Oracle [J Call Interface

Programmer’s Guide

Release 8.1.6

December 1999
Part No. A76975-01

ORrRACLE

Oracle Call Interface Programmer’s Guide, Release 8.1.6
Part No. A76975-01

Release 8.1.6

Copyright © 1999, Oracle Corporation. All rights reserved.
Primary Author: Phil Locke

Contributing Authors: Eric Belden, Jack Melnick

Contributors: Mehul Bastawala, Ruth Baylis, Allen Brumm, Sashi Chandrasekaran, Debashish
Chatterjee, Ernest Chen, Luxi Chidambaran, Sreenivas Gollapudi, R. Govindarajan, Brajesh Goyal,
Radhakrishna Hari, Josef Hasenberger, Don Herkimer, Chin-Heng Hong, Nancy lkeda, Amit Jasuja,
Sanjay Kaluskar, Ravi Kasamsetty, Susan Kotsovolos, Vishu Krishnamurthy, Srinath Krishnaswamy,
Ramkumar Krishnan, Sanjeev Kumar, Thomas Kurian, Paul Lane, Shoaib Lari, Chon Lei, Cindy Lim,
Nancy Liu, Diana Lorentz, Shailendra Mishra, Prasenjit Mitra, Vidya Nagaraj, Tin Nguyen, Denise
Oertel, Rosanne Park, Jacqui Pons, Den Raphaely, Anindo Roy, Ali Shehade, Tim Smith, Ekrem
Soylemez, Gael Stevens, Ashwini Surpur, Ashok Swaminathan, Alan Thiessen, Peter Vasterd, Rick
Wessman, Joyo Wijaya, Sathyam Yanamandram, Allen Zhao

Graphic Designer: Valarie Moore

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle, SQL*Forms, SQL*Net, and SQL*Plus are registered trademarks of Oracle Corporation, Redwood
Shores, California. Oracle Call Interface, Oracle7, Oracle7 Server, Oracle8, Oracle Forms, PL/SQL, Pro*C,
Pro*C/C++, Pro*xCOBOL, Net8, and Trusted Oracle are trademarks of Oracle Corporation. All other
products or company names are used for identification purposes only, and may be trademarks of their
respective owners.

Contents

SENA US YOUI COMIMENES oo et ettt ettt ettt ettt et ettt et et et ettt ee et et enes XXiX
o (=) =01 < U XXXi
Part| Basic OCI Concepts

1 Introduction, New Features, and Upgrading

OVEIVIEW OF OC ... b bbbt b e bbbt e st bt et be bt sbesbe st neas 1-2
AAVANTAGES OF OC ...ttt bbbttt b ettt n s 1-3
Building an OCI APPLICALIONcociiiiieecccee et sren 14
PartS OF The OC ...t bbb ettt be st e besbesbesbe e 1-5
Procedural and Non-Procedural EIEMENTS ... e 1-5
L@ 01101] o] o Yo o S 1-6
1@] I r= 1 (] 4] o1 S ST RPRURRIN 1-7

INEWW FRATUIES ...ttt ettt b e at e e bt e b bt e be e s bt e ke e sab e e b e e snbeebe e enbeenbeenere s 1-12
ENCapSUlated INTEITACESc.viiie et a e ne et e 1-13
Simplified User Authentication and Password Managementcccccoeeenienennnienennens 1-13
Extensions to Improve Application Performance and Scalability...........cccccoceveiiivirinnnnn 1-14
(O] ¢=Tod [N @104 @] o] [=Te1 S TU] o] o Lo VSRR SSBRN 1-15
Client-Side ODJECT CACNE.........iiiiirie et ettt sbe b 1-15
Associative and Navigational INTErfaces. ... 1-15
Runtime ENvironment for ODJECLSccoiiiiiiciccece e e 1-16
Type Management, Mapping and Manipulation FUNCLIONSccoceieiiiiieiicinicnce, 1-17
ODbjJECt TYPE TrANSIALONccveviitiiitiiciie bbbt 1-17

OCI Support for Oracle Advanced QUEUEINGcoeiiiriiiiinine e 1-18

XA LIDIANY SUPPOIT ..ottt et bbbttt 1-18
Simplified Migration of Existing APpPliCatioNS..........cccccoveiviviiciiesiere e 1-18
Compatibility, Upgrading, and Migration............ccooiiiiniiiiinene e 1-19
ODbSOIESCENT OCT ROULINES ...ttt sttt ettt sr ettt s e ene e 1-19
(@10 I = o101 11 [T N [0 ST U] o] o o 1= o 1SS 1-21
COMPALIDTTITY .t bbbttt b e 1-22
18] oo 7 To [T FUNU T T S SO TR TSP ST SOPT PP 1-23
APPLICAtION LINKING ISSUES.......c.ociiiiicice ettt sttt ene e neerenre e 1-24

OCI Programming Basics

OVBIVIBW ...ttt et et ettt b ekttt b bt e bbbt b et bt ek et ekt s e ek e s b e b e et et e nbebeabebeaberenbeneas 2-2
OCH Program STIUCTUIEoivieiee ittt st eesae et essaeabeesbaeabeesbbe e beessseesbeeaseeebeenn 2-3
(@ 10F [B - 1 7= B £ 0 (01 (U] T ST PPRUSP 2-5
HANAIES ... bbbtk bbb bbb bbbttt b ettt ettt e 2-6
Allocating and Freeing HandISccvoiiiiiiiieccece e 2-7
ENVIroNMENt HANAIE.........cooiiiccc e ettt anes 2-8
ErTOr HANAIE ..ottt ettt sb bbb sb e b 2-9
Service Context and Associated HandIes...........cccooiiiiiiii e 2-9
Statement Handle, Bind Handle, and Define Handleccocooviiiiiiciiiicceece e 2-10
DeSCriDE HANAIE ..o 2-11
Complex Object Retrieval Handle.............cooiiiiii s 2-11
THEEAA HANAIE ...ttt ettt e et et e e e be e e sbeennes 2-12
] U101 Tol] o1 1 Te] o I - Ut T 1 =SS 2-12
DireCt Path HANAIES. ..ot 2-12
ProCesS HANAIE ...ttt et be e s te e ste s beesresbeestestaens 2-13
HaNAIE ALIFIDULES ... bbbttt 2-13
(O \V =T g g o] VA AY 1 (o Tox= 1 (o] o SRRSO 2-13
(D TCTST ot 4] o] o] £ T O ST P TSSO TS U OO UR PPN 2-14
R = 0TS [0 A 9 1= ST T o] (o SRS 2-15
LOB/FILE DatatyPe LOCALOTc..ciiiiieieeieieieeeie ettt st sne s 2-15
Parameter DESCIIPIONc.ciuiiiieiiieiete ettt ettt ettt 2-16
@ A AV {3 1= S]] o] o SR 2-16
CoMPIEX ODJECE DESCIIPLON ...viiiieitiitesie sttt bbbt ebe s 2-17
Advanced QUEUEING DESCIIPLONScveuiriiuirieirieirieisie ettt 2-17

User Memory AOCALIONc.coviiiciccct ettt be et sre e sre e 2-17

OCI Programming STEPSoouciieiirieiieinieest sttt b bbbt e bt n et nb et nn et nnenes 2-18
Initialization, Connection, and SeSSIoN CreatioN...........ccocvviiriineineisesese e 2-18
Initializing an OCI ENVIFONMENT..........ccoii ittt 2-19
Shared DAta MOGEooiiiiiiiie ettt sttt n e ne b e reste e 2-20
Allocate Handles and DESCHIPLOISccvcveieieieisese st sre e 2-22
Application Initialization, Connection, and Session Creationc.ccoceveveveienienenene, 2-23
Processing SQL STAtEIMENTScoiiiiiiiiieeee et 2-26
COMMIL OF ROIDACKcviiiiiiie bbbttt 2-26
Terminating the APPHICATIONcciiiii s 2-27
Error HaNAIING ..ottt ettt ebe e 2-27
Return and Error Codes for Truncation and Null Data...........c.covvenvininninniieene 2-29
Functions Returning Other VAIUEScccooiiiii it 2-30
Additional Coding GUIAEIINESccoiiiiiii e 2-31
o oL o] (T 1Y/ o 1= PSSR 2-31
INUITS <ottt et et et be e et e e et e sb et e sb et e s b et e st e s e et e e abe e abe e 2-32
INAICALOr VArTADIES ..ottt ettt sbenresne 2-32
L0= T o111 1T To [@3- 1 13RS 2-34
Positioned Updates and DeIetes.ccooiiiiiiiie e 2-34
RESEIVEA WOTTUS ...ttt sttt bbbt e et e et e e e st et e e beeneebe st ee 2-35
FAN o] o] [Toz-1 Lol I T o1 (] T [2-37
N [o] B =1 [oTod 21 To TN Y/ o To [T 2-37
Setting BIOCKING MOTESooiiiiiiiii e 2-38
Cancelling a Non-blocking Call...........cccoooiioiiiccsesn e 2-38
NON-DIOCKING EXAMPIE ...t 2-38
UsSIiNg PL/SQL iN @N OCI PrOGIaM....c.coucuiiiiiiieiiieiseesiee ettt sttt sne e sne e 2-39
Datatypes
OFACIE DALALYPES ...ttt bbbt b s bbb bbbt bbb bbbt bttt 3-2
INternal DatatyPe COUES......cceiieiicieeee et e e e re e resresnesrenrees 3-3
External DatatyPe COOEScooi ittt e ettt sbe st nnen 3-4
INTEFNAT DATALYPESvveeeieeete ettt bbbt bbbt bt bt bbb 3-5
LONG, RAW, LONG RAW, VARCHAR2Z ..ottt 3-5
Character Strings and BYLE ATTAYS......cccuciiiuiiieiieiiste et se e see e ee e ssae e este s e sneenre e e sneanees 3-6
UNIVEISAl ROWID ...ttt bt st ettt besbesbesbesaente e 3-6

vi

EXTEINAI DATALYES ...ttt b e bbb bbb bbb et b e et e bbb b e 3-7

VWARGCHARZ......c etttk et e bt e b e s e b e st et s et et e be s e be s ete e e 3-9
INUMBER. ...ttt bbbtttk b e bbbt bbb st bttt et bbb 3-10
INTEGER.......ci ittt ettt ettt st s et b skt b ettt b et n et b et enentenen 3-11
1@ N USSR 3-11
STRING .ot b bbbt b ekt et se e bt s b e bt s b et e e b e s e ab et et e e ebe e et e 3-12
VARNUM L.ttt bt s bttt sttt be bbb 3-12
LONG .ottt bbbttt bR b sttt R R bR bR bRt Rt Rt Rt bttt ne bt 3-13
VARCHAR ..ottt bbbt bbbt b ettt ettt bbb nr e 3-13
ROWIID ...ttt sttt sttt b e b et et et btk et ettt se et st e b st be st nennne 3-13
DATE .ottt b ettt R AR R AR bR bRt Rt Rt Rt Rttt re b ne 3-14
RAWV ..ttt et ek e bt e R bR bR bbbt bbb et e ne e 3-15
VARRAW ..ottt ettt bbb bbbt s bRt b et be bbbt renrne 3-15
LONG RAW ...ttt ettt ek bbb st et sttt ettt et e be b ne b ens 3-16
UNSIGNED. ..ottt et b et bbbt ettt ettt bbb b nnne 3-16
LONG VARCHAR ...ttt ettt ettt b nennne 3-16
LONG VARRAW ..ottt ettt ettt ettt s et se sttt sttt b te st nesrns 3-16
CHAR L b bbb ekt ekt bt e bt e bt bbbt bbb et 3-16
CHARZ ...ttt et ettt sttt b e se b et b e et e R e b e e b e b et et e 3-17
New Oracle EXternal DatatyPEsSccccoiiiiiiiiieiiei ettt 3-18
NAMED DATA TYPE (Object, VARRAY, Nested Table)c.cccoovvrenniinninniencenece 3-18
REF <. ettt E e bbbt Ee Rt Re e bt Re ettt e renrne 3-18
LOB ..ttt R AR R R bR bR b e Rt Rttt Eet bttt renrns 3-19
NeW C DatatyPe MaPPiNgS. ..ccvieiveruirierierieriesieeeseeeesiesessesessessessessessessessessessessesesssesessessessens 3-21
Data CONVEISIONS ...ttt ettt b ekt b e bt e b bt s b e e b et st et e st e e e st ebeebeabeaneas 3-21
TYPECOTES ...ttt etttk ek bbb bt h st h et bt bt b e ek ekt E ke e b bt bt bRt bt b e b e ere e 3-23
Relationship Between SQLT and OCI_TYPECODE ValUes........cccccocvvvverererierieieiesneeen 3-25
DefinitioNs 1N OFatYPES. N e ettt ene 3-27

SQL Statement Processing

OVBIVIBW ...ttt etk b ekt r bRt R et R et R et e Rttt bt e e e b e nn bt nn b e an b e an s e ane e 4-2
Processing SQL STaLEIMENTS.coiiiiiiiiiieete ettt 4-2
Preparing STAatEMENTScc.cv ittt sa et ae e et e s e s e e e eseerenrearenre e nes 4-4

Using Prepared Statements on MUltiple SEIVErS ... 4-5
BINAING ...tttk bbb bbb bbbt bbbt 4-5

EXECULING STALEMIEBNTS ...ttt e b et e s aeebe s aeentesneeseeanes 4-6

EXECULION SNAPSNOLS ...ttt 4-7
EXECULION IMOTES ...ttt bbb bbbttt 4-7
Batch Error Mode for OCISTMEEXECULE() ...vecvveveiieiieeieiieie ettt sre e 4-8
Describing SeleCt-LiSt ITEMS. ..o e 4-11
IMPLIICIT DESCIIDE ...ttt se e en e e e nesrenrenrens 4-12
EXPlicit DeSCribe Of QUEKIESooiiiieiiieie e e 4-13
DETINING ottt b bbbt 4-14
FEECNING RESUITSoviiie ettt e e e e e e e s e e s e e reeneerenrenes 4-15
(e ol o T @ I | - USSR 4-15
Setting PrefetCh COUNT ..o e 4-15

Binding and Defining

BINAING -t b b bt b e bt R bR e bbb bbb et 5-2
Named Binds and Positional BiNdS ... 5-4
(O 1Od N o = |V [1 (=] o = (ot ST 5-4
Binding Placenolders in PLZSQL ..ot 5-5
] (=] o IS0 K=o AT N 21T 0T 17 o S 5-6
PLZSQL EXAMPIE. ...ttt bbbttt ettt ebe b b e 5-7
AAVANCEA BINAS. ...ttt sttt e et s e e st ebesresaesbe e e 5-9
VAN \VZ TaTot=To I =TT o To I @ o T=T - A o] o TP 5-9
R e LTl AN o - |V =TT [SRS 5-10
Named Data TYPE BINAScoooiiiiiiiiciree st ere e 5-10
2T o T o T S 5-10
=] [T [T T O L= LSS 5-10
Binding in OCI_DATA_AT _EXEC MOEccvoviiriiiiiisici et 5-16
Binding Ref CUIrsSOr VariableSccccvviieieiiiceeceee sttt 5-17
Summary of Bind INfOrmMation............cccoiiiiiice e 5-17
DBTINING et b bbbt 5-18
Steps USed iN DEFINING ...vvov it neene e snesnens 5-19
AAVANCEA DETINES ...t e e ettt ettt ebe e 5-20
Advanced DefiNg OPEIAtIONS......cccoiiiiiieriie ettt 5-20
Defining Named Data Type Output Variables ..o 5-21
Defining REF OULPUL Variables. ... s 5-21
Defining LOB OULPUL Variables ..o 5-21

Vii

viii

Defining PL/SQL Output VariabIes ..o 5-21

Defining FOr a PIeCeWISE FEICNciiiicce e 5-22
Defining Arrays Of SIFTUCTUIESciiiee e ene s 5-22
ATTAYS OF SITUCTUIES ...t e et et e ae et e e neenae e e e sreeneas 5-22
SKIP PAFAIMETEIS ..ottt bbbttt et re bbbt b et eb et r e eb e ene e 5-23
OCI Calls Used wWith Arrays Of SEFUCTUIEScc.ooveieieecicece s 5-25
Arrays of Structures and Indicator Variables............ccccooviiiiiiviie e 5-25
DML With RETURNING CIAUSEc.ccuiiiiiiciiictiieisiei sttt sse e ssesassenes 5-26
Using DML with RETURNING ClaUSE.........cccoviiiiiiiicisese e 5-26
Binding RETURNING...INTO Variables..........cccccooiiiiiiieiiiece e 5-27
Error HANAIING ..ottt 5-28
DML with RETURNING REF...INTO ClAUSEccoiiiiiiiniecseiese e 5-28
Additional Notes AbouUt CallDaCKScooiiiiiii e 5-30
Array Interface for DML RETURNING Statementsccoooeovennennenseneeneeseeseee 5-30
NCHAR and Character CONVEIrSION ISSUES ..ot 5-31
INCHAR ISSUES ...ttt bbbttt h e e e e e s bt e e e s b e b e bt e s e nbeenrenneenne 5-31
OCI_ATTR_MAXDATA _SIZE ATIIBULE ..o 5-32
Character CoOUNt ATIIDULE ..ot 5-33
Fixed Width UnNIiCOAE SUPPOIT ..o et 5-33
PL/SQL REF CURSORS and Nested TabIes ... 5-35
Run Time Data Allocation and Piecewise OPerations.........ccccocvvivvenenieieneneseseeseeesiesesnenees 5-37
Providing INSERT or UPDATE Data at RUN TiMe........cccccoeiieiiiieieseee e 5-39
Piecewise Operations With PLZSQL ..ot e 5-41
Providing FETCH Information at RUN TiMEcccciviiiiiniern e 5-41
Additional Information About Piecewise Operations with No Callbacks......................... 5-44

Describing Schema Metadata

OVBIVIBW ...ttt etk b ekt r bRt R et R et R et e Rttt bt e e e b e nn bt nn b e an b e an s e ane e 6-2
USING OCIDESCIHTDEANY () ..ttt 6-2
RESTIICTIONS. ...ttt b et n et en e 6-4
Notes on Types and AIFIDULES ..o s 6-4
Parameter ATIFIDULESccoiiii ettt sae bt e 6-5
TabIe/VIEW ALLIIDULESciiecicie s 6-7
Procedure/Function/Subprogram ALHDULES ... 6-8
PaCKage ALIITDULES ..o bbbttt n e ane e 6-8

TYPE ATIIIDULES ... bbbttt ettt b ettt sa e b b e 6-9

Type ALHDULE ALIFIDULESoiiiiiie e 6-10
TYPE Method AtLIDULESocveiecceeee e sre e 6-11
COlIECLION ATIITDULES ...ttt b bbb 6-13
SYNONYM ATIFIDULES ... e 6-14
SEQUENCE ALLIIDULESecveieie ettt st se e s e e e e enesresrenrens 6-14
COlUMN ALIFIDULES. ... ettt eb bbb 6-15
Argument/ReSUIt ALIFIDULES ..o 6-16
LIST ALLFIDULES ..ottt ettt ettt b bbbt abe e abe e 6-18
SCHEMA ATIFIDULES ..o ettt eb st sre s 6-19
Database ALIFIDULES ..o e 6-19
= T] 0] 1= PSS 6-20
Retrieving Column Data Types FOr a Table ... 6-20
Describing the Stored ProCeAUIE...........couviiiiiieiiese e 6-22
Retrieving Attributes of an ODJECt TYPEovvvcicecece e 6-24
Retrieving the Collection Element’s Data Type of a Named Collection Type 6-26

7 LOB and FILE Operations

OVEIVIBW ..ttt h bt bbb et s et h e bt b £ bt e b e bt E e eh e e bt A b e s e e et et ehb e bt e bt e bt abenbenbesbenes 7-2
Creating and Modifying INternal LOBSccoioiiiiiiiiieee e 7-2
Associating a FILE ina Table With an OS File..........cooov i 7-3
LOB Attributes 0f @an ODJECT........co i 7-3
Writing to a LOB Attribute of an ODJECTccciiiiiiiiiecc s 7-3
Transient Objects With LOB AtFHDULEScoccv i 7-4
ArTay INTErface FOI LOBScooiicc ettt et et e e e reentesaeesreanes 7-4
LOB @Nd FILE FUNCLIONS ...c.uiitiiiiiie ettt sttt sttt et e stesbesbesbennenae s 7-4
Functions for Improving LOB Read/Write Performance..........cccccocvvvvvvereeieeisiesie s snsennens 7-8
LOB BUFfering FUNCLIONS ..ottt sttt enneens 7-9
Functions for Opening and ClOSING LOBSccciiiriiirieiesie e e 7-9
Server Roundtrips for LOB FUNCLIONScociiieicesece et snens 7-11
LOB Read and Write CallDacKsccooiiiiiic e 7-11
The Callback Interface for StreamMIiNg ..o e 7-11
Reading LOBS USING CallDaCKS..........cccvieieiiicieececeee st 7-12
Writing LOBS USING CallDACKS.........c.ccviiiiiecce et 7-13
Temporary LOB SUPPOIT ..ottt sre s 7-15

Creating and Freeing TemMpPOrary LOBS ... 7-16
TempPorary LOB DUFALIONS.cciiiiiiiiiet ettt 7-16
Temporary LOB EXAmMPIE ...ttt st ne e ne s 7-17

Managing Scalable Platforms

OVBIVIBW ...ttt et et ettt b ekttt b bt e bbbt b et bt ek et ekt s e ek e s b e b e et et e nbebeabebeaberenbeneas 8-2
TFANSACTIONS ...ttt bbbt bt bt bt bbb eh e e b et e e e b e st e b e st eht e b e e bt e bt ebenbenbeabe b 8-2
Levels of Transactional COMPIEXITYc.ceriiiiiieiree e 8-3
Transaction EXAMPIEScviiiiiiiicc et sttt e e e ne e enesrenrenrens 8-8
Related Initialization PArameters ..o 8-11
Password and Session Man@gEMENT..........ccoueiiiiiiiiee bbb 8-12
Authentication ManagemENT ... 8-12
PassWOord ManagEMIENT........c..ccviiiiiiie sttt et esbe et e saeestesreesaesnaesrenneens 8-13
SESSION MANAGEIMENTcviiitiieti ettt r et b et b et eb et b e b ene e 8-14
Middle-tier APPIICAtIONScviiie e se e e e e e eseeresneanens 8-15
Attributes for Middle-tier APPHCAtIONSc.coviiiiiiiii e 8-16
Middle-Tier EXAMPIE.oiiiii bbb 8-17
L L =To T RS- Y2 SS 8-22
Advantages of OCI Thread Safely ..o 8-22
Thread Safety and Three-Tier ArchiteCtUIES ..ot 8-22
Basic Concepts of Multithreaded Developmentccocvvvvivieiinene e 8-23
Implementing Thread SAfEty ... e 8-23
Multithreading EXAMPIE........coiiie e 8-24

OCI Programming Advanced Topics

The OCITRread PACKAgE.c..ciiiiicic bbb 9-2
Initialization and TerMINAIONc.ccciiiiiii e e 9-3
Passive Threading PrimitiVES.........cccoiiiiii ittt 9-4
Active Threading PrimitiVES ... e 9-6
Using the OCIThread PaCKage........cccciveviieeeicieese sttt 9-7
Example using OCITRI Aoouiiieece e 9-8

User-defined Callback FUNCLIONScocoiiiiiiiecee e 9-10
Registering User CallDacKs...........cccvieiiieieicc et 9-10
OCI Callbacks From EXternal ProCeAUIES..........ccouiiiiiiieiicine e 9-19

Application Failover CallDacks ...t 9-20

FaloVEr CallDACK OVEIVIEW........ooiiiiiii ettt ettt e st e s e ebt e s s sbba e s sbee s 9-20

Failover Callback Structure and Parameters ... 9-20
Failover Callback ReQISIration...........cccvieieiiiicieicece st 9-22
Failover Callback EXAMPIE........cooiiiiece e 9-22
Handling OCI_FO_ERROR..........ccuiiiiiieieeset ettt sttt sr e sae e sbe e sbe e steseate e 9-23
(@103 Ir-Ta o I7ANe \VZ UaTot=To @ U 1= U] | o o [T SSRN 9-27
OCI Advanced QUEUING FUNCLIONScocviiieieiecie st 9-27
OCI Advanced QUEUING DESCHIPTOISccoueirieiriiinieiseieesee et 9-27
Advanced Queuing in OCI VS, PLZSQL ...cooov oot 9-28
Publish-Subscribe NOUITICAtIONccoiiiiie e 9-31
Publish-SubSCribe FUNCLIONS...........ccciiiie e 9-32
NoOtification CallDACK ..o 9-33
Publish-SubsCcribe EXamMPIE........ccoiiiiiiie e 9-35
DireCt Path LOAAING. . ..coveveieiiieeee bbbttt 9-39
Limitations and RESTIICLIONScccviiiiiiiie e ere e 9-40
DatatyPes SUPPOITEAoiiiiiiiii ittt sttt ettt ebe e 9-41
DireCt Path HANAIESooiiiiee ettt re e 9-41
Direct Path Interface FUNCLIONS ... 9-43
Direct Path Load EXAMPIE.......cooiiiiiiiie et 9-44

Part Il OCI Object Concepts

10 OCI Object-Relational Programming

OVEIVIBW ...ttt b et bbbt s et h e bt e bRt e b £ e b e e bt S b e e b e b s e e b et et enbes e e bt e bt ebeebenbeabe 10-2
OC] ODJECT OVEIVIEBW ...tttk e bbbttt bbbt e bt ettt nb et nnenes 10-3
Working with Objects in the OCH ... e 10-4
Basic ObjJeCt Program StIUCTUIE.........cccvo ettt sne s 10-4
Persistent Objects, Transient Objects, and Values ... 10-5
Developing an OCI Object APPHICAtION.......c.ccvcviiiiir s 10-7
Representing Objects in C APPLICALIONS........cc.cviiiiiiiiieie e 10-8
Initializing Environment and ObJect CaCNE ... 10-10
Making Database CONNECLIONSccciviiiirieie e e re e ene s 10-10
Retrieving an Object Reference from the SErver ... 10-11
PINNING @N ODJECT.......c.oiiiiice et b e 10-12
Manipulating Object AttrBULES. ..o 10-13

Xi

11

Xii

Marking Objects and FIushing Changesccocivieiie i 10-14

Fetching EMbedded ODJECES..........coiiiiiiieee e 10-15
ODbject Meta-ALtrIDULES. ..o e e e e ene s 10-17
Complex ODJECt RELIEVAL ... e 10-20
COR PrefetChINGoiieiieeeeee etttk 10-24
OCI vS. SQL ACCESS 10 ODJECESoviiiiiiieiisie ettt s e e eneas 10-27
Pin Count and UNPINNING ...c..oiiee et 10-28
INUTINESS . ettt ettt ettt bttt b e b b et e nb e sb e be b st et e st e st eneeneereane e 10-29
L1 =T 11 [Lo @] o] =T o1 £SO SRPRN 10-32
Freeing and CopYing ODJECTS........c.oiiiiiiiiieieie e e 10-33
Object Reference and TYPe RETEIENCE.ccooiiiiiiiiiiee e 10-33
Creating Objects Based on Object Views or User-defined OIDScccccecvveveneicivnnannns 10-34
Error Handling in Object APPHCALIONSccoiiiiiiiieiecee e 10-35
Object-Relational Datatypes
(O Y= YT USSP 11-2
Mapping Oracle DAtatyPes TO C......ccooiiiiiiiiiiiiiieii ettt 11-2
OCI Type Mapping Methodologyccccvieiiiireeicice e 11-4
Manipulating C Datatypes With OCH ... 11-5
Precision of Oracle NUMDer OPerationscccocoeieineineiineiese e 11-6
(DY (=R (@ 1@ 1 1) RSP PSSSSN 11-7
Date CONVErSION FUNCLIONScciiuiiiiiie ettt et sne s 11-7
Date Assignment and Retrieval FUNCLIONS. ... 11-7
Date Arithmetic and Comparison FUNCLIONS..........cccooviiiiiieienie e 11-8
Date Information ACCESSOr FUNCLIONS..........couiiiiiiiiieicetcne et 11-8
Date Validity Checking FUNCLIONS ..o 11-8
DAte EXAMPIE ..ot ettt ne e ne e nrenre s 11-8
N[0T ol 01T (@13 1 \N[U] s 1 o = OSSR 11-10
Number Arithmetic FUNCHIONS........coiii et 11-10
Number CoNVErSioN FUNCLIONSccoiiiiiiiinieiiesiestese e 11-11
Exponential and Logarithmic FUNCLIONScocoviiiiiiiice e 11-12
TrIQONOMELIIC FUNCTIONS ..ottt 11-12
Number Assignment, Comparison, and Evaluation FUNCLIONS..........cc.ccoceveveriricicennen, 11-12
NUMDBDEE EXAMPIE ...t bbb et et 11-13
Fixed or Variable-Length String (OCIStriNG)........ccoviiiiiiiiiiteeee s 11-15

12

SEENG FUNCHIONS ...t ettt e be st et et et e ensenaeeneesreenees 11-15

SEIING EXAMIPIE ...ttt 11-15
L TV (@ 1@ 1 = 11V PSSR 11-16
RAW FUNCLIONS ...ttt bbb b ettt bbbt 11-16
RAW EXAIMPIE.. ..ottt b et b et b et eb e et e b 11-17
Collections (OClITable, OCIArray, OCICOIl, OCIHLED) ..o 11-17
Generic Collection FUNCLIONS ..o 11-18
Collection Data Manipulation FUNCLIONSccoiiiiiiiiiiieesceee s 11-18
Collection SCaNNING FUNCLIONSccoiiiieiiiciceece e 11-19
Varray/Collection Iterator EXamPIe.........coooiiiiiiiiiiiieeee e 11-19
Nested Table Manipulation FUNCLIONSccoiiiiiiiiiieee e 11-20
NESLEd TabIE LOCALOTS.ciiiiiiteieieieie ettt et s 11-21
LRyl (@103 1 2=) OSSOSO 11-22
REF Manipulation FUNCLIONScouiiiiiiiiiiieec e 11-22
S o 1 o] o] -SSRSO 11-22
Object Type Information Storage anNd ACCESS.........coueiriiiiirire et 11-23
DESCIIPTOr OBDJECTSoviiiieiiiteiete ettt ettt 11-23
Binding and Defining in Object Applications
BINAING -ttt bbb bbb ek ek bbbt b et ere e 12-2
Named DatatyPe BiNAS.........cccviviiiiieiesise e st neene e e nnenns 12-2
=] 1T LT T = PSSR 12-3
Information for Named Datatype and REF BiNdS..........cccccoveiiiiiinncnsenseeeee e 12-3
(1D 1CY 1] T o T S 12-4
Defining Named Datatype Output Variables ... 12-4
Defining REF Output Variables. ... 12-4
Information for Named Datatype and REF Defines, and PL/SQL OUT Binds................ 12-5
Binding And Defining Oracle C DatatyPescccceeririiiniiise e 12-6
Bind and Defing EXAMPIES ..o 12-8
Salary Update EXAMPIES.......cccviiiiiiree ettt sttt e neeneerenne e 12-10
SQLT_NTY Bind/Define EXamMPIecoiiiiiiiece e 12-13
BiNG EXAMPIE ...t 12-13
DEfiNE EXAMPIE....c. ottt a ettt e e e e e ane s 12-14

Xiii

13 Object Cache and Object Navigation

OVBIVIBW ...ttt ettt et s e s e s e e bt eh e e b e e Rt e bt e b e eE e s b e be e ne et e st et eneeneebeabeabeebenreee 13-2
The Object Cache and Memory Management...........ccoeveieieireiniesie e 13-2
Cache Consistency and CONEIENCYccviieiiiieieciese et sre s 13-4
ODbjJeCt CaCNE PAFAMETETS ..ottt ettt sb et n e ene e 13-5
(O] o] 1=T01 O Tol o[- @ o 1] - o] g SR 13-6
Operations for Loading and Removing Object COPIESccvererenerenienieie e 13-7
Operations for Making Changes to Object COPIEScccoreiriireiineireeseeseeee e 13-9
Operations for Synchronizing Object Copies With SErver.........cccocvcvevniniicscseiesnenns 13-10
Object LOCKING OPEIAtIONSc.oiiiiiiitirie ittt bbb s sb e e e eneas 13-12
Commit and Rollback in Object APPHCALIONScccceiiiiriieneereeee e 13-14
L@ o111 A B TU] = 1 o] o ISR 13-14
Memory Layout Of @n INSTANCE ..ottt 13-16
ODJECT NAVIGALIONciiiiiiitiict bbbttt e 13-17
Simple ODbJECt NAVIGALIONcviiie e ne e eneas 13-17
OCI Navigational FUNCLIONSooiiiiiiiece e sne e e 13-19
PiNZUNPINZFree FUNCLIONS ..o 13-19
Flush and Refresh FUNCLIONS ... 13-20
Mark and UnNmark FUNCHIONS.coiiiiiiiiee e e 13-20
Object Meta-Attribute AcCCeSSOr FUNCLIONSc.coiiiiiiieiieicienee e 13-20
OthEr FUNCLIONS......oiiiitiicie bbb sttt nbne 13-21

14 Using the Object Type Translator

Xiv

OTT OVEIVIBW ...ttt ettt sttt bbb bbbt b et ket ekt ekt e et b et e bbb 14-2
Using the Object TYPe TranSIatorccoo oo 14-2
Creating Types in the DAtabasecocoiiiiiiiieii e 14-4
LYV Z0] T o R 1 1= N I PSS 14-5
The OTT COMMANT LINE ..ottt bbb et e bbb 14-5
L 8 I TSSOSO USSPRORSPN 14-6
U= o o OO OSSPSR 14-6
(LYY LT T PRSP U U PRPPTROP 14-6
(010 1137/ 0 TP TP PPN 14-6
(070 o L= OO P RO URPPRRRN 14-7
) 1 =SSOSR 14-7
L VL0 1 LTRSS PSRRI 14-7

INEFUNC ettt e e e et e e e s b e e e s s b e e e s b b e e sbaeessbbessssbeessbeesssbeeesssbesesnns 14-7

THE TNTYPE FIIE .ottt 14-8
OTT DatatyPe MaPPINGS ...ccveieeieieiesese sttt e e restesaesrestestesressesae e essensesesseenessessesnens 14-9
NUI TNAICATOT STFUCTS ..ot bbbt e e sne s 14-15
THE OULLYPE FILE ..o bbbttt 14-16
Using the OTT wWith OCI APPLICAtIONSccoivieiieeece e 14-18
Accessing and Manipulating Objects With OCI ... 14-19
Calling the Initialization FUNCLION ..ot 14-20
Tasks of the Initialization FUNCHION..........ccooiiie e 14-22
OTT RETEIEINCE ..ot b bbbt bt bbbt ettt et e bt et e b 14-22
OTT ComMMANd LINE SYNTAXcuviviiiiiiitiiieiiieeie et 14-23
OTT PAAMETEIS ...ttt ettt b bbb bt e sttt e s e e e e ene b e nre e 14-24
Where OTT Parameters Can APPEANccoieiuerieieieieeieeiee ettt sre e see e e e se e sneas 14-28
Structure of the INtYPe File.......coo s 14-29
Nested #include File GENEratioNcccveiiieiiiiieiee e 14-31
SCHEMA _NAMES USAQE.......cueiiiiiitiietiiieiisieie sttt ssese s ssesessesessessssenes 14-33
Default Name MapPiNg.......ccooeriiiiie ettt 14-36
RESEFICTION ...t b et b et ettt ebe e 14-37

Part Il OCI Reference

15 OCI Relational Functions

[a1 o Te [Tex Ao o OO 15-2
U T o g TRV | - O PSSR 15-2
CalliNg OCI FUNCLIONScoetiiiiiiiitiiciiiet ettt 15-3
Server Roundtrips for LOB FUNCLIONSc.cociiieecesiece s sne s 15-3

Advanced Queuing and Publish-Subscribe FUNCLIONScccoi i 15-4
L@ 101N @ 1 -To | TSRS 15-5
1O 1031 N @ = o To [SO STRT 15-7
L@ 111N @ I 11 1= o IR 15-19
OCISUbSCrIPtioNDISADIE(). ..o s 15-20
(@108 U] oT-Iod] o o] a1 =1 g =1 o] T 1TSS 15-21
OCISUDSCIIPLIONPOST() ..ttt et ettt 15-22
OCISUDSCIIPTIONREGISTEN() ..vvveviieieieiiet e 15-24
(108 U] oTlod g1 o o] 10 a R =T | [5) (=1 ¢ (PP 15-26

XV

Handle and DesCriptor FUNCLIONS.........ccoiiiiiiiiee e e 15-27

(@108 1N 1 4 ¢ €T 1 OSSOSO 15-28
L@ T AN 11 3= () SRS 15-30
OCIDESCHIPTOIAIIOC() vttt b bbbt eneas 15-32
OCIDESCHIPLOMFIEE() ...vveeeieee ettt bbbt 15-34
L@ 1O | o F=TaTo | 1= AN I o Lo) SRS 15-35
(@10 | o gl | 1= T PSR 15-38
O CTPAIAMGEL(). .+ e veveieeieeteeet ettt ettt b et b et b et b etk b et ne bbbt bbb nnns 15-40
L@ 1O |2 Ur=Ta 0157) SRS 15-42
Bind, Define, and Describe FUNCLIONS.........cooiiiiiiiiiieee et 15-43
OCIBINAAITAYOFSIIUCT() ..ottt 15-44
OCIBINABYNAME() ...vevvivierieeeieieees ettt esa e sessestesaesseste st seeae e seeneeneenesneaneas 15-45
(@031 21T aTe 1237 2o 1]) SO SO T SOPRSR 15-49
OCIBINADYNAIMIC() - tveveeveeeteriete ettt b ettt b bbb bbbt b et bt nnes 15-53
L@ 104 | =77 T (@]] 1-Tox (TSRS 15-57
OCIDEefINEATTAYOTSIIUCT() .oovveieeie ettt ne e 15-59
OCIDETINEBYPOS()... ettt bbb bbbt 15-60
OCIDEFINEDYNANMIC() .vivververeeierieese e sese et et e e re e aesresresaesrebeaeseeneeneeneaneanens 15-64
(@104 13- 1T 01T @ o =To1 { PSR 15-67
OCIDESCHDEANY () vttt bbbttt bbb bbbt r et bt 15-69
OCIStMEGEIBINAINTO() ...vevveieeceieese ettt e e e e eneas 15-72
Direct Path Loading FUNCLIONS..........cccooiiiiiie sttt 15-74
OCIDITPAtNADOIT() ...ttt bbbttt 15-75
OCIDirPathCoOlAITaYENTIYGEL().....vcveerieieriereriesese ettt e na e eneas 15-76
OCIDIrPathCOIAITAYENTIYSET().....ccveiieiieie ettt 15-78
OCIDirPathCOIAITAYROWGETL()coveierieiirieieriee st 15-80
OCIDirPatNCOIAITAYRESEL() ...cvveveieeeisieriesises e rieses ettt re ettt st eenee e eneeneas 15-82
OCIDIirPathColAIray TOSIIEAM()......cciveiieiierieie ettt sttt nae s 15-83
OCIDIrPatNFINISN()...c..cuiiveiiieiiee bbb 15-85
OCIDirPathLoadStream()cccuevieiireresese e stesese et sresbe e see e eneeneaneenens 15-86
OCIDIIPAtNPIEPAIE() ... euveueeueeiieiieieie ettt sttt sttt b ettt sb e sb e b et besr e e e aneeneas 15-88
OCIDirPatNSreamRESET() . ..cvoveiveierieerieie et 15-89
Connect, Authorize, and Initialize FUNCLIONScocoiiiiiiiee e 15-90
L@ 1O | = VO 1T =T PSS 15-91
(@ 101 =1 o1V 1o T 1) ISR 15-94

XVi

OCTINITIAIZE(). v vvveeerereeeeeseeeeeseeseeesseeeesseseesssseeeseseeessesessseseeesseseessseeeesssseeseeseesesesssssseeennens 15-96

1@ 10 1 IoTe (o] 1 {) SRRSO 15-99
(@ 10 0T o] T TSP 15-100
(@101 I T=T V=T N =Tl 1 PSS 15-102
OCISEIVErDELACN() ..veveeetiieeiesiee et e b e 15-104
(@108 ST cTI] ol | =TT 1 T RS SSPRR 15-105
L 104 I =TT o] =1 T [OSSR 15-108
OCTTEIMUNATE() +.v vttt ettt ettt et et sb bbbt bt b et eb e e b e b e nn et e e b e 15-109
LOB FUNCLIONS ..ottt bbbttt ettt nes 15-110
@101 10T 1 o] o] =7=To |1 1) OSSR 15-112
OCIDUFAtIONENC() ...ttt bbb 15-113
(@104 | o] 072N o o 1= o Uo) SRR 15-114
(@10 1 o] oY AN1S] o | o1 OSSR 15-115
OCILODCNAISEIFOIMNI()..v ittt bbb et nnas 15-117
(@ 10 | o] o 1@ T= 1 251=1 d Lo [) 1RSSR 15-118
(O 10 1 o] 014 [11T) LSS 15-119
O CTLODCOPY (). evervevereererieterieiestee ettt b ettt sttt ne et se ek e et eb bbbt ab et eb e e b e ebenn et e nnebe e 15-120
(@10 | o] o @3 ¢=T= 1 (=N =10 0] o L0] - 1Y/) SRS 15-122
(@ 10] | o] o] BTEF:10] (=12 011 (=1 g [To TIPSR 15-124
OCILODENADIEBUTTEITNG() «.veveiveierieiiteieteiete et 15-125
(@ 10 | o] o] =1 =TT) TSP 15-126
(@104 | o] o]] (=103 o 1:1=T (OSSR 15-127
OCILODFIIECIOSEATI(). .. ettt e 15-128
(@ 10 | Wo] o] =] o1 o q 1] £ () SRR 15-129
(@104 | o] o]] (=T CT=] A =T =T O SSS 15-130
OCILODFIIEISOPEN() ..ttt bbbttt b e eb e eb et nna 15-132
(@108 1 o] o] =11 =10 o 1= o 1) SRS 15-133
(@104 o] o]] (eI T=T { N F= 10 1= () TSRS 15-134
OCILODFIUSNBUTTEI() ...ttt 15-135
(@10 | Wo] o] = =Tl =T 0 0] 0 Yo r=1 Y S SSP 15-137
OCILODGELCRUNKSIZE()...vtveveiteieiteisieiesie sttt ettt et be st e e e e 15-138
OCILODGETLENGLN() ..ttt 15-140
(@ 10 | o] o £ <o [F= 1 |) S SSPSR 15-141
OCILODISOPEN() ..ttt bbb bbb bbb ettt b b 15-142
OCILODISTEMPOFAIY() «.veveveieiteieiteieteiete ettt ettt ettt bbbt sb et eb e e b e b e sre b e ere e 15-144

XVii

Xviii

(@ 10] | o] o] IoT=To | o) 0 01 1 =T () SRR 15-145

OCILODLOCAIOIASSIGN() .. veveeeterieierieienieiesiei sttt b ettt st se et sr b sr et sb e b e b e ene e 15-147
(@104 | Wo] o] Io 7= 1o 1 s 11 () S USSP 15-149
OCTLODOPEN() .+ttt ettt bbb bbb ettt ne bbb 15-150
(@10 1Ie] o1 - Lo [ORISR 15-152
L@ 10 | o] o 1 1 ¢ 1 1 1 PSSR 15-156
(O 10 1Ie] o)1)] (= (OO PSTRIRTRPRIN 15-157
OCILODWIITEAPPENA() .ttt ettt b e eb e b ene e 15-161
SEALEMENT FUNCLIONS ...ttt ettt et 15-164
(O 104] 1 1 1T oL U (= ISR 15-165
(@108 131 43 0 1 1=1 (o] o TSRS TOTTTSIPRIN 15-168
OCIStMEGEIPIECEINTO() cvvevvereereiisese st a s e e e ane 15-170
OCISIMIPIEPAIE() «.veuveeeuieieeieeit ettt ettt ettt ekttt b e bt bbb b e et e e b e et ebeebesbe b 15-172
OCISIMESELPIECEINTO() ..oviieviieei e 15-174
Thread Management FUNCLIONS ..o sre s 15-176
(O 1@ Il T =T= o [[1T T) SRR 15-178
OCITRIEAACTEATE() .. vvereeveeetereete ettt bbbttt e bbbt b e eb et ebe e ere e 15-179
OCIThreadHaNAIEGEL()vevvereererieiesesese ettt s re e eneeresneaneas 15-181
OCIThreadHNADESLIOY() ...vvevveiieeiieiieiiesie sttt ettt sre e s te e be et esreenbesre e 15-182
OCITRIrEadHNAINTT() ...evoveeeeiieeei et 15-183
(O 108 I] == To | [o | B 1=y o) Y/ (RSP SSSSRN 15-184
(O 10T I o1 ¢=T-To | [o [T 1§ TR STRPSTSPRIN 15-185
OCITRrEadIAINIT()...c.vcveieveiieiiiieie ettt b sb e s b e sbe e ebe e ere e 15-186
L@ 1O I] == o | [o | N 10 | 11 RSP PSSR 15-187
(@ 10d Il T =T=To | [IS 7= Vo g 1= (SR 15-188
(O 108 I I o1 == To | Fo K3 -1 ORI RTSRSTSPRRIN 15-189
(O 10 I] == To | [o ST d N T 111 RSP RSSSN 15-190
(O 104 I I T =T=To | 111) SR 15-191
OCITRIEadISMUITI().....cviveeeeirietereee et 15-192
L@ 1O 1 I] == o 1o} | 1) TSP RSSN 15-193
OCIThreadKeyYDESIIOY()......ccieiieeiieiieiieeiesteeie st ie et e e sresre e ste e e ste e e steesaesteeseesreenbesneenes 15-194
OCITRIEAAKEYGEL() -..vevviveieteieetisiete ettt ettt ettt sr bt bbbt b e eb e b e ere e 15-195
(O 1O I I] == o | (=7 [V1) RSP PSSSN 15-196
(O 1O Il T == To | (=) VA=) ISR 15-197
OCIThreadMUTEXACGUITE() ..c.veveeeiirieiiricierieesie ettt ettt sn e ene e 15-198

OCIThreadMULEXDESIIOY() ...ccvveiveireeiieiiee e stie st ste ettt eesae e s ae e sae e steeraesreenee s 15-199

OCITRIreadMUTEXINTT() ... c.eiveierieiieeiiteee et 15-200
OCIThreadMULEXREIEASE() .. vvververierririeierierieieie ettt st e e e ereenes 15-201
OCITRreadProCeSSINIT() . .cveveiiecieiie ettt beera e reenee e 15-202
OCITRIEAATEIN() ..ttt ettt bbbt b et b et b e e b e bt nn b e b e 15-203
TranSACtiON FUNCHIONS ..ottt ettt et et et et e 15-204
L 1@d I I - U {00 1 0 0 1 (S SS 15-205
OCITIaNSDETACN() ...ttt b et bbb et 15-208
(@ 1O - 1] o T o =] (SR 15-209
OCITranSMUITIPIEPAIE() «..veoververtirieiierieiie ettt bbbt e et ens 15-210
OCITIANSPIEPAIE() «..veveeetireeierteieetee ettt ettt sttt sttt et sb et b et b et eb et eb e e b e ebenn b e e ebe e 15-211
OCITraNSROIDACK() ... vvveeriiese ittt sa e e e e eneenennes 15-212
(O 1O I I - U 1535 = S S 15-213
MISCEITANEOUS FUNCLIONSottt sttt 15-221
L@ 1O 2 =T ISP 15-222
L@ 10 | =1 o] 1= 1 PSS 15-223
OCTLAATOSVCCEX() cvvvereetireeienieiesieest ettt ettt sttt sttt bbb bt eb e e b e b nn b nnebe e 15-225
(@10 |2 T3SV1Y o1 o (@ g T- T g o[- SRR 15-226
O CTRESEE() . vttt sttt sttt ettt ettt et ettt e st et et et e st eseebe s e et e e ebe e ebe e ebeneebeneeteneere e 15-228
OCISEIVEIVEISION() ...veveretirreieeteiestee sttt ettt ettt ettt bbbt b et b et eb et b e e b nr b nnebennere e 15-229
(@108 1SV ol @3 w7 o] o F- T) TSP 15-230
OCIUSEICAlIDACKGEL() ...vevveieiieeiee ettt st sttt aeeraesreenee s 15-231
OCIUSerCallDaCKREGISTEN() .. cveueiveieireieieieeteriete ettt 15-233

16 OCI Navigational and Type Functions

111 (oo LU Tod A o] o RSOOSR 16-2
Object TYPes and LIfetiMES......ccccci i snens 16-2
BT 0 1T 1] [0 YOS 16-4
THE FUNCLION SYNTAX ... ittt ettt ettt 16-4
Navigational FUNCtioN REtUIN ValUES.........ccceiveiiiiecc s 16-5
Server Roundtrips for Cache and Object FUNCLIONScooiiiiiieneieieceeeeee e 16-5
Navigational FUNCEION Error COOES.........cociiiiieiiieiieee ettt 16-6
OCI Flush or REfreSh FUNCLIONScouoiiiiiiiiiicc st 16-8
(O 104 (0= ot 1= o U o) SRS 16-9
OCICACNERETIESN() ...ttt bbbt 16-11

Xix

OCTODIECEFIUSI() +.vvvveeeeeeeeeeeeeeseeeesseesesesseeesseesessessesseseesssesesssssesesssseesessesesssessssssseeseeesesseeee 16-13

OCIODJECIRETIESN() ...ttt bbbt 16-14
OCI Mark or Unmark Object and Cache FUNCLIONS.........cc.cocvvivieniniene e 16-16
(@104 (0= ol 110 F] 0 g T T () S SR 16-17
OCIODJECtMArKDEIETE()ecveieeerieie et 16-18
OCIObjectMarkDeleteBYRET().....cviovirririiireieriesere sttt s e e eneas 16-19
OCIODJECIMArKUPAALE() ... vttt sttt sttt et eneas 16-20
OCIODJECLUNMAIK() ..ttt bbbttt 16-22
OCIObjectUNMArkBYRET() ... cvcveeiesisi sttt st e neeneas 16-23
OCI Get Object Status FUNCLIONS.c..ociiiiiiiecr ettt sae s 16-24
O CTODJECEEXISTS() - vveverereeetereete et sttt sttt ettt sb ettt b et b ettt bbbt bbbt bt bt nnns 16-25
1O 101 [@] o] [=To (C1=] 1 2 o] =] o 1Y/ (RSOSSN 16-26
(@104 (@] o] =To1 4 1Y B 11 o Y/) PSR 16-30
OCIODJECISLOCKEU() .. vveeeterieteiieie ettt bttt ettt 16-31
OCI Miscellaneous ObjJeCt FUNCLIONScccooiiiiicieice s 16-32
L0101 (@] o] =To1 (0Xe] o) Y/ IF TSP TUUPSPROTORPRN 16-33
OCTODJECIGELATII() .ottt etttk b et b et nnes 16-35
1@ 10 [@] o] =Tw1 (C1=] o [o) RSSO 16-37
(0104 (@] o] =T (€T (@] o] [To1 12 1= {) ST R 16-38
OCIODJECIGEITYPERET() ...ttt 16-39
L@ 10 (@] o] =T w1 { o Lo) SRS 16-40
(0104 (@] o] =To1 { ool 1 A oV AT - U] £ OSSR 16-41
OCTODJECENEW() .ttt ettt b et bbb e bbbt bbbt 16-42
1O 1O (@] o] =T o1 6] 7N o 4) RSOSSN 16-45
OCI Pin, Unpin, and Free FUNCLIONSco.ooiiiiiee e 16-47
O CTCACNEFTEE() 1+ttt b et bbb bbb bbbt b et b et b 16-48
L@ 108 [@ 1ol 1 T-10 L o7 o 11 o) 1RSSR 16-49
(@104 (@] o =To1 1N o =\ V4 o |) TS SR 16-50
O CTODJECIFTEE() +.vvveveitereeteriete ettt ettt b ettt sttt b bbbt bbbt nnns 16-52
L@ 1O (@] o] =T w1 {7 o) TSSO 16-54
OCIODbJECtPINCOUNTRESEL()....c.veiveeieiieeiie ettt ettt et saeene e 16-57
OCIODJECIPINTADIE() .ttt bbbt 16-58
L@ 108 [@] o] =Tw1 (] 11 o) SRS 16-60
OCI Type Information AcCCeSSOr FUNCLIONSc.coviiiiiiiiiiiine s 16-62

OCITYPEAITAYBYNAIME() ...viieeeieieiieie sttt 16-63

OCITYPEATITAYBYRET() ...ttt et 16-66
OCITYPEBYNEME()....ecvieeiiieiieteisteest ettt bbbt et et 16-68
L@ 1O Y0 1= =3V { (RSP 16-70

17 OCI Datatype Mapping and Manipulation Functions

1 a1 o To [Tex Ao o OO TTSTS 17-2
THE FUNCLION SYNTAX......cuiiieiiiieite sttt et e st e neeste e s e saeesaestaeseesraestesraens 17-2
Datatype Mapping and Manipulation Function Return Values.............ccccoveniinnicincnnns 17-3
Functions Returning Other ValUEScccooveieieiiiecce st 17-3
Server Roundtrips for Datatype Mapping and Manipulation Functionsc.cc.cc..... 17-4
EXAIMPIES ...ttt et 17-4

OCI Collection and Iterator FUNCLIONScoviiiiiiiiiceeeses e 17-5
@101 (070117 2N o] o 1=] o T [IS USROS SOPSOPRTURURPRURN 17-6
O CTCOIASSIGN() -ttt bbbt b et b et bbb bbb 17-7
(@ 108 [@011 ANXS] o | o] =1 1=T o o SRS 17-8
(104 (0] | [€1=] 4 =1 [T o o () USSR 17-10
10103 1070] | |] olor- o] | ISP OO USSP PRUTTPROPPRTPTON 17-13
L@ 10 [@01 111V, -V RSP 17-14
OCICOlSEtUPAALESTATUS() «.veveverereeieieieeieieeeee ettt bbb 17-15
L@ TR 10101 | 15] 12T TSRS 17-16
L@ 10 [@01 I I 12 1 ISP 17-18
(O 1O 1 =T (@1 =7 1L) USSR 17-19
OCHITEIDEIETE() .. eveveeetereeieeteet ettt b bbbt et ettt 17-20
L@ 10§ (=T T (@A U [=] o (S PS 17-21
L@ TR 1 1 =T a1 USRS 17-22
O CTIEEIINEXE() + vttt ettt e bbbt b bbb bbbt st ne et b bbb 17-23
L@ 1O 1 (=T 5 - PP 17-25

OCT DAt FUNCLIONS ...ttt bbb bbb ettt ne et b 17-27
OCIDALEATADAYS() ... vvervevereiirresiateietereet ettt ettt sb et b bt se bbbt st bbb nbenes 17-28
@101 [D1 1=Y Ao [0 1Y/ [o] o)1 o]) ISP 17-29
L@ 10] =1 =Y AN o | T USSR 17-30
OCIDALECNECK() .+ vvevetereeiesteiest sttt bbbttt et bbbt 17-31
(O 101 | B 1 (=1 @01 4] o F- L =T) ISP 17-33
OCIDAtEDAYSBEIWEEN()eeveiieiieeieseee sttt ettt te et s te e be st e et e ereesbeentesteeneesreeneas 17-34
OCIDALEFTOMTEXL(). .. cveveverteierteiesteest ettt b bttt nb e 17-35

XXi

XXii

OCIDAEGEIDALE() ..vvveveeereiteeie sttt s bt e ste e e sbe e ae s e e ste s e e saesta e tesraeteeneenes 17-37

OCIDALEGETTIME() ...ttt ettt ettt e bbb bbbt bt nnes 17-38
OCIDAELASIDAY() vervevvereerrereereereeresestesesteseesse e seessesseseesseseeresseasessessessessesaessessessessensensesessennens 17-39
OCIDAENEXIDAY() +..vvevrevreireeiesieesiesee e s e e se s e e e st e et e st e e s e sbe e e e sreesaesteesaesteesaessaestesseenseaneenns 17-40
OCIDALESEIDALE() «..vvveveereeete ettt ettt sttt bbbttt 17-41
OCIDAESEITIME() . euveveriereereeeee ettt se e e ere e e s e sesbesaesrestesaeseetesaeseeneeneeneanenneas 17-42
(@101 B =1 () V] B -1 (=1 PSR 17-43
OCIDALETOTEXL() . eveverereetereeteriete ettt sttt sttt b et b ettt e bbb bbbt bt b nnne 17-44
OCIDAtEZONETOZONE() c.vevvereereereeieiieetesesteseste e stestesteseesseseereeseasesressessesteseeseessesseseenseneeseaneanens 17-46
OCT NUMDBEE FUNCLIONS ...ttt bbb bbb e et ebe s 17-48
OCTNUMDBEIADS() 1.ttt bttt ettt bbbt bbbt nnne 17-50
L@ 1O | N[Tai0] =1 o AN'e (o [USSR 17-51
(@104 1NIT g g] o] N ol 00 1] IR OSSR 17-52
OCTNUMDBEIATTSIN() 1ttt bttt ettt bbbt et nb et nnne 17-53
OCINUMDBELATCTAN() c.viuververiereereeese e s e stese e ste st teaeseesaeseesesseasessessessessesaesaessesseseensensesesseasens 17-54
@104 1\IT g] o =T N ol IF- U g 12) ISR 17-55
OCINUMDBEFASSIGN() 1.ttt ettt sttt bbbt nnne 17-56
L@ 1O | N[1] o =] O T I SRS 17-57
OCTNUMDBEICIMIP() -ttt sttt ettt ettt b bbbt bbb e bt sn e e e e e e aneeneas 17-58
O CTNUIMDBDEICOS() v eveveveeteriete ettt sttt sttt b et eb e ettt b b et bbbt bt b e 17-59
L@ 1O | N[1] =] 91T) SRS 17-60
OCINUMDBEIDIV() 1ttt sttt ettt sttt s ettt sberesbe e st e s benesaens 17-61
OCTNUMDBETEXP() «veveevereeteriete ettt ekttt n bbbt bbbt nnns 17-62
L@ 1O | N[Ta] o =1 ToTo) ISP 17-63
OCINUMDBEIFIOMINT() c.viiiiiice ettt e s te st et enae s 17-64
OCINUMDBEIFIOMREAI() ...ttt bbbt 17-65
OCINUMDBEIFIOMTEXL() vevveveereerieiee e sesieste et e e e e re e sesresresaesaebeaeseenseneenaaneenens 17-66
OCINUMDBEIHYPCOS() -+ vevveveeieetieiesie ettt sttt sttt sttt sb e sbe b e sb e se e e e eneeneas 17-68
OCINUMDBEIHYPSIN() ..ottt 17-69
OCINUMDBEIHYPTAN() +cuververeeieerieese et sa e a e se e sesrestesaesaebeaeseenseneeneaneanens 17-70
L@ 104 1AW 0] o1 o 1 g Vo) ISR 17-71
OCINUMDBEINTNTPOWET() ...ttt 17-72
OCINUMDBETISINT() vevveeiieieeee ettt sr bt n e e e e eneaneeneas 17-73
(@104 NIT g g] o] g FSW =T o] OSSR 17-74
OCTNUMDBEILIN() 1ttt ettt sttt bt bbbt bt bt nnne 17-75

(@104 1AW 0] o1 o oo) ISR 17-76

OCINUMDBEIMMOA() ..ttt bbbttt 17-77
L@ 1O | N1 1] =1 Y 1T TSP 17-78
L@ 104 NTT o] o<1 g AN 1= T TSRS 17-79
OCTNUMDBEIPOWET() ...ttt bbbttt 17-80
L@ 1O | N[0 1] =] o =T (PP 17-81
(@104 1AW o] o<1 o Lo TU o o) ISR 17-82
OCTNUMDBDEISEIPI() .ttt et e st nb e 17-83
(O T8 | [T a] o =] ST 7= o] (PP 17-84
OCINUMDBEISRITL() ..ttt ettt be e ntenes 17-85
OCTNUMDBEISIGN() +.vtvetiteiirieiisteest ettt bbb bt e bbbt et b et nb e nenes 17-86
L@ 1O | N1 1] 0 =] 571 TSP 17-87
OCTNUMDBEISGIT() vttt ettt b bbb bt et bbb e e ene et et e 17-88
OCINUMDBEISUD() vt 17-89
L@ 1O | N[Tai] o =]l I U) PP 17-90
(@104 AW o] o1 gl 1o] 1| { (TSSOSO 17-91
OCINUMDBEITOREAI() .. ettt 17-92
L@ 108 | N[Ta] o =]l o =) PR 17-93
(@104 AT o] o =T gl I U o) TSRS 17-95
OCT RAW FUNCLIONS ...ttt sttt st sb et st e et e e neeneerenne e 17-96
L@ 1O |2 TN | [o o] 4= PP 17-97
OCIRAWASSIGNBYTES() .. veiveeieiieiieeie ettt ste e ste e steesae s e e be st e et e aseesbeentesneeneesreenees 17-98
OCIRAWASSIGNRAW() ... vttt b s 17-99
L@ 1O | =Y, () S PR 17-100
OCITRAWRESIZE() .e.vvevveiveeeeste ettt e sttt s b e st e et e s beetesreesaesteesaessaesteaseestenneenes 17-101
OCTRAWSIZE() +. vttt ettt b ettt ek bbb bbbt b et b et eb e e et e nn et e e be e 17-102
OCH RET FUNCLIONS ...ttt ettt sttt 17-103
L@ 1@ I RT] 7 ANSE] [0 | o) S 17-104
O CTRETCIBAI() .. vttt sttt ettt ettt ekt sb bbbt eb et eb e e b e b nn et ennebe e 17-105
(@ 1O |2 =1 = o] 0] 1= RSP 17-106
O CIREFHEXSIZE() v evevetesieiisieie sttt sttt ettt e st ebe et e ebeneeteneere e 17-107
OCIRETFISEQUAI() ..ttt et eb e eb et 17-108
L@ 10 | 0=1 i 51 1 10 11 TSP 17-109
OCTRETFTOHEX() +vtvveveieieiieiesie sttt ettt sttt st ettt ebe e ebe e ebe e ebeneeteseereneas 17-110
OCH SEFNG FUNCLIONS ...ttt ettt nnn 17-111

XXili

18

XXV

(@104 I (g [To VAN | [oTor =T) ISR 17-112

OCISEIINGASSIGN() +vvevereereietereet ettt bttt se et nr bt sr et e b bt eb et ab e ere e are e 17-113
OCIStINGASSIGNTEXE() v vevvereereeresesesesesestese et esi e eeese e se e sre e sressesaeseeseseeseeseeneesessesnens 17-114
L@ 104] [To = 1) RS TPR 17-115
OCISIINGRESIZE() «.vevvvereete ettt b et bbb ne ettt b et b e b e b e ene e 17-116
(O 108 1S (T T0 RS T) RSP SSSSN 17-117
OCH Table FUNCLIONS ...ttt ettt sbe s 17-118
OCITADIEDEIELE() ...ttt ettt en e 17-119
OCITABIEEXISES() +erverveeerrereereeeeresieseseseseestesteseessesseseseesessessessessessessessessessessessesessessessesessens 17-120
(O 1O I 1= o] L=]) TSR 17-121
OCITADIELAST() +.vvevereiteeete ettt b et et se ettt sb bbb e b e ene e 17-122
(O 1O I 1 o] 1= A= o) RSP SSSN 17-123
(O 1O I 1= o] L= o =Y SRS 17-124
OCITADIESIZE() ..ttt ettt sb ettt b e eb e ere e 17-125
OCI Cartridge Functions
INEFOTUCTION L.t b e bkt bbbt bbbt eb et b et eb et ebe e b 18-2
THE FUNCLION SYNTAX....c.iiiiiciicise ettt st st ena e e e enaerenrenns 18-2
RETUIN COUEBS ...ttt bbb bbb bbbttt e et e st ettt be b e 18-3
WD _CONTEXE TYPB.. ittt bbbt bbb bbb 18-3
Cartridge Services — OCI External ProCeaUIESccoviviiviivieniesienene e 18-4
(O101 157 = (o Toy AN (e To =11 11/ [=T0 4 To] oY/ (USRS 18-5
OCIEXPTOCRAISEEXCP() «.vrvevereeterieierietesiettstee sttt sttt et ettt b et sb e eb e b ene e ene e 18-6
OCIEXtProcRaiSEEXCPWItNIMSH() ...evviverieiiie e 18-7
(O 101 | o 0Tl © 1= 1 =1 |V USSR 18-8
Cartridge Services — MEMOIY SEIVICESccooiiiiirieirieeiee e 18-9
OCIDUIAtiONBEGIN() veveverieeeierieiesie s seste et e e et esa e e s e esestessesresaesaeseeseaeseenseneeneaneanens 18-10
L@ 104 111> o] o] =1 T [ISR 18-12
OCIMEMOTYATTOC() . vttt b bbbt r et 18-13
OCIMEMOIYRESIZE() ve.veuverrereeeetieese e sesese et e e e e e esae e e e asestesaesrestesaeseebesaeseenseneeneaneaneas 18-15
L@ 104 11V =T 0 ol Y/ =TT) ISR 18-16
Cartridge Services — Maintaining CONTEXT..........cccoiiiiiiiiiiee e 18-17
OCICONLEXESEIVAIUE() .vvevvereeeeeieese sttt sttt sae b e e e e e eneeneeneaneas 18-18
(0104 [010] 01123 (LT A = 1 [1 T OSSR 18-20
OCICONTEXICIEAIVAIUE() .. ecveeeeeieeieieeie et 18-21

OCICONEXIGENEIAEKEY() .. veiveeieeieiieee sttt sttt et et esre e e saeenees 18-22

Cartridge Services — Parameter Manager INterface...........cocooveiiiiniineincinesc e 18-23
L@ 1O |t - Tod 1 1) TSP 18-24
(O 104 1 - Tod i I=1 1 U STS 18-25
O CIEXTFACTRESET() ..veveveeeiirieiest ettt bbb bbbt bbbttt bt 18-26
OCIEXIraCtSEINUMKEYS() cvvveiverierirriisieieriesieieeeieeeees e se e e s e te st sre e sesaessesseseeseesessessenns 18-27
(O 10 | o - Tod 131=3 1 =) Y/ USRS 18-28
OCIEXTrACIFrOMEFIIE() .. eveveieeiiieeise et 18-30
(O 1O |t d - Tod 1 0] 1 0] 4) ISP 18-31
L@ 104 1 o - Tod i o] 1 |) USSR 18-32
OCIEXLIraCITOBOOI() ...vvvuveviteiiiteistest e 18-33
L@ 1O |t Tod [0] 4) RSP 18-34
OCIEXTraCtTOOCTNUMI() covveiiiieiiiieieieiete ettt nes 18-36
OCIEXTFACTTOLIST() .uvevevereietinteiisteiet ettt bbbttt 18-37
(O 1O |t Tod 1 0]] 1) (PP 18-38

Cartridge Services — File /O INterface.........ccccoveviiieii it 18-40
L@ 1081 o1 =T o] =T o1 SRR 18-40
OCTFHEINIL() «vervevereeterieerieese ettt bbbt b bbbt ne bt en et neenes 18-41
L@ 1@ LT 1= =T o 0 USSR 18-42
O CTFIHEOPEN() .-ttt b bbbt b et b bbb bt bt et nb et b ettt 18-43
L@ 1O | 1T o = (RSP 18-45
L@ T3 1 a1 =T Lo [USROS 18-46
L@ TOa 11 LY g (T PR RSRSRR 18-48
L@ 1O | 1= T=T=] S RSP 18-49
OCTFHEEXISES() vverveveeererierisieisteisteeste ettt sttt st s st s sttt sttt e s et s ns s e benenbenensenes 18-51
OCIFIHEGETLENGEN() ...ttt 18-52
L@ 1O | 1= 0 o T RSP 18-53

Cartridge Services — String Formatting Interface ..o 18-54
OCTFOIMALINTT() vttt bbbttt et n ettt 18-55
L@ 1O | o] ¢ 4 T Ll =T ¢ 1 PP 18-56
L@ 104 ol g gF-] 1] VT TSRS 18-57
FOrMAat MOGITIEIS ...ttt re e 18-60
FOPMAL COUBS ...ttt bbb ettt b bbbt b e e be et e ettt neas 18-62
EXAIMIPIE. ..t bbb bbb bbbt et h bbbt 18-64

XXV

Part IV Appendixes

A

XXVi

Handle and Descriptor Attributes

(07010 1V/=T 011 o] 13PTSR TSP USRR A-2
Environment Handle ATHDULES ... A-3
Error Handle AIHDULESc.ooiieec ettt te e s e e ae e e eenreens A-6
Service Context Handle AttrIDULES ... et A-7
Server Handle AtIrIDULES. ..ot nnenne A-9
User Session Handle ATFIDULES ... A-12
Transaction Handle AtrIDULES. ..o A-14
Statement Handle AIrIDULESoovveccccc e e A-15
Bind Handle AtHIDULES ... A-21
Define Handle AtIrIDULES. ..ot A-23
Describe Handle ATIDULES ..o st A-25
Parameter Descriptor AttHDULES ... A-25
LOB LOCAtOr ALLFIDULES ..ottt st sttt et e s be et e sbeen b e beenrenas A-26
(070 a 0] o] L Q@ oY =Tox AN 1 £] o 11 | (=T A-26
Complex Object Retrieval Handle AttribULES..........cccooiiiiiiiccc e A-26
Complex Object Retrieval Descriptor ATHDULES ..o A-27
Advanced Queueing Descriptor AttriDULES.........ccccvvviiririeie e A-27
OCIAQENQOPtioNns DesCriptor AIDULES.cocoiiiiiicieeeee e e A-27
OCIAQDeqOptions DesCriptor ALIDULES.........cooiiiiiiiice e A-29
OCIAQMSsgProperties Descriptor AtribULEScccevireiercce e A-32
OCIAQAQgent Descriptor ALIFIDULESc.cooiiiiiiie e A-36
Subscription Handle ArDULES ... A-38
Direct Path Loading Handle AttribDULES. ... s A-40
Direct Path Context Handle AttrDULEScccoveiieiiiicec e A-40
Direct Path Column Array Handle ATLriDULES ..o A-43
Direct Path Stream Handle AttribDULES..........ccccv i A-44
Direct Path Column Parameter AttribULES..........cccocoiiviiiirccc e A-45
Process Handle ALIFIDULES ..ottt ae st A-50

B OCI Demonstration Programs

C OCI Function Server Roundtrips

OVEIVIBW ...ttt ettt sttt b bttt e s et e st e bt E e bt eb e e b e s bt eb e ke s b st e n b e st et eneebeebeabeebesbenbesbeeas C-2
Relational FUNCLION ROUNAIIIPS ...c.ooveieicicec s C-2
LOB FUNCEION ROUNAIIIPScvitiieieeieie ettt sttt ettt sb b e sne s C-3
Object and Cache FUNCtION ROUNLIIPSc.oiviviiiiieiiccieiese e C-4
Describe Operation ROUNGLIIPS.cocvieiiieieeieee et e s sresresnesnens C-6
Datatype Mapping and Manipulation Function ROUNLIIPScccoveieieiiiiiiiineecce e C-6
Other LOCAl FUNCHIONS ...ttt ettt sttt s e be b sbe st b e C-7
Index

XXVil

XXViii

Send Us Your Comments

Oracle Call Interface Programmer’s Guide, Release 8.1.6
Part No. A76975-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

« Did you find any errors?

« Isthe information clearly presented?

« Do you need more information? If so, where?

« Are the examples correct? Do you need more examples?
« What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

« E-mail - infodev@us.oracle.com
« FAX-(650) 506-7228 Attn: Information Development Department
« Postal service:

Oracle Corporation

Information Development Department

500 Oracle Parkway MS 4opl2

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle Support Services.

XXiX

XXX

Preface

The Oracle Call Interface (OCI) is an application programming interface (API) that
allows applications written in C to interact with one or more Oracle servers. The
OCI gives your programs the capability to perform the full range of database
operations that are possible with an Oracle database server, including SQL
statement processing and object manipulation.

The Preface includes the following sections:
« Purpose of this Guide

« Audience

» Other OCI Documentation

» How to Use This Guide

« How this Guide Is Organized

« Conventions Used in this Guide

« Your Comments Are Welcome

XXXI

Purpose of this Guide

This guide provides a sound basis for developing applications using the OCI. The
guide is divided into two volumes.

Volume I contains information about the following topics:

« overview of OCI

« the structure of an OCI application

« conversion of data between the server and variables in your OCI application

« object functions that provide navigational access to objects, type management,
and data type mapping and manipulation

Volume Il contains the following information:

» adescription of OCI function calls, along with syntax information and
parameter descriptions

« alisting of OCI handle attributes

« alisting of important OCI sample programs that are included with the Oracle
installation

= server roundtrips required for most OCI calls

Audience

The Oracle Call Interface Programmer’s Guide is intended for programmers
developing new applications or converting existing applications to run in the
Oracle environment. This comprehensive treatment of the OCI will also be valuable
to systems analysts, project managers, and others interested in the development of
database applications.

This guide assumes that you have a working knowledge of application
programming using C. Readers should also be familiar with the use of Structured
Query Language (SQL) to access information in relational database systems. In
addition, some sections of this guide also assume a knowledge of the basic concepts
of object-oriented programming.

« For information about SQL, refer to the Oracle8i SQL Reference and the Oracle8i
Administrator’s Guide.

« For information about basic Oracle concepts, see Oracle8i Concepts.

XXX

« For information about the differences between Oracle8i and Oracle8i Enterprise
Edition and the features and options that are available to you, see Getting to
Know Oracle8i.

Other OCI Documentation

The Oracle Call Interface Programmer’s Guide does not contain all information that
describes the features and functionality of the OCI calls in the Oracle8i and Oracle8i
Enterprise Edition products. A list of other sources of information follows.

See Also:

« For information about cartridge services, and the OCI calls pertaining to
development of data cartridges, refer to Oracle8i Data Cartridge Developer’s
Guide.

« For information about OCI calls pertaining to National Language Support, see
Oracle8i National Language Support Guide.

« For information about OCI calls pertaining to Advanced Queuing, see Oracle8i
Application Developer’s Guide - Advanced Queuing.

« For information about using OCI with the XA library, see Oracle8i Application
Developer’s Guide - Fundamentals.

« For information about using OCI calls to manipulate LOBs, including code
examples, see Oracle8i Application Developer’s Guide - Large Objects (LOBS)

« For alist of Frequently Asked Questions (FAQs) and a tutorial on OCI, see the
web site at http://technet.oracle.com, and select Technology, OCI, Tech Info.

How to Use This Guide

The Oracle Call Interface Programmer’s Guide provides an introduction to the features
of the OCI for both new OCI programmers and those programmers who have
previously worked with earlier versions of the OCI.

VOLUME |

Part 1

Part 1 (Chapter 1 through Chapter 9) provides conceptual information about how to
program with the OCI to build scalable application solutions that provide access to
relational data in an Oracle database. This part also describes the basics of OCI

Xxxiii

programming and the foundation for the discussion of object-relational features in
Part 2.
Part 2

Part 2 (Chapter 10 through Chapter 14) describes OCI functionality for accessing
object-relational data with the OCI. The chapters in this part describe how to
retrieve and manipulate objects through an Oracle server.

VOLUME I

Part 3

Part 3 (Chapter 15 through Chapter 18) lists OCI function calls in the Oracle OCI
library.

Part 4

Part 4 (Appendix A through Appendix C) provides additional reference
information about OCI programming.

Where to Begin
Because of the many enhancements to OCI, both new and experienced users should
read the conceptual material in Part 1.

Readers familiar with the current version of the OCI and interested in its object
capabilities may want to skim Part 1 and then begin reading the chapters in Part 2.

Readers looking for reference information, such as OCI function syntax and handle
attribute descriptions, should refer to Part 3 and Part 4 of Volume I1.

How this Guide Is Organized

XXXIV

The Oracle Call Interface Programmer’s Guide contains four parts, split between two
volumes. A brief summary of what you will find in each chapter and appendix
follows:

VOLUME |

PART 1: OCI RELATIONAL APPLICATIONS

Chapter 1, "Introduction, New Features, and Upgrading"”

This chapter introduces you to the Oracle Call Interface and describes special terms
and typographical conventions that are used in describing the interface. This
chapter also discusses features new to the current release.

Chapter 2, "OCI Programming Basics"

This chapter gives you the basic concepts needed to develop an OCI program. It
discusses the essential steps each OCI program must include, and how to retrieve
and understand error messages

Chapter 3, "Datatypes"

Understanding how data is converted between Oracle tables and variables in your
host program is essential for using the OCI interfaces. This chapter discusses Oracle
internal and external datatypes, and data conversions.

Chapter 4, "SQL Statement Processing"
This chapter discusses the steps involved in SQL statements using the Oracle OCI.

Chapter 5, "Binding and Defining"
This chapter discusses OCI bind and define operations in detail, including a
discussion of advanced bind and define operations.

Chapter 6, "Describing Schema Metadata"
This chapter discusses how to use the OClDescribeAny() call to obtain information
about schema objects and their associated elements.

Chapter 7, "LOB and FILE Operations”
This chapter describes the OCI support for LOB, FILE, and temporary LOB
datatypes.

Chapter 8, "Managing Scalable Platforms"
This chapter describes password management, session management, and thread
safety.

Chapter 9, "OCI Programming Advanced Topics"

This chapter covers more sophisticated OCI programming topics, including
descriptions of user callbacks, publish-subscribe notification, direct path loading,
and other functionality.

XXXV

XXXVI

PART 2: OCI OBJECT-RELATIONAL APPLICATIONS

Chapter 10, "OCI Object-Relational Programming"

This chapter provides an introduction to the concepts involved when using the OCI
to access objects in an Oracle database server. The chapter includes a discussion of
basic object concepts and object pinning, and the basic structure of object-relational
applications.

Chapter 11, "Object-Relational Datatypes"
This chapter outlines the object datatypes used in OCI programming.

Chapter 12, "Binding and Defining in Object Applications"

This chapter discusses the C mappings of user-defined datatypes in an Oracle
database, and the functions that manipulate such data. Binding and defining using
these C mappings is also covered.

Chapter 13, "Object Cache and Object Navigation”

This chapter provides an introduction to the concepts involved when using the OCI
to access objects in an Oracle database server. This chapter also discusses the Object
Cache, and the use of the OCI navigational calls to manipulate objects retrieved
from the server.

Chapter 14, "Using the Object Type Translator"
This chapter discusses the use of the Object Type Translator to convert database
object definitions to C structure representations for use in OCI applications.

VOLUME I

PART 3: OCI REFERENCE

Chapter 15, "OCI Relational Functions"
This chapter contains a list of the OCI relational functions, including syntax,
comments, parameter descriptions, and other useful information.

Chapter 16, "OCI Navigational and Type Functions"
This chapter contains a list of the OCI navigational functions, including syntax,
comments, parameter descriptions, and other useful information.

Chapter 17, "OCI Datatype Mapping and Manipulation Functions"

This chapter contains a list of the OCI datatype mapping and manipulation
functions, including syntax, comments, parameter descriptions, and other useful
information.

Chapter 18, "OCI Cartridge Functions"
This chapter discusses special OCI functions used by external procedures.

PART 4: APPENDIXES

Appendix A, "Handle and Descriptor Attributes”
This appendix describes the attributes of OCI application handles that can be set or
read using OCI calls.

Appendix B, "OCI Demonstration Programs"
This appendix includes a listing of important OCI demonstration programs that are
included with the Oracle installation.

Appendix C, "OCI Function Server Roundtrips"
This appendix includes tables which show the number of server roundtrips
required by various OCI applications.

Conventions Used in this Guide

The following notational and text formatting conventions are used in this guide:

[]

Square brackets indicate that the enclosed item is optional. Do not type the brackets.

{}

Braces enclose items of which only one is required.

A vertical bar separates items within braces, and may also be used to indicate that
multiple values are passed to a function parameter.

In code fragments, an ellipsis means that code not relevant to the discussion has
been omitted. In syntax, an ellipsis means that the previous item can be repeated.

monospaced font
SQL and C code examples as well as file and directory names are shown in
monospaced font. Syntax examples are in monospaced font also.

italics

Italics are used for OCI parameters, OCI function names, and data fields, when
used in body text. Plain font is used for these items when used in tables and in lists.

XXXVii

UPPERCASE

Uppercase is used for SQL or PL/SQL keywords, like SELECT or UPDATE. To view
the lists of the Oracle keywords or reserved words for SQL and PL/SQL, see the
Oracle8i SQL Reference and the PL/SQL User’s Guide and Reference.

bold

Boldface type is used to identify the names of C datatypes, like ub4, sword , or
OCINumber .

This guide uses special text formatting to draw the reader’s attention to some
information. A paragraph that is indented and begins with a bold text label may
have special meaning. The following paragraphs describe the different types of
information that are flagged this way.

Note: The Note flag indicates that the reader should pay particular attention to
the information to avoid a common problem or increase understanding of a
concept.

7.x Upgrade Note: An item marked with "7.x Upgrade Note" typically alerts the
programmer to something that is done much differently in the release 8 OCI
than in the 7.x OCls.

Warning: An item marked as Warning indicates something that an OCI
programmer must be careful to do or not do in order for an application to work
correctly.

See Also: Text marked See Also points you to another section of this guide, or
to other documentation, for additional information about the topic being
discussed.

Your Comments Are Welcome

XXXViii

We value and appreciate your comments as an Oracle user and reader of our
manuals. As we write, revise, and evaluate our documentation, your opinions are
the most important feedback we receive.

You can send comments and suggestions about this manual to the Information
Development department at the following e-mail address:

infodev@us.oracle.com

If you prefer, you can send letters or faxes containing your comments to the
following address:

Oracle Server Documentation Manager

Oracle Corporation

500 Oracle Parkway
Redwood Shores, CA 94065
Fax: (650) 506-7228

XXXIX

xl

Part |

Basic OCI Concepts

This part of the guide contains chapters that describe basic OCI programming
concepts:

Chapter 1, "Introduction, New Features, and Upgrading"”, provides an
introduction to the OCI and discusses features that are new to release 8i.

Chapter 2, "OCI Programming Basics", discusses the basic concepts of OCI
programming.

Chapter 3, "Datatypes", describes datatypes used in OCI applications and
within the Oracle database Server.

Chapter 4, "SQL Statement Processing”, discusses how to process SQL
statements using the Oracle OCI.

Chapter 5, "Binding and Defining", discusses bind and define operations in
detail.

Chapter 6, "Describing Schema Metadata", discusses the OCIDescribeAny()
function.

Chapter 7, "LOB and FILE Operations", discusses the OCI functions that
perform operations on large objects (LOBs) in a database and external LOBs
(FILEs).

Chapter 8, "Managing Scalable Platforms”, discusses password management,
session management, and thread safety.

Chapter 9, "OCI Programming Advanced Topics", covers advanced topics in
OCI programming, such as user-defined callbacks and Advanced Queuing.

1

Introduction, New Features, and Upgrading

This chapter introduces you to the Oracle Call Interface (OCI). It provides
background information that you need to develop applications using the OCI. This
chapter also introduces special terms that are used in discussing the OCI and
describes the changes in the new OCI release. The following topics are covered:

« Overview of OCI
« New Features

« Compatibility, Upgrading, and Migration

Introduction, New Features, and Upgrading 1-1

Overview of OCI

Overview of OCI

The Oracle Call Interface (OCI) is an application programming interface (API) that
allows you to create applications that use the native procedures or function calls of
a third-generation language to access an Oracle database server and control all
phases of SQL statement execution. OCI supports the datatypes, calling
conventions, syntax, and semantics of a number of third-generation languages
including C, C++, COBOL and FORTRAN.

OCI provides:

« improved performance and scalability through the efficient use of system
memory and network connectivity

« consistent interfaces for dynamic session and transaction management in a
two-tier client-server or multi-tier environment

« N-tiered authentication
« comprehensive support for application development using Oracle objects
= access to external databases

« applications that can service an increasing number of users and requests
without additional hardware investments

OCl allows you to manipulate data and schemas in an Oracle database using a host
programming language, such as C. It provides a library of standard database access
and retrieval functions in the form of a dynamic runtime library (OCI library) that
can be linked in an application at runtime. This eliminates the need to embed SQL
or PL/SQL within 3GL programs.

OCI has many new features that can be categorized into several primary areas:
« encapsulated/opaque interfaces

« simplified user authentication and password management

« extensions to improve application performance and scalability

« consistent interface for transaction management

« OCl extensions to support client side access to Oracle objects

1-2 Oracle Call Interface Programmer’s Guide

Overview of OCI

Advantages of OCI

OCI provides significant advantages over other methods of accessing an Oracle
database:

more fine-grained control over all aspects of the application design.
high degree of control over program execution.

use of familiar 3GL programming techniques and application development
tools such as browsers and debuggers.

supports of dynamic SQL (method 4).

availability on the broadest range of platforms of all the Oracle Programmatic
Interfaces.

dynamic bind and define using callbacks.
describe functionality to expose layers of server metadata.
asynchronous event notification for registered client applications.

enhanced array data manipulation language (DML) capability for array
INSERTs, UPDATES, and DELETEs.

ability to associate a commit request with an execute to reduce roundtrips.

optimization for queries using transparent prefetch buffers to reduce
roundtrips.

thread safety; you do not have to use mutual exclusive locks (mutexes) on OCI
handles.

Introduction, New Features, and Upgrading 1-3

Overview of OCI

Building an OCI Application

As Figure 1-1 shows, you compile and link an OCI program in the same way that
you compile and link a non-database application. There is no need for a separate
preprocessing or precompilation step.

Figure 1-1 The OCI Development Process

Source Files

'

L Host Language Compiler

'

17 OCI Library

Object Files
Host Linker
- - @
Application —p Oracle
Server
N— r

Oracle Corporation supports most popular third-party compilers. The details of
linking an OCI program vary from system to system. On some platforms, it may be
necessary to include other libraries, in addition to the OCI library, to properly link
your OCI programs. See your Oracle system-specific documentation and the
installation guide for more information about compiling and linking an OCI
application for your specific platform.

1-4 Oracle Call Interface Programmer’s Guide

Overview of OCI

Parts of the OCI

The OCI encompasses these main sets of functionality:

APIs to design a scalable, multi-threaded application that can support large
numbers of users securely.

SQL access functions, for managing database access, processing SQL
statements, and manipulating objects retrieved from an Oracle database server.

Datatype mapping and manipulation functions, for manipulating data
attributes of Oracle types.

Data loading functions, for loading data directly into the database without
using SQL statements.

External procedure functions, for writing C callbacks from PL/SQL.

Procedural and Non-Procedural Elements

The Oracle Call Interface (OCI) allows you to develop scalable, multi-threaded
applications on multi-tiered architecture that combine the non-procedural data
access power of Structured Query Language (SQL) with the procedural capabilities
of most programming languages, such as C and C++.

In a non-procedural language program, the set of data to be operated on is
specified, but what operations will be performed, or how the operations are to
be carried out is not specified. The non-procedural nature of SQL makes it an
easy language to learn and to use to perform database transactions. It is also the
standard language used to access and manipulate data in modern relational and
object-relational database systems.

In a procedural language program, the execution of most statements depends
on previous or subsequent statements and on control structures, such as loops
or conditional branches, which are not available in SQL. The procedural nature
of these languages makes them more complex than SQL, but it also makes them
very flexible and powerful.

The combination of both non-procedural and procedural language elements in an
OCI program provides easy access to an Oracle database in a structured
programming environment.

The OCI supports all SQL data definition, data manipulation, query, and
transaction control facilities that are available through an Oracle database server.
For example, an OCI program can run a query against an Oracle database. The

Introduction, New Features, and Upgrading 1-5

Overview of OCI

Object Support

gueries can require the program to supply data to the database using input (bind)
variables, as follows:

SELECT name FROM employees WHERE empno = :empnumber

In the above SQL statement, :empnumber is a placeholder for a value that will be
supplied by the application.

You can also take advantage of PL/SQL, Oracle’s procedural extension to SQL. The
applications you develop can be more powerful and flexible than applications
written in SQL alone. The OCI also provides facilities for accessing and
manipulating objects in an Oracle database server.

The OCI has facilities for working with object types and objects. An object type is a
user-defined data structure representing an abstraction of a real-world entity. For
example, the database might contain a definition of a person object. That object
might have attributes—first name , last hame , and age—which represent a
person’s identifying characteristics.

The object type definition serves as the basis for creating objects, which represent
instances of the object type. Using the object type as a structural definition, a
person object could be created with the attributes "John’, 'Bonivento’, and "30’.
Object types may also contain methods—programmatic functions that represent the
behavior of that object type.

See Also: For a more detailed explanation of object types and objects, see
Oracle8i Concepts, and Oracle8i Application Developer’s Guide - Fundamentals.

The Oracle OCI includes functions that extend the capabilities of the OCI to handle
objects in an Oracle database server. Specifically, the following capabilities have
been added to the OCI:

« support for execution of SQL statements that manipulate object data and
schema information

« support for passing object references and instances as input variables in SQL
statements.

« support for declaring object references and instances as variables to receive the
output of SQL statements

« support for fetching object references and instances from a database

1-6 Oracle Call Interface Programmer’s Guide

Overview of OCI

« support for describing the properties of SQL statements that return object
instances and references

« support for describing PL/SQL procedures or functions with object parameters
or results

« commit and rollback calls have been extended to synchronize object and
relational functionality

Additional OCI calls are provided to support manipulation of objects after they
have been accessed by way of SQL statements. For a more detailed description of
enhancements and new features, refer to "New Features" on page 1-12.

SQL Statements

One of the main tasks of an OCI application is to process SQL statements. Different
types of SQL statements require different processing steps in your program. It is
important to take this into account when coding your OCI application. Oracle
recognizes several types of SQL statements:

« Data Definition Language
« Control Statements
= Transaction Control
= Session Control
« System Control
« Data Manipulation Language (DML)
« Queries

Note: Queries are often classified as DML statements, but OCI applications
process queries differently, so they are considered separately here.

« PL/SQL
« Embedded SQL

Data Definition Language

Data Definition Language (DDL) statements manage schema objects in the
database. DDL statements create new tables, drop old tables, and establish other
schema objects. They also control access to schema objects.

The following is an example of creating and specifying access to a table:

Introduction, New Features, and Upgrading 1-7

Overview of OCI

CREATE TABLE employees
(nhame VARCHAR2(20),
ssn VARCHAR2(12),
empno NUMBER(),
mgr NUMBER(6),
salary NUMBER(6))

GRANT UPDATE, INSERT, DELETE ON employees TO donna
REVOKE UPDATE ON employees FROM jamie

DDL statements also allow you to work with objects in the Oracle database server,
as in the following series of statements which creates an object table:

CREATE TYPE person_tAS OBJECT (
name VARCHAR2(30),
ssn VARCHAR2(12),
address VARCHAR2(50))

CREATE TABLE person_tab OF person_t

Control Statements

OCI applications treat transaction control, session control, and system control
statements like DML statements. See the Oracle8i SQL Reference for information
about these types of statements.

Data Manipulation Language

Data manipulation language (DML) statements can change data in the database
tables. For example, DML statements are used to

« INSERT new rows into a table

« UPDATE column values in existing rows

« DELETE rows from a table

= LOCK atable in the database

« EXPLAIN the execution plan for a SQL statement

DML statements can require an application to supply data to the database using
input (bind) variables. See the section "Binding" on page 4-5 for more information
about input bind variables.

1-8 Oracle Call Interface Programmer’s Guide

Overview of OCI

DML statements also allow you to work with objects in the Oracle database server,
as in the following example, which inserts an instance of type person_t into the
object table person_tab

INSERT INTO person tab
VALUES (person_t(Steve May',123-456789146 Winfield Street))

Queries

Queries are statements that retrieve data from a database. A query can return zero,
one, or many rows of data. All queries begin with the SQL keyword SELECT, as in
the following example:

SELECT dname FROM dept
WHERE deptno =42

Queries access data in tables, and they are often classified with DML statements.
However, OCI applications process queries differently, so they are considered
separately in this guide.

