = BufferLength;
int multiple, Length =0, Position=1;

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
/*Allocate and Create the Temporary LOB: ¥/

EXEC SQL ALLOCATE :Temp_loc;

EXEC SQL LOB CREATE TEMPORARY :Temp_loc;
/*Enable use of the LOB Buffering Subsystem: %

10-98 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Flush Buffer for a Temporary LOB

EXEC SQL LOB ENABLE BUFFERING :Temp_loc;
memset((void *)Buffer.arr, 42, BufferLength);
Buffer.len = BufferLength;
for (multtiple = 0; multiple < 8; multiple++)
{
/*White Data to the Temporary LOB: %
EXEC SQL LOB WRITE ONE :Amount
FROM :Buffer INTO :Temp_loc AT :Position;
Position += BufferLength;
}
/*Flush the contents of the buffers and Free their resources: %
EXEC SQL LOB FLUSH BUFFER :Temp_loc FREE;

/* Tum off use of the LOB Buiffering Subsystem: %/
EXEC SQL LOB DISABLE BUFFERING :Temp_loc;

EXEC SQL LOB DESCRIBE :Temp_loc GET LENGTH INTO :Length;

printf("Wrote %d characters using the Buffering Subsystemin', Length);

/* Free the Temporary LOB Y/

EXEC SQL LOB FREE TEMPORARY :Temp_loc;
/* Release resources held by the Locator: %/

EXEC SQL FREE :Temp_loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
flushBufferingTempLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

Temporary LOBs 10-99

Disable LOB Buffering for a Temporary LOB

Disable LOB Buffering for a Temporary LOB

Figure 10-27 Use Case Diagram: Disable LOB Buffering

Internal Temporary

LOBs . DISABLE Buffering

X

User/
Program

enable
buffering

A

DISABLE
Buffering

See: "Use Case Model: Internal Temporary LOBs" on page 10-3,
for all basic operations of Internal Temporary LOBs.

Purpose
This procedure describes how to disable temporary LOB buffering.

Usage Notes

You enable buffering when performing a small series of reads or writes. Once you
have completed these tasks, you must disable buffering before you can continue
with any other LOBoperations.

10-100 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Disable LOB Buffering for a Temporary LOB

Syntax

Scenario

Examples

Note: Do not enable buffering to perform the stream read and
write involved in checkin and checkout.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): Pro*C/C++ Precompiler Programmer’s Guide Appendix F,
"Embedded SQL Statements and Directives" — LOB DISABLE BUFFERING

Not applicable.

Examples are provided in the following programmatic environments:

« C/C++ (Pro*C/C++): Disable LOB Buffering for a Temporary LOB on
page 10-101

C/C++ (Pro*C/C++): Disable LOB Buffering for a Temporary LOB

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglerm.sglenml, sglca.sglerm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 1024

void disableBufferingTempLOB_proc()

{
OCIClobLocator *Temp_loc;
varchar Buffer[BufferLength;

Temporary LOBs 10-101

Disable LOB Buffering for a Temporary LOB

int Amount = BufferLength;
int multiple, Length =0, Position = 1;

EXEC SQL WHENEVER SQLERROR DO Sample_ErTor();

/*Allocate and Create the Temporary LOB: %/
EXEC SQL ALLOCATE :Temp_loc;
EXEC SQL LOB CREATE TEMPORARY :Temp_loc;

/*Enable use of the LOB Buffering Subsystem: %
EXEC SQL LOB ENABLE BUFFERING :Temp_loc;
memset((void *)Buffer.arr, 42, BufferLength);
Buffer.len = BufferLength;
for (multtiple = 0; multiple < 7; multiple++)

{

/*White Data to the Temporary LOB: %
EXEC SQL LOB WRITE ONE :Amount
FROM :Buffer INTO :Temp_loc AT :Position;
Position += BufferLength;
}

/*Flush the contents of the buffers and Free their resources:
EXEC SQL LOB FLUSH BUFFER :Temp_loc FREE;

/* Tum off use of the LOB Buffering Subsystem: %
EXEC SQL LOB DISABLE BUFFERING :Temp_loc;

/*Wiite APPEND can only be done when Buffering is Disabled: %/
EXEC SQL LOB WRITE APPEND ONE :Amount FROM :Buffer INTO :Temp_loc;
EXEC SQL LOB DESCRIBE :Temp_loc GET LENGTH INTO :Length;

printf(Wrote a total of %d characters\n”, Length);

/* Free the Temporary LOB: %
EXEC SQL LOB FREE TEMPORARY :Temp_loc;

/* Release resouirces held by the Locator: %
EXEC SQL FREE :Temp_loc;

}

void main()

{
char *samp ="samp/samp’;
EXEC SQL CONNECT :samp;

10-102 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Disable LOB Buffering for a Temporary LOB

disableBufferingTempLOB_proc();
EXEC SQL ROLLBACK WORK RELEASE;
}

Temporary LOBs 10-103

Disable LOB Buffering for a Temporary LOB

10-104 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

11

External LOBs (BFILES)

Use Case Model

In this chapter we discuss each operation on External LOBs (such as "Read Data
from a BFILE") in terms of a use case. Table 11-1, "Use Case Model: External LOBs
(BFILES)" lists all the use cases.

Graphic Summary of Use Case Model

A summary figure, "Use Case Model Diagram: External LOBs (BFILES)", shows the
use cases and their interrelation graphically. If you are using an online version of
this document, you can use this figure to navigate to specific use cases.

Individual Use Cases
Each External LOB (BFILE) use case is described as follows:

Use case figure. A figure that depicts the use case (see "How to Interpret the Use
Case Diagrams" in the Preface, for a description of how to interpret these
diagrams).

Purpose. The purpose of this use case with regards to LOBs.
Usage Notes. Guidelines to assist your implementation of the LOB operation.

Syntax. Pointers to the syntax in different programmatic environments that
underlies the LOBs related activity for the use case.

Scenario. A scenario that portrays one implementation of the use case in terms
of the hypothetical multimedia application (see Chapter 8, "Sample
Application” for detailed syntax).

Examples. In each programmatic environment illustrating the use case. These
are based on the multimedia application and table Multimedia_tab described
in Chapter 8, "Sample Application”.

External LOBs (BFILEs) 11-1

Use Case Model; External LOBs (BFILES)

Use Case Model: External LOBs (BFILES)

Table 11-1, "Use Case Model: External LOBs (BFILEs)", indicates with + where
examples are provided for specific use cases and in which programmatic
environment (see Chapter 3, "LOB Programmatic Environments" for a complete
discussion and references to related manuals).

Programmatic environment abbreviations used in the following table, are as
follows:

« P —PL/SQL using the DBMS_L OB Package

« O — Cusing OCI (Oracle Call Interface)

« B —COBOL using Pro*COBOL precompiler

« C— C/C++ using Pro*C/C++ precompiler

« V — Visual Basic using O040 (Oracle Objects for OLE)
« J—Java using JDBC (Java Database Connectivity)

.« S—S0L

Table 11-1 Use Case Model: External LOBs (BFILES)

Programmatic
Use Case and Page Environment Examples

p O B C V J

Three Ways to Create a Table Containing a BFILE on page 11-14
CREATE a Table Containing One or More BFILE Columns on page 11-15 S
CREATE a Table of an Object Type with a BFILE Attribute
on page 11-18
CREATE a Table with a Nested Table Containing a BFILE s S s S s S
on page 11-21 on page 11-21
Three Ways to Insert a Row Containing a BFILE on page 11-23

INSERT a Row Using BFILENAME() on page 11-24 S + + + 4+ o+

INSERT a BFILE Row by Selecting a BFILE From Another Table on
page 11-29

INSERT Row With BFILE by Initializing BFILE Locator on page 11-31 + + + o+ o+ o+
Load Data Into External LOB (BFILE) on page 11-34 S S S S S S
Load a LOB with BFILE Data on page 11-38 + + + + 4+ o+

11-2 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Use Case Model: External LOBs (BFILES)

Use Case and Page (Cont.)

Programmatic
Environment Examples

p O B C V J

Two Ways to Open a BFILE on page 11-42
Open a BFILE with FILEOPEN on page 11-44
Open a BFILE with OPEN on page 11-46
Two Ways to See If a BFILE is Open on page 11-49
See If the BFILE is Open with FILEISOPEN on page 11-51
See If a BFILE is Open Using ISOPEN on page 11-53
Display BFILE Data on page 11-56n
Read Data from a BFILE on page 11-59n
Read a Portion of BFILE Data (substr) on page 11-63
Compare All or Parts of Two BFILES on page 11-66
See If a Pattern Exists (instr) in the BFILE on page 11-70
See If the BFILE Exists on page 11-74
Get the Length of a BFILE on page 11-77
Copy a LOB Locator for a BFILE on page 11-80
See If a LOB Locator for a BFILE Is Initialized on page 11-83
See If One LOB Locator for a BFILE Is Equal to Another on page 11-86
Get DIRECTORY Alias and Filename on page 11-89n
Three Ways to Update a Row Containing a BFILE on page 11-92
UPDATE a BFILE Using BFILENAME() on page 11-93
UPDATE a BFILE by Selecting a BFILE From Another Table on page 11-96
UPDATE a BFILE by Initializing a BFILE Locator on page 11-98
Two Ways to Close a BFILE on page 11-101
Close a BFILE with FILECLOSE on page 11-103n
Close a BFILE with CLOSE on page 11-105
Close All Open BFILEs on page 11-108
DELETE the Row of a Table Containing a BFILE on page 11-111

+ + o+ o+ O+
+ + o+ o+ o+
+ + o+ +

+ o+ o+ o+ +
+ +
+ + +

w

External LOBs (BFILEs) 11-3

Use Case Model; External LOBs (BFILES)

Figure 11-1 Use Case Model Diagram: External LOBs (BFILES)

External LOBs

CREATE

open

a table

(BFILE) a BFILE

portion of the load a LOB

BFILE data a BEILE

with data from

read data

from the BFILE of the BFILE

User/

get the length

Program

UPDATE
a BFILE with a
diff. OS file

see if the
BFILE exists

compare all
or parts of 2
BFILE

]

User/

see if the

Program

L

display the
BFILE data

BFILE is open .

get directory

- alias and H
filename :

a BFILE

copy
LOB
locator

close all
opened files

Specify
BFILE name

_ see
if locator
is initialized

see
if locators
are equal

Load
initial data into
LOB

11-4 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Directory Object

Accessing External LOBs (BFILES)

To access external LOBs (BFILEs) use one of the following interfaces:
« Precompilers, such as Pro*C/C++ and Pro*COBOL

« OCI (Oracle Call Interface)

« PL/SQL via DBMS_LOB package

« JDBC

« Oracle Objects for OLE (O040)

See Also: Chapter 3, "LOB Programmatic Environments" for
information about the six interfaces used to access external LOBs
(BFILEs) and their available functions.

Directory Object

The DIRECTORYobject facilitates administering access and usage of BFILE s in an
Oracle Server (see CREATE DIRECTORM Oracle8i SQL Reference). A DIRECTORY
specifies a logical alias name for a physical directory on the server’s filesystem under
which the file to be accessed is located. You can access a file in the server’s
filesystem only if granted the required access privilege on DIRECTORYobject.

Initializing a BFILE Locator

DIRECTORYobject also provides the flexibility to manage the locations of the files,
instead of forcing you to hardcode the absolute pathnames of physical files in your
applications. A DIRECTORYalias is used in conjunction with the BFILENAME)
function, in SQL and PL/SQL, or the OCILobFileSetName (), in OCI for
initializing a BFILE locator.

Note: Oracle does not verify that the directory and pathname you
specify actually exist. You should take care to specify a valid
directory in your operating system. If your operating system uses
case-sensitive pathnames, be sure you specify the directory in the
correct format. There is no need to specify a terminating slash (e.g.,
/tmp/ s not necessary, simply use /tmp).

External LOBs (BFILEs) 11-5

Directory Object

How to Associate Operating System Files with Database Records
To associate an operating system (OS) file to a BFILE , first create a DIRECTORY
object which is an alias for the full pathname to the operating system file.

To associate existing operating system files with relevant database records of a
particular table use Oracle SQL DML (Data Manipulation Language). For example:

« Use INSERT to initialize a BFILE column to point to an existing file in the
server’s filesystem

« Use UPDATRo change the reference target of the BFILE

« Initialize a BFILE to NULLand then update it later to refer to an operating
system file via the BFILENAME) function.

« OCI users can also use OCILobFileSetName () to initialize a BFILE locator
variable that is then used in the VALUESclause of an INSERT statement.

Examples

The following statements associate the files Imagel.gif and image2.gif with records
having key value of 21 and 22 respectively. 'IMG’ is a DIRECTORYobject that
represents the physical directory under which Imagel.dif and image2.dif are stored.

Note: You may need to set up data structures similar to the
following for certain examples to work:

CREATE TABLE Lob table
Key_value NUMBER NOT NULL,
F_lob BFILE)

INSERT INTO Lob_table VALUES
(21, BFILENAME(IMG’, lmage1.gif));
INSERT INTO Lob_table VALUES
(22, BFILENAME(IMG', image2.gif));

The UPDATEstatement below changes the target file to image3.gif for the row with
key value 22.

UPDATE Lab_table SET f_lob = BFILENAME(IMG', image3.gif)
WHERE Key_value =22;

11-6 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

Directory Object

BFILENAME() and Initialization

BFILENAMK) is a built-in function that is used to initialize the BFILE column to
point to the external file.

Once physical files are associated with records using SQL DML, subsequent read
operations on the BFILE can be performed using PL/SQL DBMS_LORackage and
OCI. However, these files are read-only when accessed through BFILES, and so
they cannot be updated or deleted through BFILES.

As a consequence of the reference-based semantics for BFILEs , it is possible to have
multiple BFILE columns in the same record or different records referring to the
same file. For example, the UPDATEstatements below set the BFILE column of the
row with key value 21inlob_table to point to the same file as the row with
key value 22.

UPDATE lob_table
SETf lob=(SELECTf lob FROM lob_table WHERE key_value = 22)
WHERE key_value =21;

Think of BFILENAME() in terms of initialization — it can initialize the value for the
following:

« BFILE column

« BFILE (automatic) variable declared inside a PL/SQL module

Advantages. This has the following advantages:

« Ifyour need for a particular BFILE is temporary, and scoped just within the
module on which you are working, you can utilize the BFILE related APIs on
the variable without ever having to associate this with a column in the
database.

« Since you are not forced to create a BFILE column in a server side table,
initialize this column value, and then retrieve this column value via a SELECT
you save a round-trip to the server.

For more information, refer to the example given for DBMS_LOBOADFROMFILE
(see "Load a LOB with BFILE Data" on page 11-38).

The OCI counterpart for BFILENAME) is OCILobFileSetName (), which can be
used in a similar fashion.

External LOBs (BFILEs) 11-7

Directory Object

DIRECTORY Name Specification

The naming convention for DIRECTORYobjects is the same as that for tables and
indexes. That is, normal identifiers are interpreted in uppercase, but delimited
identifiers are interpreted as is. For example, the following statement:

CREATE DIRECTORY scott_dir AS /usthome/scott;
creates a directory object whose name is 'SCOTT_DIR (in uppercase). But if a

delimited identifier is used for the DIRECTORYhame, as shown in the following
statement

CREATE DIRECTORY "Mary_Dir" AS ‘/usrhome/mary’;
the directory object’s name is 'Mary_Dir ’. Use 'SCOTT_DIR and 'Mary_Dir ’
when calling BFILENAME). For example:

BFILENAME(SCOTT _DIR, afile’)
BFILENAME(Mary_Dir’ ‘afie)

On WindowsNT Platforms

On WindowsNT, for example, the directory names are case-insensitive. Therefore
the following two statements refer to the same directory:

CREATE DIRECTORY "big_cap_dir' AS "g:\data\source";

CREATE DIRECTORY "small_cap_dir' AS "G\DATA\SOURCE";

11-8 Oracle8i Application Developer’'s Guide - Large Objects (LOBs)

BFILE Security

BFILE Security

This section introduces the BFILE security model and associated SQL statements.
The main SQL statements associated with BFILE security are:

= SQL DDL: CREATEand REPLACEor ALTERa DIRECTORYobject

» SQL DML: GRANTand REVOKEhe READsystem and object privileges on
DIRECTORYobjects

Ownership and Privileges

The DIRECTORY object is a system owned object. For more information on system
owned objects, see Oracle8i SQL Reference. Oracle8i supports two new system
privileges, which are granted only to DBA:

« CREATE ANY DIRECTORY¥- for creating or altering the directory object creation
=« DROP ANY DIRECTORY for deleting the directory object

Read Permission on Directory Object

READpermission on the DIRECTORYobject allows you to read files located under
that directory. The creator of the DIRECTORYobject automatically earns the READ
privilege.

If you have been granted the READpermission with GRANToption, you may in turn
grant this privilege to other users/roles and add them to your privilege domains.

Note: The READpermission is defined only on the DIRECTORY
object, not on individual files. Hence there is no way to assign
different privileges to files in the same directory.

The physical directory that it represents may or may not have the corresponding
operating system privileges (read in this case) for the Oracle Server process.

It is the DBA’s responsibility to ensure the following:
« That the physical directory exists

« Read permission for the Oracle Server process is enabled on the file, the
directory, and the path leading to it

« The directory remains available, and read permission remains enabled, for the
entire duration of file access by database users

External LOBs (BFILEs) 11-9

BFILE Security

The privilege just implies that as far as the Oracle Server is concerned, you may
read from files in the directory. These privileges are checked and enforced by the
PL/SQL DBMS_LOHRackage and OCI APIs at the time of the actual file operations.

WARNING: Because CREATE ANY DIRECTORMd DROP ANY
DIRECTORYprivileges potentially expose the server filesystem to
all database users, the DBA should be prudent in granting these
privileges to normal database users to prevent security breach.

SQL DDL for BFILE Security

Refer to the Oracle8i SQL Reference for information about the following SQL DDL
statements that create, replace, and drop directory objects:

CREATE DIRECTORY
DROP DIRECTORY

SQL DML for BFILE Security

Refer to the Oracle8i SQL Reference for information about the following SQL DML
statements that provide security for BFILE s:

GRANT(system privilege)
GRANT(object privilege)
REVOKHsystem privilege)
REVOKHKobject privilege)
AUDIT (new statements)
AUDIT (schema objects)

Catalog Views on Directories

Catalog views are provided for DIRECTORY objects to enable users to view object
names and corresponding paths and privileges. Supported views are:

ALL DIRECTORIES(OWNERIRECTORY_NAMBIRECTORY_PATH
This view describes all directories accessible to the user.
DBA DIRECTORIESOWNERIRECTORY_NAMBIRECTORY_PATH

11-10 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

BFILE Security

This view describes all directories specified for the entire database.

Guidelines for DIRECTORY Usage

The main goal of the DIRECTORYfeature is to enable a simple, flexible,
non-intrusive, yet secure mechanism for the DBA to manage access to large files in
the server filesystem. But to realize this goal, it is very important that the DBA
follow these guidelines when using DIRECTORYobjects:

Do Not Map DIRECTORY to Directories of Data Files Etc. A DIRECTORY
should not be mapped to physical directories which contain Oracle data files,
control files, log files, and other system files. Tampering with these files
(accidental or otherwise) could potentially corrupt the database or the server
operating system.

Only DBA Should Have System Privileges. The system privileges such as
CREATE ANY DIRECTORYranted to the DBA initially) should be used
carefully and not granted to other users indiscriminately. In most cases, only the
database administrator should have these privileges.

Use Caution When Granting DIRECTORYObject Privilege. Privileges on
DIRECTORY obijects should be granted to different users carefully. The same
holds for the use of the WITH GRANT OPTIOBblause when granting privileges to
users.

