
Oracle8i

JDBC Developer’s Guide and Reference

 Release 2 (8.1.6)

December 1999

Part No. A81354-01

JDBC Developer’s Guide and Reference, Release 2.0.1

Part No. A81354-01

Copyright © 1996, 1999, Oracle Corporation. All rights reserved.

Primary Authors: Brian Wright, Thomas Pfaeffle

Contributors: Sunil Kunisetty, Joyce Yang, Soulaiman Htite, Douglas Surber, Anthony Lai, Paul Lo,
Prabha Krishna, Ragamayi Bhyravabhotla, Patrick Day, Van Le, Andrew Philips, Naresh Kumar, Kristy
Browder, Bernie Harris, Ana Hernandez, Janice Wong, Jack Melnick, Tim Smith, Ellen Barnes, Susan
Kraft, Sheryl Maring, Angie Long

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial property
laws. Reverse engineering, disassembly, or decompilation of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and JDeveloper™, Net8™, Oracle Objects™, Oracle8i™, Oracle8™,
Oracle7™, PL/SQL™, SQL*Net®, and SQL*Plus® are trademarks or registered trademarks of Oracle
Corporation. All other company or product names mentioned are used for identification purposes only
and may be trademarks of their respective owners.

Contents

Send Us Your Comments .. xv

Preface... xvii

Intended Audience ... xvii
Document Structure ... xviii
Document Conventions ... xx
Related Documents... xx

1 Overview

Introduction ... 1-2
What is JDBC? ... 1-2
JDBC versus SQLJ... 1-2

Overview of the Oracle JDBC Drivers.. 1-5
Common Features of Oracle JDBC Drivers .. 1-6
JDBC Thin Driver.. 1-7
JDBC OCI Drivers... 1-8
JDBC Server-Side Thin Driver .. 1-8
JDBC Server-Side Internal Driver .. 1-8
Choosing the Appropriate Driver .. 1-9

Overview of Application and Applet Functionality .. 1-10
Application Basics .. 1-10
Applet Basics ... 1-10
Oracle Extensions ... 1-11

Server-Side Basics... 1-12
iii

Session and Transaction Context.. 1-12
Connecting to the Database... 1-12

Environments and Support ... 1-13
Supported JDK and JDBC Versions ... 1-13
JNI and Java Environments ... 1-14
JDBC and the Oracle Application Server .. 1-14
JDBC and IDEs .. 1-14

2 Getting Started

Requirements and Compatibilities for Oracle JDBC Drivers.. 2-2
Verifying a JDBC Client Installation .. 2-4

Check Installed Directories and Files... 2-4
Check the Environment Variables.. 2-6
Make Sure You Can Compile and Run Java... 2-7
Determine the Version of the JDBC Driver ... 2-7
Testing JDBC and the Database Connection: JdbcCheckup ... 2-8

3 Basic Features

First Steps in JDBC ... 3-2
Import Packages.. 3-2
Register the JDBC Drivers ... 3-3
Open a Connection to a Database .. 3-3
Create a Statement Object.. 3-10
Execute a Query and Return a Result Set Object ... 3-10
Process the Result Set ... 3-11
Close the Result Set and Statement Objects .. 3-11
Make Changes to the Database... 3-12
Commit Changes .. 3-13
Close the Connection.. 3-14

Sample: Connecting, Querying, and Processing the Results ... 3-15
Datatype Mappings .. 3-16

Table of Mappings .. 3-16
Notes Regarding Mappings .. 3-18

Java Streams in JDBC ... 3-19
Streaming LONG or LONG RAW Columns... 3-19
iv

Streaming CHAR, VARCHAR, or RAW Columns.. 3-24
Data Streaming and Multiple Columns .. 3-25
Streaming LOBs and External Files ... 3-27
Closing a Stream ... 3-28
Notes and Precautions on Streams .. 3-28

Stored Procedure Calls in JDBC Programs .. 3-31
PL/SQL Stored Procedures... 3-31
Java Stored Procedures .. 3-32

Processing SQL Exceptions... 3-33
Retrieving Error Information .. 3-33
Printing the Stack Trace... 3-34

4 Overview of JDBC 2.0 Support

Introduction ... 4-2
JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x .. 4-3

Datatype Support ... 4-3
Standard Feature Support ... 4-4
Extended Feature Support .. 4-5
Standard versus Oracle Performance Enhancement APIs ... 4-5
Migration from JDK 1.1.x to JDK 1.2.x .. 4-5

Overview of JDBC 2.0 Features.. 4-7

5 Overview of Oracle Extensions

Introduction to Oracle Extensions ... 5-2
Support Features of the Oracle Extensions .. 5-3

Support for Oracle Datatypes ... 5-3
Support for Oracle Objects .. 5-4
Support for Schema Naming .. 5-5

Oracle JDBC Packages and Classes... 5-7
Package oracle.sql... 5-7
Package oracle.jdbc.driver... 5-16
Package oracle.jdbc2 (for JDK 1.1.x only) ... 5-24

Oracle Type Extensions.. 5-26
Oracle ROWID Type .. 5-26
Oracle REF CURSOR Type Category .. 5-27
v

Support for Oracle Extensions in 8.0.x and 7.3.x JDBC Drivers... 5-29

6 Accessing and Manipulating Oracle Data

Data Conversion Considerations ... 6-2
Standard Types versus Oracle Types... 6-2
Converting SQL NULL Data... 6-2

Result Set and Statement Extensions .. 6-3
Comparison of Oracle get and set Methods to Standard JDBC ... 6-4

Standard getObject() Method.. 6-4
Oracle getOracleObject() Method... 6-4
Summary of getObject() and getOracleObject() Return Types .. 6-6
Other getXXX() Methods ... 6-7
Casting Your get Method Return Values .. 6-10
Standard setObject() and Oracle setOracleObject() Methods... 6-11
Other setXXX() Methods.. 6-12
Limitations of the Oracle 8.0.x and 7.3.x JDBC Drivers .. 6-18

Using Result Set Meta Data Extensions ... 6-19

7 Working with LOBs and BFILEs

Oracle Extensions for LOBs and BFILEs .. 7-2
Working with BLOBs and CLOBs ... 7-3

Getting and Passing BLOB and CLOB Locators .. 7-3
Reading and Writing BLOB and CLOB Data ... 7-6
Creating and Populating a BLOB or CLOB Column... 7-10
Accessing and Manipulating BLOB and CLOB Data .. 7-12
Additional BLOB and CLOB Features... 7-13

Working with BFILEs ... 7-16
Getting and Passing BFILE Locators.. 7-16
Reading BFILE Data ... 7-18
Creating and Populating a BFILE Column ... 7-19
Accessing and Manipulating BFILE Data ... 7-21
Additional BFILE Features .. 7-22
vi

8 Working with Oracle Object Types

Mapping Oracle Objects ... 8-2
Using the Default STRUCT Class for Oracle Objects ... 8-3

STRUCT Class Functionality .. 8-3
Creating STRUCT Objects and Descriptors .. 8-5
Retrieving STRUCT Objects and Attributes ... 8-6
Binding STRUCT Objects into Statements .. 8-8

Creating and Using Custom Object Classes for Oracle Objects ... 8-9
Relative Advantages of CustomDatum versus SQLData ... 8-10
Understanding Type Maps for SQLData Implementations ... 8-10
Creating a Type Map Object and Defining Mappings for a SQLData Implementation .. 8-11
Understanding the SQLData Interface .. 8-14
Reading and Writing Data with a SQLData Implementation.. 8-17
Understanding the CustomDatum Interface.. 8-20
Reading and Writing Data with a CustomDatum Implementation.................................... 8-23
Additional Uses for CustomDatum... 8-26

Using JPublisher to Create Custom Object Classes ... 8-28
JPublisher Functionality .. 8-28
JPublisher Type Mappings.. 8-28

Describing an Object Type ... 8-32
Functionality for Getting Object Meta Data ... 8-32
Steps for Retrieving Object Meta Data .. 8-33

9 Working with Oracle Object References

Oracle Extensions for Object References ... 9-2
Overview of Object Reference Functionality.. 9-4

Object Reference Getter and Setter Methods .. 9-4
Key REF Class Methods... 9-5

Retrieving and Passing an Object Reference .. 9-6
Retrieving an Object Reference from a Result Set ... 9-6
Retrieving an Object Reference from a Callable Statement.. 9-7
Passing an Object Reference to a Prepared Statement .. 9-8

Accessing and Updating Object Values through an Object Reference 9-9
Custom Reference Classes with JPublisher... 9-10
vii

10 Working with Oracle Collections

Oracle Extensions for Collections (Arrays) .. 10-2
Choices in Materializing Collections ... 10-2
Creating Collections ... 10-3

Overview of Collection (Array) Functionality .. 10-5
Array Getter and Setter Methods ... 10-5
ARRAY Descriptors and ARRAY Class Functionality.. 10-6

Creating and Using Arrays.. 10-8
Creating ARRAY Objects and Descriptors.. 10-8
Retrieving an Array and Its Elements.. 10-11
Passing Arrays to Statement Objects ... 10-16

Using a Type Map to Map Array Elements .. 10-18
Custom Collection Classes with JPublisher .. 10-20

11 Result Set Enhancements

Overview .. 11-2
Result Set Functionality and Result Set Categories Supported in JDBC 2.0 11-2
Oracle JDBC Implementation Overview for Result Set Enhancements.............................. 11-5

Creating Scrollable or Updatable Result Sets ... 11-8
Specifying Result Set Scrollability and Updatability... 11-8
Result Set Limitations and Downgrade Rules.. 11-10

Positioning and Processing in Scrollable Result Sets ... 11-13
Positioning in a Scrollable Result Set... 11-13
Processing a Scrollable Result Set... 11-16

Updating Result Sets .. 11-18
Performing a DELETE Operation in a Result Set... 11-18
Performing an UPDATE Operation in a Result Set ... 11-19
Performing an INSERT Operation in a Result Set ... 11-21
Update Conflicts ... 11-23

Fetch Size .. 11-24
Setting the Fetch Size.. 11-24
Use of Standard Fetch Size versus Oracle Row-Prefetch Setting....................................... 11-25

Refetching Rows ... 11-26
Seeing Database Changes Made Internally and Externally ... 11-27

Seeing Internal Changes .. 11-27
viii

Seeing External Changes ... 11-28
Visibility versus Detection of External Changes.. 11-29
Summary of Visibility of Internal and External Changes... 11-30
Oracle Implementation of Scroll-Sensitive Result Sets ... 11-30

Summary of New Methods for Result Set Enhancements ... 11-32
Modified Connection Methods... 11-32
New Result Set Methods ... 11-32
New Statement Methods ... 11-35
New Database Meta Data Methods ... 11-35

12 Performance Extensions

Update Batching.. 12-2
Overview of Update Batching Models .. 12-2
Oracle Update Batching... 12-4
Standard Update Batching .. 12-11

Additional Oracle Performance Extensions .. 12-20
Oracle Row Prefetching ... 12-20
Defining Column Types .. 12-23
DatabaseMetaData TABLE_REMARKS Reporting ... 12-27

13 Connection Pooling and Caching

Data Sources .. 13-2
A Brief Overview of Oracle Data Source Support for JNDI ... 13-2
Data Source Features and Properties... 13-3
Creating a Data Source Instance and Connecting (without JNDI)...................................... 13-7
Creating a Data Source Instance, Registering with JNDI, and Connecting 13-7
Logging and Tracing .. 13-9

Connection Pooling .. 13-11
Connection Pooling Concepts... 13-11
Connection Pool Data Source Interface and Oracle Implementation 13-12
Pooled Connection Interface and Oracle Implementation ... 13-13
Creating a Connection Pool Data Source and Connecting... 13-13

Connection Caching ... 13-15
Overview of Connection Caching .. 13-15
Typical Steps in Using a Connection Cache ... 13-18
ix

Oracle Connection Cache Specification: OracleConnectionCache Interface.................... 13-21
Oracle Connection Cache Implementation: OracleConnectionCacheImpl Class 13-22
Oracle Connection Event Listener: OracleConnectionEventListener Class 13-25

14 Distributed Transactions

Overview .. 14-2
Distributed Transaction Components and Scenarios .. 14-2
Distributed Transaction Concepts.. 14-3
Oracle XA Packages.. 14-5

XA Components .. 14-6
XA Data Source Interface and Oracle Implementation... 14-6
XA Connection Interface and Oracle Implementation.. 14-7
XA Resource Interface and Oracle Implementation .. 14-8
XA Resource Method Functionality and Input Parameters ... 14-9
XA ID Interface and Oracle Implementation.. 14-13

Error Handling and Optimizations ... 14-15
XA Exception Classes and Methods .. 14-15
Mapping between Oracle Errors and XA Errors.. 14-16
XA Error Handling ... 14-16
Oracle XA Optimizations... 14-17

Implementing a Distributed Transaction ... 14-18
Summary of Imports for Oracle XA... 14-18
Oracle XA Code Sample .. 14-18

15 Advanced Topics

JDBC and NLS ... 15-2
How JDBC Drivers Perform NLS Conversions.. 15-3
NLS Support and Object Types .. 15-5
CHAR and VARCHAR2 Data Size Restrictions with the Thin Driver 15-6

JDBC Client-Side Security Features.. 15-8
JDBC Support for Oracle Advanced Security... 15-8
JDBC Support for Login Authentication ... 15-9
JDBC Support for Data Encryption and Integrity.. 15-10

JDBC in Applets .. 15-15
Connecting to the Database through the Applet ... 15-15
x

Connecting to a Database on a Different Host Than the Web Server 15-17
Using Applets with Firewalls ... 15-20
Packaging Applets.. 15-23
Specifying an Applet in an HTML Page ... 15-24

JDBC in the Server: the Server-Side Internal Driver ... 15-26
Connecting to the Database with the Server-Side Internal Driver.................................... 15-26
Exception-Handling Extensions for the Server-Side Internal Driver................................ 15-29
Session and Transaction Context for the Server-Side Internal Driver 15-30
Testing JDBC on the Server ... 15-30
Loading an Application into the Server .. 15-32
Server-Side Character Set Conversion of oracle.sql.CHAR Data 15-34

16 Coding Tips and Troubleshooting

JDBC and Multithreading... 16-2
Performance Optimization.. 16-6

Disabling Auto-Commit Mode... 16-6
Standard Fetch Size and Oracle Row Prefetching ... 16-7
Standard and Oracle Update Batching.. 16-7

Common Problems ... 16-8
Space Padding for CHAR Columns Defined as OUT or IN/OUT Variables 16-8
Memory Leaks and Running Out of Cursors ... 16-8
Boolean Parameters in PL/SQL Stored Procedures .. 16-9
Opening More Than 16 OCI Connections for a Process ... 16-9

Basic Debugging Procedures .. 16-11
Net8 Tracing to Trap Network Events .. 16-11
Third Party Debugging Tools ... 16-13

Transaction Isolation Levels and Access Modes... 16-14

17 Sample Applications

Basic Samples .. 17-2
Listing Names from the EMP Table—Employee.java... 17-2
Inserting Names into the EMP Table—InsertExample.java... 17-3

Samples of PL/SQL in JDBC .. 17-5
Calling PL/SQL Stored Procedures—PLSQLExample.java... 17-5
Executing Procedures in PL/SQL Blocks—PLSQL.java... 17-6
xi

Intermediate Samples .. 17-10
Streams—StreamExample.java ... 17-10
Multithreading—JdbcMTSample.java... 17-12

Samples for JDBC 2.0 Types ... 17-17
BLOBs and CLOBs—LobExample.java ... 17-17
Weakly Typed Objects—PersonObject.java.. 17-21
Weakly Typed Object References—StudentRef.java ... 17-24
Weakly Typed Arrays—ArrayExample.java.. 17-26

Samples for Oracle Type Extensions ... 17-29
REF CURSORs—RefCursorExample.java... 17-29
BFILEs—FileExample.java .. 17-31

Samples for Custom Object Classes.. 17-34
SQLData Implementation—SQLDataExample.java .. 17-35
CustomDatum Implementation—CustomDatumExample.java.. 17-38

JDBC 2.0 Result Set Enhancement Samples .. 17-43
Positioning in a Result Set—ResultSet2.java .. 17-43
Inserting and Deleting Rows in a Result Set—ResultSet3.java .. 17-47
Updating Rows in a Result Set—ResultSet4.java... 17-50
Scroll-Sensitive Result Set—ResultSet5.java ... 17-52
Refetching Rows in a Result Set—ResultSet6.java... 17-55

Performance Enhancement Samples ... 17-59
Standard Update Batching—BatchUpdates.java ... 17-59
Oracle Update Batching with Implicit Execution—SetExecuteBatch.java 17-61
Oracle Update Batching with Explicit Execution—SendBatch.java.................................. 17-63
Oracle Row Prefetching Specified in Connection—RowPrefetch_connection.java........ 17-64
Oracle Row Prefetching Specified in Statement—RowPrefetch_statement.java............. 17-66
Oracle Column Type Definitions—DefineColumnType.java .. 17-68

Samples for Connection Pooling and Distributed Transactions ... 17-70
Data Source without JNDI—DataSource.java .. 17-70
Data Source with JNDI—DataSourceJNDI.java ... 17-71
Pooled Connection—PooledConnection.java... 17-74
Oracle Connection Cache (dynamic)—CCache1.java ... 17-75
Oracle Connection Cache ("fixed with no wait")—CCache2.java...................................... 17-77
XA with Suspend and Resume—XA2.java ... 17-79
XA with Two-Phase Commit Operation—XA4.java ... 17-84
xii

Sample Applet ... 17-90
HTML Page—JdbcApplet.htm ... 17-90
Applet Code—JdbcApplet.java .. 17-91

JDBC versus SQLJ Sample Code ... 17-94
SQL Program to Create Tables and Objects.. 17-94
JDBC Version of the Sample Code ... 17-96
SQLJ Version of the Sample Code.. 17-99

18 Reference Information

Valid SQL-JDBC Datatype Mappings .. 18-2
Supported SQL and PL/SQL Datatypes ... 18-5
Embedded SQL92 Syntax .. 18-9

Time and Date Literals... 18-9
Scalar Functions .. 18-11
LIKE Escape Characters... 18-12
Outer Joins ... 18-12
Function Call Syntax .. 18-13
SQL92 to SQL Syntax Example... 18-13

Oracle JDBC Notes and Limitations ... 18-15
CursorName .. 18-15
SQL92 Outer Join Escapes ... 18-15
PL/SQL TABLE, BOOLEAN and RECORD Types... 18-15
IEEE 754 Floating Point Compliance ... 18-15
Catalog Arguments to DatabaseMetaData Calls ... 18-16
SQLWarning Class ... 18-16
Bind by Name ... 18-16

Related Information ... 18-18
Oracle JDBC Drivers and SQLJ... 18-18
Java Technology.. 18-18

A JDBC Error Messages

General Structure of JDBC Error Messages... A-2
General JDBC Messages.. A-3

JDBC Messages Sorted by ORA Number.. A-3
JDBC Messages Sorted Alphabetically .. A-6
xiii

TTC Messages.. A-11
TTC Messages Sorted by ORA Number.. A-11
TTC Messages Sorted Alphabetically .. A-12
xiv

Send Us Your Comments

JDBC Developer’s Guide and Reference, Release 2.0.1

Part No. A81354-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

■ Electronic mail — jpgcomnt@us.oracle.com
■ FAX - 650-506-7225. Attn: Java Platform Group, Information Development Manager
■ Postal service:

Oracle Corporation
Information Development Manager
500 Oracle Parkway, Mailstop 4op978
Redwood Shores, CA 94065
USA

Please indicate if you would like a reply.

If you have problems with the software, please contact your local Oracle World Wide Support Center.
xv

xvi

Preface

This preface introduces you to the Oracle8i JDBC Developer’s Guide and Reference,
discussing the intended audience, structure, and conventions of this document. A
list of related Oracle documents is also provided.

Intended Audience
This manual is intended for anyone with an interest in JDBC programming but
assumes at least some prior knowledge of the following:

■ Java

■ SQL

■ Oracle PL/SQL

■ Oracle databases
xvii

Document Structure
The Oracle JDBC Developers Guide and Reference contains 18 chapters and one
appendix:

Chapter 1, "Overview" This chapter provides an overview of the Oracle
implementation of JDBC and the Oracle JDBC
driver architecture.

Chapter 2, "Getting Started" This chapter introduces the Oracle JDBC drivers
and some scenarios of how you can use them.
This chapter also guides you through the basics
of testing your installation and configuration.

Chapter 3, "Basic Features" This chapter covers the basic steps in creating
any JDBC application. It also discusses
additional basic features of Java and JDBC
supported by the Oracle JDBC drivers.

Chapter 4, "Overview of JDBC
2.0 Support"

This chapter presents an overview of JDBC 2.0
features and describes differences between JDK
1.2.x and JDK 1.1.x environments in how these
features are supported.

Chapter 5, "Overview of Oracle
Extensions"

This chapter provides an overview of the JDBC
extension classes provided by Oracle.

Chapter 6, "Accessing and
Manipulating Oracle Data"

This chapter describes data access using the
Oracle datatype formats rather than Java
formats.

Chapter 7, "Working with LOBs
and BFILEs"

This chapter covers the Oracle extensions to the
JDBC standard that let you access and
manipulate LOBs and LOB data.

Chapter 8, "Working with
Oracle Object Types"

This chapter explains how to map Oracle object
types to Java classes by using either standard
JDBC or Oracle extensions.

Chapter 9, "Working with
Oracle Object References"

This chapter describes Oracle extensions to
standard JDBC that let you access and
manipulate object references.

Chapter 10, "Working with
Oracle Collections"

This chapter describes Oracle extensions to
standard JDBC that let you access and
manipulate arrays and their data.
xviii

Chapter 11, "Result Set
Enhancements"

This chapter discusses JDBC 2.0 result set
enhancements such as scrollable result sets and
updatable result sets, including support issues
under JDK 1.1.x.

Chapter 12, "Performance
Extensions"

This chapter describes Oracle extensions to the
JDBC standard that enhance the performance of
your applications.

Chapter 13, "Connection
Pooling and Caching"

This chapter discusses JDBC 2.0 data sources
(and their usage of JNDI), connection pooling
functionality (a framework for connection
caching implementations), and a sample
connection caching implementation provided by
Oracle.

Chapter 14, "Distributed
Transactions"

This chapter covers distributed transactions,
otherwise known as global transactions, and
standard XA functionality. (Distributed
transactions are sets of transactions, often to
multiple databases, that have to be committed in
a coordinated manner.)

Chapter 15, "Advanced Topics" This chapter describes advanced JDBC topics
such as using NLS, working with applets, the
server-side driver, and embedded SQL92 syntax.

Chapter 16, "Coding Tips and
Troubleshooting"

This chapter includes coding tips and general
guidelines for troubleshooting your JDBC
applications.

Chapter 17, "Sample
Applications"

This chapter presents sample applications that
highlight advanced JDBC features and Oracle
extensions.

Chapter 18, "Reference
Information"

This chapter contains detailed JDBC reference
information.

Appendix A, "JDBC Error
Messages"

This appendix lists JDBC error messages and the
corresponding ORA error numbers.
xix

Document Conventions
This book uses Solaris syntax, but file names and directory names for Windows NT
are the same, unless otherwise noted.

The term [ORACLE_HOME] is used to indicate the full path of the Oracle home
directory.

In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

The following conventions are also used in this manual:

Related Documents
This section lists other documentation of interest.

See the following additional documents available from the Oracle Java Platform
group:

■ Oracle8i Java Developer’s Guide

This book introduces the basic concepts of Java in Oracle8i and provides
general information about server-side configuration and functionality.
Information that pertains to the Oracle Java platform as a whole, rather than to
a particular product (such as JDBC, SQLJ, or EJBs) is in this book.

■ Oracle8i JPublisher User’s Guide

This book describes how to use the JPublisher utility to translate object types
and other user-defined types to Java classes. If you are developing SQLJ or
JDBC applications that use object types, VARRAY types, nested table types, or

Convention Meaning

 .
 .
 .

Vertical ellipsis points in an example mean that information not
directly related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that
parts of the statement or command not directly related to the
example have been omitted.

< > Angle brackets enclose user-supplied names.

[] Brackets enclose optional clauses from which you can choose one or
none.
xx

object reference types, then JPublisher can generate custom Java classes to map
to them.

■ Oracle8i SQLJ Developer’s Guide and Reference

This book covers the use of SQLJ to embed static SQL operations directly into
Java code, covering SQLJ language syntax and SQLJ translator options and
features. Both standard SQLJ features and Oracle-specific SQLJ features are
described.

■ Oracle8i Java Stored Procedures Developer’s Guide

This book discusses Java stored procedures—programs that run directly in the
Oracle8i server. With stored procedures (functions, procedures, database
triggers, and SQL methods), Java developers can implement business logic at
the server level, thereby improving application performance, scalability, and
security.

■ Oracle8i Enterprise JavaBeans and CORBA Developer’s Guide

This book describes the Oracle extensions to the Enterprise JavaBeans and
CORBA specifications.

You can also refer to the following documents from the Oracle Server Technologies
group.

■ Net8 Administrator’s Guide

This book contains information about the Oracle8 Connection Manager and
Net8 network administration in general.

■ Oracle8i National Language Support Guide

This book contains information about NLS environment variables, character
sets, and territory and locale settings. In addition, it contains an overview of
common NLS issues, typical scenarios, and NLS considerations for OCI and
SQL programmers.

■ Oracle Advanced Security Administrator’s Guide

This book describes features of the Oracle Advanced Security Option (formerly
known as ANO or ASO).

■ Oracle8i Application Developer’s Guide - Fundamentals

This book introduces basic design concepts and programming features in using
an Oracle8i database and creating database access applications.
xxi

■ Oracle8i Application Developer’s Guide - Large Objects (LOBs)

This book describes general functionality and features of database large objects
(LOBs) in Oracle8i.

■ Oracle8i Application Developer’s Guide - Object-Relational Features

This book contains general information about structured objects and other
object-relational database features in Oracle8i.

■ Oracle8i Supplied PL/SQL Packages Reference

This book documents PL/SQL packages available as part of the Oracle8i server,
some of which may be useful to call from JDBC applications.

■ PL/SQL User’s Guide and Reference

PL/This book explains the concepts and features of PL/SQL, Oracle’s
procedural language extension to SQL.

■ Oracle8i SQL Reference

This book contains a complete description of the content and syntax of the SQL
commands and features used to manage information in an Oracle database.

■ Oracle8i Reference

This book contains general reference information about the Oracle8i server.

■ Oracle8i Error Messages

This book contains information about error messages that can be passed by the
Oracle8i server.

Documentation from the following Oracle groups may also be of interest.

■ Oracle8i Application Server documentation

This documentation contains information about how the Oracle8i Application
Server supports JDBC.

■ Oracle8i JDeveloper Suite documentation

This documentation contains information about how the Oracle8i JDeveloper
Suite supports JDBC.
xxii

Ove
1

Overview

This chapter provides an overview of the Oracle implementation of JDBC, covering
the following topics:

■ Introduction

■ Overview of the Oracle JDBC Drivers

■ Overview of Application and Applet Functionality

■ Server-Side Basics

■ Environments and Support
rview 1-1

Introduction
Introduction
This section presents a brief introduction to Oracle JDBC, including a comparison to
SQLJ.

What is JDBC?
JDBC (Java Database Connectivity) is a standard Java interface for connecting from
Java to relational databases. The JDBC standard was defined by Sun Microsystems,
allowing individual providers to implement and extend the standard with their
own JDBC drivers.

JDBC is based on the X/Open SQL Call Level Interface and complies with the
SQL92 Entry Level standard.

In addition to supporting the standard JDBC API, Oracle drivers have extensions to
support Oracle-specific datatypes and to enhance performance.

JDBC versus SQLJ
This section has the following subsections:

■ Advantages of SQLJ over JDBC for Static SQL

■ General Guidelines for Using JDBC and SQLJ

Developers who are familiar with the Oracle Call Interface (OCI) layer of client-side
C code will recognize that JDBC provides the power and flexibility for the Java
programmer that OCI does for the C or C++ programmer. Just as with OCI, you can
use JDBC to query and update tables where, for example, the number and types of
the columns are not known until runtime. This capability is called dynamic SQL.
Therefore, JDBC is a way to use dynamic SQL statements in Java programs. Using
JDBC, a calling program can construct SQL statements at runtime. Your JDBC
program is compiled and run like any other Java program. No analysis or checking
of the SQL statements is performed. Any errors that are made in your SQL code
raise runtime errors. JDBC is designed as an API for dynamic SQL.

However, many applications do not need to construct SQL statements dynamically
because the SQL statements they use are fixed or static. In this case, you can use
SQLJ to embed static SQL in Java programs. In static SQL, all the SQL statements are
complete or "textually evident" in the Java program. That is, details of the database
object, such as the column names, number of columns in the table, and table name,
are known before runtime. SQLJ offers advantages for these applications because it
permits error checking at precompile time.
1-2 JDBC Developer’s Guide and Reference

Introduction
The precompile step of a SQLJ program performs syntax-checking of the embedded
SQL, type checking against the database to assure that the data exchanged between
Java and SQL have compatible types and proper type conversions, and schema
checking to assure congruence between SQL constructs and the database schema.
The result of the precompilation is Java source code with SQL runtime code which,
in turn, can use JDBC calls. The generated Java code compiles and runs like any
other Java program.

Although SQLJ provides direct support for static SQL operations known at the time
the program is written, it can also interoperate with dynamic SQL through JDBC.
SQLJ allows you to create JDBC objects when they are needed for dynamic SQL
operations. In this way, SQLJ and JDBC can co-exist in the same program.
Convenient conversions are supported between JDBC connections and SQLJ
connection contexts, as well as between JDBC result sets and SQLJ iterators. For
more information on this, see the Oracle8i SQLJ Developer’s Guide and Reference.

The syntax and semantics of SQLJ and JDBC do not depend on the configuration
under which they are running, thus enabling implementation on the client or
database side or in the middle tier.

Advantages of SQLJ over JDBC for Static SQL
While JDBC provides a complete dynamic SQL interface from Java to relational
databases, SQLJ fills a complementary role for static SQL.

Although you can use static SQL statements in your JDBC programs, they can be
represented more conveniently in SQLJ. Here are some advantages you gain in
using SQLJ over JDBC for static SQL statements:

■ SQLJ source programs are more concise than equivalent JDBC programs,
because SQLJ provides a shorter syntax.

■ SQLJ provides strong typing of connections (and the sets of SQL entities that
they access), query outputs, and return parameters.

■ SQLJ can use database connections to type-check static SQL code at translation
time. JDBC, being a completely dynamic API, does not perform any
type-checking until run-time.

■ SQLJ programs allow direct embedding of Java bind expressions within SQL
statements. JDBC requires separate getter and/or setter call statements for each
bind variable.

■ SQLJ provides simplified rules for calling SQL stored procedures and functions.
Overview 1-3

Introduction
General Guidelines for Using JDBC and SQLJ
SQLJ is effective in the following circumstances:

■ You want to be able to check your program for errors at translation-time, rather
than at run-time.

■ You want to write an application that you can deploy to another database.
Using SQLJ, you can customize the static SQL for that database at
deployment-time.

■ You are working with a database that contains compiled SQL. You will want to
use SQLJ because you cannot compile SQL statements in a JDBC program.

JDBC is effective in the following circumstances:

■ Your program uses dynamic SQL. For example, you have a program that builds
queries in real-time or has an interactive query component.

■ You do not want to have a SQLJ layer during deployment or development. For
example, you might want to download only the JDBC Thin driver and not the
SQLJ runtime libraries to minimize download time over a slow link.

Note: You can intermix SQLJ code and JDBC code in the same
source. This is discussed in the Oracle8i SQLJ Developer’s Guide and
Reference.
1-4 JDBC Developer’s Guide and Reference

Overview of the Oracle JDBC Drivers
Overview of the Oracle JDBC Drivers
This section introduces the Oracle JDBC drivers, their basic architecture, and some
scenarios for their use.

Oracle provides the following JDBC drivers:

■ Thin driver, a 100% Java driver for client-side use without an Oracle
installation, particularly with applets

■ OCI drivers (OCI8 and OCI7) for client-side use with an Oracle client
installation

■ server-side Thin driver, which is functionally the same as the client-side Thin
driver, but is for code that runs inside an Oracle server and needs to access a
remote server, including middle-tier scenarios

■ server-side internal driver for code that runs inside the target server (that is,
inside the Oracle server that it must access)

Figure 1–1 illustrates the driver-database architecture for the JDBC Thin, OCI, and
server-side internal drivers.

The rest of this section describes common features of the Oracle drivers and then
discusses each one individually, concluding with a discussion of some of the
considerations in choosing the appropriate driver for your application.
Overview 1-5

Overview of the Oracle JDBC Drivers
Figure 1–1 Driver-Database Architecture

Common Features of Oracle JDBC Drivers
The server-side and client-side Oracle JDBC drivers provide the same basic
functionality. They all support the following standards and features:

■ either JDK 1.2.x / JDBC 2.0 or JDK 1.1.x / JDBC 1.22 (with Oracle extensions for
JDBC 2.0 functionality)

These two implementations use different sets of class files.

■ the same syntax and APIs

■ the same Oracle extensions

■ full support for multi-threaded applications

Generally speaking, the only differences between the drivers are in how they
connect to the database and how they transfer data.

JDBC OCI Driver

OCI C Library

JDBC Thin Driver

Java Sockets

Oracle8i

Java Engine

KPRB C Library

SQL Engine
PL/SQL Engine

Oracle8i

Server-Side Thin Driver

JDBC Server-Side
Internal Driver
1-6 JDBC Developer’s Guide and Reference

Overview of the Oracle JDBC Drivers
JDBC Thin Driver
The Oracle JDBC Thin driver is a 100% pure Java, Type IV driver. It is targeted for
Oracle JDBC applets but can be used for applications as well. Because it is written
entirely in Java, this driver is platform-independent. It does not require any
additional Oracle software on the client side.

For applets it can be downloaded into a browser along with the Java applet being
run. The HTTP protocol is stateless, but the Thin driver is not. The initial HTTP
request to download the applet and the Thin driver is stateless. Once the Thin
driver establishes the database connection, the communication between the browser
and the database is stateful and in a two-tier configuration.

The JDBC Thin driver allows a direct connection to the database by providing an
implementation of TCP/IP that emulates Net8 and TTC (the wire protocol used by
OCI) on top of Java sockets. Both of these protocols are lightweight implementation
versions of their counterparts on the server. The Net8 protocol runs over TCP/IP
only.

The driver supports only TCP/IP protocol and requires a TNS listener on the
TCP/IP sockets from the database server.

Using the Thin driver inside an Oracle server or middle tier is considered
separately, under "JDBC Server-Side Thin Driver" below.

Notes:

■ The server-side internal driver supports only JDK 1.2.x.

■ Most JDBC 2.0 functionality, including that for objects, arrays,
and LOBs, is available in a JDK 1.1.x environment through
Oracle extensions.

■ Starting with release 8.1.6, JDK 1.0.2 is no longer supported.

Note: When the JDBC Thin driver is used with an applet, the
client browser must have the capability to support Java sockets.
Overview 1-7

Overview of the Oracle JDBC Drivers
JDBC OCI Drivers
The JDBC OCI drivers (OCI8 for Oracle8/8i and OCI7 for Oracle7) are Type II
drivers targeted for client-server Java applications programmers. They require an
Oracle client installation, so are Oracle platform-specific and are not suitable for
applets.

The OCI drivers, written in a combination of Java and C, convert JDBC invocations
to calls to the Oracle Call Interface (OCI), using native methods to call C entry
points. These calls are then sent over Net8 to the Oracle database server.

These drivers use the OCI libraries, OCI cache, C-entry points, Net8, CORE
libraries, and other necessary files on the client machine on which they are installed.

The OCI drivers provide the highest compatibility with the different Oracle 7, 8, and
8i versions. They also support all installed Net8 adapters, including IPC, named
pipes, TCP/IP, and IPX/SPX.

JDBC Server-Side Thin Driver
The Oracle JDBC server-side Thin driver offers the same functionality as the
client-side Thin driver, but runs inside an Oracle database and accesses a remote
database.

This is especially useful in two situations:

■ to access a remote Oracle server from an Oracle server acting as a middle tier

■ more generally, to access one Oracle server from inside another, such as from
any Java stored procedure or Enterprise JavaBean

There is no difference in your code between using the Thin driver from a client
application or from inside a server.

JDBC Server-Side Internal Driver
The Oracle JDBC server-side internal driver supports any Java code that runs inside
an Oracle database, such as in a Java stored procedures or Enterprise JavaBean, and
must access the same database. This driver allows the Java virtual machine (JVM) to
communicate directly with the SQL engine.

Note: Statement cancel() and setQueryTimeout() methods
are not supported by the server-side Thin driver.
1-8 JDBC Developer’s Guide and Reference

Overview of the Oracle JDBC Drivers
The server-side internal driver, the JVM, the database, the KPRB (server-side) C
library, and the SQL engine all run within the same address space, so the issue of
network round trips is irrelevant. The programs access the SQL engine by using
function calls.

The server-side internal driver is fully consistent with the client-side drivers and
supports the same features and extensions. For more information on the server-side
internal driver, see "JDBC in the Server: the Server-Side Internal Driver" on
page 15-26.

Choosing the Appropriate Driver
Consider the following when choosing which JDBC driver to use for your
application or applet:

■ If you are writing an applet, you must use the JDBC Thin driver. JDBC
OCI-based driver classes will not work inside a Web browser, because they call
native (C language) methods.

■ If you want maximum portability, then choose the JDBC Thin driver. You can
connect to an Oracle server from either an application or an applet using the
JDBC Thin driver.

■ If you are writing a client application for an Oracle client environment and need
maximum performance, then choose the JDBC OCI driver.

■ For code that runs in an Oracle server acting as a middle tier, use the server-side
Thin driver.

■ If your code will run inside the target Oracle server, then use the JDBC
server-side internal driver to access that server. (You can also access remote
servers using the server-side Thin driver.)
Overview 1-9

Overview of Application and Applet Functionality
Overview of Application and Applet Functionality
This section compares and contrasts the basic functionality of JDBC applications
and applets, and introduces Oracle extensions that can be used by application and
applet programmers.

Application Basics
You can use either the Oracle JDBC Thin driver or the JDBC OCI driver for a client
application. Because the JDBC OCI driver uses native methods, there can be
significant performance advantages in using this driver for your applications.

An application that can run on a client can also run in the Oracle server, using the
JDBC server-side internal driver.

If you are using a JDBC OCI driver in an application, then the application will
require an Oracle installation on its clients. For example, the application will require
the installation of Net8 and client libraries.

Both the OCI drivers and the Thin driver offer support for data encryption and
integrity checksum features of the Oracle Advanced Security option (formerly
known as ANO or ASO). See "JDBC Client-Side Security Features" on page 15-8.
Such security is not necessary for the server-side internal driver.

Applet Basics
This section describes the issues you should take into consideration if you are
writing an applet that uses the JDBC Thin driver.

For more about applets and a discussion of relevant firewall, browser, and security
issues, see "JDBC in Applets" on page 15-15.

Applets and Security
Without special preparations, an applet can open network connections only to the
host machine from which it was downloaded. Therefore, an applet can connect to
databases only on the originating machine. If you want to connect to a database
running on a different machine, you have two options:

■ Use Oracle8 Connection Manager on the host machine. The applet can connect
to Oracle8 Connection Manager, which in turn connects to a database on
another machine.

■ Use signed applets, which can request socket connection privileges to other
machines.
1-10 JDBC Developer’s Guide and Reference

Overview of Application and Applet Functionality
Both of these topics are described in greater detail in "Connecting to the Database
through the Applet" on page 15-15.

The Thin driver offers support for data encryption and integrity checksum features
of the Oracle Advanced Security option. See "JDBC Client-Side Security Features"
on page 15-8.

Applets and Firewalls
An applet that uses the JDBC Thin driver can connect to a database through a
firewall. See "Using Applets with Firewalls" on page 15-20 for more information on
configuring the firewall and on writing connect strings for the applet.

Packaging and Deploying Applets
To package and deploy an applet, you must place the JDBC Thin driver classes and
the applet classes in the same zip file. This is described in detail in "Packaging
Applets" on page 15-23.

Oracle Extensions
A number of Oracle extensions are available to Oracle JDBC application and applet
programmers, in the following categories:

■ type extensions (such as ROWIDs and REF CURSOR types)

■ wrapper classes for SQL types (the oracle.sql package)

■ support for custom Java classes to map to user-defined types

■ extended LOB support

■ extended connection, statement, and result set functionality

■ performance enhancements

See Chapter 5, "Overview of Oracle Extensions" for an overview of type extensions
and extended functionality, and succeeding chapters for further detail. See
Chapter 12, "Performance Extensions" regarding Oracle performance enhancements.
Overview 1-11

Server-Side Basics
Server-Side Basics
By using the Oracle JDBC server-side internal driver, code that runs in an Oracle
database, such as in Java stored procedures or Enterprise JavaBeans, can access the
database in which it runs.

For a complete discussion of the server-side driver, see "JDBC in the Server: the
Server-Side Internal Driver" on page 15-26.

Session and Transaction Context
The server-side internal driver operates within a default session and default
transaction context. For more information on default session and transaction context
for the server-side driver, see "Session and Transaction Context for the Server-Side
Internal Driver" on page 15-30.

Connecting to the Database
The server-side internal driver uses a default connection to the database. You can
connect to the database with either the DriverManager.getConnection()
method or the Oracle-specific OracleDriver class defaultConnection()
method. For more information on connecting to the database with the server-side
driver, see "Connecting to the Database with the Server-Side Internal Driver" on
page 15-26.
1-12 JDBC Developer’s Guide and Reference

Environments and Support
Environments and Support
This section provides a brief discussion of platform, environment, and support
features of the Oracle JDBC drivers. The following topics are discussed:

■ Supported JDK and JDBC Versions

■ JNI and Java Environments

■ JDBC and the Oracle Application Server

■ JDBC and IDEs

Supported JDK and JDBC Versions
With release 8.1.6, Oracle has two versions of the Thin and OCI drivers—one that is
compatible with JDK 1.2.x and one that is compatible with JDK 1.1.x. The JDK 1.2.x
versions support standard JDBC 2.0. The JDK 1.1.x versions support most JDBC 2.0
features, but must do so through Oracle extensions because JDBC 2.0 features are
not available in JDK 1.1.x versions.

Very little is required in migrating from a JDK 1.1.x environment to a JDK 1.2.x
environment. For information, see "Migration from JDK 1.1.x to JDK 1.2.x" on
page 4-5.

For information about supported combinations of driver versions, JDK versions,
and database versions, see "Requirements and Compatibilities for Oracle JDBC
Drivers" on page 2-2.

Notes:

■ The server-side internal driver supports only JDK 1.2.x.

■ Beginning with release 8.1.6, JDK 1.0.2 is no longer supported.

■ Each driver implementation uses its own JDBC classes ZIP
file—classes12.zip for JDK 1.2.x versions, and
classes111.zip for JDK 1.1.x versions.
Overview 1-13

Environments and Support
JNI and Java Environments
Beginning with release 8.1.6, Oracle JDBC OCI drivers use the standard JNI (Java
Native Interface) to call Oracle OCI C libraries. Prior to 8.1.6, when the OCI drivers
supported JDK 1.0.2, they used NMI (Native Method Interface) for C calls. NMI was
an earlier specification by Sun Microsystems and was the only native call interface
supported by JDK 1.0.2.

Because JNI is now supported by Oracle JDBC, you can use the OCI drivers with
Java virtual machines other than that of Sun Microsystems—in particular, with
Microsoft and IBM JVMs. These JVMs support only JNI for native C calls.

JDBC and the Oracle Application Server
The Oracle Application Server (OAS) is a collection of middleware services and
tools that provide a scalable, robust, secure, and extensible platform for distributed,
object-oriented applications. The OAS supports access to applications from both
Web clients (browsers) using the Hypertext Transfer Protocol (HTTP), and CORBA
clients, which use the Common Object Request Broker Architecture (CORBA) and
the Internet Inter-ORB Protocol (IIOP).

You can use the JDBC OCI drivers on a middle tier in conjunction with OAS
(formerly Web Application Server, or WAS) versions 3.0 and higher—the OAS
bundles JDBC with its distribution. For more information about the use of JDBC
with the OAS, refer to the Oracle Application Server documentation.

JDBC and IDEs
The Oracle JDeveloper Suite provides developers with a single, integrated set of
products to build, debug, and deploy component-based database applications for
the Oracle Internet platform. The Oracle JDeveloper environment contains
integrated support for JDBC and SQLJ, including the 100% pure JDBC Thin driver
and the native OCI drivers. The database component of Oracle JDeveloper uses the
JDBC drivers to manage the connection between the application running on the
client and the server. See your Oracle JDeveloper documentation for more
information.
1-14 JDBC Developer’s Guide and Reference

Getting S
2

Getting Started

This chapter begins by discussing compatibilities between Oracle JDBC driver
versions, database versions, and JDK versions. It then guides you through the basics
of testing your installation and configuration, and running a simple application.
The following topics are discussed:

■ Requirements and Compatibilities for Oracle JDBC Drivers

■ Verifying a JDBC Client Installation
tarted 2-1

Requirements and Compatibilities for Oracle JDBC Drivers
Requirements and Compatibilities for Oracle JDBC Drivers
Table 2–1 lists the compatibilities between Oracle JDBC driver versions and Oracle
database versions. The JDK versions supported by each JDBC driver version are
also listed.

Note: Notice that starting with release 8.1.6, the Oracle JDBC
drivers no longer support JDK 1.0.x versions.

Table 2–1 JDBC Driver-Database Compatibility

Driver
Versions

Database
Versions
Supported

JDK Versions
Supported Drivers Available Remarks

8.1.6 8.1.6, 8.1.5, 8.0.6,
8.0.5, 8.0.4, 7.3.4

1.2.x, 1.1.x JDBC Thin driver

JDBC OCI driver

JDBC server-side Thin driver

JDBC server-side internal driver
(supports 8.1.6 database and JDK
1.2.x only)

The Thin driver is now also
available in the server with the
standard server installation.
This has the same usage and
functionality as the client-side
Thin driver, for accessing a
remote database from inside a
database.

8.1.5 8.1.5, 8.0.6, 8.0.5,
8.0.4, 7.3.4

1.1.x, 1.0.x JDBC Thin driver

JDBC OCI driver

JDBC server-side internal driver
(supports 8.1.5 database and JDK
1.1.x only)

Both client- and server-side
drivers offer full support for
structured objects when run
against an 8.1.5 database.

8.0.6 8.0.6, 8.0.5, 8.0.4,
7.3.4

1.1.x, 1.0.x JDBC Thin driver

JDBC OCI driver

Note: the JDBC server-side internal
driver is not available for 8.0.x and
prior versions.

.

2-2 JDBC Developer’s Guide and Reference

Requirements and Compatibilities for Oracle JDBC Drivers
8.0.5 8.0.5, 8.0.4, 7.3.4 1.1.x, 1.0.x JDBC Thin driver

JDBC OCI driver

Note: the JDBC server-side internal
driver is not available for 8.0.x and
prior versions.

8.0.4 8.0.4, 7.3.4 1.1.x, 1.0.x JDBC Thin driver

JDBC OCI driver

Note: the JDBC server-side internal
driver is not available for 8.0.x and
prior versions.

7.3.4 7.3.4 1.1.x, 1.0.x JDBC Thin driver

JDBC OCI driver

Note: the JDBC server-side internal
driver is not available for 8.0.x and
prior versions.

Notes:

■ Different JDKs require different class files—classes in
classes12.zip, classes111.zip, and classes102.zip,
respectively.

■ The JDBC drivers do not support structured objects when run against
an 8.0.x database. This is because JDBC depends on PL/SQL functions
that did not exist in those releases.

■ There is no structured object or LOB support in Oracle 7.3.x.

■ Any client-side driver might work with 7.x databases prior to
7.3.4, but this has not been tested and is not supported.

Table 2–1 JDBC Driver-Database Compatibility(Cont.)

Driver
Versions

Database
Versions
Supported

JDK Versions
Supported Drivers Available Remarks
Getting Started 2-3

Verifying a JDBC Client Installation
Verifying a JDBC Client Installation
This section covers the following topics:

■ Check Installed Directories and Files

■ Check the Environment Variables

■ Make Sure You Can Compile and Run Java

■ Determine the Version of the JDBC Driver

■ Testing JDBC and the Database Connection: JdbcCheckup

Installation of an Oracle JDBC driver is platform-specific. Follow the installation
instructions for the driver you want to install in your platform-specific
documentation.

This section describes the steps of verifying an Oracle client installation of the JDBC
drivers. It assumes that you have already installed the driver of your choice.

If you have installed the JDBC Thin driver, no further installation on the client
machine is necessary (the JDBC Thin driver requires a TCP/IP listener to be
running on the database machine).

If you have installed the JDBC OCI driver, you must also install the Oracle client
software. This includes Net8 and the OCI libraries.

Check Installed Directories and Files
This section assumes that you have already installed the Sun Microsystems Java
Developer’s Kit (JDK) on your system (although other forms of Java are also
supported). Oracle offers JDBC drivers compatible with either JDK 1.2.x versions or
JDK 1.1.x versions.

Installing the Oracle JServer products creates, among other things, an
[ORACLE_HOME]/jdbc directory containing these subdirectories and files:

■ demo/samples: The samples subdirectory contains sample programs,
including examples of how to use SQL92 and Oracle SQL syntax, PL/SQL
blocks, streams, user-defined types, additional Oracle type extensions, and
Oracle performance extensions.

■ doc: The doc directory contains documentation about the JDBC drivers.
2-4 JDBC Developer’s Guide and Reference

Verifying a JDBC Client Installation
■ lib: The lib directory contains .zip files with these required Java classes:

– classes12.zip contains the classes for use with the JDK 1.2.x—all the
JDBC driver classes except the classes necessary for NLS support.

– nls_charset12.zip contains the classes necessary for NLS support with
the JDK 1.2.x.

– jta.zip and jndi.zip contain classes for the Java Transaction API and
the Java Naming and Directory Interface for JDK 1.2.x. These are only
required if you will be using JTA features for distributed transaction
management or JNDI features for naming services. (These files can also be
obtained from the Sun Microsystems Web site, but it is advisable to use the
versions from Oracle, because those have been tested with the Oracle
drivers.)

– classes111.zip contains the classes for use with the JDK 1.1.x—all the
JDBC driver classes except the classes necessary for NLS support.

classes111.zip also contains Oracle extensions that allow you to use
JDBC 2.0 functionality for objects, arrays, and LOBs under JDK 1.1.x.

– nls_charset11.zip contains the classes necessary for NLS support with
the JDK 1.1.x.

The nls_charset12.zip and nls_charset11.zip files provide support
for specific NLS character sets. They have been separated out from the
classes*.zip files to give you the option of excluding character sets in
situations where complete NLS support is not needed. For more information on
nls_charset12.zip and nls_charset11.zip, see "NLS Support and
Object Types" on page 15-5.

■ readme.txt: The readme.txt file contains late-breaking and release-specific
information about the drivers that might not be in this manual.

Check that all these directories have been created and populated.
Getting Started 2-5

Verifying a JDBC Client Installation
Check the Environment Variables
This section describes the environment variables that must be set for the JDBC OCI
driver and the JDBC Thin driver, focusing on the Sun Microsystems Solaris and
Microsoft Windows NT platforms.

You must set the CLASSPATH for your installed JDBC OCI or Thin driver.
Depending on whether you are using the JDK 1.2.x versions or 1.1.x versions, you
must set one of these values for the CLASSPATH:

■ [Oracle Home]/jdbc/lib/classes12.zip
(and optionally [Oracle Home]/jdbc/lib/nls_charset12.zip) for full
NLS character support)

or:

■ [Oracle Home]/jdbc/lib/classes111.zip
(and optionally [Oracle Home]/jdbc/lib/nls_charset11.zip) for full
NLS character support)

Ensure that there is only one classes*.zip file version and one
nls_charset*.zip file version in your CLASSPATH.

JDBC OCI Drivers: If you are installing the JDBC OCI driver, you must also set the
following value for the library path environment variable

■ On Solaris, set LD_LIBRARY_PATH as follows:

[Oracle Home]/lib

This directory contains the libocijdbc8.so shared object library.

■ On Windows NT, set PATH as follows:

[Oracle Home]\lib

This directory contains the ocijdbc8.dll dynamic link library.

JDBC Thin Drivers: If you are installing the JDBC Thin driver, you do not have to set
any other environment variables.

Note: If you will be using JTA features or JNDI features, both of
which are discussed in Chapter 13, "Connection Pooling and
Caching", then you will also need to have jta.zip and jndi.zip
in your CLASSPATH.
2-6 JDBC Developer’s Guide and Reference

Verifying a JDBC Client Installation
Make Sure You Can Compile and Run Java
To further ensure that Java is set up properly on your client system, go to the
samples directory (for example, C:\oracle\ora81\jdbc\demo\samples if
you are using the JDBC driver on a Windows NT machine), then see if javac (the
Java compiler) and java (the Java interpreter) will run without error. Enter:

javac

then enter:

java

Each should give you a list of options and parameters and then exit. Ideally, verify
that you can compile and run a simple test program.

Determine the Version of the JDBC Driver
If at any time you must determine the version of the JDBC driver that you installed,
you can invoke the getDriverVersion() method of the
OracleDatabaseMetaData class.

Here is sample code showing how to do it:

import java.sql.*;
import oracle.jdbc.driver.*;

class JDBCVersion
{
 public static void main (String args[])
 throws SQLException
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver
 (new oracle.jdbc.driver.OracleDriver());
 Connection conn = DriverManager.getConnection
 ("jdbc:oracle:thin:@host:port:sid","scott","tiger");

 // Create Oracle DatabaseMetaData object
 DatabaseMetaData meta = conn.getMetaData();

 // gets driver info:
 System.out.println("JDBC driver version is " + meta.getDriverVersion());
 }
}

Getting Started 2-7

Verifying a JDBC Client Installation
Testing JDBC and the Database Connection: JdbcCheckup
The samples directory contains sample programs for a particular Oracle JDBC
driver. One of the programs, JdbcCheckup.java, is designed to test JDBC and the
database connection. The program queries you for your user name, password, and
the name of a database to which you want to connect. The program connects to the
database, queries for the string "Hello World", and prints it to the screen.

Go to the samples directory and compile and run JdbcCheckup.java. If the
results of the query print without error, then your Java and JDBC installations are
correct.

Although JdbcCheckup.java is a simple program, it demonstrates several
important functions by executing the following:

■ imports the necessary Java classes, including JDBC classes

■ registers the JDBC driver

■ connects to the database

■ executes a simple query

■ outputs the query results to your screen

"First Steps in JDBC" on page 3-2, describes these functions in greater detail. A
listing of JdbcCheckup.java for the JDBC OCI driver appears below.

/*
 * This sample can be used to check the JDBC installation.
 * Just run it and provide the connect information. It will select
 * "Hello World" from the database.
 */

// You need to import the java.sql package to use JDBC
import java.sql.*;

// We import java.io to be able to read from the command line
import java.io.*;

class JdbcCheckup
{
 public static void main(String args[])
 throws SQLException, IOException
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
2-8 JDBC Developer’s Guide and Reference

Verifying a JDBC Client Installation
 // Prompt the user for connect information
 System.out.println("Please enter information to test connection to
 the database");
 String user;
 String password;
 String database;

 user = readEntry("user: ");
 int slash_index = user.indexOf(’/’);
 if (slash_index != -1)
 {
 password = user.substring(slash_index + 1);
 user = user.substring(0, slash_index);
 }
 else
 password = readEntry("password: ");
 database = readEntry("database(a TNSNAME entry): ");

 System.out.print("Connecting to the database...");
 System.out.flush();

 System.out.println("Connecting...");
 Connection conn = DriverManager.getConnection
 ("jdbc:oracle:oci8:@" + database, user, password);

 System.out.println("connected.");

 // Create a statement
 Statement stmt = conn.createStatement();

 // Do the SQL "Hello World" thing
 ResultSet rset = stmt.executeQuery("select ’Hello World’
 from dual");

 while (rset.next())
 System.out.println(rset.getString(1));
 // close the result set, the statement and connect
 rset.close();
 stmt.close();
 conn.close();
 System.out.println("Your JDBC installation is correct.");
 }

 // Utility function to read a line from standard input
 static String readEntry(String prompt)
Getting Started 2-9

Verifying a JDBC Client Installation
 {
 try
 {
 StringBuffer buffer = new StringBuffer();
 System.out.print(prompt);
 System.out.flush();
 int c = System.in.read();
 while (c != ’\n’ && c != -1)
 {
 buffer.append((char)c);
 c = System.in.read();
 }
 return buffer.toString().trim();
 }
 catch(IOException e)
 {
 return "";
 }
 }
}

2-10 JDBC Developer’s Guide and Reference

Basic Fe
3

Basic Features

This chapter covers the most basic steps taken in any JDBC application. It also
describes additional basic features of Java and JDBC supported by the Oracle JDBC
drivers.

The following topics are discussed:

■ First Steps in JDBC

■ Sample: Connecting, Querying, and Processing the Results

■ Datatype Mappings

■ Java Streams in JDBC

■ Stored Procedure Calls in JDBC Programs

■ Processing SQL Exceptions
atures 3-1

First Steps in JDBC
First Steps in JDBC
This section describes how to get up and running with the Oracle JDBC drivers.
When using the Oracle JDBC drivers, you must include certain driver-specific
information in your programs. This section describes, in the form of a tutorial,
where and how to add the information. The tutorial guides you through creating
code to connect to and query a database from the client.

To connect to and query a database from the client, you must provide code for these
tasks:

1. Import Packages

2. Register the JDBC Drivers

3. Open a Connection to a Database

4. Create a Statement Object

5. Execute a Query and Return a Result Set Object

6. Process the Result Set

7. Close the Result Set and Statement Objects

8. Make Changes to the Database

9. Commit Changes

10. Close the Connection

You must supply Oracle driver-specific information for the first three tasks, which
allow your program to use the JDBC API to access a database. For the other tasks,
you can use standard JDBC Java code as you would for any Java application.

Import Packages
Regardless of which Oracle JDBC driver you use, include the following import
statements at the beginning of your program (java.math only if needed):

import java.sql.*; for standard JDBC packages

import java.math.*; for BigDecimal and BigInteger classes
3-2 JDBC Developer’s Guide and Reference

First Steps in JDBC
Import the following Oracle packages when you want to access the extended
functionality provided by the Oracle drivers. However, they are not required for the
example presented in this section:

For an overview of the Oracle extensions to the JDBC standard, see Chapter 5,
"Overview of Oracle Extensions".

Register the JDBC Drivers
You must provide the code to register your installed driver with your program. You
do this with the static registerDriver() method of the JDBC DriverManager
class. This class provides a basic service for managing a set of JDBC drivers.

Because you are using one of Oracle’s JDBC drivers, you declare a specific driver
name string to registerDriver(). You register the driver only once in your Java
application.

DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());

Open a Connection to a Database
Open a connection to the database with the static getConnection() method of
the JDBC DriverManager class. This method returns an object of the JDBC
Connection class that needs as input a user name, password, connect string that
identifies the JDBC driver to use, and the name of the database to which you want
to connect.

Connecting to a database is a step where you must enter Oracle JDBC
driver-specific information in the getConnection() method. If you are not

import oracle.jdbc.driver.*;

import oracle.sql.*;

for Oracle extensions to JDBC

Note: Alternatively, you can use the forName() method of the
java.lang.Class class to load the JDBC drivers directly. For
example:

Class.forName ("oracle.jdbc.driver.OracleDriver");

However, this method is valid only for JDK-compliant Java virtual
machines. It is not valid for Microsoft Java virtual machines.
Basic Features 3-3

First Steps in JDBC
familiar with this method, continue reading the "Understanding the Forms of
getConnection()" section below.

If you are already familiar with the getConnection() method, you can skip
ahead to either of these sections, depending on the driver you installed:

■ "Opening a Connection for the JDBC OCI Driver" on page 3-8

■ "Opening a Connection for the JDBC Thin Driver" on page 3-9

Understanding the Forms of getConnection()
The DriverManager class getConnection() method whose signatures and
functionality are described in the following sections:

■ "Specifying a Database URL, User Name, and Password" on page 3-5

■ "Specifying a Database URL That Includes User Name and Password" on
page 3-6

■ "Specifying a Database URL and Properties Object" on page 3-6

If you want to specify a database name in the connection, it must be in one of the
following formats:

■ a Net8 keyword-value pair

■ a string of the form <host_name>:<port_number>:<sid> (Thin driver only)

■ a TNSNAMES entry (OCI driver only)

Notes:

■ With JDK 1.2, using JNDI (Java Naming and Directory
Interface) is becoming the recommended way to make
connections. See "A Brief Overview of Oracle Data Source
Support for JNDI" on page 13-2 and "Creating a Data Source
Instance, Registering with JNDI, and Connecting" on page 13-7.

■ If you are using the Thin driver, be aware that it does not
support OS authentication in making the connection. As a
result, special logins are not supported.

■ This discussion in this section does not apply to the server-side
internal driver, which uses an implicit connection. See
"Connecting to the Database with the Server-Side Internal
Driver" on page 15-26.
3-4 JDBC Developer’s Guide and Reference

First Steps in JDBC
For information on how to specify a keyword-value pair or a TNSNAMES entry, see
your Net8 Administrator’s Guide.

Specifying a Database URL, User Name, and Password
The following signature takes the URL, user name, and password as separate
parameters:

getConnection(String URL, String user, String password);

Where the URL is of the form:

jdbc:oracle:<drivertype>:@<database>

The following example connects user scott with password tiger to a database
with SID orcl through port 1521 of host myhost, using the Thin driver.

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:thin:@myhost:1521:orcl", "scott", "tiger");

If you want to use the default connection for an OCI driver, specify either:

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:oci8:scott/tiger@");
or:

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:oci8:@", "scott", "tiger");

For all JDBC drivers, you can also specify the database with a Net8 keyword-value
pair. The Net8 keyword-value pair substitutes for the TNSNAMES entry. The
following example uses the same parameters as the preceding example, but in the
keyword-value format:

Connection conn = DriverManager.getConnection
 (jdbc:oracle:oci8:@MyHostString","scott","tiger");

or:

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:oci8:@(description=(address=(host= myhost)
 (protocol=tcp)(port=1521))(connect_data=(sid=orcl)))","scott", "tiger");
Basic Features 3-5

First Steps in JDBC
Specifying a Database URL That Includes User Name and Password
The following signature takes the URL, user name, and password all as part of a
URL parameter:

getConnection(String URL);

Where the URL is of the form:

jdbc:oracle:<drivertype>:<user>/<password>@<database>

The following example connects user scott with password tiger to a database on
host myhost using the OCI driver. In this case, however, the URL includes the
userid and password, and is the only input parameter.

