
Oracle Migration Workbench �for MS SQL Server and Sybase
Adaptive Server Reference Guide

Release 1.2.5.0.0 for Windows NT and Windows 95/98

December 1999

Part No. Z26179-01

This reference guide describes how to migrate from MS SQL Server 6.5, MS SQL
Server 7.0, and Sybase Adaptive Server 11 to Oracle8 or Oracle8i.

Oracle Migration Workbench Reference for MS SQL Server and Sybase Adaptive Server, Release 1.2.5.0.0

Part No. Z26179-01

Release 1.2.5.0.0

Copyright © 1998, 1999. Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information of Oracle
Corporation; they are provided under a license agreement containing restrictions on use and disclosure and are also
protected by copyright, patent and other intellectual and industrial property laws. Reverse engineering, disassembly
or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. Oracle Corporation does not warrant that this document is error
free. Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs
may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without
the express written permission of Oracle Corporation.

If the Programs are delivered to the US Government or anyone licensing or using the Programs on behalf of the US
Government, the following notice is applicable:

Restricted Rights NoticePrograms delivered subject to the DOD FAR Supplement are 'commercial computer
software' and use, duplication and disclosure of the Programs including documentation, shall be subject to the
licensing restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are 'restricted computer software' and use, duplication and disclosure of the
Programs shall be subject to the restrictions in FAR 52.227-19, Commercial Computer Software - Restricted Rights
(June, 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous
applications. It shall be licensee's responsibility to take all appropriate fail-safe, back up, redundancy and other
measures to ensure the safe use of such applications if the Programs are used for such purposes, and Oracle
disclaims liability for any damages caused by such use of the Programs.

Alpha and Beta Draft documentation are considered to be in prerelease status. This documentation is intended for
demonstration and preliminary use only. We expect that you may encounter some errors, ranging from
typographical errors to data inaccuracies. This documentation is subject to change without notice, and it may not be
specific to the hardware on which you are using the software. Please be advised that Oracle Corporation does not
warrant prerelease documentation and will not be responsible for any loss, costs, or damages incurred due to the use
of this documentation.

Oracle is registered trademark and Oracle8, Oracle8i, Oracle Migration Workbench, SQL*Plus, SQL*Loader,
SQL*Module, Net8, PL/SQL, Pro*C, and Oracle Objects are trademarks or registered trademarks of Oracle
Corporation. All other products or company names are used for identification purposes only, and may be
trademarks of their respective owners.

iii

Contents

Send Us Your Comments ... ix

Preface .. xi

Audience.. xi
What You Should Already Know ... xi
How the Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server
Reference Guide is Organized xi
How to Use This Reference Guide ... xii
Conventions Used in This Reference Guide... xii

1 Overview

Introduction ... 1-1
Product Description.. 1-1
Features ... 1-2
Terminology ... 1-2

2 Databases

Schema Migration... 2-1
Schema Object Similarities .. 2-1
Schema Object Names.. 2-3
Table Design Considerations .. 2-3

Data Types.. 2-3
Entity Integrity Constraints ... 2-6
Referential Integrity Constraints... 2-6

iv

Unique Key Constraints ... 2-7
Check Constraints.. 2-7

Data Types .. 2-8
Data Types Table ... 2-8

Data Storage Concepts ... 2-13
Data Storage Concepts Table .. 2-14

Schema Objects ... 2-18
Alias .. 2-19
Database ... 2-21
Database Link.. 2-31
Data and Hash Cluster... 2-33
Defaults .. 2-39
Index ... 2-40
Privilege ... 2-46
Profile.. 2-51
Role ... 2-55
Rule ... 2-60
Sequence... 2-62
Snapshot ... 2-65
Synonym .. 2-66
Tables.. 2-69
Tablespace.. 2-80
User ... 2-84
View .. 2-88

Data Manipulation Language... 2-93
Connecting to the Database... 2-94
SELECT Statement.. 2-95
SELECT with GROUP BY Statement ... 2-101
INSERT Statement .. 2-102
UPDATE Statement .. 2-103
DELETE Statement ... 2-105
Operators ... 2-106

Comparison Operators ... 2-106
Arithmetic Operators .. 2-110
String Operators... 2-110

v

Set Operators.. 2-111
Bit Operators .. 2-111

Built-In Functions ... 2-112
Character Functions .. 2-112
Miscellaneous Functions .. 2-114
Date Functions ... 2-115
Mathematical Functions ... 2-117

Locking Concepts and Data Concurrency Issues .. 2-118
Locking.. 2-118
Row-Level Versus Page-Level Locking.. 2-120
Read Consistency .. 2-121
Logical Transaction Handling ... 2-122

3 Triggers and Stored Procedures

Introduction ... 3-1
Triggers .. 3-1
Stored Procedures... 3-3

Methods Used to Send Data to Clients .. 3-4
Individual SQL Statements .. 3-13
Logical Transaction Handling ... 3-14
Error Handling within the Stored Procedure.. 3-15

Data Types .. 3-16
Local Variable.. 3-16
Server Data Types... 3-17
Composite Data Types... 3-17

Schema Objects ... 3-17
Procedure... 3-18
Function ... 3-25
Package... 3-29
Package Body .. 3-33

T-SQL Versus PL/SQL Constructs ... 3-37
CREATE PROCEDURE Statement ... 3-39
Parameter Passing ... 3-40
DECLARE Statement .. 3-41
IF Statement.. 3-42

vi

RETURN Statement... 3-46
RAISERROR Statement... 3-47
EXECUTE Statement ... 3-48
WHILE Statement.. 3-49
GOTO Statement.. 3-53
@@Rowcount and @@Error Variables .. 3-54
ASSIGNMENT Statement .. 3-55
SELECT Statement... 3-56
SELECT Statement as Part of the SELECT List ... 3-59
SELECT Statement with GROUP BY Clause ... 3-61
Column Aliases.. 3-62
UPDATE with FROM Statement... 3-63
DELETE with FROM Statement .. 3-65
Temporary Tables.. 3-67
Result Set (Converted Using a Cursor Variable) .. 3-68
Cursor Handling.. 3-70
Transaction Handling Statements ... 3-72

T-SQL and PL/SQL Language Elements ... 3-73
Transaction Handling Semantics.. 3-73

Conversion Preparation Recommendations.. 3-75
Exception-Handling and Error-Handling Semantics .. 3-77
Special Global Variables .. 3-78
Operators ... 3-80
Built-in Functions.. 3-80
Sending Data to the Client: Result Sets ... 3-80

Single Result Set... 3-80
Multiple Result Sets... 3-80
About Converting a T-SQL Procedure with a Result Set .. 3-82

DDL Constructs within MS SQL Server and Sybase Stored Procedures............................ 3-84

4 Distributed Environments

Distributed Environments .. 4-1
Accessing Remote Databases in a Distributed Environment ... 4-1

Oracle and Remote Objects .. 4-2
MS SQL Server and Sybase and Remote Objects ... 4-2

vii

Replication ... 4-3
Application Development Tools .. 4-4

5 Migrating Temporary Tables to Oracle

Temporary Table Usage... 5-1
Simplify Coding... 5-2
Simulate Cursors when Processing Data from Multiple Tables..................................... 5-4
Improve Performance In a Situation Where Multi-Table Joins are Needed................. 5-4
Associate Rows from Multiple Queries in One Result Set (UNION) 5-5
Eliminate Re-Querying Data Needed for Joins... 5-6
Consolidate the Data for Decision Support Data Requirements.................................... 5-7

Replace Temporary Tables .. 5-7
Emulate Temporary Tables ... 5-7

Implementation as PL/SQL Tables .. 5-7
Implications of Creating Temporary Tables Dynamically .. 5-7
Implications of Creating Permanent Tables .. 5-8
Implementation of Temporary Tables as Permanent Tables .. 5-8
Maintenance of Temporary Tables ... 5-10

Definition of temp_table_catalog ... 5-11
Package Body temp_table ... 5-11

Index

viii

ix

Send Us Your Comments

Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide,
Release 1.2.5.0.0 for Windows NT and Windows 95/98

Part No. Z26179-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision

� Did you find any errors?
� Is the information clearly presented?
� Do you need more information? If so, where?
� Are the examples correct? Do you need more examples?
� What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

� Email - mwbinfo@ie.oracle.com
� FAX - +353-1-803-1899
� Postal service:

Documentation Manager
Migration Technology Group
Oracle Corporation
Eastpoint Business Park
Dublin 3
Ireland

If you would like a reply, please give your name, address, and telephone number below.

x

xi

Preface

The Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide provides
detailed information about migrating a database from MS SQL Server 6.5, MS SQL Server 7.0, and
Sybase Adaptive Server 11 to Oracle8 or Oracle8i. It is a useful guide regardless of the conversion tool
you are using to perform the migration, but the recommended tool for such migrations is Oracle
Migration Workbench (Migration Workbench). This reference guide describes several differences
between MS SQL Server, Sybase Adaptive Server, and Oracle and outlines how those differences are
handled by the Migration Workbench during the conversion process.

Audience
This guide is intended for anyone who is involved in converting an MS SQL Server or Sybase Adap-
tive Server database to Oracle using the Migration Workbench.

What You Should Already Know
You should be familiar with relational database concepts and with the operating system environ-
ments under which you are running Oracle and MS SQL Server or Sybase Adaptive Server.

How the Oracle Migration Workbench for MS SQL Server and Sybase
Adaptive Server Reference Guide is Organized
This reference guide is organized as follows:

Chapter 1, "Overview"

Introduces the Migration Workbench and outlines features of this tool.

Chapter 2, "Databases"

xii

Contains detailed information about the differences between data types, data storage concepts,
schema objects, and the data manipulation language in MS SQL Server, Sybase Adaptive Server, and
Oracle.

Chapter 3, "Triggers and Stored Procedures"

Introduces triggers and stored procedures, and compares T-SQL and PL/SQL language elements and
constructs in MS SQL Server, Sybase Adaptive Server, and Oracle.

Chapter 4, "Distributed Environments"

Describes when and why distributed environments are used, and discusses application development
tools.

Chapter 5, "Migrating Temporary Tables to Oracle"

Describes how to emulate temporary tables in Oracle8.

How to Use This Reference Guide
Every reader of this reference guide should read Chapter 1, "Overview" as that chapter provides an
introduction to the concept and terminology of the Migration Workbench.

Conventions Used in This Reference Guide
The following typographic conventions are used in this reference guide:

Convention Description

UPPERCASE Uppercase text indicates case-insensitive filenames or direc-
tory names, commands, command keywords, initializing
parameters, data types, table names, or object names. Enter text
exactly as spelled; it need not be in uppercase.

[UPPERCASE] Key names are represented by uppercase letters enclosed in
brackets, as square in [RETURN].

Italicized Characters Italicized Italic type in text indicates the complete names of
documents, emphasizes a single word or short phrase,
indicates variables, or indicates the first instance of an
important word or phrase.

xiii

Code Examples Monospace text distinguishes examples of commands and
statements from the rest of the text. Monospace text must be
entered exactly as shown. Example statements may include
punctuation, such as commas or quotation marks. All
punctuation in example statements is required. All example
statements terminate with a semicolon (;). Depending on the
application, a semicolon or other terminator may or may not be
required to end a statement.

UPPERCASE in Code
Examples

Uppercase words in example statements indicate the keywords
within Oracle SQL. When you issue statements, however,
keywords are not case sensitive.

lowercase in Code
Examples

Lowercase words in example statements indicate words
supplied only for the context of the example. For example,
lowercase words may indicate the name of a table, column, or
file.

Bold Boldface type in text indicates emphasis with stress, a term
defined in the text or the glossary or in both locations, or
case-sensitive filenames or directory names.

> Right-facing angle brackets appear in navigation paths to
indicate movement from one Web page to another.

{ } Curly braces indicate that one of the enclosed arguments is
required. Do not enter the braces themselves.

[] Square brackets indicate that the enclosed arguments are
optional. Do not enter the brackets themselves.

| A vertical bar separates alternative items that may be optional
or required. Do not type the vertical bar.

... Ellipses indicate that the preceding item can be repeated. You
can enter an arbitrary number of similaritems. In code
fragments, an ellipsis means that code not relevant to the
discussion has been omitted. Do not type the ellipsis.

SQL*Plus Prompts The SQL*Plus prompt, SQL>, appears in SQL statement and
SQL*Plus command examples. Enter your response at the
prompt. Do not enter the text of the prompt, SQL>, in your
response.

Convention Description

UPPERCASE Uppercase text indicates case-insensitive filenames or direc-
tory names, commands, command keywords, initializing
parameters, data types, table names, or object names. Enter text
exactly as spelled; it need not be in uppercase.

xiv

MS-DOS Prompts The MS-DOS prompt, >, appears in MS-DOS command
examples. Enter your response at the prompt. Do not enter the
prompt in your response.

Storage Measurements Storage measurements use these abbreviations:
K, for kilobyte which equals 1024 bytes
M, for megabyte which equals 1 048 576 bytes
G, for gigabyte which equals 1 073 741 824 bytes

Convention Description

UPPERCASE Uppercase text indicates case-insensitive filenames or direc-
tory names, commands, command keywords, initializing
parameters, data types, table names, or object names. Enter text
exactly as spelled; it need not be in uppercase.

Overview 1-1

1
Overview

This chapter introduces the Oracle Migration Workbench (Migration Workbench)
under the following headings:

n Introduction

n Product Description

n Features

n Terminology

Introduction
The Migration Workbench is a tool that simplifies the process of migrating data and
applications from an MS SQL Server 6.5, MS SQL Server 7.0, or Sybase Adaptive
Server 11 environment to Oracle8 or Oracle8i. The Migration Workbench allows
you to quickly and easily migrate an entire application system, that is the database
schema including triggers and stored procedures, in an integrated, visual
environment.

Product Description
The Migration Workbench allows you to migrate an MS SQL Server or Sybase
Adaptive Server database to an Oracle8 or Oracle8i database. The Migration
Workbench employs an intuitive and informative User Interface and a series of
wizards to simplify the migration process. To ensure portability, all components of
the Migration Workbench are written in Java.

Note: MS SQL Server is used in this document to refer to both MS SQL
Server 6.5 and MS SQL Server 7.0 unless otherwise stated.

Features

1-2 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

The Migration Workbench uses a repository to store migration information. This
allows you to query the initial state of the application before migration. By initially
loading the migratable components of the application system into a repository, you
can work independently of the production application.

Furthermore, the Migration Workbench saves useful dependency information about
the components being converted. For example, the Migration Workbench keeps a
record of all the tables accessed by a stored procedure. You can then use this
information to understand the impact of modifying a given table.

Features
The Migration Workbench allows you to:

n Migrate a complete MS SQL Server 6.5, MS SQL Server 7.0, or Sybase Adaptive
Server 11 database to Oracle8 or Oracle8i.

n Migrate groups, users, tables, primary keys, foreign keys, unique constraints,
indexes, rules, check constraints, views, triggers, stored procedures,
user-defined types, and privileges to Oracle.

n Migrate multiple MS SQL Server or Sybase Adaptive Server source databases to
a single Oracle database.

n Customize the parser for stored procedures, triggers, or views.

n Generate the Oracle SQL*Loader and SQL Server BCP scripts for offline data
loading.

n Display a representation of the source database and its Oracle equivalent.

n Generate and view a summary report of the migration.

n Customize users, tables, indexes, and tablespaces.

n Customize the default data type mapping rules.

n Create ANSI-compliant names.

n Automatically resolve conflicts such as Oracle reserved words.

n Remove and rename objects in the Oracle Model.

Terminology
The following terms are used to describe the Migration Workbench:

Terminology

Overview 1-3

Application System is the database schema and application files that have been
developed for a database environment other than Oracle. For example, MS SQL
Server 6.5, MS SQL Server 7.0, or Sybase Adaptive Server 11.

Capture Wizard is an intuitive wizard that takes a snapshot of the data dictionary of
the source database, loads it into the Source Model, and creates the Oracle Model.

Migration Wizard is an intuitive wizard that helps you migrate the source database
to Oracle.

Migration Component is part of an application system that can be migrated to an
Oracle database. Examples of migration components are tables and stored
procedures.

Migration Entity is an instance of a migration component. The table EMP would be a
migration entity belonging to the table MIGRATION COMPONENT.

Dependency is used to define a relationship between two migration entities. For
example, a database view is dependent upon the table it references.

Migration Workbench is the graphical tool that allows migration of an application
system to an Oracle database environment.

Workbench Repository is the area in an Oracle database used to store the persistent
information necessary for the Migration Workbench to migrate an application
system.

Software Development Kit (SDK) is a set of well-defined application programming
interfaces (APIs) that provide services that a software developer can use.

Source Database is the database containing the data dictionary of the application
system being migrated by the Migration Workbench. The source database is a
database other than Oracle, for example, MS SQL Server.

Destination Database is the Oracle database to which the Migration Workbench
migrates the data dictionary of the source database.

Source Model is a replica of the data dictionary of the source database. It is stored in
the Oracle Migration Workbench Repository and is loaded by the Migration
Workbench with the contents of the data dictionary of the source database.

Oracle Model is a a series of Oracle tables that is created from the information in the
Source Model. It is a visual representation of how the source database will look
when generated in an Oracle environment.

Navigator Pane is the part of the Migration Workbench User Interface that contains
the tree views representing the Source Model and the Oracle Model.

Terminology

1-4 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Properties Pane is the part of the Migration Workbench User Interface that displays
the properties of a migration entity that has been selected in one of the tree views in
the Navigator Pane.

Progress Window is the part of the Migration Workbench User Interface that contains
informational, error, or warning messages describing the progress of the migration
process.

Databases 2-1

2
Databases

This chapter includes the following sections:

n Schema Migration

n Data Types

n Data Storage Concepts

n Schema Objects

n Data Manipulation Language

Schema Migration
The schema contains the definitions of the tables, views, indexes, users, constraints,
stored procedures, triggers, and other database-specific objects. Most relational
databases work with similar objects.

The schema migration topics discussed here include the following:

n Schema Object Similarities

n Schema Object Names

n Table Design Considerations

Schema Object Similarities
There are many similarities between schema objects in Oracle, MS SQL Server, and
Sybase Adaptive Server (Sybase). However, some schema objects differ between
these databases, as shown in the following table:

Schema Migration

2-2 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Table 2–1 Schema Objects in Oracle and MS SQL Server/Sybase

Oracle MS SQL Server/Sybase

Database Database

Schema Database and database owner (DBO)

Tablespace Database

User User

Role Group/Role

Table Table

Temporary tables Temporary tables

Cluster N/A

Column-level check
constraint

Column-level check constraint

Column default Column default

Unique key Unique key or identity property for a column

Primary key Primary key

Foreign key Foreign key

Index Non-unique index

PL/SQL Procedure Transact-SQL (T-SQL) stored procedure

PL/SQL Function T-SQL stored procedure

Packages N/A

AFTER triggers Triggers

BEFORE triggers Complex rules

Triggers for each row N/A

Synonyms N/A

Sequences Identity property for a column

Snapshot N/A

View View

Schema Migration

Databases 2-3

Schema Object Names
Reserved words differ between Oracle, MS SQL Server, and Sybase. Many Oracle
reserved words are valid object or column names in MS SQL Server and Sybase. For
example, DATE is a reserved word in Oracle, but it is not a reserved word in MS
SQL Server and Sybase. Therefore, no column is allowed to have the name DATE in
Oracle, but a column can be named DATE in MS SQL Server or Sybase. Use of
reserved words as schema object names makes it impossible to use the same names
across databases.

You should choose a schema object name that is unique by case and by at least one
other characteristic, and ensure that your object name is not a reserved word from
either database.

For a list of reserved words in Oracle, see the Oracle8i SQL Reference, Release 2 (8.1.6)
(Part Number A76989-01).

Table Design Considerations
This section discusses the many table design issues that you need to consider when
converting MS SQL Server or Sybase databases to Oracle. These issues are discussed
under the following headings:

n Data Types

n Entity Integrity Constraints

n Referential Integrity Constraints

n Unique Key Constraints

n Check Constraints

Data Types
This section outlines conversion considerations for the following data types:

n DATETIME Data Types

n IMAGE and TEXT Data Types (Binary Large Objects)

n MS SQL Server and Sybase User-Defined Data Types

DATETIME Data Types

The date/time precision in MS SQL Server and Sybase is 1/300th of a second; in
Oracle, the precision is one second. All three databases store point-in-time values

Schema Migration

2-4 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

for DATE and TIME data types. In MS SQL Server and Sybase, the DATETIME data
type stores date and time values that are accurate to 1/300th of a second. Oracle
uses the DATE data type and stores date and time values that are accurate to one
second.

For applications that require finer date/time precision than seconds, the table
design must include an INTEGER column with each DATE column. Oracle needs
this additional column to store the value of the sequence along with the DATE
value, in order to store the sub-second information.

As an alternative, if an MS SQL Server or Sybase application uses the DATETIME
column to provide unique IDs instead of point-in-time values, replace the
DATETIME column with a SEQUENCE in the Oracle schema definition.

In the following examples, the original design does not allow the DATETIME
precision to exceed seconds in the Oracle table. This example assumes that the
DATETIME column is used to provide unique IDs. If millisecond precision is not
required, the table design outlined in the following example will suffice:

Original Table Design

MS SQL Server/Sybase:

CREATE TABLE example_table
(datetime_column datetime not null,
text_column text null,
varchar_column varchar(10) null)

Oracle:

CREATE TABLE example_table
(datetime_column date not null,
text_column long null,
varchar_column varchar2(10) null)

The following design allows the value of the sequence to be inserted into the
integer_column. This allows you to order the rows in the table beyond the allowed
precision of one second for DATE data type fields in Oracle. If you include this
column in the MS SQL Server or Sybase table, you can keep the same table design
for the Oracle database.

Revised Table Design

MS SQL Server/Sybase:

CREATE TABLE example_table

Schema Migration

Databases 2-5

(datetime_column datetime not null,
integer_column int null,
text_column text null,
varchar_column varchar(10) null)

Oracle:

CREATE TABLE example_table
(datetime_column date not null,
integer_column number null,
text_column long null,
varchar_column varchar2(10) null)

For the MS SQL Server or Sybase database, the value in the integer_column is
always NULL. For Oracle, the value for the field integer_column is updated with
the next value of the sequence.

Create the sequence by issuing the following command:

CREATE SEQUENCE datetime_seq

Values generated for this sequence start at 1 and are incremented by 1.

Many applications do not use DATETIME values as UNIQUE IDs, but still require
the date/time precision to be higher than seconds (for example, the timestamp of a
scientific application may have to be expressed in milliseconds, microseconds,
nanoseconds, etc.). The precision of the MS SQL Server and Sybase DATETIME
data type is 1/300th of a second; the precision of the Oracle DATE data type is 1
second.

The MS SQL Server and Sybase DATETIME data type can be converted to a higher
precision in Oracle using one of the following methods:

n The GET_TIME function in the system-defined DBMS_UTILITY package
returns the time in 100ths of a second. The MS SQL Server or Sybase
DATETIME data type can be converted to Oracle as a combination of DATE
column and a NUMBER column, where the NUMBER column holds the time
returned by the DBMS_UTILITY.GET_TIME function.

n The following statement is similar to the DBMS_UTILITY.GET_TIME function,
and also returns the time in 100ths of a second:

SQL> SELECT hsecs FROM v$timer;

Schema Migration

2-6 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

IMAGE and TEXT Data Types (Binary Large Objects)

The physical and logical storage methods for IMAGE and TEXT data differ from
Oracle to MS SQL Server and Sybase. In MS SQL Server and Sybase, a pointer to the
IMAGE or TEXT data is stored with the rows in the table while the IMAGE or TEXT
data is stored separately. This arrangement allows multiple columns of IMAGE or
TEXT data per table. In Oracle, IMAGE data may be stored in a BLOB type field and
TEXT data may be stored in a CLOB type field. Oracle allows multiple BLOB and
CLOB columns per table. BLOBS and CLOBS may or may not be stored in the row
depending on their size.

If the MS SQL Server and Sybase TEXT column is such that the data never exceeds
4000 bytes, convert the column to an Oracle VARCHAR2 data type column instead
of a CLOB column. An Oracle table can define multiple VARCHAR2 columns. This
size of TEXT data is suitable for most applications.

MS SQL Server and Sybase User-Defined Data Types

This MS SQL Server and Sybase T-SQL-specific enhancement to SQL allows users to
define and name their own data types to supplement the system data types. A
user-defined data type can be used as the data type for any column in the database.
Defaults and rules (check constraints) can be bound to these user-defined data
types, which are applied automatically to the individual columns of these
user-defined data types.

While migrating to Oracle PL/SQL, you must determine the base data type for each
user-defined data type, to find the equivalent PL/SQL data type. Note that
user-defined data types make the data definition language code and procedural
SQL code less portable across different database servers.

Entity Integrity Constraints
You can define a primary key for a table in MS SQL Server or Sybase. Primary keys
can be defined in a CREATE TABLE statement or an ALTER TABLE statement.

Oracle provides declarative referential integrity. A primary key can be defined as
part of a CREATE TABLE or an ALTER TABLE statement. Oracle internally creates
a unique index to enforce the integrity.

Referential Integrity Constraints
You can define a foreign key for a table in MS SQL Server or Sybase. Foreign keys
can be defined in a CREATE TABLE statement or an ALTER TABLE statement.

Schema Migration

Databases 2-7

Oracle provides declarative referential integrity. A CREATE TABLE or ALTER
TABLE statement can add foreign keys to the table definition. Please refer to
Oracle8i Concepts, Release 2 (8.1.6) (Part Number A76965-01), for details of the
functionality that is possible for referential integrity constraints.

Unique Key Constraints
You can define a unique key for a table in MS SQL Server or Sybase. Unique keys
can be defined in a CREATE TABLE statement or an ALTER TABLE statement.

Oracle defines unique keys as part of CREATE TABLE or ALTER TABLE
statements. Oracle internally creates unique indexes to enforce these constraints.

Unique keys map one-to-one from MS SQL Server and Sybase to Oracle.

Check Constraints
Check constraints can be defined in a CREATE TABLE statement or an ALTER
TABLE statement in MS SQL Server or Sybase. Multiple check constraints can be
defined on a table. A table-level check constraint can reference any column in the
constrained table. A column can have only one check constraint. A column-level
check constraint can reference only the constrained column. These check constraints
support complex regular expressions.

Oracle defines check constraints as part of the CREATE TABLE or ALTER TABLE
statements. A check constraint is defined at the TABLE level and not at the
COLUMN level. Therefore, it can reference any column in the table. Oracle,
however, does not support complex regular expressions.

SQL Server Rule:

create rule phone_rule
as
@phone_number like
"([0-9][0-9][0-9])[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]"

This rule will pass all the phone numbers that resemble the following:
(650)506-7000

This rule will fail all the phone numbers that resemble the following:

650-506-7000
650-GET-HELP

There are a few ways to implement this INTEGRITY constraint in Oracle:

Data Types

2-8 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

n Simulate the behavior of phone-rule in a check constraint using a combination
of SUBSTR, TRANSLATE, and LIKE clauses

n Write a trigger and use PL/SQL

Table-level check constraints from MS SQL Server and Sybase databases map
one-to-one with Oracle check constraints. You can implement the column-level
check constraints from the MS SQL Server or Sybase database to Oracle table-level
check constraints. While converting the regular expressions, convert all simple
regular expressions to check constraints in Oracle. MS SQL Server and Sybase check
constraints with complex regular expressions can be either reworked as check
constraints including a combination of simple regular expressions, or you can write
Oracle database triggers to achieve the same functionality.

Data Types
This chapter provides detailed descriptions of the differences in data types used by
MS SQL Server, Sybase, and Oracle databases. Specifically, this chapter contains the
following information:

n A table showing the base MS SQL Server and Sybase data types available and
how they are mapped to Oracle data types

n Recommendations based on the information listed in the table

Data Types Table

Table 2–2 Data Types in Oracle and MS SQL Server/Sybase

MS SQL
Server/Sybase Description Oracle Comments

INTEGER Four-byte integer, 31 bits,
and a sign. May be
abbreviated as "INT"
(this abbreviation was
required prior to version
5).

NUMBER(10) It is possible to place a
table constraint on
columns of this type (as an
option) to force values
between -2^31 and2^31.
Or, place appropriate
constraints such as:
STATE_NO between 1 and
50

Data Types

Databases 2-9

SMALLINT Two-byte integer, 15 bits,
and a sign.

NUMBER(6) It is possible to place a
table constraint on
columns of this type
(optionally) to force values
between -2^15 and 2^15.
Or, place appropriate
constraints such as:
STATE_NO between 1 and
50

TINYINT One byte integer, 8 bits
and no sign. Holds whole
numbers between 0 and
255.

NUMBER(3) You may add a check
constraint of (x between 0
and 255) where x is
column name.

REAL Four-byte, single-precision
floating point number.
This column has 7-digit
precision. The range of
values and the actual
representation is platform
dependent. This can result
in incorrect interpretation
if data is moved between
platforms.

FLOAT You may want to add a
check constraint to
constrain range of values.
Also, you get different
answers when performing
operations on this type
due to the fact that the
Oracle NUMBER type is
much more precise and
portable than FLOAT.

FLOAT A floating point number.
This column has 15-digit
precision.

FLOAT You may want to add a
check constraint to
constrain range of values.
Also, you get different
answers when performing
operations on this type
due to the fact that the
Oracle NUMBER type is
much more precise and
portable than FLOAT.

BIT A Boolean 0 or 1 stored as
one bit of a byte. Up to
8-bit columns from a table
may be stored in a single
byte, even if not
contiguous. Bit data
cannot be NULL.

NUMBER(1) In Oracle, a bit is stored in
a number(1) (or char). In
Oracle, it is possible to
store bits in a char or
varchar field (packed) and
supply PL/SQL functions
to set / unset / retrieve /
query on them.

Table 2–2 Data Types in Oracle and MS SQL Server/Sybase

MS SQL
Server/Sybase Description Oracle Comments

Data Types

2-10 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

CHAR(n) Fixed-length string of
exactly n 8-bit characters,
blank padded. Synonym
for CHARACTER.
0 < n < 256 for MS SQL
Server 6.5 and Sybase.
0 < n < 8000 for MS SQL
Server 7.0.

CHAR(n) Pro*C client programs
must use mode=ansi to
have characters
interpreted correctly for
string comparison,
mode=oracle otherwise.

VARCHAR(n) Varying-length character
string. 0 < n < 256 for MS
SQL Server 6.5 and Sybase.
0 < n < 8000 for MS SQL
Server 7.0.

VARCHAR2(n)

TEXT Character string of 8-bit
bytes allocated in
increments of 2k pages.
"TEXT" is stored as a
linked-list of 2024-byte
pages, blank padded.
TEXT columns can hold
up to (231-1) characters.

CLOB The CLOB field can hold
up to 4GB.

IMAGE Binary string of 8-bit bytes.
Holds up to (231-1) bytes
of binary data.

BLOB The BLOB field can hold
up to 4GB.

BINARY(n) Fixed length binary string
of exactly n 8-bit bytes.
0 < n < 256 for MS SQL
Server 6.5 and Sybase.
0 < n < 8000 for MS SQL
Server 7.0.

RAW(n)/BLOB

VARBINARY(n) Varying length binary
string of up to n 8-bit
bytes.
0 < n < 256 for MS SQL
Server 6.5 and Sybase.
0 < n < 8000 for MS SQL
Server 7.0.

RAW(n)/BLOB

Table 2–2 Data Types in Oracle and MS SQL Server/Sybase

MS SQL
Server/Sybase Description Oracle Comments

Data Types

Databases 2-11

DATETIME Date and time are stored
as two 4-byte integers. The
date portion is represented
as a count of the number
of days offset from a
baseline date (1/1/1900)
and is stored in the first
integer. Permitted values
are legal dates between 1st
January, 1753 AD and 31st
December, 9999 AD.
Permitted values in the
time portion are legal
times in the range 0
through 25920000.
Accuracy is to the nearest
3.33 milliseconds with
rounding downward.
Columns of type
DATETIME have a default
value of 1/1/1900.

DATE The precision of DATE in
Oracle and DATETIME in
MS SQL Server and Sybase
is different. The
DATETIME data type has
higher precision than the
DATE data type. This may
have some implications if
the DATETIME column is
supposed to be UNIQUE.
In MS SQL Server and
Sybase, the column of type
DATETIME can contain
UNIQUE values because
the DATETIME precision
in MS SQL Server and
Sybase is to the hundredth
of a second. In Oracle,
however, these values may
not be UNIQUE as the
date precision is to the
second. You can replace a
DATETIME column with
two columns, one with
data type DATE and
another with a sequence,
in order to get the
UNIQUE combination. It
is preferable to store
hundredths of seconds in
the second column.

SMALL-DATET
IME

Date and time stored as
two 2-byte integers. Date
ranges from 1/1/1900 to
6/6/2079. Time is the
count of the number of
minutes since midnight.

DATE With optional check
constraint to validate the
smaller range.

Table 2–2 Data Types in Oracle and MS SQL Server/Sybase

MS SQL
Server/Sybase Description Oracle Comments

Data Types

2-12 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

MONEY A monetary value
represented as an integer
portion and a decimal
fraction, and stored as two
4-byte integers. Accuracy
to the nearest 1/10,000.
Data of this type should
have a preceding dollar ($)
sign when input. In the
absence of the "$" sign, MS
SQL Server and Sybase
create the value as a float.

NUMBER(19,4) MS SQL Server and Sybase
input MONEY data types
as a numeric data type
with a preceding dollar
sign ($) as in the following
example, select * from
table_x where y > $5.00
You must remove the "$"
sign from queries. Oracle
is more general and works
in international
environments where the
use of the "$" sign cannot
be assumed. Support for
other currency symbols
and ISO standards
through NLS is available
in Oracle.

SMALLMONEY Same as MONEY but
constrained to be within a
range.

NUMBER(10,4) Since the range is
-214,748.3648 to
214,748.364,
NUMBER(10,4) suffices for
this field.

TIMESTAMP TIMESTAMP is defined as
VARBINARY(8) with
NULL allowed. Every time
a row containing a
TIMESTAMP column is
updated or inserted, the
TIMESTAMP column is
automatically incremented
by the system. A
TIMESTAMP column may
not be updated by users.

NUMBER You must place triggers on
columns of this type to
maintain them. In Oracle
you can have multiple
triggers of the same type
without having to
integrate them all into one
big trigger. You may want
to supply triggers to
prevent updates of this
column to enforce full
compatibility.

SYSNAME VARCHAR(30) in MS SQL
Server 6.5 and Sybase.

NVARCHAR(128) in MS
SQL Server 7.0.

VARCHAR2(30)
and
VARCHAR2(12
8) respectively.

Table 2–2 Data Types in Oracle and MS SQL Server/Sybase

MS SQL
Server/Sybase Description Oracle Comments

Data Storage Concepts

Databases 2-13

TEXT and IMAGE data types in MS SQL Server and Sybase follow the rules listed
below:

n The column of these data types cannot be indexed.

n The column cannot be a primary key.

n The column cannot be used in the GROUP BY, ORDER BY, HAVING, and
DISTINCT clauses.

n IMAGE and TEXT data types can be referred to in the WHERE clause with the
LIKE construct.

n IMAGE and TEXT data types can also be used with the SUBSTR and LENGTH
functions.

Recommendations

In addition to the data types listed in Table 2-2, users can define their own data
types in MS SQL Server and Sybase databases. These user-defined data types
translate to the base data types that are provided by the server. They do not allow
users to store additional types of data, but can be useful in implementing standard
data types for an entire application.

Data types can easily be mapped from MS SQL Server and Sybase to Oracle with
the equivalent data types listed in the above table. The Migration Workbench
converts user-defined data types to their base type. You can defined how the base
type is mapped to an Oracle type in the Data Type Mappings page in the Options
dialog.

Data Storage Concepts
This section provides a detailed description of the conceptual differences in data
storage for the MS SQL Server, Sybase, and Oracle databases.

Specifically, it contains the following information:

n A table comparing the data storage concepts of MS SQL Server, Sybase, and
Oracle databases

n Recommendations based on the information listed in the table

Data Storage Concepts

2-14 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Data Storage Concepts Table

Table 2–3 Data Storage Concepts in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Database Devices:

A database device is mapped to the specified
physical disk files.

Datafiles:

One or more datafiles are created for each
tablespace to physically store the data of all
logical structures in a tablespace. The
combined size of the datafiles in a
tablespace is the total storage capacity of
the tablespace. The combined storage
capacity of a the tablespaces in a database
is the total storage capacity of the database.
Once created, a datafile cannot change in
size. This limitation does not exist in
Oracle.

Page:

Many pages constitute a database device. Each
page contains a certain number of bytes.

Data Block:

One data block corresponds to a specific
number of bytes, of physical database
space, on the disk. The size of the data
block can be specified when creating the
database. A database uses and allocates
free database space in Oracle data blocks.

Extent:

Eight pages make one extent. Space is
allocated to all the databases in increments of
one extent at a time.

Extent:

An extent is a specific number of
contiguous data blocks, obtained in a single
allocation.

N/A Segments:

A segment is a set of extents allocated for a
certain logical structure. The extents of a
segment may or may not be contiguous on
disk, and may or may not span the
datafiles.

Data Storage Concepts

Databases 2-15

Segments (corresponds to Oracle
Tablespace):

A segment is the name given to one or more
database devices. Segment names are used in
CREATE TABLE and CREATE INDEX
constructs to place these objects on specific
database devices. Segments can be extended
to include additional devices as and when
needed by using the SP_EXTENDSEGMENT
system procedure.

The following segments are created along
with the database:

n System segment
Stores the system tables.

n Log segment
Stores the transaction log.

n Default segment
All other database objects are stored on
this segment unless specified otherwise.

Segments are subsets of database devices.

Tablespace (corresponds to MS SQL
Server and Sybase Segments):

A database is divided into logical storage
units called tablespaces. A tablespace is
used to group related logical structures
together. A database typically has one
system tablespace and one or more user
tablespaces.

Tablespace Extent:

An extent is a specific number of
contiguous data blocks within the same
tablespace.

Tablespace Segments:

A segment is a set of extents allocated for a
certain logical database object. All the
segments assigned to one object must be in
the same tablespace. The segments get the
extents allocated to them as and when
needed.

There are four different types of segments
as follows:

n Data segment
Each table has a data segment. All of
the table's data is stored in the extents
of its data segments. The tables in
Oracle can be stored as clusters as
well. A cluster is a group of two or
more tables that are stored together.
Each cluster has a data segment. The
data of every table in the cluster is
stored in the cluster's data segment.

n Index segment
Each index has an index segment that
stores all of its data.

n Rollback segment
One or more rollback segments are
created by the DBA for a database to
temporarily store "undo" information.
This is the information about all the
transactions that are not yet
committed. This information is used to
generate read-consistent database
information during database recovery
to rollback uncommitted transactions
for users.