Do not Drop or Replace DIRECTORYObjects When Database is in Operation.
DIRECTORYobjects should not be arbitrarily dropped or replaced when the
database is in operation. If this were to happen, operations from all sessions on
all files associated with this directory object will fail. Further, if a DRORor
REPLACEommand is executed before these files could be successfully closed,
the references to these files will be lost in the programs, and system resources
associated with these files will not be released until the session(s) is shutdown.

The only recourse left to PL/SQL users, for example, will be to either execute a
program block that calls DBMS_LOB-ILECLOSEALL() and restart their file
operations, or exit their sessions altogether. Hence, it is imperative that you use
these commands with prudence, and preferably during maintenance
downtimes.

Caution When Revoking User’s Privilege on DIRECTORYObjects. Revoking a
user’s privilege on a DIRECTORYobject using the REVOKEtatement causes all
subsequent operations on dependent files from the user’s session to fail. Either
you must re-acquire the privileges to close the file, or execute a
FILECLOSEALL() in the session and restart the file operations.

External LOBs (BFILEs) 11-11

BFILE Security

In general, using DIRECTORYobjects for managing file access is an extension of
system administration work at the operating system level. With some planning, files
can be logically organized into suitable directories that have READ privileges for
the Oracle process.

DIRECTORYobjects can be created with READprivileges that map to these physical
directories, and specific database users granted access to these directories.

BFILES in Multi-Threaded Server (MTS) Mode

Oracle8i does not support session migration for BFILE s in Multi-threaded Server
(MTS) mode. This implies that operations on open BFILE s can persist beyond the
end of a call to an MTS server.

In MTS, sessions involving BFILE operations will be bound to one shared server,
they cannot migrate from one server to another. This restriction will be removed in
the next release.

External LOB (BFILE) Locators

For BFILE s, the value is stored in a server-side operating system file; i.e., external to
the database. The BFILE locator that refers to that file is stored in the row.

When Two Rows in a BFILE Table Refer to the Same File If a BFILE locator variable that is
used in a DBMS_LOBILEOPEN) (for example L1) is assigned to another locator
variable, (for example L2), both L1 and L2 point to the same file. This means that
two rows in a table with a BFILE column can refer to the same file or to two distinct
files — a fact that the canny developer might turn to advantage, but which could
well be a pitfall for the unwary.

BFILE Locator Variable A BFILE locator variable behaves like any other automatic
variable. With respect to file operations, it behaves like a file descriptor available as
part of the standard 1/0 library of most conventional programming languages. This
implies that once you define and initialize a BFILE locator, and open the file
pointed to by this locator, all subsequent operations until the closure of this file
must be done from within the same program block using this locator or local copies
of this locator.

Guidelines

« Openand Close a File From Same Program Block at Same Nesting Level. The
BFILE locator variable can be used, just as any scalar, as a parameter to other
procedures, member methods, or external function callouts. However, it is

11-12 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

BFILE Security

recommended that you open and close a file from the same program block at
the same nesting level.

« Set the BFILE Value Before Flushing Object to Database. If the object contains
a BFILE , you must set the BFILE value before flushing the object to the
database, thereby inserting a new row. In other words, you must call
OCILobFileSetName () after OCIObjectNew () and before
OCIObjectFlush ().

« Indicate Directory Alias and Filename Before INSERT or UPDATE of BFILE.
Itis an error to INSERT or UPDATE a BFILE without indicating a directory
alias and filename.

This rule also applies to users using an OCI bind variable for a BFILE in an
insert/update statement. The OCI bind variable must be initialized with a
directory alias and filename before issuing the insert or update statement.

« Initialize BFILE Before INSERT or UPDATE

Note: OCISetAttr () does not allow the user to set a BFILE
locator to NULL

General Rule

Before using SQL to insert or update a row with a BFILE , the user must initialize
the BFILE to one of the following:

« NULL(not possible if using an OCI bind variable)

« Adirectory alias and filename

External LOBs (BFILEs) 11-13

Three Ways to Create a Table Containing a BFILE

Three Ways to Create a Table Containing a BFILE

Figure 11-2 Use Case Diagram: Three Ways to Create a Table Containing One or
More BFILE Columns

. | CREATE a Table
External LOBS I . (BF”_E) I

CREATE
a Table
(BFILE)

L @ CREATE table with an object type
s s T containing a BFILE

L e CREATE table with a nested table
containing one or more BFILES

-—— A el CREATE table with one or more BFILES

See Also: "Use Case Model: External LOBs (BFILES)" on
page 11-2 for all basic operations of External LOBs (BFILES).
You can incorporate BFILE s into tables in the following three ways:

a. Ascolumns in atable — see CREATE a Table of an Object Type with a
BFILE Attribute on page 11-15

b. As attributes of an object type — see CREATE a Table of an Object Type
with a BFILE Attribute on page 11-18

c. Contained within a nested table — see CREATE a Table with a Nested Table
Containing a BFILE on page 11-21

In all cases SQL Data Definition Language (DDL) is used — to define BFILE
columns in a table and BFILE attributes in an object type.

11-14 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

CREATE a Table Containing One or More BFILE Columns

CREATE a Table Containing One or More BFILE Columns

Figure 11-3 Use Case Diagram: CREATE a Table Containing One or More BFILE

Columns

User/
Program

Purpose

External LOBS

CREATE a Table
st | @

CREATE
a Table
(BFILES)

- = |é| e CREATE table with one or more BFILES

See Also:

"Use Case Model: External LOBs (BFILES)" on
page 11-2 for all basic operations of External LOBs (BFILES).

This procedure describes how to create a table containing one or more BFILE

columns.

Usage Notes

Not applicable.

Syntax

Use the following syntax references:

External LOBs (BFILEs) 11-15

CREATE a Table Containing One or More BFILE Columns

« SQL (Oracle8i SQL Reference), Chapter 7, "SQL Statements" — CREATE TABLE

Scenario
The heart of our hypothetical application is table Multimedia_tab . The varied
types which make up the columns of this table make it possible to collect together
the many different kinds multimedia elements used in the composition of clips.
Examples

The following example is provided in SQL and applies to all programmatic
environments:

=« SQL: Create a Table Containing One or More BFILE Columns on page 11-16

SQL: Create a Table Containing One or More BFILE Columns

You may need to set up the following data structures for certain examples in this
chapter to work:

CONNECT system/manager;
DROP USER samp CASCADE;
DROP DIRECTORY AUDIO_DIR;
DROP DIRECTORY FRAME_DIR;
DROP DIRECTORY PHOTO _DIR;

CREATE USER samp identified by samp;

GRANT CONNECT, RESOURCE to samp;

CREATE DIRECTORY AUDIO_DIR AS 'fmp/;
CREATE DIRECTORY FRAME_DIR AS 'fmp/;
CREATE DIRECTORY PHOTO_DIR AS 'fmp/;
GRANT READ ON DIRECTORY AUDIO_DIR to samp;
GRANT READ ON DIRECTORY FRAME_DIR to samp;
GRANT READ ON DIRECTORY PHOTO_DIR to samp;

CREATE TABLE VoiceoverLib_tab of Voiced_typ
(Script DEFAULT EMPTY_CLOB(),
CONSTRAINT TakeLib CHECK (Take IS NOT NULL),
Recording DEFAULT NULL
)
CONNECT samp/samp
CREATE TABLE a_table (blob_col BLOB);
CREATE TYPE Voiced_typ AS OBJECT
(Originator VARCHAR2(30),

11-16 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

CREATE a Table Containing One or More BFILE Columns

Scipt CLOB,

Actor VARCHAR2(30),
Take NUMBER,
Recording BFILE);

CREATE TYPE InSeg_typ AS OBJECT
(Segment NUMBER,
Interview_Date DATE,

Interviewer VARCHAR2(30),
Interviewee VARCHAR2(30),
Recording BFILE,

Transcript CLOB);

CREATE TYPE InSeg_tab AS TABLE of InSeg_typ;

CREATE TYPE Map_typ AS OBJECT
(Region VARCHAR2(30),
NW NUMBER,
NE NUMBER,
SW NUMBER,
SE NUMBER,
Drawing BLOB,
Aerial BFILE);
CREATE TABLE Map_Libtab of Map_typ;
CREATE TABLE Voiceover_tab of Voiced typ
(Script DEFAULT EMPTY_CLOB(),
CONSTRAINT Take CHECK (Take IS NOT NULL),
Recording DEFAULT NULL);

Because you can use SQL DDL directly to create a table containing one or more LOB
columns, it is not necessary to use the DBMS_LORpackage.

CREATE TABLE Mulimedia_tab

(Clip ID NUMBER NOT NULL,
Story CLOB defauft EMPTY_CLOB(),
FLSub NCLOB defaultt EMPTY_CLOB(),
Photo BFILE default NULL,
Frame BLOB default EMPTY_BLOBY(),
Sound BLOB default EMPTY_BLOBY(),
Voiced ref REF Voiced typ,
INSeg_ntab InSeg_tab,
Music BFILE default NULL,
Map_obj Map_typ

)NESTED TABLE InSeg_ntab STORE AS InSeg_nestedtab;

External LOBs (BFILEs) 11-17

CREATE a Table of an Object Type with a BFILE Attribute

CREATE a Table of an Object Type with a BFILE Attribute

Figure 11-4 Use Case Diagram: CREATE a Table Containing a BFILE

. | CREATE a Table
External LOBS I | (Object Type) I—» (b}

CREATE
a Table

- @ CREATE table with an object
""" (Object Type) type containing a BFILE

: CREATE
== > Object Type

User/
Program

See Also: "Use Case Model: External LOBs (BFILEs)" on
page 11-2 for all basic operations of External LOBs (BFILES).

Purpose

This procedure describes how to create a table of an object type with a BFILE
attribute.

Usage Notes

As shown in the diagram, you must create the object type that contains the BFILE
attributes before you can proceed to create a table that makes use of that object type.

Syntax

Use the following syntax references:

11-18 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

CREATE a Table of an Object Type with a BFILE Attribute

Scenario

Examples

SQL (Oracle8i SQL Reference), Chapter 7, "SQL Statements" — CREATE TABLE,
CREATE TYPE

Note that NCLOB cannot be attributes of an object type.

Our example application contains examples of two different ways in which object
types can contain BFILEs :

Multimedia_tab contains a column Voiced_ref that references row objects
in the table VoiceOver_tab which is based on the type Voiced_typ . This
type contains two kinds of LOBs— a CLOBto store the script that’s read by the
actor, and a BFILE to hold the audio recording.

Multimedia_tab contains column Map_obj that contains column objects of
the type Map_typ. This type utilizes the BFILE datatype for storing aerial
pictures of the region.

The following example is provided in SQL and applies to all programmatic
environments:

SQL.: Create a Table of an Object Type with a BFILE Attribute on page 11-19

SQL.: Create a Table of an Object Type with a BFILE Attribute

/*Create type Voiced typ as a basis for tables that can contain recordings of
voice-over readings using SQL DDL: %

CREATE TYPE Voiced_typ AS OBJECT

(Originator VARCHAR2(30),

Scipt CLOB,

Actor VARCHAR2(30),

Take NUMBER,

Recording BFILE

)

/*Create table Voiceover_tab Using SQL DDL: %

CREATE TABLE Voiceover_tab OF Voiced_typ

(' Script DEFAULT EMPTY_CLOBY(),
CONSTRAINT Take CHECK (Take IS NOT NULL),
Recording DEFAULT NULL

)

External LOBs (BFILES)

11-19

CREATE a Table of an Object Type with a BFILE Attribute

/*Create Type Map _typ using SQL DDL as a basis for the table that will contain
the column object: %
CREATE TYPE Map_typ AS OBJECT
(Region VARCHAR2(30),
NW NUMBER,
NE NUMBER,
SW NUMBER,
SE NUMBER,
Drawing BLOB,
Aerial BFILE
)

/*Create support table MapLib_tab as an archive of maps using SQL DDL: %
CREATE TABLE Map_tab of MapLib_typ;

11-20 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

CREATE a Table with a Nested Table Containing a BFILE

CREATE a Table with a Nested Table Containing a BFILE

Figure 11-5 Use Case Diagram: CREATE a Table with a Nested Table Containing a
BFILE

. | CREATE a Table —
External LOBS I (Nested) I e

CREATE
a Table

- -[~ @ CREATE table with a nested
(Nested Table

table containing one or
more BFILEs

CREATE
-> Object Type

User/
Program

See Also: "Use Case Model: External LOBs (BFILESs)" on
page 11-2 for all basic operations of External LOBs (BFILES).

Purpose
This procedure describes how to create a table with nested table containing a BFILE.

Usage Notes

As shown in the use case diagram, you must create the object type that contains
BFILE attributes before you create a nested table that uses that object type.

Syntax

Use the following syntax references:

External LOBs (BFILEs) 11-21

CREATE a Table with a Nested Table Containing a BFILE

Scenario

Examples

« SQL (Oracle8i SQL Reference), Chapter 7, "SQL Statements" — CREATE TABLE,
CREATE TYPE

In our example, Multimedia_tab contains a nested table Inseg_ntab that
includes type InSeg_typ . This type makes use of two LOB datatypes — a BFILE
for audio recordings of the interviews, and a CLOBfor transcripts of the recordings.

We have already described how to create a table with BFILE columns (see "CREATE
a Table Containing One or More BFILE Columns" on page 11-15), so here we only
describe the SQL syntax for creating the underlying object type.

The following example is provided in SQL and applies to all programmatic
environments:

« SQL: Create a Table with a Nested Table Containing a BFILE on page 11-22

SQL: Create a Table with a Nested Table Containing a BFILE

Because you use SQL DDL directly to create a table, the DBMS_LOBackage is not
relevant.

CREATE TYPE InSeg_typ AS OBJECT
(Segment NUMBER,

Interview Date DATE,

Interviewer VARCHAR2(30),
Intenviewee VARCHAR2(30),
Recording BFILE,

Transcript CLOB

)

Embedding the nested table is accomplished when the structure of the containing
table is defined. In our example, this is done by the following statement when
Multimedia_tab is created:

NESTED TABLE InSeg_ntab STORE AS InSeg_nestedtab;

11-22 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Three Ways to Insert a Row Containing a BFILE

Three Ways to Insert a Row Containing a BFILE

Figure 11-6 Use Case Diagram: Three Ways to Insert a Row Containing a BFILE

External LOBS I . INSERT a Row

INSERT _
r aRow)=~~~ fl @I INSERT using BFILENAME()
1 1
1 1
% | tmmm oo - Iél @I INSERT as SELECT
1
1
1

User/
Program e e e - = |A GI INSERT by Initializing BFILE locator

See Also: "Use Case Model: External LOBs (BFILES)" on
page 11-2 for all basic operations of External LOBs (BFILES).

Note: Before you insert, you must initialize the BFILE either to
NULL or to a directory alias and filename.

The following are three ways to insert a row containing a BFILE:
a. INSERT a Row Using BFILENAME() on page 11-24

b. INSERT a BFILE Row by Selecting a BFILE From Another Table on
page 11-31

c. INSERT Row With BFILE by Initializing BFILE Locator on page 11-31

External LOBs (BFILEs) 11-23

INSERT a Row Using BFILENAME()

INSERT a Row Using BFILENAME()

Figure 11-7 Use Case Diagram: INSERT a Row Using BILENAME()

External LOBS I “|InsetaRow | —» e

INSERT
a Row

- _|é| @ INSERT using BFILENAME()

—

11-24 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

INSERT a Row Using BFILENAME()

Purpose

Usage Notes

See Also: "Use Case Model: External LOBs (BFILES)" on
page 11-2 for all basic operations of External LOBs (BFILES).

This procedure describes how to insert a row using BFILENAME().

Call BFILENAME () function as part of an INSERT to initialize a BFILE column or
attribute for a particular row, by associating it with a physical file in the server’s
filesystem.

Although DIRECTORYobject, represented by the directory_alias parameter to
BFILENAME(), need not already be defined before BFILENAME() is called by a SQL
or PL/SQL program, the DIRECTORYobject and operating system file must exist by
the time you actually use the BFILE locator. For example, when used as a
parameter to one of the following operations:

« OCILobFileOpen()

. DBMS_LOBILEOPEN()
« OCILobOpen()

. DBMS_LOBPEN()

Note: BFILENAME) does not validate privileges on this
DIRECTORYobject, or check if the physical directory that the
DIRECTORYobject represents actually exists. These checks are
performed only during file access using the BFILE locator that was
initialized by BFILENAME).

Ways BFILENAME() is Used to Initialize BFILE Column or Locator Variable
You can use BFILENAME) in the following ways to initialize a BFILE column:

« As part of an SQL INSERT statement
« As part of an UPDATEstatement

You can use BFILENAME() to initialize a BFILE locator variable in one of the
programmatic interface programs, and use that locator for file operations. However,
if the corresponding directory alias and/or filename does not exist, then for

External LOBs (BFILEs) 11-25

INSERT a Row Using BFILENAME()

Syntax

Scenario

Examples

example, PL/SQL DBMS_LOBr other relevant routines that use this variable, will
generate errors.

The directory_alias parameter in the BFILENAME) function must be specified
taking case-sensitivity of the directory name into consideration.

See Also: "DIRECTORY Name Specification". on page 11-8

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« SQL Oracle8i SQL Reference, Chapter 7, "SQL Statements" — INSERT

« C/C++ (Pro*C/C++) Pro*C/C++ Precompiler Programmer’s Guide: Chapter 16,
"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,
"Embedded SQL Statements and Directives". See Oracle8i SQL Reference, Chapter
7, "SQL Statements" — INSERT

Examples are provided in the following six programmatic environments:
« SQL: Insert a Row by means of BFILENAME() on page 11-26

« C/C++ (Pro*C/C++): Insert a Row by means of BFILENAME() C/C++
(Pro*C/C++): Insert a Row by means of BFILENAME() on page 11-27

. on page 11-28

The following examples illustrate how to insert a row using BFILENAME().

SQL: Insert a Row by means of BFILENAME()

/* Note that this Iis the same insert statement as applied to intemal persistent
LOBs but with the BFILENAME() function added to initalize the BFILE columns:
¥4

INSERT INTO Muimedia._tab VALUES (1, EMPTY_CLOB(), EMPTY_CLOBY),
FILENAME(PHOTO_DIR, LINCOLN_PHOTO),
EMPTY_BLOB(), EMPTY_BLOBY),

11-26 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

INSERT a Row Using BFILENAME()

VOICED_TYP(Abraham Lincoln’, EMPTY_CLOB(),James Earl Jones, 1, NULL),
NULL, BFILENAMECAUDIO_DIR,LINCOLN_AUDIO),
MAP_TYP(Gettysburg, 23, 34, 45, 56, EMPTY_BLOB(), NULL));

CIC++ (Pro*C/C++): Insert a Row by means of BFILENAME()

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglermm.sglenml, sglca.sglerm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void BFILENAMEInsert_proc()
{
EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
EXEC SQL WHENEVER NOT FOUND CONTINUE;
/* Delete any existing row: %
EXEC SQL DELETE FROM Mutimedia_tab WHERE Clip_ID=1;
/*Insert a new row using the BFILENAME() function for BFILES: %/
EXEC SQL INSERT INTO Mulimedia._tab
VALUES (1, EMPTY_CLOB(), EMPTY_CLOBY(),
BFILENAME(PHOTO_DIR, 'Lincoln_photo),
EMPTY_BLOB(), EMPTY_BLOB(), NULL,
InSeg_tab(InSeg_typ(1, NULL, Ted Koppell, ‘Abraham Lincoln),
BFILENAME(AUDIO_DIR', 'Lincoln_audio),
EMPTY_CLOB())),
BFILENAME(AUDIO_DIR), 'Lincoln_audio)),
Map_typ(Moon Mountain', 23, 34, 45, 56, EMPTY _BLOB(),
BFILENAME(PHOTO_DIR!, Lincoln_photo)));
printf{Inserted %d romn", sglca.sglerrd[2));
}

void main()

{
char*samp = "samp/samp",
EXEC SQL CONNECT :samp;
BFILENAMEInsert_proc();

External LOBs (BFILEs) 11-27

INSERT a Row Using BFILENAME()

EXEC SQL ROLLBACK WORK RELEASE;

11-28 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

INSERT a BFILE Row by Selecting a BFILE From Another Table

INSERT a BFILE Row by Selecting a BFILE From Another Table

Figure 11-8 Use Case Diagram: INSERT a Row Containing a BFILE by Selecting a
BFILE From Another Table (INSERT ... AS ... SELECT)

External LOBS I . | Insert a Row I — @

INSERT
a Row

- _|é| @ NsERT as SELECT

See Also: "Use Case Model: External LOBs (BFILESs)" on
page 11-2 for all basic operations of External LOBs (BFILES).