Queries can require the program to supply data to the database using input (bind)
variables, as in the following example:

SELECT name

FROM employees
WHERE empno = :empnumber

In the above SQL statement, :empnumber is a placeholder for a value that will be
supplied by the application.

When processing a query, an OCI application also needs to define output variables
to receive the returned results. In the above statement, you would need to define an
output variable to receive any name values returned from the query.

See Also: See the section "Binding" on page 5-2 for more information about
input bind variables. See the section "Defining" on page 5-18 for information
about defining output variables.

See Chapter 4, "SQL Statement Processing", for detailed information about how
SQL statements are processed in an OCI program.

PL/SQL

PL/SQL is Oracle’s procedural extension to the SQL language. PL/SQL processes
tasks that are more complicated than simple queries and SQL data manipulation

Introduction, New Features, and Upgrading 1-9

Overview of OCI

language statements. PL/SQL allows a number of constructs to be grouped into a
single block and executed as a unit. Among these are:

« 0oneor more SQL statements

« Vvariable declarations

= assignment statements

« procedural control statements (IF.. THEN...ELSE statements and loops)
« exception handling

You can use PL/SQL blocks in your OCI program to

« call Oracle stored procedures and stored functions

« combine procedural control statements with several SQL statements, to be
executed as a single unit

« access special PL/SQL features such as records, tables, cursor FOR loops, and
exception handling

= use cursor variables
« access and manipulate objects in an Oracle database server

The following PL/SQL example issues a SQL statement to retrieve values from a
table of employees, given a particular employee number. This example also
demonstrates the use of placeholders in PL/SQL statements.

BEGIN
SELECT ename, sal, comm INTO :emp_name, :salary, :commission
FROM emp
WHERE ename =:emp_number;

END;

Note that the placeholders in this statement are not PL/SQL variables. They
represent input values passed to Oracle when the statement is processed. These
placeholders need to be bound to C language variables in your program.

See Also: See the PL/SQL User’s Guide and Reference for information about
coding PL/SQL blocks.

See the section "Binding Placeholders in PL/SQL" on page 5-5 for information
about working with placeholders in PL/SQL.

1-10 Oracle Call Interface Programmer’s Guide

Overview of OCI

Embedded SQL

The OCI processes SQL statements as text strings, which an application passes to
Oracle on execution. The Oracle precompilers (Pro*C/C++, Pro*COBOL,
Pro*FORTRAN) allow programmers to embed SQL statements directly into their
application code. A separate precompilation step is then necessary to generate an
executable application.

It is possible to mix OCI calls and embedded SQL in a precompiler program. Refer
to the Pro*C/C++ Precompiler Programmer’s Guide for more information.

Special OCI/SQL Terms

This guide uses special terms to refer to the different parts of a SQL statement. For
example, a SQL statement such as

SELECT customer, address
FROM customers

WHERE bus_type ='SOFTWARE'
AND sales volume = :sales

contains the following parts:

« aSQL command — SELECT

= two select-list items — customer and address

= atable name in the FROM clause — customers

« two column names in the WHERE clause — bus_type and sales_volume
« aliteral input value in the WHERE clause — 'SOFTWARE

« aplaceholder for an input variable in the WHERE clause — :sales

When you develop your OCI application, you call routines that specify to the Oracle
database server the address (location) of input and output variables in your
program. In this guide, specifying the address of a placeholder variable for data
input is called a bind operation. Specifying the address of a variable to receive
select-list items is called a define operation.

For PL/SQL, both input and output specifications are called bind operations. These
terms and operations are described in Chapter 4, "SQL Statement Processing".

Introduction, New Features, and Upgrading 1-11

New Features

New Features

The 8.1 releases of OCI have the following new features and performance
advantages:

« Arrevised callback mechanism has been implemented.

« Adiscussion of middle-tier authentication attributes is now in this guide.
« Cartridge service functions are now documented in this guide.
« Ability to create new object with non-NULL attribute values.

« Support for universal ROWIDs.

« Support for fixed-width Unicode.

« OCIThread package for thread manipulation.

« Ability to register user-created callback functions.

« Enhanced application failover processing ability.

« Support for publish/subscribe notification.

« No-wait locking option for objects.

« Ability to detect object changes when flushing.

« Support for temporary LOBs.

« Enhancements to LOB support.

« Enhanced array DML statement execution allowing all errors to be returned in a
batch.

« Enhanced DML...RETURNING support.

= Ability to create objects based on object views or user-created object IDs.
« Support for non-blocking mode.

« Additional functional and performance enhancements.

« Publish-subscribe functionality for client notification of events.

« Direct path loading calls that provide access to the direct block formatter of the
Oracle server.

« Reduced memory usage at runtime.

« Increased runtime performance with code reduction.

1-12 Oracle Call Interface Programmer’s Guide

New Features

« Increased query performance with streamlined and more efficient fetch
protocol.

Each of these features is discussed in greater detail in later chapters of this guide.
See the section "Compatibility, Upgrading, and Migration" on page 1-19 for
information about new calls that supersede existing routines. See chapters 15, 16,
17, and 18 in Part 3 for listings of OCI calls. Note that new calls, such as "Advanced
Queuing and Publish-Subscribe Functions" on page 15-4 and "Direct Path Loading
Functions" on page 15-74, have been added and various existing calls have updated.

Encapsulated Interfaces

All the data structures that are used by OCI are encapsulated in the form of opaque
interfaces that are called handles. A handle is an opaque pointer to a storage area
allocated by the OCI library that stores context information, connection information,
error information, or bind information about a SQL or PL/SQL statement. A client
allocates a certain type of handle, populates one or more of those handles through
well-defined interfaces, and sends requests to the server using those handles. In
turn, applications can access the specific information contained in the handle by
using accessor functions. The OCI library manages a hierarchy of handles.
Encapsulating the OCI interfaces using these handles has several benefits to the
application developer including:

« Reduction in the amount of server side state information that needs to be
retained thereby reducing server side memory usage

« Improved application developer productivity by eliminating the need for global
variables, making error reporting easier and providing consistency in the way
OCl variables are accessed and used

« Further, the encapsulation of OCI structures in the form of handles makes them
opaque to the application developer allowing changes to be made to the
underlying structure without affecting applications

Simplified User Authentication and Password Management

The Oracle OCI provides application developers simplified user authentication and
password management in several ways:

« Allows asingle OCI application to authenticate and maintain multiple users.

= Allows the application to update a user’s password which is particularly
helpful if an expired password message is returned by an authentication
attempt.

Introduction, New Features, and Upgrading 1-13

New Features

The Oracle OCI supports two types of login sessions:

a simplified login function for sessions where a single user connects to the
database using a login name and password.

a setup in which a single OCI application authenticates and maintains multiple
sessions by separating the login session, which is the session created when a
user logs into an Oracle database, from the user sessions, which are all other
sessions created by a user. This is an important difference from Oracle 7.3, in
which sessions could be created implicitly by starting new transactions once the
user has logged in to the database, a process called session cloning. These user
sessions in Oracle 7.3 inherited the privileges and security context from the
login session. Oracle OCI requires a client to provide all the necessary
authentication information for each user session. This allows an OCI
application to support multiple users.

Extensions to Improve Application Performance and Scalability

The Oracle OCI has several enhancements to improve application performance and
scalability. Application performance has been improved by reducing the number of
client to server round trips required and scalability improvements have been
facilitated by reducing the amount of state information that needs to be retained on
the server side. Some of these features include:

Increased client-side processing, and reduced server-side requirements on
gueries.

Implicit prefetching of SELECT statement result sets to eliminate the describe
round trip, reduce roundtrips, and reduce memory usage.

Elimination of open and close cursor round trips.
Improved support for multi-threaded environments.
Session multiplexing over connections.

Consistent support for a variety of configurations including standard 2-tier
client-server configurations, server-to-server transaction coordination, and
3-tier TP-monitor configurations.

Consistent support for local and global transactions including support for the
XA interface’s TM_JOIN operation.

Improved scalability by providing the ability to concentrate connections,
processes, and sessions across users on connections and eliminating the need
for separate sessions to be created for each branch of a global transaction.

1-14 Oracle Call Interface Programmer’s Guide

New Features

« Allowing applications to authenticate multiple users and allow transactions to
be started on their behalf.

Oracle OCI Object Support

The Oracle OCI provides the most comprehensive application programming
interface for programmers seeking to use the Oracle server’s object capabilities.
These features can be divided into five major categories:

« Client-side Object Cache
« Runtime environment for objects
« Associative and navigational interfaces to access and manipulate objects

« Type management functions to access information about object types in an
Oracle database

« Type mapping and manipulation functions for manipulating data attributes of
Oracle types

« Object Type Translator utility, which maps internal Oracle schema information
to client-side language bind variables

Client-side Object Cache

The object cache is a client-side memory buffer that provides lookup and memory
management support for objects. It stores and tracks objects instances which have
been fetched by an OCI application from the server to the client side. The object
cache is created when the OCI environment is initialized. Multiple applications
running against the same server will each have their own object cache. The cache
tracks the objects which are currently in memory, maintains references to objects,
manages automatic object swapping and tracks the meta-attributes or type
information about objects. The cache provides the following to OCI applications:

« Improved application performance by reducing the number of client-to-server
round trips required to fetch and operate on objects

« Enhanced scalability by supporting object swapping from the client-side cache

« Improved concurrency by supporting object-level locking

Associative and Navigational Interfaces

Applications using the Oracle OCI can access objects in the Oracle server through
several types of interfaces:

Introduction, New Features, and Upgrading 1-15

New Features

Using SQL SELECT, INSERT, and UPDATE statements

Using a C-style pointer chasing scheme to access objects in the client-side cache
by traversing the corresponding smart pointers or REFs

The Oracle OCI provides a set of functions with extensions to support object
manipulation using SQL SELECT, INSERT, and UPDATE statements. To access
Oracle objects these SQL statements use a consistent set of steps as if they were
accessing relational tables. The Oracle OCI provides the following sets of functions
required to access objects using SQL statements for:

Binding and defining object type instances and references as input and output
variables of SQL statements

Executing SQL statements that contain object type instances and references
Fetching object type instances and references

Describing a select-list item of an Oracle object type

The Oracle OCI also provides a set of functions using a C-style pointer chasing
scheme to access objects once they have been fetched into the client-side cache by
traversing the corresponding smart pointers or REFs. This navigational interface
provides functions for:

Instantiating a copy of a referenceable persistent object, that is, of a persistent
object with object ID in the client-side cache by pinning its smart pointer or REF.

Traversing a sequence of objects that are connected to each other by traversing
the REFs that point from one to the other.

Dynamically getting and setting values of an object’s attributes.

Runtime Environment for Objects

The Oracle OCI provides a runtime environment for objects that offers a set of
functions for managing how Oracle objects are used on the client-side. These
functions provide the necessary functionality for:

Connecting to an Oracle server in order to access its object functionality
including initializing a session, logging on to a database server, and registering
a connection.

Setting up the client-side object cache and tuning its parameters.
Getting errors and warning messages.

Controlling transactions that access objects in the server.

1-16 Oracle Call Interface Programmer’s Guide

New Features

« Associatively accessing objects through SQL.

« Describing a PL/SQL procedure or function whose parameters or result are of
Oracle type system types.

Type Management, Mapping and Manipulation Functions
The Oracle OCI provides two sets of functions to work with Oracle objects:

« Type Mapping functions allow applications to map attributes of an Oracle
schema which are represented in the server as internal Oracle datatypes such as
Oracle’s number, date and string types to their corresponding host language
types such as integer, months and days.

« Type Manipulation functions allow host language applications to manipulate
individual attributes of an Oracle schema such as setting/getting their values
and flushing their values to the server.

Additionally, the OClDescribeAny() function can provide information about objects
stored in the database.

Object Type Translator

The Object Type Translator (OTT) utility translates schema information about
Oracle object types into client-side language bindings. That is, the Oracle OTT
translates type information into declarations of host language variables, such as
structures and classes. The OTT takes an intype file which contains metadata
information about Oracle schema objects (an Oracle data dictionary) and generates
an outtype file and the necessary header and implementation files that must be
included in a C application that runs against the object schema. Both OCI
applications and Pro*C/C++ precompiler applications may include code generated
by the OTT. The OTT has many benefits including:

« Improves application developer productivity: OTT eliminates the need for
application developers to write by hand the host language variables that
correspond to schema objects.

« Maintains SQL as the data-definition language of choice: By providing the
ability to automatically map Oracle schema objects that are created using SQL
to host language variables, OTT facilitates using SQL as the data-definition
language of choice. This in turn allows Oracle to support a consistent model of
the user’s data, enterprise-wide.

Introduction, New Features, and Upgrading 1-17

New Features

« Facilitates schema evolution of object types: OTT provides the ability to
regenerate #include files when the schema is changed allowing Oracle
applications to support schema evolution.

OTT is typically invoked from the command line by specifying the intype file, the
outtype file and the specific database connection. With Oracle, OTT can only
generate C structs which can either be used with OCI programs or with the
Pro*C/C++ precompiler programs.

OCI Support for Oracle Advanced Queueing

The OCI provides an interface to Oracle’s Advanced Queueing (AQ) feature. Oracle
AQ provides message queuing as an integrated part of the Oracle server. Oracle AQ
provides this functionality by integrating the queuing system with the database,
thereby creating a message-enabled database. By providing an integrated solution
Oracle AQ frees application developers to devote their efforts to their specific
business logic rather than having to construct a messaging infrastructure.

For more information about the OCI advanced queueing features, refer to "OCl and
Advanced Queuing" on page 9-27.

XA Library Support

Please see Oracle8i Application Developer’s Guide - Fundamentals for information
about support for the Oracle XA library.

Simplified Migration of Existing Applications

The OCI has been significantly improved with many features. Applications written
to work with OCI release 7 have a smooth migration path to OCI release 8 due to
the interoperability of OCI release 7 clients with Oracle8i and OCI release 8 clients
with Oracle7 database server. Specifically:

« Applications that use Oracle OCI release 7.3 work unchanged against Oracle8i.

« Applications that use Oracle8i OCI work against an Oracle7 server provided
they do not use any of the new capabilities of the OCI or the server.

=« OCl release 7 and OCI release 8 calls can be mixed in the same application and
in the same transaction provided they are not mixed within the statement.

As a result, customers migrating an existing OCI release 7 application have the
following three alternatives:

1-18 Oracle Call Interface Programmer’s Guide

Compatibility, Upgrading, and Migration

« Retain Oracle7 OCI client: Customers can retain their Oracle7 OCI applications
without making any modifications - they will continue to work against an
Oracle8i server.

« Upgrade to Oracle8i OCI client but do not modify application: Customers who
choose to upgrade from a Oracle7 OCI client to Oracle8i OCI client need only
relink the new version of OCI library and need NOT recompile their
application. Relinked Oracle7 OCI applications work unchanged against an
Oracle8i server.

« Upgrade to Oracle8i OCI client and modify application: To avail themselves of
the performance and scalability benefits provided by the new OCI, however,
customers will need to modify their existing applications to use the new OCI
programming paradigm, relink them with the new OCI library and run them
against an Oracle8i server.

Further, if application developers need to use any of the object capabilities of the
Oracle8i server, they will need to upgrade their client to use Oracle8i OCI.

Compatibility, Upgrading, and Migration

The OCI release 8 provides support for applications written with either the 7.x OCI
and the 8.x OCI. This section discusses issues concerning compatibility between
different versions of the OCI and server, changes in the OCI library routines, and
migrating an application from the release 7.x OCI to the 8.x OCI.

Note: For the most recently updated information about compatibility,
upgrading, and migration, refer to the Oracle8i Migration manual.

Obsolescent OCI Routines

Release 8.0 of the Oracle Call Interface introduced an entirely new set of functions
which were not available in release 7.3. Release 8.1 added more new functions. The
earlier 7.x calls are still available, but Oracle strongly recommends that existing
applications use the new calls to improve performance and provide increased
functionality.

Table 1-1, "Obsolescent OCI Routines" lists the 7.x OCI calls with their release 8.x
equivalents. For more information about the Oracle OCI calls, see the function
descriptions in Part Il of this guide. For more information about the 7.x calls, see
the Programmer’s Guide to the Oracle Call Interface, Release 7.3. These 7.x calls are
obsoleted, meaning that OCI has replaced them with newer calls. While the

Introduction, New Features, and Upgrading 1-19

Compatibility, Upgrading, and Migration

obsoleted calls are supported at this time, they may not be supported in all future
versions of the OCI.

Note: In many cases the new OCI routines do not map directly onto the 7.x
routines, so it may not be possible to simply replace one function call and
parameter list with another. Additional program logic may be required before
or after the new call is made. See the remaining chapters of this guide for more
information.

Table 1-1 Obsolescent OCI Routines

7.x OCI Routine Equivalent or Similar 8.x Oracle OCI Routine

obindps(), obndra(), OCIBindByName(), OCIBindByPos() (Note: additional bind
obndrn(), obndrv() calls may be necessary for some data types)

obreak() OCIBreak()

ocan() none

oclose() Note: cursors are not used in release 8.x

ocof(), ocon() OCIStmtExecute() with OCI_COMMIT_ON_SUCCESS mode
ocom() OCITransCommit()

odefin(), odefinps() OCIDefineByPos() (Note: additional define calls may be

necessary for some data types)

odescr() Note: schema objects are described with OCIDescribeAny(). A
describe, as used in release 7.x, will most often be done by
calling OCIAttrGet() on the statement handle after SQL
statement execution.

odessp() OClIDescribeAny()

oerhms() OCIErrorGet()

oexec(), oexn() OCIStmtExecute()

oexfet() OCIStmtExecute(), OCIStmtFetch() (Note: result set rows can be
implicitly prefetched)

ofen(), ofetch() OCIStmtFetch()

oflng() none

ogetpi() OCIStmtGetPiecelnfo()

olog() OClLogon()

ologof() OClLogoff()

1-20 Oracle Call Interface Programmer’s Guide

Compatibility, Upgrading, and Migration

Table 1-1 Obsolescent OCI Routines (Cont.)

7.x OCI Routine

Equivalent or Similar 8.x Oracle OCI Routine

onbclr(), onbset(), onbtst()

oopen()
oopt()
oparse()
opinit()
orol()
osetpi()
sqlld2()
sqllda()
odsc()
oermsg()
olon()
orlon()
oname()

0sql3()

Note: non-blocking mode can be set or checked by calling
OCIAttrSet() or OCIAttrGet() on the server context handle or
service context handle

Note: cursors are not used in release 8.x
none

OCIStmtPrepare(); however, it is all local
OClInitialize()

OCITransRollback()
OCIStmtSetPiecelnfo()

SQLSvcCitxGet or SQLEnvGet
SQLSvcCtxGet or SQLEnvGet

Note: see odescr() above

OCIErrorGet()

OClLogon()

OClLogon()

Note: see odescr() above

Note: see oparse() above

See Also: For information about the additional functionality provided by new
functions not listed here, see the remaining chapters of this guide.

OCI Routines Not Supported

Some OCI routines that were available in previous versions of the OCI are not
supported in Oracle8i. They are listed in Table 1-2, "OCI Routines Not Supported":

Table 1-2 OCI Routines Not Supported

OCI Routine Equivalent or Similar 8.x Oracle OCI Routine

obind() OCIBindByName(), OCIBindByPos() (Note: additional
bind calls may be necessary for some data types)

obindn() OCIBindByName(), OCIBindByPos() (Note: additional

bind calls may be necessary for some data types)

Introduction, New Features, and Upgrading 1-21

Compatibility, Upgrading, and Migration

Compatibility

Table 1-2 OCI Routines Not Supported (Cont.)

OCI Routine Equivalent or Similar 8.x Oracle OCI Routine

odfinn() OCIDefineByPos() (Note: additional define calls may be
necessary for some data types)

odsrbn() Note: see odescr() in Table 1-1

ologon() OClLogon()

osql() Note: see oparse() Table 1-1

This section addresses compatibility between different versions of the OCIl and
Oracle server.

Existing 7.x applications with no new release 8.x OCI calls have two choices:
« do not relink the application
« relink with the new 8.x OCI library

In either case, the application will work against both Oracle7 and Oracle8i with the
exception that the function ocom() should be substituted for ocon(). ocon() enables
AUTOCOMMIT (automatic commit of every DML statement), and thus leads to an
error in a subsequent fetch statement .

The application will not be able to use the object features of Oracle8i, and will not
get any of the performance or scalability benefits provided by the OCI release 8.

New applications written completely in the Oracle OCI will work seamlessly
against both Oracle7 and Oracle8i with the following exceptions:

« Against Oracle7 servers, none of Oracle’s object features are supported, and the
following datatypes are not supported:

— SQLT_NTY - named data type
— SQLT_REF - reference to named data type in host language representation.
— SQLT _CLOB - a character LOB data type.

— SQLT BLOB - a binary LOB data type.SQLT_BFILE - a binary FILE LOB
data type.

— SQLT_RSET - result set data type.

1-22 Oracle Call Interface Programmer’s Guide

Compatibility, Upgrading, and Migration

Upgrading

« Against Oracle7 Servers, the following calls or features are not supported, or are
supported with restrictions:

Table 1-3 Oracle8i OCI Restrictions When Running Against Oracle7 Servers

Function Restrictions

OCIBindObiject() not supported

OClPasswordChange() not supported

OCIDefineObject() not supported

OClIDescribeAny() only supports description of select lists or stored procedures
OCIErrorGet() only a subset of Oracle error codes can be returned
OCIStmtFetch() prefetching options not supported

OClILob*() LOB/FILE calls are not supported

OCIAttrSet() setting NCHAR attributes not supported

OCIAttrGet() getting NCHAR attributes not supported

Programmers who wish to incorporate new release 8.x functionality into existing
OCI applications have two options:

« Completely rewrite the application to use only new OCI calls (recommended)

« Incorporate new OCI release 8 calls into the application, while still using 7.x
calls for some operations.

This manual should provide the information necessary to rewrite an existing
application to use only new OCI calls.

Adding 8.x Oracle OCI Calls to 7.x Applications

The following guidelines apply to programmers who want to incorporate new
Oracle datatypes and features by using new OCI calls, while keeping 7.x calls for
some operations:

« Change the existing logon to use OClLogon instead of olog() (or other logon call).
The service context handle can be used with new OCI calls or can be converted
into a Lda_Def to be used with 7.x OCI calls.

Introduction, New Features, and Upgrading 1-23

Application Linking Issues

Note: See the description of OCIServerAttach() on page 15-5 and the description
of OCISessionBegin() on page 15-5 for information about the logon calls
necessary for applications which are maintaining multiple sessions.

« After the server context handle has been initialized, it can be used with Oracle
OCl release 8.x calls.

« Touse Oracle7 OCI calls, convert the server context handle to an Lda_Def using
OCISvcCtxToLda(), and pass the resulting Lda_Def to the 7.x calls.

Note: If there are multiple service contexts which share the same server handle,
only one can be in Oracle7 mode at any time.

« To begin using 8.x Oracle OCI calls again, the application must convert the
Lda_Def back to a server context handle using OClLdaToSvcCtx().

« The application may toggle between the Lda_Def and server context as often as
necessary in the application.

This approach allows an application to use a single connection, but two different
APIs, to accomplish different tasks.

You can mix and match OCI 7.x and OCI 8.x calls within a transaction, but not
within a statement. This allows you to execute one SQL or PL/SQL statement with
OCI 7.x calls and the next SQL or PL/SQL statement within that transaction with
Oracle8.x OCI calls.

Warning: You can not open a cursor, and parse with OCI 7.x calls and then
execute the statement with OCI 8.x calls.

Application Linking Issues

This section discusses issues related to application linking, including the use of
non-deferred linking and single-task linking with various OCI versions.

Non-deferred Linking

Application developers are cautioned that Oracle plans to desupport non-deferred
mode linking beginning with a future release of Oracle. It will continue to be
supported with all the releases of Oracle8i. Recognizing these plans, application
developers should no longer use non-deferred mode linking in developing new
applications. Version 7.3 of the OCI supports two linking modes:

= Non-deferred linking: The Oracle OCI version 6 (client) only supported
non-deferred linking which meant that for each SQL statement, a parse, a bind
and a define call were each executed separately with individual round trips

1-24 Oracle Call Interface Programmer’s Guide

Application Linking Issues

between the client and the server. This significantly increased network traffic
between the client and the server and reduced both the performance and
scalability of OCI applications.

« Deferred linking: Unlike the Oracle OCI version 6, the Oracle7 OCI supports
both non-deferred linking and deferred linking. Deferred mode linking
essentially defers the bind and define steps until the statement executes - that is
it automatically bundles and defers the bind and define calls to execution time.
Further, when the application is linked with deferred mode and a special
parsing call is used (the OPARSE call with the DEFFLG set to a non-zero value),
even the parse call can be deferred to execution time. Note that deferred mode
linking does not depend on the specific OCI calls that the application uses, only
on the link option that is selected.

Deferred mode linking therefore significantly reduces the number of round trips
between the client and the server and as a result improves the performance and
scalability of OCI applications. The default behavior of Oracle7 OCI connected to
the Oracle7 server is deferred mode linking. However, Oracle7 OCI also supports
non-deferred linking by setting specific link time options.

All the Oracle7 OCI calls are supported with Oracle8i OCI. This means that they
will work with a Oracle8i OCI client by relinking the release 8 OCI libraries.The
default mode with these calls continues to be deferred mode linking; however,
non-deferred mode linking is supported for these calls through all releases of
Oracle8i by setting link time options. However, Oracle8i-specific calls use a different
paradigm and as a result non-deferred mode linking is not necessary.

The various combinations of client-side libraries and server with which
non-deferred linking is currently supported are summarized in the following table:

Table 1-4 Supported Linking Modes for Various Client and Server Versions

Client Oracle 6.x OClI Oracle 7.x OCI Oracle 8.x OCI Oracle 8.x OCI Oracle 9.x OCI
Server (7.x calls) (8.x calls)
Oracle9 Not supported Default: deferred Default: deferred Not supported Not supported
Non-deferred Non-deferred
supported supported

Introduction, New Features, and Upgrading 1-25

Application Linking Issues

Table 1-4 Supported Linking Modes for Various Client and Server Versions (Cont.)

Client Oracle 6.x OCI Oracle 7.x OCI Oracle 8.x OCI Oracle 8.x OCI Oracle 9.x OCI
Server (7.x calls) (8.x calls)
Oracle8 Not supported Default: deferred Default: deferred Not supported Not supported
Non-deferred Non-deferred
supported supported
Oracle7 Non-deferred Default: deferred Default: deferred Not supported Not supported
mode only Non-deferred Non-deferred
supported supported
Oracle6 Non-deferred Default: deferred Not supported Not supported Not supported
mode only Non-deferred
supported

Oracle will continue to support deferred-mode linking with all the releases of
Oracle8i. This has varying implications depending on the version of the OCI library
that is used.

Applications Using Oracle OCI Version 6 Libraries

Because the Oracle OCI 6.x library is not supported against Oracle8i, applications
using the Oracle OCI 6.x library cannot be run against Oracle8i.

Applications Using Oracle7 OCI Libraries

Applications using Oracle7 OCI libraries can run in two configurations against an
Oracle8i database:

« They can be run with Oracle 7.x OCI libraries against an Oracle8i database in
non-deferred mode provided link time options are set appropriately.

« They can also be relinked with the Oracle8i OCI libraries and run in
non-deferred mode, provided link time options are set appropriately. Oracle
will support the first configuration through all the releases of Oracle8i.
However, the second configuration will not be supported in release 9 of Oracle.
Therefore, applications that require non-deferred linking will not be able to
upgrade to Oracle 9.x client-side libraries.

Applications Using Oracle8 OCI Libraries

Applications using Oracle8i OCI calls, such as those used to access Oracle's object
types, do not need to use non-deferred mode linking. Applications using only

1-26 Oracle Call Interface Programmer’s Guide

Application Linking Issues

Oracle7 OCI calls will be able to use non-deferred mode linking but only through
release 8.1

Single-task Linking

Single-task linking is a feature used by a limited number of Oracle's customers,
primarily on the OpenVMS platform. Some Oracle platforms support single-task
linking, others no longer support it. Application developers are cautioned that
Oracle will desupport single task on ALL platforms beginning with the first server
release after Oracle8i. Oracle will continue to support single-task linking for all
Oracle 8.x releases on those platforms that do support it today. Application
developers are referred to the product-line specific documentation to determine
whether or not their platform supports single-task linking today.

With single-task linking, Oracle supports two configurations to link Oracle products
and user-written applications against the Oracle database:

« Single-task linking: In this case, applications are directly linked against the
Oracle shareable image making single-task connection to Oracle.

« Two-task linking: In this case, applications linked in a standalone configuration
can only connect to Oracle using Net8's two task drivers such as Net8 DECnet
or Net8 VMS Mailbox on the OpenVMS platform. This is the typical
configuration used in the large majority of client-server applications. With two
task linking applications and tools connect with the Oracle7 database through a
programmatic interface that creates a shadow process for each user connection.
This shadow process runs a copy of the Oracle shareable image on behalf of the
user process using Net8 protocols to communicate between the user and
shadow processes. Therefore, with this interface, user routines that invoke the
Oracle7 Server functions run as one process or task, and the Oracle7 routines
that execute these functions run as the second task.

Oracle will continue to support single-task linking with all the releases of the Oracle
server (all 8.* releases) but will desupport it beginning with the first release after
Oracle8i. Application developers who would like to use single-task linking to run
their applications will not be able to do so against the first server release after
Oracles8i.

Introduction, New Features, and Upgrading 1-27

Application Linking Issues

1-28 Oracle Call Interface Programmer’s Guide

2

OCI Programming Basics

This chapter introduces you to the basic concepts involved in programming with
the Oracle Call Interface. This chapter covers the following topics:

Overview

OCI Program Structure

OCI Data Structures

Handles

Descriptors

OCI Programming Steps
Initialization, Connection, and Session Creation
Processing SQL Statements
Commit or Rollback

Terminating the Application

Error Handling

Additional Coding Guidelines
Non-Blocking Mode

Using PL/SQL in an OCI Program

OCI Programming Basics 2-1

Overview

Overview

This chapter provides an introduction to the concepts and procedures involved in
developing an OCI application. After reading this chapter, you should have most of
the tools necessary to understand and create a basic OCI application.

This chapter is broken down into the following major sections:

« OCI Program Structure - covers the basic overall structure of an OCI
application, including the major steps involved in creating one.

« OCI Data Structures - discusses handles, and descriptors.

« OCI Programming Steps - discusses in detail each of the steps involved in
coding an OCI application.

« Error Handling - covers error handling in OCI applications.

« Additional Coding Guidelines - provides useful information to keep in mind
when coding an OCI application.

= Non-Blocking Mode - this section covers the use of non-blocking mode to
connect to an Oracle database server.

« Using PL/SQL in an OCI Program - discusses some important points to keep in
mind when working with PL/SQL in an OCI application.

New users should pay particular attention to the information presented in this
chapter, because it forms the basis for the rest of the material presented in this
guide. The information in this chapter is supplemented by information in later
chapters. More specifically, after reading this chapter you may want to continue
with any or all of the following:

« Chapter 3, for detailed information about OCI internal and external datatypes
« Chapter 4, for information about processing SQL statements

« Chapter 5, for more information about binding and defining

« Chapter 6, for information about the OClIDescribe() call.

« Chapter 7, for information about OCI support for LOB, FILE, and temporary
LOB datatypes.

« Chapter 8, for a discussion of password management, session management, and
thread safety.

« Chapter 9 for a discussion of advanced OCI concepts and techniques

2-2 Oracle Call Interface Programmer’s Guide

OCI Program Structure

Chapter 10 through Chapter 14, for information about writing OCI applications
that take advantage of the object capabilities of the Oracle database server

Chapter 15 through Chapter 18, for a listing of the OCI function calls, including
descriptions, syntax, and parameters

See Also: For a discussion of the OCI functions that apply to an NLS
environment, see the Oracle8i National Language Support Guide. For a discussion
of the OCI functions that apply to cartridge services, see the Oracle8i Data
Cartridge Developer’s Guide.

Appendix A, for attributes of OCI handles and descriptors
Appendix B, for a list of important OCI demonstration programs

Appendix C, for information on server roundtrips during OCI function calls

OCI Program Structure

The general goal of an OCI application is to operate on behalf of multiple users. In
an n-tiered configuration, multiple users are sending HTTP requests to the client
application. The client application may need to perform some data operations that
include exchanging data and performing data processing.

The OCI uses the following basic program structure:

1.
2.
3.

4.
5.
6.

Initialize the OCI programming environment and threads.
Allocate necessary handles, and establish server connections and user sessions.

Exchange data with the database server by executing SQL statements on the
server, and perform necessary application data processing.

Reexecute prepared statements, or prepare a new statement for execution.
Terminate user sessions and server connections.

Free handles.

Figure 2-1, "Basic OCI Program Flow" illustrates the flow of steps in an OCI
application. Each step is described in more detail in the section "OCI Programming
Steps" on page 2-18.

OCI Programming Basics 2-3

OCI Program Structure

Figure 2-1 Basic OCI Program Flow

Create
Environment

v

Allocate Handles
and Data Structures

v

Connect to Server
and Begin Session

v

Issue SQL
and Process Data

v

Disconnect

v

Free Handles
& Data Structures

Keep in mind that the diagram and the list of steps present a simple generalization
of OCI programming steps. Variations are possible, depending on the functionality
of the program. OCI applications that include more sophisticated functionality, such
as managing multiple sessions and transactions and using objects, require
additional steps.

All OCI function calls are executed in the context of an environment. There can be
multiple environments within an OCI process, as illustrated in Figure 2-2, "Multiple
Environments Within an OCI Process". If an environment requires any process-level
initialization then it is performed automatically.

Note: In previous releases, a separate explicit process-level initialization was
required. This requirement has been simplified and no explicit process-level
initialization is required.

2-4 Oracle Call Interface Programmer’s Guide

OCI Data Structures

Figure 2-2 Multiple Environments Within an OCI Process

and Data Structures

Allocate Handles
and Data Structures

OCI Process
Create Create Create
Environment Environment Environment
v v v
Allocate Handles

Allocate Handles
and Data Structures

v

v

v

Connect to Server
and Begin Session

Connect to Server
and Begin Session

Connect to Server

and Begin Session
v v v
Issue SQL Issue SQL Issue SQL
and Process Data and Process Data and Process Data
v v v
Disconnect Disconnect Disconnect

Free Handles

& Data Structures

Free Handles
& Data Structures

Free Handles
& Data Structures

Note: It is possible to have more than one active connection and statement in an
OCI application.

See Also: For information about accessing and manipulating objects, see
Chapter 10, "OCI Object-Relational Programming".

OCI Data Structures

Handles and descriptors are opaque data structures which are defined in OCI

applications and may be allocated directly, through specific allocate calls, or may be
implicitly allocated by OCI functions.

7.x Upgrade Note: Programmers who have previously written 7.x OCI

applications will need to become familiar with these new data structures which
are used by most OCI calls.

Handles and descriptors store information pertaining to data, connections, or
application behavior. Handles are defined in more detail in the following section.
Descriptors are discussed in the section "Descriptors” on page 2-14.

OCI Programming Basics 2-5

Handles

Handles
Almost all Oracle OCI calls include in their parameter list one or more handles. A
handle is an opaque pointer to a storage area allocated by the OCI library. A handle
may be used to store context or connection information, (e.g., an environment or
service context handle), or it may store information about OCI functions or data
(e.g., an error or describe handle). Handles can make programming easier, because
the library, rather than the application, maintains this data.
Most OCI applications will need to access the information stored in handles. The
get and set attribute OCI calls, OCIAttrGet() and OCIALttrSet(), access this
information.

See Also: For more information about using handle attributes, see the section
"Handle Attributes" on page 2-13.

The following table lists the handles defined for the OCI. For each handle type, the
C datatype and handle type constant used to identify the handle type in OCI calls
are listed.
Table 2-1 OCI Handle Types

Description C Type Handle Type

OCI environment handle OCIEnv OCI_HTYPE_ENV

OCl error handle OCIError OCI_HTYPE_ERROR

OCI service context handle OCISvcCix OCI_HTYPE_SVCCTX

OCI statement handle OCIstmt OCI_HTYPE_STMT

OCI bind handle OCIBind OCI_HTYPE_BIND

OCI define handle OClIDefine OCI_HTYPE_DEFINE

OCI describe handle OClIDescribe OCI_HTYPE_DESCRIBE

OCl server handle OClIServer OCI_HTYPE_SERVER

OCI user session handle OCISession OCI_HTYPE_SESSION

OCl transaction handle OCITrans OCI_HTYPE_TRANS

OCI complex object retrieval (COR) handle
OCl thread handle

OCI subscription handle

OCI direct path context handle

OCIComplexObject
OCIThreadHandle
OCISubscription
OCIDirPathCtx

2-6 Oracle Call Interface Programmer’s Guide

OCI_HTYPE_COMPLEXOBJECT
N/A
OCI_HTYPE_SUBSCRIPTION
OCI_HTYPE_DIRPATH_CTX

Handles

Table 2-1 OCI Handle Types (Cont.)

Description C Type Handle Type

OCI direct path column array handle OCIDirPathColArray OCI_HTYPE_DIRPATH_COLUMN_AR
RAY

OCI direct path stream handle OCIDirPathStream OCI_HTYPE_DIRPATH_STREAM

OCI process handle

OCI_HTYPE_PROC

Allocating and Freeing Handles

Your application allocates all handles (except the bind, define, and thread handles)
with respect to particular environment handle. You pass the environment handle as
one of the parameters to the handle allocation call. The allocated handles is then
specific to that particular environment.

The bind and define handles are allocated with respect to a statement handle, and
contain information about the statement represented by that handle.

Note: The bind and define handles are implicitly allocated by the OCI library,
and do not require user allocation.

Figure 2-3, "Hierarchy of Handles:" illustrates the relationship between the various
types of handles.

All user-allocated handles are allocated using the OCI handle allocation call,
OCIHandleAlloc().

Note: The environment handle is allocated and initialized with a call to
OCIEnvCreate(), which is required by all OCI applications.

The thread handle is allocated with the OCIThreadHndInit() call.

An application must free all handles when they are no longer needed. The
OCIHandleFree() function frees handles.

Note: When a parent handle is freed, all child handles associated with it are also
freed, and may no longer be used. For example, when a statement handle is
freed, any bind and define handles associated with it are also freed.

OCI Programming Basics 2-7

Handles

Environment Handle

The environment handle defines a context in which all OCI functions are invoked.
Each environment handle contains a memory cache, which allows for fast memory

ST

Figure 2-3 Hierarchy of Handles:

Session
Handle

Direct Path
Context Handle

Thread
Handle

COR
Handle

Subscription

el

Handle
Environment . Describe
Handle Handle
Statement
Handle

Service Context
Handle

Error
Handle

Process
Handle

Server
Handle

Handles obviate the need for global variables. Handles also make error reporting
easier. An error handle is used to return errors and diagnostic information.

See Also: For sample code demonstrating the allocation and use of OCI
handles, see the example programs listed in Appendix B, "OCI Demonstration
Programs".

The various handle types are described in more detail in the following sections.

2-8 Oracle Call Interface Programmer’s Guide

Handles

access. All memory allocation under the environment handle is done from this
cache. Access to the cache is serialized if multiple threads try to allocate memory
under the same environment handle. When multiple threads share a single
environment handle, they may block on access to the cache.

The environment handle is passed as the parent parameter to the OCIHandleAlloc()
call to allocate all other handle types. Bind and define handles are allocated
implicitly.

Error Handle

The error handle is passed as a parameter to most OCI calls. The error handle
maintains information about errors that occur during an OCI operation. If an error
occurs in a call, the error handle can be passed to OCIErrorGet() to obtain additional
information about the error that occurred.

Allocating the error handle is one of the first steps in an OCI application because
most OCI calls require an error handle as one of its parameters.

Service Context and Associated Handles

A service context handle defines attributes that determine the operational context for
OCl calls to a server. The service context contains three handles as its attributes, that
represent a server connection, a user session, and a transaction. These attributes are
illustrated in Figure 2-4, "Components of a Service Context"the following figure.

Figure 2—-4 Components of a Service Context

Service Context

Handle
Server User Session Transaction
Handle Handle Handle

« Aserver handle identifies a data source. It translates into a physical connection in
a connection-oriented transport mechanism.

« A user session handle defines a user’s roles and privileges (also known as the
user’s security domain), and the operational context on which the calls execute.

OCI Programming Basics 2-9

Handles

« Atransaction handle defines the transaction in which the SQL operations are
performed. The transaction context includes user session state information,
including the fetch state and package instantiation, if any.

Breaking the service context down in this way provides scalability and enables
programmers to create sophisticated three-tiered applications and transaction
processing (TP) monitors to execute requests on behalf of multiple users on multiple
application servers and different transaction contexts.

You must allocate and initialize the service context handle with OCIHandleAlloc() or
OClLogon() before you can use it. The service context handle is allocated explicitly
by OCIHandleAlloc(). It can be initialized using OCIAttrSet() with the server, session,
and transaction handle. If the service context handle is allocated implicitly using
OCIlLogon(), it is already initialized.

Applications maintaining only a single user session per database connection at any
time can call OCILogon() to get an initialized service context handle.

In applications requiring more complex session management, the service context
must be explicitly allocated, and the server handle and user session handle must be
explicitly set into the service context. OCIServerAttach() and OCISessionBegin(), calls
initialize the server and user session handle respectively.

An application may need to define a transaction explicitly if it is a global transaction
or there are multiple transactions active for sessions. It also may be able to work
with the implicit transaction created when the application makes changes to the
database.

See Also: For more information about transactions, see the section
"Transactions” on page 8-2. For more information about establishing a server
connection and user session, see the sections "Initialization, Connection, and
Session Creation" on page 2-18, and "Password and Session Management"” on
page 8-12

Statement Handle, Bind Handle, and Define Handle

A statement handle is the context that identifies a SQL or PL/SQL statement and its
associated attributes.

2-10 Oracle Call Interface Programmer’s Guide

Handles

Figure 2-5 Statement Handles

Statement
Handle
Define Bind
Handle Handle

Information about input variables is stored in bind handles. The OCI library allocates
a bind handle for each placeholder bound with the OCIBindByName() or
OCIBindByPos() function. The user does not need to allocate bind handles. They are
implicitly allocated by the bind call.

Fetched data returned by a query is converted and stored according to the
specifications of the define handles. The OCI library allocates a define handle for each
output variable defined with OCIDefineByPos(). The user does not need to allocate
define handles. They are implicitly allocated by the define call.

Bind and define handles are freed when the statement handle is freed or when a
new statement is prepared on the statement handle.

Statement context data, the data associated with a statement handle, can be shared.
For information about OCI shared mode, see "Shared Data Mode" on page 2-20.

Describe Handle

The describe handle is used by the OCI describe call, OCIDescribeAny(). This call
obtains information about schema objects in a database (e.g., functions, procedures).
The call takes a describe handle as one of its parameters, along with information
about the object being described. When the call completes, the describe handle is
populated with information about the object. The OCI application can then obtain
describe information through the attributes of parameter descriptors.

See Also: See Chapter 6, "Describing Schema Metadata", for more information
about using the OCIDescribeAny() function.

Complex Object Retrieval Handle

The complex object retrieval (COR) handle is used by some OCI applications that work
with objects in an Oracle database server. This handle contains COR descriptors,
which provide instructions about retrieving objects referenced by another object.

OCI Programming Basics 2-11

Handles

See Also: For information about complex object retrieval and the complex
object retrieval handle, refer to "Complex Object Retrieval” on page 10-20.

Thread Handle

For information about the thread handle, which is used in multithreaded
applications, refer to "The OCIThread Package" on page 9-2.

Subscription Handle

The subscription handle is used by an OCI client application that is interested in
registering for subscriptions to receive notifications of database events or events in
the AQ namespace. The subscription handle encapsulates all information related to
a registration from a client.

See Also: For information about publish-subscribe and allocating the
subscription handle, refer to "Publish-Subscribe Notification” on page 9-31.

Direct Path Handles

The direct path handles are necessary for an OCI application that utilizes the direct
path load engine in the Oracle database server. The direct path load interface allows
the application to access the direct block formatter of the Oracle server.

Figure 2—6 Direct Path Handles

Direct Path
Context Handle

1

Direct Path Direct Path
Column Array Stream
Handle Handle

See Also: For information about direct path loading and allocating the direct
path handles, refer to "Direct Path Loading" on page 9-39. For information
about the handle attributes, refer to "Direct Path Loading Handle Attributes"
on page A-40.

2-12 Oracle Call Interface Programmer’s Guide

Handles

Process Handle

The process handle is a specialized handle for OCI applications that utilize shared
data structures mode to set global parameters. See "Shared Data Mode" on
page 2-20.

Handle Attributes

All OCI handles have attributes associated with them. These attributes represent
data stored in that handle. You can read handle attributes using the attribute get
call, OCIAttrGet(), and you can change them with the attribute set call, OCIAttrSet().

For example, the following statements set the username in the session handle by
writing to the OCI_ATTR_USERNAME attribute:

text usemame]] = "scott";

err = OCIAttrSet ((dvoid*) mysessp, OCl HTYPE_SESSION, (dvoid*) usemame,
(ub4) strlen(usemame), OCl ATTR_USERNAME,
(OClIEmor *) myenhp);

Some OCI functions require that particular handle attributes be set before the
function is called. For example, when OCISessionBegin() is called to establish a
user’s login session, the username and password must be set in the user session
handle before the call is made.

Other OCI functions provide useful return data in handle attributes after the
function completes. For example, when OCIStmtExecute() is called to execute a SQL
guery, describe information relating to the select-list items is returned in the
statement handle.

ub4 parment;

* get the number of columns in the select list */

err = OCIAtrGet ((dvoid *)stmhp, (Ub4)OCl_HTYPE_STMT, (dvoid *)
&pamcent, (b4 *) 0, (Ub4)OCI ATTR_PARAM_COUNT, erhp);

For a list of all handle attributes, refer to Appendix A, "Handle and Descriptor
Attributes".

See Also: See the description of OCIAttrGet() on page 15-28 for an example
showing the username and password handle attributes being set.

User Memory Allocation

The OCIEnvCreate() call, which initializes the environment handle, and the generic
handle allocation (OCIHandleAlloc()) and descriptor allocation (OCIDescriptorAlloc())

OCI Programming Basics 2-13

Descriptors

Descriptors

calls have an xtramem_sz parameter in their parameter list. This parameter is used to
specify memory chunk size which is allocated along with that handle for the user.
This memory is not used by OCI and is for use by the application only.

Typically, an application uses this parameter to allocate an application-defined
structure, such as for an application bookkeeping or storing context information, that
has the same lifetime as the handle.

Using the xtramem_sz parameter means that the application does not need to
explicitly allocate and deallocate memory as each handle is allocated and
deallocated. The memory is allocated along with the handle, and freeing the handle
frees up the user’s data structures as well.

OCI descriptors are opaque data structures that maintain data-specific information.
The following table lists them, along with their C datatype, and the OCI type
constant that allocates a descriptor of that type in a call to OClDescriptorAlloc(). The
OCIDescriptorFree() function frees descriptors and locators.

Table 2-2 Descriptor Types

Description

C Type OCI Type Constant

snapshot descriptor
LOB datatype locator
FILE datatype locator

read-only parameter descriptor

ROWID descriptor

complex object descriptor

advanced queuing enqueue options
advanced queuing dequeue options

advanced queuing message properties

advanced queuing agent

advanced queuing notification

OClISnapshot
OClLobLocator
OClLobLocator
OCIParam

OCIRowid
OCIComplexObjectComp
OCIAQENQgOptions
OCIAQDeqOptions
OCIAQMsgProperties
OCIAQAgent
OCIAQNotify

OCI_DTYPE_SNAP
OCI_DTYPE_LOB

OCI_DTYPE_FILE
OCI_DTYPE_PARAM
OCI_DTYPE_ROWID
OCI_DTYPE_COMPLEXOBJECTCOMP
OCI_DTYPE_AQENQ_OPTIONS
OCI_DTYPE_AQDEQ _OPTIONS
OCI_DTYPE_AQMSG_PROPERTIES
OCI_DTYPE_AQAGENT
OCI_DTYPE_AQNFY

Note: Although there is a single C type for OClLobLocator, this locator is
allocated with a different OCI type constant for internal and external LOBs. The
section below on LOB locators discusses this difference.

2-14 Oracle Call Interface Programmer’s Guide

Descriptors

The main purpose of each descriptor type is listed here, and each descriptor type is
described in the following sections:

« OCISnapshot - used in statement execution

« OCILOBLocator - used for LOB (OCI_DTYPE_LOB) or FILE
(OCI_DTYPE_FILE) calls

« OCIParam - used in describe calls
« OCIRowid - used for binding or defining ROWID values
« OCIComplexObjectComp - used for complex object retrieval

« OCIAQENQgOptions, OCIAQDegOptions, OCIAQMsgProperties,
OCIAQAgent - used for advanced queueing

« OCIAQNOotify - used for publish-subscribe notification

Snapshot Descriptor

The snapshot descriptor is an optional parameter to the execute call,
OCIStmtExecute(). It indicates that a query is being executed against a particular
database snapshot. A database snapshot represents the state of a database at a
particular point in time.

You allocate a snapshot descriptor with a call to OCIDescriptorAlloc(), by passing
OCI_DTYPE_SNAP as the type parameter.

See Also: For more information about OCIStmtExecute() and database
snapshots, see the section "Execution Snapshots” on page 4-7.

LOB/FILE Datatype Locator

A LOB (large object) is an Oracle datatype that can hold up to 4 gigabytes of binary
(BLOB) or character (CLOB) data. In the database, an opaque data structure called a
LOB locator is stored in a LOB column of a database row, or in the place of a LOB
attribute of an object. The locator serves as a pointer to the actual LOB value, which
is stored in a separate location.

The OCI LOB locator is used to perform OCI operations against a LOB (BLOB or
CLOB) or FILE (BFILE). OCI functions do not take actual LOB values as parameters;
all OCI calls operate on the LOB locator. This descriptor—OCILobLocator—is also
used for operations on FILEs.

OCI Programming Basics 2-15

Descriptors

The LOB locator is allocated with a call to OClDescriptorAlloc(), by passing
OCI_DTYPE_LOB as the type parameter for BLOBs or CLOBs, and
OCI_DTYPE_FILE for BFILEs.

Warning: The two LOB locator types are not interchangeable. When binding or
defining a BLOB or CLOB, the application must take care that the locator is
properly allocated using OCI_DTYPE_LOB. Similarly, when binding or
defining a BFILE, the application must be sure to allocate the locator using
OCI_DTYPE_FILE.

An OCI application can retrieve a LOB locator from the server by issuing a SQL
statement containing a LOB column or attribute as an element in the select list. In
this case, the application would first allocate the LOB locator and then use it to
define an output variable. Similarly, a LOB locator can be used as part of a bind
operation to create an association between a LOB and a placeholder in a SQL
statement.

The LOB locator datatype (OCIlLobLocator) is not a valid datatype when connected
to an Oracle7 Server.

See Also: For more information about OCI LOB operations, see Chapter 7,
"LOB and FILE Operations".

Parameter Descriptor

OCI applications use parameter descriptors to obtain information about select-list
columns or schema objects. This information is obtained through a describe
operation.

The parameter descriptor is the one descriptor type that is not allocated using
OClIDescriptorAlloc(). You can obtain it only as an attribute of a describe, statement,
or complex object retrieval handle by specifying the position of the parameter using
an OClParamGet() call.

See Also: See Chapter 6, "Describing Schema Metadata", and "Describing
Select-List Items" on page 4-11 for more information about obtaining and using
parameter descriptors.

ROWID Descriptor

The ROWID descriptor (OCIRowid) is used by applications that need to retrieve
and use Oracle ROWIDs. The size and structure of the ROWID has changed from
Oracle release 7 to Oracle release 8, and is opaque to the user. To work with a
ROWID using the Oracle OCI release 8, an application can define a ROWID

2-16 Oracle Call Interface Programmer’s Guide

Descriptors

descriptor for a rowid position in a SQL select-list, and retrieve a ROWID into the
descriptor. This same descriptor can later be bound to an input variable in an
INSERT statement or WHERE clause.

ROWIDs are also redirected into descriptors using OCIAttrGet() on the statement
handle following an execute.

Complex Object Descriptor

For information about the complex object descriptor and its use, refer to "Complex
Object Retrieval” on page 10-20.

Advanced Queueing Descriptors

For information about advanced queueing and its related descriptors, refer to "OCI
and Advanced Queuing" on page 9-27.

User Memory Allocation
The OClIDescriptorAlloc() call has an xtramem_sz parameter in its parameter list. This
parameter is used to specify an amount of user memory which should be allocated
along with a descriptor or locator.

Typically, an application uses this parameter to allocate an application-defined
structure that has the same lifetime as the descriptor or locator. This structure
maybe used for application bookkeeping or storing context information.

Using the xtramem_sz parameter means that the application does not need to
explicitly allocate and deallocate memory as each descriptor or locator is allocated
and deallocated. The memory is allocated along with the descriptor or locator, and
freeing the descriptor or locator (with OClIDescriptorFree()) frees up the user’s data
structures as well.

The OCIHandleAlloc() call has a similar parameter for allocating user memory which
will have the same lifetime as the handle.

The OCIEnvCreate() and OCIEnvInit() calls have a similar parameter for allocating
user memory which will have the same lifetime as the environment handle.

OCI Programming Basics 2-17

OCI Programming Steps

OCI Programming Steps

Each of the steps that you perform in an OCI application is described in greater
detail in the following sections. Some of the steps are optional. For example, you do
not need to describe or define select-list items if the statement is not a query.

Note: For an example showing the use of OCI calls for processing SQL
statements, see the first sample program in Appendix D.

The special case of dynamically providing data at run time is described in detail in
the section "Run Time Data Allocation and Piecewise Operations" on page 5-37.

Special considerations for operations involving arrays of structures are described in
the section "Arrays of Structures” on page 5-22.

Refer to the section "Error Handling" on page 2-27 for an outline of the steps
involved in processing a SQL statement within an OCI program.

For information on using the OCI to write multi-threaded applications, refer to
"Thread Safety" on page 8-22.

For more information about types of SQL statements, refer to the section "SQL
Statements" on page 1-7.

The following sections describe the steps that are required of an OCI application:
« Initialization, Connection, and Session Creation

« Processing SQL Statements

« Commit or Rollback

« Terminating the Application

« Error Handling

Application-specific processing will also occur in between any and all of the OCI
function steps.

7.x Upgrade Note: OCI programmers should take note that OCI programs no
longer require an explicit parse step. This means that 8.0 applications must
issue an execute command for both DML and DDL statements.

Initialization, Connection, and Session Creation

This section describes how to initialize the Oracle OCI environment, establish a
connection to a server, and authorize a user to perform actions against a database.

2-18 Oracle Call Interface Programmer’s Guide

Initialization, Connection, and Session Creation

The three main steps in initializing the OCI environment are described in this
section:

1. Initialize an OCI environment
2. Allocate Handles and Descriptors
3. Initialize the Application, Connection, and Session

Additionally, this section describes connection modes for OCI applications.

Initializing an OCI Environment

Each OCI function call is executed in the context of an environment that is created
with the OCIEnvCreate() call. This call must be invoked before any other OCI call.
The only exception is when setting a process-level attribute for the OCI shared
mode. See "Shared Data Mode" on page 2-20.

The mode parameter of OCIEnvCreate() specifies whether the application calling the
OCIl library functions will:

« runinathreaded environment (mode = OClI_THREADED)
= use objects (mode = OCI_OBIJECT)

« utilize shared data structures (mode=OCI_SHARED)

« utilize subscriptions (mode=OCI_EVENTS)

The mode can be set independently in each environment.

Initializing in object mode is necessary if the application will be binding and
defining objects, or if the application will be using the OCI’s object navigation calls.
The program may also choose to use none of these features (mode = OCI_DEFAULT)
or some combination of them, separating the options with a vertical bar. For
example if mode = (OCI_THREADED | OCI_OBIJECT), then the application will run
in a threaded environment and use objects.

You can also specify user-defined memory management functions for each OCI
environment.

Note: In previous releases, a separate explicit process-level initialization was
required. This requirement has been simplified and no explicit process-level
initialization is required.

See Also: See the description of OCIEnvCreate() on page 15-91 and
OCllInitialize() on page 15-96 for more information about the initialization calls.
For information about using the OCI to write multi-threaded applications, refer

OCI Programming Basics 2-19

Initialization, Connection, and Session Creation

to "Thread Safety” on page 8-22. For information about OCI programming with
objects, refer to Chapter 10, "OCI Object-Relational Programming". For
information about using the publish-subscribe feature, see "Publish-Subscribe
Notification" on page 9-31.

Shared Data Mode

When a SQL statement is processed, certain underlying data is associated with the
statement. This data includes information about statement text and bind data, as
well as define and describe information for queries. For applications where the
same set of SQL statements is executed on multiple instances of the application on
the same host, the data can be shared.

When an OCI application is initialized in shared mode, common statement data is
shared between multiple statement handles, thus providing memory savings for the
application. This savings may be particularly valuable for applications which create
multiple statement handles which execute the same SQL statement on different
users’ sessions but in the same schema, either on the same or multiple connections.

Without the shared mode feature, each execution of the query using an OCI
statement handle would require its own memory for storing the metadata. The total
amount of memory required would be roughly equal to the number of statements
being executed in all the processes combined multiplied by the memory required
for each statement handle. Because a large part of the common memory in a
statement handle is shared among all the processes executing the same statement
with the shared mode feature, the total amount of memory in all the processes
combined would be much less than in the previous case for the same number of
processes. The memory requirement per statement handle would be much smaller
than in the case where there is no sharing, as the number of such statements
increases to a large number.

Shared data structure mode might be useful in the following scenarios:

« When several instances of the same application are running on the same
machine to service multiple clients. Each of these instances may be executing
identical SQL statements, differentiated by different bind values.

« When an application process forks service threads to execute the same
statement for different users either on the same connection or on multiple
connections. The same saving as above can be realized in this scenario too.

=« Where the types of applications are SQL drivers and other middle-tiered
applications.

2-20 Oracle Call Interface Programmer’s Guide

Initialization, Connection, and Session Creation

Note: Small applications, which execute single queries non-concurrently will
not benefit from this feature.

There are several ways to use the shared OCI functionality. Existing applications
can quickly examine the benefits of this feature without changing any code. These
applications can trigger OCI shared mode by setting environment variables. New
applications should use OCI API calls to trigger shared mode functionality.

Using OCI Functions

To trigger OCI shared mode functionality, process handle parameters must be set
and OCIEnvCreate() must be called with the mode flag set to OCI_SHARED. For
example:

ub4 mode = OCI_SHARED | OCl_THREADED;
OClInitialize (mode, 0, 0, 0, 0);

The first application that initializes OCI in shared mode starts up the shared
subsystem using the parameters set by that OCI application. When subsequent
applications initialize using the shared mode, they use the previously started shared
subsystem. For information on the parameters that can be set and read for the OCI
shared mode system, see "Process Handle Attributes” on page A-50.

If an OCI application has been initialized in shared mode, all statements that are
prepared and executed use the shared subsystem by default. If you do not want to
use the shared subsystem to execute a specific SQL statement, then you can use the
OCI_NO_SHARING flag in OCIStmtPrepare(). For example:

OCISmtPrepare(stmthp, (CONST text *)createstmt,
(Ubd)strien((char *)updstmt), (Ub4)OCI_NTV_SYNTAX,
(Ub4)OCI_NO_SHARING);

The OCI_NO_SHARING flag has no effect if the process has not been initialized in
the shared mode. See OCIStmtPrepare() on page 15-172.

To detach a process from the shared memory subsystem, use the OCITerminate()
call. See OCITerminate() on page 15-109.

Using Environmental Variables

The environmental variables OCI_SHARED_MODE and
OCI_NUM_SHARED_PROCS can be used to set OCI shared mode functionality.
However, this is not the recommended method. This procedure has been provided
to quickly examine the benefits of using shared mode functionality in existing
applications.

OCI Programming Basics 2-21

Initialization, Connection, and Session Creation

OCI_SHARED_MODE To trigger an OCI application to run in shared mode, set the
environment variable OCI_SHARED_MODE before executing a OCI program. To
set the variable, issue the command:

setenv OCl_SHARED MODE number

where number is the size of the shared memory address space. For example:
setenv OCl_SHARED_MODE 20000000

If the shared subsystem is not already running, setting this variable launches the
subsystem by creating a shared memory address space with the size specified. The
size of the shared memory required is determined by the nature of the application
and depends on the size and type of the SQL statement and the underlying table(s)
that it accesses.

OCI_NUM_SHARED_PROCS To set the maximum number of processes that can
connect to the shared subsystem, set the environment variable
ORA _OCI_NUM _SHARED_PROCS. To set this variable, issue the command:

setenv OClI_NUM_SHARED PROCS number

where number is the maximum number of processes. For example:
setenv OCI_NUM_SHARED PROCS 20

ORA_OCI_NUM_SHARED_PROCS is an initialization parameter for starting the
shared subsystem. It has no effect if the shared subsystem is already running.

Allocate Handles and Descriptors

Oracle provides OCI functions to allocate and deallocate handles and descriptors.
You must allocate handles using OCIHandleAlloc() before passing them into an OCI
call, unless the OCI call, such as OCIBindByPos(), allocates the handles for you.

You can allocate the following types of handles with OCIHandleAlloc():
= error handle

= service context handle

= statement handle

= describe handle

= server handle

2-22 Oracle Call Interface Programmer’s Guide

Initialization, Connection, and Session Creation

« user session handle

« transaction handle

« complex object retrieval handle
« subscription handle

« direct path context handle

« direct path column array handle
« direct path stream handle

Depending on the functionality of your application, it will need to allocate some or
all of these handles.

See Also: See the description of OCIHandleAlloc() on page 15-35 for more
information about using this call.

Application Initialization, Connection, and Session Creation
An application must call OCIEnvCreate() to initialize the OCI environment handle.
Following this step, the application has two options for establishing a server

connection and beginning a user session: Single User, Single Connection; or
Multiple Sessions or Connections.

Note: OCIEnvCreate() should be used instead of the OClInitialize() and
OCIEnvInit() calls. OCllInitialize() and OCIEnvInit() calls will be supported for
backward compatibility.

Option 1: Single User, Single Connection
This option is the simplified logon method.

If an application will maintain only a single user session per database connection at
any time, the application can take advantage of the OCI’s simplified logon
procedure.

When an application calls OClLogon(), the OCI library initializes the service context
handle that is passed to it and creates a connection to the specified server for the
user whose username and password are passed to the function.

The following is an example of what a call to OClLogon() might look like:

OClLogon(envhp, erhp, &svchp, “scott’, nameLen, "tiger”,
passwdLen, “oracledb”, donamelen);

OCI Programming Basics 2-23

Initialization, Connection, and Session Creation

The parameters to this call include the service context handle (which will be
initialized), the username, the user’s password, and the name of the database that
will be used to establish the connection. The server and user session handles are
also implicitly allocated by this function.

If an application uses this logon method, the service context, server, and user
session handles will all be read-only, which means that the application cannot
switch session or transaction by changing the appropriate attributes of the service
context handle, using OCIAttrSet().

An application that creates its session and authorization using OClLogon() should
terminate them using OCILogoff().

Option 2: Multiple Sessions or Connections
This option uses explicit attach and begin session calls.

If an application needs to maintain multiple user sessions on a database connection,
the application requires a different set of calls to set up the sessions and
connections. This includes specific calls to attach to the server and begin sessions:

« OCIServerAttach() creates an access path to the data server for OCI operations.

« OCISessionBegin() establishes a session for a user against a particular server.
This call is required for the user to be able to execute any operation on the
server.

Note: See "Non-Blocking Mode" on page 2-37 for information about specifying
a blocking or non-blocking connection in the OCIServerAttach() call.

These calls set up an operational environment that allows you to execute SQL and
PL/SQL statements against a database. The database must be up and running
before the calls are made, or else they will fail.

These calls are described in more detail in Chapter 15, "OCI Relational Functions".
Refer to Chapter 9, "OCI Programming Advanced Topics", for more information
about maintaining multiple sessions, transactions, and connections.

Example

The following example demonstrates the use of creating and initializing an OCI
environment. In the example, a server context is created and set in the service
handle. Then a user session handle is created and initialized using a database
username and password. For the sake of simplicity, error checking is not included.

#include <s.h>
#include <oci.h>

2-24 Oracle Call Interface Programmer’s Guide

Initialization, Connection, and Session Creation

main()

{

OCIEnv*myenvhp; /*the environment handle */
OClServer *mysivhp; #the server handle */
OCIEnor *myerhp; /*the error handle */
OCISession *myusrhp; # user session handle */
OCISveCix *mysvchp; the service handle */

¥ initialize the mode to be the threaded and object environment */
(void) OCIEnvCreate(&myenvhp, OCI THREADED|OCI OBJECT, (dvoid *)0,
0,0,0, (size_t)0, (dvoid *)0);

[*allocate a server handle */
(void) OCIHandleAlloc ((dvoid *myenvhp, (dvoid *)&mysrvhp,
OCI_HTYPE_SERVER, 0, (dvoid *¥) 0);

* allocate an error handle */
(void) OCIHandleAlloc ((dvoid *)myenvhp, (dvoid *)&myerrhp,
OCI_HTYPE_ERROR, O, (dvoid **) 0);

[+ create a server context */
(void) OClServerAttach (mysrvhp, myerrhp, (text *)instL_alias",
stien (instl._alias"), OCI_ DEFAULTY;

[* allocate a service handle */
(void) OCIHandleAlloc ((dvoid *myenvhp, (dvoid *)&mysvchp,
OCI_HTYPE_SVCCTX, 0, (dvoid **) 0);

[* set the server attribute in the service context handle®/
(void) OClAtrSet ((dvoid *)mysvchp, OCl HTYPE_SVCCTX,
(dvoid *)mysrvhp, (ub4) O, OCI_ATTR_SERVER, myerrhp);

* allocate a user session handle */
(void) OCIHandleAlloc ((dvoid *)myenvhp, (dvoid *)&myusrhp,
OC|_HTYPE_SESSION, 0, (dvoid **) 0);

* set usemame attribute in user session handle */

(void) OCIAtrSet ((dvoid *)myusrhp, OCl HTYPE_SESSION,
(dvoid *)"scott”, (ub4)strien('scott'),
OCl_ATTR_USERNAME, myerrhp);

* set password attribute in user session handle */

(void) OCIAttrSet ((dvoid *)myusthp, OCIHTYPE_SESSION,
(cvoid *)'tiger”, (ub4)strien("tiger”),

OCI Programming Basics 2-25

Commit or Rollback

OCI_ATTR_PASSWORD, myerhp);

(void) OClSessionBegin ((dvoid *) mysvchp, myerrhp, myusrhp,
OC|_CRED_RDBMS, OC| DEFAULT);

* set the user session attribute in the service context handle*/
(void) OCIAtrSet ((dvoid ®mysvchp, OCI HTYPE_SVCCTX,
(dvoid *)myusrhp, (ub4) 0, OCl ATTR_SESSION, myerrhp);
}

The demonstration program cdemo81.c in the demodirectory illustrates this
process, with error-checking.

Processing SQL Statements

For information about processing SQL statements, refer to Chapter 4, "SQL
Statement Processing".

Commit or Rollback

An application commits changes to the database by calling OCITransCommit(). This
call takes a service context as one of its parameters. The transaction currently
associated with the service context is the one whose changes are committed. This
may be a transaction explicitly created by the application or the implicit transaction
created when the application modifies the database.

Note: Using the OCI_COMMIT_ON_SUCCESS mode of the OCIExecute() call,
the application can selectively commit transactions at the end of each statement
execution, saving an extra roundtrip.

If you want to roll back a transaction, use the OCITransRollback() call.

If an application disconnects from Oracle in some way other than a normal logoff
(for example, losing a network connection), and OCITransCommit() has not been
called, all active transactions are rolled back automatically.

See Also: For more information about implicit transactions and transaction
processing, see the section "Service Context and Associated Handles" on
page 2-9, and the section "Transactions" on page 8-2.

2-26 Oracle Call Interface Programmer’s Guide

Error Handling

Terminating the Application

An OCI application should perform the following three steps before it terminates:
1. Delete the user session by calling OCISessionEnd() for each session.

2. Delete access to the data source(s) by calling OCIServerDetach() for each source.
3. Explicitly deallocate all handles by calling OCIHandleFree() for each handle
4

Delete the environment handle, which deallocates all other handles associated
with it.

Note: When a parent OCI handle is freed, any child handles associated with it
are freed automatically.

The calls to OCIServerDetach() and OCISessionEnd() are not mandatory, but are
recommended. If the application terminates, and OCIlTransCommit() (transaction
commit) has not been called, any pending transactions are automatically rolled back

For an example showing handles being freed at the end of an application, refer to
the first sample program in Appendix B, "OCI Demonstration Programs".

Note: If the application has used the simplified logon method provided by
OClLogon(), then a call to OClLogoff() will terminate the session, disconnect from
the server, and free the service context and associated handles. The application
is still responsible for freeing other handles it has allocated.

Error Handling

OCI function calls have a set of return codes, listed in Table 2-3, "OCI Return
Codes", which indicate the success or failure of the call, such as OCI_SUCCESS or
OCI_ERROR, or provide other information that may be required by the application,
such as OCI_NEED_DATA or OCI_STILL_EXECUTING. Most OCI calls return one
of these codes. For exceptions, see "Functions Returning Other Values" on page 2-30.

Table 2-3 OCI Return Codes

OCI Return Code

Description

OCI_SUCCESS

The function completed successfully.

OCI_SUCCESS_WITH_INFO The function completed successfully; a call to OCIErrorGet() will return

OCI_NO_DATA
OCI_ERROR

additional diagnostic information. This may include warnings.
The function completed, and there is no further data.

The function failed; a call to OCIErrorGet() will return additional
information.

OCI Programming Basics 2-27

Error Handling

Table 2-3 OCI Return Codes

OCI Return Code

Description

OCI_INVALID_HANDLE An invalid handle was passed as a parameter or a user callback is passed an

OCI_NEED_DATA

invalid handle or invalid context. No further diagnostics are available.

The application must provide run-time data.

OCI_STILL_EXECUTING The service context was established in non-blocking mode, and the current

OCI_CONTINUE

operation could not be completed immediately. The operation must be called
again to complete. OCIErrorGet() returns ORA-03123 as the error code.

This code is returned only from a callback function. It indicates that the
callback function wants the OCI library to resume its normal processing.

If the return code indicates that an error has occurred, the application can retrieve
Oracle-specific error codes and messages by calling OCIErrorGet(). One of the
parameters to OCIErrorGet() is the error handle passed to the call that caused the
error.

Note: Multiple diagnostic records can be retrieved by calling OCIErrorGet()
repeatedly until there are no more records (OCI_NO_DATA is returned).
OCIErrorGet() returns at most a single diagnostic record at any time.

The following example code returns error information given an error handle and
the return code from an OCI function call. If the return code is OCI_ERROR, the
function prints out diagnostic information. OCI_SUCCESS results in no printout,
and other return codes print the return code information.

STATICF void checkerr(errhp, status)
OCIEnor *erthp;
sword status;
{
text emrbuf[512];
ub4 buflen;
ub4 errcode;

switch (status)
{
case OCI_SUCCESS:
break;
case OCl_SUCCESS WITH_INFO:
(void) printf("Error - OCI_SUCCESS_WITH_INFO\n");
break;
case OC|_NEED_DATA:
(void) printf("Error - OCI_NEED_DATAN'"),

2-28 Oracle Call Interface Programmer’s Guide

Error Handling

break;
case OC|_NO_DATA:
(void) printf("Error - OCl_NODATAWN');
break;
case OC|_ERROR:
(void) OCIEmorGet (erhp, (ub4) 1, (text *) NULL, &errcode,
enmbuf, (ub4) sizeof(errbuf), OCI_HTYPE_ERROR);
(void) printf{("Eror - %s\n", errbuf);
break;
case OC|_INVALID_HANDLE:
(void) printf("Emor - OCI_INVALID_HANDLE\n");
break;
case OC|_STILL EXECUTING:
(void) printf("Error - OCIl_STILL_EXECUTEWN");
break;
defaut:
break;
}
}

Return and Error Codes for Truncation and Null Data

In Table 2—-4, Table 2-5, and Table 2-6, the OCI return code, Oracle error number,
indicator variable, and column return code are specified when the data fetched is
null or truncated. See "Indicator Variables" on page 2-32 for a discussion of indicator
variables.

Table 2-4 Normal Data - Not Null and Not Truncated

Indicator - not provided Indicator - provided
Return code - OCl_SUCCESS OCI_SUCCESS
not provided emor=0 error=0
indicator =0
Return code - OCl_SUCCESS OCl_SUCCESS
provided emor=0 emor=0
retum code =0 indicator=0
retum code =0

Table 2-5 Null Data

Indicator - not provided

Indicator - provided

OCI Programming Basics 2-29

Error Handling

Return code -
not provided

Return code -
provided

OCl ERROR
error =1405

OCl_ERROR
emor =1405
retum code = 1405

OCl_SUCCESS
emor=0
indicator=-1

OCl_SUCCESS
emor=0
indicator=-1
retum code = 1405

Table 2—-6 Truncated Data

Indicator - not provided

Indicator - provided

Return code -
not provided

Return code -
provided

OCl_ERROR
eror =1406

OCI_SUCCESS WITH_INFO
emor = 24345
retum code = 1405

OCI_ERROR
eror = 1406
indicator =data_len

OCI_SUCCESS WITH_INFO
emor = 24345

indicator =data_len

retum code = 1406

In Table 2-6, data_len

is the actual length of the data that has been truncated if

this length is less than or equal to SB2MAXVALOtherwise, the indicator is set to -2.

Functions Returning Other Values

Some functions return values other than the OCI error codes listed in Table 2-3.
When using these function be sure to take into account that they return a value
directly from the function call, rather than through an OUT parameter. More
detailed information about each function and its return values is listed in Volume I1.

2-30 Oracle Call Interface Programmer’s Guide

« OCIColIMax()

« OCIRawPtr()

« OCIRawsSize()

« OCIRefHexSize()
« OCIReflsEqual()
= OCIRefIsNull()

« OCIStringPtr()

« OCIStringSize()

Additional Coding Guidelines

Additional Coding Guidelines

This section explains some additional factors to keep in mind when coding
applications using the Oracle Call Interface.

Parameter Types

OCI functions take a variety of different types of parameters, including integers,
handles, and character strings. Special considerations must be taken into account
for some types of parameters, as described in the following sections.

For more information about parameter datatypes and parameter passing
conventions, refer to the introductory section in Chapter 15, "OCI Relational
Functions", which covers the function calls for the OCI.

Address Parameters

Address parameters pass the address of the variable to Oracle. You should be
careful when developing in C, which normally passes scalar parameters by value, to
make sure that the parameter is an address. In all cases, you should pass your
pointers carefully.

Integer Parameters

Binary integer parameters are numbers whose size is system dependent. Short
binary integer parameters are smaller numbers whose size is also system
dependent. See your Oracle system-specific documentation for the size of these
integers on your system.

Character String Parameters
Character strings are a special type of address parameter. This section describes
additional rules that apply to character string address parameters.

Each OCI routine that allows a character string to be passed as a parameter also has
a string length parameter. The length parameter should be set to the length of the
string.

7.x Upgrade Note: Unlike earlier versions of the OCI, in release 8.0 you should
not pass -1 for the string length parameter of a null-terminated string.

OCI Programming Basics 2-31

Additional Coding Guidelines

Nulls
You can insert a null into a database column in several ways. One method is to use a
literal NULL in the text of an INSERT or UPDATE statement. For example, the SQL
statement
INSERT INTO emp (ename, empno, deptno)
VALUES (NULL, 8010, 20)
makes the ENAME column null.
Another method is to use indicator variables in the OCI bind call. See the section
"Indicator Variables" on page 2-32 for more information.
One other method to insert a NULL is to set the buffer length and maximum length
parameters both to zero on a bind call.
Note: Following SQL92 requirements, Oracle returns an error if an attempt is
made to fetch a null select-list item into a variable that does not have an
associated indicator variable specified in the define call.
Indicator Variables

Each bind and define OCI call has a parameter that allows you to associate an
indicator variable, or an array of indicator variables if you are using arrays, with a
DML statement, PL/SQL statement, or query.

The C languages does not have the concept of null values; therefore you associate
indicator variables with input variables to specify whether the associated
placeholder is a NULL. When data is passed to Oracle, the values of these indicator
variables determine whether or not a NULL is assigned to a database field.

For output variables, indicator variables determine whether the value returned
from Oracle is a NULL or a truncated value. In the case of a NULL fetch (on
OCIStmtFetch()) or a truncation (on OCIStmtExecute() or OCIStmtFetch()), the OCI
call returns OCI_SUCCESS. The corresponding indicator variable is set to the
appropriate value, as listed in Table 2-8, "Output Indicator Values". If the
application provided a return code variable in the corresponding OCIDefineByPos()
call, the OCI assigns a value of ORA-01405 (for NULL fetch) or ORA-01406 (for
truncation) to the return code variable.

The datatype of indicator variables is sb2. In the case of arrays of indicator
variables, the individual array elements should be of type sb2.

2-32 Oracle Call Interface Programmer’s Guide

Additional Coding Guidelines

Input
For input host variables, the OCI application can assign the following values to an
indicator variable:

Table 2-7 Input Indicator Values

Input Indicator Value Action Taken by Oracle

-1 Oracle assigns a NULL to the column, ignoring the value of the
input variable.

>=0 Oracle assigns the value of the input variable to the column.

Output

On output, Oracle can assign the following values to an indicator variable:

Table 2-8 Output Indicator Values

Output Indicator Value Meaning

-2 The length of the item is greater than the length of the output
variable; the item has been truncated. Additionally, the original
length is longer than the maximum data length that can be
returned in the sb2 indicator variable.

-1 The selected value is null, and the value of the output variable is
unchanged.

0 Oracle assigned an intact value to the host variable.

>0 The length of the item is greater than the length of the output

variable; the item has been truncated. The positive value
returned in the indicator variable is the actual length before
truncation.

Indicator Variables for Named Data Types and REFs

Indicator variables for most new (release 8.0) datatypes function as described
above. The only exception is SQLT_NTY (a named datatype). Data of type
SQLT_REF uses a standard scalar indicator, just like other variable types. For data of
type SQLT_NTY, the indicator variable must be a pointer to an indicator structure.

When database types are translated into C struct representations using the Object
Type Translator (OTT), a null indicator structure is generated for each object type.

OCI Programming Basics 2-33

Additional Coding Guidelines

This structure includes an atomic null indicator, plus indicators for each object
attribute.

See Also: See the documentation for the OTT in Chapter 14, "Using the Object
Type Translator”, and the section "Nullness" on page 10-29 of this manual for
information about null indicator structures.

See the descriptions of OCIBindByName() and OCIBindByPos() in Chapter 15,
"OCI Relational Functions”, and the sections "Information for Named Datatype
and REF Binds" on page 12-3, and "Information for Named Datatype and REF
Defines, and PL/SQL OUT Binds" on page 12-5, for more information about
setting indicator parameters for named datatypes and REFs.

Cancelling Calls

On most platforms, you can cancel a long-running or repeated OCI call. You do this
by entering the operating system’s interrupt character (usually CTRL-C) from the
keyboard.

Note: This is not to be confused with cancelling a cursor, which is accomplished
by calling OCIStmtFetch() with the nrows parameter set to zero.

When you cancel the long-running or repeated call using the operating system
interrupt, the error code ORA-01013 (“user requested cancel of current operation”) is
returned.

Given a particular service context pointer or server context pointer, the OCIBreak()
function performs an immediate (asynchronous) abort of any currently executing
OCI function that is associated with the server. It is normally used to stop a
long-running OCI call being processed on the server. The OCIReset() function is
necessary to perform a protocol synchronization on a non-blocking connection after
an OCI application aborts a function with OCIBreak().

The status of potentially long-running calls can be monitored through the use of
non-blocking calls. See the section "Non-Blocking Mode" on page 2-37 for more
information.

Positioned Updates and Deletes

You can use the ROWID associated with a SELECT...FOR UPDATE OF... statement
in a later UPDATE or DELETE statement. The ROWID is retrieved by calling
OCIAttrGet() on the statement handle to retrieve the handle’s OCI_ATTR_ROWID
attribute.

For example, for a SQL statement such as

2-34 Oracle Call Interface Programmer’s Guide

Additional Coding Guidelines

SELECT ename FROM emp WHERE empno = 7499 FOR UPDATE OF sal

when the fetch is performed, the ROWID attribute in the handle contains the row
identifier of the SELECTed row. You can retrieve the ROWID into a buffer in your
program by calling OCIAttrGet() as follows:

OCIRowid *rowid; /*the rowid in opaque format */
[* allocate descriptor with OCIDescriptorAlloc() */
err = OClIDescriptorAlloc ((dvoid *) envhp, (dvoid *¥) &rowid,
(ub4) OCI_TYPE_ROWID, (size_t) O, (dvoid **) Q));
err = OCIAtrGet ((dvoid®) mystmtp, OCl HTYPE_STMT,
(dvoid*) rowid, (ub4 *) 0, OCI_ ATTR_ROWID, (OCIError *) myerrhp);

You can then use the saved ROWID in a DELETE or UPDATE statement. For
example, if MY_ROWID is the buffer in which the row identifier has been saved,
you can later process a SQL statement such as

UPDATE emp SET sal =:1 WHERE rowid =:2

by binding the new salary to the :1 placeholder and MY_ROWID to the :2
placeholder. Be sure to use datatype code 104 (ROWID descriptor) when binding
MY_ROWID to:2 .

Using prefetching, an array of ROWIDs can be selected for use in subsequent batch
updates. For more information on ROWIDs, see "Universal ROWID" on page 3-6
and "ROWID" on page 3-13.

Reserved Words

Some words are reserved by Oracle. That is, they have a special meaning to Oracle
and cannot be redefined. For this reason, you cannot use them to name database
objects such as columns, tables, or indexes. To view the lists of the Oracle keywords
or reserved words for SQL and PL/SQL, see the Oracle8i SQL Reference and the
PL/SQL User’s Guide and Reference.

Oracle Reserved Namespaces

Table 2-9, "Oracle Reserved Namespaces" contains a list of namespaces that are
reserved by Oracle. The initial characters of function names in Oracle libraries are
restricted to the character strings in this list. Because of potential name conflicts, do
not use function names that begin with these characters. For example, the Net8

OCI Programming Basics 2-35

Additional Coding Guidelines

Transparent Network Service functions all begin with the characters NS, so you
need to avoid naming functions that begin with NS.

Table 2-9 Oracle Reserved Namespaces

Namespace

Library

XA
SQ

0, OClI
UPI, KP

NA
NC
ND
NL
NM
NR
NS
NT
NZ
OSN
TTC

GEN, L, ORA
LI, LM, LX
S

external functions for XA applications only

external SQLLIB functions used by Oracle Precompiler and
SQL*Module applications

external OCI functions internal OCI functions
function names from the Oracle UPI layer

Net8 Native services product
Net8 RPC project

Net8 Directory

Net8 Network Library layer
Net8 Net Management Project
Net8 Interchange

Net8 Transparent Network Service
Net8 Drivers

Net8 Security Service
SQL*Net V1

Net8 Two task

Core library functions
function names from the Oracle NLS layer

function names from system-dependent libraries

The list in Table 2-9, "Oracle Reserved Namespaces" is not a comprehensive list of
all functions within the Oracle reserved namespaces. For a complete list of functions
within a particular namespace, refer to the document that corresponds to the
appropriate Oracle library.

Function Names

When creating a user function in an OCI program, do not start the function name
with OCI to avoid possible conflicts with the OCI functions.

2-36 Oracle Call Interface Programmer’s Guide

Non-Blocking Mode

Application Linking
For information about application linking modes, including Oracle support for

non-deferred linking and single task linking in various versions of the OCI, please
refer to "Application Linking Issues” on page 1-24.

Non-Blocking Mode

The Oracle OCI provides the ability to establish a server connection in blocking mode
or non-blocking mode. When a connection is made in blocking mode, an OCI call
returns control to an OCI client application only when the call completes, either
successfully or in error. With the non-blocking mode, control is immediately
returned to the OCI program if the call could not complete, and the call returns a
value of OCI_STILL_EXECUTING. The two modes are illustrated in Figure 2-7.

Figure 2—7 Blocking Mode vs. Non-Blocking Mode

Blocking Mode Non-Blocking Mode
‘ OCI Call ‘ OCI Call

OCI_STILL_EXECUTING

| | | |

OCI_SUCCESS OCI_ERROR OCI_SUCCESS OCI_ERROR

In non-blocking mode, an application must test the return code of each OCI
function to see if it returns OCI_STILL_EXECUTING. In this case, the OCI client can
continue to process program logic while waiting to retry the OCI call to the server.

The non-blocking mode returns control to an OCI program once a call has been
made so that it may perform other computations while the OCI call is being
processed by the server. This mode is particularly useful in Graphical User Interface
(GUI) applications, real-time applications, and in distributed environments.

The non-blocking mode is not interrupt-driven. Rather, it is based on a polling
paradigm, which means that the client application has to check whether the
pending call is finished at the server. The client application must check whether the
pending call has finished at the server by executing the call again with the exact same
parameters.

OCI Programming Basics 2-37

Non-Blocking Mode

Note: While waiting to retry non-blocking OCI call, the application may not
issue any other OCI calls, or an ORA-03124 error will occur. The only
exceptions to this rule are OCIBreak() and OCIReset(). See "Cancelling a
Non-blocking Call" on page 2-38 for more information on these calls.

Setting Blocking Modes

You can modify or check an application’s blocking status by calling OCIAttrSet() to
set the status or OCIAttrGet() to read the status on the server context handle with
the attrtype parameter set to OCI_ATTR_NONBLOCKING_MODE. See
OCI_ATTR_NONBLOCKING_MODE on page A-9.

Note: Only functions that have server context or a service context handle as a
parameter may return OCI_STILL_EXECUTING.

Cancelling a Non-blocking Call

You can cancel a long-running OCI call by using the OCIBreak() function. After
issuing an OCIBreak() while an OCI call is in progress, you must issue an OCIReset()
call to reset the asynchronous operation and protocol.

Non-blocking Example
The following code is an example of non-blocking mode.

intmain (int argc, char **argv)
{
sword retval;

if (retval = INtOCIHandles()) /* initialize all handles */
{

printf ("Unable to allocate handles.\n');

exit (EXIT_FAILURE);
}

if (retval = logon()) /* log on */

printf ("Unable to log on..\n");
exit (EXIT_FAILURE);

}
if (retval = AllocStmtHandle () /* allocate statement handle */

{
printf ("Unable to allocate statement handle...\n");

exit (EXIT_FAILURE);

2-38 Oracle Call Interface Programmer’s Guide

Using PL/SQL in an OCI Program

}
* set non-blocking on */
if (retval = OCIAtrSet ((dvoid *) srvhp, (ub4) OCI HTYPE_SERVER,
(dvoid *) 0, (ub4) 0,
(ub4) OCI_ATTR_NONBLOCKING_MODE, errhp))

{
printf ("Unable to set non-blocking mode..\n');

exit (EXIT_FAILURE);
}

while ((retval = OCIStmtExecute (svchp, stmhp, erthp, (Ub4)0, (Ub4)0,
(OClIsnapshot*) 0, (OCISnapshot *)0,
OC|_DEFAULT))=0CI_STILL_EXECUTING)
printf (".");
printf (\n”);

if (retval I= OCl_SUCCESS || retval '= OCl_SUCCESS WITH_INFO)

{
printf("Error in OCIStmtExecute..\n');

exit (EXIT_FAILURE);
}

i (retval = logoff () * log out*/

printf ("'Unable to logout ...\n");
exit (EXIT_FAILURE);
}

cleanup();
retum (int)OCl_SUCCESS;

}

Using PL/SQL in an OCI Program

PL/SQL is Oracle’s procedural extension to the SQL language. PL/SQL processes
tasks that are more complicated than simple queries and SQL data manipulation
language (DML) statements. PL/SQL allows you to group a number of constructs
into a single block and execute them as a unit. These constructs include:

« one or more SQL statements
« Vvariable declarations

. assignment statements

OCI Programming Basics 2-39

Using PL/SQL in an OCI Program

procedural control statements such as IF.. THEN...ELSE statements and loops

exception handling

You can use PL/SQL blocks in your OCI program to perform the following
operations:

call Oracle stored procedures and stored functions

combine procedural control statements with several SQL statements, to be
executed as a single unit

access special PL/SQL features such as records, tables, CURSOR FOR loops,
and exception handling

use cursor variables
operate on objects in an Oracle8 server

Note: While the OCI can only directly process anonymous blocks, and not
named packages or procedures, the user can always put the package or
procedure call within an anonymous block and process that block.

Warning: When writing PL/SQL code, it is important to keep in mind that the
parser treats everything that starts with "--" to a carriage return as a comment.
So if comments are indicated on each line by "--", the C compiler can
concatenate all lines in a PL/SQL block into a single line without putting a
carriage return "\n" for each line. In this particular case, the parser fails to
extract the PL/SQL code of a line if the previous line ends with a comment. To
avoid the problem, the programmer should put "\n" after each "--" comment to

make sure the comment ends there.

See the PL/SQL User’s Guide and Reference for information about coding PL/SQL
blocks.

2-40 Oracle Call Interface Programmer’s Guide

3

Datatypes

This chapter provides a reference to Oracle external datatypes used by OCI
applications. It also provides a general discussion of Oracle datatypes, including
special datatypes new in the latest Oracle release. The information in this chapter is
useful for understanding the conversions between internal and external
representations that occur when you transfer data between your program and

Oracle. This chapter contains the following sections:

Oracle Datatypes

Internal Datatypes

External Datatypes

New Oracle External Datatypes
Data Conversions

Typecodes

Definitions in oratypes.h

For detailed information about Oracle internal datatypes, see the Oracle8i SQL
Reference.

Datatypes 3-1

Oracle Datatypes

Oracle Datatypes

One of the main functions of an OCI program is to communicate with a database
through an Oracle server. The OCI application may retrieve data from database
tables through SQL SELECT queries, or it may modify existing data in tables
through INSERTs, UPDATES, or DELETEs.

Inside a database, values are stored in columns in tables. Internally, Oracle
represents data in particular formats known as internal datatypes. Examples of
internal datatypes include NUMBER, CHAR, and DATE.

In general, OCI applications do not work with internal datatype representations of
data. OCI applications work with host language datatypes which are predefined by
the language in which they are written. When data is transferred between an OCI
client application and a database table, the OCI libraries convert the data between
internal datatypes and external datatypes.

External datatypes are host language types that have been defined in the OCI
header files. When an OCI application binds input variables, one of the bind
parameters is an indication of the external datatype code (or SQLT code) of the
variable. Similarly, when output variables are specified in a define call, the external
representation of the retrieved data must be specified.

In some cases, external datatypes are similar to internal types. External types
provide a convenience for the programmer by making it possible to work with host
language types instead of proprietary data formats.

Note: Even though some external types are similar to internal types, an OCI
application never binds to internal datatypes. They are discussed here because
it can be useful to understand how internal types can map to external types.

The OCI is capable of performing a wide range of datatype conversions when
transferring data between Oracle and an OCI application. There are more OCI
external datatypes than Oracle internal datatypes. In some cases a single external
type maps to an internal type; in other cases multiple external types map to an
single internal type.

The many-to-one mappings for some datatypes provide flexibility for the OCI
programmer. For example, if you are processing the SQL statement

SELECT sal FROM emp WHERE empno = :employee_number
and you want the salary to come back as character data, rather than in a binary

floating-point format, specify an Oracle external string datatype, such as
VARCHAR? (code = 1) or CHAR (code = 96) for the dty parameter in the

3-2 Oracle Call Interface Programmer’s Guide

Oracle Datatypes

OCIDefineByPos() call for the sal column. You also need to declare a string variable
in your program and specify its address in the valuep parameter.