Table 2–3 Data Storage Concepts in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Data Storage Concepts

2-16 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

n Temporary segment
Temporary segments are created by
Oracle when a SQL statement needs a
temporary work area to complete
execution. When the statement finishes
execution, the extents in the temporary
segment are returned to the system for
future use.

Log Devices:

These are logical devices assigned to store the
log. The database device to store the logs can
be specified while creating the database.

Redo Log Files:

Each database has a set of two or more
redo log files. All changes made to the
database are recorded in the redo log. Redo
log files are critical in protecting a database
against failures. Oracle allows mirrored
redo log files so that two or more copies of
these files can be maintained. This protects
the redo log files against failure of the
hardware the log file reside on.

Table 2–3 Data Storage Concepts in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Data Storage Concepts

Databases 2-17

Database Devices:

A database device contains the database
objects. A logical device does not necessarily
refer to any particular physical disk or file in
the file system.

The database and logs are stored on database
devices. Each database device must be
initialized before being used for database
storage. Initialization of the database device
initializes the device for storage and registers
the device with the server. After initialization,
the device can be:

n Allocated to the free space available to a
database

n Allocated to store specific user objects

n Used to store the transaction log of a
database

n Labeled as default device to create and
alter database objects

The SP_HELPDEVICES system procedure
displays all the devices that are registered
with the server. Use the DROP DEVICE
DEVICE_NAME command to drop the device.
The system administrator (SA) should restart
the server after dropping the device.

A device can be labeled as a default device so
that the new databases need not specify the
device at the time of creation. Use the SP_
DISKDEFAULT system procedure to label the
device as a default device.

N/A

Dump Devices

These are logical devices. A database dump is
stored on these devices. The DUMP
DATABASE command uses the dump device
to dump the database.

N/A

Table 2–3 Data Storage Concepts in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

2-18 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Recommendations:

The conceptual differences in the storage structures do not affect the conversion
process directly. However, the physical storage structures need to be in place before
conversion of the database begins.

Oracle, MS SQL Server, and Sybase all have a way to control the physical placement
of a database object. In MS SQL Server and Sybase, you use the ON SEGMENT
clause and in Oracle you use the TABLESPACE clause.

An attempt should be made to preserve as much of the storage information as
possible when converting from MS SQL Server or Sybase to Oracle. The decisions
that were made when defining the storage of the database objects for MS SQL
Server or Sybase should also apply for Oracle. Especially important are initial object
sizes and physical object placement.

Schema Objects
This section compares the following MS SQL Server, Sybase, and Oracle schema
objects:

N/A Control Files:

Each database has a control file. This file
records the physical structure of the
database. It contains the following
information:

n database name

n names and locations of a database's
datafiles and redo log files

n time stamp of database creation

It is possible to have mirrored control files.
Each time an instance of an Oracle database
is started, its control file is used to identify
the database, the physical structure of the
data, and the redo log files that must be
opened for the database operation to
proceed. The control file is also used for
recovery if necessary. The control files hold
information similar to the master database
in MS SQL Server and Sybase.

Table 2–3 Data Storage Concepts in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Databases 2-19

n Alias

n Database

n Database Link

n Data and Hash Cluster

n Defaults

n Index

n Privilege

n Profile

n Role

n Rule

n Sequence

n Snapshot

n Synonym

n Tables

n Tablespace

n User

n View

Each schema object is compared in separate tables based on create, alter, drop,
grant, revoke, and truncate where applicable. Most tables are divided into the
following four sections:

n syntax

n description

n permissions

n examples

Each table is followed by a recommendations section that contains important
information about conversion implications.

Alias
This section contains the following tables for the schema object Alias:

Schema Objects

2-20 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

n Create

n Drop

Create

Recommendations:

A user account can be created for each alias set up on MS SQL Server or Sybase. The
same privileges as the base user ID can be granted to this account.

Table 2–4 Comparison of Creating the Alias Schema Objects in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

sp_addalias login_id usr_nm_inside_db

Syntax:

Oracle does not have aliases. Similar
functionality is provided by roles. See the Roles
section for more information in this regard.

Description:

The purpose of an alias is to allow an
individual to access the database as
another database user without the DBA
having to add him or her as a user in the
database. The SP_ADDALIAS system
procedure creates a row in the
SYSALTERNATES table, which keeps
all information about aliases. An alias
may be set up for any user. This allows
more than one user ID to have the same
set of privileges as the base user ID.

N/A

Permissions:

The SA or DBO can add an alias.

N/A

Example:

sp_addalias user1 dbo
sp_addalias user2 dbo

Both user1 and user2 can act as DBO.

N/A

Schema Objects

Databases 2-21

Drop

Recommendations:

Oracle does not have aliases. The MS SQL Server and Sybase alias dropping
information is provided for reference.

Database
This section contains the following tables for the schema object Database:

n Create

n Alter

n Drop

Table 2–5 Comparison of Dropping the Alias Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

sp_dropalias login_id

Syntax:

Oracle does not have aliases. Functionality is
provided by roles. See the Roles section for more
information in this regard.

Description:

The SP_DROPALIAS system procedure
allows you to drop an alias.

N/A

Permissions:

The SA or DBO can drop an alias.

N/A

Example:

sp_dropalias user1

N/A

Schema Objects

2-22 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Create

Table 2–6 Comparison of Creating the Database Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

CREATE DATABASE database_name
[ON {DEFAULT | database_

device}[= size]
[, database_device [= size]]

...]
[LOG ON database_device [=

size]
[, database_device [=

size]]...]

Syntax:

CREATE DATABASE database_name
[CONTROLFILE REUSE]
[LOGFILE [GROUP integer] file_

definition
[, [GROUP integer] file_

definition]...]
[MAXLOGFILES integer]
[MAXLOGMEMBERS] integer]
[MAXLOGHISTORY] integer]
[DATAFILE file_definition
[,file_definition]...]
[MAXDATAFILES integer]
[MAXINSTANCES integer]
[ARCHIVELOG | NOARCHIVELOG]
[EXCLUSIVE]
[CHARACTER SET charset]

Schema Objects

Databases 2-23

Description:

Each server can manage up to 32767
databases.

The master database contains all the
necessary information about all the
other databases created by the users.
The model database is used as a
template to create other databases. The
tempdb is a temporary database that
can be used as a working storage by all
the users on the server.

A database can be assigned as a default
database to the user. Note that in Oracle
a tablespace can be assigned as a default
tablespace to the users. In order to use
an object in another database, the object
name has to be fully specified in order
to reference that object. This can be seen
in the following example:

database_name.owner_
name.object_name

A database is an atomic storage unit for
administration, backup, and recovery.

CREATE DATABASE creates the
specification of the database in the
master database (system tables) and
creates the database itself as a copy of
the model database. A 2M database is
created on the default device when the
values are not specified.

Description:

One server controls one database. One server
instance comprises the system global area (SGA)
and a few processes. The SGA is used to store
data blocks and parsed SQL statements
(including PL/SQL blocks) in shared memory.

A given database consists of a system tablespace
and one or more user-defined tablespaces.

Each of the tablespaces may have its own storage,
backup, and recovery strategy.

The CREATE DATABASE command makes a
database ready for initial use. It clears the
database files and loads initial database tables
required by the RDBMS.

Caution: If you use CREATE DATABASE on an
existing database, you will destroy the database.

The control file stores the physical structure of
the database. The file definition takes the
following form:

'file' [SIZE integer [K | M] [REUSE]]

SIZE is the number of bytes set aside for this file.
The suffix K multiplies the value by 1024 and
suffix M multiplies it by 1048576. SIZE and
REUSE together tell Oracle to reuse the file if it
already exists, or create it if it does not exist. SIZE
without REUSE creates a file if one does not
already exist, but returns an error if a file does
exist. Without SIZE, the file must already exist.

LOGFILE names the files to be used as the redo
log files. Mirrored log files are recommended for
full protection against media failure.

MAXLOGFILES overrides the LOG_FILES
parameter specified in the init.orafile, and defines
the maximum number of redo log files that can
be created for this database.

Table 2–6 Comparison of Creating the Database Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

2-24 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Description (continued):

The optional ON clause lets you put the
database on a specific device. In MS SQL
Server and Sybase, the physical devices
are initialized using the DISK INIT
command. This command attaches a
logical device name to physical devices.
These logical device names are used in
the CREATE DATABASE statement.

The LOG ON option creates the
transaction log (the SYSLOGS table) on
a separate device, and improves
performance. If the LOG ON option is
omitted, the transaction log is created on
the same device as the data tables.

Description (continued):

ARCHIVELOG and NOARCHIVELOG define
the way redo log files are used when the database
is first created. NOARCHIVELOG is the default,
meaning that redo log files are reused without
saving the contents elsewhere. This provides
instance recovery, but does not provide recovery
from a media failure. ARCHIVELOG forces redo
log files to be archived so you can recover from
media failure.

ARCHIVELOG also supports instance recovery.

DATAFILE names the datafiles used by the
database. These files exist in the SYSTEM
tablespace.

MAXDATAFILES is the maximum number of
datafiles that can be created for this database.

MAXINSTANCES overrides the INSTANCES
parameter in the init.ora file, and sets the
maximum number of simultaneous instances
that can mount and open this database.

The optional REUSE clause tells the server to
destroys the contents of the named file and
associate this file to the database in the context.

EXCLUSIVE is optional and means that all
databases are created to allow only one instance
that has an exclusive access to the database and
allows only one instance of exclusive access to
any database created.

Use the ALTER DATABASE DISMOUNT and
ALTER DATABASE MOUNT PARALLEL
commands to allow multiple instances to access
the database.

Table 2–6 Comparison of Creating the Database Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Databases 2-25

Recommendations:

Because of the conceptual differences between the two databases, the best approach
is to create the database manually in Oracle. Sizing and backup methods chosen for
MS SQL Server and Sybase often apply nearly as well for Oracle. Care should be
taken to ensure that sizing and backup information learned by using MS SQL
Server or Sybase is passed on to the Oracle database.

MS SQL Server and Sybase applications that use two or more databases on the same
server usually translate to one Oracle database with several tablespaces and a
different user for each tablespace.

In most cases, the MS SQL Server or Sybase application should be converted so that
one server in MS SQL Server or Sybase is converted to one Oracle database instance.

The ability to backup/restore individual databases in MS SQL Server or Sybase is
provided by creating one Oracle tablespace for each MS SQL Server or Sybase
database. Then DBAs can perform the same backup/restore by tablespace on Oracle
that they could by database in MS SQL Server or Sybase.

Permissions:

The SA can grant permission to use the
CREATE DATABASE command. The
SA usually retains the CREATE
DATABASE permission, and changes
the database owner of the database by
using the SP_CHANGEDBOWNER
system procedure in the new database.

Permissions:

You must have the OSDBA role enabled in order
to issue this command.

Examples:

CREATE DATABASE my_database
ON DEFAULT =

Example:

CREATE DATABASE my_database
LOGFILE
GROUP 1
('test_log1a', 'test_log1b') SIZE

500K,
GROUP 2
('test_log2a', 'test_log2b') SIZE

500K
DATAFILE 'test_system' SIZE 10M

Table 2–6 Comparison of Creating the Database Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

2-26 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

The ability of MS SQL Server and Sybase to keep logical sets of tables together in
databases is accomplished in Oracle by creating tablespaces.

The use of tablespaces in Oracle can provide all the same benefits of multiple
databases per server in MS SQL Server and Sybase. However, if there are several
completely unrelated databases in the same server in MS SQL Server or Sybase, it
may make sense to split them into completely different database instances in
Oracle.

Schema Objects

Databases 2-27

Alter

Table 2–7 Comparison of Altering the Database Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

ALTER DATABASE database
{ADD FILE <filespec> [,...n]
[TO FILEGROUP filegroup_name]
|ADD LOG FILE <filespec>
[,...n]
|REMOVE FILE logical_file_name
|ADD FILEGROUP filegroup_name
|REMOVE FILEGROUP filegroup_
name
|MODIFY FILE <filespec>
|MODIFY FILEGROUP filegroup_
name filegroup_property
}

Syntax:

ALTER DATABASE [database_name]
{ADD LOGFILE

[THREAD integer] [GROUP integer]
file_definition [,file_

definition]...|
ADD LOGFILE MEMBER
file [REUSE][, file [REUSE]...]
TO {GROUP integer |(file[,file]...) |

file} |
DROP LOGFILE
{GROUP integer|(file[,file]...)|file}

|
DROP LOGFILE MEMBER file[,file] |
RENAME file TO file |
NOARCHIVELOG | ARCHIVELOG |
MOUNT [EXCLUSIVE | PARALLEL] |

OPEN [RESETLOGS | NORESETLOGS] |
ENABLE [PUBLIC] THREAD integer |
DISABLE THREAD integer |
BACKUP CONTROLFILE TO file [REUSE] |
DATAFILE file {ONLINE|OFFLINE [DROP]}

|
CREATE DATAFILE file[,file]

[AS file_spec[,file_spec]...] |
RENAME GLOBAL_NAME TO database

[.domain]|
RECOVER recover_clause |
SET {DBMAC {ON | OFF} | DBHIGH =

string | DBLOW = string}}

Schema Objects

2-28 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Description:

ALTER DATABASE is used to add,
remove, or modify files or file groups
from the database. The database size can
also be altered by changing the value of
the "database size" configuration
variable by using the SP_CONFIGURE
system procedure.

The reconfigure command should be
used to apply the changes.

Description:

The log file is assigned to a thread, either
explicitly with the THREAD clause or to the
thread assigned to the current Oracle instance.
Use the THREAD parameter only if you are
using Oracle with the parallel server option in
parallel mode.

The file definition takes the following form:

'file' [SIZE integer [K | M] [REUSE]]

SIZE is the number of bytes set aside for this file.
The suffix K multiplies the value by 1024 and
suffix M multiplies it by 1048576. SIZE and
REUSE together tell Oracle to reuse the file if it
already exists, or to create it if it does not exist.
SIZE without REUSE creates a file if one does not
already exist, but returns an error if a file does
exist. Without SIZE, the file must already exist.

A GROUP is a collection of log files. You can add
a GROUP by listing the log files or naming them
with an integer. If a mirrored redo log is used,
groups of online redo log files can be created.
Each member in a GROUP is exactly the same
size. The members in the GROUP are multiple
copies of the redo log created to protect the log
against losing the drive with the log file.

ADD LOGFILE MEMBER adds new files to an
existing log file group.

DROP FILE drops an existing redo log file group.

DROP LOGFILE MEMBER drops one or more
members of a log file group.

RENAME changes the name of the existing
database or log file.

When you first create the database, it is mounted
in exclusive mode, meaning only its creator has
access to it. To allow multiple instances, use the
MOUNT PARALLEL command on a
loosely-coupled cluster configuration. This
command is available only for the parallel server
version of Oracle.

After mounting the database, OPEN it.

Table 2–7 Comparison of Altering the Database Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Databases 2-29

Recommendations:

The ALTER DATABASE command in
MS SQL Server or Sybase can only alter
the size of the database. Two megabytes
of space is added to the default device of
the database, if the size is not specified.

The minimum increase you can specify
is one megabyte in size. The segments
are automatically extended to the
additional space.

It is important to back up the MASTER
database after each use of the ALTER
DATABASE command. This ensures
that the recovery is easier and safer if
the MASTER database is damaged.

RESETLOGS resets the redo logs, cleaning out all
the redo log entries when you OPEN the
database. Use NORESETLOGS to leave the logs
intact when you OPEN the database.

You can ENABLE or DISABLE a thread. PUBLIC
makes the thread available to any instance not
requesting a specific thread.

Use DATAFILE to make the datafile ONLINE or
OFFLINE. You can CREATE a new datafile to
replace a lost or damaged datafile.

RENAME GLOBAL_NAME changes the name of
the database. Specify the domain to tell Oracle
where the database is located on the network.

Use RECOVER to recover the database. This
command performs media recovery for a lost
database.

Permissions:

The DBO or SA can use this command.
The SA can grant privileges on this
command to other users. The DBO or
SA must be using the MASTER database
to execute this command.

Permissions:

The user issuing this command needs the ALTER
DATABASE privilege.

Example:

To add 3MB to the log device:

ALTER DATABASE my_database
MODIFY FILE
(NAME = logdevice_name
SIZE = 3MB)

The logdevice_name is the name of the
log device specified while creating the
database with LOG ON option.

To allocate an additional device to the
database:

ALTER DATABASE database_name ON
additional_device_name

Example:

ALTER DATABASE
ADD LOGFILE GROUP 10
('log1c', 'log2c') SIZE 3M

ALTER DATABASE DROP LOGFILE MEMBER
'LOG3C'

ALTER DATABASE DROP LOGFILE GROUP 3

ALTER DATABASE
RENAME FILE 'log1a', 'log2a'
TO 'log1c', 'log2c'

Table 2–7 Comparison of Altering the Database Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

2-30 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Oracle functionality exceeds that of MS SQL Server and Sybase. There should be no
conversion implications.

Drop

Recommendations:

Oracle does not have a command to drop a database because there will only be one
database per instance. The process for removing an Oracle database is the same as
the process for removing an MS SQL Server or Sybase server. The CREATE
DATABASE command destroys an existing database if it has the same name as the
database being created.

Table 2–8 Comparison of Dropping the Database Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

DROP DATABASE database_name[,
database_name ...]

Syntax:

Oracle does not have a separate command to
drop a database.

Caution: If you use the CREATE DATABASE
command on an existing database, you will
destroy the database.

Description:

DROP DATABASE deletes the database
and all the objects in it from the server,
frees the storage space that had been
allocated for it, and deletes the related
information from the system tables in
the MASTER database. This command
will not work if the database is in use.
DROP DATABASE does not drop the
server. It only drops individual
databases. It does not remove devices or
clean up operating system files.

N/A

Permissions:

The DBO alone is allowed to execute
this command. The DBO must be using
the MASTER database to execute this
command.

N/A

Example:

DROP DATABASE my_temp_dbs

N/A

Schema Objects

Databases 2-31

If a database is considered equivalent to a tablespace in Oracle, the DROP
TABLESPACE command in Oracle is equivalent to the DROP DATABASE
command in MS SQL Server or Sybase.

Database Link
This section contains the following tables for the schema object Database Link:

n Create

n Drop

Create

Table 2–9 Comparison of Creating the Database Link Schema Object in Oracle and
MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

SP_ADDLINKED SERVER

Syntax:

CREATE [PUBLIC] DATABASE LINK link
CONNECT TO user IDENTIFIED BY

password
USING 'connect_string'

Description:

Allows queries against databases
accessible via OLE DB data sources.

Description:

A database link is a named object that describes a
path from one database to another. These objects
are used in distributed database environment.

PUBLIC links are available to all users except
those who have created a private link with the
same name.

connect_string is the name and the location
of the remote database that can be accessed
through SQL*Net.

Remote tables can be accessed just like the local
tables, except that the table name must be
suffixed by @link.

The DBA can set the maximum number of
simultaneous links that can be created.

Schema Objects

2-32 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Recommendations:

An MS SQL Server or Sybase server can support one or more databases, and all
these databases can be accessed from one another by fully qualifying the object
names. In many applications there is a layer that translates the object names to the
actual object names with complete reference (along with the server_name,
database_name, owner_name). Database links should be created for all the different
servers in the Oracle application environment so that the layer mentioned would
simply return the object name for Oracle installations.

The MS SQL Server or Sybase system catalogs hold information about the servers
known to the local server. These tables can be read and corresponding database
links can be created.

In Oracle, database links are used in distributed database environments. A
two-phase commit operation is frequently needed in distributed database
environments. MS SQL Server and Sybase only have a programmatic two-phase
commit, which is very complex and impractical to use. Because of Oracle's
straightforward transparent two-phase commit, distributed database applications
are more practical in an Oracle environment.

Oracle allows links to other heterogeneous databases via Oracle Gateway
technology.

N/A Permissions:

Any user with the CREATE DATABASE LINK
system privilege can create private database
links. Any user with the CREATE PUBLIC
DATABASE LINK system privilege can create
public database links. Also, users must the have
CREATE SESSION system privilege on a remote
database.

N/A Examples:

CREATE DATABASE LINK sales.hq.acme.com
CONNECT TO scott IDENTIFIED BY tiger
USING 'D:BOSTON-MFG'

Table 2–9 Comparison of Creating the Database Link Schema Object in Oracle and
MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Databases 2-33

Drop

Recommendations:

This command has no effect on the conversion process. Table 2-10 is provided for
reference only.

Data and Hash Cluster
This section contains the following tables for the Data and Hash Cluster schema
object:

n Create

n Alter

n Drop

Table 2–10 Comparison of Dropping the Database Link Schema Object in Oracle and
MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

MS SQL Server and Sybase do not have
database links.

Syntax:

DROP [PUBLIC] DATABASE LINK link

N/A Description:

This command drops the specified database link
from the database.

N/A Permissions:

You can only drop a database link in your own
schema. You must have the DROP PUBLIC
DATABASE LINK system privilege to drop a
PUBLIC database link.

N/A Examples:

DROP DATABASE LINK sales.hq.acme.com

Schema Objects

2-34 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Create

Table 2–11 Comparison of Creating the Data and Hash Cluster Schema Objects in
Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

Table clusters and hash clusters are not
supported in MS SQL Server or Sybase.

Syntax:

CLUSTER [user.]cluster
(column data type [, column data

type]...)
[INITRANS integer]
[MAXTRANS integer]
[PCTFREE integer]
[PCTUSED integer]
[SIZE integer[K|M]]
[STORAGE storage]
[TABLESPACE tablespace]
[INDEX|[HASH IS column] HASHKEYS

integer]

Schema Objects

Databases 2-35

N/A Description:

Clusters are an optional method of storing
tabledata in which one or more tables are
physically stored together because they share
common columns and are often used together.
Clusters require at least one cluster column for
each of the tables. These must have the same data
type and size, but are not required to have the
same name. For the tables in a cluster, rows with
the same cluster column values are kept together
on disk in the same area, the same logical blocks.
Clusters can improve performance when the
tables are joined on the cluster columns. Disk
access time improves because the related rows
are physically stored together. The related
columns of the tables in a cluster make up the
indexed cluster key.

This command creates a cluster of two or more
tables. Tables are added to the cluster using
CREATE TABLE with the cluster clause. This
command commits pending changes to the
database.

Each distinct value in each cluster column is
stored only once, regardless of whether it occurs
once or many times in the tables and rows.

Tables with LONG columns cannot be clustered.

SIZE sets the size in bytes for a logical storage
block and should be the average amount of space
needed to store all the rows from all the clustered
tables that are associated with a single cluster
key. If SIZE exceeds the physical block size,
Oracle uses the physical block size instead.

The cluster is indexed by default. You must
create an index on the cluster key before putting
any data in the cluster. If you specify the hash
cluster, Oracle uses a hash function to store and
locate the rows of the tables.

HASH IS lets you create your own hash value as
a column of the table. Otherwise, Oracle uses an
internal hash function based on the columns of
the cluster key.

HASHKEYS creates the hash cluster and specifies
the number of hash values, rounded to the
nearest prime number. The minimum value is 2.

Table 2–11 Comparison of Creating the Data and Hash Cluster Schema Objects in
Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

2-36 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Recommendations:

Clusters improve the performance of certain queries, but they can negatively affect
the performance of the INSERT and UPDATE operations and other queries.

Use clusters to store the relatively static tables that need to be joined frequently by
using a specific key.

Table clusters and hash clusters should be examined as a possible performance
improvement, but are not necessary in a conversion from MS SQL Server or Sybase
to Oracle.

Use hashing to reduce I/O when locating rows with an equality condition.

N/A Permissions:

You must have the CREATE CLUSTER system
privilege to create a cluster in your own schema.
You must have the CREATE ANY CLUSTER
system privilege to create a cluster in another
user's schema.

N/A Examples:

CREATE CLUSTER personnel
(department_number NUMBER)
SIZE 512 HASHKEYS 500
STORAGE (INITIAL 100k NEXT 50k

PCTINCREASE 10)

Table 2–11 Comparison of Creating the Data and Hash Cluster Schema Objects in
Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Databases 2-37

Alter

Recommendations:

Table 2–12 Comparison of Altering the Data and Hash Cluster Schema Objects in
Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

Table clusters and hash clusters are not
supported in MS SQL Server or Sybase.

Syntax:

ALTER CLUSTER [user.]cluster
{INITRANS integer|
MAXTRANS integer|
PCTFREE integer|
PCTUSED integer|
SIZE integer[K|M] |
STORAGE storage|
ALLOCATE EXTENT[(SIZE integer[K|M])

| (DATAFILE 'filename') | (INSTANCE
integer)]}

N/A Description:

The ALTER CLUSTER redefines future storage
allocations or allocates an extent for the specified
cluster.

SIZE determines how many cluster keys are
stored in data blocks allocated to the cluster. You
can only change the SIZE parameter for an
indexed cluster, not for a hash cluster.

ALLOCATE EXTENT explicitly allocates a new
extent for the cluster. The user can only allocate a
new extent for an indexed cluster, not a hash
cluster.

N/A Permissions:

User can alter their own clusters. Any user with
the ALTER ANY CLUSTER system privilege can
alter another user's cluster.

N/A Examples:

ALTER CLUSTER scott.customer
SIZE 512
STORAGE (MAXEXTENTS 25)

Schema Objects

2-38 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Table clusters and hash clusters should be examined as a possible performance
improvement, but are not necessary in a conversion from MS SQL Server or Sybase
to Oracle.

Drop

Recommendations:

Table clusters and hash clusters should be examined as a possible performance
improvement, but are not necessary in a conversion from MS SQL Server or Sybase
to Oracle.

Table 2–13 Table 2-13 Comparison of Dropping the Data and Hash Cluster Schema
Objects in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

Table clusters and hash clusters are not
supported in MS SQL Server or Sybase.

Syntax:

DROP CLUSTER [user.]cluster
[INCLUDING TABLES [CASCADE

CONSTRAINTS]]

N/A Description:

This command removes the specified cluster
from the database. INCLUDING TABLES drops
all tables that belong to the cluster. If the user
omits this clause and the cluster still contains
tables, Oracle returns an error and does not drop
the cluster.

CASCADE CONSTRAINTS drops all referential
integrity constraints from tables outside the
cluster that refer to primary and unique keys in
the tables of the cluster. If the user omits this
option and such referential integrity constraints
exist, Oracle returns an error and does not drop
the cluster.

N/A Permissions:

Users can drop their own clusters. Any user with
the DROP ANY CLUSTER system privilege can
drop another user's cluster.

N/A Examples:

DROP CLUSTER geography INCLUDING
TABLES

CASCADE CONSTRAINTS

Schema Objects

Databases 2-39

Defaults
This section contains the following tables for the schema object Defaults:

n Create

n Drop

Create

Recommendations:

Table 2–14 Comparison of Creating the Default Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

CREATE DEFAULT [owner.]default_
name AS value|constant_
expression
sp_bindefault default_name,
{"table.column" | data type_
name}

Syntax:

Defaults are specified as part of the CREATE
TABLE or ALTER TABLE statement.

Description:

Defaults in MS SQL Server and Sybase
are created as separate objects. These
defaults are bound to individual
columns of the table.

The expression used as a default value
can be a constant literal or a built-in
function that returns a constant value.
For example:

user_name(), getdate())

Description:

You can specify the default value for a column
with the DEFAULT constraint in the table
creation/alteration statement. The expression
used in the DEFAULT constraint can be a
constant literal or a built-in function that returns
a constant value. For example, SYSDATE.

Permissions:

The DBO has the CREATE DEFAULT
permission and can transfer it to other
users.

N/A

Example:

CREATE DEFAULT user_def AS
user_id()

sp_bindefault user_def ,
"table1.uid_column"

N/A

Schema Objects

2-40 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

The implementation of defaults in MS SQL Server, Sybase, and Oracle is
conceptually very similar.

Defaults in MS SQL Server and Sybase can use built-in functions. These functions
have to be parsed and replaced by equivalent Oracle functions. If the equivalent
function is not available, you may want to make the column as NULL allowed and
update it with the default value from within a trigger.

Drop

Recommendations:

Replace DROP DEFAULT statements with ALTER TABLE statements.

Index
This section contains the following tables for the schema object Index:

n Create

n Alter

Table 2–15 Comparison of Dropping the Default Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

DROP DEFAULT [owner.]default_
name

[, [owner.]default_name ...]

Syntax:

Defaults are specified as part of the CREATE
TABLE or ALTER TABLE statement.

Description:

A default cannot be dropped if it is
currently bound to a column or a
user-defined data type.

Use SP_UNBINDEFAULT to unbind the
default.

N/A

Permissions:

Only the default owner can issue this
command.

N/A

Example:

DROP DEFAULT user_def

N/A

Schema Objects

Databases 2-41

n Drop

Create

Table 2–16 Comparison of Creating the Index Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

CREATE [UNIQUE]
[CLUSTERED|NONCLUSTERED] INDEX
index_name
ON [[database.]owner.]table
(col_name [, col_name]...)
[WITH {FILLFACTOR = x,
IGNORE_DUP_KEY,
[IGNORE_DUP_ROW|ALLOW_DUP_
ROW]}]
ON segment_name

Syntax:

CREATE
INDEX [user.] index_name

ON {[user.]table
(col_name[ASC | DESC]
[,col_name[ASC | DESC]...) |
CLUSTER [user.]cluster}
[INITRANS integer]
[MAXTRANS integer]
[PCTFREE integer]
[STORAGE storage]
[TABLESPACE tablespace]
[NOSORT]

Schema Objects

2-42 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Description:

Index names in MS SQL Server and
Sybase must be unique for the table.
Two tables in MS SQL Server and
Sybase can have indexes of the same
name. IGNORE_DUP_KEY causes the
server to ignore a row that would
violate a unique key. It does not give
any error message. IGNORE_DUP_
ROW causes the server to ignore a row
that is a duplicate of an existing row. It
does not give any error message.

ALLOW_DUP_ROW allows duplicate
rows in the table.

The FILLFACTOR decides how full each
page becomes while creating a new
index on existing data. The server must
split the pages when they fill up; the
FILLFACTOR percentage thus affects
performance. FILLFACTOR can be
changed globally for all indexes by
setting it with SP_CONFIGURE. The
FILLFACTOR value should be smaller
when the corresponding table is
dynamic and is capable of growing.

ON segment_name names the segment
to which the index is assigned.

Description:

Each user schema must have a unique index
name for each Oracle database. No two indexes
created by the same user can have the same
name.

Oracle automatically creates unique indexes to
enforce unique column constraints.

PCTFREE is the percentage of space left free in
the index for new entries and the updates.

TABLESPACE names the tablespace to which the
index is assigned.

NOSORT reduces the time to create an index if,
and only if, the values in the column being
indexed are already in ascending order.

Oracle does not balance indexes on its own. This
calls for the maintenance of indexes on tables
which have very high numbers of INSERTs and
DELETEs. The indexes on the dynamic tables
need to be dropped and created again from time
to time, to ensure the same average response
time.

A query which can be satisfied from just the
index does not need the actual table rows. This
occurs when the query selects only columns
included in the index key.

Cluster:

CLUSTER is the cluster key indexed for a cluster.
Clusters must have their keys indexed for their
associated tables to be accessed.

Non-clustered Indexes:

All Oracle indexes are non-clustered indexes.

Table 2–16 Comparison of Creating the Index Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Databases 2-43

Description (continued):

A query which can be satisfied from just
the index does not need the actual table
rows. This occurs when the query
selects only columns included in the
index key.

Clustered Indexes:

In MS SQL Server and Sybase, a
clustered index is a b-tree index. The
leaf pages contain the data. The index
forces the data to be stored in physically
sorted order, that is, sequentially. A
table can have only one clustered index.
A clustered index in MS SQL Server or
Sybase is always a UNIQUE index. In
most applications, a clustered index is
created on the primary key for a table.

Non-clustered Indexes:

In MS SQL Server and Sybase, a
non-clustered index is a b-tree index.
The leaf pages contain pointers to the
data. The data is stored in a random
order. A table can have multiple
non-clustered indexes. These indexes
can be UNIQUE if specified. A table can
have up to 249 non-clustered indexes.

Permissions:

The CREATE INDEX permission
defaults to the table owner and cannot
be transferred.

Permissions:

Users can index their own tables. Any valid
database user with the INDEX privilege on the
table or the CREATE ANY INDEX system
privilege can also create an index.

Example:

CREATE UNIQUE NONCLUSTERED
INDEX c_temp_ix
ON table customer (col1, col2)
WITH FILLFACTOR = 20
IGNORE_DUP_KEY
ON segment index_seg

Example:

CREATE INDEX c_temp_ix

ON customer(col1 DESC,col2)
NOSORT

Table 2–16 Comparison of Creating the Index Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

2-44 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Recommendations:

Index names in MS SQL Server and Sybase are only required to be unique for each
table. In Oracle they must be unique for each user, regardless of the table the index
is on. Change the non-unique index names when moving them to Oracle.

Clustered indexes should be replaced by primary keys in Oracle.

UNIQUE non-clustered indexes translate to UNIQUE column constraints.

Oracle never ignores rows being inserted or updated. It either performs the INSERT
or UPDATE or gives an error. If MS SQL Server or Sybase indexes were created
with IGNORE_DUP_KEY or IGNORE_DUP_ROW, a note should be made that the
application needs to change to handle the error.

ALLOW_DUP_ROW functionality is supported in Oracle provided no other
constraints are violated.

Alter

Table 2–17 Comparison of Altering the Index Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

MS SQL Server and Sybase have no
command comparable to ALTER
INDEX.

Syntax:

ALTER INDEX [user.]index_name
{INITRANS integer | MAXTRANS integer

| STORAGE storage}

N/A Description:

The ALTER INDEX command is used to change
future storage allocation for data blocks in an
index.

INITRANS and MAXTRANS change the values
of these parameters for the index. See the Tables
section for a description of these parameters.

STORAGE changes the storage parameters for
the index.

N/A Permissions:

The index owner can alter the index. Other users
must have the ALTER ANY INDEX system
privilege to alter an index.

Schema Objects

Databases 2-45

Recommendations:

This command has no effect on the conversion process. The information is provided
for reference only.

Drop

Recommendations:

If applications drop multiple indexes with one DROP INDEX command, they need
to be converted into multiple DROP INDEX commands in Oracle.

Example:

N/A

Example:

ALTER INDEX scott.ix_cust
INITRANS 5
STORAGE (NEXT 100K)

Table 2–18 Comparison of Dropping the Index Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

DROP INDEX [table.] index_name
[, [table.] index_name ...]

Syntax:

DROP INDEX [user.]index_name

Description:

The DROP INDEX command drops the
specified index.

Description:

The DROP INDEX command drops the specified
index. It commits pending changes to the
database.

Permissions:

By default, the index owner has the
DROP INDEX permission which is not
transferable.

Permissions:

This command can be issued by the owner of the
index. A user must have the DROP ANY INDEX
system privilege to drop an index from another
user's schema.

Example:

DROP INDEX test_tabl.test_index

Example:

DROP INDEX test_index

Table 2–17 Comparison of Altering the Index Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

2-46 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Privilege
This section contains the following tables for the schema object Privilege:

n Grant

n Revoke

Grant

Table 2–19 Comparison of Granting the Privilege Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

System Privileges:

GRANT {system_privilege
[, system_privilege]...|
ALL}
TO {user [,user]...|

group[,group]...
| PUBLIC}

Object Privileges :

GRANT
{object_privilege[, object_

privilege]...| ALL}

ON object [(col_list)]
TO {user [,user]...|

group[,group]...
| PUBLIC}

Syntax:

System Privileges:

GRANT {system_privilege
[, system_privilege]...|

role[,role]...}
TO {user [,user]...|

role[,role]...|PUBLIC}
[WITH ADMIN OPTION]

Object Privileges:

GRANT
{object_privilege[, object_

privilege]...| ALL[PRIVILEGES]}
[(column[,column]...)]

ON [user.]object
TO {user [,user]...|

role[,role]...|PUBLIC}
[WITH GRANT OPTION]

Schema Objects

Databases 2-47

Description:

System privileges are the privileges
granted to create and manage various
schema objects. These commands also
include the system administrative
commands.

Object privileges are the privileges
granted on the various operations on the
schema objects. The column list is
applicable only when the object
corresponds to a table or a view.
SELECT and UPDATE privileges can be
column-specific.

MS SQL Server and Sybase allow
anti-grants. Anti-grants are revoke
statements that do not have a
corresponding, preceding, explicit grant
statement. For example, you can issue
the REOVKE SELECT ON
SYSLOGINS.PASSWORD FROM
PUBLIC command to disallow access to
the PASSWORD column in the
SYSLOGINS table. This statement need
not be preceded by the GRANT SELECT
ON SYSLOGINS.PASSWORD TO
PUBLIC command. This is frequently
used to revoke part of a privilege which
was granted previously. It allows
system administrators to quickly do
things such as "Give everyone EXCEPT
Bob access to table X".

Description:

System privileges are the privileges granted to
create and manage various schema objects
themselves. These commands also include the
system administrative commands.

WITH ADMIN OPTION lets the granted user or
role (the grantee) grant the system privilege or
role to other grantees. The grantee can also use its
option to alter or drop a granted role.

Object privileges are the privileges granted on
the various operations on the schema objects. The
column list is applicable only when the object
corresponds to a table or a view. The INSERT and
UPDATE privileges can be column-specific.

Object privileges include any or all of the
following privileges: SELECT, INSERT, DELETE,
UPDATE, EXECUTE, ALTER, REFERENCE, and
INDEX.

WITH GRANT OPTION passes along the right to
grant the granted object privileges to another
user or role.

GRANTs on synonyms become grants on the
underlying object that the synonym references.

GRANT can be specified to a list of columns
when granting the INSERT, REFERENCE, or
UPDATE privileges.

Oracle only supports additive privileges. This
means that the REVOKE statement should have a
corresponding GRANT statement. There is no
way to REVOKE part of a privilege. You must
only GRANT the specific privileges desired.

Table 2–19 Comparison of Granting the Privilege Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

2-48 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Recommendations:

In MS SQL Server and Sybase, both grants and revokes are recorded in the system
catalogues. When a user attempts an operation against the object, MS SQL Server
and Sybase check to see if the user was granted authorization either directly (e.g.,
"GRANT SELECT ON X TO mary", to public, or via group.

They also check to see if the user was explicitly revoked access from the object at the
user, public, or group level. If a permission is revoked, the REVOKE overrides all
GRANTs issued. For example, the following statements are executed in MS SQL
Server or Sybase:

GRANT SELECT ON X TO public;
REVOKE SELECT ON X FROM bob;

Permissions:

The SA grants system privileges and
object owners grant object privileges.

Permissions:

To grant a system privilege, the grantor must
either have been granted the system privilege
with the ADMIN OPTION or have been granted
the GRANT ANY PRIVILEGE system privilege.

To grant object privileges, the object must be in
the grantor's own schema or the grantor must
have been granted the object privileges with the
GRANT option.