Purpose

This procedure describes how to INSERT a row containing a BFILE by selecting a
BFILE from another table.

Usage Notes

With regard to LOBs, one of the advantages of utilizing an object-relational
approach is that you can define a type as a common template for related tables. For
instance, it makes sense that both the tables that store archival material and the
working tables that use those libraries share a common structure. See the following
"Scenario".

Syntax

See the following syntax reference:

External LOBs (BFILEs) 11-29

INSERT a BFILE Row by Selecting a BFILE From Another Table

« SQL (Oracle8i SQL Reference): Chapter 7, "SQL Statements" — INSERT

Scenario

The following code fragment is based on the fact that a library table
VoiceoverLib_tab is of the same type (Voiced_typ) as Voiceover_tab
referenced by column Voiced_ref of Multimedia_tab table.

It inserts values from the library table into Multimedia_tab by means of a
SELECT

Examples
The example is provided in SQL and applies to all programmatic environments;

« SQL: Insert a Row Containing a BFILE by Selecting a BFILE From Another
Table on page 11-30

SQL: Insert a Row Containing a BFILE by Selecting a BFILE From Another Table

INSERT INTO Voiceover_tab
(SELECT *from VoiceoverLib_tab
WHERE Take = 12345);

11-30 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

INSERT Row With BFILE by Initializing BFILE Locator

INSERT Row With BFILE by Initializing BFILE Locator

Figure 11-9 Use Case Diagram: INSERT Row by Initializing BFILE Locator

External LOBS I . | Insert a Row I — G

INSERT - - |éI @ INSERT by Initializing BFILE locator

a Row

User/
Program

BFILENAME
=>(OCI LOB File
Set Name

External LOBs (BFILEs) 11-31

INSERT Row With BFILE by Initializing BFILE Locator

See Also: "Use Case Model: External LOBs (BFILES)" on
page 11-2 for all basic operations of External LOBs (BFILES).

Purpose

This procedure describes how to INSERT a row containing a BFILE by initializing a
BFILE locator.

Usage Notes

Note: You must initialize the BFILE locator bind variable to a
directory alias and filename before issuing the insert statement.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:
« SQL(Oracle8i SQL Reference, Chapter 7 "SQL Statements” — INSERT: PL/SQL
Oracle8i Supplied PL/SQL Packages Reference BFILENAME()
« C/C++ (Pro*C/C++) Pro*C/C++ Precompiler Programmer’s Guide: Chapter 16,
"Large Objects (LOBs)", "LOB Statements”, usage notes. Appendix F,
"Embedded SQL Statements and Directives" — LOB FILE SET. See also (Oracle8i
SQL Reference), Chapter 7 "SQL Statements" — INSERT
Scenario

In these examples we insert a Photo from an operating system source file (PHOTO_
DIR). Examples in the following programmatic environments are provided:

« C/C++ (Pro*C/C++): Insert a Row Containing a BFILE by Initializing a BFILE
Locator on page 11-32

C/C++ (Pro*C/C++): Insert a Row Containing a BFILE by Initializing a BFILE Locator

#include <oci.h>
#include <stdio.h>
#include <sglca.h>
void Sample_Error()

11-32 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

INSERT Row With BFILE by Initializing BFILE Locator

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.salenm, sglca.sglemm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void insertBFILELocator_proc()
{
OCIBFileLocator *Lob loc;
char*Dir="PHOTO_DIR", *Name ="Washington_photo";
EXEC SQL WHENEVER SQLERROR DO Sample_Emor();
/* Allocate the input Locator: %/
EXEC SQL ALLOCATE :Lob loc;
/* Set the Directory and Filename in the Allocated (Initalized) Locator: %/
EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME =:Name;
EXEC SQL INSERT INTO Multimedia_tab (Clip_ID, Photo) VALUES (4, :Lob _loc);
/* Release resources held by the Locator: %
EXEC SQL FREE :Lob loc;
}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
insertBFILELocator_proc();
EXEC SQL ROLLBACK WORK RELEASE;

1J

External LOBs (BFILEs) 11-33

Load Data Into External LOB (BFILE)

Load Data Into External LOB (BFILE)

Figure 11-10 Use Case Diagram: Load Initial Data into External LOB (BFILE)

External LOBS J . LOAD BFILE Data into a Table

X

User/
Program

a Table

See Also: "Use Case Model: External LOBs (BFILES)" on
page 11-2 for all basic operations of External LOBs (BFILES).

Purpose

This procedure describes how to load initial data into a BFILE and the BFILE data
into a table.

11-34 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Load Data Into External LOB (BFILE)

Usage Notes

Syntax

Scenario

The BFILE datatype stores unstructured binary data in operating-system files
outside the database.

A BFILE column or attribute stores a file locator that points to a server-side external
file containing the data.

Note: A particular file to be loaded as a BFILE does not have to
actually exist at the time of loading.

The SQL Loader assumes that the necessary DIRECTORYobjects (a logical alias
name for a physical directory on the server's filesystem) have already been created.

See Also: Oracle8i Application Developer’s Guide - Fundamentals for
more information on BFILES.

A control file field corresponding to a BFILE column consists of column name
followed by the BFILE directive.

The BFILE directive takes as arguments a DIRECTORY object name followed by a
BFILE name. Both of these can be provided as string constants, or they can be
dynamically sourced through some other field.

Use the following syntax references:
» SQL Loader (Oracle8i Utilities)
« Chapter 4, "Managing LOBs", Using SQL Loader to Load LOBs

The following two examples illustrate the loading of BFILES. In the first example
only the file name is specified dynamically. In the second example, the BFILE and
the DIRECTORYobject are specified dynamically.

External LOBs (BFILEs) 11-35

Load Data Into External LOB (BFILE)

Note: You may need to set up the following data structures for
certain examples to work:

CONNECT system/manager

GRANT CREATE ANY DIRECTORY to samp;

CONNECT samp/samp

CREATE OR REPLACE DIRECTORY detective_photo as tmp;
CREATE OR REPLACE DIRECTORY photo_dir as fmp;

Examples
The following examples load data into BFILES:

» Loading Data Into BFILES: File Name Only is Specified Dynamically

» Loading Data into BFILES: File Name and DIRECTORY Object Dynamically
Specified

Loading Data Into BFILES: File Name Only is Specified Dynamically

Control File

LOAD DATA

INFILE sample9.dat

INTO TABLE Multimedia._tab

FIELDS TERMINATED BY ",

(Clip_ID INTEGER EXTERNAL(5),

FileName FILLER CHAR(30),

Photo BFILE(CONSTANT "DETECTIVE_PHOTO", FleName))

Data file (sample9.dat)

007, JamesBond jpeg,
008, SherlockHolmesjpeg,
009, MissMarple.jpeg,

11-36 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Load Data Into External LOB (BFILE)

Note: Clip_ID defaults to (255) if a size is nhot specified. It is
mapped to the file names in the datafile. DETECTIVE_PHOTGs the
directory where all files are stored. DETECTIVE_PHOTGs a
DIRECTORYobject created previously.

Loading Data into BFILES: File Name and DIRECTORY Object Dynamically Specified

Control File

LOAD DATA

INFILE sample10.dat

INTO TABLE Mulimedia_tab

replace

FELDS TERMINATED BY ',

(

Clip_ID INTEGER EXTERNAL(5),
Photo BFILE (DirlName, FileName),
FileName FILLER CHAR(30),
DifName FILLER CHAR(30)

)

Data file (sample10.dat)

007, JamesBond.jpeg, DETECTIVE_PHOTO,
008,SherlockHolmes.jpeg, DETECTIVE_PHOTO,
009,MissMarple jpeg,PHOTO_DIR,

Note: DirName FILLER CHAR (30) is mapped to the datafile
field containing the directory name corresponding to the file being
loaded.

External LOBs (BFILEs) 11-37

Load a LOB with BFILE Data

Load a LOB with BFILE Data

Figure 11-11 Use Case Diagram: Load a LOB with BFILE Data

External LOBS I . LOAD a LOB with Data from a BFILE

open

a BFILE

Y

SELECT
alLOB

A

close

a BFILE

OR

close all
opened files

LOAD a LOB
with Data from
a BFILE

11-38 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

User/
Program

Load a LOB with BFILE Data

Purpose

Usage Notes

See Also: "Use Case Model: External LOBs (BFILES)" on
page 11-2 for all basic operations of External LOBs (BFILES).

This procedure describes how to load a LOB with BFILE data.

Character Set Conversion

In using OCI, or any of the programmatic environments that access OCI
functionality, character set conversions are implicitly performed when translating
from one character set to another.

BFILE to CLOB or NCLOB: Converting From Binary Data to a Character Set

When you use the DBMS_LOB.LOADFROMFILBprocedure to populate a CLOBor
NCLOByou are populating the LOBwith binary data from the BFILE . No implicit
translation is performed from binary data to a character set.

Hence, when loading data into a CLOB or NCLOB from a BFILE ensure the
following for the BFILE data before you use loadfromfile

« Itisinthe same character set as the CLOB or NCLOB data already in the
database, i.e., is in the char/nchar character set

=« Itisencoded in the correct endian format of the server machine

Note: If the CLOB or NCLOB database char/nchar character set is
varying-width, then the data in the BFILE must contain ucs-2
character data because we store CLOB and NCLOB data in ucs-2
format when the database char/nchar char set is varying-width.

See Also: Oracle8i National Language Support Guide, for character
set conversion issues.

Specify Amount Parameter to be Less than the Size of the BFILE!

« DBMS_LOB.LOADFROMFILE: You cannot specify the amount parameter to
be larger than the size of the BFILE.

External LOBs (BFILEs) 11-39

Load a LOB with BFILE Data

« OCILobLoadFromFile: You cannot specify the amount parameter to be larger
than the length of the BFILE.

Syntax

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,
"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,
"Embedded SQL Statements and Directives" — LOB LOAD

Scenario

These example procedures assume there is a directory object (AUDIO_DIR) that
contains the LOBdata to be loaded into the target LOB(Music). Examples are
provided in the following six programmatic environments:

Examples
« C/C++ (Pro*C/C++): Load a LOB with BFILE Data on page 11-40

C/C++ (Pro*C/C++): Load a LOB with BFILE Data

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.salenm, sglca.sglemm.saglenrmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

void loadLOBFromBFILE._proc()
{
OCIBlobLocator *Dest_loc;
OCIBFileLocator *Src_loc;
char*Dir="AUDIO_DIR", *Name ="Washington_audio";
int Amount =4096;

11-40 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Load a LOB with BFILE Data

EXEC SQL WHENEVER SQLERROR DO Sample_Error();

/* Initalize the BFILE Locator: ¥/
EXEC SQL ALLOCATE :Src_loc;
EXEC SQL LOBFILE SET :Src_loc DIRECTORY =:Dir, FILENAME =:Name;

/*Initialize the BLOB Locator: %

EXEC SQL ALLOCATE :Dest loc;

EXEC SQL SELECT Sound INTO :Dest_loc FROM Mulimedia_tab
WHERE Clip_ID =3 FOR UPDATE;

/*Opening the BFILE is Mandatory: %/
EXEC SQL LOB OPEN :Src_loc READ ONLY;

/*Opening the BLOB is Opiional: ¥/
EXEC SQL LOB OPEN :Dest_loc READ WRITE:
EXEC SQL LOB LOAD :Amount FROM FILE :Src._loc INTO :Dest,loc;

/*Closing LOBs and BFILEs is Mandatoy if they have been OPENed: %/
EXEC SQL LOB CLOSE :Dest loc;
EXEC SQL LOB CLOSE :Src _loc;

/* Release resources held by the Locators: %/
EXEC SQL FREE :Dest loc;
EXEC SQL FREE :Src_loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
loadLOBFromBFILE._proc();
EXEC SQL ROLLBACK WORK RELEASE;

External LOBs (BFILEs) 11-41

Two Ways to Open a BFILE

Two Ways to Open a BFILE

Figure 11-12 Use Case Diagram: Two Ways to Open a BFILE

External LOBS I . OPEN a BFILE

[e Open a BFILE
T T T with FILEOPEN

User/
Program

Y

Initialize
OR\ a BFILE locator,

______ A Open a BFILE E %
: ' 2' with OPEN

<o

Specify
->\ BFILE name

See Also: "Use Case Model: External LOBs (BFILEs)" on
page 11-2 for all basic operations of External LOBs (BFILES).

Recommendation: Use OPEN to Open BFILE

As you can see by comparing the code, these alternative methods are very similar.

11-42 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Two Ways to Open a BFILE

However, while you can continue to use the older FILEOPEN form, we strongly
recommend that you switch to using OPENbecause this facilitates future extensibility.

a. "Open a BFILE with FILEOPEN" on page 11-44
b. "Open a BFILE with OPEN" on page 11-46

Specify the Maximum Number of Open BFILEs: SESSION_MAX_OPEN_FILES

A limited number of BFILE s can be open simultaneously per session. The
maximum number is specified by using the initialization parameter SESSION _
MAX_OPEN_FILES

SESSION_MAX_ OPEN_FILESIefines an upper limit on the number of
simultaneously open files in a session. The default value for this parameter is 10.
That is, a maximum of 10 files can be opened simultaneously per session if the
default value is utilized. The database administrator can change the value of this
parameter in the init.ora file. For example:

SESSION_MAX OPEN_FILES=20

If the number of unclosed files exceeds the SESSION_MAX_OPEN_FILE&alue then
you will not be able to open any more files in the session.

To close all open files, use the FILECLOSEALL call.

Close Files After Use!

It is good practice to close files after use to keep the SESSION_MAX_OPEN_FILES
value small. Choosing a larger value would entail a higher memory usage.

External LOBs (BFILEs) 11-43

Open a BFILE with FILEOPEN

Open a BFILE with FILEOPEN

Figure 11-13 Use Case Diagram: Open a BFILE with FILEOPEN

. | Open a BFILE with
External LOBS I - | FILEOPEN — 0

open
aBFILE - @ openabriLE

with FILEOPEN

v

X

User/
PO Program

Initialize

ORI\ a BFILE locator,

Specify
BFILE name

SeeAlso: "Use Case Model: External LOBs (BFILEs)" on page 11-2
for all basic operations of External LOBs (BFILES).

Purpose
This procedure describes how to open a BFILE using FILEOPEN

11-44 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Open a BFILE with FILEOPEN

Usage Notes

While you can continue to use the older FILEOPEN form, we strongly recommend
that you switch to using OPENbecause this facilitates future extensibility.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:
« C/C++ (Pro*C/C++): A syntax reference is not applicable in this release.
Scenario
These examples open a Lincon photo in operating system file PHOTO DIRExamples
are provided in the following four programmatic environments:
Examples

« C/C++ (Pro*C/C++): No example is provided with this release.

External LOBs (BFILEs) 11-45

Open a BFILE with OPEN

Open a BFILE with OPEN

Figure 11-14 Use Case Diagram: Open a BFILE with OPEN

External LOBS I . |OPEN a BFILE | —» Q

OPEN
aBFILE -{~ @ openasFiLE
with OPEN

v

X

User/
Program

Initialize
OR\ a BFILE locator

<K=u-

Specify
=>{ BFILE name

See Also: "Use Case Model: External LOBs (BFILES)" on
page 11-2 for all basic operations of External LOBs (BFILES).

Purpose
This procedure describes how to open a BFILE with OPEN

11-46 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Open a BFILE with OPEN

Usage Notes

Syntax

Scenario

Examples

Not applicable.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,
"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,
"Embedded SQL Statements and Directives" — LOB OPEN

These examples open a Lincoln photo in operating system file PHOTO DIRExamples
are provided in the following six programmatic environments:

« C/C++ (Pro*C/C++): Open a BFILE with OPEN on page 11-47

C/C++ (Pro*C/C++): Open a BFILE with OPEN

/*In Pro*C/C++there is onlly one form of OPEN that is used for OPENIng
BFILEs. Thereis no FILE OPEN, only a simple OPEN statement: %/

#include <oci.h>

#include <stdio.h>

#include <sglca.h>

void Sample_Eror()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglenml, sgica.sglenm.sglermc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

void openBFILE._proc()

{
OCIBFileLocator *Lob loc;

char*Dir="PHOTO_DIR", *Name ="Lincoln_photo";

External LOBs (BFILEs) 11-47

Open a BFILE with OPEN

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
/Initialize the Locator: %/
EXEC SQL ALLOCATE :Lob_loc;
EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME =:Name;
/Openthe BFILE: %/
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
/*... Do some processing: ¥/
EXEC SQL LOB CLOSE :Lob _loc;
EXEC SQL FREE :Lob loc;
}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
openBFILE_proc();
EXEC SQL ROLLBACK WORK RELEASE;

11-48 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Two Ways to See If a BFILE is Open

Two Ways to See If a BFILE is Open

Figure 11-15 Use Case Diagram: Two Ways to See If a BFILE is Open

External LOBs I . SEE if the BFILE is Open

él el SEE if the BFILE is Open

Using FILEISOPEN F~ 7 User/
Program

|

SEE if the
BFILE is Open

/ @ SEE if the BFILE is Open | _ 7T
Using ISOPEN

See Also: "Use Case Model: External LOBs (BFILESs)" on
page 11-2 for all basic operations of External LOBs (BFILES).

Recommendation: Use OPEN to Open BFILE

As you can see by comparing the code, these alternative methods are very similar.
However, while you can continue to use the older FILEISOPEN form, we strongly

recommend that you switch to using ISOPEN because this facilitates future
extensibility.

a. See If the BFILE is Open with FILEISOPEN on page 11-51
b. See If a BFILE is Open Using ISOPEN on page 11-53

Specify the Maximum Number of Open BFILEs: SESSION_MAX_OPEN_FILES

A limited number of BFILE s can be open simultaneously per session. The

maximum number is specified by using the SESSION_MAX_OPEN_FILES
initialization parameter.

SESSION_MAX_OPEN_FILESlefines an upper limit on the number of
simultaneously open files in a session. The default value for this parameter is 10.
That is, a maximum of 10 files can be opened simultaneously per session if the

External LOBs (BFILEs) 11-49

Two Ways to See If a BFILE is Open

default value is utilized. The database administrator can change the value of this
parameter in the init .ora file. For example:

SESSION_MAX_OPEN_FILES=20

If the number of unclosed files exceeds the SESSION_MAX_OPEN_FILE&alue then
you will not be able to open any more files in the session. To close all open files, use
the FILECLOSEALL call.

11-50 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

See If the BFILE is Open with FILEISOPEN

See If the BFILE is Open with FILEISOPEN

Figure 11-16 Use Case Diagram: See If BFILE is Open Using FILEISOPEN

See if the BFILE is e

External LOBs I Open

X

User/
Program

|

See if the

@ SEE ifthe BFILE is Open
Using FILEISOPEN ~ \ BFILE is Open

See Also: "Use Case Model: External LOBs (BFILESs)" on
page 11-2 for all basic operations of External LOBs (BFILES).

