
Oracle AppWizard for Microsoft Visual C++

User’s Guide

Release 8.1.6

January 2000

Part No.  A73028-01



Oracle AppWizard for Visual C++ User’s Guide, Release 8.1.6

Part No.  A73028-01

Copyright © 1999, 2000  Oracle Corporation. All rights reserved. 

Primary Authors: Larry Faulks, Bronya Feldmann, Mark Kennedy, Jeff Stein

Contributors: Riaz Ahmed, Sinclair Hsu, Steve Norall, Andrew Quan, Helen Slattery, Nicole Sullivan

The Programs (which include both the software and documentation) contain proprietary information of 
Oracle Corporation; they are provided under a license agreement containing restrictions on use and 
disclosure and are also protected by copyright, patent, and other intellectual and industrial property 
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems 
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this 
document is error free. Except as may be expressly permitted in your license agreement for these 
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, 
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on 
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice  Programs delivered subject to the DOD FAR Supplement are "commercial 
computer software" and use, duplication, and disclosure of the Programs, including documentation, 
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement. 
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer 
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR 
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500 
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently 
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, 
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for 
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the 
Programs. 

Oracle is a registered trademark, and Oracle Objects and Oracle8 are trademarks or registered 
trademarks of Oracle Corporation.  All other company or product names mentioned are used for 
identification purposes only and may be trademarks of their respective owners.



Contents

Contact Us! .................................................................................................................................................    vii

Before You Begin..................................................................................................................................    xvii

1  Introduction

What is Oracle AppWizard for Microsoft Visual C++? ...............................................................    1-2
Oracle Objects for OLE Overview...................................................................................................    1-3
Installing Oracle AppWizard for Microsoft Visual C++.............................................................    1-3
Basic Oracle AppWizard for Microsoft Visual C++ Concepts ...................................................    1-4

Displaying Records ......................................................................................................................    1-4
Single-Record Display Form................................................................................................    1-4
Multiple-Record Display Form ...........................................................................................    1-4
Master-Detail Display Form ................................................................................................    1-5

Definitions .....................................................................................................................................    1-5
Microsoft Visual C++ 6.0 Limitations .............................................................................................    1-6

2  Creating a Starter Application

Overview ..............................................................................................................................................    2-2
Starting Oracle AppWizard for Microsoft Visual C++ ................................................................    2-4
Creating a Single- or Multiple-Record Display Application .....................................................    2-5

Welcome Window ........................................................................................................................    2-5
Connecting to an Oracle Database .............................................................................................    2-6
Specifying the Type of Form.......................................................................................................    2-7
Selecting Tables and Columns....................................................................................................    2-9
iii



Specifying One or More Joins (Optional) ................................................................................    2-10
Specifying the Application Type and User Language ..........................................................    2-12
Completing the Remaining MFC Windows ...........................................................................    2-13
Viewing the Application Classes..............................................................................................    2-13
Viewing the Specifications for the New Application ............................................................    2-14

Creating a Master-Detail Display Application ...........................................................................    2-15
Specifying the Type of Form .....................................................................................................    2-15
Selecting Master Tables and Columns.....................................................................................    2-16
Selecting Detail Tables and Columns ......................................................................................    2-17
Building a Join Clause................................................................................................................    2-17
Specifying the Application Type and User Language ..........................................................    2-19
Completing the Remaining MFC Windows ...........................................................................    2-20
Viewing the Application Classes..............................................................................................    2-20
Viewing the Specifications for the New Application ............................................................    2-21

Building the Executable...................................................................................................................    2-22
Running the Executable...................................................................................................................    2-23

3  Understanding Your Application’s Code 

Introduction .........................................................................................................................................    3-2
Understanding the Generated Files ...............................................................................................    3-3

Source and Header Files ..............................................................................................................    3-3
Precompiled Header Files ....................................................................................................    3-4
Resource Files.........................................................................................................................    3-5
Miscellaneous Files................................................................................................................    3-5

Understanding the Code Within Generated Files ........................................................................    3-6
Oracle Objects for OLE classes....................................................................................................    3-6
What Happens When the Application Starts ...........................................................................    3-7

Initializing Oracle Object for OLE C++ Class Library .....................................................    3-7
Connecting to Database .......................................................................................................    3-8
Executing SQL Statements ...................................................................................................    3-9
Displaying Columns in a Table ........................................................................................    3-13

Navigational Flow ......................................................................................................................    3-13
How Record Navigation Works ........................................................................................    3-15
Navigating to the First Record in the Database ..............................................................    3-16
Navigating to the Last Record ...........................................................................................    3-17
iv



Navigating to the Previous Record...................................................................................    3-17
Navigating to the Next Record..........................................................................................    3-18

Data Manipulation Flow............................................................................................................    3-18
Adding a New Record ........................................................................................................    3-19
Updating a Record ..............................................................................................................    3-20
Deleting a Record ................................................................................................................    3-21
Cancelling Changes to a Record........................................................................................    3-22

Generated Code for a Multiple-Record Display Form..........................................................    3-22

4  Tutorial

Introduction .........................................................................................................................................    4-2
Before You Start...................................................................................................................................    4-2
Lesson 1: Creating the Starter Application ....................................................................................    4-4

Part 1: Working with Oracle AppWizard for Microsoft Visual C++ ....................................    4-4
Starting the Oracle AppWizard for Microsoft Visual C++..............................................    4-4
Connecting to the Oracle Database.....................................................................................    4-5
Naming and Specifying the Type of Form ........................................................................    4-6
Selecting Master Tables and Columns ...............................................................................    4-7
Selecting Detail Tables and Columns ................................................................................    4-8
Building Join Clauses Between Tables ...............................................................................    4-8
Specifying the Application Type and User Language .....................................................    4-9
Completing the Remaining Steps......................................................................................    4-10

Part 2: Exploring Generated Classes and Files.......................................................................    4-12
Part 3: Viewing the ReadMe.txt for the Generated Project...................................................    4-13
Part 4: Building and Running the Application.......................................................................    4-14

Lesson 2: Adding Customer Information to a Purchase Order................................................    4-16
Part 1: Creating a Dynaset Class for the Customer Table.....................................................    4-16

Adding Member Variables to the COrderDynasetCustomer Class.............................    4-19
Adding Member Functions and Implementation Details to the 
COrderDynasetCustomer Class   4-20

Part 2: Adding Customer Information to a Purchase Order ................................................    4-24
Part 3: Displaying Customer Information for a Purchase Order.........................................    4-25

Lesson 3: Enabling Users to Add Products to a Purchase Order .............................................    4-29
Part 1: Displaying a List of Items from the PRODUCT Table..............................................    4-29
Part 2: Adding the Selected Products to the Purchase Order ..............................................    4-30
v



Lesson 4: Enabling Users to Update a Purchase Order..............................................................    4-34
Part 1: Allowing the Detail Table Control to Handle Events ...............................................    4-34
Part 2: Adding Implementation Details to the Event Handler Function............................    4-35

Lesson 5: Enabling Users to Add, Commit, or Cancel a New Purchase Order .....................    4-37
Part 1: Creating a Customer List Dialog Box ..........................................................................    4-37
Part 2: Creating a New  Class to Handle Events for the Customer Dialog Box ................    4-38
Part 3: Creating “New Order”, Commit Order”, and “Cancel Order” Buttons ................    4-41
Part 4: Enabling Users to Add a New Purchase Order .........................................................    4-41
Part 5: Enabling Users to Commit a New Purchase Order...................................................    4-43
Part 6: Enabling Users to Cancel a New Purchase Order .....................................................    4-44

Index
vi



Contact Us!

Oracle AppWizard for Microsoft Visual C++, Release 8.1.6

Part No.  A73028-01

This document describes how to contact Oracle Corporation if you have issues with the 
documentation or software. It also provides a list of useful resources for Oracle partners and 
developers.

 

Read the section... If you...

"How to Contact Oracle Technical Publications" on page viii Have issues with Documentation

"How to Contact Oracle Support Services" on page ix Have issues with Software

"Resources for Oracle Partners and Developers" on page xiv Want to join an Oracle partner or application 
developer program
vii



How to Contact Oracle Technical Publications
Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this 
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this guide?
■ Do you have suggestions for improvement? Please indicate the chapter, section, and page 

number (if available). 

You can send comments regarding documentation in the following ways:

■ Electronic mail - ntdoc@us.oracle.com
■ FAX - (650) 506-7370   Attn:  Oracle Windows Platforms Server Documentation
■ Postal service:

Oracle Corporation 
Windows Platforms Server Documentation Manager
500 Oracle Parkway, MS 1OP8,
Redwood Shores, CA  94065
USA

If you would like a reply, please provide your name, address, and telephone number.
viii



How to Contact Oracle Support Services
Please copy this form and distribute within your organization as necessary.

Oracle Support Services can be reached at the following telephone numbers and Web sites. The hours 
of business are detailed in your support contract and the Oracle Customer Support Guide in your kit.

Please complete the following checklist before you call. If you have this information ready, your call 
can be processed much quicker.

❏ Your CPU Support Identification Number (CSI Number) if applicable.

❏ The hardware name on which your application is running. 

Oracle Support 
Services In... Call...

United States of 
America

+ (650) 506-1500 for customers with support contracts.

+ (650) 506-5577 to obtain a support contract.

Europe +44 1344 860 160 or the local support center in your country.

All other 
locations

The telephone number for your country listed at the following Web site:

http://www.oracle.com/support/contact_us/sup_hot_
phone.html

Oracle Support Services telephone numbers are also listed in the Oracle 
Customer Support Guide in your kit.
ix



x

❏ The operating system name and release number on which your application is 
running.

■ To verify the operating system version on Windows NT, enter the following 
at the MS-DOS command prompt:

C:\> WINMSD

The Windows NT Diagnostics dialog box displays the operating system and 
Service Pack version.

❏ The release numbers of the Oracle Server and associated products involved in 
the current problem. For example, Oracle8i Enterprise Edition release 8.1.6.0.0 
and Oracle Enterprise Manager release 2.1.0.0.0.

■ To verify the release number of the Oracle Server, connect to the database 
using a tool such as SQL*Plus. The release number is displayed. For 
example:

Connected to: 
Oracle8i Enterprise Edition Release 8.1.6.0.0 - Production 
With the Partitioning and Java options 
PL/SQL Release 8.1.6.0.0 - Production 

❏ The third-party software version you are using.

■ To verify an application version, from the application’s Help menu, select 
About... 



❏ The exact error codes and messages. Please write these down as they occur. 
They are critical in helping Oracle Support Services to quickly resolve your 
problem. Note whether there were no errors reported.

❏ A description of the issue, including:

■ What happened? For example, the command used and its result. 

 

■ When did it happen? For example, during peak system load, or after a 
certain command, or after an operating system upgrade. In addition, what 
was happening when the problem occurred? 

■ Where did it happen? For example, on a particular system, or within a 
certain procedure or table.
xi



■ What is the extent of the problem? For example, production system 
unavailable, or moderate impact but increasing with time, or minimal 
impact and stable. 

■ Did the problem affect one user, several users, or all users? 

■ Has anything changed? For example, if this is an operation that used to 
work and now fails, what is different? Can you undo any recent changes, to 
verify whether they are relevant to the issue? 

■ Can the problem be reproduced? This is a critical question for support 
analysts. For example, did the problem recur on the same system, under the 
same circumstances? Can the problem be reproduced on another system? 
Additionally:

■ Does installing a software component fail on all client machines, or just 
one? 

■ Do all clients fail to connect to the server, or just one?

■ If you are able to restart the server or database, does restarting the database 
or rebooting the server or client machine (if applicable) make a difference?
xii



❏ Keep copies of the Oracle alert log, any trace files, core dumps, and redo log 
files recorded at or near the time of the incident. Oracle Support Services may 
need these to further investigate your problem. 

To help analyze problems: 

■ Archive or delete old alert logs. When the database is started without an 
alert log, a new one is created. In some cases, if you force the problem to 
recur with a new alert log, the timestamps for the recorded events may 
indicate which events are relevant. 

■ Archive or delete old trace files. To check whether the file was modified, 
right-click and select Properties. The Properties dialog box displays the 
modification date.

■ Check the operating system error logs, especially the System log and 
Application log. These files are relevant to the Oracle Server. To view these 
files, from the Start menu, choose Programs > Administrative Tools > Event 
Viewer, and choose System or Application from the Log main menu. 
xiii



Resources for Oracle Partners and Developers
This section provides information on partner programs and resources for Oracle database 
administrators and application developers.

Information Source Description

Oracle Corporation Home Page

http://www.oracle.com

This Web site is the starting point for general information on 
Oracle Corporation.

Alliance Online

http://alliance.oracle.com

Oracle provides leading-edge technology, education, and 
technical support that enables you to effectively integrate 
Oracle into your business. By joining the Oracle Partner 
Program, you demonstrate to customers that you are 
committed to delivering innovative Oracle-based solutions 
and services.

The greater your commitment to Oracle, the more we can 
help you grow your business. It’s that simple. The value you 
derive is associated directly with your level of commitment.

Oracle Education

http://education.oracle.com/

Customers come to Oracle Education with a variety of 
needs. You may require a complete curriculum based on 
your job role to enable you to implement new technology. Or 
you may seek an understanding of technology related to 
your key area of responsibility to help you meet technical 
challenges. You may be looking for self-paced training that 
can be used as an ongoing resource for reference and 
hands-on practice. Or, you may be interested in an overview 
of a new product upgrade. Whatever your training need, 
Oracle Education has the solution. 

Oracle Technology Network

http://technet.oracle.com/

The Oracle Technology Network is your definitive source for 
Oracle technical information for developing for the Internet 
platform. You will be part of an online community with 
access to free software, Oracle Technology 
Network-sponsored Internet developer conferences, and 
discussion groups on up-to-date Oracle technology. 
Membership is free.

Oracle Store

http://oraclestore.oracle.com/

This is Oracle’s online shopping center. Come to this site to 
find special deals on Oracle software, documentation, 
publications, computer-based training products, and much 
more.
xiv



Oracle Support Services’ Support Web Center

http://www.oracle.com/support/

Oracle Support Services offers a range of programs so you 
can select the support services you need and access them in 
the way you prefer: by telephone, electronically, or face to 
face. These award-winning programs help you maintain 
your investment in Oracle technology and expertise.

Here are some of the resources available in the Support Web 
Center:

OracleMetaLink

http://www.oracle.com/support/
elec_sup/index.html

OracleMetaLink is Oracle Support Services' premier Web 
support service. It is available to Oraclemetals customers 
(Gold, Silver, Bronze), 24 hours a day, seven days a 
week.

OracleLifecycle

http://www.oracle.com/support/
sup_serv/lifecycle/index.html

OracleLifecycle is designed to deliver customized, 
industry-focused, full life-cycle support solutions that 
enable industry leaders to use Oracle technology to 
make smart business decisions, achieve operational 
excellence, and succeed in their markets.

ExpertONLINE

http://www.oracle.com/support/
sup_serv/online/index.html

Oracle Support Services has launched a new line of 
services called ExpertONLINE. These services provide 
online database administration for companies looking 
to supplement their existing DBA staff or fill a DBA 
role. Services range from ExpertDETECT, a monitoring, 
diagnostic, and recommendation service, to ExpertDBA, 
a full online database administration service.

Virtual Support Analyst (VSA)

http://www.oracle.com/support/
sup_serv/vsa_start.html

VSA is Oracle's Internet e-mail service; it is available to 
U.S. customers with an Oraclemetals support agreement. 
With VSA, you can initiate a request for assistance 
through e-mail, bypassing the queues you may 
encounter when using telephone support. VSA also 
enables you to access Oracle's bug database.

Customer Service

http://www.oracle.com/support/
cus_serv/index.html

This site provides resources to make your interactions 
with Oracle as easy as possible. Among the things you 
can do are:

■ Learn what is a CPU Support Identification (CSI) 
number

■ Update your technical contact information

■ Find out whom to contact for invoice and collection 
issues

■ Request product update shipments

■ Access a glossary of Oracle Support Services terms

Information Source Description
xv



U.S. Customer Visit Program

http://www.oracle.com/support/
cus_serv/cus_visit.html

This U.S.-based program has been established to help 
our customers understand and obtain maximum benefit 
from the support services they have purchased.

The visit typically offers a customized orientation 
presentation, a comprehensive overview and 
demonstration of Oracle’s electronic services, and 
helpful tips on working more effectively with Oracle 
Support Services.

Support Web Center Library

http://www.oracle.com/support/
library/index.html

This site contains articles, guides, and other 
documentation to help you leverage the wealth of 
knowledge and reference material that Oracle Support 
Services produces.

Information Source Description
xvi



Before You Begin

This guide helps you to get started with Oracle AppWizard for Microsoft Visual 
C++.

Specific topics discussed are:

■ Prerequisites

■ Intended Audience

■ How This Guide Is Organized

■ Documentation and Code Conventions Explained

■ Documentation Library
xvii



Prerequisites
This guide assumes that you have an understanding of Microsoft Visual C++ 
version 5.0 or 6.0.

Intended Audience
This guide is necessary for anyone who wants to use Oracle AppWizard for 
Microsoft Visual C++.

How This Guide Is Organized
This guide is organized as follows:

Chapter 1, "Introduction"
Describes the main features of Oracle AppWizard for Microsoft Visual C++ and 
defines basic concepts for the selections on Oracle AppWizard for Microsoft 
Visual C++.