Examples:

GRANT ALL ON items TO PUBLIC
GRANT SELECT ON items(column1)
TO mary
GRANT EXECUTE ON st_proc1 TO
mary
GRANT CREATE TABLE, CREATE
PROCEDURE TO jim

Examples:

GRANT ALL ON items TO PUBLIC

GRANT SELECT ON items TO mary

GRANT EXECUTE ON st_proc1 TO mary

GRANT CREATE TABLE, CREATE PROCEDURE
TO jim

GRANT SELECT, UPDATE ON items TO jim

GRANT CREATE SESSION, CREATE VIEW,
CREATE SYNONYM TO basic_role

WITH ADMIN OPTION;
GRANT basic_role TO mary,jim,tom

Table 2–19 Comparison of Granting the Privilege Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Databases 2-49

When user "bob" attempts to select on object "X" in the database, MS SQL Server or
Sybase sees if bob, public, or the group of which Bob is currently a member, has
select on the object (they do) and it is not true that bob, public, or the group of
which Bob is currently a member has been revoked select (Bob has). Bob cannot
access object X but everyone else can.

Oracle does not allow this kind of granting and revoking because it results in an
unmanageable tangle of grants and revokes. Oracle enforces the idea that if a
privilege is granted to public, then everyone has the privilege, without exceptions.
If it is not accessible to everyone, then it should not be granted to public.

While converting the privileges from MS SQL Server or Sybase to Oracle, all the
anti-grants should be resolved before creating the DDL for Oracle. All the privileges
should be additive privileges.

Revoke

Table 2–20 Table 2-20 Comparison of Revoking the Privilege Schema Object in
Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

System Privileges:

REVOKE {ALL | system_privilege}
FROM {user [,user]...|

group[,group]...|PUBLIC}

Object privileges :

REVOKE
{object_privilege[, object_

privilege]...| ALL}
ON object [(col_list)]
FROM {user [,user]...|

group[,group]... | PUBLIC}

Syntax:

System Privileges:

REVOKE {system_privilege
[, system_privilege]...
| role[,role]...}

FROM {user [,user]...|
role[,role]...|PUBLIC}

Object Privileges:

REVOKE
object_privilege[,object_

privilege]...

ON [user.]object
FROM {user [,user]...|

role[,role]...|PUBLIC}
[CASCADE CONSTRAINTS]

Schema Objects

2-50 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Recommendations:

While converting the privileges from MS SQL Server or Sybase to Oracle, all the
anti-grants should be resolved before creating the DDL for Oracle.

Description:

MS SQL Server and Sybase allow
anti-grants. Anti-grants are REVOKE
statements that do not have a
corresponding, preceding, explicit grant
statement. For example, one can issue
the REVOKE SELECT ON
SYSLOGINS.PASSWORD FROM
PUBLIC command to revoke access to
the PASSWORD column of the
SYSLOGINS table. This statement need
not be preceded with the GRANT
SELECT ON SYSLOGINS.PASSWORD
TO PUBLIC command. This is
frequently used to revoke part of a
privilege which was granted previously.
It allows system administrators to
quickly do things such as "Give
everyone EXCEPT Bob access to table
X".

Description:

The system privileges REVOKE command takes
privileges and roles away from users or
privileges away from roles. Any system privilege
may be revoked.

The REVOKE command takes object privileges
on a specific object away from a user or role.

Oracle supports additive privileges only. This
means that the REVOKE statement must have a
corresponding GRANT statement. There is no
way to revoke part of a privilege. You must only
grant the specific privileges desired.

The CASCADE CONSTRAINTS statement drops
any referential integrity constraints defined by
the user or by users granted the role. This applies
to a REFERENCES privilege.

Permissions:

The SA can revoke the system privileges
and the object owners can revoke the
object privileges.

Permissions:

A user can issue a REVOKE statement provided
the user has the corresponding GRANT
permissions.

Examples:

REVOKE SELECT ON table2 FROM
PUBLIC

REVOKE SELECT ON
table3(password_col) FROM
PUBLIC

REVOKE CREATE TABLE, CREATE
VIEW FROM jim

Examples:

REVOKE basic_role FROM mary,jim,tom

REVOKE SELECT ON items FROM PUBLIC

Table 2–20 Table 2-20 Comparison of Revoking the Privilege Schema Object in
Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Databases 2-51

All the privileges should be additive privileges.

Profile
This section contains the following tables for the schema object Profile:

n Create

n Alter

n Drop

Create

Table 2–21 Comparison of Creating the Profile Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

MS SQL Server and Sybase do not have
profiles.

MS SQL Server and Sybase use database
resources to set the global values for
various resources such as the number of
connections to the server. The maximum
number of connections allowed to the
server can be specified in the application
environment.

Syntax:

CREATE PROFILE profile LIMIT
{SESSIONS_PER_USER |
CPU_PER_SESSION |
CPU_PER_CALL |
CONNECT_TIME |
IDLE_TIME |
LOGICAL_READS_PER_SESSION |
LOGICAL_READS_PER_CALL |
COMPOSITE_LIMIT |
PRIVATE_SGA} {integer [K|M]

|UNLIMITED |DEFAULT}

Schema Objects

2-52 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

N/A Description:

The CREATE PROFILE command creates a set of
limits on the use of the database resources. When
the profile is associated with the user, you can
control what the user does by those limits.

SESSIONS_PER_USER limits the user to a
specified number of concurrent SQL sessions.

CPU_PER_SESSION limits the CPU time for a
parse, execute, or fetch call in hundredths of
seconds.

CONNECT_TIME limits THE elapsed time of a
session in minutes.

IDLE_TIME disconnects a user after this number
of minutes; this does not apply when a query is
running.

LOGICAL_READS_PER_SESSION limits the
number of blocks read per session to the specified
number.

LOGICAL_READS_PER_CALL limits the
number of blocks read for parse, execute, or fetch
calls.

PRIVATE_SGA limits the amount of space the
user can allocate in the SGA as private.

COMPOSITE_LIMIT limits the total resource cost
for a session, in service units, based on a
weighted sum of CPU, connect time, logical
reads, and private SGA resources.

UNLIMITED means there is no limit on a
particular resource. DEFAULT picks up the limit
from DEFAULT profile, which can be changed
with the ALTER PROFILE command.

N/A Permissions:

You must have the CREATE PROFILE system
privilege to create a profile.

Table 2–21 Comparison of Creating the Profile Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Databases 2-53

Recommendations:

Although profiles are not required in converting from MS SQL Server or Sybase to
Oracle, they should be investigated and used wherever possible to aid the DBA in
controlling system use.

Alter

N/A Example:

CREATE PROFILE clerk LIMIT
SESSIONS_PER_USER 2
CPU_PER_SESSION unlimited
CPU_PER_CALL 6000
LOGICAL_READS_PER_SESSION unlimited
LOGICAL_READS_PER_CALL 100
IDLE_TIME 30
CONNECT_TIME 480

Table 2–22 Comparison of Altering the Profile Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

MS SQL Server and Sybase do not have
profiles.

Syntax:

ALTER PROFILE profile LIMIT
{SESSIONS_PER_USER |
CPU_PER_SESSION |
CPU_PER_CALL |
CONNECT_TIME |
IDLE_TIME |
LOGICAL_READS_PER_SESSION |
LOGICAL_READS_PER_CALL |
COMPOSITE_LIMIT integer |
UNLIMITED |
DEFAULT |
PRIVATE_SGA} {integer

[K|M]|UNLIMITED| DEFAULT}

Table 2–21 Comparison of Creating the Profile Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

2-54 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Recommendations:

Although profiles are not required in converting from MS SQL Server and Sybase to
Oracle, they should be investigated and used wherever possible to aid the DBA in
controlling system use.

Drop

N/A Description:

The ALTER PROFILE command allows the user
to modify a particular profile setting. See
CREATE PROFILE for option information.

N/A Permissions:

You must have the ALTER PROFILE system
privilege to alter a profile.

N/A Example:

ALTER PROFILE clerk LIMIT
CPU_PER_CALL default
LOGICAL_READS_PER_SESSION 20000

Table 2–23 Comparison of Dropping the Profile Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

MS SQL Server and Sybase do not have
profiles.

Syntax:

DROP PROFILE profile [CASCADE]

N/A Description:

The DROP PROFILE command drops
thespecified profile from the database.

CASCADE de-assigns the profile from any users
to whom it is assigned and automatically assigns
the DEFAULT profile instead. You must specify
this option to drop a profile that is currently
assigned to users.

Table 2–22 Comparison of Altering the Profile Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Databases 2-55

Recommendations:

Although profiles are not required in converting from MS SQL Server and Sybase to
Oracle, they should be investigated and used wherever possible to aid the DBA in
controlling system use.

Role
This section contains the following tables for the schema object Role:

n Create

n Alter

n Drop

Create

N/A Permissions:

You must have the DROP PROFILE system
privilege to remove a profile from a database.

N/A Example:

DROP PROFILE engineer CASCADE

Table 2–24 Comparison of Creating the Role Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

sp_addgroup group_name
sp_addrole

Syntax:

CREATE ROLE role
[NOT IDENTIFIED|
IDENTIFIED [BY password|EXTERNALLY]]

Table 2–23 Comparison of Dropping the Profile Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

2-56 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Description:

The concept of roles exists in MS SQL
Server and Sybase. Roles are similar to
groups in previous releases. A group is
a schema object declared as a group of
users. A group called PUBLIC is defined
in the MODEL database. Each new
database is created with a group called
PUBLIC. Every user automatically
becomes a member of the group
PUBLIC.

Create new groups with SP_
ADDGROUP and assign a user to a new
group with SP_CHANGEGROUP
system procedures.

A user can be a member of only one
group other than PUBLIC at any given
time. An individual must register with
the database as two different users such
as MGR or CLK in order to work in
different groups. In this case, one user
ID is a member of the MANAGER
group, and another is a member of the
CLERK group.

MS SQL Server and Sybase do not
differentiate between the privileges
granted to the group and to an
individual user. This allows the users to
create a view or stored procedure that
refers to an object granted to them via
their group privilege.

Description:

The CREATE ROLE command creates a named
role or set of privileges. When the role is granted
to the user, all the privileges of that role are
granted to the user. Oracle automatically creates
several roles. For example, the CONNECT,
RESOURCE, and DBA roles provide
compatibility with prior Oracle versions. The
EXP_FULL_DATABASE and IMP_FULL_
DATABASE roles allow the user to use the
import and export utilities.

Create the role using the CREATE ROLE
statement and then grant privileges to the role
using GRANT statements. Use roles to group and
easily assign privileges to many users.

Roles can be granted to other roles to define a
hierarchy of permissions.

A user may be assigned to multiple roles and can
switch between roles. The SET ROLE command
can be used to enable a particular role. Once
enabled, all the privileges associated with the role
are enabled. This is useful to simulate real-life
roles, such as manager, clerk, etc.

When the user wants to access something that the
role allows, enable the role using the SET ROLE
command.

Oracle gives a different treatment to the
privileges granted to a role as opposed to directly
granted to a user.

Permissions:

The DBO can execute this command.

Permissions:

You must have the CREATE ROLE system
privilege to create a role.

Examples:

sp_addgroup teller

Examples:

CREATE ROLE teller
IDENTIFIED BY cashflow

Table 2–24 Comparison of Creating the Role Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Databases 2-57

Recommendations:

Oracle roles and MS SQL Server or Sybase groups/roles can all be granted
privileges. This concept is similar in MS SQL Server, Sybase, and Oracle because it
is used mainly to give a set of privileges to a set of users.

In MS SQL Server and Sybase, you make all the users members of one group and
grant a set of privileges to the group. In Oracle, you create a role with a set of
privileges and then grant this role to a number of users.

To replicate the functionality of groups, create a role for each MS SQL Server or
Sybase group and the privileges granted to each group are granted to the
corresponding role. The roles are then assigned to each user. Each Oracle user
would be assigned to the following two roles only:

CONNECT and the user's corresponding MS SQL Server or Sybase group.

If the MS SQL Server or Sybase application uses groups to grant the privileges and
the privileges are required to create views and stored procedures, you must grant
the privileges in the Oracle application to individual users as well as to roles. This is
necessary because Oracle does not allow the user to build objects that refer to the
objects which the user was given access to through roles.

Since many roles can be assigned to a person, it may be advisable to investigate the
richer functionality of Oracle roles to see if more logical groupings of privileges are
possible. Furthermore, since roles may be assigned other roles, you may find it
more convenient to create a hierarchy of roles suitable for each application.

Schema Objects

2-58 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Alter

Recommendations:

Oracle roles and MS SQL Server or Sybase groups can both be granted privileges.
Each MS SQL Server or Sybase user can only belong to one group, but each Oracle
user can have many roles. This concept is similar in MS SQL Server, Sybase, and

Table 2–25 Comparison of Altering the Role Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

sp_changegroup new_group_name
user_name_inside_db

Syntax:

ALTER ROLE role
{NOT IDENTIFIED |
IDENTIFIED [BY password |

EXTERNALLY]}
GRANT role[,role]...
TO {user [,user]...|

role[,role]...|PUBLIC}
REVOKE role[,role]...
FROM {user [,user]|

role[,role]|PUBLIC}

The SET ROLE command can be used to switch
between roles.

Description:

This command changes the named user
from the current group to the new
group.

Description:

The ALTER ROLE command lets the user modify
the password for the roles already created with
CREATE ROLE.

The GRANT/REVOKE PRIVILEGE statements
are used to change assignments of roles.

Permissions:

The DBO can change the group of other
database users. The users cannot do this
themselves.

Permissions:

You must be granted either ROLE with ADMIN
OPTIONS or have the ALTER ANY ROLE system
privilege to alter a role.

Examples:

sp_changegroup new_grp user1
sp_changegroup "public" user1

This removes the user user1 from the
existing group without assigning user1
to any other group.

Examples:

ALTER ROLE teller IDENTIFIED BY letter

Schema Objects

Databases 2-59

Oracle databases because it is used mainly to give a set of privileges to a set of
users. In MS SQL Server and Sybase, you make all the users members of one group
and give a set of privileges to the group. In Oracle, you create a role with a set of
privileges and then grant this role to a group of users.

To replicate the functionality of groups, create a role for each MS SQL Server or
Sybase group and the privileges granted to each group are granted to the
corresponding role. The roles are then assigned to each user. Each Oracle user
would be assigned the following two roles only: CONNECT and the user's
corresponding MS SQL Server or Sybase group.

In Oracle, the SET ROLE command can be used to switch between roles.

If the MS SQL Server or Sybase application uses groups to grant the privileges and
the privileges are required to create views and stored procedures, you must grant
the privileges in the Oracle application to individual users as well as to roles.

Drop

Recommendations:

Oracle functionality directly matches or exceeds that of MS SQL Server and Sybase.
There should be no conversion implications.

Table 2–26 Comparison of Dropping the Role Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

sp_dropgroup group_name
sp_droprole role_name

Syntax:

DROP ROLE [user.]role

Description:

The sp_dropgroup command drops
the specified group. The group cannot
be dropped if it has users attached to it
as members.

Description:

The DROP ROLE command drops the specified
role. It commits pending changes to the database.

Permissions:

The DBO can change the group of other
database users. The users cannot do this
themselves.

Permissions:

The user must have been granted the role with
the ADMIN option or have the DROP ANY
ROLE system privilege to use this command.

Example:

sp_dropgroup accountant

Example:

DROP ROLE accountant

Schema Objects

2-60 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Rule
This section contains the following tables for the schema object Rule:

n Create

n Drop

Create

Table 2–27 Comparison of Creating the Rule Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

CREATE RULE [owner.]rule_name
AS condition_expression

sp_bindrule rule_name,
{"table.column"|datatype_name}
[,future_only]

Syntax:

Oracle allows check constraints in tables for
simple business rules. Triggers may be used for
more complex rules.

Description:

CREATE RULE creates data integrity
constraints in the database.

SP_BINDRULE binds the rule to the
columns.

Rules in MS SQL Server and Sybase are
a special kind of stored procedure. Rules
can define complex data integrity
constraints.

A rule is bound to the database column.
A rule can be bound to a particular
column of a table or it can be bound to a
user-defined data type. Domains are
implemented using rules.

The MS SQL Server or Sybase rule can
refer to one or more columns in the table
because they are implemented in a
manner similar to the stored
procedures.

N/A

Permissions:

The DBO has the CREATE RULE
permission by default, and can transfer
it to the other users.

N/A

Schema Objects

Databases 2-61

Recommendations:

Oracle allows check constraints in tables for simple business rules. Triggers may be
used for more complex rules.

The LIKE clause in MS SQL Server and Sybase rules can accept wildcard characters
and ranges of values while the Oracle LIKE clause accepts only wildcard characters.
If the rule has ranges of values (it uses regular expressions), it can be translated
using a combination of SUBSTR and TRANSLATE in an Oracle check constraint.

MS SQL Server and Sybase integrity constraints can be implemented as check
constraints in Oracle. See the Tables section for information about check in table
constraints.

The column reference in the MS SQL Server or Sybase rule definition is not a
column name. A rule is bound to the database column. The @var_name should be
parsed out and replaced by this column name if you convert the RULEs to check
constraint.

Drop

Examples:

CREATE RULE col1_rule
AS @col1_var > 100

N/A

Table 2–28 Comparison of Dropping the Rule Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

sp_unbindrule rule_name,
{"table.column"|datatype_name}
[,future_only]
DROP RULE [owner.]rule_name
[,[owner.]rule_name ...]

Syntax:

Oracle can DROP/DISABLE a check constraint
by using the ALTER TABLE command.

Table 2–27 Comparison of Creating the Rule Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

2-62 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Recommendations:

Sequences are very useful and are very efficient. You should replace the equivalent
code in MS SQL Server or Sybase that generates unique IDs with references to
sequences.

Sequence
This sections contains the following tables for the schema object Sequence:

n Create

n Alter

n Drop

Description:

SP_UNBINDRULE detaches the rule
from the columns and must be used
before DROP RULE can be
implemented.

DROP RULE drops a rule from the
database.

N/A

Permissions:

The rule owner has the DROP RULE
permission by default. This privilege is
not transferable.

N/A

Examples:

DROP RULE col1_rule

N/A

Table 2–28 Comparison of Dropping the Rule Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Databases 2-63

Create

Table 2–29 Comparison of Creating the Sequence Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

Sequences are not implemented in MS
SQL Server or Sybase.

Syntax:

CREATE SEQUENCE [user.]sequence
[INCREMENT BY integer]
[START WITH integer]
[MAXVALUE integer | NOMAXVALUE]
[MINVALUE integer | NOMINVALUE]
[CYCLE | NOCYCLE]
[CACHE integer | NOCACHE]
[ORDER | NOORDER]

Description:

The user has to build the logic to create
sequence numbers whenever necessary.
This is not a trivial task in multi-user
applications. The common way to
implement this is with a table of
sequence names and last values.
Whenever a number is needed, the
application must lock a row in the table,
SELECT the current value, UPDATE it,
and unlock the row. The problem with
this approach is that it causes
applications to wait while another user
is getting the next value. This
single-threads the application and limits
the performance to the speed of this
operation.

Description:

A sequence generates a serial list of unique
numbers. Sequence numbers are independent of
tables, so the same sequence can be used for one
or more tables. Oracle implements sequences
internally so that blocking does not occur.

The default value for INCREMENT BY is 1. A
positive value causes ascending increments, a
negative value causes decrements.

START WITH is the number to start the
sequence.

START WITH defaults to MAXVALUE for
descending sequence and MINVALUE for
ascending sequences.

CYCLE restarts a sequence when MINVALUE or
MAXVALUE is reached.

CACHE allows a pre-allocated set of sequence
numbers to be kept in the memory.

ORDER guarantees that the sequence numbers
are assigned to the instances requesting them in
the order the requests are received.

N/A Permissions:

To create a sequence in your own schema, you
must have the CREATE SEQUENCE privilege.
To create a sequence in another user's schema,
you must have the CREATE ANY SEQUENCE
system privilege.

Schema Objects

2-64 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Alter

Recommendations:

ALTER SEQUENCE does not allow you to set the next value a sequence will
generate. To set the next value of a sequence, either change the increment, select the
next value, and change the increment back, or drop and recreate the sequence.

N/A Example:

CREATE SEQUENCE eseq INCREMENT BY 10

Table 2–30 Comparison of Altering the Sequence Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

Sequences are not implemented in MS
SQL Server or Sybase.

Syntax:

ALTER SEQUENCE [user.]sequence
{INCREMENT BY integer |
{MAXVALUE integer | NOMAXVALUE} |
{MINVALUE integer | NOMINVALUE} |
{CYCLE | NOCYCLE} |

{CACHE integer | NOCACHE} |
{ORDER | NOORDER} |

N/A Description:

Use ALTER SEQUENCE to alter the sequence
definition.

N/A Permissions:

If the sequence is in your own schema, you can
alter the sequence. Otherwise you must have the
ALTER privilege on the sequence or the ALTER
ANY SEQUENCE system privilege.

N/A Examples:

ALTER SEQUENCE eseq CYCLE CACHE 5

Table 2–29 Comparison of Creating the Sequence Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Databases 2-65

Drop

Recommendations:

This command does not affect database conversion. The information is provided for
reference only.

Snapshot
This section contains the following table for the schema object Snapshot:

n Create

Create

Table 2–31 Comparison of Dropping the Sequence Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

Sequences are not implemented in MS
SQL Server or Sybase.

Syntax:

DROP SEQUENCE [user.]sequence

N/A Description:

This command drops the specified sequence from
the database.

N/A Permissions:

If the sequence is in your own schema you can
drop the sequence. Otherwise, you must have the
DROP ANY SEQUENCE system privilege.

N/A Example:

DROP SEQUENCE elly.eseq

Table 2–32 Comparison of Creating the Snapshot Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

MS SQL Server and Sybase do not
support snapshots.

Syntax:

Refer to Oracle8i Replication Management API
Reference, Release 2 (8.1.6) (Part Number:
A76958-01) for information about DBMS_
REPCAT.CREATE_SNAPSHOT.

Schema Objects

2-66 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Recommendations:

While converting a distributed database application from MS SQL Server or Sybase
to Oracle, you should look for situations requiring constant availability of remote
information and handle them using table snapshots. Refer to Oracle8i Replication
Management API Reference, Release 2 (8.1.6) (Part Number: A76958-01) for more
information about the DBMS_REPCAT package.

Synonym
This section contains the following tables for the schema object Synonym:

n Create

n Drop

Replication in MS SQL Server and
Sybase is not as mature as replication in
Oracle.

Description:

Snapshots provide an automatic method for table
replication. There are two types of snapshots:
read-only and updateable.

A snapshot log is a table associated with the
master table of a snapshot that tracks changes to
the master table. You can have only one log per
master table.

A simple snapshot selects data from a single
master table using a simple query. A complex
snapshot selects data using a GROUP BY,
CONNECT BY, subquery, join, or set operation in
the query.

N/A Permissions:

User with the CREATE SNAPSHOT privilege can
create snapshots in their own shema. A user with
the CREATE ANY SNAPSHOT privilege can
create snapshots in any user's schema.

N/A Examples:

Table 2–32 Comparison of Creating the Snapshot Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Databases 2-67

Create

Table 2–33 Comparison of Creating the Synonym Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

MS SQL Server and Sybase do not
support synonyms.

Views that do SELECT * FROM are
good candidates for conversion to
synonyms.

Syntax:

CREATE [PUBLIC] SYNONYM
[user.]synonym

FOR [user.]object [@database_link]

N/A Description:

A synonym is an alias for object names. A
synonym is not an object itself, but a direct
reference to an object. Synonyms are used to
mask the real name and owner of an object,
provide public access to an object, provide
location transparency for the objects of a remote
database, and simplify the SQL statements for
database users.

PUBLIC makes the synonym available to all
users. Without PUBLIC, other users must prefix
the synonym with the owner name.

Synonyms can be created on tables, views, stored
procedures, and other synonyms.

@database_link links to a remote database. The
synonym refers to an object in the remote
database as specified by the database link.

N/A Permissions:

You must have the CREATE SYNONYM
privilege to create a private synonym in your
own schema.

You must have the CREATE ANY SYNONYM
privilege to create a private synonym in another
user's schema.

You must have the CREATE PUBLIC SYNONYM
privilege to create a PUBLIC synonym.

Schema Objects

2-68 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Recommendations:

This command does not affect database conversion. The information is provided for
reference only.

Oracle uses synonyms to build location transparency for objects in distributed
database applications.

Drop

Recommendations:

N/A Examples:

CREATE PUBLIC SYNONYM our_custs FOR
customer
CREATE SYNONYM custs FOR customer

Table 2–34 Comparison of Dropping the Synonym Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

MS SQL Server and Sybase do not
support synonyms.

Syntax:

DROP [PUBLIC] SYNONYM [schema.]synonym

N/A Description:

This command removes the specified synonym
from the database.

N/A Permissions:

To drop a private synonym, either the synonym
must be in your own schema or you must have
the DROP ANY SYNONYM system privilege.

To drop a public synonym, either the synonym
must be in your own schema or you must have
the DROP ANY PUBLIC SYNONYM system
privilege.

N/A Examples:

DROP SYNONYM our_custs

Table 2–33 Comparison of Creating the Synonym Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Databases 2-69

This command does not affect database conversion. The information is provided for
reference only.

Tables
This section contains the following tables for the schema object Tables:

n Create

n Alter

n Drop

n Truncate

Create

Table 2–35 Comparison of Creating the Table Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

CREATE TABLE
[[database.]user.]table
(column data type [NOT
NULL|NULL]
[,column data type [NOT
NULL|NULL]]...)
[ON segment_name]

Syntax:

CREATE TABLE
[user.]table [table_constraint]

({column data type [DEFAULT clause]
[column_constraint] |
table_constraint}
[,{column data type [DEFAULT clause]

[column_constraint] |
table_constraint}]...)

[CLUSTER cluster(column [,column]...)
|

[[INITRANS integer]
[MAXTRANS integer]
[PCTFREE integer]
[PCTUSED integer]
[STORAGE storage]
[TABLESPACE tablespace]]

[ENABLE enable | DISABLE disable]
[AS query]

Schema Objects

2-70 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Description:

MS SQL Server 6.5 and Sybase are
case-sensitive for object names by
default.

If the user is not specified, user defaults
to the user issuing this command.

MS SQL Server 6.5 and Sybase default to
NOT NULL for columns.

(Table Description is continued after the
Column Constraint and Table
Constraint sections below.)

Description:

Oracle is case insensitive for object names.

Oracle is case insensitive for object names.

If the user is not specified, it defaults to the user
issuing this command.

Oracle defaults to NULL for columns.

DEFAULT specifies a value to be assigned to the
column if a row is inserted without a value for
this column. The value can be a simple literal or
the result of an expression. The expression,
however, cannot include a reference to a column,
to LEVEL, or to ROWNUM.

The AS clause creates the rows of the new table
through the returned query rows. The columns
and types of the query must match those defined
in the CREATE TABLE statement.

(Table Description is continued after the Column
Constraint and Table Constraint sections below.)

Column Constraints

Syntax:

See the Rule section.

Column Constraints

Syntax:

[CONSTRAINT constraint]
{[NOT] NULL |

{UNIQUE | PRIMARY KEY}|
REFERENCES [user.]table [(column)

]
[ON DELETE CASCADE] |
CHECK (condition)}

[[USING INDEX[PCTFREE integer |
INITRANS integer | MAXTRANS integer |
TABLESPACE tablespace | STORAGE
storage]]
[EXCEPTIONS INTO [user.] table] |

DISABLE]

Table 2–35 Comparison of Creating the Table Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Databases 2-71

Column Constraints

Description:

See the Rule section.

Column Constraints

Description:

CONSTRAINT is an optional name assigned to
this constraint.

NULL permits NULL values and is the default.
The NOT NULL clause specifies that every row
must have a value for this column.

UNIQUE forces column values to be unique.

You can use only one primary key on a table.

An index enforces the unique or primary key,
and the USING INDEX clause and its options
specify the storage characteristics of that index.

REFERENCES identifies this column as a foreign
key from [user.]table [(column)]. If you omit
the column, this implies that the name in the
user.table defaults to the primary key in this
table.

ON DELETE CASCADE maintains referential
integrity automatically by removing foreign key
rows in the dependent tables if you remove the
primary key row in this table.

CHECK assures that the values for this column
pass a condition such as the following:

Amt number(12,2) CHECK (Amt >= 0)

This condition may be any valid expression that
tests TRUE or FALSE. It can contain functions,
any columns from this table, and literals.

EXCEPTIONS INTO specifies a table into which
Oracle puts rows that violate an enabled integrity
constraint. This table must be local and must exist
before you use this option.

DISABLE disables the integrity constraint when it
is created. You can enable it later with the
ENABLE clause in CREATE or ALTER TABLE.

Table 2–35 Comparison of Creating the Table Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

2-72 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Table Constraints

Syntax:

See the Rule section.

Table Constraints

Syntax:

[CONSTRAINT constraint]
{[NOT] NULL | {UNIQUE|PRIMARY KEY}

(column[,column]...) |
FOREIGN KEY (column[,column]...)

REFERENCES
[user.]table [(column[,column]...)
[ON DELETE CASCADE] |

CHECK (condition)}

[[USING INDEX[PCTFREE integer |
INITRANS integer | MAXTRANS integer |
TABLESPACE tablespace |
STORAGE storage]]
[EXCEPTIONS INTO [user.] table] |

DISABLE]

Table Constraints

Description:

See the Rule section.

Table Constraints

Description:

Table constraints are similar to column
constraints, except that you can reference
multiple columns with a single constraint. For
example, a table constraint can declare three
columns as PRIMARY KEY.

Table 2–35 Comparison of Creating the Table Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Databases 2-73

Table Description (continued):

The ON segment_name clause places
the table on a specific segment. This
logical device must already be assigned
to the database with either CREATE
DATABASE or ALTER DATABASE
constructs. The table is created on the
default segment if the ON segment_
name clause is not specified.

Table Description (continued):

CLUSTER includes this table in the named
cluster.

INITRANS specifies the initial number of
transactions that can update a data block
concurrently. The default value is 1. Every
transaction takes space in the data block itself
until the transaction is completed.

MAXTRANS sets the maximum number of
transactions that can update a data block
concurrently.

Use TABLESPACE to specify the name of the
tablespace on which this table is created.

Whenever Oracle inserts a row into a table, it first
checks how much space is available in the current
data block. If the size of the row leaves less than
PCTFREE percent in the block, it puts the row in
a newly allocated block instead. The default
value for PCTFREE is 10.

PCTUSED defaults to 40. This is the minimum
percentage of available space in a block that will
allow the insertion of new rows in this data
block. The other space available is used for
updating the existing rows.

The STORAGE clause has various sub-clauses as
follows:

STORAGE ([INITIAL integer]
[NEXT integer]
[PCTINCREASE integer]
[MINEXTENTS integer]
[MAXEXTENTS integer])

INITIAL allocates the first extent of space to the
object.

NEXT is the size of the extent allocated after the
initial extent has been filled.

PCTINCREASE controls the rate of growth of
extents beyond the second. If this is set to 0, every
additional extent will be of the same size as the
second extent, specified by NEXT.

Table 2–35 Comparison of Creating the Table Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

2-74 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Recommendations:

The conceptual definition of tables is the same in MS SQL Server, Sybase, and
Oracle.

Reserved Words
Be aware that table names and column names in MS SQL Server and Sybase can be
reserved words in Oracle.

Table Description (continued):

MINEXTENTS defaults to 1, meaning that when
the object is created, only one initial extent is
allocated. A number larger than 1 creates that
many total extents, and all of these are allocated
to the object when the object is created.

MAXEXTENTS sets the total number of extents
that can be allocated. The default value is 99.

The ENABLE and DISABLE clauses enable and
disable constraints.

Permissions:

The DBO has the CREATE TABLE
permission by default and can transfer it
to other users.

Permissions:

You must have the CREATE TABLE privilege to
create a table in your own schema. You must
have the CREATE ANY TABLE privilege to
create a table in another user's schema.

Examples:

CREATE TABLE test_tbl
(col1 int NOT NULL,
col2 char(10) NULL)

CREATE TABLE table3
(col1 my_type NOT NULL,
col2 varchar(100) NULL)

Examples:

CREATETABLEtest_tb1
(col1NUMBER(6)NOTNULLPRIMARYKEY,
col2VARCHAR2(10)DEFAULT"ab")
TABLESPACE tabs_1
STORAGE (
INITIAL 400K
NEXT 400K
MAXEXTENTS 5
PCTINCREASE 0)

Table 2–35 Comparison of Creating the Table Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Databases 2-75

Defaults
Convert MS SQL Server and Sybase defaults to be created as part of the table
creation in Oracle.

NULL/Not NULL
CREATE TABLE should always specify the NULL/NOT NULL constraint as the
default is the opposite in MS SQL Server, Sybase, and Oracle.

Row-Migration
Row migration occurs when a row is updated and increases in size until it no longer
fits in the block at which time it must be moved to another block. Migration may
also occur when rows grow in size and PCTFREE is not set correctly.

Row-Chaining
Row-chaining can occur when one row exceeds the size of one data block and has to
be stored as a chain of data blocks. This affects all types of operations on this table.
Oracle users can set the block size for their database to avoid such situations.

If MS SQL Server or Sybase tables have large record sizes, it may be necessary to
increase the block size in Oracle to avoid row chaining problems.

Unique Keys
Define unique keys for columns defined in MS SQL Server and Sybase as unique
non-clustered index.

Storage
The storage specifications for index must be added manually.

Data Types
MS SQL Server and Sybase data types should be translated to equivalent Oracle
data types. See the Data Types section of this chapter for a table of equivalent data
types.

Schema Objects

2-76 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Alter

Table 2–36 Comparison of Altering the Table Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

ALTER TABLE
[[database.]owner.]table

ADD column data type NULL
[[, column data type NULL]...]

Syntax:

ALTER TABLE [user.]table
{ADD ({column data type [DEFAULT
clause]

[column_constraint] |
table_constraint}
[,{column data type [DEFAULT clause]

[column_constraint] |
table_constraint}]...) |

MODIFY ({column data type [DEFAULT
clause]

[column_constraint] |
table_constraint}
[,{column data type [DEFAULT clause]

[column_constraint] |
table_constraint}]...) |

DROP
{PRIMARY KEY|

UNIQUE(column[,column]...) |
CONSTRAINT constraint_name}

[CASCADE] |

PCTFREE integer |
PCTUSED integer |
INITRANS integer |
MAXTRANS integer |
STORAGE storage |
ALLOCATE EXTENT
[({SIZE integer[K|M] | DATAFILE file

| INSTANCE integer})] }
[ENABLE enable|DISABLE disable]

Schema Objects

Databases 2-77

Description:

This command can be used to add
columns at the end of the table.
Columns of type BIT cannot be added to
an existing table.

Description:

ADD allows the user to add a column with a
column constraint and a default value to the end
of an existing table, or to add a table constraint to
the table's definition. Table constraints and
column constraints follow the same format in
CREATE TABLE.

MODIFY changes an existing column. The
changes include:

n A change in column type or decrease in the
size provided every row contains NULL
value for this column.

n A NOT NULL column may be added to a
table with no rows.

n An existing column can be modified to NOT
NULL if it has a non-NULL value in every
row.

n Increasing the length of a NOT NULL
column without specifying NULL leaves it as
NOT NULL.

n Views that reference a table with SELECT
FROM will not work after the column is
added to the table unless they are dropped
and re-created.

n An existing column can be modified to have
a DEFAULT or a column constraint.

DROP allows the user to drop a column
constraint or a table constraint.

ALLOCATE EXTENT lets the user explicitly
allocate a new extent.

ENABLE and DISABLE, enable and disable
constraints.

Table 2–36 Comparison of Altering the Table Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

2-78 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Recommendations:

Oracle functionality exceeds that of MS SQL Server and Sybase. There should be no
conversion implications.

Drop

Permissions:

The table owner and DBO can use the
ALTER TABLE command. The DBO must
impersonate the table owner with the
SETUSER command before using the
ALTER TABLE command.

Permissions:

The table owner can alter the table. A user must
have the ALTER privilege on the table or the
ALTER ANY TABLE system privilege to alter a
table.

Example:

ALTER TABLE students
ADD extra_curr_act varchar(255)
NULL

Examples:

ALTER TABLE students
ADD (extra_curr_act varchar(255))

PCTFREE 30
PCTUSED 60

ALTER TABLE items ADD(CONSTRAINT c1
CHECK (unit_price < total_price))

Table 2–37 Comparison of Dropping the Table Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

DROP TABLE
[[database.]owner.]table
[, [[database.]owner.]table
...]

Syntax:

DROP TABLE [user.]table
[CASCADE CONSTRAINTS]

Table 2–36 Comparison of Altering the Table Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Databases 2-79

Recommendations:

Convert MS SQL Server and Sybase applications that drop multiple tables with one
DROP TABLE command into multiple DROP TABLE commands in Oracle.

Truncate

Description:

The DROP TABLE command removes
the table definition and all of its data,
indexes, triggers, and permissions from
the database.

Description:

The DROP TABLE command drops the table and
commits pending changes to the database. All
indexes, triggers, and grants associated with the
table are dropped. Objects depending on the
dropped table are marked invalid and cease to
work.

CASCADE CONSTRAINTS drops all referential
integrity constraints referring to keys in the
dropped table.

Permissions:

The table owner and DBO can use the
DROP TABLE command. The DBO
must impersonate the table owner with
the SETUSER command before using
the DROP TABLE command.

Permissions:

Only the table owner can drop a table. A user
must have the DROP ANY TABLE system
privilege to drop a table.

Example:

DROP TABLE test_tab1

Examples:

DROP TABLE test_tab1 CASCADE
CONSTRAINTS

Table 2–38 Comparison of Truncating the Table Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

TRUNCATE TABLE
[[database.]owner.]table

Syntax:

TRUNCATE TABLE [user.]table
[DROP | REUSE STORAGE]

Table 2–37 Comparison of Dropping the Table Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

2-80 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Recommendations:

Oracle functionality directly matches or exceeds that of MS SQL Server and Sybase.
There should be no conversion implications.

Tablespace
This section contains the following tables for the schema object Tablespace:

n Create

n Alter

n Drop

Description:

TRUNCATE TABLE removes all rows
from the table. This statement is not
responded to by a DELETE TRIGGER.
This statement is not logged and
therefore cannot activate the trigger.

Description:

TRUNCATE removes all rows from the table.

DROP STORAGE deallocates space from the
deleted rows.

REUSE STORAGE leaves the space allocated for
the new rows in the table.

The TRUNCATE command is faster than a
DELETE command as it does not generate the
rollback information, does not fire any delete
triggers, and does not record any information in
the snapshot log. In addition, TRUNCATE does
not invalidate the objects depending on the
deleted rows or the privileges on the table.

You cannot roll back the TRUNCATE statement.

Permissions:

Only the table owner can issue this
command.

Permissions:

The table owner can truncate the table. A user
must have the DELETE ANY TABLE system
privilege to truncate a table.

Example:

TRUNCATE TABLE test_tab1

Example:

TRUNCATE TABLE test_tab1

Table 2–38 Comparison of Truncating the Table Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Databases 2-81

Create

Recommendations:

Tablespaces have some features in common with MS SQL Server and Sybase
"databases" and some features in common with MS SQL Server and Sybase
"segments".