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:oci8:scott/tiger@myhost);

If you want to connect with the Thin driver, you must specify the port number and
SID. For example, if you want to connect to the database on host myhost that has a
TCP/IP listener up on port 1521, and the SID (system identifier) is orcl:

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:thin:scott/tiger@myhost:1521:orcl);

Specifying a Database URL and Properties Object
The following signature takes a URL, together with a properties object that specifies
user name and password (perhaps among other things):

getConnection(String URL, Properties info);

Where the URL is of the form:

jdbc:oracle:<drivertype>:@<database>

In addition to the URL, use an object of the standard Java Properties class as
input. For example:

java.util.Properties info = new java.util.Properties();
info.put ("user", "scott");
info.put ("password","tiger");
info.put ("defaultRowPrefetch","15");
getConnection ("jdbc:oracle:oci8:@",info);

Table 3–1 lists the connection properties that Oracle JDBC drivers support.
3-6 JDBC Developer’s Guide and Reference

First Steps in JDBC
Table 3–1 Connection Properties Recognized by Oracle JDBC Drivers

Name
Short
Name Type Description

user n/a String the user name for logging into the
database

password n/a String the password for logging into the database

database server String the connect string for the database

internal_logon n/a String (OCI driver) a user name, such as sysdba,
that allows you to log on as "internal"
using that name (Thin driver does not
support OS authentication)

defaultRowPrefetch prefetch String
(containing
integer
value)

the default number of rows to prefetch
from the server (default value is "10")

remarksReporting remarks String
(containing
boolean
value)

"true" if getTables() and
getColumns() should report
TABLE_REMARKS; equivalent to using
setRemarksReporting() (default
value is "false")

defaultBatchValue batchvalue String
(containing
integer
value)

the default batch value that triggers an
execution request (default value is "10")

includeSynonyms synonyms String
(containing
boolean
value)

"true" to include column information from
predefined "synonym" SQL entities when
you execute a DataBaseMetaData
getColumns() call; equivalent to
connection setIncludeSynonyms() call
(default value is "false")
Basic Features 3-7

First Steps in JDBC
Properties for Oracle Performance Extensions Some of these properties are for use with
Oracle performance extensions. Setting these properties is equivalent to using
corresponding methods on the OracleConnection object, as follows:

■ Setting the defaultRowPrefetch property is equivalent to calling
setDefaultRowPrefetch().

See "Oracle Row Prefetching" on page 12-20.

■ Setting the remarksReporting property is equivalent to calling
setRemarksReporting().

See "DatabaseMetaData TABLE_REMARKS Reporting" on page 12-27.

■ Setting the defaultBatchValue property is equivalent to calling
setDefaultExecuteBatch().

See "Oracle Update Batching" on page 12-4.

Example The following example shows how to use the put() method of the
java.util.Properties class, in this case to set Oracle performance extension
parameters.

//import packages and register the driver
import java.sql.*;
import java.math.*;
DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());

//specify the properties object
java.util.Properties info = new java.util.Properties();
info.put("user", "scott");
info.put ("password", "tiger");
info.put ("defaultRowProfetch","20");
info.put ("defaultBatchValue", "5");

//specify the connection object
Connection conn = DriverManager.getConnection
 ("jdbc:oracle:thin:@database",info);
...

Opening a Connection for the JDBC OCI Driver
For the JDBC OCI driver, you can specify the database by a TNSNAMES entry. You
can find the available TNSNAMES entries listed in the file tnsnames.ora on the
client computer from which you are connecting. On Windows NT, this file is located
3-8 JDBC Developer’s Guide and Reference

First Steps in JDBC
in the [ORACLE_HOME]\NETWORK\ADMIN directory. On UNIX systems, you can
find it in the /var/opt/oracle directory.

For example, if you want to connect to the database on host myhost as user scott
with password tiger that has a TNSNAMES entry of MyHostString, enter:

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:oci8:@MyHostString", "scott", "tiger");

Note that both the ":" and "@" characters are necessary.

For the JDBC OCI and Thin drivers, you can also specify the database with a Net8
keyword-value pair. This is less readable than a TNSNAMES entry but does not
depend on the accuracy of the TNSNAMES.ORA file. The Net8 keyword-value pair
also works with other JDBC drivers.

For example, if you want to connect to the database on host myhost that has a
TCP/IP listener up on port 1521, and the SID (system identifier) is orcl, use a
statement such as:

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:oci8:@(description=(address=(host= myhost)
 (protocol=tcp)(port=1521))(connect_data=(sid=orcl)))","scott", "tiger");

Opening a Connection for the JDBC Thin Driver
Because you can use the JDBC Thin driver in applets that do not depend on an
Oracle client installation, you cannot use a TNSNAMES entry to identify the database
to which you want to connect. You have to either:

■ Explicitly list the host name, TCP/IP port and Oracle SID of the database to
which you want to connect.

or:

■ Use a keyword-value pair list.

Note: Oracle JDBC does not support login timeouts. Calling the
static DriverManager.setLoginTimeout() method will have
no effect.
Basic Features 3-9

First Steps in JDBC
For example, use this string if you want to connect to the database on host myhost
that has a TCP/IP listener on port 1521 for the database SID (system identifier)
orcl. You can logon as user scott, with password tiger:

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:thin:@myhost:1521:orcl", "scott", "tiger");

You can also specify the database with a Net8 keyword-value pair. This is less
readable than the first version, but also works with the other JDBC drivers.

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:thin:@(description=(address=(host=myhost)
 (protocol=tcp)(port=1521))(connect_data=(sid=orcl)))", "scott", "tiger");

Create a Statement Object
Once you connect to the database and, in the process, create your Connection
object, the next step is to create a Statement object. The createStatement()
method of your JDBC Connection object returns an object of the JDBC
Statement class. To continue the example from the previous section where the
Connection object conn was created, here is an example of how to create the
Statement object:

Statement stmt = conn.createStatement();

Note that there is nothing Oracle-specific about this statement; it follows standard
JDBC syntax.

Execute a Query and Return a Result Set Object
To query the database, use the executeQuery() method of your Statement
object. This method takes a SQL statement as input and returns a JDBC ResultSet
object.

Note: The JDBC Thin driver supports only the TCP/IP protocol.

Notes: Oracle JDBC does not support login timeouts. Calling the
static DriverManager.setLoginTimeout() method will have
no effect.
3-10 JDBC Developer’s Guide and Reference

First Steps in JDBC
To continue the example, once you create the Statement object stmt, the next step
is to execute a query that populates a ResultSet object with the contents of the
ENAME (employee name) column of a table of employees named EMP:

ResultSet rset = stmt.executeQuery ("SELECT ename FROM emp");

Again, there is nothing Oracle-specific about this statement; it follows standard
JDBC syntax.

Process the Result Set
Once you execute your query, use the next() method of your ResultSet object to
iterate through the results. This method steps through the result set row by row,
detecting the end of the result set when it is reached.

To pull data out of the result set as you iterate through it, use the appropriate
getXXX() methods of the ResultSet object, where XXX corresponds to a Java
datatype.

For example, the following code will iterate through the ResultSet object rset
from the previous section and will retrieve and print each employee name:

while (rset.next())
 System.out.println (rset.getString(1));

Once again, this is standard JDBC syntax. The next() method returns false when it
reaches the end of the result set. The employee names are materialized as Java
strings.

For a complete sample application showing how to execute a query and print the
results, see "Listing Names from the EMP Table—Employee.java" on page 17-2.

Close the Result Set and Statement Objects
You must explicitly close the ResultSet and Statement objects after you finish
using them. This applies to all ResultSet and Statement objects you create
when using the Oracle JDBC drivers. The drivers do not have finalizer methods;
cleanup routines are performed by the close() method of the ResultSet and
Statement classes. If you do not explicitly close your ResultSet and
Statement objects, serious memory leaks could occur. You could also run out of
cursors in the database. Closing a result set or statement releases the corresponding
cursor in the database.
Basic Features 3-11

First Steps in JDBC
For example, if your ResultSet object is rset and your Statement object is
stmt, close the result set and statement with these lines:

rset.close();
stmt.close();

When you close a Statement object that a given Connection object creates, the
connection itself remains open.

Make Changes to the Database
To write changes to the database, such as for INSERT or UPDATE operations, you
will typically create a PreparedStatement object. This allows you to execute a
statement with varying sets of input parameters. The prepareStatement()
method of your JDBC Connection object allows you to define a statement that
takes variable bind parameters, and returns a JDBC PreparedStatement object
with your statement definition.

Use setXXX() methods on the PreparedStatement object to bind data into the
prepared statement to be sent to the database. The various setXXX() methods are
described in "Standard setObject() and Oracle setOracleObject() Methods" on
page 6-11 and "Other setXXX() Methods" on page 6-12.

Note that there is nothing Oracle-specific about the functionality described here; it
follows standard JDBC syntax.

The following example shows how to use a prepared statement to execute INSERT
operations that add two rows to the EMP table. For the complete sample application,
see "Inserting Names into the EMP Table—InsertExample.java" on page 17-3.

 // Prepare to insert new names in the EMP table
 PreparedStatement pstmt =
 conn.prepareStatement ("insert into EMP (EMPNO, ENAME) values (?, ?)");

 // Add LESLIE as employee number 1500
 pstmt.setInt (1, 1500); // The first ? is for EMPNO
 pstmt.setString (2, "LESLIE"); // The second ? is for ENAME
 // Do the insertion
 pstmt.execute ();

 // Add MARSHA as employee number 507

Note: Typically, you should put close() statements in a
finally clause.
3-12 JDBC Developer’s Guide and Reference

First Steps in JDBC
 pstmt.setInt (1, 507); // The first ? is for EMPNO
 pstmt.setString (2, "MARSHA"); // The second ? is for ENAME
 // Do the insertion
 pstmt.execute ();

 // Close the statement
 pstmt.close();

Commit Changes
By default, DML operations (INSERT, UPDATE, DELETE) are committed
automatically as soon as they are executed. This is known as auto-commit mode. You
can, however, disable auto-commit mode with the following method call on the
Connection object:

conn.setAutoCommit(false);

(For further discussion of auto-commit mode and an example of disabling it, see
"Disabling Auto-Commit Mode" on page 16-6.)

If you disable auto-commit mode, then you must manually commit or roll back
changes with the appropriate method call on the Connection object:

conn.commit();

or:

conn.rollback();

A COMMIT or ROLLBACK operation affects all DML statements executed since the
last COMMIT or ROLLBACK.

Important:

■ If auto-commit mode is disabled and you close the connection
without explicitly committing or rolling back your last changes,
then an implicit COMMIT operation is executed.

■ Any DDL operation, such as CREATE or ALTER, always
includes an implicit COMMIT. If auto-commit mode is disabled,
this implicit COMMIT will not only commit the DDL statement,
but also any pending DML operations that had not yet been
explicitly committed or rolled back.
Basic Features 3-13

First Steps in JDBC
Close the Connection
You must close your connection to the database once you finish your work. Use the
close() method of the Connection object to do this:

conn.close();

Note: Typically, you should put close() statements in a
finally clause.
3-14 JDBC Developer’s Guide and Reference

Sample: Connecting, Querying, and Processing the Results
Sample: Connecting, Querying, and Processing the Results
The steps in the preceding sections are illustrated in the following example, which
registers an Oracle JDBC Thin driver, connects to the database, creates a
Statement object, executes a query, and processes the result set.

Note that the code for creating the Statement object, executing the query,
returning and processing the ResultSet object, and closing the statement and
connection all follow standard JDBC syntax.

import java.sql.*;
import java.math.*;
import java.io.*;
import java.awt.*;

class JdbcTest {
 public static void main (String args []) throws SQLException {
 // Load Oracle driver
 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());
 // Connect to the local database
 Connection conn = DriverManager.getConnection
 ("jdbc:oracle:thin:@myhost:1521:ORCL","scott", "tiger");

 // Query the employee names
 Statement stmt = conn.createStatement ();
 ResultSet rset = stmt.executeQuery ("SELECT ename FROM emp");
 // Print the name out
 while (rset.next ())
 System.out.println (rset.getString (1));

 //close the result set, statement, and the connection
 rset.close();
 stmt.close();
 conn.close();
 }
}

If you want to adapt the code for the OCI driver, replace the Connection
statement with the following:

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:oci8:@MyHostString", "scott", "tiger");

Where MyHostString is an entry in the TNSNAMES.ORA file.
Basic Features 3-15

Datatype Mappings
Datatype Mappings
The Oracle JDBC drivers support standard JDBC 1.0 and 2.0 types as well as
Oracle-specific BFILE and ROWID datatypes and types of the REF CURSOR
category.

This section documents standard and Oracle-specific SQL-Java default type
mappings.

Table of Mappings
For reference, Table 3–2 shows the default mappings between SQL datatypes, JDBC
typecodes, standard Java types, and Oracle extended types.

The SQL Datatypes column lists the SQL types that exist in the database.

The JDBC Typecodes column lists data typecodes supported by the JDBC standard
and defined in the java.sql.Types class, or by Oracle in the
oracle.jdbc.driver.OracleTypes class. For standard typecodes, the codes
are identical in these two classes.

The Standard Java Types column lists standard types defined in the Java language.

The Oracle Extension Java Types column lists the oracle.sql.* Java types that
correspond to each SQL datatype in the database. These are Oracle extensions that
let you retrieve all SQL data in the form of a oracle.sql.* Java type. Mapping
SQL datatypes into the oracle.sql datatypes lets you store and retrieve data
without losing information. Refer to "Package oracle.sql" on page 5-7 for more
information on the oracle.sql.* package.

Table 3–2 Default Mappings Between SQL Types and Java Types

SQL Datatypes JDBC Typecodes Standard Java Types Oracle Extension Java Types

STANDARD JDBC 1.0 TYPES:

CHAR java.sql.Types.CHAR java.lang.String oracle.sql.CHAR

VARCHAR2 java.sql.Types.VARCHAR java.lang.String oracle.sql.CHAR

LONG java.sql.Types.LONGVARCHAR java.lang.String oracle.sql.CHAR

NUMBER java.sql.Types.NUMERIC java.math.BigDecimal oracle.sql.NUMBER

NUMBER java.sql.Types.DECIMAL java.math.BigDecimal oracle.sql.NUMBER

NUMBER java.sql.Types.BIT boolean oracle.sql.NUMBER

NUMBER java.sql.Types.TINYINT byte oracle.sql.NUMBER
3-16 JDBC Developer’s Guide and Reference

Datatype Mappings
NUMBER java.sql.Types.SMALLINT short oracle.sql.NUMBER

NUMBER java.sql.Types.INTEGER int oracle.sql.NUMBER

NUMBER java.sql.Types.BIGINT long oracle.sql.NUMBER

NUMBER java.sql.Types.REAL float oracle.sql.NUMBER

NUMBER java.sql.Types.FLOAT double oracle.sql.NUMBER

NUMBER java.sql.Types.DOUBLE double oracle.sql.NUMBER

RAW java.sql.Types.BINARY byte[] oracle.sql.RAW

RAW java.sql.Types.VARBINARY byte[] oracle.sql.RAW

LONGRAW java.sql.Types.LONGVARBINARY byte[] oracle.sql.RAW

DATE java.sql.Types.DATE java.sql.Date oracle.sql.DATE

DATE java.sql.Types.TIME java.sql.Time oracle.sql.DATE

DATE java.sql.Types.TIMESTAMP javal.sql.Timestamp oracle.sql.DATE

STANDARD JDBC 2.0 TYPES:

BLOB java.sql.Types.BLOB java.sql.Blob oracle.sql.BLOB

CLOB java.sql.Types.CLOB java.sql.Clob oracle.sql.CLOB

user-defined object java.sql.Types.STRUCT java.sql.Struct oracle.sql.STRUCT

user-defined
reference

java.sql.Types.REF java.sql.Ref oracle.sql.REF

user-defined
collection

java.sql.Types.ARRAY java.sql.Array oracle.sql.ARRAY

ORACLE EXTENSIONS:

BFILE oracle.jdbc.driver.OracleTypes.BFILE n/a oracle.sql.BFILE

ROWID oracle.jdbc.driver.OracleTypes.ROWID n/a oracle.sql.ROWID

REF CURSOR type oracle.jdbc.driver.OracleTypes.CURSOR java.sql.ResultSet oracle.jdbc.driver.OracleResultSet

Note: Under JDK 1.1.x, the Oracle package oracle.jdbc2 is
required to support JDBC 2.0 types. (Under JDK 1.2.x they are
supported by the standard javal.sql package.)

Table 3–2 Default Mappings Between SQL Types and Java Types(Cont.)

SQL Datatypes JDBC Typecodes Standard Java Types Oracle Extension Java Types
Basic Features 3-17

Datatype Mappings
For a list of all the Java datatypes to which you can validly map a SQL datatype, see
"Valid SQL-JDBC Datatype Mappings" on page 18-2.

See Chapter 5, "Overview of Oracle Extensions", for more information on type
mappings. In Chapter 5 you can also find more information on the following:

■ packages oracle.sql, oracle.jdbc.driver, and oracle.jdbc2

■ type extensions for the Oracle BFILE and ROWID datatypes and user-defined
types of the REF CURSOR category

Notes Regarding Mappings
This section goes into further detail regarding mappings for NUMBER and
user-defined types.

Regarding User-Defined Types
User-defined types such as objects, object references, and collections map by default
to weak Java types (such as java.sql.Struct), but alternatively can map to
strongly typed custom Java classes. Custom Java classes can implement one of two
interfaces:

■ the standard java.sql.SQLData (for user-defined objects only)

■ the Oracle-specific oracle.sql.CustomDatum (primarily for user-defined
objects, object references, and collections, but able to map from any SQL type
where you want customized processing of any kind)

For information about custom Java classes and the SQLData and CustomDatum
interfaces, see "Mapping Oracle Objects" on page 8-2 and "Creating and Using
Custom Object Classes for Oracle Objects" on page 8-9. (Although these sections
focus on custom Java classes for user-defined objects, there is some general
information about other kinds of custom Java classes as well.)

Regarding NUMBER Types
For the different typecodes that an Oracle NUMBER value can correspond to, call the
getter routine that is appropriate for the size of the data for mapping to work
properly. For example, call getByte() to get a Java tinyint value, for an item x
where -128 < x < 128.
3-18 JDBC Developer’s Guide and Reference

Java Streams in JDBC
Java Streams in JDBC
This section covers the following topics:

■ Streaming LONG or LONG RAW Columns

■ Streaming CHAR, VARCHAR, or RAW Columns

■ Data Streaming and Multiple Columns

■ Streaming and Row Prefetching

■ Closing a Stream

■ Streaming LOBs and External Files

This section describes how the Oracle JDBC drivers handle Java streams for several
datatypes. Data streams allow you to read LONG column data of up to 2 gigabytes.
Methods associated with streams let you read the data incrementally.

Oracle JDBC drivers support the manipulation of data streams in either direction
between server and client. The drivers support all stream conversions: binary,
ASCII, and Unicode. Following is a brief description of each type of stream:

■ binary stream—Used for RAW bytes of data. This corresponds to the
getBinaryStream() method.

■ ASCII stream—Used for ASCII bytes in ISO-Latin-1 encoding. This corresponds
to the getAsciiStream() method.

■ Unicode stream—Used for Unicode bytes with the UCS-2 encoding. This
corresponds to the getUnicodeStream() method.

The methods getBinaryStream(), getAsciiStream(), and
getUnicodeStream() return the bytes of data in an InputStream object. These
methods are described in greater detail in Chapter 7, "Working with LOBs and
BFILEs".

For a complete sample application showing how to read and write stream data, see
"Streams—StreamExample.java" on page 17-10.

Streaming LONG or LONG RAW Columns
When a query selects one or more LONG or LONG RAW columns, the JDBC driver
transfers these columns to the client in streaming mode. After a call to
executeQuery() or next(), the data of the LONG column is waiting to be read.
Basic Features 3-19

Java Streams in JDBC
To access the data in a LONG column, you can get the column as a Java
InputStream and use the read() method of the InputStream object. As an
alternative, you can get the data as a string or byte array, in which case the driver
will do the streaming for you.

You can get LONG and LONG RAW data with any of the three stream types. The driver
performs NLS conversions for you, depending on the character set of your database
and the driver. For more information about NLS, see "JDBC and NLS" on page 15-2.

LONG RAW Data Conversions
A call to getBinaryStream() returns RAW data "as-is". A call to
getAsciiStream() converts the RAW data to hexadecimal and returns the ASCII
representation. A call to getUnicodeStream() converts the RAW data to
hexadecimal and returns the Unicode bytes.

For example, if your LONG RAW column contains the bytes 20 21 22, you receive the
following bytes:

For example, the LONG RAW value 20 is represented in hexadecimal as 14 or "1" "4".
In ASCII, 1 is represented by "49" and "4" is represented by "52". In Unicode, a
padding of zeros is used to separate individual values. So, the hexadecimal value 14
is represented as 0 "1" 0 "4". The Unicode representation is 0 "49" 0 "52".

LONG Data Conversions
When you get LONG data with getAsciiStream(), the drivers assume that the
underlying data in the database uses an US7ASCII or WE8ISO8859P1 character
set. If the assumption is true, the drivers return bytes corresponding to ASCII
characters. If the database is not using an US7ASCII or WE8ISO8859P1 character
set, a call to getAsciiStream() returns meaningless information.

When you get LONG data with getUnicodeStream(), you get a stream of
Unicode characters in the UCS-2 encoding. This applies to all underlying database
character sets that Oracle supports.

LONG RAW BinaryStream ASCIIStream UnicodeStream

20 21 22 20 21 22 49 52 49 53 49 54

which is also

’1’ ’4’ ’1’ ’5’ ’1’ ’6’

 0049 0052 0049 0053 0049 0054

which is also:

’1’ ’4’ ’1’ ’5’ ’1’ ’6’
3-20 JDBC Developer’s Guide and Reference

Java Streams in JDBC
When you get LONG data with getBinaryStream(), there are two possible cases:

■ If the driver is JDBC OCI and the client character set is not US7ASCII or
WE8ISO8859P1, then a call to getBinaryStream() returns UTF-8. If the
client character set is US7ASCII or WE8ISO8859P1, then the call returns a
US7ASCII stream of bytes.

■ If the driver is JDBC Thin and the database character set is not US7ASCII or
WE8ISO8859P1, then a call to getBinaryStream() returns UTF-8. If the
server-side character set is US7ASCII or WE8ISO8859P1, then the call returns a
US7ASCII stream of bytes.

For more information on how the drivers return data based on character set, see
"JDBC and NLS" on page 15-2.

Table 3–3 summarizes LONG and LONG RAW data conversions for each stream type.

Note: Receiving LONG or LONG RAW columns as a stream (the
default case) requires you to pay special attention to the order in
which you receive data from the database. For more information,
see "Data Streaming and Multiple Columns" on page 3-25.

Table 3–3 LONG and LONG RAW Data Conversions

Datatype BinaryStream AsciiStream UnicodeStream

LONG bytes representing characters in
Unicode UTF-8. The bytes can
represent characters in US7ASCII or
WE8ISO8859P1 if:

■ the value of NLS_LANG on the
client is US7ASCII or
WE8ISO8859P1.

or:

■ the database character set is
US7ASCII or WE8ISO8859P1.

bytes representing
characters in ISO-Latin-1
(WE8ISO8859P1) encoding

bytes representing
characters in Unicode
UCS-2 encoding

LONG RAW as-is ASCII representation of
hexadecimal bytes

Unicode representation
of hexadecimal bytes
Basic Features 3-21

Java Streams in JDBC
Streaming Example for LONG RAW Data
One of the features of a getXXXStream() method is that it allows you to fetch data
incrementally. In contrast, getBytes() fetches all the data in one call. This section
contains two examples of getting a stream of binary data. The first version uses the
getBinaryStream() method to obtain LONG RAW data; the second version uses
the getBytes() method.

Getting a LONG RAW Data Column with getBinaryStream() This Java example writes the
contents of a LONG RAW column to a file on the local file system. In this case, the
driver fetches the data incrementally.

The following code creates the table that stores a column of LONG RAW data
associated with the name LESLIE:

-- SQL code:
create table streamexample (NAME varchar2 (256), GIFDATA long raw);
insert into streamexample values (’LESLIE’, ’00010203040506070809’);

The following Java code snippet writes the data from the LESLIE LONG RAW column
into a file called leslie.gif:

ResultSet rset = stmt.executeQuery
 ("select GIFDATA from streamexample where NAME=’LESLIE’");

// get first row
if (rset.next())
{
 // Get the GIF data as a stream from Oracle to the client
 InputStream gif_data = rset.getBinaryStream (1);
 try
 {
 FileOutputStream file = null;
 file = new FileOutputStream ("leslie.gif");
 int chunk;
 while ((chunk = gif_data.read()) != -1)
 file.write(chunk);
 }
 catch (Exception e)
 {
 String err = e.toString();
 System.out.println(err);
 }
 finally
 {
 if file != null()
3-22 JDBC Developer’s Guide and Reference

Java Streams in JDBC
 file.close();
 }
}

In this example the contents of the GIFDATA column are transferred incrementally
in chunk-sized pieces between the database and the client. The InputStream
object returned by the call to getBinaryStream() reads the data directly from the
database connection.

Getting a LONG RAW Data Column with getBytes() This version of the example gets the
content of the GIFDATA column with getBytes() instead of
getBinaryStream(). In this case, the driver fetches all the data in one call and
stores it in a byte array. The previous code snippet can be rewritten as:

ResultSet rset2 = stmt.executeQuery
 ("select GIFDATA from streamexample where NAME=’LESLIE’");

// get first row
if (rset2.next())
{
 // Get the GIF data as a stream from Oracle to the client
 byte[] bytes = rset2.getBytes(1);
 try
 {
 FileOutputStream file = null;
 file = new FileOutputStream ("leslie2.gif");
 file.write(bytes);
 }
 catch (Exception e)
 {
 String err = e.toString();
 System.out.println(err);
 }
 finally
 {
 if file != null()
 file.close();
 }
}

Because a LONG RAW column can contain up to 2 gigabytes of data, the getBytes()
example will probably use much more memory than the getBinaryStream()
example. Use streams if you do not know the maximum size of the data in your
LONG or LONG RAW columns.
Basic Features 3-23

Java Streams in JDBC
Avoiding Streaming for LONG or LONG RAW
The JDBC driver automatically streams any LONG and LONG RAW columns.
However, there may be situations where you want to avoid data streaming. For
example, if you have a very small LONG column, you might want to avoid returning
the data incrementally and instead, return the data in one call.

To avoid streaming, use the defineColumnType() method to redefine the type of
the LONG column. For example, if you redefine the LONG or LONG RAW column as
type VARCHAR or VARBINARY, then the driver will not automatically stream the
data.

If you redefine column types with defineColumnType(), you must declare the
types of all columns in the query. If you do not, executeQuery() will fail. In
addition, you must cast the Statement object to an
oracle.jdbc.driver.OracleStatement object.

As an added benefit, using defineColumnType() saves the driver two round
trips to the database when executing the query. Without defineColumnType(),
the JDBC driver has to request the datatypes of the column types.

Using the example from the previous section, the Statement object stmt is cast to
the OracleStatement and the column containing LONG RAW data is redefined to
be of the type VARBINARAY. The data is not streamed—instead, it is returned in a
byte array.

//cast the statement stmt to an OracleStatement
oracle.jdbc.driver.OracleStatement ostmt =
 (oracle.jdbc.driver.OracleStatement)stmt;

//redefine the LONG column at index position 1 to VARBINARY
ostmt.defineColumnType(1, Types.VARBINARY);

// Do a query to get the images named ’LESLIE’
ResultSet rset = ostmt.executeQuery
 ("select GIFDATA from streamexample where NAME=’LESLIE’");

// The data is not streamed here
rset.next();
byte [] bytes = rset.getBytes(1);

Streaming CHAR, VARCHAR, or RAW Columns
If you use the defineColumnType() Oracle extension to redefine a CHAR,
VARCHAR, or RAW column as a LONGVARCHAR or LONGVARBINARY, then you can get
the column as a stream. The program will behave as if the column were actually of
3-24 JDBC Developer’s Guide and Reference

Java Streams in JDBC
type LONG or LONG RAW. Note that there is not much point to this, because these
columns are usually short.

If you try to get a CHAR, VARCHAR, or RAW column as a data stream without
redefining the column type, the JDBC driver will return a Java InputStream, but
no real streaming occurs. In the case of these datatypes, the JDBC driver fully
fetches the data into an in-memory buffer during a call to the executeQuery()
method or next() method. The getXXXStream() entry points return a stream
that reads data from this buffer.

Data Streaming and Multiple Columns
If your query selects multiple columns and one of the columns contains a data
stream, then the contents of the columns following the stream column are not
available until the stream has been read, and the stream column is no longer
available once any following column is read. Any attempt to read a column beyond
a streaming column closes the streaming column. See "Streaming Data Precautions"
on page 3-28 for more information.

Streaming Example with Multiple Columns
Consider the following query:

ResultSet rset = stmt.executeQuery
 ("select DATECOL, LONGCOL, NUMBERCOL from TABLE");
while rset.next()
{
 //get the date data
 java.sql.Date date = rset.getDate(1);

 // get the streaming data
 InputStream is = rset.getAsciiStream(2);

 // Open a file to store the gif data
 FileOutputStream file = new FileOutputStream ("ascii.dat");

 // Loop, reading from the ascii stream and
 // write to the file
 int chunk;
 while ((chunk = is.read ()) != -1)
 file.write(chunk);
 // Close the file
 file.close();
Basic Features 3-25

Java Streams in JDBC
 //get the number column data
 int n = rset.getInt(3);
}

The incoming data for each row has the following shape:

<a date><the characters of the long column><a number>

As you process each row of the iterator, you must complete any processing of the
stream column before reading the number column.

An exception to this behavior is LOB data, which is also transferred between server
and client as a Java stream. For more information on how the driver treats LOB
data, see "Streaming LOBs and External Files" on page 3-27.

Bypassing Streaming Data Columns
There might be situations where you want to avoid reading a column that contains
streaming data. If you do not want to read the data for the streaming column, then
call the close() method of the stream object. This method discards the stream data
and allows the driver to continue reading data for all the non-streaming columns
that follow the stream. Even though you are intentionally discarding the stream, it
is good programming practice to call the columns in SELECT-list order.

In the following example, the stream data in the LONG column is discarded and the
data from only the DATE and NUMBER column is recovered:

ResultSet rset = stmt.executeQuery
 ("select DATECOL, LONGCOL, NUMBERCOL from TABLE");

while rset.next()
{
 //get the date
 java.sql.Date date = rset.getDate(1);

 // access the stream data and discard it with close()
 InputStream is = rset.getAsciiStream(2);
 is.close();

 // get the number column data
 int n = rset.getInt(3);
}

3-26 JDBC Developer’s Guide and Reference

Java Streams in JDBC
Streaming LOBs and External Files
The term large object (LOB) refers to a data item that is too large to be stored directly
in a database table. Instead, a locator is stored in the database table and points to
the location of the actual data. External files (binary files, or BFILEs) are managed
similarly. The JDBC drivers can support these types through the use of streams:

■ BLOBs (unstructured binary data)

■ CLOBs (character data)

■ BFILEs (external files)

LOBs and BFILEs behave differently from the other types of streaming data
described in this chapter. The driver transfers data between server and client as a
Java stream. However, unlike most Java streams, a locator representing the data is
stored in the table. Thus, you can access the data at any time during the life of the
connection.

Streaming BLOBs and CLOBs
When a query selects one or more CLOB or BLOB columns, the JDBC driver transfers
to the client the data pointed to by the locator. The driver performs the transfer as a
Java stream. To manipulate CLOB or BLOB data from JDBC, use methods in the
Oracle extension classes oracle.sql.BLOB and oracle.sql.CLOB. These
classes provide functionality such as reading from the CLOB or BLOB into an input
stream, writing from an output stream into a CLOB or BLOB, determining the
length of a CLOB or BLOB, and closing a CLOB or BLOB.

For a complete discussion of how to use streaming CLOB and BLOB data, see
"Reading and Writing BLOB and CLOB Data" on page 7-6.

Important: The JDBC 2.0 specification states that
PreparedStatement methods setBinaryStream() and
setObject() can be used to input a stream value as a BLOB, and
that the PreparedStatement methods setAsciiStream(),
setUnicodeStream(), setCharacterStream(), and
setObject() can be used to input a stream value as a CLOB. This
bypasses the LOB locator, going directly to the LOB data itself.

In the implementation of the Oracle JDBC drivers, this functionality
is supported only for a configuration using an 8.1.6 database and
8.1.6 JDBC OCI driver. Do not use this functionality for any other
configuration, as data corruption can result.
Basic Features 3-27

Java Streams in JDBC
Streaming BFILEs
An external file, or BFILE, is used to store a locator to a file outside the database,
stored somewhere on the filesystem of the data server. The locator points to the
actual location of the file.

When a query selects one or more BFILE columns, the JDBC driver transfers to the
client the file pointed to by the locator. The transfer is performed in a Java stream.
To manipulate BFILE data from JDBC, use methods in the Oracle extension class
oracle.sql.BFILE. This class provides functionality such as reading from the
BFILE into an input stream, writing from an output stream into a BFILE,
determining the length of a BFILE, and closing a BFILE.

For a complete discussion of how to use streaming BFILE data, see "Reading BFILE
Data" on page 7-18.

Closing a Stream
You can discard the data from a stream at any time by calling the stream’s close()
method. You can also close and discard the stream by closing its result set or
connection object. You can find more information about the close() method for
data streams in "Bypassing Streaming Data Columns" on page 3-26. For information
on how to avoid closing a stream and discarding its data by accident, see
"Streaming Data Precautions" on page 3-28.

Notes and Precautions on Streams
This section discusses several noteworthy and cautionary issues regarding the use
of streams:

■ Streaming Data Precautions

■ Using Streams to Avoid Limits on setBytes() and setString()

■ Streaming and Row Prefetching

Streaming Data Precautions
This section describes some of the precautions you must take to ensure that you do
not accidentally discard or lose your stream data. The drivers automatically discard
stream data if you perform any JDBC operation that communicates with the
database, other than reading the current stream. Two common precautions are
described:

■ Use the stream data after you access it.
3-28 JDBC Developer’s Guide and Reference

Java Streams in JDBC
To recover the data from a column containing a data stream, it is not enough to
get the column; you must immediately process its contents. Otherwise, the
contents will be discarded when you get the next column.

■ Call the stream column in SELECT-list order.

If your query selects multiple columns, the database sends each row as a set of
bytes representing the columns in the SELECT order. If one of the columns
contains stream data, the database sends the entire data stream before
proceeding to the next column.

If you do not use the SELECT-list order to access data, then you can lose the
stream data. That is, if you bypass the stream data column and access data in a
column that follows it, the stream data will be lost. For example, if you try to
access the data for the NUMBER column before reading the data from the stream
data column, the JDBC driver first reads then discards the streaming data
automatically. This can be very inefficient if the LONG column contains a large
amount of data.

If you try to access the LONG column later in the program, the data will not be
available and the driver will return a "Stream Closed" error.

The second point is illustrated in the following example:

ResultSet rset = stmt.executeQuery
 ("select DATECOL, LONGCOL, NUMBERCOL from TABLE");
while rset.next()
{
 int n = rset.getInt(3); // This discards the streaming data
 InputStream is = rset.getAsciiStream(2);
 // Raises an error: stream closed.
}

If you get the stream but do not use it before you get the NUMBER column, the stream
still closes automatically:

ResultSet rset = stmt.executeQuery
 ("select DATECOL, LONGCOL, NUMBERCOL from TABLE");
while rset.next()
{
 InputStream is = rset.getAsciiStream(2); // Get the stream
 int n = rset.getInt(3);
 // Discards streaming data and closes the stream
}
int c = is.read(); // c is -1: no more characters to read-stream closed
Basic Features 3-29

Java Streams in JDBC
Using Streams to Avoid Limits on setBytes() and setString()
There is a limit on the maximum size of the array which can be bound using the
PreparedStatement class setBytes() method, and on the size of the string
which can be bound using the setString() method.

Above the limits, which depend on the version of the server you use, you should
use setBinaryStream() or setCharacterStream() instead.

When connecting to an Oracle8 database, the limit for setBytes() is 2000 bytes
(the maximum size of a RAW in Oracle8) and the limit for setString() is 4000
bytes (the maximum size of a VARCHAR2 in Oracle8).

When connecting to an Oracle7 database, the limit for setBytes() is 255 bytes
(the maximum size of a RAW in Oracle7) and the limit for setString() is 2000
bytes (the maximum size of a VARCHAR2 in Oracle7).

The 8.1.6 Oracle JDBC drivers may not raise an error if you exceed the limit when
using setBytes() or setString(), but you may receive the following error:

ORA-17070: Data size bigger than max size for this type

Future versions of the Oracle drivers will raise an error if the length exceeds these
limits.

Streaming and Row Prefetching
If the JDBC driver encounters a column containing a data stream, row prefetching is
set back to 1.

Row prefetching is an Oracle performance enhancement that allows multiple rows
of data to be retrieved with each trip to the database. See "Oracle Row Prefetching"
on page 12-20.

Note: This discussion applies to binds in SQL, not PL/SQL.
3-30 JDBC Developer’s Guide and Reference

Stored Procedure Calls in JDBC Programs
Stored Procedure Calls in JDBC Programs
This section describes how the Oracle JDBC drivers support the following kinds of
stored procedures:

■ PL/SQL Stored Procedures

■ Java Stored Procedures

PL/SQL Stored Procedures
Oracle JDBC drivers support execution of PL/SQL stored procedures and
anonymous blocks. They support both SQL92 escape syntax and Oracle PL/SQL
block syntax. The following PL/SQL calls would work with any Oracle JDBC
driver:

// SQL92 syntax
CallableStatement cs1 = conn.prepareCall
 ("{call proc (?,?)}") ; // stored proc
CallableStatement cs2 = conn.prepareCall
 ("{? = call func (?,?)}") ; // stored func
// Oracle PL/SQL block syntax
CallableStatement cs3 = conn.prepareCall
 ("begin proc (?,?); end;") ; // stored proc
CallableStatement cs4 = conn.prepareCall
 ("begin ? := func(?,?); end;") ; // stored func

As an example of using Oracle syntax, here is a PL/SQL code snippet that creates a
stored function. The PL/SQL function gets a character sequence and concatenates a
suffix to it:

create or replace function foo (val1 char)
return char as
begin
 return val1 || ’suffix’;
end;

Your invocation call in your JDBC program should look like:

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:oci8:@<hoststring>", "scott", "tiger");
CallableStatement cs = conn.prepareCall ("begin ? := foo(?); end;");
cs.registerOutParameter(1,Types.CHAR);
cs.setString(2, "aa");
cs.executeUpdate();
String result = proc.getString(1);
Basic Features 3-31

Stored Procedure Calls in JDBC Programs
For complete sample applications that call PL/SQL stored procedures and functions
in SQL92 syntax and Oracle PL/SQL block syntax, see "Calling PL/SQL Stored
Procedures—PLSQLExample.java" on page 17-5 and "Executing Procedures in
PL/SQL Blocks—PLSQL.java" on page 17-6.

Java Stored Procedures
You can use JDBC to invoke Java stored procedures through the SQL and PL/SQL
engines. The syntax for calling Java stored procedures is the same as the syntax for
calling PL/SQL stored procedures, presuming they have been properly "published"
(that is, have had call specifications written to publish them to the Oracle data
dictionary). See the Oracle8i Java Stored Procedures Developer’s Guide for more
information on writing, publishing, and using Java stored procedures.
3-32 JDBC Developer’s Guide and Reference

Processing SQL Exceptions
Processing SQL Exceptions
To handle error conditions, the Oracle JDBC drivers throws SQL exceptions,
producing instances of class java.sql.SQLException or a subclass. Errors can
originate either in the JDBC driver or in the database (RDBMS) itself. Resulting
messages describe the error and identify the method that threw the error.
Additional run-time information can also be appended.

Basic exception-handling can include retrieving the error message, retrieving the
error code, retrieving the SQL state, and printing the stack trace. The
SQLException class includes functionality to retrieve all of this information,
where available.

Errors originating in the JDBC driver are listed with their ORA numbers in
Appendix A, "JDBC Error Messages".

Errors originating in the RDBMS are documented in the Oracle8i Error Messages
reference.

Retrieving Error Information
You can retrieve basic error information with these SQLException methods:

■ getMessage()

For errors originating in the JDBC driver, this method returns the error message
with no prefix. For errors originating in the RDBMS, it returns the error
message prefixed with the corresponding ORA number.

■ getErrorCode()

For errors originating in either the JDBC driver or the RDBMS, this method
returns the five-digit ORA number.

■ getSQLState()

For errors originating in the JDBC driver, this returns no useful information. For
errors originating in the RDBMS, this method returns a five-digit code
indicating the SQL state. Your code should be prepared to handle null data.

The following example prints output from a getMessage() call.

catch(SQLException e);
{
 System.out.println("exception: " + e.getMessage());
}

Basic Features 3-33

Processing SQL Exceptions
This would print output such as the following for an error originating in the JDBC
driver:

exception: Invalid column type

(There is no ORA number message prefix for errors originating in the JDBC driver,
although you can get the ORA number with a getErrorCode() call.)

Printing the Stack Trace
The SQLException class provides the following method for printing a stack trace.

■ printStackTrace()

This method prints the stack trace of the throwable object to the standard error
stream. You can also specify a java.io.PrintStream object or
java.io.PrintWriter object for output.

The following code fragment illustrates how you can catch SQL exceptions and
print the stack trace.

try { <some code> }
catch(SQLException e) { e.printStackTrace (); }

To illustrate how the JDBC drivers handle errors, assume the following code uses an
incorrect column index:

// Iterate through the result and print the employee names
// of the code

try {
 while (rset.next ())
 System.out.println (rset.getString (5)); // incorrect column index
}
catch(SQLException e) { e.printStackTrace (); }

Note: Error message text is available in alternative languages and
character sets supported by Oracle.
3-34 JDBC Developer’s Guide and Reference

Processing SQL Exceptions
Assuming the column index is incorrect, executing the program would produce the
following error text:

java.sql.SQLException: Invalid column index
at oracle.jdbc.dbaccess.DBError.check_error(DBError.java:235)
at oracle.jdbc.driver.OracleStatement.prepare_for_new_get(OracleStatemen
t.java:1560)
at oracle.jdbc.driver.OracleStatement.getStringValue(OracleStatement.jav
a:1653)
at oracle.jdbc.driver.OracleResultSet.getString(OracleResultSet.java:175
)
at Employee.main(Employee.java:41)
Basic Features 3-35

Processing SQL Exceptions
3-36 JDBC Developer’s Guide and Reference

Overview of JDBC 2.0 Su
4

Overview of JDBC 2.0 Support

A key aspect of Oracle JDBC with release 8.1.6 is JDBC 2.0 functionality, both new
functionality that was not previously supported, and the standardization of
functionality that was previously supported through Oracle extensions.

This chapter provides an overview of JDBC 2.0 support in the release 8.1.6 Oracle
JDBC drivers, focusing in particular on any differences in support between the JDK
1.2.x and JDK 1.1.x environments. The following topics are discussed:

■ Introduction

■ JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x

■ Overview of JDBC 2.0 Features
pport 4-1

Introduction
Introduction
With release 8.1.6, the Oracle JDBC drivers are compliant with the JDBC 2.0
specification. JDBC 2.0 functionality previously implemented through Oracle
extensions in the oracle.jdbc2 package—such as structured objects, object
references, arrays, and LOBs—is now implemented through the standard
java.sql package in JDK 1.2.

If you are in a JDK 1.1.x environment, you can continue to use the oracle.jdbc2
package. With release 8.1.6, you can also use JDBC 2.0 features in connection objects,
statement objects, result set objects, and database meta data objects under JDK 1.1.x
by casting your objects to the Oracle types.

Furthermore, with release 8.1.6, you can use features of the JDBC 2.0 Optional
Package (also known as the JDBC 2.0 Standard Extension API) under either JDK
1.2.x or JDK 1.1.x. These features, including connection pooling and distributed
transactions, are supported through the standard javax.sql package. This
package and the classes that implement its interfaces are now included with the
JDBC classes ZIP file for either JDK 1.2.x or JDK 1.1.x.
4-2 JDBC Developer’s Guide and Reference

JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x
JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x
Support for standard JDBC 2.0 features differs depending on whether you are using
JDK 1.2.x or JDK 1.1.x. There are three areas to consider:

■ datatype support—such as for objects, arrays, and LOBs—which is handled
through the standard java.sql package under JDK 1.2.x and through the
Oracle extension oracle.jdbc2 package under JDK 1.1.x

■ standard feature support—such as result set enhancements and update
batching—which is handled through standard objects such as Connection,
ResultSet, and PreparedStatement under JDK 1.2.x, but requires
Oracle-specific functionality under JDK 1.1.x

■ extended feature support—features of the JDBC 2.0 Optional Package (also
known as the Standard Extension API), including data sources, connection
pooling, and distributed transactions—which, with release 8.1.6, has the same
support and functionality in either JDK 1.2.x or JDK 1.1.x

This section also discusses performance enhancements available under JDBC
2.0—update batching and fetch size—that are also still available as Oracle
extensions, then concludes with a brief discussion about migration from JDK 1.1.x
to JDK 1.2.x.

Datatype Support
Oracle JDBC release 8.1.6 fully supports JDK 1.2.x, which includes standard JDBC
2.0 functionality through implementation of interfaces in the standard java.sql
package. These interfaces are implemented as appropriate by classes in the
oracle.sql and oracle.jdbc.driver packages.

For JDBC 2.0 functionality under JDK 1.2.x, where you are using classes12.zip,
no special imports are required. The following imports, both of which you will
likely need even if you are not using JDBC 2.0 features, will suffice:

import java.sql.*;
import oracle.sql.*;

JDBC 2.0 features are not supported by JDK 1.1.x; however, Oracle provides
extensions that allow you to use a significant subset of JDBC 2.0 datatypes under
JDK 1.1.x, where you are using classes111.zip. These extensions support
database objects, object references, arrays, and LOBs.

The package oracle.jdbc2 is included in classes111.zip. This package
provides interfaces that mimic JDBC 2.0-related interfaces that became standard
Overview of JDBC 2.0 Support 4-3

JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x
with JDK 1.2.x for SQL3 and advanced datatypes. The interfaces in oracle.jdbc2
are implemented as appropriate by classes in the oracle.sql package for a JDK
1.1.x environment.

The following imports are required for JDBC 2.0 datatypes under JDK 1.1.x:

import java.sql.*;
import oracle.jdbc2.*;
import oracle.sql.*;

Standard Feature Support
In a JDK 1.2.x environment (using the JDBC classes in classes12.zip), JDBC 2.0
features such as scrollable result sets, updatable result sets, and update batching are
supported through methods specified by standard JDBC 2.0 interfaces. Therefore,
under JDK 1.2.x, you can use standard objects such as Connection,
DatabaseMetaData, ResultSetMetaData, Statement, PreparedStatement,
CallableStatement, and ResultSet to use these features.

With release 8.1.6 in a JDK 1.1.x environment (using the JDBC classes in
classes111.zip), Oracle JDBC provides support for these JDBC 2.0 features as
Oracle extensions. To use this functionality, you must cast your objects to the Oracle
types:

■ OracleConnection

■ OracleDatabaseMetaData

■ OracleResultSetMetaData

■ OracleStatement

■ OraclePreparedStatement

■ OracleCallableStatement

■ OracleResultSet

For example, to use JDBC 2.0 result set enhancements, you must do the following:

■ Explicitly type or cast scrollable or updatable result sets as type
OracleResultSet.

■ Explicitly type or cast connection objects as type OracleConnection
whenever the connection object will be required to produce a statement object
that will in turn produce a scrollable or updatable result set.
4-4 JDBC Developer’s Guide and Reference

JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x
In addition, you might have to cast statement objects to OracleStatement,
OraclePreparedStatement, or OracleCallableStatement, and cast
database meta data objects to OracleDatabaseMetaData. This would be if you
want to use JDBC 2.0 statement or database meta data methods described under
"Summary of New Methods for Result Set Enhancements" on page 11-32.

Extended Feature Support
With release 8.1.6, features of the JDBC 2.0 Optional Package (also known as the
Standard Extension API), including data sources, connection pooling, and
distributed transactions, are supported equally in a JDK 1.2.x or 1.1.x environment.

The standard javax.sql package and classes that implement its interfaces are
included in the JDBC classes ZIP file for either environment.

Standard versus Oracle Performance Enhancement APIs
There are two performance enhancements available under JDBC 2.0, which had
previously been available as Oracle extensions:

■ update batching

■ fetch size / row prefetching

In each case, with release 8.1.6 you have the option of using the standard model or
the Oracle model. Do not, however, try to mix usage of the standard model and
Oracle model within a single application for either of these features.

For more information, see the following sections:

■ "Update Batching" on page 12-2

■ "Fetch Size" on page 11-24

■ "Oracle Row Prefetching" on page 12-20

Migration from JDK 1.1.x to JDK 1.2.x
The only migration requirements in going from JDK 1.1.x to JDK 1.2.x are as
follows:

■ Remove your imports of the oracle.jdbc2 package, as discussed above
under "Datatype Support" on page 4-3.

■ Replace any direct references to oracle.jdbc2.* interfaces with references to
the standard java.sql.* interfaces.
Overview of JDBC 2.0 Support 4-5

JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x
■ Type map objects (for mapping SQL structured objects to Java types), which
must extend the java.util.Dictionary class under JDK 1.1.x, must
implement the java.util.Map interface under JDK 1.2.x. Note, however, that
the class java.util.Hashtable satisfies either requirement. If you used
Hashtable objects for your type maps under JDK 1.1.x, then no change is
necessary. For more information, see "Creating a Type Map Object and Defining
Mappings for a SQLData Implementation" on page 8-11.

If these points do not apply to your code, then you do not need to make any code
changes or recompile to run under JDK 1.2.x.
4-6 JDBC Developer’s Guide and Reference

Overview of JDBC 2.0 Features
Overview of JDBC 2.0 Features
Table 4–1 lists key areas of JDBC 2.0 functionality and points to where you can go in
this manual for more information about Oracle support.

Table 4–1 Key Areas of JDBC 2.0 Functionality

Feature Comments and References

update batching Also available previously as an Oracle extension. With release
8.1.6, under either JDK 1.2.x or JDK 1.1.x you can use either
the standard update batching model or the Oracle model.

See "Update Batching" on page 12-2 for information.

result set enhancements
(scrollable and updatable
result sets)

With release 8.1.6, this is also available under JDK 1.1.x as an
Oracle extension.

See Chapter 11, "Result Set Enhancements" for information.

fetch size / row prefetching With release 8.1.6, the JDBC 2.0 fetch size feature is also
available under JDK 1.1.x as an Oracle extension.

Under either JDK 1.2.x or JDK 1.1.x, you can also use Oracle
row prefetching, which is largely equivalent to the JDBC 2.0
fetch size feature but predates JDBC 2.0.

See "Fetch Size" on page 11-24 and "Oracle Row Prefetching"
on page 12-20 for information.

use of JNDI (Java Naming
and Directory Interface) to
specify and obtain database
connections

This requires data sources, which are part of the JDBC 2.0
Optional Package (JDBC 2.0 Standard Extension API) in the
javax.sql package. With release 8.1.6 this is available
under either JDK 1.2.x or JDK 1.1.x.

See "A Brief Overview of Oracle Data Source Support for
JNDI" on page 13-2 and "Creating a Data Source Instance,
Registering with JNDI, and Connecting" on page 13-7 for
information.

connection pooling
(framework for connection
caching)

This requires the JDBC 2.0 Optional Package (JDBC 2.0
Standard Extension API) in the javax.sql package. With
release 8.1.6 this is available under either JDK 1.2.x or 1.1.x.

See "Connection Pooling" on page 13-11 for information.

connection caching (sample
Oracle implementation)

This requires the JDBC 2.0 Optional Package (JDBC 2.0
Standard Extension API) in the javax.sql package. With
release 8.1.6 this is available under either JDK 1.2.x or 1.1.x.

See "Connection Caching" on page 13-15 for information.
Overview of JDBC 2.0 Support 4-7

Overview of JDBC 2.0 Features
distributed transactions /
XA functionality

This requires the JDBC 2.0 Optional Package (JDBC 2.0
Standard Extension API) in the javax.sql package. With
release 8.1.6, this is available under either JDK 1.2.x or 1.1.x.

See Chapter 14, "Distributed Transactions" for information.

miscellaneous getXXX()
methods

See "Other getXXX() Methods" on page 6-7 for information
about which getXXX() methods are Oracle extensions under
JDK 1.2.x and 1.1.x, and about any differences in functionality
with JDBC 2.0.

miscellaneous setXXX()
methods

See "Other setXXX() Methods" on page 6-12 for information
about which setXXX() methods are Oracle extensions under
JDK 1.2.x and 1.1.x, and about any differences in functionality
with JDBC 2.0.

Note: The 8.1.6 Oracle JDBC drivers do not support the
Calendar datatype because it is not yet feasible to support
java.sql.Date timezone information. Calendar input to
setXXX() or getXXX() method calls for Date, Time, and
Timestamp is ignored. The Calendar type will be supported in a
future Oracle release.

Table 4–1 Key Areas of JDBC 2.0 Functionality(Cont.)

Feature Comments and References
4-8 JDBC Developer’s Guide and Reference

Overview of Oracle Exten
5

Overview of Oracle Extensions

Oracle’s extensions to the JDBC standard include Java packages and interfaces that
let you access and manipulate Oracle datatypes and use Oracle performance
extensions. Compared to standard JDBC, the extensions offer you greater flexibility
in how you can manipulate the data. This chapter presents an overview of the
packages and classes included in Oracle’s extensions to standard JDBC. It also
describes some of the key support features of the extensions.

This chapter includes these topics:

■ Introduction to Oracle Extensions

■ Support Features of the Oracle Extensions

■ Oracle JDBC Packages and Classes

■ Oracle Type Extensions

Note: This chapter focuses on type extensions, as opposed to
performance extensions, which are discussed in detail in
Chapter 12, "Performance Extensions".
sions 5-1

Introduction to Oracle Extensions
Introduction to Oracle Extensions
Oracle provides two implementations of its JDBC drivers—one that supports Sun
Microsystems JDK 1.2.x and complies with the Sun JDBC 2.0 standard, and one that
supports JDK 1.1.x and complies with the Sun JDBC 1.22 standard.

Beyond standard features, Oracle JDBC drivers provide Oracle-specific type
extensions and performance extensions.

Both implementations include the following Java packages:

■ oracle.sql (classes to support all Oracle type extensions)

■ oracle.jdbc.driver (classes to support database access and updates in
Oracle type formats)

In addition to these packages, the implementation for JDK 1.1.x includes the
following Java package. This package supports some JDBC 2.0 features by
providing interfaces that mimic the JDBC 2.0 interfaces in the standard java.sql
package:

■ oracle.jdbc2 (interfaces equivalent to standard JDBC 2.0 interfaces)

(For example, oracle.jdbc2.Struct mimics java.sql.Struct, which exists
in JDK 1.2.)

"Oracle JDBC Packages and Classes" on page 5-7 further describes the preceding
packages and their classes.

Note: The JDBC OCI, Thin, and server-side internal drivers
support the same functionality and all the Oracle extensions.
5-2 JDBC Developer’s Guide and Reference

Support Features of the Oracle Extensions
Support Features of the Oracle Extensions
The Oracle extensions to JDBC include a number of features that enhance your
ability to work with Oracle databases. Among these are support for Oracle
datatypes, Oracle objects, and specific schema naming.

Support for Oracle Datatypes
A key feature of the Oracle JDBC extensions is the type support in the oracle.sql
package. This package includes classes that map to all the Oracle SQL datatypes,
acting as wrappers for raw SQL data. This functionality provides two significant
advantages in manipulating SQL data:

■ Accessing data directly in SQL format is more efficient than first converting it to
Java format.

■ Performing mathematical manipulations of the data directly in SQL format
avoids the loss of precision that occurs in converting between SQL and Java
formats.

Once manipulations are complete and it is time to output the information, each of
the oracle.sql.* type support classes has all the necessary methods to convert
data to appropriate Java formats. For a more detailed description of these general
issues, see "Package oracle.sql" on page 5-7.

See the following for more information on specific oracle.sql.* datatype
classes:

■ "Oracle Type Extensions" on page 5-26 for information on the oracle.sql.*
datatype classes for ROWIDs and REF CURSOR types

■ Chapter 7, "Working with LOBs and BFILEs" for information on
oracle.sql.* datatype support for BLOBs, CLOBs, and BFILEs

■ Chapter 8, "Working with Oracle Object Types" for information on
oracle.sql.* datatype support for composite data structures (Oracle objects)
in the database

■ Chapter 9, "Working with Oracle Object References" for information on
oracle.sql.* datatype support for object references

■ Chapter 10, "Working with Oracle Collections" for information on
oracle.sql.* datatype support for collections (VARRAYs and nested tables)
Overview of Oracle Extensions 5-3

Support Features of the Oracle Extensions
Support for Oracle Objects
Oracle8i supports the use of structured objects in the database, where an object
datatype is a user-defined type with nested attributes. For example, a user
application could define an Employee object type, where each Employee object
has a firstname attribute (a character string), a lastname attribute (another
character string), and an employeenumber attribute (integer).

Oracle’s JDBC implementation supports Oracle object datatypes. When you work
with Oracle object datatypes in a Java application, you must consider the following:

■ how to map between Oracle object datatypes and Java classes

■ how to store Oracle object attributes in corresponding Java objects (they can be
stored in standard Java types or in oracle.sql.* types)

■ how to convert attribute data between SQL and Java formats

■ how to access data

Oracle objects can be mapped either to the weak java.sql.Struct or
oracle.sql.STRUCT types or to strongly typed customized classes. These strong
types are referred to as custom Java classes, must implement either the standard
java.sql.SQLData interface or the Oracle extension
oracle.sql.CustomDatum interface, and are described in detail in Chapter 8,
"Working with Oracle Object Types". Each interface specifies methods to convert
data between SQL and Java.

To create custom Java classes to correspond to your Oracle objects, Oracle
recommends that you use the Oracle8i JPublisher utility to create the classes. To do
this, you must define attributes according to how you want to store the data.
JPublisher performs this task seamlessly with command-line options and can
generate either SQLData or CustomDatum implementations.

For SQLData implementations, a type map defines the correspondence between
Oracle object datatypes and Java classes. Type maps are objects of a special Java
class that specify which Java class corresponds to each Oracle object datatype.
Oracle JDBC uses these type maps to determine which Java class to instantiate and
populate when it retrieves Oracle object data from a result set.
5-4 JDBC Developer’s Guide and Reference

Support Features of the Oracle Extensions
JPublisher automatically defines get methods of the custom Java classes, which
retrieve data into your Java application. For more information on the JPublisher
utility, see the Oracle8i JPublisher User’s Guide.

Chapter 8, "Working with Oracle Object Types" describes Oracle JDBC support for
Oracle objects.

Support for Schema Naming
Oracle JDBC classes have the ability to accept and return fully qualified schema
names. A fully qualified schema name has this syntax:

{[schema_name].}[sql_type_name]

Where schema_name is the name of the schema and sql_type_name is the SQL
type name of the object. Notice that the schema_name and the sql_type_name is
separated by a dot (".").

To specify an object type in JDBC, you use its fully qualified name (that is, a schema
name and SQL type name). It is not necessary to enter a schema name if the type
name is in current naming space (that is, the current schema). Schema naming
follows these rules:

■ Both the schema name and the type name may or may not be quoted. However,
if the SQL type name has a dot in it, such as CORPORATE.EMPLOYEE, the type
name must be quoted.

■ The JDBC driver looks for the first unquoted dot in the object’s name and uses
the string before the dot as the schema name and the string following the dot as
the type name. If no dot is found, the JDBC driver takes the current schema as
default. That is, you can specify only the type name (without indicating a
schema) instead of specifying the fully qualified name if the object type name
belongs to the current schema. This also explains why you must quote the type
name if the type name has a dot in it.

For example, assume that user Scott creates a type called person.address
and then wants to use it in his session. Scott might want to skip the schema

Note: Oracle recommends using the CustomDatum interface,
instead of the SQLData interface, in situations where portability is
not a concern. CustomDatum works more easily and flexibly in
conjunction with other features of the Oracle Java platform
offerings.
Overview of Oracle Extensions 5-5

Support Features of the Oracle Extensions
name and pass in person.address to the JDBC driver. In this case, if
person.address is not quoted, then the dot will be detected, and the JDBC
driver will mistakenly interpret person as the schema name and address as
the type name.

■ JDBC passes the object type name string to the database unchanged. That is, the
JDBC driver will not change the character case even if it is quoted.

For example, if ScOtT.PersonType is passed to the JDBC driver as an object
type name, the JDBC driver will pass the string to the database unchanged. As
another example, if there is white space between characters in the type name
string, then the JDBC driver will not remove the white space.
5-6 JDBC Developer’s Guide and Reference

Oracle JDBC Packages and Classes
Oracle JDBC Packages and Classes
This section describes the Java packages that support the Oracle JDBC extensions
and the key classes that are included in these packages:

■ Package oracle.sql

■ Package oracle.jdbc.driver

■ Package oracle.jdbc2 (for JDK 1.1.x only)

You can refer to the Oracle JDBC Javadoc for more information about all the classes
mentioned in this section.

Package oracle.sql
The oracle.sql package supports direct access to data in SQL format. This
package consists primarily of classes that provide Java mappings to SQL datatypes.

Essentially, the classes act as Java wrappers for the raw SQL data. Because data in
an oracle.sql.* object remains in SQL format, no information is lost. For SQL
primitive types, these classes simply wrap the SQL data. For SQL structured types
(objects and arrays), they provide additional information such as conversion
methods and details of structure.

Each of the oracle.sql.* datatype classes extends oracle.sql.Datum, a
superclass that encapsulates functionality common to all the datatypes. Some of the
classes are for JDBC 2.0-compliant datatypes. These classes, as Table 5–1 indicates,
implement standard JDBC 2.0 interfaces in the java.sql package (oracle.jdbc2
for JDK 1.1.x), as well as extending the oracle.sql.Datum class.

Classes of the oracle.sql Package
Table 5–1 lists the oracle.sql datatype classes and their corresponding Oracle
SQL types.

Table 5–1 Oracle Datatype Classes

Java Class Oracle SQL Type and Interfaces Implemented if for JDBC 2.0

oracle.sql.STRUCT STRUCT (objects) (JDBC 2.0)
implements java.sql.Struct (oracle.jdbc2.Struct
under JDK 1.1.x)

oracle.sql.REF REF (object references) (JDBC 2.0)
implements java.sql.Ref (oracle.jdbc2.Ref under
JDK 1.1.x)
Overview of Oracle Extensions 5-7

Oracle JDBC Packages and Classes
You can find more detailed information about each of these classes later in this
chapter. Additional details about use of the Oracle extended types (STRUCT, REF,
ARRAY, BLOB, CLOB, BFILE, and ROWID) are described in the following locations:

■ "Oracle Type Extensions" on page 5-26

■ Chapter 7, "Working with LOBs and BFILEs"

■ Chapter 8, "Working with Oracle Object Types"

■ Chapter 9, "Working with Oracle Object References"

■ Chapter 10, "Working with Oracle Collections"

oracle.sql.ARRAY VARRAY or nested table (collections) (JDBC 2.0)
implements java.sql.Array (oracle.jdbc2.Array
under JDK 1.1.x)

oracle.sql.BLOB BLOB (binary large objects) (JDBC 2.0)
implements java.sql.Blob (oracle.jdbc2.Blob
under JDK 1.1.x)

oracle.sql.CLOB CLOB (character large objects) (JDBC 2.0)
implements java.sql.Clob (oracle.jdbc2.Clob
under JDK 1.1.x)

oracle.sql.BFILE BFILE (external files)

oracle.sql.CHAR CHAR, VARCHAR2

oracle.sql.DATE DATE

oracle.sql.NUMBER NUMBER

oracle.sql.RAW RAW

oracle.sql.ROWID ROWID (row identifiers)

Table 5–1 Oracle Datatype Classes (Cont.)

Java Class Oracle SQL Type and Interfaces Implemented if for JDBC 2.0
5-8 JDBC Developer’s Guide and Reference

Oracle JDBC Packages and Classes
In addition to the datatype classes, the oracle.sql package includes the
following support classes and interfaces, primarily for use with objects and
collections:

■ oracle.sql.ArrayDescriptor class: Used in constructing
oracle.sql.ARRAY objects; describes the SQL type of the array. (For
information, see "Creating ARRAY Objects and Descriptors" on page 10-8.)