If you want the salary information to be returned as a binary floating-point value,
however, specify the FLOAT (code = 4) external datatype. You also need to define a
variable of the appropriate type for the valuep parameter.

Oracle performs most data conversions transparently. The ability to specify almost
any external datatype provides a lot of power for performing specialized tasks. For
example, you can input and output DATE values in pure binary format, with no
character conversion involved, by using the DATE external datatype (code = 12).
See the description of the DATE external datatype on page 3-14 for more
information.

To control data conversion, you must use the appropriate external datatype codes
in the bind and define routines. You must tell Oracle where the input or output
variables are in your OCI program and their datatypes and lengths.

The Oracle OCI also supports an additional set of OCI typecodes which are used by
Oracle’s type management system to represent datatypes of object type attributes.
There is a set of predefined constants which can be used to represent these
typecodes. The constants each contain the prefix OCI_TYPECODE

In summary, the OCI programmer must be aware of the following different
datatypes or data representations:

« Internal Oracle datatypes, which are used by table columns in an Oracle
database. These also include datatypes used by PL/SQL which are not used by
Oracle columns (e.g., indexed table, boolean, record). For more information, see
"Internal Datatypes" on page 3-5 and "Internal Datatype Codes" on page 3-3.

« External OCI datatypes, which are used to specify host language
representations of Oracle data. For more information, see "External Datatypes"
on page 3-7, and "External Datatype Codes" on page 3-4.

« OCI_TYPECODE values, which are used to Oracle to represent type
information for object type attributes. For more information, see "Typecodes" on
page 3-23, and "Relationship Between SQLT and OCI_TYPECODE Values" on
page 3-25.

Internal Datatype Codes

In some circumstances, an OCI application needs to know the internal
representation of Oracle data. For example, you many need to know the datatype of
a column in a dynamic SQL query so that you can define output variables to

Datatypes 3-3

Oracle Datatypes

received the fetched data. After executing the query, you can use a combination of
the OCIParamGet() and OCIAttrGet() functions to obtain describe information about
select-list items from the statement handle. You can get the same information from
a describe handle without executing the statement by calling OClDescribeAny(), and
then the combination of OCIParamGet() and OCIAttrGet().

Information about a column’s internal datatype is conveyed to your application in
the form of an internal datatype code. Once your application knows what type of
data will be returned, it can make appropriate decisions about how to convert and
format the output data. The Oracle internal datatype codes are listed in the section
"Internal Datatypes" on page 3-5.

See Also: For detailed information about Oracle internal datatypes, see the
Oracle8i SQL Reference. For information about describing select-list items in a
guery, see the section "Describing Select-List Items" on page 4-11.

External Datatype Codes

An external datatype code indicates to Oracle how a host variable represents data in
your program. This determines how the data is converted when returned to output
variables in your program, or how it is converted from input (bind) variables to
Oracle column values. For example, if you want to convert a NUMBER in an Oracle
column to a variable-length character array, you specify the VARCHAR?2 external
datatype code in the OCIDefineByPos() call that defines the output variable.

To convert a bind variable to a value in an Oracle column, specify the external
datatype code that corresponds to the type of the bind variable. For example, if you
want to input a character string such as 02-FEB-65 to a DATE column, specify the
datatype as a character string and set the length parameter to nine.

It is always the programmer’s responsibility to make sure that values are
convertible. If you try to INSERT the string MY BIRTHDAY into a DATE column,
you will get an error when you execute the statement.

For a complete list of the external datatypes and datatype codes, see Table 3-2,
"External Datatypes and Codes".

3-4 Oracle Call Interface Programmer’s Guide

Internal Datatypes

Internal Datatypes

The following table lists the Oracle internal (also known as built-in) datatypes, along
with each type’s maximum internal length and datatype code.

Table 3-1 Internal Oracle Datatypes

Internal Oracle Datatype Maximum Internal Length Datatype Code
VARCHAR2, NVARCHAR?2 4000 bytes 1
NUMBER 21 bytes 2
LONG 2731-1 bytes (2 gigabytes) 8
ROWID 10 bytes 11
DATE 7 bytes 12
RAW 2000 bytes 23
LONG RAW 2731-1 bytes 24
CHAR, NCHAR 2000 bytes 96
User-defined type (object type, <N/A> 108
VARRAY, Nested Table)

REF <N/A> 111
CLOB, NCLOB 4 gigabytes 112
BLOB 4 gigabytes 113
BFILE 4 gigabytes 114
UROWID 4000 bytes 208

For more information about these built-in datatypes, see the Oracle8i SQL Reference.
The following sections provide OCl-specific information about these datatypes.

LONG, RAW, LONG RAW, VARCHAR2

You can use the piecewise capabilities provided by OCIBindByName(),
OCIBindByPos(), OCIDefineByPos(), OCIStmtGetPiecelnfo() and OCIStmtSetPiecelnfo()
to perform inserts, updates or fetches involving column data of these types.

Datatypes 3-5

Internal Datatypes

Character Strings and Byte Arrays

You can use five Oracle internal datatypes to specify columns that contain
characters or arrays of bytes: CHAR, VARCHAR?2, RAW, LONG, and LONG RAW.

Note: LOBs can contain characters and FILEs can contain binary data. They are
handled differently than other types, so they are not included in this discussion.
See Chapter 7, "LOB and FILE Operations”, for more information about these
data types.

CHAR, VARCHAR?Z2, and LONG columns normally hold character data. RAW and
LONG RAW hold bytes that are not interpreted as characters, for example, pixel
values in a bit-mapped graphics image. Character data can be transformed when
passed through a gateway between networks. For example, character data passed
between machines using different languages (where single characters may be
represented by differing numbers of bytes) can be significantly changed in length.
Raw data is never converted in this way.

It is the responsibility of the database designer to choose the appropriate Oracle
internal datatype for each column in the table. The OCI programmer must be aware
of the many possible ways that character and byte-array data can be represented
and converted between variables in the OCI program and Oracle tables.

When an array holds characters, the length parameter for the array in an OCI call is
always passed in and returned in bytes, not characters.

Universal ROWID

The Universal ROWID (UROWID) is a datatype that can store both logical and
physical ROWIDs of Oracle tables, and ROWIDs of the foreign tables, such as DB2
tables accessed via a gateway. Logical ROWIDs are primary key-based logical
identifiers for the rows of Index-Organized Tables (IOTs).

To use columns of the UROWID datatype, the value of the COMPATIBLE
initialization parameter must be set to 8.1 or higher.

The following host variables can be bound to Universal ROWIDs:
« SQLT_CHR (VARCHAR?)

« SQLT_VCS (VARCHAR)

« SQLT_STR (Null-Terminated string)

« SQLT_LVC (long varchar)

« SLQT_AFC (CHAR)

3-6 Oracle Call Interface Programmer’s Guide

External Datatypes

« SQLT_AVC (CHARZ)
« SQLT_VST (OCI String)
« SQLT_RDD (ROWID descriptor)

External Datatypes

Table 3-2 lists datatype codes for external datatypes. For each datatype, the table
lists the program variable types for C from or to which Oracle internal data is
normally converted.

Table 3-2 External Datatypes and Codes
EXTERNAL DATATYPE

TYPE OF PROGRAM

NAME CODE VARIABLE OCI| DEFINED CONSTANT

VARCHAR2 1 char[n] SQLT_CHR

NUMBER 2 unsigned char[21] SQLT_NUM

8-bit signed INTEGER 3 signed char SQLT_INT

16-bit signed INTEGER 3 signed short, signed int SQLT_INT

32-bit signed INTEGER 3 signed int, signed long SQLT_INT

FLOAT 4 float, double SQLT_FLT

Null-terminated STRING 5 char[n+1] SQLT_STR

VARNUM 6 char[22] SQLT_VNU

LONG 8 char[n] SQLT_LNG

VARCHAR 9 char[n+sizeof(short integer)] SQLT_VCS

ROWID 11 char[n] SQLT_RID (see note 1)

DATE 12 char[7] SQLT_DAT

VARRAW 15 unsigned SQLT_VBI
char[n+sizeof(short integer)]

RAW 23 unsigned char[n] SQLT_BIN

LONG RAW 24 unsigned char[n] SQLT_LBI

UNSIGNED INT 68 unsigned SQLT_UIN

LONG VARCHAR 94 char[n+sizeof(integer)] SQLT_LVC

Datatypes 3-7

External Datatypes

Table 3-2 External Datatypes and Codes (Cont.)
EXTERNAL DATATYPE

TYPE OF PROGRAM

NAME CODE VARIABLE OCI DEFINED CONSTANT

LONG VARRAW 95 unsigned SQLT_LVB
char[n+sizeof(integer)]

CHAR 96 char[n] SQLT_AFC

CHARZ 97 char[n+1] SQLT_AVC

ROWID descriptor 104 OCIRowid SQLT_RDD

NAMED DATA TYPE 108 struct SQLT_NTY

REF 110 OCIRef SQLT_REF

Character LOB 112 OClLobLocator (see note 3) SQLT_CLOB

Binary LOB 113 OClLobLocator (see note 3) SQLT_BLOB

Binary FILE 114 OClILobLocator SQLT _FILE

OCI string type 155 OCIString SQLT_VST (see note 2)

OClI date type 156 OClDate SQLT_ODT (see note 2)

Notes:

(1) This type is valid only for version 7.x OCI calls. Oracle OCI release 8 applications should use the ROWID
descriptor (type 104).

(2) For more information on the use of these datatypes, refer to Chapter 11, "Object-Relational Datatypes".

(3) In applications using datatype mappings generated by OTT, CLOBs may be mapped as OCIClobLocator,
and BLOBs may be mapped as OCIBlobLocator. For more information, refer to Chapter 14, "Using the Object
Type Translator".

Note: Where the length is shown as n, it is a variable, and depends on the
requirements of the program (or of the operating system in the case of ROWID).

Each of the external datatypes is described below. Datatypes that are new as of
release 8.0 are described in the section "New Oracle External Datatypes" on
page 3-18.

The following three types are internal to PL/SQL and cannot be returned as values
by OCI:

« Boolean, SQLT_BOL
« Indexed Table, SQLT_TAB

3-8 Oracle Call Interface Programmer’s Guide

External Datatypes

VARCHAR?2

« Record, SQLT _REC

The VARCHAR?2 datatype is a variable-length string of characters with a maximum
length of 4000 bytes.

Note: If you are using Oracle objects, you can work with a special OCIString
external datatype using a set of predefined OCI functions. Refer to Chapter 11,
"Object-Relational Datatypes" for more information about this datatype.

Input

The value_sz parameter determines the length in the OCIBindByName() or
OCIBindByPos() call.

If the value_sz parameter is greater than zero, Oracle obtains the bind variable value
by reading exactly that many bytes, starting at the buffer address in your program.
Trailing blanks are stripped, and the resulting value is used in the SQL statement or
PL/SQL block. If, in the case of an INSERT statement, the resulting value is longer
than the defined length of the database column, the INSERT fails, and an error is
returned.

Note: A trailing null is not stripped. Variables should be blank-padded but not
null-terminated.

If the value_sz parameter is zero, Oracle treats the bind variable as a null, regardless
of its actual content. Of course, a null must be allowed for the bind variable value in
the SQL statement. If you try to insert a null into a column that has a NOT NULL
integrity constraint, Oracle issues an error, and the row is not inserted.

When the Oracle internal (column) datatype is NUMBER, input from a character
string that contains the character representation of a number is legal. Input
character strings are converted to internal numeric format. If the VARCHAR?2 string
contains an illegal conversion character, Oracle returns an error and the value is not
inserted into the database.

Output

Specify the desired length for the return value in the value_sz parameter of the
OCIDefineByPos() call, or the value_sz parameter of OCIBindByName() or
OCIBindByPos() for PL/SQL blocks. If zero is specified for the length, no data is
returned.

Datatypes 3-9

External Datatypes

NUMBER

If you omit the rlenp parameter of OCIDefineByPos(), returned values are
blank-padded to the buffer length, and nulls are returned as a string of blank
characters. If rlenp is included, returned values are not blank-padded. Instead, their
actual lengths are returned in the rlenp parameter.

To check if a null is returned or if character truncation has occurred, include an
indicator parameter in the OCIDefineByPos() call. Oracle sets the indicator
parameter to -1 when a null is fetched and to the original column length when the
returned value is truncated. Otherwise, it is set to zero. If you do not specify an
indicator parameter and a null is selected, the fetch call returns the error code
OCI_SUCCESS_WITH_INFO. Retrieving diagnostic information on the error will
return ORA-1405.

See Also: For more information about indicator variables, see the section
"Indicator Variables" on page 2-32.

You can also request output to a character string from an internal NUMBER
datatype. Number conversion follows the conventions established by National
Language Support for your system. For example, your system might be configured
to recognize a comma rather than period as the decimal point.

You should not need to use NUMBER as an external datatype. If you do use it,
Oracle returns numeric values in its internal 21-byte binary format and will expect
this format on input. The following discussion is included for completeness only.

Note: If you are using objects in an Oracle database server, you can work with a
special OCINumber datatype using a set of predefined OCI functions. Refer to
Chapter 11, "Object-Relational Datatypes" for more information about this
datatype.

Oracle stores values of the NUMBER datatype in a variable-length format. The first
byte is the exponent and is followed by 1 to 20 mantissa bytes. The high-order bit of
the exponent byte is the sign bit; it is set for positive numbers. The lower 7 bits
represent the exponent, which is a base-100 digit with an offset of 65.

Each mantissa byte is a base-100 digit, in the range 1..100. For positive numbers, the
digit has 1 added to it. So, the mantissa digit for the value 5 is 6. For negative
numbers, instead of adding 1, the digit is subtracted from 101. So, the mantissa digit
for the number -5 is 96 (101-5). Negative numbers have a byte containing 102
appended to the data bytes. However, negative numbers that have 20 mantissa
bytes do not have the trailing 102 byte. Because the mantissa digits are stored in

3-10 Oracle Call Interface Programmer’s Guide

External Datatypes

INTEGER

FLOAT

base 100, each byte can represent 2 decimal digits. The mantissa is normalized;
leading zeroes are not stored.

Up to 20 data bytes can represent the mantissa. However, only 19 are guaranteed to
be accurate. The 19 data bytes, each representing a base-100 digit, yield a maximum
precision of 38 digits for an Oracle NUMBER.

If you specify the datatype code 2 in the dty parameter of an OCIDefineByPos() call,
your program receives numeric data in this Oracle internal format. The output
variable should be a 21-byte array to accommodate the largest possible number.
Note that only the bytes that represent the number are returned. There is no blank
padding or null termination. If you need to know the number of bytes returned, use
the VARNUM external datatype instead of NUMBER. See the description of
VARNUM on page 3-12 for examples of the Oracle internal number format.

The INTEGER datatype converts numbers. An external integer is a signed binary
number; the size in bytes is system dependent. The host system architecture
determines the order of the bytes in the variable. A length specification is required
for input and output. If the number being returned from Oracle is not an integer,
the fractional part is discarded, and no error or other indication is returned. If the
number to be returned exceeds the capacity of a signed integer for the system,
Oracle returns an "overflow on conversion" error.

The FLOAT datatype processes numbers that have fractional parts or that exceed
the capacity of an integer. The number is represented in the host system’s
floating-point format. Normally the length is either four or eight bytes. The length
specification is required for both input and output.

The internal format of an Oracle number is decimal, and most floating-point
implementations are binary; therefore Oracle can represent numbers with greater
precision than floating-point representations.

Note: You may receive a round-off error when converting between FLOAT and
NUMBER. Thus, using a FLOAT as a bind variable in a query may return an
ORA-1403 error. You can avoid this situation by converting the FLOAT into a
STRING and then using datatype code 1 or 5 for the operation.

Datatypes 3-11

External Datatypes

STRING

VARNUM

The null-terminated STRING format behaves like the VARCHAR?2 format (datatype
code 1), except that the string must contain a null terminator character. This
datatype is most useful for C language programs.

Input

The string length supplied in the OCIBindByName() or OCIBindByPos() call limits the
scan for the null terminator. If the null terminator is not found within the length
specified, Oracle issues the error

ORA-01480: trailing null missing from STR bind value

If the length is not specified in the bind call, the OCI uses an implied maximum
string length of 4000.

The minimum string length is two bytes. If the first character is a null terminator
and the length is specified as two, a null is inserted in the column, if permitted.
Unlike types 1 and 96, a string containing all blanks is not treated as a null on input;
itis inserted as is.

Note: Unlike earlier versions of the OCI, in release 8.0 you cannot pass -1 for the
string length parameter of a null-terminated string.

Output

A null terminator is placed after the last character returned. If the string exceeds the
field length specified, it is truncated and the last character position of the output
variable contains the null terminator.

A null select-list item returns a null terminator character in the first character
position. An ORA-01405 error is possible, as well.

The VARNUM datatype is like the external NUMBER datatype, except that the first
byte contains the length of the number representation. This length does not include
the length byte itself. Reserve 22 bytes to receive the longest possible VARNUM. Set
the length byte when you send a VARNUM value to Oracle.

3-12 Oracle Call Interface Programmer’s Guide

External Datatypes

LONG

VARCHAR

ROWID

Table 3 - 3 shows several examples of the VARNUM values returned for numbers in
an Oracle table.

Table 3-3 VARNUM Examples

Decimal Exponent Mantissa Terminator
Value Length Byte Byte Bytes Byte

0 1 128 n/a n/a

5 2 193 6 n/a

-5 3 62 96 102

2767 3 194 28, 68 n/a

-2767 4 61 74,34 102
100000 2 195 11 n/a
1234567 5 196 2,24, 46, 68 n/a

The LONG datatype stores character strings longer than 4000 bytes. You can store
up to two gigabytes (2731-1 bytes) in a LONG column. Columns of this type are
used only for storage and retrieval of long strings. They cannot be used in
functions, expressions, or WHERE clauses. LONG column values are generally
converted to and from character strings.

The VARCHAR datatype stores character strings of varying length. The first two
bytes contain the length of the character string, and the remaining bytes contain the
string. The specified length of the string in a bind or a define call must include the
two length bytes, so the largest VARCHAR string that can be received or sent is
65533 bytes long, not 65535. For converting longer strings, use the LONG
VARCHAR external datatype.

The ROWID datatype identifies a particular row in a database table. ROWID can be
a select-list item in a query, such as:

SELECT ROWID, ename, empno FROM emp

Datatypes 3-13

External Datatypes

DATE

In this case, you can use the returned ROWID in further DELETE statements.

If you are performing a SELECT for UPDATE, the ROWID is implicitly returned.
This ROWID can be read into a user-allocated ROWID descriptor using
OCIAttrGet() on the statement handle and used in a subsequent UPDATE
statement. The prefetch operation fetches all ROWIDs on a SELECT for UPDATE;
use prefetching and then a single row fetch.

With Oracle OCI release 8, you access ROWIDs through the use of a ROWID
descriptor, which you can use as a bind or define variable. See the sections
"Descriptors” on page 2-14 and "Positioned Updates and Deletes" on page 2-34 for
more information about the use of the ROWID descriptor.

The DATE datatype can update, insert, or retrieve a date value using the Oracle
internal date binary format. A date in binary format contains seven bytes, as shown
in Table 3-4.

Table 3-4 Format of the DATE Datatype

Byte 1 2 3 4 5 6 7
Meaning Century Year Month Day Hour Minute Second
Example 119 192 11 30 16 18 1

(for 30-NOV-1992,

3:17 PM)

The century and year bytes are in an excess-100 notation. Dates Before Common Era
(BCE) are less than 100. The era begins on 01-JAN-4712 BCE, which is Julian day 1.
For this date, the century byte is 53, and the year byte is 88. The hour, minute, and
second bytes are in excess-1 notation. The hour byte ranges from 1 to 24, the minute
and second bytes from 1 to 60. If no time was specified when the date was created,
the time defaults to midnight (1, 1, 1).

When you enter a date in binary format using the DATE external datatype, the
database does not do consistency or range checking. All data in this format must be
carefully validated before input.

Note: There is little need to use the Oracle external DATE datatype in ordinary
database operations. It is much more convenient to convert DATES into
character format, because the program usually deals with data in a character
format, such as DD-MON-YY.

3-14 Oracle Call Interface Programmer’s Guide

External Datatypes

RAW

VARRAW

When a DATE column is converted to a character string in your program, it is
returned using the default format mask for your session, or as specified in the
INIT.ORA file.

Note: If you are using objects in an Oracle database, you can work with a
special OClDate datatype using a set of predefined OCI functions. Refer to
Chapter 11, "Object-Relational Datatypes" for more information about this
datatype.

The RAW datatype is used for binary data or byte strings that are not to be
interpreted by Oracle, for example, to store graphics character sequences. The
maximum length of a RAW column is 2000 bytes. For more information, see the
Oracle8i SQL Reference.

When RAW data in an Oracle table is converted to a character string in a program,
the data is represented in hexadecimal character code. Each byte of the RAW data is
returned as two characters that indicate the value of the byte, from "00’ to 'FF’. If
you want to input a character string in your program to a RAW column in an
Oracle table, you must code the data in the character string using this hexadecimal
code.

You can use the piecewise capabilities provided by OCIDefineByPos(),
OCIBindByName(), OCIBindByPos(), OCIStmtGetPiecelnfo(), and
OCIStmtSetPiecelnfo() to perform inserts, updates, or fetches involving RAW (or
LONG RAW) columns.

Note: If you are using objects in an Oracle database, you can work with a
special OCIRaw datatype using a set of predefined OCI functions. Refer to
Chapter 11, "Object-Relational Datatypes" for more information about this
datatype.

The VARRAW datatype is similar to the RAW datatype. However, the first two
bytes contain the length of the data. The specified length of the string in a bind or a
define call must include the two length bytes. So the largest VARRAW string that
can be received or sent is 65533 bytes long, not 65535. For converting longer strings,
use the LONG VARRAW external datatype.

Datatypes 3-15

External Datatypes

LONG RAW

UNSIGNED

The LONG RAW datatype is similar to the RAW datatype, except that it stores raw
data with a length up to two gigabytes (2°31-1 bytes).

The UNSIGNED datatype is used for unsigned binary integers. The size in bytes is
system dependent. The host system architecture determines the order of the bytes
in a word. A length specification is required for input and output. If the number
being output from Oracle is not an integer, the fractional part is discarded, and no
error or other indication is returned. If the number to be returned exceeds the
capacity of an unsigned integer for the system, Oracle returns an "overflow on
conversion™ error.

LONG VARCHAR

The LONG VARCHAR datatype stores data from and into an Oracle LONG
column. The first four bytes of a LONG VARCHAR contain the length of the item.
So, the maximum length of a stored item is 2°31-5 bytes.

LONG VARRAW

CHAR

The LONG VARRAW datatype is used to store data from and into an Oracle LONG
RAW column. The length is contained in the first four bytes. The maximum length
is 2°31-5 bytes.

The CHAR datatype is a string of characters, with a maximum length of 2000.
CHAR strings are compared using blank-padded comparison semantics (see the
Oracle8i SQL Reference).

Input
The length is determined by the value_sz parameter in the OCIBindByName() or
OCIBindByPos() call.

Note: The entire contents of the buffer (value_sz chars) is passed to the database,
including any trailing blanks or nulls.

If the value_sz parameter is zero, Oracle treats the bind variable as a null, regardless
of its actual content. Of course, a null must be allowed for the bind variable value in

3-16 Oracle Call Interface Programmer’s Guide

External Datatypes

CHARZ

the SQL statement. If you try to insert a null into a column that has a NOT NULL
integrity constraint, Oracle issues an error and does not insert the row.

Negative values for the value_sz parameter are not allowed for CHARSs.

When the Oracle internal (column) datatype is NUMBER, input from a character
string that contains the character representation of a number is legal. Input
character strings are converted to internal numeric format. If the CHAR string
contains an illegal conversion character, Oracle returns an error and does not insert
the value. Number conversion follows the conventions established by National
Language Support settings for your system. For example, your system might be
configured to recognize a comma (,) rather than a period (.) as the decimal point.

Output

Specify the desired length for the return value in the value_sz parameter of the
OCIDefineByPos() call. If zero is specified for the length, no data is returned.

If you omit the rlenp parameter of OCIDefineByPos(), returned values are blank
padded to the buffer length, and nulls are returned as a string of blank characters. If
rlenp is included, returned values are not blank padded. Instead, their actual lengths
are returned in the rlenp parameter.

To check whether a null is returned or if character truncation has occurred, include
an indicator parameter or array of indicator parameters in the OCIDefineByPos() call.
An indicator parameter is set to -1 when a null is fetched and to the original column
length when the returned value is truncated. Otherwise, it is set to zero. If you do
not specify an indicator parameter and a null is selected, the fetch call returns an
ORA-01405 error.

See Also: For more information about "Indicator Variables" on page 2-32.

You can also request output to a character string from an internal NUMBER
datatype. Number conversion follows the conventions established by the National
Language Support settings for your system. For example, your system might use a
comma (,) rather than a period (.) as the decimal point.

The CHARZ external datatype is similar to the CHAR datatype, except that the
string must be null terminated on input, and Oracle places a null-terminator
character at the end of the string on output. The null terminator serves only to
delimit the string on input or output; it is not part of the data in the table.

Datatypes 3-17

New Oracle External Datatypes

On input, the length parameter must indicate the exact length, including the null
terminator. For example, if an array in C is declared as

charmy_num[] ="123.45"

then the length parameter when you bind my_nummust be seven. Any other value
would return an error for this example.

New Oracle External Datatypes

The following new external datatypes are being introduced with release 8.0. These
datatypes are not supported when you connect to an Oracle release 7 server.

Note: Both internal and external datatypes have Oracle-defined constant values,
such as SQLT_NTY, SQLT_REF, corresponding to their datatype codes.
Although the constants are not listed for all of the types in this chapter, they are
used in this section when discussing new Oracle datatypes. The datatype
constants are also used in other chapters of this guide when referring to these
new types.

NAMED DATA TYPE (Object, VARRAY, Nested Table)

REF

Named data types are user-defined types which are specified with the CREATE
TYPE command in SQL. Examples include object types, varrays, and nested tables.
In the OCI, named data type refers to a host language representation of the type. The
SQLT_NTY datatype code is used when binding or defining named data types.

In a C application, named data types are represented as C structs. These structs can
be generated from types stored in the database by using the Object Type Translator.
These types correspond to OCI_TYPECODE_OBJECT.

See Also: For more information about working with named data types in the
OCl, refer to Part 2 of this guide.

For information about how named data types are represented as C structs, refer
to Chapter 14, "Using the Object Type Translator".

This is a reference to a named data type. The C language representation of a REF is
a variable declared to be of type OCIRef *. The SQLT_REF datatype code is used
when binding or defining REFs.

3-18 Oracle Call Interface Programmer’s Guide

New Oracle External Datatypes

LOB

Access to REFs is only possible when an OCI application has been initialized in
object mode. When REFs are retrieved from the server, they are stored in the
client-side object cache.

To allocate a REF for use in your application, you should declare a variable to be a
pointer to a REF, and then call OCIObjectNew(), passing OCI_TYPECODE_REF as
the typecode parameter.

See Also: For more information about working with REFs in the OCI, refer to
Part 2 of this guide.

A LOB (Large OBject) stores binary or character data up to 4 gigabytes in length.
Binary data is stored in a BLOB (Binary LOB), and character data is stored in a
CLOB (Character LOB) or NCLOB (National Character LOB).

LOB values may or may not be stored inline with other row data in the database. In
either case, LOBs have the full transactional support of the database server. A
database table stores a LOB locator which points to the LOB value which may be in a
different storage space.

When an OCI application issues a SQL query which includes a LOB column or
attribute in its select-list, fetching the result(s) of the query returns the locator,
rather than the actual LOB value. In the OCI, the LOB locator maps to a variable of
type OClLobLocator.

See Also: For more information about descriptors, including the LOB locator,
see the section "Descriptors" on page 2-14.

For more information about LOBs refer to the Oracle8i SQL Reference and the
Oracle8i Application Developer’s Guide - Large Objects (LOBSs).

The OCI functions for LOBs take a LOB locator as one of their arguments. The OCI
functions assume that the locator has already been created, whether or not the LOB
to which it points contains data.

Bind and define operations are performed on the LOB locator, which is allocated
with the OCIDescriptorAlloc() function.

The locator is always fetched first using SQL or OCIObjectPin(), and then operations
are performed using the locator. The OCI functions never take the actual LOB value
as a parameter.

See Also: For more information about OCI LOB functions, see Chapter 7, "LOB
and FILE Operations".

Datatypes 3-19

New Oracle External Datatypes

The datatype codes available for binding or defining LOBs are:

« SQLT_BLOB - a binary LOB data type.

» SQLT_CLOB - a character LOB data type.

The NCLOB is a special type of CLOB with the following requirements:

« Towrite into or read from an NCLOB, the user must set the character set form
(csfrm) parameter to be SQLCS_NCHAR.

« The amount (amtp) parameter in calls involving CLOBs and NCLOBs is always
interpreted in terms of characters, rather than bytes, for fixed-width character
sets. For more information, see "LOB and FILE Functions" on page 7-4.

BFILE

The BFILE datatype provides access to file LOBs that are stored in file systems
outside an Oracle database. Oracle8i currently only supports access to binary files,
or BFILEs.

A BFILE column or attribute stores a file LOB locator, which serves as a pointer to a
binary file on the server’s file system. The locator maintains the directory alias and
the filename.

Binary file LOBs do not participate in transactions. Rather, the underlying operating
system provides file integrity and durability. The maximum file size supported is 4
gigabytes.

The database administrator must ensure that the file exists and that Oracle
processes have operating system read permissions on the file.

The BFILE datatype allows read-only support of large binary files; you cannot
modify a file through Oracle. Oracle provides APIs to access file data.

The datatype code available for binding or defining FILES is:
« SQLT_BFILE - a binary FILE LOB data type

For more information about directory aliases, refer to the Oracle8i Application
Developer’s Guide - Large Objects (LOBS).

BLOB

The BLOB datatype stores unstructured binary large objects. BLOBs can be thought
of as bitstreams with no character set semantics. BLOBs can store up to four
gigabytes of binary data.

3-20 Oracle Call Interface Programmer’s Guide

Data Conversions

BLOBs have full transactional support; changes made through the OCI participate
fully in the transaction. The BLOB value manipulations can be committed or rolled
back. You cannot save a BLOB locator in a variable in one transaction and then use
it in another transaction or session.

CLOB

The CLOB datatype stores fixed- or varying-width character data. CLOBs can store
up to 4 gigabytes of character data.

CLOBs have full transactional support; changes made through the OCI participate
fully in the transaction. The CLOB value manipulations can be committed or rolled
back. You cannot save a CLOB locator in a variable in one transaction and then use
it in another transaction or session.

NCLOB

An NCLOB is a national character version of a CLOB. It stores fixed-width, single-
or multi-byte national character set character (NCHAR), or varying-width character
sets data. NCLOBs can store up to 4 gigabytes of character text data.

NCLOBs have full transactional support; changes made through the OCI participate
fully in the transaction. NCLOB value manipulations can be committed or rolled
back. You cannot save a NCLOB locator in a variable in one transaction and then
use it in another transaction or session.

You cannot create an object with NCLOB attributes, but you can specify NCLOB
parameters in methods.

New C Datatype Mappings

The OCI now includes support for Oracle-defined C datatypes used to map
user-defined datatypes to C representations (e.g. OCINumber, OCIlArray). The OCI
provides a set of calls to operate on these datatypes, and to use these datatypes in
bind and define operations, in conjunction with OCI external datatype codes. For
information on using these Oracle-defined C datatypes, refer to Chapter 11,
"Object-Relational Datatypes".

Data Conversions

Table 3-5 shows the supported conversions from internal Oracle datatypes to
external datatypes, and from external datatypes into internal column

Datatypes 3-21

Data Conversions

representations, for all datatypes available through release 7.3. Information about
data conversions for data types newerthan release 7.3 is listed here:

« REFs stored in the database are converted to SQLT_REF on output.
« SQLT_REF is converted to the internal representation of REFs on input.

« Named Data Types stored in the database can be converted to SQLT_NTY (and
represented by a C struct in the application) on output.

« SQLT_NTY (represented by a C struct in an application) is converted to the
internal representation of the corresponding type on input.

« LOBs and BFILEs are represented by descriptors in OCI applications, so there
are no input or output conversions.

« For information about OCIString, OCINumber, and other new Oracle
datatypes, refer to Chapter 11, "Object-Relational Datatypes" and Chapter 12,
"Binding and Defining in Object Applications".

Table 3-5 Data Conversions

INTERNAL DATATYPES

EXTERNAL 1 2 8 11 12 23 ﬁgNG 96
DATATYPES VARCHAR2 NUMBER LONG ROWID DATE RAW RAW CHAR
1 VARCHAR 170 170 I/0 1/0(1) 1/0(2) 1/0(3) 1/0(3)

2 NUMBER 170(4) 170 [1/0(4)
3 INTEGER 1/0(4) 170 [1/0(4)
4 FLOAT 1/0(4) 170 [1/0(4)
5 STRING 170 170 I/0 1/0(1) 1/0(2) 1/0@3) 1/0(3,5) /0

6 VARNUM 1/0(4) 170 [1/0(4)
7 DECIMAL 1/0(4) 170 [1/0(4)
8 LONG 170 170 I/0 1/0(1) 1/0(2) 1/0(@8) 1/0(3,5) 1/0

9 VARCHAR 170 170 I/0 1/0(1) 1/0(2) 1/0(@3) 1/0(3,5) /0
11 ROWID [[170 [

12 DATE 170 | 170 170
15 VARRAW 1/0(6) I(5, 6) 170 170 1/0(6)
23 RAW 1/0(6) I(5, 6) 170 170 1/0(6)

3-22 Oracle Call Interface Programmer’s Guide

Typecodes

Table 3-5 Data Conversions (Cont.)

INTERNAL DATATYPES

EXTERNAL 1 2 8 11 12 23 ngG 96
DATATYPES VARCHAR2 NUMBER LONG ROWID DATE RAW RAW CHAR
24 LONG RAW 0(6) I(5, 6) 170 170 0(6)
68 UNSIGNED 1/0(4) 170 | 1/0(4)
94 LONG VARCHAR 170 170 I/0 1/0(1) 1/0(2) 1/0@3) 1/0(3,5) /0
95 LONG VARRAW 170(6) I(5, 6) 170 170 1/0(6)
96 CHAR 170 170 I/0 1/0(1) 1/0(2) 1/0@3) 1(3) 170
97 CHARZ 170 170 I/0 1/0(1) 1/0(2) 1/0(3) 1(3) 170

104 ROWID DESC.

Notes:

(1) For input, host string must be in Oracle ROWID format.
On output, column value is returned in Oracle ROWID format.

(2) For input, host string must be in the Oracle DATE character format.
On output, column value is returned in Oracle DATE format.

(3) For input, host string must be in hex format.
On output, column value is returned in hex format.

(4) For output, column value must represent a valid number.
(5) Length must be less than or equal to 2000.

(6) On input, column value is stored in hex format.
On output, column value must be in hex format.

Legend:

I = Conversion valid for input
only

O = Conversion valid for
output only

1/0 = Conversion valid for
input or output

Typecodes

There is a unique typecode associated with each Oracle type, whether scalar,
collection, reference, or object type. This typecode identifies the type, and is used by
Oracle to manage information about object type attributes. This typecode system is
designed to be generic and extensible, and is not tied to a direct one-to-one
mapping to Oracle datatypes. Consider the following SQL statements;

CREATE TYPE my_type AS OBJECT
(atrl NUMBER,

a2 INTEGER,

a3 SMALLINT);

Datatypes 3-23

Typecodes

CREATE TABLE my _table AS TABLE OF my type;

These statements create an object type and an object table. When it is created,
my_table will have three columns, all of which are of Oracle NUMBER type,
because SMALLINT and INTEGER map internally to NUMBER. The internal
representation of the attributes of my_type , however, maintains the distinction
between the datatypes of the three attributes: attrl is

OCI_TYPECODE_NUMBER, attr2

is OCI_TYPECODE_INTEGER, and attr3 is

OCI_TYPECODE_SMALLINT. If an application describes my_type , these

typecodes are returned.

OCITypeCode is the C datatype of the typecode. The typecode is used by some
OCI functions, like OCIObjectNew() (where it helps determine what type of object is
created). It is also returned as the value of some attributes when an object is
described; e.g., querying the OCI_ATTR_TYPECODE attribute of a type returns an

OCITypeCode value.

Table 3-6 lists the possible values for an OCITypeCode. There is a value

corresponding to each Oracle datatype.
Table 3-6 OCITypeCode Values

Value Datatype
OCI_TYPECODE_REF REF
OCI_TYPECODE_DATE date

OCI_TYPECODE_REAL
OCI_TYPECODE_DOUBLE
OCI_TYPECODE_FLOAT
OCI_TYPECODE_NUMBER
OCI_TYPECODE_DECIMAL
OCI_TYPECODE_OCTET
OCI_TYPECODE_INTEGER
OCI_TYPECODE_SMALLINT
OCI_TYPECODE_RAW
OCI_TYPECODE_VARCHAR?
OCI_TYPECODE_VARCHAR
OCI_TYPECODE_CHAR

3-24 Oracle Call Interface Programmer’s Guide

single-precision real

double-precision real

floating-point

Oracle number

decimal

octet

integer

smallint

RAW

variable string ANSI SQL, i.e., VARCHAR2
variable string Oracle SQL, i.e., VARCHAR
fixed-length string inside SQL, i.e. SQL CHAR

Typecodes

Table 3-6 OCITypeCode Values (Cont.)

Value Datatype
OCI_TYPECODE_VARRAY variable-length array (varray)
OCI_TYPECODE_TABLE multiset
OCI_TYPECODE_CLOB character large object (CLOB)
OCI_TYPECODE_BLOB binary large object (BLOB)
OCI_TYPECODE_BFILE binary large object file (BFILE)
OCI_TYPECODE_OBIJECT named object type

OCI_TYPECODE_NAMEDCOLLECTION Domain (named primitive type)

Relationship Between SQLT and OCI_TYPECODE Values

Oracle recognizes two different sets of datatype code values. One set is
distinguished by the SQLT _ prefix, the other by the OCI_TYPECODE prefix.

The SQLT typecodes are used by OCI to specify a datatype in a bind or define
operation. In this way, the SQL typecodes help to control data conversions between
Oracle and OCI client applications. The OCI_TYPECODE types are used by Oracle’s
type system to reference or describe predefined types when manipulating or
creating user-defined types.

In many cases there are direct mappings between SQLT and OCI_TYPECODE
values. In other cases, however, there is not a direct one-to-one mapping. For
example OCI_TYPECODE_SIGNED16, OCI_TYPECODE_SIGNED32,
OCI_TYPECODE_INTEGER, OCI_TYPECODE_OCTET, and
OCI_TYPECODE_SMALLINT are all mapped to the SQLT_INT type.

The following table illustrates the mappings between SQLT and OCI_TYPECODE
types.
Table 3-7 OCI_TYPECODE to SQLT Mappings

Oracle Type System Typename Oracle Type System Type Equivalent SQLT Type
BFILE OCI_TYPECODE_BFILE SQLT_BFILE

BLOB OCI_TYPECODE_BLOB SQLT_BLOB

CHAR OCI_TYPECODE_CHAR (n) SQLT_AFC(n) [note 1]
CLOB OCI_TYPECODE_CLOB SQLT_CLOB
COLLECTION OCI_TYPECODE_NAMEDCOLLECTION SQLT_NCO

Datatypes 3-25

Typecodes

Table 3-7 OCI_TYPECODE to SQLT Mappings (Cont.)

Oracle Type System Typename Oracle Type System Type Equivalent SQLT Type
DATE OCI_TYPECODE_DATE SQLT_DAT

FLOAT OCI_TYPECODE_FLOAT (b) SQLT_FLT (8) [note 2]
DECIMAL OCI_TYPECODE_DECIMAL (p) SQLT_NUM (p, 0) [note 3]
DOUBLE OCI_TYPECODE_DOUBLE SQLT_FLT (8)

INTEGER OCI_TYPECODE_INTEGER SQLT_INT (i) [note 4]
NUMBER OCI_TYPECODE_NUMBER (p, s) SQLT_NUM (p, s) [note 5]
OCTET OCI_TYPECODE_OCTET SQLT_INT (1)

POINTER OCI_TYPECODE_PTR <NONE>

RAW OCI_TYPECODE_RAW SQLT_LVB

REAL OCI_TYPECODE_REAL SQLT_FLT (4)

REF OCI_TYPECODE_REF SQLT_REF

OBIJECT OCI_TYPECODE_OBIJECT SQLT_NTY

SIGNED(8) OCI_TYPECODE_SIGNEDS SQLT_INT (1)
SIGNED(16) OCI_TYPECODE_SIGNED16 SQLT_INT (2)
SIGNED(32) OCI_TYPECODE_SIGNED32 SQLT_INT (4)
SMALLINT OCI_TYPECODE_SMALLINT SQLT_INT (i) [note 4]

TABLE [note 6]
TABLE (Indexed table)
UNSIGNED(8)
UNSIGNED(16)
UNSIGNED(32)
VARRAY [note 6]

OCI_TYPECODE_TABLE
OCI_TYPECODE_ITABLE
OCI_TYPECODE_UNSIGNEDS
OCI_TYPECODE_UNSIGNED16
OCI_TYPECODE_UNSIGNED32
OCI_TYPECODE_VARRAY

3-26 Oracle Call Interface Programmer’s Guide

<NONE>
SQLT TAB
SQLT_UIN (1)
SQLT_UIN (2)
SQLT_UIN (4)
<NONE>

Definitions in oratypes.h

Table 3-7 OCI|_TYPECODE to SQLT Mappings (Cont.)

Oracle Type System Typename Oracle Type System Type Equivalent SQLT Type
VARCHAR OCI_TYPECODE_VARCHAR (n) SQLT_CHR (n) [note 1]
VARCHAR?2 OCI_TYPECODE_VARCHAR?2 (n) SQLT_VCS (n) [note 1]
Notes:

1. nis the size of the string in bytes

2. These are floating point numbers, the precision is given in terms of binary digits. b is the precision of the
number in binary digits.

3. This is equivalent to a NUMBER with no decimal places.

4.1 is the size of the number in bytes, set as part of an OCI call.

5. p is the precision of the number in decimal digits; s is the scale of the number in decimal digits.
6. Can only be part of a named collection type.

Definitions in oratypes.h

Throughout this guide you will see references to datatypes like ub2 or sb4, or to
constants like UBAMAXVALThese types are defined in the oratypes.h header file, an
example of which is included here. The exact contents may vary according to the
platform you are using.

Note: The use of the datatypes in oratypes.h is the only supported means of
supplying parameters to the OCI.

#ifndef ORATYPES

define ORATYPES

define SX_ORACLE
#define SX3_ORACLE

#ifndef ORASTDDEF
#include <stddefh>

define ORASTDDEF
#endif

#ifndef ORALIMITS
#include <limits.n>

define ORALIMITS
#endif

#ifndef TRUE
#define TRUE 1

Datatypes 3-27

Definitions in oratypes.h

define FALSE O
#endif

#ifdef lint
#ifndef mips

define signed
endif

#endif

#ifdef ENCORE_88K
#ifndef signed

define signed
#endif

#endif

#if defined(SYSV_386) || defined(SUN_OS)
#ifdef signed

undef signed

endif

define signed

#endif

#ifndef lint

typedef unsigned char ubl;
typedef signed char sbl;
#else

#define ubl unsigned char
#define sbl signed char
#endif

#define UBIMAXVAL ((Ub1)UCHAR_MAX)
#define UBIMINVAL (ubl) 0)

#define SBIMAXVAL ((sh1)SCHAR _MAX)
#define SBIMINVAL ((sb1)SCHAR_MIN)
#define MINUB1IMAXVAL ((ubl) 255)
#define MAXUBIMINVAL ((ubl) 0)
#define MINSBIMAXVAL ((sbl) 127)
#define MAXSBIMINVAL ((sbl) -127)

#ifndef lint

typedef unsigned short ub2;
typedef signedshort sb2;
#else

#define ub2 unsigned short
#define sh2 signed short

3-28 Oracle Call Interface Programmer’s Guide

Definitions in oratypes.h

#endif

#define UB2MAXVAL ((Ub2USHRT MAX)
#define UB2MINVAL (Ub2) 0)

#define SB2MAXVAL ((sb2) SHRT_MAX)
#define SB2MINVAL ((sb2) SHRT_MIN)
#define MINUB2MAXVAL ((ub2) 65535)
#define MAXUB2MINVAL ((ub2) 0)
#oefine MINSB2MAXVAL ((sh2) 32767)
#define MAXSB2MINVAL ((sh2)-32767)

#ifndef lint

typedef unsigned int ub4;
typedef signedint sb4;
felse

#define eb4 int

#define ub4 unsigned int
#define sh4 signed int
#endif

#define UBAMAXVAL ((Ub4)UINT_MAX)
#define UBAMINVAL (ub4) 0)

#define SBAMAXVAL ((sb4) INT_MAX)
#define SBAMINVAL ((sb4) INT_MIN)

#define MINUBAMAXVAL ((ub4) 4294967295)
#define MAXUBAMINVAL ((ub4) 0)
#define MINSBAMAXVAL ((sh4) 2147483647)
#define MAXSBAMINVAL ((sh4)-2147483647)

#oefne UBIBITS ~ CHAR BIT
#oefine UBIMASK (1 << ((iord)CHAR_BIT))-1)

typedefubl bitvec;
#define BITVEC(n) ((n)+(UB1BITS-1))>>3)

#ifdef lint
define OraText unsigned char
Helse

typedef unsigned char OraText
#endif

#definemax(x,y) (9<O)? 4): ()
#definemin(x,y) () <)? ®): ()

#ifndef lint

Datatypes 3-29

Definitions in oratypes.h

typedef ub4 duword;
typedef sh4 dsword;
typedef dsword dword,

Helse

#define duword ub4
#define dsword sh4
#define dword dsword
#endif

#define DUWORDMAXVAL UBAMAXVAL
#define DUWORDMINVAL UB4AMINVAL

#define DSWORDMAXVAL SBAMAXVAL
#define DSWORDMINVAL ~ SB4AMINVAL

#define MINDUWORDMAXVAL MINUBAMAXVAL
#define MAXDUWORDMINVAL MAXUBAMINVAL
#define MINDSWORDMAXVAL MINSB4MAXVAL
#define MAXDSWORDMINVAL MAXSBAMINVAL
#define DEWORDMAXVAL EBAMAXVAL
#define DEWORDMINVAL ~ EB4AMINVAL

#define MINDEWORDMAXVAL MINEB4MAXVAL
#define MAXDEWORDMINVAL MAXEBAMINVAL
#define DWORDMAXVAL ~ DSWORDMAXVAL
#define DWORDMINVAL ~ DSWORDMINVAL

#ifndef lint

typedef ub4 dsize t;
#else

define dsize_tub4
#endif

define DSIZE._ TMAXVAL UBAMAXVAL
define MINDSIZE. TMAXVAL (dsize_t)65535

#ifndef lint

typedef sb4 dboolean;
#else

define dboolean sh4
#endif

#ifndef lint

typedef ub4 dptr_t;
Helse

#define dptr_tub4

3-30 Oracle Call Interface Programmer’s Guide

Definitions in oratypes.h

#endif

#ifndeflint

typedef char ebl;
typedef short eb2;
typedef int eb4;
typedef eb4d deword,
#else

#defne ebl char
#defne eb2 short
#defne ebd int
#defne deword eb4
#endif

#define EBIMAXVAL ((eb1)SCHAR_MAX)
#define EBIMINVAL ((ebl) 0)

#define MINEBIMAXVAL ((eb1) 127)
#define MAXEBIMINVAL ((ebl) 0)
#define EB2ZMAXVAL ((eb2) SHRT_MAX)
#define EB2MINVAL ((€b2) 0)

#define MINEB2MAXVAL ((eb2) 32767)
#define MAXEB2MINVAL ((eb2) 0)
#define EBAMAXVAL ((eb4) INT_MAX)
#define EBAMINVAL ((eb4) 0)

#define MINEBAMAXVAL ((eb4) 2147483647)
#define MAXEBAMINVAL ((eb4) 0)

#ifndeflint
typedef sbl bl
Helse

#define bl sbl
#endif

#define BIMAXVAL SBIMAXVAL
#define BIMINVAL SB1IMINVAL

#ifndeflint

typedef sb2 b2
Helse

#define b2 sh2
#endif

#define B2MAXVAL SB2MAXVAL
#define B2MINVAL SB2MINVAL

#ifndeflint
typedef sh4 b4
Helse

Datatypes 3-31

Definitions in oratypes.h

#define b4 sh4

#endif

#define BAMAXVAL SBAMAXVAL
#define BAMINVAL SBAMINVAL

#ifndef uiXT

typedef ubl BITSS;
typedef ub2 BITS16;
typedef ub4 BITS32;
#endif

#if defined(LUSEMFC)
#ifdeflint
define text unsigned char
#else

typedef OraText text,
endif
#endif

#define M_IDEN 30

#ifdef AIXRIOS

define SLMXFNMLEN 256
Helse

define SLMXFNMLEN 512
#endif

#ifndef lint

typedef inteword;
typedef unsigned int uword;
typedef signed int sword;
#else

#define eword int

#define uword unsigned int
#define sword signed int
#endif

#define EWORDMAXVAL ((eword) INT_MAX)
#define EWORDMINVAL ((eword) Q)
#define UWORDMAXVAL ((uword)UINT_MAX)
#define UWORDMINVAL ((uword) 0)
#define SWORDMAXVAL ((sword) INT_MAX)
#define SWORDMINVAL ((sword) INT_MIN)
#define MINEWORDMAXVAL ((eword) 32767)
#define MAXEWORDMINVAL ((eword) 0)

3-32 Oracle Call Interface Programmer’s Guide

Definitions in oratypes.h

#define MINUWORDMAXVAL ((uword) 65535)
#define MAXUWORDMINVAL ((uword) 0)

#define MINSWORDMAXVAL ((sword) 32767)
#define MAXSWORDMINVAL ((sword) -32767)

#ifndef lint

typedef unsigned long ubig_ora;
typedef signedlong shig_ora;
Helse

#define ubig_ora unsigned long
#define shig_ora signed long
#endif

#define UBIG_ORAMAXVAL ((ubig_ora)ULONG_MAX)
#define UBIG_ORAMINVAL ((ubig ora) Q)

#define SBIG_ORAMAXVAL ((shig_ora) LONG_MAX)
#define SBIG_ORAMINVAL ((sbig_ora) LONG_MIN)
#define MINUBIG_ORAMAXVAL ((ubig_ora) 4294967295)
#define MAXUBIG_ORAMINVAL ((ubig_ora) 0)
#define MINSBIG_ORAMAXVAL ((shig_ora) 2147483647)
#define MAXSBIG_ORAMINVAL ((shig_ora)-2147483647)

#define UBIGORABITS (UB1BITS * sizeof(ubig_ora))

#ifndeflint
#f(_STDC__=1)

define SLUSNATIVE
define SLSSNATIVE
#endif

#endif

#ifdef SLUSNATIVE

#ifdef SS_64BIT_SERVER
#ifndef lint

typedef unsigned long ub8;
#else
define ub8 unsigned long
#endif
Helse
#ifndef lint

typedef unsigned long long ub8;
#else
define ub8 unsigned long long
#endif

Datatypes 3-33

Definitions in oratypes.h

#endif
#define UBBZERO ((ub8)0)

#define UBSMINVAL ((ubS)0)
#define UBBMAXVAL ~ ((Ub8)18446744073709551615)

#define MAXUBBMINVAL ((ub8)0)
#define MINUBSMAXVAL ((ub8)18446744073709551615)

#endif

#ifdef SLSSNATIVE

#ifdef SS_64BIT_SERVER
#ifndef lint

typedef signed long sb8;
#else
define sh8 signed long
#endif
telse
#ifndef lint

typedef signed long long sb8;
#else
define sh8 signed long long
#endif
#endif

#define SB8ZERO ((sh8)0)

#define SBBMINVAL ~ ((sb8)-9223372036854775808)
#oefine SBBMAXVAL ((sb8) 9223372036854775807)

#define MAXSBBMINVAL ((sh8)-9223372036854775807)
#define MINSBSMAXVAL ((sb8) 9223372036854775807)

#endif

#undef CONST

#ifdef _olint

define CONST const
Helse

3-34 Oracle Call Interface Programmer’s Guide

Definitions in oratypes.h

#if defined(PMAX) && defined(_ STDC)

define CONST const

Helse

ifdef MBBOPEN

define CONST const

#else

if defined(SEQ_PSX) && defined(__STDC)
define CONST const

else

ifdefA_ OSF

ifdefined(__STDC)
define CONST const
else

define CONST
endif

else

define CONST
#

#ifdef lint
define dvoid void
Helse

#ifdef UTS2

define dvoid char
#else

define dvoid void
endif

#endif

typedef void (igenfp_t)(void);

#ifndef ORASYSTYPES

#include <sysftypes.h>
#define ORASYSTYPES

Datatypes 3-35

Definitions in oratypes.h

#endif

#ifndef boolean
#ifndeflint
typedefint boolean;
#else

#define boolean int
#endif

#endif

#ifdef sparc

#define SIZE_TMAXVAL SBAMAXVAL
Helse

define SIZE_ TMAXVAL UB4AMAXVAL
#endif

#define MINSIZE_TMAXVAL (size_t)65535

#if 1defined(MOTIF) && 'defined(LISPL) && 'defined(__cplusplus) && !defined(LUS
EMFC)

typedef OraText *string;

#endif

#ifndef lint

typedef unsigned short utext;

felse

#define utext unsigned short
#endif

#endif

3-36 Oracle Call Interface Programmer’s Guide

A

SQL Statement Processing

This chapter discusses the concepts and steps involved in processing SQL
statements with the Oracle Call Interface. The following topics are covered in this
chapter:

Overview

Processing SQL Statements
Preparing Statements
Binding

Executing Statements
Describing Select-List Items
Defining

Fetching Results

SQL Statement Processing 4-1

Overview

Overview

Chapter 2 discussed the basic steps involved in any OCI application. This chapter
presents a more detailed look at the specific tasks involved in processing SQL
statements in an OCI program.

Processing SQL Statements

One of the most common tasks of an OCI program is to accept and process SQL
statements. This section outlines the specific steps involved in processing SQL.

Once you have allocated the necessary handles and attached to a server, the basic
steps in processing a SQL statement are the following, as illustrated in Figure 4-1,
"Steps In Processing SQL Statements™:

1. Prepare. Define an application request using OCIStmtPrepare().

2. Bind. For DML statements and queries with input variables, perform one or
more bind calls using OCIBindByPos(), OCIBindByName(), OCIBindObject(),
OCIBindDynamic() or OCIBindArrayOfStruct() to bind the address of each input
variable (or PL/SQL output variable) or array to each placeholder in the
statement.

3. Execute. Call OCIStmtExecute() to execute the statement. For DDL statements,
no further steps are necessary.

4. Describe. Describe the select-list items, if necessary, using OCIParamGet() and
OCIAttrGet(). This is an optional step; it is not required if the number of
select-list items and the attributes of each item (such as its length and datatype)
are known at compile time.

5. Define. For queries, perform one or more define calls to OCIDefineByPos(),
OCIDefineObject(), OCIDefineDynamic(), or OCIDefineArrayOfStruct() to define an
output variable for each select-list item in the SQL statement. Note that you do
not use a define call to define the output variables in an anonymous
PL/SQL block. You have done this when you have bound the data.

6. Fetch. For queries, call OCIStmtFetch() to fetch the results of the query.

Following these steps, the application can free allocated handles and then detach
from the server, or it may process additional statements.

7.x Upgrade Note: OCI programs no longer require an explicit parse step. If a
statement must be parsed, that step takes place upon execution. This means that
8.0 applications must issue an execute command for both DML and DDL
statements.

4-2 Oracle Call Interface Programmer’s Guide

Processing SQL Statements

Figure 4-1 Steps In Processing SQL Statements

—

Prepare
Statement

v

Bind
Placeholders*

v

Execute
Statement

v

Describe
Select-list ltems*

v

Define
Output Variables*

v

Fetch and
Process Data*

| |

* These steps performed
if necessary

OCIStmtPrepare()

OCIBindByName() or OCIBindByPos()
OCIBindObiject()
OCIBindArrayOfStruct()
OCIBindDynamic()

OCIStmtExecute()

OCIParamGet()
OCIAttrGet()

OCIDefineByPos()
OCIDefineObject()
OCIDefineArrayOfStruct()
OCIDefineDynamic()

OCIStmtFetch()

For each of the steps in the diagram, the corresponding OCI function calls are listed.
In some cases multiple calls may be required.

Each step above is described in detail in the following sections.

Note: Some variation in the order of steps is possible. For example, it is possible
to do the define step before the execute if the datatypes and lengths of returned
values are known at compile time. Also, as indicated by the asterisks (*), some
steps may not be required by your application.

Additional steps beyond those listed above may be required if your application
needs to do the following:

« initiate and manage multiple transactions

=« manage multiple threads of execution

« perform piecewise inserts, updates, or fetches

These topics are described in Chapter 9, "OCI Programming Advanced Topics".

For information on using OCI shared mode functionality, refer to "Shared Data
Mode" on page 2-20.

SQL Statement Processing 4-3

Preparing Statements

Preparing Statements

SQL and PL/SQL statements need to be prepared for execution by using the
statement prepare call and bind calls (if necessary). In this phase, the application
specifies a SQL or PL/SQL statement and binds associated placeholders in the
statement to data for execution. The client-side library allocates storage to maintain
the statement prepared for execution.

An application requests a SQL or PL/SQL statement to be prepared for execution
using the OCIStmtPrepare() call and passing it a previously allocated statement
handle. This is a completely local call, requiring no round-trip to the server. No
association is made at this point between the statement and a particular server.

Following the request call, an application can call OCIAttrGet() on the statement
handle, passing OCI_ATTR_STMT_TYPE to the attrtype parameter, to determine
what type of SQL statement was prepared. The possible attribute values, and
corresponding statement types are listed in Table 4-1.

Table 4-1 OCI_ATTR_STMT_TYPE Values and Statement Types

Attribute Value Statement Type
OCI_STMT_SELECT SELECT statement
OCI_STMT_UPDATE UPDATE statement
OCI_STMT_DELETE DELETE statement
OCI_STMT_INSERT INSERT statement
OCI_STMT_CREATE CREATE statement
OCI_STMT_DROP DROP statement
OCI_STMT_ALTER ALTER statement
OCI_STMT_BEGIN BEGIN... (PL/SQL)
OCIl_STMT_DECLARE DECLARE... (PL/SQL)

See Also: For more information on the specifics of using PL/SQL in an OCI
application, see the section "Using PL/SQL in an OCI Program" on page 2-39.

The OCIStmtPrepare() call is described in more detail in Chapter 15, "OCI
Relational Functions".

4-4 Oracle Call Interface Programmer’s Guide

Binding

Using Prepared Statements on Multiple Servers

Binding

A prepared application request can be executed on multiple servers at run time by
reassociating the statement handle with the respective service context handles for
the servers. All information cached about the current service context and statement
handle association is lost when a new association is made.

For example, consider an application such as a network manager, which manages
multiple servers. In many cases, it is likely that the same SELECT statement will
need to be executed against multiple servers to retrieve information for display. The
OCI allows the network manager application to prepare a SELECT statement once
and execute it against multiple servers. It must fetch all of the required rows from
each server prior to reassociating the prepared statement with the next server.

Note: If a prepared statement must be reexecuted frequently on the same server,
it is efficient to prepare a new statement for another service context.

Most DML statements, and some queries (such as those with a WHERE clause),
require a program to pass data to Oracle as part of a SQL or PL/SQL statement.
Such data can be constant or literal data, known when your program is compiled.
For example, the following SQL statement, which adds an employee to a database
contains several literals, such as 'BESTRY’ and 2365:

INSERT INTO emp VALUES
(2365, BESTRY’, PROGRAMMER,, 2000, 20)

Hard coding a statement like this into an application would severely limit its
usefulness. You would need to change the statement and recompile the program
each time you add a new employee to the database. To make the program more
flexible, you can write the program so that a user can supply input data at run time.

When you prepare a SQL statement or PL/SQL block that contains input data to be
supplied at run time, placeholders in the SQL statement or PL/SQL block mark
where data must be supplied. For example, the following SQL statement contains
five placeholders, indicated by the leading colons (:ename), that show where input
data must be supplied by the program.

INSERT INTO emp VALUES
(:empno, :ename, :job, :sal, :deptno)

You can use placeholders for input variables in any DELETE, INSERT, SELECT, or
UPDATE statement, or PL/SQL block, in any position in the statement where you

SQL Statement Processing 4-5

Executing Statements

can use an expression or a literal value. In PL/SQL, placeholders can also be used
for output variables.

Note: Placeholders cannot be used to represent other Oracle objects such as
tables. For example, the following is not a valid use of the emp placeholder:

INSERT INTO :emp VALUES
(12345, 'OERTEL', WRITER', 50000, 30)

For each placeholder in the SQL statement or PL/SQL block, you must call an OCI
routine that binds the address of a variable in your program to the placeholder.
When the statement executes, Oracle gets the data that your program placed in the
input, or bind, variables and passes it to the server with the SQL statement.

For detailed information about implementing bind operations, please refer to
Chapter 5, "Binding and Defining".

Executing Statements

An OCI application executes prepared statements individually using
OCIStmtExecute(). See OCIStmtExecute() on page 15-165 for a syntax description.

When an OCI application executes a query, it receives data from Oracle that
matches the query specifications. Within the database, the data is stored in
Oracle-defined formats. When the results are returned, an OCI application can
request that data be converted to a particular host language format, and stored in a
particular output variable or buffer.

For each item in the select-list of a query, the OCI application must define an output
variable to receive the results of the query. The define step indicates the address of
the buffer and the type of the data to be retrieved.

Note: If output variables are defined for a SELECT statement before a call to
OCIStmtExecute(), the number of rows specified by the iters parameter are
fetched directly into the defined output buffers and additional rows equivalent
to the prefetch count are prefetched. If there are no additional rows, then the
fetch is complete without calling OCIStmtFetch().

For non-queries, the number of times the statement is executed during array
operations is equal to iters - rowoff, where rowoff is the offset in the bound array, and
is also a parameter of the OCIStmtExecute() call. For example, if an array of 10 items
is bound to a placeholder for an INSERT statement, and iters is set to 10, all 10 items
will be inserted in a single execute call when rowoff is zero. If rowoff is set to 2, only 8
items will be inserted.

4-6 Oracle Call Interface Programmer’s Guide

Executing Statements

See Also: See the section "Defining" on page 4-14 for more information about
defining output variables.

Execution Snapshots

The OCIStmtExecute() call provides the ability to ensure that multiple service
contexts operate on the same consistent snapshot of the database’s committed data.
This is achieved by taking the contents of the snap_out parameter of one
OCIStmtExecute() call and passing that value in the snap_in parameter of the next
OCIStmtExecute() call.

Note: Uncommitted data in one service context is not visible to another context,
even when using the same snapshot.

The datatype of both the snap_out and snap_in parameter is OCISnapshot, an OCI
snapshot descriptor. This descriptor is allocated with the OClIDescAlloc() function.

See Also: For more information about descriptors, see the section "Descriptors”
on page 2-14.

It is not necessary to specify a snapshot when calling OCIStmtExecute(). The
following sample code shows a basic execution in which the snapshot parameters
are passed as NULL.

checkerr(erhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(OCISnapshot *NULL, (OCISnapshot *) NULL, OCI_DEFAULT))

Note: The checkerr() function evaluates the return code from an OCI application.
The code for the function is listed in the section "Error Handling" on page 2-27.

Execution Modes
You can specify several modes for the OCIStmtExecute() call:

« OCI_DEFAULT. Calling OCIStmtExecute() in this mode executes the statement.
It also implicitly returns describe information about the select-list.

« OCI_DESCRIBE_ONLY. This mode is for users who wish to describe a query
prior to execution. Calling OCIStmtExecute() in this mode does not execute the
statement, but it does return the select-list description.

« OCI_COMMIT_ON_SUCCESS - When a statement is executed in this mode, the
current transaction is committed after execution, provided that execution
completes successfully.

SQL Statement Processing 4-7

Executing Statements

« OCI_EXACT_FETCH - Used when the application knows in advance exactly
how many rows it will be fetching.

« OCI_BATCH_ERRORS - See "Batch Error Mode for OCIStmtExecute()" on
page 4-8, for information about this mode.

Batch Error Mode for OCIStmtExecute()

The OCI provides the ability to perform array DML operations. For example, an
application can process an array of INSERT, UPDATE, or DELETE statements with
a single statement execution. If one of the operations fails due to an error from the
server, such as a unique constraint violation, the array operation aborts and the OCI
returns an error. Any rows remaining in the array are ignored. The application must
then re-execute the remainder of the array, and go through the whole process again
if it encounters more errors, which makes additional roundtrips.

To facilitate processing of array DML operations, the OCI provides the batch error
mode (also called the enhanced DML array feature). This mode, which is specified in
the OCIStmtExecute() call, simplifies DML array processing in the event of one or
more errors. In this mode, the OCI attempts to INSERT, UPDATE, or DELETE all
rows, and collects (batches) information about any errors which occurred. The
application can then retrieve this error information and re-execute any DML
operations which failed during the first call.

Note: This function is only available to applications linked with the 8.1 OCI
libraries running against a release 8.1 server. Applications must also be recoded
to account for the new program logic described in this section.

In this way, all DML operations in the array are attempted in the first call, and any
failed operations can be reissued in a second call.

This mode is used as follows:

1. The user specifies OCI_BATCH_ERRORS as the mode parameter of the
OCIStmtExecute() call.

2. After performing an array DML operation with OCIStmtExecute(), the
application can retrieve the number of errors encountered during the operation
by calling OCIAttrGet() on the statement handle to retrieve the
OCI_ATTR_NUM_DML_ERRORS attribute. For example:

ub4 num_errs;
OCIAtrGet(stmtp, OCl_ HTYPE_STMT, &wum_err, 0, OCl ATTR_NUM_DML_ERRORS, erthp);

3. The list of errors hangs off an error handle.

4-8 Oracle Call Interface Programmer’s Guide

Executing Statements

The application extracts each error, along with its row information, from the
error handle which was passed to the OCIStmtExecute() call using
OCIParamGet(). In order to retrieve the information, the application must
allocate an additional new error handle for the OCIParamGet() call. This new
error handle is populated with the batched error information. The application
obtains the syntax of each error with OCIErrorGet(), and the row offset (into the
DML array) at which the error occurred by calling OCIAttrGet() on the new
error handle.

For example, once the num_errs amount has been retrieved, the application
can issue the following calls:

OCIEmor errhnd;
for (i=0; i<num_ens; i++)
{
OClParamGet(enhp, OCl_HTYPE_ERROR, enthp, &erhndl, i+1);
OClAtrGet(erhndl, OCl_ HTYPE_ERROR, &row_offset, O,
OCI_ATTR_DML_ROW_OFFSET, ethp);
OCIEmorGet(..., erhnd, ...);

Following this, the application can correct the bind information for the
appropriate entry in the array using the diagnostic information retrieved from
the batched error. Once the appropriate bind buffers are corrected or updated,
the application can reexecute the associated DML statements.

Because the application cannot know at compile time which rows in the first
execution will cause errors, the binds of the next execute should be done
dynamically by passing in the appropriate buffers at runtime. The user can
reuse the bind buffers used in the array binds done on the first DML operation.

Example of Batch Error Mode

The following code shows an example of how this execution mode might be used.
In this example assume that we have an application which inserts five rows (with
two columns, of types NUMBERNd CHAR into a table. Furthermore, let us assume
only two rows (say, 1 and 3) are successfully inserted in the initial DML operation.
The user then proceeds to correct the data (wrong data was being inserted the first
time) and to issue an update with the corrected data. The user uses statement
handles stmtpl and stmtp2 to issue the INSERT and UPDATErespectively.

OCIBind *bindp1[2], *bindp2[2];
ub4 num_errs, row_off MAXROWS], numberfMAXROWS] ={1,2,34.,5};

SQL Statement Processing 4-9

Executing Statements

char grade[MAXROWS] ={A,B,C, D/ E};

P Aray bind all the positions *
OCIBindByPos (stmtpl,&bindp1[0],erhp,1,(dvoid *)&number{0],
sizeof(number{0]),SQLT_NUM,(dvoid *)0, (ub2 *)0,ub2 *)0,
0,(ub4 *0,0CI_DEFAULT);
OCIBindByPos (stmtpl,&bindp1[1],erhp,2,(dvoid *)&grade[0],
sizeof(grade[0],SQLT_CHR,(dvoid *)0, (ub2 *)0,(ub2 *)0,0,
(ub4*)0,0CI_DEFAULT);

F execute the amay INSERT *
OCIStmtExecute (svchp,stmipl, emrhp ,50,00,0CI_ BATCH ERRORS);
F getthe number of errors ¥

OCIAtrGet (stmtpl, OCI_HTYPE_STMT, &um_ers, 0,
OCI_ATTR_NUM DML _ERRORS, erthp);
if (num_emrs) {
F*The user can do one of two things: 1) Allocate as many *
Femor handles as number of errors and free all handles */
fat alater time; or 2) Allocate one err handle and reuse */
Fthe same handle for all the errors */
OCIEror *erthndnum_ens);
for (i=0;i<num_ens;i++) {
OCIParamGet(enhp , OCl_HTYPE_ERROR, erthp, &errhndl[i], i+1);
OCIAtrGet (erhndl] ,OCl_HTYPE_ERROR, &row_offfi], 0,
OCI_ATTR_DML_ROW_OFFSET, ehp);
F get server diagnostics ¥
OCIEmorGet (..., errhndl[] s
}
}

¥ make corrections to bind data ¥

OCIBindByPos (stmip2,&bindp2[0},erthp,1,(dvoid *10,0,SQLT_NUM,
(dvoid)0, (Ub2 *)0,(ub2 ¥)0,0,(ub4 ¥)0,0CI_DATA AT _EXEC);

OCIBindByPos (stmtp2,&bindp2[1],erthp,2,(dvoid *)0,0,SQLT_DAT,
(dvoid %)0, (ub2 *)0,(ub2 *)0,0,(ub4 *)0,0CI_DATA_AT_EXEC),

F register the callback for each bind handle ¥

OCIBindDynamic (bindp2[0],errhp,row_offmy_callback,0,0);

OCIBindDynamic (bindp2[1],errhp,row_offmy_callback,0,0);

f* execute the UPDATE statement *

OCIStmtExecute (svchp,stmip2,ehp,2,0,0,0,0CI_BATCH_ERRORS);

In this example, OCIBindDynamic() is used with a callback because the user does not
know at compile time what rows will return with errors. With a callback, you can
simply pass the erroneous row numbers, stored in row_off, through the callback
context and send only those rows that need to be updated or corrected. The same
bind buffers can be shared between the INSERT and the UPDATE executes.

4-10 Oracle Call Interface Programmer’s Guide

Describing Select-List Items

Describing Select-List Items

If your OCI application is processing a query, you may need to obtain more
information about the items in the select-list. This is particularly true for dynamic
gueries whose contents are not known until run time. In this case, the program may
need to obtain information about the datatypes and column lengths of the select-list
items. This information is necessary to define output variables that will receive
query results.

For example, a user might enter a query such as
SELECT * FROM employees

where the program has no prior information about the columns in the employees
table.

In Oracle8i, there are two types of describes available: implicit and explicit. An
implicit describe is one which does not require any special calls to retrieve describe
information from the server although special calls are necessary to access the
information. An explicit describe is one which requires the application to call a
particular function to bring the describe information from the server.

An application may describe a select-list (query) either implicitly or explicitly. Other
schema elements must be described explicitly.

An implicit describe allows an application to obtain select-list information as an
attribute of the statement handle after a statement has been executed without making a
specific describe call. It is called implicit, because no describe call is required. The
describe information comes free with the execute.

Users may choose to describe a query explicitly prior to execution. To do this,
specify OCI_DESCRIBE_ONLY as the mode of OCIStmtExecute(). Calling
OCIStmtExecute() in this mode does not execute the statement, but it does return the
select-list description. For performance reasons, however, it is recommended that
applications take advantage of the implicit describe that comes free with a standard
statement execution.

An explicit describe with the OClDescribeAny() call obtains information about
schema objects rather than select-lists.

In all cases, the specific information about columns and datatypes is retrieved by
reading handle attributes.

See Also: For information about using OClDescribeAny() to obtain meta-data
pertaining to schema objects, refer to Chapter 6, "Describing Schema Metadata".

SQL Statement Processing 4-11

Describing Select-List Items

Implicit Describe

After a SQL statement is executed, information about the select-list is available as an
attribute of the statement handle. No explicit describe call is needed.

To retrieve information about select-list items from the statement handle, the
application must call OCIParamGet() once for each position in the select-list to
allocate a parameter descriptor for that position. Select-list positions are 1-based,
meaning that the first item in the select-list is considered to be position number 1.

To retrieve information about multiple select-list items, an application can call
OCIParamGet() with the pos parameter set to 1 the first time, and then iterate the
value of pos and repeat the OCIParamGet() call until OCI_ERROR with ORA-24334
is returned. An application could also specify any position n to get a column at
random.

Once a parameter descriptor has been allocated for a position in the select-list, the
application can retrieve specific information by calling OCIAttrGet() on the
parameter descriptor. Information available from the parameter descriptor includes
the datatype and maximum size of the parameter.

The following sample code shows a loop that retrieves the column names and data
types corresponding to a query following query execution. The query was
associated with the statement handle by a prior call to OCIStmtPrepare().

OCIParam *mypard;
ub4 counter;
ub2 diype;

text *col_name;
ub4 col_name_len;
sbh4 parm_status;

¥ Request a parameter descriptor for position 1 in the selectHist */

counter=1;

parm_status = OCIParamGet(stmthp, OCl_ HTYPE_STMT, erthp, &mypard,
(ub4) counter);

F* Loop only if a descriptor was successfully retrieved for
current position, starting at 1. */
while (parm_status—OC|_SUCCESS) {

* Retrieve the data type attribute */

checkerr(erhp, OCIAtrGet((dvoid¥) mypard, (ub4) OCl_DTYPE_PARAM,
(dvoid®) &dtype,(ub4 *) O, (Ub4) OCI_ATTR_DATA TYPE,

4-12 Oracle Call Interface Programmer’s Guide

Describing Select-List Items

(OClError*) emhp));

F Retrieve the column name attribute */

checkerr(errhp, OCIAtrGet((dvoid®) mypard, (ub4) OCl_DTYPE_PARAM,
(dvoid™) &col name,(ub4 *) &col_name_len, (ub4) OCI_ATTR_NAME,
(OClEnor*) emhp));

printf(‘column=%s datatype=%d\n\n", col_name, dtype);
flush(stdout);

¥ increment counter and get next descriptor, if there is one */

counter++;

parm_status = OClParamGet(stmthp, OCI_HTYPE_STMT, erhp, &mypard,
(ub4) counter);

}
Note: Error handling for the initial OCIParamGet() call is not included in this

example. Ellipses (...) indicate portions of code that have been omitted for this
example.

The checkerr() function is used for error handling. The complete listing can be
found in the first sample application in Appendix B, "OCI Demonstration
Programs".

The calls to OCIAttrGet() and OCIParamGet() are local calls that do not require a
network round trip, because all of the select-list information is cached on the client
side after the statement is executed.

See Also: See the descriptions of OCIParamGet() and OCIAttrGet() in
Chapter 15, "OCI Relational Functions", for more information about these calls.

See the section "Parameter Attributes" on page 6-5 for a list of the specific
attributes of the parameter descriptor which may be read by OCIAttrGet().

Explicit Describe of Queries

Users may choose to describe a query explicitly prior to execution. To do this,
specify OCI_DESCRIBE_ONLY as the mode of OCIStmtExecute(). Calling
OCIStmtExecute() in this mode does not execute the statement, but it does return the
select-list description.

Note: To maximize performance, it is recommended that applications execute
the statement in default mode and use the implicit describe which accompanies
the execution.

SQL Statement Processing 4-13

Defining

The following short example demonstrates the use of this mechanism to perform an
explicit describe of a select-list to return information about the columns in the
select-list. This pseudo-code shows how to retrieve column information (for
example, data type).

Finitialize svchp, stmhp, errhp, rowoff, iters, snap_in, snap_out*/

* setthe execution mode to OCI_DESCRIBE_ONLY. Note that setting the mode to
OCI_DEFAULT does an implicit describe of the statement in addition to executing
the statement */

OClParam *colhd; / column handle */
checkerr(erhp, OCIStmtExecute(svchp, stmhp, errhp, iters, rowoff,
snap_in, snap_out, OCI DESCRIBE_ONLY);

F* Get the number of columns in the query */
checkerr(erhp, OCIAtrGet(stmhp, OCI_HTYPE_STMT, &umcols,
0,0CI_ATTR_PARAM_COUNT, emh));

* go through the column list and retrieve the data type of each column. We
startfrompos=1%
for (i=1;i<=numcals; i++)
{
 get parameter for column i*/
checkerr(errhp, OCIParamGet(stmhp, OCl_ HTYPE_STMT, errh, &colhd, i));

 get data-type of column i */
checkenr(emrhp, OClAtrGet(colnd, OCI_ DTYPE_PARAM,
&typef-1],0, OCI_ATTR_DATA_TYPE, erh));
}

Defining

Query statements return data from the database to your application. When
processing a query, you must define an output variable or an array of output
variables for each item in the select-list from which you want to retrieve data. The
define step creates an association which determines where returned results are
stored, and in what format.

For example, if your OCI statement processes the following statement:

SELECT name, ssn FROM employees
WHERE empno = :empnum

4-14 Oracle Call Interface Programmer’s Guide

Fetching Results

you would normally need to define two output variables, one to receive the value
returned from the name column, and one to receive the value returned from the ssn
column.

For information about implementing define operations, please refer to Chapter 5,
"Binding and Defining".

Fetching Results

If an OCI application has processed a query, it is typically necessary to fetch the
results with OCIStmtFetch() after the statement has been executed.

Fetched data is retrieved into output variables that have been specified by define
operations.

Note: If output variables are defined for a SELECT statement before a call to
OCIStmtExecute(), the number of rows specified by the iters parameter is fetched
directly into the defined output buffers.

See Also: These statements fetch data associated with the sample code in the
section "Steps Used in Defining" on page 5-19. Refer to that example for more
information.

For information about defining output variables, see the section "Defining" on
page 5-18.

Fetching LOB Data

If LOB columns or attributes are part of a select-list, LOB locators are returned as
results of the query. The actual LOB value is not returned by the fetch. The
application can perform further operations on these locators.

See Also: See Chapter 7, "LOB and FILE Operations", for more information
about working with LOB locators in the OCI.

Setting Prefetch Count

In order to minimize server round trips and maximize the performance of
applications, the OCI can prefetch result set rows when executing a query. The OCI
programmer can customize this prefetching by setting the
OCI_ATTR_PREFETCH_ROWS or OCI_ATTR_PREFETCH_MEMORY attribute of
the statement handle using the OCIAttrSet() function. The attributes are used as
follows:

SQL Statement Processing 4-15

Fetching Results

« OCI_ATTR_PREFETCH_ROWS sets the number of rows to be prefetched.

« OCI_ATTR_PREFETCH_MEMORY sets the memory allocated for rows to be
prefetched. The application then fetches as many rows as will fit into that much
memory.

When both of these attributes are set, the OCI prefetches rows up to the
OCI_ATTR_PREFETCH_ROWS limit unless the OCI_ATTR_PREFETCH_MEMORY
limit is reached, in which case the OCI returns as many rows as will fit in a buffer of
size OCI_ATTR_PREFETCH_MEMORY.

By default, prefetching is turned on, and the OCI fetches an extra row all the time.
To turn prefetching off, set both the OCI_ATTR_PREFETCH_ROWS and
OCI_ATTR_PREFETCH_MEMORY attributes to zero.

Note: Prefetching is not in effect if LONG columns are part of the query.
Quieries containing LOB columns can be prefetched, because the LOB locator,
rather than the data, is returned by the query.

See Also: For more information about these handle attributes, see the section
"Statement Handle Attributes” on page A-15.

4-16 Oracle Call Interface Programmer’s Guide

D

Binding and Defining

This chapter revisits the basic concepts of binding and defining that were
introduced in Chapter 2, "OCI Programming Basics", and provides more detailed
information about the different types of binds and defines you can use in OCI
applications. Additionally, this chapter discusses the use of arrays of structures, as
well as other issues involved in binding, defining, and character conversions.

This chapter includes the following sections:

« Binding

« Advanced Bind Operations

« Defining

« Advanced Define Operations

« Arrays of Structures

» DML with RETURNING Clause

« NCHAR and Character Conversion Issues

« PL/SQL REF CURSORs and Nested Tables

« Run Time Data Allocation and Piecewise Operations

Note: For information about binding and defining new Oracle datatypes for
object applications, refer to Chapter 12, "Binding and Defining in Object
Applications".

Binding and Defining 5-1

Binding

Binding

Most DML statements, and some queries (such as those with a WHERE clause),
require a program to pass data to Oracle as part of a SQL or PL/SQL statement.
Such data can be constant or literal data, known when your program is compiled.
For example, the following SQL statement, which adds an employee to a database
contains several literals, such as 'BESTRY’ and 2365:

INSERT INTO emp VALUES
(2365, BESTRY’, PROGRAMMER, 2000, 20)

Hard coding a statement like this into an application would severely limit its
usefulness. You would need to change the statement and recompile the program
each time you add a new employee to the database. To make the program more
flexible, you can write the program so that a user can supply input data at run time.

When you prepare a SQL statement or PL/SQL block that contains input data to be
supplied at run time, placeholders in the SQL statement or PL/SQL block mark
where data must be supplied. For example, the following SQL statement contains
five placeholders, indicated by the leading colons (e.g., :ename), that show where
input data must be supplied by the program.

INSERT INTO emp VALUES
(*empno, :ename, :job, :sal, :deptno)

You can use placeholders for input variables in any DELETE, INSERT, SELECT, or
UPDATE statement, or PL/SQL block, in any position in the statement where you
can use an expression or a literal value. In PL/SQL, placeholders can also be used
for output variables.

Note: Placeholders cannot be used to name other Oracle objects such as tables
or columns.

For each placeholder in the SQL statement or PL/SQL block, you must call an OCI
routine that binds the address of a variable in your program to the placeholder.
When the statement executes, Oracle gets the data that your program placed in the
input, or bind, variables and passes it to the server with the SQL statement. Data
does not have to be in a bind variable when you perform the bind step. At the bind
step, you are only specifying the address, datatype, and length of the variable.

Note: If program variables do not contain data at bind time, make sure they
contain valid data when you execute the SQL statement or PL/SQL block using
OCIStmtExecute().

For example, given the INSERT statement

5-2 Oracle Call Interface Programmer’s Guide

Binding

INSERT INTO emp VALUES
(*empno, :ename, :job, :sal, :deptno)

and the following variable declarations

text *ename, *job
sword empno, sal, deptno

the bind step makes an association between the placeholder name and the address
of the program variables. The bind also indicates the datatype and length of the
program variables, as illustrated in Figure 5-1. The code that implements this
example is found in the section "Steps Used in Binding" on page 5-6.

Figure 5-1 Using OCIBindByName() to Associate Placeholders with Program
Variables
INSERT INTO emp (empno, ename, job, sal, deptno)
VALUES (:empno, :ename, :job, :sal, :deptno)

OCIBindByName () \ v‘\\\

Address = &empno ename &sal &deptno
Data Type | integer string string integer integer

Length = sizeof(empno) sfrlen(ename)+1 strlen(job)+1 sizeof(sal) = sizeof(deptno)

If you change only the value of a bind variable, it is not necessary to rebind in order
to execute the statement again. The bind is a bind by reference, so as long as the
address of the bind variable and bind handle remain valid, you can reexecute a
statement that references the variable without rebinding.

Note: At the interface level, all bind variables are considered at least IN and
must be properly initialized. If the variable is a pure OUT bind variable, you
can set the variable to zero. You can also provide a NULL indicator and set that
indicator to -1 (NULL).

In the Oracle server, new datatypes have been implemented for named datatypes,
REFs and LOBs, and they may be bound as placeholders in a SQL statement.

Note: For opaque data types (descriptors or locators) whose sizes are not
known to the user, the address of the descriptor or locator pointer must be

Binding and Defining 5-3

Binding

passed. Set the size parameter to the size of the appropriate data structure (e.g.,
sizeof(structure))

Named Binds and Positional Binds

The SQL statement in the previous section is an example of a named bind. Each
placeholder in the statement has a name associated with it, such as ’ename’ or ’sal’.
When this statement is prepared and the placeholders are associated with values in
the application, the association is made by the name of the placeholder using the
OCIBindByName() call with the name of the placeholder passed in the placeholder
parameter.

A second type of bind is known as a positional bind. In a positional bind, the
placeholders are referred to by their position in the statement rather than their
names. For binding purposes, an association is made between an input value and
the position of the placeholder, using the OCIBindByPos() call.

The example from the previous section could also be used for a positional bind:

INSERT INTO emp VALUES
(*empno, :ename, :job, :sal, :deptno)

The five placeholders would then each be bound by calling OCIBindByPos() and
passing the position number of the placeholder in the position parameter. For
example, the :empno placeholder would be bound by calling OCIBindByPos() with
a position of 1, :ename with a position of 2, and so on.

In the case of a duplicate bind, only a single bind call may be necessary. Consider
the following SQL statement, which queries the database for those employees
whose commission and salary are both greater than a given amount:

SELECT empno FROM emp
WHERE sal >:some_value
AND comm >:some_value

An OCI application could complete the binds for this statement with a single call to
OCIBindByName() to bind the :some_value placeholder by name. In this case, the
second placeholder inherits the bind information from the first placeholder.

OCI Array Interface

You can pass data to Oracle in various ways. You can execute a SQL statement
repeatedly using the OCIStmtExecute() routine and supply different input values on
each iteration. Alternatively, you can use the Oracle array interface and input many

5-4 Oracle Call Interface Programmer’s Guide

Binding

values with a single statement and a single call to OCIStmtExecute(). In this case you
bind an array to an input placeholder, and the entire array can be passed at the
same time, under the control of the iters parameter.

The array interface significantly reduces round-trips to Oracle when you need to
update or insert a large volume of data. This reduction can lead to considerable
performance gains in a busy client/server environment. For example, consider an
application that needs to insert 10 rows into the database. Calling OCIStmtExecute()
ten times with single values results in ten network round-trips to insert all the data.
The same result is possible with a single call to OCIStmtExecute() using an input
array, which involves only one network round-trip.

Note: When using the OCI array interface to perform inserts, row triggers in the
database are fired as each row of the insert gets inserted.

Binding Placeholders in PL/SQL

You process a PL/SQL block by placing the block in a string variable, binding any
variables, and executing the statement containing the block, just as you would with
a single SQL statement.

When you bind placeholders in a PL/SQL block to program variables, you must
use OCIBindByName() or OCIBindByPos() to perform the basic bind binds. You can
use OCIBindByName() or OCIBindByPos() to bind host variables that are either
scalars or arrays.

The following short PL/SQL block contains two placeholders, which represent IN
parameters to a procedure that updates an employee’s salary, given the employee
number and the new salary amount:

char plsql_statement]] ="BEGIN\
RAISE_SALARY(:emp_number, :new_sal)\
END;";

These placeholders can be bound to input variables in the same way as placeholders
in a SQL statement.

When processing PL/SQL statements, output variables are also associated with
program variables using bind calls.

For example, in a PL/SQL block such as

BEGIN
SELECT ename,sal,comm INTO :emp_name, :salary, :commission
FROMemp
WHERE ename = :emp_number;

Binding and Defining 5-5

Binding

END;

you would use OCIBindByName() to bind variables in place of the :emp_name,
:salary , and :commission output placeholders, and in place of the input
placeholder :emp_number .

7.x Upgrade Note: In the Oracle7 OCI, it was sufficient for applications to
initialize only IN-bind buffers. In Oracle8i, all buffers, even pure OUT buffers,
must be initialized by setting the buffer length to zero in the bind call, or by
setting the corresponding indicator to -1.

See Also: For more information about binding PL/SQL placeholders see
"Information for Named Datatype and REF Binds" on page 12-3.

Steps Used in Binding

Binding placeholders is done in one or more steps. For a simple scalar or array bind,
it is only necessary to specify an association between the placeholder and the data.
This is done by using OCI bind by name (OCIBindByName()) or OCI bind by
position (OCIBindByPos()) call.

Note: See the section "Named Binds and Positional Binds" on page 5-4 for
information about the difference between these types of binds.

Once the bind is complete, the OCI library knows where to find the input data (or
where to put PL/SQL output data) when the SQL statement is executed. As
mentioned in the section "Binding" on page 5-2, program input data does not need
to be in the program variable when it is bound to the placeholder, but the data must
be there when the statement is executed.

The following code example shows handle allocation and binding for each of five
placeholders in a SQL statement.

Note: The checkerr() function evaluates the return code from an OCI application.
The code for the function is listed in the section "Error Handling" on page 2-27.

FThe SQL statement, associated with stmthp (the statement handle)

by calling OCIStmtPrepare() */

text *insert = (text *) "INSERT INTO emp(empno, ename, job, sal, deptno)\
VALUES (:empno, :ename, :job, :sal, :deptno)”;

F* Bind the placeholders in the SQL statement, one per bind handle. */
checkerr(errhp, OCIBindByName(stmthp, &bnd1p, erhp, (text *) ":ENAME",
stien(:ENAME"), (ubl *) ename, enamelen+1, STRING_TYPE, (dvoid *) 0,

5-6 Oracle Call Interface Programmer’s Guide

Binding

(Ub2% 0, (Ub2) 0, (ub4) O, (Ub4*) 0, OCI_DEFAULT))
checkerr(erhp, OCIBindByName(stmthp, &bnd2p, errhp, (text *) *:JOB",
strlen(":JOB"), (ub1 *) job, joblen+1, STRING_TYPE, (dvoid *)
&job_ind, (Ub2*) 0, (ub2) 0, (Ub4) O, (ub4 *) 0, OCI_DEFAULT))
checkerr(errhp, OCIBindByName(stmthp, &bond3p, erhp, (text *) ":SAL",
strlen(:SAL"), (ub1 *) &sal, (sword) sizeof(sal), INT_TYPE,
(dvoid®) &sal_ind, (ub2*) 0, (Ub2) O, (ub4) 0, (ub4 *) O,
OCI_DEFAULT))
checkerr(errhp, OCIBindByName(stmthp, &bnddp, erthp, (text *) ":“DEPTNO",
stien(:DEPTNQ"), (ub1 *) &deptno,(sword) sizeof(deptno), INT_TYPE,
(dvoid*) 0, (Ub2*) 0, (ub2) 0, (ub4) O, (ub4*) 0, OCI_DEFAULT))
checkerr(erhp, OCIBindByName(stmthp, &bond5Sp, erhp, (text *) :EMPNO",
stien(:EMPNO"), (ubl *) &empno, (sword) sizeof(empno), INT_TYPE,
(dvoid*) 0, (Ub2*) 0, (ub2) 0, (ub4) O, (ub4 *) 0,0CI_DEFAULT))

PL/SQL Example

Perhaps the most common use for PL/SQL blocks in an OCI program is to call
stored procedures or stored functions. For example, assume that there is a
procedure called RAISE_SALARY stored in the database, and you want to call this
procedure from an OCI program. You do this by embedding a call to that procedure
in an anonymous PL/SQL block, then processing the PL/SQL block in the OCI
program.

The following program fragment shows how to embed a stored procedure call in an
OCI application. For the sake of brevity, only the relevant portions of the program
are reproduced here.

The program passes an employee number and a salary increase as inputs to a stored
procedure called raise_salary , which takes these parameters:

raise_salary (employee_numIN, sal_increase IN, new_salary OUT);

This procedure raises a given employee’s salary by a given amount. The increased
salary which results is returned in the stored procedure’s OUT variable
new_salary , and the program displays this value.