As part of the conversion process, the structure of the Oracle database must be
determined. It should be based on how databases and devices are used in MS SQL
Server and Sybase.

Table 2–39 Comparison of Creating the Tablespace Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

MS SQL Server and Sybase do not have
tablespaces. See the Data Storage
Concepts section of this chapter for
more information.

Syntax:

CREATE TABLESPACE tablespace
DATAFILE file_definition [, file_

definition]...
[DEFAULT STORAGE storage]
[ONLINE | OFFLINE]

N/A Description:

DEFAULT STORAGE defines the default storage
for all objects created in this tablespace.

The ONLINE clause, which is the default,
indicates that the tablespace becomes available as
soon as it is created. The OFFLINE clause
prevents access to the tablespace until the ALTER
TABLESPACE clause changes it to ONLINE.

N/A Permissions:

Only the DBA can create the tablespaces. You
must have the CREATE TABLESPACE system
privilege to create a tablespace.

N/A Example:

CREATE TABLESPACE rb_segs
DATAFILE 'datafile_1' SIZE 50M
DEFAULT STORAGE (INITIAL 50K NEXT 50K

MINEXTENTS 2MAXEXTENTS 50 PCTINCREASE
0)

OFFLINE

Schema Objects

2-82 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Tablespaces and Databases
Oracle tablespaces and MS SQL Server and Sybase databases are similar in the
following respects:

n Provide backup features

n Can be brought off-line independently of other parts of the server

n Provide a method for grouping related tables together

Tablespaces and Segments
Oracle tablespaces and MS SQL Server and Sybase segments both provide the
control over the physical location of the database objects.

However, Oracle provides features that MS SQL Server and Sybase do not, such as
default storage information and usage quotas.

Alter

Table 2–40 Comparison of Altering the Tablespace Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

MS SQL Server and Sybase do not have
tablespaces. See the Data Storage
Concepts section of this chapter for
more information.

Syntax:

ALTER TABLESPACE tablespace
{ADD DATAFILE file_definition [,file_

definition] |
RENAME DATAFILE file [,file]... TO

file [,file] |
DEFAULT STORAGE storage |
ONLINE |
OFFLINE [NORMAL |

TEMPORARY|IMMEDIATE]|
{BEGIN | END} BACKUP}

Schema Objects

Databases 2-83

N/A Description:

ADD DATAFILE adds a file or series of files to
the tablespace. The database file names and sizes
of these files are specified in file_definition.

RENAME DATAFILE ...TO changes the name of
an existing tablespace file. The tablespace should
be offline while the renaming takes place
RENAME DATAFILE ...TO does not actually
rename the files, but only associates their new
names with this tablespace.

DEFAULT STORAGE defines the default storage
for all future objects created in this tablespace.

ONLINE brings the tablespace on-line, and the
OFFLINE clause takes the tablespace off-line,
either without waiting for its users to logoff
(IMMEDIATE), or after the users have logged off
(NORMAL).

BEGIN BACKUP assures that all database files in
this tablespace are backed up the next time you
do a system backup. You can execute the BEGIN
BACKUP clause at any time. The END BACKUP
clause indicates that the system backup is
finished. If the tablespace is on-line, any system
backup must also back up archive redo logs. If
the tablespace is off-line, system backup of
archive redo logs is unnecessary.

N/A Permissions:

You must have the ALTER TABLESPACE system
privilege to perform any of this command's
operations. If you have to MANAGE
TABLESPACE system privilege, you can only
take the tablespace online or offline and begin or
end a backup.

N/A Example:

ALTER TABLESPACE rb_segs
ADD DATAFILE 'extra_file' SIZE 1M

Table 2–40 Comparison of Altering the Tablespace Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

2-84 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Drop

User
This section contains the following tables for the schema object User:

n Create

n Alter

n Drop

Table 2–41 Comparison of Dropping the Tablespace Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

MS SQL Server and Sybase do not have
tablespaces. See the Data Storage
Concepts section of this chapter for
more information.

Syntax:

DROP TABLESPACE tablespace
[INCLUDING CONTENTS]

N/A Description:

This command drops the specified tablespace.

INCLUDING CONTENTS allows you to drop a
tablespace that contains data. Without this
option, you can only drop empty tablespaces.
Tablespace should be offline in order to execute
this command successfully

N/A Permissions:

You must have the DROP TABLESPACE system
privilege to drop a tablespace.

N/A Example:

DROP TABLESPACE test_tbspc

Schema Objects

Databases 2-85

Create

Table 2–42 Comparison of Creating the User Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

This is a two-step process. First the user
is given access to the server, and then to
the specific database within that server.

1. User is given access to server:

sp_addlogin "login_id"
[, password]
[, default_database]
[, default_language]

2. User is given access to the database.
The user is
considered to be a member of the
PUBLIC group.

sp_adduser login_id
[,usr_nm_inside_db]
[,group_name]

Syntax:

CREATE USER user
IDENTIFIED {BY password | EXTERNALLY}
[DEFAULT TABLESPACE tablespace]
[TEMPORARY TABLESPACE tablespace]
[QUOTA {integer [K | M] | UNLIMITED}

ON tablespace]
[PROFILE profile]

Schema Objects

2-86 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Recommendations:

MS SQL Server, Sybase, and Oracle treat the individual users in a very similar way,
and the conversion is straightforward.

Description:

These commands give the user access to
the server and then to the specific
database within that server.

1. The default password is NULL and
the default database is the MASTER
database. The Password is not
encrypted and is stored in the
SYSLOGINS table. It is accessible to the
SA.

2. The user is registered as the user of a
database with the SP_ADDUSER
procedure.

The user remains a member of the
PUBLIC group even if made a member
of another group.

Description:

This command creates a user account that lets the
user log into the database with a certain set of
privileges and storage settings. When first
created, the user has no privileges. You must
GRANT roles and privileges to the user. The
privilege to CREATE SESSION is the minimal
privilege required for any user in order to log on.

EXTERNALLY specifies that access to the
database is verified through the operating system
security.

DEFAULT TABLESPACE is the tablespace in
which the user creates objects.

TEMPORARY TABLESPACE stores temporary
objects created for the user's operations.

You can put the QUOTA clause on either the
default or temporary tablespaces to limit the
amount of space, in bytes, that a user can allocate.

PROFILE assigns a named profile to the user to
limit usage of database resources. Oracle assigns
the DEFAULT profile to the user if the profile is
not specified while creating the user.

Permissions:

1. The SA can add the server login.

2. The DBO can add a user to the
database.

Permissions:

You must have the CREATE USER system
privilege to create a user.

Example:

1. sp_addlogin "whales",
whales_pass, pubs

2. sp_adduser whales name_in_db
group

Example:

CREATE USER whales IDENTIFIED BY
whales_pass

Table 2–42 Comparison of Creating the User Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Databases 2-87

The user SA in MS SQL Server and Sybase is roughly equivalent to the user
SYSTEM in Oracle. The user who is the DBO in MS SQL Server or Sybase can be
converted to have DBA privileges in Oracle.

Alter

Recommendations:

Table 2–43 Comparison of Altering the User Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

MS SQL Server and Sybase do not
support ALTER USER. However, the
user can make the following comparable
changes:

The password can be changed using the
SP_PASSWORD system procedure after
the user account is set up.

The default database can be changed
using the SP_DEFAULTDB system
procedure.

The default language can be changed
using the DP_DEFAULTLANGUAGE
system procedure.

Syntax:

ALTER USER user
{IDENTIFIED {BY password |

EXTERNALLY}|
DEFAULT TABLESPACE tablespace|
TEMPORARY TABLESPACE tablespace|
QUOTA {integer [K | M] | UNLIMITED}

ON tablespace|
PROFILE profile|
DEFAULT ROLE {role[,role]... | ALL

[EXCEPT role[,role]] | NONE}}

N/A Description:

This command can be used to change a user's
password or the DEFAULT or TEMPORARY
tablespace.

ALTER USER can also change the quota, the
resource profile, or the default role.

N/A Permissions:

You must have to ALTER USER system privilege
to alter the characteristics of a database user.
However, you can change your own password
without this privilege.

N/A Examples:

ALTER USER scott IDENTIFIED BY lion
DEFAULT TABLESPACE tstest

Schema Objects

2-88 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

There should be no conversion implications.

Drop

Recommendations:

Oracle functionality is similar to that of MS SQL Server and Sybase. There should be
no conversion implications.

View
This section contains the following tables for the schema object View:

Table 2–44 Comparison of Dropping the User Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

Drop the user account from the server:

sp_droplogin login_id

Drop the user from the database:

sp_dropuser usr_nm_inside_db

Syntax:

DROP USER user [CASCADE]

Description:

These two commands are used to drop
the user from the server and the
database. The DBO cannot be dropped
using the SP_DROPUSER command.

Description:

This command drops the specified user. It
commits pending changes to the database.

CASCADE drops all the objects in the user's
schema before dropping the user, and you must
specify CASCADE if the user has any objects in
the schema.

Permissions:

The SA can drop the user account from
the server. The DBO can drop the user
from the database.

Permissions:

The user must have the DROP USER system
privilege to drop a user.

Example:

Drop the user from the database:

sp_dropuser bradley

Drop the user account from the server:

sp_droplogin bradley

Example:

DROP USER bradley CASCADE

Schema Objects

Databases 2-89

n Create

n Alter

n Drop

Create

Table 2–45 Comparison of Creating the View Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

CREATE VIEW [owner.]view_name
[(column_name [, column_name]
...)]
AS select_statement

Syntax:

CREATE [OR REPLACE] [FORCE | NOFORCE]
VIEW
[user.]view_name [(alias[,alias]...)]

AS select_statement
[WITH CHECK OPTION

[CONSTRAINT constraint]]

Schema Objects

2-90 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Description:

INSERTs and UPDATEs are allowed on
a view provided only one of the base
tables is undergoing change.

View cannot be created on temporary
table.

You cannot create a trigger or build an
index on a view.

You cannot update a view with the
following clauses in the select_
statement : ORDER BY, COMPUTE,
DISTINCT, and SELECT INTO.

The select_statement can refer to one
or more tables and other views.

If a view definition statement includes
aggregate functions (GROUP BY), and
the query on the view does not include
the aggregate columns, the GROUP BY
is ignored.

If a view is defined with an outer join,
and query includes a condition on a
column from the inner table of the outer
join, all rows from the inner table are
returned. Rows that do not meet the
condition, display NULL values in the
respective columns of that row. This
result is not the same as it would be
when two tables are joined with an
outer join.

Description:

You can use VIEW to UPDATE and DELETE
rows if the view is based on a single table and its
query does not contain the GROUP BY clause, the
DISTINCT clause, group functions, or references
to the pseudo-column ROWNUM. You can
update views containing other pseudo-columns
or expressions, provided they are not referenced
in the statement UPDATE. INSERT rows using
VIEW if the view is based on a single table and if
its query does not contain the GROUP BY clause,
the DISTINCT clause, group functions, or
references to any pseudo-columns, or any
expressions.

If the underlying table is altered to add more
columns after the creation of the view, views that
reference the table withSELECT*FROM must be
dropped and recreated to see the new columns.

You cannot create a trigger or build an index on a
view.

OR REPLACE recreates a view if it already exists.

The FORCE option creates the view regardless of
whether the tables to which the view refers exist
or whether the user has privileges on them. The
user still cannot execute the view but can create
it.

The NOFORCE option creates the view only if
the base tables exist and the user has privileges
on them.

Table 2–45 Comparison of Creating the View Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Databases 2-91

Description: (continued)

If alias is specified, the view uses the alias as
the name of the corresponding column in that
query. If an alias is not specified, the view
inherits the column name from the query. In the
latter case, each column in a query must have a
unique name.

AS select_statement identifies the columns of
the tables and other views that are to appear in
this view. The WHERE clause in the select_
statement determines which rows are to be
retrieved.

The WITH CHECK OPTION clause restricts
inserts and updates performed through the view.
This prevents them from creating rows that the
view cannot itself select, based on the WHERE
clause of the CREATE VIEW statement. This
option may be used in a view that is based on
another view. However, if the underlying view
also has a WITH CHECK OPTION clause, it is
ignored.

CONSTRAINT is an optional name given to
CHECK OPTION.

Permissions:

The DBO has the CREATE VIEW
permission by default and can transfer it
to other users.

Permissions:

You must have the CREATE VIEW system
privilege to create a view in your own schema.
You must have the CREATE ANY VIEW system
privilege to create a view in another user's
schema. FORCE/NOFORCE clauses dictate
whether a user needs privileges on the base
tables.

Examples:

CREATE VIEW sales_staff AS
select empno, ename, deptno

from emp
where deptno = 10

Example:

CREATE OR REPLACE VIEW sales_staff AS
select empno, ename, deptno from emp

where deptno = 10
WITH CHECK OPTION

CONSTRAINT sales_staff_cnst

Table 2–45 Comparison of Creating the View Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

2-92 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Recommendations:

View text may include some MS SQL Server and Sybase-specific SQL constructs
which must be converted manually. Also, the MS SQL Server and Sybase views that
use GROUP BY and aggregates need one or more view equivalents to get the same
results in Oracle.

Also see the INSERT, SELECT, UPDATE, and DELETE statements in the Data
Manipulation Language section of this chapter for more information in this regard.

Alter

Recommendations:

Table 2–46 Comparison of Altering the View Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

MS SQL Server and Sybase do not have
a command comparable to ALTER
VIEW.

Syntax:

ALTER VIEW [user.]view COMPILE

N/A Description:

This command is used to explicitly recompile a
view that is invalid. Explicit recompilation allows
you to locate recompilation errors prior to
runtime. You may want to explicitly recompile a
view after altering one of its base tables to ensure
that the alteration does not affect the view or
other objects that depend on it.

Note that this command does not change the
definition of an existing view. To redefine a view
you must use the CREATE VIEW command with
the OR REPLACE option.

N/A Permissions:

You can issue this command on your own view.
You must have the ALTER ANY TABLE system
privilege to issue this command on the view of
another user's schema.

N/A Examples:

ALTER VIEW user1.test_view COMPILE

Data Manipulation Language

Databases 2-93

ALTER VIEW has no effect on database conversion. This information is provided
for reference only.

Drop

Recommendations:

MS SQL Server and Sybase applications that drop multiple views with one DROP
VIEW command must have those commands converted to multiple

DROP VIEW commands in Oracle.

Data Manipulation Language
This section uses tables to compare the syntax and description of Data
Manipulation Language (DML) elements in the MS SQL Server, Sybase, and Oracle
databases. Each table is followed by a recommendations section based on the
information in the tables. The following topics are presented in this section:

n Connecting to the Database

n SELECT Statement

Table 2–47 Comparison of Dropping the View Schema Object in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

DROP VIEW [owner.]view_name
[[,owner.]view_name ...]

Syntax:

DROP VIEW [user.]view_name

Description:

This command drops the specified view
from the database.

Description:

This command drops the specified view and
commits pending changes to the database. Views
and synonyms built on dropped view are marked
invalid and cease to work.

Permissions:

Only the view owner can issue this
command.

Permissions:

The owner of the view can drop it. You must
have the DROP ANY VIEW system privilege to
drop a view from the database.

Examples:

DROP VIEW test_view

Examples:

DROP VIEW test_view

Data Manipulation Language

2-94 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

n SELECT with GROUP BY Statement

n INSERT Statement

n UPDATE Statement

n DELETE Statement

n Operators

n Comparison Operators

n Arithmetic Operatorss

n String Operators

n Set Operators

n Bit Operators

n Built-In Functions

n Character Functions

n Date Functions

n Mathematical Functions

n Locking Concepts and Data Concurrency Issues

n Locking

n Row-Level Versus Page-Level Locking

n Read Consistency

n Logical Transaction Handling

Connecting to the Database
The statement illustrated in the following table connects a user to a database.

Table 2–50 Connecting to the Database in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

USE database_name

Syntax:

CONNECT user_name/password
SET role

Data Manipulation Language

Databases 2-95

Recommendations:

This concept of connecting to a database is conceptually different in the MS SQL
Server, Sybase, and Oracle databases. An MS SQL Server or Sybase user can log on
to the server and switch to another database residing on the server, provided the
user has privileges to access that database. An Oracle Server controls only one
database, so here the concept of a user switching databases on a server does not
exist. Instead, in Oracle a user executes the SET ROLE command to change roles or
re-issues a CONNECT command using a different user_name.

SELECT Statement
The statement in the following table retrieves rows from one or more tables or
views.

Description:

A default database is assigned to each
user. This database is made current
when the user logs on to the server. A
user executes the USE DATABASE_
NAME command to switch to another
database.

Table 2–50 Connecting to the Database in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Data Manipulation Language

2-96 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Table 2–51 SELECT Statement in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

SELECT [ALL | DISTINCT] {select_
list}

[INTO [owner.]table]
[FROM [owner.]{table |

view}[alias] [HOLDLOCK]
[,[owner.]{table | view }[alias]
[HOLDLOCK]]...]
[WHERE condition]
[GROUP BY [ALL] aggregate_free_

expression [, aggregate_free_
expression]...]

[HAVING search_condition]
[UNION [ALL] SELECT...]
[ORDER BY {[[owner.]{table |

view }.]column | select_list_
number | expression}

[ASC | DESC]
[,{[[owner.]{table | view

}.]column | select_list_number |
expression}

[ASC | DESC]...]
[COMPUTE row_aggregate(column)
[,row_aggregate(column)...]
[BY column [, column...]]]
[FOR BROWSE]
The individual element in the

select list is as follows:
[alias =]
{* | [owner.]{table | view}.* |

SELECT ... |
{[owner.]table.column | constant_
literal | expression}

[alias]}

Syntax:

SELECT [ALL | DISTINCT] {select_list}
FROM [user.]{table | view } [@dblink]
[alias]
[, [user.] {table | view3} [@dblink]
[alias]...

[WHERE condition]
[CONNECT BY condition [START WITH

condition]]
[GROUP BY aggregate_free_

expression
[,aggregate_free_

expression]...]
[HAVING search_

condition]
[{UNION [ALL] | INTERSECT | MINUS}

SELECT ...]
[ORDER BY {expression | position} [ASC |

DESC]...]
[FOR UPDATE [OF [[user.]{table |

view}.]column
[,[[user.]{table |

view}.]column...]
[noWAIT]]

The individual element in the select list
is as follows:
{ * | [owner.]{table | view | snapshot |
synonym}.* | {[owner.]table.column |
constant_literal | expression }
alias]}

Data Manipulation Language

Databases 2-97

Description:

DISTINCT eliminates the duplicate rows.
The INTO clause and the items that follow
it in the command syntax are optional,
because MS SQL Server and Sybase allow
SELECT statements without FROM clauses
as can be seen in the following example:

SELECT getdate()

SELECT...INTO allows you to insert the
results of the SELECT statement into a
table.
SELECT_LIST can contain a SELECT
statement in the place of a column
specification as follows:

SELECT d.empno, d.deptname,
empname = (SELECT ename FROM emp

WHERE enum = d.empno)
FROM dept d
WHERE deptid = 10

The above example also shows the format
for the column alias.

ALIAS = selected_column

COMPUTE attaches computed values at the
end of the query. These are called row_
aggregates.
Outer joins are implemented as follows:

WHERE tab1.col1 *= tab2.col1;

where all values from TAB1 will be
returned even if TAB2 does not have a
match or

WHERE tab1.col1 =* tab2.col1;

where all values from TAB2 will be
returned even if TAB1 does not have a
match.
If a GROUP BY clause is used, all
non-aggregate select columns are needed.
FOR BROWSE keywords are used to get into
browse mode. This mode supports the ability to
perform updates while viewing data in an OLTP
environment. It is used in front-end applications
using DB-Library and a host programming
language. Data consistency is maintained using
the TIMESTAMP field in a multi-user
environment. The selected rows are not locked;
other users can view the same rows during the
transaction. A user can update a row if the
TIMESTAMP for the row is unchanged since
the time of selection.

Description:

DISTINCT eliminates the duplicate rows.

The INSERT INTO <table> SELECT
FROM.... construct allows you to insert the results of
the SELECT statement into a table.

COLUMN ALIASis defined by putting the alias
directly after the selected COLUMN.

If you use TABLE ALIAS, the TABLE must always be
referenced using the ALIAS.

You can also retrieve data from SYNONYMS.

EXPRESSION could be a column name, a literal, a
mathematical computation, a function, several
functions combined, or one of several
PSEUDO-COLUMNS.

Outer joins are implemented as follows:

WHERE tab1.col1 = tab2.col1 (+);

Where all values from TAB1will be returned even if
TAB2does not have a match or

WHERE tab1.col1 (+) = tab2.col1;

where all values from TAB2 will be returned even if
TAB1does not have a match.

If a GROUP BY clause is used, all non-aggregate
select columns must be in a GROUP BY clause.

The FOR UPDATE clause locks the rows selected by
the query. Other users cannot lock these row until
you end the transaction. This clause is not a direct
equivalent of the FOR BROWSE mode in MS SQL
Server and Sybase.

Table 2–51 SELECT Statement in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Data Manipulation Language

2-98 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

SELECT Statements without FROM Clauses:

MS SQL Server and Sybase support SELECT statements that do not have a FROM
clause. This can be seen in the following example

SELECT getdate()

Oracle does not support SELECTs without FROM clauses. However, Oracle
provides the DUAL table which always contains one row. Use the DUAL table to
convert constructs such as the one above.

Translate the above query to:

SELECT sysdate FROM dual;

SELECT INTO Statement:

The MS SQL Server and Sybase SELECT INTO statement can insert rows into a
table. This construct, which is part SELECT and part INSERT, is not supported by
ANSI. Replace these statements with INSERT...SELECT statements in Oracle.

If the MS SQL Server or Sybase construct is similar to the following:

SELECT col1, col2, col3
INTO target_table
FROM source_table
WHERE where_clause

you should convert it to the following for Oracle:

INSERT into target_table
SELECT col1, col2, col3
FROM source_table
WHERE where_clause

Subqueries in Place of Columns:

In MS SQL Server and Sybase, a SELECT statement may appear anywhere that a
column specification appears. Oracle does not support this non-ANSI extension to
ANSI SQL. Change the subquery in the SELECT list either by using a DECODE
statement or by dividing the query into two different queries.

Use the following SALES table as a basis for the examples below:

Data Manipulation Language

Databases 2-99

MS SQL Server/Sybase:

If you want to select the year, q1 amount, q2 amount, q3 amount, and q4 as a row,
MS SQL Server and Sybase accept the following query:

SELECT distinct year,
q1 = (SELECT amt FROM sales

WHERE qtr=1 AND year = s.year),
q2 = (SELECT amt FROM sales

WHERE qtr=2 AND year = s.year),
q3 = (SELECT amt FROM sales

WHERE qtr=3 AND year = s.year),
q4 = (SELECT amt FROM sales

WHERE qtr=4 AND year = s.year)
FROM sales s

In Oracle:

In this example, replace the SELECT statements with DECODE so that the query
functions as normal. The DECODE function is much faster than MS SQL Server and
Sybase subqueries. Translate the above query to the following for Oracle:

SELECT year,
DECODE(qtr, 1, amt, 0) q1,
DECODE(qtr, 2, amt, 0) q2,
DECODE(qtr, 3, amt, 0) q3,
DECODE(qtr, 4, amt, 0) q4
FROM sales s;

If you cannot convert your query using the above method, create views and base
the query on the views rather than on the original tables.

For example, consider the following query in MS SQL Server and Sybase:

SELECT name,
sumlength = (SELECT sum(length) FROM syscolumns WHERE id = t.id),

Year Qty Amount

1993 1 1.3

1993 2 1.4

1993 3 3

1993 4 2.3

Data Manipulation Language

2-100 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

count_indexes = (SELECT count(*) FROM sysindexes WHERE id = t.id)
FROM sysobjects t
This query returns the sum of the lengths of the columns of a table and the number
of indexes on that table. This is best handled in Oracle by using some views.

Convert this to the following in Oracle:

CREATE view V1 (sumlength, oid) as
SELECT sum(length), id FROM syscolumns
GROUP BY id

CREATE view V2 (count_indexes, oid) AS
SELECT count(*), id FROM sysindexes
GROUP BY id

SELECT name, sumlength, count_indexes
FROM sysobjects t, v1, v2
WHERE t.id = v1.oid
AND t.id = v2.oid

Comparing Subqueries to Subqueries:

MS SQL Server and Sybase also allow a SELECT statement in the WHERE clause.
For example, consider the following statement from MS SQL Server or Sybase:

SELECT empname, deptname
FROM emp, dept
WHERE emp.empno = 100

AND(SELECT security_code
FROM employee_security
WHERE empno = emp.empno) =

(SELECT security_code
FROM security_master
WHERE sec_level = dept.sec_level)

Convert this to the ANSI-standard statement below for Oracle:

SELECT empname, deptname
FROM emp, dept
WHERE emp.empno = 100

AND EXISTS (SELECT security_code
FROM employee_security es
WHERE es.empno = emp.empno

AND es.security_code =
(SELECT security_code

FROM security_master

Data Manipulation Language

Databases 2-101

WHERE sec_level =
dept.sec_level));

Column Aliases:

Convert column aliases from the following MS SQL Server or Sybase syntax:

SELECT employees=col1 FROM tab1

to the following Oraclesyntax:

SELECT col1 employees FROM tab1

Table Aliases:

Remove table aliases (also known as correlation names) unless they are used
everywhere.

Compute:

Replace the COMPUTE clause with another SELECT. Attach the two sets of results
using the UNION clause.

Outer JOIN Syntax:

Convert the outer JOIN syntax from the MS SQL Server or Sybase syntax to the
Oracle syntax.

In addition to these, there are many implications due to the differences in the
implementation of the special clauses such as GROUP BY, functions, joins. These
are discussed later in this chapter.

SELECT with GROUP BY Statement

Note: MS SQL Server and Sybase also support Oracle-style
column aliases.

Table 2–52 SELECT with GROUP BY Statement in Oracle and MS SQL Server/Sybase

MS SQL Server/Server Oracle

Syntax:

See the SELECT Statement section.

Syntax:

See the SELECT Statement section.

Data Manipulation Language

2-102 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

INSERT Statement
The statements illustrated in the following table add one or more rows to the table
or view.

Recommendations:

INSERT statements in MS SQL Server and Sybase must be changed to include an
INTO clause if it is not specified in the original statement.

The values supplied in the VALUES clause in either database may contain
functions. The MS SQL Server-specific functions must be replaced with the
equivalent Oracle constructs.

Description:

Non-aggregate SELECT columns must
be in a GROUP BY clause.

Description:

All non-aggregate SELECT columns must be in
a GROUP BY clause.

Table 2–53 INSERT Statement in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

INSERT [INTO]
[[database.]owner.] {table |
view}[(column [,
column]...)]{VALUES
(expression [,expression]...)
| query}

Syntax:

INSERT INTO [user.]{table |
view}[@dblink][(column [,
column]...)]{VALUES (expression [,
expression]...) | query...};

Description:

INTO is optional.

Inserts are allowed in a view provided
only one of the base tables is
undergoing change.

Description:

INTO is required.

Inserts can only be done on single table views.

Note: Oracle lets you create functions that directly match most MS
SQL Server and Sybase functions.

Table 2–52 SELECT with GROUP BY Statement in Oracle and MS SQL Server/Sybase

MS SQL Server/Server Oracle

Data Manipulation Language

Databases 2-103

Convert inserts that are inserting into multi-table views in MS SQL Server and
Sybase to insert directly into the underlying tables in Oracle.

UPDATE Statement
The statement illustrated in the following table updates the data in a table or the
data in a table referenced by a view.

Recommendations:

There are two ways to convert UPDATE statements with FROM clauses as
indicated below.

Method 1 - Convert UPDATE statements with FROM clauses:

Table 2–54

MS SQL Server Oracle

Syntax:

UPDATE [[database.]owner.] {table |
view}
SET [[[database.]owner.] {table. |
view.}]
column = expression | NULL |
(select_statement)
[, column = expression | NULL |
(select_statement)]...
[FROM [[database.]owner.]table |
view
[, [[database.]owner.]table |
view]...
[WHERE condition]

Syntax:

UPDATE [user.]{table | view} [@dblink]
SET [[user.] {table. | view.}]
{ column = expression | NULL | (select_
statement)
[, column = expression | NULL |
(select_statement)...] |
(column [, column]...) = (select_
statement)}
[WHERE {condition | CURRENT OF cursor}]

Description:

The FROM clause is used to get the
data from one or more tables into the
table that is being updated or to
qualify the rows that are being
updated.

Updates through multi-table views can
modify only columns in one of the
underlying tables.

Description:

A single subquery may be used to update a set
of columns. This subquery must select the same
number of columns (with compatible data
types) as are used in the list of columns in the
SET clause.

The CURRENT OF cursor clause causes the
UPDATE statement to effect only the single row
currently in the cursor as a result of the last
FETCH. The cursor SELECT statement must
have included in the FOR UPDATE clause.

Updates can only be done on single table views.

Data Manipulation Language

2-104 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Use the subquery in the SET clause if columns are being updated to values coming
from a different table.

Convert the following in MS SQL Server or Sybase:

update titles
SET pub_id = publishers.pub_id
FROM titles, publishers
WHERE titles.title LIKE 'C%'
AND publishers.pub_name = 'new age'

to the following in Oracle:

UPDATE titles

SET pub_id =
(SELECT a.pub_id

FROM publishers a
WHERE publishers.pub_name = 'new age'

)
WHERE titles.title like 'C%'

Method 2 - Convert UPDATE statements with FROM clauses:

Use the subquery in the WHERE clause for all other UPDATE...FROM statements.

Convert the following in MS SQL Server or Sybase:

UPDATE shipping_parts
SET qty = 0
FROM shipping_parts sp, suppliers s
WHERE sp.supplier_num = s.supplier_num

AND s.location = "USA"

to the following in Oracle:

UPDATE shipping_parts
SET qty = 0
WHERE supplier_num IN (
SELECT supplier_num
FROM suppliers WHERE location = 'USA')

Data Manipulation Language

Databases 2-105

DELETE Statement
The statement illustrated in the following table removes rows from tables and rows
from tables referenced in views.

Remove Second FROM Clause:

Remove the second FROM clause from the DELETE statements.

Convert the following MS SQL Server or Sybase query:

DELETE
FROM sales
FROM sales, titles
WHERE sales.title_id = titles.title_id
AND titles.type = 'business'

to the following in Oracle:

Table 2–55 DELETE Statement in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

DELETE [FROM]
[[database.]owner.]{table |
view}
[FROM
[[database.]owner.]{table |
view}
[, [[database.]owner.]{table
| view}]...]
[WHERE where_clause]

Syntax:

DELETE [FROM] [user.]{table | view}
[@dblink]
[alias]

[WHERE where_clause]

Description:

The first FROM in DELETE FROM is
optional.

The second FROM clause is an MS
SQL Server or Sybase extension that
allows the user to make deletions
based on the data in other tables. A
subquery in the WHERE clause serves
the same purpose.

Deletes can only be performed through
single table views.

Description:

FROM is optional.

ALIAS can be specified for the table name as a
correlation name, which can be used in the
condition.

Deletes can only be performed through single
table views

Data Manipulation Language

2-106 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

DELETE
FROM sales
WHERE title_id in
(SELECT title_id

FROM titles
WHERE type = 'business'

)
Remove the second FROM even if the WHERE contains a multi-column JOIN.

Convert the following MS SQL Server or Sybase query:

DELETE
FROM sales
FROM sales, table_x
WHERE sales.a = table_x.a

AND sales.b = table_x.b
AND table_x.c = 'd'

to the following in Oracle:

DELETE
FROM sales
WHERE (a, b) in

(SELECT a, b
FROM table_x
WHERE c = 'd')

Operators

Comparison Operators

The following table compares the operators used in the MS SQL Server, Sybase, and
Oracle databases. Comparison operators are used in WHERE clauses and
COLUMN check constraints/rules to compare values

Table 2–56 Comparison Operators in Oracle and MS SQL Server/Sybase

Operator

Same in All
Three
Databases

MS SQL
Server/Sybas
e Only Oracle Only

Equal to =

Data Manipulation Language

Databases 2-107

Not equal to !=

<>

^=

Less than <

Greater than >

Less than or equal to <= !>

Greater than or equal to >= !<

Greater than or equal to x and
less than or equal to y

BETWEEN x
AND y

Less than x or greater than y NOT BETWEEN
x AND y

Pattern Matches

a followed by 0 or more
characters

a followed by exactly 1 character

a followed by any character
between x and z

a followed by any character
except those between x and z

a followed by %

LIKE 'a%'

LIKE 'a_'

LIKE'a[x-z]'

LIKE'a[^x-z]
'

LIKE 'a\%'

ESCAPE '\'

Does not match pattern NOT LIKE

No value exists IS NULL

A value exists IS NOT NULL

At least one row returned by
query

EXISTS
(query)

No rows returned by query NOT EXISTS
(query)

Equal to a member of set IN
=ANY

= SOME

Not equal to a member of set NOT IN
!= ANY
<> ANY

!= SOME
<> SOME

Less than a member of set < ANY < SOME

Table 2–56 Comparison Operators in Oracle and MS SQL Server/Sybase

Operator

Same in All
Three
Databases

MS SQL
Server/Sybas
e Only Oracle Only

Data Manipulation Language

2-108 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Recommendations:

1. Convert all !< and !> to >= and <=

Convert the following in MS SQL Server or Sybase:

WHERE col1 !< 100
to this for Oracle:

WHERE col1 >= 100

2. Convert like comparisons which use [] and [^]

SELECT title
FROM titles
WHERE title like "[A-F]%"

Method 1 - Eliminating use of []:

Use this method with the SUBSTR () function if possible.

SELECT title
from titles
where substr (titles,1,1) in

Greater than a member of set > ANY > SOME

Less than or equal to a member of
set

<= ANY !> ANY <= SOME

Greater than or equal to a
member of set

>= ANY !< ANY >= SOME

Equal to every member of set =ALL

Not equal to every member of set != ALL
<> ALL

Less than every member of set < ALL

Greater than every member of set > ALL

Less than or equal to every
member of set

<= ALL !> ALL

Greater than or equal to every
member of set

>= ALL !< ALL

Table 2–56 Comparison Operators in Oracle and MS SQL Server/Sybase

Operator

Same in All
Three
Databases

MS SQL
Server/Sybas
e Only Oracle Only

Data Manipulation Language

Databases 2-109

('A', 'B', 'C', 'D', 'E', 'F')

Method 2 - Eliminating use of []:

The second method uses the % construct.

SELECT title
FROM titles
WHERE (title like 'A%'

OR title like 'B%'
OR title like 'C%'
OR title like 'D%'
OR title like 'E%'
OR title like 'F%')

3. Change NULL constructs:

The following table shows that in Oracle, NULL is never equal to NULL. Change
the all = NULL constructs to IS NULL to retain the same functionality.

If you have the following in MS SQL Server or Sybase:

WHERE col1 = NULL

Convert it as follows for Oracle:

WHERE col1 IS NULL

Table 2–57 Changing NULL Constructs

NULL Construct
MS SQL
Server/Sybase Oracle

where col1 = NULL depends on the
data

FALSE

where col1 != NULL depends on the
data

TRUE

where col1 IS NULL depends on the
data

depends on the
data

where col1 IS NOT
NULL

depends on the
data

depends on the
data

where NULL = NULL TRUE FALSE

Data Manipulation Language

2-110 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Arithmetic Operators

Recommendations:

Replace any Modulo functions in MS SQL Server or Sybase with the mod() function
in Oracle.

String Operators

Recommendations:

Replace all addition of strings with the || construct.

Replace all double quotes string identifiers with single quote identifiers.

In MS SQL Server and Sybase, an empty string ('') is interpreted as a single space in
INSERT or assignment statements on VARCHAR data. In concatenating
VARCHAR, CHAR, or TEXT data, the empty string is interpreted as a single space.
The empty string is never evaluated as NULL. You must bear this in mind when
converting the application.

Table 2–58 Arithmetic Operators in Oracle and MS SQL Server/Sybase

Operator
Same in All Three
Databases

MS SQL
Server/Sybase
Only Oracle Only

Add +

Subtract -

Multiply *

Divide /

Modulo v % mod(x, y)

Table 2–59 String Operators in Oracle and MS SQL Server/Sybase

Operator
Same in All Three
Databases

MS SQL
Server/Sybase
Only Oracle Only

Concatenate s + ||

Identify Literal 'this is a string' "this is also a string"

Data Manipulation Language

Databases 2-111

Set Operators

Bit Operators

Recommendations:

Oracle enables you to write your own procedures to perform bitwise operations.

If you have the following MS SQL Server or Sybase construct:

X | Y :(Bitwise OR)
You could write a procedure called dbms_bits.or (x,y) and convert the above
construct to the following in Oracle:

dbms_bits.or(x,y)

Table 2–60 Set Operators in Oracle and MS SQL Server/Sybase

Operator
Same in All
Three Databases

MS SQL
Server/Sybas
e Only Oracle Only

Distinct row from either
query

UNION

All rows from both queries UNION ALL

All distinct rows in both
queries

d INTERSECT

All distinct rows in the first
query but not in the second
query

d MINUS

Table 2–61 Bit Operators in Oracle and MS SQL Server/Sybase

Operator
Same in All
Three Databases

MS SQL
Server/Sybase
Only Oracle Only

bit and &

bit or |

bit exclusive or ^

bit not ~

Data Manipulation Language

2-112 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Built-In Functions

Character Functions

Table 2–62 Character Functions in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle Description

ascii(char) ascii(char) Returns the ASCII
equivalent of the character.

char(integer_expression) chr(integer_expression) Converts the decimal code
for an ASCII character to
the corresponding
character.

charindex(specified_exp,
char_string)

instr(specified_exp, char_
string, 1, 1)

Returns the position where
the specified_exp first
occurs in the char_string.

convert(data type,
expression, [format])

to_char, to_number, to_
date, to_label,
chartorowid, rowtochar,
hextochar, chartohex

Converts one data type to
another using the optional
format. The majority of the
functionality can be
matched. Refer to Oracle8i
SQL Reference, Release 2
(8.1.6) (Part Number
A76989-01) for more
information.

datalength (expression) g Computes the length
allocated to an expression,
giving the result in bytes.

difference(character_exp,
character_exp)

d Returns the numeric
difference of the
SOUNDEX values of the
two strings.

isnull(variable, new_
value)

nvl(variable, new_value) If the value of the variable
is NULL, the new_value is
returned.

lower(char_exp) lower(char_exp) Converts uppercase
characters to lowercase
characters.

ltrim(char_exp) ltrim(char_exp) Truncates trailing spaces
from the left end of char_
exp.