■ oracle.sql.StructDescriptor class: Used in constructing
oracle.sql.STRUCT objects, which you can use as a default mapping to
Oracle objects in the database. (For information, see "Creating STRUCT Objects
and Descriptors" on page 8-5.)

■ oracle.sql.CustomDatum and oracle.sql.CustomDatumFactory
interfaces: Used in Java classes implementing the Oracle CustomDatum
scenario of Oracle object support. (The other possible scenario is the
JDBC-standard SQLData implementation.) See "Understanding the
CustomDatum Interface" on page 8-20 for more information on CustomDatum.

General oracle.sql.* Datatype Support
Each of the Oracle datatype classes provides, among other things, the following:

■ one or more constructors, typically with a constructor that uses raw bytes as
input and a constructor that takes a Java type as input

■ data storage as Java byte arrays for SQL data

Notes:

■ For information about retrieving data from a result set or
callable statement object into oracle.sql.* types, as
opposed to Java types, see Chapter 6, "Accessing and
Manipulating Oracle Data".

■ The LONG and LONG RAW SQL types and REF CURSOR type
category have no oracle.sql.* classes. Use standard JDBC
functionality for these types. For example, retrieve LONG or
LONG RAW data as input streams using the standard JDBC result
set and callable statement methods getAsciStream(),
getBinaryStream(), getUnicodeStream(), and
getCharacterStream(). Use getCursor() for REF
CURSOR types.
Overview of Oracle Extensions 5-9

Oracle JDBC Packages and Classes
■ a getBytes() method, which returns the SQL data as a byte array (in the raw
format in which JDBC received the data from the database)

■ a toJdbc() method that converts the data into an object of a corresponding
Java class as defined in the JDBC specification

The JDBC driver does not convert Oracle-specific datatypes that are not part of
the JDBC specification, such as ROWID; the driver returns the object in the
corresponding oracle.sql.* format. For example, it returns an Oracle
ROWID as an oracle.sql.ROWID.

■ appropriate xxxValue() methods to convert SQL data to Java typed—for
example: stringValue(), intValue(), booleanValue(), dateValue(),
bigDecimalValue()

■ additional conversion, get, and set methods as appropriate for the
functionality of the datatype (such as methods in the LOB classes that get the
data as a stream, and methods in the REF class that get and set object data
through the object reference)

Refer to the Oracle JDBC Javadoc for additional information about these classes.

Overview of Class oracle.sql.STRUCT
For any given Oracle object type, it is usually desirable to define a custom mapping
between SQL and Java. (If you use a SQLData custom Java class, the mapping must
be defined in a type map.)

If you choose not to define a mapping, however, then data from the object type will
be materialized in Java in an instance of the oracle.sql.STRUCT class.

The STRUCT class implements the standard JDBC 2.0 java.sql.Struct interface
(oracle.jdbc2.Struct under JDK 1.1.x) and extends the oracle.sql.Datum
class.

In the database, Oracle stores the raw bytes of object data in a linearized form. A
STRUCT object is a wrapper for the raw bytes of an Oracle object. It contains the
SQL type name of the Oracle object and a "values" array of oracle.sql.Datum
objects that hold the attribute values in SQL format.

You can materialize a STRUCT’s attributes as oracle.sql.Datum[] objects if you
use the getOracleAttributes() method, or as java.lang.Object[] objects
if you use the getAttributes() method. Materializing the attributes as
oracle.sql.* objects gives you all the advantages of the oracle.sql.* format:

■ Materializing oracle.sql.STRUCT data in oracle.sql.* format
completely preserves data by maintaining it in SQL format. No translation is
5-10 JDBC Developer’s Guide and Reference

Oracle JDBC Packages and Classes
performed. This is useful if you want to access data but not necessarily display
it.

■ It allows complete flexibility in how your Java application unpacks data.

In some cases, you might want to manually create a STRUCT object and pass it to a
prepared statement or callable statement. To do this, you must also create a
StructDescriptor object.

For more information about working with Oracle objects using the
oracle.sql.STRUCT and StructDescriptor classes, see "Using the Default
STRUCT Class for Oracle Objects" on page 8-3.

Overview of Class oracle.sql.REF
The oracle.sql.REF class is the generic class that supports Oracle object
references. This class, as with all oracle.sql.* datatype classes, is a subclass of
the oracle.sql.Datum class. It implements the standard JDBC 2.0
java.sql.Ref interface (oracle.jdbc2.Ref under JDK 1.1.x).

The REF class has methods to retrieve and pass object references. Be aware,
however, that selecting an object reference retrieves only a pointer to an object. This
does not materialize the object itself. But the REF class also includes methods to
retrieve and pass the object data.

You cannot create REF objects in your JDBC application—you can only retrieve
existing REF objects from the database.

For more information about working with Oracle object references using the
oracle.sql.REF class, see Chapter 9, "Working with Oracle Object References".

Notes:

■ Elements of the values array, although of the generic Datum
type, actually contain data associated with the relevant
oracle.sql.* type appropriate for the given attribute. You
can cast the element to the appropriate oracle.sql.* type as
desired. For example, a CHAR data attribute within the STRUCT
is materialized as oracle.sql.Datum. To use it as CHAR data,
you must cast it to the oracle.sql.CHAR type.

■ Nested objects in the values array of a STRUCT object are
materialized by the JDBC driver as instances of STRUCT.
Overview of Oracle Extensions 5-11

Oracle JDBC Packages and Classes
Overview of Class oracle.sql.ARRAY
The oracle.sql.ARRAY class supports Oracle collections—either VARRAYs or
nested tables. If you select either a VARRAY or nested table from the database, then
the JDBC driver materializes it as an object of the ARRAY class; the structure of the
data is equivalent in either case. The oracle.sql.ARRAY class extends
oracle.sql.Datum and implements the standard JDBC 2.0 java.sql.Array
interface (oracle.jdbc2.Array under JDK 1.1.x).

You can use the setARRAY() method of the OraclePreparedStatement or
OracleCallableStatement class to pass an array as an input parameter to a
prepared statement. Similarly, you might want to manually create an ARRAY object
to pass it to a prepared statement or callable statement, perhaps to insert into the
database. This involves the use of ArrayDescriptor objects.

For more information about working with Oracle collections using the
oracle.sql.ARRAY and ArrayDescriptor classes, see "Overview of Collection
(Array) Functionality" on page 10-5.

Overview of Classes oracle.sql.BLOB, oracle.sql.CLOB, oracle.sql.BFILE
BLOBs and CLOBs (referred to collectively as "LOBs"), and BFILEs (for external
files) are for data items that are too large to store directly in a database table.
Instead, the database table stores a locator that points to the location of the actual
data.

The oracle.sql package supports these datatypes in several ways:

■ BLOBs point to large unstructured binary data items and are supported by the
oracle.sql.BLOB class.

■ CLOBs point to large fixed-width character data items (that is, characters that
require a fixed number of bytes per character) and are supported by the
oracle.sql.CLOB class.

■ BFILEs point to the content of external files (operating system files) and are
supported by the oracle.sql.BFILE class.

You can select a BLOB, CLOB, or BFILE locator from the database using a standard
SELECT statement, but bear in mind that you are receiving only the locator, not the
data itself. Additional steps are necessary to retrieve the data.

For information about how to access and manipulate locators and data for LOBs
and BFILEs, see Chapter 7, "Working with LOBs and BFILEs".
5-12 JDBC Developer’s Guide and Reference

Oracle JDBC Packages and Classes
Class oracle.sql.CHAR
The oracle.sql.CHAR class is used by Oracle JDBC in handling and converting
string and character data. JDBC constructs and populates CHAR objects once
character data has been read from the database.

CHAR objects that the driver constructs and returns can be in the database character
set, UTF-8, or ISO-Latin-1 (WE8ISO8859P1). CHAR objects that are Oracle8 object
attributes are returned in the database character set.

A JDBC application will rarely need to construct CHAR objects directly, because the
JDBC driver creates CHAR objects automatically as character data items are obtained
from the database. There may be circumstances, however, where constructing CHAR
objects directly is more efficient—for example, to repeatedly pass the same character
data to one or more prepared statements without the overhead of converting from
Java strings each time.

CHAR Objects and Character Sets The CHAR class has special functionality for NLS
conversion of character data. A key attribute of the CHAR class, and a parameter
always passed in when a CHAR object is constructed, is the NLS character set used in
presenting the character data. Without the character set being known, the bytes of
data in the CHAR object are meaningless.

The oracle.sql.CharacterSet class is instantiated to represent character sets.
When you construct a CHAR object, you must provide character set information to
the CHAR object by way of an instance of the CharacterSet class. Each instance of
this class represents one of the NLS character sets that Oracle supports. A
CharacterSet instance encapsulates methods and attributes of the character set,
mainly involving functionality to convert to or from other character sets. You can
find a complete list of the character sets that Oracle supports in the Oracle8i National
Language Support Guide.

Constructing a CHAR Follow these general steps to construct a CHAR object:

1. Create a CharacterSet object by calling the static CharacterSet.make()
method. This method is a factory for the character set class. The make()
method takes as input an integer Oracle ID that corresponds to a character set
that Oracle supports. For example:

int oracleId = CharacterSet.JA16SJIS_CHARSET; // this is character set 832
...
CharacterSet mycharset = CharacterSet.make(oracleId);

Each character set that Oracle supports has a unique predefined Oracle ID.
Overview of Oracle Extensions 5-13

Oracle JDBC Packages and Classes
For more information on character sets and character set IDs, see the Oracle8i
National Language Support Guide.

2. Construct a CHAR object. Pass to the constructor a string (or the bytes that
represent the string) and the CharacterSet object that indicates how to
interpret the bytes based on the character set. For example:

String mystring = "teststring";
...
CHAR mychar = new CHAR(teststring, mycharset);

The CHAR class has multiple constructors—they can take a string, a byte array,
or an object as input along with the CharacterSet object. In the case of a
string, the string is converted to the character set indicated by the
CharacterSet object before being placed into the CHAR object.

Refer to the CHAR class Javadoc for more information.

CHAR Conversion Methods The CHAR class provides these methods for translating
character data to strings:

■ getString(): Converts the sequence of characters represented by the CHAR
object to a string, returning a Java String object. If the character set is not

Note: If you enter an invalid ID, an exception will not be thrown.
Instead, when you try to use the character set, you will receive
unpredictable results.

Notes:

■ The CharacterSet object cannot be null.

■ The CharacterSet class is an abstract class, therefore it has
no constructor. The only way to create instances is to use the
make() method.

■ The server recognizes the special value
CharacterSet.DEFAULT_CHARSET as the database character
set. For the client, this value is not meaningful.

■ Oracle does not intend or recommend that users extend the
CharacterSet class.
5-14 JDBC Developer’s Guide and Reference

Oracle JDBC Packages and Classes
recognized (that is, if you entered an invalid OracleID), then getString()
throws a SQLException.

■ toString(): Identical to getString(), but if the character set is not
recognized (that is, if you entered an invalid OracleID), then toString()
returns a hexadecimal representation of the CHAR data and does not throw a
SQLException.

■ getStringWithReplacement(): Identical to getString(), except a
default replacement character replaces characters that have no Unicode
representation in the character set of this CHAR object. This default character
varies from character set to character set, but is often a question mark.

The server (database) and the client (or application running on the client) can use
different character sets. When you use the methods of this class to transfer data
between the server and the client, the JDBC drivers must convert the data from the
server character set to the client character set (or the reverse). To convert the data,
the drivers use Oracle’s National Language Support (NLS). For more information
on how the JDBC drivers convert between character sets, see "JDBC and NLS" on
page 15-2. For more information on NLS, see the Oracle8i National Language Support
Guide.

Classes oracle.sql.DATE, oracle.sql.NUMBER, and oracle.sql.RAW
These classes map to primitive SQL datatypes, which are a part of standard JDBC,
and supply conversions to and from the corresponding JDBC Java types. For more
information, see the Javadoc.

Class oracle.sql.ROWID
This class supports Oracle ROWIDs, which are unique identifiers for rows in
database tables. You can select a ROWID as you would select any column of data
from the table. Note, however, that you cannot manually update ROWIDs—the
Oracle database updates them automatically as appropriate.

The oracle.sql.ROWID class does not implement any noteworthy functionality
beyond what is in the oracle.sql.Datum superclass. However, ROWID does
provide a stringValue() method that overrides the stringValue() method in
the oracle.sql.Datum class and returns the hexadecimal representation of the
ROWID bytes.

For information about accessing ROWID data, see "Oracle ROWID Type" on
page 5-26.
Overview of Oracle Extensions 5-15

Oracle JDBC Packages and Classes
Package oracle.jdbc.driver
The oracle.jdbc.driver package includes classes that add extended features to
enable data access in oracle.sql format. In addition, these classes provide
Oracle-specific extensions to allow access to raw SQL format data by using
oracle.sql.* objects.

Table 5–2 lists key classes in this package for connections, statements, and result
sets.

Table 5–2 Connection, Statement, and Result Set Classes

Class Key Functionality

OracleDriver implements java.sql.Driver

OracleConnection methods to return Oracle statement objects; methods
to set Oracle performance extensions for any
statement executed in the current connection
(implements java.sql.Connection)

OracleStatement methods to set Oracle performance extensions for
individual statement; superclass of
OraclePreparedStatement and
OracleCallableStatement (implements
java.sql.Statement)

OraclePreparedStatement set methods to bind oracle.sql.* types into a
prepared statement (implements
java.sql.PreparedStatement; extends
OracleStatement; superclass of
OracleCallableStatement)

OracleCallableStatement get methods to retrieve data in oracle.sql
format; set methods to bind oracle.sql.* types
into a callable statement (implements
java.sql.CallableStatement; extends
OraclePreparedStatement)

OracleResultSet get methods to retrieve data in oracle.sql
format (implements java.sql.ResultSet)

OracleResultSetMetaData methods to get meta information about Oracle result
sets, such as column names and datatypes
(implements java.sql.ResultSetMetaData)
5-16 JDBC Developer’s Guide and Reference

Oracle JDBC Packages and Classes
The oracle.jdbc.driver package additionally includes the OracleTypes
class, which defines integer constants used to identify SQL types. For standard
types, it uses the same values as the standard java.sql.Types class. In addition,
it adds constants for Oracle extended types.

The remainder of this section describes the classes of the oracle.jdbc.driver
package. For more information about using these classes to access Oracle type
extensions, see Chapter 6, "Accessing and Manipulating Oracle Data".

Class oracle.jdbc.driver.OracleDriver
Use this class to register the Oracle JDBC drivers for use by your application. You
can input a new instance of this class to the static registerDriver() method of
the java.sql.DriverManager class so that your application can access and use
the Oracle drivers. The registerDriver() method takes as input a "driver" class,
that is, a class that implements the java.sql.Driver interface, as is the case with
OracleDriver.

Once you register the Oracle JDBC drivers, you can create your connection using
the DriverManager class. For more information on registering drivers and writing
a connection string, see "First Steps in JDBC" on page 3-2.

Class oracle.jdbc.driver.OracleConnection
This class extends standard JDBC connection functionality to create and return
Oracle statement objects, set flags and options for Oracle performance extensions,
and support type maps for Oracle objects.

"Additional Oracle Performance Extensions" on page 12-20 describes the
performance extensions, including row prefetching, update batching, and metadata
TABLE_REMARKS reporting.

Key methods include:

■ createStatement(): Allocates a new OracleStatement object.

■ prepareStatement(): Allocates a new OraclePreparedStatement object.

OracleDatabaseMetaData methods to get meta information about the database,
such as database product name/version, table
information, and default transaction isolation level
(implements java.sql.DatabaseMetaData)

Table 5–2 Connection, Statement, and Result Set Classes (Cont.)

Class Key Functionality
Overview of Oracle Extensions 5-17

Oracle JDBC Packages and Classes
■ prepareCall(): Allocates a new OracleCallableStatement object.

■ getTypeMap(): Retrieves the type map for this connection (for use in mapping
Oracle object types to Java classes).

■ setTypeMap(): Initializes or updates the type map for this connection (for use
in mapping Oracle object types to Java classes).

■ getTransactionIsolation(): Gets this connection’s current isolation
mode.

■ setTransactionIsolation(): Changes the transaction isolation level using
one of the TRANSACTION_* values.

These oracle.jdbc.driver.OracleConnection methods are Oracle-defined
extensions:

■ getDefaultExecuteBatch(): Retrieves the default update-batching value
for this connection.

■ setDefaultExecuteBatch(): Sets the default update-batching value for this
connection.

■ getDefaultRowPrefetch(): Retrieves the default row-prefetch value for
this connection.

■ setDefaultRowPrefetch(): Sets the default row-prefetch value for this
connection.

■ getRemarksReporting(): Returns true if TABLE_REMARKS reporting is
enabled.

■ setRemarksReporting(): Enables or disables TABLE_REMARKS reporting.

Class oracle.jdbc.driver.OracleStatement
This class extends standard JDBC statement functionality and is the superclass of
the OraclePreparedStatement and OracleCallableStatement classes.
Extended functionality includes support for setting flags and options for Oracle
performance extensions on a statement-by-statement basis, as opposed to the
OracleConnection class that sets these on a connection-wide basis.

"Additional Oracle Performance Extensions" on page 12-20 describes the
performance extensions, including row prefetching and column type definitions.

Key methods include:

■ executeQuery(): Executes a database query and returns an
OracleResultSet object.
5-18 JDBC Developer’s Guide and Reference

Oracle JDBC Packages and Classes
■ getResultSet(): Retrieves an OracleResultSet object.

■ close(): Closes the current statement.

These oracle.jdbc.driver.OracleStatement methods are Oracle-defined
extensions:

■ defineColumnType(): Defines the type you will use to retrieve data from a
particular database table column.

■ getRowPrefetch(): Retrieves the row-prefetch value for this statement.

■ setRowPrefetch(): Sets the row-prefetch value for this statement.

Class oracle.jdbc.driver.OraclePreparedStatement
This class extends standard JDBC prepared statement functionality, is a subclass of
the OracleStatement class, and is the superclass of the
OracleCallableStatement class. Extended functionality consists of set
methods for binding oracle.sql.* types and objects into prepared statements,
and methods to support Oracle performance extensions on a
statement-by-statement basis.

"Additional Oracle Performance Extensions" on page 12-20 describes the
performance extensions, including database update batching.

Key methods include:

■ getExecuteBatch(): Retrieves the update-batching value for this statement.

■ setExecuteBatch(): Sets the update-batching value for this statement.

■ setOracleObject(): This is a generic set method for binding
oracle.sql.* data into a prepared statement as an oracle.sql.Datum
object.

■ setXXX(): These methods, such as setBLOB(), are for binding specific
oracle.sql.* types into prepared statements.

■ setCustomDatum(): Binds a CustomDatum object (for use in mapping Oracle
object types to Java) into a prepared statement.

■ setNull(): Sets the value of the object specified by its SQL type name to
NULL. For setNull(param_index, type_code, sql_type_name), if
type_code is REF, ARRAY, or STRUCT, then sql_type_name is the fully
qualified name (schema.sql_type_name) of the SQL type.

■ close(): Closes the current statement.
Overview of Oracle Extensions 5-19

Oracle JDBC Packages and Classes
Class oracle.jdbc.driver.OracleCallableStatement
This class extends standard JDBC callable statement functionality and is a subclass
of the OracleStatement and OraclePreparedStatement classes. Extended
functionality includes set methods for binding structured objects and
oracle.sql.* objects into prepared statements, and get methods for retrieving
data into oracle.sql.* objects.

Key methods include:

■ getOracleObject(): This is a generic get method for retrieving data into an
oracle.sql.Datum object, which can be cast to the specific oracle.sql.*
type as necessary.

■ getXXX(): These methods, such as getCLOB(), are for retrieving data into
specific oracle.sql.* objects.

■ setOracleObject(): This is a generic set method for binding
oracle.sql.* data into a callable statement as an oracle.sql.Datum
object.

■ setXXX(): These methods, such as setBLOB(), are inherited from
OraclePreparedStatement for binding specific oracle.sql.* objects into
callable statements.

■ setNull(): Sets the value of the object specified by its SQL type name to
NULL. For setNull(param_index, type_code, sql_type_name), if
type_code is REF, ARRAY, or STRUCT, then sql_type_name is the fully
qualified (schema.type) name of the SQL type.

■ registerOutParameter(): Registers the SQL typecode of the statement’s
output parameter. JDBC requires this for any callable statement with an OUT
parameter. It takes an integer parameter index (the position of the output
variable in the statement, relative to the other parameters) and an integer SQL
type (the type constant defined in oracle.jdbc.driver.OracleTypes).

This is an overloaded method. One version of this method is for named types
only—when the SQL typecode is OracleTypes.REF, STRUCT, or ARRAY. In
this case, in addition to a parameter index and SQL type, the method also takes
a String SQL type name (the name of the Oracle user-defined type in the
database, such as EMPLOYEE).

■ close(): Closes the current result set, if any, and the current statement.
5-20 JDBC Developer’s Guide and Reference

Oracle JDBC Packages and Classes
Class oracle.jdbc.driver.OracleResultSet
This class extends standard JDBC result set functionality, implementing get
methods for retrieving data into oracle.sql.* objects.

Key methods include:

■ getOracleObject(): This is a generic get method for retrieving data into an
oracle.sql.Datum object. It can be cast to the specific oracle.sql.* type
as necessary.

■ getXXX(): These methods, such as getCLOB(), are for retrieving data into
oracle.sql.* objects.

Class oracle.jdbc.driver.OracleResultSetMetaData
This class extends standard JDBC result set metadata functionality to retrieve
information about Oracle result set objects.

Key methods include the following:

■ getColumnCount(): Returns the number of columns in an Oracle result set.

■ getColumnName(): Returns the name of a specified column in an Oracle result
set.

■ getColumnType(): Returns the SQL type of a specified column in an Oracle
result set. If the column stores an Oracle object or collection, then this method
returns OracleTypes.STRUCT or OracleTypes.ARRAY respectively.

■ getColumnTypeName(): Returns the SQL type name of the data stored in the
column. If the column stores an array or collection, then this method returns its
SQL type name. If the column stores REF data, then this method returns the
SQL type name of the objects to which the object reference points.

■ getTableName(): Returns the name of the table from which an Oracle result
set column was selected.
Overview of Oracle Extensions 5-21

Oracle JDBC Packages and Classes
Class oracle.jdbc.driver.OracleTypes
The OracleTypes class defines constants that JDBC uses to identify SQL types.
Each variable in this class has a constant integer value. The
oracle.jdbc.driver.OracleTypes class duplicates the typecode definitions of
the standard Java java.sql.Types class and contains these additional typecodes
for Oracle extensions:

■ OracleTypes.BFILE

■ OracleTypes.ROWID

■ OracleTypes.CURSOR (for REF CURSOR types)

As in java.sql.Types, all the variable names are in all-caps.

JDBC uses the SQL types identified by the elements of the OracleTypes class in
two main areas: registering output parameters, and in the setNull() method of
the PreparedStatement class.

OracleTypes and Registering Output Parameters The typecodes in java.sql.Types or
oracle.jdbc.driver.OracleTypes identify the SQL types of the output
parameters in the registerOutParameter() method of the
java.sql.CallableStatement interface and
oracle.jdbc.driver.OracleCallableStatement class.

These are the forms that registerOutputParameter() can take for
CallableStatement and OracleCallableStatement (assume a standard
callable statement object cs):

cs.registerOutParameter(int index, int sqlType);

cs.registerOutParameter(int index, int sqlType, String sql_name);

cs.registerOutParameter(int index, int sqlType, int scale);

In these signatures, index represents the parameter index, sqlType is the
typecode for the SQL datatype, sql_name is the name given to the datatype (for
user-defined types, when sqlType is a STRUCT, REF, or ARRAY typecode), and
scale represents the number of digits to the right of the decimal point (when
sqlType is a NUMERIC or DECIMAL typecode).

Note: The second signature is standard under JDBC 2.0 in a JDK
1.2.x environment, but is an Oracle extension under JDK 1.1.x.
5-22 JDBC Developer’s Guide and Reference

Oracle JDBC Packages and Classes
The following example uses a CallableStatement to call a procedure named
charout, which returns a CHAR datatype. Note the use of the OracleTypes.CHAR
typecode in the registerOutParameter() method (although
java.sql.Types.CHAR could have been used as well).

CallableStatement cs = conn.prepareCall ("BEGIN charout (?); END;");
cs.registerOutParameter (1, OracleTypes.CHAR);
cs.execute ();
System.out.println ("Out argument is: " + cs.getString (1));

The next example uses a CallableStatement to call structout, which returns a
STRUCT datatype. The form of registerOutParameter() requires you to specify
the typecode (Types.STRUCT or OracleTypes.STRUCT), as well as the SQL
name (EMPLOYEE).

The example assumes that no type mapping has been declared for the EMPLOYEE
type, so it is retrieved into a STRUCT datatype. To retrieve the value of EMPLOYEE as
an oracle.sql.STRUCT object, the statement object cs is cast to an
OracleCallableStatement and the Oracle extension getSTRUCT() method is
invoked.

CallableStatement cs = conn.prepareCall ("BEGIN structout (?); END;");
cs.registerOutParameter (1, OracleTypes.STRUCT, "EMPLOYEE");
cs.execute ();

// get the value into a STRUCT because it
// is assumed that no type map has been defined
STRUCT emp = ((OracleCallableStatement)cs).getSTRUCT (1);

OracleTypes and the setNull() Method The typecodes in Types and OracleTypes
identify the SQL type of the data item, which the setNull() method sets to NULL.
The setNull() method can be found in the java.sql.PreparedStatement
interface and the oracle.jdbc.driver.OraclePreparedStatement class.

These are the forms that setNull() can take for PreparedStatement and
OraclePreparedStatement objects (assume a standard prepared statement
object ps):

ps.setNull(int index, int sqlType);

ps.setNull(int index, int sqlType, String sql_name);

In these signatures, index represents the parameter index, sqlType is the
typecode for the SQL datatype, and sql_name is the name given to the datatype
(for user-defined types, when sqlType is a STRUCT, REF, or ARRAY typecode). If
Overview of Oracle Extensions 5-23

Oracle JDBC Packages and Classes
you enter an invalid sqlType, a Parameter Type Conflict exception is
thrown.

The following example uses a PreparedStatement to insert a NULL numeric
value into the database. Note the use of OracleTypes.NUMERIC to identify the
numeric object set to NULL (although Types.NUMERIC could have been used as
well).

PreparedStatement pstmt =
 conn.prepareStatement ("INSERT INTO num_table VALUES (?)");

pstmt.setNull (1, OracleTypes.NUMERIC);
pstmt.execute ();

In this example, the prepared statement inserts a NULL STRUCT object of type
EMPLOYEE into the database.

PreparedStatement pstmt = conn.prepareStatement
 ("INSERT INTO employee_table VALUES (?)");

pstmt.setNull (1, OracleTypes.STRUCT, "EMPLOYEE");
pstmt.execute ();

Package oracle.jdbc2 (for JDK 1.1.x only)
The oracle.jdbc2 package is an Oracle implementation for use with JDK 1.1.x,
containing classes and interfaces that mimic JDBC 2.0 classes and interfaces (which
exist in the JDK 1.2 version of the standard java.sql package).

The following interfaces are implemented by oracle.sql.* type classes for JDBC
2.0-compliant Oracle type extensions under JDK 1.1.x.

■ oracle.jdbc2.Array is implemented by oracle.sql.ARRAY

■ oracle.jdbc2.Struct is implemented by oracle.sql.STRUCT

■ oracle.jdbc2.Ref is implemented by oracle.sql.REF

■ oracle.jdbc2.Clob is implemented by oracle.sql.CLOB

■ oracle.jdbc2.Blob is implemented by oracle.sql.BLOB

Note: The second signature is standard under JDBC 2.0 in a JDK
1.2.x environment, but is an Oracle extension under JDK 1.1.x.
5-24 JDBC Developer’s Guide and Reference

Oracle JDBC Packages and Classes
In addition, the oracle.jdbc2 package includes the following interfaces for users
employing the JDBC-standard SQLData interface to create Java classes that map to
Oracle objects. Again, these interfaces mimic java.sql interfaces available with
JDK 1.2:

■ oracle.jdbc2.SQLData is implemented by classes that map to Oracle
objects; users must provide this implementation

■ oracle.jdbc2.SQLInput is implemented by classes that read object data;
Oracle provides a SQLInput class that the JDBC drivers use

■ oracle.jdbc2.SQLOutput is implemented by classes that write object data;
Oracle provides a SQLOutput class that the JDBC drivers use

The SQLData interface is one of the two facilities you can use to support Oracle
objects in Java. The other choice is the Oracle CustomDatum interface, included in
the oracle.sql package. See "Understanding the SQLData Interface" on page 8-14
for more information about SQLData, SQLInput, and SQLOutput.
Overview of Oracle Extensions 5-25

Oracle Type Extensions
Oracle Type Extensions
See other chapters in this book for information about key Oracle type extensions:

■ Chapter 7, "Working with LOBs and BFILEs"

■ Chapter 8, "Working with Oracle Object Types"

■ Chapter 9, "Working with Oracle Object References"

■ Chapter 10, "Working with Oracle Collections"

This section covers additional Oracle type extensions and concludes with a
discussion of differences between the Oracle8i JDBC drivers and the Oracle 8.0.x
and 7.3.x drivers regarding support of Oracle extensions.

Oracle JDBC drivers support the Oracle-specific BFILE and ROWID datatypes and
REF CURSOR types, which were introduced in Oracle7 and are not part of the
standard JDBC specification. This section describes the ROWID and REF CURSOR
type extensions. See Chapter 7 for information about BFILEs.

ROWID is supported as a Java string, and REF CURSOR types are supported as JDBC
result sets.

Oracle ROWID Type
A ROWID is an identification tag unique for each row of an Oracle database table.
The ROWID can be thought of as a virtual column, containing the ID for each row.

The oracle.sql.ROWID class is supplied as a wrapper for type ROWID SQL data.

ROWIDs provide functionality similar to the getCursorName() method specified
in the java.sql.ResultSet interface, and the setCursorName() method
specified in the java.sql.Statement interface.

If you include the ROWID pseudo-column in a query, then you can retrieve the
ROWIDs with the result set getString() method (passing in either the column
index or the column name). You can also bind a ROWID to a PreparedStatement
parameter with the setString() method. This allows in-place updates, as in the
example that follows.
5-26 JDBC Developer’s Guide and Reference

Oracle Type Extensions
Example: ROWID The following example shows how to access and manipulate ROWID
data.

Statement stmt = conn.createStatement();

// Query the employee names with "FOR UPDATE" to lock the rows.
// Select the ROWID to identify the rows to be updated.

ResultSet rset =
 stmt.executeQuery ("SELECT ename, rowid FROM emp FOR UPDATE");

// Prepare a statement to update the ENAME column at a given ROWID

PreparedStatement pstmt =
 conn.prepareStatement ("UPDATE emp SET ename = ? WHERE rowid = ?");

// Loop through the results of the query
while (rset.next ())
{
 String ename = rset.getString (1);
 oracle.sql.ROWID rowid = rset.getROWID (2); // Get the ROWID as a String
 pstmt.setString (1, ename.toLowerCase ());
 pstmt.setROWID (2, rowid); // Pass ROWID to the update statement
 pstmt.executeUpdate (); // Do the update
}

Oracle REF CURSOR Type Category
A cursor variable holds the memory location (address) of a query work area, rather
than the contents of the area. Declaring a cursor variable creates a pointer. In SQL, a
pointer has the datatype REF x , where REF is short for REFERENCE and x
represents the entity being referenced. A REF CURSOR, then, identifies a reference
to a cursor variable. Because many cursor variables might exist to point to many
work areas, REF CURSOR can be thought of as a category or "datatype specifier" that
identifies many different types of cursor variables.

Note: The oracle.sql.ROWID class replaces
oracle.jdbc.driver.ROWID, which was used in previous
releases of Oracle JDBC.
Overview of Oracle Extensions 5-27

Oracle Type Extensions
To create a cursor variable, begin by identifying a type that belongs to the REF
CURSOR category. For example:

DECLARE TYPE DeptCursorTyp IS REF CURSOR

Then create the cursor variable by declaring it to be of the type DeptCursorTyp:

dept_cv DeptCursorTyp - - declare cursor variable
...

REF CURSOR, then, is a category of datatypes, rather than a particular datatype.

Stored procedures can return cursor variables of the REF CURSOR category. This
output is equivalent to a database cursor or a JDBC result set. A REF CURSOR
essentially encapsulates the results of a query.

In JDBC, REF CURSORs are materialized as ResultSet objects and can be
accessed as follows:

1. Use a JDBC callable statement to call a stored procedure. It must be a callable
statement, as opposed to a prepared statement, because there is an output
parameter.

2. The stored procedure returns a REF CURSOR.

3. The Java application casts the callable statement to an Oracle callable statement
and uses the getCursor() method of the OracleCallableStatement class
to materialize the REF CURSOR as a JDBC ResultSet object.

4. The result set is processed as requested.

Example: Accessing REF CURSOR Data This example shows how to access REF
CURSOR data.

import oracle.jdbc.driver.*;
...
CallableStatement cstmt;
ResultSet cursor;

Important: Beginning with release 8.1.6, the cursor associated with
a REF CURSOR is closed whenever the statement object that
produced the REF CURSOR is closed.

Unlike in previous releases, the cursor associated with a REF
CURSOR is not closed when the result set object in which the REF
CURSOR was materialized is closed.
5-28 JDBC Developer’s Guide and Reference

Oracle Type Extensions
// Use a PL/SQL block to open the cursor
cstmt = conn.prepareCall
 ("begin open ? for select ename from emp; end;");

cstmt.registerOutParameter(1, OracleTypes.CURSOR);
cstmt.execute();
cursor = ((OracleCallableStatement)cstmt).getCursor(1);

// Use the cursor like a normal ResultSet
while (cursor.next ())
 {System.out.println (cursor.getString(1));}

In the preceding example:

■ A CallableStatement object is created by using the prepareCall()
method of the connection class.

■ The callable statement implements a PL/SQL procedure that returns a REF
CURSOR.

■ As always, the output parameter of the callable statement must be registered to
define its type. Use the typecode OracleTypes.CURSOR for a REF CURSOR.

■ The callable statement is executed, returning the REF CURSOR.

■ The CallableStatement object is cast to an OracleCallableStatement
object to use the getCursor() method, which is an Oracle extension to the
standard JDBC API, and returns the REF CURSOR into a ResultSet object.

For a full sample application using a REF CURSOR, see "REF
CURSORs—RefCursorExample.java" on page 17-29.

Support for Oracle Extensions in 8.0.x and 7.3.x JDBC Drivers
Some of the Oracle type extensions supported by the Oracle8i JDBC drivers are
either not supported or are supported differently by the Oracle 8.0.x and 7.3.x JDBC
drivers. Following are the key points:

■ The 8.0.x and 7.3.x drivers have no oracle.sql package, meaning there are no
wrapper types such as oracle.sql.NUMBER and oracle.sql.CHAR that
you can use to wrap raw SQL data.

■ The 8.0.x and 7.3.x drivers do not support Oracle object and collection types.

■ The 8.0.x and 7.3.x drivers support the Oracle ROWID datatype with the
OracleRowid class in the oracle.jdbc.driver package.
Overview of Oracle Extensions 5-29

Oracle Type Extensions
■ The 8.0.x drivers support the Oracle BLOB, CLOB, and BFILE datatypes with the
OracleBlob, OracleClob, and OracleBfile classes in the
oracle.jdbc.driver package. These classes do not include LOB and BFILE
manipulation methods—you must instead use the PL/SQL DBMS_LOB package.

■ The 7.3.x drivers do not support BLOB, CLOB, and BFILE.

Table 5–3 summarizes these differences. "OracleTypes Definition" refers to static
typecode constants defined in the oracle.jdbc.driver.OracleTypes class.

Table 5–3 Support for Oracle Type Extensions, 8.0.x and 7.3.x JDBC Drivers

Oracle Datatype OracleTypes Definition
Type Extension,
8i Drivers

Type Extension,
 8.0.x/7.3.x drivers

NUMBER OracleTypes.NUMBER oracle.sql.NUMBER no type extension for wrapper class

CHAR OracleTypes.CHAR oracle.sql.CHAR no type extension for wrapper class

RAW OracleTypes.RAW oracle.sql.RAW no type extension for wrapper class

DATE OracleTypes.DATE oracle.sql.DATE no type extension for wrapper class

ROWID OracleTypes.ROWID oracle.sql.ROWID oracle.jdbc.driver.OracleRowid

BLOB OracleTypes.BLOB oracle.sql.BLOB oracle.jdbc.driver.OracleBlob in 8.0.x;
not supported in 7.3.x

CLOB OracleTypes.CLOB oracle.sql.CLOB oracle.jdbc.driver.OracleClob in 8.0.x;
not supported in 7.3.x

BFILE n/a oracle.sql.BFILE oracle.jdbc.driver.OracleBfile in 8.0.x;
not supported in 7.3.x

structured object OracleTypes.STRUCT oracle.sql.STRUCT or
custom class

not supported

object reference OracleTypes.REF oracle.sql.REF or
custom class

not supported

collection (array) OracleTypes.ARRAY oracle.sql.ARRAY or
custom class

not supported
5-30 JDBC Developer’s Guide and Reference

Accessing and Manipulating Oracle
6

Accessing and Manipulating Oracle Data

This chapter describes data access in oracle.sql.* formats, as opposed to
standard Java formats. As described in the previous chapter, the oracle.sql.*
formats are a key factor of the Oracle JDBC extensions, offering significant
advantages in efficiency and precision in manipulating SQL data.

Using oracle.sql.* formats involves casting your result sets and statements to
OracleResultSet, OracleStatement, OraclePreparedStatement, and
OracleCallableStatement objects, as appropriate, and using the
getOracleObject(), setOracleObject(), getXXX(), and setXXX()
methods of these classes (where XXX corresponds to the types in the oracle.sql
package).

This chapter covers the following topics:

■ Data Conversion Considerations

■ Result Set and Statement Extensions

■ Comparison of Oracle get and set Methods to Standard JDBC

■ Using Result Set Meta Data Extensions
 Data 6-1

Data Conversion Considerations
Data Conversion Considerations
When JDBC programs retrieve SQL data into Java, you can use standard Java types,
or you can use types of the oracle.sql package. The classes in this package
simply wrap the raw SQL data.

Standard Types versus Oracle Types
In processing speed and effort, the oracle.sql.* classes provide the most
efficient way of representing SQL data. These classes store the usual representations
of SQL data as byte arrays. They do not reformat the data or perform any
character-set conversions (aside from the usual network conversions) on it. The data
remains in SQL format, and therefore no information is lost. For SQL primitive
types (such as NUMBER, and CHAR), the oracle.sql.* classes simply wrap the
SQL data. For SQL structured types (such as objects and arrays), the classes provide
additional information such as conversion methods and structure details.

If you are moving data within the database, then you will probably want to keep
your data in oracle.sql.* format. If you are displaying the data or performing
calculations on it in a Java application running outside the database, then you will
probably want to materialize the data as instances of standard types such as
java.sql.* or java.lang.* types. Similarly, if you are using a parser that
expects the data to be in a standard Java format, then you must use one of the
standard formats instead of oracle.sql.* format.

Converting SQL NULL Data
Java represents a SQL NULL datum by the Java value null. Java datatypes fall into
two categories: primitive types (such as byte, int, float) and object types (class
instances). The primitive types cannot represent null. Instead, they store the null
as the value zero (as defined by the JDBC specification). This can lead to ambiguity
when you try to interpret your results.

In contrast, Java object types can represent null. The Java language defines an
object wrapper type corresponding to every primitive type (for example, Integer
for int, Float for float) that can represent null. The object wrapper types must
be used as the targets for SQL data to detect SQL NULL without ambiguity.
6-2 JDBC Developer’s Guide and Reference

Result Set and Statement Extensions
Result Set and Statement Extensions
The JDBC Statement object returns an OracleResultSet object, typed as a
java.sql.ResultSet. If you want to apply only standard JDBC methods to the
object, keep it as a ResultSet type. However, if you want to use the Oracle
extensions on the object, you must cast it to an OracleResultSet type. Although
the type by which the Java compiler will identify the object is changed, the object
itself is unchanged.

For example, assuming you have a standard Statement object stmt, do the
following if you want to use only standard JDBC ResultSet methods:

ResultSet rs = stmt.executeQuery("SELECT * FROM emp");

If you need the extended functionality provided by the Oracle extensions to JDBC,
you can select the results into a standard ResultSet object, as above, and then cast
that object into an OracleResultSet object later.

Similarly, when you want to execute a stored procedure using a callable statement,
the JDBC drivers will return an OracleCallableStatement object typed as a
java.sql.CallableStatement. If you want to apply only standard JDBC
methods to the object, then keep it as a CallableStatement type. However, if
you want to use the Oracle extensions on the object, you must cast it to an
OracleCallableStatement type. Although the type by which the Java compiler
will identify the object is changed, the object itself is unchanged.

You use the standard JDBC java.sql.Connection.prepareStatement()
method to create a PreparedStatement object. If you want to apply only
standard JDBC methods to the object, keep it as a PreparedStatement type.
However, if you want to use the Oracle extensions on the object, you must cast it to
an OraclePreparedStatement type. While the type by which the Java compiler
will identify the object is changed, the object itself is unchanged.

Key extensions to the result set and statement classes include
getOracleObject() and setOracleObject() methods that you can use to
access and manipulate data in oracle.sql.* formats, instead of standard Java
formats. For more information, see the next section: "Comparison of Oracle get and
set Methods to Standard JDBC".
Accessing and Manipulating Oracle Data 6-3

Comparison of Oracle get and set Methods to Standard JDBC
Comparison of Oracle get and set Methods to Standard JDBC
This section describes get and set methods, particularly the JDBC standard
getObject() and setObject() methods and the Oracle-specific
getOracleObject() and setOracleObject() methods, and how to access
data in oracle.sql.* format compared with Java format.

Although there are specific getXXX() methods for all the Oracle SQL types (as
described in "Other getXXX() Methods" on page 6-7), you can use the general get
methods for convenience or simplicity, or if you are not certain in advance what
type of data you will receive.

Standard getObject() Method
The standard JDBC getObject() method of a result set or callable statement
returns data into a java.lang.Object object. The format of the data returned is
based on its original type, as follows:

■ For SQL datatypes that are not Oracle-specific, getObject() returns the
default Java type corresponding to the column’s SQL type, following the
mapping specified in the JDBC specification.

■ For Oracle-specific datatypes (such as ROWID, discussed in "Oracle ROWID
Type" on page 5-26), getObject() returns an object of the appropriate
oracle.sql.* class (such as oracle.sql.ROWID).

■ For Oracle objects, getObject() returns an object of the Java class specified in
your type map. (Type maps specify the correlation between Java classes and
database SQL types and are discussed in "Understanding Type Maps for
SQLData Implementations" on page 8-10.) The
getObject(parameter_index) method uses the connection’s default type
map. The getObject(parameter_index, map) enables you to pass in a
type map. If the type map does not provide a mapping for a particular Oracle
object, then getObject() returns an oracle.sql.STRUCT object.

For more information on getObject() return types, see Table 6–1, "Summary of
getObject() and getOracleObject() Return Types" on page 6-6.

Oracle getOracleObject() Method
If you want to retrieve data from a result set or callable statement into an
oracle.sql.* object, then cast your result set to an OracleResultSet type or
your callable statement to an OracleCallableStatement type, and use the
getOracleObject() method.
6-4 JDBC Developer’s Guide and Reference

Comparison of Oracle get and set Methods to Standard JDBC
When you use getOracleObject(), the data will be of the appropriate
oracle.sql.* type and is returned into an oracle.sql.Datum object (the
oracle.sql type classes extend Datum). The signature for the method is:

public oracle.sql.Datum getOracleObject(int parameter_index)

When you have retrieved data into a Datum object, you can use the standard Java
instanceof operator to determine which oracle.sql.* type it really is.

For more information on getOracleObject() return types, see Table 6–1,
"Summary of getObject() and getOracleObject() Return Types" on page 6-6.

Example: Using getOracleObject() with a ResultSet The following example creates a table
that contains a column of character data (in this case, a row number) and a column
containing a BFILE locator. A SELECT statement retrieves the contents of the table
into a result set. The getOracleObject() then retrieves the CHAR data into the
char_datum variable and the BFILE locator into the bfile_datum variable. Note
that because getOracleObject() returns a Datum object, the results must be cast
to CHAR and BFILE, respectively.

stmt.execute ("CREATE TABLE bfile_table (x varchar2 (30), b bfile)");
stmt.execute
 ("INSERT INTO bfile_table VALUES (’one’, bfilename (’TEST_DIR’, ’file1’))");

ResultSet rset = stmt.executeQuery ("SELECT * FROM bfile_table");
while (rset.next ())
{
 CHAR char_datum = (CHAR) ((OracleResultSet)rset).getOracleObject (1);
 BFILE bfile_datum = (BFILE) ((OracleResultSet)rset).getOracleObject (2);
 ...
}

Example: Using getOracleObject() in a Callable Statement The following example prepares
a call to the procedure myGetDate(), which associates a character string (in this
case a name) with a date. The program passes the string SCOTT to the prepared call
and registers the DATE type as an output parameter. After the call is executed,
getOracleObject() retrieves the date associated with the name SCOTT. Note
that because getOracleObject() returns a Datum object, the results are cast to a
DATE object.
Accessing and Manipulating Oracle Data 6-5

Comparison of Oracle get and set Methods to Standard JDBC
OracleCallableStatement cstmt = (OracleCallableStatement)conn.prepareCall
 ("begin myGetDate (?, ?); end;");

cstmt.setString (1, "SCOTT");
cstmt.registerOutParameter (2, Types.DATE);
cstmt.execute ();

DATE date = (DATE) ((OracleCallableStatement)cstmt).getOracleObject (2);
...

Summary of getObject() and getOracleObject() Return Types
Table 6–1 summarizes the information in the preceding sections, "Standard
getObject() Method" and "Oracle getOracleObject() Method" on page 6-4.

This table lists the underlying return types for each method for each Oracle SQL
type, but keep in mind the signatures of the methods when you write your code:

■ getObject(): Always returns data into a java.lang.Object instance.

■ getOracleObject(): Always returns data into an oracle.sql.Datum
instance.

You must cast the returned object to use any special functionality (see "Casting Your
get Method Return Values" on page 6-10).

Table 6–1 Summary of getObject() and getOracleObject() Return Types

Oracle SQL Type
getObject()
Underlying Return Type

getOracleObject()
Underlying Return Type

CHAR String oracle.sql.CHAR

VARCHAR2 String oracle.sql.CHAR

LONG String oracle.sql.CHAR

NUMBER java.math.BigDecimal oracle.sql.NUMBER

RAW byte[] oracle.sql.RAW

LONGRAW byte[] oracle.sql.RAW

DATE java.sql.Timestamp oracle.sql.DATE

ROWID oracle.sql.ROWID oracle.sql.ROWID

REF CURSOR java.sql.ResultSet (not supported)

BLOB oracle.sql.BLOB oracle.sql.BLOB
6-6 JDBC Developer’s Guide and Reference

Comparison of Oracle get and set Methods to Standard JDBC
For information on type compatibility between all SQL and Java types, see
Table 18–1, "Valid SQL Datatype-Java Class Mappings" on page 18-2.

Other getXXX() Methods
Standard JDBC provides a getXXX() for each standard Java type, such as
getByte(), getInt(), getFloat(), and so on. Each of these returns exactly
what the method name implies (a byte, an int, a float, and so on).

In addition, the OracleResultSet and OracleCallableStatement classes
provide a full complement of getXXX() methods corresponding to all the
oracle.sql.* types. Each getXXX() method returns an oracle.sql.XXX
object. For example, getROWID() returns an oracle.sql.ROWID object.

Some of these extensions are taken from the JDBC 2.0 specification. They return
objects of type java.sql.* (or oracle.jdbc2.* under JDK 1.1.x), instead of
oracle.sql.*. For example, compare the following method names and return
types:

java.sql.Blob getBlob(int parameter_index)

oracle.sql.BLOB getBLOB(int parameter_index)

Although there is no particular performance advantage in using the specific
getXXX() methods, they can save you the trouble of casting, because they return
specific object types.

CLOB oracle.sql.CLOB oracle.sql.CLOB

BFILE oracle.sql.BFILE oracle.sql.BFILE

Oracle object class specified in type map

or oracle.sql.STRUCT
(if no type map entry)

oracle.sql.STRUCT

Oracle object reference oracle.sql.REF oracle.sql.REF

collection (varray or
nested table)

oracle.sql.ARRAY oracle.sql.ARRAY

Table 6–1 Summary of getObject() and getOracleObject() Return Types (Cont.)

Oracle SQL Type
getObject()
Underlying Return Type

getOracleObject()
Underlying Return Type
Accessing and Manipulating Oracle Data 6-7

Comparison of Oracle get and set Methods to Standard JDBC
Return Types and Input Parameter Types of getXXX() Methods
Table 6–2 summarizes the underlying return types and the input parameter types
for each getXXX() method, and notes which are Oracle extensions under JDK 1.2.x
and JDK 1.1.x. You must cast to an OracleResultSet or
OracleCallableStatement to use methods that are Oracle extensions.

Table 6–2 Summary of getXXX() Return Types

Method
Underlying Return
Type Signature Type

Oracle
Ext for
JDK
1.2.x?

Oracle
Ext for
JDK
1.1.x?

getArray() oracle.sql.ARRAY java.sql.Array

(oracle.jdbc2.Array
under JDK 1.1.x)

No Yes

getARRAY() oracle.sql.ARRAY oracle.sql.ARRAY Yes Yes

getAsciiStream() java.io.InputStream java.io.InputStream No No

getBfile() oracle.sql.BFILE oracle.sql.BFILE Yes Yes

getBFILE() oracle.sql.BFILE oracle.sql.BFILE Yes Yes

getBigDecimal()
(see Notes section below)

java.math.BigDecimal java.math.BigDecimal No No

getBinaryStream() java.io.InputStream java.io.InputStream No No

getBlob() oracle.sql.BLOB java.sql.Blob

(oracle.jdbc2.Blob
under JDK 1.1.x)

No Yes

getBLOB oracle.sql.BLOB oracle.sql.BLOB Yes Yes

getBoolean() boolean boolean No No

getByte() byte byte No No

getBytes() byte[] byte[] No No

getCHAR() oracle.sql.CHAR oracle.sql.CHAR Yes Yes

getCharacterStream()
(new with 8.1.6)

java.io.Reader java.io.Reader No Yes

getClob() oracle.sql.CLOB java.sql.Clob

(oracle.jdbc2.Clob
under JDK 1.1.x)

No Yes
6-8 JDBC Developer’s Guide and Reference

Comparison of Oracle get and set Methods to Standard JDBC
getCLOB() oracle.sql.CLOB oracle.sql.CLOB Yes Yes

getDate()
(see Notes section below)

java.sql.Date java.sql.Date No No

getDATE() oracle.sql.DATE oracle.sql.DATE Yes Yes

getDouble() double double No No

getFloat() float float No No

getInt() int int No No

getLong() long long No No

getNUMBER() oracle.sql.NUMBER oracle.sql.NUMBER Yes Yes

getOracleObject() subclasses of
oracle.sql.Datum

oracle.sql.Datum Yes Yes

getRAW() oracle.sql.RAW oracle.sql.RAW Yes Yes

getRef() oracle.sql.REF java.sql.Ref

(oracle.jdbc2.Ref
under JDK 1.1.x)

No Yes

getREF() oracle.sql.REF oracle.sql.REF Yes Yes

getROWID() oracle.sql.ROWID oracle.sql.ROWID Yes Yes

getShort() short short No No

getString() String String No No

getSTRUCT() oracle.sql.STRUCT. oracle.sql.STRUCT Yes Yes

getTime()
(see Notes section below)

java.sql.Time java.sql.Time No No

getTimestamp()
(see Notes section below)

java.sql.Timestamp java.sql.Timestamp No No

getUnicodeStream() java.io.InputStream java.io.InputStream No No

Table 6–2 Summary of getXXX() Return Types (Cont.)

Method
Underlying Return
Type Signature Type

Oracle
Ext for
JDK
1.2.x?

Oracle
Ext for
JDK
1.1.x?
Accessing and Manipulating Oracle Data 6-9

Comparison of Oracle get and set Methods to Standard JDBC
Special Notes about getXXX() Methods
This section provides additional details about some of the getXXX() methods.

getBigDecimal() Note

JDBC 2.0 supports a simplified method signature for the getBigDecimal()
method. The previous input signature was:

(int columnIndex, int scale) or (String columnName, int scale)

The new input signature is simply:

(int columnIndex) or (String columnName)

The scale parameter, used to specify the number of digits to the right of the
decimal, is no longer necessary. The Oracle JDBC drivers retrieve numeric values
with full precision.

getDate(), getTime(), and getTimestamp() Note

In JDBC 2.0, the getDate(), getTime(), and getTimestamp() methods have
the following input signatures:

(int columnIndex, Calendar cal)

or:

(String columnName, Calendar cal)

In release 8.1.6, the Oracle JDBC drivers ignore the Calendar object input, because
it is not currently feasible to support java.sql.Date timezone information
together with the data. You should continue to use previous input signatures that
take only the column index or column name. Calendar input will be supported in a
future Oracle JDBC release.

Casting Your get Method Return Values
As described in "Standard getObject() Method" on page 6-4, Oracle’s
implementation of getObject() always returns a java.lang.Object instance,
and getOracleObject() always returns an oracle.sql.Datum instance.
Usually, you would cast the returned object to the appropriate class so that you
could use particular methods and functionality of that class.

In addition, you have the option of using a specific getXXX() method instead of
the generic getObject() or getOracleObject() methods. The getXXX()
methods enable you to avoid casting, because the return type of getXXX()
6-10 JDBC Developer’s Guide and Reference

Comparison of Oracle get and set Methods to Standard JDBC
corresponds to the type of object returned. For example, getCLOB() returns an
oracle.sql.CLOB instance, as opposed to a java.lang.Object instance.

Example: Casting Return Values This example assumes that you have fetched data of
type CHAR into a result set (where it is in column 1). Because you want to
manipulate the CHAR data without losing precision, cast your result set to an
OracleResultSet, and use getOracleObject() to return the CHAR data in
oracle.sql.* format. If you do not cast your result set, you have to use
getObject(), which returns your character data into a Java String and loses
some of the precision of your SQL data.

The getOracleObject() method returns an oracle.sql.CHAR object into an
oracle.sql.Datum return variable unless you cast the output. Cast the
getOracleObject() output to oracle.sql.CHAR if you want to use a CHAR
return variable and any of the special functionality of that class (such as the
getCharacterSet() method that returns the character set used to represent the
characters).

CHAR char = (CHAR)ors.getOracleObject(1);
CharacterSet cs = char.getCharacterSet();

Alternatively, you can return the object into a generic oracle.sql.Datum return
variable and cast it later when you must use the CHAR getCharacterSet()
method.

Datum rawdatum = ors.getOracleObject(1);
...
CharacterSet cs = ((CHAR)rawdatum).getCharacterSet();

This uses the getCharacterSet() method of oracle.sql.CHAR. The
getCharacterSet() method is not defined on oracle.sql.Datum and would
not be reachable without the cast.

Standard setObject() and Oracle setOracleObject() Methods
Just as there is a standard getObject() and Oracle-specific
getOracleObject() in result sets and callable statements for retrieving data,
there is also a standard setObject() and an Oracle-specific
setOracleObject() in Oracle prepared statements and callable statements for
updating data. The setOracleObject() methods take oracle.sql.* input
parameters.

To bind standard Java types to a prepared statement or callable statement, use the
setObject() method, which takes a java.lang.Object as input. The
Accessing and Manipulating Oracle Data 6-11

Comparison of Oracle get and set Methods to Standard JDBC
setObject() method does support a few of the oracle.sql.* types—it has
been implemented so that you can also input instances of the oracle.sql.*
classes that correspond to JDBC 2.0-compliant Oracle extensions: BLOB, CLOB,
BFILE, STRUCT, REF, and ARRAY.

To bind oracle.sql.* types to a prepared statement or callable statement, use the
setOracleObject() method, which takes an oracle.sql.Datum (or any
subclass) as input. To use setOracleObject(), you must cast your prepared
statement or callable statement to an OraclePreparedStatement or
OracleCallableStatement object.

Example: Using setObject() and setOracleObject() in a Prepared Statement This example
assumes that you have fetched character data into a standard result set (where it is
in column 1), and you want to cast the results to an OracleResultSet so that you
can use Oracle-specific formats and methods. Because you want to use the data as
oracle.sql.CHAR format, cast the results of the getOracleObject() (which
returns type oracle.sql.Datum) to CHAR. Similarly, because you want to
manipulate the data in column 2 as strings, cast the data to a Java String type
(because getObject() returns data of type Object). In this example, rs
represents the result set, charVal represents the data from column 1 in
oracle.sql.CHAR format, and strVal represents the data from column 2 in Java
String format.

CHAR charVal=(CHAR)((OracleResultSet)rs).getOracleObject(1);
String strVal=(String)rs.getObject(2);
...

For a prepared statement object ps, the setOracleObject() method binds the
oracle.sql.CHAR data represented by the charVal variable to the prepared
statement. To bind the oracle.sql.* data, the prepared statement must be cast to
an OraclePreparedStatement. Similarly, the setObject() method binds the
Java String data represented by the variable strVal.

PreparedStatement ps= conn.prepareStatement("text_of_prepared_statement");
((OraclePreparedStatement)ps).setOracleObject(1,charVal);
ps.setObject(2,strVal);

Other setXXX() Methods
As with getXXX() methods, there are several specific setXXX() methods.
Standard setXXX() methods are provided for binding standard Java types, and
Oracle-specific setXXX() methods are provided for binding Oracle-specific types.
6-12 JDBC Developer’s Guide and Reference

Comparison of Oracle get and set Methods to Standard JDBC
Similarly, there are two forms of the setNull() method:

■ void setNull(int parameterIndex, int sqlType)

This is specified in the standard java.sql.PreparedStatement interface.
This signature takes a parameter index and a SQL typecode defined by the
java.sql.Types or oracle.jdbc.driver.OracleTypes class. Use this
signature to set an object other than a REF, ARRAY, or STRUCT to NULL.

■ void setNull(int parameterIndex, int sqlType, String sql_type_name)

With JDBC 2.0, this signature is also specified in the standard
java.sql.PreparedStatement interface. Under JDK 1.1.x, it is available as
an Oracle extension. It takes a SQL type name in addition to a parameter index
and a SQL type code. Use this method when the SQL typecode is
java.sql.Types.REF, ARRAY, or STRUCT. (If the typecode is other than REF,
ARRAY, or STRUCT, then the given SQL type name is ignored.)

Similarly, the registerOutParameter() method has a signature for use with
REF, ARRAY, or STRUCT data:

void registerOutParameter
 (int parameterIndex, int sqlType, String sql_type_name);

For binding Oracle-specific types, using the appropriate specific setXXX()
methods instead of methods for binding standard Java types may offer some
performance advantage.

Input Parameter Types of setXXX() Methods
Table 6–3 summarizes the input types for all the setXXX() methods and notes
which are Oracle extensions under JDK 1.2.x and JDK 1.1.x. To use methods that are
Oracle extensions, you must cast your statement to an
OraclePreparedStatement or OracleCallableStatement.

Note: Under JDK 1.1.x, for compatibility with the JDBC 2.0
standard, OraclePreparedStatement and
OracleCallableStatement classes provide setXXX() methods
that take oracle.jdbc2 input parameters for BLOBs, CLOBs,
object references, and arrays. For example, a setBlob() method
takes an oracle.jdbc2.Blob input parameter, where it would
take a java.sql.Blob input parameter under JDK 1.2.x.
Accessing and Manipulating Oracle Data 6-13

Comparison of Oracle get and set Methods to Standard JDBC
Table 6–3 Summary of setXXX() Input Parameter Types

Method Input Parameter Type

Oracle Ext
for JDK
1.2.x?

Oracle Ext
for JDK
1.1.x?

setArray() java.sql.Array

(oracle.jdbc2.Array under
JDK 1.1.x)

No Yes

setARRAY() oracle.sql.ARRAY Yes Yes

setAsciiStream()
(see Notes section below)

java.io.InputStream No No

setBfile() oracle.sql.BFILE Yes Yes

setBFILE() oracle.sql.BFILE Yes Yes

setBigDecimal() BigDecimal No No

setBinaryStream()
(see Notes section below)

java.io.InputStream No No

setBlob() java.sql.Blob

(oracle.jdbc2.Blob under
JDK 1.1.x)

No Yes

setBLOB() oracle.sql.BLOB Yes Yes

setBoolean() boolean No No

setByte() byte No No

setBytes() byte[] No No

setCHAR()
(also see setFixedCHAR() method)

oracle.sql.CHAR Yes Yes

setCharacterStream()
(see Notes section below)

java.io.Reader No Yes

setClob() java.sql.Clob

(oracle.jdbc2.Clob under
JDK 1.1.x)

No Yes

setCLOB() oracle.sql.CLOB Yes Yes

setDate()
(see Notes section below)

java.sql.Date No No

setDATE() oracle.sql.DATE Yes Yes
6-14 JDBC Developer’s Guide and Reference

Comparison of Oracle get and set Methods to Standard JDBC
For information on all supported type mappings between SQL and Java, see
Table 18–1, "Valid SQL Datatype-Java Class Mappings" on page 18-2.

Setter Method Size Limitations on Oracle8 and Oracle7
Table 6–4 lists size limitations for the setBytes() and setString() methods for
SQL binds to Oracle8 and Oracle7 databases. (These limitations do not apply to
PL/SQL binds.) For information about how to work around these limits using the

setDouble() double No No

setFixedCHAR()
(see setFixedCHAR() section below)

java.lang.String Yes Yes

setFloat() float No No

setInt() int No No

setLong() long No No

setNUMBER() oracle.sql.NUMBER Yes Yes

setRAW() oracle.sql.RAW Yes Yes

setRef() java.sql.Ref

(oracle.jdbc2.Ref under
JDK 1.1.x)

No Yes

setREF() oracle.sql.REF Yes Yes

setROWID() oracle.sql.ROWID Yes Yes

setShort() short No No

setString() String No No

setSTRUCT() oracle.sql.STRUCT Yes Yes

setTime()
(see note below)

java.sql.Time No No

setTimestamp()
(see note below)

java.sql.Timestamp No No

setUnicodeStream()
(see note below)

java.io.InputStream No No

Table 6–3 Summary of setXXX() Input Parameter Types (Cont.)

Method Input Parameter Type

Oracle Ext
for JDK
1.2.x?

Oracle Ext
for JDK
1.1.x?
Accessing and Manipulating Oracle Data 6-15

Comparison of Oracle get and set Methods to Standard JDBC
stream API, see "Using Streams to Avoid Limits on setBytes() and setString()" on
page 3-30.

Setter Methods That Take Additional Input
The following setXXX() methods take an additional input parameter other than
the parameter index and the data item itself:

■ setAsciiStream(int paramIndex, InputStream istream,
 int length)

Takes the length of the stream, in bytes.

■ setBinaryStream(int paramIndex, InputStream istream,
 int length)

Takes the length of the stream, in bytes.

■ setCharacterStream(int paramIndex, Reader reader,
 int length)

Takes the length of the stream, in characters.

■ setUnicodeStream(int paramIndex, InputStream istream,
 int length)

Takes the length of the stream, in bytes.

The particular usefulness of the setCharacterStream() method is that when a
very large Unicode value is input to a LONGVARCHAR parameter, it can be more
practical to send it through a java.io.Reader object. JDBC will read the data
from the stream as needed, until it reaches the end-of-file mark. The JDBC driver
will do any necessary conversion from Unicode to the database character format.