Purpose
This procedure describes how to see if a BFILE is OPEN with FILEISOPEN.

Usage Notes

While you can continue to use the older FILEISOPEN form, we strongly recommend
that you switch to using ISOPEN because this facilitates future extensibility.

Syntax

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++): A syntax reference is not applicable in this release.

External LOBs (BFILEs) 11-51

See If the BFILE is Open with FILEISOPEN

Scenario

These examples query whether a BFILE associated with Music is open. Examples
are provided in the following four programmatic environments:

Examples
« C/C++ (Pro*C/C++): No example is provided with this release.

11-52 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

See If a BFILE is Open Using ISOPEN

See If a BFILE is Open Using ISOPEN

Figure 11-17 Use Case Diagram: See If a BFILE is Open Using ISOPEN

. | See ifthe BFILE is
External LOBs - | Open I —_ @

X

User/
Program

|

See if the
BFILE is Open

@ sEEifthe BFILEisOpen | _
Using ISOPEN

See Also: "Use Case Model: External LOBs (BFILEs)" on
page 11-2 for all basic operations of External LOBs (BFILES).

Purpose
This procedure describes how to see if a BFILE is open using ISOPEN.

Usage Notes
Not applicable.

Syntax

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,
"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,
"Embedded SQL Statements and Directives" — LOB DESCRIBE ... ISOPEN

External LOBs (BFILEs) 11-53

See If a BFILE is Open Using ISOPEN

Scenario
These examples query whether the a BFILE is open that is associated with Music .

Examples
Examples are provided in the following six programmatic environments:

« C/C++ (Pro*C/C++): See If the BFILE is Open with ISOPEN on page 11-54

CIC++ (Pro*C/C++): See If the BFILE is Open with ISOPEN

/*In Pro*C/C++, there is only one form of ISOPEN used to determine whether
ornotaBFILE is OPEN. There is no FILE IS OPEN, only a simple ISOPEN.
This is an attribute used in the DESCRIBE staterment: %/

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Ermor()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglenm.sglenm, sgica.sglenm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

void seelfOpenBFILE_proc()
{
OCIBFileLocator*Lob_loc;
intisOpen;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
EXEC SQL ALLOCATE :Lob_loc;
/* Select the BFILE irtto the locator: %/
EXEC SQL SELECT Music INTO :Lob_loc FROM Mulimedia._tab
WHEREClip ID=3;
/*Determine ifthe BFILE is OPEN or not: %/
EXEC SQL LOB DESCRIBE :Lob_loc GET ISOPEN into :isOpen;
if (sOpen)
printf("BFILE is open\n®);
else
printf("BFILE is not open\n®);
/*Note that in this example, the BFILE is not apen: ¥/

11-54 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

See If a BFILE is Open Using ISOPEN

EXEC SQL FREE :Lob loc;
}

void main()

{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
seelfOpenBFILE_proc();

EXEC SQL ROLLBACK WORK RELEASE;

External LOBs (BFILEs) 11-55

Display BFILE Data

Display BFILE Data

Figure 11-18 Use Case Diagram: Display BFILE Data

External LOBs I . DISPLAY the BFILE

open
a BFILE

DISPLAY
the BFILE

X

User/
Program

close
a BFILE

close all

BFILE name opened files

See Also: "Use Case Model: External LOBs (BFILEs)" on
page 11-2 for all basic operations of External LOBs (BFILES).

Purpose
This procedure describes how to display BFILE data.

11-56 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Display BFILE Data

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:
« C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,
"Large Objects (LOBs)", "LOB Statements" — LOB READ
Scenario

These examples open and display BFILE data. Examples
Examples are provided in six programmatic environments:

« C/C++ (Pro*C/C++): Display BFILE Data on page 11-57

CIC++ (Pro*C/C++): Display BFILE Data

/* This example will READ the entire contents of a BFILE piecewise into &
buffer using a streaming mechanism via standard polling, displaying each
buffer piece after every READ gperation unti the entire BFILE has been
read: ¥

#include <oci.h>

#include <stdio.h>

#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;

printf('%.*s\n", sglca.sglenm.sglenm, sgica.sglemm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 1024

void displayBFILE_proc()

External LOBs (BFILEs) 11-57

Display BFILE Data

{
OCIBFileLocator*Lob _loc;

int Amount;
struct{
short Length;
char Data[BufferLength];
}Buffer;
/* Datatype Equivalencing is Mandatory for this Datatype: %/
EXEC SQL VAR Buffer is VARRAW(BufferLength);

EXEC SQL WHENEVER SQLERROR DO Sample_Eror();
EXEC SQL ALLOCATE :Lob_loc;
/* Select the BFILE: ¥/
EXEC SQL SELECT Music INTO :Laob loc
FROM Mulimedia_tab WHERE Clip_ID=3;
/*Openthe BFILE: %
EXEC SQL LOB OPEN :Lob _loc READ ONLY;
/* Setting Amounit = O will initiate the polling method: %
Amount=0;
/* Set the maximum size of the Buffer: %/
Buffer.Length = BufferLength;
EXEC SQL WHENEVER NOT FOUND DO break;
while (TRUE)
{
/*Read a piece of the BFILE into the Buffer: %
EXEC SQL LOB READ :Amount FROM :Lob _loc INTO :Buffer;
printf(' Display %d bytes\n", Buffer.Length);
}
printf{'Display %od bytes\n", Amount);
EXEC SQL LOB CLOSE :Lob loc;
EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
displayBFILE._proc();
EXEC SQL ROLLBACK WORK RELEASE;

11-58 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Read Data from a BFILE

Read Data from a BFILE

Figure 11-19 Use Case Diagram: Read Data from a BFILE

External LOBs I . READ Data from the BFILE

READ Data
from the BFILE

>

X

User/
Program

""" close
a BFILE

OR

close all

Specify
opened files

=>{ BFILE name

See Also: "Use Case Model: External LOBs (BFILEs)" on
page 11-2 for all basic operations of External LOBs (BFILES).

Purpose
This procedure describes how to read data from a BFILE.

External LOBs (BFILEs) 11-59

Read Data from a BFILE

Usage Notes

Syntax

Always Specify 4 Gb - 1 Regardless of LOB Size

When reading the LOBvalue, it is not an error to try to read beyond the end of the
LOB This means that you can specify an input amount of 4 Gb -1 regardless of the
starting offset and the amount of data in the LOB Hence, you do not need to
incur a round-trip to the server to call OCILobGetLength () to find out the length
of the LOBvalue in order to determine the amount to read.

Example

For example, assume that the length of a LOBis 5,000 bytes and you want to read
the entire LOBvalue starting at offset 1,000. Also assume that you do not know
the current length of the LOBvalue. Here is the OCI read call, excluding the
initialization of all parameters:

#define MAX_LOB_SIZE 4294967295

ub4 amount= MAX_LOB_SIZE;

ub4 offset=1000;

OCILobRead(svchp, emrhp, locp, &amount, offset, bufp, bufl, 0, 0, 0, 0)

Note: The most efficient way to read large amounts of LOB data is
to use OCILobRead () with the streaming mechanism enabled via
polling or a callback. See Also: Chapter 9, "Internal Persistent
LOBs", "Read Data from a BFILE", Usage Notes.

The Amount Parameter

« In DBMS_LOB.READ, the amount parameter can be larger than the size of the
data. In PL/SQL, the amount parameter should be less than or equal to the size
of the buffer, and the buffer size is limited to 32K.

« In OClLobRead, you can specify amount =4 Gb - 1, and it will read to the end
of the LOB.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

11-60 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Read Data from a BFILE

« C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,
"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,
"Embedded SQL Statements and Directives" — LOB READ

« Java (JDBC) (Oracle8i JDBC Developer’s Guide and Reference): Chapter 7, "Working
With LOBs" — Creating and Populating a BLOB or CLOB Column. Further
extensions are available in (Oracle8i SQLJ Developer’s Guide and Reference):
Chapter 5, "Type Support”, Oracle Type Support, Support for BLOB, CLOB, and
BFILE.

Scenario

The following examples read a photograph into PHOTGrom a BFILE 'PHOTO _
DIR’ .

Examples
Examples are provided in these six programmatic environments:

« C/C++ (Pro*C/C++): Read Data from a BFILE on page 11-61

C/C++ (Pro*C/C++): Read Data from a BFILE

#include <oci.h>
#include <stdio.h>
#include <sgica.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.sglenm, sglca.sglemm.saglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 4096

void readBFILE_proc()
{
OCIBFileLocator *Lob loc;
/*Amount and Buffer_ength are equal so only one READ is necessary:
int Amount = BufferLength;
char Buffer{BufferLength];
/* Datatype Equivalencing is Mandatory for this Datatype: %/

External LOBs (BFILEs) 11-61

Read Data from a BFILE

EXEC SQL VAR Buffer IS RAW(BufferLength);

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
EXEC SQL ALLOCATE :Lob _loc;
EXEC SQL SELECT Photo INTO :Lob_loc

FROM Mulimedia_tab WHERE Clip_ID=3;
/*Openthe BFILE: %/
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
EXEC SQL WHENEVER NOT FOUND CONTINUE;
/#Read data: ¥
EXEC SQL LOB READ :Amount FROM :Lob_loc INTO :Buffer;
printf("Read %d bytes\n", Amount);
/*Close the BFILE:
EXEC SQL LOB CLOSE :Lab _loc;
EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
readBFILE_proc();
EXEC SQL ROLLBACK WORK RELEASE;

11-62 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Read a Portion of BFILE Data (substr)

Read a Portion of BFILE Data (substr)

Figure 11-20 Use Case Diagram: Read a Portion of BFILE Data (substr)

External LOBs I . READ a Portion of the BFILE Data (Substr.)

-

Specify
BFILE name

a
> open
> a BFILE

READ a
Portion of the
BFILE Data

User/
Program

close

a BFILE

OR

close all
opened files

See Also:

"Use Case Model: External LOBs (BFILES)" on

page 11-2 for all basic operations of External LOBs (BFILES).

Purpose

This procedure describes how to read portion of BFILE data (substr).

External LOBs (BFILEs) 11-63

Read a Portion of BFILE Data (substr)

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:
« C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,
"Large Objects (LOBs)", "LOB Statements”, usage notes. Appendix F,
"Embedded SQL Statements and Directives” — LOB OPEN. See also PL/SQL
DBMS_LOB.SUBSTR
Scenario

The following examples read an audio recording into RECORDINGrom BFILE
"AUDIO_DIR’ .

Examples are provided in these five programmatic environments:
« C/C++ (Pro*C/C++): Read a Portion of BFILE Data (substr) on page 11-64

C/C++ (Pro*C/C++): Read a Portion of BFILE Data (substr)

/* Pro*C/C++ lacks an equivalent embedded SQL form for the DBMS _LOB.SUBSTR()
function. However, Pro*C/C++ can interoperate with PL/SQL using anonymous
PL/SQL blocks embedded in a Pro*C/C++ program as this example shows: %
#include <oci.h>
#include <stdio.h>
#include <sglca.h>
void Sample_Eror()
{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglenml, sgica.sglenm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define BufferLength 256
void substringBFILE_proc()

11-64 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Read a Portion of BFILE Data (substr)

OCIBFileLocator*Lob_loc;
int Position = 1;
char Buffer{BufferLength];
EXEC SQL VAR Buffer IS RAW(BufferL_ength);
EXEC SQL WHENEVER SQLERROR DO Sample_Emor();
EXEC SQL ALLOCATE :Lob loc;
EXEC SQL SELECT Mtab.Voiced_ref.Recording INTO :Lob loc
FROM Mulimedia_tab Mtab WHERE Mtab.Clip ID=3;
#Openthe BFILE: %/
EXEC SQL LOB OPEN :Lob_loc READ ONLY;
/* Invoke SUBSTR() from within an anonymous PL/SQL block: %
EXEC SQL EXECUTE
BEGIN
:Buffer =DBMS_LOB.SUBSTR(.Lob _loc, 256, :Position);
END;
END-EXEC;
/*Close the BFILE: %/
EXEC SQL LOB CLOSE :Lab _loc;
EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
substringBFILE_proc();
EXEC SQL ROLLBACK WORK RELEASE;

External LOBs (BFILEs) 11-65

Compare All or Parts of Two BFILES

Compare All or Parts of Two BFILES

Figure 11-21 Use Case Diagram: Compare All or Parts of Two BFILES

External LOBs I . COMPARE All or Parts of Two BFILEs

e e——. .
a
..... > open
-—> a BFILE
o]

v

COMPARE
All or Parts of 2
BFILEs

x

User/
Program

close

Initialize
OR{ a BFILE locator) <*** a BFILE

OR

close all

Specify
opened files

BFILE name

11-66 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Compare All or Parts of Two BFILES

See Also: "Use Case Model: External LOBs (BFILES)" on
page 11-2 for all basic operations of External LOBs (BFILES).

Purpose
This procedure describes how to compare all or parts of two BFILES.

Usage Notes
Not applicable.

Syntax

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,
"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,
"Embedded SQL Statements and Directives" — LOB OPEN. See PL/SQL
DBMS_LOB.COMPARE.

Scenario

The following examples determine whether a photograph in file, ' PHOTO_DIR’,
has already been used as a specific PHOTy comparing each data entity bit by bit.

Note: LOBMAXSIZEs set at 4 Gb so that you do not have to find
out the length of each BFILE before beginning the comparison.

Examples
Examples are provided in these five programmatic environments:

« C/C++ (Pro*C/C++). Compare All or Parts of Two BFILES on page 11-67

C/C++ (Pro*C/C++): Compare All or Parts of Two BFILES

/* Pro*C/C++ lacks an equivalent embedded SQL form for the
DBMS_LOB.COMPARE() function. Like the DBMS_LOB.SUBSTR() function,
however, Pro*C/C++ can invoke DBMS_LOB.COMPARE() in an anonymous PL/SQL
block as is shown here: %

External LOBs (BFILEs) 11-67

Compare All or Parts of Two BFILES

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglenm, sgica.sglermm.sglermc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void compareBFILES _proc()
{
OCIBFileLocator *Lob_loc1,*Lob loc2;
int Retval = 1;
char*Dirl ="PHOTO_DIR", *Namel ="RooseveltFDR_photo";

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
EXEC SQL ALLOCATE :Lob _loci,;
EXEC SQL LOB FILE SET :Lob_loc1 DIRECTORY = :Dirl, FILENAME = :Namel,
EXEC SQL ALLOCATE :Lob _loc2;
EXEC SQL SELECT Photo INTO :Lob_loc2 FROM Mulimedia._tab
WHEREClip ID=3;

/*Openthe BFILEs: ¥/
EXEC SQL LOB OPEN :Lob locl READ ONLY;
EXEC SQL LOB OPEN :Lob _loc2 READ ONLY;
/*Compare the BFILEs in PL/SQL using DBMS_LOB.COMPARE() %/
EXEC SQL EXECUTE

BEGIN

‘Retval =DBMS_LOB.COMPARE(
‘Lob_loc2, :Lob_locl, DBMS_LOB.LOBMAXSIZE, 1, 1);

END;
END-EXEC;
/*Close the BFILEs: %/
EXEC SQL LOB CLOSE :Lob locl;
EXEC SQL LOB CLOSE :Lob _loc2;
if 0 = Retval)

printf("BFILEs are the same\n’Y);
else

printf("BFILES are not the same\n”);
/* Release resources used by the locators: %/
EXEC SQL FREE :Lob locl;
EXEC SQL FREE :Lob _loc2;

11-68 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Compare All or Parts of Two BFILES

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
compareBFILES_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

External LOBs (BFILEs) 11-69

See If a Pattern Exists (instr) in the BFILE

See If a Pattern Exists (instr) in the BFILE

Figure 11-22 Use Case Diagram: See If a Pattern EXxists in the BFILE

>

SEE Wherelif
a Pattern Exists
in the BFILE
(Instr.)

External LOBs I . SEE Where/if a Pattern Exists in the BFILE (Instr.)

X

User/
Program

close
a BFILE

OR

close all

Specify
>(B opened files

FILE name

11-70 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

See If a Pattern Exists (instr) in the BFILE

Purpose

Usage Notes

Syntax

Scenario

See Also: "Use Case Model: External LOBs (BFILES)" on
page 11-2 for all basic operations of External LOBs (BFILES).

This procedure describes how to see if a pattern exists (instr) in the BFILE.

Not applicable.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,
"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,
"Embedded SQL Statements and Directives" — LOB OPEN. See PL/SQL
DBMS_LOB.INSTR.

The following examples search for the occurrence of a pattern of audio data within
an interview Recording . This assumes that an audio signature is represented by
an identifiable bit pattern.

These examples are provided in the following four programmatic environments:

« C/C++ (Pro*C/C++): See If a Pattern Exists (instr) in the BFILE on page 11-71

CIC++ (Pro*C/C++): See If a Pattern Exists (instr) in the BFILE

/*Pro*C lacks an equivalent embedded SQL form of the DBMS _LOB.INSTR()
function. However, like SUBSTR() and COMPARE(), Pro*C/C++can call
DBMS_LOB.INSTR() from within an anonymous PL/SQL block as shown here: %/

#include <sgl2oci.h>

#include <stdio.h>

#include <string.h>

#include <sglca.h>

External LOBs (BFILEs) 11-71

See If a Pattern Exists (instr) in the BFILE

void Sample_Eror()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%6.*s\n", sglca.sglenm.sglenml, sgica.sglenmm.sglermc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

#define PattemSize 5

void instringBFILE_proc()
{
OCIBFileLocator*Lob_loc;
unsigned int Position =0;
int Clip_ID =3, Segment=1,
char Pattem[PattemSize];
/* Datatype Equivalencing is Mandatory for this Datatype: %
EXEC SQL VAR Paitem IS RAW(PattemSize);

EXEC SQL WHENEVER SQLERROR DO Sample_Eror();
EXEC SQL ALLOCATE :Lob _loc;
/*Use Dynamic SQL to retrieve the BFILE Locator: %
EXEC SQL PREPARE S FROM

'SELECT Intab.Recording \

FROM TABLE(SELECT Mtab.InSeg_ntab FROM Multimedia._tab Mtab\
WHERE Clip_ID = :cid) Intab\
WHERE Intab.Segment = :seg;

EXEC SQL DECLARE C CURSOR FORSS;
EXEC SQL OPEN C USING :Clip_ID, :Segment;
EXEC SQL FETCH CINTO :Lob_loc;
EXEC SQL CLOSEC;
#Openthe BFILE: ¥/
EXEC SQL LOB OPEN :Lob _loc READ ONLY;
memset((void *)Pattem, 0, PattemSize);
/* Find the first occurrance of the pattem starting from the

beginning of the BFILE using PL/SQL: %/
EXEC SQL EXECUTE

BEGIN

‘Position =DBMS_LOB.INSTR(.Lob_loc, :Pattem, 1, 1);

END;
END-EXEC;
/*Close the BFILE: %/
EXEC SQL LOB CLOSE :Laob loc;
if (0 == Position)

11-72 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

See If a Pattern Exists (instr) in the BFILE

printf("Pattem not found\n”);
else
printf(" The pattem occurs at %d\n”, Position);
EXEC SQL FREE :Lob loc;
}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
instringBFILE._procy();
EXEC SQL ROLLBACK WORK RELEASE;

External LOBs (BFILEs) 11-73

See If the BFILE Exists

See If the BFILE Exists

Figure 11-23 Use Case Diagram: See If the BFILE EXxists

External LOBs I . SEE if the BFILE Exists

Y%

SEE if the
BFILE EXists Jawevan, |

User/
Program

Initialize

OR\ 4 BFILE locator

Specify
BFILE name

See Also: "Use Case Model: External LOBs (BFILESs)" on
page 11-2 for all basic operations of External LOBs (BFILES).