Data Manipulation Language

Databases 2-113

patindex(pattern, column_name) Returns the position of the
pattern in the column
value. The pattern can
have wild characters. This
function also works on
TEXT and BINARY data
types.

replicate(char_exp, n) rpad(char_exp,
length(char_exp)*n, '')

Produces a string with
char_exp repeated n times.

reverse(char_string) Reverses the given char_
string.

right(char_exp, n) substr(char_exp,
(length(char_exp)

Returns the part of the
string starting at the
position given by n from
the right and extending up
to the end of the string.

rtrim(char_exp) rtrim(char_exp) Truncates the trailing
spaces from the right end
of char_exp.

soundex(exp) soundex(exp) Returns phonetically
similar expressions to the
specified exp.

space(int_exp) rpad(' ', int_exp-1, '') Generates a string with
int_exp spaces.

str(float_exp, length) to_char(float_
exp)stuff(char_exp, start,
length, replace_
str)substr(char_exp, 1,
start) ||replace_str
||substr(char_exp,
start+length)

Replaces a substring
within char_exp with
replace_str.

substring(char_exp, start,
length)

Works on IMAGE and
TEXT data types

substr(char_exp, start,
length)

Does not work with
LONG and LONG_RAW
data types

Replaces a substring
within char_exp with
replace_str.

Table 2–62 Character Functions in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle Description

Data Manipulation Language

2-114 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Miscellaneous Functions

Recommendations:

Defining Functions in Oracle:

Oracle adds the ability to define functions. With this feature you can create Oracle
functions that match the name and function of MS SQL Server and Sybase
functions.

textptr(column_name) d Returns a pointer as a
varbinary(16) data type for
a named IMAGE or TEXT
column.

textvalid("column_name",
text_pointer)

h Returns 1 if the specified
text_pointer is valid for the
specified column_name.
The column must be of
type TEXT or IMAGE.

upper(char_exp) upper(char_exp) Converts lowercase characters
to uppercase characters.

Table 2–63 Comparison Operators in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle Description

datalength (expression) lengthb Computes the length
allocated to an expression,
giving the result in bytes.

isnull(variable, new_
value)

nvl(variable, new_value) If the value of the variable is
NULL, the new_value is
returned.

Note: The above functions tables list all the MS SQL Server and
Sybase character manipulation functions. They do not list all the
Oracle functions. There are many more Oracle character
manipulation functions that you can use.

Table 2–62 Character Functions in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle Description

Data Manipulation Language

Databases 2-115

Date Functions

Table 2–64 Date Functions in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle Description

dateadd(dd, int_
exp,datetime_var)

date+int_exp
requires conversion of int_exp
to a number of days

Adds the int_exp
number of days to the
date contained in
datetime_var.

dateadd(mm, int_
exp,datetime_var)

add_months(date, int_exp)
or

date+int_exp requires
conversion of int_exp to a
number of days

Adds the int_exp
number of months to
the date contained in
datetime_var.

dateadd(yy, int_
exp,datetime_var)

date+int_exp
requires conversion of int_exp
to a number of days

Adds the int_exp
number of years to the
date contained in
datetime_var.

datediff(dd,
datetime1,datetime2)

date2-date1 Returns the difference
between the dates
specified by the
datetime1 and
datetime2 variables.
This difference is
calculated in the
number of days.

datediff(mm,
datetime1,datetime2)

months_between
(date2, date1)

Returns the difference
between the dates
specified by the
datetime1 and
datetime2 variables.
This difference is
calculated in the
number of months.

datediff(yy,
datetime1,datetime2)

(date2-date1) /365.254 Returns the difference
between the dates
specified by the
datetime1 and
datetime2 variables.
This difference is
calculated in the
number of years.

Data Manipulation Language

2-116 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Recommendations:

The above table lists all the MS SQL Server and Sybase date manipulation functions.
It does not list all the Oracle date functions. There are many more Oracle date
manipulation functions that you can use.

It is recommended that you convert most date manipulation functions to "+" or "-"
in Oracle.

datename (datepart, date) to_char(date, format) Returns the specified
part of the date as an
integer. The MS SQL
Server and Sybase
DATETIME has a
higher precision than
Oracle DATE. For this
reason, it is not always
possible to find an
equivalent format
string in Oracle to
match the datepart in
MS SQL Server or
Sybase. See the Data
Types section of this
chapter for more
information about
conversion of the
DATETIME data type.

datepart(datepart, date) to_char(date, format) Returns the specified
part of the date as a
character string (name).
The MS SQL Server
and Sybase
DATETIME has a
higher precision than
Oracle DATE'. For this
reason, it is not always
possible to find an
equivalent format
string in Oracle to
match the datepart in
MS SQL Server or
Sybase.

getdate() sysdate Returns the system
date.

Table 2–64 Date Functions in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle Description

Data Manipulation Language

Databases 2-117

Oracle adds the ability to define functions. With this feature you can create Oracle
functions that match the name and functionality of all MS SQL Server and Sybase
functions. This is a useful feature, where users can call a PL/SQL function from a
SQL statement's SELECT LIST, WHERE clause, ORDER BY clause, and HAVING
clause. With the parallel query option, Oracle executes the PL/SQL function in
parallel with the SQL statement. Hence, users create parallel logic.

Mathematical Functions

Table 2–65 Mathematical Functions in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

abs(n) abs(n)

acos(n) acos(n)

asin(n)

atan(n) atan(n)

atn2(n,m)

ceiling(n) ceil(n)

cos(n) cos(n)

cot(n)

degrees(n)

exp(n) exp(n)

floor(n) floor(n)

log(n) ln(n)

log10(n) log(base,number)

pi()

power(m,n) power(m,n)

radians(n)

rand(n)

round(n[,m]) round(n[,m])

sign(n) sign(n)

sin(n) sin(n)

Data Manipulation Language

2-118 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Recommendations:

The above table lists all the MS SQL Server and Sybase number manipulation
functions. It does not list all the Oracle mathematical functions. There are many
more Oracle number manipulation functions that you can use.

Oracle adds the ability to define functions. With this feature you can create Oracle
functions that match the name and functionality of all MS SQL Server and Sybase
functions. This is the most flexible approach. Users can write their own functions
and execute them seamlessly from a SQL statement.

Oracle functions listed in the table work in SQL as well as PL/SQL.

Locking Concepts and Data Concurrency Issues

Locking
Locking serves as a control mechanism for concurrency. Locking is a necessity in a
multi-user environment because more than one user at a time may be working with
the same data.

sqrt(n) sqrt(n)

tan(n) tan(n)

Table 2–65 Mathematical Functions in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Data Manipulation Language

Databases 2-119

Recommendations:

In MS SQL Server and Sybase, SELECT statements obtain shared locks on
pages/rows. This prevents other statements from obtaining an exclusive lock on
those pages/rows. All statements that update the data need an exclusive lock. This
means that the SELECT statement in MS SQL Server or Sybase blocks the UPDATE
statements as long as the transaction that includes the SELECT statement does not

Table 2–66 Locking in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

MS SQL Server and Sybase locking is fully
automatic and does not require intervention by
users.
MS SQL Server and Sybase apply exclusive locks
for INSERT, UPDATE, and DELETE operations.
When an exclusive lock is set, no other transaction
can obtain any type of lock on those objects until
the original lock is in place.
For non-update or read operations, a shared lock
is applied. If a shared lock is applied to a table or
a page, other transactions can also obtain a shared
lock on that table or page. However, no
transaction can obtain an exclusive lock.
Therefore, MS SQL Server and Sybase reads
block the modifications to the data.
Update locks:
Update locks are held at the page level. They are
placed during the initial stages of an update
operation when the pages are being read. Update
locks can co-exist with shared locks. If the pages
are changed later, the update locks are escalated
to exclusive locks.
Intent locks:
MS SQL Server and Sybase locking is fully
automatic and does not require intervention by
users. MS SQL Server and Sybase apply exclusive
locks for INSERT, UPDATE, and DELETE
operations. When an exclusive lock is set, no other
transaction can obtain any type of lock on those
objects until the original lock is in place. For
non-update or read operations, a shared lock is
applied. If a shared lock is applied to a table or a
page, other transactions can also obtain a shared
lock on that table or page. However, no
transaction can obtain an exclusive lock.
Therefore, MS SQL Server and Sybase reads block
the modifications to the data.
Extent locks:
Extent locks lock a group of eight database pages
while they are being allocated or freed. These
locks are held during a CREATE or DROP
statement, or during an INSERT that requires new
data or index pages.
A list of active locks for the current server can be
seen with SP_LOCK system procedure.

Oracle locking is fully automatic and does not
require intervention by users. Oracle features the
following categories of locks:
Data locks (DML locks) to protect data.The "table
locks" lock the entire table and "row locks" lock
individual rows.
Dictionary locks (DDL locks) to protect the
structure of objects.
Internal locks to protect internal structures, such
as files.
DML operations can acquire data locks at two
different levels; one for specific rows and one for
entire tables.
Row-level locks:
An exclusive lock is acquired for an individual
row on behalf of a transaction when the row is
modified by a DML statement. If a transaction
obtains a row level lock, it also acquires a table
(dictionary) lock for the corresponding table. This
prevents conflicting DDL (DROP TABLE, ALTER
TABLE) operations that would override data
modifications in an on-going transaction.
Table-level data locks can be held in any of the
following modes:
Row share table lock (RW):
This indicates that the transaction holding the
lock on the table has locked rows in the table and
intends to update them. This prevents other
transactions from obtaining exclusive write access
to the same table by using the LOCK TABLE table
IN EXCLUSIVE MODE statement. Apart from
that, all the queries, inserts, deletes, and updates
are allowed in that table.
Row exclusive table lock (RX):
This generally indicates that the transaction
holding the lock has made one or more updates to
the rows in the table. Queries, inserts, deletes,
updates are allowed in that table.
Share lock (SL):
Share row exclusive lock(SRX)
Exclusive lock (X):
The dynamic performance table V$LOCK keeps
the information about locks.

Data Manipulation Language

2-120 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

commit or rollback. This also means that two transactions are physically serialized
whenever one transaction selects the data and the other transaction wants to change
the data first and then select the data again. In Oracle, however, SELECT statements
do not block UPDATE statements, since the rollback segments are used to store the
changed data before it is updated in the actual tables. Also, the reader of the data is
never blocked in Oracle. This allows Oracle transactions to be executed
simultaneously.

If MS SQL Server or Sybase logical transactions are automatically translated to
Oracle logical transactions, the transactions explained above that execute properly
in MS SQL Server and Sybase as they are serialized will cause a deadlock in Oracle.
These transactions should be identified and serialized to avoid the deadlock. These
transactions are serialized in MS SQL Server and Sybase as INSERT, UPDATE, and
DELETE statements block other statements.

Row-Level Versus Page-Level Locking

Recommendations:

No changes are required to take advantage of the row-level locking feature of
Oracle.

Table 2–67 Row-Level Versus Page-Level Locking in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

MS SQL Server 6.5 and Sybase do not
have a row-level locking feature.

MS SQL Server 6.5 and Sybase apply a
page-level lock, which effectively locks
all rows on the page, whenever any
row in the page is being updated. This
is an exclusive lock whenever the data
is being changed by DML statements.

MS SQL Server 7.0 implements a form
of row-level locking.

MS SQL Server 7.0 escalates locks at
row level to page level automatically.

SELECT statements are blocked by
exclusive locks that lock an entire
page.

Oracle has a row-locking feature. Only
one row is locked when a DML statement
is changing the row.

Data Manipulation Language

Databases 2-121

Read Consistency

Table 2–68 Read Consistency in Oracle and MS SQL Server/Sybase

MS SQL Server Oracle

MS SQL Server and Sybase provide the
HOLDLOCK function for
transaction-level read consistency.
Specifying a SELECT with
HOLDLOCK puts a shared lock on the
data. More than one user can execute a
SELECT with HOLDLOCK at the same
time without blocking each other.

When one of the users tries to update
the selected data, HOLDLOCK blocks
the update until the other users
commit, rollback, or attempt an update
and a deadlock occurs. This means that
HOLDLOCK prevents other
transactions from updating the same
data until the current transaction is in
effect.

Read consistency as supported by
Oracle does the following:

n Ensures that the set of data seen
by a statement is consistent at a
single point-in-time and does not
change during statement
execution

n Ensures that reads of database
data do not wait for other reads or
writes of the same data

n Ensures that writes of database
data do not wait for reads of the
same data

n Ensures that writes wait for other
writes only if they attempt to
update identical rows in
concurrent transactions

To provide read consistency, Oracle
creates a read-consistent set of data
when a table is being read and
simultaneously updated.

Read consistency functions as follows:

1. When an update occurs, the original
datavalues changed by the update are
recorde in rollback segments.

2. While the update remains part of an
uncommitted transaction, any user
that reads the modified data views the
original data values. Only statements
that start afteranother user's
transaction is committed reflect the
changes made by the transaction.

You can specify that a transaction be
read only using the following
command:

SET TRANSACTION READ ONLY

Data Manipulation Language

2-122 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Logical Transaction Handling
Table 2–69

MS SQL Server/Sybase Oracle

After completion, any statement not within
a transaction is automatically committed.A
statement can be a batch containing
multiple T-SQL statements that are sent to
the server as one stream. The changes to the
database are automatically committed after
the batch executes. A ROLLBACK TRAN
statement subsequently executed has no
effect. In MS SQL Server and Sybase,
transactions are not implicit. Start logical
transaction with a BEGIN TRANSACTION
clause. Logical transactions can be
committed or rolled back as follows.

BEGIN TRANSACTION [transaction_name]

Use COMMIT TRAN to commit the
transaction to the database. You have the
option to specify the transaction name. Use
ROLLBACK TRAN to roll back the
transaction. You can set savepoints to roll
back to a certain point in the logical
transaction using the following command:

SAVE TRANSACTION savepoint_name

Roll back to the specified SAVEPOINT with
the following command:

ROLLBACK TRAN <savepoint_name>

MS SQL Server and Sybase allow you to
nest BEGIN TRAN/COMMIT TRAN
statements. When nested, the outermost
pair of transactions creates and commits the
transaction. The inner pairs keep track of
the nesting levels. A ROLLBACK command
in the nested transactions rolls back to the
outermost BEGIN TRAN level, if it does not
include the name of the SAVEPOINT. Most
MS SQL Server and Sybase applications
require two-phase commit, even on a single
server. To see if the server is prepared to
commit the transaction, use PREPARE
TRAN in two-phase commit applications.

Completed transactions are written to the
database device at CHECKPOINT. A
CHECKPOINT writes all dirty pages to the
disk devices since the last CHECKPOINT.

Calls to remote procedures are executed
independently of any transaction in which
they are included.

Statements are not automatically
committed to the database. The COMMIT
WORK statement is required to commit the
pending changes to the database.

Oracle transactions are implicit. This means
that the logical transaction starts as soon as
data changes in the database.

COMMIT WORK commits the pending
changes to the database.

ROLLBACK undoes all the transactions
after the last COMMIT WORK statement.

Savepoints can be set in transactions with
the following command:

SET SAVEPOINT savepoint_name

The following command rolls back to the
specified SAVEPOINT:

ROLLBACK <savepoint_name>

Two-phase commit is automatic and
transparent in Oracle. Two-phase commit
operations are needed only for transactions
which modify data on two or more
databases.

When a CHECKPOINT occurs, the
completed transactions are written to the
database device. A CHECKPOINT writes
all dirty pages to the disk devices that have
been modified since last checkpoint

Data Manipulation Language

Databases 2-123

Recommendations:

Transactions are not implicit in MS SQL Server and Sybase. Therefore, applications
expect that every statement they issue is automatically committed it is executed.

Oracle transactions are always implicit, which means that individual statements are
not committed automatically. When converting an MS SQL Server or Sybase
application to an Oracle application, care needs to be taken to determine what
constitutes a transaction in that application. In general, a COMMIT work statement
needs to be issued after every "batch" of statements, single statement, or stored
procedure call to replicate the behavior of MS SQL Server or Sybase for the
application.

In MS SQL Server and Sybase, transactions may also be explicitly begun by a client
application by issuing a BEGIN TRAN statement during the conversion process.

Data Manipulation Language

2-124 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Triggers and Stored Procedures 3-1

3
Triggers and Stored Procedures

This chapter includes the following sections:

n Introduction

n Data Types

n Schema Objects

n T-SQL Versus PL/SQL Constructs

n T-SQL and PL/SQL Language Elements

Introduction
MS SQL Server and Sybase store triggers and stored procedures with the server.
Oracle stores triggers and stored subprograms with the server. Oracle has three
different kinds of stored subprograms, namely functions, stored procedures, and
packages. For detailed discussion on all these objects, see the PL/SQL User's Guide
and Reference, Release 2 (8.1.6) (Part Number A77069-01).

The following topics are discussed in this section:

n Triggers

n Stored Procedures

Triggers
MS SQL Server and Sybase database triggers are AFTER triggers. This means that
triggers are fired after the specific operation is performed. For example, the INSERT
trigger fires after the rows are inserted into the database. If the trigger fails, the
operation is rolled back.

Introduction

3-2 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

MS SQL Server and Sybase allow INSERT, UPDATE, and DELETE triggers.
Triggers typically need access to the before image and after image of the data that is
being changed. MS SQL Server and Sybase achieve this with two temporary tables
called INSERTED and DELETED. These two tables exist during the execution of the
trigger. These tables and the table for which the trigger is written have the exact
same structure. The DELETED table holds the before image of the rows that are
undergoing change because of the INSERT/UPDATE/DELETE operation, and the
INSERTED table holds the after image of these rows. If there is an error, the triggers
can issue a rollback statement.

Most of the MS SQL Server and Sybase trigger code is written to enforce referential
integrity. MS SQL Server and Sybase triggers are executed once per triggering SQL
statement (such as INSERT, UPDATE, or DELETE). If you want some actions to be
performed for each row that the SQL statement affects, you must code the actions
using the INSERTED and DELETED tables.

Oracle has a rich set of triggers. Oracle also provides triggers that fire for events
such as INSERT, UPDATE, and DELETE. You can also specify the number of times
that the trigger action is to be executed. For example, once for every row affected by
the triggering event (such as might be fired by an UPDATE statement that updates
many rows), or once for the triggering statement (regardless of how many rows it
affects).

A ROW trigger is fired each time that the table is affected by the triggering event.
For example, if an UPDATE statement updates multiple rows of a table, a row
trigger is fired once for each row affected by the UPDATE statement. A
STATEMENT trigger is fired once on behalf of the triggering statement, regardless
of the number of rows in the table that the triggering statement affects.

Oracle triggers can be defined as either BEFORE triggers or AFTER triggers.
BEFORE triggers are used when the trigger action should determine whether the
triggering statement should be allowed to complete. By using a BEFORE trigger,
you can avoid unnecessary processing of the triggering statement and its eventual
rollback in cases where an exception is raised.

As combinations, there are four different types of triggers in Oracle:

n BEFORE STATEMENT trigger

n BEFORE ROW trigger

n AFTER STATEMENT trigger

n AFTER ROW trigger

Introduction

Triggers and Stored Procedures 3-3

It is sometimes necessary to create a ROW trigger or a STATEMENT trigger to
achieve the same functionality as the MS SQL Server or Sybase trigger. This occurs
in the following cases:

n The triggering code reads from its own table (mutating).

n The triggering code contains group functions.

In the following example, the group function AVG is used to calculate the average
salary:

SELECT AVG(inserted.salary)
FROM inserted a, deleted b
WHERE a.id = b.id;
This would be converted to Oracle by creating an AFTER ROW trigger to insert all
the updated values into a package, and an AFTER STATEMENT trigger to read
from the package and calculate the average.

For examples of Oracle triggers, see the Oracle8i Application Developer's Guide -
Fundamentals, Release 2 (8.1.6) (Part Number A76939-01).

Stored Procedures
Stored procedures provide a powerful way to code the application logic that can be
stored with the server. MS SQL Server, Sybase, and Oracle all provide stored
procedures.

The language used to code these objects is a database-specific procedural extension
to SQL. In Oracle it is PL/SQL and in MS SQL Server and Sybase it is Transact SQL
(T-SQL). These languages differ to a considerable extent. The individual SQL
statements and the procedural constructs, such as if-then-else , are similar in
both versions of the procedural SQL. Considerable differences can be found in the
following areas discussed in this section:

n Methods Used to Send Data to Clients

n Individual SQL Statements

n Logical Transaction Handling

n Error Handling within the Stored Procedure

This section also considers various components of typical MS SQL Server and
Sybase stored procedures and suggests ways to design them in order to avoid
conversion problems. By applying the standards described below to the coding, you
can convert your stored procedures from MS SQL Server or Sybase to Oracle very
easily.

Introduction

3-4 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Methods Used to Send Data to Clients
Different relational database management systems (RDBMSs) use different methods
to send data to clients. For example, in MS SQL Server and Sybase the server sends
data to the client in the form of a byte-stream. The client is responsible for retrieving
all the data from the communication channel before sending another request to the
server. In Oracle, the client can issue one or more SQL statements on the same
network connection, and the system global area (SGA) stores all the data retrieved
from the database. The server sends the data to the client as requested and the client
sends a FETCH request on the connection whenever it is ready for the next set of
results. This section discusses the different methods used to send data to clients
under the following headings:

n Output Variables

n Results Sets: The MS SQL Server and Sybase Method of Sending Data to the
Client

n Oracle: Cursor Variables for Returning Query Results

n MS SQL Server and Sybase: Multiple Results Sets

n MS SQL Server and Sybase: Cursors

Output Variables

MS SQL Server, Sybase, and Oracle can all send data to clients by means of output
variables.

Results Sets: The MS SQL Server and Sybase Method of Sending Data to the
Client

Many MS SQL Server and Sybase applications rely on the SQL Server-specific
stream-based data return method called "result sets". Oracle is optimized to return
data more efficiently when the data is requested using an ANSI-standard SQL
SELECT statement, as compared to any proprietary stored procedure method.
Therefore, the best design decision is to use stored procedures for data processing
and SELECT statements for queries.

In Oracle, the use of cursor variables allows client programs to retrieve
well-structured result sets.

To send even a single row back to the client from the stored procedure, MS SQL
Server and Sybase can use result sets instead of an ANSI-standard method.

For example:

Introduction

Triggers and Stored Procedures 3-5

CREATE PROCEDURE get_emp_rec @empid INT
AS

SELECT fname, lname, loginid, addr, title, dept, mgrid
FROM employee
WHERE empid = @empid

The above procedure can be converted to an Oracle PL/SQL procedure as follows:

CREATE OR REPLACE PROCEDURE get_emp_rec
(empid IN NUMBER,

fname OUT VARCHAR2,
lname OUT VARCHAR2,
loginid OUT VARCHAR2,
addr OUT VARCHAR2,
title OUT VARCHAR2,
dept OUT NUMBER,
mgrid OUT NUMBER)

AS
BEGIN

SELECT fname, lname, loginid, addr, title, dept, mgrid
INTO fname, lname, loginid, addr, title, dept, mgrid
FROM employee
WHERE empid = empid;

END;

Output variables are a structured way of sending data from server to client. Output
variables allow the caller to see the results in a predictable manner, as the structure
of the output variable is predefined. This method also allows encapsulation of
behavior of the stored procedures.

Output variables offer the following benefits:

n Facilitate better structuring of code

n Allow the caller to see the results in a structured and predictable way, as the
structure of the output variables is well defined

n Allow encapsulation of behavior of the called routine

If a third-party user interface product uses the result set capability of MS SQL
Server or Sybase, make sure that the same functionality can be made available to
the Oracle database. For example, PowerBuilder can use result sets to populate the
data windows.

Note that although many client programs (for example, Oracle Call Interface (OCI),
precompilers, SQL*Module, or SQL*Plus) can recognize cursor variables, most
Open Database Connectivity (ODBC) drivers cannot. One solution when using such

Introduction

3-6 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

ODBC drivers is to identify the code that produces the result set, and move this
code online in the client program. The Oracle8i ODBC Driver release 8.1.5.4.0 and
later releases support result sets.

In the following example, an MS SQL Server or Sybase stored procedure returns a
result set with multiple rows:

CREATE PROCEDURE make_loginid
BEGIN

update employee
set loginid = substring(fname,1,1) + convert(varchar(7),empid)

select fname, lname, loginid from employee
END

This procedure sends all the qualifying rows to the client as a continuous data
stream. To further process the rows, the client program must retrieve the rows one
after another from the communication channel.

The following piece of the DB-Library/C code executes the above procedure and
prints each row to the screen.

main()
{

/* Data structure dbproc is conceptually very similar
to CDA data structure used in Oracle's OCI/C programs */

dbcmd(dbproc, "exec make_loginid");
/* The above command sets the command buffer with the

transact-sql command that needs to be executed. */

dbsqlexec(dbproc);
/* This command causes the parsing and execution of the

SQL command on the server side. */

dbresults(dbproc);
/* This command puts the result rows onto the

communications channel. */

/*The following while loop retrieves the result rows one after the other
by calling the function dbnextrow repeatedly. Note that this

implementation is cursor implementation through DB-Library functions.
*/

while (dbnextrow(dbproc) != NO_MORE_ROWS)
{

dbprrow(dbproc);
/* This function prints the retrieved row to the standard output.

Introduction

Triggers and Stored Procedures 3-7

*/
}

Such MS SQL Server and Sybase stored procedures can be migrated to the Oracle
PL/SQL stored procedures or packages in different ways, as follows:

1. Place the final SELECT statement, which should return the result rows, in
the client program. The Oracle client can fetch the result rows from the
server as a multi-row array, and the entire process is very efficient.

2. Make use of PL/SQL tables. The SELECT statement in this case is part of
the stored procedure code and the columns in the result rows are stored in
PL/SQL tables. These tables are available to the client program as output
variables from the stored procedures.

3. This method is the default method used by the Migration Workbench. This
method is applicable only when it is extremely necessary to simulate the
looping mechanism of the MS SQL Server or Sybase client to retrieve the
result rows. This process is not recommended in Oracle because for each
row that has to be retrieved, a FETCH request must be sent to the server
from the client, thus creating more network traffic. In this case, an MS SQL
Server or Sybase stored procedure is converted to a package and a member
procedure. A cursor is defined with the package body; this cursor is
equivalent to the SELECT statement associated with the result set. The first
call to the procedure opens the cursor. Subsequent calls fetch and send the
next row back to the client in the form of output parameters. Once the last
row has been fetched, the cursor is closed.

Examples of these different Oracle solutions to the result set problem are presented
below:

1. If the SELECT statement is made part of the client code, the PL/SQL code for the
make_loginid procedure is as follows:

CREATE OR REPLACE PROCEDURE make_loginid
AS
BEGIN

update employee
set loginid = substr(lname,1,1)

||
substr(to_char(empid),1,7);

END;

The following SELECT statement becomes part of the client code:

Introduction

3-8 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

select fname, lname, loginid from employee

The following PL/SQL code shows how to migrate the make_loginid procedure
to Oracle by using PL/SQL tables as output parameters:

CREATE OR REPLACE PACKAGE make_loginid_pkg
IS
BEGIN

DECLARE EmpFnameTabType IS TABLE OF
employee.fname %TYPE
INDEX BY BINARY_INTEGER;

DECLARE EmpLnameTabType IS TABLE OF
employee.lname %TYPE
INDEX BY BINARY_INTEGER;

DECLARE EmpLoginidTabType IS TABLE OF
employee.loginid %TYPE
INDEX BY BINARY_INTEGER;

emp_fname_tab EmpFnameTabType;
emp_lname_tab EmpLnameTabType;
emp_loginid_tab EmpLoginidTabType;
PROCEDURE make_loginid

(emp_fname_tab OUT EmpFnameTabType,
emp_lname_tab OUT EmpLnameTabType,
emp_loginid_tab OUT EmpLoginidTabType);

END make_loginid_pkg;

The package body definition is as follows:

CREATE OR REPLACE PACKAGE BODY make_loginid_pkg
IS
BEGIN

PROCEDURE make_loginid
(emp_fname_tab OUT EmpFnameTabType,

emp_lname_tab OUT EmpLnameTabType,
emp_loginid_tab OUT EmpLoginidTabType)

AS
DECLARE i BINARY_INTEGER := 0;
BEGIN

update employee
set loginid = substr(fname,1,1)

||
substr(to_char(empid),1,7);

FOR emprec IN (select fname,lname,loginid
from employee) LOOP

i := i + 1;

Introduction

Triggers and Stored Procedures 3-9

emp_fname_tab[i] = emprec.fname;
emp_lname_tab[i] = emprec.lname;
emp_loginid_tab[i] = emprec.loginid;

END LOOP;
END make_loginid;

END make_loginid_pkg;

This procedure updates the PL/SQL tables with the data. This data is then available
to the client after the execution of this packaged procedure.

2. The following packaged procedure sends the rows one after the other to the client
upon each call to the packaged procedure. The make_loginid_pkg.update_
loginid procedure must be executed once and the make_loginid_pkg.fetch_
emprec procedure must be executed in a loop to fetch the rows one after another
from the client program.

The package definition is as follows:

CREATE OR REPLACE PACKAGE make_loginid_pkg
IS
BEGIN
PROCEDURE update_loginid;
PROCEDURE fetch_emprec

done_flag IN OUT INTEGER,
nrows IN OUT INTEGER,
fname OUT VARCHAR2,
lname OUT VARCHAR2,
loginid OUT VARCHAR2);

END make_loginid_pkg;

The package body definition is as follows:

CREATE OR REPLACE PACKAGE BODY make_loginid_pkg
IS
BEGIN
CURSOR emprec IS

select fname, lname, loginid
from employee;

PROCEDURE update_loginid
IS
BEGIN

update employee
set loginid = substr(fname,1,1) ||

substr(to_char(loginid),1,7);
END update_loginid;

Introduction

3-10 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

PROCEDURE fetch_emprec
done_flag IN OUT INTEGER,
nrows IN OUT INTEGER,
fname OUT VARCHAR2,
lname OUT VARCHAR2,
loginid OUT VARCHAR2)

IS
BEGIN

IF NOT emprec%ISOPEN THEN
OPEN emprec;
nrows := 0;

END IF;
done_flag := 0;
FETCH emprec INTO fname, lname, loginid;

IF emprec%NOTFOUND THEN
CLOSE emprec;

done_flag := 1;
ELSE

nrows := nrows + 1;
ENDIF;

END fetch_emprec;

END make_loginid_pkg;

Oracle: Cursor Variables for Returning Query Results

Oracle allows you to define a cursor variable to return query results. This cursor
variable is similar to the user-defined record type and array type. The cursor stored
in the cursor variable is like any other cursor. It is a reference to a work area
associated with a multi-row query. It denotes both the set of rows and a current row
in that set. The cursor referred to in the cursor variable can be opened, fetched from,
and closed just like any other cursor.

There is a difference; since it is a PL/SQL variable, it can be passed into and out of
procedures like any other PL/SQL variable. As a result, procedures which use
cursor variables are easily reusable. You can easily see what the output of the
procedure will be from looking at the procedure definition, and the same procedure
can be used to return the results of a SELECT statement to a calling client program.
Cursor variables can even be the return value of a function. The cursor variables
preserve well-structured programming concepts while allowing the client routine to
retrieve result sets.

Typically, the cursor would be declared in a client program (for example, OCI,
precompilers, SQL*Module, or SQL*Plus) and then passed as an IN OUT parameter

Introduction

Triggers and Stored Procedures 3-11

to the PL/SQL procedure. The procedure then opens the cursor based on a SELECT
statement. The calling program performs the FETCHs from the cursor, including
the possibility of using ARRAY FETCH to retrieve multiple rows in one network
message, and closes the cursor when it is done.

Pro*C Client:

...
struct emp_record {

char ename[11];
float sal;

}emp_record;
SQL_CURSOR c;

EXEC SQL EXECUTE
BEGIN

emp_package.open_emp(:c,1);
END;

END-EXEC;
...
/* fetch loop until done */
EXEC SQL FETCH :c INTO :emp_record;
...
CLOSE :c;
...

Oracle Server:

CREATE OR REPLACE PACKAGE emp_package IS
TYPE emp_part_rec IS RECORD
(ename emp.ename%type, sal emp.sal%type);
TYPE emp_cursor IS REF CURSOR

RETURN emp_part_rec;
PROCEDURE open_emp (c_emp IN OUT emp_cursor,

select_type IN NUMBER);
END emp_package;

CREATE OR REPLACE PACKAGE BODY emp_package IS
PROCEDURE open_emp (c_emp IN OUT emp_cursor,

select_type IN NUMBER) IS
BEGIN

IF select_type=1 THEN
OPEN c_emp FOR SELECT ename, sal FROM EMP

WHERE COMM IS NOT NULL;
ELSE

Introduction

3-12 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

OPEN c_emp FOR SELECT ename, sal FROM EMP;
END IF;

END open_emp;
END emp_package;

MS SQL Server and Sybase: Multiple Results Sets

MS SQL Server and Sybase stored procedures can return multiple different result
sets to the calling routine.

For example, consider the following procedure:

CREATE PROCEDURE example_proc
AS
BEGIN

SELECT empno, empname, empaddr FROM emp
WHERE empno BETWEEN 1000 and 2000

SELECT empno, deptno, deptname FROM emp, dept
WHERE emp.empno = dept.empno
AND emp.empno BETWEEN 1000 and 2000

END

This procedure returns two different result sets. The client is responsible for
processing the results. To convert MS SQL Server or Sybase multiple result sets to
Oracle, pass one more cursor variable to the stored procedure to open a second
cursor; the client program then looks at both cursor variables for data. However, it
can be difficult to track all the result sets in a single procedure. It is recommended
that you just use one result set, that is, one cursor variable per procedure, if
possible.

MS SQL Server and Sybase: Cursors

Cursors allow row-by-row operations on a given result set. MS SQL Server and
Sybase provide ANSI-standard SQL syntax to handle cursors. The additional
DECLARE CURSOR, OPEN, FETCH, CLOSE, and DEALLOCATE CURSOR clauses
are included in T-SQL. Using these statements you can achieve cursor manipulation
in a stored procedure. After FETCHing the individual row of a result set, this
current row can be modified with extensions provided with UPDATE and DELETE
statements.

The UPDATE statement syntax is as follows:

update <table_name>

Introduction

Triggers and Stored Procedures 3-13

set <column_name> = <expression>
from <table1>, <table_name>
where current of <cursor name>
The DELETE statement syntax is as follows:
delete from <table_name>
where current of <cursor name>
MS SQL Server and Sybase cursors map one-to-one with Oracle cursors.

Individual SQL Statements
In individual SQL statements, you should try to follow ANSI-standard SQL
whenever possible. However, there are cases where you need to use
database-specific SQL constructs, mostly for ease of use, simplicity of coding, and
performance enhancement. For example, MS SQL Server and Sybase constructs
such as the following are SQL Server-specific, and cannot be converted to Oracle
without manual intervention:

update <table_name>
set ...
from <table1>, <table_name>
where...

The manual intervention required to convert statements such as this can be seen in
the following examples:

MS SQL Server and Sybase:

DELETE sales
FROM sales, titles
WHERE sales.title_id = titles.title_id
AND titles.type = 'business'

Oracle:

DELETE
FROM sales
WHERE title_id IN

(SELECT title_id
FROM titles
WHERE type = 'business'
)

MS SQL Server and Sybase:

UPDATE titles
SET price = price + author_royalty

Introduction

3-14 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

FROM titles, title_author
WHERE titles.title.id = title_author.title_id

Oracle:

UPDATE titles O
SET price = (SELECT (O.price + I.author_royalty)

FROM title_author I
WHERE I.title_id = O.title_id)

WHERE EXISTS (SELECT 1
FROM title_author
WHERE title_author.title_id = O.title_id) ;

All the ANSI-standard SQL statements can be converted from one database to
another using automatic conversion utilities.

Logical Transaction Handling
In MS SQL Server and Sybase, transactions are explicit by definition. This implies
that an individual SQL statement is not part of a logical transaction by default. A
SQL statement belongs to a logical transaction if the transaction explicitly initiated
by the user with a BEGIN TRANSACTION (or BEGIN TRAN) statement is still in
effect. The logical transaction ends with a corresponding COMMIT
TRANSACTION (or COMMIT TRAN) or ROLLBACK TRANSACTION (or
ROLLBACK TRAN) statement. Each SQL statement that is not part of a logical
transaction is committed on completion.

In Oracle, transactions are implicit as set by the ANSI standard. The implicit
transaction model requires that each SQL statement is part of a logical transaction.
A new logical transaction is automatically initiated when a COMMIT or
ROLLBACK command is executed. This also implies that data changes from an
individual SQL statement are not committed to the database after execution. The
changes are committed to the database only when a COMMIT statement is run. The
differences in the transaction models impact the coding of application procedures.

Transaction-Handling Statements

For client/server applications, it is recommended that you make the
transaction-handling constructs part of the client procedures. The logical
transaction is always defined by client users, and they should control it. This
strategy is also more suitable for distributed transactions, where the two-phase
commit operations are necessary. Making the transaction-handling statements a
part of the client code serves a two-fold purpose; the server code is more portable,
and the distributed transactions can be independent of the server code. Try to avoid
using the BEGIN TRAN, ROLLBACK TRAN, and COMMIT TRAN statements in

Introduction

Triggers and Stored Procedures 3-15

the stored procedures. In MS SQL Server and Sybase, transactions are explicit. In
Oracle, transactions are implicit. If the transactions are handled by the client, the
application code residing on the server can be independent of the transaction
model.

Error Handling within the Stored Procedure
Oracle PL/SQL checks each SQL statement for errors before proceeding with the
next statement. If an error occurs, control immediately jumps to an exception
handler. This avoids you having to check the status of every SQL statement. For
example, if a SELECT statement does not find any rows in the database, an
exception is raised, and the code to deal with this error is executed.

In MS SQL Server and Sybase, you need not check for errors after each SQL
statement. Control is passed to the next statement, irrespective of the error
conditions generated by the previous statement. It is your responsibility to check for
errors after the execution of each SQL statement. Failure to do so may result in
erroneous results.

In Oracle, to simulate the behavior of MS SQL Server or Sybase and to pass the
control to the next statement regardless of the status of execution of the previous
SQL statement, you must enclose each SQL statement in an equivalent PL/SQL
block. This block must deal with all possible exceptions for that SQL statement.
Note that this coding style is required only to simulate MS SQL Server or Sybase
behavior. An Oracle PL/SQL procedure ideally has only one exception block, and
all error conditions are handled in that block.

Consider the following code in an MS SQL Server or Sybase stored procedure:

begin

select @x = col1 from table1 where col2 = @y
select @z = col3 from table2 where col4 = @x

end
In this code example, if the first SELECT statement does not return any rows, the
value of @xcould be UNDEFINED. If the control is passed on to the next statement
without raising an exception, the second statement will give incorrect results
because it requires the value of @x to be set by an earlier statement. In a similar
situation, Oracle PL/SQL raises a NO_DATA_FOUND exception if the first
statement fails.

RAISERROR Statement

Data Types

3-16 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

The MS SQL Server or Sybase RAISERROR statement does not return to the calling
routine. The error code and message is passed to the client, and the execution of the
stored procedure continues further. The Oracle RAISE_APPLICATION_ERROR
statement returns to the calling routine. As a standard, a RETURN statement must
appear after the RAISERROR statement in MS SQL Server or Sybase, so that it can
be converted to the Oracle RAISE_APPLICATION_ERROR statement.