Chapter 2, "Creating a Starter Application"
A step-by-step description of how to use Oracle AppWizard for Microsoft 
Visual C++ to create an application skeleton.

Chapter 3, "Understanding Your Application’s Code"
Describes the files and code underlying the application skeleton created by 
Oracle AppWizard for Microsoft Visual C++, making customization easier.

Chapter 4, "Tutorial"
Takes you through all the steps of creating a starter application with Oracle 
AppWizard for Microsoft Visual C++, using a business case as an example. 
After completing the tutorial, readers will gain a much fuller understanding of 
the real-life applications to which they can put Oracle AppWizard for Microsoft 
Visual C++.
xviii



Documentation and Code Conventions Explained
The following conventions are used in this guide.

Convention Example Meaning

All uppercase plain SQL> ALTER DATABASE Indicates command names, file names, SQL 
reserved words, and keywords. 

Italic Italic used to indicate a variable or the 
title of a guide:

filename

Oracle SQL Reference

Indicates a value that you must provide. For 
example, if a command asks you to type 
filename, you enter the actual name of the file.

Italic is also used for emphasis in the text and 
to indicate the titles of other guides.

square brackets [ ] X:\[PATHNAME]\ORACLE\HOME_NAME Encloses optional items. For example, when 
you create an Optimal Flexible Architecture 
(OFA)-compliant Oracle home directory, you 
can place an optional pathname before the 
\ORACLE pathname. 

Square brackets also indicate a function key, 
for example [Enter]. 

C:\> C:\ORACLE> Represents the Windows platforms command 
prompt of the current hard disk drive. Your 
prompt may differ and may, at times, reflect 
the subdirectory in which you are working. 
Referred to as the MS-DOS command prompt in 
this guide.

Backslash (\) before a 
directory name

\BIN Indicates that the directory is a subdirectory of 
the root directory.
xix



oracle_home and 
oracle_base

Go to the ORACLE_BASE\ORACLE_
HOME\BIN directory.

In this Optimal Flexible Architecture 
(OFA)-compliant release, all subdirectories are 
no longer under a top level oracle_home 
directory. There is now a new top-level 
directory called oracle_base that by default 
is C:\ORACLE. The Oracle home directories 
are located directly under oracle_base.

If you install Oracle8i release 8.1.6 on a 
computer where there is no other Oracle 
software on the computer, the default settings 
for the first Oracle home directory is 
C:\ORACLE\ORA81. If you run Oracle 
Universal Installer again and install release 
8.2.x, the second Oracle home directory is 
called \ORA82.

All directory path examples in this guide 
follow OFA conventions. For more 
information on OFA, see the Oracle8i 
Administrator’s Guide for Windows NT.

oracle_home OracleHOME_NAMETNSListener Represents the Oracle home name. The home 
name can be up to sixteen alphanumeric 
characters. The only special character allowed 
in the home name is the underscore

HOMEID HOME0, HOME1, HOME2 Represents a unique registry subkey for each 
Oracle home directory in which you install 
products. A new HOMEID is created and 
incremented each time you install products to 
a different Oracle home directory on one 
machine. Each HOMEID contains its own 
configuration parameter settings for installed 
Oracle products.

Convention Example Meaning
xx



Symbols period  .

comma  ,

hyphen  -

semicolon  ;

colon  :

equal sign  =

backslash  \

single quote  ‘

double quote  “

parentheses ()

Symbols other than brackets and vertical bars 
must be entered in commands exactly as 
shown.

Convention Example Meaning
xxi



Documentation Library
This guide is part of a larger library of Oracle documentation. The Oracle 
documentation library consists of two types of documentation:
    

Documentation Type Describes...

Operating system-specific Installation, configuration, and use of Oracle products in a Windows NT or 
Windows 95/98 environment. Operating system-specific documents are 
occasionally referred to in the generic documentation set. These documents 
are easy to identify because they always mention their specific operating 
system in their title.

Generic Oracle database, Oracle networking, and Application Programming 
Interface information that is uniform across all operating system platforms. 
The majority of documents in your documentation set belong to this 
category. While reading through the generic documentation set, you are 
occasionally asked to refer to your platform (or operating system) 
documentation for procedures specific to the Windows NT or Windows 
95/98 operating systems.

To easily identify where these generic documentation references are 
described in your operating system documentation, see the index of this 
guide for the following entry:

generic documentation references

All generic documentation references described in this guide appear under 
this index entry.
xxii



Introd
1

Introduction

This chapter describes the main features of Oracle AppWizard for Microsoft Visual 
C++ and defines terminology. 

Specific topics discussed are:

■ What is Oracle AppWizard for Microsoft Visual C++?

■ Oracle Objects for OLE Overview

■ Installing Oracle AppWizard for Microsoft Visual C++

■ Basic Oracle AppWizard for Microsoft Visual C++ Concepts

■ Microsoft Visual C++ 6.0 Limitations
uction 1-1



What is Oracle AppWizard for Microsoft Visual C++?
What is Oracle AppWizard for Microsoft Visual C++?
Oracle AppWizard for Microsoft Visual C++ enables you to easily create a starter 
Oracle application. Oracle AppWizard for Microsoft Visual C++ enables your 
application to:

■ Connect to an Oracle database 

■ Execute SQL statements and retrieve information from the Oracle database

■ Navigate effortlessly through records

■ Update, insert, and delete data from the Oracle database

The basic functionality that Oracle AppWizard for Microsoft Visual C++ designs 
into your application enables you to spend time doing what you do best: writing 
code for important custom features that make your application successful. 

Oracle AppWizard for Microsoft Visual C++ uses standard Oracle Objects for OLE 
and Microsoft Foundation Class (MFC) Library classes to build an application with 
these advantages:

■ Adds commented code

■ Manipulates and retrieves information easily from the Oracle database

■ Handles any errors returned by the database

■ Uses the document/view architecture for MFC-compliant code

■ Uses Hungarian notation

■ Lets you optionally update the data through your new application

The Oracle AppWizard for Microsoft Visual C++ runs seamlessly within the 
Microsoft Visual C++ 5.0 or 6.0 development environment on Windows NT and 
Windows 95/98, and operates almost identically to the standard MFC AppWizard.
1-2 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Installing Oracle AppWizard for Microsoft Visual C++
Oracle Objects for OLE Overview
Oracle Objects for OLE is an application programming interface for Windows that 
interacts with the Oracle database. The application you generate with the Oracle 
AppWizard for Microsoft Visual C++ uses the Oracle Objects for OLE C++ Class 
Library to access the Oracle database.

To learn more about Oracle Objects for OLE C++ Class Library:

1. Choose Start > Programs > Oracle - HOME_NAME > Application Development 
> Oracle Objects for OLE Class Library Help. 

The online Help describes each class in the C++ Class Library.

Installing Oracle AppWizard for Microsoft Visual C++
Oracle AppWizard for Microsoft Visual C++ is installable through the following 
installation types:

See the Oracle8i Installation Guide for Windows NT or Oracle8i Client Installation 
Guide for Windows for instructions on installing Oracle AppWizard for Microsoft 
Visual C++.

For this Top-Level 
Component...

Oracle AppWizard for Microsoft Visual C++ Is Installable 
Through This Installation Type...

Oracle8i Enterprise 
Edition or Oracle8i

Custom

Oracle8i Client Programmer, Application User, and Custom

IMPORTANT: You must install Microsoft Visual C++ 5.0 or 6.0 
before you install Oracle AppWizard for Microsoft Visual C++.
Introduction 1-3



Basic Oracle AppWizard for Microsoft Visual C++ Concepts
Basic Oracle AppWizard for Microsoft Visual C++ Concepts
To use the Oracle AppWizard for Microsoft Visual C++ to successfully generate a 
starter application, you must understand how to select and build the type of 
application you want. 

Displaying Records
You can generate three types of applications with Oracle AppWizard for Microsoft 
Visual C++. 

■ Single-Record Display Form

■ Multiple-Record Display Form

■ Master-Detail Display Form

Each of these displays records differently.

Single-Record Display Form
When you design your application to display one record at a time, your application 
uses edit controls to display records, as seen below:

Multiple-Record Display Form
When you design your application to display more than one record at a time, your 
application uses a database grid control, as seen below:
1-4 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Basic Oracle AppWizard for Microsoft Visual C++ Concepts
Master-Detail Display Form
When you design a master-detail form, the master records are displayed in edit 
controls and the detail records are displayed in a database grid control:

Definitions
The following terms are discussed throughout this guide:
 

Term Description

Join A query that combines rows from two or more tables or views. 

Single-record display form Displays one record from a table at a time in a form.

Multiple-record display 
form

Displays information in multiple-record format from a table at 
one time in a form.

Master-detail display form Displays information in single-record format from a master table 
and in multiple-record format from a detail table.

Single-document interface 
(SDI)

SDI applications allow only one open document frame to be 
open at once during a session.

Multiple-document 
interface (MDI)

MDI applications allow multiple document frames to be open at 
once during a session.

Dialog-based interface Dialog-based applications use a dialog box interface exclusively. 

Edit control

DB grid 
control
Introduction 1-5



Microsoft Visual C++ 6.0 Limitations
Microsoft Visual C++ 6.0 Limitations
This release works with Microsoft Visual C++ 5.0 and 6.0. However, when using 
version 6.0, selecting or deselecting the following options either has no effect or 
does not generate the code for that option:
 

For This Option... If You Choose... The Result Is...

What type of application would 
you like to create?

 Choose "Document/View 
architecture support"

Default is selected. Deselect does 
not take effect because the 
generated MFC-based application 
must use this architecture.

What compound document 
support would you like to include?

If you choose "Both container and 
server" and "Active document 
container"  

MSVC 5.0 container and server 
support only.

What do you want your toolbars to 
look?

If you choose "Internet Explorer 
ReBars"

Internet Explorer ReBars is not 
supported in this release.

What style of project would you 
like?

If you choose "Windows Explorer" Internet Explorer ReBars is not 
supported in this release.
1-6 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Creating a Starter Appli
2

Creating a Starter Application

This chapter describes how to create a starter application with Oracle AppWizard 
for Microsoft Visual C++.

Specific topics discussed are:

■ Overview

■ Starting Oracle AppWizard for Microsoft Visual C++

■ Creating a Single- or Multiple-Record Display Application

■ Creating a Master-Detail Display Application

■ Building the Executable

■ Running the Executable
cation 2-1



Overview
Overview
After starting Oracle AppWizard for Microsoft Visual C++, you complete a series of 
steps in which you specify which of three application types you want to create:

The first three steps are the same whether you create a single-record, 
multiple-record, or a master-detail display.

When you finish the last step, Oracle AppWizard for Microsoft Visual C++ 
generates the application. Application files include the following:

■ Source files

■ Header files 

■ Resource files

■ Standard MFC project files

■ A ReadMe.file describing all the files comprising your application

You then build and run the executable, using Microsoft Visual C++.

Application Type Description

Single-Record Display Form Enables your application to display one record from one 
or more tables at a time.

Multiple-Record Display Form Enables your application to display more than one record 
from one or more tables at a time.

Master-Detail Display Form Enables your application to display records from tables 
that have a master-detail relationship to each other.
2-2 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Overview
For Single- and Multiple-
Record Forms

Tables/Columns 
window:
Select tables 
and columns.

Table Join 
window:
Specify one 
or more joins 
(Optional).

Detail Table/Column
Selection window: 
Select detail tables/ 
columns. 

Master/Detail
Table Join window: 
Build a master/detail 
join clause.

If you want to build another form, AppWizard will take you back to the Form Type window, 
otherwise, go to the next window. 

Master Table/Column
Selection window:
Select master tables 
and columns.

Welcome window

Connection window:
Connect to an Oracle database.

Form Type window:
Specify form type and 
database privileges.

For Master-Detail
Forms

Specify Application Type window:
Select application type and language, 
then complete the remaining steps.
Creating a Starter Application 2-3



Starting Oracle AppWizard for Microsoft Visual C++
Starting Oracle AppWizard for Microsoft Visual C++
To start Oracle AppWizard for Microsoft Visual C++:

1. Start Microsoft Visual C++ 5.0 or 6.0.

2. Choose File > New.

The New dialog box appears.

3. Click the Projects tab.

4. Select Oracle AppWizard for MFC (exe) from the list of project types.

5. Specify the project name and location.

6. Click OK.

Oracle AppWizard for Microsoft Visual C++ starts.

Note: If Oracle AppWizard for Microsoft Visual C++ cannot be 
loaded successfully, ensure that you have installed Oracle Objects 
for OLE (OO4O) and that the following directory has been created: 

ORACLE_BASE\ORACLE_HOME\BIN
2-4 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Creating a Single- or Multiple-Record Display Application
Creating a Single- or Multiple-Record Display Application
This section describes how to create a single- or multiple-record display application.

Welcome Window
The Welcome window appears when you start Oracle AppWizard for Microsoft 
Visual C++.

Click Next to continue.
Creating a Starter Application 2-5



Creating a Single- or Multiple-Record Display Application
Connecting to an Oracle Database
In the Connection window, you connect to an Oracle database.

To connect to the Oracle database:

1. Enter your user name in the User Name text box.

2. Enter your password in the Password text box.

3. If connecting to a remote database, type the database alias in the Database Alias 
text box. If connecting to a local default database, leave the text box blank.

For more information about database aliases, refer to the Net8 Administrator’s 
Guide.

4. Click Next.
2-6 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Creating a Single- or Multiple-Record Display Application
Specifying the Type of Form
Use the Form Type window to name your form, generate a specific type of database 
form, and to specify the database privileges for users. 

To complete the Form Type window:

1. Enter the name of the form in the Form Name text box. Each form name must 
be unique and the first character of the form name must be a letter. The rest of 
the form name must be alphanumeric. For example:

a1b3eux

2. Forms can be single-record, multiple-record, or master-detail display. Select the 
database form type you want to generate for the application:

 

If You Want to Create a... Then Select...

Single-record display form that 
displays one record at a time on a 
form

Single-Record Display Form

Multiple-record display form that 
displays multiple records on a form

Multiple Record Display Form

Master-detail display form that 
displays infromation in master-detail 
format

Master Detail Display Form and see section 
"Creating a Master-Detail Display Application" 
on page 2-15
Creating a Starter Application 2-7



Creating a Single- or Multiple-Record Display Application
3. Select the database options permitted by the form:

If you select any or all permitted database operations for your users, Oracle 
AppWizard generates code for this purpose. This enables methods that allow 
the users of your application to update data. If you do not select any permitted 
database operations, Oracle AppWizard does not generate code for this purpose 
and the form will be read-only. 

4. Click Next.

If You Want Users to Be Able to... Then Select the...

Add records Add new records checkbox

Change records Change existing records checkbox

Delete records Delete existing records checkbox
2-8 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Creating a Single- or Multiple-Record Display Application
Selecting Tables and Columns
In the Tables/Columns Selection window, you select columns from the tables you want 
the form to reference. The tables available to you appear in the list.

 

To complete the Tables/Columns Selection window:

1. Select one or more tables from the list to appear in your application. By default, 
all the columns of the table you select are also automatically selected unless you 
manually deselect them by clicking them.

The Add, Change, and Delete options, specified in the Form Type window, work 
only with a single table. If you select multiple tables and have checked these 
options, the following error message appears:

Add, Change, and Delete are supported in applications using a single table. 
You have selected multiple tables.

Database Functionality defaults to Read Only.

If necessary, expand the table you selected and select additional columns that 
should be displayed in the application.

2. Click Next.

 

Select the tables you want 
the form to contain
Creating a Starter Application 2-9



Creating a Single- or Multiple-Record Display Application
Specifying One or More Joins (Optional)
Oracle AppWizard for Microsoft Visual C++ automatically creates a simple join 
(also called an equi-join) between two tables, or views, based on a Primary Key and 
a Foreign Key.

Joins are used in the WHERE clause of a SELECT statement to avoid a Cartesian 
product, which would combine every row in one table with every row in another 
table. For example, a 90-row table combined with a 100-row table would produce a 
9000-row result.

 

 

Note: If you only specify one table, Oracle AppWizard for 
Microsoft Visual C++ skips the table join step.

Additional Information: See the description of the SELECT 
command in Oracle8i SQL Reference for more information about 
various types of joins and Cartesian products.

Tip: When selecting tables or columns, use the Ctrl key and your 
mouse to select items that are not adjacent. Also, you can use the 
Ctrl key and your mouse to deselect an item.

In this example, the
AppWizard joins the 
SCOTT.DEPT
and SCOTT.EMP
tables, based on the Primary 
Key and the Foreign Key.

Resulting join
2-10 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Creating a Single- or Multiple-Record Display Application
The Oracle AppWizard Table Join window displays a join in the following format for 
single or multiple tables:

SCHEMA.TABLE_NAME.COLUMN_NAME [DATA_TYPE] joins 

          SCHEMA.TABLE_NAME.COLUMN_NAME [DATA_TYPE] 

If you do not want to use the suggested join created by Oracle AppWizard for 
Microsoft Visual C++ (shown in the previous illustration), you can delete it and 
create a new join. You can also do this by modifying the WHERE clause of a query 
statement in the source file generated by Oracle AppWizard for Microsoft Visual 
C++.

To accept the default join: 

1. Click Next.

To delete the default join:

1. Highlight the default join displayed in the Table joins list.

2. Click the Delete Join button.

Oracle AppWizard for Microsoft Visual C++ deletes the join.