Purpose
This procedure describes how to see if a BFILE exists.

11-74 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

See If the BFILE Exists

Usage Notes

Syntax

Scenario

Examples

Not applicable.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++) Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,
"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,
"Embedded SQL Statements and Directives" — LOB DESCRIBE ...GET
FILEEXISTS

This example queries whether a BFILE that is associated with Recording

The examples are provided in the following six programmatic environments;
« C/C++ (Pro*C/C++): See If the BFILE Exists on page 11-75

CIC++ (Pro*C/C++): See If the BFILE Exists

#include <oci.h>
#include <stdio.h>
#include <sgica.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.sglenm, sglca.sglemm.saglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void seelfBFILEEXists_proc()

{
OCIBFileLocator *Lob loc;

unsigned int Exists =0;

External LOBs (BFILEs) 11-75

See If the BFILE Exists

EXEC SQL WHENEVER SQLERROR DO Sample_Error();

EXEC SQL ALLOCATE :Lob_loc;

EXEC SQL SELECT Mtab.Voiced_refRecording INTO :Lob loc
FROM Multimedia_tab Mtab WHERE Mtab.Clip ID=3;

/* See ifthe BFILE Exists: %

EXEC SQL LOB DESCRIBE :Lob_loc GET FILEEXISTS INTO :Exists;

printf('BFILE %s existin, Exists ? "does": "does not');

EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
seelfBFILEEXists_proc();
EXEC SQL ROLLBACK WORK RELEASE;

11-76 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Get the Length of a BFILE

Get the Length of a BFILE

Figure 11-24 Use Case Diagram: Get the Length of the BFILE

: a
H > open
: .S\ aBFLE
: i b
: I .
> : : GET the Length
H : . of the BFILE Je======, 3
teeed” nitialize \<Gewel : close User/
.OR\ a BFILE locator)Ce e ua s . a BFILE :+ | Program
' I . '
: OR hirteeeceeeeenmsseeeennnseseennnsseesnnnsnseend :
: Specify close all
v->{ BFILE name opened files

External LOBs (BFILEs) 11-77

Get the Length of a BFILE

See Also: "Use Case Model: External LOBs (BFILEs)" on
page 11-2 for all basic operations of External LOBs (BFILES).

Purpose
This procedure describes how to get the length of a BFILE.

Usage Notes
Not applicable.

Syntax

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,
"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,
"Embedded SQL Statements and Directives" — LOB DESCRIBE ... GET
LENGTH INTO ...

Scenario
This example gets the length of a BFILE that is associated with Recording

Examples
The examples are provided in six programmatic environments:

« C/C++ (Pro*C/C++): Get the Length of a BFILE on page 11-78

CIC++ (Pro*C/C++): Get the Length of a BFILE

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglenm.sglenm, sgica.sglenm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;

11-78 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Get the Length of a BFILE

exit(1);
}

void getlengthBFILE_proc()
{
OCIBFileLocator *Lob loc;
unsigned int Length =0;

EXEC SQL WHENEVER SQLERROR DO Sample_Eror();

EXEC SQL ALLOCATE :Lob _loc;

EXEC SQL SELECT Mtab.Voiced_ref Recording INTO :Lob loc
FROM Mulimedia._tab Mtab WHERE Mtab.Clip_ID=3;

#Openthe BFILE: %/

EXEC SQL LOB OPEN :Lob _loc READ ONLY;

/*Getthe Length: %/

EXEC SQL LOB DESCRIBE :Lob_loc GET LENGTH INTO :Length;

/Ifthe BFILE is NULL or unitialized, then Length is Undefined: %

printf("Length is %d bytes\n", Length);

/*Close the BFILE: %/

EXEC SQL LOB CLOSE :Laob loc;

EXEC SQL FREE :Lob _loc;

}

void main()

{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;

getLengthBFILE_proc();
EXEC SQL ROLLBACK WORK RELEASE;

External LOBs (BFILEs) 11-79

Copy a LOB Locator for a BFILE

Copy a LOB Locator for a BFILE

Figure 11-25 Use Case Diagram: Copy a LOB Locator for a BFILE

External LOBs I . COPY a LOB Locator

X

User/
Program

COPY
alLOB
Locator

Specify
BFILE name

See Also: "Use Case Model: External LOBs (BFILES)" on
page 11-2 for all basic operations of External LOBs (BFILES).

11-80 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Copy a LOB Locator for a BFILE

Purpose

Usage Notes

Syntax

Scenario

Examples

This procedure describes how to copy a LOB locator for a BFILE.

Not applicable.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« SQL (Oracle8i SQL Reference): Chapter 7, "SQL Statements" — CREATE
PROCEDURE

« C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,
"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,
"Embedded SQL Statements and Directives" — LOB ASSIGN

This example assigns one BFILE locator to another related to Photo .

The examples are provided in the following five programmatic environments:
« C/C++ (Pro*C/C++): Copy a LOB Locator for a BFILE on page 11-81

C/C++ (Pro*C/C++): Copy a LOB Locator for a BFILE

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.salenm, sglca.sglemm.saglenrmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

External LOBs (BFILEs) 11-81

Copy a LOB Locator for a BFILE

void BFILEAssign_proc()

{
OCIBFileLocator *Lob_loc1,*Lob loc2;

EXEC SQL WHENEVER SQLERROR DO Sample_Emnor();
EXEC SQL ALLOCATE :Lob locl,;
EXEC SQL ALLOCATE :Lob loc2;
EXEC SQL SELECT Photo INTO :Lob_locl
FROM Mulimedia_tab WHERE Clip_ID=3;
/Assign Lob_loc to Lob_loc2 so that they both refer to the same
operating system fie: %/
EXEC SQL LOB ASSIGN :Lab _loc1 TO:Lab loc2;
/*Now you can read the BFILE from either Lob_loc1 or Lob_loc2 %

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
BFILEAssign_proc();
EXEC SQL ROLLBACK WORK RELEASE;

11-82 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

See If a LOB Locator for a BFILE Is Initialized

See If a LOB Locator for a BFILE Is Initialized

Purpose

Figure 11-26 Use Case Diagram: See If a LOB Locator Is Initialized

External LOBs

. SEE if Locator is Initialized

SEE
if Locator
is Initialized

X

User/
Prograr

See Also:

"Use Case Model: External LOBs (BFILES)" on
page 11-2 for all basic operations of External LOBs (BFILES).

This procedure describes how to determine if a BFILE LOB locator is initialized.

External LOBs (BFILEs) 11-83

See If a LOB Locator for a BFILE Is Initialized

Usage Notes

On the client side, before you call any OCILob* interfaces (such as OCILobWrite),
or any programmatic environments that use OCILob* interfaces, first initialize the
LOBIocator, via a SELECT for example.

If your application requires a locator to be passed from one function to another, you
may want to verify that the locator has already been initialized. If the locator is not
initialized, you could design your application either to return an error or to perform
the SELECTbefore calling the OCILob* interface.

Syntax

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,
"Large Objects (LOBs)", "LOB Statements”, usage notes. Appendix F,
"Embedded SQL Statements and Directives". See also C(OCI) function,
OClILobLocatorlslInit

Scenario
Not applicable.

Examples
The examples are provided in the following programmatic environments:

« C/C++ (Pro*C/C++): See If a LOB Locator for a BFILE Is Initialized on
page 11-84

CIC++ (Pro*C/C++): See If a LOB Locator for a BFILE Is Initialized

/* Pro*C/C++ has no form of embedded SQL statement to determine ifa BFILE
locator is initalized. Locators in Pro*C/C++ are iniialized when they
are allocated via the EXEC SQL ALLOCATE statement. However, an example
can be written that uses embedded SQL and the OCl as is shown here; ¥/

#include <sgl2oci.h>

#include <stdio.h>

#include <sglca.h>

void Sample_Error()

11-84 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

See If a LOB Locator for a BFILE Is Initialized

{
EXEC SQL WHENEVER SQLERROR CONTINUE;

printf('%.*s\n", sglca.sglemm.salenm, sglca.sglemm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void BFILELocatorisInit_proc()
{
OCIBFileLocator *Lob loc;
OCIENv *oeh;
OCIEror *err;
boolean isinitialized = 0;

EXEC SQL WHENEVER SQLERROR DO Sample_Enor();

EXEC SQL ALLOCATE :Lob_loc;

EXEC SQL SELECT Mtab.Voiced_ref.Recording INTO :Lob _loc
FROM Mulimedia._tab Mtab WHERE Mtab.Clip_ID =3;

/* Get the OCI Environment Handle using a SQLLIB Routine: %

(void) SQLENVGet(SQL_SINGLE_RCTX, &oeh);

/*Allocate the OCI Error Handle: %/

(void) OCIHandleAlloc((dvoid *)oeh, (dvoid *)&err,

(Ub4)OCI_HTYPE_ERROR, (ub4)0, (dvoid *)0);

/*Use the OCl to determine if the locator is Initialized: %/

(void) OCILobLocatorlsInit(oeh, err, Lob_loc, &islnitialized);

if (isinitialized)

printf("Locator is initialized\n");
else
printf("Locator is not initialized\n");

/* Note that in this example, the locator is initialized:

/* Deallocate the OCI Eiror Handle: %/

(void) OCIHandleFree(err, OCI_HTYPE_ERROR);

/* Release resources held by the locator: %

EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
BFILELocatorisInit_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

External LOBs (BFILEs) 11-85

See If One LOB Locator for a BFILE Is Equal to Another

See If One LOB Locator for a BFILE Is Equal to Another

Figure 11-27 Use Case Diagram: See If One LOB Locator for a BFILE Is Equal to

Another

External LOBs I . SEE if Locators are Equal

v

Initialize
OR\ 4 BFILE locator

<=

Specify
BFILE name

SEE
if Locators
are Equal

X

User/
Program

11-86 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

See If One LOB Locator for a BFILE Is Equal to Another

See Also: "Use Case Model: External LOBs (BFILES)" on
page 11-2 for all basic operations of External LOBs (BFILES).

Purpose
This procedure describes how to see if one BFILE LOB locator is equal to another.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:
« C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,
"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,
"Embedded SQL Statements and Directives" — LOB ASSIGN. See also C(OCI)
function, OCILoblsEqual
Scenario

If two locators are equal, this means that they refer to the same version of the LOB
data (see "Read-Consistent Locators" in Chapter 5, "Advanced Topics").

The examples are provided in the following three programmatic environments:

« C/C++ (Pro*C/C++): See If One LOB Locator for a BFILE Is Equal to Another
on page 11-87

C/C++ (Pro*C/C++): See If One LOB Locator for a BFILE Is Equal to Another

/* Pro*C/C++ does not provide a mechanism to test the equalty of two
locators However, by using the OCI directly, two locators can be
compared to determine whether or not they are equial as this example
demonstrates: ¥/

#include <sgl2oci.h>
#include <stdio.h>

External LOBs (BFILEs) 11-87

See If One LOB Locator for a BFILE Is Equal to Another

#include <sglca.h>

void Sample_Eror()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglenm.sglenml, sgica.sglenm.sglenmmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

void BFILELocatorisEqual_proc()

{
OCIBFileLocator *Lob_loc1,*Lob loc2;
QOCIEnv *oeh;
boolean isEqual =0;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();
EXEC SQL ALLOCATE :Lob _loci;
EXEC SQL ALLOCATE :Lob loc2;
EXEC SQL SELECT Photo INTO :Lob_locl
FROM Multimedia_tab WHERE Clip_ID =3,

EXEC SQL LOB ASSIGN :Lob _locl1 TO :Lob_loc2;
/*Now you can read the BFILE from either Lob_loc1 or Lob_loc2 %
/* Get the OCI Environment Handle using a SQLLIB Routine: %/
(void) SQLENVGet(SQL_SINGLE_RCTX, &oeh);
/*Call OCl to see ifthe two locators are Equal: %/
(void) OClLoblsEqual(oeh, Lob locl, Lob_loc2, &isEqual);
if (sSEqual)

printf("Locators are equal\n®);
else

printf("Locators are not equaln’);
/* Note that in this example, the LOB locators will be Equal: %/
EXEC SQL FREE :Lob loci;
EXEC SQL FREE :Lob _loc2;

}

void main()
{
char *samp ="samp/samp”;
EXEC SQL CONNECT :samp;
BFILELocatorisEqual_proc();
EXEC SQL ROLLBACK WORK RELEASE;

11-88 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Get DIRECTORY Alias and Filename

Get DIRECTORY Alias and Filename

Figure 11-28 Use Case Diagram: Get DIRECTORY Alias and Filename

External LOBs I . GET Directory Alias and Filename

¥/

X

User/
Program

GET Directory
Alias and
Filename

Initialize
ORI\ a BFILE locator,

<.

Specify
->(BFILE name

See Also: "Use Case Model: External LOBs (BFILEs)" on
page 11-2 for all basic operations of External LOBs (BFILES).

Purpose

External LOBs (BFILEs) 11-89

Get DIRECTORY Alias and Filename

This procedure describes how to get DIRECTORYalias and filename.

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:
« C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,
"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,
"Embedded SQL Statements and Directives" — LOB DESCRIBE ...GET
DIRECTORY ...
Scenario

This example retrieves the DIRECTORY alias and filename related to the BFILE , Music .

The examples are provided in the following six programmatic environments:

« C/C++ (Pro*C/C++): Get Directory Alias and Filename on page 11-90

CIC++ (Pro*C/C++): Get Directory Alias and Filename

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglermm.sglenml, sglca.sglerm.salenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

11-90 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

Get DIRECTORY Alias and Filename

void getBFILEDirectoryAndFilename_proc()
{
OCIBFieLocator *Lob loc;
char Directory[31], Flename[255];
/* Datatype Equivalencing is Optional: %/
EXEC SQL VAR Directory IS STRING;
EXEC SQL VAR Fiename IS STRING;
EXEC SQL WHENEVER SQLERROR DO Sample_Ernor();
EXEC SQL ALLOCATE :Lob loc;

/*Select the BFILE: %
EXEC SQL SELECT Photo INTO :Laob_loc
FROM Mulimedia_tab WHERE Clip ID=3;
#Openthe BFILE: %/
EXEC SQL LOB OPEN :Lob _loc READ ONLY;
/*Getthe Directory Alias and Filename: %/
EXEC SQL LOB DESCRIBE :Lob_loc
GET DIRECTORY, FILENAME INTO :Directory, :Filename;

/*Close the BFILE: %

EXEC SQL LOB CLOSE :Lab _loc;
printf('Directory Alias; %6s\n", Directory);
printf('Flename: %s\n", Flename);

/* Release resources held by the locator: %
EXEC SQL FREE :Lob loc;

}

void main()

{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
getBFILEDirectoryAndFilename_proc();
EXEC SQL ROLLBACK WORK RELEASE;

External LOBs (BFILEs) 11-91

Three Ways to Update a Row Containing a BFILE

Three Ways to Update a Row Containing a BFILE

Figure 11-29 Use Case Diagram: Three Ways to Update a Row Containing a BFILE

External LOBs I . UPDATE a BFILE with a different OS File

________ A e UPDATE a BFILE with a different OS File Using
BFILENAME()

3|

User/
Program

L]

| = === - @I UPDATE a BFILE with a different OS File as SELECT

UPDATE

: I UPDATE a BFILE with a different OS File by
a(ﬁfl? ILOESV\IIZTIZa - ‘|A G Initializing a BFILE Locator

See Also: "Use Case Model: External LOBs (BFILES)" on
page 11-2 for all basic operations of External LOBs (BFILES).

Note that you must initialize the BFILE either to NULL or to a directory alias and
filename.
a. UPDATE a BFILE Using BFILENAME() on page 11-93
b. UPDATE a BFILE by Selecting a BFILE From Another Table on page 11-96
c. UPDATE a BFILE by Initializing a BFILE Locator on page 11-98

11-92 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

UPDATE a BFILE Using BFILENAME()

UPDATE a BFILE Using BFILENAME()

Figure 11-30 Use Case Diagram: UPDATE a BFILE Using BFILENAME()

- | Update a BFILE
Sl I | with adit. os File | — ©

X

User/
Program

L

UPDATE
a BFILE with &
diff. OS file

UPDATE a BFILE with a different OS File
- Using BFILENAME()

A eSS EEE S NSNS SRR S S S EE RS S SRS S EEEEEEEEEEE

Y

See Also: "Use Case Model: External LOBs (BFILES)" on
page 11-2 for all basic operations of External LOBs (BFILES).

Usage Notes

External LOBs (BFILEs) 11-93

UPDATE a BFILE Using BFILENAME()

Syntax

BFILENAME() Function

The BFILENAME) function can be called as part of SQL INSERT or UPDATEoO
initialize a BFILE column or attribute for a particular row by associating it with a
physical file in the server’s filesystem.

The DIRECTORYobject represented by the directory alias parameter to this
function need not already be defined using SQL DDL before the BFILENAME()
function is called in SQL DML or a PL/SQL program. However, the directory object
and operating system file must exist by the time you actually use the BFILE locator
(for example, as having been used as a parameter to an operation such as
OCILobFileOpen() ,DBMS_LOBILEOPEN() , OClILobOpen() , or DBMS_
LOBOPENY()) .

Note that BFILENAME) does not validate privileges on this DIRECTORYobject, or
check if the physical directory that the DIRECTORYobject represents actually exists.
These checks are performed only during file access using the BFILE locator that
was initialized by the BFILENAME) function.

You can use BFILENAME) as part of a SQL INSERT and UPDATEstatement to
initialize a BFILE column. You can also use it to initialize a BFILE locator variable
in a PL/SQL program, and use that locator for file operations. However, if the
corresponding directory alias and/or filename does not exist, then PL/SQL DBMS _
LOBroutines that use this variable will generate errors.

The directory_alias parameter in the BFILENAME) function must be specified
taking case-sensitivity of the directory name into consideration.

Syntax

FUNCTION BFILENAME(directory_alias IN VARCHAR2,
flename IN VARCHAR2)
RETURN BFILE;

See Also: "DIRECTORY Name Specification" on page 11-8 for
information about the use of uppercase letters in the directory
name, and OCILobFileSetName () in Oracle Call Interface
Programmer’s Guide for an equivalent OCI based routine.

Use the following syntax references:

« SQL (Oracle8i SQL Reference):Chapter 7, "SQL Statements" — UPDATE. Chapter
4, "Functions" — BFILENAME()

11-94 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

UPDATE a BFILE Using BFILENAME()

Scenario
This example updates Mulimedia_tab by means of the BFILENAMEfunction.

Examples

The example is provided in SQL syntax and applies to all programmatic
environments:

« SQL: Update a BFILE by means of BFILENAME() on page 11-95

SQL: Update a BFILE by means of BFILENAME()

UPDATE Mulimedia_tab
SET Photo = BFILENAME(PHOTO_DIR', 'Nixon_photo’) where Clip ID=3;

External LOBs (BFILEs) 11-95

UPDATE a BFILE by Selecting a BFILE From Another Table

UPDATE a BFILE by Selecting a BFILE From Another Table

Figure 11-31 Use Case Diagram: UPDATE a BFILE by Selecting a BFILE From

Another Table

External LOBs

Update a BFILE
with a diff. OS File I @

X

User/
Program

L

UPDATE

diff. OS File

a BFILE with a

- |A (@ UPDATE a BFILE with a different OS File as SELECT

See Also: "Use Case Model: External LOBs (BFILEs)" on
page 11-2 for all basic operations of External LOBs (BFILES).

Purpose

This procedure describes how to UPDATE a BFILE by selecting a BFILE from

another table.

Usage Notes

There is no copy function for BFILE s, so you have to use UPDATEas SELECTif you
want to copy a BFILE from one location to another. Because BFILE s use reference
semantics instead of copy semantics, only the BFILE locator is copied from one row
to another row. This means that you cannot make a copy of an external LOBvalue
without issuing an operating system command to copy the operating system file.