Table 6–4 Size Limitations for setByes() and setString() Methods

Oracle8 Oracle7

setBytes() size limitation 2000 bytes 255 bytes

setString() size limitation 4000 bytes 2000 bytes

Important: The preceding stream methods can also be used for
LOBs, but only with an 8.1.6 database and the 8.1.6 JDBC OCI
driver. See "Reading and Writing BLOB and CLOB Data" on
page 7-6 for more information.
6-16 JDBC Developer’s Guide and Reference

Comparison of Oracle get and set Methods to Standard JDBC
■ setDate(int paramIndex, Date x, Calendar cal)

■ setTime(int paramIndex, Time x, Calendar cal)

■ setTimestamp(int paramIndex, Timestamp x, Calendar cal)

The JDBC 2.0 signatures for setDate(), setTime(), and setTimestamp()
include a Calendar object, but in release 8.1.6 the Oracle JDBC drivers ignore
this input because it is not yet feasible to support java.sql.Date timezone
information together with the data. You should continue to use the previous
signatures that take only the parameter index and data item. Calendar input
will be supported in a future release.

Method setFixedCHAR() for Binding CHAR Data into WHERE Clauses
CHAR data in the database is padded to the column width. This leads to a limitation
in using the setCHAR() method to bind character data into the WHERE clause of a
SELECT statement—the character data in the WHERE clause must also be padded to
the column width to produce a match in the SELECT statement. This is especially
troublesome if you do not know the column width.

To remedy this, Oracle has added the setFixedCHAR() method to the
OraclePreparedStatement class. This method executes a non-padded
comparison.

Example The following example demonstrates the difference between the
setCHAR() and setFixedCHAR() methods.

/* Schema is :
 create table my_table (col1 char(10));
 insert into my_table values (’JDBC’);
*/
 PreparedStatement pstmt = conn.prepareStatement
 ("select count(*) from my_table where col1 = ?");

Note:

■ Remember to cast your prepared statement object to
OraclePreparedStatement to use the setFixedCHAR()
method.

■ There is no need to use setFixedCHAR() for an INSERT
statement. The database always automatically pads the data to
the column width as it inserts it.
Accessing and Manipulating Oracle Data 6-17

Comparison of Oracle get and set Methods to Standard JDBC
 pstmt.setString (1, "JDBC"); // Set the Bind Value
 runQuery (pstmt); // This will print " No of rows are 0"

 CHAR ch = new CHAR("JDBC ", null);
 ((OraclePreparedStatement)pstmt).setCHAR(1, ch); // Pad it to 10 bytes
 runQuery (pstmt); // This will print "No of rows are 1"

 ((OraclePreparedStatement)pstmt).setFixedCHAR(1, "JDBC");
 runQuery (pstmt); // This will print "No of rows are 1"

 void runQuery (PreparedStatement ps)
 {
 // Run the Query
 ResultSet rs = pstmt.executeQuery ();

 while (rs.next())
 System.out.println("No of rows are " + rs.getInt(1));

 rs.close();
 rs = null;
 }

Limitations of the Oracle 8.0.x and 7.3.x JDBC Drivers
The Oracle 8.0.x JDBC drivers use the same protocol as the Oracle 7.3.x JDBC
drivers. In both cases, Oracle datatypes are as defined for an Oracle 7.3.x database,
and data items longer than 2K bytes must be LONG.

As with any LONG data, use the stream APIs to read and write data between your
application and the database. Essentially, this means that you cannot use the normal
getString() and setString() methods to read or write data longer than 2K
bytes when using the 8.0.x and 7.3.x drivers.

The stream APIs include methods such as getBinaryStream(),
setBinaryStream(), getAsciiStream(), and setAsciiStream(). These
methods are discussed under "Java Streams in JDBC" on page 3-19.
6-18 JDBC Developer’s Guide and Reference

Using Result Set Meta Data Extensions
Using Result Set Meta Data Extensions
The oracle.jdbc.driver.OracleResultSetMetaData class is JDBC
2.0-compliant but does not implement the getSchemaName() and
getTableName() methods because underlying protocol makes this unfeasible.
Oracle does implement many methods to retrieve information about an Oracle
result set, however.

The getColumnTypeName() method takes a column number and returns the SQL
type name for columns of type REF, STRUCT, or ARRAY. In contrast, the
getColumnType() method takes a column number and returns the SQL type. If
the column stores an Oracle object or collection, then it returns an
OracleTypes.STRUCT or an OracleTypes.ARRAY. For a list of the key methods
provided by OracleResultSetMetadata, see "Class
oracle.jdbc.driver.OracleResultSetMetaData" on page 5-21.

The following example uses several of the methods in the
OracleResultSetMetadata class to retrieve the number of columns from the
EMP table, and each column’s numerical type and SQL type name.

DatabaseMetaData dbmd = conn.getMetaData();
ResultSet rset = dbmd.getTables("", "SCOTT", "EMP", null);

 while (rset.next())
 {
 OracleResultSetMetaData orsmd = ((OracleResultSet)rset).getMetaData();
 int numColumns = orsmd.getColumnCount();
 System.out.println("Num of columns = " + numColumns);

 for (int i=0; i<numColumns; i++)
 {
 System.out.print ("Column Name=" + orsmd.getColumnName (i+1));
 System.out.print (" Type=" + orsmd.getColumnType (i + 1));
 System.out.println (" Type Name=" + orsmd.getColumnTypeName (i + 1));
 }
}

The program returns the following output:

Num of columns = 5
Column Name=TABLE_CAT Type=12 Type Name=VARCHAR2
Column Name=TABLE_SCHEM Type=12 Type Name=VARCHAR2
Column Name=TABLE_NAME Type=12 Type Name=VARCHAR2
Column Name=TABLE_TYPE Type=12 Type Name=VARCHAR2
Column Name=TABLE_REMARKS Type=12 Type Name=VARCHAR2
Accessing and Manipulating Oracle Data 6-19

Using Result Set Meta Data Extensions
6-20 JDBC Developer’s Guide and Reference

Working with LOBs and B
7

Working with LOBs and BFILEs

This chapter describes how you use JDBC and the oracle.sql.* classes to access
and manipulate LOB and BFILE locators and data, covering the following topics:

■ Oracle Extensions for LOBs and BFILEs

■ Working with BLOBs and CLOBs

■ Working with BFILEs
FILEs 7-1

Oracle Extensions for LOBs and BFILEs
Oracle Extensions for LOBs and BFILEs
LOBs ("large objects") are stored in a way that optimizes space and provides
efficient access. The JDBC drivers provide support for two types of LOBs: BLOBs
(unstructured binary data) and CLOBs (character data). BLOB and CLOB data is
accessed and referenced by using a locator, which is stored in the database table and
points to the BLOB or CLOB data, which is outside the table.

BFILEs are large binary data objects stored in operating system files outside of
database tablespaces. These files use reference semantics. They can also be located
on tertiary storage devices such as hard disks, CD-ROMs, PhotoCDs and DVDs. As
with BLOBs and CLOBs, a BFILE is accessed and referenced by a locator which is
stored in the database table and points to the BFILE data.

To work with LOB data, you must first obtain the LOB locator from the table. Then
you can read or write LOB data and perform data manipulation. The following
sections also describe how to create and populate a LOB column in a table.

The JDBC drivers support these oracle.sql.* classes for BLOBs, CLOBs, and
BFILEs:

■ oracle.sql.BLOB

■ oracle.sql.CLOB

■ oracle.sql.BFILE

The oracle.sql.BLOB and CLOB classes implement the java.sql.Blob and
Clob interfaces, respectively (oracle.jdbc2.Blob and Clob interfaces under
JDK 1.1.x). By contrast, BFILE is an Oracle extension, without a corresponding
java.sql (or oracle.jdbc2) interface.

Instances of these classes contain only the locators for these datatypes, not the data.
After accessing the locators, you must perform some additional steps to access the
data. These steps are described in "Reading and Writing BLOB and CLOB Data" on
page 7-6 and "Reading BFILE Data" on page 7-18.

Note: You cannot create BLOB, CLOB, or BFILE objects in your
JDBC application—you can only retrieve existing BLOBs, CLOBs,
or BFILEs from the database.
7-2 JDBC Developer’s Guide and Reference

Working with BLOBs and CLOBs
Working with BLOBs and CLOBs
This section describes how to read and write data to and from binary large objects
(BLOBs) and character large objects (CLOBs) in an Oracle database, using LOB
locators.

For general information about Oracle8i LOBs and how to use them, see the Oracle8i
Application Developer’s Guide—Large Objects (LOBs).

Getting and Passing BLOB and CLOB Locators
Standard as well as Oracle-specific getter and setter methods are available for
retrieving or passing LOB locators from or to the database.

Retrieving BLOB and CLOB Locators
Given a standard JDBC result set (java.sql.ResultSet) or callable statement
(java.sql.CallableStatement) that includes BLOB or CLOB locators, you can
access the locators by using standard getter methods, as follows. All the standard
and Oracle-specific getter methods discussed here take either an int column index
or a String column name as input.

■ Under JDK 1.2.x, you can use the standard getBlob() and getClob()
methods, which return java.sql.Blob and Clob objects, respectively.

■ Under JDK 1.1.x, there is no standard BLOB or CLOB functionality, but you can
use the generic getObject() method, which returns java.lang.Object,
and cast the output as desired.

If you retrieve or cast the result set or callable statement to an OracleResultSet
or OracleCallableStatement object, then you can use Oracle extensions as
follows:

■ Under either JDK 1.2.x or JDK 1.1.x, you can use getBLOB() and getCLOB(),
which return oracle.sql.BLOB and CLOB objects, respectively.

■ Under either JDK 1.2.x or JDK 1.1.x, you can also use the getOracleObject()
method, which returns an oracle.sql.Datum object, and cast the output
appropriately.

■ Under JDK 1.1.x, you also have the option of using the Oracle extensions
getBlob() and getClob(), which return oracle.jdbc2.Blob and Clob
objects, respectively. (These Blob and Clob interfaces mimic the standard
interfaces available in JDK 1.2.x.)
Working with LOBs and BFILEs 7-3

Working with BLOBs and CLOBs
Example: Getting BLOB and CLOB Locators from a Result Set Assume the database has a
table called lob_table with a column for a BLOB locator, blob_col, and a
column for a CLOB locator, clob_col. This example assumes that you have
already created the Statement object, stmt.

First, select the LOB locators into a standard result set, then get the LOB data into
appropriate Java classes:

// Select LOB locator into standard result set.
ResultSet rs =
 stmt.executeQuery ("SELECT blob_col, clob_col FROM lob_table");
while (rs.next())
{
 // Get LOB locators into Java wrapper classes.
 java.sql.Blob blob = (java.sql.Blob)rs.getObject(1);
 java.sql.Clob clob = (java.sql.Clob)rs.getObject(2);
 (...process...)
}

The output is cast to java.sql.Blob and Clob. As an alternative, you can cast the
output to oracle.sql.BLOB and CLOB to take advantage of extended
functionality offered by the oracle.sql.* classes. For example, you can rewrite
the above code to get the LOB locators as:

 // Get LOB locators into Java wrapper classes.
 oracle.sql.BLOB blob = (BLOB)rs.getObject(1);
 oracle.sql.CLOB clob = (CLOB)rs.getObject(2);
 (...process...)

Example: Getting a CLOB Locator from a Callable Statement The callable statement
methods for retrieving LOBs are identical to the result set methods.

For example, if you have an OracleCallableStatement ocs that calls a
function func that has a CLOB output parameter, then set up the callable statement
as in the following example.

This example registers OracleTypes.CLOB as the typecode of the output
parameter.

Note: If using getObject() or getOracleObject(), then
remember to cast the output, as necessary. For more information,
see "Casting Your get Method Return Values" on page 6-10.
7-4 JDBC Developer’s Guide and Reference

Working with BLOBs and CLOBs
OracleCallableStatement ocs =
 (OracleCallableStatement)conn.prepareCall("{? = call func()}");
ocs.registerOutParameter(1, OracleTypes.CLOB);
ocs.execute();
oracle.sql.CLOB clob = ocs.getCLOB(1);

Passing BLOB and CLOB Locators
Given a standard JDBC prepared statement (java.sql.PreparedStatement) or
callable statement (java.sql.CallableStatement), you can use standard setter
methods to pass LOB locators, as follows. All the standard and Oracle-specific setter
methods discussed here take an int parameter index and the LOB locator as input.

■ Under JDK 1.2.x, you can use the standard setBlob() and setClob()
methods, which take java.sql.Blob and Clob locators as input.

■ Under JDK 1.1.x, there is no standard BLOB or CLOB functionality, but you can
use the generic setObject() method, which simply specifies a
java.lang.Object input.

Given an Oracle-specific OraclePreparedStatement or
OracleCallableStatement, then you can use Oracle extensions as follows:

■ Under either JDK 1.2.x or JDK 1.1.x, you can use setBLOB() and setCLOB(),
which take oracle.sql.BLOB and CLOB locators as input, respectively.

■ Under either JDK 1.2.x or JDK 1.1.x, you can also use the setOracleObject()
method, which simply specifies an oracle.sql.Datum input.

■ Under JDK 1.1.x, you also have the option of using the Oracle extensions
setBlob() and setClob(), which take oracle.jdbc2.Blob and Clob
locators as input, respectively. (These Blob and Clob interfaces mimic the
standard interfaces available in JDK 1.2.x.)

Example: Passing a BLOB Locator to a Prepared Statement If you have an
OraclePreparedStatement object ops and a BLOB named my_blob, then write
the BLOB to the database as follows:

OraclePreparedStatement ops = (OraclePreparedStatement)conn.prepareStatement
 ("INSERT INTO blob_table VALUES(?)");
ops.setBLOB(1, my_blob);
ops.execute();
Working with LOBs and BFILEs 7-5

Working with BLOBs and CLOBs
Example: Passing a CLOB Locator to a Callable Statement If you have an
OracleCallableStatement object ocs and a CLOB named my_clob, then input
the CLOB to the stored procedure proc as follows:

OracleCallableStatement ocs =
 (OracleCallableStatement)conn.prepareCall("{call proc(?))}");
ocs.setClob(1, my_clob);
ocs.execute();

Reading and Writing BLOB and CLOB Data
Once you have a LOB locator, you can use JDBC methods to read and write the LOB
data. LOB data is materialized as a Java array or stream. However, unlike most Java
streams, a locator representing the LOB data is stored in the table. Thus, you can
access the LOB data at any time during the life of the connection.

To read and write the LOB data, use the methods in the oracle.sql.BLOB or
oracle.sql.CLOB class, as appropriate. These classes provide functionality such
as reading from the LOB into an input stream, writing from an output stream into a
LOB, determining the length of a LOB, and closing a LOB.

Notes:

■ To write LOB data, the application must acquire a write lock on
the LOB object. One way to accomplish this is through a
SELECT FOR UPDATE. Also, disable auto-commit mode.

■ The implementation of the data access API uses direct native
calls in the JDBC OCI and server-side internal drivers, thereby
providing better performance. You can use the same API on the
LOB classes in all Oracle JDBC drivers.

■ In the case of the JDBC Thin driver only, the implementation of
the data access API uses the PL/SQL DBMS_LOB package
internally. You never have to use DBMS_LOB directly. This is in
contrast to the 8.0.x drivers. For more information on the
DBMS_LOB package, see the Oracle8i Supplied PL/SQL Packages
Reference.
7-6 JDBC Developer’s Guide and Reference

Working with BLOBs and CLOBs
To read and write LOB data, you can use these methods:

■ To read from a BLOB, use the getBinaryStream() method of an
oracle.sql.BLOB object to retrieve the entire BLOB as an input stream. This
returns a java.io.InputStream object.

As with any InputStream object, use one of the overloaded read() methods
to read the LOB data, and use the close() method when you finish.

■ To write to a BLOB, use the getBinaryOutputStream() method of an
oracle.sql.BLOB object to retrieve the BLOB as an output stream. This
returns a java.io.OutputStream object to be written back to the BLOB.

As with any OutputStream object, use one of the overloaded write()
methods to update the LOB data, and use the close() method when you
finish.

■ To read from a CLOB, use the getAsciiStream() or
getCharacterStream() method of an oracle.sql.CLOB object to retrieve
the entire CLOB as an input stream. The getAsciiStream() method returns
an ASCII input stream in a java.io.InputStream object. The
getCharacterStream() method returns a Unicode input stream in a
java.io.Reader object.

As with any InputStream or Reader object, use one of the overloaded
read() methods to read the LOB data, and use the close() method when
you finish.

You can also use the getSubString() method of oracle.sql.CLOB object
to retrieve a subset of the CLOB as a character string of type
java.lang.String.

■ To write to a CLOB, use the getAsciiOutputStream() or
getCharacterOutputStream() method of an oracle.sql.CLOB object to
retrieve the CLOB as an output stream to be written back to the CLOB. The
getAsciiOutputStream() method returns an ASCII output stream in a
java.io.OutputStream object. The getCharacterOutputStream()
method returns a Unicode output stream in a java.io.Writer object.

As with any OutputStream or Writer object, use one of the overloaded
write() methods to update the LOB data, and use the flush() and close()
methods when you finish.
Working with LOBs and BFILEs 7-7

Working with BLOBs and CLOBs
Example: Reading BLOB Data Use the getBinaryStream() method of the
oracle.sql.BLOB class to read BLOB data. The getBinaryStream() method
reads the BLOB data into a binary stream.

The following example uses the getBinaryStream() method to read BLOB data
into a byte stream and then reads the byte stream into a byte array (returning the
number of bytes read, as well).

// Read BLOB data from BLOB locator.
InputStream byte_stream = my_blob.getBinaryStream();
byte [] byte_array = new byte [10];
int bytes_read = byte_stream.read(byte_array);
...

Example: Reading CLOB Data The following example uses the
getCharacterStream() method to read CLOB data into a Unicode character
stream. It then reads the character stream into a character array (returning the
number of characters read, as well).

Notes:

■ The stream "write" methods described in this section write
directly to the database when you write to the output stream.
You do not need to execute an UPDATE/COMMIT to write the
data.

■ When writing to or reading from a CLOB, the JDBC drivers
perform all character set conversions for you.

Important: The JDBC 2.0 specification states that
PreparedStatement methods setBinaryStream() and
setObject() can be used to input a stream value as a BLOB, and
that the PreparedStatement methods setAsciiStream(),
setUnicodeStream(), setCharacterStream(), and
setObject() can be used to input a stream value as a CLOB. This
bypasses the LOB locator, going directly to the LOB data itself.

In the implementation of the Oracle JDBC drivers, this functionality
is supported only for a configuration using an 8.1.6 database and
8.1.6 JDBC OCI driver. Do not use this functionality for any other
configuration, as data corruption may result.
7-8 JDBC Developer’s Guide and Reference

Working with BLOBs and CLOBs
// Read CLOB data from CLOB locator into Reader char stream.
Reader char_stream = my_clob.getCharacterStream();
char [] char_array = new char [10];
int chars_read = char_stream.read (char_array, 0, 10);
...

The next example uses the getAsciiStream() method of the oracle.sql.CLOB
class to read CLOB data into an ASCII character stream. It then reads the ASCII
stream into a byte array (returning the number of bytes read, as well).

// Read CLOB data from CLOB locator into Input ASCII character stream
Inputstream asciiChar_stream = my_clob.getAsciiStream();
byte[] asciiChar_array = new byte[10];
int asciiChar_read = asciiChar_stream.read(asciiChar_array,0,10);

Example: Writing BLOB Data Use the getBinaryOutputStream() method of an
oracle.sql.BLOB object to write BLOB data.

The following example reads a vector of data into a byte array, then uses the
getBinaryOutputStream() method to write an array of character data to a
BLOB.

java.io.OutputStream outstream;

// read data into a byte array
byte[] data = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

// write the array of binary data to a BLOB
outstream = ((BLOB)my_blob).getBinaryOutputStream();
outstream.write(data);
...

Example: Writing CLOB Data Use the getCharacterOutputStream() method or
the getAsciiOutputStream() method to write data to a CLOB. The
getCharacterOutputStream() method returns a Unicode output stream; the
getAsciiOutputStream() method returns an ASCII output stream.

The following example reads a vector of data into a character array, then uses the
getCharacterOutputStream() method to write the array of character data to a
CLOB. The getCharacterOutputStream() method returns a
java.io.Writer instance in an oracle.sql.CLOB object, not a
java.sql.Clob object.
Working with LOBs and BFILEs 7-9

Working with BLOBs and CLOBs
java.io.Writer writer;

// read data into a character array
char[] data = {’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’};

// write the array of character data to a CLOB
writer = ((CLOB)my_clob).getCharacterOutputStream();
writer.write(data);
writer.flush();
writer.close();
...

The next example reads a vector of data into a byte array, then uses the
getAsciiOutputStream() method to write the array of ASCII data to a CLOB.
Because getAsciiOutputStream() returns an ASCII output stream, you must
cast the output to a oracle.sql.CLOB datatype.

java.io.OutputStream out;

// read data into a byte array
byte[] data = {’0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’};

// write the array of ascii data to a CLOB
out = ((CLOB)clob).getAsciiOutputStream();
out.write(data);
out.flush();
out.close();

Creating and Populating a BLOB or CLOB Column
Create and populate a BLOB or CLOB column in a table by using SQL statements.

Create a BLOB or CLOB column in a table with the SQL CREATE TABLE statement,
then populate the LOB. This includes creating the LOB entry in the table, obtaining
the LOB locator, creating a file handler for the data (if you are reading the data from
a file), and then copying the data into the LOB.

Note: You cannot create a new BLOB or CLOB locator in your
application, such as with a Java new statement. You must create the
locator through a SQL operation, and then select it into your
application.
7-10 JDBC Developer’s Guide and Reference

Working with BLOBs and CLOBs
Creating a BLOB or CLOB Column in a New Table
To create a BLOB or CLOB column in a new table, execute the SQL CREATE TABLE
statement. The following example code creates a BLOB column in a new table. This
example assumes that you have already created your Connection object conn and
Statement object stmt:

String cmd = "CREATE TABLE my_blob_table (x varchar2 (30), c blob)";
stmt.execute (cmd);

In this example, the VARCHAR2 column designates a row number, such as 1 or 2,
and the BLOB column stores the locator of the BLOB data.

Populating a BLOB or CLOB Column in a New Table
This example demonstrates how to populate a BLOB or CLOB column by reading
data from a stream. These steps assume that you have already created your
Connection object conn and Statement object stmt. The table my_blob_table
is the table that was created in the previous section.

The following example writes the GIF file john.gif to a BLOB.

1. Begin by using SQL statements to create the BLOB entry in the table. Use the
empty_blob syntax to create the BLOB locator.

stmt.execute ("INSERT INTO my_blob_table VALUES (’row1’, empty_blob())");

2. Get the BLOB locator from the table.

BLOB blob;
cmd = "SELECT * FROM my_blob_table WHERE X=’row1’";
ResultSet rest = stmt.executeQuery(cmd);
BLOB blob = ((OracleResultSet)rset).getBLOB(2);

3. Declare a file handler for the john.gif file, then print the length of the file.
This value will be used later to ensure that the entire file is read into the BLOB.
Next, create a FileInputStream object to read the contents of the GIF file,
and an OutputStream object to retrieve the BLOB as a stream.

File binaryFile = new File("john.gif");
System.out.println("john.gif length = " + binaryFile.length());
FileInputStream instream = new FileInputStream(binaryFile);
OutputStream outstream = blob.getBinaryOutputStream();
Working with LOBs and BFILEs 7-11

Working with BLOBs and CLOBs
4. Call getBufferSize() to retrieve the ideal buffer size (according to
calculations by the JDBC driver) to use in writing to the BLOB, then create the
buffer byte array.

int size = blob.getBufferSize();
byte[] buffer = new byte[size];
int length = -1;

5. Use the read() method to read the GIF file to the byte array buffer, then use
the write() method to write it to the BLOB. When you finish, close the input
and output streams.

while ((length = instream.read(buffer)) != -1)
 outstream.write(buffer, 0, length);
instream.close();
outstream.close();

Once your data is in the BLOB or CLOB, you can manipulate the data. This is
described in the next section, "Accessing and Manipulating BLOB and CLOB Data".

Accessing and Manipulating BLOB and CLOB Data
Once you have your BLOB or CLOB locator in a table, you can access and
manipulate the data to which it points. To access and manipulate the data, you first
must select their locators from a result set or from a callable statement. "Getting and
Passing BLOB and CLOB Locators" on page 7-3 describes these techniques in detail.

After you select the locators, you can retrieve the BLOB or CLOB data. You will
usually want to cast the result set to the OracleResultSet datatype so that you
can retrieve the data in oracle.sql.* format. After retrieving the BLOB or CLOB
data, you can manipulate it however you want.

This example is a continuation of the example in the previous section. It uses the
SQL SELECT statement to select the BLOB locator from the table my_blob_table
into a result set. The result of the data manipulation is to print the length of the
BLOB in bytes.

// Select the blob - what we are really doing here
// is getting the blob locator into a result set
BLOB blob;
cmd = "SELECT * FROM my_blob_table";
ResultSet rset = stmt.executeQuery (cmd);

// Get the blob data - cast to OracleResult set to
// retrieve the data in oracle.sql format
7-12 JDBC Developer’s Guide and Reference

Working with BLOBs and CLOBs
String index = ((OracleResultSet)rset).getString(1);
blob = ((OracleResultSet)rset).getBLOB(2);

// get the length of the blob
int length = blob.length();

// print the length of the blob
System.out.println("blob length" + length);

// read the blob into a byte array
// then print the blob from the array
byte bytes[] = blob.getBytes(1, length);
printBytes(bytes, length);

Additional BLOB and CLOB Features
In addition to what has already been discussed in this chapter, the
oracle.sql.BLOB and CLOB classes have a number of methods for further
functionality.

Additional BLOB Methods
The oracle.sql.BLOB class includes the following methods:

■ getBinaryOutputStream(): Returns a java.io.OutputStream to write
data to the BLOB as a stream.

■ getBinaryStream(): Returns the BLOB data for this Blob instance as a
stream of bytes.

■ getBufferSize(): Returns the ideal buffer size, according to calculations by
the JDBC driver, to use in reading and writing BLOB data. This value is a
multiple of the chunk size (see getChunkSize() below) and is close to 32K.

■ getBytes(): Reads from the BLOB data, starting at a specified point, into a
supplied buffer.

■ getChunkSize(): Returns the Oracle chunking size, which can be specified by
the database administrator when the LOB column is first created. This value, in
Oracle blocks, determines the size of the chunks of data read or written by the

Note: The oracle.sql.CLOB class supports all the character sets
that the Oracle data server supports for CLOB types.
Working with LOBs and BFILEs 7-13

Working with BLOBs and CLOBs
LOB data layer in accessing or modifying the BLOB value. Part of each chunk
stores system-related information, and the rest stores LOB data. Performance is
enhanced if read and write requests use some multiple of the chunk size.

■ length(): Returns the length of the BLOB in bytes.

■ position(): Determines the byte position in the BLOB where a given pattern
begins.

■ putBytes(): Writes BLOB data, starting at a specified point, from a supplied
buffer.

Additional CLOB Methods
The oracle.sql.CLOB class includes the following methods:

■ getAsciiOutputStream(): Returns a java.io.OutputStream to write
data to the CLOB as a stream.

■ getAsciiStream(): Returns the CLOB value designated by the Clob object
as a stream of ASCII bytes.

■ getBufferSize(): Returns the ideal buffer size, according to calculations by
the JDBC driver, to use in reading and writing CLOB data. This value is a
multiple of the chunk size (see getChunkSize() below) and is close to 32K.

■ getCharacterOutputStream(): Returns a java.io.Writer to write data
to the CLOB as a stream.

■ getCharacterStream(): Returns the CLOB data as a stream of Unicode
characters.

■ getChars(): Retrieves characters from a specified point in the CLOB data into
a character array.

■ getChunkSize(): Returns the Oracle chunking size, which can be specified by
the database administrator when the LOB column is first created. This value, in
Oracle blocks, determines the size of the chunks of data read or written by the
LOB data layer in accessing or modifying the CLOB value. Part of each chunk
stores system-related information and the rest stores LOB data. Performance is
enhanced if you make read and write requests using some multiple of the
chunk size.

■ getSubString(): Retrieves a substring from a specified point in the CLOB
data.

■ length(): Returns the length of the CLOB in characters.
7-14 JDBC Developer’s Guide and Reference

Working with BLOBs and CLOBs
■ position(): Determines the character position in the CLOB at which a given
substring begins.

■ putChars(): Writes characters from a character array to a specified point in
the CLOB data.

■ putString(): Writes a string to a specified point in the CLOB data.
Working with LOBs and BFILEs 7-15

Working with BFILEs
Working with BFILEs
This section describes how to read and write data to and from external binary files
(BFILEs), using file locators.

Getting and Passing BFILE Locators
Getter and setter methods are available for retrieving or passing BFILE locators
from or to the database.

Retrieving BFILE Locators
Given a standard JDBC result set or callable statement object that includes BFILE
locators, you can access the locators by using the standard result set getObject()
method. This returns an oracle.sql.BFILE object.

You can also access the locators by casting your result set to OracleResultSet or
your callable statement to OracleCallableStatement and using the
getOracleObject() or getBFILE() method.

Example: Getting a BFILE locator from a Result Set Assume that the database has a table
called bfile_table with a single column for the BFILE locator bfile_col. This
example assumes that you have already created your Statement object stmt.

Select the BFILE locator into a standard result set. If you cast the result set to an
OracleResultSet, you can use getBFILE() to get the BFILE locator:

// Select the BFILE locator into a result set
ResultSet rs = stmt.executeQuery("SELECT bfile_col FROM bfile_table");
while (rs.next())
{
 oracle.sql.BFILE my_bfile = ((OracleResultSet)rs).getBFILE(1);
}

Notes:

■ In the OracleResultSet and OracleCallableStatement
classes, getBFILE() and getBfile() both return
oracle.sql.BFILE. There is no java.sql interface (or
oracle.jdbc2 interface) for BFILEs.

■ If using getObject() or getOracleObject(), remember to
cast the output, as necessary. For more information, see
"Casting Your get Method Return Values" on page 6-10.
7-16 JDBC Developer’s Guide and Reference

Working with BFILEs
Note that as an alternative, you can use getObject() to return the BFILE locator.
In this case, because getObject() returns a java.lang.Object, cast the results
to BFILE. For example:

oracle.sql.BFILE my_bfile = (BFILE)rs.getObject(1);

Example: Getting a BFILE Locator from a Callable Statement Assume you have an
OracleCallableStatement object ocs that calls a function func that has a
BFILE output parameter. The following code example sets up the callable
statement, registers the output parameter as OracleTypes.BFILE, executes the
statement, and retrieves the BFILE locator:

OracleCallableStatement ocs =
 (OracleCallableStatement)conn.prepareCall("{? = call func()}");
ocs.registerOutParameter(1, OracleTypes.BFILE);
ocs.execute();
oracle.sql.BFILE bfile = ocs.getBFILE(1);

Passing BFILE Locators
To pass a BFILE locator to a prepared statement or callable statement (to update a
BFILE locator, for example), you can do one of the following:

■ Use the standard setObject() method.

or:

■ Cast the statement to OraclePreparedStatement or
OracleCallableStatement, and use the setOracleObject() or
setBFILE() method.

These methods take the parameter index and an oracle.sql.BFILE object as
input.

Example: Passing a BFILE Locator to a Prepared Statement Assume you want to insert a
BFILE locator into a table, and you have an OraclePreparedStatement object
ops to insert data into a table. The first column is a string (to designate a row
number), the second column is a BFILE, and you have a valid oracle.sql.BFILE
object (bfile). Write the BFILE to the database as follows:

OraclePreparedStatement ops = (OraclePreparedStatement)conn.prepareStatement
 ("INSERT INTO my_bfile_table VALUES (?,?)");
ops.setString(1,"one");
ops.setBFILE(2, bfile);
ops.execute();
Working with LOBs and BFILEs 7-17

Working with BFILEs
Example: Passing a BFILE Locator to a Callable Statement Passing a BFILE locator to a
callable statement is similar to passing it to a prepared statement. In this case, the
BFILE locator is passed to the myGetFileLength() procedure, which returns the
BFILE length as a numeric value.

OracleCallableStatement cstmt = (OracleCallableStatement)conn.prepareCall
 ("begin ? := myGetFileLength (?); end;");
try
{
 cstmt.registerOutParameter (1, Types.NUMERIC);
 cstmt.setBFILE (2, bfile);
 cstmt.execute ();
 return cstmt.getLong (1);
}

Reading BFILE Data
To read BFILE data, you must first get the BFILE locator. You can get the locator
from either a callable statement or a result set. "Getting and Passing BFILE Locators"
on page 7-16 describes this.

Once you obtain the locator, you can invoke a number of methods on the BFILE
without opening it. For example, you can use the oracle.sql.BFILE methods
fileExists() and isFileOpen() to determine whether the BFILE exists and if
it is open. If you want to read and manipulate the data, however, you must open
and close the BFILE, as follows:

■ Use the openFile() method of the oracle.sql.BFILE class to open a
BFILE.

■ When you are done, use the closeFile() method of the BFILE class.

BFILE data is materialized as a Java stream. To read from a BFILE, use the
getBinaryStream() method of an oracle.sql.BFILE object to retrieve the
entire file as an input stream. This returns a java.io.InputStream object.

As with any InputStream object, use one of the overloaded read() methods to
read the file data, and use the close() method when you finish.
7-18 JDBC Developer’s Guide and Reference

Working with BFILEs
Example: Reading BFILE Data The following example uses the getBinaryStream()
method of an oracle.sql.BFILE object to read BFILE data into a byte stream and
then read the byte stream into a byte array. The example assumes that the BFILE has
already been opened.

// Read BFILE data from a BFILE locator
Inputstream in = bfile.getBinaryStream();
byte[] byte_array = new byte{10};
int byte_read = in.read(byte_array);

Creating and Populating a BFILE Column
This section discusses how to create a BFILE column in a table with SQL operations
and specify the location where the BFILE resides. The examples below assume you
have already created your Connection object conn and Statement object stmt.

Creating a BFILE Column in a New Table
To work with BFILE data, create a BFILE column in a table, and specify the location
of the BFILE. To specify the location of the BFILE, use the SQL CREATE
DIRECTORY...AS statement to specify an alias for the directory where the BFILE
resides. Then execute the statement. In this example, the directory alias is
test_dir, and the BFILE resides in the /home/work directory.

String cmd;
cmd = "CREATE DIRECTORY test_dir AS ’/home/work’";
stmt.execute (cmd);

Use the SQL CREATE TABLE statement to create a table containing a BFILE column,
then execute the statement. In this example, the name of the table is
my_bfile_table.

// Create a table containing a BFILE field
cmd = "CREATE TABLE my_bfile_table (x varchar2 (30), b bfile)";
stmt.execute (cmd);

Notes:

■ BFILEs are read-only. You cannot insert data or otherwise write
to a BFILE.

■ You cannot use JDBC to create a new BFILE. They are created
only externally.
Working with LOBs and BFILEs 7-19

Working with BFILEs
In this example, the VARCHAR2 column designates a row number, and the BFILE
column stores the locator of the BFILE data.

Populating a BFILE Column
Use the SQL INSERT INTO...VALUES statement to populate the VARCHAR2 and
BFILE fields, then execute the statement. The BFILE column is populated with the
locator to the BFILE data. To populate the BFILE column, use the bfilename
function to specify the directory alias and the name of the BFILE file.

cmd ="INSERT INTO my_bfile_table VALUES (’one’, bfilename(test_dir,
 ’file1.data’))";
stmt.execute (cmd);
cmd ="INSERT INTO my_bfile_table VALUES (’two’, bfilename(test_dir,
 ’jdbcTest.data’))";
stmt.execute (cmd);

In this example, the name of the directory alias is test_dir. The locator of the
BFILE file1.data is loaded into the BFILE column on row one, and the locator
of the BFILE jdbcTest.data is loaded into the bfile column on row two.

As an alternative, you might want to create the row for the row number and BFILE
locator now, but wait until later to insert the locator. In this case, insert the row
number into the table, and null as a place holder for the BFILE locator.

cmd ="INSERT INTO my_bfile_table VALUES (’three’, null)";
stmt.execute(cmd);

Here, three is inserted into the row number column, and null is inserted as the
place holder. Later in your program, insert the BFILE locator into the table by using
a prepared statement.

First get a valid BFILE locator into the bfile object:

rs = stmt.executeQuery("SELECT b FROM my_bfile_table WHERE x=’two’");
rs.next();
oracle.sql.BFILE bfile = ((OracleResultSet)rs).getBFILE(1);

Then, create your prepared statement. Note that because this example uses the
setBFILE() method to identify the BFILE, the prepared statement must be cast to
an OraclePreparedStatement:

OraclePreparedStatement ops = (OraclePreparedStatement)conn.prepareStatement
 (UPDATE my_bfile_table SET b=? WHERE x = ’three’);
ops.setBFILE(1, bfile);
7-20 JDBC Developer’s Guide and Reference

Working with BFILEs
ops.execute();

Now row two and row three contain the same BFILE.

Once you have the BFILE locators available in a table, you can access and
manipulate the BFILE data. The next section, "Accessing and Manipulating BFILE
Data", describes this.

Accessing and Manipulating BFILE Data
Once you have the BFILE locator in a table, you can access and manipulate the data
to which it points. To access and manipulate the data, you must first select its
locator from a result set or a callable statement.

The following code continues the example from "Populating a BFILE Column" on
page 7-20, getting the locator of the BFILE from row two of a table into a result set.
The result set is cast to an OracleResultSet so that oracle.sql.* methods can
be used on it. Several of the methods applied to the BFILE, such as
getDirAlias() and getName(), do not require you to open the BFILE. Methods
that manipulate the BFILE data, such as reading, getting the length, and displaying,
do require you to open the BFILE.

When you finish manipulating the BFILE data, you must close the BFILE. For a
complete BFILE example, see "BFILEs—FileExample.java" on page 17-31.

// select the bfile locator
cmd = "SELECT * FROM my_bfile_table WHERE x = ’two’";
rset = stmt.executeQuery (cmd);

if (rset.next ())
 BFILE bfile = ((OracleResultSet)rset).getBFILE (2);

// for these methods, you do not have to open the bfile
println("getDirAlias() = " + bfile.getDirAlias());
println("getName() = " + bfile.getName());
println("fileExists() = " + bfile.fileExists());
println("isFileOpen() = " + bfile.isFileOpen());

// now open the bfile to get the data
bfile.openFile();

// get the BFILE data as a binary stream
InputStream in = bfile.getBinaryStream();
int length ;
Working with LOBs and BFILEs 7-21

Working with BFILEs
// read the bfile data in 6-byte chunks
byte[] buf = new byte[6];

while ((length = in.read(buf)) != -1)
{
 // append and display the bfile data in 6-byte chunks
 StringBuffer sb = new StringBuffer(length);
 for (int i=0; i<length; i++)
 sb.append((char)buf[i]);
 System.out.println(sb.toString());
}

// we are done working with the input stream. Close it.
in.close();

// we are done working with the BFILE. Close it.
bfile.closeFile();

Additional BFILE Features
In addition to the features already discussed in this chapter, the
oracle.sql.BFILE class has a number of methods for further functionality,
including the following:

■ openFile(): Opens the external file for read-only access.

■ closeFile(): Closes the external file.

■ getBinaryStream(): Returns the contents of the external file as a stream of
bytes.

■ getBytes(): Reads from the external file, starting at a specified point, into a
supplied buffer.

■ getName(): Gets the name of the external file.

■ getDirAlias(): Gets the directory alias of the external file.

■ length(): Returns the length of the BFILE in bytes.

■ position(): Determines the byte position at which the given byte pattern
begins.

■ isFileOpen(): Determines whether the BFILE is open (for read-only access).
7-22 JDBC Developer’s Guide and Reference

Working with Oracle Object T
8

Working with Oracle Object Types

This chapter describes JDBC support for user-defined object types. It discusses
functionality of the generic, weakly typed oracle.sql.STRUCT class, as well as
how to map to custom Java classes that implement either the JDBC standard
SQLData interface or the Oracle CustomDatum interface. The following topics are
covered:

■ Mapping Oracle Objects

■ Using the Default STRUCT Class for Oracle Objects

■ Creating and Using Custom Object Classes for Oracle Objects

■ Using JPublisher to Create Custom Object Classes

■ Describing an Object Type

Note: For general information about Oracle object features and
functionality, see the Oracle8i Application Developer’s Guide -
Object-Relational Features.
ypes 8-1

Mapping Oracle Objects
Mapping Oracle Objects
Oracle object types provide support for composite data structures in the database.
For example, you can define a type Person that has attributes such as name (type
CHAR), phone number (type CHAR), and employee number (type NUMBER).

Oracle provides tight integration between its Oracle object features and its JDBC
functionality. You can use a standard, generic JDBC type to map to Oracle objects, or
you can customize the mapping by creating custom Java type definition classes. In
this book, Java classes that you create to map to Oracle objects will be referred to as
custom Java classes or, more specifically, custom object classes. This is as opposed to
custom references classes to map to object references, and custom collection classes to
map to Oracle collections. Custom object classes can implement either a standard
JDBC interface or an Oracle extension interface to read and write data.

JDBC materializes Oracle objects as instances of particular Java classes. Two main
steps in using JDBC to access Oracle objects are: 1) creating the Java classes for the
Oracle objects, and 2) populating these classes. You have two options:

■ Let JDBC materialize the object as a STRUCT. This is described in "Using the
Default STRUCT Class for Oracle Objects" on page 8-3.

or:

■ Explicitly specify the mappings between Oracle objects and Java classes. This
includes customizing your Java classes for object data. The driver then must be
able to populate instances of the custom object classes that you specify. This
imposes a set of constraints on the Java classes. To satisfy these constraints, you
can define your classes to implement either the JDBC standard
java.sql.SQLData interface or the Oracle extension
oracle.sql.CustomDatum interface. This is described in "Creating and
Using Custom Object Classes for Oracle Objects" on page 8-9.

You can use the Oracle JPublisher utility to generate custom Java classes.

Note: When you use the SQLData interface, you must use a Java
type map to specify your SQL-Java mapping, unless weakly typed
java.sql.Struct objects will suffice. See "Understanding Type
Maps for SQLData Implementations" on page 8-10.
8-2 JDBC Developer’s Guide and Reference

Using the Default STRUCT Class for Oracle Objects
Using the Default STRUCT Class for Oracle Objects
If you choose not to supply a custom Java class for your SQL-Java mapping for an
Oracle object, then Oracle JDBC will materialize the object as an instance of the
oracle.sql.STRUCT class.

You would typically want to use STRUCT objects, instead of custom Java objects, in
situations where you are manipulating data. For example, your Java application
might be a tool to manipulate data within the database, as opposed to being an
end-user application. You can select data from the database into STRUCT objects
and create STRUCT objects for inserting data into the database. STRUCT objects
completely preserve data, because they maintain the data in SQL format. Using
STRUCT objects is more efficient and more precise in these situations where the
information does not need to be in a user-friendly format.

For a complete sample application using the STRUCT class to access and manipulate
SQL object data, see "Weakly Typed Objects—PersonObject.java" on page 17-21.

STRUCT Class Functionality
This section discusses standard versus Oracle-specific features of the
oracle.sql.STRUCT class, introduces STRUCT descriptors, and lists methods of
the STRUCT class to give an overview of its functionality.

Standard java.sql.Struct Methods
If your code must comply with standard JDBC 2.0, then use a java.sql.Struct
instance (oracle.jdbc2.Struct under JDK 1.1.x), and use the following
standard methods:

■ getAttributes(map): Retrieves the values of the attributes, using entries in
the specified type map to determine the Java classes to use in materializing any
attribute that is a structured object type. The Java types for other attribute
values would be the same as for a getObject() call on data of the underlying
SQL type (the default JDBC types).

■ getAttributes(): This is the same as the preceding getAttributes(map)
method, except it uses the default type map for the connection.

■ getSQLTypeName(): Returns a Java String that represents the fully qualified
name (schema.sql_type_name) of the Oracle object type that this Struct
represents (such as SCOTT.EMPLOYEE).
Working with Oracle Object Types 8-3

Using the Default STRUCT Class for Oracle Objects
Oracle oracle.sql.STRUCT Class Methods
If you want to take advantage of the extended functionality offered by
Oracle-defined methods, then use an oracle.sql.STRUCT instance.

The oracle.sql.STRUCT class implements the java.sql.Struct interface
(oracle.jdbc2.Struct interface under JDK 1.1.x) and provides extended
functionality beyond the JDBC 2.0 standard.

The STRUCT class includes the following methods in addition to standard Struct
functionality:

■ getOracleAttributes(): Retrieves the values of the values array as
oracle.sql.* objects.

■ getDescriptor(): Returns the StructDescriptor object for the SQL type
that corresponds to this STRUCT object.

■ getConnection(): Returns the current connection.

■ toJdbc(): Consults the default type map of the connection, to determine what
class to map to, and then uses toClass().

■ toJdbc(map): Consults the specified type map to determine what class to map
to, and then uses toClass().

STRUCT Descriptors
Creating and using a STRUCT object requires the existence of a descriptor—an
instance of the oracle.sql.StructDescriptor class—to exist for the SQL type
(such as EMPLOYEE) that will correspond to the STRUCT object. You need only one
StructDescriptor object for any number of STRUCT objects that correspond to
the same SQL type.

STRUCT descriptors are further discussed in "Creating STRUCT Objects and
Descriptors" on page 8-5.
8-4 JDBC Developer’s Guide and Reference

Using the Default STRUCT Class for Oracle Objects
Creating STRUCT Objects and Descriptors
This section describes how to create STRUCT objects and descriptors and lists useful
methods of the StructDescriptor class.

Steps in Creating StructDescriptor and STRUCT Objects
This section describes how to construct an oracle.sql.STRUCT object for a given
Oracle object type. To create a STRUCT object, you must:

1. Create a StructDescriptor object (if one does not already exist) for the
given Oracle object type.

2. Use the StructDescriptor to construct the STRUCT object.

A StructDescriptor is an instance of the oracle.sql.StructDescriptor
class and describes a type of SQL structured object (Oracle object). Only one
StructDescriptor is necessary for each Oracle object type. The driver caches
StructDescriptor objects to avoid recreating them if the type has already been
encountered.

Before you can construct a STRUCT object, a StructDescriptor must first exist
for the given Oracle object type. If a StructDescriptor object does not exist, you
can create one by calling the static StructDescriptor.createDescriptor()
method. This method requires you to pass in the SQL type name of the Oracle object
type and a connection object:

StructDescriptor structdesc = StructDescriptor.createDescriptor
 (sql_type_name, connection);

Where sql_type_name is a Java string containing the name of the Oracle object
type (such as EMPLOYEE) and connection is your connection object.

Once you have your StructDescriptor object for the Oracle object type, you can
construct the STRUCT object. To do this, pass in the StructDescriptor, your
connection object, and an array of Java objects containing the attributes you want
the STRUCT to contain.

STRUCT struct = new STRUCT(structdesc, connection, attributes);

Where structdesc is the StructDescriptor created previously, connection
is your connection object, and attributes is an array of type
java.lang.Object[].
Working with Oracle Object Types 8-5

Using the Default STRUCT Class for Oracle Objects
Using StructDescriptor Methods
A StructDescriptor can be thought of as a "type object". This means that it
contains information about the object type, including the typecode, the type name,
and how to convert to and from the given type. Remember, there should be only
one StructDescriptor object for any one Oracle object type. You can then use
that descriptor to create as many STRUCT objects as you need for that type.

The StructDescriptor class includes the following methods:

■ getName(): Returns the fully qualified SQL type name of the Oracle object
(that is, in schema.sql_type_name format, such as CORPORATE.EMPLOYEE).

■ getLength(): Returns the number of fields in the object type.

■ getMetaData(): Returns the meta data regarding this type (like the
getMetaData() method of a result set object). The returned
ResultSetMetaData object contains the attribute name, attribute typecode,
and attribute type precision information. The "column" index in the
ResultSetMetaData object maps to the position of the attribute in the
STRUCT, with the first attribute being at index 1.

The getMetaData() method is further discussed in "Functionality for Getting
Object Meta Data" on page 8-32.

Retrieving STRUCT Objects and Attributes
This section discusses how to retrieve and manipulate Oracle objects and their
attributes, using either Oracle-specific features or JDBC 2.0 standard features.

Retrieving an Oracle Object as an oracle.sql.STRUCT Object
You can retrieve an Oracle object directly into an oracle.sql.STRUCT instance. In
the following example, getObject() is used to get a NUMBER object from
column 1 (col1) of the table struct_table. Because getObject() returns an
Object type, the return is cast to an oracle.sql.STRUCT. This example assumes
that the Statement object stmt has already been created.

Note: The JDBC driver seamlessly handles embedded objects
(STRUCT objects that are attributes of STRUCT objects) in the same
way that it normally handles objects. When the JDBC driver
retrieves an attribute that is an object, it follows the same rules of
conversion, using the type map if it is available, or else using
default mapping.
8-6 JDBC Developer’s Guide and Reference

Using the Default STRUCT Class for Oracle Objects
String cmd;
cmd = "CREATE TYPE type_struct AS object (field1 NUMBER,field2 DATE)";
stmt.execute(cmd);

cmd = "CREATE TABLE struct_table (col1 type_struct)";
stmt.execute(cmd);

cmd = "INSERT INTO struct_table VALUES (type_struct(10,’01-apr-01’))";
stmt.execute(cmd);

cmd = "INSERT INTO struct_table VALUES (type_struct(20,’02-may-02’))";
stmt.execute(cmd);

ResultSet rs= stmt.executeQuery("SELECT * FROM struct_table");
oracle.sql.STRUCT oracleSTRUCT=(oracle.sql.STRUCT)rs.getObject(1);

Another way to return the object as a STRUCT object is to cast the result set to an
OracleResultSet object and use the Oracle extension getSTRUCT() method:

oracle.sql.STRUCT oracleSTRUCT=((OracleResultSet)rs).getSTRUCT(1);

Retrieving an Oracle Object as a java.sql.Struct Object
Alternatively, referring back to the previous example, you can use standard JDBC
functionality such as getObject() to retrieve an Oracle object from the database
as an instance of java.sql.Struct (oracle.jdbc2.Struct under JDK 1.1.x).
Because getObject() returns a java.lang.Object, you must cast the output of
the method to a Struct. For example:

ResultSet rs= stmt.executeQuery("SELECT * FROM struct_table");
java.sql.Struct jdbcStruct = (java.sql.Struct)rs.getObject(1);

Retrieving Attributes as oracle.sql Types
If you want to retrieve Oracle object attributes from a STRUCT or Struct instance
as oracle.sql types, use the getOracleAttributes() method of the
oracle.sql.STRUCT class (for a Struct instance, you will have to cast to a
STRUCT instance).
Working with Oracle Object Types 8-7

Using the Default STRUCT Class for Oracle Objects
Referring back to the previous examples:

oracle.sql.Datum[] attrs = oracleSTRUCT.getOracleAttributes();

or:

oracle.sql.Datum[] attrs =
 ((oracle.sql.STRUCT)jdbcStruct).getOracleAttributes();

Retrieving Attributes as Standard Java Types
If you want to retrieve Oracle object attributes from a STRUCT or Struct instance
as standard Java types, use the standard getAttributes() method:

Object[] attrs = jdbcStruct.getAttributes();

Binding STRUCT Objects into Statements
To bind an oracle.sql.STRUCT object to a prepared statement or callable
statement, you can either use the standard setObject() method (specifying the
typecode) or cast the statement object to an Oracle statement object and use the
Oracle extension setOracleObject() method. For example:

PreparedStatement ps= conn.prepareStatement("text_of_prepared_statement");
STRUCT mySTRUCT = new STRUCT (...);
ps.setObject(1, mySTRUCT, Types.STRUCT); //OracleTypes.STRUCT under JDK 1.1.x

or:

PreparedStatement ps= conn.prepareStatement("text_of_prepared_statement");
STRUCT mySTRUCT = new STRUCT (...);
((OraclePreparedStatement)ps).setOracleObject(1, mySTRUCT);
8-8 JDBC Developer’s Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects
Creating and Using Custom Object Classes for Oracle Objects
If you want to create custom object classes for your Oracle objects, then you must
define entries in the type map that specify the custom object classes that the drivers
will instantiate for the corresponding Oracle objects.

You must also provide a way to create and populate instances of the custom object
class from the Oracle object and its attribute data. The driver must be able to read
from a custom object class and write to it. In addition, the custom object class can
provide get and set methods corresponding to the Oracle object’s attributes,
although this is not necessary. To create and populate the custom classes and
provide these read/write capabilities, you can choose between these two interfaces:

■ the JDBC standard SQLData interface

■ the CustomDatum and CustomDatumFactory interfaces provided by Oracle

The custom object class you create must implement one of these interfaces. The
CustomDatum interface can also be used to implement the custom reference class
corresponding to the custom object class. If you are using the SQLData interface,
however, you can only use weak reference types in Java (java.sql.Ref or
oracle.sql.REF). The SQLData interface is for mapping SQL objects only.

As an example, assume you have an Oracle object type, EMPLOYEE, in the database
that consists of two attributes: Name (which is type CHAR) and EmpNum (employee
number, which is type NUMBER). You use the type map to specify that the
EMPLOYEE object should map to a custom object class that you call JEmployee.
You can implement either the SQLData or CustomDatum interface in the
JEmployee class.

You can create custom object classes yourself, but the most convenient way to create
them is to employ the Oracle JPublisher utility to create them for you. As of release
8.1.6, JPublisher supports the standard SQLData interface as well as the
Oracle-specific CustomDatum interface, and is able to generate classes that
implement either one. See "Using JPublisher to Create Custom Object Classes" on
page 8-28 for more information.

The following section compares CustomDatum and SQLData functionality.
Working with Oracle Object Types 8-9

Creating and Using Custom Object Classes for Oracle Objects
Relative Advantages of CustomDatum versus SQLData
In deciding which of these two interface implementations to use, consider the
following:

Advantages of CustomDatum:

■ It does not require an entry in the type map for the Oracle object.

■ It has awareness of Oracle extensions.

■ You can construct a CustomDatum from an oracle.sql.STRUCT. This is
more efficient because it avoids unnecessary conversions to native Java types.

■ You can obtain the corresponding Datum object (which is in oracle.sql
format) from the CustomDatum object, using the toDatum() method.

■ It provides better performance: CustomDatum works directly with Datum
types, which is the internal format used by the driver to hold Oracle objects.

Advantages of SQLData:

■ It is a JDBC standard, making your code more portable.

The SQLData interface is for mapping SQL objects only. The CustomDatum
interface is more flexible, enabling you to map SQL objects as well as any other SQL
type for which you want to customize processing. You can create a CustomDatum
object from any datatype found in an Oracle database. This could be useful, for
example, for serializing RAW data in Java.

Understanding Type Maps for SQLData Implementations
If you use the SQLData interface in a custom object class, then you must create type
map entries that specify the custom object class to use in mapping the SQL object
type to Java. You can either use the default type map of the connection object, or a
type map that you specify when you retrieve the data from the result set. The
ResultSet interface getObject() method has a signature that lets you specify a
type map:

rs.getObject(int columnIndex);

or:

rs.getObject(int columnIndex, Map map);

For a description of how to create these custom object classes with SQLData, see
"Creating and Using Custom Object Classes for Oracle Objects" on page 8-9.
8-10 JDBC Developer’s Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects
When using a SQLData implementation, if you do not include a type map entry,
then the object will map to the oracle.sql.STRUCT class by default.
(CustomDatum implementations, by contrast, have their own mapping
functionality so that a type map entry is not required. When using a CustomDatum
implementation, use the Oracle getCustomDatum() method instead of the
standard getObject() method.)

The type map relates a Java class to the SQL type name of an Oracle object. This
one-to-one mapping is stored in a hash table as a keyword-value pair. When you
read data from an Oracle object, the JDBC driver considers the type map to
determine which Java class to use to materialize the data from the SQL object type.
When you write data to an Oracle object, the JDBC driver gets the SQL type name
from the Java class by calling the getSQLTypeName() method of the SQLData
interface. The actual conversion between SQL and Java is performed by the driver.

The attributes of the Java class that corresponds to an Oracle object can use either
Java native types or Oracle native types (instances of the oracle.sql.* classes) to
store attributes.

Creating a Type Map Object and Defining Mappings for a SQLData Implementation
When using a SQLData implementation, the JDBC applications programmer is
responsible for providing a type map, which must be an instance of a class as
follows:

■ under JDK 1.2.x, an instance of a class that implements the standard
java.util.Map interface

or:

■ under JDK 1.1.x, an instance of a class that extends the standard
java.util.Dictionary class (or an instance of the Dictionary class itself)

You have the option of creating your own class to accomplish this, but under either
JDK 1.2.x or JDK 1.1.x, the standard class java.util.Hashtable meets the
requirement.

Note: If you are migrating from JDK 1.1.x to JDK 1.2.x, you must
ensure that your code uses a class that implements the Map
interface. If you were using the java.util.Hashtable class
under 1.1.x, then no change is necessary.
Working with Oracle Object Types 8-11

Creating and Using Custom Object Classes for Oracle Objects
Hashtable and other classes used for type maps implement a put() method that
takes keyword-value pairs as input, where each key is a fully qualified SQL type
name and the corresponding value is an instance of a specified Java class.

A type map is associated with a connection instance. The standard
java.sql.Connection interface and the Oracle-specific
oracle.jdbc.driver.OracleConnection class include a getTypeMap()
method. Under JDK 1.2.x, both return a Map object; under JDK 1.1.x, both return a
Dictionary object.

The remainder of this section covers the following topics:

■ Adding Entries to an Existing Type Map

■ Creating a New Type Map

Adding Entries to an Existing Type Map
When a connection instance is first established, the default type map is empty. You
must populate it to use any SQL-Java mapping functionality.

Follow these general steps to add entries to an existing type map.

1. Use the getTypeMap() method of your OracleConnection object to return
the connection’s type map object. The getTypeMap() method returns a
java.util.Map object (or java.util.Dictionary under JDK 1.1.x). For
example, presuming an OracleConnection instance oraconn:

java.util.Map myMap = oraconn.getTypeMap();

2. Use the type map’s put() method to add map entries. The put() method
takes two arguments: a SQL type name string and an instance of a specified
Java class that you want to map to.

myMap.put(sqlTypeName, classObject);

Note: If the type map in the OracleConnection instance has
not been initialized, then the first call to getTypeMap() returns an
empty map.
8-12 JDBC Developer’s Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects
The sqlTypeName is a string that represents the fully qualified name of the
SQL type in the database. The classObject is the Java class object to which
you want to map the SQL type. Get the class object with the
Class.forName() method, as follows:

myMap.put(sqlTypeName, Class.forName(className));

For example, if you have a PERSON SQL datatype defined in the CORPORATE
database schema, then map it to a Person Java class defined as Person with
this statement:

myMap.put("CORPORATE.PERSON", Class.forName("Person"));

The map has an entry that maps the PERSON SQL datatype in the CORPORATE
database to the Person Java class.

Creating a New Type Map
Follow these general steps to create a new type map. This example uses an instance
of java.util.Hashtable, which extends java.util.Dictionary and, under
JDK 1.2.x, also implements java.util.Map.

1. Create a new type map object.

Hashtable newMap = new Hashtable();

2. Use the put() method of the type map object to add entries to the map. For
more information on the put() method, see Step 2 under "Adding Entries to an
Existing Type Map" on page 8-12. For example, if you have an EMPLOYEE SQL
type defined in the CORPORATE database, then you can map it to an Employee
class object defined by Employee.java, with this statement:

newMap.put("CORPORATE.EMPLOYEE", class.forName("Employee"));

3. When you finish adding entries to the map, use the OracleConnection
object’s setTypeMap() method to overwrite the connection’s existing type
map. For example:

oraconn.setTypeMap(newMap);

Note: SQL type names in the type map must be all uppercase,
because that is how the Oracle database stores SQL names.
Working with Oracle Object Types 8-13

Creating and Using Custom Object Classes for Oracle Objects
In this example, setTypeMap() overwrites the oraconn connection’s original
map with newMap.

Materializing Object Types not Specified in the Type File
If you do not provide a type map with an appropriate entry when using a
getObject() call, then the JDBC driver will materialize an Oracle object as an
instance of the oracle.sql.STRUCT class. If the Oracle object type contains
embedded objects, and they are not present in the type map, the driver will
materialize the embedded objects as instances of oracle.sql.STRUCT as well. If
the embedded objects are present in the type map, a call to the getAttributes()
method will return embedded objects as instances of the specified Java classes from
the type map.

Understanding the SQLData Interface
One of the choices in making an Oracle object and its attribute data available to Java
applications is to create a custom object class that implements the SQLData
interface. Note that if you use this interface, you must supply a type map that
specifies the Oracle object types in the database and the names of the corresponding
custom object classes that you will create for them.

The SQLData interface defines methods that translate between SQL and Java for
Oracle database objects. Standard JDBC provides a SQLData interface and
companion SQLInput and SQLOutput interfaces in the java.sql package
(oracle.jdbc2 package under JDK 1.1.x).

If you create a custom object class that implements SQLData, then you must
provide a readSQL() method and a writeSQL() method, as specified by the
SQLData interface.

The JDBC driver calls your readSQL() method to read a stream of data values
from the database and populate an instance of your custom object class. Typically,
the driver would use this method as part of an OracleResultSet object
getObject() call.

Similarly, the JDBC driver calls your writeSQL() method to write a sequence of
data values from an instance of your custom object class to a stream that can be

Note: The default type map of a connection instance is used when
mapping is required but no map name is specified, such as for a
result set getObject() call that does not specify the map as input.
8-14 JDBC Developer’s Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects
written to the database. Typically, the driver would use this method as part of an
OraclePreparedStatement object setObject() call.

Understanding the SQLInput and SQLOutput Interfaces
The JDBC driver includes classes that implement the SQLInput and SQLOutput
interfaces. It is not necessary to implement the SQLOutput or SQLInput
objects—the JDBC drivers will do this for you.

The SQLInput implementation is an input stream class, an instance of which must
be passed in to the readSQL() method. SQLInput includes a readXXX() method
for every possible Java type that attributes of an Oracle object might be converted
to, such as readObject(), readInt(), readLong(), readFloat(),
readBlob(), and so on. Each readXXX() method converts SQL data to Java data
and returns it into an output parameter of the corresponding Java type. For
example, readInt() returns an integer.

The SQLOutput implementation is an output stream class, an instance of which
must be passed in to the writeSQL() method. SQLOutput includes a
writeXXX() method for each of these Java types. Each writeXXX() method
converts Java data to SQL data, taking as input a parameter of the relevant Java
type. For example, writeString() would take as input a string attribute from
your Java class.

Implementing readSQL() and writeSQL() Methods
When you create a custom object class that implements SQLData, you must
implement the readSQL() and writeSQL() methods, as described here.

You must implement readSQL() as follows:

public void readSQL(SQLInput stream, String sql_type_name) throws SQLException

■ The readSQL() method takes as input a SQLInput stream and a string that
indicates the SQL type name of the data (in other words, the name of the Oracle
object type, such as EMPLOYEE).

When your Java application calls getObject(), the JDBC driver creates a
SQLInput stream object and populates it with data from the database. The
driver can also determine the SQL type name of the data when it reads it from
the database. When the driver calls readSQL(), it passes in these parameters.

■ For each Java datatype that maps to an attribute of the Oracle object,
readSQL() must call the appropriate readXXX() method of the SQLInput
stream that is passed in.
Working with Oracle Object Types 8-15

Creating and Using Custom Object Classes for Oracle Objects
For example, if you are reading EMPLOYEE objects that have an employee name
as a CHAR variable and an employee number as a NUMBER variable, you must
have a readString() call and a readInt() call in your readSQL() method.
JDBC calls these methods according to the order in which the attributes appear
in the SQL definition of the Oracle object type.