To create a new a join:

1. Highlight two columns from different tables that you want to join by using your 
mouse and the Ctrl key.

The join appears in the Table joins list with the following syntax:

SCHEMA.TABLE.COLUMN [DATA_TYPE] joins SCHEMA.TABLE.COLUMN [DATA_TYPE]

2. Click Next.

Oracle AppWizard for Microsoft Visual C++ prompts you to build another 
form. If you decide to create a new form, you cannot go back and use Oracle 
AppWizard for Microsoft Visual C++ to modify the form you have already 
created.

3. If you want to build another form, click Yes and Oracle AppWizard returns you 
to the Application Type window.

4. If you do not want to build another form, click No.

Note: You can specify more than one join.
Creating a Starter Application 2-11



Creating a Single- or Multiple-Record Display Application
Specifying the Application Type and User Language
When you are finished building forms and click Next, you can specify the 
application type and user language.

To complete the Application Type window:

1. Indicate the type of application you are creating:

■ Single document

■ Multiple documents

■ Dialog-based

2. Select the language appropriate for your application or accept the default 
language in the list box.

3. Click Next.

Note: If you are using Microsoft VC++ 6.0, there is an additional 
option for Document/View architecture support. See "Microsoft 
Visual C++ 6.0 Limitations" on page 1-6.

Note: Dialog-based applications are not supported in this release.
2-12 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Creating a Single- or Multiple-Record Display Application
Completing the Remaining MFC Windows
Complete the remaining standard MFC windows as appropriate until you reach the 
window illustrated below. For more information about MFC windows, refer to your 
MSVC++ documentation.

Viewing the Application Classes
In the Class Information window, Oracle AppWizard for Microsoft Visual C++ 
displays the classes it creates for your application, including their names, header 
files, base classes, and the implementation file:

To complete the Class Information window:

1. Review the list for completeness and accuracy.

2. If you are not satisfied with the listed classes, click Back to go to the appropriate 
previous dialog box to make changes.

3. Depending on which class you have selected, you may change the class name, 
header file name, and the implementation file name. If you rename these files, 
the first character must be a letter. The rest of the name must be alphanumeric.

4. When you are satisfied with the result, click Finish.

The New Project Information window appears.

What is shown below 
depends on the class 
selected here.
Creating a Starter Application 2-13



Creating a Single- or Multiple-Record Display Application
Viewing the Specifications for the New Application
The New Project Information window displays the specifications for the new skeleton 
application you are creating.

■ If the specifications appear to be correct, click OK. 

Oracle AppWizard generates the files for your single-record or multiple-record 
application.

■ If the specifications are not correct, click Cancel.
2-14 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Creating a Master-Detail Display Application
Creating a Master-Detail Display Application
This section describes how to create an application that can display records from 
two or more tables that have a master-detail relationship. 

The first three windows are completed in the same way as those described in 
"Creating a Single- or Multiple-Record Display Application" on page 2-5, except 
that, for a master-detail display, you will complete the Application Type window as 
follows:

■ Select Master-Detail Display Form as the database form type 

■ Optionally, you can permit the user of your application to perform the database 
operations listed in the Application Type window by selecting any or all of the 
three check boxes. 

Specifying the Type of Form
 In the Form Type window, type the name you want to give the form, select the type 
of form, and the database privileges that your application requires.
Creating a Starter Application 2-15



Creating a Master-Detail Display Application
Selecting Master Tables and Columns
In the Master Table/Column Selection window, the available master tables appear in a 
list:

To complete the Master Table/Column Selection window:

1. Select the master table columns from the list. In the example above, the Sales 
Order table is the master table. All the columns from the Sales Order table have 
been selected. 

2. If necessary, expand the table you selected by clicking the ’+’ to the left of the 
table name and change which columns are to be displayed in the application.

3. Click Next.

Note: The master table is created as a read-only table in your 
application.
2-16 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Creating a Master-Detail Display Application
Selecting Detail Tables and Columns
In the Detail Table/Column Selection window, the available detail tables appear in a 
list. Select the detail tables and the columns you want displayed in the application.

To complete the Detail Table/Column Selection window:

1. Select columns from one or more detail tables in the list. In the illustration 
above, the Item table is the detail table. The Iten table and all of its columns 
have been selected. 

2. If necessary, expand the table you selected by clicking the ’+’ to the left of the 
table name, and change which columns are to be displayed in the application.

3. Click Next.

Building a Join Clause
After you select the tables between which to set up a master-detail relationship, use 
the Master/Detail Table Join window to specify how to join the columns from each of 
the tables selected in the last two windows. 

Oracle AppWizard for Microsoft Visual C++ automatically creates a simple join 
(also called an equi-join) between two tables, or views, based on a Primary Key and 
a Foreign Key.
Creating a Starter Application 2-17



Creating a Master-Detail Display Application
Such joins are used in the WHERE clause of a SELECT statement to avoid a 
Cartesian product, which combines every row in one table with every row in an 
other table. For example, a 90-row table combined with a 100-row table would 
produce a 9000-row result.

If you do not want to use the default join created by Oracle AppWizard for 
Microsoft Visual C++ (shown in the previous illustration), you can delete it and 
create a new join. Alternatively, you can also do this by modifying the WHERE clause 
of a query statement in the source file generated by Oracle AppWizard.

If you want to create more than one join, choose one column from the master table 
and one column from the detail table to create each additional join clause.

To accept the default join in the Master/Detail Table Join window: 

1. Click Next.

To delete the default join:

1. Highlight the default join displayed in the Master and Detail Table Joins list in 
the Master/Detail Table Join window.

2. Click the Delete Join button.

Oracle AppWizard for Microsoft Visual C++ deletes the join.

To create a new join:

1. Select one column from the master column list.
2-18 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Creating a Master-Detail Display Application
2. Select one column from the detail column list.

The join appears in the Master and Detail Table Joins list with the following 
syntax:

Master - SCHEMA.TABLE_NAME.COLUMN_NAME [DATA_TYPE] joins Detail - 
SCHEMA.TABLE_NAME.COLUMN_NAME [DATA_TYPE] 

3. If you want to create multiple joins, repeat Steps 1 and 2.
If 

4. Click Next. Oracle AppWizard asks you whether or not you would like to build 
another form. 

5. If you want to build another form, click Yes, and Oracle AppWizard for 
Microsoft Visual C++ returns you to the Form Type window. 

6. If you do not want to build another form, click No.

Specifying the Application Type and User Language
When you are finished building forms and click Next, you are ready to specify the 
application type and the user language.

To complete the Application Type window:

1. Indicate the type of application you are creating by clicking the appropriate 
option:

■ Single document

■ Multiple documents

■ Dialog-based

2. Select the language appropriate for your application or accept the default 
language in the list box.

Note: If you are using Microsoft VC++ 6.0, there is an additional 
option for Document/View architecture support. See "Microsoft 
Visual C++ 6.0 Limitations" on page 1-6.

Note: Dialog-based applications are not supported in the current 
release.
Creating a Starter Application 2-19



Creating a Master-Detail Display Application
3. Click Next to proceed to the standard MFC windows.

Completing the Remaining MFC Windows
Complete the remaining standard MFC windows as appropriate until you reach the 
window illustrated below. For more information about MFC windows, refer to your 
MSVC++ documentation.

Viewing the Application Classes
In the Class Information window, Oracle AppWizard for Microsoft Visual C++ 
displays the classes it will create for your application, including their names, header 
files, base classes, and the implementation file. 
2-20 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Creating a Master-Detail Display Application
To complete the Class Information window:

1. Review the list for completeness and accuracy.

2. If you are not satisfied with the listed classes, click Back to go to the appropriate 
previous dialog box to make changes.

3. Depending on which class you have selected, you may change the class name, 
header file name, and implementation file name. If you rename these files, the 
first character must be a letter. The rest of the name must be alphanumeric.

4. When you are satisfied with the result, click Finish.

The New Project Information window appears.

Viewing the Specifications for the New Application
The New Project Information window displays the specifications for the new skeleton 
application you are creating.

1. If the specifications are correct, click OK.

Oracle AppWizard for Microsoft Visual C++ creates the files for your 
master-detail application.

2. If the specifications are not correct, click Cancel.

What is shown below 
depends on the class 
selected here.
Creating a Starter Application 2-21



Building the Executable
Building the Executable
After Oracle AppWizard generates the application, you can build an executable.

To build the executable:

1. Choose Build <executable name> from the Build menu.

Oracle AppWizard compiles and links your project.

Note: You may want to check the project settings to see if they are 
correct for your configuration. Choose Settings from the Project 
menu to view the project settings.
2-22 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Running the Executable
Running the Executable
You are now ready to execute your application.

To run the executable:

1. Choose Execute <executable name> from the Build menu.

The Connect to Oracle dialog box appears.

2. Enter your User Name and Password. 

3. If connecting to a remote database, type its alias into the Database Alias text 
box.

After your application connects to the database successfully, the form you 
generated appears showing data retrieved from the database. The following 
illustration is a sample of what your form can look like, although the 

Note: By default, the active project configuration is the debug 
version.  To change the active project configuration, choose Set 
Active Configuration from the Build menu.

Note: The user name must be a database user who has privileges 
for accessing the tables in this application.

Note: If you click Cancel, an empty form appears. This is in 
accordance with Microsoft ODBC application behavior. You can 
close this empty form.
Creating a Starter Application 2-23



Running the Executable
appearance of your actual form and data varies based on the database 
information you select.

By design, no toolbar for inserting, updating, and deleting records is available. 
This is because the master table is read-only. If you have a single detail table, 
you can edit the fields by making a change and clicking on a different row to 
commit the change.
2-24 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Understanding Your Application’s
3

Understanding Your Application’s Code

This chapter describes the building blocks that Oracle AppWizard for Microsoft 
Visual C++ uses to create an application. Using this information, you can easily 
customize your application.

Specific topics discussed are:

■ Introduction

■ Understanding the Generated Files

■ Understanding the Code Within Generated Files
 Code 3-1



Introduction
Introduction
Oracle AppWizard for Microsoft Visual C++ uses Microsoft Foundation Classes 
(MFC) to provide the application framework. Oracle Objects for OLE C++ Class 
Library is used to create a starter application. Oracle AppWizard generates a 
complete set of source and resource files your Visual C++ project that you can 
customize as required for your business needs.

Figure 3–1, "Oracle AppWizard Framework" shows how the framework created by 
Oracle AppWizard uses the Oracle Objects for OLE C++ to interact with the Oracle 
database.

Figure 3–1 Oracle AppWizard Framework

 

DB grid
control

Oracle
Database

Oracle Objects
for OLE C++
Class Library

Oracle data
control

Application

Edit Fields

Net8
3-2 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Understanding the Generated Files
Understanding the Generated Files 
After you complete all Oracle AppWizard for Microsoft Visual C++ steps and have 
chosen the options appropriate for the application you want to create, Oracle 
AppWizard generates a complete set of files: 

■ Source and header

■ Precompiled header 

■ Resource 

■ Miscellaneous files

Source and Header Files
Oracle AppWizard for Microsoft Visual C++ creates the following source and 
header files. Your files contain the actual name of your project, instead of 
PRJNAME.

File Description

PRJNAME.h, PRJNAME.cpp Derives from and implements the application class 
CPRJNAMEApp. This class provides member 
functions for initializing and running the application.

PRJNAME.clw Used by the ClassWizard to store information about 
the classes in your project.

ConnDialog.h, ConnDialog.cpp Derives from and implements the dialog class 
CConnDialog. This class enables the application to 
request connection information from the user.

PRJNAMEDoc.h, 
PRJNAMEDoc.cpp

Derives from and implements the document class 
CPRJNAMEDoc. This class also contains the 
application data, variables, and objects associated with 
the Oracle database. Data access occurs through Oracle 
Objects for OLE.

PRJNAMEView.h, 
PRJNAMEView.cpp

Derives from and implements the View class 
CPRJNAMEView. This class displays document data 
graphically to the user and accepts and interprets user 
input as changes to the document.

PRJNAMEDynaset.h, 
PRJNAMEDynaset.cpp (for 
Single-Record and 
Multiple-Records Display Form)

Derives from and implements the Dynaset class 
CPRJNAMEDynaset. This class creates, manages, and 
accesses records in the database.
Understanding Your Application’s Code 3-3



Understanding the Generated Files
Precompiled Header Files
Oracle AppWizard for Microsoft Visual C++ creates the following standard files.

StdAfx.h, StdAfx.cpp

These files are used to build a precompiled header file PRJNAME.PCH and a 
precompiled types file StdAfx.OBJ. 

PRJNAMEDynasetMaster.h, 
PRJNAMEDynasetMaster.cpp (for 
Master-Detail Display Form)

Derives from and implements the Dynaset class 
CPRJNAMEDynasetMaster. This class creates, 
manages, and accesses records in the database. 

PRJNAMEDynasetDetail.h, 
PRJNAMEDynasetDetail.cpp (for 
Master-Detail Display Form)

Derives from and implements the Dynaset class 
CPRJNAMEDDynasetDetail. This class creates, 
manages, and accesses records in the database.

ChildFrm.h, ChildFrm.cpp (for 
Multiple-Document interface 
application)

Derives from and implements the Child Window class 
CChildFrame. This class is used for MDI document 
frames. 

oradc.h, oradc.cpp (for 
Multiple-Records and 
Master-Detail Display form)

Derives from and implements the Window class 
CORADC. This class is the wrapper class for Oracle 
Data Control, an ActiveX control and is used to access 
data for an application using multiple-record display 
mode or master-detail display mode.

PRJNAMEUtil.h, 
PRJNAMEUtil.cpp

Declare and implement stand-alone functions used by 
other classes. ProcessOO4OError() and DDX_
FieldText() functions are defined in these files.

MainFrm.h, MainFrm.cpp Derives from and implements the Frame class 
CMainFrame. This class provides the functionality of 
an overlapped single-document interface (SDI) or a 
pop-up window, along with members for managing 
the window.

File Description
3-4 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Understanding the Generated Files
Resource Files
Oracle AppWizard creates the following standard header file and a main resource 
file:

Miscellaneous Files
Oracle AppWizard for Microsoft Visual C++ also creates the following file.

ReadMe.txt

This file contains information about the files that Oracle AppWizard for Microsoft 
Visual C++ creates for your application.

Files Description

Resource.h, PRJNAME.rc These files contain the default menu definition, accelerator, and 
string tables for the generated application.

PRJNAME.rc2 This file is useful for including resources used by several 
different projects. Instead of having to create the same resources 
several times for different projects, you can put them in an RC2 
file and include the RC2 file in the main RC file.

.\RES\PRJNAME.ico This is the icon file for the application. This icon appears when 
the application is minimized and is also used in the About box.

.\RES\PRJNAMEDoc.ico This is the icon file for the child window in the Multiple 
Document Interface application.

.\RES\TOOLBAR.BMP This bitmap file is used to represent your program or control in a 
toolbar or palette. 
Understanding Your Application’s Code 3-5



Understanding the Code Within Generated Files
Understanding the Code Within Generated Files
This section is divided into the following subsections, which explain the function of 
the code generated by Oracle AppWizard for Microsoft Visual C++:

Oracle Objects for OLE classes
Oracle AppWizard generates Oracle Object for OLE C++ code to provide 
connectivity and data access to the Oracle database.   The following table illustrates 
the classes that Oracle AppWizard uses to communicate with the Oracle database, 
using the Oracle Objects for OLE C++ Class Library.

This Section... Describes the...

Oracle Objects for OLE 
classes

Building blocks for all aspects of application functionality

What Happens When the 
Application Starts

Code at the heart of application initialization, execution of SQL 
statements, connection to the database, display of database table 
columns

Navigational Flow Code at the heart of record navigation

Data Manipulation Flow Code at the heart of record insertion, update, and deletion

Generated Code for a 
Multiple-Record Display 
Form

Code used to create an application whose forms display 
multiple-record at one time

Note: The generated code described in all but the last list item 
above is based on an application using single-record display mode 
exclusively.

Class Description

ODatabase A database object representing an Oracle database

ODynaset Creates, manages, and accesses records in the Oracle database

OField A single column of data in an Oracle database record 

OValue Stores values of varying types in the Oracle database
3-6 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Understanding the Code Within Generated Files
The oracl.h header file in ORACLE_HOME\OO4O\CPP\INCLUDE contains the 
declarations for Oracle Objects for OLE classes.

What Happens When the Application Starts
This subsection describes the methods that control the following activities either 
during or after start-up as you work through the sequence of windows designed to 
build the starter application. 

■ Initialization of the Oracle Objects for OLE C++ Class Library in the generated 
application 

■ Connection to database 

■ Execution of SQL statements 

■ Table column displays

Initializing Oracle Object for OLE C++ Class Library
When the application starts, the OStartup() call in CPRJNAMEApp::InitInstance() 
initializes the Oracle Object for OLE C++ Class Library as described below:

BOOL CTestApp::InitInstance()
{

    ...
// initializing Oracle Object for OLE C++ Class Library
OStartup();
   ...

}

Note: Text in bold type represents Oracle code.
Understanding Your Application’s Code 3-7



Understanding the Code Within Generated Files
Connecting to Database 
The application framework creates a document object (CPRJNAMEDoc class) that 
stores the application data. During document initialization, it calls DbConnect() to 
initialize the database (m_database) associated with the document and connects to 
it, using the following declaration:

class CPRJNAMEDoc : public CDocument
{
 ...