Customized Error Messages

MS SQL Server and Sybase allow you to customize the error messages using a
system table. The system procedures allow the user to add error messages to the
system. Adding error messages to the MS SQL Server or Sybase system table is not
desirable because there is no equivalent on the Oracle system. This can be avoided
by maintaining a user-defined error messages table, located in the centralized
database. Standard routines can be written to add the error message to the table and
retrieve it whenever necessary. This method will serve a two-fold purpose: it will
ensure that the system is more portable across different types of database servers,
and it will give the administrator centralized control over the error messages.

Data Types
This section provides information about data types under the following headings:

n Local Variable

n Server Data Types

n Composite Data Types

Local Variable
T-SQL local variables can be any server data type except TEXT and IMAGE.
PL/SQL local variables can be any server data type including the following:

n BINARY_INTEGER

n BOOLEAN

PL/SQL local variables can also be either of the following composite data types
allowed by PL/SQL:

n RECORD

n TABLE

Schema Objects

Triggers and Stored Procedures 3-17

Server Data Types
See the Data Types section in Chapter 2 for a list of MS SQL Server and Sybase data
types and their equivalent Oracle data types.

Composite Data Types
MS SQL Server and Sybase do not have composite data types

Schema Objects
This section compares the following MS SQL Server, Sybase, and Oracle schema
objects:

n Procedure

n Function

n Package

n Package Body

Each schema object is compared in separate tables based on create, drop, execute
and alter, where applicable. The tables are divided into the following four sections

n Syntax

n Description

n Permissions

n Examples

Some tables are followed by a recommendations section that contains important
information about conversion implications.

Table 3–1 Composite Data Types in Oracle

Oracle Comments

RECORD You can declare a variable to be of type RECORD. Records
have uniquely named fields. Logically related data that is
dissimilar in type can be held together in a record as a logical
unit.

TABLE PL/SQL tables can have one column and a primary key,
neither of which can be named. The column can belong to any
scalar data type. The primary key must belong to type
BINARY_INTEGER.

Schema Objects

3-18 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

See the Schema Objects section in Chapter 2 for information about database schema
objects.

Procedure
This section provides the following tables for the schema object Procedure :

n Create

n Drop

n Execute

n Alter

Create

Table 3–2 Comparison of Creating the Procedure Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

CREATE PROCEDURE procedure
[@formal_parameter formal_
parameter_data type
[OUTPUT]
[= default_value]
[,@formal_parameter formal_
parameter_datatype[OUTPUT]
[= default_value]] ...

AS [BEGIN]
procedural_statements
[END]

Syntax:

CREATE [OR REPLACE] PROCEDURE
[schema.]procedure [(]
[formal_parameter [IN | OUT
| IN OUT] formal_parameter_data
type] [DEFAULT default_value] [,formal_
parameter [IN | OUT | IN OUT]
formal_parameter_data type] [DEFAULT
default_value]] ... [)]
IS | AS [local_variable
data type;]... BEGIN
PL/SQL statements | PL/SQL blocks
END;

Schema Objects

Triggers and Stored Procedures 3-19

Description:

The CREATE PROCEDURE
statement creates the named stored
procedure in the database.

You can optionally specify the
parameters passed to the procedure
as OUTPUT. Values of OUTPUT
variables are available to the calling
routine after the procedure is
executed. The parameters specified
without the OUTPUT keyword are
considered as input parameters.

The keyword AS indicates the start
of the body of the procedure.

The BEGIN and END keywords
that enclose the stored procedure
body are optional; all the
procedural statements contained in
the file after AS are considered part
of the stored procedure if BEGIN
and END are not used to mark
blocks.

See the T-SQL and PL/SQL
Language Elements section of this
chapter for more information about
the constructs allowed in T-SQL
procedures.

Description:

The OR REPLACE keywords replace the
procedure by the new definition if it already
exists.

The parameters passed to the PL/SQL
procedure can be specified as IN (input), OUT
(output only), or IN OUT (input and output). In
the absence of these keywords, the parameter is
assumed to be the "IN" parameter.

The keyword IS or AS indicates the start of the
procedure. The local variables are declared after
the keyword IS or AS and before the keyword
BEGIN.

The BEGIN and END keywords enclose the
body of the procedure.

Permissions:

You must have the CREATE
PROCEDURE system privilege to
create the stored procedures

Permissions:

To create a procedure in your own schema, you
must have the CREATE PROCEDURE system
privilege. To create a procedure in another
user's schema, you must have the CREATE
ANY PROCEDURE system privilege.

Table 3–2 Comparison of Creating the Procedure Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

3-20 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Recommendations:

Functionally identical parts can be identified in the T-SQL procedure and PL/SQL
procedure structure. It is, therefore, easy to automate the conversion of most of the
constructs from MS SQL Server or Sybase to Oracle.

OR REPLACE keywords in an Oracle CREATE PROCEDURE statement provide an
elegant way of recreating the procedure. In MS SQL Server and Sybase, the
procedure must be dropped explicitly before replacing it.

Drop

Example:

CREATE PROCEDURE myproc @cust
char(30)= space(30), @cust_id
int OUTPUT, @param3 datetime
OUTPUTAS BEGIN DECLARE @local_
var1 int, @local_var2 datetime
SELECT @local_var2 = getdate()
SELECT @param3 = @local_var2
SELECT @local_var1 = customer_
id FROM customer WHERE
customer = @cust SELECT @cust_

id = @local_var1 END

Example:

CREATE OR REPLACE PROCEDURE sam.credit (
acc_no IN NUMBER DEFAULT 0, acc IN
VARCHAR2, amount IN NUMBER, return_status
OUT NUMBER) AS BEGIN UPDATE accounts SET
balance = balance + amount WHERE account_
id = acc_no; EXCEPTION WHEN SQL%NOTFOUND
THEN RAISE_APPLICATION_ERROR (-20101,

‘Error updating accounts table’); END

Table 3–3 Comparison of Dropping the Procedure Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

DROP PROCEDURE procedure

Syntax:

DROP PROCEDURE [schema.]procedure

Description:

The procedure definition is deleted
from the data dictionary. All the
objects that reference this procedure
must have references to this
procedure removed

Description:

When a procedure is dropped, Oracle
invalidates all the local objects that reference the
dropped procedure

Table 3–2 Comparison of Creating the Procedure Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Triggers and Stored Procedures 3-21

Recommendations:

The above statement does not have any effect on the conversion process. This
information is provided for reference only.

Permissions:

Procedure owners can drop their
own procedures. A DBO can drop
any procedure.

Permissions:

The procedure must be in the schema of the
user or the user must have the DROP ANY
PROCEDURE system privilege to execute this
command

Example:

DROP PROCEDURE myproc

Example:

DROP PROCEDURE sam.credit;

Table 3–3 Comparison of Dropping the Procedure Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

3-22 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Execute
Table 3–4 Comparison of Executing the Procedure Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

EXEC [@return_value =]
procedure [[@formal_parameter
=] {@actual_parameter |
constant_literal} [OUT]]
[,[[@formal_parameter =]
{@actual_parameter | constant_
literal} [OUT]]] ...

Syntax:

procedure
[([{actual_parameter |

constant_literal |
formal_parameter =>

{actual_parameter |
constant_literal}

}]
[,{actual_parameter |

constant_literal |
formal_parameter =>

{actual_parameter |
constant_literal}

}]
)]

Schema Objects

Triggers and Stored Procedures 3-23

Description:

MS SQL Server and Sybase stored
procedures can only return integer
values to the calling routine using
the RETURN statement. In the
absence of a RETURN statement,
the stored procedure still returns a
return status to the calling routine.
This value can be captured in the
"return_value" variable.

The formal_parameter is the
parameter in the procedure
definition. The actual_parameter
is defined in the local block which
calls the procedure supplying the
value of the actual parameter for
the respective formal parameter.
The association between an actual
parameter and formal parameter
can be indicated using either
positional or named notation.

Positional notation:
The actual parameters are supplied
to the procedure in the same order
as the formal parameters in the
procedure definition.

Named notation:
The actual parameters are supplied
to the procedure in an order
different than that of the formal
parameters in the procedure
definition by using the name of the
formal parameter as:

@formal_parameter = @actual_
parameter

A constant literal can be specified in
the place of the following:

'@actual_parameter ' as:
@formal_parameter = 10

The keyword OUT should be specified if
the procedure has to return the value of
that parameter to the calling routine as
OUTPUT.

Description:

Oracle PL/SQL procedures send data back to
the calling routine by means of OUT
parameters. Oracle offers FUNCTIONS that are
a different type of schema objects. Functions
can return an atomic value to the calling routine
using the RETURN statement. The RETURN
statement can return value of any data type.

The formal_parameter is the parameter in the
procedure definition. The actual_parameter is
defined in the local block which calls the
procedure supplying the value of the actual
parameter for the respective formal parameter.
The association between an actual parameter
and formal parameter can be indicated using
either positional or named notation.

Positional notation:
The actual parameters are supplied to the
procedure in the same order as the formal
parameters in the procedure definition.

Named notation:
The actual parameters are supplied to the
procedure in an order different than that of the
formal parameters in the procedure definition
by using the name of the formal parameter as:

formal_parameter => actual_parameter

A constant literal can be specified in the place of
the following:

'actual_parameter'as:
formal_parameter => 10

If the formal_parameter is specified as OUT or
IN OUT in the procedure definition, the value
will be made available to the calling routine
after the execution of the procedure

Table 3–4 Comparison of Executing the Procedure Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

3-24 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Permissions:

The user should have the EXECUTE
permission on the stored procedure.
The user need not have explicit
privileges to access the underlying
objects referred to within the stored
procedure.

Permissions

The user should have the EXECUTE privilege
on the named procedure. The user need not
have explicit privileges to access the underlying
objects referred to within the PL/SQL
procedure

Example:

Positional notation:

EXEC GetEmplName @EmpID
EXEC @status =

GetAllDeptCodes
EXEC @status =

UpdateEmpSalary @EmpID,
@EmpName

EXEC UpdateEmpSalary
13000,'Joe Richards'

Named notation:

EXEC UpdateEmpSalary
@Employee = @EmpName,

@Employee_Id = @EmpID

Mixed notation:

EXEC UpdateEmpSalary
@EmpName, @Employee_Id =
@EmpID

EXEC UpdateEmpSalary
@Employee = @EmpName, @EmpID

Example:

Positional notation:

credit (accno, accname, amt, retstat);

Named notation:

credit (acc_no => accno, acc => accname,
amount => amt,

return_status => retstat)

Mixed notation (where positional notation
must precede named notation):

credit (accno, accname, amount => amt,
return_status => retstat)

Table 3–4 Comparison of Executing the Procedure Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Triggers and Stored Procedures 3-25

Alter

Function
This section provides the following tables for the schema object Function:

n Create

n Drop

n Execute

n Alter

Table 3–5 Comparison of Altering the Procedure Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

The system procedure SP_
RECOMPILE recompiles the named
stored procedure. For example:

ALTER PROCEDURE <procedure
name>
|RECOMPILE
|ENCRYPT
|RECOMPILE, ENCRYPT

Syntax:

ALTER PROCEDURE [schema.]procedure COMPILE

Description:

This command causes the
recompilation of the procedure.
Procedures that become invalid for
some reason should be recompiled
explicitly using this command.

Description:

This command causes the recompilation of the
procedure. Procedures that become invalid for
some reason should be recompiled explicitly
using this command. Explicit recompilation
eliminates the need for implicit recompilation
and prevents associated runtime compilation
errors and performance overhead

Permissions:

The owner of the procedure can
issue this command

Permissions:

The procedure must be in the user's schema or
the user must have the ALTER ANY
PROCEDURE privilege to use this command

Example:

sp_recompile my_proc

Example:

ALTER PROCEDURE sam.credit COMPILE;

Schema Objects

3-26 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Create

Table 3–6 Comparison of Creating the Function Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

In MS SQL Server and Sybase, a
stored procedure can be easily
converted to a function in Oracle
because the stored procedure in MS
SQL Server or Sybase can RETURN
an integer value to the calling
routine using a RETURN statement.
A stored procedure returns a status
value to the calling routine even in
the absence of a RETURN
statement. The returned status is
equal to ZERO if the procedure
execution is successful or
NON-ZERO if the procedure fails
for some reason. The RETURN
statement can return only integer
values

Syntax:

CREATE [OR REPLACE] FUNCTION
[user.]function [(parameter [OUT] data

type[,(parameter [IN OUT] data type]...)]

RETURN data type { IS | AS } block

N/A Description:

The OR REPLACE keywords replace the
function with the new definition if it already
exists.

Parameters passed to the PL/SQL function can
be specified as "IN" (input), "OUT" (output), or
"IN OUT" (input and output). In the absence of
these keywords the parameter is assumed to be
IN.

RETURN data type specifies the data type of
the function's return value. The data type can be
any data type supported by PL/SQL. See the
Data Types section in Chatper 2, Database for
more information about data types.

N/A Permissions:

To create a function in your own schema, you
must have the CREATE PROCEDURE system
privilege. To create a function in another user's
schema, you must have the CREATE ANY
PROCEDURE system privilege.

Schema Objects

Triggers and Stored Procedures 3-27

Drop

N/A Example:

CREATE FUNCTION get_bal
(acc_no IN NUMBER)

RETURN NUMBER
IS

acc_bal NUMBER(11,12);
BEGIN

SELECT balance
INTO acc_bal
FROM accounts
WHERE account_id = acc_no;

RETURN(acc_bal);
END;

Table 3–7 Comparison of Dropping the Function Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

N/A Syntax:

DROP FUNCTION [schema.]function

N/A Description:

When a function is dropped, Oracle invalidates
all the local objects that reference the dropped
function.

N/A Permissions:

The function must be in the schema of the user
or the user must have the DROP ANY
PROCEDURE system privilege to execute this
command

N/A Example:

DROP FUNCTION sam.credit;

Table 3–6 Comparison of Creating the Function Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

3-28 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Execute

Table 3–8 Comparison of Executing the Function Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

N/A Syntax:

function [({actual_parameter | constant_
literal}...)]

N/A Description:

Functions can return an atomic value to the
calling routine using the RETURN statement.

A function can be called as part of an
expression. This is a very powerful concept. All
the MS SQL Server and Sybase built-in
functions can be coded using PL/SQL, and
these functions can be called like any other
built-in functions in an expression, starting with
Oracle.

N/A Permissions:

You should have the EXECUTE privilege on the
function to execute the named function. You
need not have explicit privileges to access the
underlying objects that are referred to within
the PL/SQL function.

N/A Example:

1) IF sal_ok (new_sal, new_title) THEN
....
END IF;

2) promotable:=
sal_ok(new_sal, new_title) AND
(rating>3);

where sal_ok is a function that returns a
BOOLEAN value.

Schema Objects

Triggers and Stored Procedures 3-29

Alter

Package
This section provides the following tables for the schema object Package:

n Create

n Drop

n Alter

Table 3–9 Comparison of Altering the Function Schema Object in Oracle and MS SQL
Server 7.0

MS SQL Server Oracle

N/A Syntax:

ALTER FUNCTION [schema.]function COMPILE

N/A Description:

This command causes the recompilation of a
function. Functions become invalid if the objects
that are referenced from within the function are
dropped or altered. Functions that become
invalid for some reason should be recompiled
explicitly using this command. Explicit
recompilation eliminates the need for implicit
recompilation and prevents associated runtime
compilation errors and performance overhead.

N/A Permissions:

The function must be in the user's schema or the
user must have the ALTER ANY PROCEDURE
privilege to use this command

N/A Example:

ALTER FUNCTION sam.credit COMPILE

Schema Objects

3-30 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Create

Table 3–10 Comparison of Creating the Package Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

MS SQL Server and Sybase
do not support this
concept.

Syntax:

CREATE [OR REPLACE] PACKAGE [user.]package {IS | AS}
{variable_declaration | cursor_specification |
exception_declaration | record_declaration | plsql_
table_declaration | procedure_specification | function_
specification | [{variable_declaration | cursor_
specification | exception_declaration | record_
declaration | plsql_table_declaration | procedure_

specification | function_specification};]...}

END [package]

N/A Description:

This is the external or public part of the package.

CREATE PACKAGE sets up the specification for a PL/SQL
package which can be a group of procedures, functions,
exception, variables, constants, and cursors.

Functions and procedures of the package can share data
through variables, constants, and cursors.

The OR REPLACE keywords replace the package by the new
definition if it already exists. This requires recompilation of the
package and any objects that depend on its specification.

N/A Permissions:

To create a package in the user's own schema, the user must
have the CREATE PROCEDURE system privilege. To create a
package in another user's schema, the user must have the
CREATE ANY PROCEDURE system privilege.

Schema Objects

Triggers and Stored Procedures 3-31

Drop

N/A Example:

CREATE PACKAGE emp_actions AS
-- specification
TYPE EmpRecTyp IS RECORD (emp_id INTEGER, salary

REAL);
CURSOR desc_salary (emp_id NUMBER) RETURN EmpRecTyp;

PROCEDURE hire_employee
(ename CHAR,

job CHAR,
mgr NUMBER,
sal NUMBER,
comm NUMBER,
deptno NUMBER);

PROCEDURE fire-employee (emp_id NUMBER);
END emp_actions;

Table 3–11 Comparison of Dropping the Package Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

MS SQL Server and Sybase do not
support this concept.

Syntax:

DROP PACKAGE [BODY] [schema.]package

N/A Description:

The BODY option drops only the body of the
package. If you omit BODY, Oracle drops both
the body and specification of the package. If
you drop the body and specification of the
package, Oracle invalidates any local objects
that depend on the package specification.

schema. is the schema containing the package.
If you omit schema, Oracle assumes the
package is in your own schema.

When a package is dropped, Oracle invalidates
all the local objects that reference the dropped
package.

Table 3–10 Comparison of Creating the Package Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

3-32 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Alter

N/A Permissions:

The package must be in the schema of the user
or the user must have the DROP ANY
PROCEDURE system privilege to execute this
command.

N/A Example:

DROP PACKAGE emp_actions;

Table 3–12

MS SQL Server Oracle

Syntax:

MS SQL Server and Sybase do not
support this concept.

Syntax:

ALTER PACKAGE [user.]package COMPILE
[PACKAGE | BODY]

N/A Description:

Packages that become invalid for some reason
should be recompiled explicitly using this
command.

This command causes the recompilation of all
package objects together. You cannot use the
ALTER PROCEDURE or ALTER FUNCTION
commands to individually recompile a
procedure or function that is part of a package.

PACKAGE, the default option, recompiles the
package body and specification.

BODY recompiles only the package body.

Explicit recompilation eliminates the need for
implicit recompilation and prevents associated
runtime compilation errors and performance
overhead.

N/A Permissions:

The package must be in the user's schema or the
user must have the ALTER ANY PROCEDURE
privilege to use this command.

Table 3–11 Comparison of Dropping the Package Schema Object in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Triggers and Stored Procedures 3-33

Package Body
This section provides the following tables for the schema object Package Body:

n Create

n Drop

n Alter

Create

N/A Example:

ALTER PACKAGE emp_actions COMPILE PACKAGE

Table 3–13 Comparison of Creating the Package Body Schema Object in Oracle and
MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

MS SQL Server and Sybase do not
support this concept.

Syntax:

CREATE [OR REPLACE] PACKAGE BODY
[schema.]package
{IS | AS} pl/sql_package_body

Table 3–12

MS SQL Server Oracle

Schema Objects

3-34 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

N/A Description:

This is the internal or private part of the
package.

CREATE PACKAGE creates the body of a
stored package.

OR REPLACE recreates the package body if it
already exists. If you change a package body,
Oracle recompiles it.

schema. is the schema to contain the package. If
omitted, the package is created in your current
schema.

package is the of the package to be created.

pl/sql_package_body is the package body
which can declare and define program objects.
See the PL/SQL User’s Guide and Reference,
Release 2 (8.1.6) (Part Number A77069-01) for
more information on writing package bodies.

N/A Permissions:

To create a package in your own schema, you
must have the CREATE PROCEDURE
privilege. To create a package in another user's
schema, you must have the CREATE ANY
PROCEDURE privilege.

Table 3–13 Comparison of Creating the Package Body Schema Object in Oracle and
MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

Triggers and Stored Procedures 3-35

Drop

N/A Example:

CREATE PACKAGE BODY emp_actions AS
-- body

CURSOR desc_salary (emp_id NUMBER)
RETURN EmpRecTyp IS
SELECT empno, sal FROM emp
ORDER BY sal DESC;

PROCEDURE hire_employee
(ename CHAR,

job CHAR,
mgr NUMBER,
sal NUMBER,
comm NUMBER,
deptno NUMBER) IS

BEGIN
INSERT INTO emp VALUES

(empno_seq.NEXTVAL, ename,
job, mgr, SYSDATE, sal,
comm, deptno);

END hire_employee;

PROCEDURE fire_employee
(emp_id NUMBER) IS

BEGIN
DELETE FROM emp
WHERE empno = emp_id;

END fire_employee;

END emp_actions;

Table 3–14 Comparison of Dropping the Package Body Schema Object in Oracle and
MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Syntax:

MS SQL Server and Sybase
do not support this
concept.

Syntax:

DROP PACKAGE [BODY] [schema.]package

Table 3–13 Comparison of Creating the Package Body Schema Object in Oracle and
MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Schema Objects

3-36 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Alter

N/A Description:

The BODYoption drops only the body of the package. If you
omit BODY, Oracle drops both the body and specification of the
package. If you drop the body and specification of the package,
Oracle invalidates any local objects that depend on the package
specification.

schema. is the schema containing the package. If you omit
schema., Oracle assumes the package is in your own schema.

When a package is dropped, Oracle invalidates all the local
objects that reference the dropped package.

N/A Permissions:

The package must be in the your own schema or you must
have the DROP ANY PROCEDURE system privilege to
execute this command.

N/A Example:

DROP PACKAGE BODY emp_actions;

Table 3–15

MS SQL Server/Sybase Oracle

Syntax:

MS SQL Server and Sybase do not
support this concept.

Syntax:

ALTER PACKAGE [user.]package COMPILE
[PACKAGE | BODY]

Table 3–14 Comparison of Dropping the Package Body Schema Object in Oracle and
MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

T-SQL Versus PL/SQL Constructs

Triggers and Stored Procedures 3-37

T-SQL Versus PL/SQL Constructs
This section provides information about the MS SQL Server and Sybase constructs
and equivalent Oracle constructs generated by the Migration Workbench. The
conversions of the following constructs are discussed in detail:

n CREATE PROCEDURE Statement

n Parameter Passing

n DECLARE Statement

n IF Statement

n RETURN Statement

N/A Description:

Packages that become invalid for some reason
should be recompiled explicitly using this
command.

This command causes the recompilation of all
package objects together. You cannot use the
ALTER PROCEDURE or ALTER FUNCTION
commands to individually recompile a
procedure or function that is part of a package.

PACKAGE, the default option, recompiles the
package body and specification.

BODY recompiles only the package body.

Explicit recompilation eliminates the need for
implicit recompilation and prevents associated
runtime compilation errors and performance
overhead.

N/A Permissions:

The package must be your own schema or you
must have the ALTER ANY PROCEDURE
privilege to use this command.

N/A Example:

ALTER PACKAGE emp_actions COMPILE
BODY

Table 3–15

MS SQL Server/Sybase Oracle

T-SQL Versus PL/SQL Constructs

3-38 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

n RAISERROR Statement

n EXECUTE Statement

n WHILE Statement

n GOTO Statement

n @@Rowcount and @@Error Variables

n ASSIGNMENT Statement

n SELECT Statement

n SELECT Statement as Part of the SELECT List

n SELECT Statement with GROUP BY Clause

n Column Aliases

n UPDATE with FROM Statement

n DELETE with FROM Statement

n Temporary Tables

n Result Set (Converted Using a Cursor Variable)

n Cursor Handling

n Transaction Handling Statements

You will find listed the syntax for the MS SQL Server and Sybase constructs and
their Oracle equivalents, as well as comments about conversion considerations.

Note that the procedures in the Oracle column are the direct output of the
Migration Workbench. These PL/SQL procedures have more lines of code
compared to the source MS SQL Server and Sybase procedures because these
PL/SQL procedures are converted to emulate MS SQL Server and Sybase
functionality. The PL/SQL procedures written from scratch for the same
functionality in Oracle would be much more compact.

Also, note that the PL/SQL procedures generated by the Migration Workbench
indicate the manual conversion required by adding appropriate commands.

In general, the Migration Workbench deals with the MS SQL Server and Sybase
T-SQL constructs in one of the following ways:

n The ANSI-standard SQL statements are converted to PL/SQL because it
supports ANSI-standard SQL.

T-SQL Versus PL/SQL Constructs

Triggers and Stored Procedures 3-39

n MS SQL Server-specific constructs are converted into PL/SQL constructs if
the equivalent constructs are available in PL/SQL.

n Some MS SQL Server-specific constructs are ignored and appropriate
comments are incorporated in the output file.

n Constructs that require manual conversion are wrapped around with
proper comments in the output file.

n For MS SQL Server-specific constructs that result in syntax errors, an
appropriate error message is displayed including the line number.

CREATE PROCEDURE Statement

Comments

An MS SQL Server or Sybase stored procedure can be converted to a stored
procedure, a function, or a package in Oracle. The output depends upon the option
used when running the Migration Workbench.

The Migration Workbench automatically adds what is necessary to simulate MS
SQL Server or Sybase functionality. In the example in Table 3-16 above, the
Migration Workbench added the following three variables:

StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;

Table 3–16 Comparison of CREATE PROCEDURE Statement in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

CREATE PROC proc1
AS
RETURN 0

CREATE OR REPLACE FUNCTION PROC1
RETURN INTEGER
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
BEGIN

RETURN 0;
END PROC1;
/

T-SQL Versus PL/SQL Constructs

3-40 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

These variables are needed in the EXCEPTION clause in the PL/SQL procedures
that must be added for each SQL statement to emulate MS SQL Server or Sybase
functionality. See the SELECT Statement topic in this section for clarification of the
purpose of these variables.

Note that the REPLACEkeyword is added to replace procedure, function, or
package if it already exists.

Parameter Passing

Comments

Parameter passing is almost the same in MS SQL Server, Sybase, and Oracle. By
default, all the parameters are INPUT parameters, if not specified otherwise.

The value of the INPUT parameter cannot be changed from within the PL/SQL
procedure. Thus, an INPUT parameter cannot be assigned any values nor can it be
passed to another procedure as an OUT parameter. In Oracle, only IN parameters
can be assigned a default value.

The @ sign in a parameter name declaration is removed in Oracle.

In Oracle, the parameter data type definition does not include length/size.

Table 3–17 Comparison of Parameter Passing in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

CREATE PROC proc1
@x int=-1,
@y money,
@z bit OUT,
@a char(20) = 'TEST'
AS

RETURN 0

CREATE OR REPLACE FUNCTION PROC1(
x INTEGER DEFAULT -1,
y NUMBER ,
z IN OUT NUMBER,
a CHAR DEFAULT 'TEST')
RETURN INTEGER
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
BEGIN

RETURN 0;
END PROC1;
/

T-SQL Versus PL/SQL Constructs

Triggers and Stored Procedures 3-41

MS SQL Server and Sybase data types are converted to Oracle base data types. For
example, all MS SQL Server and Sybase numeric data types are converted to
NUMBER and all alphanumeric data types are converted to VARCHAR2 and
CHAR in Oracle.

DECLARE Statement

Comments

MS SQL Server, Sybase, and Oracle follow similar rules for declaring local variables.

The Migration Workbench overrides the scope rule for variable declarations. As a
result, all the local variables are defined at the top of the procedure body in Oracle.

Table 3–18 Comparison of DECLARE Statement in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

CREATE PROC proc1
AS
DECLARE

@x int,
@y money,
@z bit,
@a char(20)

RETURN 0
GO

CREATE OR REPLACE FUNCTION PROC1
RETURN INTEGER
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
x INTEGER;
y NUMBER;
z NUMBER;
a CHAR(20);
BEGIN

RETURN 0;
END PROC1;

/

T-SQL Versus PL/SQL Constructs

3-42 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

IF Statement

Table 3–19 Comparison of IF Statement in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Example 1:

CREATE PROC proc1 @Flag int
= 0
AS
BEGIN
DECLARE @x int
IF (@Flag=0)

SELECT @x = -1
ELSE

SELECT @x = 10
END

Example 1:

CREATE OR REPLACE PROCEDURE PROC1(
Flag INTEGER DEFAULT 0)
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
x INTEGER;
BEGIN

IF (PROC1.Flag = 0) THEN
PROC1.x := -1;

ELSE
PROC1.x := 10;

END IF;
END;
/

T-SQL Versus PL/SQL Constructs

Triggers and Stored Procedures 3-43

Example 2:

CREATE PROC proc1 @Flag
char(2) = ''
AS
BEGIN
DECLARE @x int
IF (@Flag='')

SELECT @x = -1
ELSE IF (@Flag = 'a')

SELECT @x = 10
ELSE IF (@Flag = 'b')

SELECT @x = 20
END

Example 2:

CREATE OR REPLACE PROCEDURE PROC1(
Flag CHAR DEFAULT ' ')
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;

StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
x INTEGER;
BEGIN

IF (PROC1.Flag = ' ') THEN
PROC1.x := -1;

ELSE
IF (PROC1.Flag = 'a') THEN

PROC1.x := 10;
ELSE

IF (PROC1.Flag = 'b') THEN
PROC1.x := 20;

END IF;
END IF;

END IF;
END;
/

Table 3–19 Comparison of IF Statement in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

T-SQL Versus PL/SQL Constructs

3-44 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Example 3:

CREATE PROC proc1
AS
BEGIN
DECLARE @x int
IF EXISTS (SELECT * FROM
table2)

SELECT @x = -1
END

Example 3:

CREATE OR REPLACE PROCEDURE PROC1
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
x INTEGER;
BEGIN

BEGIN
StoO_selcnt := 0;
StoO_error := 0;
StoO_rowcnt := 0;
SELECT 1 INTO StoO_selcnt
FROM DUAL
WHERE EXISTS (

SELECT *
FROM TABLE2);

StoO_rowcnt := SQL%ROWCOUNT;
EXCEPTION

WHEN OTHERS THEN
StoO_selcnt := 0;
StoO_error := SQLCODE;
StoO_errmsg := SQLERRM;

END;
IF StoO_selcnt != 0 THEN

PROC1.x := -1;
END IF;

END;
/

Table 3–19 Comparison of IF Statement in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

T-SQL Versus PL/SQL Constructs

Triggers and Stored Procedures 3-45

Example 4:

CREATE PROC proc1 @basesal
money, @empid int
AS
BEGIN

IF (select sal from emp where
empid = @empid) < @basesal

UPDATE emp
SET sal_flag = -1
WHERE empid = @empid

END

Example 4:

CREATE OR REPLACE PROCEDURE PROC1(
basesal NUMBER ,
empid INTEGER)
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
BEGIN

BEGIN
StoO_selcnt := 0;
StoO_error := 0;
StoO_rowcnt := 0;
SELECT 1 INTO StoO_selcnt
FROM DUAL
WHERE (

SELECT SAL
FROM EMP

WHERE EMPID =
PROC1.empid)<PROC1.basesal;

StoO_rowcnt := SQL%ROWCOUNT;
EXCEPTION

WHEN OTHERS THEN
StoO_selcnt := 0;

StoO_error := SQLCODE;
StoO_errmsg := SQLERRM;

END;
IF StoO_selcnt != 0 THEN

BEGIN
StoO_error := 0;
StoO_rowcnt := 0;
UPDATE EMP
SET SAL_FLAG = -1

WHERE EMPID = PROC1.empid;
StoO_rowcnt := SQL%ROWCOUNT;

EXCEPTION
WHEN OTHERS THEN

StoO_error := SQLCODE;
StoO_errmsg := SQLERRM;

END;
END IF;

END;
/

Table 3–19 Comparison of IF Statement in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

T-SQL Versus PL/SQL Constructs

3-46 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Comments

IF statements in MS SQL Server, Sybase, and Oracle are nearly the same except in
the following two cases:

If EXISTS(...) in MS SQL Server and Sybase does not have an equivalent PL/SQL
construct. Therefore, it is converted to a SELECT INTO WHERE EXISTS clause and
an IF statement as shown in Example 3 above.

IF (SELECT...) with comparison does not have an equivalent PL/SQL construct.
Therefore, it is converted to a SELECT INTO...WHERE... clause, as shown in
Example 4 above.

RETURN Statement

Comments

A RETURN statement is used to return a single value back to the calling program
and works the same in both databases. MS SQL Server and Sybase can return only
the numeric data type, while Oracle can return any of the server data types or the
PL/SQL data types.

Table 3–20 Comparison of RETURN Statement in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

CREATE PROC proc1
@x int
AS
IF @x = -1

RETURN 25022
ELSE

RETURN 25011

CREATE OR REPLACE FUNCTION PROC1(
x INTEGER)
RETURN INTEGER
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
BEGIN

IF PROC1.x = -1 THEN
RETURN 25022;

ELSE
RETURN 25011;

END IF;
END PROC1;
/

T-SQL Versus PL/SQL Constructs

Triggers and Stored Procedures 3-47

In a PL/SQL procedure, a RETURN statement can only return the control back to
the calling program without returning any data. For this reason, the value is
commented out if the MS SQL Server or Sybase procedure is converted to a
PL/SQL procedure, but not commented out if converted to a PL/SQL function. The
Migration Workbench does this automatically.

RAISERROR Statement

Comments

MS SQL Server and Sybase use RAISERROR to notify the client program of any
error that occurred. This statement does not end the execution of the procedure, and
the control is passed to the next statement.

PL/SQL provides similar functionality with RAISE_APPLICATION_ERROR
statements.However, it ends the execution of the stored subprogram and returns
the control to the calling program. It is equivalent to a combination of RAISERROR
and a RETURN statement.

The Migration Workbench copies the error code and error message from a
RAISERROR statement and places them in the RAISE_APPLICATION_ERROR
statement appended to the error message.

Table 3–21 Comparison of RAISERROR Statement in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

CREATE PROC proc1
AS

RAISERROR 12345 "No
Employees found"

CREATE OR REPLACE PROCEDURE PROC1
AS

StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;

BEGIN

raise_application_error(-20999, 12345 ||
'-' || "No Employees Found");

END PROC1;
/

T-SQL Versus PL/SQL Constructs

3-48 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

EXECUTE Statement

Table 3–22 Comparison of EXECUTE Statement in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

CREATE PROC proc1
AS

EXEC SetExistFlag
EXEC SetExistFlag yes=@yes,
@Status OUT
EXEC @Status = RecordExists
EXEC SetExistFlag @yes

CREATE OR REPLACE PROCEDURE PROC1
AS

StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;

BEGIN
BEGIN
SETEXISTFLAG;

EXCEPTION
WHEN OTHERS THEN

StoO_error := SQLCODE;
StoO_errmsg := SQLERRM;

END;
BEGIN

SETEXISTFLAG(=>PROC1.yes,
PROC1.Status);

EXCEPTION
WHEN OTHERS THEN

StoO_error :=
SQLCODE;

StoO_errmsg :=
SQLERRM;
END;

BEGIN
PROC1.Status:=RECORDEXISTS;
EXCEPTION
WHEN OTHERS THEN

StoO_error := SQLCODE;
StoO_errmsg := SQLERRM;

END;
BEGIN

SETEXISTFLAG(PROC1.yes);
EXCEPTION
WHEN OTHERS THEN

StoO_error := SQLCODE;
StoO_errmsg := SQLERRM;

END;
END PROC1;

/

T-SQL Versus PL/SQL Constructs

Triggers and Stored Procedures 3-49

Comments

The EXECUTE statement is used to execute another stored procedure from within a
procedure. In PL/SQL, the procedure is called by its name within the PL/SQL
block. If a procedure is converted to a PL/SQL function, make sure to assign the
RETURN value to a variable when calling it (see the call to RecordExists in Table
3-22 above).

The Migration Workbench converts the parameter-calling convention to be either
positional, named, or mixed. For information on parameter-calling conventions, see
the Schema Objects section in this chapter.

WHILE Statement

Table 3–23 Comparison of WHILE Statement in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

Example 1:

CREATE PROC proc1
@i int
AS

WHILE @i > 0

BEGIN
print 'Looping inside

WHILE....'
SELECT @i = @i + 1

END

Example 1:

CREATEORREPLACEPROCEDUREPROC1(
in_i IN INTEGER)

AS

StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
i INTEGER;
BEGIN

PROC1.i := PROC1.in_i;
<<i_loop1>>

WHILE PROC1.i > 0 LOOP
BEGIN
DBMS_OUTPUT.PUT_LINE('Looping inside
while.....') ;

PROC1.i := PROC1.i + 1;
END;

END LOOP;
END PROC1;

/

T-SQL Versus PL/SQL Constructs

3-50 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Example 2:

CREATE PROC proc1
@i int,
@y int
AS

WHILE @i > 0
BEGIN

print 'Looping
inside WHILE....'