Syntax

Use the following syntax references:

11-96 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

UPDATE a BFILE by Selecting a BFILE From Another Table

« SQL (Oracle8i SQL Reference), Chapter 7, "SQL Statements" — UPDATE

Scenario

This example updates the table, Voiceover tab by selecting from the archival storage
table, VoiceoverLib_tab./

Examples
The example is provided in SQL and applies to all programmatic environments;

« SQL: Update a BFILE by Selecting a BFILE From Another Table on page 11-97

SQL: Update a BFILE by Selecting a BFILE From Another Table

UPDATE Voiceover_tab
SET (originator,script,actor,take recording) =
(SELECT * FROM VoiceoverLib_tab VLtab WHERE VL tab.Take = 101);

External LOBs (BFILEs) 11-97

UPDATE a BFILE by Initializing a BFILE Locator

UPDATE a BFILE by Initializing a BFILE Locator

Figure 11-32 Use Case Diagram: UPDATE a BFILE by Initializing a BFILE Locator

with a diff. OS File

External LOBs I i Update a BFILE I —> O

X

User/
Program

L]

UPDATE
a BFILE with a
diff. OS File

UPDATE a BFILE with a different OS File by
"~ T Initializing a BFILE Locator

Initialize
a BFILE locator <--

OCILOBFileSet
NAME()

See Also: "Use Case Model: External LOBs (BFILEs)" on
page 11-2 for all basic operations of External LOBs (BFILES).

Purpose

11-98 Oracle8i Application Developer’'s Guide - Large Objects (LOBS)

UPDATE a BFILE by Initializing a BFILE Locator

Usage Notes

Syntax

Scenario

This procedure describes how to UPDATE a BFILE by initializing a BFILE locator.

You must initialize the BFILE locator bind variable to a directory alias and filename
before issuing the update statement.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,
"Large Objects (LOBs)", "LOB Statements", usage notes. Appendix F,
"Embedded SQL Statements and Directives". See also (Oracle8i SQL Reference),
Chapter 7, "'SQL Statements" — UPDATE

Not applicable.

The examples are provided in six programmatic environments:

« C/C++ (Pro*C/C++): Update a BFILE by Initializing a BFILE Locator on
page 11-99

C/C++ (Pro*C/C++): Update a BFILE by Initializing a BFILE Locator

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglenm.sglenml, sgica.sglemm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

External LOBs (BFILEs) 11-99

UPDATE a BFILE by Initializing a BFILE Locator

void updateUseBindVariable_proc(Lob_loc)

OCIBFileLocator*Lob _loc;
{

EXEC SQL WHENEVER SQLERROR DO Sample_Error();

EXEC SQL UPDATE Muttimedia._tab SET Photo =:Lob_loc WHERE Clip_ID =3;
}

void updateBFILE._proc()

{
OCIBFieLocator *Lob loc;

EXEC SQL ALLOCATE :Lob_loc;
EXEC SQL SELECT Photo INTO :Laob_loc
FROM Mulimedia_tab WHERE Clip_ID=1;
updateUseBindVariable_proc(Lob_loc);
EXEC SQL FREE :Lob _loc;
}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
updateBFILE._proc();
EXEC SQL ROLLBACK WORK RELEASE;

11-100 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Two Ways to Close a BFILE

Two Ways to Close a BFILE

Figure 11-33 Use Case Diagram: Two Ways to Close a BFILE

External LOBs I . CLOSE the BFILE

open
pemnennees > aBFILE

x

User/
Program

v

CLOSE
the BFILE

Initialize
a BFILE locator

See Also: "Use Case Model: External LOBs (BFILES)" on
page 11-2 for all basic operations of External LOBs (BFILES).

External LOBs (BFILEs) 11-101

Two Ways to Close a BFILE

As you can see by comparing the code, these alternative methods are very similar.
However, while you can continue to use the older FILECLOSE form, we strongly

recommend that you switch to using CLOSE because this facilitates future
extensibility.

a. Close a BFILE with FILECLOSE on page 11-103
b. Close a BFILE with CLOSE on page 11-105

11-102 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Close a BFILE with FILECLOSE

Close a BFILE with FILECLOSE

Purpose

Figure 11-34 Use Case Diagram: Close a BFILE with FILECLOSE

External LOBS I: CLOSE the BFILE I — 0

Y%

OR\ a BFILE locator,

open
>\ aBFILE

CLOSE © Close the BFILE

Initialize < o the BFILE with FILECLOSE

R

User/
Program

close all

Specify
opened files

BFILE name

See Also: "Use Case Model: External LOBs (BFILES)" on
page 11-2 for all basic operations of External LOBs (BFILES).

This procedure describes how to close a BFILE with FILECLOSE.

External LOBs (BFILEs) 11-103

Close a BFILE with FILECLOSE

Usage Notes
Not applicable.

Syntax
See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:
« C/C++ (Pro*C/C++): A syntax reference is not applicable in this release.
Scenario

While you can continue to use the older FILECLOSE form, we strongly recommend
that you switch to using CLOSE because this facilitate future extensibility. This
example can be read in conjunction with the example of opening a BFILE .

« C/C++ (Pro*C/C++): No example is provided with this release.

11-104 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Close a BFILE with CLOSE

Close a BFILE with CLOSE

Figure 11-35 Use Case Diagram: Close an Open BFILE with CLOSE

External LOBS I :

CLOSE the BFILE I — 0

ORI\ a BFILE locator

->\ BFILE name

Initialize

Specify

open
“>{ aBFILE

@ close the BFILE
with CLOSE

CLOSE
the BFILE

X

User/
Program

close all
opened files

Purpose

See Also:

"Use Case Model: External LOBs (BFILESs)" on

page 11-2 for all basic operations of External LOBs (BFILES).

This procedure describes how to close a BFILE with CLOSE.

External LOBs (BFILEs) 11-105

Close a BFILE with CLOSE

Usage Notes
Not applicable.

Syntax

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,
"Large Objects (LOBs)", "LOB Statements”, usage notes. Appendix F,
"Embedded SQL Statements and Directives” — LOB CLOSE

Scenario

This example should be read in conjunction with the example of opening a BFILE
— in this case, closing the BFILE associated with Lincoln_photo

Examples
« C/C++ (Pro*C/C++): Close a BFile with CLOSE on page 11-106

C/C++ (Pro*C/C++): Close a BFile with CLOSE

/#* Pro*C/C++ has only one form of CLOSE for BFILEs. Pro*C/C++ has no
FILE CLOSE statement. A simple CLOSE statement is used instead: %/

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglenm.sglenml, sgica.sglenm.sglenmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(L);

}

void closeBFILE_proc()

{
OCIBFileLocator*Lob _loc;

char*Dir="PHOTO_DIR", *Name ="Lincoln_photo";

11-106 Oracle8i Application Developer's Guide - Large Objects (LOBS)

Close a BFILE with CLOSE

EXEC SQL WHENEVER SQLERROR DO Sample_Ernor();

EXEC SQL ALLOCATE :Lob loc;

EXEC SQL LOB FILE SET :Lob_loc DIRECTORY = :Dir, FILENAME =:Name;
EXEC SQL LOB OPEN :Lob_loc READ ONLY;

/*... Do some processing %/

EXEC SQL LOB CLOSE :Lab _loc;

EXEC SQL FREE :Lob loc;

}

void main()
{
char *samp ="samp/samp";
EXEC SQL CONNECT :samp;
closeBFILE_proc();
EXEC SQL ROLLBACK WORK RELEASE;

}

External LOBs (BFILEs) 11-107

Close All Open BFILEs

Close All Open BFILEs

Figure 11-36 Use Case Diagram: Close All Open BFILEs

External LOBs I . CLOSE All Opened Files

v

X

User/
Program

Initialize
ORI\ a BFILE locator

<eeeen

CLOSE All

Specify
Opened Files

->| BFILE name

See Also: "Use Case Model: External LOBs (BFILES)" on
page 11-2 for all basic operations of External LOBs (BFILES).

It is the user’s responsibility to close any opened file(s) after normal or abnormal
termination of a PL/SQL program block or OCI program. So, for instance, for every

11-108 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

Close All Open BFILEs

Purpose

Usage Notes

Syntax

Scenario

Examples

DBMS_LOBILEOPEN() or DBMS_LOBOPEN() call on a BFILE , there must be a
matching DBMS_LOBILECLOSE() or DBMS_LOELOSE() call. You should close
open files before the termination of a PL/SQL block or OCI program, and also in
situations which have raised errors. The exception handler should make provisions
to close any files that were opened before the occurrence of the exception or
abnormal termination.

If this is not done, Oracle will consider these files unclosed.

See Also: "Specify the Maximum Number of Open BFILEs:
SESSION_MAX_OPEN_FILES" on page 11-43

This procedure describes how to close all BFILEs.

Not applicable.

See Chapter 3, "LOB Programmatic Environments" for a list of available functions in
each programmatic environment. Use the following syntax references for each
programmatic environment:

« C/C++ (Pro*C/C++) (Pro*C/C++ Precompiler Programmer’s Guide): Chapter 16,
"Large Objects (LOBs)", "LOB Statements”, usage notes. Appendix F,
"Embedded SQL Statements and Directives" — LOB FILE CLOSE ALL

» C/C++ (Pro*C/C++): Close All Open BFiles on page 11-109

CIC++ (Pro*C/C++): Close All Open BFiles

#include <oci.h>
#include <stdio.h>
#include <sglca.h>

External LOBs (BFILEs) 11-109

Close All Open BFILEs

void Sample_Error()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf('%.*s\n", sglca.sglemm.sglenm, sglca.sglemm.saglenrmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);

}

void closeAllOpenBFILEs _proc()

{
OCIBFileLocator *Lob_loc1,*Lob loc2;

EXEC SQL WHENEVER SQLERROR DO Sample_Error();

EXEC SQL ALLOCATE :Lob _loci;

EXEC SQL ALLOCATE :Lob _loc2;

/*Populate the Locators: %/

EXEC SQL SELECT Music INTO :Lob_locl
FROM Mulimedia_tab WHERE Clip_ID=3;

EXEC SQL SELECT Mtab.Voiced_refRecording INTO Lob_loc2
FROM Mulimedia_tab Mtab WHERE Mtab.Clip ID=3;

/*Open both BFILESs: %/

EXEC SQL LOB OPEN :Lob _locl READ ONLY;

EXEC SQL LOB OPEN :Lob_loc2 READ ONLY;

/*Close all open BFILEs: %/

EXEC SQL LOB FILE CLOSE ALL;

/* Free resources held by the Locators: %

EXEC SQL FREE :Lob locl;

EXEC SQL FREE :Lob _loc2;

}

void main()
{
char *samp ="samp/samp”;
EXEC SQL CONNECT :samp;
closeAllOpenBFILEs_proc();
EXEC SQL ROLLBACK WORK RELEASE;

11-110 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

DELETE the Row of a Table Containing a BFILE

DELETE the Row of a Table Containing a BFILE

Figure 11-37 Use Case Diagram: DELETE the Row of a Table Containing a BFILE

External LOBs I . DELETE the Row

X

User/
Program

DELETE
the Row

See Also: "Use Case Model: External LOBs (BFILES)" on
page 11-2 for all basic operations of External LOBs (BFILES).

Purpose
This procedure describes how to DELETE the row of a table containing a BFILE.

Usage Notes

Unlike internal persistent LOBs, the LOBvalue in a BFILE does not get deleted by
using SQL DDL or SQL DML commands — only the BFILE locator is deleted.
Deletion of a record containing a BFILE column amounts to de-linking that record
from an existing file, not deleting the physical operating system file itself. An SQL
DELETEstatement on a particular row deletes the BFILE locator for the particular
row, thereby removing the reference to the operating system file.

External LOBs (BFILEs) 11-111

DELETE the Row of a Table Containing a BFILE

Syntax
See the following syntax reference:
« SQL (Oracle8i SQL Reference), Chapter 7, "SQL Statements" — DELETE, DROP,

TRUNCATE

Scenario
The following DELETE DROP TABLEor TRUNCATE TABLEtatements delete the
row, and hence the BFILE locator that refers to Imagel .gif , but leave the
operating system file undeleted in the filesystem.

Examples

The following examples are provided in SQL and apply to all programmatic
environments:

« "SQL.: Delete a Row from a Table"

SQL: Delete a Row from a Table

DELETE

DELETE FROM Mutimedia. tab
WHERE Cip_ID=3;

DROP
DROP TABLE Multimedia_tab;

TRUNCATE
TRUNCATE TABLE Multimedia_tab;

11-112 Oracle8i Application Developer's Guide - Large Objects (LOBSs)

A

accessing external LOBs, 11-5
amount parameter
reading and loading LOB data, the size of, 6-4
used with BFILEs, 11-39
ANSI standard for LOBs, 10-11
appending
one LOB to another
internal persistent LOBs, 9-92
one temporary LOB to another, 10-72
write appending to a LOB
internal persistent LOBs, 9-96

assigning
one collection to another collection in temporary
LOBs, 10-12

one temporary LOB to another, 10-11

B

BFILENAME(), 11-24,11-94
advantages of using, 11-7

BFILEs
accessing, 11-5
closing, 11-101
converting to CLOB or NCLOB, 11-39
creating an object in object cache, 5-20
datatype, 2-2,2-3
equal locators, check for, 11-86
initializing using BFILENAME(), 2-6
locators, 2-5
maximum number of open, 4-2,11-77
multi-threaded server (MTS), 11-12
Pro*C/C++ precompiler statements, 3-8

Index

read-only support, 4-16
reference semantics, 2-3
security, 11-8,11-9
storage devices, 2-2
using Pro*C/C++ precompiler to open and
close, 3-9
binding data to internal LOBs, restriction
removal, 4-17
binds
HEX to RAW or RAW to HEX conversion, 7-16
updating more than 4,000 bytes
internal persistent LOBs, 9-125
See also INSERT statements and UPDATE

statements
BLOBs
datatype, 2-2
buffering
disable
internal persistent LOBs, 9-121
enable
internal persistent LOBs, 9-113
flush

internal persistent LOBs, 9-117

C

C++, See Pro*C/C++ precompiler
C, See OCI

CACHE / NOCACHE, 7-8
caches

object cache, 5-20
callback, 9-46, 9-50, 9-60, 9-97, 10-81
catalog views

v$temporary_lobs, 10-13

Index-1

character data
varying width, 2-4
character set form
getting
internal persistent LOBs, 9-90
character set ID
getting the
internal persistent LOBs, 9-88
temporary LOB of, getting the, 10-68
checking ina LOB
internal persistent LOBs, 9-49
checking out a LOB
internal persistent LOBs, 9-45
CHUNK, 7-10
chunksize, 9-101
multiple of, to improve performance, 9-60
CLOBs
columns
varying- width character data, 2-4
datatype, 2-2
varying-width columns, 2-4
varying-width, 2-4
closing
all open BFILEs, 11-108
BFILEs, 11-101
BFILEs with CLOSE, 11-105
BFILEs with FILECLOSE, 11-103
COBOL, See Pro*COBOL precompiler
code
example programs, 1-5
list of demonstration programs, 1-5
comparing
all or part of two LOBs
internal persistent LOBs, 9-67
all or part of two temporary LOBs, 10-42
all or parts of two BFILEs, 11-66
compatibility, 1-5
conversions
character set, 11-39
character set conversions needed on BFILE before
using LOADFROMFILE(), 10-24
from binary data to character set, 11-39
See also binds HEX to RAW
converting to LOB data types, 6-3
copy semantics, 2-3

Index-2

internal LOBs, 9-26
copying
all or part of a LOB to another LOB
internal persistent LOBs, 9-76
all or part of one temporary LOB to
another, 10-54
for BFILEs there is no copy function, 11-96
LOB locator
internal persistent LOBs, 9-79
LOB locator for BFILE, 11-80
LONG to LOB, 6-3,9-40
temporary LOB locator, 10-58
TO_LOB limitations, 9-41
creating a temporary LOB, 10-14
creating tables
containing an object type with LOB attribute
internal Persistent LOBs, 9-13
containing BFILEs, 11-14
containing one or more LOB columns
internal persistent LOBs, 9-8
containing one ore more BFILE columns, 11-15
nested, containing LOB
internal persistent LOBs, 9-18
of an object type with BFILE attribute, 11-18
with a nested table containing a BFILE, 11-21
creating VARRAYs
containing references to LOBs, 5-32

D

datatypes
converting to LOBs FAQ, 6-3
DBMS_LOB
WRITE()
passing hexadecimal string to, 9-102
DBMS_L OB package
available LOB procedures/functions, 3-3
LOADFROMFILE(), 11-39
multi-threaded server (MTS), 11-12
WRITE()
guidelines, 9-102
guidelines for temporary LOBs, 10-81
passing hexadecimal string to, 10-81
DBMS_LOB()
READ, 9-59

deleting
row containing LOB
internal persistent LOBs, 9-135
demonstration programs, 1-5
directories
catalog views, 11-10
guidelines for usage, 11-11
ownership and privileges, 11-9
DIRECTORY name specification, 11-8
DIRECTORY object, 11-5
catalog views, 11-10
getting the alias and filename, 11-89
guidelines for usage, 11-11
names on WindowsNT, 11-8
naming convention, 11-8
OS file must exist before locator use, and, 11-25
READ permission on object not individual
files, 11-9
directory objects, 11-5
directory_alias parameter, 11-26
disable buffering, See LOB buffering
disk striping of LOB files, 8-3
displaying
LOB data for internal persistent LOBs, 9-54
temporary LOB data, 10-29
downgrading to 8.0 or 8.1.5, using CACHE READS
LOBs, 4-16

E

embedded SQL statements, See Pro*C/C++
precompiler and Pro*COBOL precompiler

EMPTY_BLOB()/EMPTY_CLOB()

when to use FAQ, 6-7
EMPTY_CLOB()/BLOB()

to initialize a BFILE, 2-6

to initialize internal LOB
equal

one LOB locator to another

internal persistent LOBs, 9-82

one temporary LOB locator, to another, 10-61
equal locators

checking if one BFILE LOB locator equals

another, 11-86

erasing

part of LOB
internal persistent LOBs, 9-110
part of temporary LOBs, 10-90
examples
demonstration programs, 1-5
read consistent locators, 5-3
repercussions of mixing SQL DML with
DBMS_LOB, 5-6
updated LOB locators, 5-8
updating a LOB with a PL/SQL variable, 5-10
existance
check for BFILE, 11-74
external callout, 5-26
external LOBs (BFILES)
See BFILEs
external LOBs (BFILEs), See BFILEs

F

FILECLOSEALL(), 11-11,11-43,11-50
flushing buffer, 5-21

temporary LOB, 10-97
FOR UPDATE clause

LOBs, 2-7

LOBs locator, 5-2
freeing

temporary LOBs, 10-20
FREETEMPORARY(), 10-20

H

hexadecimal string
passing to DBMS_LOB.WRITE(), 9-102, 10-81

index-organized tables
inline storage for LOBs and, 6-6
initialized
checking if BFILE LOB locator is, 11-83
initializing
BFILE column or locator variable using
BFILENAME(), 11-25
BLOB attribute using EMPTY_BLOB() FAQ, 6-8
during CREATE TABLE or INSERT, 9-24

Index-3

external LOBs, 2-6
internal LOBs, See LOBs
internal LOBs
using EMPTY_CLOB(), EMPTY_BLOB()
INSERT statements
binds of greater than 4000 bytes, 7-16
inserting
a row by initializing a LOB locator
internal persistent LOBs, 9-28
arow by initializing BFILE locator, 11-31
a row by selecting a LOB from another table
internal persistent LOBs, 9-26
arow containing a BFILE, 11-23
a row containing a BFILE by selecting BFILE
from another table, 11-29
arow using BFILENAME(), 11-24
binds of more than 4,000 bytes, 9-22
LOB value using EMPTY_CLOB()/
EMPTY_BLOB()
internal persistent LOBs, 9-23
one or more LOB values into a row, 9-21
interfaces for LOBs, see programmatic environments