  // Attributes
  public:

    ODatabase m_database;
    CPRJNAMEDynaset m_PRJNAMEDynaset;

  // Implementation
  public:

virtual ~CTestDoc();
bool DbConnect();

...
};
Constructor method of CPRJNAMEDoc class:

CPRJNAMEDoc::CPRJNAMEDoc()
{

while (!m_database.IsOpen())
  {
   if (DbConnect() == false)

return;
}

}
To initialize and connect to the database, the application:

■ Creates a dialog box (connDlg) to request database connection information

■ Connects to the database

■ If the connection fails, the application processes the error 
3-8 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Understanding the Code Within Generated Files
The method CPRJNAMEDoc::DbConnect() implements the database connection as 
shown below:

bool CPRJNAMEDoc::DbConnect()
{

   CConnDialog connDlg;
   oresult dbresult;
   int dlgResult;

// a dialog box to get connection information from users
 dlgResult = connDlg.DoModal();
 if (dlgResult == IDOK)

 {  
// Connect to the database

 dbresult = m_database.Open(connDlg.GetDbAlias(),  
 connDlg.GetUsername(), connDlg.GetPassword());
 if (dbresult == OFAILURE)
 {

// processing error message
  ProcessOO4OError(&m_database);
  }
  return(true);

}
else

 return(false);
}                    

Executing SQL Statements 
If successfully connected, the framework creates a view (CPRJNAMEView class) for 
the application, using the following declaration: 

class CPRJNAMEView : public CFormView
{  

 ...
 public:

CTestDynaset *m_pDynaset;
bool m_bEditingRecord; //if the record must be edited

// Operations 
protected:

virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV support
virtual void OnInitialUpdate(); // called first time after construct

...

// Implementation
public:

 virtual ~CPRJNAMEView();
Understanding Your Application’s Code 3-9



Understanding the Code Within Generated Files
protected:
...
 void PerformMove(int nCommand);

// Generated message map functions
protected:

...
afx_msg void OnMoveNext();
afx_msg void OnMovePrev();
afx_msg void OnMoveFirst();
afx_msg void OnMoveLast();
afx_msg void OnUpdateMoveNext(CCmdUI* pCmdUI);
afx_msg void OnUpdateMovePrev(CCmdUI* pCmdUI);
afx_msg void OnUpdateMoveFirst(CCmdUI* pCmdUI);
afx_msg void OnUpdateMoveLast(CCmdUI* pCmdUI);
afx_msg void OnAddNewRecord();
afx_msg void OnUpdateAddNewRecord(CCmdUI* pCmdUI);
afx_msg void OnDeleteRecord();
afx_msg void OnUpdateDeleteRecord(CCmdUI* pCmdUI);
afx_msg void OnUpdateRecord();
afx_msg void OnUpdateUpdateRecord(CCmdUI* pCmdUI);
afx_msg void OnCancelRecord();
afx_msg void OnUpdateCancelRecord(CCmdUI* pCmdUI);
afx_msg void OnChangeEdit();
...

}
The constructor method for the CPRJNAMEView class initializes its member 
variables as:

CPRJNAMEView::CPRJNAMEView()
: CFormView(CPRJNAMEView::IDD)
{
...
m_pDynaset = NULL;
m_bEditingRecord = false;
...
 }
Before the view appears, the application framework calls the 
CPRJNAMEView::OnInitialUpdate() method to perform initialization, requiring the 
following document information:

■ A view needs to display information from a table. To get information from the 
document for this purpose, the m_pDynaset member variable in the 
CPRJNAMEView class points to the m_PRJNAMEDynaset member variable in 
the CPRJNAMEDoc class.
3-10 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Understanding the Code Within Generated Files
■ A dynaset needs to be associated with a set of records in a table. To open a 
dynaset in a database associated with the document, the application calls 
ODynaset::OpenQuery() method.

This implements the CPRJNAMEView::OnInitialUpdate() method, illustrated below.

void CPRJNAMEView::OnInitialUpdate()
{

...
m_pDynaset = &GetDocument()->m_PRJNAMEDynaset;
m_pDynaset->OpenQuery(GetDocument()->m_database);
...

}
The CPRJNAMEDynaset class represents a set of records in a table. It creates, 
manages, and accesses records in the database, using the declaration shown below. 
In this declaration, data member variables have comments that indicate which real 
columns they represent.

class CTestDynaset : public ODynaset
{
...
public:

 // strings needed for creating the queries
 CString m_strSQLQuery;  // the query to be sent to the database
 CString m_strSQLSelect; // the select portion
 CString m_strSQLFilter; // the where portion
 CString m_strSQLSort;   // the order by portion
// Field/Param Data
OField m_Column1; //for COL1
OField m_Column2; //for COL2

...
// Operations
public:

void OpenQuery(ODatabase theDB);
void CreateSQLSelect();
void CreateSQLFilter();
void AddFilter(CString strFilter);
void CreateSQLSort();
void ResetToDefaultFilter();
void RefreshQuery();

...
}

Understanding Your Application’s Code 3-11



Understanding the Code Within Generated Files
To open a dynaset associated with the document, the method 
CPRJNAMEDynaset::OpenQuery() is called in CPRJNAMEView::OnInitialUpdate(). 
The CPRJNAMEDynaset::OpenQuery() method takes the following actions:

■ Creates a query statement to be executed

■ Asks the database for a set of records and sets up a dynaset to access them 

■ Binds data controls with the OField member variables (m_Column1, m_
Column2,…etc.) in the CPRJNAMEDynaset class

The CPRJNAMEDynaset::OpenQuery() method is implemented as illustrated 
below:

 // opens the query
 void CPRJNAMEDynaset::OpenQuery(ODatabase theDB)
{

 oresult dbresult;
 // m_strSQLQuery, m_strSQLSelect, m_strSQLFilter are CString objects.
 // These are member variables in CPRJNAMEDynaset class

 // create a query statement to be executed by the Open() call
 m_strSQLQuery = m_strSQLSelect;
 if (m_strSQLFilter)
   m_strSQLQuery += m_strSQLFilter;
 if (m_strSQLSort)
  m_strSQLQuery += m_strSQLSort;

// executing a SQL statement
dbresult = Open(theDB, m_strSQLQuery);

 // binding edit controls with columns in the table
  m_Column1 = GetField("COL1");
  m_Column2 = GetField("COL2");

 ...
}

3-12 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Understanding the Code Within Generated Files
Displaying Columns in a Table 
A view displays the stored data in the associated document. Data in both the 
document and the view must be consistent. Therefore, the OField member variables 
(the columns in a database table) of the CPRJNAMEDynaset class and the edit 
controls in the view must be validated and exchanged, using the 
CPRJNAMEView::DoDataExchange() method, which is implemented as:

void CPRJNAMEView::DoDataExchange(CDataExchange* pDX)
{

...
 // performing data exchange
 DDX_FieldText(pDX, IDC_COL1, 
m_pDynaset->m_Column1, m_pDynaset);
 DDX_FieldText(pDX, IDC_COL2, 
m_pDynaset->m_Column2, m_pDynaset);

    ...
}

Navigational Flow
This section explains the code generated by Oracle AppWizard for Microsoft Visual 
C++ to allow navigation through a dynaset record set.

These four controls enable your application users to navigate through records:

First record Last record

Next recordPrevious record
Understanding Your Application’s Code 3-13



Understanding the Code Within Generated Files
These navigational controls work as shown in the following two tables. Event 
handlers handle the COMMAND message, and Message handlers handle 
UPDATE_COMMAND_UI messages.
 

The navigational operations all use the CPRJNAMEView::PerformMove() method 
to perform the requested navigation. To explain the generated code for the 
navigational operations, we must explain the generated code for the 
CPRJNAMEView::PerformMove() method.

Action Button Control ID Event Handler Description

Move to first 
record

ID_RECORD_MOVEFIRST OnMoveFirst Move to first record 
in the dynaset’s result 
set.

Move to previous 
record

ID_RECORD_MOVEPREV OnMovePrev Move to previous 
record in the 
dynaset’s result set.

Move to next 
record

ID_RECORD_MOVENEXT OnMoveNext Move to next record 
in the dynaset’s result 
set.

Move to last 
record

ID_RECORD_MOVELAST OnMoveLast Move to last record in 
the dynaset’s result 
set.

Action Button Control ID

Message Handler 
for Update 
Command Description

Move to first 
record

ID_RECORD_
MOVEFIRST

OnUpdateMoveFirst Update first record 
in the dynaset’s 
result set.

Move to previous 
record

ID_RECORD_
MOVEPREV

OnUpdateMovePrev Update previous 
record in the 
dynaset’s result set.

Move to next 
record

ID_RECORD_
MOVENEXT

OnUpdateMoveNext Update next record 
in the dynaset’s 
result set.

Move to last 
record

ID_RECORD_
MOVELAST

OnUpdateMoveLast Update last record in 
the dynaset’s result 
set.
3-14 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Understanding the Code Within Generated Files
How Record Navigation Works
All navigational operations use the CPRJNAMEView::PerformMove() method. 

After a request for record navigation by the user and before any navigation occurs, 
the application verifies whether or not the current record must be updated or 
inserted into the database by calling CPRJNAMEView::PerformMove(). The method 
performs the following operations: 

■ Checks if the record can be edited

■ Performs data exchange between the view and the dynaset

■ If the record has been modified, updates the record in the database

■ Performs the requested navigation 

CPRJNAMEView::PerformMove() method is implemented as:

void CPRJNAMEView::PerformMove(int nCommand)
{

// nCommand is the control ID of the navigational button and represents
// the requested operation.

 oresult dbresult;
// Verify whether or not the record can be edited.
if (m_pDynaset->GetEditMode() != ODYNASET_EDIT_NEWRECORD)

m_pDynaset->StartEdit();
// exchange data between the the view and the dynaset
if (!UpdateData())

return;
// if the record changes, update the record in the dynaset
if (m_pDynaset->get_CurrentRowModified())
{
dbresult = m_pDynaset->Update();
if (dbresult == OFAILURE)
{

 ProcessOO4OError(m_pDynaset);
 return;

}
}
else

dbresult = m_pDynaset->CancelEdit();
switch(nCommand) // perform action, depends on the requeset navigation
{

  case ID_RECORD_MOVENEXT:
m_pDynaset->MoveNext();
break;
Understanding Your Application’s Code 3-15



Understanding the Code Within Generated Files
 case ID_RECORD_MOVEPREV:
m_pDynaset->MovePrev();
break;

 case ID_RECORD_MOVEFIRST:
m_pDynaset->MoveFirst();
break;

 case ID_RECORD_MOVELAST:
m_pDynaset->MoveLast();
break;

}
// exchange data between the view and the dynaset
UpdateData(FALSE);
m_bEditingRecord = false;
}

Navigating to the First Record in the Database
When the current record is not the first record and the user clicks the "First Record" 
button, corresponding to control ID = ID_RECORD_MOVEFIRST, users navigate to 
the first record. 

The CPRJNAMEView::OnUpdateMoveFirst() method enables/disables the "First 
Record" button and is implemented as:

Void CTestView::OnUpdateMoveFirst(CCmdUI* pCmdUI)
{

pCmdUI->Enable((m_pDynaset->IsOpen() == TRUE 
&& m_pDynaset->IsFirst() ==    FALSE) ? true : false);

}
When the button with control ID = ID_RECORD_MOVEFIRST is clicked, 
CPRJNAMEView::OnMoveFirst() method is called to handle the “Move to First 
Record” event.

CPRJNAMEView::OnMoveFirst() method is implemented as:

// move to the first record
void CPRJNAMEView::OnMoveFirst()
{

PerformMove(ID_RECORD_MOVEFIRST);
}

3-16 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Understanding the Code Within Generated Files
Navigating to the Last Record
When the current record is not the last record and the user clicks the "Last Record" 
button, corresponding to control ID = ID_RECORD_MOVELAST, users navigate to 
the last record. 

The CPRJNAMEView::OnUpdateMoveLast() method enables/disables the “Move 
to Last Record” button as shown below:

void CTestView::OnUpdateMoveLast(CCmdUI* pCmdUI)
{

pCmdUI->Enable((m_pDynaset->IsOpen() == TRUE 
&& m_pDynaset->IsLast() == FALSE) ? true : false);

}
When the button with control ID = ID_RECORD_MOVELAST is clicked, 
CPRJNAMEView::OnMoveLast() method is called to handle the “Move to Last 
Record” event.

This is the implementation of CPRJNAMEView::OnMoveLast() method:

// move to the last record
void CPRJNAMEView::OnMoveLast()
{

PerformMove(ID_RECORD_MOVELAST);
}

Navigating to the Previous Record
When the current record is not the first record and the user clicks the "Previous 
Record" button, corresponding to control ID = ID_RECORD_MOVEPREV, users 
navigate to the previous record. 

The CPRJNAMEView::OnUpdateMovePrev() method enables/disables the 
"Previous Record" button as shown below:

void CTestView::OnUpdateMovePrev(CCmdUI* pCmdUI)
{

CTestView::OnUpdateMoveFirst(pCmdUI);
}
Clicking the "Previous Record" button calls the CPRJNAMEView::OnMovePrev() 
method to handle the "Move to Previous Record" event. It is implemented as shown 
below:

// move to the previous record
void CPRJNAMEView::OnMovePrev()
{

PerformMove(ID_RECORD_MOVEPREV);
}

Understanding Your Application’s Code 3-17



Understanding the Code Within Generated Files
Navigating to the Next Record
When the current record is not the last record and the user clicks the "Next Record" 
button, corresponding to control ID = ID_RECORD_MOVENEXT, users navigate to 
the next record. 

The CPRJNAMEView::OnUpdateMoveNext() method enables/disables the “Next 
Record” button as shown below:

void CTestView::OnUpdateMoveNext(CCmdUI* pCmdUI)
{

CTestView::OnUpdateMoveLast(pCmdUI);
}
Clicking the "Next Record" button calls the CPRJNAMEView::OnMoveNext() 
method to handle the "Move to Next Record" event. It is implemented as shown 
below:

// move to the next record
void CPRJNAMEView::OnMoveNext()
{

PerformMove(ID_RECORD_MOVENEXT);
}

Data Manipulation Flow
This section explains the code that Oracle AppWizard for Microsoft Visual C++ 
generates to manipulation data in a table.

The following four controls enable application users to add, delete, and update 
records, or to cancel record updates before being sent to the database: 

The controls illustrated above correspond to the ODynaset class methods shown in 
the table below. Event handlers handle the COMMAND message, and Message 
handlers handle UPDATE_COMMAND_UI messages.

Cancel changes to a record

Update a 
record

Delete a record

Add a record
3-18 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Understanding the Code Within Generated Files
Adding a New Record
When the current record is not being updated and the user clicks the "Add New 
Record" button, corresponding to control ID = ID_RECORD_ADDNEW, users add a 
new record to the database. 

The CPRJNAMEView::OnUpdateAddNewRecord() method enables/disables the 
"Add New Record" button as shown below:

void CTestView::OnUpdateAddNewRecord(CCmdUI* pCmdUI) 
{

CmdUI->Enable(m_pDynaset->IsOpen() == TRUE && !m_bEditingRecord);
}
Clicking the "Add New Record" button, calls the 
CPRJNAMEView::OnAddNewRecord() method to handle the “Add Record” event 
as shown below:

// Allows the user to add a new record to the table
void CPRJNAMEView::OnAddNewRecord() 
{

Action Button Control ID Event Handler Description

Add a new record ID_RECORD_ADDNEW OnAddNewRecord Add a new record to 
the dynaset’s result 
set

Delete a record ID_RECORD_DELETE OnUpdateRecord Delete a record from 
the dynaset’s result 
set

Update a record ID_RECORD_UPDATE OnDeleteRecord Commit the changes 
for the current 
record

Cancel changes to 
a record

ID_RECORD_CANCEL OnCancelRecord Cancels the changes 
to the current record

Action Button Control ID Message Handler

Add new record ID_RECORD_ADDNEW OnUpdateAddNewRecord

Delete a record ID_RECORD_DELETE OnUpdateUpdateRecord

Update a record ID_RECORD_UPDATE OnUpdateDeleteRecord

Cancel changes to a 
record

ID_RECORD_CANCEL OnUpdateCancelRecord
Understanding Your Application’s Code 3-19



Understanding the Code Within Generated Files
if (m_pDynaset->AddNewRecord() == OSUCCESS)
{

UpdateData(FALSE);
m_bEditingRecord = true;

}
else
{

ProcessOO4OError(m_pDynaset);
}

}

Updating a Record
When the current record is not being updated and the user clicks the "Update 
Record" button, corresponding to control ID = ID_RECORD_UPDATE, users update 
a record in the database. 