* Define PL/SQL statement to be used in program. */
text*give_raise = (text *) "BEGIN\
RAISE_SALARY(:emp_number,:sal_increase, :new_salary);\

END;";
OCIBind *bndlp=NULL,; [the first bind handle */
OCIBind *bnd2p = NULL; Fthe second bind handle */
OCIBind *bnd3p =NULL; *the third bind handle */

Binding and Defining 5-7

Binding

static void checken();
sb4 status;

main()
{
sword empno, raise, new_sal;
dvoid *mp;
OCISession *usthp = (OCISession *)NULL;

[* attach to database server, and perform necessary initializations
and authorizations */

[+ allocate a statement handle */
checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
OCI_HTYPE_STMT, 100, (dvoid **) &mp));

F prepare the statement request, passing the PL/SQL text
block as the statement to be prepared */
checkerr(erhp, OCIStmtPrepare(stmthp, erhp, (text *) give_raise, (ub4)
strlen(give_raise), OCl_NTV_SYNTAX, OCI_DEFAULT));

Fbind each of the placeholders to a program variable */
checkenr(errhp, OCIBindByName(stmthp, &bnd1p, errhp, (text *) ":emp_number”,
-1, (ub1*) &empno,
(sword) sizeof(empno), SQLT_INT, (dvoid *) O,
(Ub2# 0, (Ub2) 0, (ub4) O, (Ub4*) 0, OCI_DEFAULT));

checkenr(errhp, OCIBindByName(stmthp, &bnd2p, errhp, (text*) ":sal_increase”,
-1, (Ubl*) &raise,
(sword) sizeof(raise), SQLT_INT, (dvoid *) O,
(Ub2*) 0, (Ub2) O, (Ub4) O, (b4 *) 0, OCI_DEFAULT));

F remember that PL/SQL OUT variable are bound, not defined */

checkerr(OCIBindByName(stmthp, &ond3p, enhp, (text *) ":new_salary",
-1, (ub1*) &new_sal,
(sword) sizeof(new_sal), SQLT_INT, (dvoid *) O,
(Ub2# 0, (Ub2) 0, (ub4) O, (Ub4*) 0, OCI_DEFAULT));

F prompt the user for input values */
printf("Enter the employee number: *);
scanf('%d", &empno);

Fflush the input buffer */
myfiush();

5-8 Oracle Call Interface Programmer’s Guide

Advanced Bind Operations

printf("Enter employee’s raise: *);
scanf('%d", &raise);

Fflush the input buffer */
myfush();

F* execute PL/SQL block*/
checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(OCISnapshot *) NULL, (OCISnapshot *) NULL, OCI_DEFAULT));

F display the new salary, following the raise */
printf(The new salary is %d\n", new_sal);
}

The following is one possible sample output from this program. Before execution,
the salary of employee 7954 is 2000.

Enter the employee number: 7954
Enter employee’s raise: 1000
The new salary is 3000.

Advanced Binds

The previous section and example demonstrated how to perform a simple scalar
bind. In that case, only a single bind call is necessary. In some cases, additional bind
calls are necessary to define specific attributes for specific bind datatypes or
execution modes. These more sophisticated bind operations are discussed in the
following section.

Oracle also provides predefined C datatypes that map object attributes. Information
about binding these datatypes, such as OCIDate and OCINumber, can be found in
Chapter 12, "Binding and Defining in Object Applications".

Advanced Bind Operations

The section "Binding" on page 4-5 discussed how a basic bind operation is
performed to create an association between a placeholder in a SQL statement and a
program variable using OCIBindByName() or OCIBindByPos().

This section covers more advanced bind operations, including multi-step binds, and
binds of named data types and REFs.

In certain cases, additional bind calls are necessary to define specific attributes for
certain bind data types or certain execution modes.

Binding and Defining 5-9

Advanced Bind Operations

The following sections describe these special cases, and the information about
binding is summarized in Table 5-1, "Bind Information for Different Bind Types".

Static Array Binds

Static array bind attributes are set using the OCI array of structures bind call
OCIBindArrayOfStruct(). This call is made following a call to OCIBindByName() or
OCIBindByPos().

Note: A static array bind does not refer to binding a column of type ARRAY of
scalars or named data types, but a bind to a PL/SQL table or for multiple row
operations in SQL (INSERTs/UPDATES).

The OCIBindArrayOfStruct() call is also used to define the skip parameters needed if
the application utilizes arrays of structures functionality.

See Also: For more information on using arrays of structures, see the section
"Arrays of Structures” on page 5-22.

Named Data Type Binds

Binding REFs

Binding LOBs

For information on binding named data types (objects), refer to"Named Datatype
Binds" on page 12-2.

For information on this topic, see "Binding REFs" on page 12-3.

When working with LOBs, the LOB locators, rather than the actual LOB values, are
bound. The LOB value is written or read by passing a LOB locator to the OCI LOB
functions.

Either a single locator or an array of locators can be bound in a single bind call. In
each case, the application must pass the address of a LOB locator and not the locator
itself. For example, if an application has prepared a SQL statement like

INSERT INTO some_table VALUES (:one_lob)

where :one_lob is a bind variable corresponding to a LOB column, and has made
the following declaration:

OClILobLocator * one_lob;

5-10 Oracle Call Interface Programmer’s Guide

Advanced Bind Operations

Then the following sequence of steps would be used to bind the placeholder, and
execute the statement

Finitialize single locator */

one_lob = OClDescriptorAlloc(..OCl_ DTYPE_LOB...);

* pass the address of the locator */
OCIBindByName...,(dvoid *) &one_lob,...);
OCIStmtExecurte(...,1,...) F Listhe iters parameter */

Note: In these examples, most parameters are omitted for simplicity.

You could also do an array insert using the same SQL INSERT statement. In this
case, the application would include the following code:

OCILabLocator *lob_array[10];

for (i=0; i<10, i++)
lob_array{i] = OClDescriptorAlloc(...OCl_DTYPE_LOB...);
Finitialize array of locators */

OCIBindByName(...,(dvoid *) lob_array,...);
OCIStmtExecute(...,10,...); F 10is the iters parameter */

Note that you must allocate descriptors with the OCIDescriptorAlloc() routine before
they can be used. In the case of an array of locators, you must initialize each array
element using OCIDescriptorAlloc(). Use OCI_DTYPE_LOB as the type parameter
when allocating BLOBs, CLOBs, and NCLOBs. Use OCI_DTYPE_FILE when
allocating BFILEs

Oracle allows binds for INSERTs and UPDATEs of any size LOB. So you can bind
up to 4 gigabytes of data into a LOB column using OCIBindByPos(),
OCIBindByName(), and PL/SQL binds. Because you can have multiple LOBs in a
row, you can bind up to 4 gigabytes of data for each one of those LOBs in the same
INSERT or UPDATE statement.

The bind of more than 4 kilobytes of data to a LOB column uses space from the
temporary tablespace. Users of this features should make sure that their temporary
tablespace is big enough to hold at least the amount of data equal to the sum of all
the bind lengths for LOBs. If your temporary tablespace is extendable, it will be
extended automatically after the existing space is fully consumed. Use the
command:

"CREATE TABLESPACE .. AUTOEXTENT ON ... TEMPORARY ..;"

to create an extendable temporary tablespace.

Binding and Defining 5-11

Advanced Bind Operations

Restrictions on LOB Binds

« Ifatable has both LONG and LOB columns, then you can have binds of greater
than 4 kilobytes for either the LONG column or the LOB columns, but not both
in the same statement.

« You cannot bind data of any size to LOB attributes in object-relational
datatypes.For LOB attributes, you need to insert an empty LOB locator and
then modify the contents of the LOB using OCILob* functions.

« Inan INSERT AS SELECT operation, Oracle does not allow binding of any
length data to LOB columns.

« Oracle doesn’t do any implicit conversion such as HEX to RAW or RAW to HEX
for data of size more than 4000 bytes. The following PL/SQL code illustrates
this:

create table t (c1 clob, c2 blob);
declare

text varchar(32767);

binbuf raw(32767);
begin

text = Ipad (&, 12000, 'a);

binbuf :=utl_raw.cast to_raw(text);

— The following works ...
insert into t values (text, binbuf);

— The following won't work because Oracle won't do implicit
— hex to raw conversion.
insertinto t (c2) values (text);

- The following won't work because Oracle won't do implicit
—raw to hex conversion.
insert into t (c1) values (binburf);

— The following won't work because we can't combine the
—utl_raw.cast _to_raw() operator with the >4k bind.
insertinto t (c2) values (utl_raw.cast to_raw(text));

end;
/

« If the user binds more than 4000 bytes of data to a BLOB or a CLOB, and the

data is filtered by a SQL operator, then Oracle will limit the size of the result to
at most 4000 bytes. For example:

5-12 Oracle Call Interface Programmer’s Guide

Advanced Bind Operations

create table t (c1 clob, c2 blob);

— The following command inserts only 4000 bytes because the result of
—LPAD is limited to 4000 bytes

insertinto t(c1) values (pad(&, 5000, 'a));

— The following command inserts only 2000 bytes because the result of
- LPAD is limited to 4000 bytes, and the implicit hex to raw conversion
— converts it to 2000 bytes of RAW data.

insertinto t(c2) values (Ipad(a, 5000, 'a));

Examples of Binding LOBs

Consider the following SQL statements which will be used in the examples that
follow:

CREATE TABLE foo(a INTEGER);
CREATE TYPE lob_typ(A1 CLOB);
CREATE TABLE lob_long_tab (C1 CLOB, C2 CLOB, CT3lob_typ, L LONG);

Samplel

void insert() F Afunction in an OCI program */
{
P The following is allowed */
ub1 buffer{8000];
text*insert_sql="INSERT INTOlob_long tab (C1, C2,L)
VALUES (1, :2,:3)"
OCIStmtPrepare(stmthp, errhp, insert_sql, strien((char*)insert_sq),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
OCIBindByPos(stmthp, &indhp[0], errhp, 1, (dvoid *)buffer, 8000,
SQLT_LNG,0,0,0,0,0, (ub4) OCI_DEFAULT);
OCIBindByPos(stmthp, &bindhp[1], erhp, 2, (dvoid *)buffer, 8000,
SQLT_LNG,0,0,0,0,0, (uh4) OCI_DEFAULT);
OCIBindByPos(stmthp, &indhp[2], errhp, 3, (dvoid *)buffer, 2000,
SQLT_LNG,0,0,0,0,0, (ub4) OCl_DEFAULT);
OCIStmtExecute(svchp, stmthp, errhp, 1,0, OCl_ DEFAULT);
}

Sample2

void insert()
FThe following is allowed */
ubl buffer{8000];

text*insert_sql="INSERT INTO lob_long_tab (C1, L)
VALUES (1, :2)";

Binding and Defining 5-13

Advanced Bind Operations

OCIStmtPrepare(stmthp, errhp, insert_sql, strien((char®)insert_sq),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
SQLT_LNG, 0,0,0,0,0, (ub4) OCI_DEFAULT);

OCIBindByPos(stmthp, &bindhp[1], erhp, 2, (dvoid *)buffer, 8000,
SQLT_LNG,0,0,0,0,0, (ub4) OCI_DEFAULT);

OCIStmtExecute(svchp, stmthp, errhp, 1, 0, OCI_DEFAULT);

}

Sample3
void insert()
{
FThe following is allowed, no matter how many rows it updates */
ubl buffer{8000];
text *insert_sql = (text*)'UPDATE lob_long_tab SET
Cl=:1,C2=2,1=3"
OCIStmtPrepare(stmthp, erhp, insert_sq, strlen((char¥)insert_sq),
(Ub4) OCI_NTV_SYNTAX, (ubd) OCI_DEFAULT);
OCIBindByPos(stmthp, &bindhp[0], erhp, 1, (dvoid *)buffer, 8000,
SQLT_LNG, 0,0,0,0,0, (ub4) OCl_DEFAULT);
OCIBindByPos(stmthp, &indhp[1], errhp, 2, (dvoid *)buffer, 8000,
SQLT_LNG,0,0,0,0,0, (uh4) OCI_DEFAULT);
OCIBindByPos(stmthp, &indhp[2], errhp, 3, (dvoid *)buffer, 2000,
SQLT_LNG, 0,0,0,0,0, (ub4) OCl_ DEFAULT);
OCIStmtExecute(svchp, stmthp, errhp, 1,0, OCl_DEFAULT);
}

Sample4

void insert()
{
P The following is allowed, no matter how many rows it updates */
ub1 buffer{8000];
text*insert_sql = (text*)'UPDATE lob_long_tab SET
Cl=:1,C2=2,1L=3"
OCIStmtPrepare(stmthp, errhp, insert_sql, strien((chart)insert_sq),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);
OCIBindByPos(stmthp, &indhp[0], errhp, 1, (dvoid *)buffer, 2000,
SQLT_LNG,0,0,0,0,0, (ub4) OCI_DEFAULT);
OCIBindByPos(stmthp, &bindhp[1], emhp, 2, (dvoid *)buffer, 2000,
SQLT_LNG,0,0,0,0,0, (ub4) OCI_DEFAULT),
OCIBindByPos(stmthp, &indhp[2], errhp, 3, (dvoid *)buffer, 8000,
SQLT_LNG,0,0,0,0,0, (ub4) OCl_DEFAULT);
OCISsimtExecute(svchp, stmthp, emhp, 1, 0, OCI_DEFAULT);
}

5-14 Oracle Call Interface Programmer’s Guide

Advanced Bind Operations

Sample5

void insert()

{
F* Piecewise, callback and array insert/update operations similar to
*the allowed regular insertfupdate operations are also allowed */

}

Sample6

void insert()
{
FThe following is NOT allowed because we try to insert >4000 bytes
*to both LOB and LONG columns */
ub1l buffer{8000];
text*insert_sql = (text*)'INSERT INTO lob_long_tab (C1, L)
VALUES (1, :2)";
OCIStmtPrepare(stmthp, errhp, insert_sql, strien((char®)insert_sq),
(ub4) OCI_NTV_SYNTAX, (ub4) OCl_DEFAULT);
OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 8000,
SQLT_LNG, 0,0,0,0,0, (ub4) OCI_DEFAULT);
OCIBindByPos(stmthp, &bindhp[1], emhp, 2, (dvoid *)buffer, 8000,
SQLT_LNG,0,0,0,0,0, (ub4) OCI_DEFAULT);
OCIStmtExecute(svchp, stmthp, errhp, 1, 0, OCI_DEFAULT);

}

Sample7
void insert()
{
P The following is NOT allowed because we try to insert data into
* OB attributes */
ubl buffer{8000];
text *insert_sql = (text*)'INSERT INTO lob_long_tab (CT3)
VALUES (Iob_typ(:2))";
OCIStmtPrepare(stmthp, errhp, insert_sql, strien((char®)insert_sq),
(ub4) OCI_NTV_SYNTAX, (ub4) OCl_DEFAULT);
OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 2000,
SQLT_LNG,0,0,0,0,0, (ub4) OCl_DEFAULT);
OCIStmtExecute(svchp, stmthp, errhp, 1, 0, OCI_DEFAULT);
}

Sample8

void insert()

{

Binding and Defining 5-15

Advanced Bind Operations

FThe following is NOT allowed because we try to do insert as

* select character data into LOB column */

ub1 buffer{8000;

text*insert_sgl = (text*)'INSERT INTO lob_long tab (C1) SELECT

:1from FOQO";

OCIStmtPrepare(stmthp, errhp, insert_sq|, strien((char¥)insert_sq),
(ub4) OCI_NTV_SYNTAX, (ub4) OCl_DEFAULT);

OCIBindByPos(stmthp, &bindhp[0], errhp, 1, (dvoid *)buffer, 8000,
SQLT_LNG, 0,0,0,0,0, (ub4) OCl_DEFAULT);

OCIstmtExecute(svchp, stmthp, enhp, 1, 0, OCI_DEFAULT);

Other Disallowed Operations

Other update operations similar to the disallowed insert operations are also not
allowed. Piecewise and callback INSERT or UPDATE operations similar to the
disallowed regular INSERT or UPDATE operations are also not allowed.

See Also: For more information about OCI LOB functions, refer to Chapter 7,
"LOB and FILE Operations".

Binding FILES

When using a FILE locator as a bind variable for an INSERT or UPDATE statement,
the user must first initialize the locator with a directory alias and filename (using
OCILobFileSetName()) before issuing the INSERT or UPDATE statement.

Binding in OCI_DATA AT _EXEC Mode

If the mode parameter in a call to OCIBindByName() or OCIBindByPos() is set to
OCI_DATA_AT_EXEC, an additional call to OCIBindDynamic() is necessary if the
application will use the callback method for providing data at runtime. The call to
OCIBindDynamic() sets up the callback routines, if necessary, for indicating the data
or piece that is being provided.

If the OCI_DATA_AT_EXEC mode is chosen, but the standard OCI piecewise
polling method will be used instead of callbacks, the call to OCIBindDynamic() is not
necessary.

When binding RETURN clause variables, an application must use
OCI_DATA_AT_EXEC mode, and it must provide callbacks.

See Also: For more information about piecewise operations, please refer to the
section "Run Time Data Allocation and Piecewise Operations" on page 5-37.

5-16 Oracle Call Interface Programmer’s Guide

Advanced Bind Operations

Binding Ref Cursor Variables

Ref Cursors are bound to a statement handle with a bind datatype of SQLT_RSET.
See "PL/SQL REF CURSORs and Nested Tables" on page 5-35

Summary of Bind Information

The following table summarizes the bind calls necessary for different types of binds.
For each type, the table lists the bind datatype (passed in the dty parameter of
OCIBindByName() or OCIBindByPos()), and notes about the bind.

Table 5-1 Bind Information for Different Bind Types

Type of Bind Bind Datatype Notes
Scalar any scalar datatype Bind a single scalar using OCIBindByName() or OCIBindByPos().
Array of Scalars any scalar datatype Bind an array of scalars using OCIBindByName() or

OCIBindByPos().

Named Data Type SQLT_NTY Two bind calls are required:
« OCIBindByName() or OCIBindByPos()
« OCIBindObject()

REF SQLT_REF Two bind calls are required:
« OCIBindByName() or OCIBindByPos()
« OCIBindObject()

LOB SQLT_BLOB Allocate the LOB locator using OClDescriptorAlloc(), and then
bind its address (OCIlLobLocator **) with OCIBindByName() or

BFILE SQLT_CLOB OCIBindByPos(), using one of the LOB datatypes.

Array of Structures varies Two bind calls are required:

or Static Arrays « OCIBindByName() or OCIBindByPos()

« OCIBindArrayOfStruct()

Piecewise Insert varies OCIBindByName() or OCIBindByPos() is required. The
application may also need to call OCIBindDynamic() to register
piecewise callbacks.

REF CURSOR variables SQLT_RSET Allocate a statement handle, OCIStmt, and then bind its

address (OCIStmt **) using the SQLT_RSET datatype.

See Also: For more information about datatypes and datatype codes, see
Chapter 3, "Datatypes".

Binding and Defining 5-17

Defining

Defining

Query statements return data from the database to your application. When
processing a query, you must define an output variable or an array of output
variables for each item in the select-list from which you want to retrieve data. The
define step creates an association that determines where returned results are stored,
and in what format.

For example, if your OCI statement processes the following statement:

SELECT name, ssn FROM employees
WHERE empno = :empnum

you would normally need to define two output variables, one to receive the value
returned from the name column, and one to receive the value returned from the ssn
column.

Note: If you were only interested in retrieving values from the name column,
you would not need to define an output variable for ssn .

If the SELECT statement being processed might return more than a single value for
a query, the output variables you define may be arrays instead of scalar values.

Note: Depending on the application, the define step can take place before or
after the execute. If the datatypes of select-list items are known when the
application is coded, the define can take place before the statement is executed.
If your application is processing dynamic SQL statements—statements entered
by the user at run time— or statements that do not have a clearly defined
select-list, such as

SELECT * FROM employees

the application must execute the statement and retrieve describe information
before defining output variables. See the section "Describing Select-List Iltems"
on page 4-11 for more information.

The OCI processes the define call locally, on the client side. In addition to indicating
the location of buffers where results should be stored, the define step also
determines what type of data conversions, if any, will take place when data is
returned to the application.

The dty parameter of the OCIDefineByPos() call specifies the datatype of the output
variable. The OCI is capable of a wide range of data conversions when data is
fetched into the output variable. For example, internal data in Oracle DATE format
can be automatically converted to a string datatype on output.

5-18 Oracle Call Interface Programmer’s Guide

Defining

See Also: For more information about datatypes and conversions, refer to
Chapter 3, "Datatypes"”.

Steps Used in Defining

Defining output variables is done in one or more steps. A basic define is
accomplished with the OCI define by position call, OCIDefineByPos(). This step
creates an association between a select-list item and an output variable. Additional
define calls may be necessary for certain datatypes or fetch modes.

Once the define step is complete, the OCI library knows where to put retrieved data
after fetching it from the database.

Note: You can make your define calls again to redefine the output variables
without having to reprepare or reexecute the SQL statement.

The following example code shows a scalar output variable being defined following
an execute and a describe.

/¥ The following statement was prepared, and associated with statement
handle stmthpl.

SELECT dname FROM dept WHERE deptno = :dept_input

The input placeholder was bound earlier, and the data comes from the
user input below */

printf("Enter employee dept. ");
scanf('%d", &deptno);

myfiush();

F* Execute the statement. If OCIStmtExecute() retums OCl_NO_DATA, meaning that
no data matches the query, then the department number is invalid. */
if ((status = OCISImtExecute(svchp, stmthpl, errhp, 0, 0, 0, 0,
OCI_DEFAULT))
&& (status '=OCl_NO_DATA))
{
checkerr(erhp, status);
do_exit(EXIT_FAILURE);
}
if (Status = OCI_NO_DATA){
printf(The dept you entered doesn't exist\n');
retum O;

}
* The next two statements describe the select-ist item, dname, and

Binding and Defining 5-19

Advanced Define Operations

retum its length */
checkerr(erhp, OCIParamGet(stmthpl, errhp, &parmdp, (ub4) 1));
checkem(erthp, OClAtrGet((dvoid®) parmdp, (ub4) OCl_DTYPE_PARAM,
(dvoid*) &deptlen, (Ub4 *) O, (ub4) OCI_ATTR_DATA SIZE,
(OClEror*) errhp));

¥ Use the retrieved length of dname to allocate an output buffer, and
then define the output variable. If the define call retums an error,
exit the application */
dept = (text *) malloc((int) deptlen + 1);
if (status = OCIDefineByPos(stmthpl, &defnp, enhp,
1, (ub1*) dept, deptien+1,
SQLT_STRING, (dvoid *) 0,
(ub2* 0, OCI_DEFAULT))
{
checkerr(erhp, status);
do_exit(EXIT_FAILURE);
}

For an explanation of the describe step, see the section "Describing Select-List Items
on page 4-11.

Advanced Defines
In some cases the define step requires more than just a call to OCIDefineByPos().
There are additional calls that define the attributes of an array fetch
(OCIDefineArrayOfStruct()) or a named data type fetch (OCIDefineObject()). For
example, to fetch multiple rows with a column of named data types, all three calls
must be invoked for the column; but to fetch multiple rows of scalar columns,
OCIDefineArrayOfStruct() and OCIDefineByPos() are sufficient.

These more sophisticated define operations are covered in the section "Advanced
Define Operations" on page 5-20.

Oracle also provides pre-defined C datatypes that map object type attributes.
Information about defining these datatypes (e.g., OClIDate, OCINumber) can be
found in Chapter 12, "Binding and Defining in Object Applications".

Advanced Define Operations

The section "Defining" on page 4-14 discussed how a basic define operation is
performed to create an association between a SQL select-list item and an output
buffer in an application.

5-20 Oracle Call Interface Programmer’s Guide

Advanced Define Operations

This section covers more advanced defined operations, including multi-step
defines, and defines of named data types and REFs.

In some cases the define step requires more than just a call to OCIDefineByPos().
There are additional calls that define the attributes of an array fetch
(OCIDefineArrayOfStruct()) or a named data type fetch (OCIDefineObject()). For
example, to fetch multiple rows with a column of named data types, all the three
calls must be invoked for the column; but to fetch multiple rows of scalar columns
only OCIDefineArrayOfStruct() and OCIDefineByPos() are sufficient.

The following sections discuss specific information pertaining to different types of
defines.

Defining Named Data Type Output Variables

For information on defining named data type (object) output variables, refer to
"Defining Named Datatype Output Variables" on page 12-4.

Defining REF Output Variables

For information on defining REF output variables, refer to "Defining REF Output
Variables" on page 12-4.

Defining LOB Output Variables

For LOBs, the buffer pointer must be a locator of type OCIlLobLocator, allocated by
the OClDescriptorAlloc() call. LOB locators, and not LOB values, are always returned
for a LOB column. LOB values can then be fetched using OCI LOB calls on the
fetched locator.

Defining PL/SQL Output Variables

You do not use the define calls to define output variables for select-list items in a
SQL SELECT statement in a PL/SQL block. You must use OCI bind calls instead.

See Also: See the section "Information for Named Datatype and REF Defines,
and PL/SQL OUT Binds" on page 12-5 for more information about defining
PL/SQL output variables.

Binding and Defining 5-21

Arrays of Structures

Defining For a Piecewise Fetch

When performing a piecewise fetch, an initial call to OCIDefineByPos() is required.
An additional call to OCIDefineDynamic() is necessary if the application will use
callbacks rather than the standard polling mechanism for fetching data.

See Also: See the section "Run Time Data Allocation and Piecewise Operations”
on page 5-37 for more information.

Defining Arrays of Structures

When using arrays of structures, an initial call to OCIDefineByPos() is required. An
additional call to OCIDefineArrayOfStruct() is necessary to set up additional
parameters, including the skip parameter necessary for arrays of structures
operations.

See Also: For more information, refer to the section "Arrays of Structures” on
page 5-22.

Arrays of Structures

The "arrays of structures" functionality of the Oracle OCI can simplify the
processing of multi-row, multi-column operations. The OCI programmer can create
a structure of related scalar data items and then fetch values from the database into
an array of these structures or insert values into the database from an array of these
structures.

For example, an application may need to fetch multiple rows of data from three
columns named NAME, AGE, and SALARY. The OCI application could include the
definition of a structure containing separate fields to hold the NAME, AGE and
SALARY data from one row in the database table. The application would then fetch
data into an array of these structures.

In order to perform a multi-row, multi-column operation using an array of
structures, the developer associates each column involved in the operation with a
field in a structure. This association, which is part of the OCIDefineArrayOfStruct()
and OCIBindArrayOfStruct() calls, specifies where fetched data will be stored, or
where inserted or updated data will be found.

Figure 5-2, "Fetching Data Into an Array of Structures" is a graphical representation
of this process. In the figure, an application fetches various fields from a database
row into a single structure in an array of structures. Each column being fetched
corresponds to one of the fields in the structure.

5-22 Oracle Call Interface Programmer’s Guide

Arrays of Structures

Figure 5-2 Fetching Data Into an Array of Structures

Oracle Table

Array of
Structures

L
|——>|

skip parameter

Skip Parameters

column column column

1 field 1 structure

When you split column data across an array of structures, it is no longer
contiguous. The single array of structures stores data as though it were composed of
several interleaved arrays of scalars. Because of this fact, developers must specify a
"skip parameter" for each field they are binding or defining. This skip parameter
specifies the number of bytes that need to be skipped in the array of structures
before the same field is encountered again. In general this will be equivalent to the
byte size of one structure.

The figure below demonstrates how a skip parameter is determined. In this case the
skip parameter is the sum of the sizes of the fields fieldl, field2 and field3, which is 8
bytes. This equals the size of one structure.

Binding and Defining 5-23

Arrays of Structures

Figure 5-3 Determining Skip Parameters.

Array of Structures

field 1 field 2 field 3 | field 1 field 2 field 3 | field 1 field 2 field 3
2 bytes ‘ 4 bytes ‘ 2 bytes | 2 bytes ‘ 4 bytes ‘ 2 bytes | 2 bytes ‘ 4 bytes ‘ 2bytes| = = = =«
| ‘ > | ‘ >
skip 8 bytes skip 8 bytes

On some systems it may be necessary to set the skip parameter to be sizeof(one array
element) rather than sizeof(struct). This is because some compilers may insert
padding into a structure. For example, consider an array of C structures consisting
of two fields, a ub4 and a ub1.

structdemo{
ub4 field,;
ubl field2;
3
struct demo demo_array[MAXSIZE];

Some compilers insert three bytes of padding after the ub1 so that the ub4 which
begins the next structure in the array is properly aligned. In this case, the following
statement may return an incorrect value:

skip_parameter = sizeof(struct demo);

On some systems this will produce a proper skip parameter of eight. On other
systems, skip_parameter will be set to five bytes by this statement. In this case,
use the following statement to get the correct value for the skip parameter:

skip_parameter = sizeof(demo_array{0]);

Skip Parameters for Standard Arrays

The ability to work with arrays of structures is an extension of the functionality for
binding and defining arrays of program variables. Programmers can also work with
standard arrays (as opposed to arrays of structures). When specifying a standard
array operation, the related skip will be equal to the size of the datatype of the array
under consideration. For example, for an array declared as

textemp_names[4][20]

5-24 Oracle Call Interface Programmer’s Guide

Arrays of Structures

the skip parameter for the bind or define operation will be 20. Each data element in
the array is then recognized as a separate unit, rather than being part of a structure.

OCI Calls Used with Arrays of Structures

Two OCI calls must be used when performing operations involving arrays of
structures: OCIBindArrayOfStruct() (for binding fields in arrays of structures for
input variables) and OCIDefineArrayOfStruct() (for defining arrays of structures for
output variables).

Note: When binding or defining for arrays of structures, multiple calls are
required. A call to OCIBindByName() or OCIBindByPos() must proceed a call to
OCIBindArrayOfStruct(), and a call to OCIDefineByPos() must proceed a call to
OCIDefineArrayOfStruct().

See Also: See the descriptions of OCIBindArrayOfStruct() and
OCIDefineArrayOfStruct() in Chapter 15, "OCI Relational Functions" for syntax
and parameter descriptions.

Arrays of Structures and Indicator Variables

The implementation of arrays of structures also supports the use of indicator
variables and return codes. OCI application developers can declare parallel arrays
of column-level indicator variables and return codes, corresponding to the arrays of
information being fetched, inserted, or updated. These arrays can have their own
skip parameters, which are specified during a call to OCIBindArrayOfStruct() or
OCIDefineArrayOfStruct().

You can set up arrays of structures of program values and indicator variables in
many ways. For example, consider an application that fetches data from three
database columns into an array of structures containing three fields. You can set up
a corresponding array of indicator variable structures of three fields, each of which
is a column-level indicator variable for one of the columns being fetched from the
database.

Note: A one-to-one relationship between the fields in an indicator struct and the
number of select-list items is not necessary.

See Also: See "Indicator Variables" on page 2-32 for more information about
indicator variables.

Binding and Defining 5-25

DML with RETURNING Clause

DML with RETURNING Clause

The OCI supports the use of the RETURNING clause with SQL INSERT, UPDATE,
and DELETE statements. This section outlines the rules an OCI application must
follow to correctly implement DML statements with the RETURNING clause.

Note: For more information about the use of the RETURNING clause with
INSERT, UPDATE, or DELETE statements, please refer to the descriptions of
those commands in the Oracle8i SQL Reference.

For a complete code example, see the demonstration programs included with
your Oracle installation. For additional information, refer to Appendix B, "OCI
Demonstration Programs".

Using DML with RETURNING Clause

Using the RETURNING clause with a DML statement allows you to essentially
combine two SQL statements into one, possibly saving you a server round-trip. This
is accomplished by adding an extra clause to the traditional UPDATE, INSERT, and
DELETE statements. The extra clause effectively adds a query to the DML
statement.

In the OCI, the values are returned to the application through the use of OUT bind
variables. The rules for binding these variables are described in the next section. In
the following examples, the bind variables are indicated by the preceding colon,
such as :outl . These examples assume the existence of a table called tablel ,
which contains three columns: coll , col2 , and col3 .

For example, the following statement inserts new values into the database and then
retrieves the column values of the affected row from the database, allowing your
application to work with inserted rows.

INSERT INTO tablel VALUES (11, 2, :3)
RETURNING col1, col2, col3
INTO :outl, :out2, :out3

The next example uses the UPDATE statement. This statement updates the values
of all columns whose coll value falls within a certain range, and then returns the
affected rows to the application, allowing the application to see which rows were
modified.

UPDATE tablel SET coll =coll +:1, col2=:2,col3=:3
WHERE coll >=:low AND coll <= :high
RETURNING col1, col2, col3
INTO :outl, :out2, :out3

5-26 Oracle Call Interface Programmer’s Guide

DML with RETURNING Clause

The following DELETE statement deletes the rows whose coll value falls within a
certain range, and then returns the data from those rows so that the application can
check them.

DELETE FROM tablel WHERE col1 >= :low AND col2 <='high
RETURNING coll, col2, col3
INTO :outl, :out2, :out3

Note that in both the UPDATE and DELETE examples there is the possibility that
the statement will affect multiple rows in the table. Additionally, a DML statement
could be executed multiple times in a single OCIExecute() statement. Because of this
possibility for multiple returning values, an OCI application may not know how
much data will be returned at runtime. As a result, the variables corresponding to
the RETURNING...INTO placeholders must be bound in OCI_DATA_AT_EXEC
mode. It is an additional requirement that the application must define its own
dynamic data handling callbacks rather than using the OCI_DATA_AT_EXEC
polling mechanism.

Note: Even if the application can be sure that it will only get a single value back
in the RETURNING clause, it must still bind in OCI_DATA_AT_EXEC mode
and use callbacks.

The returning clause can be particularly useful when working with LOBs.
Normally, an application must insert an empty LOB locator into the database, and
then SELECT it back out again to operate on it. Using the RETURNING clause, the
application can combine these two steps into a single statement:

INSERT INTO some_table VALUES (iin_locator)
RETURNING lob_column
INTO :out_locator

Binding RETURNING...INTO variables

An OCI application implements the placeholders in the RETURNING clause as
pure OUT bind variables. However, all binds in the RETURNING clause are
initially IN and must be properly initialized. To provide a valid value, you can
provide a NULL indicator and set that indicator to -1 (NULL).

An application must adhere to the following rules when working with bind
variables in a RETURNING clause:

Binding and Defining 5-27

DML with RETURNING Clause

1. Bind RETURNING clause placeholders in OCI_DATA_AT_EXEC mode using
OCIBindByName() or OCIBindByPos(), followed by a call to OCIBindDynamic()
for each placeholder.

Note: The OCI only supports the callback mechanism for RETURNING clause
binds. The polling mechanism is not supported.

2. When binding RETURNING clause placeholders, you must supply a valid out
bind function as the ocbfp parameter of the OCIBindDynamic() call. This function
must provide storage to hold the returned data.

3. The icbfp parameter of OCIBindDynamic() call should provide a "dummy”
function which returns NULL values when called.

4. The piecep parameter of OCIBindDynamic() must be set to OCI_ONE_PIECE.

5. No duplicate binds are allowed in a DML statement with a RETURNING
clause, such as no duplication between bind variables in the DML section and
the RETURNING section of the statement.

Error Handling

The out bind function provided to OCIBindDynamic() must be prepared to receive
partial results of a statement in the event of an error. For example, if the application
has issued a DML statement which should be executed 10 times, and an error
occurs during the fifth iteration, the server will still return the data from iterations 1
through 4. The callback function would still be called to receive data for the first
four iterations.

DML with RETURNING REF...INTO clause

The RETURNING clause can also be used to return a REF to an object which is
being inserted into or updated in the database. The following SQL statement shows
how this could be used.

UPDATE EXTADDR E SET E.ZIP ='12345' ESTATE=AZ
WHERE E.STATE ='CA AND E.ZIP=95117"
RETURNING REFE), ZIP
INTO :addref, :zip

This statement updates several attributes of an object in an object table and then
returns a REF to the object (along with the scalar ZIP code) in the RETURNING
clause.

Binding the REF output variable in an OCI application requires three steps:

5-28 Oracle Call Interface Programmer’s Guide

DML with RETURNING Clause

1. The initial bind information is set using OCIBindByName()
2. Additional bind information for the REF (including the TDO) is set with

OCIBindObject()
3. A call to OCIBindDynamic()

The following pseudocode shows a function which performs the binds necessary

for the above example.

sword bind_output(stmthp, bndhp, erhp)
OCISmt *stmthp;
OCIBind *bndhp(];
OCIEnor *erthp;
{
ub4i;
¥ get TDO for BindObject call */
if (OCITypeByName(envhp, errhp, svchp, (CONST text *) O,
(ub4) 0, (CONST text *) "ADDRESS_OBJECT",
(ub4) strlen((CONST char *) "ADDRESS_OBJECT"),
(CONST text*) 0, (ub4) 0,
OCI_DURATION_SESSION, OCI_TYPEGET_HEADER, &addrtdo))
{
retum OCI_ERROR,

}

Finitial bind call for both variables */
if (OCIBindByName(stmthp, &bndhp[2], erthp,
(text*) ":addref", (sb4) sten((char *) ":addref"),
(dvoid *) O, (sb4) sizeof(OCIRef*), SQLT_REF,
(dvoid *) O, (Ub2%)0, (b2 *)0,
(ub4) 0, (Ub4*) O, (ub4) OCI_DATA_AT_EXEC)
I OCIBindByName(stmthp, &bondhp[3], errhp,
(text*) ":zip", (sb4) strien((char *) “:zip"),
(dvoid *) O, (sb4) MAXZIPLEN, SQLT_CHR,
(dvoid *) O, (Ub2#)0, (b2 *)0,
(ub4) 0, (ub4*) O, (ub4) OCI_DATA _AT_EXEC))
{
retum OC|_ERROR;

}

* object bind for REF variable */
if (OCIBindObject(bndhp[2], enrhp, (OCIType *) addrtdo,
(dvoid **) &addrref[0], (ub4 *) 0, (dvoid *¥) O, (ub4 *) 0))
{
retum OCI_ERROR,;

Binding and Defining

5-29

DML with RETURNING Clause

for (i=0;i<MAXCOLS; i++)
posl] =i,

F dynamic binds for both RETURNING variables */

if (OCIBindDynamic(bndhp[2], erthp, (dvoid *) &pos[0], cbf no_data,
(dvoid *) &pos[0], chf_get data)

| OCIBindDynamic(bndhpf3], errhp, (dvoid *) &pos(1], cbf_no_data,
(cdvoid *) &posf1], cbf get data))

{

retum OCI_ERROR;
}

retum OCl_SUCCESS;
}

Additional Notes About Callbacks

When a callback function is called, the OCI_ATTR_ROWS_RETURNED attribute of
the bind handle tells the application the number of rows being returned in that
particular iteration. Thus, when the callback is called the first time in a particular
iteration (i.e., index=0), the user can allocate space for all the rows which will be
returned for that bind variable. When the callback is called subsequently (with
index>0) within the same iteration, the user can merely increment the buffer pointer
to the correct memory within the allocated space to retrieve the data.

Array Interface for DML RETURNING Statements

OCI provides additional functionality for single-row DML operations and array
DML operations in which each iteration returns more than one row. To take
advantage of this feature, the client application must specify an OUT buffer in the
bind call which is at least as big as the iteration count specified in the
OCIStmtExecute() call. This is in addition to the method by which bind buffers are
provided through callbacks.

When the statement executes, if any of the iterations returns more than one row,
then the application receives an OCI_SUCCESS_WITH_INFO return code. In this
case, the DML operation is successfully completed. At this point the application
may choose to roll back the transaction or ignore the warning.

5-30 Oracle Call Interface Programmer’s Guide

NCHAR and Character Conversion Issues

NCHAR and Character Conversion Issues

This section discusses issues involving NCHAR data and character conversions
between the client and the server.

NCHAR Issues

Oracle provides support for NCHAR data in the database, and the Oracle OCI
provides support for binding and defining NCHAR data. If a database column
containing character data is defined to be an NCHAR column, then a bind or define
involving that column must take into account special considerations for dealing
with character set specifications.

These considerations are necessary in case the width of the client character set is
different from that on the server, and also for proper character conversion between
the client and server. During conversion of data between different character sets, the
size of the data may grow or shrink as much as fourfold. Care must be taken to
insure that buffers provided to hold the data are of sufficient size.

In some cases, it may also be easier for an application to deal with NCHAR data in
terms of numbers of characters, rather than numbers of bytes (which is the usual
case).

Each OCI bind and define handle has OCI_ATTR_CHARSET_FORM and
OCI_ATTR_CHARSET _ID attributes associated with it. An application can set these
attributes with the OCIAttrSet() call in order to specify the character form and
character set ID of the bind/define buffer.

The form attribute (OCI_ATTR_CHARSET_FORM) has two possible values:
« SQLCS_IMPLICIT - database character set ID

« SQLCS NCHAR - NCHAR character set ID

The default value is SQLCS_IMPLICIT.

If the character set ID attribute (OCI_ATTR_CHARSET _ID) is not specified, then the
default value of the database or NCHAR character set ID of the client is used,
depending on the value of form. That is the value specified in the NLS_LANG and
NLS_NCHAR environment variables.

If nothing is specified, then the default database character set ID of the client is
assumed.

Binding and Defining 5-31

NCHAR and Character Conversion Issues

Note: No matter what values are assigned to the character set ID and form of
the client-side bind buffer, the data is converted and inserted into the database
according to the server’s database/NCHAR character set ID and form.

See Also: For more information about NCHAR data, refer to the Oracle8i
Reference.

OCI_ATTR_MAXDATA_SIZE Attribute

Every bind handle has a OCI_ATTR_MAXDATA _SIZE attribute. This attribute
specifies the number of bytes to be allocated on the server to accommodate the
client-side bind data after any necessary character set conversions.

Note: Character set conversions performed when data is sent to the server may
result in the data expanding or contracting, so its size on the client may not be
the same as its size on the server.

An application will typically set OCI_ATTR_MAXDATA_SIZE to the maximum size
of the column or the size of the PL/SQL variable, depending on how it is used.
Oracle issues an error if OCI_ATTR_MAXDATA_SIZE is not a large enough value
to accommodate the data after conversion, and the operation will fail.

The following scenarios demonstrate some examples of the use of the
OCI_ATTR_MAXDATA_SIZE attribute:

« Scenario 1: CHAR (source data) -> non-CHAR (destination column)

In this case there are implicit bind conversions taking place on the data. The
recommended value of OCI_ATTR_MAXDATA_SIZE in this case would be the
size of the source buffer multiplied by the worst-case expansion between the
client and server character sets.

« Scenario 2: CHAR (source data) -> CHAR (destination column)
or non-CHAR (source data) -> CHAR (destination column)

In either of these cases, the recommended value of
OCI_ATTR_MAXDATA SIZE is the size of the column.

« Scenario 3: CHAR (source data) -> PL/SQL variable

In this case, the recommended value of OCI_ATTR_MAXDATA _SIZE is the size
of the PL/SQL variable.

5-32 Oracle Call Interface Programmer’s Guide

NCHAR and Character Conversion Issues

Character Count Attribute

Bind and define handles have a character count attribute associate with them. An
application can use this attribute to work with data in terms of numbers of
characters, rather than numbers of bytes. If this attribute is set to a non-zero value, it
indicates that all calculations should be done in terms of characters instead of bytes,
and any constraint sizes should be thought of in terms of characters rather than
bytes.

This attribute can be set in addition to the OCI_ATTR_MAXDATA_SIZE attribute
for bind handles. For example, if OCI_ATTR_MAXDATA_SIZE is set to 100, and
OCI_ATTR_CHAR_COUNT is set to 0, this means that the maximum possible size
of the data on the server after conversion is 100 bytes. However, if
OCI_ATTR_MAXDATA_SIZE is set to 100, and OCI_ATTR_CHAR_COUNT is set
to a non-zero value, then if the character set has 2 bytes/character, the maximum
possible allocated size is 200 bytes (2 bytes/char * 100 chars).

Note: This attribute is valid only for fixed-width character set IDs. For
variable-width character set IDs, these values are always treated as numbers of
bytes, rather than numbers of characters.

For binds, the OCI_ATTR_CHAR_COUNT attribute sets the number of characters
that an application wants to reserve on the server to store the data being bound.
This overrides the OCI_ATTR_MAXDATA_SIZE attribute. For all datatypes that
have a length prefix as part of their value (e.g., VARCHAR?2), the length prefix is
then considered to be the number of characters, rather than the number of bytes. In
this case, indicator lengths and return codes are also in characters.

Note: Regardless of the value of the OCI_ATTR_CHAR_COUNT attribute, the
buffer lengths specified in a bind or define call are always considered to be in
terms of number of bytes. The actual length values sent and received by the
user are also in characters in this case.

For defines, the OCI_ATTR_CHAR_COUNT attribute specifies the maximum
number of characters of data the client application wants to receive. This constraint
overrides the maxlength parameter specified in the OCIDefineByPos() call.

Fixed Width Unicode Support

The character set ID in bind and define of the CHAR/NCHAR variant handles can
be set to specify that all data passed via the corresponding bind and define calls is
assumed to be in UCS-2 (unicode) encoding. To specify UCS-2, set
OCI_ATTR_CHARSET _ID = OCI_UCS2ID. For more information, see the bind

Binding and Defining 5-33

NCHAR and Character Conversion Issues

attribute OCI_ATTR_CHARSET_ID on page A-21 and the define attribute
OCI_ATTR_CHARSET_ID on page A-23.

The new OCI Unicode datatype is called utext and follows the UCS-2 encoding
scheme according to the Unicode Standard Version 2.0. The internal representation
is a 16-bit unsigned integer (ub2). Platforms where the encoding scheme of the
wechar_t datatype conforms to UCS-2 (unsigned 16 Bit value) can easily convert
utext to the wchar_t datatype using cast operators.

Length semantics for the indicator variables and the return values of buffer sizes are
assumed to be in character semantics. However the buffer size in bind and define
calls is assumed to be in bytes. Users should use the new utext datatype as the
buffer for input/output data.

Note: When changing the character set on an bind handle, the maximum length
of the column should be explicitly set using OCIAttrSet() to specify the length of
the column with the OCI_ATTR_MAXDATA _SIZE attribute.

Precautions should be taken if the server is using the UTF-8 character set. Due to
the nature of UTF-8, each database column that receives text data in UTF-8 format
should be widened to three bytes per character. To ensure a character-like semantics
for column length, an additional constraint should be used to prevent buffer
overflow on the client. For example, when the columns of an UTF-8 database
contain only ASCII data the conversion to UCS-2 causes buffer overflow on the
client. The following is an example of a constraint for a specified col-width:

CONSTRAINT COL1 MAXLEN CHECK
((COL1IS NULL) OR (LENGTH(COL1) <= <cokwidth>))

The following pseudocode illustrates a bind and define for unicode data:

OCISmt *stmthpl, *stmthp2;
OCIDefine *dfnlp, *dinp2;
OCIBind *bnd1p, *bnd2p;
text *insstmt=
(text®) "INSERT INTO EMP(ENAME, ADDRESS) VALUES (:ename, :address)";
text*selname =
(text*) "SELECT ENAME, ADDRESS FROM EMP",
utext enamef21]; 4 Name - Unicode */
utext address[b1]; # Address - Unicode */
ub2 csid =0OCl_UCS2ID;
sh2 ename_cal len=20;
sh2 address_coal len=50;

F Inserting Unicode data */

5-34 Oracle Call Interface Programmer’s Guide

PL/SQL REF CURSORs and Nested Tables

OCIStmtPrepare (stmthpl, errhp, insstmt, (ub4)strien ((char *)insstmt),
(Ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT));
OCIBindByName(stmthpl, &bnd1p, errhp, (text*)":-ENAME",
(sba)strlen((char *':ENAME"),
(dvoid *) ename, sizeof(ename), SQLT_STR,
(dvoid *)&insname_ind, (ub2*) 0, (Ub2*) O, (ub4) O,
(ub4*0, OCI_DEFAULT);
OCIAttrSet((dvoid *) bnd1p, (ub4) OCl_HTYPE_BIND, (dvoid *) &csid,
(ub4) O, (Ub4)OCI_ATTR_CHARSET_ID, erthp);
OClAtrSet((dvoid *) bnd1p, (ub4) OCI_HTYPE_BIND, (dvoid *) &ename_cal_len,
(ub4) 0, (Ub4)OCI_ATTR_MAXDATA _SIZE, erthp);

F* Retrieving Unicode data */
OCIStmtPrepare (stmthp2, enrhp, selname, strien((char *) selname),
(Ub4)OCI_NTV_SYNTAX, (ub4)OCI_DEFAULT);
OCIDefineByPos (stmthp2, &dfnlp, erhp, (ub4)1, (dvoid *)ename,
(shd)sizeof(ename), SQLT_STR,
(dvoid %)0, (ub2 *)0, (ub2 *)0, (Ub4)OCI_DEFAULT);
OCIAttrSet((dvoid *) dinlp, (ub4) OCI_HTYPE_DEFINE, (dvoid *) &csid,
(ub4) 0, (UL4)OCI_ATTR_CHARSET_ID, erthp);

PL/SQL REF CURSORs and Nested Tables

The OCI provides the ability to bind and define PL/SQL REF CURSORs and nested
tables. An application can use a statement handle to bind and define these types of
variables. As an example, consider this PL/SQL block:

static const text *plsql_block = (text *)
"begin\
OPEN :cursorl FOR SELECT empno, ename, job, mgr, sal, deptno\
FROM emp_rc WHERE job=job ORDER BY empno; \
OPEN :cursor2 FOR SELECT * FROM dept_rc ORDER BY depmo; \
end;";
An application would allocate a statement handle for binding, by calling
OCIHandleAlloc(), and then bind the :cursorl placeholder to the statement
handle, as in the following code, where :cursorl is bound to stm2p . Note that the
handle allocation code is not included here.

err = OCIStmtPrepare (stmlp, erhp, (text *) nst_tab, stlen(nst_tab),
OCI_NTV_SYNTAX, OC|_DEFAULT);

err = OCIBindByName (stm1p, (OCIBind *¥) bndp, errhp,
(text *":cursorl", (sb4)stren((char *)".cursorl”),

Binding and Defining 5-35

PL/SQL REF CURSORs and Nested Tables

(dvoid *&stm2p, (sb4) 0, SQLT_RSET, (dvoid %0,
(Ub2*)0, (Ub2*)0, (Ub4)0, (Ub4*)0, (Ub4)OCI DEFAULT);

In this code, stml1p is the statement handle for the PL/SQL block, while stm2p is
the statement handle which is bound as a REF CURSOR for later data retrieval. A
value of SQLT_RSET is passed for the dty parameter.

As another example, consider the following:

static const text *nst_tab = (text*)
"SELECT ename, CURSOR(SELECT dname, loc FROM dept rc)\
FROM emp_rc WHERE ename ='LOCKE™,

In this case the second position is a nested table, which an OCI application can
define as a statement handle as follows. Note that the handle allocation code is not
included here.

err = OCIStmtPrepare (stmlp, errhp, (text*) nst_tab, stien(nst_tab),
OCI_NTV_SYNTAX, OCI_DEFAULT);

err = OCIDefineByPos (stmlp, (OCIDefine **) din2p, enhp, (ub4)2,
(dvoid *)&stm2p,
(sh4)0, SQLT_RSET, (dvoid *)0, (b2 *)0,
(ub2#)0, (Ub4)OC|_DEFAULTY;

After execution, when you fetch a row into stm2p it then becomes a valid statement
handle.

Note: If you have retrieved multiple ref cursors, you must take care when
fetching them into stm2p . If you fetch the first one, you can then perform
fetches on it to retrieve its data. However, once you fetch the second ref cursor
into stm2p , you no longer have access to the data from the first ref cursor.

5-36 Oracle Call Interface Programmer’s Guide

Run Time Data Allocation and Piecewise Operations

Run Time Data Allocation and Piecewise Operations

You can use the OCI to perform piecewise inserts and updates, and fetches of data.
You can also use the OCI to provide data dynamically in the case of array inserts or
updates, instead of providing a static array of bind values. You can insert or retrieve
a very large column as a series of chunks of smaller size, minimizing client-side
memory requirements.

The size of individual pieces is determined at run time by the application. Each
piece may be of the same size as other pieces, or it may be of a different size.

The OCI’s piecewise functionality can be particularly useful when you are
performing operations on extremely large blocks of string or binary data (for
example, operations involving database columns that store LOB, LONG or LONG
RAW data). See the section "Valid Datatypes for Piecewise Operations" on page 5-38
for information about which datatypes are valid for piecewise operations.

Figure 8-1, "Multiple Tightly Coupled Branches" shows a single long column being
inserted piecewise into a database table through a series of insert operations (i1, i2,
i3...in). In this example the inserted pieces are of varying sizes.

Figure 5-4 Piecewise Insert of a LONG Column

Column To Be Inserted Piecewise

| | I\ I\ I\I\ I\ I\h&l | \

I A A .

| —

Server

- LY vV . L .S S . A
Database I S S |

You can perform piecewise operations in two ways:

Binding and Defining 5-37

Run Time Data Allocation and Piecewise Operations

« Use calls provided in the OCI library to execute piecewise operations under a
polling paradigm, as in release 7.3.

« Employ user-defined callback functions to provide the necessary information
and data blocks.

When you set the mode parameter of an OCIBindByPos() or OCIBindByName() call to
OCI_DATA_AT_EXEC, this indicates that an OCI application will be providing data
for an INSERT or UPDATE dynamically at run time.

Similarly, when you set the mode parameter of an OCIDefineByPos() call to
OCI_DYNAMIC_FETCH, this indicates that an application will dynamically
provide allocation space for receiving data at the time of the fetch.

In each case, you can provide the run-time information for the INSERT, UPDATE, or
FETCH in one of two ways: through callback functions, or by using piecewise
operations. If callbacks are desired, an additional bind or define call is necessary to
register the callbacks.

The following sections give specific information about run-time data allocation and
piecewise operations for inserts, updates, and fetches.

Note: In addition to SQL statements, piecewise operations are also valid for
PL/SQL blocks.

Valid Datatypes for Piecewise Operations

Only some datatypes can be manipulated in pieces. OCI applications can perform
piecewise fetches, inserts, or updates of the following data types:

« VARCHAR2

« STRING

« LONG

« LONGRAW

Some LOB/FILE operations also provide piecewise semantics for reading or writing
data. See the descriptions of OCILobWrite() on page 15-157 and OCIlLobRead() on
page 15-152 for more information about these operations. For information about
streaming using callbacks with OCILobWrite() and OCILobRead(), see "LOB Read
and Write Callbacks" on page 7-11.

Another way of using this feature for all datatypes is to provide data dynamically
for array inserts or updates. Note, however, that the callbacks should always specify
OCI_ONE_PIECE for the piecep parameter of the callback for datatypes that do not
support piecewise operations.

5-38 Oracle Call Interface Programmer’s Guide

Run Time Data Allocation and Piecewise Operations

Providing INSERT or UPDATE Data at Run Time

When you specify the OCI_DATA_AT_EXEC mode in a call to OCIBindByPos() or
OCIBindByName(), the value_sz parameter defines the total size of the data that can
be provided at run time. The application must be ready to provide to the OCI
library the run-time IN data buffers on demand as many times as is necessary to
complete the operation. When the allocated buffers are not required any more, they
should be freed by the client.

Run-time data is provided in one of the two ways:

« You can define a callback using the OCIBindDynamic() function which when
called at run time returns a piece or the whole data.

« If no callbacks are defined, the call to OCIStmtExecute() to process the SQL
statement returns the OCI_NEED_DATA error code. The client application then
provides the IN/OUT data buffer or piece using the OCIStmtSetPiecelnfo() call.
OCIStmtGetPiecelnfo() provides information about which bind and which piece
are being used.

Performing a Piecewise Insert

Once the OCI environment has been initialized, and a database connection and
session have been established, a piecewise insert begins with calls to prepare a SQL
or PL/SQL statement and to bind input values. Piecewise operations using
standard OCI calls, rather than user-defined callbacks, do not require a call to
OCIBindDynamic().

Note: Additional bind variables in the statement that are not part of piecewise
operations may require additional bind calls, depending on their datatypes.

Following the statement preparation and bind, the application performs a series of
calls to OCIStmtExecute(), OCIStmtGetPiecelnfo() and OCIStmtSetPiecelnfo() to
complete the piecewise operation. Each call to OCIStmtExecute() returns a value that
determines what action should be performed next. In general, the application
retrieves a value indicating that the next piece needs to be inserted, populates a
buffer with that piece, and then executes an insert. When the last piece has been
inserted, the operation is complete.

Keep in mind that the insert buffer can be of arbitrary size and is provided at run
time. In addition, each inserted piece does not need to be of the same size. The size
of each piece to be inserted is established by each OCIStmtSetPiecelnfo() call.

Note: If the same piece size is used for all inserts, and the size of the data being
inserted is not evenly divisible by the piece size, the final inserted piece will be

Binding and Defining 5-39

Run Time Data Allocation and Piecewise Operations

smaller than the pieces that preceded it. For example, if a data value 10,050,036
bytes long is inserted in chunks of 500 bytes each, the last remaining piece will
be only 36 bytes. The programmer must account for this by indicating the
smaller size in the final OCIStmtSetPiecelnfo() call.

The following steps outline the procedure involved in performing a piecewise
insert. The procedure is illustrated in Figure 5-5, "Steps for Performing Piecewise
Insert" on page 5-41.

Step 1. Initialize the OCI environment, allocate the necessary handles, connect
to a server, authorize a user, and prepare a statement request. These steps are
described in the section "OCI Programming Steps" on page 2-18.

Step 2. Bind a placeholder using OCIBindByName() or OCIBindByPos(). At this
point you do not need to specify the actual size of the pieces you will use, but
you must provide the total size of the data that can be provided at run time.

7.x Upgrade Note: The context pointer that was formerly part of the
obindps() and ogetpi() routines does not exist in release 8.0. Clients wishing
to provide their own context can use the callback method.

Step 3. Call OCIStmtExecute() for the first time. At this point no data is actually
inserted, and the OCI_NEED_DATA error code is returned to the application.

If any other value is returned, it indicates that an error occurred.

Step 4. Call OCIStmtGetPiecelnfo() to retrieve information about the piece that
needs to be inserted. The parameters of OCIStmtGetPiecelnfo() include a pointer
that returns a value indicating whether the required piece is the first piece
(OCI_FIRST_PIECE) or a subsequent piece (OCI_NEXT_PIECE).

Step 5. The application populates a buffer with the piece of data to be inserted
and calls OCIStmtSetPiecelnfo(). The parameters passed to OCIStmtSetPiecelnfo()
include a pointer to the piece, a pointer to the length of the piece, and a value
indicating whether this is the first piece (OCI_FIRST_PIECE), an intermediate
piece (OCI_NEXT_PIECE) or the last piece (OCI_LAST_PIECE).

Step 6. Call OCIStmtExecute() again. If OCI_LAST_PIECE was indicated in Step
5 and OCIStmtExecute() returns OCI_SUCCESS, all pieces were inserted
successfully. If OCIStmtExecute() returns OCI_NEED_DATA, go back to Step 3
for the next insert. If OCIStmtExecute() returns any other value, an error
occurred.

The piecewise operation is complete when the final piece has been successfully
inserted. This is indicated by the OCI_SUCCESS return value from the final
OCIStmtExecute() call.

5-40 Oracle Call Interface Programmer’s Guide

Run Time Data Allocation and Piecewise Operations

Figure 5-5 Steps for Performing Piecewise Insert

Prepare Statement
OCIStmtPrepare()

v

‘ Bind

OCIBindByName()/
OCIBindByPos()

Set Piece Info R
OCIStmtSetPiecelnfo() v

Get Piece Info QCI—NEED—DATA | Execute Other. Error
OCIStmtGetPiecelnfo() | ~ [OCIStmtExecute()

l OCI_SUCCESS

‘ Done

Piecewise updates are performed in a similar manner. In a piecewise update
operation the insert buffer is populated with the data that is being updated, and
OCIStmtExecute() is called to execute the update.

Note: For additional important information about piecewise operations, see the
section "Additional Information About Piecewise Operations with No
Callbacks" on page 5-44.

Piecewise Operations With PL/SQL

An OCI application can perform piecewise operations with PL/SQL for IN, OUT,
and IN/OUT bind variables in a method similar to that outlined above. Keep in
mind that all placeholders in PL/SQL statements are bound, rather than defined.
The call to OCIBindDynamic() specifies the appropriate callbacks for OUT or
IN/OUT parameters.

Providing FETCH Information at Run Time

When a call is made to OCIDefineByPos() with the mode parameter set to
OCI_DYNAMIC_FETCH, an application can specify information about the data
buffer at the time of fetch. The user also may need to call OCIDefineDynamic() to set
up the callback function that will be invoked to get information about the user’s
data buffer.

Run-time data is provided in one of the two ways:

Binding and Defining 5-41

Run Time Data Allocation and Piecewise Operations

« You can define a callback using the OCIDefineDynamic() call. The value_sz
parameter defines the maximum size of the data that will be provided at run
time. When the client library needs a buffer to return the fetched data, the
callback will be invoked to provide a run-time buffer into which a piece or the
whole data will be returned.

« Ifno callbacks are defined, the OCI_NEED_DATA error code is returned and
the OUT data buffer or piece can then be provided by the client application
using OCIStmtSetPiecelnfo() call. The OCIStmtGetPiecelnfo() call provides
Information about which define and which piece are involved.

See Also: For information about which datatypes are valid for piecewise
operations, refer to the section "Valid Datatypes for Piecewise Operations" on
page 5-38.

Performing a Piecewise Fetch

Once the OCI environment has been initialized, and a database connection and
session have been established, a piecewise fetch begins with calls to prepare a SQL
or PL/SQL statement and to define output variables. Piecewise operations using
standard OCI calls, rather than user-defined callbacks, do not require a call to
OCIDefineDynamic().

Following the statement preparation and define, the application performs a series of
calls to OCIStmtFetch(), OCIStmtGetPiecelnfo(), and OCIStmtSetPiecelnfo() to
complete the piecewise operation. Each call to OCIStmtFetch() returns a value that
determines what action should be performed next. In general, the application
retrieves a value indicating that the next piece needs to be fetched, and then fetches
that piece into a buffer. When the last piece has been fetched, the operation is
complete.

Keep in mind that the fetch buffer can be of arbitrary size. In addition, each fetched
piece does not need to be of the same size. The only requirement is that the size of
the final fetch must be exactly the size of the last remaining piece. The size of each
piece to be fetched is established by each OCIStmtSetPiecelnfo() call.

The following steps outline the method for fetching a row piecewise.

Step 1. Initialize the OCI environment, allocate necessary handles, connect to a
database, authorize a user, prepare a statement, and execute the statement.
These steps are described in "OCI Programming Steps" on page 2-18.

Step 2. Define an output variable using OCIDefineByPos(), with mode set to
OCI_DYNAMIC_FETCH. At this point you do not need to specify the actual

5-42 Oracle Call Interface Programmer’s Guide

Run Time Data Allocation and Piecewise Operations

size of the pieces you will use, but you must provide the total size of the data
that will be fetched at run time.

7.x Upgrade Note: The context pointer that was part of the odefinps() and
ogetpi() routines does not exist in release 8.0. Clients wishing to provide
their own context can use the callback method.

Step 3. Call OCIStmtFetch() for the first time. At this point no data is actually
retrieved, and the OCI_NEED_DATA error code is returned to the application.

If any other value is returned, an error occurred.

Step 4. Call OCIStmtGetPiecelnfo() to obtain information about the piece to be
fetched. The piecep parameter indicates whether it is the first piece
(OCI_FIRST_PIECE), a subsequent piece (OCI_NEXT_PIECE), or the last piece
(OCI_LAST_PIECE).

Step 5. Call OCIStmtSetPiecelnfo() to specify the buffer into which you wish to
fetch the piece.

Step 6. Call OCIStmtFetch() again to retrieve the actual piece. If OCIStmtFetch()
returns OCI_SUCCESS, all the pieces have been fetched successfully. If
OCIStmtFetch() returns OCI_NEED_DATA, return to Step 4 to process the next
piece. If any other value is returned, an error occurred.

The piecewise fetch is complete when the final OCIStmtFetch() call returns a value of
OCI_SUCCESS.

Binding and Defining 5-43

Run Time Data Allocation and Piecewise Operations

Figure 5-6 Steps for Performing Piecewise Fetch

Execute Statement
OCIStmtExecute()

v

Define
OCIDefineByPos()

Set Piece Info R
OCIStmtSetPiecelnfo() v

Get Piece Info QCI—NEED—DATA | Fetch Other. Error
OCIStmtGetPiecelnfo() | ~ | OCIStmtFetch()

l OCI_SUCCESS

‘ Done

Additional Information About Piecewise Operations with No Callbacks

In both the piecewise fetch and insert, it is important to understand the sequence of
calls necessary for the operation to complete successfully. In particular, keep in
mind that for a piecewise insert you must call OCIStmtExecute() one time more than
the number of pieces to be inserted (if callbacks are not used). This is because the
first time OCIStmtExecute() is called, it merely returns a value indicating that the
first piece to be inserted is required. As a result, if you are inserting n pieces, you
must call OCIStmtExecute() a total of n+1 times.

Similarly, when performing a piecewise fetch, you must call OCIStmtFetch() once
more than the number of pieces to be fetched.

Users who are binding to PL/SQL tables can retrieve a pointer to the current index
of the table during the OCIStmtGetPiecelnfo() calls.

5-44 Oracle Call Interface Programmer’s Guide

6

Describing Schema Metadata

This chapter discusses the use of the OClDescribeAny() function to obtain
information about schema elements. The following topics are covered in this
chapter:

« Overview
« Using OCIDescribeAny()

« Examples

Describing Schema Metadata 6-1

Overview

Overview

This chapter discusses the use of the OClDescribeAny() function to describe schema
objects. For information about describing select-list items, refer to the section
"Describing Select-List Items" on page 4-11.

For additional information about the OCIDescribeAny() call and its parameters,
refer to the function description on page 15-69.

Using OCIDescribeAny()

The OCIDescribeAny() function allows you to perform an explicit describe of one of
the following schema objects, and their sub-schema objects:

« tables and views
« Synonyms

« procedures

« functions

« packages

« sequences

« collections

« types

« schemas

« databases

Information about other schema elements (procedure/function arguments,
columns, type attributes, and type methods) is available through a describe of one
of the above schema objects or an explicit describe of the sub-schema object.

When an application describes a table, it can then retrieve information about that
table’s columns. Additionally, OClDescribeAny() can directly describe sub-schema
objects such as columns of a table, packages of a function, or fields of a type if the
user knows the name of the sub-schema object.

The OCIDescribeAny() call requires a describe handle as one of its parameters. The
describe handle must have been previously allocated with a call to
OCIHandleAlloc(). After the call to OClDescribeAny(), an application can retrieve
information about the described object from the describe handle.

6-2 Oracle Call Interface Programmer’s Guide

Using OCIDescribeAny()

The information returned by OCIDescribeAny() is organized hierarchically like a
tree. For example, Figure 6-1 shows how the description of a certain table might be
organized.

Figure 6-1 OCIDescribeAny() Table Description

describe
handle

v

table
description

¢

columns

column 1 column 2

data type name

The describe handle returned by OCIDescribeAny() has an attribute,
OCI_ATTR_PARAM, that points to such a description tree. Each node of the tree
has attributes associated with the node and attributes (which are like recursive
describe handles) that point to subtrees containing more information. If all the
attributes are homogenous, as in case of elements of a list, such as a column list,
then we refer to them as parameters. In this chapter, the terms handle and parameter
are used interchangeably. The attributes associated with any node are returned by
OCIAttrGet(), and the parameters are returned by OCIParamGet().

For example, an OCIAttrGet() on the describe handle for the table can return a
handle to the column-list information. An application can then use OCIParamGet()
to retrieve the handle to the column description of a particular column in the
column-list. The handle to the column descriptor can be passed to OCIAttrGet() to
get further information about the column, such as the name and data type (as
illustrated by following the left-hand side of the above figure).

No subsequent OCIAttrGet() or OCIParamGet() call requires extra round trips, as all
the description is cached on the client side by OCIDescribeAny().

Describing Schema Metadata 6-3

Using OCIDescribeAny()

Restrictions

The OCIDescribeAny() call limits information returned to the basic information and
stops expanding a node if it amounts to another describe. For example, if a table
column is of an object type, then the OCI does not return a subtree describing the
type since this information can be obtained by another describe.

Notes on Types and Attributes

When performing describe operations, you should be aware of the following notes.

Note on Datatype Codes

For more information about typecodes, such as the OCI_TYPCODE values returned
in the OCI_ATTR_TYPECODE attribute and the SQLT typecodes returned in the
OCI_ATTR_DATA_TYPE attribute, refer to the section "Typecodes" on page 3-23.

OCI_ATTR_TYPECODE returns typecodes which represent the types supplied by
the user when a new type is created using the CREATE TYPE statement. These
typecodes are of the enumerated type OCITypeCode, and are represented by
OCI_TYPECODE constants. Internal PL/SQL types (boolean, indexed table) are not
supported.

OCI_ATTR_DATA_TYPE returns typecodes which represent the datatypes stored in
database columns. These are similar to the describe values returned by previous
versions of Oracle. These values are represented by SQLT constants (ub2 values).
BOOLEAN types return SQLT_BOL.

Note on Describing Types

In order to describe type objects, it is necessary to initialize the OCI process in object
mode:

F* Initialize the OCI Process */
if (OClInitialize((ub4) OCI_OBJECT, (dvoid *)0,
(dvoid * (*)(dvoid %, size_t)) O,
(dvoid * (*)(dvoid *, dvoid *, size_t))0,
(void (*)(dvoid *, dvoid #)) 0))
{(void) printf("FAILED: OClInitialize()\n");
retum OC|_ERROR; }

For more information on this function, refer to the description of OCllInitialize() on
page 15-96.

6-4 Oracle Call Interface Programmer’s Guide

Using OCIDescribeAny()

Note on Implicit and Explicit Describes

The column attribute OCI_ATTR_PRECISION can be returned using an implicit
describe with OCIStmtExecute() and an explicit describe with OCIDescribeAny().
When using an implicit describe, the precision should be set to sb2. When using an
explicit describe, the precision should be set to ubl for a placeholder. This is
necessary to match the datatype of precision in the dictionary.

Note on OCI_ATTR_LIST_ARGUMENTS
The OCI_ATTR_LIST_ARGUMENTS attribute for type methods represents
second-level arguments for the method.

For example, given the following record my_type and the procedure my_proc
which takes an argument of type my_type:

my_rec record(a number, b char)
my_proc (my_input my_rec)

the OCI_ATTR_LIST_ARGUMENTS attribute would apply to arguments a and b
of the my_type record.

Parameter Attributes

A parameter is returned by OCIParamGet(). Parameters can describe different types
of objects or information. Parameters have attributes depending on the type of
description they contain and these are the type-specific attributes. This section
describes the attributes and handles that belong to different parameters.

The following table lists the attributes that belong to all parameters:
Table 6-1 Attributes Belonging to All Parameters

Attribute Description Attribute Datatype
OCI_ATTR_NUM_ATTRS the number of attributes ub2
OCI_ATTR_NUM_PARAMS the number of parameters ub2
OCI_ATTR_OBJ_ID object or schema Id ub4
OCI_ATTR_OBJ_NAME object, schema, or database name text*
OCI_ATTR_OBJ SCHEMA schema where the object is located text*

Describing Schema Metadata 6-5

Using OCIDescribeAny()

Table 6-1 Attributes Belonging to All Parameters (Cont.)

Attribute Description Attribute Datatype

OCI_ATTR_PTYPE type of information described by the parameter. ubl
Possible values are:

OCI_PTYPE_TABLE - table

OCI_PTYPE_VIEW - view

OCI_PTYPE_PROC - procedure
OCI_PTYPE_FUNC - function

OCI_PTYPE_PKG - package

OCI_PTYPE_TYPE - type
OCI_PTYPE_TYPE_ATTR - attribute of a type
OCI_PTYPE_TYPE_COLL - collection type information
OCI_PTYPE_TYPE_METHOD - a method of a type
OCI_PTYPE_SYN - synonym

OCI_PTYPE_SEQ - sequence

OCI_PTYPE_COL - column of a table or view

OCI_PTYPE_ARG - argument of a function or
procedure

OCI_PTYPE_TYPE_ARG - argument of a type method
OCI_PTYPE_TYPE_RESULT - the results of a method

OCI_PTYPE_LIST - column list for tables and views,
argument list for functions and procedures, or
subprogram list for packages.

OCI_PTYPE_SCHEMA - schema
OCI_PTYPE_DATABASE- database

OCI_ATTR_TIMESTAMP the timestamp of the object this description is based on ubl *
(in Oracle date format)

The subsections that follow list the attributes and handles specific to different types
of parameters.

6-6 Oracle Call Interface Programmer’s Guide

Using OCIDescribeAny()

Table/View Attributes

When a parameter is for a table or view (type OCI_PTYPE_TABLE or
OCI_PTYPE_VIEW), it has the following type specific attributes:

Table 6-2 Attributes Belonging to Tables or Views

Attribute Description Attribute Datatype
OCI_ATTR_OBIID object id ub4
OCI_ATTR_NUM_COLS number of columns ub2
OCI_ATTR_LIST_COLUMNS column list (type OCI_PTYPE_LIST) dvoid *
OCI_ATTR_REF_TDO REF to the TDO of the base type in case of OCIRef*

extent tables
OCI_ATTR_IS_TEMPORARY is the table is temporary? ubl
OCI_ATTR_IS_TYPED is the table typed? ubl
OCI_ATTR_DURATION duration of a temporary table. Values can be: OClIDuration

OCI_DURATION_SESSION - session
OCI_DURATION_TRANS - transaction
OCI_DURATION_NULL -table not temporary

The following are additional attributes which belong to tables:
Table 6-3 Attributes Specific to Tables

Attribute Description Attribute Datatype
OCI_ATTR_DBA data block address of the segment header ub4
OCI_ATTR_TABLESPACE tablespace the table resides in word
OCI_ATTR_CLUSTERED is the tableclustered? ubl
OCI_ATTR_PARTITIONED is the table partitioned? ubl
OCI_ATTR_INDEX_ONLY is the table index-only? ubl

Describing Schema Metadata 6-7

Using OCIDescribeAny()

Procedure/Function/Subprogram Attributes

When a parameter is for a procedure or function (type OCI_PTYPE_PROC or
OCI_PTYPE_FUNC), it has the following type specific attributes:

Table 6-4 Attribute Belonging to Procedures or Functions

Attribute Description Attribute Datatype
OCI_ATTR_LIST_ARGUMENTS argument list. See "List Attributes" on dvoid *

page 6-18.
OCI_ATTR_IS_INVOKER_RIGHTS is the procedure or function invoker-rights? ubl

The following attributes are defined only for package subprograms:
Table 6-5 Attributes Specific to Package Subprograms

Attribute Description Attribute Datatype
OCI_ATTR_NAME name of the procedure or function text *
OCI_ATTR_OVERLOAD_ID overloading ID number (relevant in case the ub2

procedure or function is part of a package and
is overloaded). Values returned may be
different from direct query of a PL/SQL
function or procedure.

Package Attributes

When a parameter is for a package (type OCI_PTYPE_PKG), it has the following
type specific attributes:

Table 6-6 Attributes Belonging to Packages

Attribute Description Attribute Datatype
OCI_ATTR_LIST_SUBPROGRAMS subprogram list. See "List Attributes" on dvoid *

page 6-18.
OCI_ATTR_IS_INVOKER_RIGHTS is the package invoker-rights? ubl

6-8 Oracle Call Interface Programmer’s Guide

Using OCIDescribeAny()

Type Attributes

When a parameter is for a type (type OCI_PTYPE_TYPE), it has the attributes listed
in Table 6-7. These attributes are only valid if the application initialized the OCI
process in OCI_OBJECT mode in a call to OClInitialize().

Table 6-7 Attributes Belonging to Types

Attribute Description Attribute Datatype

OCI_ATTR_REF_TDO

OCI_ATTR_TYPECODE

OCI_ATTR_COLLECTION_TYPECODE

returns the in-memory REF of the type
descriptor object for the type, if the column type
is an object type. If space has not been reserved
for the OCIREef, then it is allocated implicitly in
the cache. The caller can then pin the TDO with
OCIObjectPin().

typecode. See "Note on Datatype Codes" on
page 6-4. Currently can be only
OCI_TYPECODE_OBIJECT or
OCI_TYPECODE_NAMEDCOLLECTION.

typecode of collection if type is collection;
invalid otherwise. See "Note on Datatype
Codes" on page 6-4. Currently can be only
OCI_TYPECODE_VARRAY or
OCI_TYPECODE_TABLE. Error is returned if
this attribute is queried for non-collection type.

OCIRef *

OCITypeCode

OCITypeCode

OCI_ATTR_VERSION a null terminated string containing the text *
user-assigned version
OCI_ATTR_IS_INCOMPLETE_TYPE is this an incomplete type? ubl
OCI_ATTR_IS SYSTEM_TYPE is this a system type? ubl
OCI_ATTR_IS_PREDEFINED TYPE is this a predefined type? ubl
OCI_ATTR_IS_TRANSIENT_TYPE is this a transient type? ubl
OCI_ATTR_IS_SYSTEM_ is this a system-generated type? ubl
GENERATED_TYPE
OCI_ATTR_HAS_NESTED_TABLE does this type contain a nested table attribute? ubl
OCI_ATTR_HAS LOB does this type contain a LOB attribute? ubl
OCI_ATTR_HAS_FILE does this type contain a FILE attribute? ubl
OCI_ATTR_COLLECTION_ELEMENT handle to collection element. See "Collection dvoid *
Attributes" on page 6-13.
OCI_ATTR_NUM _TYPE_ATTRS number of type attributes ub4

Describing Schema Metadata 6-9

Using OCIDescribeAny()

Table 6-7 Attributes Belonging to Types (Cont.)

Attribute Description Attribute Datatype

OCI_ATTR_LIST_TYPE_ATTRS list of type attributes. See "List Attributes” on dvoid *
page 6-18.

OCI_ATTR_NUM_TYPE_METHODS number of type methods ub4

OCI_ATTR_LIST_TYPE_METHODS list of type methods. See "List Attributes" on dvoid *
page 6-18.

OCI_ATTR_MAP_METHOD map method of type. See "Type Method dvoid *
Attributes" on page 6-11.

OCI_ATTR_ORDER_METHOD order method of type. See "Type Method dvoid *
Attributes” on page 6-11.

OCI_ATTR_IS_INVOKER_RIGHTS is the type invoker-rights? ubl

Type Attribute Attributes

When a parameter is for an attribute of a type (type OCI_PTYPE_TYPE_ATTR), it
has the attributes listed in Table 6-8.

Table 6-8 Attributes Belonging to Type Attributes

Attribute Description Attribute Datatype

OCI_ATTR_DATA SIZE the maximum size of the type attribute. This ub2
length is returned in bytes and not characters for
strings and raws. It returns 22 for NUMBERSs.

OCI_ATTR_TYPECODE typecode. See "Note on Datatype Codes" on OCITypeCode
page 6-4.

OCI_ATTR_DATA _TYPE the data type of the type attribute. See "Note on ub2
Datatype Codes" on page 6-4.

OCI_ATTR_NAME a pointer to a string which is the type attribute text *
name

OCI_ATTR_PRECISION the precision of numeric type attributes. If the ubl

precision is non-zero and scale is -127, then itis a
FLOAT, else it isa NUMBER(precision, scale). For
the case when precision is 0, NUMBER(precision,
scale) can be represented simply as NUMBER.

OCI_ATTR_SCALE the scale of numeric type attributes. If the sbl
precision is non-zero and scale is -127, then it is a
FLOAT, else it isa NUMBER(precision, scale). For
the case when precision is 0, NUMBER(precision,
scale) can be represented simply as NUMBER.

6-10 Oracle Call Interface Programmer’s Guide

Using OCIDescribeAny()

Table 6-8 Attributes Belonging to Type Attributes (Cont.)

Attribute Description Attribute Datatype

OCI_ATTR_TYPE_NAME a string which is the type name. The returned text *
value will contain the type name if the data type
is SQLT_NTY or SQLT_REF. If the data type is
SQLT_NTY, the name of the named data type’s
type is returned. If the data type is SQLT_REF,
the type name of the named data type pointed to
by the REF is returned

OCI_ATTR_SCHEMA_NAME a string with the schema name under which the text *
type has been created
OCI_ATTR_REF_TDO returns the in-memory REF of the TDO for the OCIRef *

type, if the column type is an object type. If space
has not been reserved for the OCIRef, then it is
allocated implicitly in the cache. The caller can
then pin the TDO with OCIObjectPin().

OCI_ATTR_CHARSET_ID the character set id, if the type attribute is of a ub2
string/character type
OCI_ATTR_CHARSET _FORM the character set form, if the type attribute isofa ubl

string/character type

Type Method Attributes

When a parameter is for a method of a type (type OCI_PTYPE_TYPE_METHOD), it
has the attributes listed in Table 6-9.

Table 6-9 Attributes Belonging to Type Methods

Attribute Description Attribute Datatype
OCI_ATTR_NAME name of method (procedure or function) text *
OCI_ATTR_ENCAPSULATION encapsulation level of the method (either OCITypeEncap

OCI_TYPEENCAP_PRIVATE or
OCI_TYPEENCAP_PUBLIC)

OCI_ATTR_LIST_ARGUMENTS argument list. See "Note on dvoid *
OCI_ATTR_LIST_ARGUMENTS" on page 6-5,
and "List Attributes" on page 6-18.

OCI_ATTR_IS_CONSTRUCTOR is method a constructor? ubl
OCI_ATTR_IS_DESTRUCTOR is method a destructor? ubl
OCI_ATTR_IS_OPERATOR is method an operator? ubl

Describing Schema Metadata 6-11

Using OCIDescribeAny()

Table 6-9 Attributes Belonging to Type Methods

Attribute Description Attribute Datatype
OCI_ATTR_IS_SELFISH is method selfish? ubl
OCI_ATTR_IS_MAP is method a map method? ubl
OCI_ATTR_IS_ORDER is method an order method? ubl
OCI_ATTR_IS_RNDS is "Read No Data State" set for method? ubl
OCI_ATTR_IS_RNPS is "Read No Process State" set for method? ubl
OCI_ATTR_IS_WNDS is "Write No Data State" set for method? ubl
OCI_ATTR_IS_WNPS is "Write No Process State" set for method? ubl

As a reference, the following code shows the possible method flags which are used
when determining the corresponding procedure/function attributes:

OClITypeMethodFlag

{OCI_TYPEMETHOD_INLINE =0x0001, Finline/
OCI_TYPEMETHOD_CONSTANT =0x0002, P constant*/
OCI_TYPEMETHOD_VIRTUAL =0x0004, Fvirtual ¥
OCI_TYPEMETHOD_CONSTRUCTOR = 0x0008, constructor */
OCI_TYPEMETHOD_DESTRUCTOR =0x0010, F* destructor */
OCI_TYPEMETHOD_OPERATOR =0x0020, * operator */

OCI|_TYPEMETHOD_SELFISH =0x0040, /* selfish method (generic otherwise) */

OCI_TYPEMETHOD_MAP =0x0080, P map (relative ordering) */

OC|_TYPEMETHOD_ORDER =0x0100, * order (relative ordering) */
FOCI_TYPEMETHOD_MAP and OCI_TYPEMETHOD_ORDER are mutually exclusive */

OCI_TYPEMETHOD RNDS=0x0200, /*Read no Data State (default) ¥

OCI_TYPEMETHOD_WNDS=0x0400, FWiite no Data State */
OC|_TYPEMETHOD_RNPS=0x0800, * Read no Process State */
OCI_TYPEMETHOD_WNPS=0x1000 [+ Wiite no Process State */}

6-12 Oracle Call Interface Programmer’s Guide

Using OCIDescribeAny()

Collection Attributes

When a parameter is for a collection type (type OCI_PTYPE_COLL), it has the
attributes listed in Table 6-10.

Table 6-10 Attributes Belonging to Collection Types

Attribute Description Attribute Datatype

OCI_ATTR_DATA_SIZE the maximum size of the type attribute. This ub2
length is returned in bytes and not characters for
strings and raws. It returns 22 for NUMBERs.

OCI_ATTR_TYPECODE typecode. See "Note on Datatype Codes" on OCITypeCode
page 6-4.
OCI_ATTR_DATA_TYPE the data type of the type attribute. See "Note on ub2
Datatype Codes" on page 6-4.
OCI_ATTR_NUM_ELEMENTS the number of elements in an array. It is only ub4
valid for collections that are arrays
OCI_ATTR_NAME a pointer to a string which is the type attribute text *
name
OCI_ATTR_PRECISION the precision of numeric type attributes. If the ubl

precision is non-zero and scale is -127, then itis a
FLOAT, else it isa NUMBER(precision, scale). For
the case when precision is 0, NUMBER(precision,
scale) can be represented simply as NUMBER.

OCI_ATTR_SCALE the scale of numeric type attributes. If the sbl
precision is non-zero and scale is -127, then it is a
FLOAT, else it isa NUMBER(precision, scale). For
the case when precision is 0, NUMBER(precision,
scale) can be represented simply as NUMBER.

OCI_ATTR_TYPE_NAME a string which is the type name. The returned text *
value will contain the type name if the data type
is SQLT_NTY or SQLT_REF. If the data type is
SQLT_NTY, the name of the named data type’s
type is returned. If the data type is SQLT_REF,
the type name of the named data type pointed to
by the REF is returned

OCI_ATTR_SCHEMA_NAME a string with the schema name under which the text*
type has been created

Describing Schema Metadata 6-13

Using OCIDescribeAny()

Table 6-10 Attributes Belonging to Collection Types (Cont.)

Attribute Description Attribute Datatype

OCI_ATTR_REF _TDO returns the in-memory REF of the TDO for the OCIRef *
type, if the column type is an object type. If space
has not been reserved for the OCIRef, then it is
allocated implicitly in the cache. The caller can
then pin the TDO with OCIObjectPin().

OCI_ATTR_CHARSET_ID the character set id, if the type attribute is of a ub2
string/character type
OCI_ATTR_CHARSET_FORM the character set form, if the type attribute isofa ubl

string/character type

Synonym Attributes

When a parameter is for a synonym (type OCI_PTYPE_SYN), it has the attributes
listed in Table 6-11.

Table 6-11 Attributes Belonging to Synonyms

Attribute Description Attribute Datatype
OCI_ATTR_OBIJID object id ub4
OCI_ATTR_SCHEMA_NAME a null-terminated string containing the schema text *

name of the synonym translation

OCI_ATTR_NAME a null-terminated string containing the object name text *
of the synonym translation

OCI_ATTR_LINK a null-terminated string containing the database text *
link name of the synonym translation

Sequence Attributes

When a parameter is for a sequence (type OCI_PTYPE_SEQ), it has the attributes
listed in Table 6-12.

Table 6-12 Attributes Belonging to Sequences

Attribute Description Attribute Datatype
OCI_ATTR_OBIJID object id ub4
OCI_ATTR_MIN minimum value (in Oracle number format) ubl*
OCI_ATTR_MAX maximum value (in Oracle number format) ubl*
OCI_ATTR_INCR increment (in Oracle number format) ubl*

6-14 Oracle Call Interface Programmer’s Guide

Using OCIDescribeAny()

Table 6-12 Attributes Belonging to Sequences (Cont.)

Attribute Description Attribute Datatype

OCI_ATTR_CACHE number of sequence numbers cached; zero if ubl*
the sequence is not a cached sequence (in
Oracle number format)

OCI_ATTR_ORDER whether the sequence is ordered ubl
OCI_ATTR_HW_MARK high-water mark (in Oracle number format) ubl*

Column Attributes

When a parameter is for a column of a table or view (type OCI_PTYPE_COL), it has
the attributes listed in Table 6-13.

Table 6-13 Attributes Belonging to Columns of Tables or Views

Attribute Description Attribute Datatype

OCI_ATTR_DATA_SIZE the maximum size of the column. This length is ub2
returned in bytes and not characters for strings
and raws. It returns 22 for NUMBERs.

OCI_ATTR_DATA_TYPE the data type of the column. See "Note on ub2
Datatype Codes" on page 6-4.

OCI_ATTR_NAME a pointer to a string which is the column name text *

OCI_ATTR_PRECISION the precision of numeric columns. If the ubl for explicit
precision is non-zero and scale is -127, then it is describe
a FLOAT, else it isa NUMBER(precision, scale).
For the case when precision is 0,
NUMBER(precision, scale) can be represented
simply as NUMBER.

sb2 for implicit
describe

OCI_ATTR_SCALE the scale of numeric columns. If the precisionis sbl
non-zero and scale is -127, then it is a FLOAT,
else it is a NUMBER(precision, scale). For the
case when precision is 0, NUMBER(precision,
scale) can be represented simply as NUMBER.

OCI_ATTR_IS_NULL returns 0 if null values are not permitted for ub1
the column

Describing Schema Metadata 6-15

Using OCIDescribeAny()

Table 6-13 Attributes Belonging to Columns of Tables or Views (Cont.)

Attribute Description Attribute Datatype

OCI_ATTR_TYPE_NAME returns a string which is the type name. The text *
returned value will contain the type name if
the data type is SQLT_NTY or SQLT_REF. If
the data type is SQLT_NTY, the name of the
named data type’s type is returned. If the data
type is SQLT_REF, the type name of the named
data type pointed to by the REF is returned

OCI_ATTR_SCHEMA_NAME returns a string with the schema name under text*
which the type has been created

OCI_ATTR_REF_TDO the REF of the TDO for the type, if the column OCIRef *
type is an object type

OCI_ATTR_CHARSET_ID the character set id, if the column is of a ub2
string/character type

OCI_ATTR_CHARSET_FORM the character set form, if the column is of a ubl

string/character type

Argument/Result Attributes

When a parameter is for an argument of a procedure/function (type
OCI_PTYPE_ARG), for a type method argument (type OCI_PTYPE_TYPE_ARG) or
for method results (type OCI_PTYPE_TYPE_RESULT), it has the attributes listed in
Table 6-14.

Table 6-14 Attributes Belonging to Arguments/Results

Attribute Description Attribute Datatype
OCI_ATTR_NAME returns a pointer to a string which is the text *
argument name
OCI_ATTR_POSITION the position of the argument in the argument ub2
list. Always returns zero.
OCI_ATTR_TYPECODE typecode. See "Note on Datatype Codes"on OCITypeCode
page 6-4.
OCI_ATTR_DATA _TYPE the data type of the argument. See "Note on ub2
Datatype Codes" on page 6-4.
OCI_ATTR_DATA_SIZE the size of the data type of the argument. This ub2

length is returned in bytes and not characters
for strings and raws. It returns 22 for
NUMBERs.

6-16 Oracle Call Interface Programmer’s Guide

Using OCIDescribeAny()

Table 6-14 Attributes Belonging to Arguments/Results (Cont.)

Attribute

Description

Attribute Datatype

OCI_ATTR_PRECISION

OCI_ATTR_SCALE

OCI_ATTR_LEVEL

OCI_ATTR_HAS_DEFAULT
OCI_ATTR_LIST_ARGUMENTS

OCI_ATTR_IOMODE

OCI_ATTR_RADIX
OCI_ATTR_IS_NULL

OCI_ATTR_TYPE_NAME

OCI_ATTR_SCHEMA NAME

the precision of numeric arguments. If the ubl
precision is non-zero and scale is -127, then it

is a FLOAT, else it is a NUMBER(precision,

scale). For the case when precision is 0,
NUMBER(precision, scale) can be represented

simply as NUMBER.

the scale of numeric arguments. If the sbl
precision is non-zero and scale is -127, then it

is a FLOAT, else it is a NUMBER(precision,

scale). For the case when precision is 0,
NUMBER(precision, scale) can be represented

simply as NUMBER.

the data type levels. This attribute always ub2

returns zero.

indicates whether an argument has a default ubl

the list of arguments at the next level (when

dvoid *

the argument is of a record or table type).

indicates the argument mode:
0is IN (OCI_TYPEPARAM_IN),

OCITypeParamMode

1is OUT (OCI_TYPEPARAM_OUT),
2is IN/OUT (OCI_TYPEPARAM_INOUT)

returns a radix (if number type)

ubl

returns 0 if null values are not permitted for ubl

the column

returns a string which is the type name, or the text *
package name in the case of package local

types. The returned value will contain the

type name if the data type is SQLT_NTY or
SQLT_REF. If the data type is SQLT_NTY, the

name of the named data type’s type is

returned. If the data type is SQLT_REF, the

type name of the named datatype pointed to

by the REF is returned.

for SQLT_NTY or SQLT_REF, returns a string text *
with the schema name under which the type

was created, or under which the package was
created in the case of package local types

Describing Schema Metadata 6-17

Using OCIDescribeAny()

Table 6-14 Attributes Belonging to Arguments/Results (Cont.)