J

Java, See JDBC

JDBC
available LOB methods/properties, 3-3
inserting a row with empty LOB locator into

table, 6-8

JPublisher
building an empty LOB in, 6-9

L

LBSLOB Buffering Subsystem (LBS)

length

an internal persistent LOB, 9-73
getting BFILE, 11-77
temporary LOB, 10-50
LOADFROMFILE()
BFILE character set conversions needed before
using, 10-24
loading
a LOB with BFILE data, 11-38

Index-4

data into internal LOB, 9-31
external LOB (BFILE) data into table, 11-34
LOB with data from a BFILE, 9-33
temporary LOB with data from BFILE, 10-23
LOB, 5-13
LOB buffering
buffer-enabled locators, 5-27
disable for temporaryLOBs, 10-100
example, 5-24
flushing for temporary LOBs, 10-97
flushing the buffer, 5-25
flushing the updated LOB through LBS, 5-26
guidelines, 5-21
OCl example, 5-28
OCILobFlushBuffer(), 5-26
physical structure of buffer, 5-23
Pro*C/C++ precompiler statements, 3-9
temporary LOBs
CACHE, NOCACHE, CACHE READS, 10-9
usage notes, 5-23
LOB Buffering SubSystem (LBS)
LOB Buffering Subsystem (LBS)
advantages, 5-21
buffer-enabled locators, 5-26
buffering example using OCI, 5-28
example, 5-24
flushing the buffer, 5-25
flushing the updated LOB, 5-26
guidelines, 5-21
saving the state of locator to avoid reselect, 5-27
usage, 5-23
LOB locator
copy semantics, 2-3
external LOBs (BFILEs), 2-3
internal LOBs, 2-3
reference semantics, 2-3
LOBs, 5-20
accessing through a locator, 2-7
attributes and object cache, 5-20
buffering
caveats, 5-21
pages can be aged out, 5-26
buffering subsystem, 5-21
buffering usage notes, 5-23
compatibility, 1-5

datatypes versus LONG, 1-3
external (BFILEs), 2-2
flushing, 5-21
in partitioned tables, 7-29
in the object cache, 5-20
inline storage, 2-5
interfaces, See programmatic environments
interMEDIA, 1-4
internal
creating an object in object cache, 5-20
internal LOBs
CACHE /7 NOCACHE, 7-8
CHUNK, 7-10
copy semantics, 2-3
ENABLE | DISABLE STORAGE IN

ROW, 7-11
initializing, 11-59
locators, 2-5

locking before updating, 9-77, 9-93, 9-97,
9-101, 9-107, 9-111
LOGGING / NOLOGGING, 7-9
PCTVERSION, 7-7
setting to empty, 2-9
tablespace and LOB index, 7-7
tablespace and storage characteristics, 7-5
transactions, 2-2
locators, 2-5, 5-2
cannot span transactions, 7-15
migration issues, 1-5
object cache, 5-20
performance, best practices, 7-37
performing SELECT on, 2-7
piecewise operations, 5-6
read consistent locators, 5-2
reason for using, 1-2
setting to contain a locator, 2-5
setting to NULL, 2-8
tables
adding partitions, 7-34
creating, 7-31
creating indexes, 7-33
exchanging partitions, 7-33
merging partitions, 7-34
moving partitions, 7-34
partitioning, 7-31

splitting partitions, 7-34
typical uses, 8-2
unstructured data, 1-2
updated LOB locators, 5-5
value, 2-5
varying-width character data, 7-3
locators, 2-5
accessing a LOB through, 2-7
BFILEs, 11-12
guidelines, 11-12
two rows can refer to the same file, 11-12
buffer-enabled, 5-27
cannot span transactions, 7-15
copying temporary LOB, 10-58
external LOBs (BFILEs), 2-5
initializing LOB or BFILE to contain, 2-6
LOB, cannot span transactions, 5-13
multiple, 5-2
read consistent, 5-2, 5-3, 5-10, 5-13, 5-25, 5-28,
5-29, 5-30
read consistent locators, 5-2
read consistent locators provide same LOB value
regardless when SELECT occurs, 5-3
reading and writing to a LOB using, 5-16
saving the state to avoid reselect, 5-27
see if LOB locator is initialized
internal persistent LOBs, 9-85
selecting, 2-7
setting column or attribute to contain, 2-5
temporary, SELECT permanent LOB
INTO, 10-10
transaction boundaries, 5-16
updated, 5-2,5-5, 5-10, 5-13, 5-25
LOGGING / NOLOGGING, 7-9
LONG versus LOB datatypes, 1-3

M

migration, 1-5

multimedia
content-collection, 8-2

Multimedia_tab, 9-1
table structure, 8-5

multi-threaded server (MTS)
BFILEs, 11-12

Index-5

N

national language support
NCLOBs, 2-2
NCLOBs
datatype, 2-2
varying-width, 2-4
NOCOPY restrictions, 10-13
non-NULL
before writing to LOB column make it
internal persistent LOBs, 9-128

O

object cache, 5-20
creating an object in, 5-20

LOBs, 5-20
object-relational design, 8-4
OClI

available LOB functions, 3-3

buffering example, 5-28

locators, 2-7

temporary lobs can be grouped into logical

buckets, 10-9

using to work LOBs, 3-6
OCIBindByName(), 7-16
OCIBindByPos(), 7-16
OClDuration(), 10-9
OClIDurationEnd(), 10-9, 10-20
OClILobAssign(), 5-22,10-11
OCILobFileSetName(), 11-7,11-13
OCILobFlushBuffer(), 5-26
OCILOBFreeTemporary(), 10-20
OCIlLobGetLength(), 11-60
OCIlLobLoadFromFile(), 11-40
OCIlLobRead(), 9-55,9-59, 10-34, 11-60

amount, 6-6

to read large amounts of LOB data, 9-46
OCILobWrite(), 10-81

to write large amounts of LOB data, 9-50
OCIlLobWriteAppend(), 9-97
OCIObjectFlush(), 11-13
OCIlObjectNew(), 11-13
OCISetAttr(), 11-13
0040, See Oracle Objects for OLE (O040)

Index-6

open
checking for open BFILEs, 11-49
checking for open BFILEs with
FILEISOPEN(), 11-51
checking if BFILE is open with ISOPEN, 11-53
checking if temporary LOB is, 10-26
seeing if a LOB is open, 9-37
opening
BFILEs, 11-42
BFILEs using FILEOPEN, 11-44
BFILEs with OPEN, 11-46
Oracle Call Interface, See OCI
Oracle Objects for OLE (O040)
available LOB methods/properties, 3-3

P

pattern
check if it exists in BFILE using instr, 11-70
see if it exists IN LOB using (instr)
internal persistent LOBs, 9-70
temporary LOBs
checking if it exists, 10-46
PCTVERSION, 7-7
performance
assigning multiple locators to same temporary
LOB, impacts, 10-11
PL/SQL, 3-2
PL/SQL procedures
client-side cannot call DBMS_LOB, 4-16
polling, 9-46, 9-50, 9-60, 9-97, 10-81
Pro*C/C++ precompiler
available LOB functions, 3-3
LOB buffering, 3-9
locators, 3-8
modifying internal LOB values, 3-7
opening and closing internal LOBs and external
LOBs (BFILEs), 3-9
providing an allocated input locator
pointer, 3-6
reading or examining internal and external LOB
values, 3-7
statements for BFILEs, 3-8
statements for temporary LOBs, 3-8
Pro*COBOL precompiler

available LOB functions, 3-3

programmatic environments, 3-2
available functions, 3-3
compared, 3-3

R

read consistency
LOBs, 5-2
read consistent locators, 5-2, 5-3, 5-10, 5-13, 5-25,
5-28, 5-29, 5-30
reading
BFILES
specify 4 Gb-1 regardless of LOB, 11-60
data fom temporary LOB, 10-33
data from a LOB
internal persistent LOBs, 9-58
large amounts of LOB data using
streaming, 9-46
portion of BFILE data using substr, 11-63
portion of LOB using substr
internal persistent LOBs, 9-63
portion of temporary LOB, 10-38
small amounts of data,enable buffering, 9-114
reference semantics, 2-3, 9-26
BFILEs enables multiple BFILE columns per
record, 11-7
restrictions
binding of data, removed for INSERTS and
UPDATES, 4-17
binds of more than 4000 bytes, 7-18
roundtrips to the server, avoiding, 5-21, 5-28

S

sample programs, 1-5
security
BFILEs, 11-8,11-9
BFILEs using SQL DDL, 11-10
BFILEs using SQL DML, 11-10
SELECT statement
FOR UPDATE, 2-7
read consistency, 5-2
selecting a permanent LOB INTO a temporary LOB
locator, 10-10

semantics

copy-based for internal LOBs, 9-26

pseudo-reference, 10-11

reference based for BFILEs, 11-7

value, 10-11
SESSION_MAX_OPEN_FILES parameter, 4-2,

11-43, 11-49

setData

setting to EMPTY_BLOB() using JPublisher, 6-9
setting

internal LOBs to empty, 2-9

LOBs to NULL, 2-8

SQL DDL

BFILE security, 11-10
SQL DML

BFILE security, 11-10
SQL Loader

loading InLine LOB data, 4-7
performance for internal LOBs, 4-6

stream
reading
temporary LOBs, 10-34
writing, 10-81

streaming, 9-50, 9-55
do not enable buffering, when using, 9-114
write, 9-101

system owned object, See DIRECTORY object

T

tablespace

temporary, 10-9

temporary LOB data stored in temporary, 10-8
temporary LOBs

character set ID, 10-68

checking if LOB is temporary, 10-17

data stored in temporary tablespace, 10-8

disable buffering

explcitly freeing before overwriting it with

permanent LOB locator, 10-10

features, 10-11

inline and out-of-line not used, 10-8

lifetime and duration, 10-9

locators can be IN values, 10-7

locators operate as with permanent LOBs, 10-7

Index-7

memory handling, 10-9
OCl and logical buckets, 10-9
performance, 10-11
Pro*C/C++ precompiler embedded SQL
statements, 3-8
reside on server not client, 10-9
similar functions used to permanent LOBs, 10-8
SQL DML does not operate on, 10-7
transactions and consistent reads not
suuported, 10-8
trimming, 10-86
write append to, 10-76
temporary tablespace
for binds of more than 4000 bytes, 7-16
TO_LOB
limitations, 9-41
transaction boundaries
LOB locators, 5-16
transactions
external LOBs do not participate in, 2-3
IDs of locators, 5-16
internal LOBs participate fully, 2-2
LOB locators cannot span, 5-13
LOBs locators cannot span, 7-15
locators with non-serializable, 5-16
locators with serializable, 5-16
migrating from, 5-26

triggers
LOB columns with, how to tell when
updated, 6-4
trimming
LOB data

internal persistent LOBs, 9-106
temporary LOB data, 10-86

U

unstructured data, 1-2
UPDATE statements
binds of greater than 4000 bytes, 7-16
updated locators, 5-2, 5-5, 5-10, 5-13, 5-25
updating
arow containing a BFILE, 11-92
avoid the LOB with different locators, 5-8
BFILEs by selecting a BFILE from another

Index-8

table, 11-96
BFILEs using BFILENAME(), 11-93
by initializinga LOB locator bind variable
internal persistent LOBs, 9-132
by selecting a LOB from another table
internal persistent LOBs, 9-130
LOB with PL/SQL bind variable, 5-10
locking before, 9-77
locking prior to, 9-93, 9-107, 9-111
with EMPTY_CLOB()/EMPTY_BLOB()
internal persistent LOBs, 9-127
use cases
full list of internal persistent LOBs, 9-2
how to interpret the diagrams, xxxviii
model, graphic summary of, 9-1

\%

value of LOBs, 2-5
VARRAYSs
LOBS are not supported by, 4-15
See creating VARRAYS
varying-width character data, 2-4
views on DIRECTORY object, 11-10
Visual Basic, See Oracle Objects for OLE(O040)

W

write
streaming, 10-81
write appending
to temporary LOBs, 10-76
writing
datatoa LOB
internal persistent LOBs, 9-100
data to a temporary LOB, 10-80
singly or piecewise, 9-97
small amounts of data, enable buffering, 9-114

	PDF Directory
	Send Us Your Comments
	Preface
	Example of A Use Case Diagram
	Use Cases Diagram Elements

	1 Introduction
	Why Use LOBs?
	Unstructured Data
	Unstructured Data Cannot be Decomposed Into Standard Components
	Unstructured Data is Large
	Unstructured Data in System Files Need Accessing from the Database

	LOB Datatype Helps Support Internet Applications
	Two Type of LOBs Supported

	Why Not Use LONGs?
	LOB Type Columns
	LOB Type Columns Do Not Only Store Locators!

	LOBs Help Control Semantics
	LOBS Enable interMEDIA
	LOB "Demo" Directory
	Location of Demo Directories?

	Compatibility and Migration Issues
	Examples in This Manual Use Multimedia_Tab
	For Further Information

	2 Basic Components
	The LOB Datatype
	Internal LOBs
	Internal LOB Datatypes

	External LOBs (BFILEs)
	External LOB Datatypes

	Internal LOBs Use Reference Semantics, External LOBs Use Copy Semantics
	Copy Semantics
	Reference Semantics

	Varying-Width Character Data
	CLOB, NCLOB Values are Stored Using 2 Byte Unicode for Varying-Width Character Sets

	The LOB Locator
	LOB Value and Locators
	Inline storage of the LOB value
	LOB Locators

	LOB Locator Operations
	Setting the LOB Column/Attribute to Contain a Locator
	Accessing a LOB Through a Locator
	SELECTing a LOB

	Creating Tables that Contain LOBs
	Initializing Internal LOBs to NULL or Empty
	Setting an Internal LOB to NULL
	You Cannot Call OCI or DBMS_LOB Functions on a NULL LOB

	Setting an Internal LOB to Empty
	Example Using Table Multimedia_tab

	Initializing Internal LOB Columns to a Value
	Initializing External LOBs to NULL or a File Name

	3 LOB Programmatic Environments
	Six Programmatic Environments Operate on LOBs
	Comparison of the Six LOB Interfaces
	Using C/C++ (Pro*C) to Work with LOBs
	First Provide an Allocated Input Locator Pointer that Represents LOB
	Pro*C/C++ Statements that Operate on BLOBs, CLObs, NCLOBs, and BFILEs
	Pro*C/C++ Embedded SQL Statements To Modify Internal LOBs (BLOB, CLOB, and NCLOB) Values
	Pro*C/C++ Embedded SQL Statements To Read or Examine Internal and External LOB Values
	Pro*C/C++ Embedded SQL Statements For Temporary LOBs
	Pro*C/C++ Embedded SQL Statements For BFILEs
	Pro*C/C++ Embedded SQL Statements For LOB Locators
	Pro*C/C++ Embedded SQL Statements For LOB Buffering
	Pro*C/C++ Embedded SQL Statements To Open and Close Internal LOBs and External LOBs (BFILEs)

	4 Managing LOBs
	DBA Actions Required Prior to Working with LOBs
	Set Maximum Number of Open BFILEs
	Using SQL DML for Basic Operations on LOBs
	Changing Tablespace Storage for a LOB
	Oracle8 Release 8.0.4.3
	Oracle8i

	Managing Temporary LOBs
	Using SQL Loader to Load LOBs
	LOBFILES

	Loading InLine and Out-Of-Line Data into Internal LOBs Using SQL Loader
	SQL Loader Performance: Loading Into Internal LOBs

	Loading Inline LOB Data
	Loading Inline LOB Data in Predetermined Size Fields
	Control File
	Data File (sample.dat)

	Loading Inline LOB Data in Delimited Fields
	Control File
	Data File (sample1.dat)

	Loading Inline LOB Data in Length-Value Pair Fields
	Control File
	Data File (sample2.dat)

	Loading Out-Of-Line LOB Data
	Loading One LOB Per File
	Control File
	Data File (sample3.dat)
	Secondary Data File (FirstStory.txt)
	Secondary Data File (SecondStory.txt)

	Loading Out-of-Line LOB Data in Predetermined Size Fields
	Control File
	Data File (sample4.dat)
	Secondary Data File (FirstStory1.txt)

	Loading Out-of-Line LOB Data in Delimited Fields
	Control File
	Data File (sample5.dat)
	Secondary Data File (FirstStory2.txt)

	Loading Out-of-Line LOB Data in Length-Value Pair Fields
	Control File
	Data File (sample6.dat)
	Secondary Data File (FirstStory3.txt)

	SQL Loader LOB Loading Tips
	LOB Restrictions
	Removed Restrictions
	Binding More Than 4,000 Bytes of Data

	5 Advanced Topics
	Read-Consistent Locators
	A Selected Locator Becomes a Read Consistent Locator
	Updating LOBs and Read-Consistency
	Example of an Update Using Read Consistent Locators
	Read Consistent Locators Provide Same LOB Value Regardless of When the SELECT Occurs
	Example

	Updated LObs Via Updated Locators
	Example of Updating a LOB Using SQL DML and DBMS_LOB
	Example

	Example of Using One Locator to Update the Same LOB Value
	Example

	Example of Updating a LOB with a PL/SQL (DBMS_LOB) Bind Variable
	Example

	LOB Locators Cannot Span Transactions
	Example of Locator Not Spanning a Transaction

	LOB Locators and Transaction Boundaries
	Locators Contain Transaction IDs When...
	Locators Do Not Contain Transaction IDs When...
	Transaction IDs: Reading and Writing to a LOB Using Locators
	Non-Serializable Example: Selecting the Locator with No Current Transaction
	Case 1:
	Case 2:

	Non-Serializable Example: Selecting the Locator within a Transaction
	Case 3:
	Case 4:

	LOBs in the Object Cache
	LOB Buffering Subsystem
	Advantages of LOB Buffering
	Guidelines for Using LOB Buffering
	LOB Buffering Usage Notes
	LOB Buffer Physical Structure
	Example of Using the LOB Buffering System (LBS)

	Flushing the LOB Buffer
	Flushing the Updated LOB
	Using Buffer-Enabled Locators
	Saving Locator State to Avoid a Reselect
	OCI Example of LOB Buffering

	Creating a Varray Containing References to LOBs
	Example

	6 Frequently Asked Questions
	Converting Data Types to LOB Data Types
	Can I Insert or Update Any Length Data Into a LOB Column?
	Question
	Answer

	Does COPY LONG to LOB Work if Data is > 64K?
	Question
	Answer

	General
	How Do I Determine if the LOB Column with a Trigger is Being Updated?
	Question
	Answer

	Reading and Loading LOB Data: What Should Amount Parameter Size Be?
	Question
	Answer

	Index-Organized Tables (IOTs) and LOBs
	Is Inline Storage Allowed for LOBs in Index-Organized Tables?
	Question
	Answer

	Initializing LOB Locators
	When Do I Use EMPTY_BLOB() and EMPTY_CLOB()?
	Question
	Answer

	How Do I Initialize a BLOB Attribute Using EMPTY_BLOB() in Java?
	Question
	Answer

	JDBC, JPublisher and LOBs
	How Do I Insert a Row With Empty LOB Locator into Table Using JDBC?
	Question
	Answer

	How Do I setData to EMPTY_BLOB() Using JPublisher?
	Question
	Answer

	JDBC: Do OracleBlob and OracleClob Work in 8.1.x?
	Question
	Answer

	How Do I Manipulate LOBs With the 8.1.5 JDBC Thin Driver?
	Question
	Answer

	Is the FOR UPDATE Clause Needed on SELECT When Writing to a LOB?
	Question
	Answer