The CPRJNAMEView::OnUpdateUpdateRecord() method enables/disables the 
"Update Record" button as shown below:

void CTestView::OnUpdateUpdateRecord(CCmdUI* pCmdUI) 
{

pCmdUI->Enable(m_pDynaset->IsOpen() == TRUE && m_bEditingRecord);
}
Clicking the "Update Record" button calls the CPRJNAMEView::OnUpdateRecord() 
method to handle the "Update Record" event as shown below:

// Updates the changes the user has made to the current record of the table
void CCPRJNAMEView::OnUpdateRecord()
{

oresult dbresult;
if (m_pDynaset->GetEditMode() != ODYNASET_EDIT_NEWRECORD)

 m_pDynaset->StartEdit();
if (!UpdateData())

 return;
if (m_pDynaset->get_CurrentRowModified())
{
dbresult = m_pDynaset->Update();
if (dbresult == OFAILURE)
    {

 ProcessOO4OError(m_pDynaset);
 return;
    }

  }
  else
  dbresult = m_pDynaset->CancelEdit();
3-20 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Understanding the Code Within Generated Files
  UpdateData(FALSE);
  m_bEditingRecord = false;

}

Deleting a Record
When the current record is not being updated and the user clicks the "Delete 
Record" button, corresponding to control ID = ID_RECORD_DELETE, users delete a 
record in the database. 

The CPRJNAMEView::OnUpdateDeleteRecord() method enables/disables the 
"Delete Record" button as shown below:

void CTestView::OnUpdateDeleteRecord(CCmdUI* pCmdUI) 
{

pCmdUI->Enable(m_pDynaset->IsOpen() == TRUE && !m_bEditingRecord);
}
Clicking the "Delete Record" button calls the CPRJNAMEView::OnDeleteRecord() 
method to handle the "Delete Record" event as shown below:

// Deletes the current record from the table
void CCPRJNAMEView::OnDeleteRecord() 
{

bool bWasLast = m_pDynaset->IsLast() == TRUE ? true : false;
if (m_pDynaset->DeleteRecord() == OSUCCESS)
{

 if (!bWasLast)
m_pDynaset->MoveNext();

else
m_pDynaset->MovePrev();

UpdateData(FALSE);
m_bEditingRecord = false;

}
else
{

ProcessOO4OError(m_pDynaset);
}

}

Understanding Your Application’s Code 3-21



Understanding the Code Within Generated Files
Cancelling Changes to a Record
When the current record is being updated and the user clicks the “Cancel record 
changes” button, corresponding to control ID = ID_RECORD_CANCEL, users cancel 
changes they have entered, but have not yet committed, to a record in the database. 

The CPRJNAMEView::OnUpdateCancelRecord() method enables/disables the 
“Cancel Changes” button as shown below:

void CTestView::OnUpdateCancelRecord(CCmdUI* pCmdUI) 
{

pCmdUI->Enable(m_pDynaset->IsOpen() == TRUE && m_bEditingRecord);
}
Clicking the “Cancel Changes” button, calls the 
CPRJNAMEView::OnCancelRecord() method to handle the “Cancel the change” 
event as shown below:

// Cancels the changes to the current record.
void CCPRJNAMEView::OnCancelRecord()
{

if (m_pDynaset->GetEditMode() != ODYNASET_EDIT_NOEDIT)
if (m_pDynaset->CancelEdit() == OFAILURE)

ProcessOO4OError(m_pDynaset);
UpdateData(FALSE);
m_bEditingRecord = false;

}

Generated Code for a Multiple-Record Display Form
This subsection explains the generated code for applications using multiple-record 
display forms. The previous discussion in this section dealt with generated code for 
single-record display forms. 

Oracle AppWizard for Microsoft Visual C++ uses Oracle Data Control class 
CORADC to display and access records in this mode. The CPRJNAMEView class is 
defined as follows:

class CPRJNAMEView : public CFormView
{  

...
public:

CTestDynaset *m_pDynaset;

Note: Text in bold type represents Oracle code.
3-22 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Understanding the Code Within Generated Files
CORADC m_dataControl // Used by Oracle control to display
                  and access data

...
}
Data exchange takes place, using the Oracle Data Control Object (m_dataControl) in 
the CPRJNAMEView::DoDataExchange() as follows:

void CPRJNAMEView::DoDataExchange(CDataExchange* pDX)
{

// performing data exchange
// IDC_ORADC is the control ID for the Oracle Data Control grid
DDX_Control(pDX, IDC_ORADC, m_dataControl);

}

Understanding Your Application’s Code 3-23



Understanding the Code Within Generated Files
3-24 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Tu
4

Tutorial

This chapter guides you through the creation and customization of an application 
generated by Oracle AppWizard for Microsoft Visual C++. All of the customization 
lessons presented in this tutorial are based on information described in Chapter 3, 
"Understanding Your Application’s Code" This tutorial introduces each lesson with 
an explanation of what you will learn upon completion.

By working through all the lessons of this tutorial, you will learn how to create and 
customize an Oracle AppWizard for Microsoft Visual C++ starter application. 

Specific topics discussed are:

■ Introduction

■ Before You Start

■ Lesson 1: Creating the Starter Application

■ Lesson 2: Adding Customer Information to a Purchase Order

■ Lesson 3: Enabling Users to Add Products to a Purchase Order

■ Lesson 4: Enabling Users to Update a Purchase Order

■ Lesson 5: Enabling Users to Add, Commit, or Cancel a New Purchase Order
torial 4-1



Introduction
Introduction
A store owner must keep accurate records of all customers and their purchases. A 
database application is perfect for performing this job. 

In this tutorial, you develop a custom purchase order application for Nicole’s 
Sporting Goods called “Order.” This business must track information about sales 
orders, the items sold, and to which of the store’s customers. You create and 
examine the structure of the database tables, then create and customize the 
application to manage that information. The application you develop allows Nicole 
and her employees to create, update, and view purchase orders for her sporting 
goods store.

Each main section of the tutorial corresponds to a version number for Order, with 
each successive lesson building on what was learned in the last one. When you 
finish working through the final lesson, you will have programmed a completely 
customized purchase order system for Nichole’s Sporting Goods.

You can access the files for the tutorial in the following directory:

ORACLE_BASE\ORACLE_HOME\APPWIZARD\VC++\TUTORIAL\ORDER[1-5]

These files show you what you should have built by the end of each lesson. The 
Order1 file corresponds to Lesson 1, Order2 corresponds to Lesson 2, and so on. 
Therefore, to see the set of completed files for Lesson 1, access:

ORACLE_BASE\ORACLE_HOME\APPWIZARD\VC++\TUTORIAL\ORDER1

Before You Start
Before you can create any application, you must set up your database tables, so that 
the application has information to process. Because Nicole needs to keep track of 
information about sales orders, the items sold, the store’s customers, and the 
products sold, you must structure the tables to reflect those needs. 

To create this purchase order system, you must set up the following database tables 
to interact with each other:

■ Sales_Order

■ Item

■ Customer

■ Product
4-2 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Before You Start
If you need to create the user DEMO and the above tables, search for DEMO.SQL in 
the ORACLE_BASE\ORACLE_HOME\RDBMS\ADMIN directory and execute it 
within Server Manager or SQL*Plus. The DEMO.SQL file creates user DEMO and 
calls the SQL script BDEMOBLD.SQL to create the above tables for you.

The following illustrates the data models for the tables you will construct:

Sales_Order table:

Name                            Null?    Type
------------------------------- -------- ----
ORDER_ID                        NOT NULL NUMBER(4)
ORDER_DATE                               DATE
CUSTOMER_ID                              NUMBER(6)
SHIP_DATE                                DATE

    TOTAL                                    NUMBER(8,2)

Item table:

Name                            Null?    Type
------------------------------- -------- ----
ORDER_ID                        NOT NULL NUMBER(4)
ITEM_ID                         NOT NULL NUMBER(4)
PRODUCT_ID                               NUMBER(6)
ACTUAL_PRICE                             NUMBER(8,2)
QUANTITY                                 NUMBER(8)
TOTAL                                    NUMBER(8,2)

Customer table:

Name                            Null?    Type
------------------------------- -------- ----
CUSTOMER_ID                     NOT NULL NUMBER(6)
NAME                                     VARCHAR2(45)
ADDRESS                                  VARCHAR2(40)
CITY                                     VARCHAR2(30)
STATE                                    VARCHAR2(2)
ZIP_CODE                                 VARCHAR2(9)
AREA_CODE                                NUMBER(3)
PHONE_NUMBER                             NUMBER(7)
SALESPERSON_ID                           NUMBER(4)
CREDIT_LIMIT                             NUMBER(9,2)
COMMENTS                                 LONG
Tutorial 4-3



Lesson 1: Creating the Starter Application
Product table:

Name                            Null?    Type
------------------------------- -------- ----
PRODUCT_ID                      NOT NULL NUMBER(6)
DESCRIPTION                              VARCHAR2(30)

Lesson 1: Creating the Starter Application
In Lesson 1, you form the basis of the purchase order application for Nicole’s 
Sporting Goods. In this lesson, you learn how to quickly complete a starter 
application as explained in Chapter 2, "Creating a Starter Application" The 
application you create using Oracle AppWizard for Microsoft Visual C++ is then 
ready for customization. 

When you are finished with this section, you will understand how to use Oracle 
AppWizard for Microsoft Visual C++ to create a starter application.

Lesson 1 consists of the following parts:

■ Part 1: Working with Oracle AppWizard for Microsoft Visual C++

■ Part 2: Exploring Generated Classes and Files

■ Part 3: Viewing the ReadMe.txt for the Generated Project

■ Part 4: Building and Running the Application

Part 1: Working with Oracle AppWizard for Microsoft Visual C++

Starting the Oracle AppWizard for Microsoft Visual C++
1. Start Microsoft Visual C++.

2. Choose New from the File menu.

The New dialog box appears.

3. Click the Projects tab.

4. Select Oracle AppWizard for MFC (exe) from the list of project types.

5. Enter the path from which you want to locate the application.

6. Enter “Order” in the Project Name box. This is the name of the application that 
you will create.

7. Make sure that “Create New Workspace” is selected.
4-4 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Lesson 1: Creating the Starter Application
8. Click OK.

Oracle AppWizard for Microsoft Visual C++ starts.

The Welcome window appears.

9. Click Next to continue.

Connecting to the Oracle Database
1. Enter DEMO in the User Name text field.

2. Enter DEMO in the Password text field.

3. If connecting to a remote database, type the database alias in the Database Alias 
box. Otherwise, leave this field empty.

4. When you are done, click Next.
Tutorial 4-5



Lesson 1: Creating the Starter Application
Naming and Specifying the Type of Form
1. Enter the name of the form: Order.

2. Select Master-Detail Display Form. 

3. Click the Add, Change, and Delete checkboxes.

4. Click Next.

Select 
Master-Detail 
Display Form

Click Add, 
Change, and 
Delete

Type Order here
4-6 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Lesson 1: Creating the Starter Application
Selecting Master Tables and Columns
1. Select the SALES_ORDER table under the DEMO user in the list. This becomes 

the master table.

By default, all columns under SALES_ORDER are selected.

2. Accept the default and click Next.

Select the
SALES_ORDER table.
It will be the master table.
Tutorial 4-7



Lesson 1: Creating the Starter Application
Selecting Detail Tables and Columns 
1. Select the ITEM table under the DEMO user in the list. This will be the detail 

table.

By default, all columns under ITEM are selected.

2. Accept the default and click Next.

Building Join Clauses Between Tables
The next window displays the columns from the master and the detail tables you 
have selected and the default join clause that Oracle AppWizard has created. Oracle 
AppWizard creates the default join it bases on the primary and foreign keys of the 
master and detail tables.

In our example, Oracle AppWizard has created a default join, based on the primary 
and foreign keys:

Sales.Order.Order_ID joined with Item.Order_ID

Select the ITEM table. 
It will be the detail table.
4-8 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Lesson 1: Creating the Starter Application
3. Click Next to use the default join. 

Oracle AppWizard prompts you:

Would you like to create another form?

4. Click No.

Specifying the Application Type and User Language
1. Select Single document.

2. Accept the default for Document/View Architecture Support.

3. Accept the current default language. In this tutorial, we use English [United 
States].

4. Click Next.

The default join
Tutorial 4-9



Lesson 1: Creating the Starter Application
Completing the Remaining Steps
1. Accept the default options for the remaining steps by clicking Next on each 

window. You can also click Finish and Oracle AppWizard for Microsoft Visual 
C++ will accept the defaults for you.

In the last window, the Next button is disabled, as shown in the following 
diagram.

Select 
Single document 
interface

Select the 
language here

Click Finish to have 
Oracle AppWizard
accept the defaults for you

Click Next to 
go to the next 
window
4-10 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Lesson 1: Creating the Starter Application
In this window, Oracle AppWizard for Microsoft Visual C++ displays the 
classes it creates for your application.

2. Click Finish to allow Oracle AppWizard for Microsoft Visual C++ to create the 
starter application. 

The New Project Information window appears. This window shows you the 
specifications that Oracle AppWizard used to create the Order application.

3. Examine the information in the New Project Information window for accuracy.

Next is 
disabled

Click Finish to allow Oracle AppWizard
to create the starter application
Tutorial 4-11



Lesson 1: Creating the Starter Application
4. When done, click OK. 

Oracle AppWizard for Microsoft Visual C++ creates the source, header, and 
resource files for your Order application and takes you automatically to the 
Microsoft Developer Studio with Workspace “Order” open.

Part 2: Exploring Generated Classes and Files
Now that you have created the Order application using Oracle AppWizard for 
Microsoft Visual C++, you can customize it to better suit your needs. To customize 
this application you need to know about the classes and files created for this 
purpose, as shown in the following table:
4-12 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Lesson 1: Creating the Starter Application
Part 3: Viewing the ReadMe.txt for the Generated Project
Oracle AppWizard for Microsoft Visual C++ creates a ReadMe.txt file for the 
generated Order project. This ReadMe.txt file describes the source, header, and 
resource files that Oracle AppWizard has created.

To view the contents of the ReadMe.txt file:

1. Select the FileView tab.

2. Click the name of your project, Order, to open it in the Workspace of the dialog 
box.

3. Click the ReadMe.txt file to open it.

Files Class Description
Derived 
From...

AboutDlg.cpp
AboutDlg.h

CAboutDlg dialog class for About 
Order
dialog box

CDialog

ConnDialog.cpp
ConnDialog.h

CConnDialog dialog class for Connect 
to Oracle dialog box

CDialog

MainFrame.cpp
MainFrame.h

CMainFrame frame window class CFrameWnd

ORADC.cpp
ORADC.h

CORADC data control class CWnd

OrderApp.cpp
OrderApp.h

COrderApp application class CWinApp

OrderDynasetDetail.cpp
OrderDynasetDetail.h

COrderDynasetDetail dynaset class for Sales 
Order table

ODynaset

OrderDynasetMaster.cpp
OrderDynasetMaster.h

COrderDynasetMaster dynaset class for Item 
table

ODynaset

OrderView.cpp
OrderView.h

COrderView form view class CFormView

OrderDoc.cpp
OrderDoc.h

COrderDoc document class CDocument

OrderUtil.cpp
OrderUtil.h

Not applicable stand alone functions:
Process OO4OError(), 
DDX_Field Text(), ...
Tutorial 4-13



Lesson 1: Creating the Starter Application
The following diagram shows what the ReadMe.txt file for Order should look 
like:

Part 4: Building and Running the Application
In this section you use Microsoft Developer Studio to build and run the executable 
files created by Oracle AppWizard for Microsoft Visual C++.

1. Choose Build Order.exe from the Build menu to build the application.

2. Choose Execute Order.exe from the Build menu to run the application.

The Connect to Oracle dialog box appears.

Note: By default, the active project configuration is the debug 
version. To change the active project configuration, choose Set 
Active Configuration from the Build menu.
4-14 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Lesson 1: Creating the Starter Application
3. Enter DEMO in the User Name text field and DEMO in the Password text field. 
If connecting to a remote database, type the database alias in the Database Alias  
text field.

4. Click Connect.

The Order application appears.

Arrow controls for navigating through recordsHelp menu

Exit through 
File menu 

Master table 
controls: 
Shows 
data from 
Sales_Order 
table.

Detail table 
control: 
Shows 
data from 
Item table.
Tutorial 4-15



Lesson 2: Adding Customer Information to a Purchase Order
Notice and try using the following features:

■ Arrow controls 

These controls on the toolbar let you easily navigate through the records.

■ Record menu 

Another method for navigating through the records.

■ View menu 

Shows or hides the toolbar or status bar.

■ Help > About Order 

This displays the About Order window. (Clicking OK closes the window.)

■ File > Exit 

This exits the application.

Lesson 2: Adding Customer Information to a Purchase Order 
In this first customization task, you learn how to add specific, detailed information 
about customers that should appear on any purchase order for the Order 
application. To accomplish this task, complete the following parts of this lesson:

■ Part 1: Creating a Dynaset Class for the Customer Table

■ Part 2: Adding Customer Information to a Purchase Order

■ Part 3: Displaying Customer Information for a Purchase Order

To see the set of completed files for Lesson 2, access:

ORACLE_BASE\ORACLE_HOME\APPWIZARD\VC++\TUTORIAL\ORDER2.

Part 1: Creating a Dynaset Class for the Customer Table
To display customer information on your purchase order form for an active order, 
you must first create an ODynaset class to represent the CUSTOMER table. To do 
this, create a new generic class called COrderCustomerDynaset, which is derived 
from the ODynaset class.

Note: Some parts of this lesson require you to add or modify code 
in the application. The code that must be added or modified 
appears in bold type.
4-16 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Lesson 2: Adding Customer Information to a Purchase Order
The ODynaset class is a class in the Oracle Objects for OLE C++ class library. It 
creates, manages, and accesses data records from the database. 