Attribute Description Attribute Datatype
OCI_ATTR_SUB_NAME for SQLT_NTY or SQLT_REF, returns a string text *

with the type name, in the case of package

local types
OCI_ATTR_LINK for SQLT_NTY or SQLT_REF, returns a string text *

with the database link name of the database
on which the type exists. This can happen
only in the case of package local types, when
the package is remote.

OCI_ATTR_REF_TDO returns the REF of the TDO for the type, if the OCIRef *
argument type is an object
OCI_ATTR_CHARSET _ID returns the character set ID if the argument is ub2
of a string/character type
OCI_ATTR_CHARSET_FORM returns the character set form if the argument ubl

is of a string/character type

List Attributes

When a parameter is for a list of columns, arguments, or subprograms (type
OCI_PTYPE_LIST), it has the following type specific attributes and handles
(parameters):

« Thelist has an OCI_ATTR_LIST_TYPE attribute which designates the list type.
The possible values are:

— OCIL_LTYPE_COL - column list

— OCIL_LTYPE_ARG_PROC - procedure argument list

— OCIL_LTYPE_ARG_FUNC - function argument list

— OCI_LTYPE_SUBPRG - subprogram list

- OCI_LTYPE_TYPE_ATTR - type attribute list

- OCI_LTYPE_TYPE_METHOD - type method list

— OCIL_LTYPE_TYPE_ARG_PROC - type method without result argument list
— OCIL_LTYPE_TYPE_ARG_FUNC - type method without result argument list
— OCI_LTYPE_SCH_OBI - object list within a schema

— OCIL_LTYPE_DB_SCH - schema list within a database

6-18 Oracle Call Interface Programmer’s Guide

Using OCIDescribeAny()

« Thelist has an OCI_ATTR_NUM_PARAMS attribute, which tells the number of
elements in the list.

« Thelisthas 1..0CI_ATTR_NUM_PARAMS parameters for each of the columns,
arguments, or subprograms in the list (type OCI_PTYPE_COL,
OCI_PTYPE_ARG, OCI_PTYPE_PROC, or OCI_PTYPE_FUNC). In the case of a
function argument list, position 0 has a parameter for the return value (type
OCI_PTYPE_ARG).

Schema Attributes

When a parameter is for a schema type (type OCI_PTYPE_SCHEMA), it has the
attributes listed in Table 6-15:

Table 6-15 Attributes Specific to Schemas

Attribute Description Attribute Datatype
OCI_ATTR_LIST_OBIJECTS list of objects in the schema text*
Database Attributes

When a parameter is for a database type (type OCI_PTYPE_DATABASE), it has the
attributes listed in Table 6-16:

Table 6-16 Attributes Specific to Databases

Attribute Description Attribute Datatype
OCI_ATTR_VERSION database version text*
OCI_ATTR_CHARSET_ID database character set Id from the server ub2
handle
OCI_ATTR_NCHARSET_ID database character set Id from the server ub2
handle
OCI_ATTR_LIST_SCHEMAS list of schemas (type OCI_PTYPE_LIST
OCI_PTYPE_SCHEMA) in the database
OCI_ATTR_MAX_PROC_LEN maximum length of a procedure name ub4
OCI_ATTR_MAX_COLUMN_LEN maximum length of a column name ub4

Describing Schema Metadata 6-19

Examples

Table 6-16 Attributes Specific to Databases (Cont.)

Attribute

Description

Attribute Datatype

OCI_ATTR_CURSOR_COMMIT_BEHAVIOR how a COMMIT operation affects cursors

OCI_ATTR_MAX_CATALOG_NAMELEN

OCI_ATTR_CATALOG_LOCATION

OCI_ATTR_SAVEPOINT_SUPPORT

OCI_ATTR_NOWAIT_SUPPORT

OCI_ATTR_AUTOCOMMIT_DDL

OCI_ATTR_LOCKING_MODE

and prepared statements in the database.
Values are:

OCI_CURSOR_OPEN - preserve cursor
state as before the commit operation

OCI_CURSOR_CLOSED - cursors are
closed on COMMIT, but the application
can still re-execute the statement without
re-preparing it

maximum length of a catalog (database)
name

position of the catalog in a qualified table.
Values are OCI_CL_START and
OCI_CL_END

does database support savepoints? Values
are OCI_SP_SUPPORTED and
OCI_SP_UNSUPPORTED

does database support the nowait clause?
Values are OCI_NW_SUPPORTED and
OCI_NW_UNSUPPORTED

is autocommit mode required for DDL
statements? Values are OCI_AC_DDL and
OCI_NO_AC_DDL

locking mode for the database. Values are
OCI_LOCK_IMMEDIATE and
OCI_LOCK_DELAYED

ubl

ubl

ubl

ubl

ubl

ubl

ubl

Examples

The following examples demonstrate the use of OCIDescribeAny() for describing
different types of schema objects. For a more detailed code sample, see the

demonstration program cdemodsa.c

included with your Oracle installation. For

additional information, refer to Appendix B, "OCI Demonstration Programs".

Retrieving Column Data Types For a Table
This example illustrates the use of an explicit describe. Let us take an example

application, which needs to retrieve the column datatypes for a table. The following

6-20 Oracle Call Interface Programmer’s Guide

Examples

code fragment shows how an application would be able to use the describe
interface:

text objptr{] = <table-name>;

ub4 ohjp_len =strlen(<table_name>);
OClParam*parmh; /*parameter handle */
OClIParam *collsthd; # handle to list of columns */
OCIParam*colnd; /column handle */
OClDescribe *dschp; /* describe handle */

* get the describe handle for the table */
if (OCIDescribeAny(svch, erth, objptr, objp_len, OCI_OTYPE_NAME, 0,
OCI_PTYPE_TABLE, dschp))
retum error;
F* get the parameter handle */
if (OCIAtrGet(dschp, OCl_HTYPE_DESCRIBE, &parmh, 0, OCI_ATTR_PARAM,
enh))
retum eror;
F*The type information of the object, in this case, OC|_PTYPE_TABLE,
is obtained from the parameter descriptor returned by the OCIAtrGet(). */
* get the number of columns in the table */
if (OCIAtrGet(parmh, OCI_DTYPE_PARAM, &umcols, O,
OCIL_ATTR_NUM_COLS, erth))
retum eror;
* get the handle to the column list of the table */
if (OCIAtrGet(parmh, OCI_DTYPE_PARAM, &colisthd, O,
OCI_ATTR_LIST_COLUMNS, enh)=—0CI|_NO_DATA)
retum eror,
* go through the column list and retrieve the data-type of each column,
and then recursively describe column types. */

for (i=1;i<=numcoals; i++)
{
[* get parameter for column i */
if (OCIParamGet(colisthd, OCI_DTYPE_PARAM, erh, &colhd, i)
retum enor,
*for example, get data type for ith column */
if (OCIAtrGet(colhd, OCl_DTYPE_PARAM, &datatypefi-1], O,
OCI_ATTR_DATA TYPE, enh))
retum emor,

Describing Schema Metadata 6-21

Examples

Describing the Stored Procedure

Let us consider a stored procedure or a function.The difference between a
procedure and a function is that the latter has a return type at position 0 in the
argument list, while the former has no argument associated with position 0 in the
argument list. The steps required to describe type methods (also divided into
functions and procedures) are identical to that of regular PL/SQL functions and
procedures. Note that procedures/functions can take default types of objects as
arguments. Let us consider the following procedure:

P1 (argl emp.sal%type, arg2 emp%erowtype)

Furthermore, let us assume that each row in emp table has two columns nhame
(VARCHARZ2(20)), and sal (NUMBER Thus, in the argument list for P1, we have
two arguments, argl and arg2 , at positions 1 and 2 respectively at level 0, and
arguments name and sal at positions 1land 2 respectively at level 1. Description of
P1 returns the number of arguments as two while returning the higher level (> 0)
arguments as attributes of the 0 zero level arguments.

The following code fragment elucidates the description of P1.

textobjptr] ="P1"; /*procedure name */

ub4 ohjp_len=stren("P1");

OCIParam *parmh; F parameter handle */
OClParam *arglst; Flistof args */
OClIParam *arg; ¥ argument handle */
OClDescribe *dschp; /* describe handle */

ub2 numargs, pos, level;
text *name;
ub4 namelen;

* get the describe handle for the table */

if (OCIDescribeAny(svch, errh, objptr, objp_len, OCI_OTYPE_NAME, 0,
OCI_PTYPE_PROC, dschp))
retum eror,

F getthe parameter handle /

if (OCIAtrGet(dschp, OC|_HTYPE_DESCRIBE, &parmh, 0, OCI_ATTR_PARAM,
enh))
retum eror,

F* Get the number of arguments and the arg list */

6-22 Oracle Call Interface Programmer’s Guide

Examples

if (OCIAtrGet (parmh, OCI_DTYPE._PARAM, &arglst,
0,0CI_ATTR_LIST ARGUMENTS, enh))
retum emor,
if (OCIAtrGet (pammh, OCl_DTYPE_PARAM, &numargs, 0,
OCI ATTR_NUM_PARAMS, erth))
retum enor,

¥ For a procedure, we begin with i =1; for a
function, we begin withi=0.*

for (i=1;i<numargs; i++) {

OClIParamGet (argist, OCl_DTYPE_PARAM, erh, &arg, i;

OCIlAtrGet (arg, OCI_DTYPE_PARAM, &name, &namelen, OCl ATTR_NAME,
ent);

1o print the attributes of the argument of type record
(arguments at the next level), traverse the argument list */

OCIAtrGet (arg, OC|_DTYPE._PARAM, &argistl, 0,
OCI_ATTR_LIST ARGUMENTS, erh);

[check if the current argument is a record. For argl in P1
arglstl is NULL. */

if (argist1) {
OCIAthGet (arg, OCl_DTYPE_PARAM, &umargs1,0, OCI_ATTR_NUM_PARAMS,
enh);

F Note that for both functions and procedures,the next higher level
arguments start from index 1. For arg2 in P1, the number of arguments at
the level 1 would be 2%/

for (i=1;i<numargsl, i++){
OClIParamGet (argistl, OCl_DTYPE_PARAM, erh, &argl, i;
OClAirGet (argl, OCI_DTYPE_PARAM, &namel, &namelen,
OCI_ATTR_NAME, enth);

Describing Schema Metadata 6-23

Examples

Retrieving Attributes of an Object Type

This example illustrates the use of an explicit describe on a named object type. We
illustrate how you can describe an object by its name or by its object reference
(OCIRef). The following code fragment attempts to retrieve the datatype value of
each of the object type’s attributes. It is very similar to the first example in the
section "Retrieving Column Data Types For a Table" on page 6-20.

texttype_name[] = <type_name>;

ub4 type_name_len = strlen(<type_name>);

OCIRef*type_ref=<type_ref>;

und numattrs;

OCIDescribe *dschp; /* describe handle */

OClIParam*parmh; /* parameter handle */

OClParam *atiristhd; /* handle to list of attrs */

OClParam*atirhd; /* attribute handle */

F allocate describe handle */

if (OCIHandleAlloc((dvoid *)envh, (dvoid **)&dschp,

(Ub4)OCI_HTYPE_DESCRIBE, (size_1)0, (dvoid **)0))

retum error,

* get the describe handle for the type */
if (describe_by_name)
if (OCIDescribeAny(svch, erh, (dvoid¥type_name, type_name._len,
OCI_OTYPE_NAME, 0, OC|_PTYPE_TYPE, dschp))
retum eror;
else
if (OCIDescribeAny(svch, erh, (dvoid®type_ref, 0, OCl_ OTYPE_REF,
0, OCI_PTYPE_TYPE, dschp))
retum eror;

* get the parameter handle */

if (OCIAtrGet(dschp, OCl_HTYPE_DESCRIBE, &parmh, 0, OCI_ATTR_PARAM,
enh))
retum enor,

F* The type information of the object, in this case, OC|_PTYPE_TYPE, is
obtained from the parameter descriptor returned by the OCIAtrGet */

* get the number of attributes in the type */

if (OCIAtrGet(parmh, OC_ DTYPE_PARAM, &numattrs, 0,
OCI_ATTR_NUM _TYPE_ATTRS, enh))
retum eror,

6-24 Oracle Call Interface Programmer’s Guide

Examples

* get the handle to the atfribute list of the type */
if (OCIAtrGet(parmh, OCI_DTYPE_PARAM, (dvoid *)&attristhd, O,
OCI_ATTR_LIST_TYPE_ATTRS, enh)=—0C|_NO_DATA)
retum error,

* go through the attribute list and retrieve the data-type of each attribute,
and then recursively describe atfribute types. */

for (i=1; i <= numattrs; i++)

{

* get parameter for attribute i */

if (OCIParamGet(atiristhd, OCI_DTYPE_PARAM, erth, &atirhd, i))
retum error;

for example, get data type and typecode for atfribute; note that
OCI|_ATTR_DATA TYPE retums the SQLT code, while OCl_ATTR_TYPECODE retums the
Oracle Type System typecode. */
if (OCIAtrGet(attrhd, OCl_ DTYPE._PARAM &datatypefi-1], 0,
OCI_ATTR_DATA _TYPEenh))
retum enor,
for example, get data type for attribute*/
if (OCIAtrGet(atirhd, OCl_ DTYPE_PARAM,&typecodefi-1], 0,
OCI_ATTR_TYPECODE, erth))
retum eror,

[* if attribute is an object type, recursively describe it */
if (typecodeli-1] == OCI_TYPECODE_OBJECT)
{

OCIRef*attr_type_ref,
OClDescribe *nested_dschp;

1+ allocate describe handle *

if (OCIHandleAlloc((dvoid *)envh,(dvoid)&dschp,
(Ub4)OCI_HTYPE_DESCRIBE,(size_1)0, (dvoid *)0))
retum error,

if (OClAtrGet(attrhd, OCl_DTYPE_PARAM,
&attr_type_ref,0,OCl_ATTR_REF_TDO,enh))
retum error,
OClDescribeAny(svch, errh,(dvoid¥)attr_type:_ref, O,
OCI_OTYPE_REF, 0, OCl_PTYPE_TYPE, nested_dschp);
¥ go on describing the type... */
}
}

Describing Schema Metadata 6-25

Examples

Retrieving the Collection Element's Data Type of a Named Collection Type

This example illustrates the use of an explicit describe on a named collection type.
We illustrate how you can describe an object by its name or by its object reference
(OCIRef). The following code fragmentattempts to retrieve the data type value each
of the object type’s attribute. It is very similar to the first example in section
"Retrieving Column Data Types For a Table" on page 6-20.

texttype_name[] = <type_name>;

ub4 type_name_len = strlen(<type_name>);

OCIRef*type_ref=<type_ref>;

und numattrs;

OClDescribe *dschp; # describe handle */

OClIParam*parmh; /*parameter handle */

OClParam *atiristhd; /* handle to list of atirs */

OClParam*atirhd; /* attribute handle */

F allocate describe handle */

if (OCIHandleAlloc((dvoid *)envh, (dvoid **)&dschp,

(ub4)OCI_HTYPE_DESCRIBE, (size_f)0, (dvoid **)0))

retum error;

* get the describe handle for the type */
if (describe_by_name)
if (OCIDescribeAny(svch, erh, (dvoid¥type_name, type_name._len,
OCI_OTYPE_NAME, 0, 0Cl_PTYPE_TYPE, dschp))
retum eror,
else
if (OCIDescribeAny(svch, erh, (dvoid*)type_ref, 0, OCI_OTYPE_REF, 0,
OC|_PTYPE_TYPE, &dschp))
retum error;

* get the parameter handle */

if (OCIAtrGet(dschp, OCl_HTYPE_DESCRIBE, &parmh, 0, OCI_ATTR_PARAM,
enh))
retum enor,

* get the Oracle Type System type code of the type to determine that this is a
collection type */
if (OClAtrGet(attrhd, OCl_DTYPE_PARAM,&typecode, 0, OCl ATTR_TYPECODE,
enh))
retum enor,

I+iftypecode is OCI TYPECODE_NAMEDCOLLECTION,

6-26 Oracle Call Interface Programmer’s Guide

Examples

proceed to describe collection element */
if (typecode == OC|_TYPECODE_NAMEDCOLLECTION)

F getthe collection’s type: ie, OCl_TYPECODE_VARRAY or OCI_TYPECODE_TABLE*

if (OCIAtrGet(parmh, OCl_DTYPE_PARAM, (dvoid *)&collection_typecode, 0,
OCI_ATTR_COLLECTION_TYPECODE, enth))
retum error;

[get the collection element; you MUST use this to further retrieve information
about the collection’s element */
if (OClAtrGet(parmh, OCl_DTYPE_PARAM, &collection_element_parmh, O,
OCI_ATTR_COLLECTION_ELEMENT, erth))

retum error,

* get the number of elements if collection is a VARRAY;, not valid for nested
tables */
if (collection_typecode == OC|_TYPECODE_VARRAY)
if OCIAttrGet(collection_element_parmh, OCl DTYPE_PARAM,
(dvoid ¥)&um_elements, 0, OCI_ ATTR_NUM_ELEMENTS, errh))
retum eror,

F now use the collection_element parameter handle to retrieve information about
the collection element */
if OCIAtirGet(collection_element_parmh, OCl_ DTYPE_PARAM,

(dvoid *)&element_typecode, 0, OCI_ATTR_TYPECODE, errh))

retum emor,

* do the same to describe additional collection element information; this is
very similar to describing type attributes */

Describing Schema Metadata 6-27

Examples

6-28 Oracle Call Interface Programmer’s Guide

v

LOB and FILE Operations

The following topics are covered in this chapter:

Overview

Creating and Modifying Internal LOBs
Creating and Modifying Internal LOBs
Associating a FILE in a Table with an OS File
LOB Attributes of an Object

Array Interface For LOBs

LOB and FILE Functions

LOB Read and Write Callbacks

Temporary LOB Support

LOB and FILE Operations 7-1

Overview

Overview

The Oracle OCI includes a set of functions for performing operations on large
objects (LOBs) in a database. Internal LOBs (BLOBs, CLOBs, NCLOBs) are stored in
the database tablespaces in a way that optimizes space and provides efficient access.
These LOBs have the full transactional support of the database server. External
LOBs (FILESs) are large data objects stored in the server’s operating system files
outside the database tablespaces.

The OCI also provides support for temporary LOBs, which can be used like local
variables for operating on LOB data.

The maximum length of a LOB/FILE is 4 gigabytes. FILE functionality is read-only.
Oracle currently supports only binary files (BFILES).

See Also: For code samples showing the use of LOB operations, see the
demonstration programs included with your Oracle installation. For additional
information, refer to Appendix B, "OCI Demonstration Programs".

Customers who are interested in using the dbms_lob package to work with
LOBs should refer to Oracle8i Supplied Packages Reference. For general
information about LOBs and the LOB interfaces available, see the Oracle8i
Application Developer’s Guide - Large Objects (LOBSs).

For information about temporary LOBs, refer to "Temporary LOB Support" on
page 7-15.

Creating and Modifying Internal LOBs

You create a new internal LOB by initializing a new LOB locator using
OCIDescriptorAlloc(), calling OCIAttrSet() to set it to empty (using the
OCI_ATTR_LOBEMPTY attribute), and then binding the locator to a placeholder in
an INSERT statement. Doing so inserts the empty locator into a table with a LOB
column or attribute. You can then SELECT...FOR UPDATE this row to get the
locator, and then write to it using one of the OCI LOB functions.

Note: Whenever you want to modify a LOB column or attribute (write, copy,
trim, and so forth), you must lock the row containing the LOB. One way to do
this is to use a SELECT...FOR UPDATE statement to select the locator before
performing the operation.

For any LOB write command to be successful, a transaction must be open. This
means that if you commit a transaction before writing the data, then you must
relock the row (by reissuing the SELECT...FOR UPDATE, for example), because the
commit closes the transaction.

7-2 Oracle Call Interface Programmer’s Guide

LOB Attributes of an Object

For information on creating internal LOBs using EMPTY_BLOB() and
EMPTY_CLOB() instead of OCIAttrSet(), see Oracle8i Application Developer’s Guide -
Large Objects (LOBS).

Note: For information about LOB reads and writes from within a trigger, see
Oracle8i Application Developer’s Guide - Large Objects (LOBSs).

See Also: For information about binding LOB locators to placeholders, and
using them in INSERT statements, refer to the section "Binding LOBs" on
page 5-10.

Associating a FILE in a Table with an OS File

The BFILENAME() function can be used in an INSERT statement to associate an
external server-side (OS) file with a BFILE column/attribute in a table. Using
BFILENAME() in an UPDATE statement associates the BFILE column or attribute
with a different OS file. OClLobFileSetName() can also be used to associate a FILE in
a table with an OS file. BFILENAME() is usually used in an INSERT or UPDATE
without bind variables and OCILobFileSetName() is used for bind variables.

See Also: For more information, see OCILobFileSetName() on page 15-134. For
more information about the BFILENAME() function, please refer to the Oracle8i
Application Developer’s Guide - Large Objects (LOBSs).

LOB Attributes of an Object

An OCI application can use OCIObjectNew() to create a persistent or transient object
with a LOB attribute.

Writing to a LOB Attribute of an Object

It is possible to use the OCI to create a new persistent object with a LOB attribute
and write to that LOB attribute. The application would follow these steps:

1.

2
3.
4

Call OCIObjectNew() to create a persistent object with a LOB attribute.
Mark the object as dirty.
Flush the object, thereby inserting a row into the table

Repin the latest version of the object (or refresh the object), thereby retrieving
the object from the database and acquiring a valid locator for the LOB

Call OCILobWrite() using the LOB locator in the object to write the data.

LOB and FILE Operations 7-3

Array Interface For LOBs

For more information about object operations, such as marking, flushing, and
refreshing, refer to Chapter 10, "OCI Object-Relational Programming"”.

Transient Objects with LOB Attributes

An application can call OCIObjectNew() and create a transient object with an
internal LOB (BLOB, CLOB, NCLOB) attribute. However, the user cannot perform
any operations (e.g., read or write) on the LOB attribute because transient LOBs are
not currently supported. Calling OCIObjectNew() to create a transient internal LOB
type will not fail, but the application cannot use any LOB operations with the
transient LOB.

An application can, however, create a transient object with a FILE attribute and use
the FILE attribute to read data from the file stored in the server’s file system. The
application can also call OCIObjectNew() to create a transient FILE and use that FILE
to read from the server’s file.

Array Interface For LOBs

It is possible to use the OCI’s array interface with LOBs, just as with any other
datatype. Note, however, that you must do the following to allocate the descriptors:

[* First create an array of OClLocator pointers: */
OCILobLocator *lobp[10];

for (F0;1< 10; i++)
{ OClIDescriptorAlloc (... &obp[l],...);

F*Then bind the descriptor as follows */

OCIBindByPos(.......&lobpl],);
}

LOB and FILE Functions

The functions in Table 7-1 are available to operate on LOBs and FILEs. More
detailed information about each function is found in Chapter 15, "OCI Relational
Functions". These LOB/FILE calls are not valid when an application is connected to
an Oracle release 7 server.

In all LOB operations that involve offsets into the data, the offset begins at 1. For
LOB operations, such as OCILobCopy(), OCILobErase(), OCILobLoadFromFile(), and
OCILobTrim(), the amount parameter is in characters for CLOBs and NCLOBs,
regardless of the client-side character set. These LOB operations refer to the amount

7-4 Oracle Call Interface Programmer’s Guide

LOB and FILE Functions

of LOB data on the server. The following general rules apply to the amount and offset

parameters in LOB calls:

amount- When the amount parameter refers to the server-side LOB, the amount
is in characters. When the amount parameter refers to the client-side buffer, the

amount is in bytes.

offset - Regardless of whether the client-side character set is varying-width, the
offset parameter is always in characters for CLOBs/NCLOBs and in bytes for

BLOBs/BFILEs.

Exceptions to these general rules are noted in the description of the specific LOB

call.

See Also: For more information about FILEs, refer to the description of BFILES
in the Oracle8i Application Developer’s Guide - Large Objects (LOBSs).

Table 7-1 OCI LOB and FILE Functions

Function

Restrictions

Purpose

OCILobAppend()

OCILobAssign()

OCIlLobCharSetForm()
OCIlLobCharSetld()
OClLobClose()

Internal LOBs
only

Appends data from one internal LOB onto another internal
LOB. The source and the destination LOBs must already exist.
The destination LOB is extended to accommodate the newly
written data if it extends beyond the current length of the
destination LOB. It is an error to extend the destination LOB
beyond the maximum length allowed (4 gigabytes) or to try to
append from a NULL LOB.

Assigns one LOB/FILE locator to another. This function cannot
be used for temporary LOBs; use OClLobLocatorAssign().

Gets the character set form of a CLOB/NCLOB.
Gets the character set ID of a CLOB/NCLOB.
Closes an opened LOB or BFILE.

LOB and FILE Operations 7-5

LOB and FILE Functions

Table 7-1 OCI LOB and FILE Functions (Cont.)

Function Restrictions Purpose
OClILobCopy() Internal LOBs This function copies a portion of an internal LOB into another
only internal LOB. The source and destination LOBs must already

OCIlLobCreateTemporary()
OClLobDisableBuffering() Internal LOBs

only
OCILobEnableBuffering() Internal LOBs
only
OCILobErase() Internal LOBs
only

OCILobFileClose(),
OCILobFileCloseAll()

OCILobFileExists()
OCIlLobFileGetName()
OCILobFilelsOpen()
OCILobFileOpen()

OCILobFileSetName()

exist. If data already exists at the destination’s start position, it
is overwritten with the source data. If the destination’s start
position is beyond the end of the current value, zero-byte
fillers (BLOBSs) or spaces (CLOBs/NCLOBs) are placed in the
LOB from the end of the destination value to the beginning of
the newly written data from the source. The destination LOB is
extended to accommodate the newly written data if it extends
beyond the current length of the destination LOB. It is an error
to extend the destination LOB beyond the maximum length
allowed (4 gigabytes). LOB copy operations must be
performed on LOBS of the same type; i.e., one CLOB can be
copied to another CLOB, and one BLOB can be copied to
another BLOB, but a CLOB cannot be copied to a BLOB, and
vice versa.

Creates a temporary LOB.

Disables LOB buffering for a given internal locator.

Enables LOB buffering for a given internal locator.

Erases a specified portion of the internal LOB value starting at
a specified offset. The actual number of characters/bytes
erased is returned. The actual number of characters/bytes and
the requested number of characters/bytes will differ if the end
of the LOB data is reached before erasing the requested
number of characters/bytes. If the LOB is NULL, this routine
shows that 0 characters/bytes were erased.

Closes a previously opened FILE, or all open FILEs. It is an
error if this function is called for an internal LOB. No error is
returned if the FILE exists but is not opened.

Tests to see if a FILE exists on the server.
Gets the name and the directory alias of a FILE.
Tests to see if a FILE has been opened with the input locator.

Opens a FILE. The FILE can be opened for read-only access. It
is an error if this call is made on an internal LOB.

Sets the name and the directory alias of a FILE.

7-6 Oracle Call Interface Programmer’s Guide

LOB and FILE Functions

Table 7-1 OCI LOB and FILE Functions (Cont.)

Function

Restrictions

Purpose

OCILobFlushBuffer()

OCIlLobFreeTemporary()
OCILobGetChunksSize()
OCIlLobGetLength()

OClLoblsEqual()

OClILoblIsOpen()
OClILoblsTemporary()
OCIlLobLoadFromFile()
OCIlLobLocatorAssign()
OCIlLobLocatorlsInit()
OCILobOpen()
OCILobRead()

Internal LOBs

only

Flushes the LOB buffer.

Frees the temporary LOB value.
Gets the usable LOB chunk size.

This function gets the length of a LOB/FILE. If the LOB/FILE
is NULL, the length is undefined. Empty internal LOBs have a
length of zero. Regardless of whether the client-side character
set is varying-width, the output length is in characters for
CLOBs/NCLOBs and in bytes for BLOBs/BFILEs.

Tests to see if two LOB/FILE locators are equal. Two locators
are equal if and only if they both refer to the same LOB/FILE
value.

Tests whether the LOB is open.

Tests whether it is a temporary LOB.

Populates all or part of a LOB with data from a FILE.
Assigns a LOB/FILE locator to another LOB/FILE locator.
Tests to see if a LOB/FILE locator is initialized.

Opens a LOB or BFILE.

This function reads a portion of the LOB/FILE value into a
buffer. It is an error to try to read from a NULL LOB/FILE. If
the client-side character set is varying-width, then for CLOBs
and NCLOBs, the input amount is in characters and the output
amount is in bytes. The input amount refers to the number of
characters to read from the server-side CLOB/NCLOB. The
output amount indicates how many bytes were read into the
buffer bufp. When using polling mode, note the value of the
amtp parameter after each OCILobRead() call to see how many
bytes were read into the buffer because the buffer may not be
entirely full. When using callbacks, the len parameter, which is
input to the callback, indicates how many bytes are filled in the
buffer. Be sure to check the len parameter during the callback
processing because the entire buffer may not be filled with
data.

LOB and FILE Operations 7-7

LOB and FILE Functions

Table 7-1 OCI LOB and FILE Functions (Cont.)

Function Restrictions Purpose

OCILobTrim() Internal LOBs This function truncates a LOB, trimming the LOB value to a
only specified smaller length.

OCILobWrite() Internal LOBs This function writes data from a buffer into an internal LOB. If
only data already exists in the LOB, it is overwritten with the data

stored in the buffer. If the client-side character set is
varying-width, then for CLOBs and NCLOBs, the input
amount is in bytes and the output amount is in characters. The
input amount refers to the number of bytes of data that should
be written to the LOB. The output amount refers to the number
of characters written into the server-side CLOB/NCLOB.

OCILobWriteAppend() Writes data starting at the end of the LOB.

Functions for Improving LOB Read/Write Performance

Using OCILobGetChunkSize()

Users can take advantage of the OCILobGetChunkSize() call to improve the
performance of LOB read and write operations. OCILobGetChunkSize() returns the
usable chunk size in bytes for BLOBs and in characters for CLOBs and NCLOBs.
When a read or write is done using data whose size is a multiple of the usable
chunk size and starts on a chunk boundary, performance improves. A user can
specify the chunk size for a LOB column when creating a table that contains the
LOB.

Calling OCILobGetChunksSize() returns the usable chunk size of the LOB, and an
application can batch a series of write operations until an entire chunk can be
written, rather than issuing multiple LOB write calls that operate on the same
chunk.

To read through the end of a LOB, call OCILobRead() with an amount of 4 gigabytes.
This avoids the round-trip involved with first calling OCILobGetLength() because
OCILobRead() with an amount of 4 gigabytes reads until the end of the LOB is
reached.

Note: For LOBs which store varying width characters, OClLobGetChunkSize()
returns the number of Unicode (UCS-2) characters that fit in a LOB chunk.

7-8 Oracle Call Interface Programmer’s Guide

LOB and FILE Functions

Using OCILobWriteAppend()

The OCI provides a shortcut to make it more efficient to write data to the end of a
LOB. The OCILobWriteAppend() enables an application to append data to the end of
a LOB without first requiring a call to OCILobGetLength() to determine the starting
point for an OCILobWrite() operation. OClLobWriteAppend() takes care of both steps.

LOB Buffering Functions

The Oracle OCI provides several calls for controlling LOB buffering for small reads
and writes of internal LOB values:

» OCILobEnableBuffering()
« OClILobDisableBuffering()
« OCILobFlushBuffer()

These functions provide performance improvements by allowing applications using
internal LOBs (BLOB, CLOB, NCLOB) to buffer small reads and writes of LOBs in
client-side buffers. This reduces the number of network roundtrips and LOB
versions, thereby improving LOB performance significantly for small reads and
writes.

See Also: For more information on LOB buffering, refer to the chapter on LOBs
in the Oracle8i Application Developer’s Guide - Large Objects (LOBSs).

For a code sample showing the use of LOB buffering, see the demonstration
programs included with your Oracle installation. Refer to Appendix B, "OCI
Demonstration Programs".

Functions for Opening and Closing LOBs

The OCI provides functions to explicitly open (OClLobOpen()) and close
(OCILobClose()) a LOB, and also to test whether a particular LOB is already open
(OClLoblsOpen()). These functions allow an application to mark the beginning and
end of a series of LOB operations so that specific processing (e.g., updating indices,
etc.) can be performed when a LOB is closed.

Note: The concept of openness is associated with a LOB and not its locator. The
locator does not store any information about whether the LOB to which it refers
is open. It is possible for more than one locator to point to the same open LOB.

If an application does not wrap LOB operations between a set of OCILobOpen() and
OCILobClose() calls, then each modification to the LOB implicitly opens and closes
the LOB, thereby firing any triggers associated with changes to the LOB.

LOB and FILE Operations 7-9

LOB and FILE Functions

Note: If LOB operations are not wrapped inside open and close calls, any
extensible indices on the LOB are updated as LOB modifications are made, and
thus are always valid and may be used at any time. If the LOB is modified
between a set of OCILobOpen() and OCILobClose() calls, triggers are not fired for
individual LOB modifications. Triggers are only fired after the OCILobClose()
call, so indices are not updated until after the close call and thus are not valid in
between the open and close calls. OClLoblsOpen() can be used with internal and
external LOBs (BFILES).

Restrictions

The LOB opening and closing mechanism has the following restrictions:

1. An application must close all previously opened LOBs before committing a
transaction. Failing to do so will result in an error. If a transaction is rolled back,

all open LOBs are discarded along with the changes made (the LOBs are not
closed), so associated triggers are not fired.

2. While there is no limit to the number of open internal LOBs, there is a limit on
the number of open files. Refer to SESSION_MAX_OPEN_FILES parameter in
Oracle8i Reference. Note that assigning an already opened locator to another
locator does not count as opening a new LOB.

3. Itisan error to open or close the same LOB twice within the same transaction,
either with different locators or the same locator.

4. ltisan error to close a LOB that has not been opened.

Note: The definition of a transaction within which an open LOB value must be
closed is one of the following:

« Dbetween SET TRANSACTION and COMMIT

« between DATA MODIFYING DML or SELECT ... FOR UPDATE and
COMMIT.

« within an autonomous transaction block

A LOB opened when there is no transaction must be closed before the end of
session. If there are LOBs open at the end of session, the openness will be
discarded and no triggers of extensible indexes are fired.

LOB Open/Close Examples

For examples of the use of the OCILobOpen() and OCILobCLose() calls, see the list of
online demonstration programs in Appendix B, "OCI Demonstration Programs".

7-10 Oracle Call Interface Programmer’s Guide

LOB Read and Write Callbacks

Server Roundtrips for LOB Functions

For a table showing the number of server roundtrips required for individual OCI
LOB functions, refer to Appendix C, "OCI Function Server Roundtrips".

LOB Read and Write Callbacks

The OCI LOB read and write functions provide the ability to define callback
functions which can be used to provide data to be written or handle data that was
read. This allows the client application to perform optional processing on the data.
One example usage of this would be to use the callbacks to implement a
compression algorithm for writing the data and a decompression algorithm for
reading it.

Note: The LOB read/write streaming callbacks provides a fast method for
reading/writing large amounts of LOB data.

The following sections describe the use of callbacks in more detail.

The Callback Interface for Streaming

Your application can use user-defined read and write callback functions to insert
data into or retrieve data from a LOB. This provides an alternative to the polling
method for streaming data into a LOB and retrieving data from a LOB. The
user-defined callbacks have a specific prototype which is described below. These
functions are implemented by the user and registered with OCI through the
OCILobRead() and OCILobWrite() calls. The callback functions are called by OCI
whenever required.

LOB and FILE Operations 7-11

LOB Read and Write Callbacks

Figure 7-1 User-defined Callback

—_—

User Application >
OcCl
IN parameters
User-defined <
callback OUT parameters

>

Reading LOBs using Callbacks

The user-defined read callback function is registered through the OCILobRead()
function. The callback function should have the following prototype:

CallbackFunctionName (dvoid *ctxp, CONST dvoid *bufp, ub4 len, ubl piece)

The first parameter, ctxp, is the context of the callback that is passed to OCI in the
OCILobRead() function call. When the callback function is called, the information
provided by the user in ctxp is passed back to the user (the OCI does not use this
information on the way IN). The bufp parameter is the pointer to the storage where
the LOB data is returned and bufl is the length of this buffer. It tells the user how
much data has been read into the buffer provided by the user.

If the buffer length provided by the user in the original OCILobRead() call is
insufficient to store all the data returned by the server, then the user-defined
callback is called. In this case the piece parameter indicates to the user whether the
information returned in the buffer in the first, next or last piece.

The following is a code fragment of a typical way to implement read callback
functions. Assume here that lobl is a valid locator that has been previously selected,
svchp is a valid service handle and errhp is a valid error handle.

ub4 offset=1;

ub4 loblen=0;

ubl bufpMAXBUFLEN];

ub4 amip=0;

sword retval;

amtp =4294967295; 4 gigabytes minus 1%

if (retval = OCILobRead(svchp, erhp, lobl, &amtp, offset, (dvoid *) bufp,
(ub4) MAXBUFLEN, (dvoid *) bufp, cbk_read lob,
(ub2) 0, (ubl) SQLCS_IMPLICIT))

(void) printi ERROR: OCILobRead() LOB\NY;

7-12 Oracle Call Interface Programmer’s Guide

LOB Read and Write Callbacks

report_error();
}

sh4 chk_read_lob(ctxp, bufxp, len, piece)
dvoid “cxp;
CONST dvoid *bufxp;
ub4 len;
ubl piece;
{
static ub4 piece_count=0;
piece_count+;
switch (piece)
{
case OC|_LAST PIECE:
* process buffer bufxp */
— buffer processing code goes here —
(void) printf{"callback read the %od th piece\n\n", piece_count);
piece_count=0;
break;
case OC|_FIRST PIECE:
case OC|_NEXT_PIECE:
* process buffer bufxp */
— buffer processing code goes here —
(void) printf("callback read the %od th piece\n”, piece_count);
break;
default
(void) printf{"callback read error: unkown piece = %d.\n", piece);
retum OCl_ERROR;
}
retum OCl_CONTINUE;

}

In the above example the user defined function cbk_read_lob() is repeatedly called
until all the LOB data has been read by the user.

For an example of the use of OCILobRead() using polling and callbacks, see the list of
online demonstration programs in Appendix B, "OCI Demonstration Programs".

Writing LOBs using Callbacks

Similar to read callbacks, the user-defined write callback function is registered
through the OCILobWrite() function. The callback function should have the
following prototype:

CallbackFunctionName (dvoid *ctxp, dvoid *bufp, ub4 *enp, ubl *piecep)

LOB and FILE Operations 7-13

LOB Read and Write Callbacks

The first parameter, ctxp, is the context of the callback that is passed to OCI in the
OCILobWrite() function call. The information provided by the user in ctxp, is passed
back to the user when the callback function is called by the OCI (the OCI does not
use this information on the way IN). The bufp parameter is the pointer to a storage
area that contains the LOB data to be inserted, and bufl is the length of this storage
area. The user provides this pointer in the call to OCILobWrite(). After inserting the
data provided in the call to OCILobWrite() if there is more to write, then the user
defined callback is called. In the callback the user should provide the data to insert
in the storage indicated by bufp and also specify the length in bufl. The user should
also indicate whether it is the next (OCI_NEXT_PIECE) or the last

(OCI_LAST _PIECE) piece using the piecep parameter. Note that the user is
completely responsible for the storage pointer the application provides and should
make sure that it does not write more than the allocated size of the storage.

The following is a code fragment of a typical way to implement write callback
functions.

Assume here that lobl is a valid locator that has been locked for updating, svchp is a
valid service handle and errhp is a valid error handle

ub4 offset=1;
ubl bufp[MAXBUFLEN];
ub4 amtp=MAXBUFLEN * 20;
ub4 nbytes =MAXBUFLEN;
 Fill bufp with some data */
— code to fill bufp with data goes here. nbytes should reflect the size and
should be less than or equal to MAXBUFLEN —
if (retval = OCILobWhite(svchp, erhp, lobl, &amip, offset, (dvoid*)
bufp,(ub4)nbytes, OCI_FIRST_PIECE, (dvoid *)0, cbk_wite_lob,
(Ub2) 0, (ubl) SQLCS_IMPLICIT))
{
(void) printf"ERROR: OCILobWiite().\n");
report_error();
retum;

}
sb4 cbk wite_lob(ctxp, bufxp, lenp, piecep)
dvoid *ctxp;
dvoid *bufxp;
ub4 *enp;
ubl *piecep;

F Fill bufxp with data*/

7-14 Oracle Call Interface Programmer’s Guide

Temporary LOB Support

- code to fill bufxp with data goes here. *lenp should reflect the size
and should be less than or equal to MAXBUFLEN —
if (this is the last data buffer)
*piecep=OC|_LAST_PIECE;
else
*piecep =OCI|_NEXT_PIECE;;
retumn OCl_CONTINUE;
}

In the above example, the user defined function cbk_write_lob is repeatedly called
until the user indicates that the application is providing the last piece using the
piecep parameter.

For an example of the use of OCILobWrite() using polling and callbacks, see the list
of online demonstration programs in Appendix B, "OCI Demonstration Programs".

Temporary LOB Support

The OCI provides functions for creating and freeing temporary LOBs,
OClLobCreateTemporary() and OCILobFreeTemporary(), plus a function for querying
whether or not a given LOB is a temporary LOB, OCIlLoblsTemporary().

Temporary LOBs are not permanently stored in the database, but can act like local
variables for the purpose of operating on LOB data. OCI functions which operate on
standard (persistent) LOBs can also be used on temporary LOBs.

As with standard LOBs, all functions operate on the locator for the temporary LOB,
and the actual LOB data is accessed through the locator.

Temporary LOB locators can be used as arguments to the following types of SQL
statements:

« UPDATE - the temporary LOB locator can be used as a value in a WHERE
clause when testing for nullness or as a parameter to a function. The locator can
also be used in a SET clause.

« DELETE - the temporary LOB locator can be used in a WHERE clause when
testing for nullness or as a parameter to a function.

« SELECT - the temporary LOB can be used as a variable in a SELECT...INTO
statement. For example, a permanent LOB locator can be SELECTed from the
database into a client-side temporary LOB locator. Note that although the
locator is on the client side, temporary LOBs are actually created on the server
side.

LOB and FILE Operations 7-15

Temporary LOB Support

Note: If a user selects a permanent locator into a temporary locator, the
temporary locator is overwritten with the permanent locator. In this case the
temporary LOB is not implicitly freed. The user must explicitly free the
temporary LOB before the SELECT...INTO. If the temporary LOB is not freed
explicitly, it will not be freed until the end of its duration. Unless the user has
another temporary locator pointing to the same LOB, the user will no longer
have a locator pointing to the temporary LOB, because the original locator was
overwritten by the SELECT...INTO.

Creating and Freeing Temporary LOBs

A user creates a temporary LOB with the OCILobCreateTemporary() function. The
parameters passed to this function include a value for the duration of the LOB. The
default duration is for the length of the current session. At the end of the duration
all temporary LOBs are deleted. Users can reclaim temporary LOB space by
explicitly freeing the temporary LOB with the OCILobFreeTemporary() function. A
temporary LOB is empty when it is created.

When creating a temporary LOB, users can also specify whether or not the
temporary LOB is read into the server’s buffer cache.

To make a temporary LOB permanent, the application can use OClLobCopy() to copy
the data from the temporary LOB into a permanent one. The application can also
use the temporary LOB in the VALUES clause of an INSERT statement, use the
temporary LOB as the source of the assignment in an UPDATE statement, or assign
the temporary LOB to a persistent LOB attribute and the flush the object.

Temporary LOBs can be modified with the same functions which are used for
standard LOBs.

Temporary LOB Durations

The OCI supports several predefined durations for temporary LOBs and a set of
functions that the application can use to define application-specific durations. The
predefined durations are:

1. call (OCI_DURATION_CALL), only on the server side
2. session (OCI_DURATION_SESSION)

The session duration expires when the containing session/connection ends. The call
duration expires at the end of the current OCI call.

When running in object mode, a user can also define application-specific durations.
An application-specific duration, also referred to as a user duration, is defined by

7-16 Oracle Call Interface Programmer’s Guide

Temporary LOB Support

specifying the start of a duration using the OCIDurationBegin() function and the end
of the duration using the OCIDurationEnd() function.

Note: User-defined durations are only available if an application has been
initialized in object mode.

Each application-specific duration has a duration identifier that is returned by
OClIDurationBegin() and is guaranteed to be unique until OCIDurationEnd() is called
on the duration. An application-specific duration can be as long as, but not longer,
than a session duration.

At the end of a duration, all temporary LOBs associated with that duration are
freed. However, the descriptor associated with the temporary LOB must be freed
explicitly with the OCIlDescriptorFree() call.

User-defined durations can be nested—one duration can be defined as a child
duration of another user duration. It is possible for a parent duration to have child
durations which, in turn, have their own child durations.

Note: When a duration is started with OCIDurationBegin(), one of the
parameters is the identifier of a parent duration. When a parent duration is
ended, all child durations are also ended. For more information, see
OClIDurationBegin() on page 15-112.

Temporary LOB Example
The following code example shows how temporary LOBs might be used:

#include <stdio.h>
#include <stdlib.n>
#include <string.h>
#include <oci.h>

F* Function Prototype */
static void checkerr (*_ OCIEmor *errhp, sword status _*/);
sb4 select and_createtemp (OCILobLocator *ob_loc,
OCIEmor *enhp,
OCISveCix *svchp,
OoCIsmt *stmthp,
OCIEnv *envhp);

P This function reads in a single video Frame from the Mulimedia._tab table.

Then it creates a temporary lob. The temporary LOB which is created is read

through the CACHE, and is automatically cleaned up at the end of the user’s

session, if it is not explicity freed sooner. This function retums OCI_SUCCESS
if it completes successfully or OCl_ ERROR if it fails. */

LOB and FILE Operations 7-17

Temporary LOB Support

sb4 select and_createtemp (OCILobLocator *ob_loc,
OCIEnmor *erthp,
OCISveCitx *svchp,
OCIStmt *stmthp,
OCIEnv *envhp)
{
OClIDefine *defnpl;
OCIBind *bndhp;
text *sglstmt;
introwind =1;
ub4 loblen=0;
OClLobLocator *thlob;
printf ('in select_and_createtemp \n');
if{OCIDescriptorAlloc((dvoid*)envhp, (dvoid **)&tblob,
(Ub4)OCI_DTYPE_LOB, (size_t)0,
(dvoid™)0))

printf(failed in OCIDescriptor Alloc in select_and_createtemp \n");
retum OC|_ERROR,
}
F arbitrarily select where Clip_ID=1%
sqistmt = (text *)"SELECT Frame FROM Muttimedia._tab WHERE Clip_ID=1 FOR
UPDATE",
if (OCIStmtPrepare(stmthp, errhp, sgistmt,
(ub4) strien((char *)sglstmt),
(ubd) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
{
(void) printf("FAILED: OCIStmtPrepare() sgistmtin®);
retum OC|_ERROR;
}
 Define for BLOB */
if (OCIDefineByPos(stmthp,
&defnpl,
enhp,
(ub4)1,
(dvoid *) &lob loc,
(sb4)0,
(ub2) SQLT_BLOB,
(dvoid*) 0,
ub2%0,
ub2#0,
(ub4) OCI_DEFAULT))

{
(void) printf("FAILED: Select locator: OCIDefineByPos(\n');

7-18 Oracle Call Interface Programmer’s Guide

Temporary LOB Support

retum OC|_ERROR,;
}
¥ Execute the select and fetch one row */
if (OCISmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(CONST OClSnapshot*) 0, (OClISnapshot*) O,
(ub4) OCI_DEFAULT))
{
(void) printf{("FAILED: OCIStmtExecute() sqistmtn';
retum OCl_ERROR,;
}
if(OCILobCreateTemporary(svchp,
emhp,
thlob,
(ub2)0,
SQLCS _IMPLICIT,
OC|_TEMP_BLOB,
OCI_ATTR_NOCACHE,
OCI_DURATION_SESSION))
{
(void) printf("FAILED: CreateTemporary() \n");
retum OCI|_ERROR,;
}
if (OCILobGetLength(svchp, erhp, lob_loc, &loblen) = OCl_SUCCESS)
{
printf("OCILobGetlength FAILED\n");
retum OCI_ERROR,
}
if (OCILobCopy(svchp, erhp, thlob,lob_loc,(ub4)loblen, (ub4) 1,
(ub4) 1))
{
printf("OCILobCopy FAILED \n");
}
if(OCILobFreeTemporary(svchp,errhp,thlob))
{
printf ("FAILED: OCILobFreeTemporary call \n'");
retum OCI_ERROR,;

}
retum OCl_SUCCESS;

}
int main(char *argv, int argc)

{
1 OCl Handles */

OCIEnv *envhp;
OClServer *srvhp;

LOB and FILE Operations 7-19

Temporary LOB Support

OCISveCix *svchp;
OCIEror *erhp;
OClSession *authp;
OCIStmt *stmthp;
OCILobLocator *clob, *hlob;
OCILobLocator *lob_loc;
int type =1;
F Initialize and Logon */
(void) OClinitialize((ub4) OCl_DEFAULT, (dvoid *)0,
(dvoid * (*)(dvoid *, size_t)) O,
(dvoid * (*)(dvoid *, dvoid *, size_1))0,
(void (*)(dvoid *, dvoid *)) 0);
(void) OCIEnvinit((OCIEnv **) &envhp,
OCI_DEFAULT, (size_t)0,
(dvoid) 0);
(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, OCl_ HTYPE_ERROR,
(size_t) O, (dvoid *) 0);
F server contexts */
(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, OCI HTYPE_SERVER,
(size_t) O, (dvoid *) 0);
F service context */
(void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, OCIHTYPE_SVCCTX,
(size_t) O, (dvoid **) 0);
Fattach to Oracle */
(void) OClServerAttach(srvhp, erhp, (text *)™, stden(*), 0);
[* set attribute server context in the service context */
(void) OCIAttrSet ((dvoid *) svchp, OCI HTYPE_SVCCTX,
(dvoid ®)srvhp, (ub4) O,
OCI_ATTR_SERVER, (OCIEmor *) enthp);
(void) OCIHandleAlloc((dvoid *) envhp,
(dvoid *)&authp, (ub4) OCI_HTYPE_SESSION,
(size_1) O, (dvoid *¥) O);
(void) OClAtrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
(dvoid *) "scott”, (ub4)5,
(ub4) OCI_ATTR_USERNAME, erthp);
(void) OCIAtirSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
(dvoid *) "tiger”, (ub4) 5,
(ub4) OCI_ATTR_PASSWORD, errhp);
F*Begin a User Session */
checkenr(errhp, OCISessionBegin (svchp, erhp, authp, OCI CRED_RDBMS,
(ub4) OCI_DEFAULT));
(void) OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
(dvoid *) authp, (ub4) 0,
(ub4) OCI_ATTR_SESSION, erthp);
F—— Done logginin *

7-20 Oracle Call Interface Programmer’s Guide

Temporary LOB Support

* allocate a staterment handle */
checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
OCI_HTYPE_STMT, (size_{) 0, (dvoid *¥) Q));

checkenr(emrhp, OCIDescriptorAlloc((dvoid *)envhp, (dvoid **) &lob_loc,
(ub4) OCI_DTYPE_LOB,
(size_t) O, (dvoid **) Q));

F Subroutine calls begin here */

printf("calling select_and_createtemp\n’);

select_and_createtemp (lob_loc, emhp, svchp,stmthp,envhp);

retum O;
}
void checkerr(errhp, status)
OCIEnor *errhp;
sword status;
{
text embuf[512];
sb4 errcode =0;
switch (status)

{
case OCl_SUCCESS:
break;
case OCl_SUCCESS_WITH_INFO:
(void) printf("Error - OCl_SUCCESS_WITH_INFO\n'Y);
break;
case OCl_ NEED DATA:
(void) printf("Emor - OCI_NEED_DATAn'Y);
break;
case OCI_NO_DATA:
(void) printf("Error - OCI_NODATAW');
break;
case OCl_ERROR:
(void) OCIEmorGet((dvoid *)errhp, (ub4) 1, (text *) NULL, &errcode,
enbuf, (ub4) sizeof(errbuf), OCI_HTYPE_ERROR);
(void) printf("Error - %.*s\n", 512, enbuf);
break;
case OCl_INVALID_HANDLE:
(void) printf("Error - OCI_INVALID_HANDLE\n");
break;
case OCI_STILL_EXECUTING:
(void) printf("Emor - OCI_STILL_EXECUTE\N");
break;
case OCl_CONTINUE:
(void) printf("Error - OCI_ CONTINUE\n");
break;

LOB and FILE Operations 7-21

Temporary LOB Support

default:
break;

7-22 Oracle Call Interface Programmer’s Guide

8

The following topics are covered in this chapter:

Managing Scalable Platforms

Overview

Transactions

Password and Session Management
Middle-tier Applications

Thread Safety

Managing Scalable Platforms 8-1

Overview

Overview

Transactions

Chapter 2, "OCI Programming Basics" introduced the basic concepts of OCI
programming, including how simple transactions are processed and how the
OClSessionBegin() call is used as part of OCI initialization. This chapter is designed
to introduce more advanced concepts, including the following:

« different levels of transaction complexity, including global transactions, and the
operations that are possible through OCI calls.

« password and session management using additional options available with
OCISessionBegin().

« OCI support for thread safety and multithreaded application development.

Oracle Call Interface provides a set of API calls to support operations on both local
and global transactions. These calls include object support, so that if an OCI
application is running in object mode, the commit and rollback calls will
synchronize the object cache with the state of the transaction.

The functions listed below perform transaction operations. Each call takes a service
context handle that should be initialized with the proper server context and user
session handle. The transaction handle is the third element of the service context; it
stores specific information related to a transaction. When a SQL statement is
prepared, it is associated with a particular service context. When the statement is
executed, its effects (query, fetch, insert) become part of the transaction that is
currently associated with the service context.

« OClITransStart() - marks the start of a transaction
« OClITransDetach() - detaches a transaction

« OCITransCommit() - commits a transaction

« OClITransRollback() - rolls back a transaction

« OClITransPrepare() - prepares a transaction to be committed in a distributed
processing environment

« OClITransMultiPrepare() - prepares a transaction with multiple branches in a
single call.

« OClITransForget() - causes the server to forget a heuristically completed global
transaction.

8-2 Oracle Call Interface Programmer’s Guide

Transactions

Depending on the level of transactional complexity in your application, you may
need all or only a few of these calls. The following section discusses this in more
detail.

See Also: For more specific information about these calls, refer to the function
descriptions in Chapter 15, "OCI Relational Functions".

Levels of Transactional Complexity

The OCI supports several levels of transaction complexity. Each level is described in
one of the following sections.

« Simple Local Transactions
« Serializable or Read-Only Local Transactions

« Global Transactions

Simple Local Transactions

Many applications work with only simple local transactions. In these applications,
an implicit transaction is created when the application makes database changes. The
only transaction-specific calls needed by such applications are:

« OClITransCommit() - to commit the transaction
« OCITransRollback() - to roll back the transaction

As soon as one transaction has been committed or rolled back, the next modification
to the database creates a new implicit transaction for the application.

Only one implicit transaction can be active at any time on a service context.
Attributes of the implicit transaction are opaque to the user.

If an application creates multiple sessions, each one can have an implicit transaction
associated with it.

For sample code showing the use of simple local transactions, refer to the example
for OCITransCommit() on page 15-205.

Serializable or Read-Only Local Transactions

Applications requiring serializable or read-only transactions require an additional
OCI call beyond those needed by applications operating on simple local
transactions. To initiate a serializable or read-only transactions, the application must
create the transaction by calling OCITransStart() to start the transaction.

Managing Scalable Platforms 8-3

Transactions

The call to OCITransStart() should specify OCI_TRANS_SERIALIZABLE or
OCI_TRANS_READONLY, as appropriate, for the flags parameter. If no flag is
specified, the default value is OCI_TRANS_READWRITE for a standard read-write
transaction.

Specifying the read-only option in the OCITransStart() call saves the application
from performing a server round-trip to execute a SET TRANSACTION READ
ONLLY statement.

Global Transactions

Global transactions are necessary only in more sophisticated transaction-processing
applications.

Note: Users not operating in distributed or global transaction environments
may skip this section.

This section provides some background about global transactions, and then gives
specific information about using OCI calls to process global transactions.

Transaction Identifiers Three-tiered applications such as transaction processing (TP)
monitors create and manage global transactions. They supply a global transaction
identifier (XID), which a server then associates with a local transaction.

A global transaction has one or more branches. Each branch is identified by an XID.
The XID consists of a global transaction identifier (gtrid) and a branch qualifier (bqual).
This structure is based on the standard XA specification.

For example, the following is the structure for one possible XID of 1234:

Component Value
gtrid 12
bqual 34
gtrid+bqual=XID 1234

See Also: For more information about transaction identifiers, refer to the
Oracle8i Distributed Database Systems manual.

The transaction identifier used by OCI transaction calls is set in the OCI_ATTR_XID
attribute of the transaction handle, using OCIAttrSet(). Alternately, the transaction
can be identified by a name set in the OCI_ATTR_TRANS_NAME attribute.

8-4 Oracle Call Interface Programmer’s Guide

Transactions

Transaction Branches ~ Within a single global transaction, Oracle supports both tightly
coupled and loosely coupled relationships between a pair of branches.

« Tightly coupled branches are different branches that share the same local
transaction. In this case, the gtrid references a unique local transaction, and
multiple branches point to that same transaction. The owner of the transaction
is the branch that was created first.

« Loosely coupled branches are different branches that use different local
transactions. In this case the gtrid and bqual together map to a unique local
transaction. Each branch points to a different transaction.

The flags parameter of OClITransStart() allows applications to pass
OCI_TRANS_TIGHT or OCI_TRANS_LOOSE to specify the type of coupling.

A session corresponds to a user session, created with OCISessionBegin().

The following figure illustrates tightly coupled branches within an application. In
the figure, S1 and S2, are sessions, B1 and B2 are branches, and T is a transaction. In
this first example, the XIDs of the two branches would share the same gtrid, because
they are operating on the same transaction, but they would have a different bqual,
because they are separate branches

Figure 8-1 Multiple Tightly Coupled Branches

B1 B2

\ / @ Session

Il Branch

A Transaction

It is also possible for a single session to operate on different branches. In this case,
illustrated in the next figure, gtrid component of the XIDs would be different,
because they are separate global transactions

Managing Scalable Platforms 8-5

Transactions

Figure 8-2 Session Operating on Multiple Branches

Bl B2

v v

@ Session
Il Branch

A Transaction

For sample code demonstrating this scenario, refer to the examples for
OClITransStart() on page 15-213. It is possible for a single session to operate on
multiple branches that share the same transaction, but this scenario does not have
much practical value. Sample code demonstrating this scenario can be found in the
examples for OCITransStart() on page 15-213.

The following figure illustrates loosely coupled branches:

Figure 8-3 Loosely Coupled Branches

B1 B2
@ Session
Il Branch

Z N\ A Transaction

Branch States Transaction branches are classified into two states: active branches and
inactive branches.

8-6 Oracle Call Interface Programmer’s Guide

Transactions

A branch is active if a server process is executing requests on the branch. A branch
is inactive if no server processes are executing requests in the branch. In this case no
session is the parent of the branch, and the branch becomes owned by the PMON
process in the server.

Detaching and Resuming Branches A branch becomes inactive when an OCI
application detaches it, using the OCITransDetach() call. The branch can be made
active again by resuming it with a call to OCITransStart() with the flags parameter
set to OCI_TRANS_RESUME.

When an application detaches a branch with OCITransDetach(), it utilizes the value
specified in the timeout parameter of the OCITransStart() call that created the branch.
The timeout specifies the number of seconds the transaction can remain dormant as
a child of PMON before being deleted.

When an application wants to resume a branch, it calls OCITransStart(), specifying
the XID of the branch as an attribute of the transaction handle,
OCI_TRANS_RESUME for the flags parameter, and a different timeout parameter.
This timeout value for this call specifies the length of time that the session will wait
for the branch to become available if it is currently in use by another process. If no
other processes are accessing the branch, it can be resumed immediately.

Note: A transaction can be resumed by a different process than the one that
detached it, as long as that process has the same authorization as the one that
detached the transaction.

Setting Client Database Name The server handle has OCI_ATTR_EXTERNAL_NAME
and OCI_ATTR_INTERNAL_NAME attributes associated with it. These attributes
set the client database name that will be recorded when performing global
transactions. The name can be used by the DBA to track transactions that may be
pending in a prepared state due to failures.

Warning: An OCI application should set these attributes, using OCIAttrSet(),
before logging on and using global transactions.

One-Phase Versus Two-Phase Commit ~ Global transactions may be committed in one or
two phases. The simplest situation is when a single transaction is operating against
a single database. In this case, the application can perform a one-phase commit of
the transaction, by calling OCITransCommit(), because the default value of the call is
for one-phase commit.

The situation is more complicated if the application is processing transactions
against multiple databases or multiple Oracle servers. In this case, a two-phase
commit is necessary. A two-phase commit consists of these steps:

Managing Scalable Platforms 8-7

Transactions

1. Prepare - The application issues a prepare call, OCITransPrepare() against each
transaction. The transaction returns a value indicating whether it is able to
commit its current work (OCI_SUCCESS) or not (OCI_ERROR).

2. Commit - If each prepare call returns a value of OCI_SUCCESS, the application
can issue a commit call, OCITransCommit() to each transaction. The flags
parameter of the commit call must be explicitly set to
OCI_TRANS_TWOPHASE for the appropriate behavior. The default for this
call is for a one-phase commit.

Note: The prepare call can also return OCI_SUCCESS_WITH_INFO if a
transaction needs to indicate that it is read-only, so that a commit is neither
appropriate nor necessary.

An additional call, OCITransForget() indicates that a database should forget a
heuristically completed transaction. This call is for situations in which a problem
has occurred that requires that a two-phase commit be aborted. When a server
receives a OCITransForget() call, it forgets all information about the transaction.

See Also: For more information about two-phase commit, refer to the Oracle8i
Distributed Database Systems manual.

Preparing Multiple Branches in a Single Message ~ There are times when multiple
applications will be using different branches of a global transaction against the
same Oracle database. Before such a transaction can be committed, all branches
must be prepared.

Most often, the applications using the branches are responsible for preparing their
own branches. However, some architectures turn this responsibility over to an
external transaction service. This external transaction service must then prepare
each branch of the global transaction. Using the traditional OCITransPrepare() call,
will then be very expensive, as each branch must be individually prepared. The
number of messages sent from the client to the server can be greatly reduced by
using the OCITransMultiPrepare() call. This call will prepare multiple branches
involved in the same global transaction in one round-trip.

Transaction Examples

This section provides examples of how to use the transaction OCI calls. The
following tables provide series of OCI calls and other actions, along with their
resulting behavior. For the sake of simplicity, not all parameters to these calls are
listed; rather, the flow of calls which is being demonstrated.

8-8 Oracle Call Interface Programmer’s Guide

Transactions

The OCI Action column indicates what the OCI application is doing, or what call it
is making. The XID column lists the transaction identifier, when necessary. The
Flags column lists the value(s) passed in the flags parameter. The Result column
describes the result of the call.

Managing Scalable Platforms 8-9

Transactions

Update Successfully, One-Phase Commit

Step OCI Action XID Flags Result
1 OClITransStart 1234 OCI_TRANS _NEW Starts new read-write transaction
2 SQL UPDATE Update rows
3 OClITransCommit Commit succeeds
Start a Transaction, Detach, Resume, Prepare, Two-Phase Commit
Step OCI Action XID Flags Result
1 OClITransStart 1234 OCI_TRANS_NEW Starts new read-only transaction
2 SQL UPDATE Update rows
3 OClTransDetach Transaction is detached
4 OClITransStart 1234 OCI_TRANS_RESUME Transaction is resumed
5 SQL UPDATE
6 OClITransPrepare Transa_ction prepared for two-phase
commit
7 OClITransCommit OCI_TRANS_TWOPHASE Transaction is committed.

Note: In step 4, above, the transaction could have been resumed by a different process, as long as it had the
same authorization.

Read-Only Update Fails

Step OCI Action XID Flags Result
1 OClITransStart 1234 OCI_TRANS_NEW | Starts new read-only transaction
OCI_TRANS_READONLY
2 SQL UPDATE Update fails, because transaction is
read-only
3 OCITransCommit Commit has no effect
Start a Read-Only Transaction, Select and Commit
Step OCI Action XID Flags Result
1 OClITransStart 1234 OCI_TRANS_NEW | Starts new read-only transaction

OCI_TRANS_READONLY

8-10 Oracle Call Interface Programmer’s Guide

Transactions

Step OCI Action XID Flags Result
2 SQL SELECT Query database
3 OClITransCommit No effect — transaction is read-only;,

no changes made

Related Initialization Parameters

Two initialization parameters relate to the use of global transaction branches
and migratable open connections:

« TRANSACTIONS - This parameter specifies the maximum number of global
transaction branches in the entire system. In contrast,
MAX_TRANSACTION_BRANCHES specifies the number of branches on a
single global transaction.

« OPEN_LINKS_PER_INSTANCE - This parameter specifies the maximum
number of migratable open connections. Migratable open connections are used
by global transactions so that connections are cached after a transaction is
committed. This is different from the OPEN_LINKS parameter, which is the
number of connections from a session (and is not applicable to applications that
use global transactions).

Managing Scalable Platforms 8-11

Password and Session Management

Password and Session Management

The OCI provides the ability to authenticate and maintain multiple users in an OCI
application. There is also a new OCI call which allows the application to update a
user’s password. This is particularly helpful if an expired password message is
returned by an authentication attempt.

Authentication Management

The OCISessionBegin() call is used to authenticate a user against the server set in the
service context handle. For Oracle8i, OCISessionBegin() must be called for any given
server handle before requests can be made against it. Also, OCISessionBegin() only
supports authenticating the user for access to the Oracle server specified by the
server handle in the service context that is used for the OCISessionBegin() call. In
other words, after OCIServerAttach() is called to initialize a server handle,
OCISessionBegin() must be called to authenticate the user for that given server
identified by the server handle.

When OCISessionBegin() is called for the first time for a given server handle, the
user session may not be created in migratable mode (OCI_MIGRATE). After
OClSessionBegin() has been called for a server handle, the application may call
OCISessionBegin() again to initialize another user session handle with different or
the same credentials and different or the same operation modes. If an application
wants to authenticate a user in OClI_MIGRATE mode, the service handle must
already be associated with a non-migratable user handle. The userid of that user
handle becomes the ownership ID of the migratable user session. Every migratable
session must have a non-migratable parent session.

If the OCI_MIGRATE mode is not specified, then the user session context can only
be used with the same server handle that was used with the OCISessionBegin(). If
OCI_MIGRATE mode is specified, then the user authentication may be set with
different server handles. However, the user session context may only be used with
server handles which resolve to the same database instance. Security checking is
done during session switching.

A migratable session is allowed to switch to a different server handle only if the
ownership ID of the session matches the userid of a non-migratable session
currently connected to that same server.

OCI_SYSDBA, OCI_SYSOPER, and OCI_PRELIM_AUTH may only be used with a
primary user session context.

A migratable session can be switched, or migrated, to a server handle within a
given environment represented by a environment handle. It can also be migrated, or

8-12 Oracle Call Interface Programmer’s Guide

Password and Session Management

cloned, to a server handle in another environment in the same process or in a
different process in a different mode. To perform this migration, or cloning, you
need to do the following:

1. Extract the session Id from the session handle using OCI_ATTR_MIGSESSION.
This is an array of bytes. It should not be modified by the caller. See
OCI_ATTR_MIGSESSION on page A-12.

2. Transport this session Id to any other process by any means.

3. Inthe new environment, create a session handle and set the session Id using
OCI_ATTR_MIGSESSION.

4. Execute OCISessionBegin(). The resulting session handle is a fully-authenticated
session handle.

To provide credentials for a call to OCISessionBegin(), one of two methods are
supported. The first is to provide a valid username and password pair for database
authentication in the user session handle passed to OCISessionBegin(). This involves
using OCIALttrSet() to set the OCI_ATTR_USERNAME and OCI_ATTR_PASSWORD
attributes on the user session handle. Then OCISessionBegin() is called with
OCI_CRED_RDBMS.

Note: When the user session handle is terminated using OCISessionEnd(), the
username and password attributes are changed and thus cannot be re-used in a
future call to OCISessionBegin(). They must be reset to new values before the
next OCISessionBegin() call.

The second type of credentials supported are external credentials. No attributes
need to be set on the user session handle before calling OCISessionBegin(). The
credential type is OCI_CRED_EXT. If values have been set for
OCI_ATTR_USERNAME and OCI_ATTR_PASSWORD, then these are ignored if
OCI_CRED_EXT is used.

Password Management

OCI provides the OCIPasswordChange() call to allow an OCI application to modify a
user’s database password as necessary. This is particularly useful if a call to
OCISessionBegin() returns an error message or warning indicating that a user’s
password has expired.

Applications can also use OCIPasswordChange() to establish a user authentication
context, as well as to change password, if appropriate flags are set. If
OClIPasswordChange() is called with an uninitialized service context, it establishes a
service context and authenticates the user’s account using the old password, and

Managing Scalable Platforms 8-13

Password and Session Management

then changes the password to the new password. If the OCI_AUTH flag is set, it
leaves the user session initialized. Otherwise, the user session is cleared.

If the service context passed to OCIPasswordChange() is already initialized, then
OClIPasswordChange() authenticates the given account using the old password and
changes the password to the new password. In this case, no matter how the flag is
set, the user session remains initialized.

Session Management

Applications, such as transaction servers, that perform active user load balancing
by multiplexing user sessions over a few server connections must group these
connections into a server group. Oracle uses the server groups to identify these
connections so that sessions can be managed effectively and securely.

The attribute OCI_ATTR_SERVER_GROUP must be defined for a server context to
specify the server group name. For example:

OClAitrSet ((dvoid *) srvhp, (ub4) OCI_ HTYPE_SERVER, (dvoid *) group_name,
(ub4) strlen ((CONST char *) group_name,
(ub4) OCI_ATTR_SERVER_GROUP, erthp);

The server group name is an alpha-numeric string not exceeding 30 characters.
OCI_ATTR_SERVER_GROUP attribute must be set in the server context prior to
creating the first non-migratable session using that context. After the session is
created successfully and the connection is established to the server, the server group
name cannot be changed. See OCI_ATTR_SERVER_GROUP on page A-11.

All migratable sessions created on servers within a server group can only migrate to
other servers in the same server group. Servers that terminate will get removed
from the server group. New servers may be created within an existing server group
at any time.

Server groups are optional. If no server group is specified, the server will get
created in a server group called DEFAULT

The owner of the first non-migratable session created in the first server in a server
group other than DEFAUL Testablishes ownership of the server group. All
subsequent non-migratable sessions for any server in this server group must be
created by the same user as the owner of the server group.

The server group feature is useful when dedicated servers are used. It has no effect
for MTS servers. In case of MTS, all shared servers will effectively belong to the
server group DEFAULT

8-14 Oracle Call Interface Programmer’s Guide

Middle-tier Applications

Middle-tier Applications

A middle-tier application receives requests from browser clients and decides
whether to access a database to generate an HTML page to return. Applications can
have multiple user sessions within a single database session. These "lightweight
sessions" allow each user to be authenticated by a database password, without the
overhead of a separate database connection, and preserve the identity of the real
user through the middle tier.

As long as the client authenticates itself with the middle tier and the middle tier
authenticates itself with the database, and the middle tier is authorized to act on
behalf of the client by the administrator, client identities can be maintained all the
way into the database without compromising the security of the client.

The design of a secure three-tiered architecture is developed around a set of three
trust zones. The first trust zone, the client trust zone, is Web clients connecting to a
Web/application server. The clients can be authenticated by the middle tier using
any means: password, token, cryptographic, etc. This method may be entirely
different from the method used to establish the other trust zones.

The next trust zone is the application server trust region. The data server verifies the
identity of the application server and trusts it to pass the correct identity of the
client. The third trust zone is the data server interaction with the authorization
server to obtain the roles assigned to the client and the application server.

The application server creates a primary session for itself once it connects to a
server. It authenticates itself in the normal manner to the database creating the
application server trust zone. The application server identity is now well known
and trusted to the data server.

When the application verifies the identity of a client connecting to the application
server, it creates the first trust zone. The application server now needs to a session
handle for the client so that it can service client requests on behalf of the client. The
middle-tier process allocates a session handle and then sets the following attributes
of the client using OCIAttrSet():

OCI_ATTR_USERNAME to set the database user name of the client.

OCI_ATTR_PROXY_CREDENTIALS to skip the requirement of a password since
the application server is trusted by the data server and is authorized by the
administrator.

If the application server wants to specify a list of roles that are to be activated after it
connects as the client, it can call OCIAttrSet() with the attribute
OCI_ATTR_INITIAL_CLIENT_ROLES and an array of strings that contains the list

Managing Scalable Platforms 8-15

Middle-tier Applications

of roles prior to OCISessionBegin(). Then the role establishment as well as the
verification of the proxy capability happens in one round trip. The OCISessionBegin()
call will fail if the application server is not allowed to proxy on behalf of the client
by the administrator or if the application server is not allowed to activate the
specified roles.

Attributes for Middle-tier Applications

The following attributes allow you to specify the external name and initial
privileges of a client. The new type of credentials are used by applications to
eliminate the need for a password.

OCI_CRED_PROXY

OCI_CRED_PROXY is used as the type of credentials when an application server
starts a session on behalf of a client, rather than OCI_CRED_RDBMS (database
username and password required) or OCI_CRED_EXT (externally provided
credentials).

OCI_ATTR_PROXY_CREDENTIALS

This attribute is used to specify the credentials of the application server for use in
the authentication of the client. Instead of specifying a password, you pass the
session handle of the application server.

This attribute is used in place of the OCI_ATTR_PASSWORD attribute:

OClAitrSet(OClSession *session_handle,
OCI_HTYPE_SESSION,
OClSession *application_server_session_handle,
(ub4)0,
OCI_ATTR_PROXY_CREDENTIALS,
OCIEmor *error_handle);

OCI_ATTR_EXTERNAL_NAME

This attribute is used to specify the external name of the client. For example, the
Oracle Advanced Security product may use its identity chain as the external name.

Before starting a new client session, the application server will indicate the Oracle
user name of the client using the standard OCI_ATTR_USERNAME attribute.
However, if an external name is available, the application server will call
OCIAttrSet() with the attribute OCI_ATTR_EXTERNAL_NAME and the external
name:

8-16 Oracle Call Interface Programmer’s Guide

Middle-tier Applications

OClAitrSet(OClSession *session_handle,
OCI_HTYPE_SESSION,
text *external_user_name,
ub4 extemal_user_name_length,
OCI_ATTR_EXTERNAL_NAME,
OCIEnor *error_handle);

OCI_ATTR_INITIAL_CLIENT ROLES

The OCI_ATTR_INITIAL_CLIENT_ROLES attribute is used to specify a role or
roles that the client is to initially possess when the application server connects to the
Oracle server on its behalf. To enable a set of roles, the function OCIAttrSet() is
called with the attribute, an array of null-terminated strings and the number of
strings in the array:

OClAitrSet(OClSession *session_handle,
OCI_HTYPE_SESSION,
text** role_array,
ub4 number_of_strings,
OCI_ATTR_INITIAL_CLIENT_ROLES,
OCIEnor *eror_handle);

Middle-tier Example

As an example, the code might look like the following:

*OCIEnv *environment_handle;

OClServer *data_server_handle;

OCIEnor*error_handle;

OCISvcCix *application_server_service_handle;

text *client_roles[2];

OClSession *first_client_session_handle, second_client_session_handle;

P
** General initialization and allocation of contexts.
gl

(void) OClinitialize((ub4) OCI_DEFAULT,
(@void™)0,
(dvoid * (*)(dvoid *, size_t)) O,
(cvoid * (*)(dvoid *, dvoid *, size_))0,
(void (*)(dvoid *, dvoid *)) 0);
(void) OCIEnvinit((OCIEnv **) &environment_handle, OCI_DEFAULT, (size_t) O,
(@void=)0);

Managing Scalable Platforms 8-17

Middle-tier Applications

(void) OCIHandleAlloc((dvoid *) environment_handle, (dvoid **) &emror_handle,
OCI_HTYPE_ERROR, (size_t) 0, (dvoid **) 0);
I
* Allocate and initialize the server and service contexts used by the
** application server.
*
/

(void) OCIHandleAlloc((dvoid *) environment_handle,
(dvoid *)&data_server_handle, OClI HTYPE_SERVER, (size t) 0, (dvoid *) 0);
(void) OCIHandleAlloc((dvoid *) environment_handle, (dvoid **)
&application_server_service_handle, OCI_HTYPE_SVCCTX, (size_{) 0,
(@void =) 0);
(void) OClAtrSet((dvoid *) application_server_service_handle,
OCI_HTYPE_SVCCTX, (dvoid *) data._server_handle, (ub4) 0, OCl_ATTR_SERVER,
emor_handle);
I
* Authenticate the application server. In this case, extemnal authentication is
** being used.
*

(void) OCIHandleAlloc((dvoid *) environment_handle,
(dvoid *)&application_server_session_handle, (ub4) OCI_HTYPE_SESSION,
(size_1) 0, (dvoid **) 0);

checkerr(error_handle, OCISessionBegin(application_server_sernvice_handle,
emor_handle, application_server_session_handle, OCI_CRED_EXT,
OCI_DEFAULT));

F

* Authenticate the first client ** Note that no password is specified by the

* application server for the client as it is trusted.

*

(void) OCIHandleAlloc((dvoid *) environment_handle,
(dvoid *)&first_client_session_handle, (ub4) OClI HTYPE_SESSION,
(size_t) O,(dvoid **) 0);

(void) OClAttrSet((dvoid *) first_client_session_handle,
(ub4) OCI_HTYPE_SESSION, (dvoid *) "jeff", (ub4) strilen(jeff"),
OC|_ATTR_USERNAME, error_handle);

F

* n place of specifying a password, pass the session handle of the application

** server instead.

¥

(void) OClAtrSet((dvoid *) first_client_session_handle,

(ub4) OCI_HTYPE_SESSION, (dvoid *) application_server_session_handle,
(ub4) 0, OCI_ATTR_PROXY_CREDENTIALS, error_handle);

8-18 Oracle Call Interface Programmer’s Guide

Middle-tier Applications

(void) OClAtrSet((dvoid *) first_client_session_handle,
(ub4) OCI_HTYPE_SESSION, (dvoid *) "jeff@VeryBigBank.com”,
(ub4) strilen(jeff@VeryBigBank.com"), OCI ATTR_EXTERNAL NAME,
emor_handle);

P

** Establish the roles that the application server can use as the client.

¥

client_roles[0] = (text *) "TELLER"; client_roles[1] = (text*) "SUPERVISOR",

(void) OClAttrSet((dvoid *) first_client_session_handle,
OCI_ATTR_INITIAL_CLIENT_ROLES, error_handle);

checkerr(error_handle, OCISessionBegin(application_server_sernvice_handle,
emor_handle, first_client_session_handle, OCI_ CRED_PROXY, OCl_DEFAULT));

F

*To start a session as another client, the application server would do the

* following. It should be

* noted this code is unchanged from the current way of doing session switching.

¥

(void) OCIHandleAlloc((dvoid *) environment_handle,
(dvoid *)&second_client_session_handle, (ub4) OC|_ HTYPE_SESSION,
(size_t) O, (dvoid **) 0);

(void) OClAttrSet((dvoid *) second_client_session_handle,
(ub4) OCI_HTYPE_SESSION, (dvoid *) "mutt", (ub4) strlen('mutt’),
OCI_ATTR_USERNAME, error_handle);

(void) OCIAttrSet((dvoid *) second_client_session_handle,
(ub4) OCI_HTYPE_SESSION, (dvoid *) application_server_session_handle,
(ub4) 0, OCI_ATTR_PROXY_CREDENTIALS, error_handle);

(void) OClAttrSet((dvoid *) second_client_session_handle,
(ub4) OCI_HTYPE_SESSION, (dvoid *) "mutt@\VeryBigBank.com”,
(ub4) strien("mutt@VeryBigBank.com"), OCI_ATTR_EXTERNAL_NAME,
emor_handle);

F

** Note that the application server has not specified any initial roles to have

** as the second client.

¥

checkerr(error_handle, OCISessionBegin(application_server_service_handle,
emor_handle, second_client_session_handle, OCI_ CRED_PROXY, OC|_DEFAULT));

I

**To switch to the first user, the application server would apply the session

** handle obtained by the first

** OCISessionBegin() call. This is the same as is currently done.

*

Managing Scalable Platforms 8-19

Middle-tier Applications

(void) OClAtrSet((dvoid *)application_server_service_handle,
(ub4) OCI_HTYPE_SVCCTX, (dvoid *yfirst_client_session_handle,
(Ub4)0, (Ub4)OCI_ATTR_SESSION, error_handle);

F

* After doing some operations, the application server might want to switch to

** the second client. That

*would be done by the following call:

¥

(void) OCIAtrSet((dvoid *)application_server_senvice_handle,
(ub4) OCI_HTYPE_SVCCTX,
(dvoid *)second_client_session_handle, (ub4)0, (Ub4)OCI_ATTR_SESSION,
emor_handee);

F

* and then do operations as that client

¥

(void) OClAttrSet((dvoid *) first_client_session_handle,
(ub4) OCI_HTYPE_SESSION, (dvoid *) application_server_session_handle,
(ub4) 0, OCI_ATTR_PROXY_CREDENTIALS, error_handle);

(void) OClAttrSet((dvoid *) first_client_session_handle,
(ub4) OCI_HTYPE_SESSION, (dvoid *) "jeff@VeryBigBank.com",
(ub4) stien('jeff@VeryBigBank.com"), OCI_ATTR_EXTERNAL_NAME,
emor_handee);

F

** Establish the roles that the application server can use as the client.

*

client_roles[0] = (text *) "TELLER"; client_roles[1] = (text*) "SUPERVISOR",
(void) OCIAttrSet((dvoid *) first_client_session_handle,
(ub4) OCI_HTYPE_SESSION, (dvoid *) &client_roles[0], (ub4) 2,
OCI_ATTR_INITIAL_CLIENT_ROLES, ermor_handle);
checkerr(error_handle, OCISessionBegin(application_server_service_handle,
emor_handle, first_client_session_handle, OCI_ CRED_PROXY, OC|_DEFAULT));
P
*To start a session as another client, the application server would do the
** following. It should be
** noted this code is unchanged from the current way of doing session switching.
¥

(void) OCIHandleAlloc((dvoid *) environment_handle,
(dvoid *)&second_client_session_handle, (ub4) OCI_HTYPE_SESSION,
(size_t) O, (dvoid **) 0);

(void) OCIAttrSet((dvoid *) second_client_session_handle,
(ub4) OCI_HTYPE_SESSION, (dvoid *) "mutt", (ub4) stlen('mutt”),

8-20 Oracle Call Interface Programmer’s Guide

Middle-tier Applications

OCI|_ATTR_USERNAME, error_handle);

(void) OCIAttrSet((dvoid *) second_client_session_handle,
(ub4) OCI_HTYPE_SESSION, (dvoid *) application_server_session_handle,
(ub4) 0, OCI_ATTR_PROXY_CREDENTIALS, error_handle);

(void) OCIAttrSet((dvoid *) second_client_session_handle,
(ub4) OCI_HTYPE_SESSION, (dvoid *) "mutt@\VeryBigBank.com",
(ub4) strien("mutt@VeryBigBank.com"), OCI_ATTR_EXTERNAL_NAME,
emor_handle);

F

* Note that the application server has not specified any initial roles to have

** as the second client.

¥

checkerr(error_handle, OCISessionBegin(application_server_service_handle,
emor_handle, second_client_session_handle, OCI CRED_PROXY, OC|_DEFAULT));

I

*To switch to the first user, the application server would apply the session

* handle obtained by the first

** OCISessionBegin() call. This is the same as is currently done.

*

(void) OCIAtrSet((dvoid *)application_server_senvice_handle,
(ub4) OCI_HTYPE_SVCCTX, (dvoid *ffirst_client_session_handle,
(ub4)0, (Ub4)OCI_ATTR_SESSION, error_handle);

F

** After doing some operations, the application server might want to switch to

* the second client. That

*would be done by the following call:

¥

(void) OClAttrSet((dvoid *)application_server_service_handle,
(ub4) OCI_HTYPE_SVCCTX,
(dvoid *)second_client_session_handle, (ub4)0, (Ub4)OCI_ATTR_SESSION,
emor_handle);

P

* and then do operations as that client

¥

(dvoid ¥)second _client_session_handle, (ub4)0, (ub4)OCI_ATTR_SESSION,
emor_handle);

P

* and then do operations as that client

¥

Managing Scalable Platforms 8-21

Thread Safety

Thread Safety

The thread safety feature of the Oracle database server and OCI libraries allows
developers to use the OCI in a multithreaded environment. With thread safety, OCI
code can be reentrant, with multiple threads of a user program making OCI calls
without side effects from one thread to another.

Note: Thread safety is not available on every platform. Check your Oracle
system-specific documentation for more information.

The following sections describe how you can use the OCI to develop multithreaded
applications.

Advantages of OCI Thread Safety

The implementation of thread safety in the Oracle Call Interface provides the
following benefits and advantages:

« Multiple threads of execution can make OCI calls with the same result as
successive calls made by a single thread.

« When multiple threads make OCI calls, there are no side effects between
threads.

« Users who do not write multithreaded programs do not pay a performance
penalty for using thread-safe OCI calls.

« Use of multiple threads can improve program performance. Gains may be seen
on multiprocessor systems where threads run concurrently on separate
processors, and on single processor systems where overlap can occur between
slower operations and faster operations.

Thread Safety and Three-Tier Architectures

In addition to client-server applications, where the client can be a multithreaded
program, a typical use of multithreaded applications is in three-tier (also called
client-agent-server) architectures. In this architecture the client is concerned only
with presentation services. The agent (or application server) processes the
application logic for the client application. Typically, this relationship is a
many-to-one relationship, with multiple clients sharing the same application server.

The server tier in this scenario is an Oracle database. The applications server (agent)
is very well suited to being a multithreaded application server, with each thread
serving a client application. In an Oracle environment this application server is an
OCI or precompiler program.

8-22 Oracle Call Interface Programmer’s Guide

Thread Safety

Basic Concepts of Multithreaded Development

Threads are lightweight processes that exist within a larger process. Threads share
the same code and data segments but have their own program counters, machine
registers, and stack. Global and static variables are common to all threads, and a
mutual exclusivity mechanism may be required to manage access to these variables
from multiple threads within an application.

Once spawned, threads run asynchronously to one another. They can access
common data elements and make OCI calls in any order. Because of this shared
access to data elements, a mechanism is required to maintain the integrity of data
being accessed by multiple threads.

The mechanism to manage data access takes the form of mutexes (mutual exclusivity
locks), which ensure that no conflicts arise between multiple threads that are
accessing shared resources within an application. In Oracle OCI release 8, mutexes
are granted on a per-environment-handle basis.

Implementing Thread Safety

In order to take advantage of thread safety in the Oracle OCI release 8, an
application must be running on a thread-safe platform. Then the application must
tell the OCI layer that the application is running in multithreaded mode, by
specifying OCI_THREADED for the mode parameter of the opening call to
OCllInitialize(), which must be the first OCI function called in the application.

Alternatively, if the OCIEnvCreate() call is used instead of OClInitialize() and
OCIEnvInit(), then a mode value of OCI_THREADED must be passed to
OCIEnvCreate(). Note that once OCIEnvCreate() is called with OCI_THREADED, all
subsequent calls to OCIEnvCreate() must also be made with OCI_THREADED.

Note: Applications running on non-thread-safe platforms should not pass a
value of OCI_THREADED to OCllInitialize() or OCIEnvCreate().

If an application is single-threaded, whether or not the platform is thread safe, the
application should pass a value of OCI_DEFAULT to OClInitialize() or
OCIEnvCreate(). Single-threaded applications which run in OCI_THREADED mode
may incur performance hits.

If a multithreaded application is running on a thread-safe platform, the OCI library
will manage mutexing for the application on a per-environment-handle basis. If the
application programmer desires, this application can override this feature and
maintain its own mutexing scheme. This is done by specifying a value of
OCI_NO_MUTEX to the OCIEnvInit() or OCIEnvCreate() calls.

Managing Scalable Platforms 8-23

Thread Safety

The following three scenarios are possible, depending on how many connections
exist per environment handle, and how many threads will be spawned per
connection.

1. Ifan application has multiple environment handles, but each only has one
thread (one session exists per environment handle), no mutexing is required.

2. If an application running in OCI_THREADED mode maintains one or more
environment handles, each of which has multiple connections, it also has the
following options:

« Passavalue of OCI_NO_MUTEX for the mode of OCIEnvInit(). In this case
the application must mutex OCI calls by made on the same environment
handle itself. This has the advantage that the mutexing scheme can be
optimized based on the application design. The programmer must also
insure that only one OCI call is in process on the environment handle
connection at any given time.

« Pass avalue of OCI_DEFAULT to OCIEnvInit(). In this case, the OCI library
automatically gets a mutex on every OCI call on the same environment
handle.

Note that the bulk of processing of an OCI call happens on the server, so if two
threads using OCI calls go to the same connection, then one them could be
blocked while the other finishes processing at the server.

Mixing 7.x and 8.0 OCI calls

If an application is mixing 8.0 and 7.x OCI calls, and the application has been
initialized as thread safe (with the appropriate 8.0 calls), it is not necessary to call
opinit() to achieve thread safety. The application will get 7.x behavior on any
subsequent 7.x function calls.

Multithreading Example

See cdemothr.c in the demodirectory for an example of a multithreading
application.

8-24 Oracle Call Interface Programmer’s Guide

9

OCI Programming Advanced Topics

This chapter introduces advanced programming topics, including the following:

The OCIThread Package
User-defined Callback Functions
Application Failover Callbacks
OCI and Advanced Queuing
Publish-Subscribe Notification
Direct Path Loading

OCI Programming Advanced Topics 9-1

The OCIThread Package

The OClThread Package

The OCIThread package provides a number of commonly used threading
primitives for use by Oracle customers. It offers a portable interface to threading
capabilities native to various platforms. It does not implement threading on
platforms which do not have native threading capability.

OCIThread does not provide a portable implementation of multi-threaded
facilities. It only serves as a set of portable covers for native multi-threaded
facilities. Therefore, platforms that do not have native support for multi-threading
will only be able to support a limited implementation of OCIThread . As a result,
products that rely on all of OCIThread 's functionality will not port to all platforms.
Products that must port to all platforms must use only a subset of OCIThread 's
functionality. This issue is discussed further in later sections of this document.

The OCIThread API is split into three main parts. Each part is described briefly
here. The following subsections describe each in greater detail. See "Using the
OCIThread Package" on page 9-7 for important additional information.

Note: Detailed descriptions of OCIThread functions, including syntax,
parameters lists, and other comments can be found in Chapter 15, "OCI
Relational Functions".

= Initialization and Termination

These calls deal with the initialization and termination of OCIThread .
Initialization of OCIThread initializes the OCIThread context which is a
member of the OCI environment or user session handle. This context is required
for other OClIThread calls.

« Passive Threading Primitives

The passive threading primitives include primitives to manipulate mutual
exclusion (mutex) locks, thread ID's, and thread-specific data keys.