■ The readSQL() method takes the data that the readXXX() methods read and
convert, and assigns them to the appropriate fields or elements of a custom
object class instance.

You must implement writeSQL() as follows:

public void writeSQL(SQLOutput stream) throws SQLException

■ The writeSQL() method takes as input a SQLOutput stream.

When your Java application calls setObject(), the JDBC driver creates a
SQLOutput stream object and populates it with data from a custom object class
instance. When the driver calls writeSQL(), it passes in this stream parameter.

■ For each Java datatype that maps to an attribute of the Oracle object,
writeSQL() must call the appropriate writeXXX() method of the
SQLOutput stream that is passed in.

For example, if you are writing to EMPLOYEE objects that have an employee
name as a CHAR variable and an employee number as a NUMBER variable, then
you must have a writeString() call and a writeInt() call in your
writeSQL() method. These methods must be called according to the order in
which attributes appear in the SQL definition of the Oracle object type.

■ The writeSQL() method then writes the data converted by the writeXXX()
methods to the SQLOutput stream so that it can be written to the database once
you execute the prepared statement.

"SQLData Implementation—SQLDataExample.java" on page 17-35 contains a
sample implementation of the SQLData interface for a given SQL object definition.
8-16 JDBC Developer’s Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects
Reading and Writing Data with a SQLData Implementation
This section describes how to read data from an Oracle object or write data to an
Oracle object if your corresponding Java class implements SQLData.

Reading SQLData Objects from a Result Set
This section summarizes the steps to read data from an Oracle object into your Java
application when you choose the SQLData implementation for your custom object
class.

These steps assume you have already defined the Oracle object type, created the
corresponding custom object class, updated the type map to define the mapping
between the Oracle object and the Java class, and defined a statement object stmt.

1. Query the database to read the Oracle object into a JDBC result set.

ResultSet rs = stmt.executeQuery("SELECT emp_col FROM personnel");

The PERSONNEL table contains one column, EMP_COL, of SQL type
EMP_OBJECT. This SQL type is defined in the type map to map to the Java class
Employee.

2. Use the getObject() method of your result set to populate an instance of
your custom object class with data from one row of the result set. The
getObject() method returns the user-defined SQLData object because the
type map contains an entry for Employee.

if (rs.next())
 Employee emp = (Employee)rs.getObject(1);

Note that if the type map did not have an entry for the object, then
getObject() would return an oracle.sql.STRUCT object. Cast the output
to type STRUCT, because the getObject() method signature returns the
generic java.lang.Object type.

if (rs.next())
 STRUCT empstruct = (STRUCT)rs.getObject(1);

The getObject() call triggers readSQL() and readXXX() calls from the
SQLData interface, as described above.
Working with Oracle Object Types 8-17

Creating and Using Custom Object Classes for Oracle Objects
3. If you have get methods in your custom object class, then use them to read
data from your object attributes. For example, if EMPLOYEE has an EmpName
(employee name) of type CHAR, and an EmpNum (employee number) of type
NUMBER, then provide a getEmpName() method that returns a Java String
and a getEmpNum() method that returns an integer (int). Then invoke them
in your Java application, as follows:

String empname = emp.getEmpName();
int empnumber = emp.getEmpNum();

Retrieving SQLData Objects from a Callable Statement OUT Parameter
Suppose you have an OracleCallableStatement ocs that calls a PL/SQL
function GETEMPLOYEE(). The program passes an employee number (empnumber)
to the function; the function returns the corresponding Employee object.

1. Prepare an OracleCallableStatement to call the GETEMPLOYEE()
function.

OracleCallableStatement ocs =
 (OracleCallableStatement)conn.prepareCall("{ ? = call GETEMPLOYEE(?) }");

2. Declare the empnumber as the input parameter to GETEMPLOYEE(). Register
the SQLData object as the OUT parameter, with typecode
OracleTypes.STRUCT. Then, execute the statement.

ocs.setInt(2, empnumber);
ocs.registerOutParameter(1, OracleTypes.STRUCT, "EMP_OBJECT");
ocs.execute();

3. Use the getObject() method to retrieve the employee object. The following
code assumes that there is a type map entry to map the Oracle object to Java
type Employee:

Employee emp = (Employee)ocs.getObject(1);

Note: If you want to avoid using a type map, then use the
getSTRUCT() method. This method always returns a STRUCT
object, even if there is a mapping entry in the type map.

Note: Alternatively, fetch data by using a callable statement
object, which also has a getObject() method.
8-18 JDBC Developer’s Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects
If there is no type map entry, then getObject() would return an
oracle.sql.STRUCT object. Cast the output to type STRUCT, because the
getObject() method signature returns the generic java.lang.Object
type:

STRUCT emp = (STRUCT)ocs.getObject(1);

Passing SQLData Objects to a Callable Statement as an IN Parameter
Suppose you have a PL/SQL function addEmployee(?) that takes an Employee
object as an IN parameter and adds it to the PERSONNEL table. In this example, emp
is a valid Employee object.

1. Prepare an OracleCallableStatement to call the addEmployee(?)
function.

OracleCallableStatement ocs =
 (OracleCallableStatement) conn.prepareCall("{ call addEmployee(?) }");

2. Use setObject() to pass the emp object as an IN parameter to the callable
statement. Then, execute the statement.

ocs.setObject(1, emp);
ocs.execute();

Writing Data to an Oracle Object Using a SQLData Implementation
This section describes the steps in writing data to an Oracle object from your Java
application when you choose the SQLData implementation for your custom object
class.

This description assumes you have already defined the Oracle object type, created
the corresponding Java class, and updated the type map to define the mapping
between the Oracle object and the Java class.

1. If you have set methods in your custom object class, then use them to write
data from Java variables in your application to attributes of your Java datatype
object.

emp.setEmpName(empname);
emp.setEmpNum(empnumber);

This statement uses the emp object and the empname and empnumber variables
assigned in "Reading SQLData Objects from a Result Set" on page 8-17.
Working with Oracle Object Types 8-19

Creating and Using Custom Object Classes for Oracle Objects
2. Prepare a statement that updates an Oracle object in a row of a database table,
as appropriate, using the data provided in your Java datatype object.

PreparedStatement pstmt = conn.prepareStatement
 ("INSERT INTO PERSONNEL VALUES (?)");

This assumes conn is your connection object.

3. Use the setObject() method of the prepared statement to bind your Java
datatype object to the prepared statement.

pstmt.setObject(1, emp);

4. Execute the statement, which updates the database.

pstmt.executeUpdate();

Understanding the CustomDatum Interface
One of the choices in making an Oracle object and its attribute data available to Java
applications is to create a custom object class that implements the
oracle.sql.CustomDatum and oracle.sql.CustomDatumFactory
interfaces (or you can implement CustomDatumFactory in a separate class). The
CustomDatum and CustomDatumFactory interfaces are supplied by Oracle and
are not a part of the JDBC standard.

Understanding CustomDatum Features
The CustomDatum interface has these advantages:

■ It recognizes Oracle extensions to the JDBC; CustomDatum uses
oracle.sql.Datum types directly.

■ It does not require a type map to specify the names of the Java custom classes
you want to create.

■ It provides better performance: CustomDatum works directly with Datum
types, the internal format the driver uses to hold Oracle objects.

Note: The JPublisher utility supports the generation of classes that
implement the CustomDatum and CustomDatumFactory
interfaces. See "Using JPublisher to Create Custom Object Classes"
on page 8-28.
8-20 JDBC Developer’s Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects
The CustomDatum and CustomDatumFactory interfaces do the following:

■ The toDatum() method of the CustomDatum class transforms the data into an
oracle.sql.* representation.

■ CustomDatumFactory specifies a create() method equivalent to a
constructor for your custom object class. It creates and returns a CustomDatum
instance. The JDBC driver uses the create() method to return an instance of
the custom object class to your Java application or applet. It takes as input an
oracle.sql.Datum object and an integer indicating the corresponding SQL
typecode as specified in the OracleTypes class.

CustomDatum and CustomDatumFactory have the following definitions:

public interface CustomDatum
{
 Datum toDatum (OracleConnection conn) throws SQLException;
}

public interface CustomDatumFactory
{
 CustomDatum create (Datum d, int sql_Type_Code) throws SQLException;
}

Where conn represents the Connection object, d represents an object of type
oracle.sql.Datum, and sql_Type_Code represents the SQL typecode (from the
standard Types or OracleTypes class) of the Datum object.

Retrieving and Inserting Object Data
The JDBC drivers provide the following methods to retrieve and insert object data
as instances of CustomDatum.

To retrieve object data:

■ Use the Oracle-specific OracleResultSet class getCustomDatum() method
(assume an OracleResultSet object ors):

ors.getCustomDatum (int col_index, CustomDatumFactory factory);

This method takes as input the column index of the data in your result set, and
a CustomDatumFactory instance. For example, you can implement a
getFactory() method in your custom object class to produce the
CustomDatumFactory instance to input to getCustomDatum(). The type
map is not required when using Java classes that implement CustomDatum.
Working with Oracle Object Types 8-21

Creating and Using Custom Object Classes for Oracle Objects
or:

■ Use the standard getObject(index, map) method specified by the
ResultSet interface to retrieve data as instances of CustomDatum. In this
case, you must have an entry in the type map that identifies the factory class to
be used for the given object type, and its corresponding SQL type name.

To insert object data:

■ Use the Oracle-specific OraclePreparedStatement class
setCustomDatum() method (assume an OraclePreparedStatement object
ops):

ops.setCustomDatum (int bind_index, CustomDatum custom_obj);

This method takes as input the parameter index of the bind variable and the
name of the object containing the variable.

or:

■ Use the standard setObject() method specified by the
PreparedStatement interface. You can also use this method, in its different
forms, to insert CustomDatum instances without requiring a type map.

The following sections describe the getCustomDatum() and setCustomDatum()
methods.

To continue the example of an Oracle object EMPLOYEE, you might have something
like the following in your Java application:

CustomDatum datum = ors.getCustomDatum(1, Employee.getFactory());

In this example, ors is an Oracle result set, getCustomDatum() is a method in the
OracleResultSet class used to retrieve a CustomDatum object, and the
EMPLOYEE is in column 1 of the result set. The static Employee.getFactory()
method will return a CustomDatumFactory to the JDBC driver. The JDBC driver
will call create() from this object, returning to your Java application an instance
of the Employee class populated with data from the result set.
8-22 JDBC Developer’s Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects
"CustomDatum Implementation—CustomDatumExample.java" on page 17-38
contains an example implementation of the CustomDatum interface for a given SQL
object definition.

Reading and Writing Data with a CustomDatum Implementation
This section describes how to read data from an Oracle object or write data to an
Oracle object if your corresponding Java class implements CustomDatum.

Reading Data from an Oracle Object Using a CustomDatum Implementation
This section summarizes the steps in reading data from an Oracle object into your
Java application. These steps apply whether you implement CustomDatum
manually or use JPublisher to produce your custom object classes.

These steps assume you have already defined the Oracle object type, created the
corresponding custom object class or had JPublisher create it for you, and defined a
statement object stmt.

1. Query the database to read the Oracle object into a result set, casting to an
Oracle result set.

OracleResultSet ors = (OracleResultSet)stmt.executeQuery
 ("SELECT Emp_col FROM PERSONNEL");

Where PERSONNEL is a one-column table. The column name is Emp_col of
type Employee_object.

2. Use the getCustomDatum() method of your Oracle result set to populate an
instance of your custom object class with data from one row of the result set.
The getCustomDatum() method returns an oracle.sql.CustomDatum
object, which you can cast to your specific custom object class.

Notes:

■ CustomDatum and CustomDatumFactory are defined as
separate interfaces so that different Java classes can implement
them if you wish (such as an Employee class and an
EmployeeFactory class).

■ To use the CustomDatum interface, your custom object classes
must import oracle.sql.* (or at least CustomDatum,
CustomDatumFactory, and Datum).
Working with Oracle Object Types 8-23

Creating and Using Custom Object Classes for Oracle Objects
if (ors.next())
 Employee emp = (Employee)ors.getCustomDatum(1, Employee.getFactory());

or:

if (ors.next())
 CustomDatum datum = ors.getCustomDatum(1, Employee.getFactory());

This example assumes that Employee is the name of your custom object class
and ors is the name of your OracleResultSet object.

In case you do not want to use getCustomDatum(), the JDBC drivers let you
use the getObject() method of a standard JDBC ResultSet to retrieve
CustomDatum data. However, you must have an entry in the type map that
identifies the factory class to be used for the given object type, and its
corresponding SQL type name.

For example, if the SQL type name for your object is EMPLOYEE, then the
corresponding Java class is Employee, which will implement CustomDatum.
The corresponding Factory class is EmployeeFactory, which will implement
CustomDatumFactory.

Use this statement to declare the EmployeeFactory entry for your type map:

map.put ("EMPLOYEE", Class.forName ("EmployeeFactory"));

Then use the form of getObject() where you specify the map object:

Employee emp = (Employee) rs.getObject (1, map);

If the connection’s default type map already has an entry that identifies the
factory class to be used for the given object type, and its corresponding SQL
type name, then you can use this form of getObject():

Employee emp = (Employee) rs.getObject (1);

3. If you have get methods in your custom object class, use them to read data
from your object attributes into Java variables in your application. For example,
if EMPLOYEE has EmpName of type CHAR and EmpNum (employee number) of
type NUMBER, provide a getEmpName() method that returns a Java string and
a getEmpNum() method that returns an integer. Then invoke them in your Java
application as follows:

String empname = emp.getEmpName();
int empnumber = emp.getEmpNum();
8-24 JDBC Developer’s Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects
Writing Data to an Oracle Object Using a CustomDatum Implementation
This section summarizes the steps in writing data to an Oracle object from your Java
application. These steps apply whether you implement CustomDatum manually or
use JPublisher to produce your custom object classes.

These steps assume you have already defined the Oracle object type and created the
corresponding custom object class (or had JPublisher create it for you).

1. If you have set methods in your custom object class, then use them to write
data from Java variables in your application to attributes of your Java datatype
object.

emp.setEmpName(empname);
emp.setEmpNum(empnumber);

This statement uses the emp object and the empname and empnumber variables
defined in "Reading Data from an Oracle Object Using a CustomDatum
Implementation" on page 8-23.

2. Write an Oracle prepared statement that updates an Oracle object in a row of a
database table, as appropriate, using the data provided in your Java datatype
object.

OraclePreparedStatement opstmt = conn.prepareStatement
 ("UPDATE PERSONNEL SET Employee = ? WHERE Employee.EmpNum = 28959);

This assumes conn is your Connection object.

3. Use the setCustomDatum() method of the Oracle prepared statement to bind
your Java datatype object to the prepared statement.

opstmt.setCustomDatum(1, emp);

Note: Alternatively, you can fetch data into a callable statement
object. The OracleCallableStatement class also has a
getCustomDatum() method.

Note: The type map is not used when you are performing
database INSERT and UPDATE operations.
Working with Oracle Object Types 8-25

Creating and Using Custom Object Classes for Oracle Objects
The setCustomDatum() method calls the toDatum() method of the custom
object class instance to retrieve an oracle.sql.STRUCT object that can be
written to the database.

In this step you could also use the setObject() method to bind the Java
datatype. For example:

opstmt.setObject(1,emp);

Additional Uses for CustomDatum
The CustomDatum interface offers far more flexibility than the SQLData interface.
The SQLData interface is designed to let you customize the mapping of only SQL
object types (that is, Oracle8 object types) to Java types of your choice.
Implementing the SQLData interface lets the JDBC driver populate fields of a
custom Java class instance from the original SQL object data, and the reverse, after
performing the appropriate conversions between Java and SQL types.

The CustomDatum interface goes beyond supporting the customization of SQL
object types to Java types. It lets you provide a mapping between Java object types
and any SQL type supported by the oracle.sql package.

It might be useful to provide custom Java classes to wrap oracle.sql.* types
and perhaps implement customized conversions or functionality as well. The
following are some possible scenarios:

■ to perform encryption and decryption or validation of data

■ to perform logging of values that have been read or are being written

■ to parse character columns (such as character fields containing URL
information) into smaller components

■ to map character strings into numeric constants

■ to map data into more desirable Java formats (such as mapping a DATE field to
java.util.Date format)

■ to customize data representation (for example, data in a table column is in feet
but you want it represented in meters after it is selected)

■ to serialize and deserialize Java objects—into or out of RAW fields, for example

Note: You can use your Java datatype objects as either IN or OUT
bind variables.
8-26 JDBC Developer’s Guide and Reference

Creating and Using Custom Object Classes for Oracle Objects
For example, use CustomDatum to store instances of Java objects that do not
correspond to a particular SQL Oracle8 object type in the database in columns of
SQL type RAW. The create() method in CustomDatumFactory would have to
implement a conversion from an object of type oracle.sql.RAW to the desired
Java object. The toDatum() method in CustomDatum would have to implement a
conversion from the Java object to an oracle.sql.RAW object. This can be done,
for example, by using Java serialization.

Upon retrieval, the JDBC driver transparently retrieves the raw bytes of data in the
form of an oracle.sql.RAW and calls the CustomDatumFactory’s create()
method to convert the oracle.sql.RAW object to the desired Java class.

When you insert the Java object into the database, you can simply bind it to a
column of type RAW to store it. The driver transparently calls the
CustomDatum.toDatum() method to convert the Java object to an
oracle.sql.RAW object. This object is then stored in a column of type RAW in the
database.

Support for the CustomDatum interfaces is also highly efficient because the
conversions are designed to work using oracle.sql.* formats, which happen to
be the internal formats used by the JDBC drivers. Moreover, the type map, which is
necessary for the SQLData interface, is not required when using Java classes that
implement CustomDatum. For more information on why classes that implement
CustomDatum do not need a type map, see "Understanding the CustomDatum
Interface" on page 8-20.
Working with Oracle Object Types 8-27

Using JPublisher to Create Custom Object Classes
Using JPublisher to Create Custom Object Classes
A convenient way to create custom object classes, as well as other kinds of custom
Java classes, is to use the Oracle JPublisher utility. It generates a full definition for a
custom Java class, which you can instantiate to hold the data from an Oracle object.
JPublisher-generated classes include methods to convert data from SQL to Java and
from Java to SQL, as well as getter and setter methods for the object attributes.

This section offers a brief overview. For more information, see the Oracle8i JPublisher
User’s Guide.

JPublisher Functionality
You can direct JPublisher to create custom object classes that implement either the
SQLData interface or the CustomDatum interface, according to how you set the
JPublisher type mappings.

If you use the CustomDatum interface, JPublisher will also create a custom
reference class to map to object references for the Oracle object type. If you use the
SQLData interface, JPublisher will not produce a custom reference class; you would
use standard java.sql.Ref instances instead.

If you want additional functionality, you can subclass the custom object class and
add features as desired. When you run JPublisher, there is a command-line option
for specifying both a generated class name and the name of the subclass you will
implement. For the SQL-Java mapping to work properly, JPublisher must know the
subclass name, which is incorporated into some of the functionality of the generated
class.

JPublisher Type Mappings
JPublisher offers various choices for how to map user-defined types and their
attribute types between SQL and Java. The rest of this section lists categories of SQL
types and the mapping options available for each category.

For general information about SQL-Java type mappings, see "Datatype Mappings"
on page 3-16.

Note: Hand-editing the JPublisher-generated class, instead of
subclassing it, is not recommended. If you hand-edit this class and
later have to re-run JPublisher for some reason, you would have to
re-implement your changes.
8-28 JDBC Developer’s Guide and Reference

Using JPublisher to Create Custom Object Classes
For more information about JPublisher features or options, see the Oracle8i
JPublisher User’s Guide.

Categories of SQL Types
JPublisher categorizes SQL types into the following groups, with corresponding
JPublisher options as noted:

■ user-defined types (UDT)—Oracle objects, references, and collections

Use the JPublisher -usertypes option to specify the type-mapping
implementation for UDTs—either a standard SQLData implementation or an
Oracle-specific CustomDatum implementation.

■ numeric types—anything stored in the database as SQL type NUMBER

Use the JPublisher -numbertypes option to specify type-mapping for numeric
types.

■ LOB types—SQL types BLOB and CLOB

Use the JPublisher -lobtypes option to specify type-mapping for LOB types.

■ built-in types—anything stored in the database as a SQL type not covered by
the preceding categories; for example: CHAR, VARCHAR2, LONG, and RAW

Use the JPublisher -builtintypes option to specify type-mapping for built-in
types.

Type-Mapping Modes
JPublisher defines the following type-mapping modes, two of which apply to
numeric types only:

■ JDBC mapping (setting jdbc)—Uses standard default mappings between SQL
types and Java native types. For a custom object class, uses a SQLData
implementation.

■ Oracle mapping (setting oracle)—Uses corresponding oracle.sql types to
map to SQL types. For a custom object, reference, or collection class, uses a
CustomDatum implementation.

■ object-JDBC mapping (for numeric types only) (setting objectjdbc)—This is
an extension of JDBC mapping. Where relevant, object-JDBC mapping uses
numeric object types from the standard java.lang package (such as
java.lang.Integer, Float, and Double), instead of primitive Java types
Working with Oracle Object Types 8-29

Using JPublisher to Create Custom Object Classes
(such as int, float, and double). The java.lang types are nullable, while
the primitive types are not.

■ BigDecimal mapping (for numeric types only) (setting bigdecimal)—Uses
java.math.BigDecimal to map to all numeric attributes; appropriate if you
are dealing with large numbers but do not want to map to the
oracle.sql.NUMBER class.

Mapping the SQL Object Type to Java
Use the JPublisher -usertypes option to determine how JPublisher will
implement the custom Java class that corresponds to a SQL object type:

■ A setting of -usertypes=oracle (the default setting) instructs JPublisher to
create a CustomDatum implementation for the custom object class.

This will also result in JPublisher producing a CustomDatum implementation
for the corresponding custom reference class.

■ A setting of -usertypes=jdbc instructs JPublisher to create a SQLData
implementation for the custom object class. No custom reference class can be
created—you must use java.sql.Ref or oracle.sql.REF for the reference
type.

The next section discusses type mapping options that you can use for object
attributes.

Mapping Attribute Types to Java
If you do not specify mappings for the attribute types of the SQL object type,
JPublisher uses the following defaults:

■ For numeric attribute types, the default mapping is object-JDBC.

Note: Using BigDecimal mapping can significantly degrade
performance.

Note: You can also use JPublisher with a -usertypes=oracle
setting in creating CustomDatum implementations to map SQL
collection types.

The -usertypes=jdbc setting is not valid for mapping SQL
collection types. (The SQLData interface is intended only for
mapping SQL object types.)
8-30 JDBC Developer’s Guide and Reference

Using JPublisher to Create Custom Object Classes
■ For LOB attribute types, the default mapping is Oracle.

■ For built-in type attribute types, the default mapping is JDBC.

If you want alternate mappings, use the -numbertypes, -lobtypes, and
-builtintypes options as necessary, depending on the attribute types you have
and the mappings you desire.

If an attribute type is itself a SQL object type, it will be mapped according to the
-usertypes setting.

Summary of SQL Type Categories and Mapping Settings
Table 8–1 summarizes JPublisher categories for SQL types, the mapping settings
relevant for each category, and the default settings.

Important: Be especially aware that if you specify a SQLData
implementation for the custom object class and want the code to be
portable, you must be sure to use portable mappings for the
attribute types. The defaults for numeric types and built-in types
are portable, but for LOB types you must specify
-lobtypes=jdbc.

Table 8–1 JPublisher SQL Type Categories, Supported Settings, and Defaults

SQL Type
Category

JPublisher
Mapping Option Mapping Settings Default

UDT types -usertypes oracle, jdbc oracle

numeric types -numbertypes oracle, jdbc, objectjdbc, bigdecimal objectjdbc

LOB types -lobtypes oracle, jdbc oracle

built-in types -builtintypes oracle, jdbc jdbc

Note: The JPublisher -mapping option used in previous releases
will be deprecated but is currently still supported. For information
about how JPublisher converts -mapping option settings to settings
for the new mapping options, see the Oracle8i JPublisher User’s
Guide.
Working with Oracle Object Types 8-31

Describing an Object Type
Describing an Object Type
Release 8.1.6 includes new functionality to retrieve information about a structured
object type regarding its attribute names and types. This is similar conceptually to
retrieving information from a result set about its column names and types, and in
fact uses an almost identical API.

Functionality for Getting Object Meta Data
The oracle.sql.StructDescriptor class, discussed earlier in "STRUCT
Descriptors" on page 8-4 and "Steps in Creating StructDescriptor and STRUCT
Objects" on page 8-5, now includes functionality to retrieve meta data about a
structured object type.

The StructDescriptor class has a getMetaData() method with the same
functionality as the standard getMetaData() method available in result set
objects. It returns a set of attribute information such as attribute names and types.
Call this method on a StructDescriptor object to get meta data about the Oracle
object type that the StructDescriptor object describes. (Remember that each
structured object type must have an associated StructDescriptor object.)

The signature of the StructDescriptor class getMetaData() method is the
same as the signature specified for getMetaData() in the standard ResultSet
interface:

■ ResultSetMetaData getMetaData() throws SQLException

However, this method actually returns an instance of
oracle.jdbc.driver.StructMetaData, a class that supports structured object
meta data in the same way that the standard java.sql.ResultSetMetaData
interface specifies support for result set meta data.

The StuctMetaData class includes the following standard methods that are also
specified by ResultSetMetaData:

■ String getColumnName(int column) throws SQLException

This returns a String that specifies the name of the specified attribute, such as
"salary".

■ int getColumnType(int column) throws SQLException

This returns an int that specifies the typecode of the specified attribute,
according to the java.sql.Types and
oracle.jdbc.driver.OracleTypes classes.
8-32 JDBC Developer’s Guide and Reference

Describing an Object Type
■ String getColumnTypeName(int column) throws SQLException

This returns a string that specifies the type of the specified attribute, such as
"BigDecimal".

■ int getColumnCount() throws SQLException

This returns the number of attributes in the object type.

As well as the following method, supported only by StructMetaData:

■ String getOracleColumnClassName(int column)
 throws SQLException

This returns the fully-qualified name of the oracle.sql.Datum subclass
whose instances are manufactured if the OracleResultSet class
getOracleObject() method is called to retrieve the value of the specified
attribute. For example, "oracle.sql.NUMBER".

To use getOracleColumnClassName(), you must cast the
ResultSetMetaData object (that was returned by the getMetaData()
method) to a StructMetaData object.

Steps for Retrieving Object Meta Data
Use the following steps to obtain meta data about a structured object type:

1. Create or acquire a StructDescriptor instance that describes the relevant
structured object type.

2. Call the getMetaData() method on the StructDescriptor instance.

3. Call the meta data getter methods as desired—getColumnName(),
getColumnType(), and getColumnTypeName().

Note: In all the preceding method signatures, "column" is
something of a misnomer. Where you specify a "column" of 4, you
really refer to the fourth attribute of the object.

Note: If one of the structured object attributes is itself a structured
object, repeat steps 1 through 3.
Working with Oracle Object Types 8-33

Describing an Object Type
Example The following method shows how to retrieve information about the
attributes of a structured object type. This includes the initial step of creating a
StructDescriptor instance.

//
// Print out the ADT’s attribute names and types
//
void getAttributeInfo (Connection conn, String type_name) throws SQLException
{
 // get the type descriptor
 StructDescriptor desc = StructDescriptor.createDescriptor (type_name, conn);

 // get type meta data
 ResultSetMetaData md = desc.getMetaData ();

 // get # of attrs of this type
 int numAttrs = desc.length ();

 // temporary buffers
 String attr_name;
 int attr_type;
 String attr_typeName;

 System.out.println ("Attributes of "+type_name+" :");
 for (int i=0; i<numAttrs; i++)
 {
 attr_name = md.getColumnName (i+1);
 attr_type = md.getColumnType (i+1);
 System.out.println (" index"+(i+1)+" name="+attr_name+" type="+attr_type);

 // drill down nested object
 if (attrType == OracleTypes.STRUCT)
 {
 attr_typeName = md.getColumnTypeName (i+1);

 // recursive calls to print out nested object meta data
 getAttributeInfo (conn, attr_typeName);
 }
 }
}
8-34 JDBC Developer’s Guide and Reference

Working with Oracle Object Refer
9

Working with Oracle Object References

This chapter describes Oracle extensions to standard JDBC that let you access and
manipulate object references. The following topics are discussed:

■ Oracle Extensions for Object References

■ Overview of Object Reference Functionality

■ Retrieving and Passing an Object Reference

■ Accessing and Updating Object Values through an Object Reference

■ Custom Reference Classes with JPublisher
ences 9-1

Oracle Extensions for Object References
Oracle Extensions for Object References
Oracle supports the use of references (pointers) to Oracle database objects. Oracle
JDBC provides support for object references as:

■ columns in a SELECT-list

■ IN or OUT bind variables

■ attributes in an Oracle object

■ elements in a collection (array) type object

In SQL, an object reference (REF) is strongly typed. For example, a reference to an
EMPLOYEE object would be defined as an EMPLOYEE REF, not just a REF.

When you select an object reference in Oracle JDBC, be aware that you are
retrieving only a pointer to an object, not the object itself. You have the choice of
materializing the reference as a weakly typed oracle.sql.REF instance (or a
java.sql.Ref instance for portability), or materializing it as an instance of a
custom Java class that you have created in advance, which is strongly typed.
Custom Java classes used for object references are referred to as custom reference
classes in this manual and must implement the oracle.sql.CustomDatum
interface.

The oracle.sql.REF class implements the standard java.sql.Ref interface
(oracle.jdbc2.Ref under JDK 1.1.x).

You can retrieve a REF instance through a result set or callable statement object, and
pass an updated REF instance back to the database through a prepared statement or
callable statement object. The REF class includes functionality to get and set
underlying object attribute values, and get the SQL base type name of the
underlying object (for example, EMPLOYEE).

Custom reference classes include this same functionality, as well as having the
advantage of being strongly typed. This can help you find coding errors during
compilation that might not otherwise be discovered until runtime.

For more information about custom reference classes, see "Custom Reference
Classes with JPublisher" on page 9-10. Also refer to "Using JPublisher to Create
Custom Object Classes" on page 8-28, or to the Oracle8i JPublisher User’s Guide.

For a complete sample application using the REF class to access SQL object data, see
"Weakly Typed Object References—StudentRef.java" on page 17-24.
9-2 JDBC Developer’s Guide and Reference

Oracle Extensions for Object References
Notes:

■ If you are using the oracle.sql.CustomDatum interface for
custom object classes, you will presumably use CustomDatum
for corresponding custom reference classes as well. If you are
using the standard java.sql.SQLData interface for custom
object classes, however, you can only use weak Java types for
references (java.sql.Ref or oracle.sql.REF). The
SQLData interface is for mapping SQL object types only.

■ You cannot create REF objects in your JDBC application; you
can only retrieve existing REF objects from the database.

■ You cannot have a reference to an array, even though arrays,
like objects, are structured types.
Working with Oracle Object References 9-3

Overview of Object Reference Functionality
Overview of Object Reference Functionality
To access and update object data through an object reference, you must obtain the
reference instance through a result set or callable statement and then pass it back as
a bind variable in a prepared statement or callable statement. It is the reference
instance that contains the functionality to access and update object attributes.

This section summarizes the following:

■ statement and result set getter and setter methods for passing REF instances
from and to the database

■ REF class functionality to get and set object attributes

Remember that you can use custom reference classes instead of the ARRAY class. See
"Custom Reference Classes with JPublisher" on page 9-10.

Object Reference Getter and Setter Methods
Use the following result set, callable statement, and prepared statement methods to
retrieve and pass object references. Code examples are provided later in the chapter.

Result Set and Callable Statement Getter Methods The OracleResultSet and
OracleCallableStatement classes support getREF() and getRef() methods
to retrieve REF objects as output parameters—either as oracle.sql.REF instances
or java.sql.Ref instances (oracle.jdbc2.Ref under JDK 1.1.x). You can also
use the getObject() method. These methods take as input a String column
name or int column index.

Prepared and Callable Statement Setter Methods The OraclePreparedStatement and
OracleCallableStatement classes support setREF() and setRef() methods
to take REF objects as bind variables and pass them to the database. You can also
use the setObject() method. These methods take as input a String parameter
name or int parameter index as well as, respectively, an oracle.sql.REF
instance or a java.sql.Ref instance (oracle.jdbc2.Ref under JDK 1.1.x).
9-4 JDBC Developer’s Guide and Reference

Overview of Object Reference Functionality
Key REF Class Methods
Use the following oracle.sql.REF class methods to retrieve the SQL object type
name and retrieve and pass the underlying object data.

■ getBaseTypeName(): Retrieves the fully-qualified SQL structured type name
of the referenced object (for example, EMPLOYEE).

This is a standard method specified by the java.sql.Ref interface.

■ getValue(): Retrieves the referenced object from the database, allowing you
to access its attribute values. It optionally takes a type map object, or else you
can use the default type map of the database connection object.

This method is an Oracle extension.

■ setValue(): Sets the referenced object in the database, allowing you to update
its attribute values. It takes an instance of the object type as input (either a
STRUCT instance or an instance of a custom object class).

This method is an Oracle extension.
Working with Oracle Object References 9-5

Retrieving and Passing an Object Reference
Retrieving and Passing an Object Reference
This section discusses JDBC functionality for retrieving and passing object
references.

Retrieving an Object Reference from a Result Set
To demonstrate how to retrieve object references, the following example first
defines an Oracle object type ADDRESS, which is then referenced in the PEOPLE
table:

create type ADDRESS as object
 (street_name VARCHAR2(30),
 house_no NUMBER);

create table PEOPLE
 (col1 VARCHAR2(30),
 col2 NUMBER,
 col3 REF ADDRESS);

The ADDRESS object type has two attributes: a street name and a house number. The
PEOPLE table has three columns: a column for character data, a column for numeric
data, and a column containing a reference to an ADDRESS object.

To retrieve an object reference, follow these general steps:

1. Use a standard SQL SELECT statement to retrieve the reference from a database
table REF column.

2. Use getREF() to get the address reference from the result set into a REF object.

3. Let Address be the Java custom class corresponding to the SQL object type
ADDRESS.

4. Add the correspondence between the Java class Address and the SQL type
ADDRESS to your type map.

5. Use the getValue() method to retrieve the contents of the Address reference.
Cast the output to a Java Address object.
9-6 JDBC Developer’s Guide and Reference

Retrieving and Passing an Object Reference
Here is the code for these steps (other than adding Address to the type map),
where stmt is a previously defined statement object. The PEOPLE database table is
defined earlier in this section:

ResultSet rs = stmt.executeQuery("SELECT col3 FROM PEOPLE");
while (rs.next())
{
 REF ref = ((OracleResultSet)rs).getREF(1);
 Address a = (Address)ref.getValue();
}

As with other SQL types, you could retrieve the reference with the getObject()
method of your result set. Note that this would require you to cast the output. For
example:

REF ref = (REF)rs.getObject(1);

There are no performance advantages in using getObject() instead of
getREF(); however, using getREF() allows you to avoid casting the output.

Retrieving an Object Reference from a Callable Statement
To retrieve an object reference as an OUT parameter in PL/SQL blocks, you must
register the bind type for your OUT parameter.

1. Cast your callable statement to an OracleCallableStatement:

OracleCallableStatement ocs =
 (OracleCallableStatement)conn.prepareCall("{? = call func()}");

2. Register the OUT parameter with this form of the registerOutParameter()
method:

ocs.registerOutParameter
 (int param_index, int sql_type, String sql_type_name);

Where param_index is the parameter index and sql_type is the SQL
typecode (in this case, OracleTypes.REF). The sql_type_name is the name
of the structured object type that this reference is used for. For example, if the
OUT parameter is a reference to an ADDRESS object (as in "Retrieving and
Passing an Object Reference" on page 9-6), then ADDRESS is the
sql_type_name that should be passed in.

3. Execute the call:

ocs.execute();
Working with Oracle Object References 9-7

Retrieving and Passing an Object Reference
Passing an Object Reference to a Prepared Statement
Pass an object reference to a prepared statement in the same way as you would pass
any other SQL type. Use either the setObject() method or the setREF()
method of a prepared statement object.

Continuing the example in "Retrieving and Passing an Object Reference" on
page 9-6, use a prepared statement to update an address reference based on ROWID,
as follows:

PreparedStatement pstmt =
 conn.prepareStatement ("update PEOPLE set ADDR_REF = ? where ROWID = ?");
((OraclePreparedStatement)pstmt).setREF (1, addr_ref);
((OraclePreparedStatement)pstmt).setROWID (2, rowid);
9-8 JDBC Developer’s Guide and Reference

Accessing and Updating Object Values through an Object Reference
Accessing and Updating Object Values through an Object Reference
You can use the REF object setValue() method to update the value of an object in
the database through an object reference. To do this, you must first retrieve the
reference to the database object and create a Java object (if one does not already
exist) that corresponds to the database object.

For example, you can use the code in the section "Retrieving and Passing an Object
Reference" on page 9-6 to retrieve the reference to a database ADDRESS object:

ResultSet rs = stmt.executeQuery("SELECT col3 FROM PEOPLE");
if (rs.next())
{
 REF ref = rs.getREF(1);
 Address a = (Address)ref.getValue();
}

Then, you can create a Java Address object (this example omits the content for the
constructor of the Address class) that corresponds to the database ADDRESS object.
Use the setValue() method of the REF class to set the value of the database
object:

Address addr = new Address(...);
ref.setValue(addr);

Here, the setValue() method updates the database ADDRESS object immediately.
Working with Oracle Object References 9-9

Custom Reference Classes with JPublisher
Custom Reference Classes with JPublisher
This chapter primarily describes the functionality of the oracle.sql.REF class,
but it is also possible to access Oracle object references through custom Java classes
or, more specifically, custom reference classes.

Custom reference classes offer all the functionality described earlier in this chapter,
as well as the advantage of being strongly typed. A custom reference class must
satisfy three requirements:

■ It must implement the oracle.sql.CustomDatum interface described under
"Creating and Using Custom Object Classes for Oracle Objects" on page 8-9.
Note that the standard JDBC SQLData interface, which is an alternative for
custom object classes, is not intended for custom reference classes.

■ It, or a companion class, must implement the
oracle.sql.CustomDatumFactory interface, for creating instances of the
custom reference class.

■ It must provide a way to refer to the object data. JPublisher accomplishes this by
using an oracle.sql.REF attribute.

You can create custom reference classes yourself, but the most convenient way to
produce them is through the Oracle JPublisher utility. If you use JPublisher to
generate a custom object class to map to an Oracle object, and you specify that
JPublisher use a CustomDatum implementation, then JPublisher will also generate
a custom reference class that implements CustomDatum and
CustomDatumFactory and includes an oracle.sql.REF attribute. (The
CustomDatum implementation will be used if JPublisher’s -usertypes mapping
option is set to oracle, which is the default.)

Custom reference classes are strongly typed. For example, if you define an Oracle
object EMPLOYEE, then JPublisher can generate an Employee custom object class
and an EmployeeRef custom reference class. Using EmployeeRef instances
instead of generic oracle.sql.REF instances makes it easier to catch errors
during compilation instead of at runtime—for example, if you accidentally assign
some other kind of object reference into an EmployeeRef variable.

Be aware that the standard SQLData interface supports only SQL object mappings.
For this reason, if you instruct JPublisher to implement the standard SQLData
interface in creating a custom object class, then JPublisher will not generate a
custom reference class. In this case your only option is to use standard
java.sql.Ref instances (or oracle.sql.REF instances) to map to your object
references. (Specifying the SQLData implementation is accomplished by setting
JPublisher’s UDT attributes mapping option to jdbc.)
9-10 JDBC Developer’s Guide and Reference

Working with Oracle Coll
10

Working with Oracle Collections

This chapter describes Oracle extensions to standard JDBC that let you access and
manipulate Oracle collections, which map to Java arrays, and their data. The
following topics are discussed:

■ Oracle Extensions for Collections (Arrays)

■ Overview of Collection (Array) Functionality

■ Creating and Using Arrays

■ Using a Type Map to Map Array Elements

■ Custom Collection Classes with JPublisher
ections 10-1

Oracle Extensions for Collections (Arrays)
Oracle Extensions for Collections (Arrays)
An Oracle collection—either a variable array (VARRAY) or a nested table in the
database—maps to an array in Java. JDBC 2.0 arrays are used to materialize Oracle
collections in Java. The terms "collection" and "array" are sometimes used
interchangeably, although "collection" is more appropriate on the database side, and
"array" is more appropriate on the JDBC application side.

Oracle supports only named collections, where you specify a SQL type name to
describe a type of collection.

JDBC lets you use arrays as any of the following:

■ columns in a SELECT-list

■ IN or OUT bind variables

■ attributes in an Oracle object

The rest of this section discusses creating and materializing collections.

The remainder of the chapter describes how to access and update collection data
through Java arrays. For a complete code example of creating a table with a
collection column and then manipulating and printing the contents, see "Weakly
Typed Arrays—ArrayExample.java" on page 17-26.

Choices in Materializing Collections
In your application, you have the choice of materializing a collection as an instance
of the oracle.sql.ARRAY class, which is weakly typed, or materializing it as an
instance of a custom Java class that you have created in advance, which is strongly
typed. Custom Java classes used for collections are referred to as custom collection
classes in this manual. A custom collection class must implement the Oracle
oracle.sql.CustomDatum interface. In addition, the custom class or a
companion class must implement oracle.sql.CustomDatumFactory. (The
standard java.sql.SQLData interface is for mapping SQL object types only.)

The oracle.sql.ARRAY class implements the standard java.sql.Array
interface (oracle.jdbc2.Array under JDK 1.1.x).

The ARRAY class includes functionality to retrieve the array as a whole, retrieve a
subset of the array elements, and retrieve the SQL base type name of the array
elements. You cannot write to the array, however, as there are no setter methods.

Custom collection classes, as with the ARRAY class, allow you to retrieve all or part
of the array and get the SQL base type name. They also have the advantage of being
10-2 JDBC Developer’s Guide and Reference

Oracle Extensions for Collections (Arrays)
strongly typed, which can help you find coding errors during compilation that
might not otherwise be discovered until runtime.

Furthermore, custom collection classes produced by JPublisher offer the feature of
being writable, with individually accessible elements. (This is also something you
could implement in a custom collection class yourself.)

For more information about custom collection classes, see "Custom Collection
Classes with JPublisher" on page 10-20.

Creating Collections
This section presents background information about creating Oracle collections.

Because Oracle supports only named collections, you must declare a particular
VARRAY type name or nested table type name. "VARRAY" and "nested table" are not
types themselves, but categories of types.

A SQL type name is assigned to a collection when you create it, as in the following
SQL syntax:

CREATE TYPE <sql_type_name> AS <datatype>;

A VARRAY is an array of varying size. It has an ordered set of data elements, and
all the elements are of the same datatype. Each element has an index, which is a
number corresponding to the element’s position in the VARRAY. The number of
elements in a VARRAY is the "size" of the VARRAY. You must specify a maximum
size when you declare the VARRAY type. For example:

CREATE TYPE myNumType AS VARRAY(10) OF NUMBER;

This statement defines myNumType as a SQL type name that describes a VARRAY of
NUMBER values that can contain no more than 10-elements.

A nested table is an unordered set of data elements, all of the same datatype. The
database stores a nested table in a separate table which has a single column, and the
type of that column is a built-in type or an object type. If the table is an object type,

Note: There is no difference in your code between accessing
VARRAYs and accessing nested tables. ARRAY class methods can
determine if they are being applied to a VARRAY or nested table,
and respond by taking the appropriate actions.
Working with Oracle Collections 10-3

Oracle Extensions for Collections (Arrays)
it can also be viewed as a multi-column table, with a column for each attribute of
the object type. Create a nested table with this SQL syntax:

CREATE TYPE myNumList AS TABLE OF integer;

This statement identifies myNumList as a SQL type name that defines the table type
used for the nested tables of the type INTEGER.
10-4 JDBC Developer’s Guide and Reference

Overview of Collection (Array) Functionality
Overview of Collection (Array) Functionality
You can obtain collection data in an array instance through a result set or callable
statement and pass it back as a bind variable in a prepared statement or callable
statement.

The oracle.sql.ARRAY class, which implements the standard java.sql.Array
interface (oracle.jdbc2.Array interface under JDK 1.1.x), provides the
necessary functionality to access and update the data of an Oracle collection (either
a VARRAY or nested table).

This section discusses the following:

■ statement and result set getter and setter methods for passing collections to and
from the database as Java arrays

■ ARRAY descriptors and ARRAY class methods

Remember that you can use custom collection classes instead of the ARRAY class.
See "Custom Collection Classes with JPublisher" on page 10-20.

Array Getter and Setter Methods
Use the following result set, callable statement, and prepared statement methods to
retrieve and pass collections as Java arrays. Code examples are provided later in the
chapter.

Result Set and Callable Statement Getter Methods The OracleResultSet and
OracleCallableStatement classes support getARRAY() and getArray()
methods to retrieve ARRAY objects as output parameters—either as
oracle.sql.ARRAY instances or java.sql.Array instances
(oracle.jdbc2.Array under JDK 1.1.x). You can also use the getObject()
method. These methods take as input a String column name or int column
index.

Prepared and Callable Statement Setter Methods The OraclePreparedStatement and
OracleCallableStatement classes support setARRAY() and setArray()
methods to take updated ARRAY objects as bind variables and pass them to the
database. You can also use the setObject() method. These methods take as input
a String parameter name or int parameter index as well as, respectively, an
oracle.sql.ARRAY instance or a java.sql.Array instance
(oracle.jdbc2.Array under JDK 1.1.x).
Working with Oracle Collections 10-5

Overview of Collection (Array) Functionality
ARRAY Descriptors and ARRAY Class Functionality
The section introduces ARRAY descriptors and lists methods of the ARRAY class to
provide an overview of its functionality.

ARRAY Descriptors
Creating and using an ARRAY object requires the existence of a descriptor—an
instance of the oracle.sql.ArrayDescriptor class—to exist for the SQL type
of the collection being materialized in the array. You need only one
ArrayDescriptor object for any number of ARRAY objects that correspond to the
same SQL type.

ARRAY descriptors are further discussed in "Creating ARRAY Objects and
Descriptors" on page 10-8.

ARRAY Class Methods
The oracle.sql.ARRAY class includes the following methods:

■ getDescriptor(): Returns the ArrayDescriptor object that describes the
array type.

■ getArray(): Retrieves the contents of the array in "default" JDBC types. If it
retrieves an array of objects, then getArray() uses the default type map of the
database connection object to determine the types.

■ getOracleArray(): Identical to getArray(), but retrieves the elements in
oracle.sql.* format.

■ getBaseType(): Returns the SQL typecode for the array elements (see "Class
oracle.jdbc.driver.OracleTypes" on page 5-22 for information about typecodes).

■ getBaseTypeName(): Returns the SQL type name of the elements of this
array.

■ getSQLTypeName() (Oracle extension): Returns the fully qualified SQL type
name of the array as a whole.

■ getResultSet(): Materializes the array elements as a result set.

■ getConnection(): Returns the connection instance associated with this array.

■ length(): Returns the number of elements in the array.
10-6 JDBC Developer’s Guide and Reference

Overview of Collection (Array) Functionality
Note: As an example of the difference between
getBaseTypeName() and getSQLTypeName(), if you define
ARRAY_OF_PERSON as the array type for an array of PERSON
objects in the SCOTT schema, then getBaseTypeName() would
return "SCOTT.PERSON" and getSQLTypeName() would return
"SCOTT.ARRAY_OF_PERSON".
Working with Oracle Collections 10-7

Creating and Using Arrays
Creating and Using Arrays
This section discusses how to create array objects and how to retrieve and pass
collections as array objects, including the following topics.

■ Creating ARRAY Objects and Descriptors

■ Retrieving an Array and Its Elements

■ Passing Arrays to Statement Objects

Creating ARRAY Objects and Descriptors
This section describes how to create ARRAY objects and descriptors and lists useful
methods of the ArrayDescriptor class.

Steps in Creating ArrayDescriptor and ARRAY Objects
This section describes how to construct an oracle.sql.ARRAY object. To do this,
you must:

1. Create an ArrayDescriptor object (if one does not already exist) for the
array.

2. Use the ArrayDescriptor object to construct the oracle.sql.ARRAY object
for the array you want to pass.

An ArrayDescriptor is an object of the oracle.sql.ArrayDescriptor class
and describes the SQL type of an array. Only one array descriptor is necessary for
any one SQL type. The driver caches ArrayDescriptor objects to avoid recreating
them if the SQL type has already been encountered. You can reuse the same
descriptor object to create multiple instances of an oracle.sql.ARRAY object for
the same array type.

Collections are strongly typed. Oracle supports only named collections, that is, a
collection given a SQL type name. For example, when you create a collection with
the CREATE TYPE statement:

CREATE TYPE num_varray AS varray(22) OF NUMBER(5,2);

Where NUM_VARRAY is the SQL type name for the collection type.
10-8 JDBC Developer’s Guide and Reference

Creating and Using Arrays
Before you can construct an Array object, an ArrayDescriptor must first exist
for the given SQL type of the array. If an ArrayDescriptor does not exist, then
you must construct one by passing the SQL type name of the collection type and
your Connection object (which JDBC uses to go to the database to gather meta
data) to the constructor.

ArrayDescriptor arraydesc = ArrayDescriptor.createDescriptor
 (sql_type_name, connection);

Where sql_type_name is the type name of the array and connection is your
Connection object.

Once you have your ArrayDescriptor object for the SQL type of the array, you
can construct the ARRAY object. To do this, pass in the array descriptor, your
connection object, and a Java object containing the individual elements you want
the array to contain.

ARRAY array = new ARRAY(arraydesc, connection, elements);

Where arraydesc is the array descriptor created previously, connection is your
connection object, and elements is a Java array. The two possibilities for the
contents of elements are:

■ an array of Java primitives—for example, int[]

■ an array of Java objects, such as xxx[] where xxx is the name of a Java
class—for example, Integer[]

Note: The name of the collection type is not the same as the type
name of the elements. For example:

CREATE TYPE person AS object
 (c1 NUMBER(5), c2 VARCHAR2(30));
CREATE TYPE array_of_persons AS varray(10)
 OF person;

In the preceding statements, the SQL name of the collection type is
ARRAY_OF_PERSON. The SQL name of the collection elements is
PERSON.
Working with Oracle Collections 10-9

Creating and Using Arrays
Using ArrayDescriptor Methods
An ARRAY descriptor can be referred to as a type object. It has information about the
SQL name of the underlying collection, the typecode of the array’s elements, and, if
it is an array of structured objects, the SQL name of the elements. The descriptor
also contains the information on about to convert to and from the given type. You
need only one descriptor object for any one type, then you can use that descriptor to
create as many arrays of that type as you want.

The ArrayDescriptor class has the following methods for retrieving an element’s
typecode and type name:

■ createDescriptor(): This is a factory for ArrayDescriptor instances;
looks up the name in the database and determine the characteristics of the
array.

■ getBaseType(): Returns the integer typecode associated with this ARRAY
descriptor (according to integer constants defined in the OracleTypes class,
which "Package oracle.jdbc.driver" on page 5-16 describes).

■ getBaseName(): Returns a string with the type name associated with this
array element if it is a STRUCT or REF.

■ getArrayType(): Returns an integer indicating whether the array is a
VARRAY or nested table. ArrayDescriptor.TYPE_VARRAY and
ArrayDescriptor.TYPE_NESTED_TABLE are the possible return values.

■ getMaxLength(): Returns the maximum number of elements for this array
type.

■ getConnection(): Returns the connection instance that was used in creating
the ARRAY descriptor (a new descriptor must be created for each connection
instance).

Note: The setARRAY(), setArray(), and setObject()
methods of the OraclePreparedStatement class take an object
of the type oracle.sql.ARRAY as an argument, not an array of
objects.

Note: You cannot use a collection within a collection. You can,
however, use a structured object with a collection attribute, or a
collection with structured object elements.
10-10 JDBC Developer’s Guide and Reference

Creating and Using Arrays
Retrieving an Array and Its Elements
This section discusses how to retrieve an ARRAY instance as a whole from a result
set, and then how to retrieve the elements from the ARRAY instance.

Retrieving the Array
You can retrieve a SQL array from a result set by casting the result set to an
OracleResultSet object and using the getARRAY() method, which returns an
oracle.sql.ARRAY object. If you want to avoid casting the result set, then you
can get the data with the standard getObject() method specified by the
java.sql.ResultSet interface, and cast the output to an oracle.sql.ARRAY
object.

Data Retrieval Methods
Once you have the array in an ARRAY object, you can retrieve the data using one of
these three overloaded methods of the oracle.sql.ARRAY class:

■ getArray()

■ getOracleArray()

■ getResultSet()

Oracle also provides methods that enable you to retrieve all the elements of an
array, or a subset.

getOracleArray() The getOracleArray() method is an Oracle-specific extension
that is not specified in the standard Array interface (java.sql.Array under JDK
1.2.x or oracle.jdbc2.Array under JDK 1.1.x). The getOracleArray()
method retrieves the element values of the array into a Datum[] array. The
elements are of the oracle.sql.* datatype corresponding to the SQL type of the
data in the original array.

For an array of structured objects, this method will use oracle.sql.STRUCT
instances for the elements.

Note: In case you are working with an array of structured objects,
Oracle provides versions of these three methods that enable you to
specify a type map so that you can choose how to map the objects
to Java.
Working with Oracle Collections 10-11

Creating and Using Arrays
Oracle also provides a getOracleArray(index,count) method to get a subset
of the array elements.

getResultSet() The getResultSet() method returns a result set that contains
elements of the array designated by the ARRAY object. The result set contains one
row for each array element, with two columns in each row. The first column stores
the index into the array for that element, and the second column stores the element
value. In the case of VARRAYs, the index represents the position of the element in
the array. In the case of nested tables, which are by definition unordered, the index
reflects only the return order of the elements in the particular query.

Oracle recommends using getResultSet() when getting data from nested tables.
Nested tables can have an unlimited number of elements. The ResultSet object
returned by the method initially points at the first row of data. You get the contents
of the nested table by using the next() method and the appropriate getXXX()
method. In contrast, getArray() returns the entire contents of the nested table at
one time.

The getResultSet() method uses the connection’s default type map to
determine the mapping between the SQL type of the Oracle object and its
corresponding Java datatype. If you do not want to use the connection’s default
type map, another version of the method, getResultSet(map), enables you to
specify an alternate type map.

Oracle also provides the getResultSet(index,count) and
getResultSet(index,count,map) methods to retrieve a subset of the array
elements.

getArray() The getArray() method is a standard JDBC method that returns the
array elements into a java.lang.Object instance that you can cast as
appropriate (see "Comparing the Data Retrieval Methods" on page 10-12). The
elements are converted to the Java types corresponding to the SQL type of the data
in the original array.

Oracle also provides a getArray(index,count) method to retrieve a subset of
the array elements.

Comparing the Data Retrieval Methods
If you use getOracleArray() to return the array elements, the use by that
method of oracle.sql.Datum instances avoids the expense of data conversion
from SQL to Java. The data inside a Datum (or subclass) instance remains in raw
SQL format.
10-12 JDBC Developer’s Guide and Reference

Creating and Using Arrays
If you use getResultSet() to return an array of primitive datatypes, then the
JDBC driver returns a ResultSet object that contains, for each element, the index
into the array for the element and the element value. For example:

ResultSet rset = intArray.getResultSet();

In this case, the result set contains one row for each array element, with two
columns in each row. The first column stores the index into the array; the second
column stores the element value.

If you use getArray() to retrieve an array of primitive datatypes, then a
java.lang.Object that contains the element values is returned. The elements of
this array are of the Java type corresponding to the SQL type of the elements. For
example:

BigDecimal[] values = (BigDecimal[]) intArray.getArray();

Where intArray is an oracle.sql.ARRAY, corresponding to a VARRAY of type
NUMBER. The values array contains an array of elements of type
java.math.BigDecimal, because the SQL NUMBER datatype maps to Java
BigDecimal by default, according to the Oracle JDBC drivers.

Retrieving Elements of a Structured Object Array According to a Type Map
By default, if you are working with an array whose elements are structured objects,
and you use getArray() or getResultSet(), then the Oracle objects in the
array will be mapped to their corresponding Java datatypes according to the default
mapping. This is because these methods use the connection’s default type map to
determine the mapping.

However, if you do not want default behavior, then you can use the
getArray(map) or getResultSet(map) method to specify a type map that
contains alternate mappings. If there are entries in the type map corresponding to
the Oracle objects in the array, then each object in the array is mapped to the
corresponding Java type specified in the type map. For example:

Object[] object = (Object[])objArray.getArray(map);

Note: Using BigDecimal is a resource-intensive operation in
Java. Because Oracle JDBC maps numeric SQL data to
BigDecimal by default, using getArray() may impact
performance, and is not recommended for numeric collections.
Working with Oracle Collections 10-13

Creating and Using Arrays
In the preceding example, objArray is an oracle.sql.ARRAY object and map is a
java.util.Map object.

If the type map does not contain an entry for a particular Oracle object, then the
element is returned as an oracle.sql.STRUCT object.

The getResultSet(map) method behaves similarly to the getArray(map)
method.

For more information on using type maps with arrays, see "Using a Type Map to
Map Array Elements" on page 10-18.

Retrieving a Subset of Array Elements
If you do not want to retrieve the entire contents of an array, then you can use
signatures of getArray(), getResultSet(), and getOracleArray() that let
you retrieve a subset. To retrieve a subset of the array, pass in an index and a count
to indicate where in the array you want to start and how many elements you want
to retrieve. As described above, you can specify a type map or use the default type
map for your connection to convert to Java types. For example:

Object object = arr.getArray(index, count, map);
Object object = arr.getArray(index, count);

Similar examples using getResultSet() are:

ResultSet rset = arr.getResultSet(index, count, map);
ResultSet rset = arr.getResultSet(index, count);

A similar example using getOracleArray() is:

Datum arr = arr.getOracleArray(index, count);

Where arr is an oracle.sql.ARRAY object, index is type long, count is type
int, and map is a java.util.Map object.

Note: There is no performance advantage in retrieving a subset of
an array, as opposed to the entire array.
10-14 JDBC Developer’s Guide and Reference

Creating and Using Arrays
Retrieving Array Elements into an oracle.sql.Datum Array
Use getOracleArray() to return an oracle.sql.Datum[] array. The elements
of the returned array will be of the oracle.sql.* type that correspond to the SQL
datatype of the elements of the original array. For example:

Datum arraydata[] = arr.getOracleArray();

Where arr is an oracle.sql.ARRAY object. For an example of retrieving an array
and its contents, see "Weakly Typed Arrays—ArrayExample.java" on page 17-26.

The following example assumes that a connection object conn and a statement
object stmt have already been created. In the example, an array with the SQL type
name NUM_ARRAY is created to store a VARRAY of NUMBER data. The NUM_ARRAY is
in turn stored in a table VARRAY_TABLE.

A query selects the contents of the VARRAY_TABLE. The result set is cast to an
OracleResultSet object; getARRAY() is applied to it to retrieve the array data
into my_array, which is an oracle.sql.ARRAY object.

Because my_array is of type oracle.sql.ARRAY, you can apply the methods
getSQLTypeName() and getBaseType() to it to return the name of the SQL type
of each element in the array and its integer code.

The program then prints the contents of the array. Because the contents of
my_array are of the SQL datatype NUMBER, it must first be cast to the BigDecimal
datatype. In the for loop, the individual values of the array are cast to
BigDecimal and printed to standard output.

stmt.execute ("CREATE TYPE num_varray AS VARRAY(10) OF NUMBER(12, 2)");
stmt.execute ("CREATE TABLE varray_table (col1 num_varray)");
stmt.execute ("INSERT INTO varray_table VALUES (num_varray(100, 200))");

ResultSet rs = stmt.executeQuery("SELECT * FROM varray_table");
ARRAY my_array = ((OracleResultSet)rs).getARRAY(1);

// return the SQL type names, integer codes,
// and lengths of the columns
System.out.println ("Array is of type " + array.getSQLTypeName());
System.out.println ("Array element is of typecode " + array.getBaseType());
System.out.println ("Array is of length " + array.length());

// get Array elements
BigDecimal[] values = (BigDecimal[]) my_array.getArray();

for (int i=0; i<values.length; i++)
Working with Oracle Collections 10-15

Creating and Using Arrays
{
 BigDecimal out_value = (BigDecimal) values[i];
 System.out.println(">> index " + i + " = " + out_value.intValue());
}

Note that if you use getResultSet() to obtain the array, you would first get the
result set object, then use the next() method to iterate through it. Notice the use of
the parameter indexes in the getInt() method to retrieve the element index and
the element value.

ResultSet rset = my_array.getResultSet();
while (rset.next())
{
 // The first column contains the element index and the
 // second column contains the element value
 System.out.println(">> index " + rset.getInt(1)+" = " + rset.getInt(2));
}

Passing Arrays to Statement Objects
This section discusses how to pass arrays to prepared statement objects or callable
statement objects.

Passing an Array to a Prepared Statement
Pass an array to a prepared statement as follows (use similar steps to pass an array
to a callable statement). Note that you can use arrays as either IN or OUT bind
variables.

1. Construct an ArrayDescriptor object for the SQL type that the array will
contain (unless one has already been created for this SQL type). See "Steps in
Creating ArrayDescriptor and ARRAY Objects" on page 10-8 for information
about creating ArrayDescriptor objects.

ArrayDescriptor descriptor = ArrayDescriptor.createDescriptor
 (sql_type_name, connection);

Where sql_type_name is a Java string specifying the user-defined SQL type
name of the array, and connection is your Connection object. See "Oracle
Extensions for Collections (Arrays)" on page 10-2 for information about SQL
typenames.

2. Define the array that you want to pass to the prepared statement as an
oracle.sql.ARRAY object.

ARRAY array = new ARRAY(descriptor, connection, elements);
10-16 JDBC Developer’s Guide and Reference

Creating and Using Arrays
Where descriptor is the ArrayDescriptor object previously constructed
and elements is a java.lang.Object containing a Java array of the
elements.

3. Create a java.sql.PreparedStatement object containing the SQL
statement to execute.

4. Cast your prepared statement to an OraclePreparedStatement and use the
setARRAY() method of the OraclePreparedStatement object to pass the
array to the prepared statement.

(OraclePreparedStatement)stmt.setARRAY(parameterIndex, array);

Where parameterIndex is the parameter index, and array is the
oracle.sql.ARRAY object you constructed previously.

5. Execute the prepared statement.

Passing an Array to a Callable Statement
To retrieve a collection as an OUT parameter in PL/SQL blocks, execute the
following to register the bind type for your OUT parameter.

1. Cast your callable statement to an OracleCallableStatement:

OracleCallableStatement ocs =
 (OracleCallableStatement)conn.prepareCall("{? = call func()}");

2. Register the OUT parameter with this form of the regsiterOutParameter()
method:

ocs.registerOutParameter
 (int param_index, int sql_type, string sql_type_name);

Where param_index is the parameter index, sql_type is the SQL typecode,
and sql_type_name is the name of the array type. In this case, the sql_type
is OracleTypes.ARRAY.

3. Execute the call:

ocs.execute();

4. Get the value:

oracle.sql.ARRAY array = ocs.getARRAY(1);
Working with Oracle Collections 10-17

Using a Type Map to Map Array Elements
Using a Type Map to Map Array Elements
If your array contains Oracle objects, then you can use a type map to associate the
objects in the array with the corresponding Java class. If you do not specify a type
map, or if the type map does not contain an entry for a particular Oracle object, then
each element is returned as an oracle.sql.STRUCT object.