To create a dynaset for the CUSTOMER table:

1. Right-click Order class and select New Class in the Class view of Microsoft 
Developer Studio.

The New Class dialog box appears.

2. Select Generic Class from the Class Type list.

3. Enter the following in the Name text box under Class Information:

COrderDynasetCustomer

4. Enter the following under the column heading Derived From in the Base 
Class(es) list: 

ODynaset

5. Accept the default entry, “public” under the As column heading.

This is how the New Class dialog box appears before you click OK.

6. Click OK.

Microsoft Developer Studio displays the following message:

The As
column heading

Select
Generic Class 
from the 
Class Type list 
box.

The Derived 
From column 
heading
Tutorial 4-17



Lesson 2: Adding Customer Information to a Purchase Order
The New Class Wizard could not find the appropriate header file(s) to 
include for the base class(es) ODynaset...

7. Click OK.

This message occurs because the definition of the ODynaset class is not 
included in the generated file. Therefore, you must manually include the header 
file that defines the ODynaset class, ORACL.H, in the OrderDynaSetCustomer.h 
file. You can locate the header file in:

ORACLE_BASE\ORACLE_HOME\0040\cpp\include
aORACLE_HOME\0040\cpp\include

Oracle AppWizard for Microsoft Visual C++ generates both an 
OrderDynasetCustomer.cpp file and OrderDynasetCustomer.h file for the 
COrderDynasetCustomer class with the following contents:

The OrderDynasetCustomer.cpp file contains:

//OrderDynasetCustomer.cpp: implmentation of the COrderDynasetCustomer 
class.
//
//////////////////////////////////////////////////////////
#include "stdafcx.h"
#include "Order.h"
#include "OrderDynasetCustomer.h"
COrderDynasetCustomer:COrderDynasetCustomer()
{

}
COrderDynasetCustomer:~COrderDynasetCustomer()
{

}

The OrderDynasetCustomer.h file contains:
//OrderDynasetCustomer.h: interface for the COrderDynasetCustomer Class//
//////////////////////////////////////////////////////////
class COrderDynasetCustomer : public ODynaset
{
public:
COrderDynasetCustomer();
};
4-18 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Lesson 2: Adding Customer Information to a Purchase Order
Adding Member Variables to the COrderDynasetCustomer Class
COrderDynasetCustomer class is derived from the ODynaset class. This class 
contains member variables that store information about a SQL statement to query 
the database. This class also stores information to represent columns in the 
USER.DEMO.CUSTOMER table. These are shown below:

To add member variables for the COrderDynasetCustomer class:

1. Enter the following code in the COrderDynasetCustomer.h file:

class COrderDynasetCustomer : public ODynaset 
{
...
public:
    COrderDynasetCustomer();
    virtual ~COrderDynasetCustomer();

Member Variables Type Type Description

m_strSQLQuery CString Query to be sent to the database

m_strSQLSelect CString Select clause of the SQL statement

m_strSQLFilter CString Where clause of the SQL statement

m_strSQLSort CString Order clause of the SQL statement

m_Column1 OField CUSTOMER_ID column of CUSTOMER table

m_NAME OField NAME column of CUSTOMER table

m_ADDRESS OField ADDRESS column of CUSTOMER table

m_CITY OField CITY column of CUSTOMER table

m_STATE OField STATE column of CUSTOMER table

m_ZIP_CODE OField ZIP column of CUSTOMER table

m_AREA_CODE; OField AREA_CODE column of CUSTOMER table

m_PHONE_NUMBER OField TELEPHONE_NUMBER column of CUSTOMER table

m_SALESPERSON_ID OField SALESPERSON_ID column of CUSTOMER table

m_CREDIT_LIMIT OField CREDIT_LIMIT column of CUSTOMER table

m_COMMENTS OField COMMENTS column of CUSTOMER table
Tutorial 4-19



Lesson 2: Adding Customer Information to a Purchase Order
public:
// strings needed for creating the queries
   CString m_strSQLQuery;  // the query to be sent to the database
   CString m_strSQLSelect; // the select portion
   CString m_strSQLFilter; // the where portion
   CString m_strSQLSort;   // the order by portion

// Field/Param Data
   OField m_CUSTOMER_ID;
   OField m_NAME;
   OField m_ADDRESS;
   OField m_CITY;
   OField m_STATE;
   OField m_ZIP_CODE;
   OField m_AREA_CODE;
   OField m_PHONE_NUMBER;
   OField m_SALESPERSON_ID;
   OField m_CREDIT_LIMIT;
   OField m_COMMENTS;

...
};

Adding Member Functions and Implementation Details to the 
COrderDynasetCustomer Class
Adding the member functions shown below to the COrderDynaset customer class 
enables you to create a query statement, have the database process it, then retrieve 
and store information.

Member Functions Descriptions

OpenQuery Starts a query and retrieves the information from the database.

CreateSQLSelect Creates the default query (SELECT) statement.

AddFilter Adds a condition to the query statement.

ResetToDefaultFilter Resets the condition clause for the query.

RefreshQuery Refreshes the query to be executed.
4-20 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Lesson 2: Adding Customer Information to a Purchase Order
To declare member functions for the COrderDynasetCustomer class:

1. Add the following code to the OrderDynasetCustomer.h file: 

class COrderDynasetCustomer : public ODynaset  
{
...

    public:
            COrderDynasetCustomer();
            virtual ~COrderDynasetCustomer();

   // Operations
   public:
   void OpenQuery(ODatabase theDB);
   void CreateSQLSelect();
   void AddFilter(CString strFilter);
   void ResetToDefaultFilter();
   void RefreshQuery();
    ...

     };

2. Add the following code to the constructor method of COrderDynasetCustomer 
Class in the OrderDynasetCustomer.cpp file to initialize the value in the 
member variables:

COrderDynasetCustomer::COrderDynasetCustomer()
{

m_strSQLQuery.Empty();
m_strSQLSelect.Empty();
m_strSQLFilter.Empty();
m_strSQLSort.Empty();

// Create the default select clause of the 
statement m_strSQLSelect

  CreateSQLSelect();
}

3. Add the following code for the COrderDynasetCustomer 
class::CreateSQLSelect() method at the end of the OrderDynasetCustomer.cpp 
file to create the default SQL statement:

// Creates the default select
void COrderDynasetCustomer::CreateSQLSelect()

{

Tutorial 4-21



Lesson 2: Adding Customer Information to a Purchase Order
m_strSQLSelect = "select CUSTOMER_ID, NAME, 
    ADDRESS, CITY, STATE, \
    ZIP_CODE, AREA_CODE, PHONE_NUMBER, \
    SALESPERSON_ID, CREDIT_LIMIT, COMMENTS \
    from DEMO.CUSTOMER";

}

4. Add the following code for the COrderDynasetCustomer class::OpenQuery() 
method in the OrderDynasetCustomer.cpp file to:

■ Create a query statement

■ Process the query

■ Retrieve information from the database

// opens the query
void COrderDynasetCustomer::OpenQuery(ODatabase theDB)
{

oresult dbresult;
// create a query statement

m_strSQLQuery = m_strSQLSelect;
if (m_strSQLFilter)
      m_strSQLQuery += m_strSQLFilter;
if (m_strSQLSort)
      m_strSQLQuery += m_strSQLSort;

// query the database
dbresult = Open(theDB, m_strSQLQuery);

// retreive/store information from the database
m_CUSTOMER_ID = GetField("CUSTOMER_ID");
m_NAME = GetField("NAME");
m_ADDRESS = GetField("ADDRESS");
m_CITY = GetField("CITY");
m_STATE = GetField("STATE");
m_ZIP_CODE = GetField("ZIP_CODE");
m_AREA_CODE = GetField("AREA_CODE");
m_PHONE_NUMBER = GetField("PHONE_NUMBER");
m_SALESPERSON_ID = GetField("SALESPERSON_ID");
m_CREDIT_LIMIT = GetField("CREDIT_LIMIT");
m_COMMENTS = GetField("COMMENTS");

// display the first record from the Customer table
dbresult = MoveFirst();

}

4-22 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Lesson 2: Adding Customer Information to a Purchase Order
5. Add the following code for the COrderDynasetCustomer class::AddFilter() 
method in the OrderDynasetCustomer.cpp file to add a conditional clause for 
the query:

// adds a condition to the where clause
void COrderDynasetCustomer::AddFilter(CString strFilter)
{

m_strSQLFilter += m_strSQLFilter.IsEmpty() ? " 
    WHERE " : " AND ";
m_strSQLFilter += strFilter;

}
6. Add the following code for the COrderDynasetCustomer 

class::ResetToDefaultFilter() method in the OrderDynasetCustomer.cpp file to 
reset the conditional clause for the query: 

// resets the filter to the default value
void COrderDynasetCustomer::ResetToDefaultFilter()
{

  m_strSQLFilter.Empty();
}

7. Add the following code for COrderDynasetCustomer class::RefreshQuery() 
method in the OrderDynasetCustomer.cpp file to refresh the query to be 
executed:

void COrderDynasetCustomer::RefreshQuery()
{

oresult dbresult;

// create a query statement
m_strSQLQuery = m_strSQLSelect;
if (m_strSQLFilter)
    m_strSQLQuery += m_strSQLFilter;
if (m_strSQLSort)
    m_strSQLQuery += m_strSQLSort;

// set the query statement to be used
dbresult = SetSQL(m_strSQLQuery);
dbresult = Refresh();

}

Tutorial 4-23



Lesson 2: Adding Customer Information to a Purchase Order
Part 2: Adding Customer Information to a Purchase Order
To display customer information for a purchase order, add the customer dynaset to 
the COrderView class and COrderDoc class.

To add customer information to a purchase order:

1. Add a member variable called m_pDynasetCustomer to the COrderView class 
in the COrderView.h header file. This member variable is a pointer to the type 
COrderCustomerDynaset class.

class COrderView : public CFormView
{

...    
COrderDynasetMaster *m_pDynasetMaster;
COrderDynasetDetail *m_pDynasetDetail;
COrderDynasetCustomer *m_pDynasetCustomer;
...

}

2. Initialize the variable, m_pDynasetCustomer, to NULL in the constructor 
method of COrderView class in the the COrderView.cpp file.

COrderView::COrderView()
: CFormView(COrderView::IDD)

{
...
m_pDynasetMaster = NULL;
m_pDynasetDetail = NULL;
m_pDynasetCustomer = NULL;
...

}

3. Add a member variable called m_OrderDynasetCustomer to the COrderDoc 
class in the COrderCustomerDynaset.cpp file. This is an object of 
COrderCustomerDynaset class.

class COrderDoc : public CDocument
{

...
COrderDynasetMaster m_OrderDynasetMaster;
COrderDynasetDetail m_OrderDynasetDetail;
COrderDynasetCustomer m_OrderDynasetCustomer;
...

}

4-24 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Lesson 2: Adding Customer Information to a Purchase Order
4. Include the OrderDynasetCustomer.h header file in Order.cpp, OrderDoc.h, and 
OrderView.h to define the COrderDynasetCustomer class.

Part 3: Displaying Customer Information for a Purchase Order
This section demonstrates how to display customer information for each purchase 
order.

1. Add 10 edit controls to display customer information in the IDD_ORDER_
FORM dialog box with the Control IDs as shown in the following table:

Table 4–1 Control IDs with Member Variables

After you add these edit controls, the IDD_ORDER_FORM dialog box appears 
similar to the one shown below. This illustration serves only as a sample. Yours may 
look slightly different.

Control ID
Member Variables for COrderDynasetCustomer 
Class

IDC_CUST_NAME m_NAME

IDC_CUST_ADDRESS m_ADDRESS

IDC_CUST_CITY m_CITY

IDC_CUST_STATE m_STATE

IDC_CUST_ZIP_CODE m_ZIP_CODE

IDC_CUST_AREA_CODE m_AREA_CODE

IDC_CUST_PHONE_NUMBER m_PHONE_NUMBER

IDC_CUST_SALESPERSON_ID m_SALESPERSON_ID

IDC_CUST_CREDIT_LIMIT m_CREDIT_LIMIT

IDC_CUST_COMMENTS m_COMMENTS
Tutorial 4-25



Lesson 2: Adding Customer Information to a Purchase Order
To bind these edit controls with the OField members in the 
COrderDynasetCustomer class, call the DDX_FieldText() method for each 
customer edit control in the COrderView class::DoDataExchange() method, as 
described in the next step. 

The OField members represent the columns in the Customer table. Bind these 
with a corresponding OField member variable of the COrderDynasetCustomer 
class shown in Table 4–1.

2. Enter the following code in COrderView:DoData Exchange in the 
OrderView.cpp file to bind the customer edit controls with the OField members 
in the COrderDyaset Customer class:

void COrderView::DoDataExchange(CDataExchange* pDX)
{

...
CFormView::DoDataExchange(pDX);
...
// for customer dynaset
DDX_FieldText(pDX, IDC_CUST_NAME, 

m_pDynasetCustomer->m_NAME, m_pDynasetCustomer);
DDX_FieldText(pDX, IDC_CUST_ADDRESS, 

m_pDynasetCustomer->m_ADDRESS, m_pDynasetCustomer);
DDX_FieldText(pDX, IDC_CUST_CITY, m_pDynasetCustomer->m_CITY, 

m_pDynasetCustomer);
DDX_FieldText(pDX, IDC_CUST_STATE,

m_pDynasetCustomer->m_STATE, m_pDynasetCustomer);
DDX_FieldText(pDX, IDC_CUST_ZIP_CODE, 

m_pDynasetCustomer->m_ZIP_CODE, m_pDynasetCustomer);
DDX_FieldText(pDX, IDC_CUST_AREA_CODE,

Added 
controls Added

contro
4-26 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Lesson 2: Adding Customer Information to a Purchase Order
m_pDynasetCustomer->m_AREA_CODE, m_pDynasetCustomer);
DDX_FieldText(pDX, IDC_CUST_PHONE_NUMBER,

m_pDynasetCustomer->m_PHONE_NUMBER, m_pDynasetCustomer);
DDX_FieldText(pDX, IDC_CUST_CREDIT_LIMIT, 

m_pDynasetCustomer->m_CREDIT_LIMIT, m_pDynasetCustomer);
DDX_FieldText(pDX, IDC_CUST_SALESPERSON_ID,

m_pDynasetCustomer->m_SALESPERSON_ID, m_pDynasetCustomer);
DDX_FieldText(pDX, IDC_CUST_COMMENTS, 

m_pDynasetCustomer->m_COMMENTS, m_pDynasetCustomer);
...

}

3. Add the following code to the COrderView::OnInitialUpdate() method in 
OrderView.cpp to initialize the customer dynaset when the view is attached to 
the document:

void COrderView::OnInitialUpdate()
{

CString strJoin;
...
m_pDynasetMaster = &GetDocument()->m_OrderDynasetMaster;
m_pDynasetDetail = &GetDocument()->m_OrderDynasetDetail;
m_pDynasetCustomer = &GetDocument()->m_OrderDynasetCustomer;

m_pDynasetMaster->OpenQuery(GetDocument()->m_database);
}

4. Add the following code to the COrderView::OnInitialUpdate() method in 
OrderView.cpp to perform a join operation between the CUSTOMER_ID 
column of the SALES_ORDER table and the CUSTOMER_ID column of the 
ITEM table to retrieve customer information for a purchase order:

...
m_pDynasetMaster->OpenQuery(GetDocument()->m_database);

// create a join based on CUSTOMER_ID 
// between the Customer table and 
// the Sales.Order table. 
m_pDynasetCustomer->ResetToDefaultFilter();
strJoin = "CUSTOMER_ID = " + 

(CString)m_pDynasetMaster->m_Column1;
m_pDynasetCustomer->AddFilter(strJoin);
// create, process the query
m_pDynasetCustomer->OpenQuery(GetDocument()->m_database);
...

CFormView::OnInitialUpdate();
m_dataControl.SetRecordset((LPDISPATCH)(m_pDynasetDetail->Internal()));
Tutorial 4-27



Lesson 2: Adding Customer Information to a Purchase Order
...
}

5. Enter the following code to the PerformMove() method of the COrderView class 
in OrderView.cpp to update the customer dynaset after a move operation has 
been performed:

void COrderView::PerformMove(int nCommand)
{

...
// Update Customer information
m_pDynasetCustomer->ResetToDefaultFilter();
strJoin = "CUSTOMER_ID = " + 

(CString)m_pDynasetMaster->m_Column1;
m_pDynasetCustomer->AddFilter(strJoin);
m_pDynasetCustomer->RefreshQuery();

UpdateData(FALSE);
}

6. Build and run the application. 

This is how the application should look when you are done:

The 
customer 
information 
is now 
displayed
4-28 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Lesson 3: Enabling Users to Add Products to a Purchase Order
Lesson 3: Enabling Users to Add Products to a Purchase Order
Nicole’s employees must add products to a purchase order. This lesson 
demonstrates how to customize your application to: 

■ Display available products from the PRODUCT table

■ Add product items to a purchase order

■ Update the changes in the ITEM table and the detail table control when product 
items have been added to a purchase order

■ Update the changes in the SALES_ORDER table and the master table controls 
when product items have been added to a purchase order

Lesson 3 contains the following parts:

■ Part 1: Displaying a List of Items from the PRODUCT Table

■ Part 2: Adding the Selected Products to the Purchase Order

To see the set of completed files for Lesson 3, access:

ORACLE_HOME\APPWIZARD\VC++\TUTORIAL\ORDER3.