The reason that these primitives are described as passive is that while their
specifications allow for the existence of multiple threads, they do not require it.
This means that it is possible for these primitives to be implemented according
to specification in both single-threaded and multi-threaded environments.

As aresult, OCIThread clients that use only these primitives will not require
the existence of multiple threads in order to work correctly, i.e., they will be able
to work in single-threaded environments without branching code.

« Active Threading Primitives

9-2 Oracle Call Interface Programmer’s Guide

The OCIThread Package

Active threading primitives include primitives dealing with the creation,
termination, and other manipulation of threads.

The reason that these primitives are described as active is that they can only be
used in true multi-threaded environments. Their specifications explicitly
require that it be possible to have multiple threads. If you need to determine at
runtime whether or not you are in a multi-threaded environment, call
OCIThreadlsMulti() before calling an OCIThread active primitive.

Initialization and Termination

The types and functions described in this section are associated with the
initialization and termination of the OCIThread package. OCIThread must be
properly initialized before any of its functionality can be used. OCIThread 's
process initialization function, OCIThreadProcessInit(), must be called with care, as
described below.

The observed behavior of the initialization and termination functions is the same
regardless of whether OCIThread is in single-threaded or multi-threaded
environment. You can call the initialization functions from both generic and
operating system specific (OSD) code.

OCIThread Context

Most calls to OCIThread functions take the OCI environment or user session
handle as a parameter. The OCIThread context is part of the OCI environment or
user session handle and it must be initialized by calling OCIThreadInit().
Termination of the OCIThread context occurs by calling OCIThreadTerm().

Note: The OCIThread context is an opaque data structure. Do not attempt to
examine the contents of the context.

The following functions are used to implement thread initialization and
termination. Detailed descriptions of each function can be found in Chapter 15,
"OCI Relational Functions".

Function Purpose

OCIThreadProcesslnit() Performs OCIThread process initialization.

OCIThreadlInit() Initializes OCIThread context.
OCIThreadTerm() Terminates the OCIThread layer and frees context memory.
OCIThreadIsMulti() Tells the caller whether the application is running in a

multi-threaded environment or a single-threaded environment.

OCI Programming Advanced Topics 9-3

The OCIThread Package

Passive Threading Primitives

The passive threading primitives deal with the manipulation of mutex, thread ID's,
and thread-specific data. Since the specifications of these primitives do not require
the existence of multiple threads, they can be used both on multi-threaded and
single-threaded platforms.

OCIThreadMutex

The type OCIThreadMutex is used to represent a mutual exclusion lock (mutex). A
mutex is typically used for one of two purposes:

« toensure that only one thread accesses a given set of data at a time
« toensure that only one thread executes a given critical section of code at a time

Mutex pointers can be declared as parts of client structures or as stand-alone
variables. Before they can be used, they must be initialized using
OCIThreadMutexlInit(). Once they are no longer needed, they must be destroyed
using OCIThreadMutexDestroy(). A mutex pointer must not be used after it is
destroyed.

A thread can acquire a mutex by using OCIThreadMutexAcquire(). This ensures that
only one thread at a time is allowed to hold a given mutex. A thread that holds a
mutex can release it by calling OCIThreadMutexRelease().

OCIThreadKey

The type OCIThreadKey can be thought of as a process-wide variable that has a
thread-specific value. What this means is that all the threads in a process can use
any given key. However, each thread can examine or modify that key
independently of the other threads. The value that a thread sees when it examines
the key will always be the same as the value that it last set for the key. It will not see
any values set for the key by the other threads.

The type of the value held by a key is a dvoid * generic pointer.

Keys can be created using OCIThreadKeylnit(). When a key is created, its value is
initialized to NULL for all threads.

A thread can set a key's value using OCIThreadKeySet(). A thread can get a key's
value using OCIThreadKeyGet().

The OCIThread key functions will save and retrieve data specific to the thread.
When clients maintain a pool of threads and assign the threads to different tasks, it
may not be appropriate for a task to use OCIThread key functions to save data
associated with it. Here is a scenario of how things can fail: A thread is assigned to

9-4 Oracle Call Interface Programmer’s Guide

The OCIThread Package

execute the initialization of a task. During the initialization, the task stored some
data related to it in the thread using OCIThread key functions. After the
initialization, the thread is returned back to the threads pool. Later, the threads pool
manager assigned another thread to perform some operations on the task, and the
task needs to retrieve the data it stored earlier in initialization. Since the task is
running in another thread, it will not be able to retrieve the same data. Applications
that use thread pools should be aware of this and be cautious when using
OClIThread key functions.

OClIThreadKeyDestFunc

OClIThreadKeyDestFunc is the type of a pointer to a key's destructor routine. Keys
can be associated with a destructor routine when they are created (see
OClIThreadKeylnit ().

A key's destructor routine will be called whenever a thread that has a non-NULL
value for the key terminates.

The destructor routine returns nothing and takes one parameter. The parameter will
be the value that was set for key when the thread terminated.

The destructor routine is guaranteed to be called on a thread's value in the key after
the termination of the thread and before process termination. No more precise
guarantee can be made about the timing of the destructor routine call; thus no code
in the process may assume any post-condition of the destructor routine. In
particular, the destructor is not guaranteed to execute before a join call on the
terminated thread returns.

OCIThreadld

OCIThreadld is the type that will be used to identify a thread. At any given time,
no two threads will ever have the same OCIThreadld. However, OCIThreadld
values can be recycled,; i.e., once a thread dies, a new thread may be created that has
the same OCIThreadld as the one that died. In particular, the thread 1D must
uniquely identify a thread T within a process, and it must be consistent and valid in
all threads U of the process for which it can be guaranteed that T is running
concurrently with U. The thread ID for a thread T must be retrievable within thread
T. This will be done via OCIThreadldGet().

The OCIThreadld type supports the concept of a NULL thread ID: the NULL thread
ID will never be the same as the ID of an actual thread.

OCI Programming Advanced Topics 9-5

The OCIThread Package

Passive Threading Functions
The following functions are used to manipulate mutexes, thread keys and thread

IDs. Complete descriptions of each function can be found in Chapter 15, "OCI

Relational Functions".

Function

Purpose

OCIThreadMutexInit()
OCIThreadMutexDestroy()
OCIThreadMutexAcquire()
OCIThreadMutexRelease()
OCIThreadKeylnit()
OCIThreadKeyDestroy()
OClIThreadKeyGet()
OCIThreadKeySet()
OCIThreadldInit()
OCIThreadldDestroy()
OCIThreadldSet()
OCIThreadldSetNull()
OClIThreadldGet()
OCIThreadldSame()
OCIThreadldNull()

Allocates and initializes a mutex.

Destroys and deallocates a mutex.

Acquires a mutex for the thread in which it is called.
Releases a mutex.

Allocates and initializes a key.

Destroys and deallocates a key.

Gets the calling thread’s current value for a key.

Sets the calling thread’s value for a key.

Allocates and initializes a thread ID.

Destroys and deallocates a thread ID.

Sets on thread ID to another.

Nulls a thread ID.

Retrieves a thread ID for the thread in which it is called.
Determines if two thread IDs represent the same thread.

Determines if a thread ID is NULL.

Active Threading Primitives

The active threading primitives deal with the manipulation of actual threads.
Because the specifications of most of these primitives require that it be possible to
have multiple threads, they work correctly only in the enabled OCIThread ; In the
disabled OCIThread , they always return failure. The exception is
OCIThreadHandleGet(); it may be called in a single-threaded environment, in which
case it has no effect.

Active primitives should only be called by code running in a multi-threaded
environment. You can call OCIThreadlsMulti() to determine whether the
environment is multi-threaded or single-threaded.

9-6 Oracle Call Interface Programmer’s Guide

The OCIThread Package

OClIThreadHandle

Type OCIThreadHandle is used to manipulate a thread in the active primitives:
OCIThreadJoin() and OCIThreadClose(). A thread handle opened by OCIThreadCreate()
must be closed in a matching call to OCIThreadClose(). A thread handle is invalid
after the call to OCIThreadClose().

The distinction between a thread ID and a thread handle in OCIThread usage
follows the distinction between the thread ID and the thread handle on Windows
NT. On many platforms, the underlying native types are the same.

Active Threading Functions

The following functions are used to implement active threading. Complete
descriptions of the functions are available in Chapter 15, "OCI Relational

Functions".
Function Purpose
OCIThreadHndlInit() Allocates and initializes a thread handle.

OCIThreadHndDestroy() Destroys and deallocates a thread handle.

OClIThreadCreate() Creates a new thread.
OCIThreadJoin() Allows the calling thread to join with another.
OCIThreadClose() Closes a thread handle.

OCIThreadHandleGet() Retrieves a thread handle.

Using the OCIThread Package

This section summarizes some of the more important details relating to the use of
OClIThread.

Process initialization

OClIThread only requires that the process initialization function
(OCIThreadProcesslnit()) be called when OCIThread is being used in a
multi-threaded application. Failing to call OCIThreadProcessInit() in a
single-threaded application is not an error.

OClIThread initialization
Separate calls to OCIThreadInit() will all return the same OCIThread context.

Also, remember that each call to OCIThreadInit() must eventually be matched by a
call to OCIThreadTerm().

OCI Programming Advanced Topics 9-7

The OCIThread Package

Active versus Passive Threading primitives

OClIThread client code written without using any active primitives can be
compiled and used without modifications on both single-threaded and
multi-threaded platforms.

OClIThread client code written using active primitives will only work correctly on
multi-threaded platforms. In order to write a version of the same application to run
on single-threaded platform, it is necessary to branch the your code, whether by
branching versions of the source file or by branching at runtime with the
OCIThreadlsMulti() call.

Example using OCIThread

The following code sample illustrates the use of OCIThread. For a listing of the
complete demonstration programs, see Appendix B, "OCI Demonstration
Programs".

static OCIEnv *envhp;
static OCIEror *errhp;
void parent(arge, argv)
sb4 argc;
text*argv,
{
OClIThreadld *tidAn{5);
OCIThreadHandle *tHndAn{5);
ub4i;
OClIThreadKey *key;
(void) OClInitialize((ub4) OCI_DEFAULT, (dvoid *)0,
(dvoid * (*)(dvoid *, size_t)) O,
(dvoid * (*)(dvoid *, dvoid *, size_{))0,
(void (*)(dvoid *, dvoid ¥) 0);
(void) OCIEnvinit{ (OCIEnv **) &envhp, OCI_DEFAULT, (size_1) 0,
(dvoid*) 0);
(void) OClHandleAlloc((dvoid *) envhp, (dvoid **) &enrhp,
OCI_HTYPE_ERROR, (size) 0, (dvoid **) 0);
OCIThreadProcesslnit();
OClIThreadinitenvhp, errhp);
OCIThreadKeylnitenvhp, enhp, &key, (OCIThreadKeyDestFunc) NULL);
for (=0; i<5; i++)
{
OCIThreadldInitienvhp, errhp, &tAAM));
OCIThreadHndInitlenvhp, errhp, &EHNAAM));
}
for (=0; i<5; i++)
OCIThreadCreate(envhp, errhp, child, (dvoid *)key,

9-8 Oracle Call Interface Programmer’s Guide

The OCIThread Package

}

tidAri], tHndAril);
for (=0; i<5; i++)
{
OCIThreadJoin(envhp, errhp, tHndAni]);
OCIThreadClose(envhp, erhp, tHndAmi]);
}
for (i=0; i<5; i++)
{
OCIThreadldDestroy(envhp, erhp, &(tdAm);

OCIThreadHndDestroy(envhp, errhp, &tHndAm));

}

OCIThreadKeyDestroy(envhp, errhp, &key);
OClIThreadTerm(envhp, erthp);

}
void child(arg)
dvoid *arg;
{
OCIThreadKey *key = (OCIThreadKey *)arg;
OCIThreadld *tid;
dvoid *keyval;
OCIThreadldInitienvhp, errhp, &tid);
OCIThreadldGet(envhp, errhp, tid);

if (OCIThreadKeySet(envhp, errhp, key, (dvoid *tid) '= OClI_SUCCESS)

printf("Could not set value for key\n");

if (OCIThreadKeyGet(envhp, errhp, key, &keyval) '=OCI_SUCCESS)

printf("Could not refrieve value for key\n');
if (keyval != (dvoid *)tid)

printf(Incorrect value from key after setting itn");
Fwe must destroy thread id */
OClIThreadldDestroy(envhp, errhp, &tid);

OCI Programming Advanced Topics 9-9

User-defined Callback Functions

User-defined Callback Functions

The Oracle Call Interface has the capability to execute user-specific code in addition
to OCI calls. This functionality can be used for:

« Adding tracing and performance measurement code to enable users to tune
their applications.

« Performing pre- or post-processing code for specific OCI calls.

« Accessing other data sources with OCI by using the native OCI interface for
Oracle databases and directing the OCI calls to use user callbacks for
non-Oracle data sources.

The OCI callback feature has been added by providing support for calling user code
before or after executing the OCI calls. Functionality has also been provided to
allow the user-defined code to be executed instead of executing the OCI code.

The user callback code can also be registered dynamically without modifying the
source code of the application. The dynamic registration is implemented by loading
up to five user-created dynamically linked libraries, such as dynamic link libraries
(DLLs) on NT, or shared libraries on Solaris, after the initialization of the
environment handle during the OCIEnvInit() or OCIEnvCreate() calls. These
user-created libraries register the user callbacks for the selected OCI calls
transparently to the application.

Sample Application

For a listing of the complete demonstration programs that illustrate the OCI user
callback feature, see Appendix B, "OCI Demonstration Programs".

Registering User Callbacks

An application can register user callback libraries with the OClUserCallbackRegister()
function. Callbacks are registered in the context of the environment handle. An
application can retrieve information about callbacks registered with a handle with
the OClUserCallbackGet() function. For detailed descriptions of these functions and
their parameters, refer to the descriptions of OCIUserCallbackGet() and
OClUserCallbackRegister() in Chapter 15, "OCI Relational Functions".

A user-defined callback is a subroutine that is registered against an OCI call and an
environment handle. It can be specified to be either an entry callback, a replacement
callback, or an exit callback.

« Ifitisan entry callback, it is called when the program enters the OCI function.

9-10 Oracle Call Interface Programmer’s Guide

User-defined Callback Functions

« Replacement callbacks are executed after entry callbacks. If the replacement
callback returns a value of OCI_CONTINUE, then a subsequent replacement
callback or the normal OClI-specific code is executed. If a replacement callback
returns anything other than OCI_CONTINUE, subsequent replacement
callbacks and the OCI code does not execute.

« After areplacement callback returns something other than OCI_CONTINUE, or
an OCI function successfully executes, program control transfers to the exit
callback (if one is registered).

If a replacement or exit callback returns anything other than OCI_CONTINUE, then
the return code from the callback is returned from the associated OCI call.

A user callback can return OCI_INVALID_HANDLE when either an invalid handle
or an invalid context is passed to it.

Note: If any callback returns anything other than OCI_CONTINUE, then that
return code is passed to the subsequent callbacks. If a replacement or exit
callback returns a return code other than OCI_CONTINUE, then the final (not
OCI_CONTINUE) return code is returned from the OCI call.

OClUserCallbackRegister

A user callback is registered using the OClUserCallbackRegister() call. See
OClUserCallbackRegister() on page 15-233 for the syntax of this call. Currently,
OClUserCallbackRegister() is only registered on the environment handle. The user’s
callback function of typedef OClUserCallback is registered along with its context for
the OCI call identified by the OCI function code, fcode. The type of the callback,
whether entry, replacement, or exit, is specified by the when parameter.

For example, the stmtprep_entry_dyncbk_fn entry callback function and its context
dynamic_context, are registered against the environment handle hndlp for the
OCIStmtPrepare() call by calling the OClUserCallbackRegister() function with the
following parameters.

OClUserCallbackRegister(hndlip,
OCI_HTYPE_ENV,
errh,
stmtprep_entry_dyncbk_fn,
dynamic_context,
OCI_FNCODE_STMTPREPARE,
OCI_UCBTYPE_ENTRY
(OClUch®) NULL);

OCI Programming Advanced Topics 9-11

User-defined Callback Functions

User Callback Function
The user callback function has to follow the following syntax:

typedef sword (*OClUserCallback)
(dvoid *ctxp, /* context for the user callback*/
dvoid *hndlp, /*handle for the callback, env handle for now */
ubdtype, /typeofhandip, OCI_HTYPE_ENV for this release */
ub4fcode, /*function code of the OCI call %/
ublwhen, Ftype of the callback, entry or exit*/
sword retumCode, /* OCl retum code */
ub4 *ermop, /* Oracle error number */
va_list arglist); # parameters of the oci call */

In addition to the parameters described in the OClUserCallbackRegister() call, the
callback is called with the return code, errnop, and all the parameters of the original
OCI as declared by the prototype definition.

The return code is always passed in as OCI_SUCCESS and *errnop is always passed
in as 0 for the first entry callback. Note that *errnop refers to the content of errnop
because errnop is an IN/OUT parameter.

If the callback does not want to change the OCI return code, then it must return
OCI_CONTINUE, and the value returned in *errnop is ignored. If on the other hand,
the callback returns any other return code than OCI_CONTINUE, the last returned
return code becomes the return code for the call. At the this point, the value of
*errnop returned is set in the error handle, or in the environment handle if the error
information is returned in the environment handle because of the absence of the
error handle for certain OCI calls such as OCIHandleAlloc().

For replacement callbacks, the returnCode is the non-OCI_CONTINUE return code
from the previous callback or OCI call and *errnop is the value of the error number
being returned in the error handle. This allows the subsequent callback to change
the return code or error information if needed.

The processing of replacement callbacks is different in that if it returns anything
other than OCI_CONTINUE, then subsequent replacement callbacks and OCI code
is bypassed and processing jumps to the exit callbacks.

Note that if the replacement callbacks return OCI_CONTINUE to allow processing
of OCI code, then the return code from entry callbacks is ignored.

All the original parameters of the OCI call are passed to the callback as variable
parameters and the callback must retrieve them using the va_arg macros. The
callback demonstration programs provide examples. See Appendix B, "OCI
Demonstration Programs" for a list of available demos.

9-12 Oracle Call Interface Programmer’s Guide

User-defined Callback Functions

A null value can be registered to de-register a callback. That is, if the value of the

callback (OCIlUserCallback) is NULL in the OCIlUserCallbackRegister() call, then the
user callback is de-registered.

When using the thread-safe mode, the OCI program acquires all mutexes before
calling the user callbacks.

UserCallback Control Flow
This pseudocode describes the overall processing of a typical OCI call:

OClIXyzCall()

{

Acquire mutexes on handles;
retCode = OCl_SUCCESS;
emo=0;

for all ENTRY callbacks do

{

EntryretCode = (*entryCallback)(..., retcode, &emo, ...);
if (retCode = OC|_CONTINUE)
{
set ermo in eror handle or environment handle;
retCode = EntryretCode;
}
}
for all REPLACEMENT callbacks do
{
retCode = (*replacementCallback) (..., retcode, &emo, ...);
if (retCode I= OC|_CONTINUE)
{
set ermo in error handle or environment handle
goto executeEXITCallback;
}
}

retCode = retum code for XyzCall; /* normal processing of OCI call */
emo = error number from error handle or env handle;

executeExitCallback:
for all EXIT callbacks do
{
exitRetCode = (*exitCallback(..., retCode, &enmo....);
if (exitRetCode '= OC|_CONTINUE)

OCI Programming Advanced Topics 9-13

User-defined Callback Functions

{

setermmo in error handle or environment handle;
retCode = exitRetCode;
}
}

release mutexes;
retum retCode

}

UserCallback for OCIErrorGet()

If the callbacks are a total replacement of the OCI code, then they would usually
maintain their own error information in the call context and would use that to
return error information in bufp and errnop parameters of the replacement callback
of the OCIErrorGet() call.

If on the other hand, the callbacks are either partially overriding OCI code, or just
doing some other post processing, then they can use the exit callback to modify the
error text and errnop parameters of the OCIErrorGet() by their own error message
and error number. Note that the *errnop passed into the exit callback is the error
number in the error or the environment handle.

Errors from Entry Callbacks

If an entry callback wants to return an error to the caller of the OCI call, then it must
register a replacement or exit callback. This is because if the OCI code is executed,
then the error code from the entry callback is ignored. Therefore the entry callback
should pass the error to the replacement or exit callback through its own context.

Dynamic Callback Registrations

Because user callbacks are expected to be used for monitoring OCI behavior or to
access other data sources, it is desirable that the registration of the callbacks be done
transparently and non-intrusively. This is accomplished by loading user-created
dynamically linked libraries at OCI initialization time. These dynamically linked
libraries are called packages. The user-created packages register the user callbacks for
the selected OCI calls. These callbacks can further register or de-register user
callbacks as needed when receiving control at runtime.

A makefile (ociuch.mk on Solaris) is provided with the OCI demonstration
programs to create the package. The exact naming and location of this package is
operating system dependent. The source code for the package must provide code
for special callbacks that are called at OCI initialization and environment creation
times.

9-14 Oracle Call Interface Programmer’s Guide

User-defined Callback Functions

The loading of the package is controlled by setting an operating system
environment variable, ORA_OCI_UCBPKG. This variable names the packages in a
generic way. The packages must be located in the $ORACLE_HOME/Iib directory.

Loading Multiple Packages

The ORA_OCI_UCBPKG variable can contain a semicolon separated list of package
names. The packages are loaded in the order they are specified in the list.

For example, previously one would specify the package as:
setenv ORA_OCI_UCBPKG mypkg

Now, you can still specify the package as above, but in addition multiple packages
can be specified as:

setenv ORA_OCI_UCBPKG "mypkg;yourpkg;oraclepkg;sunpkg;msoftpkg"

All these packages are loaded in order. That is, mypkg is loaded first and msoftpkg
is loaded last.

A maximum of five packages can be specified.

Note: The sample makefile ociuch.mk creates ociuch.s0.1.0 on a Solaris system
or ociuch.dll on an NT system. To load the ociucb package, the environmental
variable ORA_OCI_UCBPKG must be set to ociuch. On Solaris, if the package
name ends with .so, OCllInitialize() fails. The package name must end with
.50.1.0.

For further details about creating the dynamic link libraries, read the makefiles
provided in the demo directory for your platform. For further information on
user-defined callbacks, see your platform-specific documentation on compiling
and linking applications.

Package Format

Previously a package had to specify the source code for the OCIEnvCallback()
function. Now the OCIEnvCallback() function is obsolete. Instead, the package
source must provide two functions. The first function has to be named as
packagename suffixed with the word Init. For example, if the package is named foo,
then the source file (e.g., but not necessarily foo.c) should contain a foolnit() function
with a call to OClISharedLibInit() function specified exactly as:

sword foolnitimetaCt, libCtx, argfmt, arge, argv)
dvoid* metaCtx; /* The metacontext*/
dvoid* libCtx; F The context for this package. */

OCI Programming Advanced Topics 9-15

User-defined Callback Functions

ub4 argimt;, /package argument format */
sword argc; F package arg count*/
dvoid* argv; P package arguments */
{
retum (OCISharedLiblnit(metaCtx, libCtx, argfimt, argc, argv,
fooEnvCallback));
}

The last parameter of the OCISharedLiblInit() function, fooEnvCallback(), in this case,
is the name of the second function. It can be named anything, but by convention it
can be named packagename suffixed with the word EnvCallback.

This function is a replacement for OCIEnvCallback(). Now all the dynamic user
callbacks must be registered in this function. The function must be of type
OCIEnvCallbackType, which is specified as:

typedef sword (*OCIEnvCallbackType)(OCIEnv *env, ub4 mode,
size_txtramem_sz, dvoid *usmrmemp,
OClUcb *uchDesc);

When an environment handle is created, then this callback function is called at the
very end. The env parameter is the newly created environment handle.

The mode, xtramem_sz, and usrmemp are the parameters passed to the OCIEnvinit()
or OCIEnvCreate() call. The last parameter, uchDesc, is a descriptor that is passed to
the package. The package uses this descriptor to register the user callbacks as
described later.

A sample ociucb.c file is provided in the demo directory. The makefile
ociuch.mk is also provided (on Solaris) in the demo directory to create the
package. Please note that this may be different on other platforms. The demo
directory also contains full user callback demo programs (cdemoucb.c,
cdemoucbl.c) illustrating this.

User Callback Chaining

User callbacks can both be registered statically in the application itself or
dynamically at runtime in the DLLs. A mechanism is needed to allow the
application to override a previously registered callback and then later invoke the
overridden one in the newly registered callback to preserve the behavior intended
by the dynamic registrations. This can result in chaining of user callbacks.

For this purpose, the OCIUserCallbackGet() function is provided to find out which
function and context is registered for an OCI call. See OClUserCallbackGet() on
page 15-231 for the syntax of this call.

9-16 Oracle Call Interface Programmer’s Guide

User-defined Callback Functions

Accessing Other Data Sources Through OCI

Because Oracle is the predominant database accessed, applications can take
advantage of the OCI interface to access non-Oracle data by using the user callbacks
to access them. This allows an application written in OCI to access Oracle data
without any performance penalty. To access non-Oracle data sources, drivers can be
written that would access the non-Oracle data in user callbacks. Because OCI
provides a very rich interface, there is usually a straightforward mapping of OCI
calls to most data sources. This solution is better than writing applications for other
middle layers such as ODBC which introduce performance penalty for all data
sources. Using OCI would not incur any penalty for the common case of accessing
Oracle data sources, and would incur the same penalty that ODBC does for
non-Oracle data sources.

Restrictions on Callback Functions
There are certain restrictions on the usage of callback functions, including
OCIEnvCallback():

« A callback cannot call other OCI functions except OClUserCallbackRegister(),
OClUserCallbackGet(), OCIHandleAlloc(), OCIHandleFree(). Even for these
functions, if they are called in a user callback, then callbacks on them would not
be called to avoid recursion. For example, if OCIHandleFree() is called in the
callback for OClILogoff(), then the callback for OCIHandleFree() is disabled during
the execution of the callback for OCILogoff().

« A callback cannot modify OCI data structures such as the environment or error
handles.

« Acallback cannot be registered for OClUserCallbackRegister() call itself, or for
any of the following:

« OClUserCallbackGet()
« OCIEnvCreate()

« OCllInitialize()

« OCIEnvInit()

Example of OCI Callbacks

For example, lets suppose that there are five packages each registering entry;,
replacement, and exit callbacks for OCIStmtPrepare call. That is, the
ORA_OCI_UCBPKG variable is set as:

setenv ORA_OCI_UCBPKG "pkgl;pkg2;pkg3;pkgd;pkg5"

OCI Programming Advanced Topics 9-17

User-defined Callback Functions

In each package pkgN (where N can be 1 through 5), the pkgNInit() and
PkgNEnvCallback() functions are specified as:

pkgNInitimetaCtx, lioCtx, argfmt, arge, argv)

{
retum OCISharedLibinit(metaCtx, libCtx, argimt, argc, argv, pkgNEnvCallback);

}

The pkgNEnvCallback() function registers the entry, replacement, and exit callbacks
as:

pkgNEnvCallback(env, mode, xtramemsz, usrmemp, uchDesc)

{
OCIHandleAlloc((dvoid *Jenv, (dvoid *)&enh, OCI_HTYPE_ERROR, (size._1)0,

(dvoid *)NULLY);

OClUserCallbackRegister(env, OCI_HTYPE_ENV, errh, pkgN_entry _callback_fn,
pkgNctx, OCI_FNCODE_STMTPREPARE, OCI_UCBTYPE_ENTRY, uchDesc);

OClUserCallbackRegister(env, OCI_HTYPE_ENV, errh, pkgN_replace_callback n,
pkgNctx, OCI FNCODE_STMTPREPARE, OCI_UCBTYPE_REPLACE, uchDesc);

OClUserCallbackRegister(env, OCI_HTYPE_ENV, errh, pkgN_exit_callback_fn,
pkgNctx, OCI_FNCODE_STMTPREPARE, OCI_UCBTYPE._EXIT, uchDesc);

retum OCl_CONTINUE;
}

Finally, in the source code for the application, user callbacks can be registered with
the NULL uchDesc as:
OClUserCallbackRegister(env, OCI_HTYPE_ENV, enh, static_entry _callback fn,
pkgNctx, OCI_ FNCODE_STMTPREPARE, OC|_UCBTYPE_ENTRY, (OCIUch ¥NULL);

OClUserCallbackRegister(env, OCI_HTYPE_ENV, enth, static replace_callback fn,
pkgNctx, OCI_ FNCODE_STMTPREPARE, OC|_UCBTYPE_REPLACE, (OCIUch *)NULL);

OCIUserCalbackRegisterenv, OCl_HTYPE._ENV, erth, static_exit_callback_fn,
pkgNctx, OCI_FNCODE_STMTPREPARE, OCI_UCBTYPE_EXIT, (OCIUch ¥NULL);

When the OCIStmtPrepare() call is executed, the callbacks are called in the following
order:

static_entry_callback_fn()
pkgl_entry_callback fn()

9-18 Oracle Call Interface Programmer’s Guide

User-defined Callback Functions

pkg2_entry_callback fn()
pkg3_entry_callback ()
pkg4_entry_callback ()
pkg5_entry_callback fn()

static_replace_callback_fn()
pkgl replace callback fn()
pkg2_replace_callback ()
pkg3_replace_callback ()
pkg4 replace_callback fn()
pkg5_replace_callback fn()

OCl code for OCIStmtPrepare call

pkg5_exit_callback fn()
pkg4_exit_callback fn()
pkg3_exit_callback fn()
pkg2_exit_callback ()
pkgl exit callback fn()9

static_exit_callback_fn()

Note: The exit callbacks are called in the reverse order of the entry and
replacement callbacks.

The entry and exit callbacks can return any return code and the processing would
continue to the next callback. However, if the replacement callback returns anything
other than OCI_CONTINUE, then the next callback (or OCI code if it is the last
replacement callback) in the chain is bypassed and processing jumps to the exit
callback. For example, if pkg3_replace_callback_fn() returned OCI_SUCCESS, then
pkg4_replace_callback_fn(), pkg5_replace_callback_fn(), and the OCI processing for the

OCIStmtPrepare call would be bypassed. Instead pkg5_exit_callback_fn() would be
executed next.

OCI Callbacks From External Procedures

There are several OCI functions that can be used as callbacks from external
procedures. These functions are listed in Chapter 18, "OCI Cartridge Functions". For
information about writing C subroutines that can be called from PL/SQL code,
including a list of which OCI calls can be used, and some example code, refer to the
Oracle8i Application Developer’s Guide - Fundamentals.

OCI Programming Advanced Topics 9-19

Application Failover Callbacks

Application Failover Callbacks

Application failover callbacks can be used in the event of the failure of one database
instance, and failover to another instance. Because of the delay which can occur
during failover, the application developer may want to inform the user that failover
is in progress, and request that the user stand by. Additionally, the session on the
initial instance may have received some ALTER SESSION commands. These will
not be automatically replayed on the second instance. Consequently, the developer
may wish to replay these ALTER SESSION commands on the second instance.

See Also: For more detailed information about application failover, refer to the
Oracle8i Parallel Server Concepts and Administration manual.

Failover Callback Overview

To address the problems described above, the application developer can register a
failover callback function. In the event of failover, the callback function is invoked
several times during the course of reestablishing the user's session.

The first call to the callback function occurs when Oracle first detects an instance
connection loss. This callback is intended to allow the application to inform the user
of an upcoming delay. If failover is successful, a second call to the callback function
occurs when the connection is reestablished and usable. At this time the client may
wish to replay ALTER SESSION commands and inform the user that failover has
happened. If failover is unsuccessful, then the callback is called to inform the
application that failover will not take place. Additionally, the callback is called each
time a user handle besides the primary handle is reauthenticated on the new
connection. Since each user handle represents a server-side session, the client may
wish to replay ALTER SESSION commands for that session.

An initial attempt at failover may not always successful. The OCI provides a
mechanism for retrying failover after an unsuccessful attempt. See "Handling
OCI_FO_ERROR" on page 9-23 for more information about this scenario.

Failover Callback Structure and Parameters

9-20

The basic structure of a user-defined application failover callback function is as
follows:

sh4 appfocallback fn (dvoid *svchp,
dvod *envhp,
dvoid *fo_ctx,
ub4 fo type,
ub4 fo event),

Oracle Call Interface Programmer’s Guide

Application Failover Callbacks

An example is provided in the section "Failover Callback Example" on page 9-22 for
the following parameters:

svchp
The first parameter, svchp, is the service context handle. It is of type dvoid *.

envhp
The second parameter, envhp, is the OCI environment handle. It is of type dvoid *.

fo_ctx

The third parameter, fo_ctx, is a client context. It is a pointer to memory specified by
the client. In this area the client can keep any necessary state or context. It is passed
as advoid *.

fo_type
The fourth parameter, fo_type, is the failover type. This lets the callback know what
type of failover the client has requested. The usual values are:

« OCI_FO_SESSION, which indicates that the user has requested only session
failover.

« OCI_FO_SELECT, which indicates that the user has requested select failover as
well.

fo_event
The last parameter is the failover event. This indicates to the callback why it is being
called. It has several possible values:

« OCI_FO_BEGIN indicates that failover has detected a lost connection and
failover is starting.

« OCI_FO_END indicates successful completion of failover.
« OCI_FO_ABORT indicates that failover was unsuccessful, and there is no
option of retrying.

« OCI_FO_ERROR also indicates that failover was unsuccessful, but it gives the
application the opportunity to handle the error and retry failover. See
"Handling OCI_FO_ERROR" on page 9-23 for more information about this
value.

« OCI_FO_REAUTH indicates that a user handle has been reauthenticated. To
find out which, the application should check the OCI_ATTR_SESSION attribute
of the service context handle (which is the first parameter).

OCI Programming Advanced Topics 9-21

Application Failover Callbacks

Failover Callback Registration

For the failover callback to be used, it must be registered on the server context
handle. This registration is done by creating a callback definition structure and
setting the OCI_ATTR_FOCBK attribute of the server handle to this structure.

The callback definition structure must be of type OCIFocbkStruct. It has two fields:
callback_function, which contains the address of the function to call, and fo_ctx which
contains the address of the client context.

An example of callback registration is included as part of the example in the next
section.

Failover Callback Example

The following code shows an example of a simple user-defined callback function
definition and registration.

Part 1, Failover Callback Definition
sb4 callback_fn(svchp, envhp, fo_ctx, fo_type, fo_event)
dvoid * svchp;
dvoid * envhp;
dvoid *fo_ctx;
ub4 fo_type;
ub4fo_event,
{
switch (fo_event)
{
case OCI_FO_BEGIN:
{
printf(" Failing Over ... Please stand by \n");
printf(" Failover type was found to be %s \n",
((fo_type=—0OCI_FO_SESSION) ? "SESSION"
{(fo_type==OCI_FO_SELECT) ?"SELECT"
:"UNKNOWN™M);
printf(" Failover Contextis :%6s\n’,
(fo_ctx?(char *fo_ctx"NULL POINTER!"));
break;

}
case OC|_FO_ABORT:

{
printf(" Failover aborted. Failover will not take place.\n");

break;
}

9-22 Oracle Call Interface Programmer’s Guide

Application Failover Callbacks

case OCl| FO _END:
{
printf{* Failover ended ...resuming services\n');
break;
}
case OCI_FO_REAUTH:
{
printf(" Failed over user. Resuming services\n');
break;
}
default
{
printf('Bad Failover Event: %d.\n", fo_event);
break;
}
}
retumO;
}

Part 2, Failover Callback Registration
intregister_callback(svrh, errh)
dvoid *svrh; /* the server handle */
OCIEror *erh; /* the error handle */
{
OCIFochkStruct failover; [+ failover callback structure */
* allocate memory for context */
if (((failover.fo_ctx = (dvoid ¥)malloc(strien(“my context."))))
retum(2);
Finitialize the context. */
strepy((char *failover.context_function, “my context.”;
failover.callback_function = &callback_fn;
 do the registration */
if (OCIAtrSet(stvh, (Ubd) OCI HTYPE._SERVER,
(dvoid *) &failover, (Ub4) O,
(ub4) OCI_ATTR_FOCBK, erth) '=0OC|_SUCCESS)
retum(2);
F successful conclusion */
retum (O);
}

Handling OCI_FO_ERROR

A failover attempt is not always successful. If the attempt fails, the callback function
receives a value of OCI_FO_ABORT or OCI_FO_ERROR in the fo_event parameter.

OCI Programming Advanced Topics 9-23

Application Failover Callbacks

A value of OCI_FO_ABORT indicates that failover was unsuccessful, and no further
failover attempts are possible. OCI_FO_ERROR, on the other hand, provides the
callback function with the opportunity to handle the error in some way. For
example, the callback may choose to wait a specified period of time and then
indicate to the OCI library that it should reattempt failover.

Note: This functionality is only available to applications linked with the 8.0.5 or
later OCI libraries running against any Oracle8i server.

Consider the following timeline of events:

Time Event

TO Database crashes (crash lasts until T5).

T1 Failover triggered by user activity.

T2 User attempts to reconnect; attempt fails.

T3 Failover callback invoked with OCI_FO_ERROR.

T4 Failover callback enters predetermined sleep period.

T5 Database comes back up again.

T6 Failover callback triggers new failover attempt; it is successful.
T7 User successfully reconnects

The callback function triggers the new failover attempt by returning a value of
OCI_FO_RETRY from the function.

The following example code shows a callback function which might be used to
implement the failover strategy similar to the scenario described above. In this case
the failover callback enters a loop in which it sleeps and then reattempts failover
until it is successful:

I~ *
[*the user defined failover callback */
I~ *
sb4 callback_fn(svchp, envhp, fo_ctx, fo_type, fo_event)
dvoid * svchp;
dvoid * envhp;
dvoid *fo_ctx;
ub4 fo_type;
ub4fo_event,
{
OCIEnor *errhp;

9-24 Oracle Call Interface Programmer’s Guide

Application Failover Callbacks

OClHandleAlloc(envhp, (dvoid *)&errhp, (ub4) OCI_HTYPE_ERROR,
(size_t) 0, (dvoid *¥) O);
switch (fo_event)
{
case OCl_FO_BEGIN:
{
printf(" Failing Over ... Please stand by \n");
printf(" Failover type was found to be %s \n",
((fo_type=—OCl_FO_NONE) ? "NONE"
((fo_type=—0OC|_FO_SESSION) ? "SESSION"
{(fo_type==OCI_FO_SELECT) ?"SELECT"
{(fo_type==OCI_FO_TXNAL) ? "TRANSACTION"
: "UNKNOWN!"));
printf(" Failover Contextis :%s\n’,
(fo_ctx?(char *fo_ctx"NULL POINTER!");
break;

}
case OCl_FO_ABORT:

{
printf(" Failover aborted. Failover will not take place \n');
break;
}
case OCI_FO_END:
{
printf(\n Failover ended ...resuming services\n®);
break;
}
case OCl_FO_REAUTH:
{
printf(" Failed over user. Resuming services\n');
break;
}
case OCl_ FO_ERROR:
{
F allinvocations of this can only generate one line. The newline
*will be putatfo_end time.
*
printf(" Failover error gotten. Sleeping...);
sleep(3);
printf("'Retrying. *);
retum (OCI_FO_RETRY);
break;
}
default:

{

OCI Programming Advanced Topics 9-25

Application Failover Callbacks

printf('Bad Failover Event: %d.\n", fo_event);
break;
}
}
retumO;
}

The following is sample output from a program containing this failover callback
function:

executing select...
7369 SMITH CLERK
7499 ALLEN SALESMAN

Failing Over ... Please stand by

Failover type was found to be SELECT

Failover Contextis :My context.

Failover error gotten. Sleeping...Retrying. Failover error gotten.
Sleeping...Retrying. Failover error gotten. Sleeping...Retrying. Failover
ermor gotten. Sleeping...Retrying. Failover emor gotten. Sleeping...Retrying.
Failover error gotten. Sleeping...Retrying. Failover error gotten.
Sleeping...Retrying. Failover emror gotten. Sleeping...Retrying. Failover
error gotten. Sleeping...Retrying. Failover error gotten. Sleeping...Retrying.

Failover ended ...resuming services
7521 WARD SALESMAN
7566 JONES MANAGER
7654 MARTIN SALESMAN
7698 BLAKE MANAGER
7782 CLARK MANAGER
7788 SCOTT ANALYST
7839 KING PRESIDENT
7844 TURNER SALESMAN
7876 ADAMS CLERK
7900 JAMES CLERK
7902 FORD ANALYST

9-26 Oracle Call Interface Programmer’s Guide

OClI and Advanced Queuing

OClI and Advanced Queuing

The OCI provides an interface to Oracle’s Advanced Queuing feature. Oracle AQ
provides message queuing as an integrated part of the Oracle server. Oracle AQ
provides this functionality by integrating the queuing system with the database,
thereby creating a message-enabled database. By providing an integrated solution
Oracle AQ frees application developers to devote their efforts to their specific
business logic rather than having to construct a messaging infrastructure.

Note: In order to use Advanced Queuing, you must be using the Oracle8i
Enterprise Edition.

See Also: For detailed information about AQ, including concepts, features, and
examples, refer to the chapter on Advanced Queuing in the Oracle8i Application
Developer’s Guide - Advanced Queuing.

For example code demonstrating the use of the OCI with AQ, refer to the
description of OCIAQENq() on page 15-7.

OCI Advanced Queuing Functions
The OCI library includes several functions related to Advanced Queuing:

« OCIAQENq()
« OCIAQDeq()
« OCIAQListen()

Chapter 15, "OCI Relational Functions", contains complete descriptions of these
functions and their parameters.

OCI Advanced Queuing Descriptors
The following descriptors are used by OCI AQ operations:

« OCIAQENQgOptions

« OCIAQDeqOptions

« OCIAQMsgProperties
« OCIAQAgent

You can allocate these descriptors with respect to the service handle using the
standard OClIDescriptorAlloc() call. The following code shows examples of this:

OCIDescriptorAlloc(svch, &enqueue_options, OCl_ DTYPE_AQENQ_OPTIONS, 0,0);

OCI Programming Advanced Topics 9-27

OCl and Advanced Queuing

OClDescriptorAlloc(svch, &dequeue_options, OCl DTYPE_AQDEQ_OPTIONS, 0,0);
OClDescriptorAlloc(svch, &message _properties, OCl DTYPE_AQMSG_PROPERTIES, 0, 0);
OClDescriptorAlloc(svch, &agent, OCI_DTYPE_AQAGENT, 0,0);

Each descriptor has a variety of attributes which can be set and/or read. These
attributes are described in more detail in "Advanced Queueing Descriptor
Attributes” on page A-27.

Advanced Queuing in OCI vs. PL/SQL

The following tables compare functions, parameters, and options for OCI AQ
functions and descriptors, and PL/SQL AQ functions in the dbms_aqg package.

PL/SQL Function OCI Function
DBMS_AQ.ENQUEUE OCIAQENq()
DBMS_AQ.DEQUEUE OCIAQDeq()
DBMS_AQ.LISTEN OCIAQListen()

DBMS_AQ.ENQUEUE Parameter OCIAQEnNq() Parameter

queue_name queue_name
enqueue_options enqueue_options
message_properties message_properties
payload payload

msgid msgid

Note: OCIAQEN(() also requires the following additional parameters: svch,
errh, payload_tdo, payload_ind, and flags

DBMS_AQ.DEQUEUE Parameter OCIAQDeq() Parameter

gqueue_name queue_name
dequeue_options dequeue_options
message_properties message_properties
payload payload

msgid msgid

9-28 Oracle Call Interface Programmer’s Guide

OClI and Advanced Queuing

DBMS_AQ.DEQUEUE Parameter

OCIAQDeq() Parameter

Note: OCIAQDeq() also requires the following additional parameters: svch,
errh, queue_name, dequeue_options, message_properties, payload_tdo, payload,

payload_ind, and flags

DBMS_AQ.LISTEN Parameter

OCIAQListen() Parameter

agent_list
wait

agent

agent_list
wait

agent

Note: OCIAQListen() also requires the following additional parameters:
svchp, errhp, agent_list, num_agents, wait, agent, and flags

PL/SQL Agent Parameter

OCIAQAgent Attribute

name
address

protocol

OCI_ATTR_AGENT_NAME
OCI_ATTR_AGENT_ADDRESS
OCI_ATTR_AGENT_PROTOCOL

PL/SQL Message Property

OCIAQMsgProperties Attribute

priority

delay

expiration
correlation
attempts
recipient_list
exception_queue
enqueue_time
state

sender_id

original_msgid

OCI_ATTR_PRIORITY
OCI_ATTR_DELAY
OCI_ATTR_EXPIRATION
OCI_ATTR_CORRELATION
OCI_ATTR_ATTEMPTS
OCI_ATTR_RECIPIENT LIST
OCI_ATTR_EXCEPTION_QUEUE
OCI_ATTR_ENQ_TIME
OCI_ATTR_MSG_STATE
OCI_ATTR_SENDER_ID
OCI_ATTR_ORIGINAL_MSGID

OCI Programming Advanced Topics 9-29

OCl and Advanced Queuing

PL/SQL Enqueue Option OCIAQENQOptions Attribute
visibility OCI_ATTR_VISIBILITY
relative_msgid OCI_ATTR_RELATIVE_MSGID
sequence_deviation OCI_ATTR_SEQUENCE_DEVIATION
PL/SQL Dequeue Option OCIAQDeqOptions Attribute
consumer_name OCI_ATTR_CONSUMER_NAME
dequeue_mode OCI_ATTR_DEQ_MODE
navigation OCI_ATTR_NAVIGATION
visibility OCI_ATTR_VISIBILITY

wait OCI_ATTR_WAIT

msgid OCI_ATTR_DEQ_MSGID
correlation OCI_ATTR_CORRELATION

9-30 Oracle Call Interface Programmer’s Guide

Publish-Subscribe Notification

Publish-Subscribe Notification

The publish-subscribe notification feature allows an OCI application to receive
client notifications. Figure 9-1, "Publish-Subscribe Model" illustrates the process. An
OCI application can:

register interest in notifications in the AQ namespace and be notified when an
enqueue occurs.

register interest in subscriptions to database events and receive notifications
when the events are triggered.

manage registrations, such as disabling registrations temporarily or dropping
the registrations entirely.

post, or send, notifications to registered clients.

Registered clients are notified asynchronously when events are triggered or on an
explicit AQ enqueue. Clients do not need to be connected to a database.

For information on Advanced Queuing, see "OCI and Advanced Queuing" on
page 9-27.

See Also: For information on creating queues and about AQ, including
concepts, features, and examples, refer to the chapter on Advanced Queuing in
the Oracle8i Application Developer’s Guide - Advanced Queuing. For information on
creating triggers, refer to the chapter on Commands in the Oracle8i SQL
Reference.

OCI Programming Advanced Topics 9-31

Publish-Subscribe Notification

Figure 9—-1 Publish-Subscribe Model

Trigger
Mechanism
Lightwieght
Queues
System H E ﬁ E
Events : : : :
push : . push
. . Persistent
Transactional
b : : Queues
— : :
Clients [I
—
Supplier Channel Consumer

Publish-Subscribe Functions

The following steps are required in an OCI application to register and receive
notifications for events. It is assumed that the appropriate event trigger or AQ
gueue has been set up. Also, the initialization parameter COMPATIBLE must be set
to 8.1 or higher.

Detailed descriptions of the functions noted can be found in Chapter 15, "OCI
Relational Functions". For examples of the use of these functions in an application,
see "Publish-Subscribe Example" on page 9-35.

Note: The publish-subscribe feature is only available on multi-threaded
platforms.

1. Execute OCllInitialize() with OCI_EVENTS mode to specify that the application
is interested in registering for and receiving notifications. This starts a dedicated
listening thread for notifications on the client.

9-32 Oracle Call Interface Programmer’s Guide

Publish-Subscribe Notification

2. Execute OCIHandleAlloc() with handle type OCI_HTYPE_SUBSCRIPTION to
allocate a subscription handle.

3. Execute OCIALttrSet() to set the subscription handle attributes for:
« OCI_ATTR_SUBSCR_NAME - subscription name
« OCI_ATTR_SUBSCR_NAMESPACE - subscription namespace
« OCI_ATTR_SUBSCR_CALLBACK - notification callback
« OCI_ATTR_SUBSCR_CTX - callback context
« OCI_ATTR_SUBSCR_PAYLOAD - payload buffer for posting

All these attributes, except OClI_ATTR_SUBSCR_PAYLOAD, must be set before
registering a subscription. OClI_ATTR_SUBSCR_PAYLOAD is required before
posting to a subscription. For information on these attributes, see "Subscription
Handle Attributes" on page A-38.

4. Define the callback routine to be used with the subscription handle. For
information, see "Notification Callback" on page 9-33.

5. Execute OCISubscriptionRegister() to register with the subscription(s). This call
can register interest in several subscriptions at the same time.

The following functions are used to manage publish-subscribe notification. Detailed
descriptions of each function can be found in Chapter 15, "OCI Relational
Functions".

Table 9—1 Publish-Subscribe Functions

Function Purpose
OCISubscriptionDisable() Disables a subscription.
OCISubscriptionEnable() Enables a subscription.
OCISubscriptionPost() Posts a subscription.

OCISubscriptionRegister() Registers a subscription.

OCISubscriptionUnRegister() Unregisters a subscription.

Notification Callback

The client needs to register a notification callback that gets invoked when there is
some activity on the subscription for which interest has been registered. In the AQ
namespace, for instance, this occurs when a message of interest is enqueued.

OCI Programming Advanced Topics 9-33

Publish-Subscribe Notification

This callback is typically set via the OCI_ATTR_SUBSCR_CALLBACK attribute of
the subscription handle. For information, see "Subscription Handle Attributes” on
page A-38.

The callback must return a value of OCI_CONTINUE and adhere to the following
specification:

typedef ub4 (*OCISubscriptionNotify) (dvoid *pCtx,
OCISubscription *pSubscrHp,
dvoid *pPayload,
ub4 *iPayloadLen,
dvoid *pDescriptor,
ub4 iMode);

The parameters are described as follows:
pCtx (IN) A user-defined context specified when the callback was registered.
pSubscrHp (IN) The subscription handle specified when the callback was registered.

pPayload (IN) The payload for this notification. For this release, only ubl * (a
sequence of bytes) for the payload is supported.

iPayloadLen (IN) The length of the payload for this notification.

pDescriptor (IN) The namespace-specific descriptor. Namespace-specific parameters
can be extracted from this descriptor. The structure of this descriptor is opaque to
the user and its type is dependent on the namespace.

The attributes of the descriptor are namespace-specific. For Advanced Queuing, the
descriptor is OCI_DTYPE_AQNFY. The attributes of this descriptor are:

. Queue Name - OCI_ATTR_QUEUE_NAME

« Consumer Name - OCI_ATTR_CONSUMER_NAME

« Message Id - OCI_ATTR_NFY_MSGID

« Message Properties - OCI_ATTR_MSG_PROP

For more information about OCI and Advanced Queueing, refer to "OCI and
Advanced Queuing" on page 9-27.

iMode (IN) Call-specific mode. Valid value:

« OCI_DEFAULT - executes the default call

9-34 Oracle Call Interface Programmer’s Guide

Publish-Subscribe Notification

Publish-Subscribe Example

This example shows how system events, client notification, and Advanced Queuing
work together to implement publish/subscription notification.

The following PL/SQL code creates all objects necessary to support a
publish-subscribe mechanism under the user schema, pubsub. In this code, the
Agent snoop subscribes to messages that are published at logon events. Note that
the user pubsub needs AQ_ADMINISTRATOR_ROLE and AQ_USER_ROLE
privileges to use Advance Queuing functionality. Also, the initialization parameter
_SYSTEM_TRIG_ENABLED must be set to TRUE (default) to enable triggers for
system events.

Rem
REM create queue table for persistent multiple consumers
Rem
connect pubsub/pubsub;
Rem Create or replace a queue table
begin
DBMS_AQADM.CREATE_QUEUE TABLE(
QUEUE_TABLE=>pubsub.raw_msg_table’,
MULTIPLE_CONSUMERS =>TRUE,
QUEUE_PAYLOAD TYPE=>RAW,
COMPATIBLE =>'8.1.5);
end;
/
Rem
Rem Create a persistent queue for publishing messages
Rem
Rem Create a queue for logon events
begin
DBMS_AQADM.CREATE_QUEUE(QUEUE_NAME=>pubsub.logon’,
QUEUE_TABLE=>pubsub.raw_msg_table’,
COMMENT=>'Q for error triggers);
end;
/
Rem
Rem Startthe queue
Rem
begin
DBMS_AQADM.START_QUEUE(pubsub.logon);
end;
/
Rem

OCI Programming Advanced Topics 9-35

Publish-Subscribe Notification

Rem define new_enqueue for convenience
Rem
create or replace procedure new_enqueue(queue_name invarchar2,
payload inraw,
correlation in varchar2 := NULL,
exception_queue in varchar2 := NULL)
as
eng_ct dbms_ag.enqueue_options_t;
msg_prop dbms_ag.message_properties t;
eng_msgid raw(16);
userdata raw(1000);
begin
msg_prop.exception_queue = exception_queue;
msg_prop.correlation := correlation;

userdata := payload;

DBMS_AQ.ENQUEUE(queue_name,enq_ct, msg_prop,userdata,enq_msgid);
end;
/
Rem

Rem add subscriber with rule based on current user name,
Rem using correlation id
Rem
declare
subscriber sys.ag$_agent;
begin
subscriber = sys.ag$_agent(SNOOP’, null, null);
dbms_agadm.add_subscriber(queue_name =>"pubsub.logon’,
subscriber => subscriber,
rule =>'CORRID ="SCOTT"’);

end;
/
Rem
Rem create a trigger on logon on database
Rem
Rem create trigger on after logon
create or replace trigger systrig2

AFTER LOGON

ON DATABASE

begin

new_enqueue('pubsub.logon’, hextoraw('9999’), doms_standard.login_user);

end;

/

After the subscriptions are created, the client needs to register for notification using
callback functions. The following sample code performs necessary steps for

9-36 Oracle Call Interface Programmer’s Guide

Publish-Subscribe Notification

registration. The initial steps of allocating and initializing session handles are
omitted here for sake of clarity.

ub4 namespace = OCI_SUBSCR_NAMESPACE_AQ;
[* callback function for notification of logon of user 'scott’ on database */
ub4 notifySnoop(ctx, subscrhp, pay, payl, desc, mode)
dvoid *ctx;
OCISubscription *subscrhp;
dvoid *pay;
ub4 payt;
dvoid *desc;
ub4 mode;
{
printf('Notification : User Scott Logged on\n');
}
int main()
{
OClSession *authp = (OCISession *) 0;
OCISubscription *subscrhpSnoop = (OCISubscription *)0;

A

Initialize OCI Process/Environment
Initialize Server Contexts

Connect to Server

Set Service Context

* Registration Code Begins */
F Each call to initSubscriptionHn allocates
and Initialises a Regjistration Handle */
intSubscriptionHn(&subscrhpSnoop, / subscription handle */
"PUBSUB.SNOOP:ADMIN", * subscription name */
F* <queue_name>:<agent_name>*/
(dvoid¥)notifySnoop); / callback function */

!
The Client Process does not need a live Session for Callbacks
End Session and Detach from Server

)
OCISessionEnd (svchp, erhp, authp, (ub4) OCI_DEFAULT);
[detach from server */
OClServerDetach(srvhp, erthp, OCI_DEFAULT);
while (1) A wait for callback */
sleep(1);
}

OCI Programming Advanced Topics 9-37

Publish-Subscribe Notification

void initSubscriptionHn (subscrhp,
subscriptionName,
func)
OCISubscription *subscrhp;
char* subscriptionName;
dvoid *func;

/* allocate subscription handle *

(void) OClHandleAlloc((dvoid *) envhp, (dvoid *)subscrhp,
(ub4) OCI_HTYPE_SUBSCRIPTION,
(size_1) 0, (dvoid **) 0);

* set subscription name in handle */

(void) OClAtrSet((dvoid *) *subscrhp, (ub4) OCl_ HTYPE_SUBSCRIPTION,
(dvoid *) subscriptionName,
(ub4) strlen((char *)subscriptionName),
(ub4) OCI_ATTR_SUBSCR_NAME, erthp);

f* set callback function in handle */

(void) OClAtrSet((dvoid *) *subscrhp, (ub4) OCl_ HTYPE_SUBSCRIPTION,
(dvoid *) func, (ub4) O,
(Ub4) OCI_ATTR_SUBSCR_CALLBACK, erthp);

(void) OCIAtrSet((dvoid *) *subscrhp, (Ub4) OCl_HTYPE_SUBSCRIPTION,
(avoid *) O, (ub4) O,
(ub4) OCI_ATTR_SUBSCR_CTX, erthp);

¥ setnamespace in handle */
(void) OClAttrSet((dvoid *) *subscrhp, (ub4) OCl HTYPE_SUBSCRIPTION,
(dvoid *) &namespace, (ub4) O,
(ub4) OCI_ATTR_SUBSCR_NAMESPACE, erthp);
checkerr(erhp, OCISubscriptionRegister(svchp, subscrhp, 1, erthp,
OCI_DEFAULT));
}

If user SCOTT logs on to the database, the client is notified and the call back
function notifySnoop is called.

9-38 Oracle Call Interface Programmer’s Guide

Direct Path Loading

Direct Path Loading

The direct path load interface allows an OCI application to access the direct path
load engine of the Oracle database server to perform the functions of the Oracle
SQL*Loader utility. This functionality provides the ability to load data from external
files into Oracle database objects, either a table or a partition of a partitioned table.

Data

v

Input
Buffer

Figure 9-2 Direct Path Loading

Column
Array

Client Server
Two-Task
Stream Stream
Format Format

ColumnArrayToStream S~ -

P> | m—— ==

\ Block OracleTable
\ Formatter > |

The OCI direct path load interface has the ability to load multiple rows by loading a
direct path stream which contains data for multiple rows.

To use the direct path API, the client application performs the following steps:

1.
2.
3.
4.
5.
6.

Perform the OCI initialization.

Allocate a direct path context handle and set the attributes.

Supply the name of the object (table, partition, or sub-partition) to be loaded.
Describe the external data types of the columns of the object(s).

Prepare the direct path interface.

Allocate one or more column arrays.

OCI Programming Advanced Topics 9-39

Direct Path Loading

10.

11.
12.
13.
14.

Allocate one or more direct path streams.
Set entries in the column array to point to the input data value for each column.
Convert a column array to a direct path stream format.

Either load the direct path stream, or save the direct path stream to a file to be
loaded at a later time.

Retrieve any errors which may have occurred.
Invoke the direct path finishing function.
Free handles and data structures.

Disconnect from the server.

A direct load operation requires that the object being loaded is locked to prevent
DML on the object. Note that queries are lock free and are allowed while the object
is being loaded. The mode of the DML lock, and which DML locks are obtained
depend upon the specification of the OCI_DIRPATH_PARALLEL_LOAD option,
and if a partition or sub-partition load is being done as opposed to an entire table
load. For more information on OCI_DIRPATH_PARALLEL_LOAD, see
OCIDirPathPrepare() on page 15-88.

For a table load, if the OCI_DIRPATH_PARALLEL_LOAD option set to:

« FALSE, the table DML X-Lock is acquired.

« TRUE, the table DML S-Lock is acquired.

For a partition load, if the OCI_DIRPATH_PARALLEL_LOAD option set to:
« FALSE, the table DML SX-Lock and partition DML X-Lock is acquired.
« TRUE, the table DML SS-Lock and partition DML S-Lock is acquired.

Limitations and Restrictions

The direct path load interface has the following limitations which are the same as
SQL*Loader:

triggers are not supported

check constraints are not supported

referential integrity constraints are not supported
clustered tables are not supported

loading of remote objects is not supported

9-40 Oracle Call Interface Programmer’s Guide

Direct Path Loading

« user-defined types are not supported
« LOBs must be specified after all scalar columns

« LONGs must be specified last

Datatypes Supported

The following external datatypes are valid for columns in a direct path load
operation: SQLT_CHR, SQLT_DAT, SQLT_INT, SQLT_UIN, SQLT_FLT, SQLT_PDN,
SQLT _BIN, or SQLT_NUM. For information on setting or retrieving the datatype of
a column, see OCI_ATTR_DATA_TYPE on page A-48. For information on
datatypes, see Chapter 3, "Datatypes".

Direct Path Handles

A direct path load corresponds to a direct path array insert operation. The direct
path load interface uses the following handles to keep track of the objects loaded
and the specification of the data operated on:

« direct path context
« direct path column array
« direct path stream

For information about the attributes of direct path load handles, refer to "Direct
Path Loading Handle Attributes" on page A-40. For information about column
parameter attributes, see "Direct Path Column Parameter Attributes” on page A-45.

Direct Path Context

This handle needs to be allocated for each object, either a table or a partition of a
partitioned table, being loaded. Because a OCIDirPathCtx handle is the parent
handle of the OCIDirPathColArray and OCIDirPathStream handles, freeing a
OCIDirPathCtx handle frees its child handles also. A direct path context is allocated
with OCIHandleAlloc().

OCIEnv *envp;
OCIDirPathCtx *dpctx;
sword eror,
error = OClHandleAlloc((dvoid *)envp, (dvoid *)&dpctx,
OCI_HTYPE_DIRPATH_CTX, 0,(dvoid **)0);

Note that the parent handle of a direct path context is always the environment
handle. A direct path context is freed with OCIHandleFree().

OCI Programming Advanced Topics 9-41

Direct Path Loading

error = OClHandleFree(dpctx, OCl_HTYPE_DIRPATH_CTX);

Direct Path Column Array

This handle is used to present an array of rows to the direct path interface. A row is
represented by three arrays: column values, column lengths, and column flags.
Methods on a column array include: allocate the array handle and set/get values
corresponding to an array entry.

A direct path column array handle is allocated with OCIHandleAlloc(). The
following code fragment shows explicit allocation of the direct path column array
handle:

OCIDirPathCtx *dpctx;

OCIDirPathColArray *dpca;

sword error;

error = OCIHandleAlloc((dvoid *)dpctx, (dvoid *)&dpca,
OCI_HTYPE_DIRPATH_COLUMN_ARRAY, 0, (dvoid **)0);

A direct path column array is freed with OCIHandleFree().
error = OClHandleFree(dpca, OCI_HTYPE_DIRPATH_COLUMN_ARRAY);

Freeing a OCIDirPathColArray handle also frees the column array associated with
the handle.

Direct Path Stream

This handle is used by the conversion operation, OCIDirPathColArrayToStream(),
and by the load operation, OCIDirPathLoadStream().

Direct path stream handles is allocated by the client with OCIHandleAlloc(). The
structure of a OCIDirPathStream handle can be thought of as a pair in the form
(buffer, buffer length).

A direct path stream is a linear representation of Oracle table data. The conversion
operations always append to the end of the stream. Load operations always start
from the beginning of the stream. After a stream is completely loaded, the stream
must be reset by calling OCIDirPathStreamReset().

The following example shows a direct path stream handle allocated with
OCIHandleAlloc(). The parent handle is always a OCIDirPathCtx handle:

OCIDirPathCtx *dpctx;

OCIDirPathStream *dpstr;

sword error,

error = OCIHandleAlloc((dvoid *)dpctx, (dvoid **)&dpstr,

9-42 Oracle Call Interface Programmer’s Guide

Direct Path Loading

OCI_HTYPE_DIRPATH_STREAM, 0,(dvoid *)0);

A direct path stream handle is freed via OCIHandleFree().
error = OCIHandleFree(dpstr, OCI HTYPE_DIRPATH_STREAM);

Note that freeing the direct path stream handle will also free any stream buffer
allocated by OCIDirPathStreamAlloc().

Direct Path Interface Functions

The functions listed in this section are used with the direct path load interface.
Detailed descriptions of each function can be found in Chapter 15, "OCI Relational
Functions".

Operations on the direct path context are performed by the functions in Table 9-2,
"Direct Path Context Functions".

Table 9-2 Direct Path Context Functions

Function Purpose

OCIDirPathAbort() Aborts a direct path operation

OCIDirPathFinish() Commits the loaded data

OCIDirPathPrepare() Prepares direct path interface to convert or load rows

OCIDirPathLoadStream() If_oads data that has been converted to direct path stream
ormat

Operations on the direct path column array are performed by the functions in
Table 9-3, "Direct Path Column Array Functions".

Table 9-3 Direct Path Column Array Functions

Function Purpose

OCIDirPathColArrayEntryGet() Gets a specified entry in a column array
OCIDirPathColArrayEntrySet() Sets a specified entry in a column array to a specific

value
OCIDirPathColArrayRowGet() Gets the base row pointers for a specified row number
OCIDirPathColArrayReset() Resets the row array state

OCI Programming Advanced Topics 9-43

Direct Path Loading

Function Purpose

OCIDirPathColArrayToStream() ~ Converts from a column array format to a direct path
stream format

Operations on the direct path stream are performed by the functions inTable 9-4,
"Direct Path Stream Functions".

Table 9-4 Direct Path Stream Functions

Function Purpose

OCIDirPathStreamReset() Resets the direct stream state

Direct Path Load Example

The following sample code illustrates the use of several of the OCI direct path
interfaces. It is not a complete code example.

The following data structure is used in the example.
load control structure */

struct loadctl

{
ub4 nrow_ctl; F number of rows in column array */
ub2 ncol_ct; F number of columns in column array */
OCIEnv *envhp_ct; F environment handle */
OClServer *srvhp_ctl; F server handle */
OCIEmor *errhp_ctl; error handle */
OClEmor *errhp2_ctl; Fanother error handle */
OCISvcCix *svehp_c; [* service context ¥/
OCISession *authp_c; [+ authentication context */
OCIParam *colLstDesc _ctl;, /*column list parameter handle */
OCIDirPathCtx *dpctx_ct; F direct path context */
OCIDirPathColArray *dpca._cti; F* direct path column array handle */
OCIDirPathStream *dpstr_cti; F* direct path stream handle */
ubl *ouf_ctl; # pre-alloc'd buffer for out-of-ine data */
ub4 bufsz_ct; Fsize of buf_ctlin bytes */
ub4 bufoff_cti; * offset into buf_ctl which is notin use *
ub4 *otor_ctl; F Offset to Recnum mapping */
ubl *inbuf_ctl; F buffer for input records */
structpetx petx_cti; * partial field context */
3

9-44 Oracle Call Interface Programmer’s Guide

Direct Path Loading

The header file cdemodp.h from the demo directory defines several structs:

#indef cdemodp_ORACLE
define cdemodp_ORACLE

#include <oratypes.h>

iindef extemdef

define extemdef

#endif

* Extemal column attributes */

struct col

{
text*name_cal; f* column name */
ub2 id col; ¥ column load id */
ub2 exttyp col; Fextemal type ¥/
text *datemask_col; F datemask, if applicable */
ubl prec_col; * precision, if applicable */
sbl scale col; * scale, if applicable */
ub2 csid cal; [+ character setid */
ubl date_col; Fis column a chrdate or date? 1=TRUE. 0=FALSE ¥/

J

F Input field descriptor

* For this example (and simplicity),

*fields are strictly positional.

*

struct fid

{
ub4 begpos fid; * 1-based beginning position */
ub4 endpos_fid; *1-based ending position */
ub4 maxien fid; Fmax length for out of line field */
ub4 flag fid;

#oefne FLD_INLINE ~ Ox1

#oefine FLD_OUTOFLINE ~ Ox2
#oefine FLD_STRIP_LEAD BLANK Ox4
#define FLD_STRIP_TRAIL_BLANK Ox8

¢

struct thl

{
text *owner_tol; Ftable owner */
text *name_thl; f*table name */

OCI Programming Advanced Topics 9-45

Direct Path Loading

text *subname_thl; F* subname, if applicable */
ub2 ncol_tol; f*number of columns in col_thl*/
text *dfitdatemask tbl; Ftable level defauit date mask */
struct col *col thl; F column attributes */
structfid *id_thl; F*field descriptor */
ubl paralel_tbl; F parallel: 1 for true */
ubl nolog_thl; Fno logging: 1 for true */
ub4 xfrsz_thl; Ftransfer buffer size in bytes */
¥
struct sess options for a direct path load session */
{
text *usemame_sess; Fuser*/
text *password_sess, F password ¥/
text *inst_sess; ¥ remote instance name ¥/
text *outn_sess; F output flename */
ub4 maxreclen_sess; F* max size of input record in bytes */
¥
#Hendif Fcdemodp_ORACLE ¥

The init_load function performs a direct path load using the direct path APl on the
table described by tblp. The loadctl structure given by ctlp has an appropriately
initialized environment and service context. A connection has been made to the
server.

STATICF void
init_load(ctip, thlp)
struct loadcti *ctip;
structthl *tbip;
{
struct col *colp;
struct fid *idp;
sword ociret; * retum code from OCl calls */
OCIDirPathCtx *dpctx; [* direct path context */
OClIParam *colDesc; F column parameter descriptor */
ubl parmtyp;
ubl *imestamp = (b1 *)0;
ub4 Size;
ub4 i
ub4 pos;

 allocate and initialize a direct path context */

9-46 Oracle Call Interface Programmer’s Guide

Direct Path Loading

OCI_CHECK(ctip->envhp_ctl, OCI_HTYPE_ENV, ociret, ctip,
OCIHandleAlloc((dvoid *)ctip->envhp_ct,
(dvoid *)&ctip->dpctx_ct,
(Ub4)OCI_HTYPE._DIRPATH_CTX,
(size_t)0, (dvoid *)Q));

dpctx = clip->dpctx_ct; shorthand */

OCI_CHECK(ctip->enhp_ctl, OCI_ HTYPE_ERROR, ociret, ctip,
OCIAttrSet((dvoid *)dpctx, (ub4)OCl_HTYPE_DIRPATH_CTX,
(dvoid *tblp->name_thl,
(ub4)strien((const char *tblp->name_thl),
(Ub4)OCI_ATTR_NAME, ctip->erhp_ctl);

Additional attributes, such as OClI_ATTR_SUB_NAME and
OCI_ATTR_SCHEMA_NAME, are also set here. After the attributes have been set,
prepare the load.

OC|_CHECK(ctip->enhp_ctl, OCI HTYPE_ERROR, ociret, ctip,
OCIDirPathPrepare(dpctx, cip->svchp_ctl, clip->errhp_ctl);

Allocate the column array and stream handles. Note that the direct path context
handle is the parent handle for the column array and stream handles. Also note that
Oracle errors are returned with the environment handle associated with the direct
path context.

OCI_CHECK(ctip->envhp_ctl, OCI_ HTYPE_ENV, ociret, ctp,
OCIHandleAlloc((dvoid *)ctip->dpctx_ctl, (dvoid **)&ctip->dpca _c,
(Ub4)OCI_HTYPE_DIRPATH_COLUMN_ARRAY,
(size_t)0, (dvoid *)Q));

OCI_CHECK(ctip>envhp_ctl, OCI_HTYPE_ENV, ociret, ctip,
OCIHandleAlloc((dvoid *)ctip->dpctx_ctl(dvoid *)&ctip->dpstr_ct,
(Ub4)OCI_HTYPE_DIRPATH_STREAM,
(size_1)0, (dvoid *)0);

Get number of rows and columns in the column array just allocated.
OC|_CHECK(ctip->erthp_ctl, OCI HTYPE_ERROR, ociret, ctp,
OCIAtGet(ctip->dpca_ct, (ub4)OCI_HTYPE. DIRPATH_COLUMN_ARRAY,

&ctip->nrow_ctl, 0,0CI_ATTR_NUM_ROWS,
ctip->enhp_ct));

OCI Programming Advanced Topics 9-47

Direct Path Loading

OCI_CHECK(ctip>erhp_ctl, OCl_HTYPE_ERROR, ociret, ctip,
OCIAtrGet(ctip->dpca_ct, (ub4)OC! HTYPE_DIRPATH_COLUMN_ARRAY,
&ctip->ncol_ct, 0,0CI ATTR_NUM_COLS,
ctip->enhp_ct));

Set the input data fields to their corresponding data columns.

OCIDirPathColArrayEntrySet(ctip->dpca._ctl, ctip->emhp_ct,
rowoff, colp->id_coal,
cval, clen, cfig));

Reset column array state in case a previous conversion needed to be continued or a
row is expecting more data.

(void) OCIDirPathColArrayReset(ctip->dpca_ct, ctip->erhp_ctl);

Reset the stream state to start a new stream. Otherwise, data in the stream is
appended to existing data.

(void) OCIDirPathStreamReset(ctip->dpstr_ct, ctip->enhp_ct);

After inputting the data, convert the data in the column array to stream format and
filter out any bad records.

ocierr = OCIDirPathColArray ToStream(ctip->dpca._ctl, ctip->dpctx_ctl,
ctip>dpstr_ct, cip>erhp_ct,
rowcnt, startoff);

Load the stream. Note that the position in the stream is maintained internally to the
stream handle, along with offset information for the column array which produced
the stream. When the conversion to stream format is done, the data is appended to
the stream. It is the responsibility of the caller to reset the stream when appropriate.
On errors, the position is moved to the next row, or the end of the stream if the error
occurs on the last row. The next OCIDirPathLoadStream() call starts on the next row,
if any. If a OCIDirPathLoadStream() call is made, and the end of a stream has been
reached, OCI_NO_DATA is returned.

ocierr = OCIDirPathLoadStream(ctip->dpctx_ctl, ctip->dpstr_ct,
ctip->erhp_ctl);

Finish the direct path load.
OCIDirPathFinish(ctip->dpctx_ct, ctip->erhp_ctl);

9-48 Oracle Call Interface Programmer’s Guide

Direct Path Loading

Free all the direct path handles allocated. Note that direct path column array and
stream handles are freed when the parent direct path context handle is freed. The
following code statements that free the direct path column array and stream
handles are not necessary but included here as examples.

ociret = OCIHandleFree((dvoid *)ctip->dpca._ctl,
OCI_HTYPE_DIRPATH_COLUMN_ARRAY);

ociret = OCIHandleFree((dvoid *)ctip->dpstr_ct,
OCI_HTYPE_DIRPATH_STREAM);

ociret = OCIHandleFree((dvoid *)ctip->dpctx_ct,
OCI_HTYPE_DIRPATH_CTX);

OCI Programming Advanced Topics 9-49

Direct Path Loading

9-50 Oracle Call Interface Programmer’s Guide

Part |

OCI Object Concepts

This part of the book contains chapters that describe the use of Oracle8 objects with
the OCI:

« Chapter 10, "OCI Object-Relational Programming", provides an introduction to
object concepts and object-relational programming with the OCI.

« Chapter 11, "Object-Relational Datatypes"”, discusses object datatypes and how
you can represent database objects as C structures. This chapter also describes
OCI functions that map and manipulate datatypes.

« Chapter 12, "Binding and Defining in Object Applications", covers binding and
defining object-relational datatypes.

« Chapter 13, "Object Cache and Object Navigation", describes the object cache
and how to navigate between objects.

« Chapter 14, "Using the Object Type Translator”, discusses how the OTT is used
to convert database type definitions into host language representations.

10

OCI Object-Relational Programming

This chapter introduces the OCI’s facility for working with objects in an Oracle
database server. It also discusses the OCI’s object navigational function calls. The
following sections are included in this chapter:

« Overview

« OCI Object Overview

« Working with Obijects in the OCI

« Developing an OCI Object Application

OCI Object-Relational Programming 10-1

Overview

Overview

This chapter is divided into several sections that cover the basic concepts involved
in writing OCI applications to manipulate Oracle objects and the OCI navigational
function calls.

OCI Object Overview presents a brief introduction to the OCI facilities for
working with objects.

Working with Obijects in the OCI describes the basic structure of an OCI object
application and the different types of objects with which the OCI works. This
section provides a foundation upon which the rest of the chapter builds.

Developing an OCI Object Application discusses each of the main elements of
an OCI object application in more detail. Simple examples illustrate the most
important points.

The following chapters contain additional information about using the OCI to work
with objects:

Chapter 11, "Object-Relational Datatypes", discusses the datatypes used by OCI
object-relational applications. This information supplements that found in
Chapter 3, "Datatypes". This chapter also includes a discussion of the OCI
datatype mapping and manipulation functions.

Chapter 12, "Binding and Defining in Object Applications”, discusses
information about bind and define operations specific to object-relational
datatypes. This information supplements that in Chapter 2, "OCI Programming
Basics", and Chapter 5, "Binding and Defining".

Chapter 13, "Object Cache and Object Navigation”, discusses the object cache
and object navigation. This chapter includes a discussion of the OCI
navigational functions.

Chapter 14, "Using the Object Type Translator" discusses the Object Type
Translator.

Complete descriptions of the OCI object-relational functions are contained in
Chapter 16, "OCI Navigational and Type Functions", and Chapter 17, "OCI
Datatype Mapping and Manipulation Functions". Additionally, some object
functionality is included in those functions described in Chapter 15, "OCI Relational
Functions".

10-2 Oracle Call Interface Programmer’s Guide

OCI Object Overview

OCI Object Overview

The Oracle Call Interface (OCI) provides functions for managing database access
and processing SQL statements. These functions are described in detail in Part | of
this guide. The SQL capabilities of the OCI relational interface allow an application
to access objects from an Oracle database server through SQL statements.

Note: The Oracle OCI release 8 libraries are supported only for C.

The OCI allows applications to access any of the datatypes found in the Oracle
database server, including scalar values, collections, and instances of any object
type. This includes all of the following:

« Objects

« variable-length arrays (VARRAYS)
« hested tables (multisets)

« references (REFs)

« LOBs

To take full advantage of Oracle server object capabilities, most applications need to
do more than just access objects. After an object has been retrieved, the application
must navigate through references from that object to other objects. The OCI
provides the capability to do this. Through the OCI’s object navigational calls, an
application can perform any of the following functions on Oracle objects:

« creating, accessing, locking, deleting, copying, and flushing objects

« getting references to the objects and their meta-objects

« dynamically getting and setting values of objects’ attributes

The OCI navigational calls are discussed in more detail later in this chapter.

The OCI also provides the ability to access type information stored in an Oracle
database. The OCIDescribeAny() function enables an application to access most
information relating to types stored in the database, including information about
methods, attributes, and type meta-data. OCIDescribeAny() is discussed in
Chapter 6, "Describing Schema Metadata".

Applications interacting with Oracle objects need a way to represent those objects in
a host language format. Oracle8i provides a utility called the Object Type Translator
(OTT), which can convert type definitions in the database to C struct declarations.
The declarations are stored in a header file that can be included in an OCI
application.

OCI Object-Relational Programming 10-3

Working with Objects in the OCI

When type definitions are represented in C, the types of attributes are mapped to
special C variable types that are new to Oracle8i. The OCI includes a set of datatype
mapping and manipulation functions that enable an application to manipulate these
datatypes, and thus manipulate the attributes of objects. These functions are
discussed in more detail in Chapter 11, "Object-Relational Datatypes”.

The terminology for objects can occasionally become confusing. In the remainder of
this chapter, the terms object and instance both refer to an object that is either stored
in the database or is present in the object cache.

Working with Objects in the OCI

Many of the programming principles that govern a relational OCI application (as
discussed in Chapter 2 through 6) are the same for an object-relational application.
An object-relational application uses the standard OCI calls to establish database
connections and process SQL statements. The difference is that the SQL statements
issued retrieve object references (or objects by value), which can then be
manipulated with the OCI’s object functions.

Basic Object Program Structure

The basic structure of an OCI application that uses objects is essentially the same as
that for a relational OCI application, as described in the section "OCI Program
Structure” on page 2-3. That paradigm is reproduced here, with extra information
covering basic object functionality.

1. Initialize the OCI programming environment.
Note: You must initialize the environment in object mode.

Your application will most likely also need to include C struct representations
of database objects in a header file. These structs can be created by the
programmer, or, more easily, they can be generated by the Object Type
Translator (OTT), as described in Chapter 14, "Using the Object Type
Translator".

2. Allocate necessary handles, and establish a connection to a server.

3. Prepare a SQL statement for execution. This is a local (client-side) step, which
may include binding placeholders and defining output variables. In an
object-relational application, this SQL statement should return a reference (REF)
to an object.

10-4 Oracle Call Interface Programmer’s Guide

Working with Objects in the OCI

Note: It is also possible to fetch an entire object, rather than just a reference
(REF). If you SELECT a referenceable object, rather than pinning it, you get that
object by value. Alternately, you can select a non-referenceable object, as
described in "Fetching Embedded Objects" on page 10-15

4. Associate the prepared statement with a database server, and execute the
statement.

5. Fetch returned results.

In an object-relational application, this step entails retrieving the REF, and then
pinning the object to which it refers. Once the object is pinned, your application
will do some or all of the following:

— Manipulate the attributes of the object and mark it as dirty
— Follow a REF to another object or series of objects

— Access type and attribute information

— Navigate a complex object retrieval graph

— Flush modified objects to the server

6. Commit the transaction. This step implicitly flushes all modified objects to the
server and commits the changes.

7. Free statements and handles not to be reused or reexecute prepared statements
again.

Al

of these steps are discussed in more detail in the remainder of this chapter.

See Also: For information about using the OCI to connect to a server, process
SQL statements, and allocate handles, see Chapter 2, "OCI Programming Basics"
and the description of the OCI relational functions in Chapter 15, "OCI
Relational Functions".

For information about the OTT, refer to the section "Representing Objects in C
Applications” on page 10-8, and Chapter 14, "Using the Object Type Translator".

Persistent Objects, Transient Objects, and Values

Instances of an Oracle type are categorized into persistent objects and transient objects
based on their lifetime. Instances of persistent objects can be further divided into
standalone objects and embedded objects depending on whether or not they are
referenceable by way of an object identifier.

Note: The terms object and instance are used interchangeably in this manual.

OCI Object-Relational Programming 10-5

Working with Objects in the OCI

See Also: For more information about objects, refer to the Oracle8i Concepts
manual.

Persistent Objects

A persistent object is an object which is stored in an Oracle database. It may be
fetched into the object cache and modified by an OCI application. The lifetime of a
persistent object can exceed that of the application which is accessing it. Once it is
created, it remains in the database until it is explicitly deleted. There are two types
of persistent objects:

« Standalone instances are stored in rows of a object table, and each one has a
unique object identifier. An OCI application can retrieve a REF to a standalone
instance, pin the object and navigate from the pinned object to other related
objects. Standalone object may also be referred to as referenceable objects.

It is also possible to SELECT a referenceable object, in which case you fetch the
object by value instead of fetching its REF.

« Embedded instances are not stored as rows in a object table. They are
embedded within other structures. Examples of embedded objects are objects
which are attributes of another object, or instances which exist in an object
column of a database table. Embedded instances do not have object identifiers,
and OCI applications cannot get REFs to embedded instances.

Embedded objects may also be referred to as non-referenceable objects or value
instances. You may sometimes see them referred to as values, which is not to be
confused with scalar data values. The context should make the meaning clear.

The following SQL examples demonstrate the difference between these two types of
persistent objects.

Example 1, Standalone Objects
CREATE TYPE person_tAS OBJECT
(name varchar2(30),
age number(3));
CREATE TABLE person_tab OF person t;

Objects which are stored in the object table person_tab are standalone instances.
They have object identifiers and are referenceable. They can be pinned in an OCI
application.

Example 2, Embedded Objects
CREATE TABLE department
(deptno number,

10-6 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application

deptname varchar2(30),
manager person_t);

Objects which are stored in the manager column of the department table are
embedded objects. They do not have object identifiers, and they are not
referenceable. This means they cannot be pinned in an OCI application, and they
also never need to be unpinned. They are always retrieved into the object cache by
value.

Transient Objects

A transient object is an instance of an object type. It may have an object identifier,
and it has a lifetime which is determined by the application when the instance is
created. The application can also delete a transient object at any time.

Transient objects are often created by the application using the OCIObjectNew()
function to store temporary values for computation. Transient objects cannot be
converted to persistent objects. Their role is fixed at the time they are instantiated.

See Also: See the section "Creating Objects" on page 10-32 for more information
about using OCIObjectNew().

Values
In the context of this manual, a value refers to either:

« ascalar value which is stored in a non-object column of a database table. An
OCl application can fetch values from a database by issuing SQL statements.

« an embedded or non-referenceable object.
The context should make it clear which meaning is intended.

Note: It is possible to SELECT a referenceable object into the object cache, rather
than pinning it, in which case you fetch the object by value instead of fetching its
REF.

Developing an OCI Object Application

This section discusses the steps involved in developing a basic OCI object
application. Each step discussed in the section "Basic Object Program Structure™ on
page 10-4 is described here in more detail.

OCI Object-Relational Programming 10-7

Developing an OCI Object Application

The following figure shows a simple program logic flow for how an application
might work with objects. For simplicity, some required steps are omitted. Each step
in this diagram is discussed in the following sections.

Figure 10-1 Basic Object Operational Flow

Initialize OCl in
Object Mode

v

Pin Object (Brings object into
client-side cache)
v

Operate on Object
in Cache

v

Mark Object
as Dirtied

v

Flush Changes
to Object

v

Refresh Object

Representing Objects in C Applications

Before an OCI application can work with object types, those types must exist in the

database. Typically, you create types with SQL DDL statements, such as CREATE
TYPE.

When the Oracle server processes the type definition DDL commands, it stores the
type definitions in the data dictionary as type descriptor objects (TDOS).

When your application retrieves instances of object types from the database, it
needs to have a client-side representation of the objects. In a C program, the
representation of an object type is a struct . In an OCI object application, you may
also include a NULL indicator structure corresponding to each object type structure.

Note: Application programmers who wish to utilize object representations
other than the default structs generated by the object cache should refer to "The
Object Cache and Memory Management" on page 13-2.

10-8 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application

Oracle8i provides a utility called the Object Type Translator (OTT), which generates
C struct representations of database object types for you. For example, if you have a
type in your database declared as

CREATE TYPE emp_tAS OBJECT
(name VARCHAR2(30),

empno NUMBER,

depno NUMBER,

hiredate DATE,

salary NUMBER);

the OTT produces the following C struct and corresponding NULL indicator struct:

structemp _t

{

OCISting *name;

OCINumber empno;
OCINumber deptno;
OCIDate hiredate;
OCINumber salary,
%
typedef structemp_temp t

structemp_t ind

{

OClind _atomic;
OClind name;
OClind empno;
OClind deptno;
OClind hiredate;
OClind salary;

2
typedef structemp_t indemp_t ind;

The variable types used in the struct declarations are special types employed by the
OCI object calls. A subset of OCI functions manipulate data of these types. These
functions are mentioned later in this chapter, and are discussed in more detail in
Chapter 11, "Object-Relational Datatypes".

These struct declarations are automatically written to a .h file whose name is
determined by the OTT input parameters. You can include this header file in the
code files for an application to provide access to objects.

See Also: For more information about the OTT, see Chapter 14, "Using the
Object Type Translator".

OCI Object-Relational Programming 10-9

Developing an OCI Object Application

For more information on the use of the NULL indicator struct, see the section
"Nullness"” on page 10-29.

Initializing Environment and Object Cache

If your OCI application will be accessing and manipulating objects, it is essential
that you specify a value of OCI_OBJECT for the mode parameter of the
OCllInitialize() call, which is the first OCI call in any OCI application. Specifying this
value for mode indicates to the OCI libraries that your application will be working
with objects. This notification has the following important effects:

« it establishes the object run-time environment
« it sets up the object cache

If the mode parameter of OCllInitialize() is not set to OCI_OBJECT, any attempt to use
an object-related function will result in an error.

The client-side object cache is allocated in the program's process space. This cache is
the memory for objects that have been retrieved from the server and are available to
your application.

Note: If you initialize the OCI environment in object mode, your application
allocates memory for the object cache, whether or not the application actually
uses object calls.

See Also: The object cache is mentioned throughout this chapter. For a detailed
explanation of the object cache, see Chapter 13, "Object Cache and Object
Navigation”.

Making Database Connections

Once the OCI environment has been properly initialized, the application can
connect to a server. This is accomplished through the standard OCI connect calls
described in "OCI Programming Steps" on page 2-18. When using these calls, no
additional considerations need to be made because this application will be
accessing objects.

There is only one object cache allocated per OCI environment. All objects retrieved
or created via different connections within the environment use the same physical
object cache.

10-10 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application

Retrieving an Object Reference from the Server

In order to work with objects, your application must first retrieve one or more
objects from the server. You accomplish this by issuing a SQL statement that returns
REFs to one or more objects.

Note: It is also possible for a SQL statement to fetch embedded objects, rather
than REFs, from a database. See the section "Fetching Embedded Objects" on
page 10-15 for more information.

In the following example, the application declares a text block that stores a SQL
statement designed to retrieve a REF to a single employee object from a object table
of employees (emp_tab) in the database, given a particular employee number
which is passed as an input variable (:emp_num) at run time:

text *selemp = (text *) "SELECT REF(e)
FROMemp_tabe
WHERE empno =:emp_num";

Your application should prepare and process this statement in the same way that it
would handle any relational SQL statement, as described in Chapter 2:

« Prepare an application request, using OCIStmtPrepare().

« Bind the host input variable using the appropriate bind call(s).

« Declare and prepare an output variable to receive the employee object
reference. Here you would use an employee object reference, like the one
declared in "Representing Objects in C Applications" on page 10-8:

OCIRef *empl._ref=(OCIRef*) O; / reference to an employee object */
When defining the output variable, set the dty datatype parameter for the define
call to SQLT_REF, the datatype constant for REF.

« Execute the statement with OCIStmtExecute().

« Fetch the resulting REF into empl_ref , using OCIStmtFetch().

At this point, you could use the object reference to access and manipulate an object
or objects from the database.

See Also: For general information about preparing and executing SQL
statements, see the section "OCI Programming Steps” on page 2-18. For specific
information about binding and defining REF variables, refer to the sections
"Advanced Bind Operations" on page 5-9 and "Advanced Define Operations"
on page 5-20.

OCI Object-Relational Programming 10-11

Developing an OCI Object Application

For a code example showing REF retrieval and pinning, see the demonstration
programs included with your Oracle installation. For additional information,
refer to Appendix B, "OCI Demonstration Programs™.

Pinning an Object
Upon completion of the fetch step, your application has a REF, or pointer, to an
object. The actual object is not currently available to work with. Before you can
manipulate an object, it must be pinned. Pinning an object loads the object instance
into the object cache, and enables you to access and modify the instance’s attributes
and follow references from that object to other objects, if necessary. Your application
also controls when modified objects are written back to the server.

Note: This section deals with a simple pin operation involving a single object at
a time. For information about retrieving multiple objects through complex
object retrieval, see the section "Complex Object Retrieval” on page 10-20.

An application pins an object by calling the function OCIObjectPin(). The
parameters for this function allow you to specify the pin option, pin duration, and lock
option for the object.

The following sample code illustrates a pin operation for the employee reference we
retrieved in the previous section:

if (OClObjectPin(env, err, &empl._ref, (OCIComplexObject *) O,
OCI_PIN_ANY,
OCI_DURATION_TRANS,
OCI_LOCK_X, &mpl)!'=0OCl_SUCCESS)
process_emor(ern);

In this example, process_error() represents an error-handling function. If the call to
OCIObjectPin() returns anything but OCI_SUCCESS, the error-handling function is
called. The parameters of the OCIObjectPin() function are as follows:

« env is the OCI environment handle.
« err isthe OCI error handle.
« empl_ref isthe reference that was retrieved through SQL.

« (OCIComplexObiject *) 0 indicates that this pin operation is not utilizing
complex object retrieval.

« OCI_PIN_ANY is the pin option. See "Pinning an Object Copy" on page 13-7 for
more information.

10-12 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application

« OCI_DURATION_TRANSs the pin duration. See "Object Duration"” on
page 13-14 for more information.

« OCI_LOCK Xis the lock option. See "Locking Objects For Update" on
page 13-12 for more information.

« emplis an out parameter, which returns a pointer to the pinned object.

Now that the object has been pinned, the OCI application can modify that object. In
this simple example, the object contains no references to other objects. For an
example of navigation from one instance to another, see the section "Simple Object
Navigation” on page 13-17.

Array Pin

Given an array of references, an OCI application can pin an array of objects by
calling OCIObjectArrayPin(). The references may point to objects of different types.