If you want the type map to determine the mapping between the Oracle objects in
the array and their associated Java classes, then you must add an appropriate entry
to the map. For instructions on how to add entries to an existing type map or how
to create a new type map, see "Understanding Type Maps for SQLData
Implementations" on page 8-10.

The following example illustrates how you can use a type map to map the elements
of an array to a custom Java object class. In this case, the array is a nested table. The
example begins by defining an EMPLOYEE object that has a name attribute and
employee number attribute. EMPLOYEE_LIST is a nested table type of EMPLOYEE
objects. Then an EMPLOYEE_TABLE is created to store the names of departments
within a corporation and the employees associated with each department. In the
EMPLOYEE_TABLE, the employees are stored in the form of EMPLOYEE_LIST
tables.

stmt.execute("CREATE TYPE EMPLOYEE AS OBJECT
 (EmpName VARCHAR2(50),EmpNo INTEGER))");

stmt.execute("CREATE TYPE EMPLOYEE_LIST AS TABLE OF EMPLOYEE");

stmt.execute("CREATE TABLE EMPLOYEE_TABLE (DeptName VARCHAR2(20),
 Employees EMPLOYEE_LIST) NESTED TABLE Employees STORE AS ntable1");

stmt.execute("INSERT INTO EMPLOYEE_TABLE VALUES ("SALES", EMPLOYEE_LIST
 (EMPLOYEE(’Susan Smith’, 123), EMPLOYEE(’Scott Tiger’, 124)))");

If you want to retrieve all the employees belonging to the SALES department into
an array of instances of the custom object class EmployeeObj, then you must add
an entry to the type map to specify mapping between the EMPLOYEE SQL type and
the EmployeeObj custom object class.

To do this, first create your statement and result set objects, then select the
EMPLOYEE_LIST associated with the SALES department into the result set. Cast the
result set to OracleResultSet so you can use the getARRAY() method to
retrieve the EMPLOYEE_LIST into an ARRAY object (employeeArray in the
example below).
10-18 JDBC Developer’s Guide and Reference

Using a Type Map to Map Array Elements
The EmployeeObj custom object class in this example implements the SQLData
interface. "Custom Object Class—SQLData Implementation" on page 17-35 contains
the code that creates the EmployeeObj type.

Statement s = conn.createStatement();
OracleResultSet rs = (OracleResultSet)s.executeQuery
 ("SELECT Employees FROM employee_table WHERE DeptName = ’SALES’");

// get the array object
ARRAY employeeArray = ((OracleResultSet)rs).getARRAY(1);

Now that you have the EMPLOYEE_LIST object, get the existing type map and add
an entry that maps the EMPLOYEE SQL type to the EmployeeObj Java type.

// add type map entry to map SQL type
// "EMPLOYEE" to Java type "EmployeeObj"
Map map = conn.getTypeMap();
map.put("EMPLOYEE", Class.forName("EmployeeObj"));

Next, retrieve the SQL EMPLOYEE objects from the EMPLOYEE_LIST. To do this,
invoke the getArray() method of the employeeArray array object. This method
returns an array of objects. The getArray() method returns the EMPLOYEE objects
into the employees object array.

// Retrieve array elements
Object[] employees = (Object[]) employeeArray.getArray();

Finally, create a loop to assign each of the EMPLOYEE SQL objects to the
EmployeeObj Java object emp.

// Each array element is mapped to EmployeeObj object.
for (int i=0; i<employees.length; i++)
{
 EmployeeObj emp = (EmployeeObj) employees[i];
 ...
}

Working with Oracle Collections 10-19

Custom Collection Classes with JPublisher
Custom Collection Classes with JPublisher
This chapter primarily describes the functionality of the oracle.sql.ARRAY class,
but it is also possible to access Oracle collections through custom Java classes or,
more specifically, custom collection classes.

You can create custom collection classes yourself, but the most convenient way is to
use the Oracle JPublisher utility. Custom collection classes generated by JPublisher
offer all the functionality described earlier in this chapter, as well as the following
advantages (it is also possible to implement such functionality yourself):

■ They are strongly typed. This can help you find coding errors during
compilation that might not otherwise be discovered until runtime.

■ They can be changeable, or mutable. Custom collection classes produced by
JPublisher, unlike the ARRAY class, allow you to get and set individual elements
using the getElement() and setElement() methods. (This is also
something you could implement in a custom collection class yourself.)

A custom collection class must satisfy three requirements:

■ It must implement the oracle.sql.CustomDatum interface described under
"Creating and Using Custom Object Classes for Oracle Objects" on page 8-9.
Note that the standard JDBC SQLData interface, which is an alternative for
custom object classes, is not intended for custom collection classes.

■ It, or a companion class, must implement the
oracle.sql.CustomDatumFactory interface, for creating instances of the
custom collection class.

■ It must have a means of storing the collection data. Typically it will directly or
indirectly include an oracle.sql.ARRAY attribute for this purpose (this is the
case with a JPublisher-produced custom collection class).

A JPublisher-generated custom collection class implements CustomDatum and
CustomDatumFactory and indirectly includes an oracle.sql.ARRAY attribute.
The custom collection class will have an oracle.jpub.runtime.MutableArray
attribute. The MutableArray class has an oracle.sql.ARRAY attribute.
10-20 JDBC Developer’s Guide and Reference

Custom Collection Classes with JPublisher
As an example of custom collection classes being strongly typed, if you define an
Oracle collection MYVARRAY, then JPublisher can generate a MyVarray custom
collection class. Using MyVarray instances, instead of generic
oracle.sql.ARRAY instances, makes it easier to catch errors during compilation
instead of at runtime—for example, if you accidentally assign some other kind of
array into a MyVarray variable.

If you do not use custom collection classes, then you would use standard
java.sql.Array instances (or oracle.sql.ARRAY instances) to map to your
collections.

For more information about JPublisher, see "Using JPublisher to Create Custom
Object Classes" on page 8-28, or refer to the Oracle8i JPublisher User’s Guide.

Note: When you use JPublisher to create a custom collection class,
you must use the CustomDatum implementation. This will be true
if JPublisher’s -usertypes mapping option is set to oracle,
which is the default.

You cannot use a SQLData implementation for a custom collection
class (that implementation is for custom object classes only). Setting
the -usertypes mapping option to jdbc is invalid.
Working with Oracle Collections 10-21

Custom Collection Classes with JPublisher
10-22 JDBC Developer’s Guide and Reference

Result Set Enhan
11

Result Set Enhancements

Standard JDBC 2.0 features in JDK 1.2.x include enhancements to result set
functionality—processing forward or backward, positioning relatively or absolutely,
seeing changes to the database made internally or externally, and updating result
set data and then copying the changes to the database.

This chapter discusses these features, including the following topics:

■ Overview

■ Creating Scrollable or Updatable Result Sets

■ Positioning and Processing in Scrollable Result Sets

■ Updating Result Sets

■ Fetch Size

■ Refetching Rows

■ Seeing Database Changes Made Internally and Externally

■ Summary of New Methods for Result Set Enhancements

The Oracle JDBC drivers also include extensions to support these features in a JDK
1.1.x environment.

For more general and conceptual information about JDBC 2.0 result set
enhancements, refer to the Sun Microsystems JDBC 2.0 API specification.
cements 11-1

Overview
Overview
This section provides an overview of JDBC 2.0 result set functionality and
categories, and some discussion of implementation requirements for the Oracle
JDBC drivers.

Result Set Functionality and Result Set Categories Supported in JDBC 2.0
Result set functionality in JDBC 2.0 includes enhancements for scrollability and
positioning, sensitivity to changes by others, and updatability.

■ Scrollability, positioning, and sensitivity are determined by the result set type.

■ Updatability is determined by the concurrency type.

Specify the desired result set type and concurrency type when you create the
statement object that will produce the result set.

Together, the various result set types and concurrency types provide for six different
categories of result set.

This section provides an overview of these enhancements, types, and categories.

Scrollability, Positioning, and Sensitivity
Scrollability refers to the ability to move backward as well as forward through a
result set. Associated with scrollability is the ability to move to any particular
position in the result set, through either relative positioning or absolute positioning.

Relative positioning allows you to move a specified number of rows forward or
backward from the current row. Absolute positioning allows you to move to a
specified row number, counting from either the beginning or the end of the result
set.

Under JDBC 1.0 (in JDK 1.1.x) you can scroll only forward, using the next()
method as described in "Process the Result Set" on page 3-11, and there is no
positioning functionality. You can start only at the beginning and iterate
row-by-row until the end.

Under JDBC 2.0 (in JDK 1.2.x), scrollable/positionable result sets are also available.

When creating a scrollable/positionable result set, you must also specify sensitivity.
This refers to the ability of a result set to detect and reveal changes made to the
underlying database from outside the result set.
11-2 JDBC Developer’s Guide and Reference

Overview
A sensitive result set can see changes made to the database while the result set is
open, providing a dynamic view of the underlying data. Changes made to the
underlying columns values of rows in the result set are visible.

An insensitive result set is not sensitive to changes made to the database while the
result set is open, providing a static view of the underlying data. You would need to
retrieve a new result set to see changes made to the database.

Sensitivity is not an option in a JDBC 1.0/non-scrollable result set.

Result Set Types for Scrollability and Sensitivity
When you create a result set under JDBC 2.0 functionality, you must choose a
particular result set type to specify whether the result set is scrollable/positional
and sensitive to underlying database changes.

If the JDBC 1.0 functionality is all you desire, JDBC 2.0 continues to support this
through the forward-only result set type. A forward-only result set cannot be
sensitive.

If you want a scrollable result set, you must also specify sensitivity. Specify the
scroll-sensitive type for the result set to be scrollable and sensitive to underlying
changes. Specify the scroll-insensitive type for the result set to be scrollable but not
sensitive to underlying changes.

To summarize, the following three result set types are available with JDBC 2.0:

■ forward-only (JDBC 1.0 functionality—not scrollable, not positionable, and not
sensitive)

■ scroll-sensitive (scrollable and positionable; also sensitive to underlying
database changes)

■ scroll-insensitive (scrollable and positionable but not sensitive to underlying
database changes)

Note: The sensitivity of a scroll-sensitive result set (how often it is
updated to see external changes) is affected by fetch size. See Fetch
Size on page 11-24 and "Oracle Implementation of Scroll-Sensitive
Result Sets" on page 11-30.
Result Set Enhancements 11-3

Overview
Updatability
Updatability refers to the ability to update data in a result set and then (presumably)
copy the changes to the database. This includes inserting new rows into the result
set or deleting existing rows.

Updatability might also require database write locks to mediate access to the
underlying database. Because you cannot have multiple write locks concurrently,
updatability in a result set is associated with concurrency in database access.

Result sets can optionally be updatable under JDBC 2.0, but not under JDBC 1.0.

Concurrency Types for Updatability
The concurrency type of a result set determines whether it is updatable. Under
JDBC 2.0, the following concurrency types are available:

■ updatable (updates, inserts, and deletes can be performed on the result set and
copied to the database)

■ read-only (the result set cannot be modified in any way)

Summary of Result Set Categories
Because scrollability and sensitivity are independent of updatability, the three result
set types and two concurrency types combine for a total of six result set categories:

■ forward-only/read-only

■ forward-only/updatable

■ scroll-sensitive/read-only

■ scroll-sensitive/updatable

■ scroll-insensitive/read-only

■ scroll-insensitive/updatable

Note: Updatability is independent of scrollability and sensitivity,
although it is typical for an updatable result set to also be scrollable
so that you can position it to particular rows that you want to
update or delete.
11-4 JDBC Developer’s Guide and Reference

Overview
Oracle JDBC Implementation Overview for Result Set Enhancements
This section discusses key aspects of the Oracle JDBC implementation of result set
enhancements for scrollability—through use of a client-side cache—and for
updatability—through use of ROWIDs.

It is permissible for customers to implement their own client-side caching
mechanism, and Oracle provides an interface to use in doing so.

Oracle JDBC Implementation for Result Set Scrollability
Because the underlying Oracle8i server does not support scrollable cursors, Oracle
JDBC must implement scrollability in a separate layer.

It is important to be aware that this is accomplished by using a client-side memory
cache to store rows of a scrollable result set.

Scrollable cursors in the Oracle server, and therefore a server-side cache, will be
supported in a future Oracle release.

Oracle JDBC Implementation for Result Set Updatability
To support updatability, Oracle JDBC uses ROWIDs to uniquely identify database
rows that appear in a result set. For every query into an updatable result set, the
Oracle JDBC driver automatically retrieves the ROWID along with the columns you
select.

Note: A forward-only updatable result set has no positioning
functionality. You can only update rows as you iterate through
them with the next() method.

Important: Because all rows of any scrollable result set are stored
in the client-side cache, a situation where the result set contains
many rows, many columns, or very large columns might cause the
client-side Java virtual machine to fail. Do not specify scrollability for
a large result set.

Note: Client-side caching is not required by updatability in and of
itself. In particular, a forward-only updatable result set will not
require a client-side cache.
Result Set Enhancements 11-5

Overview
Implementing a Custom Client-Side Cache for Scrollability
There is some flexibility in how to implement client-side caching in support of JDBC
2.0 scrollable result sets.

Although Oracle JDBC provides a complete implementation, it also supplies an
interface, OracleResultSetCache, that you can implement as desired:

public interface OracleResultSetCache
{
 /**
 * Save the data in the i-th row and j-th column.
 */
 public void put (int i, int j, Object value) throws IOException;

 /**
 * Return the data stored in the i-th row and j-th column.
 */
 public Object get (int i, int j) throws IOException;

 /**
 * Remove the i-th row.
 */
 public void remove (int i) throws IOException;

 /**
 * Remove the data stored in i-th row and j-th column
 */
 public void remove (int i, int j) throws IOException;

 /**
 * Remove all data from the cache.
 */
 public void clear () throws IOException;

 /**
 * Close the cache.
 */
 public void close () throws IOException;
}
11-6 JDBC Developer’s Guide and Reference

Overview
If you implement this interface with your own class, your application code must
instantiate your class and then use the setResultSetCache() method of an
OracleStatement, OraclePreparedStatement, or
OracleCallableStatement object to set the caching mechanism to use your
implementation. Following is the method signature:

■ void setResultSetCache(OracleResultSetCache cache)
 throws SQLException

Call this method prior to executing a query. The result set produced by the query
will then use your specified caching mechanism.
Result Set Enhancements 11-7

Creating Scrollable or Updatable Result Sets
Creating Scrollable or Updatable Result Sets
Under JDBC 1.0, no special attention is required in creating and using a result set. A
result set is produced automatically to store the results of a query, and no result set
types or categories must be specified, because there is only one kind of result set
available—forward-only/read-only. For example (given a connection object conn):

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("SELECT empno, sal FROM emp");

In using JDBC 2.0 result set enhancements, however, you may specify the result set
type (for scrollability and sensitivity) and the concurrency type (for updatability)
when you create a generic statement or prepare a prepared statement or callable
statement that will execute a query.

(Note, however, that callable statements are intended to execute stored procedures
and functions and rarely return a result set. Still, the callable statement class is a
subclass of the prepared statement class and so inherits this functionality.)

This section discusses the creation of result sets to use JDBC 2.0 enhancements.

Specifying Result Set Scrollability and Updatability
Under JDBC 2.0, Connection classes have new createStatement(),
prepareStatement(), and prepareCall() method signatures that take a result
set type and a concurrency type as input:

■ Statement createStatement
 (int resultSetType, int resultSetConcurrency)

■ PreparedStatement prepareStatement
 (String sql, int resultSetType, int resultSetConcurrency)

■ CallableStatement prepareCall
 (String sql, int resultSetType, int resultSetConcurrency)

The statement objects created will have the intelligence to produce the appropriate
kind of result sets.

You can specify one of the following static constant values for result set type:

■ ResultSet.TYPE_FORWARD_ONLY

■ ResultSet.TYPE_SCROLL_INSENSITIVE

■ ResultSet.TYPE_SCROLL_SENSITIVE
11-8 JDBC Developer’s Guide and Reference

Creating Scrollable or Updatable Result Sets
And you can specify one of the following static constant values for concurrency
type:

■ ResultSet.CONCUR_READ_ONLY

■ ResultSet.CONCUR_UPDATABLE

After creating a Statement, PreparedStatement, or CallableStatement
object, you can verify its result set type and concurrency type by calling the
following methods on the statement object:

■ int getResultSetType() throws SQLException

■ int getResultSetConcurrency() throws SQLException

Example Following is an example of a prepared statement object that specifies a
scroll-sensitive and updatable result set for queries executed through that statement
(where conn is a connection object):

...
PreparedStatement pstmt = conn.prepareStatement
 ("SELECT empno, sal FROM emp WHERE empno = ?",
 ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);

pstmt.setString(1, "28959");
ResultSet rs = pstmt.executeQuery();
...

Note: See "Oracle Implementation of Scroll-Sensitive Result Sets"
on page 11-30 for information about possible performance impact.

Note: If you are using the Oracle JDBC drivers in a JDK 1.1.x
environment , the static constants discussed here are part of the
Oracle extensions, belonging only to the OracleResultSet class,
which you must specify. For example:

OracleResultSet.TYPE_SCROLL_SENSITIVE

instead of:

ResultSet.TYPE_SCROLL_SENSITIVE
Result Set Enhancements 11-9

Creating Scrollable or Updatable Result Sets
Result Set Limitations and Downgrade Rules
Some types of result sets are not feasible for certain kinds of queries. If you specify
an unfeasible result set type or concurrency type for the query you execute, the
JDBC driver follows a set of rules to determine the best feasible types to use instead.

The actual result set type and concurrency type are determined when the statement
is executed, with the driver issuing a SQLWarning on the statement object if the
desired result set type or concurrency type is not feasible. The SQLWarning object
will contain the reason why the requested type was not feasible. Check for warnings
to verify whether you received the type of result set that you requested, or call the
methods described in "Verifying Result Set Type and Concurrency Type" on
page 11-12.

Result Set Limitations
The following limitations are placed on queries for enhanced result sets. Failure to
follow these guidelines will result in the JDBC driver choosing an alternative result
set type or concurrency type.

To produce an updatable result set:

■ A query can select from only a single table and cannot contain any join
operations.

In addition, for inserts to be feasible, the query must select all non-nullable
columns and all columns that do not have a default value.

■ A query cannot use "SELECT * ". (But see the workaround below.)

■ A query must select table columns only. It cannot select derived columns or
aggregates such as the SUM or MAX of a set of columns.

■ A query cannot use ORDER BY.

To produce a scroll-sensitive result set:

■ A query cannot use "SELECT * ". (But see the workaround below.)

■ A query can select from only a single table.

■ A query cannot use ORDER BY.

In fact, you cannot use ORDER BY for any result set where you will want to refetch
rows. This applies to scroll-insensitive/updatable result sets as well as
scroll-sensitive result sets. (See "Summary of New Methods for Result Set
Enhancements" on page 11-32 for general information about refetching.)
11-10 JDBC Developer’s Guide and Reference

Creating Scrollable or Updatable Result Sets
Workaround As a workaround for the "SELECT *" limitation, you can use table
aliases as in the following example:

SELECT t.* FROM TABLE t ...

Result Set Downgrade Rules
If the specified result set type or concurrency type is not feasible, the Oracle JDBC
driver uses the following rules in choosing alternate types:

■ If the specified result set type is TYPE_SCROLL_SENSITIVE, but the JDBC
driver cannot fulfill that request, then the driver attempts a downgrade to
TYPE_SCROLL_INSENSITIVE.

■ If the specified (or downgraded) result set type is
TYPE_SCROLL_INSENSITIVE, but the JDBC driver cannot fulfill that request,
then the driver attempts a downgrade to TYPE_FORWARD_ONLY.

Furthermore:

■ If the specified concurrency type is CONCUR_UPDATABLE, but the JDBC driver
cannot fulfill that request, then the JDBC driver attempts a downgrade to
CONCUR_READ_ONLY.

Hint: There is a simple way to determine if your query will
probably produce a scroll-sensitive or updatable result set: If you
can legally add a ROWID column to the query list, then the query is
probably suitable for either a scroll-sensitive or an updatable result
set. (You can try this out using SQL*Plus, for example.)

Notes:

■ Criteria that would prevent the JDBC driver from fulfilling the
result set type specifications are listed in "Result Set
Limitations" on page 11-10.

■ Any manipulations of the result set type and concurrency type
by the JDBC driver are independent of each other.
Result Set Enhancements 11-11

Creating Scrollable or Updatable Result Sets
Verifying Result Set Type and Concurrency Type
After a query has been executed, you can verify the result set type and concurrency
type that the JDBC driver actually used, by calling methods on the result set object.

■ int getType() throws SQLException

This method returns an int value for the result set type used for the query.
ResultSet.TYPE_FORWARD_ONLY,
ResultSet.TYPE_SCROLL_SENSITIVE, or
ResultSet.TYPE_SCROLL_INSENSITIVE are the possible values.

■ int getConcurrency() throws SQLException

This method returns an int value for the concurrency type used for the query.
ResultSet.CONCUR_READ_ONLY or ResultSet.CONCUR_UPDATABLE are
the possible values.
11-12 JDBC Developer’s Guide and Reference

Positioning and Processing in Scrollable Result Sets
Positioning and Processing in Scrollable Result Sets
Scrollable result sets (result set type TYPE_SCROLL_SENSITIVE or
TYPE_SCROLL_INSENSITIVE) allow you to iterate through, them either forward
or backward, and to position the result set to any desired row.

This section discusses positioning within a scrollable result set and how to process a
scrollable result set backward, instead of forward.

For a complete sample application demonstrating this functionality, see "Positioning
in a Result Set—ResultSet2.java" on page 17-43.

Positioning in a Scrollable Result Set
In a scrollable result set, you can use several result set methods to move to a desired
position and to check the current position.

Methods for Moving to a New Position
The following result set methods are available for moving to a new position in a
scrollable result set:

■ void beforeFirst() throws SQLException

■ void afterLast() throws SQLException

■ boolean first() throws SQLException

■ boolean last() throws SQLException

■ boolean absolute(int row) throws SQLException

■ boolean relative(int row) throws SQLException

beforeFirst() Method Positions to before the first row of the result set, or has no effect
if there are no rows in the result set.

This is where you would typically start iterating through a result set to process it
going forward, and is the default initial position for any kind of result set.

You are outside the result set bounds after a beforeFirst() call. There is no valid
current row, and you cannot position relatively from this point.

Note: You cannot position a forward-only result set. Any attempt
to position it or to determine the current position will result in a
SQL exception.
Result Set Enhancements 11-13

Positioning and Processing in Scrollable Result Sets
afterLast() Method Positions to after the last row of the result set, or has no effect if
there are no rows in the result set.

This is where you would typically start iterating through a result set to process it
going backward.

You are outside the result set bounds after an afterLast() call. There is no valid
current row, and you cannot position relatively from this point.

first() Method Positions to the first row of the result set, or returns false if there are
no rows in the result set.

last() Method Positions to the last row of the result set, or returns false if there are
no rows in the result set.

absolute() Method Positions to an absolute row from either the beginning or end of
the result set. If you input a positive number, it positions from the beginning; if you
input a negative number, it positions from the end. This method returns false if
there are no rows in the result set.

Attempting to move forward beyond the last row, such as an absolute(11) call if
there are 10 rows, will position to after the last row, having the same effect as an
afterLast() call.

Attempting to move backward beyond the first row, such as an absolute(-11)
call if there are 10 rows, will position to before the first row, having the same effect
as a beforeFirst() call.

relative() Method Moves to a position relative to the current row, either forward if you
input a positive number or backward if you input a negative number, or returns
false if there are no rows in the result set.

The result set must be at a valid current row for use of the relative() method.

Attempting to move forward beyond the last row will position to after the last row,
having the same effect as an afterLast() call.

Attempting to move backward beyond the first row will position to before the first
row, having the same effect as a beforeFirst() call.

A relative(0) call is valid but has no effect.

Note: Calling absolute(1) is equivalent to calling first();
calling absolute(-1) is equivalent to calling last().
11-14 JDBC Developer’s Guide and Reference

Positioning and Processing in Scrollable Result Sets
Methods for Checking the Current Position
The following result set methods are available for checking the current position in a
scrollable result set:

■ boolean isBeforeFirst() throws SQLException

Returns true if the position is before the first row.

■ boolean isAfterLast() throws SQLException

Returns true if the position is after the last row.

■ boolean isFirst() throws SQLException

Returns true if the position is at the first row.

■ boolean isLast() throws SQLException

Returns true if the position is at the last row.

■ int getRow() throws SQLException

Returns the row number of the current row, or returns 0 if there is no valid
current row.

Important: You cannot position relatively from before the first row
(which is the default initial position) or after the last row.
Attempting relative positioning from either of these positions
would result in a SQL exception.

Note: The boolean methods—isFirst(), isLast(),
isAfterFirst(), and isAfterLast()—all return false (and
do not throw an exception) if there are no rows in the result set.
Result Set Enhancements 11-15

Positioning and Processing in Scrollable Result Sets
Processing a Scrollable Result Set
In a scrollable result set you can iterate backward instead of forward as you process
the result set. The following methods are available:

■ boolean next() throws SQLException

■ boolean previous() throws SQLException

The previous() method works similarly to the next() method, in that it returns
true as long as the new current row is valid, and false as soon as it runs out of
rows (has passed the first row).

Backward versus Forward Processing
You can process the entire result set going forward, using the next() method as in
JDBC 1.0. This is documented in "Process the Result Set" on page 3-11. The default
initial position in the result set is before the first row, appropriately, but you can call
the beforeFirst() method if you have moved elsewhere since the result set was
created.

To process the entire result set going backward, call afterLast(), then use the
previous() method. For example (where conn is a connection object):

...
/* NOTE: The specified concurrency type, CONCUR_UPDATABLE, is not relevant to
this example. */

Statement stmt = conn.createStatement
 (ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);

ResultSet rs = stmt.executeQuery("SELECT empno, sal FROM emp");

rs.afterLast();
while (rs.previous())
{
 System.out.println(rs.getString("empno") + " " + rs.getFloat("sal"));
}
...

Unlike relative positioning, you can (and typically do) use next() from before the
first row and previous() from after the last row. You do not have to be at a valid
current row to use these methods.
11-16 JDBC Developer’s Guide and Reference

Positioning and Processing in Scrollable Result Sets
Presetting the Fetch Direction
The JDBC 2.0 standard allows the ability to pre-specify the direction, known as the
fetch direction, for use in processing a result set. This allows the JDBC driver to
optimize its processing. The following result set methods are specified:

■ void setFetchDirection(int direction) throws SQLException

■ int getFetchDirection() throws SQLException

With release 8.1.6, however, the Oracle JDBC drivers support only the forward
preset value, which you can specify by inputting the ResultSet.FETCH_FORWARD
static constant value.

The values ResultSet.FETCH_REVERSE and ResultSet.FETCH_UNKNOWN are
not supported—attempting to specify them causes a SQL warning, and the settings
are ignored.

Note: In a non-scrollable result set, you can process only with the
next() method. Attempting to use the previous() method will
cause a SQL exception.
Result Set Enhancements 11-17

Updating Result Sets
Updating Result Sets
A concurrency type of CONCUR_UPDATABLE allows you to update rows in the result
set, delete rows from the result set, or insert rows into the result set.

After you perform an UPDATE or INSERT operation in a result set, you propagate
the changes to the database in a separate step that you can skip if you want to
cancel the changes.

A DELETE operation in a result set, however, is immediately executed (but not
necessarily committed) in the database as well.

For sample applications demonstrating this functionality, see "Inserting and
Deleting Rows in a Result Set—ResultSet3.java" on page 17-47 and "Updating Rows
in a Result Set—ResultSet4.java" on page 17-50.

Performing a DELETE Operation in a Result Set
The result set deleteRow() method will delete the current row. Following is the
method signature:

■ void deleteRow() throws SQLException

Presuming the result set is also scrollable, you can position to a row using any of the
available positioning methods (except beforeFirst() and afterLast(), which

Note: When using an updatable result set, it is typical to also
make it scrollable. This allows you to position to any row that you
want to change. With a forward-only updatable result set, you can
change rows only as you iterate through them with the next()
method.

Important: Unlike UPDATE and INSERT operations in a result set,
which require a separate step to propagate the changes to the
database, a DELETE operation in a result set is immediately
executed in the corresponding row in the database as well.

Once you call deleteRow(), the changes will be made permanent
with the next transaction COMMIT operation. Remember also that
by default, the auto-commit flag is set to true. Therefore, unless
you override this default, any deleteRow() operation will be
executed and committed immediately.
11-18 JDBC Developer’s Guide and Reference

Updating Result Sets
do not go to a valid current row), and then delete that row, as in the following
example (presuming a result set rs):

...
rs.absolute(5);
rs.deleteRow();
...

See "Positioning in a Scrollable Result Set" on page 11-13 for information about the
positioning methods.

Performing an UPDATE Operation in a Result Set
Performing a result set UPDATE operation requires two separate steps to first update
the data in the result set and then copy the changes to the database.

Presuming the result set is also scrollable, you can position to a row using any of the
available positioning methods (except beforeFirst() and afterLast(), which
do not go to a valid current row), and then update that row as desired.

See "Positioning in a Scrollable Result Set" on page 11-13 for information about the
positioning methods.

Here are the steps for updating a row in the result set and database:

1. Call the appropriate updateXXX() methods to update the data in the columns
you want to change.

With JDBC 2.0, a result set object has an updateXXX() method for each
datatype, as with the setXXX() methods previously available for updating the
database directly.

Important: In a forward-only result set in release 8.1.6, the deleted
row remains in the result set object even after it has been deleted
from the database.

In a scrollable result set, by contrast, a DELETE operation is evident
in the local result set object—the row would no longer be in the
result set after the DELETE. The row preceding the deleted row
becomes the current row, and row numbers of subsequent rows are
changed accordingly.

Refer to "Seeing Internal Changes" on page 11-27 for more
information.
Result Set Enhancements 11-19

Updating Result Sets
Each of these methods takes an int for the column number or a string for the
column name and then an item of the appropriate datatype to set the new
value. Following are a couple of examples for a result set rs:

rs.updateString(1, "mystring");
rs.updateFloat(2, 10000.0f);

2. Call the updateRow() method to copy the changes to the database (or the
cancelRowUpdates() method to cancel the changes).

Once you call updateRow(), the changes are executed and will be made
permanent with the next transaction COMMIT operation. Be aware that by
default, the auto-commit flag is set to true so that any executed operation is
committed immediately.

If you choose to cancel the changes before copying them to the database, call the
cancelRowUpdates() method instead. This will also revert to the original
values for that row in the local result set object. Note that once you call the
updateRow() method, the changes are written to the transaction and cannot
be canceled unless you roll back the transaction (auto-commit must be disabled
to allow a ROLLBACK operation).

Positioning to a different row before calling updateRow() also cancels the
changes and reverts to the original values in the result set.

Before calling updateRow(), you can call the usual getXXX() methods to
verify that the values have been updated correctly. These methods take an int
column index or string column name as input. For example:

float myfloat = rs.getFloat(2);
...process myfloat to see if it’s appropriate ...

Note: In release 8.1.6, result set UPDATE operations are visible in
the local result set object for all result set types (forward-only,
scroll-sensitive, and scroll-insensitive).

Refer to "Seeing Internal Changes" on page 11-27 for more
information.
11-20 JDBC Developer’s Guide and Reference

Updating Result Sets
Example Following is an example of a result set UPDATE operation that is also
copied to the database. The tenth row is updated. (The column number is used to
specify column 1, and the column name—sal— is used to specify column 2.)

...
Statement stmt = conn.createStatement
 (ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);

ResultSet rs = stmt.executeQuery("SELECT empno, sal FROM emp");

if (rs.absolute(10)) // (returns false if row does not exist)
{
 rs.updateString(1, "28959");
 rs.updateFloat("sal", 100000.0f);
 rs.updateRow();
}
// Changes will be made permanent with the next COMMIT operation.
...

Performing an INSERT Operation in a Result Set
Result set INSERT operations use what is called the result set insert-row, which is a
staging area that holds the data for the inserted row until it is copied to the
database. You must explicitly move to this row to write the data that will be
inserted.

As with UPDATE operations, result set INSERT operations require separate steps to
first write the data to the insert-row and then copy it to the database .

Following are the steps in executing a result set INSERT operation.

1. Move to the insert-row by calling the result set moveToInsertRow() method.

2. As with UPDATE operations, use the appropriate updateXXX() methods to
write data to the columns. For example:

rs.updateString(1, "mystring");
rs.updateFloat(2, 10000.0f);

Note: The result set will remember the current position prior to
the moveToInsertRow() call. Afterward, you can go back to it
with a moveToCurrentRow() call.
Result Set Enhancements 11-21

Updating Result Sets
(Note that you can specify a string for column name, instead of an integer for
column number.)

3. Copy the changes to the database by calling the result set insertRow()
method.

Once you call insertRow(), the insert is executed and will be made
permanent with the next transaction COMMIT operation.

Positioning to a different row before calling insertRow() cancels the insert
and clears the insert-row.

Before calling insertRow() you can call the usual getXXX() methods to
verify that the values have been set correctly in the insert-row. These methods
take an int column index or string column name as input. For example:

float myfloat = rs.getFloat(2);
...process myfloat to see if it’s appropriate ...

Important: Each column value in the insert-row is undefined until
you call the updateXXX() method for that column. You must call
this method and specify a non-null value for all non-nullable
columns, or else attempting to copy the row into the database will
result in a SQL exception.

It is permissible, however, to not call updateXXX() for a nullable
column. This will result in a value of null.

Note: In release 8.1.6, no result set type (neither scroll-sensitive,
scroll-insensitive, nor forward-only) can see a row inserted by a
result set INSERT operation.

Refer to "Seeing Internal Changes" on page 11-27 for more
information.
11-22 JDBC Developer’s Guide and Reference

Updating Result Sets
Example The following example performs a result set INSERT operation, moving to
the insert-row, writing the data, copying the data into the database, and then
returning to what was the current row prior to going to the insert-row. (The column
number is used to specify column 1, and the column name—sal— is used to
specify column 2.)

...
Statement stmt = conn.createStatement
 (ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);

ResultSet rs = stmt.executeQuery("SELECT empno, sal FROM emp");

rs.moveToInsertRow();
rs.updateString(1, "28959");
rs.updateFloat("sal", 100000.0f);
rs.insertRow();
// Changes will be made permanent with the next COMMIT operation.
rs.moveToCurrentRow(); // Go back to where we came from...
...

Update Conflicts
It is important to be aware of the following facts regarding updatable result sets
with the release 8.1.6 JDBC drivers:

■ The drivers do not enforce write locks for an updatable result set.

■ The drivers do not check for conflicts with a result set DELETE or UPDATE
operation.

A conflict will occur if you try to perform a DELETE or UPDATE operation on a row
updated by another committed transaction.

The Oracle JDBC drivers use the ROWID to uniquely identify a row in a database
table. As long as the ROWID is still valid when a driver tries to send an UPDATE or
DELETE operation to the database, the operation will be executed.

The driver will not report any changes made by another committed transaction.
Any conflicts are silently ignored and your changes will overwrite the previous
changes.

To avoid such conflicts, use the Oracle FOR UPDATE feature when executing the
query that produces the result set. This will avoid conflicts, but will also prevent
simultaneous access to the data. Only a single write lock can be held concurrently
on a data item.
Result Set Enhancements 11-23

Fetch Size
Fetch Size
By default, when Oracle JDBC executes a query, it receives the result set 10 rows at a
time from the database cursor. This is the default Oracle row-prefetch value. You can
change the number of rows retrieved with each trip to the database cursor by
changing the row-prefetch value (see "Oracle Row Prefetching" on page 12-20 for
more information).

JDBC 2.0 also allows you to specify the number of rows fetched with each database
round trip for a query, and this number is referred to as the fetch size. In Oracle
JDBC, the row-prefetch value is used as the default fetch size in a statement object.
Setting the fetch size overrides the row-prefetch setting and affects subsequent
queries executed through that statement object.

Fetch size is also used in a result set. When the statement object executes a query,
the fetch size of the statement object is passed to the result set object produced by
the query. However, you can also set the fetch size in the result set object to override
the statement fetch size that was passed to it. (Also note that changes made to a
statement object’s fetch size after a result set is produced will have no affect on that
result set.)

The result set fetch size, either set explicitly, or by default equal to the statement
fetch size that was passed to it, determines the number of rows that are retrieved in
any subsequent trips to the database for that result set. This includes any trips that
are still required to complete the original query, as well as any refetching of data into
the result set. (Data can be refetched, either explicitly or implicitly, to update a
scroll-sensitive or scroll-insensitive/updatable result set. See "Refetching Rows" on
page 11-26.)

Setting the Fetch Size
The following methods are available in all Statement, PreparedStatement,
CallableStatement, and ResultSet objects for setting and getting the fetch
size:

■ void setFetchSize(int rows) throws SQLException

■ int getFetchSize() throws SQLException

To set the fetch size for a query, call setFetchSize() on the statement object prior
to executing the query. If you set the fetch size to N, then N rows are fetched with
each trip to the database.

After you have executed the query, you can call setFetchSize() on the result set
object to override the statement object fetch size that was passed to it. This will
11-24 JDBC Developer’s Guide and Reference

Fetch Size
affect any subsequent trips to the database to get more rows for the original query,
as well as affecting any later refetching of rows. (See "Refetching Rows" on
page 11-26.)

Use of Standard Fetch Size versus Oracle Row-Prefetch Setting
Using the JDBC 2.0 fetch size is fundamentally similar to using the Oracle
row-prefetch value, except that with the row-prefetch value you do not have the
flexibility of distinct values in the statement object and result set object. The row
prefetch value would be used everywhere.

Furthermore, JDBC 2.0 fetch size usage is portable and can be used with other JDBC
drivers. Oracle row-prefetch usage is vendor-specific.

See "Oracle Row Prefetching" on page 12-20 for a general discussion of this Oracle
feature.

Note: Do not mix the JDBC 2.0 fetch size API and the Oracle row
prefetching API in your application. You can use one or the other,
but not both.
Result Set Enhancements 11-25

Refetching Rows
Refetching Rows
The result set refreshRow() method is supported for some types of result sets for
refetching data. This consists of going back to the database to re-obtain the database
rows that correspond to N rows in the result set, starting with the current row,
where N is the fetch size (described above in "Fetch Size" on page 11-24). This lets
you see the latest updates to the database that were made outside of your result set,
subject to the isolation level of the enclosing transaction.

Because refetching re-obtains only rows that correspond to rows already in your
result set, it does nothing about rows that have been inserted or deleted in the
database since the original query. It ignores rows that have been inserted, and rows
will remain in your result set even after the corresponding rows have been deleted
from the database. When there is an attempt to refetch a row that has been deleted
in the database, the corresponding row in the result set will maintain its original
values.

Following is the refreshRow() method signature:

■ void refreshRow() throws SQLException

You must be at a valid current row when you call this method, not outside the row
bounds and not at the insert-row.

With the 8.1.6 release, the refreshRow() method is supported for the following
result set categories:

■ scroll-sensitive/read-only

■ scroll-sensitive/updatable

■ scroll-insensitive/updatable

Oracle JDBC might support additional result set categories in future releases.

For a code sample that explicitly refetches data using the refreshRow() method,
see "Refetching Rows in a Result Set—ResultSet6.java" on page 17-55.

Note: Scroll-sensitive result set functionality is implemented
through implicit calls to refreshRow(). See "Oracle
Implementation of Scroll-Sensitive Result Sets" on page 11-30 for
details.
11-26 JDBC Developer’s Guide and Reference

Seeing Database Changes Made Internally and Externally
Seeing Database Changes Made Internally and Externally
This section discusses the ability of a result set to see the following:

■ its own changes (DELETE, UPDATE, or INSERT operations within the result set),
referred to as internal changes

■ changes made from elsewhere (either from your own transaction outside the
result set, or from other committed transactions), referred to as external changes

Near the end of the section is a summary table.

Seeing Internal Changes
The ability of an updatable result set to see its own changes depends on both the
result set type and the kind of change (UPDATE, DELETE, or INSERT). This is
discussed at various points throughout the "Updating Result Sets" section
beginning on on page 11-18, and is summarized as follows:

■ Internal DELETE operations are visible for scrollable result sets (scroll-sensitive
or scroll-insensitive), but are not visible for forward-only result sets.

After you delete a row in a scrollable result set, the preceding row becomes the
new current row, and subsequent row numbers are updated accordingly.

■ Internal UPDATE operations are always visible, regardless of the result set type
(forward-only, scroll-sensitive, or scroll-insensitive).

■ Internal INSERT operations are never visible, regardless of the result set type
(neither forward-only, scroll-sensitive, nor scroll-insensitive).

An internal change being "visible" essentially means that a subsequent getXXX()
call will see the data changed by a preceding updateXXX() call on the same data
item.

Note: External changes are referred to as "other’s changes" in the
Sun Microsystems JDBC 2.0 specification.
Result Set Enhancements 11-27

Seeing Database Changes Made Internally and Externally
JDBC 2.0 DatabaseMetaData objects include the following methods to verify this.
Each takes a result set type as input (ResultSet.TYPE_FORWARD_ONLY,
ResultSet.TYPE_SCROLL_SENSITIVE, or
ResultSet.TYPE_SCROLL_INSENSITIVE).

■ boolean ownDeletesAreVisible(int) throws SQLException

■ boolean ownUpdatesAreVisible(int) throws SQLException

■ boolean ownInsertsAreVisible(int) throws SQLException

Seeing External Changes
Only a scroll-sensitive result set can see external changes to the underlying
database, and it can only see the changes from external UPDATE operations.
Changes from external DELETE or INSERT operations are never visible.

For implementation details of scroll-sensitive result sets, including exactly how and
how soon external updates become visible, see "Oracle Implementation of
Scroll-Sensitive Result Sets" on page 11-30.

JDBC 2.0 DatabaseMetaData objects include the following methods to verify this.
Each takes a result set type as input (ResultSet.TYPE_FORWARD_ONLY,
ResultSet.TYPE_SCROLL_SENSITIVE, or
ResultSet.TYPE_SCROLL_INSENSITIVE).

■ boolean othersDeletesAreVisible(int) throws SQLException

■ boolean othersUpdatesAreVisible(int) throws SQLException

■ boolean othersInsertsAreVisible(int) throws SQLException

Note: When you make an internal change that causes a trigger to
execute, the trigger changes are effectively external changes.
However, if the trigger affects data in the row you are updating,
you will see those changes for any scrollable/updatable result set,
because an implicit row refetch occurs after the update.

Note: Any discussion of seeing changes from outside the
enclosing transaction presumes the transaction itself has an
isolation level setting that allows the changes to be visible.
11-28 JDBC Developer’s Guide and Reference

Seeing Database Changes Made Internally and Externally
Visibility versus Detection of External Changes
Regarding changes made to the underlying database by external sources, there are
two similar but distinct concepts with respect to visibility of the changes from your
local result set:

■ visibility of changes

■ detection of changes

A change being "visible" means that when you look at a row in the result set, you
can see new data values from changes made by external sources to the
corresponding row in the database.

A change being "detected", however, means that the result set is aware that this is a
new value since the result set was first populated.

With release 8.1.6, even when an Oracle result set sees new data (as with an external
UPDATE in a scroll-sensitive result set), it has no awareness that this data has
changed since the result set was populated. Such changes are not "detected".

JDBC 2.0 DatabaseMetaData objects include the following methods to verify this.
Each takes a result set type as input (ResultSet.TYPE_FORWARD_ONLY,
ResultSet.TYPE_SCROLL_SENSITIVE, or
ResultSet.TYPE_SCROLL_INSENSITIVE).

■ boolean deletesAreDetected(int) throws SQLException

■ boolean updatesAreDetected(int) throws SQLException

■ boolean insertsAreDetected(int) throws SQLException

It follows, then, that result set methods specified by JDBC 2.0 to detect
changes—rowDeleted(), rowUpdated(), and rowInserted()—will always
return false with the 8.1.6 Oracle JDBC drivers. There is no use in calling them.

Note: Explicit use of the refreshRow() method, described in
"Refetching Rows" on page 11-26, is distinct from this discussion of
visibility. For example, even though external updates are "invisible"
to a scroll-insensitive result set, you can explicitly refetch rows in a
scroll-insensitive/updatable result set and retrieve external changes
that have been made. "Visibility" refers only to the fact that the
scroll-insensitive/updatable result set would not see such changes
automatically and implicitly.
Result Set Enhancements 11-29

Seeing Database Changes Made Internally and Externally
Summary of Visibility of Internal and External Changes
Table 11–1 summarizes the discussion in the preceding sections regarding whether a
result set object in the Oracle JDBC implementation can see changes made internally
through the result set itself, and changes made externally to the underlying
database from elsewhere in your transaction or from other committed transactions.

For implementation details of scroll-sensitive result sets, including exactly how and
how soon external updates become visible, see "Oracle Implementation of
Scroll-Sensitive Result Sets" on page 11-30.

Oracle Implementation of Scroll-Sensitive Result Sets
The Oracle implementation of scroll-sensitive result sets involves the concept of a
window, with a window size that is based on the fetch size. The window size affects
how often rows are updated in the result set.

Once you establish a current row by moving to a specified row (as described in
"Positioning in a Scrollable Result Set" on page 11-13), the window consists of the N

Table 11–1 Visibility of Internal and External Changes for Oracle JDBC

Result Set Type

Can See
Internal
DELETE?

Can See
Internal
UPDATE?

Can See
Internal
INSERT?

Can See
External
DELETE?

Can See
External
UPDATE?

Can See
External
INSERT?

forward-only no yes no no no no

scroll-sensitive yes yes no no yes no

scroll-insensitive yes yes no no no no

Notes:

■ Remember that explicit use of the refreshRow() method,
described in "Refetching Rows" on page 11-26, is distinct from
the concept of "visibility" of external changes. This is discussed
in "Seeing External Changes" on page 11-28.

■ Remember that even when external changes are "visible", as
with UPDATE operations underlying a scroll-sensitive result set,
they are not "detected". The result set rowDeleted(),
rowUpdated(), and rowInserted() methods always return
false. This is further discussed in "Visibility versus Detection
of External Changes" on page 11-29.
11-30 JDBC Developer’s Guide and Reference

Seeing Database Changes Made Internally and Externally
rows in the result set starting with that row, where N is the fetch size being used by
the result set (see "Fetch Size" on page 11-24). Note that there is no current row, and
therefore no window, when a result set is first created. The default position is before
the first row, which is not a valid current row.

As you move from row to row, the window remains unchanged as long as the
current row stays within that window. However, once you move to a new current
row outside the window, you redefine the window to be the N rows starting with
the new current row.

Whenever the window is redefined, the N rows in the database corresponding to
the rows in the new window are automatically refetched through an implicit call to
the refreshRow() method (described in "Refetching Rows" on page 11-26),
thereby updating the data throughout the new window.

So external updates are not instantaneously visible in a scroll-sensitive result set;
they are only visible after the automatic refetches just described.

For a sample application that demonstrates the functionality of a scroll-sensitive
result set, see "Scroll-Sensitive Result Set—ResultSet5.java" on page 17-52.

Note: Because this kind of refetching is not a highly efficient or
optimized methodology, there are significant performance
concerns. Consider carefully before using scroll-sensitive result sets
as currently implemented. There is also a significant tradeoff
between sensitivity and performance. The most sensitive result set
is one with a fetch size of 1, which would result in the new current
row being refetched every time you move between rows. However,
this would have a significant impact on the performance of your
application.
Result Set Enhancements 11-31

Summary of New Methods for Result Set Enhancements
Summary of New Methods for Result Set Enhancements
This section summarizes all the new connection, result set, statement, and database
meta data methods added for JDBC 2.0 result set enhancements. These methods are
more fully discussed throughout this chapter.

Modified Connection Methods
Following is an alphabetical summary of modified connection methods that allow
you to specify result set and concurrency types when you create statement objects.

■ Statement createStatement
 (int resultSetType, int resultSetConcurrency)

This method now allows you to specify result set type and concurrency type
when you create a generic Statement object.

■ CallableStatement prepareCall
 (String sql, int resultSetType, int resultSetConcurrency)

This method now allows you to specify result set type and concurrency type
when you create a PreparedStatement object.

■ PreparedStatement prepareStatement
 (String sql, int resultSetType, int resultSetConcurrency)

This method now allows you to specify result set type and concurrency type
when you create a CallableStatement object.

New Result Set Methods
Following is an alphabetical summary of new result set methods for JDBC 2.0 result
set enhancements.

■ boolean absolute(int row) throws SQLException

Move to an absolute row position in the result set.

■ void afterLast() throws SQLException

Move to after the last row in the result set (you will not be at a valid current row
after this call).

■ void beforeFirst() throws SQLException

Move to before the first row in the result set (you will not be at a valid current
row after this call).
11-32 JDBC Developer’s Guide and Reference

Summary of New Methods for Result Set Enhancements
■ void cancelRowUpdates() throws SQLException

Cancel an UPDATE operation on the current row. (Call this after the
updateXXX() calls but before the updateRow() call.)

■ void deleteRow() throws SQLException

Delete the current row.

■ boolean first() throws SQLException

Move to the first row in the result set.

■ int getConcurrency() throws SQLException

Returns an int value for the concurrency type used for the query (either
ResultSet.CONCUR_READ_ONLY or ResultSet.CONCUR_UPDATABLE).

■ int getFetchSize() throws SQLException

Check the fetch size to determine how many rows are fetched in each database
round trip (also available in statement objects).

■ int getRow() throws SQLException

Returns the row number of the current row. Returns 0 if there is no valid current
row.

■ int getType() throws SQLException

Returns an int value for the result set type used for the query (either
ResultSet.TYPE_FORWARD_ONLY,
ResultSet.TYPE_SCROLL_SENSITIVE, or
ResultSet.TYPE_SCROLL_INSENSITIVE).

■ void insertRow() throws SQLException

Write a result set INSERT operation to the database. Call this after calling
updateXXX() methods to set the data values.

■ boolean isAfterLast() throws SQLException

Returns true if the position is after the last row.

■ boolean isBeforeFirst() throws SQLException

Returns true if the position is before the first row.

■ boolean isFirst() throws SQLException

Returns true if the position is at the first row.
Result Set Enhancements 11-33

Summary of New Methods for Result Set Enhancements
■ boolean isLast() throws SQLException

Returns true if the position is at the last row.

■ boolean last() throws SQLException

Move to the last row in the result set.

■ void moveToCurrentRow() throws SQLException

Move from the insert-row staging area back to what had been the current row
prior to the moveToInsertRow() call.

■ void moveToInsertRow() throws SQLException

Move to the insert-row staging area to set up a row to be inserted.

■ boolean next() throws SQLException

Iterate forward through the result set.

■ boolean previous() throws SQLException

Iterate backward through the result set.

■ void refreshRow() throws SQLException

Refetch the database rows corresponding to the current window in the result
set, to update the data. This is called implicitly for scroll-sensitive result sets.

■ boolean relative(int row) throws SQLException

Move to a relative row position, either forward or backward from the current
row.

■ void setFetchSize(int rows) throws SQLException

Set the fetch size to determine how many rows are fetched in each database
round trip when refetching (also available in statement objects).

■ void updateRow() throws SQLException

Write an UPDATE operation to the database after using updateXXX() methods
to update the data values.

■ void updateXXX() throws SQLException

Set or update data values in a row to be updated or inserted. There is an
updateXXX() method for each datatype. After calling all the appropriate
updateXXX() methods for the columns to be updated or inserted, call
updateRow() for an UPDATE operation or insertRow() for an INSERT
operation.
11-34 JDBC Developer’s Guide and Reference

Summary of New Methods for Result Set Enhancements
New Statement Methods
Following is an alphabetical summary of new statement methods for JDBC 2.0
result set enhancements. These methods are available in generic statement,
prepared statement, and callable statement objects.

■ int getFetchSize() throws SQLException

Check the fetch size to determine how many rows are fetched in each database
round trip when executing a query (also available in result set objects).

■ void setFetchSize(int rows) throws SQLException

Set the fetch size to determine how many rows are fetched in each database
round trip when executing a query (also available in result set objects).

■ void setResultSetCache(OracleResultSetCache cache)
 throws SQLException

Use your own client-side cache implementation for scrollable result sets. Create
your own class that implements the OracleResultSetCache interface, then
use the setResultSetCache() method to input an instance of this class to
the statement object that will create the result set.

■ int getResultSetType() throws SQLException

Check the result set type of result sets produced by this statement object (which
was specified when the statement object was created).

■ int getResultSetConcurrency() throws SQLException

Check the concurrency type of result sets produced by this statement object
(which was specified when the statement object was created).

New Database Meta Data Methods
Following is an alphabetical summary of new database meta data methods for
JDBC 2.0 result set enhancements.

■ boolean ownDeletesAreVisible(int) throws SQLException

Returns true if, in this JDBC implementation, the specified result set type can
see the effect of its own internal DELETE operations.

■ boolean ownUpdatesAreVisible(int) throws SQLException

Returns true if, in this JDBC implementation, the specified result set type can
see the effect of its own internal UPDATE operations.
Result Set Enhancements 11-35

Summary of New Methods for Result Set Enhancements
■ boolean ownInsertsAreVisible(int) throws SQLException

Returns true if, in this JDBC implementation, the specified result set type can
see the effect of its own internal INSERT operations.

■ boolean othersDeletesAreVisible(int) throws SQLException

Returns true if, in this JDBC implementation, the specified result set type can
see the effect of an external DELETE operation in the database.

■ boolean othersUpdatesAreVisible(int) throws SQLException

Returns true if, in this JDBC implementation, the specified result set type can
see the effect of an external UPDATE operation in the database.

■ boolean othersInsertsAreVisible(int) throws SQLException

Returns true if, in this JDBC implementation, the specified result set type can
see the effect of an external INSERT operation in the database.

■ boolean deletesAreDetected(int) throws SQLException

Returns true if, in this JDBC implementation, the specified result set type can
detect when an external DELETE operation occurs in the database. This method
always returns false in release 8.1.6.

■ boolean updatesAreDetected(int) throws SQLException

Returns true if, in this JDBC implementation, the specified result set type can
detect when an external UPDATE operation occurs in the database. This method
always returns false in release 8.1.6.

■ boolean insertsAreDetected(int) throws SQLException

Returns true if, in this JDBC implementation, the specified result set type can
detect when an external INSERT operation occurs in the database. This method
always returns false in release 8.1.6.
11-36 JDBC Developer’s Guide and Reference

Performance Exte
12

Performance Extensions

This chapter describes the Oracle performance extensions to the JDBC standard.

In the course of discussing update batching, it also includes a discussion of the
standard update-batching model provided with JDBC 2.0.

This chapter covers the following topics:

■ Update Batching

■ Additional Oracle Performance Extensions

Note: For a general overview of Oracle extensions and detailed
discussion of Oracle packages and type extensions, see Chapter 5,
"Overview of Oracle Extensions".
nsions 12-1

Update Batching
Update Batching
You can reduce the number of round trips to the database, thereby improving
application performance, by grouping multiple UPDATE, DELETE, or INSERT
statements into a single "batch" and having the whole batch sent to the database and
processed in one trip. This is referred to in this manual as update batching and in the
Sun Microsystems JDBC 2.0 specification as batch updates.

This is especially useful with prepared statements, when you are repeating the same
statement with different bind variables.

With release 8.1.6, Oracle JDBC supports two distinct models for update batching:

■ the standard model, supported since release 8.1.6 and implementing the Sun
Microsystems JDBC 2.0 specification, which is referred to as standard update
batching

■ the Oracle-specific model, supported since release 8.1.5 and independent of the
Sun Microsystems JDBC 2.0 specification, which is referred to as Oracle update
batching

Overview of Update Batching Models
This section compares and contrasts the general models and types of statements
supported for standard update batching and Oracle update batching.

Oracle Model versus Standard Model
Oracle update batching uses a batch value that typically results in implicit processing
of a batch. The batch value is the number of operations you want to batch
(accumulate) for each trip to the database. As soon as that many operations have
been added to the batch, the batch is executed. Note the following:

■ You can set a default batch for the connection object, which applies to any
prepared statement executed in that connection.

■ For any individual prepared statement object, you can set a statement batch
value that overrides the connection batch value.

Note: It is important to be aware that you cannot mix theses
models. In any single application, you can use the syntax of one
model or the other, but not both. The Oracle JDBC driver will throw
exceptions when you mix these syntaxes.
12-2 JDBC Developer’s Guide and Reference

Update Batching
■ You can choose to explicitly execute a batch at any time, overriding both the
connection batch value and the statement batch value.

Standard update batching is a manual, explicit model. There is no batch value. You
manually add operations to the batch and then explicitly choose when to execute
the batch.

Oracle update batching is a more efficient model because the driver knows ahead of
time how many operations will be batched. In this sense, the Oracle model is more
static and predictable. With the standard model, the driver has no way of knowing
in advance how many operations will be batched. In this sense, the standard model
is more dynamic in nature.

If you want to use update batching, here is how to choose between the two models:

■ Use Oracle update batching if portability is not critical. This will probably result
in the greatest performance improvement.

■ Use standard update batching if portability is a higher priority than
performance.

Types of Statements Supported
As implemented by Oracle, update batching is intended for use with prepared
statements, when you are repeating the same statement with different bind
variables. Be aware of the following:

■ Oracle update batching supports only Oracle prepared statement objects. In an
Oracle callable statement, both the connection default batch value and the
statement batch value are overridden with a value of 1. In an Oracle generic
statement, there is no statement batch value, and the connection default batch
value is overridden with a value of 1.

Note that because Oracle update batching is vendor-specific, you must actually
use (or cast to) OraclePreparedStatement objects, not general
PreparedStatement objects.

■ To adhere to the JDBC 2.0 standard, Oracle’s implementation of standard
update batching supports callable statements and generic statements, as well as
prepared statements. You can migrate standard update batching syntax into an
Oracle JDBC application without difficulty.

■ You can batch only UPDATE, INSERT, or DELETE operations. Executing a batch
that includes an operation that attempts to return a result set will cause an
exception.
Performance Extensions 12-3

Update Batching
Note that with standard update batching, you can use either standard
PreparedStatement, CallableStatement, and Statement objects, or
Oracle-specific OraclePreparedStatement, OracleCallableStatement,
and OracleStatement objects.

Oracle Update Batching
The Oracle update batching feature associates a batch value (limit) with each
prepared statement object. With Oracle update batching, instead of the JDBC driver
executing a prepared statement each time its executeUpdate() method is called,
the driver adds the statement to a batch of accumulated execution requests. The
driver will pass all the operations to the database for execution once the batch value
is reached. For example, if the batch value is 10, then each batch of 10 operations
will be sent to the database and processed in one trip.

A method in the OracleConnection class allows you to set a default batch value
for the Oracle connection as a whole, and this batch value is relevant to any Oracle
prepared statement in the connection. For any particular Oracle prepared statement,
a method in the OraclePreparedStatement class allows you to set a statement
batch value that overrides the connection batch value. You can also override both
batch values by choosing to manually execute the pending batch.

Note: The Oracle implementation of standard update batching
does not implement true batching for generic statements and
callable statements. Although Oracle JDBC supports the use of
standard batching syntax for Statement and
CallableStatement objects, you will see performance
improvement for only PreparedStatement objects.

Notes:

■ Do not mix standard update batching syntax with Oracle
update batching syntax in the same application. The JDBC
driver will throw an exception when you mix these syntaxes.

■ Disable auto-commit mode if you use either update batching
model. In case an error occurs while you are executing a batch,
this allows you the option of committing or rolling back the
operations that executed successfully prior to the error.
12-4 JDBC Developer’s Guide and Reference

Update Batching
Oracle Update Batching Characteristics and Limitations
Note the following limitations and implementation details regarding Oracle update
batching:

■ By default, there is no statement batch value, and the connection (default) batch
value is 1.

■ Batch values between 5 and 30 tend to be the most effective. Setting a very high
value might even have a negative effect. It is worth trying different values to
verify the effectiveness for your particular application.

■ Regardless of the batch value in effect, if any of the bind variables of an Oracle
prepared statement is (or becomes) a stream type, then the Oracle JDBC driver
sets the batch value to 1 and sends any queued requests to the database for
execution.

■ The Oracle JDBC driver automatically executes the sendBatch() method of an
Oracle prepared statement in any of the following circumstances: 1) the
connection receives a COMMIT request, either as a result of invoking the
commit() method or as a result of auto-commit mode; 2) the statement
receives a close() request; or 3) the connection receives a close() request.

Setting the Connection Batch Value
You can specify a default batch value for any Oracle prepared statement in your
Oracle connection. To do this, use the setDefaultExecuteBatch() method of
the OracleConnection object. For example, the following code sets the default
batch value to 20 for all prepared statement objects associated with the conn
connection object:

((OracleConnection)conn).setDefaultExecuteBatch(20);

Even though this sets the default batch value for all the prepared statements of the
connection, you can override it by calling setDefaultBatch() on individual
Oracle prepared statements.

The connection batch value will apply to statement objects created after this batch
value was set.

Note: A connection COMMIT request, statement close, or
connection close has no effect on a pending batch if you use
standard update batching—only if you use Oracle update batching.
Performance Extensions 12-5

Update Batching
Note that instead of calling setDefaultExecuteBatch(), you can set the
defaultBatchValue Java property if you use a Java Properties object in
establishing the connection. See "Specifying a Database URL and Properties Object"
on page 3-6.

Setting the Statement Batch Value
Use the following steps to set the statement batch value for a particular Oracle
prepared statement. This will override any connection batch value set using the
setDefaultExecuteBatch() method of the OracleConnection instance for
the connection in which the statement executes.

1. Write your prepared statement and specify input values for the first row:

PreparedStatement ps = conn.prepareStatement
 ("INSERT INTO dept VALUES (?,?,?)");
ps.setInt (1,12);
ps.setString (2,"Oracle");
ps.setString (3,"USA");

2. Cast your prepared statement to an OraclePreparedStatement object, and
apply the setExecuteBatch() method. In this example, the batch size of the
statement is set to 2.

((OraclePreparedStatement)ps).setExecuteBatch(2);

If you wish, insert the getExecuteBatch() method at any point in the
program to check the default batch value for the statement:

System.out.println (" Statement Execute Batch Value " +
 ((OraclePreparedStatement)ps).getExecuteBatch());

3. If you send an execute-update call to the database at this point, then no data
will be sent to the database, and the call will return 0.

// No data is sent to the database by this call to executeUpdate
System.out.println ("Number of rows updated so far: "
 + ps.executeUpdate ());

4. If you enter a set of input values for a second row and an execute-update, then
the number of batch calls to executeUpdate() will be equal to the batch
value of 2. The data will be sent to the database, and both rows will be inserted
in a single round trip.
12-6 JDBC Developer’s Guide and Reference

Update Batching
ps.setInt (1, 11);
ps.setString (2, "Applications");
ps.setString (3, "Indonesia");

int rows = ps.executeUpdate ();
System.out.println ("Number of rows updated now: " + rows);

ps.close ();

Checking the Batch Value
To check the overall connection batch value of an Oracle connection instance, use
the OracleConnection class getDefaultExecuteBatch() method:

Integer batch_val = ((OracleConnection)conn).getDefaultExecuteBatch();

To check the particular statement batch value of an Oracle prepared statement, use
the OraclePreparedStatement class getExecuteBatch() method:

Integer batch_val = ((OraclePreparedStatement)ps).getExecuteBatch();

Overriding the Batch Value
If you want to execute accumulated operations before the batch value in effect is
reached, then use the sendBatch() method of the OraclePreparedStatement
object.