Part 1: Displaying a List of Items from the PRODUCT Table
Nicole's Sporting Goods carries a wide variety of products. Many of them have 
similar names and descriptions. To insure data integrity, display a list of the product 
items in the purchase order application window. This enables Nicole’s employees to 
select the items that customers have purchased from the list.

In this part, you will add a list box that displays the available products in the 
IDD_ORDER_FORM dialog box.

To add a list box:

1. Add a list box with a control ID = IDC_PRODUCTLIST that allows multiple 
selections. This enables users to select multiple purchased items, which can then 
be added to a purchase order, all at one time.

2. Create a new member variable, m_prodList, for the list box in COrderView 
class. The variable m_prodList is a control handler of type CListBox. It is used 

Note: Some parts of this lesson require you to add or modify code 
in the application. The code that must be added or modified 
appears in bold type.
Tutorial 4-29



Lesson 3: Enabling Users to Add Products to a Purchase Order
to store the list of product items from the PRODUCT table. Bind the IDC_
PRODUCTLIST list box control with this new member variable.

3. Add the following code to COrderView::OnInitialUpdate() method in the 
OrderView.cpp file to display a list of available products from the PRODUCT 
table in the list box:

void COrderView::OnInitialUpdate()
{

...
CFormView::OnInitialUpdate()

...

// Put list of sales items into the listbox
ODynaset oProdList;
oProdList.Open(GetDocument()->m_database, 
     "SELECT PRODUCT_ID,DESCRIPTION
     FROM DEMO.PRODUCT ORDER BY PRODUCT_ID");
int index = 0;
while (!oProdList.IsEOF())

{
   m_prodList.InsertString(index,   
       (CString)oProdList.GetField(0) + " - " + 
        oProdList.GetField(1));

m_prodList.SetItemData(index,     
       (long)oProdList.GetField(0));
oProdList.MoveNext();
index++;

}
}

Part 2: Adding the Selected Products to the Purchase Order
When Nicole’s employees add a purchased item from the product list box to a 
purchase order, a new record for the purchased item is inserted into the ITEM table. 
Nicole wants the TOTAL column in the SALES_ORDER table to be re-calculated to 
reflect the amount added from the purchased item to the purchase order. Content in 
the detail table control and the master table control should also be updated 
accordingly.

1. To have the TOTAL column in the SALES_ORDER table updated when a 
purchased item is added to a purchase order, the SALES_ORDER table should 
be updated. To allow the updating of the SALES_ORDER table, remove the 
third parameter, ODYNASET_READONLY, from the Open() function call in the 
COrderDynasetMaster::OpenQuery() method:
4-30 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Lesson 3: Enabling Users to Add Products to a Purchase Order
Change:

dbresult = Open(theDB, m_strSQLQuery, ODYNASET_READONLY); 

To:

dbresult = Open(theDB, m_strSQLQuery);

2. In the IDD_ORDER_FORM dialog, create a button that handles the event of 
adding a purchase item. The button requires the following properties and 
events:

3. Add the following code to the COrderView::OnAddItems() method in the 
OrderView.cpp file to process the updates in the SALES _ORDER table, the 
ITEM table, the master table controls, and the detail table control when 
purchase items are added to a purchase order:

void COrderView::OnAdditems() 
{

int *pAddIndices;
int nSelCount;
oresult r;
nSelCount = m_prodList.GetSelCount();
pAddIndices = new int[nSelCount];
m_prodList.GetSelItems(nSelCount, pAddIndices);
for (int i = 0; i < nSelCount; i++)
{

char szProdID[8];
char szItemID[8];
itoa(m_prodList.GetItemData(pAddIndices[i]), szProdID,        
     10);
itoa(m_pDynasetDetail->GetRecordCount() + 1, szItemID, 
     10);
(CString strInsert = "INSERT INTO DEMO.ITEM (ORDER_ID, 
     PRODUCT_ID, ITEM_ID, QUANTITY, 
     ACTUAL_PRICE, TOTAL) SELECT " +
       CString)m_pDynasetMaster->m_Column3 + ", " 
     + szProdID +", " + szItemID +
       ", 1, LIST_PRICE, LIST_PRICE FROM            
     DEMO.PRICE WHERE PRODUCT_ID = " +
     szProdID + " AND ((SYSDATE BETWEEN 

Button Control ID Button Caption Event Event Handler Function

IDC_ADDITEMS Add to Order BN_Clicked OnAdditems
Tutorial 4-31



Lesson 3: Enabling Users to Add Products to a Purchase Order
     START_DATE AND END_DATE) OR " +
   "(SYSDATE > START_DATE AND END_DATE IS NULL))";
r = GetDocument()->m_database.ExecuteSQL(strInsert);
if (r == OFAILURE)
ProcessOO4OError(&GetDocument()->m_database);
m_pDynasetDetail->Refresh();

}
TotalOrder();
m_prodList.SelItemRange(FALSE, 0, m_prodList.GetCount());
delete pAddIndices;
}

The function TotalOrder() is being called in the COrderView::OnAdditems() 
method. It is a member function for COrderView class. It re-calculates the total 
amount for a purchase order and updates the TOTAL column in the SALES_
ORDER table.

4. Enter the following code in the COrderView class of the OrderView.h file to 
declare the TotalOrder() in COrderView class:

public:
void TotalOrder();

5. Add the following code for the COrderView::TotalOrder() method in the 
OrderView.cpp file:

void COrderView::TotalOrder()
{

ODynaset oTotal;
oTotal.Open(GetDocument()->m_database, "SELECT SUM(TOTAL) FROM 

DEMO.ITEM WHERE ORDER_ID = " +
(CString)m_pDynasetMaster->m_Column3);

m_pDynasetMaster->StartEdit();
m_pDynasetMaster->

m_Column5.SetValue((double)oTotal.GetField(0));
m_pDynasetMaster->Update();
UpdateData(FALSE);

}

6. Build and run the application. 

The application will look similar to the following screen:
4-32 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Lesson 3: Enabling Users to Add Products to a Purchase Order
The 
product 
information 
is now 
displayed
Tutorial 4-33



Lesson 4: Enabling Users to Update a Purchase Order
Lesson 4: Enabling Users to Update a Purchase Order
This section allows you to make changes in the detail table control for the Order 
application. When the value in the QUANTITY column or the ACTUAL_PRICE 
column in the detail table changes, the application should update the appropriate 
changes to the ITEM table, the SALES_ORDER table, the content in the master 
detail controls, and the detail table control accordingly.

This section consists of the following parts:

■ Part 1: Allowing the Detail Table Control to Handle Events

■ Part 2: Adding Implementation Details to the Event Handler Function

To see the set of completed files for Lesson 4, access:

ORACLE_HOME\APPWIZARD\VC++\TUTORIAL\ORDER4

.

Part 1: Allowing the Detail Table Control to Handle Events
1. Modify the detail table control (ID = IDC_DATAGRID) in the IDD_ORDER_

FORM Dialog that handles event types with specified event handler functions. 
These functions and handlers are listed in the following table.

2. Create a member variable, m_datagrid, for the detail table control in 
COrderView class. The variable, m_datagrid, is a control handler of type 
CMsDgridCtrl. It represents the detail table and allows for update or retrieval of 
data.

Note: Some parts of this lesson require you to add or modify code 
in the application. The code that must be added or modified 
appears in bold type.

Event Type Event Handler

AfterColUpdate OnAfterColUpdateDatagrid

AfterUpdate OnAfterUpdateDatagrid

AfterDelete OnAfterDeleteDatagrid
4-34 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Lesson 4: Enabling Users to Update a Purchase Order
Part 2: Adding Implementation Details to the Event Handler Function
When the Actual Price or the Quantity sold for a purchased item has been changed, 
the total price for this item should change. To have the application do this, additions 
must be made to the code.

1. Add the following code to the COrderView::OnAfterColUpdateDatagrid() method 
in the OrderView.cpp file to update the TOTAL column for the detail table 
control when the ACTUAL_PRICE column or the QUANTITY column in the 
detail table control changes:

void COrderView::OnAfterColUpdateDatagrid(short ColIndex)

// recalcuates the TOTAL column in the detail table when the 
value
// in the ACTUAL_PRICE or QUANTITY column changes

{
if (ColIndex == 4 || ColIndex == 0)
{

CString strText = m_datagrid.GetText();
CString strTotal;
char *stopString;
char szTotal[15];
long quantity;
double price;

// QUANTITY column is updated
if (ColIndex == 4)
{
  quantity = strtol(strText, &stopString, 10);
  m_datagrid.SetCol(0);
  strText = m_datagrid.GetText();
  price = strtod(strText, &stopString);
  m_datagrid.SetCol(4);
}
else // PRICE column is updated
{
  price = strtod(strText, &stopString);
  m_datagrid.SetCol(4);
  strText = m_datagrid.GetText();
  quantity = strtol(strText, &stopString, 10);
  m_datagrid.SetCol(0);
}

Tutorial 4-35



Lesson 4: Enabling Users to Update a Purchase Order
sprintf(szTotal, "%f", quantity * price);
strTotal = szTotal;
m_datagrid.SetCol(5);
m_datagrid.SetText((LPCTSTR)strTotal);

}
}

2. Add the following code to the COrderView::OnAfterUpdateDatagrid() method in 
the OrderView.cpp file to update the TOTAL column for the master table 
controls when the ACTUAL_PRICE column or the QUANTITY column in the 
detail table change:

void COrderView::OnAfterUpdateDatagrid() 
{

// Calculates the total amount for a purchase order
TotalOrder();

}
 

 

3. Add the following code to the COrderView::OnAfterDeleteDatagrid() method in 
the OrderView.cpp file to update the TOTAL column for the master table 
controls when the a record has been deleted from the detail table control:

void COrderView::OnAfterDeleteDatagrid()
{

// Calculates the total amount for a purchase order
TotalOrder();

}

4-36 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Lesson 5: Enabling Users to Add, Commit, or Cancel a New Purchase Order
Lesson 5: Enabling Users to Add, Commit, or Cancel a New Purchase 
Order

This lesson describes how to update the application to enable Nicole’s employees to 
create a new purchase order for a customer. When you have completed this last 
customization, Nicole’s employees can also commit or cancel the creation of a new 
purchase order. 

This section consists of the following parts:

■ Part 1: Creating a Customer List Dialog Box

■ Part 2: Creating a New Class to Handle Events for the Customer Dialog Box

■ Part 3: Creating “New Order”, Commit Order”, and “Cancel Order” Buttons

■ Part 4: Enabling Users to Add a New Purchase Order

■ Part 5: Enabling Users to Commit a New Purchase Order

■ Part 6: Enabling Users to Cancel a New Purchase Order

To see the set of completed files for Lesson 5, access:

ORACLE_HOME\APPWIZARD\VC++\TUTORIAL\ORDER5

.

Part 1: Creating a Customer List Dialog Box
Many of Nicole’s customers have similar names. To ensure that the each customer 
gets the correct merchandise, the Order application will have a dialog box with a list 
of customers. Nicole’s employees can then pick the appropriate name from the list 
when they create a new purchase order.

1. Create a dialog box with control ID = IDD_SELCUSTOMER. Customize the 
dialog box so that it contains an OK Button, Cancel Button, and List Box with 
control ID = IDC_CUSTLIST. 

The customer list dialog box should look similar to the one shown below. The 
list box displays a list of customers from the CUSTOMER table.

Note: Some parts of this lesson require you to add or modify code 
in the application. The code that must be added or modified 
appears in bold type.
Tutorial 4-37



Lesson 5: Enabling Users to Add, Commit, or Cancel a New Purchase Order
Part 2: Creating a New  Class to Handle Events for the Customer Dialog Box
1. Create a new MFC class, CSelectCustomer, that is derived from CDialog. This 

class handles events occurring in the customer dialog box.
4-38 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Lesson 5: Enabling Users to Add, Commit, or Cancel a New Purchase Order
2. Allow the CSelectCustomer class to handle the events shown below:

3. Create a member variable, m_CustomerList, for the customer list box, IDC_
CUSTLIST, in the CSelectCustomer class. The variable, m_CustomerList, is a 
control handler of type CListBox. This enables users to select a customer from 
the customer list box for a purchase order.

4. To implement the events for the Customer dialog box, add the following 
member declarations to the CSelectCustomer class in SelectCustomer.h file:

public:
long GetSelection();             // obtain the selected customer from the
                                      // customer list box.
int DoModal(ODatabase *db);  // involve the customer dialog box
long m_nSelection;              // nth location of the selected customers 
                                     // in the customer list.
ODatabase * m_pDatabase;       // the database

5. Include the header file oracl.h in the SelectCustomer.h file.

6. Add the following code to the CSelectCustomer::OnInitDialog() method in the 
CSelectCustomer.cpp file to display a list of customers in the customer list box:

BOOL CSelectCustomer::OnInitDialog() 
{

...
CDialog::OnInitDialog();
ODynaset oCustList;
int index = 0;

oCustList.Open(*m_pDatabase, "SELECT CUSTOMER_ID, NAME FROM 
DEMO.CUSTOMER");

while (!oCustList.IsEOF())
{

m_CustomerList.InsertString(index,      
     (CString)oCustList.GetField(0) +  
     " - " + oCustList.GetField(1));
m_CustomerList.SetItemData(index,
     (long)oCustList.GetField(0));

Object ID Event Event Handler Function

CSelectCustomer WM_INITDIALOG OnInitDialog

IDOK BN_CLICKED OnOK
Tutorial 4-39



Lesson 5: Enabling Users to Add, Commit, or Cancel a New Purchase Order
oCustList.MoveNext();
index++;

}
...
}

7. Add the following code for the CSelectCustomer::DoModal() method in the 
SelectCustomer.cpp file to invoke the customer dialog box:

int CSelectCustomer::DoModal(ODatabase *db) 
{

m_pDatabase = db;
return CDialog::DoModal();

}

8. Add the following code for the CSelectCustomer::GetSelection() method in the 
SelectCustomer.cpp file to obtain the selected customer for the new purchase 
order:

long CSelectCustomer::GetSelection()
{

return(m_nSelection);
}

9. Add the following code for the OnOK() method of the CSelectCustomer class to 
get the selected customer from the customer list box for a new purchase order 
when the OK button in the customer dialog box is clicked:

void CSelectCustomer::OnOK() 
{ 

// TODO: Add extra validation here 
int nItem = -1; 

         
nItem = m_CustomerList.GetCurSel(); 
if (nItem >=0) 
{ 

// location of selected customer in the customer list box 
m_nSelection = m_CustomerList.GetItemData(nItem); 
CDialog::OnOK(); 

} 
else 

AfxMessageBox(_T("Please select a customer.\n"), 
    MB_OK, 0); 

} 
4-40 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Lesson 5: Enabling Users to Add, Commit, or Cancel a New Purchase Order
Part 3: Creating “New Order”, Commit Order”, and “Cancel Order” Buttons
To enable Nicole’s employees to easily add, commit, or cancel a new purchase order, 
create buttons in the IDD_ORDER_FORM dialog that enable them to perform these 
operations.

1. Include the header file, SelectCustomer.h, in the OrderView.h.file. 

This header file defines the CSelectCustomer class that is used when getting 
customer information for a new purchase order.

2. Create the buttons with the following properties shown in the Button Control 
ID and Event Handler Functions in the IDD_ORDER_FORM dialog.

These event handler functions are added to the COrderView class when the buttons 
specify the event handle.

Part 4: Enabling Users to Add a New Purchase Order
When a new purchase order is created, a new record is inserted into the SALES_
ORDER table and the ITEM table. Content in the master table controls and detail 
table control is also updated to reflect the new purchase order. 