Manipulating Object Attributes

Once an object has been pinned, an OCI application can modify its attributes. The
OCI provides a set of function for working with datatypes of object type structs,
known as the OCI datatype mapping and manipulation functions.

Note: Changes made to objects pinned in the object cache affect only those
object copies (instances), and not the original object in the database. In order for
changes made by the application to reach the database, those changes must be
flushed/committed to the server. See "Marking Objects and Flushing Changes"
on page 10-14 for more information.

For example, assume that the employee object in the previous section was pinned so
that the employee’s salary could be increased. Assume also that at this company,
yearly salary increases are prorated for employees who have been at the company
for less than 180 days.

For this example we will need to access the employee’s hire date and check whether
it is more or less than 180 days prior to the current date. Based on that calculation,
the employee’s salary is increased by either $5000 (for more than 180 days) or $3000
(for less than 180 days). The sample code on the following page demonstrates this
process.

Note that the datatype mapping and manipulation functions work with a specific
set of datatypes; you must convert other types, like int, to the appropriate OCI
types before using them in calculations.

F* assume that sysdate has been fetched into sys_date, a string. */

OCI Object-Relational Programming 10-13

Developing an OCI Object Application

Fempland empl_ref are the same as in previous sections. */
Ferristhe OCl error handle. */
FNOTE: ermor handling code is not included in this example. */

sbdnum_days; /the number of days between today and hiredate */
OClDate curr_date; Fholds the current date for calculations */
intraise; /*holds the employee’s raise amount before calculations */
OCINumberraise_num; /*holds employee’s raise for calculations */
OCINumber new_sal; Fholds the employee’s new salary */

* convert date string to an OClDate */
OClIDateFromText(er, (text*) sys_date, (ub4) strlen(sys_date), (text *)
NULL, (ubl) O, (text*) NULL, (ub4) O, &cur_date);

F get number of days between hire date and today */
OClDateDaysBetween(er, &curr_date, &empl->hiredate, &num_days);

* calculate raise based on number of days since hiredate */
if num_days>180

raise = 5000
else

raise = 3000;

F convert raise value to an OCINumber */
OCINumberFromint(err, (dvoid *)&raise, (uword)sizeof(raise),
OCI_NUMBER_SIGNED, &raise_num);

¥ add raise amount to salary */
OCINumberAdd(err, &raise_num, &empl->salary, &new_sal);
OCINumberAssign(err, &new_sal, &empl->salary);

This example points out how values must be converted to OCI datatypes (e.g.,
OClDate, OCINumber) before being passed as parameters to the OCI datatype
mapping and manipulation functions.

See Also: For more information about the OCI datatypes and the datatype
mapping and manipulation functions, refer to Chapter 11, "Object-Relational
Datatypes".

Marking Objects and Flushing Changes

In the example in the previous section, an attribute of an object instance was
changed. At this point, however, that change exists only in the client-side object

10-14 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application

cache. The application must take specific steps to insure that the change is written in
the database.

The first step is to indicate that the object has been modified. This is done with the
OCIObjectMarkUpdate() function. This function marks the object as dirty (modified).

Objects that have had their dirty flag set must be flushed to the server for the
changes to be recorded in the database. You can do this in three ways:

« Flush a single dirty object by calling OCIObjectFlush().

« Flush the entire cache using OCICacheFlush(). In this case the OCI traverses the
dirty list maintained by the cache and flushes the dirty objects to the server.

« Call OCITransCommit() to commit a transaction. Doing so also traverses the
dirty list and flushes objects to the server.

The flush operations work only on persistent objects in the cache. Transient objects
are never flushed to the server.

Flushing an object to the server can activate triggers in the database. In fact, on
some occasions an application may want to explicitly flush objects just to fire
triggers on the server side.

See Also: For more information about OClTransCommit() see the section
"Transactions” on page 8-2.

For information about transient and persistent objects, see the section "Creating
Objects” on page 10-32.

For information about seeing and checking object meta-attributes, such as dirty,
see the section "Object Meta-Attributes" on page 10-17.

Fetching Embedded Objects

If your application needs to fetch an embedded object instance—an object stored in
a column of a regular table, rather than an object table—you cannot use the REF
retrieval mechanism described in the section "Retrieving an Object Reference from
the Server" on page 10-11. Embedded instances do not have object identifiers, so it is
not possible to get a REF to them. This means that they cannot serve as the basis for
object navigation. There are still many situations, however, in which an application
will want to fetch embedded instances.

For example, assume that an address type has been created.

CREATE TYPE address AS OBJECT
(streetl varchar2(50),

OCI Object-Relational Programming 10-15

Developing an OCI Object Application

street2 varchar2(50),

city varchar2(30),
state char(2),
Zip number(5))

You could then use that type as the datatype of a column in another table:

CREATE TABLE clients
(name varchar2(40),
addr address)

Your OCI application could then issue the following SQL statement:
SELECT addr FROM clients
WHERE name=BEAR BYTE DATA MANAGEMENT

This statement would return an embedded address object from the clients
table. The application could then use the values in the attributes of this object for
other processing.

Your application should prepare and process this statement in the same way that it
would handle any relational SQL statement, as described in Chapter 2:

« Prepare an application request, using OCIStmtPrepare().
« Bind the input variable using the appropriate bind call(s).

« Define an output variable to receive the address instance. You use a C struct
representation of the object type that was generated by the OTT, as described in
the section "Representing Objects in C Applications” on page 10-8:

addrl *address; /* variable of the address struct type */
When defining the output variable, set the dty datatype parameter for the define
call to SQLT_NTY, the datatype constant for named data types.

« Execute the statement with OCIStmtExecute()

« Fetch the resulting instance into addrl , using OCIStmtFetch().

Following this, you can access the attributes of the instance, as described in the
section "Manipulating Object Attributes" on page 10-13, or pass the instance as an
input parameter for another SQL statement.

Note: Changes made to an embedded instance can be made persistent only by
executing a SQL UPDATE statement.

10-16 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application

See Also: For more information about preparing and executing SQL statements,
see the section "OCI Programming Steps" on page 2-18.

Object Meta-Attributes

An object’s meta-attributes serve as flags which can provide information to an
application, or to the object cache, about the status of an object. For example, one of
the meta-attributes of an object indicates whether or not it has been flushed to the
server. These can help an application control the behavior of instances.

Persistent and transient object instances have different sets of meta-attributes. The
meta-attributes for persistent objects are further broken down into persistent
meta-attributes and transient meta-attributes. Transient meta-attributes exist only
when an instance is in memory. Persistent meta-attributes also apply to objects
stored in the server.

Persistent Object Meta-Attributes
The following table shows the meta-attributes for standalone persistent objects.

Persistent

Meta-Attributes Meaning

existent does the object exist?

nullness null information of the instance
locked has the object been locked?

dirty has the object been marked as dirtied?
Transient

Meta-Attributes

pinned is the object pinned?

allocation duration see "Object Duration” on page 13-14
pin duration see "Object Duration" on page 13-14

Note: Embedded persistent objects only have the nullness and allocation duration
attributes, which are transient.

The OCI provides the OCIObjectGetProperty() function, which allows an application
to check the status of a variety of attributes of an object. The syntax of the function
is:

sword OCIObjectGetProperty (OCIEnv *envh,

OCI Object-Relational Programming 10-17

Developing an OCI Object Application

OClErmor *emh,
CONSTdvod *obj,
OClIObjectPropld propertyld,
dvoid “property,

ub4 *size);

The propertyld and property parameters are used to retrieve information about any of
a variety of properties or attributes

The different property ids and the corresponding type of property argument are
given below. For more information, see OCIObjectGetProperty() on page 16-26.

OCI_OBJECTPROP_LIFETIME

This identifies whether the given object is a persistent object or a transient object or
a value instance. The property argument must be a pointer to a variable of type
OCIObijectLifetime. Possible values include:

. OCI_OBJECT PERSISTENT
. OCI_OBJECT TRANSIENT
. OCI_OBJECT_VALUE

OCI_OBJECTPROP_SCHEMA

This returns the schema name of the table in which the object exists. An error is
returned if the given object points to a transient instance or a value. If the input
buffer is not big enough to hold the schema name an error is returned, the error
message will communicate the required size. Upon success, the size of the returned
schema name in bytes is returned via size. The property argument must be an array
of type text and size should be set to size of array in bytes by the caller.

OCI_OBJECTPROP_TABLE

This returns the table name in which the object exists. An error is returned if the
given object points to a transient instance or a value. If the input buffer is not big
enough to hold the table name an error is returned, the error message will
communicate the required size. Upon success, the size of the returned table name in
bytes is returned via size. The property argument must be an array of type text and
size should be set to size of array in bytes by the caller.

OCI_OBJECTPROP_PIN_DURATION

This returns the pin duration of the object. An error is returned if the given object
points to a value instance. The property argument must be a pointer to a variable of
type OClIDuration. Valid values include;

. OCI_DURATION_SESSION

10-18 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application

« OCI_DURATION_TRANS
For more information about durations, see "Object Duration" on page 13-14.
OCI_OBJECTPROP_ALLOC_DURATION

This returns the allocation duration of the object. The property argument must be a
pointer to a variable of type OCIDuration. Valid values include:

« OCI_DURATION_SESSION
« OCI_DURATION_TRANS

For more information about durations, see "Object Duration" on page 13-14.

OCI_OBJECTPROP_LOCK

This returns the lock status of the object. The possible lock status is enumerated by
OClLockOpt. An error is returned if the given object points to a transient or value
instance. The property argument must be a pointer to a variable of type
OClLockOpt. Note, the lock status of an object can also be retrieved by calling
OCIObjectlsLocked().

OCI_OBJECTPROP_MARKSTATUS

This returns the dirty status and indicates whether the object is a new object,
updated object or deleted object. An error is returned if the given object points to a
transient or value instance. The property argument must be of type
OCIlObjectMarksStatus. Valid values include:

. OCI_OBJECT_NEW
« OCI_OBJECT_DELETED
« OCI_OBJECT_UPDATED
The following macros are available to test the object mark status:
. OCI_OBIECT_IS_UPDATED (flag)
. OCI_OBIECT_IS_DELETED (flag)
. OCI_OBIECT_IS_NEW (flag)
. OCI_OBIECT_IS_DIRTY (flag)

OCI_OBJECTPROP_VIEW

This identifies whether the specified object is a view object or not. If the property
value returned is TRUE, it indicates the object is a view otherwise it is not. An error
is returned if the given object points to a transient or value instance. The property
argument must be of type boolean.

OCI Object-Relational Programming 10-19

Developing an OCI Object Application

Additional Attribute Functions

The OCI also provides routines which allow an application to set or check some of
these attributes directly or indirectly, as shown in the following table:

Meta-Attribute Set With Check With

nullness <none> OCIObjectGetIind()
existence <none> OCIObjectExists()
locked OCIlObjectLock() OCIlObjectlsLocked()
dirty OCIlObjectMark() OCIObjectlsDirty()

Transient Object Meta-Attributes
Transient objects have no persistent attributes, and the following transient

attributes:

Transient

Meta-Attributes Meaning

existent does the object exist?

pinned is the object being accessed by the application?
dirty has the object been marked as dirtied?

nullness null information of the instance

allocation duration see "Object Duration" on page 13-14

pin duration see "Object Duration" on page 13-14

Complex Object Retrieval

In the examples earlier in this chapter, only a single instance at a time was fetched
or pinned. In these cases, each pin operation involved a separate server round trip
to retrieve the object.

Object-oriented applications often model their problems as a set of interrelated
objects that form graphs of objects. The applications process objects by starting at
some initial set of objects, and then using the references in these initial objects to
traverse the remaining objects. In a client-server setting, each of these traversals
could result in costly network roundtrips to fetch objects.

Application performance when dealing with objects may be increased through the
use of complex object retrieval (COR). This is a prefetching mechanism in which an

10-20 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application

application specifies a criteria for retrieving a set of linked objects in a single
operation.

Note: As described below, this does not mean that these prefetched objects are
all pinned. They are fetched into the object cache, so that subsequent pin calls
are local operations.

A complex object is a set of logically related objects consisting of a root object, and a
set of objects each of which is prefetched based on a given depth level. The root object
is explicitly fetched or pinned. The depth level is the shortest number of references
that need to be traversed from the root object to a given prefetched object in a
complex object.

An application specifies a complex object by describing its content and boundary.
The fetching of complex objects is constrained by an environment’s prefetch limit, the
amount of memory in the object cache that is available for prefetching objects.

Note: The use of COR does not add functionality; it only improves performance
so its use is optional.

As an example for this discussion, consider the following type declaration:

CREATE TYPE customer(...);
CREATE TYPE line_item(...);
CREATE TYPE line_item varray as VARRAY(100) of REF line_item;
CREATE TYPE purchase_order AS OBJECT
(po_number NUMBER,
cust REF customer,
related_orders REF purchase_order,
ine_items line_item_varray)

The purchase_order type contains a scalar value for po_number , a VARRAY of
line items, and two references. The first is to a customer type, and the second is to
apurchase_order type, indicating that this type may be implemented as a linked
list.

When fetching a complex object, an application must specify the following:
1. aREF to the desired root object.

2. one or more pairs of type and depth information to specify the boundaries of
the complex object. The type information indicates which REF attributes should
be followed for COR, and the depth level indicates how many levels deep those
links should be followed.

In the case of the purchase order object above, the application must specify the
following:

OCI Object-Relational Programming 10-21

Developing an OCI Object Application

1. the REF to the root purchase order object

2. one or more pairs of type and depth information for cust , related_orders ,
or line_items

An application fetching a purchase order will very likely need access to the
customer information for that order. Using simple navigation, this would require
two server accesses to retrieve the two objects. Through complex object retrieval,
the customer can be prefetched when the application pins the purchase order. In
this case, the complex object would consist of the purchase order object and the
customer object it references.

In the previous example, the application would specify the purchase_order REF,
and would indicate that the cust REF attribute should be followed to a depth level
of 1.

1. REF(PO object)
2. {(customer, 1)}

If the application wanted to prefetch the purchase_order object and all objects in
the object graph it contains, the application would specify that both the cust and
related_orders should be followed to the maximum depth level possible.

1. REF(PO object)
2. {(customer, UBAMAXVAL), (purchase_order, UBAMAXVAL)}

where UB4MAXVAlIspecifies that all objects of the specified type reachable through
references from the root object should be prefetched.

If an application wanted to fetch a PO and all the associated line items, it would
specify:

1. REF(PO object)

2. {(line_item, 1)}

The application can also choose to fetch all objects reachable from the root object by
way of REFs (transitive closure) to a certain depth. To do so, set the level parameter
to the depth desired. For the above two examples, the application could also specify
(PO object REF, UBAMAXVAL) and (PO object REF, 1) respectively to
prefetch required objects. Doing so results in many extraneous fetches but is quite
simple to specify, and requires only one server round trip.

10-22 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application

Prefetching Objects

After specifying and fetching a complex object, subsequent fetches of objects
contained in the complex object do not incur the cost of a network round trip,
because these objects have already been prefetched and are in the object cache. Keep
in mind that excessive prefetching of objects can lead to a flooding of the object
cache. This flooding, in turn, may force out other objects that the application had
already pinned leading to a performance degradation instead of performance
improvement.

Note: If there is insufficient memory in the cache to hold all prefetched objects,
some objects may not be prefetched. The application will then incur a network
round-trip when those objects are accessed later.

The SELECT privilege is needed for all prefetched objects. Objects in the complex
object for which the application does not have SELECT privilege will not be
prefetched.

Implementing Complex Object Retrieval in the OCI

Complex Object Retrieval (COR) allows an application to prefetch a complex object
while fetching the root object. The complex object specifications are passed to the
same OCIObjectPin() function used for simple objects.

An application specifies the parameters for complex object retrieval using a complex
object retrieval handle. This handle is of type OCIComplexObject and is allocated in
the same way as other OCI handles.

The complex object retrieval handle contains a list of complex object retrieval
descriptors. The descriptors are of type OCIComplexObjectComp, and are allocated
in the same way as other OCI descriptors.

Each COR descriptor contains a type REF and a depth level. The type REF specifies
a type of reference to be followed while constructing the complex object. The depth
level indicates how far a particular type of reference should be followed. Specify an
integer value, or the constant UB4AMAXVAIfor the maximum possible depth level.

The application can also specify the depth level in the COR handle without creating
COR descriptors for type and depth parameters. In this case, all REFs are followed
to the depth specified in the COR handle. The COR handle can also be used to
specify whether a collection attribute should be fetched separately on demand
(out-of-line) as opposed to the default case of fetching it along with the containing
object (inline).

The application uses OCIAttrSet() to set the attributes of a COR handle. The
attributes are:

OCI Object-Relational Programming 10-23

Developing an OCI Object Application

OCI_ATTR_COMPLEXOBJECT_LEVEL - the depth level

OCI_ATTR_COMPLEXOBJECT_COLL_OUTOFLINE - fetch collection attribute
in an object type out-of-line

The application allocates the COR descriptor using OCIDescriptorAlloc() and then
can set the following attributes:

OCI_ATTR_COMPLEXOBJECTCOMP_TYPE - the type REF

OCI_ATTR_COMPLEXOBJECTCOMP_LEVEL - the depth level for references
of the above type

Once these attributes are set, the application calls OCIParamSet() to put the
descriptor into a complex object retrieval handle. The handle has an
OCI_ATTR_PARAM_COUNittribute which specifies the number of descriptors on
the handle. This attribute can be read with OCIAttrGet().

Once the handle has been populated, it can be passed to the OCIObjectPin() call to
pin the root object and prefetch the remainder of the complex object.

The complex object retrieval handles and descriptors must be freed explicitly when
they are no longer needed.

See Also: For more information about handles and descriptors, see "Handles"
on page 2-6 and "Descriptors" on page 2-14.

COR Prefetching

The application specifies a complex object while fetching the root object. The
prefetched objects are obtained by doing a breadth-first traversal of the graph(s) of
objects rooted at a given root object(s). The traversal stops when all required objects
have been prefetched, or when the total size of all the prefetched objects exceeds the
prefetch limit.

COR interface

The interface for fetching complex objects is the OCI pin interface. The application
can pass an initialized COR handle to OCIObjectPin() (or an array of handles to
OCIObjectArrayPin()) to fetch the root object and the prefetched objects specified in
the COR handle.

sword OCIObjectPin (OCIEnv *env,
OCIErmor *ar,
OCIRef *object_ref,
OCIComplexObject *corhd,
OCIPInOpt pin_option,

10-24 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application

OClDuration pin_duration,
OClLockOpt lock_option,
dvoid *ohject);

sword OCIObjectArrayPin (OCIEnv *env,

Note the following points when using COR:

OClEnor *ar,
OCIRef *ref_amay,

ub4 array_size,
OCIComplexObject **cor_array,
ub4 cor_armay_size,

OCIPinOpt pin_option,
OClDuration pin_duration,
OClLockOpt lock,

dvoid *obj array,

ub4 *pos);

A null COR handle argument defaults to pinning just the root object.
A COR handle with type of the root object and a depth level of 0 fetches only

Note: In order to specify lock options for prefetched objects, the application can
visit all the objects in a complex object, create an array of REFs, and lock the

1.

2.
the root object and is thus equivalent to a null COR handle.

3. The lock options apply only to the root object.
entire complex object in another round trip using the array interface
(OCIlObjectArrayPin()).

Example of COR

The following example illustrates how an application program can be modified to
use complex object retrieval.

Consider an application that displays a purchase order and the line items associated
with it. The code in boldface accomplishes this. The rest of the code uses complex
object retrieval for prefetching and thus enhances the application’s performance.

OCIEnv *envhp;
OCIError *errhp;
OCIRef *liref;
OCIRef *poref;

OCllter *itr;

boolean eoc;

purchase_order *po = (purchase_order *)0;

OCI Object-Relational Programming 10-25

Developing an OCI Object Application

line_item *li = (line_item *)0;
OCISvcCtx *svchp;
OCIComplexObiject *corhp;
OCIComplexObjectComp *cordp;
OCIType *litdo;

ub4 level = 0;

F*get COR Handle */
OClHandleAlloc((dvoid *) envhp, (dvoid *¥) &corhp, (ub4)
OCI_HTYPE_COMPLEXOBJECT, 0, (dvoid **)0);

* get COR descriptor for type line_item*/
OClDescriptorAlloc((dvoid *) envhp, (dvoid **) &cordp, (Ub4)
OCI_DTYPE_COMPLEXOBJECTCOMP, O, (dvoid **) 0);

* gettype of line_item to setin COR descriptor */

OCITypeByName(envhp, errhp, svchp, (const text *) 0, (ub4) O,
consttext*) "LINE_ITEM", (ub4) strlen((const char *)
"LINE_ITEM"), OC|_DURATION_SESSION, &litclo);

F setline_item type in COR descriptor */

OCIAttrSet((dvoid *) cordp, (ub4) OCl_ DTYPE_COMPLEXOBJECTCOMP,
dvoid *) litdo, (ub4) sizeof(dvoid *), (ub4)
OCI_ATTR_COMPLEXOBJECTCOMP_TYPE, (OCIEmor *) ethp);

level=1;

* setdepth level for line_item_varray in COR descriptor */

OCIAttrSet((dvoid *) cordp, (ub4) OCI_DTYPE_COMPLEXOBJECTCOMP,
(dvoid *) &level, (ub4) sizeof(ub4), (ub4)
OCI_ATTR_COMPLEXOBJECTCOMP_TYPE_LEVEL, (OCIEmor *) erthp);

F* put COR descriptor in COR handle */
OCIParamSet(corhp, OCI_ HTYPE_COMPLEXOBJECT, &errhp, cordp,
OCI_DTYPE_COMPLEXOBJECTCOMP, 1);

/* pin the purchase order */

OCIObjectPin(envhp, errhp, poref, corhp, OCI_PIN_LATEST,
OCI_REFRESH_LOADED, OCI_DURATION_SESSION,
OCI_LOCK_NONE, (ub2) 1, (dvoid **)&po)

*free COR descriptor and COR handle */
OClIDescriptorFree((dvoid *) cordp, (ub4) OCI_DTYPE_COMPLEXOBJECTCOMP):
OCIHandleFree((dvoid *) corhp, (ub4) OCI_HTYPE_COMPLEXOBJECT);

[* iterate and print line items for this purchase order */

10-26 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application

OCllterCreate(envhp, errhp, po.line_items, &itr);

[* get first line item */

OCliterNext(envhp, errhp, itr, &liref, (dvoid **)0, &eoc);

while (leoc) /* not end of collection */

{

F* pin line item */

OCIObjectPin(envhp, errhp, liref, (dvoid *)0, OCI_PIN_RECENT,
OCI_REFRESH_LOADED, OCl_ DURATION_SESSION,
OCI_LOCK_NONE, (ub2) 1, (dvoid *)&li);

display_line_item(li);

/* get next line item */
OCliterNext(envhp, errhp, itr, &liref, (dvoid **)0, &eaoc);

}

OCl vs. SQL Access to Objects

If an application needs to manipulate a graph of objects (inter-related via object
references) then it is more effective to use the OCI interface rather than the SQL
interface for accessing objects. Retrieving a graph of objects using the SQL interface
may require executing multiple SELECT statements which would mean multiple
network roundtrips. Using the complex object retrieval capability provided by the
OCIl, the application can retrieve the graph of objects in one OCIObjectPin() call.

Consider the update case where the application retrieves a graph of objects and
modifies it based upon user interaction and then wishes to make the modifications
persistent in the database. Using the SQL interface, the application would have to
execute multiple UPDATE statements to update the graph of objects. If the
modifications involved creation of new objects and deletion of existing objects then
corresponding INSERT and DELETE statements would also need to be executed. In
addition, the application would have to do more bookkeeping, such as keeping
track of table names, because this information is required for executing the
INSERT/UPDATE/DELETE statements.

Using the OCI’s OCICacheFlush() function, the application can flush all
modifications (insertion, deletion and update of objects) in a single operation. The
OCI does all the bookkeeping, thereby requiring less coding on the part of the
application. So for manipulating graph of objects the OCI is not only efficient but
also provides an easy to use interface.

Consider a different case in which the application needs to fetch an object given its
REF. In the OCI this is achieved by pinning the object via the OCIObjectPin() call. In

OCI Object-Relational Programming 10-27

Developing an OCI Object Application

the SQL interface this can be achieved by dereferencing the REF in a SELECT
statement (e.g. SELECT DEREF(ref) from tbl;). Consider situations where the
same REF (i.e. reference to the same object) is being dereferenced multiple times in a
transaction. By calling OCIObjectPin() with the OCI_PIN_RECENT option, the
object will be fetched from the server only once for the transaction and repeated
pins on the same REF result in returning a pointer to the already-pinned object in
the cache. In the case of the SQL interface, each execution of the SELECT DEREF...
statement would result in fetching the object from the server and hence would
result in multiple roundtrips to the server and multiple copies of the same object.

Finally, consider the case in which the application needs to fetch a non-referenceable
object. For example,

CREATE TABLE department

(
deptno number,

deptname varchar2(30),
manager employee_t
)

employee_t instances stored in the manager column are non-referenceable. Only
the SQL interface can be used to fetch manager column instances. But if
employee t has any REF attributes, OCI calls can then be used to navigate the
REF.

Pin Count and Unpinning

Each object in the object cache has a pin count associated with it. The pin count
essentially indicates the number of code modules that are concurrently accessing
the object. The pin count is set to 1 when an object is pinned into the cache for the
first time. Objects prefetched with complex object retrieval enter the object cache
with a pin count of zero.

It is possible to pin an already-pinned object. Doing so increases the pin count by
one. When a process finishes using an object, it should unpin it, using
OCIObjectUnpin(). This call decrements the pin count by one.

When the pin count of an object reaches zero, that object is eligible to be aged out of
the cache if necessary, freeing up the memory space occupied by the object.

The pin count of an object can be set to zero explicitly by calling
OCIObjectPinCountReset().

An application can unpin all objects in the cache related to a specific connection, by
calling OCICacheUnpin().

10-28 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application

Nullness

See Also: See the section "Freeing an Object Copy" on page 13-9 for more
information about the conditions under which objects with zero pin count are
removed from the cache.

For information about explicitly flushing an object or the entire cache, see the
section "Marking Objects and Flushing Changes" on page 10-14.

See the section "Freeing an Object Copy" on page 13-9 for more information
about objects being aged out of the cache.

If a column in a row of a database table has no value, then that column is said to be
NULL, or to contain a NULL. Two different types of NULLSs can apply to objects:

« Any attribute of an object can have a NULL value. This indicates that the value
of that attribute of the object is not known.

« An object instance may be atomically NULL. This means that the value of the
entire object is unknown.

Atomic nullness is not the same thing as nonexistence. An atomically NULL
instance still exists, its value is just not known. It may be thought of as an existing
object with no data.

When working with objects in the OCI, an application can define a NULL indicator
structure for each object type used by the application. In most cases, doing so simply
requires including the NULL indicator structure generated by the OTT along with
the struct declaration. When the OTT output header file is included, the NULL
indicator struct becomes available to your application.

For each type, the NULL indicator structure includes an atomic NULL indicator
(whose type is OCIlInd), and a NULL indicator for each attribute of the instance. If
the type has an object attribute, the NULL indicator structure includes that
attribute’s NULL indicator structure. The following example shows the C
representations of types with their corresponding NULL indicator structures.

struct address

{

OCINumber no;
OCISting *street;
OCISting *state;
OCISting *zip;

3
typedef struct address address;

OCI Object-Relational Programming 10-29

Developing an OCI Object Application

struct address_ind
{

OClind _atomic;
OClind no;
OClind street;
OClind state;
OClind Zp;

3
typedef struct address _ind address _ind;

struct person

{
OCISting *fname;
OCIsting *name;
OCINumber age;
OCIDate hirthday;
OClArray *dependentsAge;
OCITable *prevAddr;
OCIRaw *commentl;
OCILobLocator *comment2;
address addr;
OCIRef *spouse;

k

typedef struct person person;

struct person_ind

{

OClind _atomic;

OClnd fname;

OClind Iname;

OClind age;

OClind birthday;

OClind dependentsAge;
OClind prevAddr;
OClnd commentl;
OClind comment2;
address ind addr;

OClind spouse;

i
typedef struct person_ind person_ind;

Note: The dependentsAge field of person_ind indicates whether the entire

varray (dependentsAge field of person) is atomically NULL or not. Null
information of individual elements of dependentsAge can be retrieved

10-30 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application

through the elemind parameter of a call to OCICollGetElem(). Similarly, the
prevAddr field of person_ind indicates whether the entire nested table
(prevAddr field of person) is atomically NULL or not. Null information of
individual elements of prevAddr can be retrieved through the elemind
parameter of a call to OCICollGetElem().

For an object type instance, the first field of the NULL-indicator structure is the
atomic NULL indicator, and the remaining fields are the attribute NULL indicators
whose layout resembles the layout of the object type instance’s attributes.

Checking the value of the atomic NULL indicator allows an application to test
whether an instance is atomically NULL. Checking any of the others allows an
application to test the NULL status of that attribute, as in the following code
sample:

person_ind *my_person_ind
if (my_person_ind->_atomic=0OCI_IND_NULL)
{

Finstance is atomically NULL */

}
if (my_person_ind ->fname =OCI_IND_NULL)

f*fname attribute is NULL ¥/

}
In the above example, the value of the atomic NULL indicator, or one of the

attribute NULL indicators, is compared to the predefined value OCI_IND_NULL to
test its nullness. The following predefined values are available for such a
comparison:

« OCIL_IND_NOTNULL, indicating that the value is not NULL
« OCIL_IND_NULL, indicating that the value is NULL

« OCI_IND_BADNULL, indicates that an enclosing object (or parent object) is
NULL. This is used by PL/SQL, and may also be referred to as an
INVALID_NULL. For example if a type instance is NULL, then its attributes are
INVALID _NULLs.

Use the OCIObjectGetInd() on page 16-37 function to allocate storage for and
retrieve the NULL indicator structure of an object.

See Also: For more information about OTT-generated NULL indicator structs,
refer to Chapter 14, "Using the Object Type Translator".

OCI Object-Relational Programming 10-31

Developing an OCI Object Application

Creating Objects

An OCI application can create any object using OCIObjectNew(). To create a
persistent object, the application must specify the object table where the new object
will reside. This value can be retrieved by calling OClObjectPinTable(), and it is
passed in the table parameter. To create a transient object, the application needs to
pass only the type descriptor object (retrieved by calling OCIDescribeAny()) for the
type of object being created.

OCIObjectNew() can also be used to create instances of scalars (e.g., REF, LOB,
string, raw, number, and date) and collections (e.g., varray and nested table) by
passing the appropriate value for the typecode parameter.

Attribute Values of New Objects

By default, all attributes of a newly created objects have NULL values. After
initializing attribute data, the user must change the corresponding NULL status of
each attribute to non-NULL.

It is possible to have attributes set to non-NULL values when an object is created.
This is accomplished by setting the OCI_OBJECT_NEWNOTNULL attribute of the
environment handle to TRUE using OCIAttrSet(). This mode can later be turned off
by setting the attribute to FALSE.

If OCI_OBJECT_NEWNOTNULL is set to TRUE, then OCIObjectNew() creates a
non-NULL object. The attributes of the object have the default values described in
the following table, and the corresponding NULL indicators are set to not-NULL.

Table 10-1 Attribute Values for New Objects

Attribute Type Default Value

REF If an object has a REF attribute, the user must set it to a valid
REF before flushing the object or an error is returned.

DATE The earliest possible date Oracle allows, which is 01-JAN-4712
BCE (equivalent to Julian day 1)

FLOAT 0.

NUMBER 0

DECIMAL 0.

RAW Raw data with length set to 0. Note: the default value for a

RAW attribute is the same as that for a NULL RAW attribute.

VARCHAR?2 OCIString with 0 length and first char set to NULL. The default
value is the same as that of a null string attribute.

10-32 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application

Table 10-1 Attribute Values for New Objects (Cont.)

Attribute Type Default Value

CHAR OCIString with 0 length and first char set to NULL. The default
value is the same as that of a null string attribute.

VARCHAR OCIString with 0 length and first char set to NULL. The default
value is the same as that of a null string attribute.

VARRAY collection with 0 elements

NESTED TABLE table with 0 elements

CLOB empty CLOB

BLOB empty BLOB

BFILE The user must initialize the BFILE to a valid value by setting

the directory alias and filename.

Freeing and Copying Objects

Use OCIlObjectFree() to free memory allocated through OCIObjectNew(). Freeing an
object deallocates all the memory allocated for the object, including the associated
NULL indicator structure. This procedure deletes a transient, but not a persistent,
object before its lifetime expires. An application should use OCIObjectMarkDelete()
to delete a persistent object.

An application can copy one instance to another instance of the same type using
OCIObjectCopy().

See Also: See the descriptions of these functions in Chapter 16, "OCI
Navigational and Type Functions" for more information.

Object Reference and Type Reference

The object extensions to the OCI provide the application with the flexibility to
access the contents of objects using their pointers or their references. The OCI
provides the function OCIObjectGetObjectRef() to return a reference to an object
given the object’s pointer.

For applications that also want to access the type information of objects, the OCI
provides the function OCIObjectGetProperty() to return a reference to an object’s type
descriptor object (TDO), given a pointer to the object.

OCI Object-Relational Programming 10-33

Developing an OCI Object Application

Creating Objects Based on Object Views or User-defined OIDs

Applications can use the OCIObjectNew() call to create objects which are based on
object views, or on tables with user-defined OIDs. If OCIObjectNew() receives a
handle to an object view or a table with a user-defined OID, then the reference it
returns is a pseudo-reference. This pseudo-reference cannot be saved into any other
object, but it can be used to fill in the object’s attributes so that a primary-key-based
reference can be obtained with OCIObjectGetObjectRef().

This process involves the following steps:
1. Pin the object view or object table on which the new object will be based.

2. Create a new object using OCIObjectNew(), passing in the handle to the
table/view obtained by the pin operation in step 1.

3. Fill in the necessary values for the object. These include those attributes which
make up the user-defined OID for the object table or object view.

4. Use OCIObjectGetObjectRef() to obtain the primary-key-based reference to the
object, if necessary. If desired, return to step 2 to create more objects.

5. Flush the newly created object(s) to the server.

The following sample code shows how this process might be implemented to create
a new object for the emp_view object view in the scott schema:

void object_view_new ()

{

dvoid *able;

OCIRef *pkref;

dvoid *object;

* Set up the service context, error handle etc.. */

F Pin the object view */

OCIObjectPinTable(envp,errorp,svetx, "scott’, strlen('scott’), "emp_view”,
stien('emp_view),(dvoid *) 0, OCI_DURATION_SESSION, (dvoid **) &table);

F Create a new object instance *

OCIObjectNew(envp, errorp, svctx, OCl_TYPECODE OBJECT,(OCIType *)0, table,

OCI_DURATION_SESSION,FALSE &object);

F* Populate the attributes of "object" */
OCIlObjectSetAttr(...);

* Allocate an object reference */

10-34 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application

OCIObjectNew(envp, errorp, svetx, OCI TYPECODE_REF, (OCIType *)0, (dvoid *)0,
OC!|_DURATION_SESSION, TRUE &pkref);

F* Get the reference using OCIObjectGetObjectRef */
OCIObjectGetObjectRef(envp,errorp,object pkref);

F Flush new object(s) to server */
}*end function */

Error Handling in Object Applications

Error handling in OCI applications is the same, whether or not the application uses
objects. For more information about function return codes and error messages, see
the section "Error Handling" on page 2-27.

OCI Object-Relational Programming 10-35

Developing an OCI Object Application

10-36 Oracle Call Interface Programmer’s Guide

11

Object-Relational Datatypes

The OCI datatype mapping and manipulation functions provide OCI programs
with the ability to manipulate instances of Oracle predefined datatypesina C
application. This chapter discusses those functions, and also includes information
about how object types are stored in the database. For information about bind and
define operations using the Oracle C datatypes, refer to Chapter 12, "Binding and
Defining in Object Applications".

The following topics are covered in this chapter:

Overview

Mapping Oracle Datatypes to C

Manipulating C Datatypes With OCI

Date (OClDate)

Number (OCINumber)

Fixed or Variable-Length String (OCIString)

Raw (OCIRaw)

Collections (OCITable, OClArray, OCIColl, OCllter)
REF (OCIRef)

Object Type Information Storage and Access

Object-Relational Datatypes 11-1

Overview

Overview

The OCI datatype mapping and manipulation functions provide the ability to
manipulate instances of predefined Oracle C datatypes. These datatypes are used to
represent the attributes of user-defined datatypes, including object types in Oracle.

Each group of functions within the OCI is distinguished by a particular naming
convention. The datatype mapping and manipulation functions, for example, can be
easily recognized because the function names start with the prefix OCI, followed by
the name of a datatype, as in OCIDateFromText() and OCIRawsSize(). As will be
explained later, the names can be further broken down into function groups that
operate on a particular type of data.

Additionally, the predefined Oracle C types on which these functions operate are
also distinguished by names which begin with the prefix OCI, as in OCIDate or
OCIstring.

The datatype mapping and manipulation functions are used when an application
needs to manipulate, bind, or define attributes of objects that are stored in an Oracle
database, or which have been retrieved by a SQL query. Retrieved objects are stored
in the client-side object cache, as was described in Chapter 13, "Object Cache and
Object Navigation".

This chapter describes the purpose and structure of each of the datatypes that can
be manipulated by the OCI datatype mapping and manipulation functions. It also
summarizes the different function groups, and gives lists of available functions and
their purposes.

This chapter also provides information about how to use these datatypes in bind
and define operations within an OCI application.

These functions are valid only when an OCI application is running in object mode.
For information about initializing the OCI in object mode, and creating an OCI
application that accesses and manipulates objects, refer to the section "Initializing
Environment and Object Cache" on page 10-10.

For detailed information about object types, attributes, and collection datatypes,
refer to Oracle8i Concepts.

Mapping Oracle Datatypes to C

Oracle provides a rich set of predefined datatypes with which you can create tables
and specify user-defined datatypes (including object types). Object types extend the
functionality of Oracle by allowing you to create datatypes that precisely model the

11-2 Oracle Call Interface Programmer’s Guide

Mapping Oracle Datatypes to C

types of data with which they work. This can provide increased efficiency and
ease-of-use for programmers who are accessing the data.

Database tables and object types are based upon the datatypes supplied by Oracle.
These tables and types are created with SQL statements and stored using a specific
set of Oracle internal datatypes, like VARCHAR2 or NUMBER. For example, the
following SQL statements create a user-defined address datatype and an object
table to store instances of that type:

CREATE TYPE address AS OBJECT
(streetl varchar2(50),

street?2 varchar2(50),

cty varchar2(30),

state char(2),

Zp number());

CREATE TABLE address_table OF address;

The new address type could also be used to create a regular table with an object
column:

CREATE TABLE employees
(name varchar2(30),
bithday date,
home_addr address);

An OCI application can manipulate information in the name and birthday

columns of the employees table using straightforward bind and define operations
in association with SQL statements. Accessing information stored as attributes of
objects requires some extra steps.

The OCI application first needs a way to represent the objects in a C-language
format. This is accomplished by using the Object Type Translator (OTT) to generate
C struct representations of user-defined types. The elements of these structs have
datatypes that represent C language mappings of Oracle datatypes. The following
table lists the available Oracle types you can use as object attribute types and their C
mappings:

Table 11-1 C Language Mappings of Object Type Attributes

Attribute Type C Mapping
BFILE OCIBFileLocator*
BLOB OClLobLocator * or

OCIBlobLocator *

Object-Relational Datatypes 11-3

Mapping Oracle Datatypes to C

Table 11-1 C Language Mappings of Object Type Attributes (Cont.)

Attribute Type C Mapping
CHAR(N), CHARACTER(N) OCIString *
CLOB OClLobLocator * or
OCIClobLocator *
DATE OClIDate
DEC, DEC(N), DEC(N,N) OCINumber
DECIMAL, DECIMAL(N), DECIMAL(N,N) OCINumber
FLOAT, FLOAT(N), DOUBLE PRECISION OCINumber
INT, INTEGER, SMALLINT OCINumber
Nested Table OClTable *
NUMBER, NUMBER(N), NUMBER(N,N) OCINumber
NUMERIC, NUMERIC(N), NUMERIC(N,N) OCINumber
RAW(N) OCIRaw *
REAL OCINumber
REF OCIRef *
VARCHAR(N) OCIString *
VARCHAR2(N) OCIString *
VARRAY OCIArray *

An additional C type, OCIlInd, is used to represent null indicator information
corresponding to attributes of object types.

See Also: For more information and examples regarding the use of the OTT,
refer to Chapter 14, "Using the Object Type Translator".

OCI Type Mapping Methodology

Oracle followed a distinct design philosophy when specifying the mappings of
Oracle predefined types. The current system has the following benefits and
advantages:

« The actual representation of datatypes like OCINumber is opaque to client
applications, and the datatypes are manipulated with a set of predefined

11-4 Oracle Call Interface Programmer’s Guide

Manipulating C Datatypes With OCI

functions. This allows for the internal representation to change to accommodate
future enhancements without breaking user code.

« The implementation is consistent with object-oriented paradigms in which class
implementation is hidden and only the required operations are exposed.

« This implementation can have advantages for programmers. Consider a C
program that wants to manipulate Oracle number variables without losing the
accuracy provided by Oracle numbers. To do this in Oracle release 7, you would
have had to issue a "SELECT...FROM DUAL" statement. In Oracle8i, this is
accomplished by invoking the OCINumber*() functions.

Manipulating C Datatypes With OCI

In an OCI application, the manipulation of data may be as simple as adding
together two integer variables and storing the result in a third variable:

int int_1,int 2, sum;

P some initialization occurs */

sum=int 1+int 2;

The C language provides a set of predefined operations on simple types like
integer. However, the C datatypes listed in Table 11-1, "C Language Mappings of
Object Type Attributes" are not simple C primitives. Types like OCIString and
OCINumber are actually structs with a specific Oracle-defined internal structure. It

is not possible to simply add together two OCINumbers and store the value in the
third.

The following is not valid:

OCINumber num_1, num 2, sum;

P some initialization occurs */

sum=num_1+num 2; *NOT AVALID OPERATION ¥/

The OCI datatype mapping and manipulation functions are provided to enable you
to perform operations on these new datatypes. For example, the above addition of
OCINumbers could be accomplished as follows, using the OCINumberAdd()
function:

OCINumber num_1, num_2, sum;

Object-Relational Datatypes 11-5

Manipulating C Datatypes With OCI

¥ some inttialization occurs */
OCINumberAdd(errhp, &um_1, &um_2, &sum): * erthp is error handle */

The OCI provides functions to operate on each of the new datatypes. The names of
the functions provide information about the datatype on which they operate. The
first three letters, OCI, indicate that the function is part of the OCI. The next part of
the name indicates the datatype on which the function operates. The following table
shows the various function prefixes, along with example function names and the
datatype on which those functions operate:

Function Prefix Example Operates On
OCICaoll OCICollGetElem() OCIColl,
OCllter,
OClITable,
OCIArray
OClIDate OClDateDaysBetween() OClDate
OCllter OCllterlnit() OCllter
OCINumber OCINumberAdd() OCINumber
OCIRaw OCIRawResize() OCIRaw *
OCIRef OCIRefAssign() OCIRef *
OCIString OCIStringSize() OCIString *
OClTable OClTableLast() OClTable *

The structure of each of the datatypes is described later in this chapter, along with a
list of the functions that manipulate that type.

Precision of Oracle Number Operations

Oracle numbers have a precision of 38 decimal digits. All Oracle number operations
are accurate to the full precision, with the following exceptions:

« Inverse trigonometric functions are accurate to 28 decimal digits.

« Other transcendental functions, including trigonometric functions, are accurate
to approximately 37 decimal digits.

« Conversions to and from native floating-point types have the precision of the
relevant floating-point type, not to exceed 38 decimal digits.

11-6 Oracle Call Interface Programmer’s Guide

Date (OClIDate)

Date (OClIDate)

The Oracle date format is mapped in C by the OCIDate type, which is an opaque C
struct. Elements of the struct represent the year, month, day, hour, minute, and
second of the date. The specific elements can be set and retrieved using the
appropriate OCI functions.

The OClDate datatype can be bound or defined directly using the external
typecode SQLT_ODT in the bind or define call.

The OCI date manipulation functions are listed in the following tables, which are
organized according to functionality. Unless otherwise specified, the term date in
these tables refers to a value of type OClIDate.

See Also: The prototypes and descriptions for all the functions are provided in
Chapter 17, "OCI Datatype Mapping and Manipulation Functions".

Date Conversion Functions
The following functions perform date conversion.

Function Purpose

OClIDateToText() convert date to string

OClIDateFromText() convert text string to date

OClIDateZoneToZone() convert date from one time zone to
another

Date Assignment and Retrieval Functions
The following functions retrieve and assign date elements.

Function Purpose

OClDateAssign() OClDate assignment
OClIDateGetDate() get the date portion of an OCIDate
OClDateSetDate() set the date portion of an OClDate
OClIDateGetTime() get the time portion of an OClDate
OClIDateSetTime() set the time portion of an OCIDate

Object-Relational Datatypes 11-7

Date (OClIDate)

Date Arithmetic and Comparison Functions
The following functions perform date arithmetic and comparison.

Function Purpose

OCIDateAddDays() add days

OCIDateAddMonths() add months

OCIDateCompare() compare dates

OClIDateDaysBetween() galculate the number of days between two
ates

Date Information Accessor Functions
The following functions access date information.

Function Purpose

OClDatelLastDay() the last day of the month
OClIDateNextDay() the first named day after a given date
OClDateSysDate() the system date

Date Validity Checking Functions

The following function checks date validity.

Function Purpose

OClIDateCheck() check whether a given date is valid

Date Example

The following code provides examples of how to manipulate an attribute of type
OClDate using OCI calls.

#define FMT "DAY, MONTH DD, YYYY"
#define LANG "American”

struct person

{

OClIDate start_date;

3

typedef struct person person;

11-8 Oracle Call Interface Programmer’s Guide

Date (OClIDate)

OCIError *err;

person *tim;

sword status; P emor status */

uword invalid;

OClIDate last_day, next_day;

text buf[100], last_day_buf[100], next_day_buf{100];
ub4 buflen = sizeof(buf);

* For this example, assume the OCIEnv and OCIEror have been

*initialized as described in Chapter 2 .%

* Pin im person object in the object cache. See Chapter 13 for
*information about pinning. For this example, assume that

*tim is pointing to the pinned object. */

* setthe start date of tim */

OClIDateSetTime(&tim->start_date,8,0,0);

OClDateSetDate(&tim->start_date,1990,10,5)

check if the date is valid */
if (OCIDateCheck(er, &im->start_date, &invalid) '= OCl_SUCCESS)
F error handling code */

if (invalid)
* error handling code */

F* getthe last day of start_date’s month */
if (OClDateLastDay(err, &im->start_date, &last day) I= OCI_SUCCESS)
* error handling code */

* get date of next named day */

if (OClIDateNextDay(err, &im->start_date, "Wednesday”', stlen("Wednesday'),

&next_day) '=0OCl_SUCCESS)

F error handling code */

* convert dates to strings and print the information out */

Ffirst convert the date itself*/

buflen = sizeof(buf);

if (OClDateToText(err, &tim->start_date, FMT, sizeof(FMT)-1, LANG,
sizeof(LANG)-1, &buflen, buf) = OCI_SUCCESS)

F error handling code */

F now the last day of the month */

buflen = sizeof(last_day_buf);

if OClIDateToText(err, &last_day, FMT, sizeof(FMT)-1, LANG, sizeof(LANG)-1,
&buflen, last_day_buf) I=OCI_SUCCESS)

F error handling code */

Object-Relational Datatypes 11-9

Number (OCINumber)

F now the first Wednesday after this date */

buflen = sizeof(next_day_out);

if (OClIDateToText(er, &next_day, FMT, sizeof(FMT)-1, LANG,
sizeof(LANG)-1, &vuflen, next_day_buf) = OCl_SUCCESS)

* error handling code */

F* print out the info */

printf("For: %es\n”, buf);

printf(The last day of the month is: %s\n”, last_day_buf);
printf(The next Wednesday is: %s\n", next_day_buf);

The output will be:

For: Monday, May 13, 1996
The last day of the month is: Friday, May 31
The next Wednesday is: Wednesday, May 15

Number (OCINumber)

The OCINumber datatype is an opaque structure used to represent Oracle numeric
datatypes (NUMBER, FLOAT, DECIMAL, and so forth). You can bind or define this
type using the external typecode SQLT_VNU in the bind or define call.

The OCINumber manipulation functions are listed in the following tables, which
are organized according to functionality. Unless otherwise specified, the term
number in these tables refers to a value of type OCINumber.

See Also: The prototypes and descriptions for all the functions are provided in
Chapter 17, "OCI Datatype Mapping and Manipulation Functions".

Number Arithmetic Functions

The following functions perform arithmetic operations.

Function Purpose

OCINumberAbs() get the absolute value of a number
OCINumberAdd() add two numbers together
OCINumbercCeil() get the ceiling value of a number
OCINumberDec() decrement a number
OCINumberDiv() divide one number by another

11-10 Oracle Call Interface Programmer’s Guide

Number (OCINumber)

Function

Purpose

OCINumberFloor()
OCINumberinc()
OCINumberMod()
OCINumberMul()
OCINumberNeg()
OCINumberRound()
OCINumbershift()
OCINumberSign()
OCINumberSqgrt()
OCINumberSub()
OCINumberTrunc()
OCINumberSign()

get the floor value of a number

increment a number

get the modulus from the division of two numbers
multiply two numbers together

negate a number

round a number to a specified decimal place

shifts a number a certain number of decimal places
get the sign of a number

get the square root of a number

subtract one number from another

truncate a number to a specified decimal place

returns the sign of a given number

Number Conversion Functions

The following functions perform conversions between numbers and reals, integers,

and strings.

Function

Purpose

OCINumberTolnt()
OCINumberFromint()
OCINumberToReal()
OCINumberFromReal()
OCINumberToText()
OCINumberFromText()

convert number to integer
convert integer to number
convert number to real
convert real to number
convert number to string

convert string to number

Object-Relational Datatypes 11-11

Number (OCINumber)

Exponential and Logarithmic Functions
The following functions perform exponential and logarithmic operations.

Function Purpose

OCINumberPower() take a number base to a given number exponent
OCINumberExp() take the exponent with base e
OCINumberLog() take the logarithm of a given base
OCINumberLn() take the natural logarithm (base €)
OCINumberintPower() take a number base to a given integer power

Trigonometric Functions
The following functions perform trigonometric operations on numbers.

Function Purpose
OCINumberArcCos() calculate arc cosine
OCINumberArcSin() calculate arc sine

OCINumberArcTan() / OCINumberArcTan2() calculate arc tangent / of two numbers

OCINumberCos() calculate cosine
OCINumberHypCos() calculate cosine hyperbolic
OCINumbersSin() calculate sine
OCINumberHypSin() calculate sine hyperbolic
OCINumberTan() calculate tangent
OCINumberHypTan() calculate tangent hyperbolic

Number Assignment, Comparison, and Evaluation Functions
The following functions perform assign and compare operations on numbers.

Function Purpose

OCINumberAssign() assign one number to another
OCINumberCmp() compare two numbers
OCINumberlsint() test if an integer

11-12 Oracle Call Interface Programmer’s Guide

Number (OCINumber)

Function Purpose
OCINumberlsZero() test if equal to zero
OCINumberPrec() sets the precision
OCINumberSetPi() set a number to pi
OCINumberSetZero() initialize number to zero

Number Example
The following example shows how to manipulate an attribute of type OCINumber.

struct person
{

OCINumber sal

J;

typedef struct person person;
OClEnor *err;

person* steve;

|person* scott,

person* jason;

OCINumber *stevesal;
OCINumber *scottsal;
OCINumber *debsal,

sword status;

int inum;

double dnum;

OCINumber omum;

char bufferf21];

ub4 buflen;

sword result;

F For this example, assume OCIEnv and OCIEror are initialized. */

F For this example, assume that steve, scott and jason are pointing to
person objects which have been pinned in the object cache. */

stevesal = &steve->sal;

scottsal = &scott->sal;

debsal = &jason->sal;

Finttialize steve’s salary to be $12,000 %/

OCINumberinit(er, stevesal);

inum = 12000;

status = OCINumberFromint(err, &num, sizeof(inum), OCI_NUMBER_SIGNED,
stevesal);

Object-Relational Datatypes 11-13

Number (OCINumber)

if (status '= OCl_SUCCESS) /*handle error from OCINumberFromint*/;

[initialize scott's salary to be same as steve ¥/
OCINumberAssign(err, stevesal, scottsal);

Finitialize jason's salary to be 20% more than steve's */

dnum=12;

status = OCINumberFromReal(err, &dnum, DBL_DIG, &omum);

if (status '= OCl_SUCCESS) /*handle error from OCINumberFromReal ¥/,
status = OCINumberMul(err, stevesal, &omum, debsal);

if (status = OCI_SUCCESS) # handle error from OCINumberMul */;

* give scott a 50% raise */

dnum=15;

status = OCINumberFromReal(err, &dnum, DBL_DIG, &omum);

if (status '= OCl_SUCCESS) /*handle error from OCINumberFromReal ¥/,
status = OCINumberMul(err, scottsal, &omum, scottsal);

if (status = OCI_SUCCESS) # handle error from OCINumberMul */;

F*double steve’s salary */
status = OCINumberAdd(err, stevesal, stevesal, stevesal);
if (status '= OCl_SUCCESS) /*handle error from OCINumberAdd */;

* get steve's salary in integer */

status = OCINumberTolnt(er, stevesal, sizeof{inum), OCI NUMBER_SIGNED,
&num);

if (status '= OCl_SUCCESS) /*handle error from OCINumberTolnt */;

f¥inumis setto 24000 */

* getjason’s salary in double */

status = OCINumberToReal(err, debsal, sizeof(dnum), &dnumy;

if (status = OCl_SUCCESS) /* handle error from OCINumberToReal */;

Fdnumiis setto 14400 %/

F* print scott's salary as DEM00018000.00 */

buflen = sizeof(buffer);

status = OCINumberToText(err, scottsal, "C0999G9999D99", 13,
"NLS_NUMERIC_CHARACTERS=."NLS ISO_CURRENCY=Germany™,
54, &buflen, buffer);

if (status '= OCl_SUCCESS) /*handle error from OCINumberToText */;

printf{(scott's salary = %s\n", buffer);

¥ compare steve and scott’s salaries */

status = OCINumberCmp(err, stevesal, scottsal, &result);
if (status '= OCl_SUCCESS) /*handle error from OCINumberCmp *;

11-14 Oracle Call Interface Programmer’s Guide

Fixed or Variable-Length String (OCIString)

Fresultis positive */

[read jason’s new salary from string */

status = OCINumberFromText(err, “48°000.00", 9, "99G999D99", 9,
"NLS_NUMERIC_CHARACTERS=.™, 27, debsal);

if (status = OCI_SUCCESS) # handle error from OCINumberFromText */;

* jason’s salary is now 48000.00 */

Fixed or Variable-Length String (OCIString)

Fixed or variable-length string data is represented to C programs as an OCIString *.
The length of the string does not include the null character.

For binding and defining variables of type OCIString * use the external typecode
SQLT_VST.

See Also: The prototypes and descriptions for all the functions are provided in
Chapter 17, "OCI Datatype Mapping and Manipulation Functions".

String Functions

String Example

The following functions allow the C programmer to manipulate an instance of a
string.

Function Purpose

OCIStringAllocSize() get allocated size of string memory in bytes
OCIStringAssign() assign one string to another
OCIStringAssignText() assign text string to string

OCIStringPtr() get pointer to string part of string
OCIStringResize() resize string memory

OCIStringSize() get string size

This example assigns a text string to a string, then gets a pointer to the string part of
the string, as well as the string size, and prints it out.

Note the double indirection used in passing the vstringl parameter in
OCIStringAssignText().

Object-Relational Datatypes 11-15

Raw (OCIRaw)

OCIEnv *envhp;

OCIEmor *errhp;

OCIsting *vstringl = (OCIString *)0;
OCISting *vstring2 = (OCIString *)0;
text c_string[20];

text *ext_ptr;

sword status;

strepy(c_string, "hello world”);

* Assign a text string to an OCIString */

status = OCIStringAssignText(envhp, errhp, ¢_string,
(ubd)strlen(c_string),&vstringl);

FMemory for vstringl is allocated as part of string assignment */

status = OCIStringAssignText(envhp, errhp, "hello again”,
(ubd)strlen(This is a longer string."),&vstringl);
F*vstringl is automatically resized to store the longer string */

F* Geta pointer to the string part of vstring1 */
text_ptr = OCIStringPtr(envhp, vstringl);
Ftext_ptr now points to "hello world" ¥/
printf("%es\n”, text_ptr);

Raw (OCIRaw)
Variable-length raw data is represented in C using the OCIRaw * datatype.

For binding and defining variables of type OCIRaw *, use the external typecode
SQLT_LVB.

See Also: The prototypes and descriptions for all the functions are provided in
Chapter 17, "OCI Datatype Mapping and Manipulation Functions".

Raw Functions
The following functions perform OCIRaw operations.

Function Purpose

OCIRawAllocSize() get the allocated size of raw memory in bytes
OCIRawAssignBytes() assign raw data (ubl *) to OCIRaw *
OCIRawAssignRaw() assign one OCIRaw * to another

11-16 Oracle Call Interface Programmer’s Guide

Collections (OCITable, OCIArray, OCIColl, OCllter)

Raw Example

Function Purpose

OCIRawPtr() get pointer to raw data

OCIRawResize() resize memory of variable-length raw data
OCIRawsSize() get size of raw data

In this example, a raw data block is set up and a pointer to its data is obtained.
Note the double indirection in the call to OCIRawAssignBytes().

OCIEnv *envhp;

OCIEnor *erhp;

sword status;

ubl data_block{10000];

ub4 data block len=10000;
OCIRaw *rawl;

ubl *rawl_pointer;

F* Setup the RAW ¥/
f*assume 'data_block’ has been initialized */
status = OCIRawAssignBytes(envhp, erthp, data._block, data__block_len, &raw);

F* Geta pointer to the data part of the RAW */
rawl_pointer = OCIRawPtr(envhp, rawl);

Collections (OClITable, OCIArray, OCIColl, OCllter)

Oracle provides two types of collections: variable-length arrays (varrays) and
nested tables. In C applications, varrays are represented as OCIlArray *, and nested
tables are represented as OClTable *. Both of these datatypes (along with OCIColl
and OClIter, described later) are opaque structures.

A variety of generic collection functions enable you to manipulate collection data.
You can use these functions on both varrays and nested tables. In addition, there is a
set of functions specific to nested tables; see "Nested Table Manipulation Functions"
on page 11-20.

You can allocate an instance of a varray or nested table using OCIObjectNew() and
free it using OCIObjectFree().

See Also: The prototypes and descriptions for all the functions are provided in
Chapter 17, "OCI Datatype Mapping and Manipulation Functions".

Object-Relational Datatypes 11-17

Collections (OClITable, OClArray, OCIColl, OClIter)

Generic Collection Functions

Oracle provides two types of collections: variable-length arrays (varrays) and
nested tables. Both varrays and nested tables can be viewed as sub-types of a
generic collection type.

In C, a generic collection is represented as OCIColl *, a varray is represented as
OClArray *, and a nested table as OClITable *. Oracle provides a set of functions to
operate on generic collections (such as OCIColl *). These functions start with the
prefix OCIColl, as in OCICollGetElem(). The OCIColl*() functions can also be called to
operate on varrays and nested tables.

The generic collection functions are grouped into two main categories:
« manipulating varray or nested table data
« scanning through a collection with a collection iterator

The generic collection functions represent a complete set of functions for
manipulating varrays. Additional functions are provided to operate specifically on
nested tables. They are identified by the prefix OClITable, as in OCITableExists().
These are described in the section "Nested Table Manipulation Functions" on

page 11-20.

Note: Indexes passed to collection functions are zero-based.

Collection Data Manipulation Functions
The following generic functions manipulate collection data:

Function Purpose
OCICollAppend() append an element
OCICollAssignElem() assign element at given index
OCICollAssign() assign one collection to another
OCICollGetElem() get pointer to an element given its index
OClICollMax() get upper bound of collection
OCICollSize() get current size of collection
OCICollTrim() trim n elements from the end of the
collection

11-18 Oracle Call Interface Programmer’s Guide

Collections (OCITable, OCIArray, OCIColl, OCllter)

Collection Scanning Functions

The following generic functions enable you to scan collections with a collection
iterator. The iterator is of type OClIter, and is created by first calling OCllterCreate().

Function Purpose

OCllterCreate() create an iterator for scanning collection
OCllterDelete() delete iterator

OCllIterGetCurrent() get pointer to current element pointed by iterator
OCllterlnit() initialize iterator to scan the given collection
OClIterNext() get pointer to next element

OCllterPrev() get pointer to previous element

Varray/Collection Iterator Example
This example creates and uses a collection iterator to scan through a varray.

OCIEnv *envhp;
OCIEmor *errhp;

text *text ptr;

sword status;
OClArray *clients;
OCISting *client_elem;
OCliter *iterator;
boolean eoc;

dvoid *elem;
OClind *elemind;

¥ Assume envhp, errhp have been initialized */
F* Assume clients points to a varray */

F Print the elements of clients */
F*To dothis, create an iterator to scan the varray */
status = OCliterCreate(envhp, erthp, clients, &iterator);

F* Get the first element of the clients varray */

printf(‘Clients' list\n');

status = OCliterNext(envhp, erthp, iterator, &elem,
(dvoid **) &elemind, &eoc);

while (leoc && (status = OCl_SUCCESS))

Object-Relational Datatypes 11-19

Collections (OClITable, OClArray, OCIColl, OClIter)

{
client_elem =*OCIString)*elem;
F client_elem points to the string */

I
the element pointer type retumed by OCliterNext() via ‘elem'is
the same as that of OCICollGetElem(). Refer to OCIColiGetElem() for
details. */

/k
client_elem points to an OCIString descriptor, so to print it out,
get a pointer to where the text begins

*
/

text_ptr = OCIStringPtr(envhp, client_elem);

/k
text_ptr now points to the text part of the client OCIString, whichis a

NULL-terminated string

*

printf(* %s\n", text_ptr);

status = OCliterNext(envhp, erhp, iterator, &elem,

(cdvoid *)&elemind, &eoc);

}

if (status '= OC|_SUCCESS)

Fhandle error */

}

* destroy the iterator */
status = OCliterDelete(envhp, erthp, &iterator);

Nested Table Manipulation Functions

As its name implies, one table may be nested or contained within another, as a
variable, attribute, parameter or column. Nested tables may have elements deleted,

by means of the OClITableDelete() function.

For example, suppose a table is created with 10 elements, and OClTableDelete() is
used to delete elements at index 0 through 4 and 9. The first existing element is now

element 5, and the last existing element is element 8.

As noted above, the generic collection functions may be used to map to and
manipulate nested tables. In addition, the following functions are specific to nested

tables. They should not be used on varrays.

11-20 Oracle Call Interface Programmer’s Guide

Collections (OCITable, OCIArray, OCIColl, OCllter)

Function Purpose

OClITableDelete() delete an element at a given index
OClITableExists() test whether an element exists at a given index
OClITableFirst() return index for first existing element of table
OClTableLast() return index for last existing element of table
OClITableNext() return index for next existing element of table
OClITablePrev() return index for previous existing element of table
OClITableSize() return table size, not including deleted elements

Nested Table Element Ordering

When a nested table is fetched into the object cache, its elements are given a
transient ordering, numbered from zero to the number of elements, minus 1. For
example, a table with 40 elements would be numbered from 0 to 39.

You can use these position ordinals to fetch and assign the values of elements (for
example, fetch to element i, or assign to element j, where i and j are valid position
ordinals for the given table).

When the table is copied back to the database, its transient ordering is lost. Delete
operations may be performed against elements of the table. Delete operations create
transient holes; that is, they do not change the position ordinals of the remaining
table elements.

Nested Table Locators

In release 8.1, it is possible to retrieve a locator to a nested table. A locator is like a
handle to a collection value, and it contains information about the database
snapshot which exists at the time of retrieval. This snapshot information helps the
database retrieve the correct instantiation of a collection value at a later time when
collection elements are fetched using the locator.

Unlike a LOB locator, a collection locator cannot be used to modify a collection
instance, they merely locate the correct data. Using the locator enables an
application to return a handle to a nested table without having to retrieve the entire
collection, which may be quite large.

A user specifies when a table is created if a locator should be returned when a
collection column or attribute is fetched, using the RETURN AS LOCATOR
specification.

Object-Relational Datatypes 11-21

REF (OCIRef)

See Also: Refer to the Oracle8i SQL Reference for more information.

You can use the OCIColllsLocator() function to determine whether a collection is a
locator.

REF (OCIRef)

In Oracle, a REF (reference) is an identifier to an object. It is an opaque structure that
uniquely locates the object. An object may point to another object by way of a REF.

In C applications, the REF is represented by OCIRef *.

See Also: The prototypes and descriptions for all the functions are provided in
Chapter 17, "OCI Datatype Mapping and Manipulation Functions".

REF Manipulation Functions
The following functions perform REF operations.

Function Purpose

OCIRefAssign() assign one REF to another

OCIRefClear() clear or nullify a REF

OCIRefFromHex() convert hexadecimal string to a REF
OCIRefHexSize() return size of hex string representation of REF
OCIReflsEqual() compare two REFs for equality
OCIReflsNull() test whether a REF is NULL

OCIRefToHex() convert REF to a hexadecimal string

REF Example

This example tests two REFs for NULL, compares them for equality, and assigns
one REF to another. Note the double indirection in the call to OCIRefAssign().

OCIEnv *envhp;
OCIEnor *erhp;
sword status;
boolean refs_equal;
OCIRef *refl, *ref2;

* assume refs have been initialized to point to valid objects */

11-22 Oracle Call Interface Programmer’s Guide

Object Type Information Storage and Access

FCompare two REFs for equality */
refs_equal = OCIRefisEqual(envhp, refl, ref2);
printf("After first OCIReflsEqual\n’;
fi(refs_equal)

printf('REFs equal\n");
else

printf("REFs not equaln’);

FAssign refl to ref2 ¥/

status = OCIRefAssign (envhp, erthp, refl, &ref2);
if(status '= OCI_SUCCESS)

Ferror handling®/

FCompare the two REFs again for equality */
refs_equal = OCIRefisEqual(envhp, refl, ref2);
printf("After second OCIReflsEqualin’);
if(refs_equal)

printf("REFs equaln’);
else

printf('REFs not equaln’);

Object Type Information Storage and Access

Descriptor Objects

When a given type is created with the CREATE TYPE statement, it is stored in the
server and associated with a type descriptor object (TDO). In addition, the database
stores descriptor objects for each data attribute of the type, each method of the type,
each parameter of each method, and the results returned by methods. The following
table lists the OCI datatypes associated with each type of descriptor object.

Information Type OCI Datatype
Type OClIType
Type Attributes Collection Elements OCITypeElem

Method Parameters Method Results
Method OCITypeMethod

Several OCI functions (including OCIBindObject() and OCIObjectNew()) require a
TDO as an input parameter. An application can obtain the TDO by calling

Object-Relational Datatypes 11-23

Object Type Information Storage and Access

OCITypeByName(), which gets the type’s TDO in an OCIType variable. Once you
obtain the TDO, you can pass it, as necessary to other calls.

11-24 Oracle Call Interface Programmer’s Guide

12

Binding and Defining in Object Applications

The concepts of binding and defining were introduced and discussed in Chapter 2,
"OCI Programming Basics" and in Chapter 5, "Binding and Defining". This chapter
provides additional information necessary for users who are developing object
applications. This includes information about binding and defining object
datatypes, as well as additional datatypes which have been introduced to support
objects. This chapter assumes that readers are familiar with the basics of binding
and defining described in the earlier chapters.

This chapter includes the following sections:

« Binding

« Defining

« Binding And Defining Oracle C Datatypes
« SQLT_NTY Bind/Define Example

Binding and Defining in Object Applications 12-1

Binding

Binding
This section provides information on binding named datatypes, such as objects and
collections, and REFs.

Named Datatype Binds

For a named datatype (object type or collection) bind, a second bind call is
necessary following OCIBindByName(), or OCIBindByPos(). The OCI Bind Object
Type call, OCIBindObject(), sets up additional attributes specific to the object type
bind. An OCI application uses this call when fetching data from a table which has a
column with an object datatype.

The OCIBindObject() call takes, among other parameters, a Type Descriptor Object
(TDO) for the named data type. The TDO, of datatype OCIType is created and
stored in the database when a named data type is created. It contains information
about the type and its attributes. An application can obtain a TDO by calling
OCITypeByName().

The OCIBindObject() call also sets up the indicator variable or structure for the
named data type bind.

When binding a named data type, use the SQLT_NTY datatype constant to indicate
the datatype of program variable being bound. SQLT_NTY indicates that a C struct
representing the named data type is being bound. A pointer to this structure is
passed to the bind call.

It is possible that working with named data types may require the use of three bind
calls in some circumstances. For example, to bind a static array of named data types
to a PL/SQL table, three calls must be invoked: OCIBindByName(),
OCIBindArrayOfStruct(), and OCIBindObject().

See Also: For information about using these data types to fetch an embedded
object from the database, refer to the section "Fetching Embedded Objects" on
page 10-15.

For additional important information, see the section "Information for Named
Datatype and REF Binds" on page 12-3

For more information about descriptor objects, see "Descriptor Objects" on
page 11-23.

12-2 Oracle Call Interface Programmer’s Guide

Binding

Binding REFs

As with named data types, binding REFs is a two-step process. First, call
OCiBindByName() or OCIBindByPos(), and then call OCIBindObject().

REFs are bound using the SQLT_REF datatype. When SQLT_REF is used, then the
program variable being bound must be of type OCIRef *.

See Also: For information about binding and pinning REFs to objects, see
"Retrieving an Object Reference from the Server” on page 10-11.

For additional important information, see the section "Information for Named
Datatype and REF Binds" on page 12-3.

Information for Named Datatype and REF Binds

This section presents some additional important information to keep in mind when
working with named data type and REF binds. It includes pointers about memory
allocation and indicator variable usage.

« If the datatype being bound is SQLT_NTY, the indicator struct parameter of the
OCIBindObiject() call (dvoid ** indpp) is used, and the scalar indicator is
completely ignored.

« If the datatype is SQLT_REF, the scalar indicator is used, and the indicator
struct parameter of OCIBindObject() is completely ignored.

« The use of indicator structures is optional. The user can pass a NULL pointer in
the indpp parameter for the OCIBindObject() call. During the bind, this means
that the object is not atomically NULL and none of its attributes are NULL.

« The indicator struct size pointer, indsp, and program variable size pointer, pgvsp,
in the OCIBindObject() call is optional. Users can pass NULL if these parameters
are not needed.

Information Regarding Array Binds

For doing array binds of named data types or REFs, for array inserts or fetches, the
user needs to pass in an array of pointers to buffers (pre-allocated or otherwise) of
the appropriate type. Similarly, an array of scalar indicators (for SQLT_REF types)
or an array of pointers to indicator structs (for SQLT_NTY types) needs to be
passed.

See Also: For more information about SQLT_NTY, see the section "New Oracle
External Datatypes" on page 3-18.

Binding and Defining in Object Applications 12-3

Defining

Defining

This section provides information on defining named data types (e.g., objects,
collections) and REFs.

Defining Named Datatype Output Variables

For a named datatype (object type, nested table, varray) define, two define calls are
necessary. The application should first call OCIDefineByPos(), specifying SQLT_NTY
in the dty parameter. Following OCIDefineByPos(), the application must call
OCIDefineObject(). In this case, the data buffer pointer in OCIDefineByPos() is
ignored and additional attributes pertaining to a named data type define are set up
using the OCI Define Obiject attributes call, OCIDefineObject().

There SQLT_NTY datatype constant is specified for a named datatype define. In this
case, the application fetches the result data into a host-language representation of
the named data type. In most cases, this will be a C struct generated by the Object
Type Translator.

When making an OCIDefineObject() call, a pointer to the address of the C struct
(preallocated or otherwise) must be provided. The object may have been created
with OCIObjectNew(), allocated in the cache, or with user-allocated memory.

Note: Please refer to the section"Information for Named Datatype and REF
Defines, and PL/SQL OUT Binds" on page 12-5 for more important information
about defining named data types.

Defining REF Output Variables

As with named data types, defining for a REF output variable is a two-step process.
The first step is a call to OCIDefineByPos(), and the second is a call to
OCIDefineObject(). Also as with named data types, the SQLT_REF datatype constant
is passed to the dty parameter of OCIDefineByPos().

SQLT_REF indicates that the application will be fetching the result data into a
variable of type OCIRef *. This REF can then be used as part of object pinning and
navigation, as described in Chapter 6.

Note: Please refer to the section"Information for Named Datatype and REF
Defines, and PL/SQL OUT Binds" on page 12-5 for more important information
about defining REFs.

12-4 Oracle Call Interface Programmer’s Guide

Defining

Information for Named Datatype and REF Defines, and PL/SQL OUT Binds

This section presents some additional important information to keep in mind when
working with named data type and REF defines. It includes pointers about memory
allocation and indicator variable usage.

A PL/SQL OUT bind refers to binding a placeholder to an output variable in a
PL/SQL block. Unlike a SQL statement, where output buffers are set up with define
calls, in a PL/SQL block, output buffers are set up with bind calls. Refer to the
section "Binding Placeholders in PL/SQL" on page 5-5 for more information.

If the datatype being defined is SQLT_NTY, the indicator struct parameter of
the OCIDefineObject() call (dvoid ** indpp) is used, and the scalar indicator is
completely ignored.

If the datatype is SQLT_REF, the scalar indicator is used, and the indicator
struct parameter of OCIDefineObject() is completely ignored.

The use of indicator structures is optional. The user can pass a NULL pointer in
the indpp parameter for the OCIDefineObject() call. During a fetch or PL/SQL
OUT bind, this means that the user is not interested in any NULLnNess
information.

In a SQL define or PL/SQL OUT bind, if the user passes in preallocated
memory for either the output variable or the indicator, then that preallocated
memory is used to store result data, and all secondary memory (out-of-line
memory), if any, will get deallocated. The pre-allocated memory can either
come from the cache (the result of an OCIObjectNew() call), or from the client’s
private memory space.

Note: If a client application wants to allocate memory from its own private
memory space, instead of the cache, it must insure that there is no secondary
out-of-line memory in the object.

For an object define with type SQLT_NTY, client applications wanting to
pre-allocate object memory must use the OCIObjectNew() function. Client
applications should not allocate the object in its own private memory space,
such as with malloc() or on the stack. The OCIObjectNew() function allocates the
object in the object cache. The allocated object can be freed using
OCIObjectFree(). Refer to Chapter 16, "OCI Navigational and Type Functions”
for details on OCIObjectNew() and OCIObjectFree().

Note: There is no change to the behavior of OCIDefineObject() when the user
does not pre-allocate the object memory and instead initializes the output

Binding and Defining in Object Applications 12-5

Binding And Defining Oracle C Datatypes

variable to null pointer value. In this case, the object will be implicitly allocated
in the object cache by the OCI library.

« InaSQL define or PL/SQL OUT bind, if the user passes in a NULL address for
the output variable or the indicator, memory for the variable or the indicator
will be implicitly allocated by OCI.

« If an output object of type SQLT_NTY is atomically NULL (in a SQL define or
PL/SQL OUT bind), only the NULL indicator struct will get allocated
(implicitly if necessary) and populated accordingly to indicate the atomic
NULLness of the object. The top-level object, itself, will not get implicitly
allocated.

« An application can free indicators by calling OCIObjectFree(). If there is a
top-level object (as in the case of a non-atomically NULL object), then the
indicator is freed when the top-level object is freed with OCIObjectFree(). If the
object is atomically null, then there is no top-level object, so the indicator must
be freed separately.

« Theindicator struct size pointer, indsp, and program variable size pointer, pgvsp,
in the OCIDefineObject() call is optional. Users can pass NULL if these
parameters are not needed.

Information About Array Defines

For doing array defines of named data types or REFs, the user needs to pass in an
array of pointers to buffers (pre-allocated or otherwise) of the appropriate type.
Similarly, an array of scalar indicators (for SQLT_REF types) or an array of pointers
to indicator structs (for SQLT_NTY types) needs to be passed.

Binding And Defining Oracle C Datatypes

Previous chapters of this book have discussed OCI bind and define operations.
"Binding" on page 4-5 discussed the basics of OCI bind operations, while "Defining"
on page 4-14 discusses the basics of OCI define operations. Information specific to
binding and defining named data types and REFs is found in Chapter 5, "Binding
and Defining".

The sections covering basic bind and define functionality showed how an
application could use a scalar variable or array of scalars as an input (bind) value in
a SQL statement, or as an output (define) buffer for a query.

The sections covering named data types and REFs showed how to bind or define an
object or reference. Chapter 10, "OCI Object-Relational Programming" expanded on

12-6 Oracle Call Interface Programmer’s Guide

Binding And Defining Oracle C Datatypes

this to talk about pinning object references, object navigation, and fetching
embedded instances.

The purpose of this section is to cover binding and defining of individual attribute
values, using the datatype mappings explained in this chapter.

Variables of one of the types defined in this chapter, such as OCINumber or
OCIString, can typically be declared in an application and used directly in an OCI
bind or define operation as long as the appropriate datatype code is specified. The
following table lists the datatypes that can be used for binds and defines, along with
their C mapping, and the OCI external datatype which must be specified in the dty
(datatype code) parameter of the bind or define call.

Table 12-1 Datatype Mappings for Binds and Defines

Datatype C Mapping OCI External Datatype and Code
Oracle number OCINumber VARNUM (SQLT_VNU)

Oracle date OClDate SQLT_ODT

VARCHAR2 OCIString * SQLT_VST (see Note 1 below)
RAW OCIRaw * SQLT_LVB (see Note 1 below)
CHAR OCIString * SQLT_VST

OBJECT struct * Named Data Type (SQLT_NTY)
REF OCIRef * REF (SQLT_REF)

VARRAY OCIlArray * Named Data Type (SQLT_NTY)
Nested Table OClITable * Named Data Type (SQLT_NTY)

Note 1: Before fetching data into a define variable of type OCIString *, the size
of the string must first be set using the OCIStringResize() routine. This may
require a describe operation to obtain the length of the select-list data. Similarly,
an OCIRaw * must be first sized with OCIRawResize().

The following section presents examples of how to use C-mapped datatypes in an
OCI application.

See Also: For a discussion of OCI external datatypes, and a list of datatype
codes, refer to Chapter 3, "Datatypes”.

Binding and Defining in Object Applications 12-7

Binding And Defining Oracle C Datatypes

Bind and Define Examples

The examples in this section demonstrate how variables of type OCINumber can be
used in OCI bind and define operations.

Note: The examples in this section are intended to demonstrate the flow of calls
used to perform certain OCI tasks. An expanded pseudocode is used for the
examples in this section. Actual function names are used, but for the sake of
simplicity not all parameters and typecasts are filled in. Additionally, other
necessary OCI calls, like handle allocations, have been omitted.

Assume, for this example, that the following person object type was created:

CREATE TYPE person AS OBJECT
(hame varchar2(30),
salary number);

This type is then used to create an employees table which has a column of type
person .

CREATE TABLE employees
(emp_id number,

job_title varchar2(30),

emp person);

OTT generates the following C struct and null indicator struct for person :

struct person

{ OCIString * name;
OCINumber salary;};

typedef struct person person;

struct person_ind
{ OClind _atomic;
OClind name;
OClind salary;}
typedef struct person_ind person_ind;

Assume that the employees table has been populated with values, and an OCI
application has declared a person variable:

person *my_person;

and fetched an object into that variable through a SELECT statement, like

text *mystmt = (text *) "SELECT person FROM employees
WHERE emp.name="ANDREA™,

12-8 Oracle Call Interface Programmer’s Guide

Binding And Defining Oracle C Datatypes

This would require defining my_person to be the output variable for this
statement, using appropriate OCI define calls for named datatypes, as described in
the section "Advanced Define Operations" on page 5-20. Executing the statement
would retrieve the person object named ANDREA into the my_person variable.

Once the object is retrieved into my_person , the OCI application now has access to
the attributes of my_person , including the name and the salary.

The application could go on to update another employee’s salary to be the same as
Andrea’s, as in

text *updstmt = (text *) "UPDATE employees SET emp.salary = :newsal
WHERE emp.name ='MONGO"

Andrea’s salary (stored in my_person->salary) would be bound to the
placeholder :newsal, specifying an external datatype of VARNUM (datatype
code=6) in the bind operation:

OCIBindByName(...,"newsal",...&my_person->salary....,6,...);
OCIStmtExecute(...,updstmt,...)

Executing the statement updates Mongo’s salary in the database to be equal to
Andrea’s, as stored in my_person.

Conversely, the application could update Andrea’s salary to be the same as
Mongo’s, by querying the database for Mongo’s salary, and then making the
necessary salary assignment:

text *selstmt = (text *) "SELECT emp.salary FROM employees
WHERE emp.name ='MONGO™
OCINumber mongo_sal;

OCIDefineByPos(...,1,...&mongo_sal....,6,...);
OCIStmtExecute(....selstmt,...);
OCINumberAssign(....&mongo_sal, &my_person->salary);

In this case, the application declares an output variable of type OCINumber and
uses it in the define step. In this case we define an output variable for position 1,
and use the appropriate datatype code (6 for VARNUM).

The salary value is fetched into the mongo_sal OCINumber, and the appropriate
OCI function, OCINumberAssign(), is used to assign the new salary to the copy of
the Andrea object currently in the cache. To modify the data in the database, the
change must be flushed to the server.

Binding and Defining in Object Applications 12-9

Binding And Defining Oracle C Datatypes

Salary Update Examples

The examples in the previous section should give some idea of the flexibility which
the new Oracle8 datatypes provide for bind and define operations. The goal of this
section is to show how the same operation can be performed in several different
ways. The goal is to give you some idea of the variety of ways in which these
datatypes can be used in OCI applications.

The examples in this section are intended to demonstrate the flow of calls used to
perform certain OCI tasks. An expanded pseudocode is used for the examples in
this section. Actual function names are used, but for the sake of simplicity not all
parameters and typecasts are filled in. Additionally, other necessary OCI calls, like
handle allocations, have been omitted.

The Scenario
The scenario for these examples is as follows:

1. Anemployee named BRUCE exists in the employees table for a hospital. See
person type and employees table creation statements in the previous section.

2. Bruce’s current job title is RADIOLOGIST.

3. Bruce is being promoted to RADIOLOGY_CHIEF, and along with the
promotion comes a salary increase.

4. Hospital salaries are in whole dollar values, are set according to job title, and
stored in a table called salaries, defined as follows:

CREATE TABLE salaries
(job_tile varchar2(20),
salary integen));

5. Bruce’s salary needs to be updated to reflect his promotion.

Accomplishing the above task requires that the application retrieve the salary
corresponding to RADIOLOGY_CHIEF from the salaries table, and update
Bruce’s salary. A separate step would write his new title and the modified object
back to the database.

Assuming that a variable of type person has been declared
person*my_person;

and the object corresponding to Bruce has been fetched into it, the following
sections present three different ways in which the salary update could be
performed.

12-10 Oracle Call Interface Programmer’s Guide

Binding And Defining Oracle C Datatypes

Method 1 - fetch, convert, assign
This example uses the following method:

1. Do atraditional OCI define using an integer variable to retrieve the new salary
from the database.

2. Convert the integer to an OCINumber.
3. Assign the new salary to Bruce.
#define INT_TYPE3 /*datatype code for sword integer define */

text *getsal = (text *) "SELECT salary FROM salaries
WHERE job _tile="RADIOLOGY_CHIEF

sword new_sal;

OCINumber orl_new_sal;

OCIDefineByPos(...,1,...new_sal,...INT_TYPE,...);
 define int output */
OCIStmtExecute(....getsal,...);
Fgetnew salary as int*/
OCINumberFromint(....new_sal,...&orl_new_sal);
 convert salary to OCINumber */
OCINumberAssign(...&or_new_sal, &my_person->salary);
Fassign new salary */

Method 2 - fetch, assign
This method eliminates one of the steps in Method 1.

1. Define an output variable of type OCINumber, so that no conversion is
necessary after the value is retrieved.

2. Assign the new salary to Bruce
#define VARNUM_TYPE6 /*datatype code for defining VARNUM */

text *getsal = (text *) "SELECT salary FROM salaries
WHERE job_tile=RADIOLOGY_CHIEF
OCINumber orl_new_sal;

OCIDefineByPos(...,1.....ol_new_sal,...VARNUM TYPE,..);

* define OCINumber output */
OCIStmtExecute(...getsal,...); /*get new salary as OCINumber */
OCINumberAssign(...&or_new_sal, &my_person->salary);

[assign new salary */

Binding and Defining in Object Applications 12-11

Binding And Defining Oracle C Datatypes

Method 3 - direct fetch

This method accomplishes the entire operation with a single define and fetch. No
intervening output variable is used, and the value retrieved from the database is
fetched directly into the salary attribute of the object stored in the cache.

1. Since Bruce is pinned in the object cache, use the location of his salary attribute
as the define variable, and execute/fetch directly into it.

#define VARNUM_TYPE6 /*datatype code for defining VARNUM */

text ‘getsal = (text *) "SELECT salary FROM salaries
WHERE job_tile=RADIOLOGY _CHIEF

OCIDefineByPos(...,1,...&my_person->salary,...VARNUM_TYPE,...);
* define bruce’s salary in cache as output variable */
OCIStmtExecute(...getsal,...);
F execute and fetch directly */

Summary and Notes

As the previous three examples show, the Oracle8 C datatypes provide flexibility for
binding and defining. In these examples an integer can be fetched, and then
converted to an OCINumber for manipulation; an OCINumber could be used as
intermediate variable to store the results of a query; or data can be fetched directly
into a desired OCINumber attribute of an object.

Note: In all of these examples it is important to keep in mind that in the Oracle8
OCIl, if an output variable is defined before the execution of a query, the
resulting data will be prefetched directly into the output buffer.

In the above examples, extra steps would be necessary to insure that changes are
written to the database permanently. This may involve SQL UPDATE calls and OCI
transaction commit calls.

These examples all dealt with define operations, but a similar situation applies for
binding.

Similarly, although these examples dealt exclusively with the OCINumber type, a
similar variety of operations are possible for the other Oracle8 C types described in
the remainder of this chapter.

12-12 Oracle Call Interface Programmer’s Guide

SQLT_NTY Bind/Define Example

SQLT _NTY Bind/Define Example

The following code fragments demonstrate the use of SQLT_NTY bind and define
calls, including OCIBindObject() and OCIDefineObject(). In each example, a
previously defined SQL statement is being processed.

Bind Example

I

** This example performs a SQL insert statement

*

void insert(envhp, svchp, stmthp, erhp, insstmt, nrows)
OCIEnv *envhp;

OCISvcCix *svehp;

OCIStmt *stmthp;

OCIEnor *erthp;

text *insstmt;

ub2 nrows;

{
orttdo *addr_tdo = NULLP(orttdo);
address addrs;
null_address naddrs;
address *addr = &addrs;
null_address *naddr = &naddrs;
sword custno =300;
OCIBind *bnd1p, *ond2p;
ub2i;

* define the application request */

checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) insstmt,
(ub4) strlen((char *)insstmt),
(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 bind the input variable */
checkerr(errhp, OCIBindByName(stmthp, &bnd1p, errhp, (text *) ":custno”,
(sb4) -1, (dvoid *) &custno,
(sb4) sizeof(sword), SQLT_INT,
(dvoid*) O, (b2 *)0, (ub2*)0, (ub4) O, (Ub4 *) O,
(ub4) OCI_DEFAULT));

checkerr(errhp, OCIBindByName(stmthp, &bnd2p, errhp, (text *) “:addr",
(sb4)-1, (dvoid %) 0,
(sb4) 0, SQLT_NTY, (dvoid *) O, (ub2 *)0, (ub2 *)0,
(ub4) 0, (ub4*) O, (Ub4) OCI_DEFAULT)),

Binding and Defining in Object Applications 12-13

SQLT_NTY Bind/Define Example

checkerr(errhp, OCITypeByName(envhpx, enhp, svchpx, (const text *)
SCHEMA, (ub4) strlen((char ¥)SCHEMA), (const text *)
"ADDRESS_VALUE", (ub4) strlen((char *)"ADDRESS_VALUE"),
OCl|_DURATION_SESSION, &addr_tdoy));

iftaddr_tdo)

{
printf('Null tdo retumed\n”);
goto done_insert;

}

checkerr(errhp, OCIBindObject(bnd2p, enhp, addr_tdo, (dvoid *¥) &addr,
(ub4 %) 0, (dvoid *¥) &naddr, (ub4 *) 0));

Define Example

I

* This example executes a SELECT statement from a table which includes
** an object.

*

void selectval(envhp, svchp, stmthp, errhp)

OCIEnv *envhp;

OCISveCix *svehp;

OCIStmt *stmthp;

OCIEnor *errhp;

{
orttdo *addr._tdo = NULLP(orttdo);
OCIDefine *defnlp, *den2p;
address *addr = (address *NULL;
sword custno =0;
sh4 status;

* define the application request */
checkenr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) selvalstmt,
(ub4) strlen((char *)selvalstmt),
(ub4) OCI_NTV_SYNTAX; (ub4) OCI_DEFAULT));
* define the output variable */
checkem(errhp, OCIDefineByPos(stmthp, &defnlp, enhp, (ub4) 1, (dvoid *)
&custno, (sb4) sizeof(sword), SQLT_INT, (dvoid *) O, (ub2 *)0,
(ub2%)0, (ub4) OCI_DEFAULT));

checkerr(erhp, OCIDefineByPos(stmthp, &defn2p, erhp, (ub4) 2, (dvoid *)

12-14 Oracle Call Interface Programmer’s Guide

SQLT_NTY Bind/Define Example

0, (sb4) 0, SQLT_NTY, (dvoid) 0, (ub2)0,
(ub2*)0, (Ub4) OCI_DEFAULT));

checkenr(errhp, OCITypeByName(envhpx, enhp, svchpx, (const text *)
SCHEMA, (ub4) strien((char ¥)SCHEMA), (const text *)
"ADDRESS VALUE", (ub4) strien((char *"ADDRESS_VALUE'"),OROODTSES,
&addr_tdo));

ifladdr_tdo)

{
printf"NULL tdo retumed\n’);
goto done_selectval;

}

checken(emrhp, OCIDefineObject(defn2p, emhp, addr_tdo, (dvoid **)
&addr, (ub4*) O, (dvoid **) 0, (ub4 *) O));

checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) O,
(OClISnapshot*) NULL, (OCISnapshot *) NULL, (ub4) OCl_DEFAULT));

Binding and Defining in Object Applications 12-15

SQLT_NTY Bind/Define Example

12-16 Oracle Call Interface Programmer’s Guide

13

Object Cache and Object Navigation

This chapter introduces the OCI’s facility for working with objects in an Oracle
database server. It also discusses the OCI’s object navigational function calls. This
chapter includes the following sections:

« Overview
« The Object Cache and Memory Management
« Object Navigation

« OCI Navigational Functions

Object Cache and Object Navigation 13-1

Overview

Overview

This chapter is broken down into several main sections that discuss the basic
concepts involved in writing OCI applications to manipulate Oracle objects. The
chapter also covers the OCI navigational function calls.

The following specific sections are included:

« The Object Cache and Memory Management - This section discusses OCI
object programming in more detail, including more sophisticated options.

« Object Navigation - This section discusses basic object navigation using the
Oracle OCI.

« OCI Navigational Functions - This section introduces the OCI functions that
enable an application to navigate through a graph of objects.

Complete descriptions of the OCI navigational functions can be found in
Chapter 16, "OCI Navigational and Type Functions".

The Object Cache and Memory Management

The object cache is a client-side memory buffer that provides lookup and memory
management support for objects. It stores and tracks object instances that have been
fetched by an OCI application.