For this example, presume you set the connection batch value to 20. (This sets the
default batch value for all prepared statement objects associated with the
connection to 20.) You could accomplish this by casting your connection to an
OracleConnection object and applying the setDefaultExecuteBatch()
method for the connection, as follows:

((OracleConnection)conn).setDefaultExecuteBatch (20);

Note: If no statement batch value has been set, then
getExecuteBatch() will return the connection batch value.
Performance Extensions 12-7

Update Batching
Override the batch value as follows:

1. Write your prepared statement and specify input values for the first row as
usual, then execute the statement:

PreparedStatement ps =
 conn.prepareStatement ("insert into dept values (?, ?, ?)");

ps.setInt (1, 32);
ps.setString (2, "Oracle");
ps.setString (3, "USA");

System.out.println (ps.executeUpdate ());

The batch is not executed at this point. The ps.executeUpdate() method
returns "0".

2. If you enter a set of input values for a second operation and call
executeUpdate() again, the data will still not be sent to the database,
because the batch value in effect for the statement is the connection batch value:
20.

ps.setInt (1, 33);
ps.setString (2, "Applications");
ps.setString (3, "Indonesia");

// this batch is still not executed at this point
int rows = ps.executeUpdate ();

System.out.println ("Number of rows updated before calling sendBatch: "
 + rows);

Note that the value of rows in the println statement is "0".

3. If you apply the sendBatch() method at this point, then the two previously
batched operations will be sent to the database in a single round trip. The
sendBatch() method also returns the total number of updated rows. This
property of sendBatch() is used by println to print the number of updated
rows.
12-8 JDBC Developer’s Guide and Reference

Update Batching
// Execution of both previously batched executes will happen
// at this point. The number of rows updated will be
// returned by sendBatch.
rows = ((OraclePreparedStatement)ps).sendBatch ();

System.out.println ("Number of rows updated by calling sendBatch: "
 + rows);
ps.close ();

Committing the Changes in Oracle Batching
After you execute the batch, you must still commit the changes, presuming
auto-commit is disabled as recommended.

Calling commit() on the connection object in Oracle batching not only commits
operations in batches that have been executed, but also issues an implicit
sendBatch() call to execute all pending batches. So commit() effectively
commits changes for all operations that have been added to a batch.

Update Counts in Oracle Batching
In a non-batching situation, the executeUpdate() method of an
OraclePreparedStatement object will return the number of database rows
affected by the operation.

In an Oracle batching situation, this method returns the number of rows affected at
the time the method is invoked, as follows:

■ If an executeUpdate() call results in the operation being added to the batch,
then the method returns a value of 0, because nothing was written to the
database yet.

■ If an executeUpdate() call results in the batch value being reached and the
batch being executed, then the method will return the total number of rows
affected by all operations in the batch.

Similarly, the sendBatch() method of an OraclePreparedStatement object
returns the total number of rows affected by all operations in the batch.

Example: Oracle Update Batching
The following example illustrates how you use the Oracle update batching feature.
It assumes you have imported the oracle.jdbc.driver.* classes.
Performance Extensions 12-9

Update Batching
...
Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci8:","scott","tiger");

conn.setAutoCommit(false);

PreparedStatement ps =
 conn.prepareStatement("insert into dept values (?, ?, ?)");

//Change batch size for this statement to 3
((OraclePreparedStatement)ps).setExecuteBatch (3);

ps.setInt(1, 23);
ps.setString(2, "Sales");
ps.setString(3, "USA");
ps.executeUpdate(); //JDBC queues this for later execution

ps.setInt(1, 24);
ps.setString(2, "Blue Sky");
ps.setString(3, "Montana");
ps.executeUpdate(); //JDBC queues this for later execution

ps.setInt(1, 25);
ps.setString(2, "Applications");
ps.setString(3, "India");
ps.executeUpdate(); //The queue size equals the batch value of 3
 //JDBC sends the requests to the database

ps.setInt(1, 26);
ps.setString(2, "HR");
ps.setString(3, "Mongolia");
ps.executeUpdate(); //JDBC queues this for later execution

((OraclePreparedStatement)ps).sendBatch(); // JDBC sends the queued request
conn.commit();

ps.close();
...

For complete sample applications for Oracle update batching, including how to
execute the batch both implicitly and explicitly, see "Oracle Update Batching with
Implicit Execution—SetExecuteBatch.java" on page 17-61 and "Oracle Update
Batching with Explicit Execution—SendBatch.java" on page 17-63.
12-10 JDBC Developer’s Guide and Reference

Update Batching
Standard Update Batching
With release 8.1.6, Oracle implements the standard update batching model
according to the Sun Microsystems JDBC 2.0 specification. Because it is a JDBC 2.0
feature, it is intended for use in a JDK 1.2.x environment. To use standard update
batching in a JDK 1.1.x environment, you must cast to Oracle statement objects.

This model, unlike the Oracle update batching model, depends on explicitly adding
statements to the batch using an addBatch() method and explicitly executing the
batch using an executeBatch() method. (In the Oracle model, you invoke
executeUpdate() as in a non-batching situation, but whether an operation is
added to the batch or the whole batch is executed is typically determined implicitly,
depending on whether a pre-determined batch value is reached.)

Limitations in the Oracle Implementation of Standard Batching
Note the following limitations and implementation details regarding Oracle’s
implementation of standard update batching:

■ In Oracle JDBC applications, update batching is intended for use with prepared
statements that are being executed repeatedly with different sets of bind values.

The Oracle implementation of standard update batching does not implement
true batching for generic statements and callable statements. Even though

Note: Updates deferred through batching can affect the results of
other queries. In the following example, if the first query is deferred
due to batching, then the second will return unexpected results:

UPDATE emp SET name = "Sue" WHERE name = "Bob";
SELECT name FROM emp WHERE name = "Sue";

Notes:

■ Do not mix standard update batching syntax with Oracle
update batching syntax in the same application. The Oracle
JDBC driver will throw exceptions when these syntaxes are
mixed.

■ Disable auto-commit mode if you use either update batching
model. In case an error occurs while you are executing a batch,
this allows you the option of committing or rolling back the
operations that executed successfully prior to the error.
Performance Extensions 12-11

Update Batching
Oracle JDBC supports the use of standard batching syntax for Statement and
CallableStatement objects, you are unlikely to see performance
improvement.

■ Oracle’s implementation of standard update batching does not support stream
types as bind values. (This is also true of Oracle update batching.) Any attempt
to use stream types will result in an exception.

Adding Operations to the Batch
When any statement object is first created, its statement batch is empty. Use the
standard addBatch() method to add an operation to the statement batch. This
method is specified in the standard java.sql.Statement,
PreparedStatement, and CallableStatement interfaces, which are
implemented by classes oracle.jdbc.driver.OracleStatement,
OraclePreparedStatement, and OracleCallableStatement, respectively.

For a Statement object (or OracleStatement), the addBatch() method takes a
Java string with a SQL operation as input. For example (assume a Connection
instance conn):

...
Statement stmt = conn.createStatement();

stmt.addBatch("INSERT INTO emp VALUES(1000, ’Joe Jones’)");
stmt.addBatch("INSERT INTO dept VALUES(260, ’Sales’)");
stmt.addBatch("INSERT INTO emp_dept VALUES(1000, 260)");
...

At this point, three operations are in the batch.

(Remember, however, that in the Oracle implementation of standard update
batching, you will probably see no performance improvement in batching generic
statements.)

For prepared statements, update batching is used to batch multiple executions of
the same statement with different sets of bind parameters. For a
PreparedStatement or OraclePreparedStatement object, the addBatch()
method takes no input—it simply adds the operation to the batch using the bind
parameters last set by the appropriate setXXX() methods. (This is also true for
CallableStatement or OracleCallableStatement objects, but remember
that in the Oracle implementation of standard update batching, you will probably
see no performance improvement in batching callable statements.)
12-12 JDBC Developer’s Guide and Reference

Update Batching
For example (again assuming a Connection instance conn):

...
PreparedStatement pstmt =
 conn.prepareStatement("INSERT INTO employees VALUES(?, ?)");

pstmt.setInt(1, 2000);
pstmt.setString(2, "Milo Mumford");
pstmt.addBatch();

pstmt.setInt(1, 3000);
pstmt.setString(2, "Sulu Simpson");
pstmt.addBatch();
...

At this point, two operations are in the batch.

Because a batch is associated with a single prepared statement object, you can batch
only repeated executions of a single prepared statement, as in this example.

Executing the Batch
To execute the current batch of operations, use the executeBatch() method of the
statement object. This method is specified in the standard Statement interface,
which is extended by the standard PreparedStatement and
CallableStatement interfaces.

Following is an example that repeats the prepared statement addBatch() calls
shown previously and then executes the batch:

...
PreparedStatement pstmt =
 conn.prepareStatement("INSERT INTO employees VALUES(?, ?)");

pstmt.setInt(1, 2000);
pstmt.setString(2, "Milo Mumford");
pstmt.addBatch();

pstmt.setInt(1, 3000);
pstmt.setString(2, "Sulu Simpson");
pstmt.addBatch();

int[] updateCounts = pstmt.executeBatch();
...
Performance Extensions 12-13

Update Batching
The executeBatch() method returns an int array, typically one element per
batched operation, indicating success or failure in executing the batch and
sometimes containing information about the number of rows affected. This is
discussed in "Update Counts in the Oracle Implementation of Standard Batching"
on page 12-15.

Committing the Changes in the Oracle Implementation of Standard Batching
After you execute the batch, you must still commit the changes, presuming
auto-commit is disabled as recommended.

Calling commit() commits non-batched operations and commits batched
operations for statement batches that have been executed, but for the Oracle
implementation of standard batching, has no effect on pending statement batches
that have not been executed.

Clearing the Batch
To clear the current batch of operations instead of executing it, use the
clearBatch() method of the statement object. This method is specified in the
standard Statement interface, which is extended by the standard
PreparedStatement and CallableStatement interfaces.

Following is an example that repeats the prepared statement addBatch() calls
shown previously but then clears the batch under certain circumstances:

...
PreparedStatement pstmt =
 conn.prepareStatement("INSERT INTO employees VALUES(?, ?)");

Notes:

■ After calling addBatch(), you must call either
executeBatch() or clearBatch() before a call to
executeUpdate(), otherwise there will be a SQL exception.

■ When a batch is executed, operations are performed in the
order in which they were batched.

■ The statement batch is reset to empty once executeBatch()
has returned.

■ An executeBatch() call closes the statement object’s current
result set, if one exists.
12-14 JDBC Developer’s Guide and Reference

Update Batching
pstmt.setInt(1, 2000);
pstmt.setString(2, "Milo Mumford");
pstmt.addBatch();

pstmt.setInt(1, 3000);
pstmt.setString(2, "Sulu Simpson");
pstmt.addBatch();

if (...condition...)
{
 int[] updateCounts = pstmt.executeBatch();
 ...
}
else
{
 pstmt.clearBatch();
 ...
}

Update Counts in the Oracle Implementation of Standard Batching
If a statement batch is executed successfully (no batch exception is thrown), then the
integer array—or update counts array—returned by the statement
executeBatch() call will always have one element for each operation in the
batch. In the Oracle implementation of standard update batching, the values of the
array elements are as follows:

■ For a prepared statement batch, it is not possible to know the number of rows
affected in the database by each individual statement in the batch. Therefore, all
array elements have a value of -2. According to the JDBC 2.0 specification, a
value of -2 indicates that the operation was successful but the number of rows
affected is unknown.

Notes:

■ After calling addBatch(), you must call either
executeBatch() or clearBatch() before a call to
executeUpdate(), otherwise there will be a SQL exception.

■ A clearBatch() call resets the statement batch to empty.

■ Nothing is returned by the clearBatch() method.
Performance Extensions 12-15

Update Batching
■ For a generic statement batch or callable statement batch, the array contains the
actual update counts indicating the number of rows affected by each operation.
The actual update counts can be provided because Oracle JDBC cannot use true
batching for generic and callable statements in the Oracle implementation of
standard update batching.

In your code, upon successful execution of a batch, you should be prepared to
handle either -2’s or true update counts in the array elements. For a successful batch
execution, the array contains either all -2’s or all positive integers.

Example: Standard Update Batching
This example combines the sample fragments in the previous sections,
accomplishing the following steps:

■ disabling auto-commit mode (which you should always do when using either
update batching model)

■ creating a prepared statement object

■ adding operations to the batch associated with the prepared statement object

■ executing the batch

■ committing the operations from the batch

Assume a Connection instance conn:

conn.setAutoCommit(false);

PreparedStatement pstmt =
 conn.prepareStatement("INSERT INTO employees VALUES(?, ?)");

pstmt.setInt(1, 2000);
pstmt.setString(2, "Milo Mumford");
pstmt.addBatch();

pstmt.setInt(1, 3000);
pstmt.setString(2, "Sulu Simpson");
pstmt.addBatch();

int[] updateCounts = pstmt.executeBatch();

Note: For information about possible values in the update counts
array for an unsuccessful batch execution, see "Error Handling in the
Oracle Implementation of Standard Batching" on page 12-17.
12-16 JDBC Developer’s Guide and Reference

Update Batching
conn.commit();

pstmt.close();
...

You can process the update counts array to determine if the batch executed
successfully. This is discussed in the next section ("Error Handling in the Oracle
Implementation of Standard Batching").

For a complete sample application, see "Standard Update
Batching—BatchUpdates.java" on page 17-59.

Error Handling in the Oracle Implementation of Standard Batching
If any one of the batched operations fails to complete successfully (or attempts to
return a result set) during an executeBatch() call, then execution stops and a
java.sql.BatchUpdateException is generated (a subclass of
java.sql.SQLException).

After a batch exception, the update counts array can be retrieved using the
getUpdateCounts() method of the BatchUpdateException object. This
returns an int array of update counts, just as the executeBatch() method does.
In the Oracle implementation of standard update batching, contents of the update
counts array are as follows after a batch exception:

■ For a prepared statement batch, it is not possible to know which operation
failed. The array has one element for each operation in the batch, and each
element has a value of -3. According to the JDBC 2.0 specification, a value of -3
indicates that an operation did not complete successfully. In this case, it was
presumably just one operation that actually failed, but because the JDBC driver
does not know which operation that was, it labels all the batched operations as
failures.

You should always perform a ROLLBACK operation in this situation.

■ For a generic statement batch or callable statement batch, the update counts
array is only a partial array containing the actual update counts up to the point
of the error. The actual update counts can be provided because Oracle JDBC
cannot use true batching for generic and callable statements in the Oracle
implementation of standard update batching.

For example, if there were 20 operations in the batch, the first 13 succeeded, and
the 14th generated an exception, then the update counts array will have 13
elements, containing actual update counts of the successful operations.
Performance Extensions 12-17

Update Batching
You can either commit or roll back the successful operations in this situation, as
you prefer.

In your code, upon failed execution of a batch, you should be prepared to handle
either -3’s or true update counts in the array elements when an exception occurs.
For a failed batch execution, you will have either a full array of -3’s or a partial
array of positive integers.

Intermixing Batched Statements and Non-Batched Statements
You cannot call executeUpdate() for regular, non-batched execution of an
operation if the statement object has a pending batch of operations (essentially, if
the batch associated with that statement object is non-empty).

You can, however, intermix batched operations and non-batched operations in a
single statement object if you execute non-batched operations either prior to adding
any operations to the statement batch or after executing the batch. Essentially, you
can call executeUpdate() for a statement object only when its update batch is
empty. If the batch is non-empty, then an exception will be generated.

For example, it is legal to have a sequence such as the following:

...
PreparedStatement pstmt =
 conn.prepareStatement("INSERT INTO employees VALUES(?, ?)");

pstmt.setInt(1, 2000);
pstmt.setString(2, "Milo Mumford");

int scount = pstmt.executeUpdate(); // OK; no operations in pstmt batch

pstmt.setInt(1, 3000);
pstmt.setString(2, "Sulu Simpson");
pstmt.addBatch(); // Now start a batch

pstmt.setInt(1, 4000);
pstmt.setString(2, "Stan Leland");
pstmt.addBatch();

int[] bcounts = pstmt.executeBatch();

pstmt.setInt(1, 5000);
pstmt.setString(2, "Amy Feiner");

int scount = pstmt.executeUpdate(); // OK; pstmt batch was executed
...
12-18 JDBC Developer’s Guide and Reference

Update Batching
Intermixing non-batched operations on one statement object and batched
operations on another statement object within your code is permissible. Different
statement objects are independent of each other with regards to update batching
operations. A COMMIT request will affect all non-batched operations and all
successful operations in executed batches, but will not affect any pending batches.
Performance Extensions 12-19

Additional Oracle Performance Extensions
Additional Oracle Performance Extensions
In addition to update batching, discussed previously, Oracle JDBC drivers support
the following extensions that improve performance by reducing round trips to the
database:

■ prefetching rows

This reduces round trips to the database by fetching multiple rows of data each
time data is fetched—the extra data is stored in client-side buffers for later
access by the client. The number of rows to prefetch can be set as desired.

■ specifying column types

This avoids an inefficiency in the normal JDBC protocol for performing and
returning the results of queries.

■ suppressing database metadata TABLE_REMARKS columns

This avoids an expensive outer join operation.

Oracle provides several extensions to connection properties objects to support these
performance extensions. These extensions enable you to set the
remarksReporting flag and default values for row prefetching and update
batching. For more information, see "Specifying a Database URL and Properties
Object" on page 3-6.

Oracle Row Prefetching
Oracle JDBC drivers include extensions that allow you to set the number of rows to
prefetch into the client while a result set is being populated during a query. This
feature reduces the number of round trips to the server.

Setting the Oracle Prefetch Value
Standard JDBC receives the result set one row at a time, and each row requires a
round trip to the database. The row-prefetching feature associates an integer
row-prefetch setting with a given statement object. JDBC fetches that number of
rows at a time from the database during the query. That is, JDBC will fetch N rows
that match the query criteria and bring them all back to the client at once, where N

Note: With JDBC 2.0, the ability to preset the fetch size has
become standard functionality. For information about the standard
implementation of this feature, see "Fetch Size" on page 11-24.
12-20 JDBC Developer’s Guide and Reference

Additional Oracle Performance Extensions
is the prefetch setting. Then, once your next() calls have run through those N
rows, JDBC will go back to fetch the next N rows that match the criteria.

You can set the number of rows to prefetch for a particular Oracle statement (any
type of statement). You can also reset the default number of rows that will be
prefetched for all statements in your connection. The default number of rows to
prefetch to the client is 10.

Set the number of rows to prefetch for a particular statement as follows:

1. Cast your statement object to an OracleStatement,
OraclePreparedStatement, or OracleCallableStatement object, as
applicable, if it is not already one of these.

2. Use the setRowPrefetch() method of the statement object to specify the
number of rows to prefetch, passing in the number as an integer. If you want to
check the current prefetch number, use the getRowPrefetch() method of the
Statement object, which returns an integer.

Set the default number of rows to prefetch for all statements in a connection, as
follows:

1. Cast your Connection object to an OracleConnection object.

2. Use the setDefaultRowPrefetch() method of your OracleConnection
object to set the default number of rows to prefetch, passing in an integer that
specifies the desired default. If you want to check the current setting of the
default, then use the getDefaultRowPrefetch() method of the
OracleConnection object. This method returns an integer.

Equivalently, instead of calling setDefaultRowPrefetch(), you can set the
defaultRowPrefetch Java property if you use a Java Properties object in
establishing the connection. See "Specifying a Database URL and Properties
Object" on page 3-6.
Performance Extensions 12-21

Additional Oracle Performance Extensions
Example: Row Prefetching The following example illustrates the row-prefetching
feature. It assumes you have imported the oracle.jdbc.driver.* classes.

Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci8:","scott","tiger");

//Set the default row-prefetch setting for this connection
((OracleConnection)conn).setDefaultRowPrefetch(7);

/* The following statement gets the default row-prefetch value for
 the connection, that is, 7.
 */
Statement stmt = conn.createStatement();

/* Subsequent statements look the same, regardless of the row
 prefetch value. Only execution time changes.
 */
ResultSet rset = stmt.executeQuery("SELECT ename FROM emp");
System.out.println(rset.next ());

while(rset.next ())
 System.out.println(rset.getString (1));

//Override the default row-prefetch setting for this statement
((OracleStatement)stmt).setRowPrefetch (2);

Notes:

■ Do not mix the JDBC 2.0 fetch size API and the Oracle
row-prefetching API in your application. You can use one or
the other, but not both.

■ Be aware that setting the Oracle row-prefetch value can affect
not only queries, but also: 1) explicitly refetching rows in a
result set through the result set refreshRow() method
available with JDBC 2.0 (relevant for scroll-sensitive/read-only,
scroll-sensitive/updatable, and scroll-insensitive/updatable
result sets); and 2) the "window" size of a scroll-sensitive result
set, affecting how often automatic refetches are performed. The
Oracle row-prefetch value will be overridden, however, by any
setting of the fetch size. See "Fetch Size" on page 11-24 for more
information.
12-22 JDBC Developer’s Guide and Reference

Additional Oracle Performance Extensions
ResultSet rset = stmt.executeQuery("SELECT ename FROM emp");
System.out.println(rset.next ());

while(rset.next())
 System.out.println(rset.getString (1));

stmt.close();

For complete sample applications, including how to set the connection default
row-prefetch value and the statement row-prefetch value, see "Oracle Row
Prefetching Specified in Connection—RowPrefetch_connection.java" on page 17-64
and "Oracle Row Prefetching Specified in Statement—RowPrefetch_statement.java"
on page 17-66.

Oracle Row-Prefetching Limitations
There is no maximum prefetch setting, but empirical evidence suggests that 10 is
effective. Oracle does not recommend exceeding this value in most situations. If you
do not set the default row-prefetch value for a connection, 10 is the default.

A statement object receives the default row-prefetch setting from the associated
connection at the time the statement object is created. Subsequent changes to the
connection’s default row-prefetch setting have no effect on the statement’s
row-prefetch setting.

If a column of a result set is of datatype LONG or LONG RAW (that is, the streaming
types), JDBC changes the statement’s row-prefetch setting to 1, even if you never
actually read a value of either of those types.

If you use the form of the DriverManager class getConnection() method that
takes a Properties object as an argument, then you can set the connection’s
default row-prefetch value that way. See "Specifying a Database URL and Properties
Object" on page 3-6.

Defining Column Types
Oracle JDBC drivers enable you to inform the driver of the types of the columns in
an upcoming query, saving a round trip to the database that would otherwise be
necessary to describe the table.

When standard JDBC performs a query, it first uses a round trip to the database to
determine the types that it should use for the columns of the result set. Then, when
JDBC receives data from the query, it converts the data, as necessary, as it populates
the result set.
Performance Extensions 12-23

Additional Oracle Performance Extensions
When you specify column types for a query, you avoid the first round trip to the
database. The server, which is optimized to do so, performs any necessary type
conversions.

For a complete sample application, see "Oracle Column Type
Definitions—DefineColumnType.java" on page 17-68.

Following these general steps to define column types for a query:

1. Cast your statement object to an OracleStatement,
OraclePreparedStatement, or OracleCallableStatement object, as
applicable, if it is not already one of these.

2. If necessary, use the clearDefines() method of your Statement object to
clear any previous column definitions for this Statement object.

3. For each column of the expected result set, invoke the defineColumnType()
method of your Statement object, passing it these parameters:

■ column index (integer)

■ typecode (integer)

Use the static constants of the java.sql.Types class or
oracle.jdbc.driver.OracleTypes class (such as Types.INTEGER,
Types.FLOAT, Types.VARCHAR, OracleTypes.VARCHAR, and
OracleTypes.ROWID). Typecodes for standard types are identical in these
two classes.

■ type name (string) (structured objects, object references, and arrays only)

For structured objects, object references, and arrays, you must also specify
the type name (for example, Employee, EmployeeRef, or
EmployeeArray).

■ (optionally) maximum field size (integer)

Optionally specify a maximum data length for this column.

You cannot specify a maximum field size parameter if you are defining the
column type for a structured object, object reference, or array. If you try to
include this parameter, it will be ignored.

For example, assuming stmt is an Oracle statement, use this syntax:

stmt.defineColumnType(column_index, typeCode);
12-24 JDBC Developer’s Guide and Reference

Additional Oracle Performance Extensions
or (recommended if the column is VARCHAR or equivalent and you know the
length limit):

stmt.defineColumnType(column_index, typeCode, max_size);

or (for structured object, object reference, and array columns):

stmt.defineColumnType(column_index, typeCode, typeName);

Set a maximum field size if you do not want to receive the full default length of
the data. Calling the setMaxFieldSize() method of the standard JDBC
Statement class sets a restriction on the amount of data returned. Specifically,
the size of the data returned will be the minimum of:

■ the maximum field size set in defineColumnType()

or:

■ the maximum field size set in setMaxFieldSize()

or:

■ the natural maximum size of the datatype

Once you complete these steps, use the statement’s executeQuery() method to
perform the query.

Example: Defining Column Types The following example illustrates the use of this
feature. It assumes you have imported the oracle.jdbc.driver.* classes.

Connection conn =
 DriverManager.getConnection("jdbc:oracle:oci8:","scott","tiger");

Statement stmt = conn.createStatement();

/*Ask for the column as a string:
 *Avoid a round trip to get the column type.
 *Convert from number to string on the server.
 */
((OracleStatement)stmt).defineColumnType(1, Types.VARCHAR);

Note: You must define the datatype for every column of the
expected result set. If the number of columns for which you specify
types does not match the number of columns in the result set, the
process fails with a SQL exception.
Performance Extensions 12-25

Additional Oracle Performance Extensions
ResultSet rset = stmt.executeQuery("select empno from emp");

while (rset.next())
 System.out.println(rset.getString(1));

stmt.close();

As this example shows, you must cast the statement (stmt) to type
OracleStatement in the invocation of the defineColumnType() method. The
connection’s createStatement() method returns an object of type
java.sql.Statement, which does not have the defineColumnType() and
clearDefines() methods. These methods are provided only in the
OracleStatement implementation.

The define-extensions use JDBC types to specify the desired types. The allowed
define types for columns depend on the internal Oracle type of the column.

All columns can be defined to their "natural" JDBC types; in most cases, they can be
defined to the Types.CHAR or Types.VARCHAR typecode.

Table 12–1 lists the valid column definition arguments you can use in the
defineColumnType() method.

Table 12–1 Valid Column Type Specifications

If the column has Oracle
SQL type:

You can use defineColumnType()
to define it as:

NUMBER, VARNUM BIGINT, TINYINT, SMALLINT, INTEGER, FLOAT, REAL,
DOUBLE, NUMERIC, DECIMAL, CHAR, VARCHAR

CHAR, VARCHAR2 CHAR, VARCHAR

LONG CHAR, VARCHAR, LONGVARCHAR

LONGRAW LONGVARBINARY, VARBINARY, BINARY

RAW VARBINARY, BINARY

DATE DATE, TIME, TIMESTAMP, CHAR, VARCHAR

ROWID ROWID
12-26 JDBC Developer’s Guide and Reference

Additional Oracle Performance Extensions
DatabaseMetaData TABLE_REMARKS Reporting
The getColumns(), getProcedureColumns(), getProcedures(), and
getTables() methods of the database metadata classes are slow if they must
report TABLE_REMARKS columns, because this necessitates an expensive outer join.
For this reason, the JDBC driver does not report TABLE_REMARKS columns by
default.

You can enable TABLE_REMARKS reporting by passing a true argument to the
setRemarksReporting() method of an OracleConnection object.

Equivalently, instead of calling setRemarksReporting(), you can set the
remarksReporting Java property if you use a Java Properties object in
establishing the connection. See "Specifying a Database URL and Properties Object"
on page 3-6.

If you are using a standard java.sql.Connection object, you must cast it to
OracleConnection to use setRemarksReporting().

Example: TABLE_REMARKS Reporting
Assuming conn is the name of your standard Connection object, the following
statement enables TABLE_REMARKS reporting.

((oracle.jdbc.driver.OracleConnection)conn).setRemarksReporting(true);

Considerations for getProcedures() and getProcedureColumns() Methods
According to JDBC versions 1.1 and 1.2, the methods getProcedures() and
getProcedureColumns() treat the catalog, schemaPattern,
columnNamePattern, and procedureNamePattern parameters in the same
way. In the Oracle definition of these methods, the parameters are treated
differently:

■ catalog: Oracle does not have multiple catalogs, but it does have packages.
Consequently, the catalog parameter is treated as the package name. This
applies both on input (the catalog parameter) and output (the catalog
column in the returned ResultSet). On input, the construct " " (the empty
string) retrieves procedures and arguments without a package, that is,
standalone objects. A null value means to drop from the selection criteria, that
is, return information about both stand-alone and packaged objects (same as
passing in "%"). Otherwise the catalog parameter should be a package name
pattern (with SQL wild cards, if desired).
Performance Extensions 12-27

Additional Oracle Performance Extensions
■ schemaPattern: All objects within Oracle must have a schema, so it does not
make sense to return information for those objects without one. Thus, the
construct " " (the empty string) is interpreted on input to mean the objects in
the current schema (that is, the one to which you are currently connected). To be
consistent with the behavior of the catalog parameter, null is interpreted to
drop the schema from the selection criteria (same as passing in "%"). It can also
be used as a pattern with SQL wild cards.

■ procedureNamePattern and columnNamePattern: The empty string (" ")
does not make sense for either parameter, because all procedures and
arguments must have names. Thus, the construct " " will raise an exception. To
be consistent with the behavior of other parameters, null has the same effect as
passing in "%".
12-28 JDBC Developer’s Guide and Reference

Connection Pooling and C
13

Connection Pooling and Caching

This chapter discusses the Oracle JDBC implementations of 1) data sources, a
standard facility for specifying resources to use, including databases; 2) connection
pooling, which is a framework for caches of database connections; and 3)
connection caching, including documentation of a sample Oracle implementation.
You will also find related discussion of Oracle JDBC support for the standard Java
Naming and Directory Interface (JNDI).

The following topics are discussed:

■ Data Sources

■ Connection Pooling

■ Connection Caching

For further introductory and general information on these topics, refer to the Sun
Microsystems specification for the JDBC 2.0 Optional Package.

Notes: This chapter discusses features of the JDBC 2.0 Optional
Package, formerly known as the JDBC 2.0 Standard Extension API,
which are available through the javax packages from Sun
Microsystems. These packages are not part of the standard JDK, but
relevant packages are included with the classes111.zip and
classes12.zip files.
aching 13-1

Data Sources
Data Sources
The JDBC 2.0 extension API introduces the concept of data sources, which are
standard, general-use objects for specifying databases or other resources to use.
Data sources can optionally be bound to Java Naming and Directory Interface
(JNDI) entities so that you can access databases by logical names, for convenience
and portability.

This functionality is a more standard and versatile alternative to the connection
functionality described under "Open a Connection to a Database" on page 3-3. The
data source facility provides a complete replacement for the previous JDBC
DriverManager facility.

You can use both facilities in the same application, but ultimately developers will be
encouraged to use data sources for their connections, regardless of whether
connection pooling or distributed transactions are required. Eventually, Sun
Microsystems will probably deprecate DriverManager and related classes and
functionality.

For further introductory and general information about data sources and JNDI,
refer to the Sun Microsystems specification for the JDBC 2.0 Optional Package.

A Brief Overview of Oracle Data Source Support for JNDI
The standard Java Naming and Directory Interface, or JNDI, provides a way for
applications to find and access remote services and resources. These services can be
any enterprise services, but for a JDBC application would include database
connections and services.

JNDI allows an application to use logical names in accessing these services,
removing vendor-specific syntax from application code. JNDI has the functionality
to associate a logical name with a particular source for a desired service.

All Oracle JDBC data sources are JNDI-referenceable. The developer is not required
to use this functionality, but accessing databases through JNDI logical names makes
the code more portable.
13-2 JDBC Developer’s Guide and Reference

Data Sources
Data Source Features and Properties
"First Steps in JDBC" on page 3-2 includes sections on how to use the JDBC
DriverManager class to register driver classes and open database connections.
The problem with this model is that it requires your code to include vendor-specific
class names, database URLs, and possibly other properties, such as machine names
and port numbers.

With JDBC 2.0 data source functionality, using JNDI, you do not need to register the
vendor-specific JDBC driver class name, and you can use logical names for URLs
and other properties. This allows your application code for opening database
connections to be portable to other environments.

Data Source Interface and Oracle Implementation
A JDBC data source is an instance of a class that implements the standard
javax.sql.DataSource interface:

public interface DataSource
{
 Connection getConnection() throws SQLException;
 Connection getConnection(String username, String password)
 throws SQLException;
 ...
}

Oracle implements this interface with the OracleDataSource class in the
oracle.jdbc.pool package. The overloaded getConnection() method
returns an OracleConnection instance, optionally taking a user name and
password as input.

To use other values, you can set properties using appropriate setter methods
discussed in the next section. For alternative user names and passwords, you can
also use the getConnection() signature that takes these as input—this would
take priority over the property settings.

Note: Using JNDI functionality requires the file jndi.zip to be
in the CLASSPATH. This file is included in the Oracle database plus
JServer option product CD, but is not included in the
classes12.zip and classes111.zip files. You must add it to
the CLASSPATH separately. (You can also obtain it from the Sun
Microsystems Web site, but it is advisable to use the version from
Oracle, because that has been tested with the Oracle drivers.)
Connection Pooling and Caching 13-3

Data Sources
Data Source Properties
The OracleDataSource class, as with any class that implements the
DataSource interface, provides a set of properties that can be used to specify a
database to connect to. These properties follow the JavaBeans design pattern.

Table 13–1 and Table 13–2 document OracleDataSource properties. The
properties in Table 13–1 are standard properties according to the Sun Microsystems
specification. (Be aware, however, that Oracle does not implement the standard
roleName property.) The properties in Table 13–2 are Oracle extensions.

Note: The OracleDataSource class and all subclasses
implement the java.io.Serializable and
javax.naming.Referenceable interfaces.

Table 13–1 Standard Data Source Properties

Name Type Description

databaseName String name of the particular database on the server; also
known as the "SID" in Oracle terminology

dataSourceName String name of the underlying data source class (for connection
pooling, this is an underlying pooled connection data
source class; for distributed transactions, this is an
underlying XA data source class)

description String description of the data source

networkProtocol String network protocol for communicating with the server; for
Oracle, this applies only to the OCI drivers and defaults
to tcp

(Other possible settings include ipc. See the Net8
Administrator’s Guide for more information.)

password String login password for the user name

portNumber int number of the port where the server listens for requests

serverName String name of the database server

user String name for the login account
13-4 JDBC Developer’s Guide and Reference

Data Sources
The OracleDataSource class implements the following setter and getter methods
for the standard properties:

■ public synchronized void setDatabaseName(String dbname)

■ public synchronized String getDatabaseName()

■ public synchronized void setDataSourceName(String dsname)

■ public synchronized String getDataSourceName()

■ public synchronized void setDescription(String desc)

■ public synchronized String getDescription()

■ public synchronized void setNetworkProtocol(String np)

■ public synchronized String getNetworkProtocol()

■ public synchronized void setPassword(String pwd)

■ public synchronized void setPortNumber(int pn)

■ public synchronized int getPortNumber()

■ public synchronized void setServerName(String sn)

■ public synchronized String getServerName()

■ public synchronized void setUser(String user)

■ public synchronized String getUser()

Note that there is no getPassword() method, for security reasons.

Table 13–2 Oracle Extended Data Source Properties

Name Type Description

driverType String category of the Oracle JDBC driver you are using—can be
oci8, thin, or kprb (server-side internal)

url String URL of the database connect string; as a convenience for
customers migrating from older versions of Oracle JDBC, you
can use this in place of the Oracle tnsEntry and
driverType properties and the standard portNumber,
networkProtocol, serverName, and
databaseName properties

tnsEntry String TNS entry name—relevant only for OCI drivers and assumes
an Oracle client installation with TNS_ADMIN environment
variable set appropriately
Connection Pooling and Caching 13-5

Data Sources
The OracleDataSource class implements the following setter and getter methods
for the Oracle extended properties:

■ public synchronized void setDriverType(String dt)

■ public synchronized String getDriverType()

■ public synchronized void setURL(String url)

■ public synchronized String getURL()

■ public synchronized void setTNSEntryName(String tns)

■ public synchronized String getTNSEntryName()

If you are using the server-side internal driver—driverType property is set to
kprb—then any other property settings are ignored.

If you are using a Thin or OCI driver, note the following:

■ A URL setting can include settings for user and password, as in the following
example, in which case this takes precedence over individual user and
password property settings:

jdbc:oracle:thin:scott/tiger@localhost:1521:orcl

■ Settings for user and password are required, either directly, through the URL
setting, or through the getConnection() call. The user and password
settings in a getConnection() call take precedence over any property
settings.

■ If the url property is set, then any tnsEntry, driverType, portNumber,
networkProtocol, serverName, and databaseName property settings are
ignored.

■ If the tnsEntry property is set (which presumes the url property is not set),
then any databaseName, serverName, portNumber, and
networkProtocol settings are ignored.

■ If you are using an OCI driver (which presumes the driverType property is
set to oci8) and the networkProtocol is set to ipc, then any other property
settings are ignored.
13-6 JDBC Developer’s Guide and Reference

Data Sources
Creating a Data Source Instance and Connecting (without JNDI)
This section shows an example of the most basic use of a data source to connect to a
database, without using JNDI functionality. Note that this requires vendor-specific,
hard-coded property settings.

Create an OracleDataSource instance, initialize its connection properties as
appropriate, and get a connection instance as in the following example:

...
OracleDataSource ods = new OracleDataSource();

ods.setDriverType("oci8");
ods.setServerName("dlsun999");
ods.setNetworkProtocol("tcp");
ods.setDatabaseName("816");
ods.setPortNumber(1521);
ods.setUser("scott");
ods.setPassword("tiger");

Connection conn = ods.getConnection();
...

Or optionally override the user name and password:

...
Connection conn = ods.getConnection("bill", "lion");
...

For a complete sample program, see "Data Source without JNDI—DataSource.java"
on page 17-70.

Creating a Data Source Instance, Registering with JNDI, and Connecting
This section exhibits JNDI functionality in using data sources to connect to a
database. Vendor-specific, hard-coded property settings are required only in the
portion of code that binds a data source instance to a JNDI logical name. From that
point onward, you can create portable code by using the logical name in creating
data sources from which you will get your connection instances.

For a complete sample, see "Data Source with JNDI—DataSourceJNDI.java" on
page 17-71.
Connection Pooling and Caching 13-7

Data Sources
Initialize Connection Properties
Create an OracleDataSource instance, and then initialize its connection
properties as appropriate, as in the following example:

...
OracleDataSource ods = new OracleDataSource();

ods.setDriverType("oci8");
ods.setServerName("dlsun999");
ods.setNetworkProtocol("tcp");
ods.setDatabaseName("816");
ods.setPortNumber(1521);
ods.setUser("scott");
ods.setPassword("tiger");
...

Register the Data Source
Once you have initialized the connection properties of OracleDataSource
instance ods, as shown in the preceding example, you can register this data source
instance with JNDI, as in the following example:

...
Context ctx = new InitialContext();
ctx.bind("jdbc/sampledb", ods);
...

Calling the JNDI InitialContext() constructor creates a Java object that
references the initial JNDI naming context. System properties that are not shown
instruct JNDI which service provider to use.

The ctx.bind() call binds the OracleDataSource instance to a logical JNDI
name. This means that anytime after the ctx.bind() call, you can use the logical
name jdbc/sampledb in opening a connection to the database described by the
properties of the OracleDataSource instance ods. The logical name
jdbc/sampledb is logically bound to this database.

Note: Creating and registering data sources is typically handled
by a JNDI administrator, not in a JDBC application.
13-8 JDBC Developer’s Guide and Reference

Data Sources
The JNDI name space has a hierarchy similar to that of a file system. In this
example, the JNDI name specifies the subcontext jdbc under the root naming
context and specifies the logical name sampledb within the jdbc subcontext.

The Context interface and InitialContext class are in the standard
javax.naming package.

Open a Connection
Use the logical JNDI name from the preceding example to perform a lookup and
open a connection to the database logically bound to the JNDI name. This requires
casting the lookup result (which is otherwise simply a Java Object) to a new
OracleDataSource instance and then using its getConnection() method to
open the connection.

Following is an example:

...
OracleDataSource odsconn = (OracleDataSource)ctx.lookup("jdbc/sampledb");
Connection conn = odsconn.getConnection();
...

Logging and Tracing
The data source facility provides a way to register a character stream for JDBC to
use as output for error logging and tracing information. This allows tracing specific
to a particular data source instance. If you want all data source instances to use the
same character stream, then you must register the stream with each data source
instance individually.

The OracleDataSource class implements the following standard data source
methods for logging and tracing:

■ public synchronized void setLogWriter(PrintWriter pw)

■ public synchronized PrintWriter getLogWriter()

The PrintWriter class is in the standard java.io package.

Note: The JDBC 2.0 specification requires that all JDBC data
sources be registered in the jdbc naming subcontext of a JNDI
namespace or in a child subcontext of the jdbc subcontext.
Connection Pooling and Caching 13-9

Data Sources
Notes:

■ When a data source instance is created, logging is disabled by
default (the log stream name is initially null).

■ Messages written to a log stream registered to a data source
instance are not written to the log stream normally maintained
by DriverManager.

■ An OracleDataSource instance obtained from a JNDI name
lookup will not have its PrinterWriter set, even if the
PrintWriter was set when a data source instance was first
bound to this JNDI name.
13-10 JDBC Developer’s Guide and Reference

Connection Pooling
Connection Pooling
Connection pooling in the JDBC 2.0 extension API is a framework for caching
database connections. This allows reuse of physical connections and reduced
overhead for your application. Connection pooling functionality minimizes
expensive operations in the creation and closing of sessions.

The following are central concepts:

■ Connection pool data sources—similar in concept and functionality to the data
sources described previously, but with methods to return pooled connection
instances, instead of normal connection instances.

■ Pooled connections—a pooled connection instance represents a single physical
connection to a database, remaining open during use by a series of logical
connection instances.

A logical connection instance is a simple connection instance (such as a
standard Connection instance or an OracleConnection instance) returned
by a pooled connection instance. Each logical connection instance acts as a
temporary handle to the physical connection represented by the pooled
connection instance.

For further introductory and general information about connection pooling, refer to
the Sun Microsystems specification for the JDBC 2.0 Optional Package.

Connection Pooling Concepts
If you do not use connection pooling, each connection instance
(java.sql.Connection or oracle.jdbc.driver.OracleConnection
instance) encapsulates its own physical database connection. When you call the
close() method of the connection instance, the physical connection itself is closed.
This is true whether you obtain the connection instance through the JDBC 2.0 data
source facility described under "Data Sources" on page 13-2, or through the
DriverManager facility described under "Open a Connection to a Database" on
page 3-3.

With connection pooling, an additional step allows physical database connections to
be reused by multiple logical connection instances, which are temporary handles to

Note: The concept of connection pooling is not relevant to the
server-side internal driver, where you are simply using the default
connection, and is only relevant to the server-side Thin driver
within a single session.
Connection Pooling and Caching 13-11

Connection Pooling
the physical connection. Use a connection pool data source to return a pooled
connection, which is what encapsulates the physical database connection. Then use
the pooled connection to return JDBC connection instances (one at a time) that each
act as a temporary handle.

Closing a connection instance that was obtained from a pooled connection does not
close the physical database connection. It does, however, free the resources of the
connection instance, clear the state, close statement objects created from the
connection instance, and restore the defaults for the next connection instance that
will be created.

To actually close the physical connection, you must invoke the close() method of
the pooled connection. This would typically be performed in the middle tier.

Connection Pool Data Source Interface and Oracle Implementation
The javax.sql.ConnectionPoolDataSource interface outlines standard
functionality of connection pool data sources, which are factories for pooled
connections. The overloaded getPooledConnection() method returns a pooled
connection instance and optionally takes a user name and password as input:

public interface ConnectionPoolDataSource
{
 PooledConnection getPooledConnection() throws SQLException;
 PooledConnection getPooledConnection(String user, String password)
 throws SQLException;
 ...
}

Oracle JDBC implements the ConnectionPoolDataSource interface with the
oracle.jdbc.pool.OracleConnectionPoolDataSource class. This class
also extends the OracleDataSource class, so it includes all the connection
properties and getter and setter methods described in "Data Source Properties" on
page 13-4.

The OracleConnectionPoolDataSource class getPooledConnection()
methods return the Oracle implementation of pooled connection instances, which
are OraclePooledConnection instances (as discussed in the next section).

Note: You can register connection pool data sources in JNDI using
the same naming conventions as discussed for non-pooling data
sources in "Register the Data Source" on page 13-8.
13-12 JDBC Developer’s Guide and Reference

Connection Pooling
Pooled Connection Interface and Oracle Implementation
A pooled connection instance encapsulates a physical connection to a database. This
would be the database specified in the connection properties of the connection pool
data source instance used to produce the pooled connection instance.

A pooled connection instance is an instance of a class that implements the standard
javax.sql.PooledConnection interface. The getConnection() method
specified by this interface returns a logical connection instance that acts as a
temporary handle to the physical connection, as opposed to encapsulating the
physical connection, as does a non-pooling connection instance:

public interface PooledConnection
{
 Connection getConnection() throws SQLException;
 void close() throws SQLException;
 void addConnectionEventListener(ConnectionEventListener listener) ... ;
 void removeConnectionEventListener(ConnectionEventListener listener);
}

(Event listeners are used in connection caching and are discussed in "Typical Steps
in Using a Connection Cache" on page 13-18.)

Oracle JDBC implements the PooledConnection interface with the
oracle.jdbc.pool.OraclePooledConnection class. The getConnection()
method returns an OracleConnection instance.

A pooled connection instance will typically be asked to produce a series of
connection instances during its existence, but only one of these connection instances
can be open at any particular time.

Each time a pooled connection instance getConnection() method is called, it
returns a new connection instance that exhibits the default behavior, and closes any
previous connection instance that still exists and had been returned by the same
pooled connection instance. It is advisable to explicitly close any previous
connection instance before opening a new one, however.

Calling the close() method of a pooled connection instance closes the physical
connection to the database. This would typically be performed in the middle-tier
layer.

Creating a Connection Pool Data Source and Connecting
This section contains an example of the most basic use of a connection pool data
source to connect to a database, without using JNDI functionality. You could
Connection Pooling and Caching 13-13

Connection Pooling
optionally use JNDI, binding the connection pool data source instance to a JNDI
logical name, in the same way that you would for a generic data source instance (as
shown in "Register the Data Source" on page 13-8).

Summary of Imports for Oracle Connection Pooling
You must import the following for Oracle connection pooling functionality:

import oracle.jdbc.pool.*;

This package contains the OracleDataSource,
OracleConnectionPoolDataSource, and OraclePooledConnection classes,
in addition to classes for connection caching and event-handling, which will be
discussed under "Connection Caching" on page 13-15.

Oracle Connection Pooling Code Sample
This example creates an OracleConnectionPoolDataSource instance,
initializes its connection properties, gets a pooled connection instance from the
connection pool data source instance, and then gets a connection instance from the
pooled connection instance. (The getPooledConnection() method actually
returns an OraclePooledConnection instance, but in this case only generic
PooledConnection functionality is required.)

...
OracleConnectionPoolDataSource ocpds = new OracleConnectionPoolDataSource();

ocpds.setDriverType("oci8");
ocpds.setServerName("dlsun999");
ocpds.setNetworkProtocol("tcp");
ocpds.setDatabaseName("816");
ocpds.setPortNumber(1521);
ocpds.setUser("scott");
ocpds.setPassword("tiger");

PooledConnection pc = ocpds.getPooledConnection();

Connection conn = pc.getConnection();
...

For a complete sample program, see "Pooled Connection—PooledConnection.java"
on page 17-74.
13-14 JDBC Developer’s Guide and Reference

Connection Caching
Connection Caching
Connection caching, generally implemented in a middle tier, is a means of keeping
and using caches of physical database connections.

Connection caching uses the connection pooling framework—such as connection
pool data sources and pooled connections—in much of its operations. "Connection
Pooling", starting on page 13-11, describes this framework.

The JDBC 2.0 specification does not mandate a connection caching implementation,
but Oracle provides a simple implementation to serve at least as an example.

This section is divided into the following topics:

■ Overview of Connection Caching

■ Typical Steps in Using a Connection Cache

■ Oracle Connection Cache Specification: OracleConnectionCache Interface

■ Oracle Connection Cache Implementation: OracleConnectionCacheImpl Class

■ Oracle Connection Event Listener: OracleConnectionEventListener Class

Overview of Connection Caching
Each connection cache is represented by an instance of a connection cache class and
has an associated group of pooled connection instances. For a single connection
cache instance, the associated pooled connection instances must all represent
physical connections to the same database and schema. Pooled connection instances
are created as needed, which is whenever a connection is requested and the
connection cache does not have any free pooled connection instances. A "free"
pooled connection instance is one that currently has no logical connection instance
associated with it; in other words, a pooled connection instance whose physical
connection is not being used.

Basics of Setting Up a Connection Cache
The middle tier, in setting up a connection cache, will create an instance of a
connection cache class and set its data source connection properties as

Note: The concept of connection caching is not relevant to the
server-side internal driver, where you are simply using the default
connection, and is only relevant to the server-side Thin driver
within a single session.
Connection Pooling and Caching 13-15

Connection Caching
appropriate—for example, serverName, databaseName, or URL. Recall that a
connection cache class extends a data source class. For information about data
source properties, see "Data Source Properties" on page 13-4.

An example of a connection cache class is OracleConnectionCacheImpl. How
to instantiate this class and set its connection properties is described in
"Instantiating OracleConnectionCacheImpl and Setting Properties" on page 13-22.
This class extends the OracleDataSource class and so includes the setter
methods to set connection properties to specify the database to connect to. All the
pooled connection instances in the cache would represent physical connections to
this same database, and in fact to the same schema.

Once the middle tier has created a connection cache instance, it can optionally bind
this instance to JNDI as with any data source instance, which is described in
"Register the Data Source" on page 13-8.

Basics of Accessing the Connection Cache
A JDBC application must retrieve a connection cache instance to use the cache. This
is typically accomplished through the middle tier, often using a JNDI lookup. In a
connection caching scenario, a JNDI lookup would return a connection cache
instance instead of a generic data source instance. Because a connection cache class
extends a data source class, connection cache instances include data source
functionality.

Executing a JNDI lookup is described in "Open a Connection" on page 13-9.

If JNDI is not used, the middle tier will typically have some vendor-specific API
through which a connection cache instance is retrieved for the application.

Basics of Opening Connections
A connection cache class, as with a pooled connection class, has a
getConnection() method. The getConnection() method of a connection
cache instance returns a logical connection to the database and schema associated
with the cache. This association is through the connection properties of the
connection cache instance, as typically set by the middle tier.

Whenever a JDBC application wants a connection to a database in a connection
caching scenario, it will call the getConnection() method of the connection
cache instance associated with the database.

This getConnection() method checks if there are any free pooled connection
instances in the cache. If not, one is created. Then a logical connection instance will
13-16 JDBC Developer’s Guide and Reference

Connection Caching
be retrieved from a previously existing or newly created pooled connection
instance, and this logical connection instance will be supplied to the application.

Basics of Closing Connections: Use of Connection Events
JDBC uses JavaBeans-style events to keep track of when a physical connection
(pooled connection instance) can be returned to the cache or when it should be
closed due to a fatal error. When a JDBC application calls the close() method of a
logical connection instance, an event is triggered and communicated to the event
listener or listeners associated with the pooled connection instance that produced
the logical connection instance. This triggers a connection-closed event and informs
the pooled connection instance that its physical connection can be reused.
Essentially, this puts the pooled connection instance and its physical connection
back into the cache.

The point at which a connection event listener is created and registered with a
pooled connection instance is implementation-specific. This could happen, for
example, when the pooled connection instance is first created or each time the
logical connection associated with it is closed.

It is also possible for the cache class to implement the connection event listener
class. In this case, the connection event listener is part of the connection cache
instance. (This is not the case in the Oracle sample implementation.) Even in this
case, however, an explicit association must be made between the connection event
listener and each pooled connection instance.

Implementation Scenarios
Middle-tier developers have the option of implementing their own connection
cache class and connection event listener class.

For convenience, however, Oracle provides the following, all in the
oracle.jdbc.pool package:

■ a connection cache interface: OracleConnectionCache

■ a connection cache class: OracleConnectionCacheImpl

■ a connection event listener class: OracleConnectionEventListener

The OracleConnectionCacheImpl class is a simple connection cache class
implementation that Oracle supplies as an example, providing sufficient but
minimal functionality. It implements the OracleConnectionCache interface and
uses instances of the OracleConnectionEventListener class for connection
events.
Connection Pooling and Caching 13-17

Connection Caching
If you want more functionality than OracleConnectionCacheImpl has to offer
but still want to use OracleConnectionEventListener for connection events,
then you can create your own class that implements OracleConnectionCache.

Or you can create your own connection cache class and connection event listener
class from scratch.

Typical Steps in Using a Connection Cache
This section lists the general steps in how a JDBC application and middle-tier will
use a connection cache in opening and closing a logical connection.

Preliminary Steps in Connection Caching
Presume the following has already been accomplished:

1. The middle tier has created a connection cache instance, as described in "Basics
of Setting Up a Connection Cache" on page 13-15.

2. The middle tier has provided connection information to the connection cache
instance for the database and schema that will be used. This can be
accomplished when constructing the connection cache instance.

3. The application has retrieved the connection cache instance, as described in
"Basics of Accessing the Connection Cache" on page 13-16.

General Steps in Opening a Connection
Once the JDBC application has access to the connection cache instance, the
application and middle tier perform the following steps to produce a logical
connection instance for use by the application:

1. The application requests a connection through the getConnection() method
of the connection cache instance. No input is necessary, because a connection
cache instance is already associated with a particular database and schema.

2. The connection cache instance examines its cache as follows: a) to see if there
are any pooled connection instances in the cache yet; and b) if so, if any are
free—that is, to see if there is at least one pooled connection instance that
currently has no logical connection instance associated with it.

3. The connection cache instance chooses an available pooled connection instance
or, if none is available, might create a new one (this is implementation-specific).
In creating a pooled connection instance, the connection cache instance can
specify connection properties according to its own connection properties,
13-18 JDBC Developer’s Guide and Reference

Connection Caching
because the pooled connection instance will be associated with the same
database and schema.

4. Depending on the situation and implementation, the connection cache instance
creates a connection event listener (a process that associates the listener with the
connection cache instance) and associates the listener with the chosen or newly
created pooled connection instance. The association with the pooled connection
instance is accomplished by calling the standard
addConnectionEventListener() method specified by the
PooledConnection interface. This method takes the connection event listener
instance as input. If the connection cache class implements the connection event
listener class, then the argument to the addConnectionEventListener()
method would be the this object.

In some implementations, the creation and association of the connection event
listener can occur only when the pooled connection instance is first created. In
the Oracle sample implementation, this also occurs each time a pooled
connection instance is reused.

Note that in being associated with both the connection cache instance and a
pooled connection instance, the connection event listener becomes the bridge
between the two.

5. The connection cache instance gets a logical connection instance from the
chosen or newly created pooled connection instance, using the pooled
connection getConnection() method.

No input is necessary to getConnection(), because a pooled connection
instance is already associated with a particular database and schema.

6. The connection cache instance passes the logical connection instance to the
application.

The JDBC application uses this logical connection instance as it would any other
connection instance.

Note: Exactly what happens in a situation where no pooled
connection instances are available depends on the implementation
schemes and whether the cache is limited to a maximum number of
pooled connections. For the Oracle sample implementation, this is
discussed in "Schemes for Creating New Pooled Connections in the
Oracle Implementation" on page 13-24.
Connection Pooling and Caching 13-19

Connection Caching
General Steps in Closing a Connection
Once the JDBC application has finished using the logical connection instance, its
associated pooled connection instance can be returned to the connection cache (or
closed, as appropriate, if a fatal error occurred). The application and middle tier
perform the following steps to accomplish this:

1. The application calls the close() method on the logical connection instance
(as it would with any connection instance).

2. The pooled connection instance that produced the logical connection instance
triggers an event to the connection event listener or listeners associated with it
(associated with it through previous calls by the connection cache instance to
the pooled connection instance addConnectionEventListener() method).

3. The connection event listener performs one of the following:

■ It puts the pooled connection instance back into the cache and flags it as
available (typical).

or:

■ It closes the pooled connection instance (if a fatal error occurred during use
of its physical connection).

The connection event listener will typically perform these steps by calling
methods of the connection cache instance, which is implementation-specific. For
the Oracle sample implementation, these functions are performed by methods
specified in the OracleConnectionCache interface, as discussed in"Oracle
Connection Cache Specification: OracleConnectionCache Interface" on
page 13-21.

4. Depending on the situation and implementation, the connection cache instance
disassociates the connection event listener from the pooled connection instance.
This is accomplished by calling the standard
removeConnectionEventListener() method specified by the
PooledConnection interface.

In some implementations, this step can be performed only when a pooled
connection instance is closed, either because of a fatal error or because the
application is finished with the physical connection. In the Oracle sample
implementation, however, the connection event listener is disassociated with
the pooled connection instance each time the pooled connection is returned to
the available cache (because in the Oracle implementation, a connection event
listener is associated with the pooled connection instance whenever it is
reused).
13-20 JDBC Developer’s Guide and Reference

Connection Caching
Oracle Connection Cache Specification: OracleConnectionCache Interface
Middle-tier developers are free to implement their own connection caching scheme
as desired, but Oracle offers the OracleConnectionCache interface, which you
can implement in a connection cache class and which uses instances of the
OracleConnectionEventListener class for its listener functionality.

In addition, Oracle offers a class that implements this interface,
OracleConnectionCacheImpl, which can be used as is. This class also extends
the OracleDataSource class and, therefore, includes a getConnection()
method. For more information about this class, see "Oracle Connection Cache
Implementation: OracleConnectionCacheImpl Class" on page 13-22.

These Oracle classes and interfaces are all in the oracle.jdbc.pool package.

The OracleConnectionCache interface specifies the following methods (in
addition to data source methods that it inherits), to be implemented in a connection
cache class:

■ reusePooledConnection(): Takes a pooled connection instance as input
and returns it to the cache of available pooled connections (essentially, the
available physical connections).

This method would be invoked by a connection event listener after a JDBC
application has finished using the logical connection instance provided by the
pooled connection instance (through previous use of the pooled connection
getConnection() method).

■ closePooledConnection(): Takes a pooled connection instance as input
and closes it.

A connection event listener would invoke this method after a fatal error has
occurred through the logical connection instance provided by the pooled
connection instance. The listener would call closePooledConnection(), for
example, if it notices a server crash.

■ close(): Closes the connection cache instance, after the application has
finished using connection caching with the associated database.

The functionality of the reusePooledConnection() and
closePooledConnection() methods is an implementation of some of the steps
described generally in "General Steps in Closing a Connection" on page 13-20.
Connection Pooling and Caching 13-21

Connection Caching
Oracle Connection Cache Implementation: OracleConnectionCacheImpl Class
Oracle offers a sample implementation of connection caching and connection event
listeners, providing the OracleConnectionCacheImpl class. This class
implements the OracleConnectionCache interface (which you can optionally
implement yourself in some other connection cache class) and uses instances of the
OracleConnectionEventListener class for listener functionality.

These Oracle classes and interfaces are all in the oracle.jdbc.pool package.

If you use the OracleConnectionCacheImpl class for your connection caching
functionality, you should be familiar with the following topics, discussed
immediately below:

■ Instantiating OracleConnectionCacheImpl and Setting Properties

■ Setting a Maximum Number of Pooled Connections

■ Schemes for Creating New Pooled Connections in the Oracle Implementation

■ Additional OracleConnectionCacheImpl Methods

Instantiating OracleConnectionCacheImpl and Setting Properties
A middle tier that uses the Oracle implementation of connection caching can
construct an OracleConnectionCacheImpl instance and set its connection
properties in one of three ways:

■ It can use the OracleConnectionCacheImpl constructor that takes an
existing connection pool data source as input. This is convenient if the middle
tier has already created a connection pool data source instance and set its
connection properties. For example, where cpds is a connection pool data
source instance:

OracleConnectionCacheImpl ocacheimpl = new OracleConnectionCacheImpl(cpds);

or:

■ It can use the default OracleConnectionCacheImpl constructor (which
takes no input) and then the setConnectionPoolDataSource() method,

Note: OracleConnectionCacheImpl support for JNDI is not
complete in release 8.1.6—an instance obtained through a lookup
call does not have any connections opened; however, the
connection properties, caching scheme, and limits for the number of
pooled connections are retained.
13-22 JDBC Developer’s Guide and Reference

Connection Caching
which takes an existing connection pool data source instance as input. Again,
this is convenient if the middle tier already has a connection pool data source
instance with its connection properties set. For example, where cpds is a
connection pool data source instance:

OracleConnectionCacheImpl ocacheimpl = new OracleConnectionCacheImpl();

ocacheimpl.setConnectionPoolDataSource(cpds);

or:

■ It can use the default OracleConnectionCacheImpl constructor and then set
the properties individually, using setter methods. For example:

OracleConnectionCacheImpl ocacheimpl = new OracleConnectionCacheImpl();

ocacheimpl.setDriverType("oci8");
ocacheimpl.setServerName("dlsun999");
ocacheimpl.setNetworkProtocol("tcp");
ocacheimpl.setDatabaseName("816");
ocacheimpl.setPortNumber(1521);
ocacheimpl.setUser("scott");
ocacheimpl.setPassword("tiger");

This is equivalent to setting properties in any generic data source or connection
pool data source, as discussed in "Initialize Connection Properties" on
page 13-8.

Notes:

■ You can also use the setConnectionPoolDataSource()
method to override a previously set pooled connection data
source or previously set connection properties.

■ If you call setConnectionPoolDataSource() when there
is already a connection pool data source with associated logical
connections in use, then an exception will be thrown if the new
connection pool data source specifies a different database
schema than the old connection pool data source.
Connection Pooling and Caching 13-23

Connection Caching
Setting a Maximum Number of Pooled Connections
In any connection caching implementation, the middle-tier developer must decide
whether there should be a maximum number of pooled connections in the cache,
and how to handle situations where no pooled connections are available and the
maximum number has been reached.

The OracleConnectionCacheImpl class includes a maximum cache size that can
be set using the setMaxLimit() method (taking an int as input). The default
value is 1.

Following is an example, presuming ocacheimpl is an
OracleConnectionCacheImpl instance:

ocacheimpl.setMaxLimit(10);

This limits the cache to a maximum size of 10 pooled connection instances.

Schemes for Creating New Pooled Connections in the Oracle Implementation
The OracleConnectionCacheImpl class supports two schemes, known as cache
schemes, for situations where the application has requested a connection, all existing
pooled connections are in use, and the maximum number of pooled connections in
the cache has been reached:

■ dynamic

In the dynamic scheme, which is the default, new pooled connections can be
created above and beyond the maximum limit, but each one is automatically
closed and freed as soon the logical connection instance that it provided is no
longer in use. (This is as opposed to the normal scenario when a pooled
connection instance is done being used, where it is returned to the available
cache.)

■ fixed with no wait

In the "fixed with no wait" scheme, the maximum limit cannot be exceeded.
Requests for connections when the maximum has already been reached will
return null.

Set the cache scheme by invoking the setCacheScheme() method of the
OracleConnectionCacheImpl instance. Use one of the following class static
constants as input:

■ DYNAMIC_SCHEME

■ FIXED_RETURN_NULL_SCHEME
13-24 JDBC Developer’s Guide and Reference

Connection Caching
For example, presuming ocacheimpl is an OracleConnectionCacheImpl
instance:

ocacheimpl.setCacheScheme(OracleConnectionCacheImpl.FIXED_RETURN_NULL_SCHEME);

An example of each scheme is available in the Sample Applications chapter—see
"Oracle Connection Cache (dynamic)—CCache1.java" on page 17-75 and "Oracle
Connection Cache ("fixed with no wait")—CCache2.java" on page 17-77.