	Loading LOBs and Data Into LOBs
	How do I Load a 1Mb File into a CLOB Column?
	Question
	Answer

	How Do We Improve BLOB and CLOB Performance When Using JDBC Driver To Load?
	Question
	Answer

	LOB Indexing
	Is LOB Index Created in Same Tablespace as LOB Data?
	Question
	Answer

	Indexing: Why is a BLOB Column Removed on DELETing but not a BFILE Column?
	Question
	Answer

	Which Views Can I Query to Find Out About a LOB Index?
	Question
	Answer

	LOB Storage and Space Issues
	What Happens If I Specify LOB Tablespace and ENABLE STORAGE IN ROW?
	Question
	Answer

	What Are the Pros and Cons of Storing Images in a BFILE Versus a BLOB?
	Question
	Answer

	When Should I Specify DISABLE STORAGE IN ROW?
	Question
	Answer

	Do <4K BLOBs Go Into the Same Segment as Table Data, >4K BLOBs Go Into a Specified Segment?
	Question
	Answer

	Is 4K LOB Stored Inline?
	Question
	Answer

	How is a LOB Locator Stored If the LOB Column is EMPTY_CLOB() or EMPTY_ BLOB() Instead of NULL? A...
	Question
	Answer

	Migrating From Other Database Systems
	Is Implicit LOB Conversion Between Different LOB Types Allowed in Oracle8i?
	Question
	Answer

	Performance
	What Can We Do To Improve the Poor LOB Loading Performance When Using Veritas File System on Disk...
	Question 1
	Answer 1
	Question 2
	I/O Devices/Paths

	Answer 2
	Install the Veritas QuickIO Option!
	A Final Note:

	Is There a Difference in Performance When Using DBMS_LOB.SUBSTR Versus DBMS_LOB.READ?
	Question
	Answer

	Are There Any White Papers or Guidelines on Tuning LOB Performance?
	Question
	Answer

	When Should I Use Chunks Over Reading the Whole Thing?
	Question
	Answer

	Is Inlining the LOB a Good Idea and If So When?
	Question
	Answer

	How Can I Store LOBs >4Gb in the Database?
	Question
	Answer

	7 Modeling and Design
	Selecting a Datatype
	LOBs in Comparison to LONG and LONG RAW Types
	Character Set Conversions: Working with Varying-Width Character Data

	Selecting a Table Architecture
	LOB Storage
	Where are NULL Values in a LOB Column Stored?
	NULL LOB Column Storage: NULL Value is Stored
	EMPTY_CLOB() or EMPTY_BLOB() Column Storage: LOB Locator is Stored

	Defining Tablespace and Storage Characteristics for Internal LOBs
	Assigning a LOB Data Segment Name

	LOB Storage Characteristics for LOB Column or Attribute
	TABLESPACE and LOB Index
	Tablespace for LOB Index in Non-Partitioned Table

	PCTVERSION
	CACHE / NOCACHE / CACHE READS
	CACHE / NOCACHE / CACHE READS: LOB Values and Buffer Cache
	Downgrading to 8.1.5 or 8.0.x

	LOGGING / NOLOGGING
	LOBs Will Always Generate Undo for LOB Index Pages
	When LOGGING is Set Oracle Will Generate Full Redo for LOB Data Pages

	CHUNK
	Set INITIAL and NEXT to Larger than CHUNK

	ENABLE | DISABLE STORAGE IN ROW
	Small (ENABLE or DISABLE STORAGE) Versus Large (ENABLE STORAGE) LOBs

	How to Create Gigabyte LOBs
	Example: Creating a Tablespace and Table to Store Gigabyte LOBs

	LOB Locators and Transaction Boundaries
	Binds Greater Than 4,000 Bytes in INSERTs and UPDATEs
	Binds Greater than 4,000 Bytes are Now Allowed For LOB INSERTs and UPDATEs
	Ensure Your Temporary Tablespace is Large Enough!

	Binds of More Than 4,000 Bytes ... No HEX to RAW or RAW to HEX Conversion
	4,000 Byte Limit On Results of SQL Operator
	Binds of More Than 4,000 Bytes: Restrictions
	Example: PL/SQL - Using Binds of More Than 4,000 Bytes in INSERT and UPDATE
	Example: PL/SQL - Binds of More Than 4,000 Bytes -- Inserts Not Supported Because Hex to Raw/Raw ...
	Example: PL/SQL - 4,000 Byte Result Limit in Binds of More than 4,000 Bytes When Data Includes SQ...
	Example: C (OCI) - Binds of More than 4,000 Bytes For INSERT and UPDATE

	Open, Close and IsOpen Interfaces for Internal LOBs
	Wrap LOB Operations Inside an Open / Close Call !
	What is a ’Transaction’ Within Which an Open LOB Value is Closed?
	Close All Opened LOBs Before Committing the Transaction !
	Do Not Open or Close Same LOB Twice!
	Example 1: Correct Use of Open/Close Calls in a Transaction
	Example 2: Incorrect Use of Open/Close Calls in a Transaction

	LOBs in Index Organized Tables (IOT)
	Example of Index Organized Table (IOT) with LOB Columns

	Manipulating LOBs in Partitioned Tables
	Creating and Partitioning a Table Containing LOB Data
	Creating an Index on a Table Containing LOB Columns
	Exchanging Partitions Containing LOB Data
	Adding Partitions to Tables Containing LOB Data
	Moving Partitions Containing LOBs
	Splitting Partitions Containing LOBs
	Merging Partitions Containing LOBs

	Indexing a LOB Column
	Best Performance Practices
	Using SQL Loader
	Guidelines for Best Performance
	Moving Data to LOB in Threaded Environment
	Incorrect procedure
	The Correct Procedure

	8 Sample Application
	A Sample Application
	The Multimedia Content-Collection System
	Applying an Object-Relational Design to the Application
	Structure of Multimedia_tab Table

	9 Internal Persistent LOBs
	Use Case Model: Internal Persistent LOBs
	Three Ways to Create a Table Containing a LOB
	Usage Notes
	CREATE a Table Containing One or More LOB Columns
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Create a Table Containing One or More LOB Columns

	CREATE a Table Containing an Object Type with a LOB Attribute
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Create a Table Containing an Object Type with a LOB Attribute

	CREATE a Nested Table Containing a LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Create a Nested Table Containing a LOB

	Three Ways Of Inserting One or More LOB Values into a Row
	Uasage Notes

	INSERT a LOB Value using EMPTY_CLOB() or EMPTY_BLOB()
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Insert a Value Using EMPTY_CLOB() / EMPTY_BLOB()

	INSERT a Row by Selecting a LOB From Another Table
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Insert a Row by Selecting a LOB from Another Table

	INSERT Row by Initializing a LOB Locator Bind Variable
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C): Insert Row by Initializing a LOB Locator Bind Variable

	Load Data into an Internal LOB (BLOB, CLOB, NCLOB)
	Purpose
	Usage Notes and Examples
	Syntax
	Scenario

	Load a LOB with Data from a BFILE
	Purpose
	Usage Notes
	Binary Data to Character Set Conversion is Needed on BFILE Data
	Specify Amount to be Less than the Size of BFILE!

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C): Load a LOB with Data from a BFILE

	See If a LOB Is Open
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C): See if a LOB is Open

	Copy LONG to LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Copy LONG to LOB

	Checkout a LOB
	Purpose
	Usage Notes
	Streaming Mechanism

	Syntax
	Scenario
	Here we portray the checkout portion of the scenario: the code lets the user read the CLOB Transc...
	C/C++ (Pro*C): Checkout a LOB

	Checkin a LOB
	Purpose
	Usage Notes
	Streaming Mechanism

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C): Checkin a LOB

	Display LOB Data
	Purpose
	Usage Notes:
	Streaming Mechanism

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C): Display LOB Data

	Read Data from LOB
	Procedure
	Usage Notes
	Stream Read
	Example
	Chunksize

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Read Data from LOB

	Read a Portion of the LOB (substr)
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Read a Portion of the LOB (substr)

	Compare All or Part of Two LOBs
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Compare All or Part of Two LOBs

	See If a Pattern Exists in the LOB (instr)
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): See If a Pattern Exists in the LOB (instr)

	Get the Length of a LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Get the Length of a LOB

	Copy All or Part of a LOB to Another LOB
	Purpose
	Usage Notes
	Locking the Row Prior to Updating

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Copy All or Part of a LOB to Another LOB

	Copy a LOB Locator
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Copy a LOB Locator

	See If One LOB Locator Is Equal to Another
	Purpose
	Usage Notes
	Syntax
	Scenario
	C/C++ (Pro*C/C++): See If One LOB Locator Is Equal to Another

	See If a LOB Locator Is Initialized
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): See If a LOB Locator Is Initialized

	Get Character Set ID
	Purpose
	Usage Notes
	Syntax
	Scenario
	Example

	Get Character Set Form
	Purpose
	Usage Notes
	Syntax
	Scenario

	Append One LOB to Another
	Purpose
	Usage Notes
	Locking the Row Prior to Updating

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Append One LOB to Another

	Write Append to a LOB
	Purpose
	Usage Notes
	Writing Singly or Piecewise
	Writing Piecewise: When to Use Callbacks or Polling?

	Locking the Row Prior to Updating

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Write Append to a LOB

	Write Data to a LOB
	Purpose
	Usage Notes
	Stream Write
	Chunksize
	Use a Multiple of Chunksize to Improve Write Performance.

	Locking the Row Prior to Updating
	Using DBMS_LOB.WRITE() to Write Data to a BLOB

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Write Data to a LOB

	Trim LOB Data
	Purpose
	Usage Notes
	Locking the Row Prior to Updating

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Trim LOB Data

	Erase Part of a LOB
	Purpose
	Usage Notes
	Locking the Row Prior to Updating

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Erase Part of a LOB

	Enable LOB Buffering
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Enable LOB Buffering

	Flush Buffer
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Flush Buffer

	Disable LOB Buffering
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Disable LOB Buffering

	Three Ways to Update a LOB or Entire LOB Data
	For Binds of More Than 4,000 Bytes

	UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()
	Purpose
	Usage Notes
	Making a LOB Column Non-Null

	Syntax
	Scenario
	Examples
	SQL: UPDATE a LOB with EMPTY_CLOB() or EMPTY_BLOB()

	UPDATE a Row by Selecting a LOB From Another Table
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Update a Row by Selecting a LOB From Another Table

	UPDATE by Initializing a LOB Locator Bind Variable
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Update by Initializing a LOB Locator Bind Variable
	C/C++ (Pro*C/C++): Update by Initializing a LOB Locator Bind Variable

	DELETE the Row of a Table Containing a LOB
	Purpose
	Usage Notes
	Distinct LOB Locators for Distinct Rows

	Syntax
	Scenario
	Examples
	SQL: Delete a LOB

	10 Temporary LOBs
	Use Case Model: Internal Temporary LOBs
	Programmatic Environments
	Locators
	Temporary LOB Locators Can be IN Values
	Can You Use the Same Functions for Temporary and Internal Persistent LOBs?
	Temporary LOB Data is Stored in Temporary Tablespace
	Lifetime and Duration of Temporary LOBs
	OCI Can Group Temporary LOBs into Logical Buckets

	Memory Handling
	LOB Buffering and CACHE, NOCACHE, CACHE READS
	Temporary Tablespace
	Explicitly Free Temporary LOB Space to Reuse It
	Selecting a Permanent LOB INTO a Temporary LOB Locator

	Locators and Semantics

	Features Specific to Temporary LOBs
	Security Issues with Temporary LOBs
	NOCOPY Restrictions
	Managing Temporary LOBs

	Create a Temporary LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Create a Temporary LOB

	See If a LOB is Temporary
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): See If a LOB is Temporary

	Free a Temporary LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Free a Temporary LOB

	Load a Temporary LOB with Data from a BFILE
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Load a Temporary LOB with Data from a BFILE

	See If a Temporary LOB Is Open
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	: C/C++ (Pro*C/C++): See if a Temporary LOB is Open

	Display Temporary LOB Data
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Display Temporary LOB Data

	Read Data from a Temporary LOB
	Purpose
	Usage Notes
	Stream Read

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Read Data from a Temporary LOB

	Read Portion of Temporary LOB (substr)
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Read a Portion of Temporary LOB (substr)

	Compare All or Part of Two (Temporary) LOBs
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Compare All or Part of Two (Temporary) LOBs

	See If a Pattern Exists in a Temporary LOB (instr)
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): See If a Pattern Exists in a Temporary LOB (instr)

	Get the Length of a Temporary LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Get the Length of a Temporary LOB

	Copy All or Part of One (Temporary) LOB to Another
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Copy All or Part of One (Temporary) LOB to Another

	Copy a LOB Locator for a Temporary LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Copy a LOB Locator for a Temporary LOB

	Is One Temporary LOB Locator Equal to Another
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): See If One LOB Locator for a Temporary LOB Is Equal to Another

	See If a LOB Locator for a Temporary LOB Is Initialized
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): See If a LOB Locator for a Temporary LOB Is Initialized

	Get Character Set ID of a Temporary LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples

	Get Character Set Form of a Temporary LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples

	Append One (Temporary) LOB to Another
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Append One (Temporary) LOB to Another

	Write Append to a Temporary LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Write Append to a Temporary LOB

	Write Data to a Temporary LOB
	Purpose
	Usage Notes
	Stream Write
	Using DBMS_LOB.WRITE() to Write Data to a Temporary BLOB

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Write Data to a Temporary LOB

	Trim Temporary LOB Data
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Trim Temporary LOB Data

	Erase Part of a Temporary LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Erase Part of a Temporary LOB

	Enable LOB Buffering for a Temporary LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Enable LOB Buffering for a Temporary LOB

	Flush Buffer for a Temporary LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Flush Buffer for a Temporary LOB

	Disable LOB Buffering for a Temporary LOB
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Disable LOB Buffering for a Temporary LOB

	11 External LOBs (BFILEs)
	Use Case Model: External LOBs (BFILEs)
	Accessing External LOBs (BFILEs)
	Directory Object
	Initializing a BFILE Locator
	How to Associate Operating System Files with Database Records
	Examples

	BFILENAME() and Initialization
	Advantages.

	DIRECTORY Name Specification
	On WindowsNT Platforms

	BFILE Security
	Ownership and Privileges
	Read Permission on Directory Object
	SQL DDL for BFILE Security
	SQL DML for BFILE Security
	Catalog Views on Directories
	Guidelines for DIRECTORY Usage
	BFILEs in Multi-Threaded Server (MTS) Mode
	External LOB (BFILE) Locators
	When Two Rows in a BFILE Table Refer to the Same File
	BFILE Locator Variable
	Guidelines
	General Rule

	Three Ways to Create a Table Containing a BFILE
	CREATE a Table Containing One or More BFILE Columns
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Create a Table Containing One or More BFILE Columns

	CREATE a Table of an Object Type with a BFILE Attribute
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Create a Table of an Object Type with a BFILE Attribute

	CREATE a Table with a Nested Table Containing a BFILE
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Create a Table with a Nested Table Containing a BFILE

	Three Ways to Insert a Row Containing a BFILE
	INSERT a Row Using BFILENAME()
	Purpose
	Usage Notes
	Ways BFILENAME() is Used to Initialize BFILE Column or Locator Variable

	Syntax
	Scenario
	Examples
	SQL: Insert a Row by means of BFILENAME()
	C/C++ (Pro*C/C++): Insert a Row by means of BFILENAME()

	INSERT a BFILE Row by Selecting a BFILE From Another Table
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Insert a Row Containing a BFILE by Selecting a BFILE From Another Table

	INSERT Row With BFILE by Initializing BFILE Locator
	Purpose
	Usage Notes
	Syntax
	Scenario
	C/C++ (Pro*C/C++): Insert a Row Containing a BFILE by Initializing a BFILE Locator

	Load Data Into External LOB (BFILE)
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	Loading Data Into BFILES: File Name Only is Specified Dynamically
	Control File
	Data file (sample9.dat)

	Loading Data into BFILES: File Name and DIRECTORY Object Dynamically Specified
	Control File
	Data file (sample10.dat)

	Load a LOB with BFILE Data
	Purpose
	Usage Notes
	Character Set Conversion
	BFILE to CLOB or NCLOB: Converting From Binary Data to a Character Set
	Specify Amount Parameter to be Less than the Size of the BFILE!

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Load a LOB with BFILE Data

	Two Ways to Open a BFILE
	Recommendation: Use OPEN to Open BFILE
	Specify the Maximum Number of Open BFILEs: SESSION_MAX_OPEN_FILES
	Close Files After Use!

	Open a BFILE with FILEOPEN
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples

	Open a BFILE with OPEN
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Open a BFILE with OPEN

	Two Ways to See If a BFILE is Open
	Recommendation: Use OPEN to Open BFILE
	Specify the Maximum Number of Open BFILEs: SESSION_MAX_OPEN_FILES

	See If the BFILE is Open with FILEISOPEN
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples

	See If a BFILE is Open Using ISOPEN
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): See If the BFILE is Open with ISOPEN

	Display BFILE Data
	Purpose
	Usage Notes
	Syntax
	Scenario
	These examples open and display BFILE data. Examples
	C/C++ (Pro*C/C++): Display BFILE Data

	Read Data from a BFILE
	Purpose
	Usage Notes
	Always Specify 4 Gb - 1 Regardless of LOB Size
	Example
	The Amount Parameter

	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Read Data from a BFILE

	Read a Portion of BFILE Data (substr)
	Purpose
	Usage Notes
	Syntax
	Scenario
	C/C++ (Pro*C/C++): Read a Portion of BFILE Data (substr)

	Compare All or Parts of Two BFILES
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Compare All or Parts of Two BFILES

	See If a Pattern Exists (instr) in the BFILE
	Purpose
	Usage Notes
	Syntax
	Scenario
	C/C++ (Pro*C/C++): See If a Pattern Exists (instr) in the BFILE

	See If the BFILE Exists
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): See If the BFILE Exists

	Get the Length of a BFILE
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Get the Length of a BFILE

	Copy a LOB Locator for a BFILE
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Copy a LOB Locator for a BFILE

	See If a LOB Locator for a BFILE Is Initialized
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): See If a LOB Locator for a BFILE Is Initialized

	See If One LOB Locator for a BFILE Is Equal to Another
	Purpose
	Usage Notes
	Syntax
	Scenario
	C/C++ (Pro*C/C++): See If One LOB Locator for a BFILE Is Equal to Another

	Get DIRECTORY Alias and Filename
	Purpose
	Usage Notes
	Syntax
	Scenario
	This example retrieves the DIRECTORY alias and filename related to the BFILE, Music.
	C/C++ (Pro*C/C++): Get Directory Alias and Filename

	Three Ways to Update a Row Containing a BFILE
	UPDATE a BFILE Using BFILENAME()
	Usage Notes
	BFILENAME() Function
	Syntax

	Syntax
	Scenario
	Examples
	SQL: Update a BFILE by means of BFILENAME()

	UPDATE a BFILE by Selecting a BFILE From Another Table
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Update a BFILE by Selecting a BFILE From Another Table

	UPDATE a BFILE by Initializing a BFILE Locator
	Purpose
	Usage Notes
	Syntax
	Scenario
	C/C++ (Pro*C/C++): Update a BFILE by Initializing a BFILE Locator

	Two Ways to Close a BFILE
	Close a BFILE with FILECLOSE
	Purpose
	Usage Notes
	Syntax
	Scenario

	Close a BFILE with CLOSE
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Close a BFile with CLOSE

	Close All Open BFILEs
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	C/C++ (Pro*C/C++): Close All Open BFiles

	DELETE the Row of a Table Containing a BFILE
	Purpose
	Usage Notes
	Syntax
	Scenario
	Examples
	SQL: Delete a Row from a Table
	DELETE
	DROP
	TRUNCATE

	Index