1. Add the following code to the COrderView::OnNeworder() method in the 
OrderView.cpp file to add a new purchase order to the purchase order system:

#include "SelectCustomer.h" // define CSelectCustomer class 
                            // to get customer information for 
                      // a new purchase order
...
void COrderView::OnNeworder() 
{

CWnd *tempWindow;
char szCUSTOMER_ID[8];
OField oORDER_ID;
CSelectCustomer selectCustomer;
oresult dbresult;

Button Control ID Button Caption Event Event Handler Function

IDC_NEWORDER New Order BN_CLICKED OnNeworder

IDC_COMMITORDER Commit Order BN_CLICKED OnCommitorder

IDC_CANCELORDER Cancel Order BN_CLICKED OnCancelorder
Tutorial 4-41



Lesson 5: Enabling Users to Add, Commit, or Cancel a New Purchase Order
if (selectCustomer.DoModal(&GetDocument()->m_database) == 
IDCANCEL)
return;

if (GetDocument()->m_database.GetSession().
BeginTransaction() == OSUCCESS &&
m_pDynasetMaster->AddNewRecord() == OSUCCESS)

{
     UpdateData(FALSE);
     tempWindow = GetDlgItem(IDC_Column1);
     itoa(selectCustomer.GetSelection(), 
          szCUSTOMER_ID, 10);
     tempWindow->SetWindowText(szCUSTOMER_ID);
     if (m_pDynasetMaster->GetEditMode() ==  
          ODYNASET_EDIT_NEWRECORD)
     {

                    ODynaset oSequenceDynaset;

                    dbresult = oSequenceDynaset.Open(
                         GetDocument()->m_database, 
                         "SELECT MAX(ORDER_ID) + 1 FROM 
                         DEMO.SALES_ORDER");
                    oORDER_ID = oSequenceDynaset.GetField(0);
                    dbresult = oSequenceDynaset.Close();
                    tempWindow = GetDlgItem(IDC_Column3);
                    tempWindow->SetWindowText

               ((CString)oORDER_ID);
}
dbresult = UpdateData();
if (m_pDynasetMaster->Update() == OFAILURE)
{

              ProcessOO4OError(m_pDynasetMaster);
              return;
}
m_pDynasetMaster->ResetToDefaultFilter();
m_pDynasetMaster->AddFilter("ORDER_ID = " + 
(CString)oORDER_ID);
m_pDynasetMaster->RefreshQuery();
m_pDynasetCustomer->ResetToDefaultFilter();
m_pDynasetCustomer->AddFilter("CUSTOMER_ID = " + 
(CString)m_pDynasetMaster->m_Column1);
m_pDynasetCustomer->RefreshQuery();
m_pDynasetDetail->ResetToDefaultFilter();
m_pDynasetDetail->AddFilter("ORDER_ID = " + 
(CString)m_pDynasetMaster->m_Column3);
4-42 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Lesson 5: Enabling Users to Add, Commit, or Cancel a New Purchase Order
m_pDynasetDetail->RefreshQuery();
UpdateData(FALSE);

}
CButton *tempButton = (CButton *)GetDlgItem(IDC_NEWORDER);
tempButton->EnableWindow(FALSE);
tempButton = (CButton *)GetDlgItem(IDC_COMMITORDER);
tempButton->EnableWindow(TRUE);
tempButton = (CButton *)GetDlgItem(IDC_CANCELORDER);
tempButton->EnableWindow(TRUE);

}

Part 5: Enabling Users to Commit a New Purchase Order
When a new purchase order is created, users must be able to commit or cancel the 
change made to the purchase order system.

1. Add the following code to the COrderView::OnCommitorder() method in the 
OrderView.cpp file to commit a new purchase order:

void COrderView::OnCommitorder() 
{ 

// TODO: Add your control notification handler code here 
CString strORDER_DATE; 
CString strSHIP_DATE; 
CWnd *tempWindow; 
 
m_pDynasetMaster->StartEdit(); 
tempWindow = GetDlgItem(IDC_Column2); 
tempWindow->GetWindowText(strORDER_DATE); 
tempWindow = GetDlgItem(IDC_Column4); 
tempWindow->GetWindowText(strSHIP_DATE); 
m_pDynasetMaster->m_Column2.SetValue(LPCTSTR(strORDER_DATE)); 
m_pDynasetMaster->m_Column4.SetValue(LPCTSTR(strSHIP_DATE)); 
m_pDynasetMaster->Update(); 
 
OSession oSess = GetDocument()->m_database.GetSession(); 
if (oSess.Commit() == OFAILURE) 

ProcessOO4OError(&oSess); 
m_pDynasetMaster->ResetToDefaultFilter(); 
m_pDynasetMaster->RefreshQuery(); 
UpdateData(FALSE); 
OnMoveFirst(); 
CButton *tempButton = (CButton *)GetDlgItem(IDC_NEWORDER); 
tempButton->EnableWindow(TRUE); 
tempButton = (CButton *)GetDlgItem(IDC_COMMITORDER); 
Tutorial 4-43



Lesson 5: Enabling Users to Add, Commit, or Cancel a New Purchase Order
tempButton->EnableWindow(FALSE); 
tempButton = (CButton *)GetDlgItem(IDC_CANCELORDER); 
tempButton->EnableWindow(FALSE); 

}

Part 6: Enabling Users to Cancel a New Purchase Order
When a new purchase order is created, users must be able to commit or cancel the 
change made to the purchase order system.

1. Add the following code to the COrderView::OnCancelorder() method in the 
OrderView.cpp file to enable cancelling a new purchase order:

void COrderView::OnCancelorder() 
{

// TODO: Add your control notification handler code here
GetDocument()->m_database.GetSession().Rollback();
m_pDynasetMaster->ResetToDefaultFilter();
m_pDynasetMaster->RefreshQuery();
UpdateData(FALSE);
OnMoveFirst();
CButton *tempButton = (CButton *)GetDlgItem(IDC_NEWORDER);
tempButton->EnableWindow(TRUE);
tempButton = (CButton *)GetDlgItem(IDC_COMMITORDER);
tempButton->EnableWindow(FALSE);
tempButton = (CButton *)GetDlgItem(IDC_CANCELORDER);
tempButton->EnableWindow(FALSE);

}

2. Build and run the application. 

It should look similar to the following screen:
4-44 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Lesson 5: Enabling Users to Add, Commit, or Cancel a New Purchase Order
Your application is now complete.
Tutorial 4-45



Lesson 5: Enabling Users to Add, Commit, or Cancel a New Purchase Order
4-46 Oracle AppWizard for Microsoft Visual C++ User’s Guide



Index

A
AboutDlg.cpp

defined, 4-13
AboutDlg.h

defined, 4-13
application types

master-detail display form, 1-4
multiple-record display form, 1-4
single-record display form, 1-4

applications
created with Oracle AppWizard for Microsoft 

Visual C++, 1-4
creating, 2-1
creating a master-detail display 

application, 2-15
creating a multiple-record display 

application, 2-5
creating a single-record display application, 2-5
customizing, 3-1
understanding code, 3-1
understanding the generated files, 3-3
understanding your code, 3-2

B
benefits

of Oracle AppWizard for Microsoft Visual 
C++, 1-2

C
ChildFrm.cpp

defined, 3-4

ChildFrm.h
defined, 3-4

class libraries
for Oracle Objects for OLE, 1-3

code
adding a new record, 3-19
cancelling changes to a record, 3-22
deleting a record, 3-21
for connecting to a database, 3-8
for displaying columns in a table, 3-13
for initializing the Oracle Object for OLE C++ 

Class Library, 3-7
for navigational flow, 3-13
generated code for a multiple-record display 

form, 3-22
manipulating data in a table, 3-18
navigating to the first record in the 

database, 3-16
navigating to the last record, 3-17
navigating to the next record, 3-18
navigating to the previous record, 3-17
Oracle Objects for OLE classes, 3-6
updating a record, 3-20

concepts
Oracle AppWizard for Microsoft Visual 

C++, 1-4
ConnDialog.cpp

defined, 3-3, 4-13
ConnDialog.h

defined, 3-3, 4-13
connecting to a database

code, 3-8
conventions used in this guide, xix
Index-1



D
database grid control, 1-4
demo.sql file

running, 4-3
dialog-based interface

defined, 1-5
displaying records, 1-4
documentation, generic, xxii
Document/View architecture support, 1-6, 2-12, 

2-19

E
equi-join

defined, 2-10

F
foreign key, 2-10

H
header files, 3-3

generated, 2-2
precompiled, 3-4

I
installing

Oracle AppWizard for Microsoft Visual 
C++, 1-3

J
joins

defined, 1-5

L
limitations

of Microsoft Visual C++ 6.0, 1-6

M
MainFrame.cpp

defined, 4-13
MainFrame.h

defined, 4-13
MainFrm.cpp

defined, 3-4
MainFrm.h

defined, 3-4
master-detail display application

building a join clause, 2-17
building the executable, 2-22
completing MFC windows, 2-20
creating, 2-15
running the executable, 2-23
selecting detail tables and columns, 2-17
selecting master tables and columns, 2-16
specifying the application type and user 

language, 2-19
specifying the form type, 2-15
viewing the application classes, 2-20
viewing the specifications for the new 

application, 2-21
master-detail display form

application type, 1-4
defined, 1-5, 2-2

member variables, 4-19
Microsoft Foundation Class Library classes, 1-2
Microsoft Visual C++

limitations of release 6.0, 1-6
supported versions, 1-2

multiple-document interface
defined, 1-5

multiple-record display application
creating, 2-5
joining tables, 2-10
selecting tables and columns, 2-9
viewing the application classes, 2-13
viewing the specifications, 2-14

multiple-record display form
application type, 1-4
defined, 1-5, 2-2

O
ODatabase class

defined, 3-6
Index-2



ODynaset class
defined, 3-6

OFA
Optimal Flexible Architecture, xx

OField class
defined, 3-6

Optimal Flexible Architecture (OFA), xx
Oracle AppWizard for Microsoft Visual C++

applications, 1-4
concepts, 1-4
files generated, 2-2
installing, 1-3
overview, 1-2
starting, 2-4
supported Microsoft Visual C++ versions, 1-2
troubleshooting startup problems, 2-4
tutorials, 4-1
types of applications to create, 1-4

Oracle base
described, xx

Oracle home
described, xx

Oracle Object for OLE C++ Class Library
initializing, 3-7

Oracle Objects for OLE
class library information, 1-3
generated code for classes, 3-6
overview, 1-3

oradc.cpp
defined, 3-4, 4-13

oradc.h
defined, 3-4, 4-13

OrderApp.cpp
defined, 4-13

OrderApp.h
defined, 4-13

OrderDoc.cpp
defined, 4-13

OrderDoc.h
defined, 4-13

OrderDynasetDetail.cpp
defined, 4-13

OrderDynasetDetail.h
defined, 4-13

OrderDynasetMaster.cpp

defined, 4-13
OrderDynasetMaster.h

defined, 4-13
OrderUtil.cpp

defined, 4-13
OrderUtil.h

defined, 4-13
OrderView.cpp

defined, 4-13
OrderView.h

defined, 4-13
OValue class

defined, 3-6

P
primary key, 2-10
PRJNAME.clw

defined, 3-3
PRJNAME.cpp

defined, 3-3
PRJNAMEDoc.cpp

defined, 3-3
PRJNAMEDoc.h

defined, 3-3
PRJNAMEDoc.ico

defined, 3-5
PRJNAMEDynaset.cpp

defined, 3-3
PRJNAMEDynasetDetail.cpp

defined, 3-4
PRJNAMEDynasetDetail.h

defined, 3-4
PRJNAMEDynaset.h

defined, 3-3
PRJNAMEDynasetMaster.cpp

defined, 3-4
PRJNAMEDynasetMaster.h

defined, 3-4
PRJNAME.h

defined, 3-3
PRJNAME.ico

defined, 3-5
PRJNAME.rc

defined, 3-5
Index-3



PRJNAME.rc2
defined, 3-5

PRJNAMEUtil.cpp
defined, 3-4

PRJNAMEUtil.h
defined, 3-4

PRJNAMEView.cpp
defined, 3-3

PRJNAMEView.h
defined, 3-3

R
ReadMe file

generated, 2-2
ReadMe.txt, 3-5
resource files

created, 3-5
generated, 2-2

Resource.h
defined, 3-5

S
sequence of steps

diagrammed, 2-3
single-document interface

defined, 1-5
single-record display application

creating, 2-5
joining tables, 2-10
selecting tables and columns, 2-9
specifying the type, 2-12
specifying the user language, 2-12
viewing the application classes, 2-13
viewing the specifications, 2-14

single-record display form
application type, 1-4
defined, 1-5, 2-2

source files, 3-3
generated, 2-2

specifying the type
single-record display application, 2-12

specifying the user language, 2-12
standard MFC project files

generated, 2-2
StdAfx.cpp

created, 3-4
StdAfx.h

created, 3-4

T
tables

joining, 2-10
TOOLBAR.BMP

defined, 3-5
troubleshooting

Oracle AppWizard for Microsoft Visual C++ 
startup problems, 2-4

tutorial lesson 1
building and running the application, 4-14
building join clauses between tables, 4-8
connecting to the database, 4-5
creating the starter application, 4-4
exploring generated classes and files, 4-12
naming the form type, 4-6
selecting detail tables and columns, 4-8
selecting master tables and columns, 4-7
specifying the application type and user 

language, 4-9
starting Oracle AppWizard for Microsoft Visual 

C++, 4-4
viewing the projectReadMe.txt file, 4-13

tutorial lesson 2
adding customer information to a purchase 

order, 4-16, 4-24
adding member functions and implementation 

details to the COrderDynasetCustomer 
class, 4-20

adding member variables to the 
COrderDynasetCustomer class, 4-19

creating a dynaset class for the customer 
table, 4-16

displaying customer information for a purchase 
order, 4-25

file location, 4-16
tutorial lesson 3

adding the selected products to the purchase 
order, 4-30
Index-4



displaying a list of items from the PRODUCT 
table, 4-29

enabling users to add products to a purchase 
order, 4-29

file location, 4-29
tutorial lesson 4

adding Implementation details to the event 
handler function, 4-35

allowing the detail table control to handle 
events, 4-34

enabling users to update a purchase order, 4-34
file location, 4-34

tutorial lesson 5
creating “New Order”, Commit Order”, and 

“Cancel Order” buttons, 4-41
creating a customer list dialog box, 4-37
creating a new class to handle events for the 

customer dialog box, 4-38
enabling users to add a new purchase 

order, 4-41
enabling users to add, commit, or cancel a new 

purchase order, 4-37
enabling users to cancel a new purchase 

order, 4-44
enabling users to commit a new purchase 

order, 4-43
file location, 4-37

tutorials
file locations, 4-2
Oracle AppWizard for Microsoft Visual 

C++, 4-1
prerequisites, 4-2, 4-3
Index-5



Index-6


	PDF Directory
	Contact Us!
	How to Contact Oracle Technical Publications
	How to Contact Oracle Support Services
	Resources for Oracle Partners and Developers

	Before You Begin
	Prerequisites
	Intended Audience
	How This Guide Is Organized
	Documentation and Code Conventions Explained
	Documentation Library

	1 Introduction
	What is Oracle AppWizard for Microsoft Visual C++?
	Oracle Objects for OLE Overview
	Installing Oracle AppWizard for Microsoft Visual C++
	Basic Oracle AppWizard for Microsoft Visual C++ Concepts
	Displaying Records
	Single-Record Display Form
	Multiple-Record Display Form
	Master-Detail Display Form

	Definitions

	Microsoft Visual C++ 6.0 Limitations

	2 Creating a Starter Application
	Overview
	Starting Oracle AppWizard for Microsoft Visual C++
	Creating a Single- or Multiple-Record Display Application
	Welcome Window
	Connecting to an Oracle Database
	Specifying the Type of Form
	Selecting Tables and Columns
	Specifying One or More Joins (Optional)
	Specifying the Application Type and User Language
	Completing the Remaining MFC Windows
	Viewing the Application Classes
	Viewing the Specifications for the New Application

	Creating a Master-Detail Display Application
	Specifying the Type of Form
	Selecting Master Tables and Columns
	Selecting Detail Tables and Columns
	Building a Join Clause
	Specifying the Application Type and User Language
	Completing the Remaining MFC Windows
	Viewing the Application Classes
	Viewing the Specifications for the New Application

	Building the Executable
	Running the Executable

	3 Understanding Your Application’s Code
	Introduction
	Understanding the Generated Files
	Source and Header Files
	Precompiled Header Files
	Resource Files
	Miscellaneous Files


	Understanding the Code Within Generated Files
	Oracle Objects for OLE classes
	What Happens When the Application Starts
	Initializing Oracle Object for OLE C++ Class Library
	Connecting to Database
	Executing SQL Statements
	Displaying Columns in a Table

	Navigational Flow
	How Record Navigation Works
	Navigating to the First Record in the Database
	Navigating to the Last Record
	Navigating to the Previous Record
	Navigating to the Next Record

	Data Manipulation Flow
	Adding a New Record
	Updating a Record
	Deleting a Record
	Cancelling Changes to a Record

	Generated Code for a Multiple-Record Display Form


	4 Tutorial
	Introduction
	Before You Start
	Lesson 1: Creating the Starter Application
	Part 1: Working with Oracle AppWizard for Microsoft Visual C++
	Starting the Oracle AppWizard for Microsoft Visual C++
	Connecting to the Oracle Database
	Naming and Specifying the Type of Form
	Selecting Master Tables and Columns
	Selecting Detail Tables and Columns
	Building Join Clauses Between Tables
	Specifying the Application Type and User Language
	Completing the Remaining Steps

	Part 2: Exploring Generated Classes and Files
	Part 3: Viewing the ReadMe.txt for the Generated Project
	Part 4: Building and Running the Application

	Lesson 2: Adding Customer Information to a Purchase Order
	Part 1: Creating a Dynaset Class for the Customer Table
	Adding Member Variables to the COrderDynasetCustomer Class
	Adding Member Functions and Implementation Details to the COrderDynasetCustomer Class

	Part 2: Adding Customer Information to a Purchase Order
	Part 3: Displaying Customer Information for a Purchase Order

	Lesson 3: Enabling Users to Add Products to a Purchase Order
	Part 1: Displaying a List of Items from the PRODUCT Table
	Part 2: Adding the Selected Products to the Purchase Order

	Lesson 4: Enabling Users to Update a Purchase Order
	Part 1: Allowing the Detail Table Control to Handle Events
	Part 2: Adding Implementation Details to the Event Handler Function

	Lesson 5: Enabling Users to Add, Commit, or Cancel a New Purchase Order
	Part 1: Creating a Customer List Dialog Box
	Part 2: Creating a New Class to Handle Events for the Customer Dialog Box
	Part 3: Creating “New Order”, Commit Order”, and “Cancel Order” Buttons
	Part 4: Enabling Users to Add a New Purchase Order
	Part 5: Enabling Users to Commit a New Purchase Order
	Part 6: Enabling Users to Cancel a New Purchase Order


	Index