SELECT @i = @i + 1
END

Example 2:

CREATE OR REPLACE PROCEDURE PROC1(
in_i IN INTEGER ,

y INTEGER)
AS

StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;

i INTEGER;
BEGIN
PROC1.i := PROC1.in_i;

<<i_loop1>>
WHILE PROC1.i > 0 LOOP

BEGIN
DBMS_OUTPUT.PUT_LINE('Looping inside
while.....') ;
PROC1.i := PROC1.i + 1;
END;
END LOOP;
END PROC1;
/

Table 3–23 Comparison of WHILE Statement in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

T-SQL Versus PL/SQL Constructs

Triggers and Stored Procedures 3-51

Example 3:

CREATE PROC proc1
AS
DECLARE @sal money
SELECT @sal = 0
WHILE EXISTS(SELECT * FROM emp

where sal < @sal)
BEGIN

SELECT @sal = @sal + 99

DELETE emp
WHERE sal < @sal

END
GO

Example 3:

CREATE OR REPLACE PROCEDURE PROC1
AS

StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
sal NUMBER;

BEGIN
PROC1.sal := 0;

<<i_loop1>>
WHILE 1 = 1 LOOP

BEGIN
BEGIN
StoO_selcnt := 0;
StoO_error := 0;
SELECT 1 INTO StoO_selcnt FROM DUAL
WHERE (EXISTS (
SELECT *
FROM EMP
WHERE SAL < PROC1.sal));
EXCEPTION

WHEN OTHERS THEN
StoO_selcnt := 0;
StoO_error := SQLCODE;
StoO_errmsg := SQLERRM;

END;
IF StoO_selcnt != 1 THEN

EXIT;
END IF;

PROC1.sal := PROC1.sal + 99;
BEGIN

StoO_error := 0;
StoO_rowcnt := 0;
DELETE EMP

WHERE SAL < PROC1.sal;
StoO_rowcnt := SQL%ROWCOUNT;
EXCEPTION

WHEN OTHERS THEN
StoO_error := SQLCODE;
StoO_errmsg := SQLERRM;

END;
END;

END LOOP;
END PROC1;

/

Table 3–23 Comparison of WHILE Statement in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

T-SQL Versus PL/SQL Constructs

3-52 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Example 4:

CREATE PROC proc1
AS

DECLARE @sal money

WHILE (SELECT count (*) FROM emp
) > 0

BEGIN
SELECT @sal = max(sal) from emp

WHERE stat = 1

DELETE emp
WHERE sal < @sal

END
GO

Example 4:

CREATE OR REPLACE PROCEDURE PROC1
AS

StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;

sal NUMBER;
BEGIN

<<i_loop1>>
WHILE 1 = 1 LOOP
BEGIN

BEGIN
StoO_selcnt := 0;
StoO_error := 0;
SELECT 1 INTO StoO_selcnt FROM DUAL
WHERE ((
SELECT COUNT(*)
FROM EMP)>0);
EXCEPTION
WHEN OTHERS THEN
StoO_selcnt := 0;
StoO_error := SQLCODE;
StoO_errmsg := SQLERRM;
END;
IF StoO_selcnt != 1 THEN
EXIT;
END IF;
BEGIN
StoO_rowcnt := 0;
StoO_selcnt := 0;
StoO_error := 0;

SELECT MAX(SAL)
INTO PROC1.sal FROM EMP
WHERE STAT = 1;

StoO_rowcnt := SQL%ROWCOUNT;
EXCEPTION

WHEN TOO_MANY_ROWS THEN
StoO_rowcnt := 2;

WHEN OTHERS THEN
StoO_rowcnt := 0;
StoO_selcnt := 0;
StoO_error := SQLCODE;
StoO_errmsg := SQLERRM;

END;
BEGIN

StoO_error := 0;
StoO_rowcnt := 0;

DELETE EMP
WHERE SAL < PROC1.sal;

StoO_rowcnt := SQL%ROWCOUNT;
EXCEPTION

WHEN OTHERS THEN
StoO_error := SQLCODE;

StoO_errmsg := SQLERRM;
END;
END;
END LOOP;
END PROC1;
/

Table 3–23 Comparison of WHILE Statement in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

T-SQL Versus PL/SQL Constructs

Triggers and Stored Procedures 3-53

Comments

The Migration Workbench can convert most WHILE constructs. However, the
CONTINUE within a WHILE loop in MS SQL Server and Sybase does not have a
direct equivalent in PL/SQL. It is simulated using the GOTO statement with a label.
Because the Migration Workbench is a single-pass parser, it adds a label statement
at the very beginning of every WHILE loop (see Example 2 in Table 3-23 above).

GOTO Statement

Comments

The GOTO <label> statement is converted automatically. No manual changes are
required.

Table 3–24 Comparison of GOTO Statement in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

CREATE PROC proc1 @Status int
AS
DECLARE @j int

IF @Status = -1
GOTO Error

SELECT @j = -1
Error:

SELECT @j = -99

CREATE OR REPLACE PROCEDURE PROC1(
Status INTEGER)
AS

StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;

j INTEGER;
BEGIN

IF PROC1.Status = -1 THEN
GOTO ERROR;
END IF;
PROC1.j := -1;

<<ERROR>>
PROC1.j := 99;

END PROC1;
/

T-SQL Versus PL/SQL Constructs

3-54 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

@@Rowcount and @@Error Variables

Comments

@@rowcount is converted to StoO_rowcnt, which takes its value from the PL/SQL
cursor attribute SQL%ROWCOUNT.

@@error is converted to StoO_error, which contains the value returned by the
SQLCODE function. The value returned by SQLCODE should only be assigned
within an exception block; otherwise, it returns a value of zero. This requires that
the Migration Workbench add a local exception block around every SQL statement

Table 3–25 Comparison of @@Rowcount and @@Error Variables in Oracle and MS
SQL Server/Sybase

MS SQL Server/Sybase Oracle

CREATE PROC proc1
AS

DECLARE @x int
SELECT @x=count(*) FROM emp

IF @@rowcount = 0
print 'No rows found.'

IF @@error = 0
print 'No errors.'

CREATE OR REPLACE PROCEDURE proc1
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;

i_x INTEGER;
BEGIN
BEGIN

SELECT count(*)
INTO i_x
FROM emp;

StoO_rowcnt := SQL%ROWCOUNT;
EXCEPTION
WHEN TOO_MANY_ROWS THEN
StoO_rowcnt := 2;
WHEN OTHERS THEN
StoO_rowcnt := 0;
StoO_selcnt := 0;
StoO_error := SQLCODE;
END;
IF StoO_rowcnt = 0 THEN
DBMS_OUTPUT.PUT_LINE
('No rows found.') ;
END IF;
IF StoO_error = 0 THEN
DBMS_OUTPUT.PUT_LINE('No errors.') ;
END IF;
END;
/

T-SQL Versus PL/SQL Constructs

Triggers and Stored Procedures 3-55

and a few PL/SQL statements. Other global variables are converted with a warning
message. These may need to be converted manually.

ASSIGNMENT Statement

Table 3–26 Comparison of ASSIGNMENT Statement in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

CREATE PROC proc1
AS
DECLARE @x int

SELECT @x = -1
SELECT @x=sum(salary) FROM

employee

CREATE OR REPLACE PROCEDURE PROC1
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
x INTEGER;
BEGIN

PROC1.x := -1;
BEGIN

StoO_rowcnt := 0;
StoO_selcnt := 0;
StoO_error := 0;

SELECT SUM(SALARY)
INTO PROC1.x FROM

EMPLOYEE;
StoO_rowcnt :=

SQL%ROWCOUNT;

EXCEPTION
WHEN TOO_MANY_ROWS THEN

StoO_rowcnt := 2;
WHEN OTHERS THEN
StoO_rowcnt := 0;
StoO_selcnt := 0;
StoO_error := SQLCODE;
StoO_errmsg := SQLERRM;

END;
END PROC1;
/

T-SQL Versus PL/SQL Constructs

3-56 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Comments

Assignment in MS SQL Server and Sybase is done using the SELECT statement as
illustrated in Table 3-26.

PL/SQL assigns values to a variable as follows:

It uses the assignment statement to assign the value of a variable or an expression to
a local variable. It assigns a value from a database using the SELECT..INTO clause.
This requires that the SQL returns only one row, or a NULL value is assigned to the
variable as can be seen in the following example:

SELECT empno INTO empno
FROM employee
WHERE ename = 'JOE RICHARDS'

SELECT Statement

Table 3–27 Comparison of SELECT Statement in Oracle and MS SQL Server/Sybase

MS SQL Server Oracle

Example 1:

CREATE PROC proc1
AS
SELECT ename FROM employee

Example 1:

CREATE OR REPLACE PACKAGE PROC1Pkg AS
TYPE RT1 IS RECORD (

ENAME
EMPLOYEE.ENAME%TYPE

);
TYPE RCT1 IS REF CURSOR RETURN RT1;
END;
/
CREATE OR REPLACE PROCEDURE PROC1(
RC1 IN OUT PROC1Pkg.RCT1)
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
BEGIN

OPEN RC1 FOR
SELECT ENAME FROM EMPLOYEE;

END PROC1;
/

T-SQL Versus PL/SQL Constructs

Triggers and Stored Procedures 3-57

Comments

Because of the differences in their architectures, MS SQL Server and Sybase stored
procedures return data to the client program in a different way than Oracle.

Example 2:

CREATE PROC proc1
AS
DECLARE @name char(20)
SELECT @name = ename FROM
employee
IF @@rowcount = 0

RETURN 25022

Example 2

CREATE OR REPLACE FUNCTION PROC1
RETURN INTEGER
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
name CHAR(20);
BEGIN

BEGIN
StoO_rowcnt := 0;
StoO_selcnt := 0;
StoO_error := 0;

SELECT ENAME
INTO PROC1.name FROM EMPLOYEE;
StoO_rowcnt := SQL%ROWCOUNT;

EXCEPTION
WHEN TOO_MANY_ROWS THEN

StoO_rowcnt := 2;
WHEN OTHERS THEN

StoO_rowcnt := 0;
StoO_selcnt := 0;
StoO_error := SQLCODE;

StoO_errmsg := SQLERRM;
END;
IF StoO_rowcnt = 0 THEN

RETURN 25022;
END IF;

END PROC1;
/

Table 3–27 Comparison of SELECT Statement in Oracle and MS SQL Server/Sybase

MS SQL Server Oracle

T-SQL Versus PL/SQL Constructs

3-58 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

MS SQL Server, Sybase, and Oracle can all pass data to the client using output
parameters in the stored procedures. MS SQL Server and Sybase use another
method known as "Result Sets" to transfer the data from the server to client. The
examples discussed here do not return multiple rows to the client.

In Example 1, the procedure returns a single row result set to the client which is
converted to a PL/SQL procedure that returns a single row using the output
parameters.

Example 1:

A SELECT statement is converted into a SELECT...INTO clause and the extra
parameter "i_oval1" is added to the procedure definition. Since the Migration
Workbench does not currently look up the data types on the Oracle server, it sets
the default data type to VARCHAR2.

In MS SQL Server and Sybase, if the SELECT statement that assigns value to a
variable returns more than one value, the last value that is returned is assigned to
the variable.

Example 2:

The second example illustrates fetching data into a local variable. Since this is
straightforward, the Migration Workbench handles it successfully.

Note: In Oracle, the query should return only one row or the
TOO_MANY_ROWS exception is raised and the data value is not
assigned to the variables. To return more than one row, refer to the
example on RESULT SETS later in this section.

Note: MS SQL Server-specific SQL statements should be
converted manually. The Migration Workbench handles
ANSI-standard SQL statements only.

T-SQL Versus PL/SQL Constructs

Triggers and Stored Procedures 3-59

SELECT Statement as Part of the SELECT List

Table 3–28 Comparison of SELECT Statement as Part of the SELECT List in Oracle
and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

CREATE PROC proc1
AS
DECLARE @x int
DECLARE @y char(20)
SELECT @x = col1, @y = (select
name from emp)
FROM table1

CREATE OR REPLACE PROCEDURE PROC1
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
x INTEGER;
y CHAR(20);
temp_var1 VARCHAR2(255);
BEGIN
/****** Subqueries in select list is not
supported in Oracle. *******/
/****** MANUAL CONVERSION MIGHT BE REQUIRED
*******/

BEGIN
StoO_error := 0;
StoO_rowcnt := 0;
SELECT NAME
INTO temp_var1

FROM EMP;
StoO_rowcnt := SQL%ROWCOUNT;
EXCEPTION
WHEN TOO_MANY_ROWS THEN

StoO_StoO_rowcnt := 2;
WHEN OTHERS THEN

StoO_StoO_rowcnt := 0;
StoO_error := SQLCODE;
StoO_errmsg := SQLERRM;

END;
BEGIN

StoO_rowcnt := 0;
StoO_selcnt := 0;
StoO_error := 0;

SELECT COL1, temp_var1
INTO PROC1.x, PROC1.y FROM TABLE1;

StoO_rowcnt := SQL%ROWCOUNT;
EXCEPTION
WHEN TOO_MANY_ROWS THEN

StoO_rowcnt := 2;
WHEN OTHERS THEN

StoO_rowcnt := 0;
StoO_selcnt := 0;
StoO_error := SQLCODE;
StoO_errmsg := SQLERRM;

END;
END PROC1;
/

T-SQL Versus PL/SQL Constructs

3-60 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Comments

The MS SQL Server and Sybase SELECT statement with a subquery as part of the
SELECT list cannot be converted to PL/SQL using the Migration Workbench.
Manual changes are needed to convert this type of SELECT statement.

The Migration Workbench writes appropriate comments in the output PL/SQL
procedures and the subqueries are omitted.

T-SQL Versus PL/SQL Constructs

Triggers and Stored Procedures 3-61

SELECT Statement with GROUP BY Clause

Comments

Table 3–29 Comparison of SELECT Statement with GROUP BY Clause in Oracle and
MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

CREATE PROC proc1
AS
DECLARE @ename char(20)
DECLARE @salary int
SELECT @ename=ename,
@salary=salary FROM emp
WHERE salary > 100000
GROUP BY deptno

CREATE OR REPLACE PROCEDURE PROC1
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
ename CHAR(20);
salary INTEGER;
BEGIN

BEGIN
StoO_rowcnt := 0;
StoO_selcnt := 0;
StoO_error := 0;

SELECT ENAME, SALARY
INTO PROC1.ename,

PROC1.salary FROM EMP
WHERE SALARY > 100000

GROUP BY DEPTNO;
StoO_rowcnt := SQL%ROWCOUNT;

EXCEPTION
WHEN TOO_MANY_ROWS THEN

StoO_rowcnt := 2;
WHEN OTHERS THEN

StoO_rowcnt := 0;
StoO_selcnt := 0;

StoO_error := SQLCODE;
StoO_errmsg := SQLERRM;

END;
END PROC1;
/

T-SQL Versus PL/SQL Constructs

3-62 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

T-SQL allows GROUP BY statements where the column used in the GROUP BY
clause does not need to be part of the SELECT list. PL/SQL does not allow this type
of GROUP BY clause.

The Migration Workbench converts this type of SELECT statement to PL/SQL. The
equivalent PL/SQL statement, however, will give an error in Oracle.

Column Aliases

Comments

The Migration Workbench can convert MS SQL Server-specific column aliases to
the equivalent Oracle format. No manual changes are required.

Table 3–30 Comparison of Column Aliases in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

CREATE PROC proc1
@Status int=0
AS

SELECT x=sum(salary)
FROM employee

CREATE OR REPLACE PROCEDURE PROC1(
Status INTEGER DEFAULT 0,
RC1 IN OUT PROC1Pkg.RCT1)
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
BEGIN

OPEN RC1 FOR
SELECT SUM(SALARY) "X" FROM

EMPLOYEE;
END PROC1;
/

T-SQL Versus PL/SQL Constructs

Triggers and Stored Procedures 3-63

UPDATE with FROM Statement

Comments

An UPDATE with a FROM clause cannot be converted. Instead, the Migration
Workbench provides a comment indicating that manual conversion is required.

There are two ways to convert UPDATE with a FROM statements, and these are
illustrated below.

Method 1:

Use the subquery in the SET clause if columns are being updated to values coming
from a different table. For example, consider the following T/SQL statement:

UPDATE titles
SET pub_id = publishers.pub_id
FROM titles, publishers
WHERE titles.title like 'C%'
AND publishers.pub_name = 'new age'

Table 3–31 Comparison of UPDATE with FROM Statement in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

CREATE PROC proc1
AS

UPDATE table1
SET col1 = 1
FROM table1, table2
WHERE table1.id =

table2.id

CREATE OR REPLACE PROCEDURE proc1
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
BEGIN

BEGIN
UPDATE table1
SET

col1 = 1 /* FROM table1,table2 --
MANUAL CONVERSION */

WHERE table1.id = table2.id;
StoO_rowcnt := SQL%ROWCOUNT;
EXCEPTION

WHEN OTHERS THEN
StoO_error := SQLCODE;

END;
END;

T-SQL Versus PL/SQL Constructs

3-64 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Convert this statement to the following PL/SQL statement in Oracle :

UPDATE titles
SET pub_id
(SELECT a.pub_id

FROM publishers a
WHERE publishers.pub_name = 'new age'

)
WHERE titles.title like 'C%'

Method 2:

Use the subquery in the WHERE clause for all other UPDATE…FROM statements.
For example, consider the following T/SQL statement:

UPDATE shippint_parts
SET qty = 0
FROM shipping_parts sp, suppliers s
WHERE sp.supplier_num = s.supplier_num
AND s.location = "USA"

Convert this statement to the following PL/SQL statement in Oracle :

UPDATE shipping_parts
SET qty = 0
WHERE supplier_num IN (
SELECT supplier_num
FROM suppliers
WHERE location = 'USA')

T-SQL Versus PL/SQL Constructs

Triggers and Stored Procedures 3-65

DELETE with FROM Statement

Table 3–32 Comparison of DELETE with FROM Statement in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

CREATE PROC proc1
AS

DELETE FROM table1
FROM table1, table2
WHERE table1.id =

table2.id

CREATE OR REPLACE PROCEDURE PROC1
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
UF1_rowid ROWID;
UF1_oval1 TABLE1.COL1%TYPE;

CURSOR UF1_cursor IS
SELECT TABLE1.ROWID, 1 FROM

TABLE1, TABLE2

WHERE TABLE1.ID = TABLE2.ID
FOR UPDATE OF TABLE1.COL1;

BEGIN

OPEN UF1_cursor;
LOOP

FETCH UF1_cursor INTO UF1_rowid, UF1_
oval1;

EXIT WHEN UF1_cursor%NOTFOUND;
BEGIN
StoO_error := 0;
StoO_rowcnt := 0;

UPDATE TABLE1 SET COL1 = UF1_oval1
WHERE ROWID = UF1_rowid;

StoO_rowcnt := SQL%ROWCOUNT;
EXCEPTION

WHEN OTHERS THEN
StoO_error := SQLCODE;
StoO_errmsg := SQLERRM;

END;
END LOOP;
CLOSE UF1_cursor;

END PROC1;
/

T-SQL Versus PL/SQL Constructs

3-66 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Comments

A DELETE with FROM..FROM clause must be converted manually.

While converting DELETE with FROM..FROM clause, remove the second FROM
clause. For example consider the following T/SQL statement:

DELETE
FROM sales
FROM sales,titles
WHERE sales.title_id = titles.title_id
AND titles.type = 'business'

Convert the above statement to the following PL/SQL statement in Oracle:

DELETE
FROM sales
WHERE title_id IN
(SELECT title_id

FROM titles
WHERE type = 'business'

)

T-SQL Versus PL/SQL Constructs

Triggers and Stored Procedures 3-67

Temporary Tables

Comments

Temporary tables are supported by Oracle8i. The Migration Workbench utilizes this
feature in Oracle8i.

Also, SELECT..INTO..#TEMPTAB is converted to an INSERT statement. You must
make manual changes to ensure that rows are unique to a particular session and all

Table 3–33 Comparison of Temporary Tables in Oracle and MS SQL Server/Sybase

MS SQL Server/Sybase Oracle

CREATE PROC proc1
AS

SELECT col1, col2
INTO #Tab
FROM table1
WHERE table1.id = 100

CREATE OR REPLACE PROCEDURE PROC1
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
BEGIN

/*CONVERTING SELECT INTO temp_Tab*/
/*TO INSERT INTO temp_Tab*/

BEGIN
StoO_rowcnt := 0;
StoO_selcnt := 0;
StoO_error := 0;

INSERT INTO temp_Tab
SELECT

USERENV('SESSIONID'), COL1, COL2 FROM
TABLE1

WHERE TABLE1.ID = 100;
StoO_rowcnt := SQL%ROWCOUNT;

EXCEPTION
WHEN TOO_MANY_ROWS THEN

StoO_rowcnt := 2;
WHEN OTHERS THEN
StoO_rowcnt := 0;
StoO_selcnt := 0;

StoO_error := SQLCODE;
StoO_errmsg := SQLERRM;

END;
END PROC1;
/

T-SQL Versus PL/SQL Constructs

3-68 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

the rows for that session are deleted at the end of the operation. This requires that
you add an extra column to the table definition and the value of
USERENV('session_id') for all the rows inserted. At the end, delete all rows for
that session_id . If many procedures use the same temp table in the same session,
SEQUENCEcan be used to make sure that the rows are unique to a particular
session_id/SEQUENCE combination.

Result Set (Converted Using a Cursor Variable)
Command Option -M

Comments

Table 3–34

MS SQL Server/Sybase Oracle

CREATE PROC proc1
AS

SELECT col1, col2
FROM table1

CREATE OR REPLACE PACKAGE PROC1Pkg
AS
TYPE RT1 IS RECORD (

COL1
TABLE1.COL1%TYPE,

COL2
TABLE1.COL2%TYPE

);
TYPE RCT1 IS REF CURSOR RETURN RT1;
END;
/

CREATE OR REPLACE PROCEDURE PROC1(
RC1 IN OUT PROC1Pkg.RCT1)
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
BEGIN

OPEN RC1 FOR
SELECT COL1, COL2 FROM

TABLE1;
END PROC1;
/

T-SQL Versus PL/SQL Constructs

Triggers and Stored Procedures 3-69

Convert an MS SQL Server or Sybase procedure that returns a multi-row result set
to a PL/SQL packaged function by selecting the appropriate parse option in the
property sheet for a stored procedure.

The T-SQL SELECT statement is converted to a cursor and a cursor variable is
added as an OUT parameter to return the data back to the calling program. Use the
cursor referenced by the cursor variable to fetch the result rows.

For more details on how Result Sets are handled by the Migration Workbench, see
T-SQL and PL/SQL Language Elements section in this chapter.

Note: The conversion to a packaged function does not work in all
cases. Carefully check the input source and decide whether it can
be converted to a packaged function. Also check the output for
accuracy.

T-SQL Versus PL/SQL Constructs

3-70 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Cursor Handling

Table 3–35 Comparison of Cursor Handling Result Set in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

CREATE PROC cursor_demo
AS
DECLARE @empno INT
DECLARE @ename CHAR(100)
DECLARE @sal FLOAT
DECLARE cursor_1 CURSOR
FOR SELECT empno, ename, sal
FROM emp

OPEN cursor_1

FETCH cursor_1 INTO @empno,
@ename, @sal

CLOSE cursor_1

DEALLOCATE CURSOR cursor_1

CREATE OR REPLACE PROCEDURE CURSOR_
DEMO
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
empno INTEGER;
ename CHAR(100);
sal NUMBER;
CURSOR CURSOR_1 IS

SELECT EMPNO, ENAME, SAL
FROM EMP;

BEGIN
OPEN CURSOR_1;

CURSOR_1 INTO
cursor_demo.empno, cursor_

demo.ename, cursor_demo.sal;

IF CURSOR_1%NOTFOUND THEN
StoO_sqlstatus := 2;

ELSE
StoO_sqlstatus := 0;

END IF;
CLOSE CURSOR_1;

/*[SPCONV-ERR(xxx)]:Deallocate Cursor
is not supported*/

NULL;

END CURSOR_DEMO;
/

T-SQL Versus PL/SQL Constructs

Triggers and Stored Procedures 3-71

Comments

MS SQL Server and Sybase introduced cursors in T-SQL. Syntactical conversion of
cursors from MS SQL Server or Sybase to Oracle is very straightforward. Note that
in PL/SQL, deallocation of cursors is not required as it happens transparently.

T-SQL Versus PL/SQL Constructs

3-72 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Transaction Handling Statements

Comments

Table 3–36 Comparison of Transaction-Handling Statements in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

CREATE PROC proc1
AS

BEGIN TRAN tran1

UPDATE table1
SET id = id + 1
WHERE name = 'Event'

IF @@Rowcount != 1
BEGIN

ROLLBACK TRAN tran1
RETURN 25700

END

COMMIT TRAN tran1
RETURN 0

CREATE OR REPLACE FUNCTION PROC1
RETURN INTEGER
AS
StoO_selcnt INTEGER;
StoO_error INTEGER;
StoO_rowcnt INTEGER;
StoO_errmsg VARCHAR2(255);
StoO_sqlstatus INTEGER;
BEGIN

SAVEPOINT TRAN1;
BEGIN
StoO_error := 0;
StoO_rowcnt := 0;
UPDATE TABLE1
SET ID = ID + 1

WHERE NAME = 'Event';
StoO_rowcnt := SQL%ROWCOUNT;
EXCEPTION

WHEN OTHERS THEN
StoO_error := SQLCODE;
StoO_errmsg := SQLERRM;

END;
IF StoO_rowcnt != 1 THEN
BEGIN
ROLLBACK TO SAVEPOINT TRAN1;

RETURN 25700;
END;
END IF;
COMMIT WORK;
RETURN 0;

END PROC1;
/

T-SQL and PL/SQL Language Elements

Triggers and Stored Procedures 3-73

The Migration Workbench does a one-to-one mapping when converting MS SQL
Server and Sybase transaction commands to their Oracle equivalents. For more
details about how transactions are handled in Oracle, see the Transaction-Handling
Semantics topic later in this chapter.

T-SQL and PL/SQL Language Elements
T-SQL is the MS SQL Server and Sybase procedural SQL language and PL/SQL is
the Oracle procedural SQL language. This section discusses the following T-SQL
and PL/SQL language elements:

n Transaction Handling Semantics

n Exception-Handling and Error-Handling Semantics

n Special Global Variables

n Operators

n Built-in Functions

n Sending Data to the Client: Result Sets

n DDL Constructs within MS SQL Server and Sybase Stored Procedures

Transaction Handling Semantics
MS SQL Server and Sybase

MS SQL Server and Sybase offer two different transaction models: the
ANSI-standard implicit transaction model and the explicit transaction model.

MS SQL Server and Sybase provide options to support ANSI-standard transactions.
These options can be set or un-set using the SET command.

The following SET command sets the implicit transaction mode:

set chained on

The following SET command sets the isolation level to the desired level:

set transaction isolation level {1|3}

Note: Make sure that the functionality remains the same, as the
transaction models may differ in MS SQL Server, Sybase, and
Oracle.

T-SQL and PL/SQL Language Elements

3-74 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

isolation level 1 prevents dirty reads. Isolation level 2 prevents
un-repeatable reads. Isolation level 3 prevents phantoms. Isolation
level 3 is required by ANSI standards. For MS SQL Server and Sybase, the
default is isolation level 1 .

To implement isolation level 3 , MS SQL Server and Sybase apply
HOLDLOCK to all the tables taking part in the transaction. In MS SQL Server and
Sybase, HOLDLOCK, along with page-level locks, can block users for a
considerable length of time, causing poor response time.

If the MS SQL Server or Sybase application implements ANSI-standard chained
(implicit) transactions with isolation level 3 , the application will migrate
smoothly to Oracle because Oracle implements the ANSI-standard implicit
transaction model, which ensures repeatable reads.

In a non-ANSI standard application, MS SQL Server and Sybase transactions are
explicit. A logical transaction has to be explicitly started with the statement BEGIN
TRANSACTION. The transaction is committed with a COMMIT TRANSACTION
or rolled back with a ROLLBACK TRANSACTION statement. The transactions can
be named. For example, the following statement starts a transaction named

account_tran.
BEGIN TRANSACTION account_tran

The explicit transaction mode allows nested transactions. Note, however, that the
nesting is only syntactical. Only outermost BEGIN TRANSACTION and COMMIT
TRANSACTION statements actually create and commit the transaction. This could
be confusing as the inner COMMIT TRANSACTION does not actually commit.

The following example illustrates the nested transactions:

BEGIN TRANSACTION
/* T-SQL Statements */
BEGIN TRANSACTION
/* T-SQL Statements */

BEGIN TRANSACTION account_tran
/* T-SQL Statements */
IF SUCCESS

COMMIT TRANSACTION account_tran
ELSE

ROLLBACK TRANSACTION account_tran
END IF

/* T-SQL Statements */
IF SUCCESS

COMMIT TRANSACTION

T-SQL and PL/SQL Language Elements

Triggers and Stored Procedures 3-75

ELSE
ROLLBACK TRANSACTION

END IF
/* T-SQL Statements */

COMMIT TRANSACTION

When BEGIN TRANSACTION and COMMIT TRANSACTION statements are
nested, the outermost pair creates and commits the transaction while the inner pairs
only keep track of nesting levels. The transaction is not committed until the
outermost COMMIT TRANSACTION statement is executed. Normally the nesting
of the transaction occurs when stored procedures containing BEGIN
TRANSACTION /COMMIT TRANSACTION statements call other procedures
with transaction-handling statements. The global variable @@trancount keeps
track of the nesting levels of the nested transactions.

The named and unnamed inner COMMIT TRANSACTION statements have no
effect. The inner ROLLBACK TRANSACTION statements without the name roll
back the statements to the outermost BEGIN TRANSACTION statement and the
current transaction is canceled. The named inner ROLLBACK TRANSACTION
statements cancel the respective named transactions.

Oracle

Oracle applies ANSI-standard implicit transaction methods. A logical transaction
begins with the first executable SQL statement after a COMMIT, ROLLBACK, or
connection to the database. A transaction ends with a COMMIT, ROLLBACK, or
disconnection from the database. An implicit COMMIT statement is issued before
and after each DDL statement. The implicit transaction model prevents artificial
nesting of transactions because only one logical transaction per session can be in
effect. The user can set SAVEPOINT in a transaction and roll back a partial
transaction to the SAVEPOINT.

For example:

UPDATE test_table SET col1='value_1';
SAVEPOINT first_sp;
UPDATE test_table SET col1='value_2';
ROLLBACK TO SAVEPOINT first_sp;
COMMIT; /* col1 is 'value_1'*/

Conversion Preparation Recommendations
Logical transactions are handled differently in MS SQL Server, Sybase, and Oracle.
In MS SQL Server and Sybase, transactions are explicit by default. Oracle
implements ANSI-standard implicit transactions. This prevents a direct conversion

T-SQL and PL/SQL Language Elements

3-76 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

from T-SQL transaction-handling statements to PL/SQL transaction-handling
statements.

Also, MS SQL Server and Sybase require that transactions in stored procedures be
allowed to nest, whereas Oracle does not support transaction nesting.

The following table compares MS SQL Server and Sybase to Oracle
transaction-handling statements:

At the time of conversion, the Migration Workbench cannot determine the nest level
of the current transaction-handling statement. The variable @@trancount is a
runtime environment variable.

Table 3-38 shows the currently implemented MS SQL Server and Sybase to Oracle
conversion strategy for the transaction-handling statements

Table 3–37 Comparison of Transaction-Handling Statements in Oracle and MS SQL
Server/Sybase

MS SQL Server/Sybase Oracle

BEGIN TRAN

BEGIN TRAN tran_1 SAVEPOINT tran_1

COMMIT TRAN

(for the transaction with nest level=1)

COMMIT

COMMIT TRAN

(for the transaction with nest level>1)

COMMIT TRAN tran_1

(for the transaction with nest level=1)

COMMIT

COMMIT TRAN tran_1

(for the transaction with nest level>1)

ROLLBACK TRAN ROLLBACK

ROLLBACK TRAN tran_1 ROLLBACK TO SAVEPOINT tran_1

Table 3–38 Conversion Strategy for Transaction-Handling Statements

MS SQL Server/Sybase Oracle

BEGIN TRAN /*BEGIN TRAN >>> statement ignored <<<*/

BEGIN TRAN tran_1 SAVEPOINT tran_1;

T-SQL and PL/SQL Language Elements

Triggers and Stored Procedures 3-77

Because of the difference in the way the two databases handle transactions, you
may want to consider some reorganization of the transactions.

Try to design client/server applications so that the transaction-handling statements
are part of the client code rather than the stored procedure code. This strategy
should work because the logical transactions are almost always designed by the
user and should be controlled by the user.

For the conversion of stored procedures, consider setting a SAVEPOINT at the
beginning of the procedures, and roll back only to the SAVEPOINT. In MS SQL
Server and Sybase, make the changes so that at least the outermost transaction is
controlled in the client application.

Exception-Handling and Error-Handling Semantics
MS SQL Server and Sybase

In MS SQL Server and Sybase, you must check for errors after each SQL statement
because control is passed to the next statement regardless of any error conditions
generated by the previous statement. The client ERROR_HANDLER routine is
invoked as a call-back routine if any server error occurs, and the error conditions
can be handled in the call back routine.

Stored procedures use the RAISERROR statement to notify the client of any error
condition. This statement does not cause the control to return to the calling routine.

COMMIT TRAN

(for the transaction with nest level=1)

COMMIT WORK;

COMMIT TRAN

(for the transaction with nest level>1)

COMMIT WORK;

COMMIT TRAN tran_1

(for the transaction with nest level=1)

COMMIT WORK;

COMMIT TRAN tran_1

(for the transaction with nest level>1)

COMMIT WORK;

ROLLBACK TRAN ROLLBACK WORK;

ROLLBACK TRAN tran_1 ROLLBACK TO SAVEPOINT tran_1

SAVE TRAN tran_1 SAVEPOINT tran_1

Table 3–38 Conversion Strategy for Transaction-Handling Statements

MS SQL Server/Sybase Oracle

T-SQL and PL/SQL Language Elements

3-78 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

MS SQL Server and Sybase allow you to customize the error messages using a
system table. The system procedures allow the user to add error messages to this
table.

Oracle

In Oracle, each SQL statement is automatically checked for errors before proceeding
with the next statement. If an error occurs, control immediately jumps to an
exception handler if one exists. This frees you from needing to check the status of
every SQL statement. For example, if a SELECT statement does not find any row in
the database, an exception is raised. The corresponding exception handler part of
the block should include the code to deal with this error. The built-in RAISE_
APPLICATION_ERROR procedure notifies the client of the server error condition
and returns immediately to the calling routine.

Oracle places an implicit SAVEPOINT at the beginning of a procedure. The built-in
RAISE_APPLICATION_ERROR procedure rolls back to this SAVEPOINT or the
last committed transaction within the procedure. The control is returned to the
calling routine.

The Oracle RAISE_APPLICATION_ERROR statement allows the user to customize
the error message. If an exception is raised, SQLCODE is returned automatically by
PL/SQL to the caller. It keeps propagating until it is handled.

Recommendations

To simulate MS SQL Server or Sybase behavior in Oracle, you must enclose each
SQL statement in an equivalent PL/SQL block. This block must deal with the
exceptions that need to be trapped for the SQL statement.

See the T-SQL Versus PL/SQL Constructs section in this chapter for more
information about the extra code required to simulate MS SQL Server or Sybase
behavior.

If the RAISERROR statement in an MS SQL Server or Sybase stored procedure is
immediately followed by the RETURN statement, these two statements can be
converted to the Oracle RAISE_APPLICATION_ERROR statement.

You can customize error messages with the help of a user-defined table. You can
write standard routines to add and retrieve error messages to this table. This
method will serve a two-fold purpose: it will ensure that the system is portable, and
it gives the administrator centralized control over the error messages.

Special Global Variables
MS SQL Server and Sybase

T-SQL and PL/SQL Language Elements

Triggers and Stored Procedures 3-79

The following global variables are particularly useful in the conversion process:

@@error:
The server error code indicating the execution status of the most recently executed
T-SQL statement.

@@trancount:
Keeps track of the nesting level for the nested transactions.

@@rowcount:
The number of rows affected by the most recently executed T-SQL statement.

@@servername:
The name of the local MS SQL Server or Sybase server.

@@transtate:
The current state of the transaction.

@@sqlstatus:
The status information resulting from the last FETCH statements.

@@tranchained:
The current transaction mode of the T/SQL procedure. If @@tranchained returns 1,
the TL/SQL procedure is in chained, or implicit transaction mode.

Oracle

SQLCODE:
The server error code indicating the execution status of the most recently executed
PL/SQL statement.

SQL%ROWCOUNT:
The variable attached to the implicit cursor associated with each SQL statement
executed from within the PL/SQL procedures. This variable contains the number of
rows affected by the execution of the SQL statement attached to the implicit cursor.

Recommendations:

The @@error variable has a direct equivalent in Oracle, and that is the SQLCODE
function. The SQLCODE function returns the server error code.

The SQL%ROWCOUNTvariable in Oracle is functionally equivalent to @@rowcount.

There are many more special global variables available with PL/SQL. Not all those
variables are listed here. There are more special global variables available in T-SQL
also. Not all those variables are listed here because they do not play a major role in
the conversion process.

T-SQL and PL/SQL Language Elements

3-80 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Operators
See the Data Manipulation Language section in Chapter 2 for a discussion of MS
SQL Server, Sybase, and Oracle operators.

Built-in Functions
See the Data Manipulation Language section in Chapter 2 for a discussion of
built-in functions in MS SQL Server, Sybase, and Oracle.

Sending Data to the Client: Result Sets

Single Result Set
MS SQL Server and Sybase stored procedures can return data to the client by means
of a Result Set. A SELECT statement that does not assign values to the local
variables sends the data to the client in the form of byte-stream.

In a case where a third-party user interface product uses the result set capability of
MS SQL Server or Sybase, consult with the vendor to make sure that the same
functionality is available for the Oracle database.

The following example procedure sends the data out as a result set. More
appropriately, an OUTPUT parameter holding the value "YES" or "NO" (depending
upon the evaluation of <condition>) or a function returning "YES" or "NO"
should have been used.

CREATE PROCEDURE x
AS
BEGIN
...
...
IF <condition> THEN

SELECT "YES"
ELSE

SELECT "NO"
END

Multiple Result Sets
Avoid MS SQL Server or Sybase stored procedures that return multiple result sets
to the calling routine.

The following procedure returns two different result sets, which the client is
responsible for processing:

T-SQL and PL/SQL Language Elements

Triggers and Stored Procedures 3-81

CREATE PROCEDURE example_proc
AS
BEGIN

SELECT empno,empname, empaddr FROM emp
WHERE empno BETWEEN 1000 and 2000
SELECT empno,deptno, deptname FROM emp, dept
WHERE empno.empno = dept.empno
AND emp.empno BETWEEN 1000 and 2000

END

Recommendations

Some alternatives to simulating the result set in PL/SQL procedures are presented
below:

n Packaged procedures with PL/SQL tables as output parameters

n This is an extension of the first method. Instead of fetching one row at a time,
now we fetch many rows (ARRAY FETCH) at a time and assign the values to
PL/SQL tables. These tables are available to the client after the execution of the
procedure.

n Packaged procedures with a cursor variable as output parameter

n This alternative is possible in Oracle. Oracle allows you to define a cursor type
variable to clearly return query results. This cursor type variable is similar to
the user-defined record type and array variable. The cursor stored in the cursor
variable is like any other cursor. It is a reference to a work area associated with
a multi-row query. It denotes both the set of rows and a current row in that set.
The cursor referred to in the cursor variable can be opened, fetched from, and
closed just like any other cursor. Since it is a PL/SQL variable, it can be passed
into and out of procedures like any other PL/SQL variable. This is a more direct
equivalent to the result set in MS SQL Server and Sybase.

n Procedure or function that populates a temporary table with result set rows

n This temporary table has an additional column to hold the SESSION_ID of the
current session to keep the rows separate for each session of the user. The client
program can then retrieve the rows from this temporary table with a simple
SELECT statement.

n The Migration Workbench adopts the third option to convert the result set.

T-SQL and PL/SQL Language Elements

3-82 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

About Converting a T-SQL Procedure with a Result Set
Method 1

A T-SQL procedure with a result set may need some manual changes after
conversion to an Oracle package with a member function. The problems are
described in detail below.