When objects are fetched by the application through a SQL SELECT, or through an
OCI pin operation, a copy of the object is stored in the object cache. Objects that are
fetched directly through a SELECT statement are fetched by value, and they are
non-referenceable objects which cannot be pinned. Only referenceable objects may
be pinned.

If an object is being pinned, and an appropriate version already exists in the cache,
it does not need to be fetched from the server.

Every client program that uses the Oracle OCI to dereference REFs to retrieve
objects utilizes the object cache. A client-side object cache is allocated for every OCI
environment handle initialized in object mode. Multiple threads of a process can
share the same client-side cache by sharing the same OCI environment handle.

Exactly one copy of each referenceable object exists in the cache per connection.
Dereferencing a REF many times or dereferencing several equivalent REFs returns
the same copy of the object.

If you modify a copy of an object in the cache, you must flush the changes to the
server before they are visible to other processes. Objects that are no longer needed

13-2 Oracle Call Interface Programmer’s Guide

The Object Cache and Memory Management

can be unpinned or freed; they can then be swapped out of the cache, freeing the
memory space they occupied.

The object cache maintains the association between all object copies in the cache and
their corresponding objects in the database.

The cache does not manage the contents of object copies; it does not automatically
refresh object copies. The application must ensure the correctness and consistency
of the contents of object copies. For example, if the application marks an object copy
for insert, update, or delete, then aborts the transaction, the cache simply unmarks
the object copy but does not purge or invalidate the copy. The application must pin
recent or latest, or refresh the object copy in the next transaction. If it pins any, it may
get the same object copy with its uncommitted changes from the previous aborted
transaction.

See Also: For more information about pin options, see "Pinning an Object
Copy" on page 13-7.

The object cache is created when the OCI environment is initialized in object mode,
using OClInitialize(). Each application processes running against the same server
has its own object cache, as shown in Figure 13-1, "The Object Cache".

Object Cache and Object Navigation 13-3

The Object Cache and Memory Management

Figure 13-1 The Object Cache

Application 1

Object Cache
Application 2 System Global
Object Cache Area (SGA)

Foj

ORACLES/
DATABASE

The object cache tracks the objects that are currently in memory, maintains
references to the objects, manages automatic object swapping, and tracks object
meta-attributes.

Cache Consistency and Coherency

The object cache does not automatically maintain value coherency or consistency
between object copies and their corresponding objects in the database. In other
words, if an application makes changes to an object copy, the changes are not
automatically applied to the corresponding object in the database, and vice versa.
The cache provides operations such as flushing a modified object copy to the

13-4 Oracle Call Interface Programmer’s Guide

The Object Cache and Memory Management

database and refreshing a stale object copy with the latest value from the database
to enable the program to maintain some coherency.

Note: Oracle does not support automatic cache coherency with the server's
buffer cache or database. Automatic cache coherency refers to the mechanism
by which the object cache refreshes local object copies when the corresponding
objects have been modified in the server's buffer cache, and the object cache
flushes the changes made to local object copies to the buffer cache before any
direct access of corresponding objects in the server. Direct access includes using
SQL, triggers, or stored procedures to read or modify objects in the server.

Object Cache Parameters

The object cache has two important parameters associated with it, which are
attributes of the environment handle:

« OCI_ATTR_CACHE_MAX_SIZE, the maximum cache size
« OCI_ATTR_CACHE_OPT_SIZE, the optimal cache size

These parameters refer to levels of cache memory usage, and they help to determine
when the cache automatically ages out eligible objects to free up memory.

If the memory occupied by the objects currently in the cache reaches or exceeds the
high watermark, the cache automatically begins to free unmarked objects which
have a pin count of zero. The cache continues freeing such objects until memory
usage in the cache reaches the optimal size, or until it runs out of objects eligible for
freeing.

OCI_ATTR_CACHE_MAX_SIZE is specified as a percentage of
OCI_ATTR_CACHE_OPT _SIZE. The maximum object cache size (in bytes) is
computed by incrementing OCI_ATTR_CACHE_OPT_SIZE by
OCI_ATTR_CACHE_MAX_SIZE percentage, as follows:

maximum_cache_size = optimal_size + optimal_size * max_size_percentage / 100

or

maximum_cache_size=0C| ATTR_CACHE_OPT SIZE + OC| ATTR_CACHE_OPT SIZE*
OCI_ATTR_CACHE_MAX_SIZE /100

The default value for OCI_ATTR_CACHE_MAX_SIZE is 10%. The default value for
OCI_ATTR_CACHE_OPT_SIZE is 8M bytes.

Object Cache and Object Navigation 13-5

The Object Cache and Memory Management

The cache size attributes of the environment handle can be set with the OCIAttrSet()
call and retrieved with the OCIAttrGet() function. See the section "Environment
Handle Attributes” on page A-3 for more information.

Object Cache Operations

This section describes the most important functions the object cache provides to
operate on object copies. All of the OCI’s navigational and cache/object
management functions are listed in the section "OCI Navigational Functions" on
page 13-19.

Pinning and unpinning Pinning an object copy allows the application to access it in the
cache by dereferencing the REF to it.

Unpinning an object indicates to the cache that the object currently is not being
used. Objects should be unpinned when they are no longer needed to make them
eligible for implicit freeing by the cache, thus freeing up memory.

Freeing Freeing an object copy removes it from the cache and frees its memory.

Marking and unmarking Marking an object notifies the cache that an object copy has
been updated in the cache and the corresponding object must be updated in the
server when the object copy is flushed.

Unmarking an object removes the indication that the object has been updated.
Flushing Flushing an object writes local changes made to marked object copies in

the cache to the corresponding objects in the server. When this happens, the copies
in the object cache are unmarked.

Refreshing Refreshing an object copy in the cache replaces it with the latest value of
the corresponding object in the server.

Note: Pointers to top-level object memory are valid after a refresh. Pointers to
secondary-level memory (e.g., string text pointers, collections, etc.) may become
invalid after a refresh.

13-6 Oracle Call Interface Programmer’s Guide

The Object Cache and Memory Management

Operations for Loading and Removing Object Copies
Pin, unpin, and free functions are discussed in this section.

Pinning an Object Copy

When an application needs to dereference a REF in the object cache, it calls
OCIObjectPin(). This call dereferences the REF and pins the object copy in the cache.
As long as the object copy is pinned, it is guaranteed to be accessible by the
application. Another variation of OCIObjectPin() is OCIObjectArrayPin() which takes
an array of REFs, dereferences the REFs, and pins the object copies. Both
OCIObjectPin() and OCIObjectArrayPin() take a pin option, any, recent, or latest. The
datatype of the pin option is OCIPinOpt.

« Ifthe any (OCI_PIN_ANY) option is specified, the object cache immediately
returns the object copy that is already in the cache, if there is one. If no copy is
in the cache, the object cache loads the latest object copy from the database and
then returns the object copy. The any option is appropriate for read-only,
informational, fact, or meta objects, such as products, salesmen, vendors,
regions, parts, or offices. These objects usually do not change often, and even if
they change, the change does not affect the application.

« If the latest (OCI_PIN_LATEST) option is specified, the object cache loads into
the cache the latest object copy from the database and returns that copy unless
the object copy is locked in the cache, in which case the marked object copy is
returned immediately. If the object is already in the cache and not locked, the
latest object copy is loaded and overwrites the existing one. The latest option is
appropriate for operational objects, such as purchase orders, bugs, line items,
bank accounts, or stock quotes. These objects usually change often, and the
program cares to access these objects at their latest possible state.

« If the recent (OCI_PIN_RECENT) option is specified, there are two possibilities:

« Ifin the same transaction the object copy has been previously pinned using
the latest or recent option, the recent option becomes equivalent to the any
option.

« If the previous condition does not apply, the recent option becomes
equivalent to the latest option.

When the program pins an object, the program also specifies one of two possible
values for the pin duration: session or transaction. The datatype of the duration is
OClIDuration.

Object Cache and Object Navigation 13-7

The Object Cache and Memory Management

« If the pin duration is session (OCI_DURATION_SESSION), the object copy
remains pinned until the end of session (i.e., end of connection) or until it is
unpinned explicitly by the program (by calling OCIObjectUnpin()).

« If the pin duration is transaction (OCI_DURATION_TRANS), the object copy
remains pinned until the end of transaction or until it is unpinned explicitly.

When loading an object copy into the cache from the database, the cache effectively
executes

SELECT VALUE(t) FROM t WHERE REF(t) = r

where t is the object table storing the object, and r is the REF, and the fetched value
becomes the value of the object copy in the cache.

Since the object cache effectively executes a separate SELECT statement to load each
object copy into the cache, in a read-committed transaction, object copies are not
guaranteed to be read-consistent with each other.

In a serializable transaction, object copies pinned recent or latest are read-consistent
with each other because the SELECT statements to load these object copies are
executed based on the same database snapshot.

The object cache model is orthogonal to or independent of the Oracle transaction
model. The behavior of the object cache does not change based on the transaction
model, even though the objects that are retrieved from the server through the object
cache can be different when running the same program under different transaction
models (e.g., read committed versus serializable).

Unpinning an Object Copy

An object copy can be unpinned when it is no longer used by the program. It then
becomes available to be freed. An object copy must be both completely unpinned
and unmarked in order to become eligible to be implicitly freed by the cache when
the cache begins to run out of memory. To be completely unpinned, an object copy
that has been pinned N times must be unpinned N times.

An unpinned but marked object copy is not eligible for implicit freeing until the
object copy is flushed or explicitly unmarked by the user. However, the object cache
implicitly frees object copies only when it begins to run out of memory, so an
unpinned object copy need not necessarily be freed. If it has not been implicitly
freed and is pinned again (with the any or recent options), the program gets the
same object copy.

13-8 Oracle Call Interface Programmer’s Guide

The Object Cache and Memory Management

An application calls OCIObjectUnpin() or OCIObjectPinCountReset() to unpin an
object copy. In addition, a program can call OClICacheUnpin() to completely unpin
all object copies in the cache for a specific connection.

Freeing an Object Copy

Freeing an object copy removes it from the object cache and frees up its memory.
The cache supports two methods for freeing up memory:

1. Explicit freeing - A program explicitly frees or removes an object copy from the
cache by calling OCIlObjectFree() which takes an option to (forcefully) free either
a marked or pinned object copy. The program can also call OClCacheFree() to
free all object copies in the cache.

2. Implicit freeing - Should the cache begin to run out of memory, it implicitly
frees object copies that are both unpinned and unmarked. Unpinned objects
that are marked are eligible for implicitly freeing only when the object copy is
flushed or unmarked. For more information, see the section "Object Cache
Parameters" on page 13-5.

For memory management reasons, it is important that applications unpin objects
when they are no longer needed. This makes these objects available for aging out of
the cache, and makes it easier for the cache to free memory when necessary.

The OCI does not provide a function to free unreferenced objects in the client-side
cache.

Operations for Making Changes to Object Copies

Functions for marking and unmarking object copies are discussed in this section.

Marking an Object Copy

An object copy can be created, updated, and deleted locally in the cache. If the
object copy is created in the cache (by calling OCIObjectNew()), the object copy is
marked for insert by the object cache, so that the object will be inserted in the server
when the object copy is flushed.

If the object copy is updated in the cache, the user has to notify the object cache by
marking the object copy for update (by calling OCIObjectMarkUpdate()). When the
object copy is flushed, the corresponding object in the server is updated with the
value in the object copy.

If the object copy is deleted, the object copy is marked for delete in the object cache
(by calling OCIObjectMarkDelete()). When the object copy is flushed, the

Object Cache and Object Navigation 13-9

The Object Cache and Memory Management

corresponding object in the server is deleted. The memory of the marked object
copy is not freed until it is flushed and unpinned. When pinning an object marked
for delete, the program receives an error, as if the program is dereferencing a
dangling reference.

When a user makes multiple changes to an object copy, it is the final results of these
changes which are applied to the object in the server when the copy is flushed. For
example, if the user updates and deletes an object copy, the object in the server is
simply deleted when the object copy is flushed. Similarly, if an attribute of an object
copy is updated multiple times, it is the final value of this attribute which is
updated in the server when the object copy is flushed.

The program can mark an object copy as updated or deleted only if the object copy
has been loaded into the object cache.

Unmarking an Object Copy

A marked object copy can be unmarked in the object cache. By unmarking a marked
object copy, the changes that are made to the object copy are not flushed to the
server. The object cache does not undo the local changes that are already made to
the object copy.

A program calls OCIObjectUnmark() to unmark an object. In addition, a program can
call OCICacheUnmark() to unmark all object copies in the cache for a specific
connection.

Operations for Synchronizing Object Copies with Server

Cache/server synchronization operations (flushing, refreshing) are discussed in this
section.

Flushing Changes to Server

The local changes made to a marked object copy in the cache are written to the
server when the object copy is flushed. The program can call OCIObjectFlush() to
flush a single object copy or OClCacheFlush() to flush all marked object copies in the
cache or a list of selected marked object copies. OCICacheFlush() flushes objects
associated with a specific service context. See OClCacheFlush() on page 16-9.

After flushing an object copy, the object copy is unmarked. (Note that the object is
locked in the server after it is flushed; the object copy is therefore marked as locked
in the cache.)

Note: The OCICacheFlush() operation incurs only a single server roundtrip even
if multiple objects are being flushed.

13-10 Oracle Call Interface Programmer’s Guide

The Object Cache and Memory Management

If an application wishes to flush only dirty objects of a certain type, this
functionality is available through the callback function which is an optional
argument to the OCICacheFlush() call. The application can define a callback which
returns only the desired objects. In this case the operation still incurs only a single
server roundtrip for the flush.

In the default mode during OCICacheFlush(), the objects are flushed in the order that
they are marked dirty. The performance of this flush operation can be considerably
improved by setting the OClI_ATTR_CACHE_ARRAYFLUSH attribute in the
environment handle. See OCI_ATTR_CACHE_ARRAYFLUSH on page A-3

However, OCI_ATTR_CACHE_ARRAYFLUSH mode should be used only if the
order in which the objects are flushed is not important. During this mode, the dirty
objects are grouped together and sent to the server in a manner that allows the
server to efficiently update its tables. When this mode is enabled, it is not
guaranteed that the order in which the objects are marked dirty is preserved.

Refreshing an Object Copy

When refreshed, an object copy is reloaded with the latest value of the
corresponding object in the server. The latest value may contain changes made by
other committed transactions and changes made directly (not through the object
cache) in the server by the transaction. The program can change objects directly in
the server using SQL DML, triggers, or stored procedures.

To refresh a marked object copy, the program must first unmark the object copy. An
unpinned object copy is simply freed when it is refreshed (i.e., when the whole
cache is refreshed).

The program can call OClObjectRefresh() to refresh a single object copy or
OClCacheRefresh() to refresh all object copies in the cache, all object copies that are
loaded in a transaction (i.e., object copies that are pinned recent or pinned latest), or
a list of selected object copies.

When an object is flushed to the server, triggers can be fired to modify more objects
in the server. The same objects (modified by the triggers) in the object cache become
out-of-date, and must be refreshed before they can be locked or flushed.

The various meta-attribute flags and durations of an object are modified as
described in Table 13-1 after being refreshed:

Table 13-1 Object Attributes After Refresh

Object Attribute Status After Refresh

existent set to appropriate value

Object Cache and Object Navigation 13-11

The Object Cache and Memory Management

Table 13-1 Object Attributes After Refresh (Cont.)

Object Attribute Status After Refresh
pinned unchanged
flushed reset

allocation duration unchanged

pin duration unchanged

During refresh, the object cache loads the new data into the top-level memory of an
object copy, thus reusing the top level memory. The top-level memory of an object
copy contains the in-line attributes of the object. On the other hand, the memory for
the out-of-line attributes of an object copy may be freed and relocated, since the
out-of-line attributes can vary in size.

See Also: See the section "Memory Layout of an Instance” on page 13-16 for
more information about object memory.

Object Locking Operations

OCI functions related to object locking are discussed in this section.

Locking Objects For Update

The program can optionally call OCIObjectLock() to lock an object for update. This
call instructs the object cache to get a row lock on the object in the database. This is
similar to executing

SELECT NULL FROM t WHERE REF(f) =:r FOR UPDATE
where t is the object table storing the object to be locked and r is the REF

identifying the object. The object copy is marked locked in the object cache after
OCIObjectLock() is called.

To lock a graph or set of objects, several OCIObjectLock() calls are required, one per
object, or the array pin OCIObjectArrayPin() call can be used for better performance.

By locking an object, the application is guaranteed that the object in the cache is
up-to-date. No other transaction can modify the object while the application has it
locked.

At the end of a transaction, all locks are released automatically by the server. The
locked indicator in the object copy is reset.

13-12 Oracle Call Interface Programmer’s Guide

The Object Cache and Memory Management

Locking With the NOWAIT Option

In some cases, an application may attempt to lock an object which is currently
locked by another user. In this case the application is blocked.

In order to avoid blocking when trying to lock an object, an application can use the
OCIObjectLockNoWait() call instead of OCIObjectLock(). This function returns an
error if it is unable to lock an object immediately because it is locked by another
user.

The NOWAIT option is also available to pin calls by passing a value of
OCI_LOCK_X_ NOWAIT as the lock option parameter.

Implementing Optimistic Locking
There are two options available for implementing optimistic locking in an OCI
application.

Option 1
The first optimistic locking option is for OCI applications that run transactions at
the serializable level.

The Oracle OCI supports calls that allow you to dereference and pin objects in the
object cache without locking them, modify them in the cache (again without locking
them), and then flush them (the dirtied objects) to the database.

During the flush, if a dirty object has been modified by another committed
transaction since the beginning of your transaction, a non-serializable transaction
error is returned. If none of the dirty objects has been modified by any other any
other transaction since the beginning of your transaction, then the changes are
written to the database successfully.

Note: OCITransCommit() first flushes dirty objects into the database before
committing a transaction.

The above mechanism effectively implements an optimistic locking model.

Option2

Alternately, an application can enable object change detection mode. To do this, set
the OCI_ATTR_OBJECT_DETECTCHANGE attribute of the environment handle to
a value of TRUE.

When this mode has been activated, the application receives an ORA-08179 error
("concurrency check failed") when attempting to flush an object that has been
changed in the server by another committed transaction. The application can then
handle this error in an appropriate manner.

Object Cache and Object Navigation 13-13

The Object Cache and Memory Management

Commit and Rollback in Object Applications

When a transaction is committed (OCITransCommit()), all marked objects are flushed
to the server. If an object copy is pinned with a transaction duration, the object copy
is unpinned.

When a transaction is rolled back, all marked objects are unmarked. If an object
copy is pinned with a transaction duration, the object copy is unpinned.

Object Duration

In order to maintain free space in memory, the object cache attempts to reuse
objects’ memory whenever possible. The object cache reuses an object’s memory
when the object’s lifetime (allocation duration) expires or when the object’s pin
duration expires. The allocation duration is set when an object is created with
OCIObjectNew(), and the pin duration is set when an object is pinned with
OCIObjectPin(). The datatype of the duration value is OCIDuration.

Note: The pin duration for an object cannot be longer than the object’s
allocation duration.

When an object reaches the end of its allocation duration, it is automatically deleted
and its memory can be reused. The pin duration indicates when an object’s memory
can be reused, and memory is reused when the cache is full.

The OCI supports two predefined durations:
1. transaction (OCI_DURATION_TRANS)
2. session (OCI_DURATION_SESSION)

The transaction duration expires when the containing transaction ends (commits or
aborts). The session duration expires when the containing session/connection ends.

The application can explicitly unpin an object using OCIObjectUnpin. To minimize
explicit unpinning of individual objects, the application can unpin all objects
currently pinned in the object cache using the function OCICacheUnpin. By default,
all objects are unpinned at the end of the pin duration.

Durations Example

Table 13-2 illustrates the use of the different durations in an application. Four
objects are created or pinned in this application over the course of one connection
and three transactions. The first column indicates the action performed by the
database, and the second column indicates the function which performs the action.

13-14 Oracle Call Interface Programmer’s Guide

The Object Cache and Memory Management

The remaining columns indicate the states of the various objects at each point in the
application.

For example, Object 1 comes into existence at T2 when it is created with a
connection duration, and it exists until T19 when the connection is terminated.
Object 2 is pinned at T7 with a transaction duration, after being fetched at T6, and it
remains pinned until T9 when the transaction is committed.

Table 13-2 Example of Allocation and Pin Durations

Application Action Function Object 1 Object2 Object3 Object 4
Establish connection
Create object 1 - allocation ~ OCIObjectNew() exists
duration = connection
Start Transactionl OClITransStart() exists
SQL - fetch REF to object 2 exists
Pin objeg:t 2 - pin duration = OCIObjectPin() exists pinned
transaction
Process application data exists pinned
Ty Commit Transactionl OCITransCommit() exists unpinned
Tio Start Transaction2 OClITransStart() exists
T Create object 3 - allocation ~ OCIObjectNew() exists exists
duration = transaction
Tio SQL - fetch REF to object 4 exists exists
Tis Pin object 4 - OCIObjectPin() exists exists pinned
pin duration = connection
Tia Commit Transaction2 OClITransCommit() exists deleted pinned
Tis Terminate sessionl OClIDurationEnd() exists pinned
Tie Start Transaction3 OClITransStart() exists pinned
Ty Process application data exists pinned
Tig Commit Transaction3 OCITransCommit() exists pinned
Tig Terminate connection deleted unpinned

Object Cache and Object Navigation 13-15

The Object Cache and Memory Management

See Also: See the descriptions of OCIObjectNew() and OCIObjectPin() in
Chapter 16, "OCI Navigational and Type Functions" for specific information
about parameter values which can be passed to these functions.

See the section "Creating Objects” on page 10-32 for information about freeing
up an object’s memory before its allocation duration has expired.

Memory Layout of an Instance

An instance in memory is composed of a top-level memory chunk of the instance, a
top-level memory of the null indicator structure and optionally, a number of
secondary memory chunks. Consider a DEPARTMENT row type,

CREATE TYPE department AS OBJECT
(dep_name varchar2(20),
budget number,
manager person, * personis an object type */
employees person_array); /*varray of person objects */

and its C representation

struct department

{

OCIString * dep_name;

OCINumber budget;

struct person manager;

OClArray * employees;

)

typedef struct department department

Each instance of DEPARTMENT has a top-level memory chunk which contains the
top-level attributes such as dep_name, budget , manager and employees . The
attributes dep_name and employees are themselves actually pointers to the
additional memory (the secondary memory chunks). The secondary memory is
used to contain the actual data for the embedded instances (e.g. employees varray
and dep_name string).

The top-level memory of the null indicator structure contains the null statuses of the
attributes in the top level memory chunk of the instance. From the above example,
the top level memory of the null structure contains the null statuses of the attributes
dep_name, budget , manager and the atomic nullness of employees .

13-16 Oracle Call Interface Programmer’s Guide

Object Navigation

Object Navigation

This section discusses how OCI applications can navigate through graphs of objects
in the object cache.

Simple Object Navigation

In the example in the previous sections, the object retrieved by the application was a
simple object, whose attributes were all scalar values. If an application retrieves an
object with an attribute which is a REF to another object, the application can use
OCI calls to traverse the object graph and access the referenced instance.

As an example, consider the following declaration for a new type in the database:

CREATE TYPE person_tAS OBJECT
(name VARCHAR2(30),

mother REF person _t,

father REF person_f);

An object table of person_t objects is created with the following statement:
CREATE TABLE person_table OF person t;

Instances of the person_t type can now be stored in the typed table. Each instance
of person_t includes references to two other objects, which would also be stored
in the table. A NULL reference could represent a parent about whom information is
not available.

An object graph is a graphical representation of the REF links between object
instances. For example, Figure 13-2, "Object Graph of person_t Instances" on the
following page depicts an object graph of person_t instances, showing the links
from one object to another. The circles represent objects, and the arrows represent
references to other objects.

Object Cache and Object Navigation 13-17

Object Navigation

Figure 13-2 Object Graph of person_t Instances

!

personl

!

person3

person2

W) (&)= (&

person4 person5 person6

In this case, each object has links to two other instances of the same object. This
need not always be the case. Objects may have links to other object types. Other
types of graphs are also possible. For example, if a set of objects is implemented as a
linked list, the object graph could be viewed as a simple chain, where each object
references the previous and/or next objects in the linked list.

You can use the methods described earlier in this chapter to retrieve a reference to a
person_t instance and then pin that instance. The OCI provides functionality
which allows you to traverse the object graph by following a reference from one
object to another.

As an example, assume that an application fetches the personl instance in the
above graph and pins it as pers_1 . Once that has been done, the application can
access the mother instance of personl and pin itinto pers_2 through a second
pin operation:

OCIObjectPin(env, err, pers_1->mother, OCI_PIN_ANY, OCI_DURATION_TRANS,
OCI_LOCK_X, (OCIComplexObject*) 0, &pers_2);

13-18 Oracle Call Interface Programmer’s Guide

OCI Navigational Functions

In this case, an OCI fetch operation is not required to retrieve the second instance.

The application could then pin the father instance of personl , or it could operate
on the reference links of person2 .

Note: Attempting to pin a NULL or dangling REF results in an error on the
OCIObjectPin() call.

OCI Navigational Functions

This section provides a brief summary of the available OCI navigational functions.
The functions are grouped according to their general functionality. More detailed
descriptions of each of these functions can be found in Chapter 16, "OCI
Navigational and Type Functions".

The use of these functions is described in the earlier sections of this chapter.

The navigational functions follow a naming scheme which uses different prefixes
for different types of functionality:

OCICache*() - these functions are Cache operations

OCIObject*() - these functions are individual Object operations

Pin/Unpin/Free Functions
The following functions are available to pin, unpin, or free objects:

Function Purpose

OClICacheFree() Free all instances in the cache
OClCacheUnpin() Unpin persistent objects in cache or connection
OCIlObjectArrayPin() Pin an array of references

OCIObjectFree() Free and unpin a standalone instance
OCIObjectPin() Pin an object

OCIlObjectPinCountReset() Unpin an object to zero pin count
OCIlObjectPinTable() Pin a table object with a given duration
OCIObjectUnpin() Unpin an object

Object Cache and Object Navigation 13-19

OCI Navigational Functions

Flush and Refresh Functions
The following functions are available to flush modified objects to the server:

Function Purpose

OClICacheFlush() Flush modified persistent objects in cache to server
OCIObjectFlush() Flush a modified persistent object to the server
OClICacheRefresh() Refresh pinned persistent objects in the cache
OCIObjectRefresh() Refresh a single persistent object

Mark and Unmark Functions

The following functions allow an application to mark or unmark an object by
modifying one of its meta-attributes:

Function Purpose

OCIlObjectMarkDelByRef() Mark an object deleted given a REF

OClObjectMarkUpd() Mark an object as updated/dirty
OClObjectMarkDel() Mark an object deleted 7/ delete a value instance
OClICacheUnmark() Unmarks all objects in the cache
OCIObjectUnmark() Marks a given object as updated

OCIlObjectUnmarkByRef() Marks an object as updated, given a REF

Object Meta-Attribute Accessor Functions
The following functions allow an application to access the meta-attributes of an

object:

Function Purpose

OCIObjectExists() Get existence status of an instance
OCIObjectFlushStatus() Get the flush status of an instance
OCIObjectGetInd() Get null structure of an instance
OCIObjectlsDirtied() Has an object been marked as updated?
OCIObjectlsLocked() Is an object locked?

13-20 Oracle Call Interface Programmer’s Guide

OCI Navigational Functions

Other Functions
The following functions provide additional object functionality for OCI

applications:
Function Purpose
OCIObjectCopy() Copy one instance to another

OCIObjectGetObjectRef() Return reference to a given object
OCIObjectGetTypeRef() Get a reference to a TDO of an instance
OCIObjectLock() Lock a persistent object
OCIlObjectLockNoWait() Lock an object in NOWAIT mode

OCIlObjectNew() Create a new instance

Object Cache and Object Navigation 13-21

OCI Navigational Functions

13-22 Oracle Call Interface Programmer’s Guide

14

Using the Object Type Translator

This chapter discusses the Object Type Translator (OTT), which is used to map
database object types and named collection types to C structs for use in OCI and
Pro*C/C++ applications. The chapter includes the following sections:

OTT Overview

Using the Object Type Translator

The OTT Command Line

The Intype File

OTT Datatype Mappings

The Outtype File

Using the OTT with OCI Applications
OTT Reference

Note: For information specific to Pro*C/C++, please refer to the Pro*C/C++
Precompiler Programmer’s Guide.

Using the Object Type Translator 14-1

OTT Overview

OTT Overview

The OTT (Object Type Translator) assists in the development of C language
applications that make use of user-defined types in an Oracle server.

Through the use of SQL CREATE TYPE statements, you can create object types. The
definitions of these types are stored in the database, and can be used in the creation
of database tables. Once these tables are populated, an OCI or Pro*C/C++
programmer can access objects stored in the tables.

An application that accesses object data needs to be able to represent the data in a
host language format. This is accomplished by representing object types as C
structs. It would be possible for a programmer to code struct declarations by hand
to represent database object types, but this can be very time-consuming and
error-prone if many types are involved. The OTT simplifies this step by
automatically generating appropriate struct declarations. For Pro*C/C++, the
application only needs to include the header file generated by the OTT. In OCI, the
application also needs to call an initialization function generated by the OTT.

In addition to creating structs which represent stored datatypes, the OTT also
generates parallel indicator structs which indicate whether an object type or its
fields are null.

Using the Object Type Translator

The Object Type Translator (OTT) converts database definitions of object types and
named collection types into C struct declarations which can be included in an OCI
or Pro*C/C++ application.

You must explicitly invoke the OTT to translate database types to C representations.

On most operating systems, the OTT is invoked on the command line. It takes as
input an intype file, and it generates an outtype file and one or more C header files and
an optional implementation file. The following is an example of a command which
invokes the OTT:

ott userid=scottftiger intype=demoin.typ outtype=demoout.typ code=c hfile=demo.h

This command causes the OTT to connect to the database with username ’scott ’
and password 'tiger ’, and translate database types to C structs, based on
instructions in the intype file (demoin.typ). The resulting structs are output to
the header file (demo.h) for the host language (C) specified by the code
parameter. The outtype file (demoout.typ) receives information about the
translation.

14-2 Oracle Call Interface Programmer’s Guide

Using the Object Type Translator

Each of these parameters is described in more detail in later sections of this chapter.
Sample demoin.typ file:

CASE=LOWER
TYPE employee

Sample demoout.typ file:

CASE=LOWER

TYPE EMPLOYEE AS employee
VERSION ="$8.0"
HFILE =demo.h

In this example, the demoin.typ file contains the type to be translated, preceded
by TYPE (e.g., TYPE employee). The structure of the outtype file is similar to the
intype file, with the addition of information obtained by the OTT.

Once the OTT has completed the translation, the header file contains a C struct
representation of each type specified in the intype file, and a null indicator struct
corresponding to each type. For example, if the employee type listed in the intype
file was defined as

CREATE TYPE employee AS OBJECT
(

name VARCHAR2(30),

empno NUMBER,

depno NUMBER,

hiredate DATE,

salary NUMBER

)

the header file generated by the OTT (demo.h) includes, among other items, the
following declarations:

struct employee
{
OCIString * name;
OCINumber empno;
OCINumber deptno;
OClIDate hiredate;
OCINumber salary;
3
typedef struct emp_type emp_type;

struct employee_ind

Using the Object Type Translator 14-3

Using the Object Type Translator

3

OClind _atomic;
OClind name;
OClind empno;
OClind deptno;
OClInd hiredate;
OClInd salary;

typedef struct employee_ind employee_ind;

Note: Parameters in the intype file control the way generated structs are named.
In this example, the struct name employee matches the database type name
employee . The struct name is in lower case because of the line CASE=lower in
the intype file.

The datatypes which appear in the struct declarations (e.g., OCIString, OCIlInd)
are special datatypes. For more information about these types, see the section
"OTT Datatype Mappings" on page 14-9.

The following sections describe these aspects of using the OTT:

Creating Types in the Database
Invoking the OTT

The OTT Command Line

The Intype File

OTT Datatype Mappings

Null Indicator Structs

The Outtype File

The remaining sections of the chapter discuss the use of the OTT with OCI,
followed by a reference section which describes command line syntax, parameters,
intype file structure, nested #include file generation, schema names usage, default
name mapping, and restrictions.

Creating Types in the Database

The first step in using the OTT is to create object types or named collection types
and store them in the database. This is accomplished through the use of the SQL
CREATE TYPE statement.

See Also: For information about the CREATE TYPE statement, refer to the
Oracle8i SQL Reference.

14-4 Oracle Call Interface Programmer’s Guide

The OTT Command Line

Invoking the OTT

The next step is to invoke the OTT. OTT parameters can be specified on the
command line, or in a file called a configuration file. Certain parameters can also be
specified in the INTYPE file.

If a parameter is specified in more than one place, its value on the command line
will take precedence over its value in the INTYPE file, which takes precedence over
its value in a user-defined configuration file, which takes precedence over its value
in the default configuration file.

Command Line

Parameters (also called options) set on the command line override any set
elsewhere. See the next section, "The OTT Command Line", for more information.

Configuration File

A configuration file is a text file that contains OTT parameters. Each non-blank line
in the file contains one parameter, with its associated value or values. If more than
one parameter is put on a line, only the first one will be used. No whitespace may
occur on any non-blank line of a configuration file.

A configuration file may be named on the command line. In addition, a default
configuration file is always read. This default configuration file must always exist,
but can be empty. The name of the default configuration file is ottcfg.cfg, and the
location of the file is system-specific. For example, on Solaris, the file specification is
$ORACLE_HOME/precomp/admin/ottcfg.cfg. See your platform-specific
documentation for further information.

INTYPE File
The INTYPE file gives a list of user defined types for the OTT to translate.

The parameters CASE, HFILE, INITFUNC, and INITFILE can appear in the INTYPE
file. See "The Intype File" on page 14-8 for more information.

The OTT Command Line

On most platforms, the OTT is invoked on the command line. You can specify the
input and output files, and the database connection information, among other
things. Consult your platform-specific documentation to see how to invoke the OTT
on your platform.

Using the Object Type Translator 14-5

The OTT Command Line

OoTT

userid

intype

outtype

Example 1 The following is an example of an OTT invocation from the command
line:

ott userid=bren/bigkitty intype=demoin.typ outtype=demoouttyp code=c hfle=demo.h

Note: No spaces are permitted around the equals sign (=).

The following sections describe the elements of the command line used in this
example.

For a detailed discussion of the various OTT command line options, please refer to
the section "OTT Reference" on page 14-22.

Causes the OTT to be invoked. It must be the first item on the command line.

Specifies the database connection information which the OTT will use.

In Example 1, the OTT will attempt to connect with username ’'bren ’ and password
‘bigkitty .

Specifies the name of the intype file which will be used.

In Example 1, the name of the intype file is specified as demoin.typ

Specifies the name of the outtype file. When the OTT generates the C header file, it
also writes information about the translated types into the outtype file. This file
contains an entry for each of the types which is translated, including its version
string, and the header file to which its C representation was written.

In "Example 1" on page 14-6, the name of the outtype file is specified as
demoout.typ

Note: If the file specified by the outtype keyword already exists, it is
overwritten when the OTT runs. If the name of the outtype file is the same as
the name of the intype file, the outtype information overwrites the intype file.

14-6 Oracle Call Interface Programmer’s Guide

The OTT Command Line

code

hfile

initfile

initfunc

Specifies the target language for the translation. The following options are available:
« C (equivalent to ANSI_C)

« ANSI_C (for ANSI C)

« KR_C (for Kernighan & Ritchie C)

There is currently no default option, so this parameter is required.

Struct declarations are identical in both C dialects. The style in which the
initialization function defined in the INITFILE file is defined depends on whether
KR_C is used. If the INITFILE option is not used, all three options are equivalent.

Specifies the name of the C header file to which the generated structs should be
written.

In "Example 1" on page 14-6, the generated structs will be stored in a file called
demo.h.

Note: If the file specified by the hfile keyword already exists, it will be
overwritten when the OTT runs, with one exception: if the contents of the file as
generated by the OTT are identical to the previous contents of the file, the OTT
will not actually write to the file. This preserves the modification time of the file
so that UNIX make and similar facilities on other platforms do not perform
unnecessary recompilations.

Specifies the use of the C source file into which the type initialization function is to
be written.

Note: If the file specified by the initfile keyword already exists, it will be
overwritten when the OTT runs, with one exception: if the contents of the file as
generated by the OTT are identical to the previous contents of the file, the OTT
will not actually write to the file. This preserves the modification time of the file
so that UNIX make and similar facilities on other platforms do not perform
unnecessary recompilations.

Specifies the name of the initialization function to be defined in the initfile.

Using the Object Type Translator 14-7

The Intype File

If this parameter is not used and an initialization function is generated, the name of
the initialization function will be the same as the base name of the initfile.

The Intype File

When running the OTT, the INTYPE file tells the OTT which database types should
be translated, and it can also control the naming of the generated structs. The intype
file can be a user-created file, or it may be the outtype file of a previous invocation
of the OTT. If the INTYPE parameter is not used, all types in the schema to which
the OTT connects are translated.

The following is a simple example of a user-created intype file:

CASE=LOWER
TYPE employee
TRANSLATE SALARY$ AS salary
DEPTNO AS department
TYPE ADDRESS
TYPE item
TYPE "Person”
TYPE PURCHASE_ORDERASPp_0

The first line, with the CASE keyword, indicates that generated C identifiers should
be in lower case. However, this CASE option is only applied to those identifiers that
are not explicitly mentioned in the intype file. Thus, employee and ADDRESS would
always result in C structures employee and ADDRESSrespectively. The members
of these structures would be named in lower case.

See Also: See the description of "case” on page 14-27 for further information
regarding the CASE option.

The lines which begin with the TYPE keyword specify which types in the database
should be translated: in this case, the EMPLOYEFADDRESSITEM, PERSONand
PURCHASE_ORDE{Rpes.

The TRANSLATE...AS keywords specify that the name of an object attribute should
be changed when the type is translated into a C struct. In this case, the SALARY$
attribute of the employee type is translated to salary

The AS keyword in the final line specifies that the name of an object type should be
changed when it is translated into a struct. In this case, the purchase_order
database type is translated into a struct called p_o.

If AS is not used to translate a type or attribute name, the database name of the type
or attribute will be used as the C identifier name, except that the CASE option will

14-8 Oracle Call Interface Programmer’s Guide

OTT Datatype Mappings

be observed, and any characters that cannot be mapped to a legal C identifier
character will be replaced by an underscore. Reasons for translating a type or
attribute name include:

« The name contains characters other than letters, digits, and underscores
« The name conflicts with a C keyword

« The type name conflicts with another identifier in the same scope. This may
happen, for example, if the program uses two types with the same name from
different schemas.

« The programmer prefers a different name

The OTT may need to translate additional types which are not listed in the intype
file. This is because the OTT analyzes the types in the intype file for type
dependencies before performing the translation, and translates other types as
necessary. For example, if the ADDRESStype were not listed in the intype file, but
the "Person” type had an attribute of type ADDRESSthe OTT would still translate
ADDRES®ecause it is required to define the "Person" type.

A normal case-insensitive SQL identifier can be spelled in any combination of
upper and lower case in the INTYPE file, and is not quoted.

Use quotation marks, such as TYPE "Person", to reference SQL identifiers that have
been created in a case-sensitive manner, e.g., CREATE TYPE "Person”. A SQL
identifier is case-sensitive if it was quoted when it was declared. Quotation marks
can also be used to refer to a SQL identifier that is an OTT-reserved word, e.g.,
TYPE "CASE". When a name is quoted for this reason, the quoted name must be in
upper case if the SQL identifier was created in a case-insensitive manner, e.g.,
CREATE TYPE Case. If an OTT-reserved word is used to refer to the name of a SQL
identifier but is not quoted, the OTT will report a syntax error in the INTYPE file.

See Also: For a more detailed specification of the structure of the intype file and
the available options, refer to the section "Structure of the Intype File" on
page 14-29.

OTT Datatype Mappings

When the OTT generates a C struct from a database type, the struct contains one
element corresponding to each attribute of the object type. The datatypes of the
attributes are mapped to types which are used in Oracle’s object data types. The
datatypes found in Oracle include a set of predefined, primitive types, and provide
for the creation of user-defined types, like object types and collections.

Using the Object Type Translator 14-9

OTT Datatype Mappings

The set of predefined types in Oracle includes standard types which are familiar to
most programmers, including number and character types. It also includes new
datatypes which were introduced with Oracle8 (e.g., BLOB, CLOB).

Oracle also includes a set of predefined types which are used to represent object
type attributes in C structs. As an example, consider the following object type
definition, and its corresponding OTT-generated struct declarations:

CREATE TYPE employee AS OBJECT
(name VARCHAR2(30),

empno NUMBER,

depno NUMBER,

hiredate DATE,

salary$ NUMBER);

The OTT output, assuming CASE=LOWER and no explicit mappings of type or
attribute names, is:

struct employee
{ OCIString * name;
OCINumber empno;
OCINumber department;
OClIDate hiredate;
OCINumber salary ;
J
typedef structemp_type emp_type;
struct employee_ind
{
OClind _atomic;
OClInd name;
OClind empno;
OClind department;
OClInd hiredate;
OClind salary_;
}
typedef struct employee_ind employee_ind;

The indicator struct (struct employee_ind) is explained in the section, "Null Indicator
Structs" on page 14-15.

The datatypes in the struct declarations—OCIString, OCINumber, OClIDate,
OClInd—are used here to map the datatypes of the object type attributes. The
number datatype of the empno attribute, maps to the OCINumber datatype, for
example. These datatypes can also be used as the types of bind and define variables.

14-10 Oracle Call Interface Programmer’s Guide

OTT Datatype Mappings

Mapping Object Datatypes to C

This section describes the mappings of Oracle object attribute types to C types
generated by the OTT. The following section "OTT Type Mapping Example" on
page 14-12 includes examples of many of these different mappings. The following
table lists the mappings from types which can be used as attributes to object
datatypes which are generated by the OTT.

Table 14-1 Object Datatype Mappings for Object Type Attributes

Object Attribute Types C Mapping
VARCHAR2(N) OCIString *
VARCHAR(N) OCIString *
CHAR(N), CHARACTER(N) OCIString *
NUMBER, NUMBER(N), NUMBER(N,N) OCINumber
NUMERIC, NUMERIC(N), NUMERIC(N,N) OCINumber
REAL OCINumber
INT, INTEGER, SMALLINT OCINumber
FLOAT, FLOAT(N), DOUBLE PRECISION OCINumber
DEC, DEC(N), DEC(N,N) OCINumber
DECIMAL, DECIMAL(N), DECIMAL(N,N) OCINumber
DATE OClIDate
BLOB OCiBlobLocator *
CLOB OCIClobLocator *
BFILE OCIBfileLocator *
Nested Object Type C name of the nested object type
REF declared using typedef; equivalent
to OCIRef *
See the following example.
RAW(N) OCIRaw *

Using the Object Type Translator 14-11

OTT Datatype Mappings

The next table shows the mappings of named collection types to Oracle object
datatypes generated by the OTT:

Table 14-2 Object Datatype Mappings for Collection Types

Named Collection Type C Mapping

VARRAY declared using typedef; equivalent to
OCIArray *
See the following example.

NESTED TABLE declared using typedef; equivalent to
OClTable *

See the following example.

Note: For REF, VARRAY, and NESTED TABLE types, the OTT generates a
typedef. The type declared in the typedef is then used as the type of the data
member in the struct declaration. For examples, see the next section, "OTT Type
Mapping Example".

If an object type includes an attribute of a REF or collection type, a typedef for the
REF or collection type is first generated. Then the struct declaration corresponding
to the object type is generated. The struct includes an element whose type is a
pointer to the REF or collection type.

If an object type includes an attribute whose type is another object type, the OTT
first generates the nested type. It then maps the object type attribute to a nested
struct of the type of the nested object type.

The Oracle C datatypes to which the OTT maps non-object database attribute types
are structures, which, except for OCIDate, are opaque.

OTT Type Mapping Example

The following example is presented to demonstrate the various type mappings
created by the OTT.

Given the following database types
CREATE TYPE my_varray AS VARRAY(5) of integer;

CREATE TYPE object_type AS OBJECT
(object name VARCHAR2(20));

CREATE TYPE my_table AS TABLE OF object_type;

14-12 Oracle Call Interface Programmer’s Guide

OTT Datatype Mappings

CREATE TYPE many_types AS OBJECT
(the_varchar VARCHAR2(30),
the char CHAR(3),
the blob BLOB,
the clob CLOB,
the_object object type,
another_ref REF other_type,
the ref ~ REFmany_types,
the varay my varay,
the table my_table,
the date DATE,
the num NUMBER,
the raw RAW(255));

and an intype file which includes

CASE =LOWER
TYPE many_types

the OTT would generate the following C structs:

Note: Comments are provided here to help explain the structs. These comments
are not part of actual OTT output.

#ifndef MYFILENAME_ORACLE
#define MYFILENAME_ORACLE

#ifndef OCI_ORACLE
#include <oci.h>
#Hendif

typedef OCIRef many _types_ref;
typedef OCIRef object _type ref;

typedef OClAmray my_varay; Fused in many_types*/
typedef OCITable my_table; Fused inmany_types*/
typedef OCIRef other_type_ref;

struct object_type Fused inmany_types*

OCIString * object_name;
%
typedef struct object_type object_type;

struct object_type_ind Findicator struct for*/

{ Fobject_types*/
OClind _atomic;

Using the Object Type Translator 14-13

OTT Datatype Mappings

OCliInd object_name;
¥
typedef struct object type_ind object_type ind;

structmany_types

{
OCIsting* the_varchar;
OCISting* the_char;
OCIBlobLocator* the_blob;
OCIClobLocator* the_clob;
struct object_type the_object;
other_type_ref* another_ref;
many_types_ref* the_ref;
my varmay* the vanay;,
my table* the table;
OClIDate the_date;
OCINumber the_num;
OCIRaw* the_raw;

¥

typedef struct many _types many_types;

structmany_types _ind Findicator struct for*/
{ Fmany_types/
OClInd _atomic;
OClindthe_varchar;
OClindthe_char;
OClind the_blob;
OClind the_clob;
struct object_type_ind the_object; Fnested*/
OCliInd another_ref,;
OClind the_ref;
OClind the_varray;
OClind the_table;
OClind the_date;
OClind the_num;
OClind the_raw;,
3
typedef struct many _types_ind many_types _ind;

#endif

Notice that even though only one item was listed for translation in the intype file,
two object types and two named collection types were translated. As described in
the section "The OTT Command Line" on page 14-5, the OTT automatically

14-14 Oracle Call Interface Programmer’s Guide

OTT Datatype Mappings

translates any types which are used as attributes of a type being translated, in order
to complete the translation of the listed type.

This is not the case for types which are only accessed by a pointer or ref in an object
type attribute. For example, although the many_types type contains the attribute
another_ref REF other_type , adeclaration of struct other_type was not
generated.

This example also illustrates how typedefs are used to declare VARRAY, NESTED
TABLE, and REF types.

The typedefs occur near the beginning:

typedef OCIRef many _types_ref;
typedef OCIRef object _type ref;
typedef OClAray my_varay;
typedef OCITable my_table;
typedef OCIRef other_type_ref;

In the struct many_types, the VARRAY, NESTED TABLE, and REF attributes are
declared:

struct many _types

{ .
other_type ref* another ref;

many_types_ref* the_ref;
my vamay* the varay;,
my table* the table;

Null Indicator Structs

Each time the OTT generates a C struct to represent a database object type, it also
generates a corresponding null indicator struct. When an object type is selected into
a C struct, null indicator information may be selected into a parallel struct.

For example, the following null indicator struct was generated in the example in the
previous section:

structmany_types _ind

{
OClInd _atomic;

OClind the_varchar;
OClindthe_char;
OClind the_blob;

Using the Object Type Translator 14-15

The Outtype File

OClind the_clob;

struct object_type_ind the_object;

OClInd ancther_ref;

OClind the_ref;

OClind the_varray;

OClind the_table;

OClind the_date;

OClind the_num;

OClind the_raw,

¥

typedef struct many_types_ind many_types_ind;

The layout of the null struct is important. The first element in the struct (_atomic)
is the atomic null indicator. This value indicates the null status for the object type as a
whole. The atomic null indicator is followed by an indicator element corresponding
to each element in the OTT-generated struct representing the object type.

Notice that when an object type contains another object type as part of its definition
(in the above example it is the object_type attribute), the indicator entry for that
attribute is the null indicator struct (object_type_ind) corresponding to the
nested object type.

VARRAYs and NESTED TABLEs contain the null information for their elements.
The datatype for all other elements of a null indicator struct is OClInd.

See Also: For more information about atomic nullness, refer to the section
"Nullness" on page 10-29.

The Outtype File

The outtype file is named on the OTT command line. When the OTT generates the
C header file, it also writes the results of the translation into the outtype file. This
file contains an entry for each of the types which is translated, including its version
string, and the header file to which its C representation was written.

The outtype file from one OTT run can be used as the intype file for a subsequent
OTT invocation.

For example, given the simple intype file used earlier in this chapter

CASE-LOWER
TYPE employee
TRANSLATE SALARY$ AS salary
DEPTNO AS department
TYPE ADDRESS
TYPE item

14-16 Oracle Call Interface Programmer’s Guide

The Outtype File

TYPE "Person”
TYPEPURCHASE _ORDERASP 0

the user has chosen to specify the case for OTT-generated C identifiers, and has
provided a list of types which should be translated. In two of these types, naming
conventions are specified.

The following is an example of what the outtype file might look like after running
the OTT:

CASE=LOWER
TYPE EMPLOYEE AS employee
VERSION ="$8.0"
HFILE =demo.h
TRANSLATE SALARY$ AS salary
DEPTNO AS department
TYPE ADDRESS AS ADDRESS
VERSION ="$8.0"
HFILE =demo.h
TYPE ITEM ASitem
VERSION ="$8.0"
HFILE =demo.h
TYPE "Person" AS Person
VERSION ="$8.0"
HFILE =demo.h
TYPE PURCHASE_ORDERASPp 0
VERSION ="$8.0"
HFILE =demo.h

When examining the contents of the outtype file, you might discover types listed
which were not included in the intype specification. For example, if the intype file
only specified that the person type was to be translated

CASE=LOWER
TYPE PERSON

and the definition of the person type includes an attribute of type address , then
the outtype file will include entries for both PERSONind ADDRESSThe person
type cannot be translated completely without first translating address .

As described in the section "The OTT Command Line" on page 14-5, the OTT
analyzes the types in the intype file for type dependencies before performing the
translation, and translates other types as necessary.

Using the Object Type Translator 14-17

Using the OTT with OCI Applications

Using the OTT with OCI Applications

C header and implementation files that have been generated by the OTT can be
used by an OCI application that accesses objects in an Oracle server. The header file
is incorporated into the OCI code with an #include statement.

Once the header file has been included, the OCI application can access and
manipulate object data in the host language format.

Figure 14-1, "Using the OTT with OCI" shows the steps involved in using the OTT

with the OCI:

1. SQL is used to create type definitions in the database.

2. The OTT generates a header file containing C representations of object types
and named collection types. It also generates an implementation file, as named
with the INITFILE option.

3. The application is written. User-written code in the OCI application declares
and calls the INITFUNC function.

4. The header file is included in an OCI source code file.

5. The OCl application, including the implementation file generated by the OTT, is
compiled and linked with the OCI libraries.

6. The OCI executable is run against the Oracle server.

14-18 Oracle Call Interface Programmer’s Guide

Using the OTT with OCI Applications

Figure 14-1 Using the OTT with OCI

SQL DDL

0

>
Type
* #include
ORACLE _
Database Implementation Header — OCI source
File File File

Object File —l Object File
OCl library > Linker 44—

\

Executable

Accessing and Manipulating Objects with OCI

Within the application, the OCI program can perform bind and define operations
using program variables declared to be of types which appear in the OTT-generated
header file.

For example, an application might fetch a REF to an object using a SQL SELECT
statement and then pin that object using the appropriate OCI function. Once the
object has been pinned, its attribute data can be accessed and manipulated with
other OCI functions.

Using the Object Type Translator 14-19

Using the OTT with OCI Applications

OCI includes a set of datatype mapping and manipulation functions which are
specifically designed to work on attributes of object types and named collection

types.
The following are examples of the available functions:

« OCIStringSize() gets the size of an OCIString string.

« OCINumberAdd() adds two OCINumber numbers together.
« OCIlLoblsEqual() compares two LOB locators for equality.

« OCIRawPtr() gets a pointer to an OCIRaw raw datatype.

« OCICollAppend() appends an element to a collection type (OCIlArray or
OClITable).

« OCITableFirst() returns the index for the first existing element of a nested table
(OClITable).

« OCIReflsNull() tests if a REF (OCIRef) is null

These functions are described in detail in other chapters of this guide.

Calling the Initialization Function

The OTT generates a C initialization function if requested. The initialization
function tells the environment, for each object type used in the program, which
version of the type is used. You may specify a name for the initialization function
when invoking the OTT with the INITFUNC option, or may allow the OTT to select
a default name based on the name of the implementation file (INITFILE) containing
the function.

The initialization function takes two arguments, an environment handle pointer and
an error handle pointer. There is typically a single initialization function, but this is
not required. If a program has several separately compiled pieces requiring
different types, you may want to execute the OTT separately for each piece
requiring, for each piece, one initialization file, containing an initialization function.

After an environment handle is created by an explicit OCI object call, for example,
by calling OCIEnvInit(), you must also explicitly call the initialization functions. All
the initialization functions must be called for each explicitly created environment
handle. This gives each handle access to all the Oracle datatypes used in the entire
program.

If an environment handle is implicitly created via embedded SQL statements, such
as EXEC SQL CONTEXT USE and EXEC SQL CONNECT, the handle is initialized

14-20 Oracle Call Interface Programmer’s Guide

Using the OTT with OCI Applications

implicitly, and the initialization functions need not be called. This is only relevant
when Pro*C/C++ is being combined with OCI applications.

The following example shows an initialization function.
Given an intype file, ex2c.typ, containing

TYPE BREN.PERSON
TYPE BREN.ADDRESS

and the command line

ott userid=bren/bigkitty intype=ex2c outtype=ex2co hfile=ex2ch.h
initfile=ex2cv.c

the OTT generates the following to the file ex2cv.c:

#indef OCl ORACLE
#include <oci.h>
#endif

sword ex2cv(OCIENV *env, OCIEmor *err)
{
sword status = OCITypeVTlInit(env, err);
if (status == OCl_SUCCESS)
status = OCITypeVTInsert(env, er,
"BREN", 5,
"PERSON", 6,
"$8.0",4);
if (Status == OCI_SUCCESS)
status = OCITypeVTInsert(env, err,
"BREN", 5,
"ADDRESS", 7,
"$8.0",4);
retum status;
}

The function ex2cv creates the type version table and inserts the types
BREN.PERSON and BREN.ADDRESS.

If a program explicitly creates an environment handle, all the initialization functions
must be generated, compiled, and linked, because they must be called for each
explicitly created handle. If a program does not explicitly create any environment
handles, initialization functions are not required.

A program that uses an OTT-generated header file must also use the initialization
function generated at the same time. More precisely, if a header file generated by

Using the Object Type Translator 14-21

OTT Reference

the OTT is included in a compilation that generates code that is linked into program
P, and an environment handle is explicitly created somewhere in program P, the
implementation file generated by the same invocation of the OTT must also be
compiled and linked into program P. Doing this correctly is the user’s responsibility.

Tasks of the Initialization Function

The C initialization function supplies version information about the types processed
by the OTT. It adds to the type-version table the name and version identifier of
every OTT-processed object datatype.

The type-version table is used by Oracle’s type manager to determine which
version of a type a particular program uses. Different initialization functions
generated by the OTT at different times may add some of the same types to the type
version table. When a type is added more than once, Oracle ensures the same
version of the type is registered each time.

It is the OCI programmer’s responsibility to declare a function prototype for the
initialization function, and to call the function.

Note: In the current release of Oracle, each type has only one version.
Initialization of the type version table is required only for compatibility with
future releases of Oracle.

OTT Reference

Behavior of the OTT is controlled by parameters which can appear on the OTT
command line or in a CONFIG file. Certain parameters may also appear in the
INTYPE file.

This section provides detailed information about the following topics:
« OTT Command Line Syntax

« OTT Parameters

=« Where OTT Parameters Can Appear

« Structure of the Intype File

« Nested #include File Generation

« SCHEMA_NAMES Usage

« Default Name Mapping

= Restriction

14-22 Oracle Call Interface Programmer’s Guide

OTT Reference

The following conventions are used in this chapter to describe OTT syntax:
« ltalic strings are variables or parameters to be supplied by the user.
« Strings in UPPERCASE are entered as shown, except that case is not significant.

« OTT keywords are listed in a lower-case monospaced font in examples and
headings, but are printed in upper-case in text to make them more distinctive.

« Square brackets [...] enclose optional items.

« Anellipsis (...) immediately following an item (or items enclosed in brackets)
means that the item can be repeated any number of times.

« Punctuation symbols other than those described above are entered as shown.
These include ’.’, ’@’, etc.

OTT Command Line Syntax

The OTT command-line interface is used when explicitly invoking the OTT to
translate database types into C structs. This is always required when developing
OCI applications that use objects.

An OTT command line statement consists of the keyword OTT, followed by a list of
OTT parameters.

The parameters which can appear on an OTT command line statement are as
follows:

[userid= usemame / password [@db_name]]
[nype= in flename]

outtype= out_flename

code=CJANS| CIKR_C

hfle= flename |

[emype= flename]

[config= filename]

[initfile= flename]

[initfunc= flename]

Using the Object Type Translator 14-23

OTT Reference

[case=SAME|LOWER|UPPER|OPPOSITE]
[schema_name=ALWAYS|IF_NEEDED|FROM_INTYPE]
Note: Generally, the order of the parameters following the OTT command does
not matter, and only the OUTTYPE and CODE parameters are always required.

The HFILE parameter is almost always used. If omitted, HFILE must be
specified individually for each type in the INTYPE file. If the OTT determines
that a type not listed in the INTYPE file must be translated, an error will be
reported. Therefore, it is safe to omit the HFILE parameter only if the INTYPE
file was previously generated as an OTT OUTTYPE file.

If the INTYPE file is omitted, the entire schema will be translated. See the
parameter descriptions in the following section for more information.

The following is an example of an OTT command line statement:
OTT userid=marc/cayman intype=in.typ outtype=out.typ code=c hfle=demo.h
emype=demo.tis case=lower

Each of the OTT command line parameters is described in the following sections.

OTT Parameters
Enter parameters on the OTT command line using the following format:
parameter =value
where parameter is the literal parameter string and value is a valid parameter setting.
The literal parameter string is not case sensitive.
Separate command-line parameters using either spaces or tabs.

Parameters can also appear within a configuration file, but, in that case, no
whitespace is permitted within a line, and each parameter must appear on a
separate line. Additionally, the parameters CASE, HFILE, INITFUNC, and
INITFILE can appear in the INTYPE file.

userid

The USERID parameter specifies the Oracle username, password, and optional
database name (Net8 database specification string). If the database name is omitted,
the default database is assumed. The syntax of this parameter is:

userid= usemame | password [@db_name]

14-24 Oracle Call Interface Programmer’s Guide

OTT Reference

If this is the first parameter, "USERID=" may be omitted as shown here:
OTT usemame | password...

The USERID parameter is optional. If omitted, the OTT automatically attempts to
connect to the default database as user OPS$username, where username is the user’s
operating system user name.

intype
The INTYPE parameter specifies the name of the file from which to read the list of
object type specifications. The OTT translates each type in the list.

The syntax for this parameter is
intype= fllename

"INTYPE="may be omitted if USERID and INTYPE are the first two parameters, in
that order, and "USERID="is omitted. If INTYPE is not specified, all types in the
user’s schema will be translated.

OTT usemame | password flename...

The INTYPE file can be thought of as a makefile for type declarations. It lists the
types for which C struct declarations are needed. The format of the INTYPE file is
described in section "Structure of the Intype File" on page 14-29.

If the file name on the command line or in the INTYPE file does not include an
extension, a platform-specific extension such as "TYP" or ".typ" will be added.

outtype

The name of a file into which the OTT will write type information for all the object
datatypes it processes. This includes all types explicitly named in the INTYPE file,
and may include additional types that are translated because they are used in the
declarations of other types that need to be translated. This file may be used as an
INTYPE file in a future invocation of the OTT.

outtype= filename

If the INTYPE and OUTTYPE parameters refer to the same file, the new INTYPE
information replaces the old information in the INTYPE file. This provides a
convenient way for the same INTYPE file to be used repeatedly in the cycle of
altering types, generating type declarations, editing source code, precompiling,
compiling, and debugging.

Using the Object Type Translator 14-25

OTT Reference

OUTTYPE must be specified.

If the file name on the command line or in the INTYPE file does not include an
extension, a platform-specific extension such as "TYP" or ".typ" will be added.

code

This is the desired host language for OTT output, which may be specified as
CODE=C, CODE=KR_C, or CODE=ANSI_C. "CODE=C" is equivalent to
"CODE=ANSI_C".

CODE=CKR_CJANSI C

There is no default value for this parameter; it must be supplied.

initfile

The INITFILE parameter specifies the name of the file where the OTT-generated
initialization file is to be written. The initialization function will not be generated if
this parameter is omitted.

For Pro*C/C++ programs, the INITFILE is not necessary, because the SQLLIB
run-time library performs the necessary initializations. An OCI program user must
compile and link the INITFILE file(s), and must call the initialization function(s)
when an environment handle is created.

If the file name of an INITFILE on the command line or in the INTYPE file does not
include an extension, a platform-specific extension such as "C" or ".c" will be added.

initfle= flename

initfunc

The INITFUNC parameter is only used in OCI programs. It specifies the name of
the initialization function generated by the OTT. If this parameter is omitted, the
name of the initialization function is derived from the name of the INITFILE.

intfunc= filename

hfile

The name of the include (.h) file to be generated by the OTT for the declarations of
types that are mentioned in the INTYPE file but whose include files are not
specified there. This parameter is required unless the include file for each type is
specified individually in the INTYPE file. This parameter is also required if a type

14-26 Oracle Call Interface Programmer’s Guide

OTT Reference

not mentioned in the INTYPE file must be generated because other types require it,
and these other types are declared in two or more different files.

If the file name of an HFILE on the command line or in the INTYPE file does not
include an extension, a platform-specific extension such as "H" or ".h" will be added.

hile= flename

config

The CONFIG parameter specifies the name of the OTT configuration file, which lists
commonly used parameter specifications. Parameter specifications are also read
from a system configuration file in a platform-dependent location. All remaining
parameter specifications must appear on the command line, or in the INTYPE file.

config= flename

Note: A CONFIG parameter is not allowed in the CONFIG file.

errtype

If this parameter is supplied, a listing of the INTYPE file is written to the ERRTYPE
file, along with all informational and error messages. Informational and error
messages are sent to the standard output whether or not ERRTYPE is specified.

Essentially, the ERRTYPE file is a copy of the INTYPE file with error messages
added. In most cases, an error message will include a pointer to the text which
caused the error.

If the file name of an ERRTYPE on the command line or in the INTYPE file does not
include an extension, a platform-specific extension such as "TLS" or ".tls" will be
added.

emype= fiename

case

This parameter affects the case of certain C identifiers generated by the OTT. The
possible values of CASE are SAME, LOWER, UPPER, and OPPOSITE. If CASE =
SAME, the case of letters is not changed when converting database type and
attribute names to C identifiers. If CASE=LOWER, all uppercase letters are
converted to lowercase. If CASE=UPPER, all lowercase letters are converted to
uppercase. If CASE=OPPOSITE, all uppercase letters are converted to lower-case,
and vice-versa.

CASE=[SAME|LOWER|UPPER|OPPOSITE]

Using the Object Type Translator 14-27

OTT Reference

This option affects only those identifiers (attributes or types not explicitly listed) not
mentioned in the INTYPE file. Case conversion takes place after a legal identifier
has been generated.

Note: The case of the C struct identifier for a type specifically mentioned in the
INTYPE is the same as its case in the INTYPE file. For example, if the INTYPE
file includes the following line;

TYPE Worker

then the OTT generates
struct Worker {..;

On the other hand, if the INTYPE file were written as
TYPEWOrKeR

the OTT generates
structwOrKeR {..};

following the case of the INTYPE file.

Case-insensitive SQL identifiers not mentioned in the INTYPE file will appear in
upper case if CASE=SAME, and in lower case if CASE=OPPOSITE. A SQL identifier
is case-insensitive if it was not quoted when it was declared.

schema_names

This option offers control in qualifying the database name of a type from the default
schema with a schema name in the OUTTYPE file. The OUTTYPE file generated by
the OTT contains information about the types processed by the OTT, including the
type names.

See "SCHEMA_NAMES Usage" on page 14-33 for further information.

Where OTT Parameters Can Appear

OTT parameters can appear on the command line, in a CONFIG file named on the
command line, or both. Some parameters are also allowed in the INTYPE file.

The OTT is invoked as follows:

OTT usemame/password parameters

14-28 Oracle Call Interface Programmer’s Guide

OTT Reference

If one of the parameters on the command line is
config= flename

additional parameters are read from the configuration file filename.

In addition, parameters are also read from a default configuration file in a
platform-dependent location. This file must exist, but can be empty. Parameters in a
configuration file must appear one per line, with no whitespace on the line.

If the OTT is executed without any arguments, an on-line parameter reference is
displayed.

The types for the OTT to translate are named in the file specified by the INTYPE
parameter. The parameters CASE, INITFILE, INITFUNC, and HFILE may also
appear in the INTYPE file. OUTTYPE files generated by the OTT include the CASE
parameter, and include the INITFILE, and INITFUNC parameters if an initialization
file was generated. The OUTTYPE file specifies the HFILE individually for each

type.
The case of the OTT command is platform-dependent.

Structure of the Intype File

The intype and outtype files list the types translated by the OTT, and provide all the
information needed to determine how a type or attribute name is translated to a
legal C identifier. These files contain one or more type specifications. These files also
may contain specifications of the following options:

« CASE

« HFILE

« INITFILE

« INITFUNC

If the CASE, INITFILE, or INITFUNC options are present, they must precede any
type specifications. If these options appear both on the command line and in the
intype file, the value on the command line is used.

For an example of a simple user-defined intype file, and of the full outtype file that
the OTT generates from it, see "The Outtype File" on page 14-16.

Using the Object Type Translator 14-29

OTT Reference

Intype File Type Specifications

A type specification in the INTYPE names an object datatype that is to be translated.
A type specification in the OUTTYPE file names an object datatype that has been
translated,

TYPE employee
TRANSLATE SALARY$ AS salary
DEPTNO AS department
TYPE ADDRESS
TYPE PURCHASE _ORDERASP 0

The structure of a type specification is as follows:

TYPE type name [AS type identifer]
[VERSION[E] version sting]

HFLE[H hile_name]

[TRANSLATE{ member_namelAS identifier T

The syntax of type_name is:
[schema_name] tpe name

where schema_name is the name of the schema which owns the given object
datatype, and type_name is the name of the type. The default schema is that of the
user running the OTT. The default database is the local database.

The components of a type specification are described below.
« type_name is the name of an Oracle object datatype.

« type_identifier is the C identifier used to represent the type. If omitted, the
default name mapping algorithm will be used.

« Vversion_string is the version string of the type which was used when the code
was generated by a previous invocation of the OTT. The version string is
generated by the OTT and written to the OUTTYPE file, which may later be
used as the INTYPE file when the OTT is later executed. The version string does
not affect the OTT’s operation, but will eventually be used to select which
version of the object datatype should be used in the running program.

« type_identifier is the C identifier used to represent the type. If omitted, the
default type mapping algorithm will be used. For further information, see
"Default Name Mapping" on page 14-36.

« hfile_name is the name of the header file in which the declarations of the
corresponding struct or class appears or will appear. If hfile name is omitted, the

14-30 Oracle Call Interface Programmer’s Guide

OTT Reference

file named by the command-line HFILE parameter will be used if a declaration
is generated.

« member_name is the name of an attribute (data member) which is to be
translated to the following identifier.

« identifier is the C identifier used to represent the attribute in the user program.
Identifiers may be specified in this way for any number of attributes. The
default name mapping algorithm will be used for the attributes that are not
mentioned.

An object datatype may need to be translated for one of two reasons:
« ltappears in the INTYPE file.
« ltisrequired to declare another type that must be translated.

If a type that is not mentioned explicitly is required by types declared in exactly one
file, the translation of the required type is written to the same file(s) as the explicitly
declared types that require it.

If a type that is not mentioned explicitly is required by types declared in two or
more different files, the translation of the required type is written to the global
HFILE file.

Nested #include File Generation

Every HFILE generated by the OTT #includes other necessary files, and
#defines a symbol constructed from the name of the file, which may be used to
determine if the HFILE has already been included. Consider, for example, a
database with the following types:

create type px1 AS OBJECT (coll number, col2 integer);
create type px2 AS OBJECT (coll px1);
create type px3 AS OBJECT (coll px1);

where the intype file contains:

CASE=lower

type px
hfile tott95a.h

type p3
hfile tott95b.h

If we invoke the OTT with
ott scottftiger tott95i.typ outtype=tott950.typ code=c

Using the Object Type Translator 14-31

OTT Reference

then it will generate the two following header files.
File tott95b.h is:

#indef TOTT95B_ORACLE
#define TOTT95B_ORACLE
#indef OC|_ORACLE
#include <oci.h>
#Hendif
#ifndef TOTT95A_ ORACLE
#include "tott95a.h"
#endif
typedef OCIRef px3_ref,;
struct px3
{

struct px1 coll;
J
typedef struct px3 px3;
struct px3_ind
{

OCliInd _atomic;

struct px1_ind coll
J
typedef struct px3_ind px3_ind;
#endif

File tott95a.h is:

#ifndef TOTT95A_ORACLE
#define TOTT95A_ ORACLE
#indef OCl ORACLE
#include <oci.h>
#endif
typedef OCIRef pxL_ref;
struct px1
{
OCINumber col1;
OCINumber col2;
}
typedef struct px1 px1;
struct px1_ind
{
OClind _atomic;
OClInd col;
OClind col2;

14-32 Oracle Call Interface Programmer’s Guide

OTT Reference

}
typedef struct px1._ind pxL_ind;
#endif

In this file, the symbol TOTT95B_ORACLE is defined first so that the programmer
may conditionally include tott95b.h without having to worry whether tott95b.h
depends on the include file using the following construct:

#ifndef TOTT95B_ORACLE
#include "tott95b.h"
#endif

Using this technique, the programmer may include tott95b.h from some file, say
foo.h, without having to know whether some other file included by foo.h also
includes tott95b.h.

After the definition of the symbol TOTT95B_ORACLE, the file oci.h is #included
Every HFILE generated by the OTT includes oci.h, which contains type and function
declarations that the Pro*C/C++ or OCI programmer will find useful. This is the
only case in which the OTT uses angle brackets in a #include

Next, the file tott95a.h is included. This file is included because it contains the
declaration of "struct px1 ", which tott95b.h requires. When the user’s INTYPE
file requests that type declarations be written to more than one file, the OTT
determines which other files each HFILE must include, and will generate the
necessary #includes

Note that the OTT uses quotes in this #include . When a program including
tott95h.h is compiled, the search for tott95a.h will begin where the source program
was found, and will thereafter follow an implementation-defined search rule. If
tott95a.h cannot be found in this way, a complete file name (e.g., a UNIX absolute
pathname beginning with /) should be used in the INTYPE file to specify the
location of tott95a.h.

SCHEMA_NAMES Usage

This parameter affects whether the name of a type from the default schema to
which the OTT is connected is qualified with a schema name in the OUTTYPE file.

The name of a type from a schema other that the default schema is always qualified
with a schema name in the OUTTYPE file.

The schema name, or its absence, determines in which schema the type is found
during program execution.

Using the Object Type Translator 14-33

OTT Reference

There are three settings:
« schema_names=ALWAYS (default)

All type names in the OUTTYPE file are qualified with a schema name.
« schema_names=IF_NEEDED

The type names in the OUTTYPE file that belong to the default schema are not
gualified with a schema name. As always, type names belonging to other
schemas are qualified with the schema name.

« schema_names=FROM_INTYPE

A type mentioned in the INTYPE file is qualified with a schema name in the
OUTTYPE file if, and only if, it was qualified with a schema name in the
INTYPE file. A type in the default schema that is not mentioned in the INTYPE
file but that has to be generated because of type dependencies will be written
with a schema name only if the first type encountered by the OTT that depends
on it was written with a schema name. However, a type that is not in the default
schema to which the OTT is connected will always be written with an explicit
schema name.

The OUTTYPE file generated by the OTT is an input parameter to Pro*C/C++.
From the point of view of Pro*C/C++, it is the Pro*C/C++ INTYPE file. This file
matches database type names to C struct names. This information is used at
run-time to make sure that the correct database type is selected into the struct. If a
type appears with a schema name in the OUTTYPE file (Pro*C/C++ INTYPE file),
the type will be found in the named schema during program execution. If the type
appears without a schema name, the type will be found in the default schema to
which the program connects, which may be different from the default schema the
OTT used.

An Example If SCHEMA_NAMES is set to FROM_INTYPE, and the INTYPE file
reads:

TYPE Person
TYPE david.Dept
TYPE sam.Company

then the Pro*C/C++ application that uses the OTT-generated structs will use the
types sam.Company, david.Dept , and Person . Using Person without a schema
name refers to the Person type in the schema to which the application is
connected.

14-34 Oracle Call Interface Programmer’s Guide

OTT Reference

If the OTT and the application both connect to schema david , the application will
use the same type (david.Person) that the OTT used. If the OTT connected to
schema david but the application connects to schema jana , the application will
use the type jana.Person . This behavior is appropriate only if the same "CREATE
TYPE Person " statement has been executed in schema david and schema jana .

On the other hand, the application will use type david.Dept regardless of to
which schema the application is connected. If this is the behavior you want, be sure
to include schema names with your type names in the INTYPE file.

In some cases, the OTT translates a type that the user did not explicitly name. For
example, consider the following SQL declarations:

CREATE TYPE Address AS OBJECT
(street VARCHAR2(40),

cty VARCHAR(30),

state CHAR(2),

Zip_code CHAR(10));

CREATE TYPE Person AS OBJECT
(name CHAR(20),

age NUMBER,

addr ADDRESS);

Now suppose that the OTT connects to schema david
SCHEMA_NAMES=FROM_INTYPE is specified, and the user’s INTYPE files
include either

TYPE Person or TYPE david.Person

but do not mention the type david.Address , which is used as a nested object type
in type david.Person . If"TYPE david.Person " appeared in the INTYPE file,
"TYPE david.Person "and "TYPE david.Address " will appear in the
OUTTYPE file. If "Type Person "appeared in the INTYPE file, "TYPE Person "
and "TYPE Address " will appear in the OUTTYPE file.

If the david.Address type is embedded in several types translated by the OTT,
but is not explicitly mentioned in the INTYPE file, the decision of whether to use a
schema name is made the first time the OTT encounters the embedded
david.Address type. If, for some reason, the user wants type david.Address to
have a schema name but does not want type Person to have one, the user should
explicitly request

TYPE david Address

Using the Object Type Translator 14-35

OTT Reference

in the INTYPE FILE.

The main point is that in the usual case in which each type is declared in a single
schema, it is safest for the user to qualify all type names with schema names in the
INTYPE file.

Default Name Mapping

When the OTT creates a C identifier name for an object type or attribute, it
translates the name from the database character set to a legal C identifier. First, the
name is translated from the database character set to the character set used by the
OTT. Next, if a translation of the resulting name is supplied in the INTYPE file, that
translation is used. Otherwise, the OTT translates the name character-by-character
to the compiler character set, applying the CASE option. The following describes
this process in more detail.

When the OTT reads the name of a database entity, the name is automatically
translated from the database character set to the character set used by the OTT. In
order for the OTT to read the name of the database entity successfully, all the
characters of the name must be found in the OTT character set, although a character
may have different encodings in the two character sets.

The easiest way to guarantee that the character set used by the OTT contains all the
necessary characters is to make it the same as the database character set. Note,
however, that the OTT character set must be a superset of the compiler character
set. That is, if the compiler character set is 7-bit ASCII, the OTT character set must
include 7-bit ASCII as a subset, and if the compiler character set is 7-bit EBCDIC,
the OTT character set must include 7-bit EBCDIC as a subset. The user specifies the
character set that the OTT uses by setting the NLS_LANG environment variable, or
by some other platform-specific mechanism.

Once the OTT has read the name of a database entity, it translates the name from the
character set used by the OTT to the compiler's character set. If a translation of the
name appears in the INTYPE file, the OTT uses that translation.

Otherwise, the OTT attempts to translate the name as follows:

1. First, if the OTT character set is a multi-byte character set, all multi-byte
characters in the name that have single-byte equivalents are converted to those
single-byte equivalents.

2. Next, the name is converted from the OTT character set to the compiler
character set. The compiler character set is a single-byte character set such as
US7ASCII.

14-36 Oracle Call Interface Programmer’s Guide

OTT Reference

Restriction

3. Finally, the case of letters is set according to the CASE option in effect, and any
character that is not legal in a C identifier, or that has no translation in the
compiler character set, is replaced by an underscore. If at least one character is
replaced by an underscore, the OTT gives a warning message. If all the
characters in a name are replaced by underscores, the OTT gives an error
message.

Character-by-character name translation does not alter underscores, digits, or
single-byte letters that appear in the compiler character set, so legal C identifiers are
not altered.

Name translation may, for example, translate accented single-byte characters such
as "0" with an umlaut or "a" with an accent grave to "0" or "a", and may translate a
multi-byte letter to its single-byte equivalent. Name translation will typically fail if
the name contains multi-byte characters that lack single-byte equivalents. In this
case, the user must specify name translations in the INTYPE file.

The OTT will not detect a naming clash caused by two or more database identifiers
being mapped to the same C name, nor will it detect a naming problem where a
database identifier is mapped to a C keyword.

The following restriction affects the use of the OTT.

File Name Comparison

Currently, the OTT determines if two files are the same by comparing the file names
provided by the user on the command line or in the INTYPE file. But one potential
problem can occur when the OTT needs to know if two file names refer to the same
file. For example, if the OTT-generated file foo.h requires a type declaration
written to fool.h , and another type declaration written to

/private/elias/fool.h , the OTT should generate one #include if the two
files are the same, and two #includes if the files are different. In practice, though,
it would conclude that the two files are different, and would generate two
#includes , as follows:

#indef FOO1 ORACLE
#include "fool.n"

#endif

#indef FOO1_ORACLE
#include "fprivatefeliasffool.h"
#endif

Using the Object Type Translator 14-37

OTT Reference

If fool.h and /private/elias/fool.h are different files, only the first one will
be included. If fool.h and /private/elias/fool.h are the same file, a
redundant #include will be written.

Therefore, if a file is mentioned several times on the command line or in the
INTYPE file, each mention of the file should use exactly the same file name.

14-38 Oracle Call Interface Programmer’s Guide

Partlll

OCI Reference

This part of the book contains the OCI function reference chapters:

« Chapter 15, "OCI Relational Functions"

« Chapter 16, "OCI Navigational and Type Functions"

« Chapter 17, "OCI Datatype Mapping and Manipulation Functions"
« Chapter 18, "OCI Cartridge Functions"

See Also: For a a discussion of the OCI functions that apply to an NLS
environment, see the Oracle8i National Language Support Guide. For a discussion of
the OCI functions that apply to cartridge services, see the Oracle8i Data Cartridge
Developer’s Guide.

15

OCI Relational Functions

This chapter describes the Oracle OCI relational functions for C. It includes
information about calling OCI functions in your application, along with detailed
descriptions of each function call. This chapter contains the following sections:

Introduction

Advanced Queuing and Publish-Subscribe Functions
Handle and Descriptor Functions

Bind, Define, and Describe Functions

Direct Path Loading Functions

Connect, Authorize, and Initialize Functions

LOB Functions

Statement Functions

Thread Management Functions

Transaction Functions

Miscellaneous Functions

OCI Relational Functions 15-1

Introduction

Introduction

This chapter describes the OCI relational function calls. This chapter covers those
functions in the basic OCI. The function calls for manipulating objects are described
in the next three chapters. For information about return codes and error handling,
refer to the section "Error Handling" on page 2-27.

Function Syntax

Purpose

Syntax

Parameters

Comments

Example

For each function, the following information is listed:

A brief description of the action performed by the function.

A code snippet showing the syntax for calling the function, including the ordering
and types of the parameters.

A description of each of the function’s parameters. This includes the parameter’s
mode. The mode of a parameter has three possible values, as described below.

Mode Description

IN A parameter that passes data to the OCI

ouT A parameter that receives data from the OCI on this call
IN/OUT A parameter that passes data on the call and receives

data on the return from this or a subsequent call.

More detailed information about the function (if available). This may include
restrictions on the use of the function, or other information that might be useful
when using the function in an application.

A complete or partial code example demonstrating the use of the function call being
described. Not all function descriptions include an example.

Related Functions

A list of related function calls.

15-2 Oracle Call Interface Programmer’s Guide

Introduction

Calling OCI Functions

Unlike earlier versions of the OCI, in release 8 you cannot pass -1 for the string
length parameter of a null-terminated string.

When you pass string lengths as parameters, do not include the null terminator
byte in the length. The OCI does not expect strings to be null-terminated.

Buffer lengths that are OCI parameters are always in bytes, except for the amount
parameters in some LOB calls, which are in characters.

Server Roundtrips for LOB Functions

For a table showing the number of server roundtrips required for individual OCI
LOB functions, refer to Appendix C, "OCI Function Server Roundtrips".

OCI Relational Functions 15-3

Advanced Queuing and Publish-Subscribe Functions

Advanced Queuing and Publish-Subscribe Functions

This section describes the

Advanced Queuing and publish-subscribe functions.

Table 15-1 OCI Quick Reference

Function Purpose

OCIAQDeq() on page 15-5

OCIAQENq() on page 15-7

OCIAQListen() on page 15-19
OClISubscriptionEnable() on page 15-21
OCISubscriptionPost() on page 15-22
OCISubscriptionRegister() on page 15-24
OCISubscriptionUnRegister() on page 15-26

15-4 Oracle Call Interface Programmer’s Guide

Advanced Queueing dequeue

Advanced Queueing enqueue

Listens on one or more queues on behalf of a list of agents
Enables notifications on a subscription

Posts to a subscription to receive notifications

Registers a subscription

Unregisters a subscription

Advanced Queuing and Publish-Subscribe Functions

OCIAQDeq()

Purpose

Syntax

Parameters

This call is used for an Advanced Queueing dequeue operation using the OCI.

sword OCIAQDeq (OCISveCix *svch,
OCIEror *errh,
text *queue_name,
OCIAQDegOptions *dequeue_options,
OCIAQMsgProperties *message_properties,
OCIType *payload _tdo,
dvoid *payload,
dvoid *payload_ind,
OCIRaw *msgid,

ub4 flags);
svch (IN)
OCI service context.
errh (IN)

An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

gueue_name (IN)
The target queue for the dequeue operation.

dequeue_options (IN)
The options for the dequeue operation; stored in an OCIAQDeqOptions descriptor.

message_properties (OUT)
The message properties for the message; stored in an OCIAQMsgProperties
descriptor.

payload_tdo (IN)
The TDO (type descriptor object) of an object type. For a raw queue, this parameter
should point to the TDO of SYS.RAW.

payload (IN/OUT)
A pointer to a pointer to a program variable buffer that is an instance of an object
type. For a raw queue, this parameter should point to an instance of OCIRaw.

Memory for the payload is dynamically allocated in the object cache. The
application can optionally call OCIObjectFree() to deallocate the payload instance

OCI Relational Functions 15-5

Advanced Queuing and Publish-Subscribe Functions

when it is no longer needed. If the pointer to the program variable buffer (*payload)
is passed as NULL, the buffer is implicitly allocated in the cache.

The application may choose to pass NULL for payload the first time OCIAQDeq() is
called, and let the OCI allocate the memory for the payload. It can then use a
pointer to that previously allocated memory in subsequent calls to OCIAQDeq().

To obtain a TDO for the payload, use OCITypeByName(), or OCITypeByRef().

The OCI provides functions which allow the user to set attributes of the payload,
such as its text. For information about setting these attributes, refer to
"Manipulating Object Attributes" on page 10-13.

payload_ind (IN/OUT)
A pointer to a pointer to the program variable buffer containing the parallel
indicator structure for the object type.

The memory allocation rules for payload_ind are the same as those for payload,
above.

msgid (OUT)
The message ID.

flags (IN)
Not currently used; pass as OCI_DEFAULT.

Comments
Users must have the ag_user_role or privileges to execute the dbms_aq package
in order to use this call. The OCI environment must be initialized in object mode
(using OCllInitialize()) to use this call.

For more information about OCI and Advanced Queueing, refer to "OCI and
Advanced Queuing" on page 9-27.

For additional information about Advanced Queueing, refer to Oracle8i Application
Developer’s Guide - Advanced Queuing.

Examples
For code examples, refer to the description of OCIAQENq() on page 15-7.

Related Functions
OCIAQEN((), OCIAQListen(), OClInitialize()

15-6 Oracle Call Interface Programmer’s Guide

Advanced Queuing and Publish-Subscribe Functions

OCIAQEN(Q()

Purpose

Syntax

Parameters

This call is used for an Advanced Queueing enqueue.

sword OCIAQEN(Q (OCISveCix *svch,
OCIEror *errh,
text *queue_name,
OCIAQENqOptions *enqueue_options,
OCIAQMsgProperties *message_properties,
OCIType *payload _tdo,
dvoid *payload,
dvoid *payload_ind,
OCIRaw *msgid,

ub4 flags);
svch (IN)
OCI service context.
errh (IN)

An error handle you can pass to OCIErrorGet() for diagnostic information in the
event of an error.

gueue_name (IN)
The target queue for the enqueue operation.

enqueue_options (IN)
The options for the enqueue operation; stored in an OCIAQENngOptions descriptor.

message_properties (IN)
The message properties for the message; stored in an OCIAQMsgProperties
descriptor.

payload_tdo (IN)

The TDO (type descriptor object) of an object type. For a raw queue, this parameter
should point to the TDO of SYS.RAW.

payload (IN)
A pointer to a pointer to an instance of an object type. For a raw queue, this
parameter should point to an instance of OCIRaw.

OCI Relational Functions 15-7

Advanced Queuing and Publish-Subscribe Functions

Comments

Examples

The OCI provides functions which allow the user to set attributes of the payload,
such as its text. For information about setting these attributes, refer to
"Manipulating Object Attributes" on page 10-13.

payload_ind (IN)
A pointer to a pointer to the program variable buffer containing the parallel
indicator structure for the object type.

msgid (OUT)
The message ID.

flags (IN)
Not currently used; pass as OCI_DEFAULT.

Users must have the ag_user_role or privileges to execute the dbms_aq package
in order to use this call.

The OCI environment must be initialized in object mode (using OClInitialize()) to
use this call.

For more information about OCI and Advanced Queueing, refer to "OCI and
Advanced Queuing" on page 9-27.

For additional information about Advanced Queueing, refer to Oracle8i Application
Developer’s Guide - Advanced Queuing.

To obtain a TDO for the payload, use OCITypeByName(), or OCITypeByRef().

The following four examples demonstrate the use of OCIAQENq() and OCIAQDeq()
in several different situations.

These examples assume that the database is set up as illustrated in the section
"Oracle Advanced Queueing By Example" in the Advanced Queueing chapter of the
Oracle8i Application Developer’s Guide - Advanced Queuing.

Example 1
Enqueue and dequeue of a payload object.

struct message

{

OCIString *subject;
OCIString *data;

¥
typedef struct message message;

15-8 Oracle Call Interface Programmer’s Guide

Advanced Queuing and Publish-Subscribe Functions

struct null_message

{

OClind null_adt,
OClind null_subject;
OClind null_data;
3
typedef struct null_message null_message;

int main()
{
OCIEnv *envhp;
OClServer *srvhp;
OCIEror *errhp;
OCISveCix *svchp;
dvoid *mp;
OCIType *mesg_tdo =(OCIType * 0;
message msg,
null_message nmsg;
message *mesg = &msg;
null_message *nmesg = &msg;
message *degmesg = (message *)0;

null_message *ndegmesg = (null_message *)0;

OClinitialize((ub4) OCl_OBJECT, (dvoid *)0, (dvoid * (¥)() O,

(dvoid*()0) O, (void ()0) 0);

OCIHandleAlloo((dvoid) NULL, (dvoid) &envhp, (ubd) OCI_HTYPE_ENV,

52, (cvoid **) &mp);

OCIEnVInit(&envhp, (ub4) OCI_ DEFAULT, 21, (dvoid) &mp);

OCIHandleAlloc((dvoid *) envhp, (dvoid *) &enthp, (ub4) OCI_HTYPE_ERROR,

52, (dvoid *) &mp);

OCIHandleAlloc((dvoid *) envhp, (dvoid *) &sivhp, (ub4) OCI HTYPE._SERVER,

52, (dvoid *¥) &mp);

OClServerAttach(srvhp, errhp, (text*) O, (sb4) O, (ub4) OCI_DEFAULT);

OCIHandleAlloo{ (dvoid *) envhp, (dvoid *) &svehp, (ub4) OCI_HTYPE_SVCCTX,

52, (cvoid **) &mp);

OCIAitrSet((dvoid *) svehp, (ub4) OCI HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,
(ub4) OCI_ATTR_SERVER, (OCIEror *) erhp);

OClLogon(envhp, erhp, &svchp, "AQ", strlen(*AQ"), "AQ", strlen("AQ"), 0, 0);

OCI Relational Functions

15-9

Advanced Queuing and Publish-Subscribe Functions

* obtain TDO of message_type */
OCITypeByName(envhp, erhp, svchp, (CONST text *)"AQ", strlen("AQ"),
(CONST text *)'MESSAGE_TYPE", strlen('MESSAGE_TYPE"),
(text*)0, 0, OCl_DURATION_SESSION, OCI_TYPEGET_ALL, &mesg_tdo);

F prepare the message payload */

mesg->subject = (OCIString *)0;

mesg->data = (OCIString *)0;

OCIStringAssignText(envhp, errhp, (CONST text *"'NORMAL MESSAGE",
stien('NORMAL MESSAGE"), &mesg->subject);

OCIStringAssignText(envhp, errhp,(CONST text *)'OCI ENQUEUE",
strien("OCI ENQUEUE"), &mesg->data);

nmesg->null_adt = nmesg->null_subject = nmesg->null_data=0OCI_IND_NOTNULL;

Fenqueue into the msg_queue */

OCIAQENq(svchp, emhp, (CONST text *)'msg_queue”, 0,0,
mesg_tdo, (dvoid *)&mesg, (dvoid *)&nmesg, 0, 0);

OCITransCommit(svchp, errhp, (ub4) 0);

F* dequeue from the msg_queue */
OCIAQDeq(svchp, erthp, (CONST text *)'msg_queue”, 0, 0,
mesg_tdo, (dvoid *)°mesg, (dvoid *)&ndegmesg, O, 0);
printf("Subject: %s\n", OCIStringPtr(envhp, degmesg->subject));
printf{ Text: %es\n'', OCIStringPtr(envhp, degmesg->data));
OCITransCommit(svchp, errhp, (ub4) 0);
}

Example 2
Enqueue and dequeue using correlation IDs.

struct message

{

OCIString *subject;
OCIString *data;

¥
typedef struct message message;

struct null_message

{

OClind null_adt;
OClind null_subject;
OClind null_data;

¥
typedef struct null_message null_message;

15-10 Oracle Call Interface Programmer’s Guide

Advanced Queuing and Publish-Subscribe Functions

intmain()
{
OCIEnvV *envhp;
OClServer *srvhp;
OCIEmor *enhp;
OCISveCix *svchp;
dvoid *tmp;
OCIType *mesg_tdo =(OCIType *) 0;
message msg;
null_message nmsg;
message *mesg = &msg;
null_message *nmesg = &msg;
message *degmesg = (message *)0;
null_me