For example, consider the following T-SQL procedure:

CREATE PROC test_proc
AS
BEGIN

T-SQL block1
T-SQL block2
SELECT statement corresponding to the result set

END

This procedure executes two T-SQL blocks before executing the SELECT statement
associated with the result set. The procedure is converted to an Oracle package as
follows:

CREATE OR REPLACE PACKAGE BODY test_proc_pkg
AS
BEGIN

FUNCTION test_proc;
END;
CREATE OR REPLACE PACKAGE BODY test_proc_pkg
AS
BEGIN

cursor declaration for the SELECT statement associated with the result
set in the source T-SQL procedure;

FUNCTION test_proc
RETURN INTEGER
AS
BEGIN

PL/SQL version of T-SQL block1;
PL/SQL version of T-SQL block2;
FETCH loop for the cursor declared in the package body;

END;
END;

The two T-SQL blocks in the source T-SQL procedure are executed only once when
the procedure is called, and the result set is sent to the client.

In Oracle client, to simulate the fetching of the result set, the TEST_PROC_
PKG.TEST_PROC function must be called repeatedly until all the rows from the

T-SQL and PL/SQL Language Elements

Triggers and Stored Procedures 3-83

cursor are fetched. The two PL/SQL blocks in the function are executed with each
call to the function. This behavior differs from that in the source application.

You must manually separate the code associated with the FETCH loop for the
cursor for the result set from the remaining code in the procedure. Changes to the
client have to be made so that the rest of the procedure's code is called in accurate
sequence with the repeated calls to the function returning rows from the result set.

The final Oracle package should be as follows:

CREATE OR REPLACE PACKAGE BODY test_proc_pkg
AS
BEGIN

PROCEDURE proc1;
FUNCTION test_proc;

END;
CREATE OR REPLACE PACKAGE BODY test_proc_pkg
AS
BEGIN

cursor declaration for the SELECT statement associated with the result
set in the source T-SQL procedure;

PROCEDURE proc1
AS
BEGIN

PL/SQL version of T-SQL block1;
PL/SQL version of T-SQL block2;

END;
FUNCTION test_proc
RETURN INTEGER
AS
BEGIN

FETCH loop for the cursor declared in the package body;
END;

END;

The client should call the TEST_PROC_PKG.PROC1 procedure before repeatedly
calling the TEST_PROC.PKG.TEXT_PROC function in order to achieve
functionality similar to the source T-SQL procedure.

The variables that are common to these two parts should be either declared globally
within the package body or should be passed as parameters to the procedure and
the function.

T-SQL and PL/SQL Language Elements

3-84 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

DDL Constructs within MS SQL Server and Sybase Stored Procedures
MS SQL Server and Sybase allow DDL constructs to be part of the stored
procedures. Oracle allows DDL statements as part of the dynamic SQL. Oracle
issues an implicit COMMIT statement after each DDL statement.

Most of the T-SQL DDL constructs give syntax errors. You must remove the DDL
statements from the T-SQL source to convert the T-SQL procedure to PL/SQL using
the Migration Workbench.

The following DDL statements are ignored by the Migration Workbench. The
statements appear commented in the output with a message "statement ignored."

CREATE TABLE
DROP TABLE
CREATE VIEW
DROP VIEW
CREATE INDEX
DROP INDEX

Distributed Environments 4-1

4
Distributed Environments

This chapter includes the following sections:

n Distributed Environments

n Application Development Tools

Distributed Environments
A distributed environment is chosen for various applications where:

n The data is generated at various geographical locations and needs to be
available locally most of the time.

n The data and software processing is distributed to reduce the impact of any
particular site or hardware failure.

Accessing Remote Databases in a Distributed Environment
When a relational database management system (RDBMS) allows data to be
distributed while providing the user with a single logical view of data, it supports
"location transparency". Location transparency eliminates the need to know the
actual physical location of the data. Location transparency thus helps make the
development of the application easier. Depending on the needs of the application,
the database administrator (DBA) can hide the location of the relevant data.

To access a remote object, the local server must establish a connection with the
remote server. Each server requires unique names for the remote objects. The
methods used to establish the connection with the remote server, and the naming
conventions for the remote objects, differ from database to database.

Distributed Environments

4-2 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Oracle and Remote Objects
Oracle allows remote objects (such as tables, views, and procedures) throughout a
distributed database to be referenced in SQL statements using global object names.
In Oracle, the global name of a schema object comprises the name of the schema
that contains the object, the object name, followed by an "at" sign (@), and a
database name. For example, the following query selects information from the table
named scott.emp in the SALES database that resides on a remote server:

SELECT * FROM
scott.emp@sales.division3.acme.com

A distributed database system can be configured so that each database within the
system has a unique database name, thereby providing "effective" global object
names.

Furthermore, by defining synonyms for remote object names, you can eliminate
references to the name of the remote database. The synonym is an object in the local
database that refers to a remote database object. Synonyms shift the responsibility
of distributing data from the application developer to the DBA. Synonyms allow the
DBA to move the objects as desired without impacting the application.

The synonym can be defined as follows:

CREATE PUBLIC SYNONYM emp FOR
scott.emp@sales.division3.acme.com;

Using this synonym, the SQL statement outlined above can be changed to the
following:

SELECT * FROM emp;

MS SQL Server and Sybase and Remote Objects
MS SQL Server and Sybase require schema objects throughout a distributed
database to be referenced in SQL statements by fully qualifying the object names.
The complete name of a schema object has the following format:

server_name.database_name.object_owner_name.object_name

The server_name is the name of a remote server. The database_name is the name
of a remote database on the remote server.

Distributed Environments

Distributed Environments 4-3

MS SQL Server and Sybase do not support the concept of synonyms or location
transparency. In a distributed environment, objects cannot be moved around
without impacting the application, as the developers must include the location of
the object in the application code.

Most of the static queries tend to include the references to the remote server and
remote database. Some applications maintain a user table to map the complete
object names (including the remote server name and the database name) to dummy
object names. The queries refer to these dummy object names. The translations are
performed in real-time with the help of the map in the user table. This limitation
precludes any common scheme of referring to remote objects that can work for
Oracle, MS SQL Server, and Sybase.

The MS SQL Server or Sybase Omni SQL Gateway server allows location
transparency, but this requires that the schema definitions of all the databases
participating in the distribution must be available with the Omni SQL Gateway
server.

Replication
Replication functionality in MS SQL Server 6.5 and Sybase has the following
characteristics:

n Unidirectional

n Table-based, not transaction-based

n No automatic conflict resolution (must be manual)

n Heterogeneous replication through Open Database Connectivity (ODBC)

In addition to the characteristics listed above, MS SQL Server 7.0 replication
provides heterogeneous replication through ODBC.

Oracle replication has richer replication functionality, which includes the following:

n Bi-directional

n Any database object can be replicated

n Automatic resynchronization

n Automatic conflict resolution

n Heterogeneous replication provided through gateways

Application Development Tools

4-4 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Since Oracle distributed environment and replication support is a superset of MS
SQL Server and Sybase, conversion of distributed applications from MS SQL Server
or Sybase to Oracle is feasible.

Application Development Tools
Several application development tools that are currently available use specific
features of one of the various database servers; you may have to invest significant
effort to port these products to other database servers. With critical applications, it
is sometimes best to develop and maintain a different set of application
development tools that work best with the underlying database, as ODBC support
is not adequate in such cases.

The majority of MS SQL Server and Sybase applications are written using ODBC
application programming interfaces (APIs) or Visual Basic. DB-Library is widely
used to develop 3GL applications with MS SQL Server or Sybase as the backend.

Since Oracle provides ODBC connectivity, it is possible to convert ODBC-based MS
SQL Server or Sybase applications to work with an Oracle backend.

If a Visual Basic application is written with ODBC as the connection protocol to
access MS SQL Server or Sybase, it is possible to modify and fix the Visual Basic
application to work with an Oracle backend.

Many Visual Basic applications use VB-SQL which is DB-Library for Visual Basic.
VB-SQL allows Visual Basic programs to access MS SQL Server or Sybase natively
(as opposed to using ODBC). Such applications can also be converted to work with
an Oracle backend, if you replace the VB-SQL database access routines with Oracle
Objects for OLE.

Oracle provides a call interface knows as Oracle Call Interface (OCI), which is
functionally equivalent to the DB-Library API. Conversion of DB-Library
applications to OCI applications is feasible.

Migrating Temporary Tables to Oracle 5-1

5
Migrating Temporary Tables to Oracle

Temporary tables are available in Oracle8i. However, because Oracle8i temporary
tables differ from MS SQL Server temporary tables you should still replace or
emulate temporary tables within Oracle to ease migrations from MS SQL Server.

The emulation of temporary tables has been simplified by using temporary tables
instead of permanent tables. See the Oracle8i temporary table syntax for Example 2
in the Implementation of Temporary Tables as Permanent Tables section.

This chapter discusses temporary tables under the following headings:

n Temporary Table Usage

n Replace Temporary Tables

n Emulate Temporary Tables

n Definition of temp_table_catalog

n Package Body temp_table

Temporary Table Usage
In MS SQL Server and Sybase, temporary tables are used to:

n Simplify Coding

n Simulate Cursors when Processing Data from Multiple Tables

n Improve Performance In a Situation Where Multi-Table Joins are Needed

n Associate Rows from Multiple Queries in One Result Set (UNION)

n Eliminate Re-Querying Data Needed for Joins

n Consolidate the Data for Decision Support Data Requirements

5-2 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Simplify Coding
Instead of writing complicated multi-table join queries, temporary tables allow a
query to be broken into different queries, where result sets of one query are stored
in a temporary table and subsequent queries join this temporary table with actual
database tables.

This type of code can be converted to Oracle as follows:

n Rewrite the queries to use multi-table joins

n Create permanent temporary tables

n Tune the complicated query using the parallel query option

MS SQL Server and Sybase:

WHILE @cur_dt > @start_dt
BEGIN
INSERT #TEMP1

SELECT @cur_dt
SELECT @cur_dt = dateadd(dd, -7, @cur_dt)

END
/******** create a temp table *****/
INSERT #TEMP2
SELECT t2.col1,

t4.col2,
" ",
t5.col3,

t2.col4,
t3.col5,
t2.col6,
t2.col7,
t4.col8,
t4.col9

FROM
db1..TABLE1 t1,
db2..TABLE2 t2,
db2..TABLE3 t3,
db2..TABLE4 t4,
db1..TABLE5 t5

WHERE t1.col10 =@col10
AND t1.col11 = @flag1
AND t1.col2 = t4.col2
AND t1.col2 = t5.col2
AND t2.col4 between @start_col4 and @end_col4
AND t3.col5 between @start_col5 and @end_col5

Migrating Temporary Tables to Oracle 5-3

AND t3.col12 = @flag2
AND t2.col13 = @flag1
AND t4.col2 like @col2
AND t4.col14 = @flag3
AND t4.col12 = @flag2
AND t2.col1 = t4.col1
AND t3.col1 = t2.col1
AND t4.col1 = t3.col1
AND t5.col2 like @col2
AND t4.col2 = t5.col2
AND t4.col15 = t5.col15
AND t5.col3 like @var1
AND t2.col6 <= @end_dt
AND (t2.col7 >= @start_dt OR t2.col7 = NULL)
AND t4.col8 <=@end_dt
UPDATE TABLE4
SET t4.col2 = col16
FROM #TEMP2 t1, db2..TABLE4 t4
WHERE t1.col1 = t4.col1
AND t4.col12 = @flag2
AND t4.col14 = @flag4

Oracle Pseudo Code:

Use a PL/SQL table to simulate #TEMP1
For the INSERT #TEMP2 statement
Declare a cursor with the same SELECT statement

(as used in MS SQL Server and Sybase)
For the UPDATE statement do the following:
loop

fetch the cursor
if cursor not found

then exit ;
end if ;
-- update TABLE4 for each row that matches the criteria
-- Note : i_col17 and i_col1 are local PL/SQL variables

which are populated by each fetch
UPDATE TABLE4
SET col2 = i_col17
WHERE col1 = i_col1
AND col12 = @flag2
AND col14 = @flag4

end loop

5-4 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Simulate Cursors when Processing Data from Multiple Tables
Oracle supports cursors, so this type of code can be converted to Oracle using
cursors.

The following code is part of a procedure written in MS SQL Server. Compare it
with the Oracle example (much simpler coding) that performs the same function.

MS SQL Server:

...
SELECT * INTO #emp FROM emp WHERE emp.dept = 10
SELECT @cnt = @@rowcount
WHILE @cnt > 0
BEGIN

SELECT @name = name, @emp_id = emp_id
FROM #emp
WHERE emp_id = (SELECT MAX (emp_id) FROM #emp)

/* process this row */
DELETE FROM #emp WHERE emp_id = @emp_id
SELECT @cnt = @cnt -1

END
...

Oracle:

FOR emp_rec IN (SELECT name, emp_id FROM emp WHERE dept = 10)
LOOP /*process emp_rec.name and emp_rec.emp_id*/
END LOOP

Improve Performance In a Situation Where Multi-Table Joins are
Needed
In MS SQL Server and Sybase, you sometimes use temporary tables to avoid
multi-table joins. These cases can be converted to Oracle, as Oracle performs
complex multi-table queries more efficiently than MS SQL Server and Sybase.

See the sample code provided in the To Simplify Coding section for more
information in this regard.

Migrating Temporary Tables to Oracle 5-5

Associate Rows from Multiple Queries in One Result Set (UNION)
Oracle provides a UNION relational operator to achieve similar results.

MS SQL Server and Sybase:

INSERT #EMPL_TEMP
SELECT emp.empno

dept.dept_no
location.location_code
emp.start_date
emp.end_date

FROM emp,
dept ,
location

WHERE emp.empno = location.empno
AND dept.deptno = emp.deptno
AND dept.deptno = location.deptno
AND emp.start_date BETWEEN @start_date AND @end_date
INSERT INTO #EMPL_TEMP VALUES (10000, 10, 15,getdate(),NULL)
...

Oracle:

SELECT emp.empno
dept.dept_no
location.location_code
emp.start_date
emp.end_date

FROM emp,
dept ,
location

WHERE emp.empno = location.empno
AND dept.deptno = emp.deptno
AND dept.deptno = location.deptno
AND emp.start_date BETWEEN i_start_date AND i_end_date
UNION
SELECT 10000,

10,
15,
SYSDATE,
NULL

FROM DUAL

5-6 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

Eliminate Re-Querying Data Needed for Joins
Permanent tables can be created in Oracle to hold the data. The data in these tables
can be deleted at the end of processing. If no COMMIT is performed and no DDL is
issued, the records in these tables will not be recorded in the database. If a
COMMIT is performed, the records from these tables can be deleted at the end of
the process. Records in these tables can be kept separate for different users by
having an additional column that holds a SESSION_ID.

If it is not possible to create the tables ahead of time, tables can be created
dynamically with Oracle, using the DBMS_SQL package. In dynamically-created
tables, the extra SESSION_ID columns are no longer needed, and space
management issues such as fragmentation are eliminated. Performance may be
affected, but deleting a large number of rows from a permanent temporary table
also affects performance. In dynamic SQL, tables can be truncated or dropped.

MS SQL Server and Sybase:

INSERT #EMPL_TEMP
SELECT emp.empno

dept.dept_no
emp.start_date
emp.end_date

FROM emp,
dept ,

WHERE emp.empno = dept.deptno
AND emp.start_date BETWEEN @start_date AND @end_date
....
....
/* Later in the code, one needs to select from the temp table

only, it is not necessary to do a join of EMP and DEPT */
SELECT * FROM #EMPL_TEMP

Oracle:

SELECT emp.empno
dept.dept_no
emp.start_date
emp.end_date

FROM emp,
dept ,

WHERE emp.empno = dept.deptno
AND emp.start_date BETWEEN i_start_date AND i_end_date ;

/* The above join has to be performed every time one needs to get this result set
*/

Migrating Temporary Tables to Oracle 5-7

Consolidate the Data for Decision Support Data Requirements
You often need to consolidate data across servers in a distributed database
environment. You can use predefined views to consolidate this type of data. Oracle
snapshots can replicate the data from remote databases. In addition, you can create
permanent tables for MS SQL Server or Sybase temporary tables if queries need to
perform joins against these tables.

Replace Temporary Tables
You should replace temporary tables to give the best performance in Oracle. You
should always try to replace temporary tables with standard Oracle SQL. To do
this, you must first determine the function of the temporary table. The function of
the temporary table will be one of the following:

n To store an intermediate result

n To collect data

Emulate Temporary Tables
If it is not possible to replace temporary tables, you should emulate them as follows:

n Use PL/SQL tables to emulate temporary tables

n Create temporary tables as ordinary tables whenever they are needed.

n Create permanent tables and maintain them for multiple users.

Implementation as PL/SQL Tables
Temporary tables can be implemented as a PL/SQL table of records. Although this
concept is quite appealing, you cannot use SQL on a PL/SQL table. Therefore, this
concept is limited to simple uses of temporary tables. However, for simple uses of
temporary tables, you should always consider replacing these temporary tables
completely with standard SQL.

Implications of Creating Temporary Tables Dynamically
Since temporary tables can be created by any session "on the fly", you may have
multiple instances of the same temporary table within one schema. As this type of
multiple instance is not possible in Oracle, you should attach the SESSION_ID to
the table name to make it unique. The result is a variable table name, which requires
that all accesses to that table must be created with dynamic SQL. This process
would complicate all types of migration tools.

5-8 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

As all DDL operations have an implicit commit, the creation of a temporary table
would disturb the transactional behavior of the migrated application. The programs
would have to be changed so that the creation of a temporary table always occurs at
the start of a transaction. This process would also complicate migration tools.

Implications of Creating Permanent Tables
Currently, several users can share one table. Therefore, you need to maintain an
additional column in the table for the SESSION_ID. As the SESSION_ID is unique
in the lifetime of a database, there will be no access conflicts. The enforcement of the
SESSION_ID can be accomplished with a view and a trigger. The cleanup in this
option may be slower, as you must now delete rows and cannot do a simple DROP
TABLE. You can execute this operation asynchronously with the JOBQUEUE
package, or use the TRUNCATE TABLE command whenever you are the only user
of the table. To avoid bottlenecks on the temporary tables, it is possible to create
multiple incarnations of them and point the users via private synonyms. Also, the
upcoming SQL3 Standard implements temporary tables as permanent tables, which
have an incarnation per session.

These arguments show that the permanent table option is the best choice.

Implementation of Temporary Tables as Permanent Tables
The migration utility must first extract from the source database code all commands
which create a temporary table.

The following MS SQL Server/Sybase T-SQL examples illustrate two types of such
commands:

Example 1

CREATE TEMP TABLE tmpdate(
FromDt datetime year to minute,
ToDt datetime year to minute);

Example 2

SELECT aaufromdt date
from anforord aau, order ord, case cas, casetype ctp
where ctp.ctp_id = CtpId
and ctp.ctpambukz = "N"
and cas.ctp_id = ctp.ctp_id
and ord.cas_id = cas.cas_id
and aau.ord_id = ord.ord_id
and cas.casgtg = "Y"

Migrating Temporary Tables to Oracle 5-9

and ordstozt is null
INTO temp tmpfromdate;

All such statements must be modified as follows:

n Change the syntax to Oracle syntax.

n Identify and substitute alternative values for Oracle reserved words.

n Prefix the name of the temporary table with "temp_".

When you have completed these steps, Example 1 type statements may be executed.

For statements of the same type as Example 2, you must also perform the following
steps:

n Remove all bind variables, such as CtpId, and replace them with constants.

n Embed the statement in the following wrapper and execute it:

create table temp_<temptable>
as select *
from (<original statement>)
where 1=0; -- or similar logic to create the table without any rows

The complete Oracle code for Example 2 is as follows:

create table temp_tmpfromdate
as select * from
(
SELECT aaufromdt inf_date
from anforord aau, order ord, case cas, casetype ctp
where ctp.ctp_id = 'X' -- CtpId
and ctp.ctpambukz = 'N'
and cas.ctp_id = ctp.ctp_id
and ord.cas_id = cas.cas_id
and aau.ord_id = ord.ord_id
and cas.casgtg = 'Y'
and ordstozt is null)
where 0=1;

Oracle8i Temporary Tables

Oracle8i temporary table data is not visible across sessions so the SESSION_ID
column is not required.

The Oracle8i temporary table syntax for Example 2 is as follows:

create table global temporary temp_<temptable> on commit preserve rows

5-10 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

as select * from (<original statement>)
where 1=0

The Migration Workbench does the following when it encounters a temporary table
in a stored procedure or trigger:

n Generates the DDL to create the table

n Renames the table to temp_tmpfromdate

n Checks the column names for reserved words

n Adds the SESSION_ID column (if Oracle8i temporary tables are not being
used)

With this setup, you can use the table tmpfromdate as if it is available once per
session.

Maintenance of Temporary Tables
To maintain the temporary tables, you need a dictionary table temp_table_catalog
(see Definition of temp_table_catalog) and the supporting package temp_table (see
Package Body temp_table). The temp_table package performs all maintenance for
temporary tables. To generate it, you need the following grants:

grant select on v_$session to <xxx>;
grant execute on dbms_sql to <xxx>;
grant execute on dbms_lock to <xxx>;
grant create public synonym to <xxx>;
grant create view to <xxx>;
grant create trigger to <xxx>;

The available functionality is explained in the comments of the package temp_table
as follows:

create or replace PACKAGE temp_table IS

procedure convert_to_temp (table_name in varchar2,
use_dbms_output in boolean default

false);
--
-- Convert an ordinary table to a temporary table.
--

procedure register (table_name in varchar2);
-- Register the usage of temporary table in temp_table_catalog

Migrating Temporary Tables to Oracle 5-11

-- This procedure will be called out of the pre-insert trigger
-- on the temporary table.

procedure drop_temp_table (table_name in varchar2);
-- Check usage in temp_table_catalog, delete the data of the
-- session and unregister the table

procedure cleanup_session;
-- Find all temporary table usages of the session, delete or truncate
-- the temporary table and unregister the usage.
-- This procedure commits!

END;

Definition of temp_table_catalog

create table temp_table_catalog
(session_id number,

table_name varchar2(30),
constraint temp_table_catalog_pk

primary key (session_id, table_name))

Package Body temp_table

create or replace PACKAGE BODY temp_table IS

last_table varchar2(30) := ; -- Store the last used
-- object for the register procedure

-- The constant use_truncate enables the use of the truncate command on
-- temporary tables. Change it to false if that is not desired.

use_truncate constant boolean := true;

procedure parse_sql (user_cursor in number,
sql_text in varchar2) is

begin
dbms_sql.parse (user_cursor, sql_text, dbms_sql.v7);

exception
when others then

raise_application_error (-20100, 'Parsing Error ' ||
to_char (sqlcode) || ' at ' ||
to_char (dbms_sql.last_error_position + 1) ||

5-12 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

' starting with: ' ||
substr (sql_text, dbms_sql.last_error_position + 1, 30)

||
'...', true);

end;

procedure execute_sql (sql_text in varchar2) is
ignore number;
user_cursor number;

begin
user_cursor := dbms_sql.open_cursor;
parse_sql (user_cursor, sql_text);
ignore := dbms_sql.execute (user_cursor);
dbms_sql.close_cursor(user_cursor);

exception
when others then

if dbms_sql.is_open(user_cursor) then
dbms_sql.close_cursor(user_cursor);

end if;
raise;

end;

function get_lock_id (object_name in varchar2)
--
-- This function returns the lock_id for a specific object.
-- It is calculated as the object_id from oracle + 1000000
--

return number is
object_number number;

begin
select object_id
into object_number
from user_objects uo
where uo.object_name = get_lock_id.object_name
and uo.object_type = 'VIEW';
return object_number + 1000000;

exception
-- Object not found ==> Raise error

when no_data_found then
raise_application_error (-20100, 'Object ' ||

object_name || ' does not exists');
end;

procedure convert_to_temp (table_name in varchar2,

Migrating Temporary Tables to Oracle 5-13

use_dbms_output in boolean default false) is
--
-- Convert an ordinary table to a temporary table.
--

sql_stmt varchar2 (32000);
col_sep varchar2 (2) := null;
con_list varchar2 (100) := 'session_id';
sel_table varchar2 (30);
procedure add (s in varchar2)
is

-- Print one line of SQL code on sql_stmt or dbms_output
begin

if use_dbms_output then
dbms_output.put_line (chr (9) || s);

else
sql_stmt := sql_stmt || chr (10) || s;

end if;
end add;
procedure execute_immediate
as
begin

if (use_dbms_output) then
dbms_output.put_line('/');

else
execute_sql (sql_stmt);
dbms_output.put_line(

substr(sql_stmt, 2, instr(sql_stmt,chr(10),2)-2)
);

sql_stmt := NULL;
end if;

end;
begin

if (use_dbms_output) then
sel_table := upper (table_name);

else
sel_table := 'TEMP_' || upper (table_name);

end if;
-- Rename the table to temp_XXX

add ('rename ' || table_name);
add ('to temp_' || table_name);
execute_immediate;

-- In the next step we need to add the support for the sessionid column.
-- The column will be added with the following statement:

5-14 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

add ('alter table temp_' || table_name);
add ('add session_id number not null');
execute_immediate;

-- Create a view for the original table
add ('create view ' || table_name);
add ('as select ');
for col_rec in

(select column_name, table_name
from user_tab_columns
where table_name = sel_table
and column_name != 'SESSION_ID'
order by column_id) loop
add (col_sep || col_rec.column_name);
col_sep := ', ';

end loop;
add (' from temp_' || table_name);
add ('where session_id = userenv (''sessionid'')');
execute_immediate;

-- To allow public access we need to create a public synonym and
-- grant public access.

add ('create public synonym ' || table_name);
add ('for ' || table_name);
execute_immediate;
add ('grant select, insert, update, delete');
add ('on ' || table_name);
add ('to public');
execute_immediate;

-- To maintain the session_id information a pre-insert - per row trigger
-- will be created.

add ('create trigger temp_' || table_name || '_bir');
add ('before insert');
add ('on temp_' || table_name);
add ('for each row');
add ('begin');
add (' :new.session_id := userenv (''sessionid'');');
add ('end;');
execute_immediate;

-- To register the usage of a temporary table for a specific session.
-- The procedure register has to be called in a pre-insert -
-- per statement trigger.

add ('create trigger temp_' || table_name || '_bis');
add ('before insert');
add ('on temp_' || table_name);
add ('begin');
add (' temp_table.register (''' || upper (table_name) ||

Migrating Temporary Tables to Oracle 5-15

''');');
add ('end;');
execute_immediate;

end;

procedure register (table_name in varchar2)is
--
-- Register the usage of temporary table in temp_table_catalog
-- This procedure may be called out of the pre-insert trigger
-- on the temporary table.
--

dummy varchar2(1);
return_value number;
lock_id number;

begin
-- Check if we just registered the table

if last_table = table_name then
return;

end if;
last_table := table_name;

-- Check if we have ever registered the table for our session
begin

select 'x' into dummy
from temp_table_catalog ttc
where ttc.table_name = register.table_name
and session_id = userenv ('sessionid');

exception
when no_data_found then

-- If it is not registered, register the usage

insert into temp_table_catalog
values (userenv ('sessionid'), table_name);

-- and put out the share lock with a timeout of 5 seconds
if use_truncate then

lock_id := get_lock_id (table_name);
return_value :=
dbms_lock.request (lock_id,

dbms_lock.s_mode, 5,
FALSE);

if return_value not in (0, 4) then
raise_application_error (-20100,
'Unknown Error in DBMS_LOCK: ' ||
to_char (return_value));

end if;
end if;

5-16 Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide

end;
end;

Index-1

Index
A
accessing remote databases, 4-1
AFTER triggers, 3-1
alias, 2-19
application development tools, 4-4
arithmetic operators, 2-110
ARRAY FETCH, 3-11
ASSIGNMENT statement, 3-55

B
BEGIN TRAN statement, 3-14
BEGIN TRANSACTION statement, 3-14
bit operators, 2-111
BLOBs, 2-6
built-in functions, 2-112, 3-80
byte-stream, 3-4

C
Capture Wizard, 1-3
changing NULL constructs, 2-109
CHAR(n) data type, 2-10
character functions, 2-112
check constraints, 2-7
column aliases, 3-62
column names, 2-3
column-level CHECK constraint, 2-7
COMMIT TRAN statement, 3-14
COMMIT TRANSACTION statement, 3-14
comparison operators, 2-106
connecting to a database, 2-94
control files, 2-18

converting multiple result sets, 3-12
CREATE PROCEDURE statement, 3-39
cursor handling, 3-70
cursor variables, 3-4
cursor variables, return query results, 3-10
customized error messages, 3-16

D
data and hash cluster, 2-33
data block, 2-14
data concurrency, 2-118
data manipulation language, 2-93
data storage concepts, 2-13
data type mappings, 2-8
data types, 3-16
data types, conversion considerations, 2-3
database, 2-21
database devices, 2-14
database link, 2-31
datafiles, 2-14
date functions, 2-115
DATETIME data type, 2-3, 2-11
DB-Library code, 3-6
DDL constructs, 3-84
declarative referential integrity, 2-7
DECLARE statement, 3-41
defaults, 2-39
DELETE statement, 2-105
DELETE triggers, 3-2
DELETE with FROM statement, 3-65
destination database, 1-3
distributed environments, 4-1

Index-2

E
emulate temporary tables, 5-7
entity integrity constraints, 2-6
error handling, 3-15
error-handling semantics, 3-77
exception-handling semantics, 3-77
EXECUTE statement, 3-48
explicit transaction model, 3-73
extent, 2-14

F
features, 1-2
FETCH request, 3-4
FLOAT data type, 2-9
function, schema object, 3-25
functions, defining in Oracle, 2-114

G
GOTO statement, 3-53

I
IF statement, 3-42
IMAGE data type, 2-6
implicit transaction model, 3-73
IN OUT parameter, 3-10
individual SQL statements, 3-13
INSERT statement, 2-102
INSERT triggers, 3-2

L
locking concepts, 2-118
logical transaction, 3-14
logical transaction handling, 2-122

M
maintenance of temporary tables, 5-10
mathematical functions, 2-117
Migrating, 5-1
Migration Wizard, 1-3
miscellaneous functions, 2-114

multiple queries, 5-5
multiple result sets, 3-80
multiple results sets, 3-12
multi-row array, 3-7
multi-row query, 3-10
multi-table joins, performance, 5-4

O
object names, 2-3
ODBC, 3-5
operators, 2-106, 3-80
Oracle Model, 1-3
output variables, 3-4

P
package body, 3-33
package, schema object, 3-29
page, 2-14
page-level locking, 2-120
parameter passing, 3-40
permanent tables, 5-8
PL/SQL and T-SQL constructs, comparison, 3-37
PL/SQL and T-SQL, language elements, 3-73
PL/SQL tables as output variables, 3-7
privilege, 2-46
procedure, schema object, 3-18
product description, 1-1
profile, 2-51

R
RAISERROR statement, 3-15, 3-47
read consistency, 2-121
redo log files, 2-16
referential integrity, 3-2
referential integrity constraints, 2-6
remote objects, Oracle, 4-2
remote objects, SQL Server and Sybase, 4-2
replace temporary tables, 5-7
replication, 4-3
repository, 1-3
reserved words, 2-3
result set with multiple rows, 3-6

Index-3

result set, converted using cursor variable, 3-68
result sets, 3-4
RETURN statement, 3-46
role, 2-55
ROLLBACK TRAN statement, 3-14
ROLLBACK TRANSACTION statement, 3-14
row-level locking, 2-120
rule, 2-60

S
schema migration, 2-1
schema object similarities, 2-1
schema objects, comparison, 2-18
segments, 2-14
SELECT INTO statement, 2-98
SELECT statement, 2-95, 3-56
SELECT statement, part of SELECT list, 3-59
SELECT statement, result sets, 3-7
SELECT statement, with GROUP BY clause, 3-61
SELECT statements without FROM clauses, 2-98
SELECT with GROUP BY statement, 2-101
sequence, 2-62
set operators, 2-111
single result set, 3-80
snapshot, 2-65
source database, 1-3
Source Model, 1-3
special global variables, 3-78
stored procedures, SQL Server, 3-1
stored subprograms, Oracle, 3-1
string operators, 2-110
subqueries, 2-100
SYSNAME data type, 2-12

T
table design considerations, 2-3
table-level CHECK constraint, 2-7
tables, 2-69
tablespace, 2-15, 2-80
temp_table_catalog, definition, 5-11
temporary table usage, 5-1
temporary tables in Oracle8i, 5-9
temporary tables, comparison, 3-67

temporary tables, creating dynamically, 5-7
temporary tables, emulate, 5-7
temporary tables, maintenance, 5-10
temporary tables, replace, 5-7
TEXT data type, 2-6
TIMESTAMP data type, 2-12
transaction handling semantics, 3-73
transaction handling statements, 3-72
triggers, Oracle, 3-1
triggers, SQL Server, 3-1
T-SQL and PL/SQL constructs, comparison, 3-37
T-SQL and PL/SQL, language elements, 3-73
T-SQL local variables, 3-16

U
unique keys, 2-7
UPDATE statement, 2-103
UPDATE triggers, 3-2
UPDATE with FROM statement, 3-63
user, 2-84
user-defined types, SQL Server, 2-6

V
VARCHAR(n) data type, 2-10
view, 2-88

W
WHILE statement, 3-49

Index-4

	PDF Directory
	Contents
	Send Us Your Comments

	Preface
	Audience
	What You Should Already Know
	How the Oracle Migration Workbench for MS SQL Server and Sybase Adaptive Server Reference Guide i...
	How to Use This Reference Guide
	Conventions Used in This Reference Guide

	1 Overview
	Introduction
	Product Description
	Features
	Terminology

	2 Databases
	Schema Migration
	Schema Object Similarities
	Schema Object Names
	Table Design Considerations
	Data Types
	DATETIME Data Types
	IMAGE and TEXT Data Types (Binary Large Objects)
	MS SQL Server and Sybase User-Defined Data Types

	Entity Integrity Constraints
	Referential Integrity Constraints
	Unique Key Constraints
	Check Constraints
	SQL Server Rule:

	Data Types
	Data Types Table

	Data Storage Concepts
	Data Storage Concepts Table

	Schema Objects
	Alias
	Create
	Drop

	Database
	Create
	Alter
	Drop

	Database Link
	Create
	Drop

	Data and Hash Cluster
	Create
	Alter
	Drop

	Defaults
	Create
	Drop

	Index
	Create
	Alter
	Drop

	Privilege
	Grant
	Revoke

	Profile
	Create
	Alter
	Drop

	Role
	Create
	Alter
	Drop

	Rule
	Create
	Drop

	Sequence
	Create
	Alter
	Drop

	Snapshot
	Create

	Synonym
	Create
	Drop

	Tables
	Create
	Alter
	Drop
	Truncate

	Tablespace
	Create
	Alter
	Drop

	User
	Create
	Alter
	Drop

	View
	Create
	Alter
	Drop

	Data Manipulation Language
	Connecting to the Database
	SELECT Statement
	SELECT Statements without FROM Clauses:
	SELECT INTO Statement:
	Subqueries in Place of Columns:
	MS SQL Server/Sybase:
	In Oracle:
	Comparing Subqueries to Subqueries:
	Column Aliases:
	Table Aliases:
	Compute:
	Outer JOIN Syntax:

	SELECT with GROUP BY Statement
	INSERT Statement
	UPDATE Statement
	Method 1 - Convert UPDATE statements with FROM clauses:
	Method 2 - Convert UPDATE statements with FROM clauses:

	DELETE Statement
	Remove Second FROM Clause:

	Operators
	Comparison Operators
	Arithmetic Operators
	String Operators
	Set Operators
	Bit Operators

	Built-In Functions
	Character Functions
	Miscellaneous Functions
	Defining Functions in Oracle:

	Date Functions
	Mathematical Functions

	Locking Concepts and Data Concurrency Issues
	Locking
	Row-Level Versus Page-Level Locking
	Read Consistency
	Logical Transaction Handling

	3 Triggers and Stored Procedures
	Introduction
	Triggers
	Stored Procedures
	Methods Used to Send Data to Clients
	Output Variables
	Results Sets: The MS SQL Server and Sybase Method of Sending Data to the Client
	Oracle: Cursor Variables for Returning Query Results
	Pro*C Client:
	Oracle Server:
	MS SQL Server and Sybase: Multiple Results Sets
	MS SQL Server and Sybase: Cursors

	Individual SQL Statements
	MS SQL Server and Sybase:
	Oracle:
	MS SQL Server and Sybase:
	Oracle:

	Logical Transaction Handling
	Transaction-Handling Statements

	Error Handling within the Stored Procedure
	RAISERROR Statement
	Customized Error Messages

	Data Types
	Local Variable
	Server Data Types
	Composite Data Types

	Schema Objects
	Procedure
	Create
	Drop
	Execute
	Alter

	Function
	Create
	Drop
	Execute
	Alter

	Package
	Create
	Drop
	Alter

	Package Body
	Create
	Drop
	Alter

	T-SQL Versus PL/SQL Constructs
	CREATE PROCEDURE Statement
	Parameter Passing
	DECLARE Statement
	IF Statement
	RETURN Statement
	RAISERROR Statement
	EXECUTE Statement
	WHILE Statement
	GOTO Statement
	@@Rowcount and @@Error Variables
	ASSIGNMENT Statement
	SELECT Statement
	SELECT Statement as Part of the SELECT List
	SELECT Statement with GROUP BY Clause
	Column Aliases
	UPDATE with FROM Statement
	DELETE with FROM Statement
	Temporary Tables
	Result Set (Converted Using a Cursor Variable)
	Cursor Handling
	Transaction Handling Statements

	T-SQL and PL/SQL Language Elements
	Transaction Handling Semantics
	Conversion Preparation Recommendations

	Exception-Handling and Error-Handling Semantics
	Special Global Variables
	Operators
	Built-in Functions
	Sending Data to the Client: Result Sets
	Single Result Set
	Multiple Result Sets
	About Converting a T-SQL Procedure with a Result Set

	DDL Constructs within MS SQL Server and Sybase Stored Procedures

	4 Distributed Environments
	Distributed Environments
	Accessing Remote Databases in a Distributed Environment
	Oracle and Remote Objects

	MS SQL Server and Sybase and Remote Objects
	Replication

	Application Development Tools

	5 Migrating Temporary Tables to Oracle
	Temporary Table Usage
	Simplify Coding
	MS SQL Server and Sybase:
	Oracle Pseudo Code:

	Simulate Cursors when Processing Data from Multiple Tables
	MS SQL Server:
	Oracle:

	Improve Performance In a Situation Where Multi-Table Joins are Needed
	Associate Rows from Multiple Queries in One Result Set (UNION)
	MS SQL Server and Sybase:
	Oracle:

	Eliminate Re-Querying Data Needed for Joins
	MS SQL Server and Sybase:
	Oracle:

	Consolidate the Data for Decision Support Data Requirements

	Replace Temporary Tables
	Emulate Temporary Tables
	Implementation as PL/SQL Tables
	Implications of Creating Temporary Tables Dynamically
	Implications of Creating Permanent Tables
	Implementation of Temporary Tables as Permanent Tables
	Maintenance of Temporary Tables

	Definition of temp_table_catalog
	Package Body temp_table

	Index