Additional OracleConnectionCacheImpl Methods
In addition to the key methods already discussed in "Oracle Connection Cache
Specification: OracleConnectionCache Interface" on page 13-21, the following
OracleConnectionCacheImpl methods might be useful:

■ getActiveSize(): Returns the number of currently active pooled
connections in the cache (pooled connection instances with an associated logical
connection instance being used by the JDBC application).

■ getCacheSize(): Returns the total number of pooled connections in the
cache, both active and inactive.

Oracle Connection Event Listener: OracleConnectionEventListener Class
This section discusses OracleConnectionEventListener functionality by
summarizing its constructors and methods.

Instantiating an Oracle Connection Event Listener
In the Oracle implementation of connection caching, an
OracleConnectionCacheImpl instance constructs an Oracle connection event
listener, specifying the connection cache instance itself (its this instance) as the
constructor argument. This associates the connection event listener with the
connection cache instance.

In general, however, the OracleConnectionEventListener constructor can
take any data source instance as input. For example, where ds is a generic data
source:

OracleConnectionEventListener ocel = new OracleConnectionEventListener(ds);
Connection Pooling and Caching 13-25

Connection Caching
There is also a default constructor that takes no input and can be used in
conjunction with the OracleConnectionEventListener class
setDataSource() method:

OracleConnectionEventListener ocel = new OracleConnectionEventListener();
...
ocel.setDataSource(ds);

The input can be any kind of data source, including an
OracleConnectionCacheImpl instance (because that class extends
OracleDataSource).

Oracle Connection Event Listener Methods
This section summarizes the methods of the OracleConnectionEventListener
class:

■ setDataSource() (previously discussed): Used to input a data source to the
connection event listener, in case one was not provided when constructing the
listener. This can take any type of data source as input.

■ connectionClosed(): Invoked when the JDBC application calls close() on
its representation of the connection.

■ connectionErrorOccurred(): Invoked when a fatal connection error
occurs, just before a SQLException is issued to the application.
13-26 JDBC Developer’s Guide and Reference

Distributed Trans
14

Distributed Transactions

This chapter discusses the Oracle JDBC implementation of distributed transactions.
These are multi-phased transactions, often using multiple databases, that must be
committed in a coordinated way. There is also related discussion of XA, which is a
general standard (not specific to Java) for distributed transactions.

The following topics are discussed:

■ Overview

■ XA Components

■ Error Handling and Optimizations

■ Implementing a Distributed Transaction

For further introductory and general information about distributed transactions,
refer to the Sun Microsystems specifications for the JDBC 2.0 Optional Package and
the Java Transaction API (JTA).

Note: This chapter discusses features of the JDBC 2.0 Optional
Package, formerly known as the JDBC 2.0 Standard Extension API,
which is available through the javax packages from Sun
Microsystems. The Optional Package not part of the standard JDK,
but relevant packages are included with the Oracle JDBC
classes111.zip and classes12.zip files.
actions 14-1

Overview
Overview
A distributed transaction, sometimes referred to as a global transaction, is a set of two
or more related transactions that must be managed in a coordinated way. The
transactions that constitute a distributed transaction might be in the same database,
but more typically are in different databases and often in different locations. Each
individual transaction of a distributed transaction is referred to as a transaction
branch.

For example, a distributed transaction might consist of money being transferred
from an account in one bank to an account in another bank. You would not want
either transaction committed without assurance that both will complete
successfully.

In the JDBC 2.0 extension API, distributed transaction functionality is built on top of
connection pooling functionality, described under "Connection Pooling" on
page 13-11. This distributed transaction functionality is also built upon the open XA
standard for distributed transactions. (XA is part of the X/Open standard and is not
specific to Java.)

The remainder of this overview covers the following topics:

■ Distributed Transaction Components and Scenarios

■ Distributed Transaction Concepts

■ Oracle XA Packages

For further introductory and general information about distributed transactions and
XA, refer to the Sun Microsystems specifications for the JDBC 2.0 Optional Package
and the Java Transaction API.

Distributed Transaction Components and Scenarios
In reading the remainder of the distributed transactions section, it will be helpful to
keep the following points in mind:

■ A distributed transaction system typically relies on an external transaction
manager—such as a software component that implements standard Java
Transaction API (JTA) functionality—to coordinate the individual transactions.

Note: Distributed transaction (XA) features require version 8.1.6
or later of the Oracle database with JServer option.
14-2 JDBC Developer’s Guide and Reference

Overview
Many vendors will offer XA-compliant JTA modules. This includes Oracle,
which is developing a JTA module based on the Oracle implementation of XA
discussed below.

■ XA functionality is usually isolated from a client application, being
implemented instead in a middle-tier environment such as an application
server.

In many scenarios, the application server and transaction manager will be
together on the middle tier, possibly together with some of the application code
as well.

■ Discussion throughout this section is intended mostly for middle-tier
developers.

■ The term resource manager is often used in discussing distributed transactions. A
resource manager is simply an entity that manages data or some other kind of
resource. Wherever the term is used in this chapter, it refers to a database.

Distributed Transaction Concepts
Software that uses distributed transactions cannot use normal connection instance
COMMIT, auto-commit, or ROLLBACK functionality, because all COMMIT or
ROLLBACK operations in a distributed transaction must be coordinated. Any
attempt to use the commit() or rollback() method or enable the auto-commit
flag of a connection instance would result in a SQL exception.

When you use XA functionality, the transaction manager uses XA resource instances
to prepare and coordinate each transaction branch and then to commit or roll back
all transaction branches appropriately.

XA functionality includes the following key components:

■ XA data sources—These are extensions of connection pool data sources and
other data sources, and similar in concept and functionality.

Note: Using JTA functionality requires file jta.zip to be in the
CLASSPATH. Oracle includes this file with the JDBC product. (You
can also obtain it from the Sun Microsystems Web site, but it is
advisable to use the version from Oracle, because that has been
tested with the Oracle drivers.)
Distributed Transactions 14-3

Overview
There will be one XA data source instance for each resource manager (database)
that will be used in the distributed transaction. You will typically create XA
data source instances (using the class constructor) in your middle-tier software.

XA data sources produce XA connections.

■ XA connections—These are extensions of pooled connections, and similar in
concept and functionality. An XA connection encapsulates a physical database
connection; individual connection instances are temporary handles to these
physical connections.

An XA connection instance corresponds to a single database session, although
the session can be used in sequence by multiple logical connection instances
(one at a time), as with pooled connection instances.

You will typically get an XA connection instance from an XA data source
instance (using a get method) in your middle-tier software. You can get
multiple XA connection instances from a single XA data source instance if the
distributed transaction will involve multiple sessions (multiple physical
connections) in the same database.

XA connections produce XA resource instances and JDBC connection instances.

■ XA resources—These are used by a transaction manager in coordinating the
transaction branches of a distributed transaction.

You will get one XA resource instance from each XA connection instance (using
a get method), typically in your middle-tier software. There is a one-to-one
correlation between XA resource instances and XA connection instances;
equivalently, there is a one-to-one correlation between XA resource instances
and database sessions (physical connections).

In a typical scenario, the middle-tier component will hand off XA resource
instances to the transaction manager, for use in coordinating distributed
transactions.

Because each XA resource instance corresponds to a single database session,
there can be only a single active transaction branch associated with an XA
resource instance at any given time. There can be additional suspended
transaction branches, however—see "XA Resource Method Functionality and
Input Parameters" on page 14-9.

Each XA resource instance has the functionality to start, end, prepare, commit,
or roll back the operations of the transaction branch running in the session with
which the XA resource instance is associated.
14-4 JDBC Developer’s Guide and Reference

Overview
The "prepare" step is the first step of a two-phase COMMIT operation. The
transaction manager will issue a prepare to each XA resource instance. Once
the transaction manager sees that the operations of each transaction branch
have prepared successfully (essentially, that the databases can be accessed
without error), it will issue a COMMIT to each XA resource instance to commit
all the changes.

■ Transaction IDs—These are used to identify transaction branches. Each ID
includes a transaction branch ID component and a distributed transaction ID
component—this is how a branch is associated with a distributed transaction.
All XA resource instances associated with a given distributed transaction would
have a transaction ID that includes the same distributed transaction ID
component.

Oracle XA Packages
Oracle supplies the following three packages that have classes to implement
distributed transaction functionality according to the XA standard:

■ oracle.jdbc.xa (OracleXid and OracleXAException classes)

■ oracle.jdbc.xa.client

■ oracle.jdbc.xa.server

Classes for XA data sources, XA connections, and XA resources are in both the
client package and the server package. (An abstract class for each is in the
top-level package.) The OracleXid and OracleXAException classes are in the
top-level oracle.jdbc.xa package, because their functionality does not depend
on where the code is running.

In middle-tier scenarios, you will import OracleXid, OracleXAException, and
the oracle.jdbc.xa.client package.

If you intend your XA code to run in the target Oracle database, however, you will
import the oracle.jdbc.xa.server package instead of the client package.

If code that will run inside a target database must also access remote databases,
then do not import either package—instead, you must fully qualify the names of
any classes that you use from the client package (to access a remote database) or
from the server package (to access the local database). Class names are duplicated
between these packages.
Distributed Transactions 14-5

XA Components
XA Components
This section discusses the XA components—standard XA interfaces specified in the
JDBC 2.0 Optional Package, and the Oracle classes that implement them. The
following topics are covered:

■ XA Data Source Interface and Oracle Implementation

■ XA Connection Interface and Oracle Implementation

■ XA Resource Interface and Oracle Implementation

■ XA Resource Method Functionality and Input Parameters

■ XA ID Interface and Oracle Implementation

XA Data Source Interface and Oracle Implementation
The javax.sql.XADataSource interface outlines standard functionality of XA
data sources, which are factories for XA connections. The overloaded
getXAConnection() method returns an XA connection instance and optionally
takes a user name and password as input:

public interface XADataSource
{
 XAConnection getXAConnection() throws SQLException;
 XAConnection getXAConnection(String user, String password)
 throws SQLException;
 ...
}

Oracle JDBC implements the XADataSource interface with the
OracleXADataSource class, located both in the oracle.jdbc.xa.client
package and the oracle.jdbc.xa.server package.

The OracleXADataSource classes also extend the
OracleConnectionPoolDataSource class (which extends the
OracleDataSource class), so include all the connection properties described in
"Data Source Properties" on page 13-4.

The OracleXADataSource class getXAConnection() methods return the
Oracle implementation of XA connection instances, which are
OracleXAConnection instances (as the next section discusses).
14-6 JDBC Developer’s Guide and Reference

XA Components
XA Connection Interface and Oracle Implementation
An XA connection instance, as with a pooled connection instance, encapsulates a
physical connection to a database. This would be the database specified in the
connection properties of the XA data source instance that produced the XA
connection instance.

Each XA connection instance also has the facility to produce the XA resource
instance that will correspond to it for use in coordinating the distributed
transaction.

An XA connection instance is an instance of a class that implements the standard
javax.sql.XAConnection interface:

public interface XAConnection extends PooledConnection
{
 javax.jta.xa.XAResource getXAResource() throws SQLException;
}

As you see, the XAConnection interface extends the
javax.sql.PooledConnection interface, so it also includes the
getConnection(), close(), addConnectionEventListener(), and
removeConnectionEventListener() methods listed in "Pooled Connection
Interface and Oracle Implementation" on page 13-13.

Oracle JDBC implements the XAConnection interface with the
OracleXAConnection class, located both in the oracle.jdbc.xa.client
package and the oracle.jdbc.xa.server package.

The OracleXAConnection classes also extend the OraclePooledConnection
class.

The OracleXAConnection class getXAResource() method returns the Oracle
implementation of an XA resource instance, which is an OracleXAResource
instance (as the next section discusses). The getConnection() method returns an
OracleConnection instance.

A JDBC connection instance returned by an XA connection instance acts as a
temporary handle to the physical connection, as opposed to encapsulating the

Note: You can register XA data sources in JNDI using the same
naming conventions as discussed previously for non-pooling data
sources in "Register the Data Source" on page 13-8.
Distributed Transactions 14-7

XA Components
physical connection. The physical connection is encapsulated by the XA connection
instance.

Each time an XA connection instance getConnection() method is called, it
returns a new connection instance that exhibits the default behavior, and closes any
previous connection instance that still exists and had been returned by the same XA
connection instance. It is advisable to explicitly close any previous connection
instance before opening a new one, however.

Calling the close() method of an XA connection instance closes the physical
connection to the database. This is typically performed in the middle tier.

XA Resource Interface and Oracle Implementation
The transaction manager uses XA resource instances to coordinate all the
transaction branches that constitute a distributed transaction.

Each XA resource instance provides the following key functionality, typically
invoked by the transaction manager:

■ It associates and disassociates distributed transactions with the transaction
branch operating in the XA connection instance that produced this XA resource
instance. (Essentially, associates distributed transactions with the physical
connection or session encapsulated by the XA connection instance.) This is done
through use of transaction IDs.

■ It performs the two-phase COMMIT functionality of a distributed transaction to
ensure that changes are not committed in one transaction branch before there is
assurance that the changes will succeed in all transaction branches.

"XA Resource Method Functionality and Input Parameters" on page 14-9
further discusses this.

Notes: Because there must always be a one-to-one correlation
between XA connection instances and XA resource instances, an XA
resource instance is implicitly closed when the associated XA
connection instance is closed.
14-8 JDBC Developer’s Guide and Reference

XA Components
An XA resource instance is an instance of a class that implements the standard
javax.transaction.xa.XAResource interface:

public interface XAResource
{
 void commit(Xid xid, boolean onePhase) throws XAException;
 void end(Xid xid, int flags) throws XAException;
 void forget(Xid xid) throws XAException; // no Oracle implementation
 int prepare(Xid xid) throws XAException;
 Xid[] recover(int flag) throws XAException; // no Oracle implementation
 void rollback(Xid xid) throws XAException;
 void start(Xid xid, int flags) throws XAException;
 boolean isSameRM(XAResource xares) throws XAException;
}

Oracle JDBC implements the XAResource interface with the OracleXAResource
class, located both in the oracle.jdbc.xa.client package and the
oracle.jdbc.xa.server package.

The Oracle JDBC driver creates and returns an OracleXAResource instance
whenever the OracleXAConnection class getXAResource() method is called,
and it is the Oracle JDBC driver that associates an XA resource instance with a
connection instance and the transaction branch being executed through that
connection.

This is how an OracleXAResource instance is associated with a particular
connection and with the transaction branch being executed in that connection.

XA Resource Method Functionality and Input Parameters
The OracleXAResource class has several methods to coordinate a transaction
branch with the distributed transaction with which it is associated. This usually
involves two-phase COMMIT operations.

A transaction manager, receiving OracleXAResource instances from a middle-tier
component such as an application server, would typically invoke this functionality.

Each of these methods takes a transaction ID as input, in the form of an OracleXid
instance, which includes a transaction branch ID component and a distributed
transaction ID component. Every transaction branch has a unique transaction ID,

Note: With release 8.1.6, Oracle JDBC does not currently
implement the recover() and forget() methods.
Distributed Transactions 14-9

XA Components
but transaction branches belonging to the same distributed transaction have the
same distributed transaction component as part of their transaction IDs.

The OracleXid class and the standard interface upon which it is based are
discussed in "XA ID Interface and Oracle Implementation" on page 14-13.

Following is a description of key XA resource functionality, the methods used, and
additional input parameters. Each of these methods throws an XA exception if an
error is encountered. See "XA Exception Classes and Methods" on page 14-15.

Start Start work on behalf of a transaction branch, associating the transaction branch
with a distributed transaction.

void start(Xid xid, int flags)

The flags parameter can have one of the following values:

■ XAResource.TMNOFLAGS (no special flag)—This is to flag the start of a new
transaction branch for subsequent operations in the session associated with this
XA resource instance. This branch will have the transaction ID xid, which is an
OracleXid instance created by the transaction manager. This will map the
transaction branch to the appropriate distributed transaction.

■ XAResource.TMJOIN—This is to join subsequent operations in the session
associated with this XA resource instance to the existing transaction branch
specified by xid.

■ XAResource.TMRESUME—This is to resume the transaction branch specified
by xid. (It must first have been suspended.)

TMNOFLAGS, TMJOIN, and TMRESUME are defined as static members of the
XAResource interface and OracleXAResource class.

Note that to create an appropriate transaction ID in starting a transaction branch,
the transaction manager must know which distributed transaction the transaction
branch should belong to. The mechanics of this are handled between the middle tier
and transaction manager and are beyond the scope of this document. Refer to the
Sun Microsystems specifications for the JDBC 2.0 Optional Package and the Java
Transaction API.

Note: Instead of using the start() method with TMRESUME, the
transaction manager can cast to an OracleXAResource instance
and use the resume(Xid xid) method, an Oracle extension.
14-10 JDBC Developer’s Guide and Reference

XA Components
End End work on behalf of the transaction branch specified by xid, disassociating
the transaction branch from its distributed transaction.

void end(Xid xid, int flags)

The flags parameter can have one of the following values:

■ XAResource.TMSUCCESS—This is to indicate that this transaction branch is
known to have succeeded.

■ XAResource.TMFAIL—This is to indicate that this transaction branch is
known to have failed.

■ XAResource.TMSUSPEND—This is to suspend the transaction branch specified
by xid. (By suspending transaction branches, you can have multiple
transaction branches in a single session. Only one can be active at any given
time, however. Also, this tends to be more expensive in terms of resources than
having two sessions.)

TMSUCCESS, TMFAIL, and TMSUSPEND are defined as static members of the
XAResource interface and OracleXAResource class.

Prepare Prepare the changes performed in the transaction branch specified by xid.
This is the first phase of a two-phase COMMIT operation, to ensure that the database
is accessible and that the changes can be committed successfully.

int prepare(Xid xid)

Notes:

■ Instead of using the end() method with TMSUSPEND, the
transaction manager can cast to an OracleXAResource
instance and use the suspend(Xid xid) method, an Oracle
extension.

■ This XA functionality to suspend a transaction provides a way
to switch between various transactions within a single JDBC
connection. You can use the XA classes to accomplish this, even
if you are not in a distributed transaction environment and
would otherwise have no need for the XA classes.
Distributed Transactions 14-11

XA Components
This method returns an integer value as follows:

■ XAResource.XA_RDONLY—This is returned if the transaction branch executes
only read-only operations such as SELECT statements.

■ XAResource.XA_OK—This is returned if the transaction branch executes
updates that are all prepared without error.

■ n/a (no value returned)—No value is returned if the transaction branch
executes updates and any of them encounter errors during preparation. In this
case, an XA exception is thrown.

XA_RDONLY and XA_OK are defined as static members of the XAResource interface
and OracleXAResource class.

Commit Commit prepared changes in the transaction branch specified by xid. This
is the second phase of a two-phase COMMIT and is performed only after all
transaction branches have been successfully prepared.

void commit(Xid xid, boolean onePhase)

You can set the onePhase parameter as follows:

■ true—This is to use one-phase instead of two-phase protocol in committing
the transaction branch. This is appropriate if there is only one transaction
branch in the distributed transaction; the prepare step would be skipped.

■ false—This is to use two-phase protocol in committing the transaction branch
(typical).

Roll back Roll back prepared changes in the transaction branch specified by xid.

void rollback(Xid xid)

Notes:

■ You should always call the end() method on a branch before
calling the prepare() method.

■ If there is only one transaction branch in a distributed
transaction, then there is no need to call the prepare()
method. You can call the XA resource commit() method
without preparing first.
14-12 JDBC Developer’s Guide and Reference

XA Components
Check for same RM To determine if two XA resource instances correspond to the
same resource manager (database), call the isSameRM() method from one XA
resource instance, specifying the other XA resource instance as input. In the
following example, presume xares1 and xares2 are OracleXAResource
instances:

boolean sameRM = xares1.isSameRM(xares2);

This method can be used by a transaction manager regarding certain Oracle
optimizations, as discussed in "Oracle XA Optimizations" on page 14-17.

XA ID Interface and Oracle Implementation
The transaction manager creates transaction ID instances and uses them in
coordinating the branches of a distributed transaction. Each transaction branch is
assigned a unique transaction ID, which includes the following information:

■ format identifier (4 bytes)

A format identifier specifies a Java transaction manager—for example, there
could be a format identifier ORCL. This field cannot be null.

■ global transaction identifier (64 bytes) (or "distributed transaction ID
component", as discussed earlier)

■ branch qualifier (64 bytes) (or "transaction branch ID component", as discussed
earlier)

The 64-byte global transaction identifier value will be identical in the transaction
IDs of all transaction branches belonging to the same distributed transaction. The
overall transaction ID, however, is unique for every transaction branch.

An XA transaction ID instance is an instance of a class that implements the standard
javax.transaction.xa.Xid interface, which is a Java mapping of the X/Open
transaction identifier XID structure.

Oracle implements this interface with the OracleXid class in the
oracle.jdbc.xa package. OracleXid instances would be used only in a
transaction manager, transparent to application programs or an application server.

A transaction manager can use the following in creating an OracleXid instance:

public OracleXid(int fId, byte gId[], byte bId[]) throws XAException

Where fId is an integer value for the format identifier, gId[] is a byte array for the
global transaction identifier, and bId[] is a byte array for the branch qualifier.
Distributed Transactions 14-13

XA Components
The Xid interface specifies the following getter methods:

■ public int getFormatId()

■ public byte[] getGlobalTransactionId()

■ public type[] getBranchQualifier()
14-14 JDBC Developer’s Guide and Reference

Error Handling and Optimizations
Error Handling and Optimizations
This section has two focuses: 1) the functionality of XA exceptions and error
handling; and 2) Oracle optimizations in its XA implementation. The following
topics are covered:

■ XA Exception Classes and Methods

■ Mapping between Oracle Errors and XA Errors

■ XA Error Handling

■ Oracle XA Optimizations

The exception and error-handling discussion includes the standard XA exception
class and the Oracle-specific XA exception class, as well as particular XA error codes
and error-handling techniques.

XA Exception Classes and Methods
XA methods throw XA exceptions, as opposed to general exceptions or SQL
exceptions. An XA exception is an instance of the standard class
javax.transaction.xa.XAException or a subclass. Oracle subclasses
XAException with the oracle.jdbc.xa.OracleXAException class.

An OracleXAException instance consists of an Oracle error portion and an XA
error portion and is constructed as follows by the Oracle JDBC driver:

public OracleXAException()

or:

public OracleXAException(int error)

The error value is an error code that combines an Oracle SQL error value and an XA
error value. (The JDBC driver determines exactly how to combine the Oracle and
XA error values.)

The OracleXAException class has the following methods:

■ public int getOracleError()

This method returns the Oracle SQL error code pertaining to the exception—a
standard ORA error number (or 0 if there is no Oracle SQL error).
Distributed Transactions 14-15

Error Handling and Optimizations
■ public int getXAError()

This method returns the XA error code pertaining to the exception. XA error
values are defined in the javax.transaction.xa.XAException class; refer
to its Javadoc at the Sun Microsystems Web site for more information.

Mapping between Oracle Errors and XA Errors
As of release 8.1.6, Oracle errors correspond to XA errors in OracleXAException
instances as documented in Table 14–1.

XA Error Handling
The following example uses the OracleXAException class to process an XA
exception:

try {
 ...
 ...Perform XA operations...
 ...
} catch(OracleXAException oxae) {
 int oraerr = oxae.getOracleError();
 System.out.println("Error " + oraerr);
}
 catch(XAException xae)
{...Process generic XA exception...}

Table 14–1 Oracle-XA Error Mapping

Oracle Error Code XA Error Code

ORA 3113 XAException.XAER_RMFAIL

ORA 3114 XAException.XAER_RMFAIL

ORA 24756 XAException.XAER_NOTA

ORA 24764 XAException.XA_HEURCOM

ORA 24765 XAException.XA_HEURRB

ORA 24766 XAException.XA_HEURMIX

ORA 24767 XAException.XA_RDONLY

ORA 25351 XAException.XA_RETRY

all other ORA errors XAException.XA_RMERR
14-16 JDBC Developer’s Guide and Reference

Error Handling and Optimizations
In case the XA operations did not throw an Oracle-specific XA exception, the code
drops through to process a generic XA exception.

Oracle XA Optimizations
Oracle JDBC has functionality to improve performance if two or more branches of a
distributed transaction use the same database instance—meaning that the XA
resource instances associated with these branches are associated with the same
resource manager.

In such a circumstance, the prepare() method of only one of these XA resource
instances will return XA_OK (or failure); the rest will return XA_RDONLY, even if
updates are made. This allows the transaction manager to implicitly join all the
transaction branches and commit (or roll back, if failure) the joined transaction
through the XA resource instance that returned XA_OK (or failure).

The transaction manager can use the OracleXAResource class isSameRM()
method to determine if two XA resource instances are using the same resource
manager. This way it can interpret the meaning of XA_RDONLY return values.
Distributed Transactions 14-17

Implementing a Distributed Transaction
Implementing a Distributed Transaction
This section provides an example of how to implement a distributed transaction
using Oracle XA functionality.

Summary of Imports for Oracle XA
You must import the following for Oracle XA functionality:

import oracle.jdbc.xa.OracleXid;
import oracle.jdbc.xa.OracleXAException;
import oracle.jdbc.pool.*;
import oracle.jdbc.xa.client.*;
import javax.transaction.xa.*;

The oracle.jdbc.pool package has classes for connection pooling functionality,
some of which are subclassed by XA-related classes.

In addition, if the code will run inside an Oracle database and access that database
for SQL operations, you must import the following:

import oracle.jdbc.xa.server.*;

(And if you intend to access only the database in which the code runs, you would
not need the oracle.jdbc.xa.client classes.)

The client and server packages each have versions of the
OracleXADataSource, OracleXAConnection, and OracleXAResource
classes. Abstract versions of these three classes are in the top-level
oracle.jdbc.xa package.

Oracle XA Code Sample
This example uses a two-phase distributed transaction with two transaction
branches, each to a separate database.

Note that for simplicity, this example combines code that would typically be in a
middle tier with code that would typically be in a transaction manager (such as the
XA resource method invocations and the creation of transaction IDs).

For brevity, the specifics of creating transaction IDs (in the createID() method)
and performing SQL operations (in the doSomeWork1() and doSomeWork2()
methods) are not shown here. The complete sample is in "XA with Two-Phase
Commit Operation—XA4.java" on page 17-84.
14-18 JDBC Developer’s Guide and Reference

Implementing a Distributed Transaction
For another complete sample, showing how to use XA resource functionality to
suspend and resume a transaction, see "XA with Suspend and Resume—XA2.java"
on page 17-79.

This example executes the following sequence:

1. Start transaction branch #1.

2. Start transaction branch #2.

3. Execute DML operations on branch #1.

4. Execute DML operations on branch #2.

5. End transaction branch #1.

6. End transaction branch #2.

7. Prepare branch #1.

8. Prepare branch #2.

9. Commit branch #1.

10. Commit branch #2.

// You need to import the java.sql package to use JDBC
import java.sql.*;
import javax.sql.*;
import oracle.jdbc.driver.*;
import oracle.jdbc.pool.*;
import oracle.jdbc.xa.OracleXid;
import oracle.jdbc.xa.OracleXAException;
import oracle.jdbc.xa.client.*;
import javax.transaction.xa.*;

class XA4
{
 public static void main (String args [])
 throws SQLException
 {

 try
 {
 String URL1 = "jdbc:oracle:oci8:@";
 String URL2 ="jdbc:oracle:thin:@(description=(address=(host=dlsun991)
 (protocol=tcp)(port=5521))(connect_data=(sid=rdbms2)))";

 DriverManager.registerDriver(new OracleDriver());
Distributed Transactions 14-19

Implementing a Distributed Transaction
 // You can put a database name after the @ sign in the connection URL.
 Connection conna =
 DriverManager.getConnection (URL1, "scott", "tiger");

 // Prepare a statement to create the table
 Statement stmta = conna.createStatement ();

 Connection connb =
 DriverManager.getConnection (URL2, "scott", "tiger");

 // Prepare a statement to create the table
 Statement stmtb = connb.createStatement ();

 try
 {
 // Drop the test table
 stmta.execute ("drop table my_table");
 }
 catch (SQLException e)
 {
 // Ignore an error here
 }

 try
 {
 // Create a test table
 stmta.execute ("create table my_table (col1 int)");
 }
 catch (SQLException e)
 {
 // Ignore an error here too
 }

 try
 {
 // Drop the test table
 stmtb.execute ("drop table my_tab");
 }
 catch (SQLException e)
 {
 // Ignore an error here
 }

 try
14-20 JDBC Developer’s Guide and Reference

Implementing a Distributed Transaction
 {
 // Create a test table
 stmtb.execute ("create table my_tab (col1 char(30))");
 }
 catch (SQLException e)
 {
 // Ignore an error here too
 }

 // Create XADataSource instances and set properties.
 OracleXADataSource oxds1 = new OracleXADataSource();
 oxds1.setURL("jdbc:oracle:oci8:@");
 oxds1.setUser("scott");
 oxds1.setPassword("tiger");

 OracleXADataSource oxds2 = new OracleXADataSource();

 oxds2.setURL("jdbc:oracle:thin:@(description=(address=(host=dlsun991)
 (protocol=tcp)(port=5521))(connect_data=(sid=rdbms2)))");
 oxds2.setUser("scott");
 oxds2.setPassword("tiger");

 // Get XA connections to the underlying data sources
 XAConnection pc1 = oxds1.getXAConnection();
 XAConnection pc2 = oxds2.getXAConnection();

 // Get the physical connections
 Connection conn1 = pc1.getConnection();
 Connection conn2 = pc2.getConnection();

 // Get the XA resources
 XAResource oxar1 = pc1.getXAResource();
 XAResource oxar2 = pc2.getXAResource();

 // Create the Xids With the Same Global Ids
 Xid xid1 = createXid(1);
 Xid xid2 = createXid(2);

 // Start the Resources
 oxar1.start (xid1, XAResource.TMNOFLAGS);
 oxar2.start (xid2, XAResource.TMNOFLAGS);

 // Execute SQL operations with conn1 and conn2
 doSomeWork1 (conn1);
 doSomeWork2 (conn2);
Distributed Transactions 14-21

Implementing a Distributed Transaction
 // END both the branches -- IMPORTANT
 oxar1.end(xid1, XAResource.TMSUCCESS);
 oxar2.end(xid2, XAResource.TMSUCCESS);

 // Prepare the RMs
 int prp1 = oxar1.prepare (xid1);
 int prp2 = oxar2.prepare (xid2);

 System.out.println("Return value of prepare 1 is " + prp1);
 System.out.println("Return value of prepare 2 is " + prp2);

 boolean do_commit = true;

 if (!((prp1 == XAResource.XA_OK) || (prp1 == XAResource.XA_RDONLY)))
 do_commit = false;

 if (!((prp2 == XAResource.XA_OK) || (prp2 == XAResource.XA_RDONLY)))
 do_commit = false;

 System.out.println("do_commit is " + do_commit);
 System.out.println("Is oxar1 same as oxar2 ? " + oxar1.isSameRM(oxar2));

 if (prp1 == XAResource.XA_OK)
 if (do_commit)
 oxar1.commit (xid1, false);
 else
 oxar1.rollback (xid1);

 if (prp2 == XAResource.XA_OK)
 if (do_commit)
 oxar2.commit (xid2, false);
 else
 oxar2.rollback (xid2);

 // Close connections
 conn1.close();
 conn1 = null;
 conn2.close();
 conn2 = null;

 pc1.close();
 pc1 = null;
 pc2.close();
 pc2 = null;
14-22 JDBC Developer’s Guide and Reference

Implementing a Distributed Transaction
 ResultSet rset = stmta.executeQuery ("select col1 from my_table");
 while (rset.next())
 System.out.println("Col1 is " + rset.getInt(1));

 rset.close();
 rset = null;

 rset = stmtb.executeQuery ("select col1 from my_tab");
 while (rset.next())
 System.out.println("Col1 is " + rset.getString(1));

 rset.close();
 rset = null;

 stmta.close();
 stmta = null;
 stmtb.close();
 stmtb = null;

 conna.close();
 conna = null;
 connb.close();
 connb = null;

 } catch (SQLException sqe)
 {
 sqe.printStackTrace();
 } catch (XAException xae)
 {
 if (xae instanceof OracleXAException) {
 System.out.println("XA Error is " +
 ((OracleXAException)xae).getXAError());
 System.out.println("SQL Error is " +
 ((OracleXAException)xae).getOracleError());
 }
 }
 }

 static Xid createXid(int bids)
 throws XAException
 {...Create transaction IDs...}

 private static void doSomeWork1 (Connection conn)
 throws SQLException
Distributed Transactions 14-23

Implementing a Distributed Transaction
 {...Execute SQL operations...}

 private static void doSomeWork2 (Connection conn)
 throws SQLException
 {...Execute SQL operations...}

}

14-24 JDBC Developer’s Guide and Reference

Advanced
15

Advanced Topics

This chapter describes the following advanced JDBC topics:

■ JDBC and NLS

■ JDBC Client-Side Security Features

■ JDBC in Applets

■ JDBC in the Server: the Server-Side Internal Driver
 Topics 15-1

JDBC and NLS
JDBC and NLS
After a brief overview, this section covers the following topics:

■ How JDBC Drivers Perform NLS Conversions

■ NLS Support and Object Types

■ CHAR and VARCHAR2 Data Size Restrictions with the Thin Driver

Oracle’s JDBC drivers support NLS (National Language Support). NLS lets you
retrieve data or insert data into a database in any character set that Oracle supports.
If the clients and the server use different character sets, then the driver provides the
support to perform the conversions between the database character set and the
client character set.

For more information on NLS, NLS environment variables, and the character sets
that Oracle supports, see the Oracle8i National Language Support Guide. See the
Oracle8i Reference for more information on the database character set and how it is
created.

Here are a few examples of commonly used Java methods for JDBC that rely heavily
on NLS character set conversion:

■ The java.sql.ResultSet methods getString() and
getUnicodeStream() return values from the database as Java strings and as
a stream of Unicode characters, respectively.

■ The oracle.sql.CLOB method getCharacterStream() returns the
contents of a CLOB as a Unicode stream.

■ The oracle.sql.CHAR methods getString(), toString(), and
getStringWithReplacement() convert the following data to strings:

– getString(): This converts the sequence of characters represented by the
CHAR object to a string and returns a Java String object.

– toString(): This is identical to getString(), but if the character set is
not recognized, then toString() returns a hexadecimal representation of
the CHAR data.

– getStringWithReplacement(): This is identical to getString(),
except characters that have no Unicode representation in the character set of
this CHAR object are replaced by a default replacement character.
15-2 JDBC Developer’s Guide and Reference

JDBC and NLS
How JDBC Drivers Perform NLS Conversions
The techniques that the Oracle JDBC drivers use to perform character set conversion
for Java applications depend on the character set the database uses. The simplest
case is where the database uses the US7ASCII or WE8ISO8859P1 character set. In
this case, the driver converts the data directly from the database character set to
UCS-2, which is used in Java applications, and vice versa.

If you are working with databases that employ a non-US7ASCII or
non-WE8ISO8859P1 character set (for example, Japanese or Korean), then the
driver converts the data first to UTF-8 (this step does not apply to the server-side
internal driver), then to UCS-2. For example, the driver always converts CHAR and
VARCHAR2 data in a non-US7ASCII, non-WE8ISO8859P1 character set. It does not
convert RAW data.

JDBC OCI Driver and NLS
If you are using the JDBC OCI driver, then NLS is handled as in any other Oracle
client situation. The client character set, language, and territory settings are in the
NLS_LANG environment variable, which is set at client-installation time.

Note that there are also server-side settings for these parameters, determined
during database creation. So, when performing character set conversion, the JDBC
OCI driver has to take three factors into consideration:

■ database character set and language

■ client character set and language

■ Java applications character set: UCS-2

The JDBC OCI driver transfers the data from the server to the client in the character
set of the database. Depending on the value of the NLS_LANG environment variable,
the driver handles character set conversions in one of two ways:

■ If NLS_LANG is not specified, or specifies the US7ASCII or WE8ISO8859P1
character set, then the JDBC OCI driver uses Java to convert the character set
from US7ASCII or WE8ISO8859P1 directly to UCS-2, or the reverse.

Note: The JDBC drivers perform all character set conversions
transparently. No user intervention is necessary for the conversions
to occur.
Advanced Topics 15-3

JDBC and NLS
or:

■ If NLS_LANG specifies a non-US7ASCII or non-WE8ISO8859P1 character set,
then the driver changes the value of the NLS_LANG parameter on the client to
UTF-8. This happens automatically and does not require any user-intervention.
OCI uses the NLS_LANG setting in converting the data from the database
character set to UTF-8; the JDBC driver then converts the UTF-8 data to UCS-2.

JDBC Thin Driver and NLS
If you are using the JDBC Thin driver, then there will presumably be no Oracle
client installation. NLS conversions must be handled differently.

Language and Territory The Thin driver obtains language and territory settings
(NLS_LANGUAGE and NLS_TERRITORY) from the Java locale in the JVM
user.language property. The date format (NLS_DATE_FORMAT) is set according
to the territory setting.

Character Set If the database character set is US7ASCII or WE8ISO8859P1, then the
data is transferred to the client without any conversion. The driver then converts
the character set to UCS-2 in Java.

If the database character set is something other than US7ASCII or WE8ISO8859P1,
then the server first translates the data to UTF-8 before transferring it to the client.
On the client, the JDBC Thin driver converts the data to UCS-2 in Java.

Server-Side Internal Driver and NLS
If your JDBC code running in the server accesses the database, then the JDBC
server-side internal driver performs a character set conversion based on the
database character set. The target character set of all Java programs is UCS-2.

Notes:

■ The driver sets the NLS_LANG character set to UTF-8 to
minimize the number of conversions it performs in Java. It
performs the conversion from database character set to UTF-8
in C.

■ The change to UTF-8 is for the JDBC application process only.

■ For more information on the NLS_LANG parameter, see the
Oracle8i National Language Support Guide.
15-4 JDBC Developer’s Guide and Reference

JDBC and NLS
NLS Support and Object Types
The Oracle JDBC class files, classes12.zip and classes111.zip, provide NLS
support for the Thin and OCI drivers. The files contain all the necessary classes to
provide complete NLS support for all Oracle character sets for CHAR, VARCHAR,
LONGVARCHAR, and CLOB type data not retrieved or inserted as part of an Oracle
object or collection type.

However, in the case of the CHAR and VARCHAR data portion of Oracle objects and
collections, the JDBC class files provide support for only these commonly used
character sets:

■ US7ASCII

■ WE8DEC

■ ISO-LATIN-1

■ UTF-8

To provide support for all NLS character sets, the Oracle 8i JDBC driver installation
includes two additional files: nls_charset12.zip for JDK 1.2.x and
nls_charset11.zip for JDK 1.1.x. The OCI and Thin drivers require these files to
support all Oracle characters sets for CHAR and VARCHAR data in Oracle object types
and collections. To obtain this support, you must add the appropriate
nls_charset*.zip file to your CLASSPATH.

It is important to note that the nls_charset*.zip files are very large, because
they must support a large number of character sets. To save space, you might want
to keep only the classes you need from the nls_charset*.zip file. If you want to
do this, follow these steps:

1. Unzip the appropriate nls_charset*.zip file.

2. Add only the needed character set classes to the CLASSPATH.

3. Remove the unneeded character set files from your system.

The character set extension class files are named in the following format:

CharacterConverter<OracleCharacterSetId>.class

where <OracleCharacterSetId> is the hexadecimal representation of the Oracle
character set ID that corresponds to a character set name.
Advanced Topics 15-5

JDBC and NLS
CHAR and VARCHAR2 Data Size Restrictions with the Thin Driver
If the database character set is neither ASCII (US7ASCII) nor ISO-LATIN-1
(WE8ISO8859P1), then the Thin driver must impose size restrictions for CHAR and
VARCHAR2 bind parameters that are more restrictive than normal database size
limitations. This is necessary to allow for data expansion during conversion.

The Thin driver checks CHAR or VARCHAR2 bind sizes when the setXXX() method
is called. If the data size exceeds the size restriction, then the driver throws a SQL
exception (ORA-17070 "Data size bigger than max size for this type") from the
setXXX() call. This limitation is necessary to avoid the chance of data corruption
whenever an NLS conversion occurs and increases the length of the data. This
limitation is enforced when you are doing all the following:

■ using the Thin driver

■ using binds (not defines)

■ using CHAR or VARCHAR2 datatypes

■ connecting to a database whose character set is neither ASCII (US7ASCII) nor
ISO-Latin-1 (WE8ISO8859P1)

Role of NLS Ratio
As previously discussed, when the database character set is neither US7ASCII nor
WE8ISO8859P1, the Thin driver converts Java UCS-2 characters to UTF-8
encoding bytes for CHAR or VARCHAR2 binds. The UTF-8 encoding bytes are then
transferred to the database, and the database converts the UTF-8 encoding bytes to
the database character set encoding.

This conversion to the character set encoding might result in a size increase. The
NLS ratio for a database character set indicates the maximum possible expansion in
converting from UTF-8 to the character set:

NLS ratio = (maximum possible value of) [(size in database character set) / (size in UTF-8)]

Note: The preceding discussion is not relevant in using the
server-side internal driver, which provides complete NLS support
and does not require the NLS character set classes.
15-6 JDBC Developer’s Guide and Reference

JDBC and NLS
Size Restriction Formulas
Table 15–1 shows the database size limitations for CHAR and VARCHAR2 data, and
the Thin driver size restriction formulas for CHAR and VARCHAR2 binds. Database
limits are in bytes. Formulas determine the maximum size of the UTF-8 encoding,
in bytes.

The formulas guarantee that after the data is converted from UTF-8 to the database
character set, the size will not exceed the database maximum size.

The number of UCS-2 characters that can be supported is determined by the
number of bytes per character in the data. All ASCII characters are one byte long in
UTF-8 encoding. Other character types can be two or three bytes long.

NLS Ratios and Calculated Size Restrictions for Common Character Sets
Table 15–2 lists the NLS ratios of some common server character sets, then shows
the Thin driver maximum bind sizes for CHAR and VARCHAR2 data for each
character set, as determined by using the NLS ratio in the appropriate formula.

Again, maximum bind sizes are for UTF-8 encoding, in bytes.

Table 15–1 Maximum CHAR and VARCHAR2 Bind Sizes, Thin Driver

Oracle Version Datatype
Max Size Allowed by
Database (bytes)

Formula for Thin Driver Max
Bind Size (UTF-8 bytes)

Oracle8 and Oracle8i CHAR 2000 min(2000, 4000/NLS_ratio)

Oracle8 and Oracle8i VARCHAR2 4000 4000/NLS_ratio

Oracle7 CHAR 255 255

Oracle7 VARCHAR2 2000 2000/NLS_ratio

Table 15–2 NLS Ratio and Size Limits, Oracle8, Common Character Sets

Server Character Set NLS Ratio

Thin Driver Max
VARCHAR2 Bind
Size (UTF-8 bytes)

Thin Driver Max
CHAR Bind Size
(UTF-8 bytes)

WE8DEC 1 4000 2000

JA16SJIS 2 2000 2000

 ISO 8859-1 through 10 3 1333 1333
Advanced Topics 15-7

JDBC Client-Side Security Features
JDBC Client-Side Security Features
This section discusses support in the Oracle JDBC OCI and Thin drivers for login
authentication, data encryption, and data integrity—particularly with respect to
features of the Oracle Advanced Security option.

Oracle Advanced Security, previously known as the "Advanced Networking
Option" (ANO) or "Advanced Security Option" (ASO), includes features to support
data encryption, data integrity, third-party authentication, and authorizations.
Oracle JDBC supports most of these features; however, the JDBC Thin driver must
be considered separately from the JDBC OCI driver.

JDBC Support for Oracle Advanced Security
Both the JDBC OCI drivers and the JDBC Thin driver support at least some of the
features of Oracle Advanced Security. If you are using one of the OCI drivers, you
can set relevant parameters in the same way that you would in any thick-client
setting. The Thin driver supports Advanced Security features through a set of Java
classes included with the JDBC classes ZIP file, and supports security parameter
settings through Java properties objects.

Included in your Oracle JDBC classes111.zip or classes12.zip file are a JAR
file containing classes that incorporate features of Oracle Advance Security, and a
JAR file containing classes whose function is to interface between the JDBC classes
and the Advanced Security classes for use with the JDBC Thin driver.

OCI Driver Support for Oracle Advanced Security
If you are using one of the JDBC OCI drivers, which presumes you are running
from a thick-client machine with an Oracle client installation, then support for
Oracle Advanced Security and incorporated third-party features is, for the most
part, no different from any Oracle thick-client situation. Your use of Advanced
Security features is determined by related settings in the SQLNET.ORA file on the
client machine, as discussed in the Oracle Advanced Security Administrator’s Guide.
Refer to that manual for information.

Note: This discussion is not relevant to the server-side internal
driver, given that all communication through that driver is
completely internal to the server.
15-8 JDBC Developer’s Guide and Reference

JDBC Client-Side Security Features
Thin Driver Support for Oracle Advanced Security
Because the Thin driver was designed to be downloadable with applets, one
obviously cannot assume that there is an Oracle client installation and a
SQLNET.ORA file where the Thin driver is used. This necessitated the design of a
new, 100% Java approach to Oracle Advanced Security support.

Java classes that implement Oracle Advanced Security are included in your JDBC
classes12.zip or classes111.zip file. Security parameters for encryption and
integrity, normally set in SQLNET.ORA, are set in a Java properties file instead.

For information about parameter settings, see "Thin Driver Support for Encryption
and Integrity" on page 15-12.

JDBC Support for Login Authentication
Basic login authentication through JDBC consists of user names and passwords, as
with any other means of logging in to an Oracle server. Specify the user name and
password through a Java properties object or directly through the
getConnection() method call, as discussed in "Open a Connection to a
Database" on page 3-3.

This applies regardless of which client-side Oracle JDBC driver you are using, but is
irrelevant if you are using the server-side internal driver, which uses a special direct
connection and does not require a user name or password.

The Oracle JDBC Thin driver implements Oracle O3LOGON challenge-response
protocol to authenticate the user.

Important: The one key exception to the preceding, with respect to
Java, is that SSL—Sun Microsystem’s standard Secure Socket Layer
protocol—is supported by the Oracle JDBC OCI drivers only if you
use native threads in your application. This requires special
attention, because green threads are generally the default.

Note: As of release 8.1.6, third-party authentication features
supported by Oracle Advanced Security—such as those provided
by RADIUS, Kerberos, or SecurID—are not supported by the Oracle
JDBC Thin driver. For the Oracle JDBC OCI driver, support is the
same as in any thick-client situation—refer to the Oracle Advanced
Security Administrator’s Guide.
Advanced Topics 15-9

JDBC Client-Side Security Features
JDBC Support for Data Encryption and Integrity
You can use Oracle Advanced Security data encryption and integrity features in
your Java database applications, depending on related settings in the server.

When using an OCI driver in a thick-client setting, set parameters as you would in
any Oracle client situation. When using the Thin driver, set parameters through a
Java properties file.

Encryption is enabled or disabled based on a combination of the client-side
encryption-level setting and the server-side encryption-level setting.

Similarly, integrity is enabled or disabled based on a combination of the client-side
integrity-level setting and the server-side integrity-level setting.

Encryption and integrity support the same setting levels—REJECTED, ACCEPTED,
REQUESTED, and REQUIRED. Table 15–3 shows how these possible settings on the
client-side and server-side combine to either enable or disable the feature.

This table shows, for example, that if encryption is requested by the client, but
rejected by the server, it is disabled. The same is true for integrity. As another
example, if encryption is accepted by the client and requested by the server, it is
enabled. And, again, the same is true for integrity.

The general settings are further discussed in the Oracle Advanced Security
Administrator’s Guide. How to set them for a JDBC application is described in the
following subsections.

Table 15–3 Client/Server Negotiations for Encryption or Integrity

Client
Rejected

Client
Accepted
(default)

Client
Requested

Client
Required

Server
Rejected

OFF OFF OFF connection
fails

Server
Accepted
(default)

OFF OFF ON ON

Server
Requested

OFF ON ON ON

Server
Required

connection
fails

ON ON ON
15-10 JDBC Developer’s Guide and Reference

JDBC Client-Side Security Features
OCI Driver Support for Encryption and Integrity
If you are using one of the Oracle JDBC OCI drivers, which presumes a thick-client
setting with an Oracle client installation, you can enable or disable data encryption
or integrity and set related parameters as you would in any Oracle client situation,
through settings in the SQLNET.ORA file on the client machine.

To summarize, the client parameters are shown in Table 15–4:

These settings, and corresponding settings in the server, are further discussed in
Appendix A of the Oracle Advanced Security Administrator’s Guide.

Note: The term "checksum" still appears in integrity parameter
names, as you will see in the following subsections, but is no longer
used otherwise. For all intents and purposes, "checksum" and
"integrity" are synonymous.

Table 15–4 OCI Driver Client Parameters for Encryption and Integrity

Parameter Description Parameter Name Possible Settings

Client encryption level SQLNET.ENCRYPTION_CLIENT REJECTED
ACCEPTED
REQUESTED
REQUIRED

Client encryption selected
list

SQLNET.ENCRYPTION_TYPES_CLIENT RC4_40
RC4_56
DES
DES40

(see note below)

Client integrity level SQLNET.CRYPTO_CHECKSUM_CLIENT REJECTED
ACCEPTED
REQUESTED
REQUIRED

Client integrity selected list SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT MD5

Note: For the Oracle Advanced Security domestic edition only, a
setting of RC4_128 is also possible.
Advanced Topics 15-11

JDBC Client-Side Security Features
Thin Driver Support for Encryption and Integrity
Thin driver support for data encryption and integrity parameter settings parallels
the thick-client support discussed in the preceding section. Corresponding
parameters exist under the oracle.net package and can be set through a Java
properties object that you would then use in opening your database connection.

If you replace "SQLNET" in the parameter names in Table 15–4 with "oracle.net",
you will get the parameter names supported by the Thin driver (but note that in
Java, the parameter names are all-lowercase).

Table 15–5 lists the parameter information for the Thin driver. See the next section
for examples of how to set these parameters in Java.

Table 15–5 Thin Driver Client Parameters for Encryption and Integrity

Parameter Name
Parameter
Type

Parameter
Class Possible Settings

oracle.net.encryption_client string static REJECTED
ACCEPTED
REQUESTED
REQUIRED

oracle.net.encryption_types_client string static RC4_40
RC4_56
DES40C
DES56C

oracle.net.crypto_checksum_client string static REJECTED
ACCEPTED
REQUESTED
REQUIRED

oracle.net.crypto_checksum_types_client string static MD5

Notes:

■ Because Oracle Advanced Security support for the Thin driver
is incorporated directly into the JDBC classes ZIP file, there is
only one version, not separate domestic and export editions.
Only parameter settings that would be suitable for an export
edition are possible.

■ The "C" in DES40C and DES56C refers to CBC (cipher block
chaining) mode.
15-12 JDBC Developer’s Guide and Reference

JDBC Client-Side Security Features
Setting Encryption and Integrity Parameters in Java
Use a Java properties object (java.util.Properties) to set the data encryption
and integrity parameters supported by the Oracle JDBC Thin driver.

The following example instantiates a Java properties object, uses it to set each of the
parameters in Table 15–5, and then uses the properties object in opening a
connection to the database:

...
Properties prop = new Properties();
prop.put("oracle.net.encryption_client", "REQUIRED");
prop.put("oracle.net.encryption_types_client", "(DES40)");
prop.put("oracle.net.crypto_checksum_client", "REQUESTED");
prop.put("oracle.net.crypto_checksum_types_client", "(MD5)");
Connection conn = DriverManager.getConnection
 ("jdbc:oracle:thin:@localhost:1521:main", prop);
...

The parentheses around the parameter values in the encryption_types_client
and crypto_checksum_types_client settings allow for lists of values.
Currently, the Thin driver supports only one possible value in each case; however,
in the future, when multiple values are supported, specifying a list will result in a
negotiation between the server and the client that determines which value is
actually used.

Complete example Following is a complete example of a class that sets data
encryption and integrity parameters before connecting to a database to perform a
query.

Note that in this example, the string "REQUIRED" is retrieved dynamically through
functionality of the AnoServices and Service classes. You have the option of
retrieving the strings in this manner or hardcoding them as in the previous
examples.

import java.sql.*;
import java.sql.*;
import java.io.*;
import java.util.*;
import oracle.net.ns.*;
import oracle.net.ano.*;
Advanced Topics 15-13

JDBC Client-Side Security Features
class Employee
{
 public static void main (String args [])
 throws Exception
 {

 // Register the Oracle JDBC driver
 System.out.println("Registring the driver...");
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 Properties props = new Properties();

 try {
 FileInputStream defaultStream = new FileInputStream(args[0]);
 props.load(defaultStream);

 int level = AnoServices.REQUIRED;
 props.put("oracle.net.encryption_client", Service.getLevelString(level));
 props.put("oracle.net.encryption_types_client", "(DES40)");
 props.put("oracle.net.crypto_checksum_client",
 Service.getLevelString(level));
 props.put("oracle.net.crypto_checksum_types_client", "(MD5)");
 } catch (Exception e) { e.printStackTrace(); }

 // You can put a database name after the @ sign in the connection URL.
 Connection conn = DriverManager.getConnection
 ("jdbc:oracle:thin:@dlsun608.us.oracle.com:1521:main", props);

 // Create a Statement
 Statement stmt = conn.createStatement ();

 // Select the ENAME column from the EMP table
 ResultSet rset = stmt.executeQuery ("select ENAME from EMP");

 // Iterate through the result and print the employee names
 while (rset.next ())
 System.out.println (rset.getString (1));

 conn.close();
 }

}

15-14 JDBC Developer’s Guide and Reference

JDBC in Applets
JDBC in Applets
This section describes some of the basics of working with Oracle JDBC applets,
which must use the JDBC Thin driver so that an Oracle installation is not required
on the client. The Thin driver connects to the database with TCP/IP protocol.

Aside from having to use the Thin driver, and being mindful of applet connection
and security issues, there is essentially no difference between coding a JDBC applet
and a JDBC application. There is also no difference between coding for a JDK 1.2.x
browser or a JDK 1.1.x browser, other than general JDK 1.1.x to 1.2.x migration
issues discussed in "Migration from JDK 1.1.x to JDK 1.2.x" on page 4-5.

This section describes what you must do for the applet to connect to a database,
including how to use the Oracle8 Connection Manager or signed applets if you are
connecting to a database not running on the same host as the Web server. It also
describes how your applet can connect to a database through a firewall. The section
concludes with how to package and deploy the applet.

The following topics are covered:

■ Connecting to the Database through the Applet

■ Connecting to a Database on a Different Host Than the Web Server

■ Using Applets with Firewalls

■ Packaging Applets

■ Specifying an Applet in an HTML Page

For general information about connecting to the database, see "Open a Connection
to a Database" on page 3-3.

To see a sample applet, refer to "Sample Applet" on page 17-90.

Connecting to the Database through the Applet
The most common task of an applet using the JDBC driver is to connect to and
query a database. Because of applet security restrictions, unless particular steps are
taken an applet can open TCP/IP sockets only to the host from which it was
downloaded (this is the host on which the Web server is running). This means that

Note: Beginning with release 8.1.6, Oracle JDBC no longer
supports JDK 1.0.x versions. This also applies to applets running in
browsers that incorporate JDK 1.0.x versions. The user must
upgrade to a browser with an environment of JDK 1.1.x or higher.
Advanced Topics 15-15

JDBC in Applets
without these steps, your applet can connect only to a database that is running on
the same host as the Web server.

If your database and Web server are running on the same host, then there is no issue
and no special steps are required. You can connect to the database as you would
from an application.

As with connecting from an application, there are two ways in which you can
specify the connection information to the driver. You can provide it in the form of
host:port:sid or in the form of a TNS keyword-value syntax.

For example, if the database to which you want to connect resides on host
prodHost, at port 1521, and SID ORCL, and you want to connect with user name
scott with password tiger, then use either of the two following connect strings:

using host:port:sid syntax:

String connString="jdbc:oracle:thin:@prodHost:1521:ORCL";
conn = DriverManager.getConnection(connString, "scott", "tiger");

using TNS keyword-value syntax:

String connString = "jdbc:oracle:thin:@(description=(address_list=
 (address=(protocol=tcp)(port=1521)(host=prodHost)))
 (connect_data=(sid=ORCL)))";
conn = DriverManager.getConnection(connString, "scott", "tiger");

If you use the TNS keyword-value pair to specify the connection information to the
JDBC Thin driver, then you must declare the protocol as TCP.

However, a Web server and an Oracle database server both require many resources;
you seldom find both servers running on the same machine. Usually, your applet
connects to a database on a host other than the one on which the Web server runs.
There are two possible ways in which you can work around the security restriction:

■ You can connect to the database by using the Oracle8 Connection Manager.

or:

■ You can use a signed applet to connect to the database directly.

These options are discussed in the next section, "Connecting to a Database on a
Different Host Than the Web Server".
15-16 JDBC Developer’s Guide and Reference

JDBC in Applets
Connecting to a Database on a Different Host Than the Web Server
If you are connecting to a database on a host other than the one on which the Web
server is running, then you must overcome applet security restrictions. You can do
this by using either the Oracle8 Connection Manager or signed applets.

Using the Oracle8 Connection Manager
The Oracle8 Connection Manager is a lightweight, highly-scalable program that can
receive Net8 packets and re-transmit them to a different server. To a client running
Net8, the Connection Manager looks exactly like a database server. An applet that
uses the JDBC Thin driver can connect to a Connection Manager running on the
Web server host and have the Connection Manager redirect the Net8 packets to an
Oracle server running on a different host.

Figure 15–1 illustrates the relationship between the applet, the Oracle8 Connection
Manager, and the database.

Figure 15–1 Applet, Connection Manager, and Database Relationship

Using the Oracle8 Connection Manager requires two steps, described immediately
below:

■ Install and run the Connection Manager.

■ Write the connection string that targets the Connection Manager.

There is also discussion of how to connect using multiple connection managers.

Installing and Running the Oracle8 Connection Manager You must install the Connection
Manager, available on the Oracle8 distribution media, onto the Web server host. You
can find the installation instructions in the Net8 Administrator’s Guide.

applet
in browser

oraHostwebHost

any Net8
protocolTCP/IP

(only)

Net8 Listener
CMAN

web server
Advanced Topics 15-17

JDBC in Applets
On the Web server host, create a CMAN.ORA file in the
[ORACLE_HOME]/NET8/ADMIN directory. The options you can declare in a
CMAN.ORA file include firewall and connection pooling support.

Here is an example of a very simple CMAN.ORA file. Replace <web-server-host> with
the name of your Web server host. The fourth line in the file indicates that the
connection manager is listening on port 1610. You must use this port number in
your connect string for JDBC.

cman = (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL=TCP)
 (HOST=<web-server-host>)
 (PORT=1610)))

cman_profile = (parameter_list =
 (MAXIMUM_RELAYS=512)
 (LOG_LEVEL=1)
 (TRACING=YES)
 (RELAY_STATISTICS=YES)
 (SHOW_TNS_INFO=YES)
 (USE_ASYNC_CALL=YES)
 (AUTHENTICATION_LEVEL=0)
)

Note that the Java Net8 version inside the JDBC Thin driver does not have
authentication service support. This means that the AUTHENTICATION_LEVEL
configuration parameter in the CMAN.ORA file must be set to 0.

After you create the file, start the Oracle8 Connection Manager at the operating
system prompt with this command:

cmctl start

To use your applet, you must now write the connect string for it.

Writing the Connect String that Targets the Oracle8 Connection Manager This section
describes how to write the connect string in your applet so that the applet connects
to the Connection Manager, and the Connection Manager connects with the
database. In the connect string, you specify an address list that lists the protocol,
port, and name of the Web server host on which the Connection Manager is
running, followed by the protocol, port, and name of the host on which the
database is running.

The following example describes the configuration illustrated in Figure 15–1. The
Web server on which the Connection Manager is running is on host webHost and is
15-18 JDBC Developer’s Guide and Reference

JDBC in Applets
listening on port 1610. The database to which you want to connect is running on
host oraHost, listening on port 1521, and SID ORCL. You write the connect string
in TNS keyword-value format:

Connection conn =
 DriverManager.getConnection ("jdbc:oracle:thin:" +
 "@(description=(address_list=" +
 "(address=(protocol=tcp)(host=webHost)(port=1610))" +
 "(address=(protocol=tcp)(host=oraHost)(port=1521)))" +
 "(source_route=yes)" +
 "(connect_data=(sid=orcl)))", "scott", "tiger");

The first element in the address_list entry represents the connection to the
Connection Manager. The second element represents the database to which you
want to connect. The order in which you list the addresses is important.

Notice that you can also write the same connect string in this format:

String connString =
 "jdbc:oracle:thin:@(description=(address_list=
 (address=(protocol=tcp)(port=1610)(host=webHost))
 (address=(protocol=tcp)(port=1521)(host=oraHost)))
 (connect_data=(sid=orcl))
 (source_route=yes))";
Connection conn = DriverManager.getConnection(connString, "scott", "tiger");

When your applet uses a connect string such as the one above, it will behave exactly
as if it were connected directly to the database on the host oraHost.

For more information on the parameters that you specify in the connect string, see
the Net8 Administrator’s Guide.

Connecting through Multiple Connection Managers Your applet can reach its target
database even if it first has to go through multiple Connection Managers (for
example, if the Connection Managers form a "proxy chain"). To do this, add the
addresses of the Connection Managers to the address list, in the order that you plan
to access them. The database listener should be the last address on this list. See the
Net8 Administrator’s Guide for more information about source_route addressing.
Advanced Topics 15-19

JDBC in Applets
Using Signed Applets
In either a JDK 1.2.x-based browser or a JDK 1.1.x-based browser, an applet can
request socket connection privileges and connect to a database running on a
different host than the Web server host. In Netscape 4.0, you perform this by signing
your applet (that is, writing a signed applet). You must follow these steps:

1. Sign the applet. For information on the steps you must follow to sign an applet,
see Sun Microsystem’s Signed Applet Example at:

http://java.sun.com/security/signExample/index.html

2. Include applet code that asks for appropriate permission before opening a
socket.

If you are using Netscape, then your code would include a statement like this:

netscape.security.PrivilegeManager.enablePrivilege("UniversalConnect");
connection = DriverManager.getConnection
 ("jdbc:oracle:thin:scott/tiger@dlsun511:1721:orcl");

3. You must obtain an object-signing certificate. See Netscape’s Object-Signing
Resources page at:

http://developer.netscape.com/software/signedobj/index.html

This site provides information on obtaining and installing a certificate.

For more information on writing applet code that asks for permissions, see
Netscape’s Introduction to Capabilities Classes at:

http://developer.netscape.com/docs/manuals/signedobj/capabilities/contents.htm

For information about the Java Security API, including signed applet examples
under JDK 1.2.x and 1.1.x, see the following Sun Microsystems site:

http://java.sun.com/security

Using Applets with Firewalls
Under normal circumstances, an applet that uses the JDBC Thin driver cannot
access the database through a firewall. In general, the purpose of a firewall is to
prevent unauthorized clients from reaching the server. In the case of applets trying
to connect to the database, the firewall prevents the opening of a TCP/IP socket to
the database.
15-20 JDBC Developer’s Guide and Reference

JDBC in Applets
Firewalls are rule-based. They have a list of rules that define which clients can
connect, and which cannot. Firewalls compare the client’s hostname with the rules,
and based on this comparison, either grant the client access, or not. If the hostname
lookup fails, the firewall tries again. This time, the firewall extracts the IP address of
the client and compares it to the rules. The firewall is designed to do this so that
users can specify rules that include hostnames as well as IP addresses.

You can solve the firewall issue by using a Net8-compliant firewall and connection
strings that comply with the firewall configuration. Net8-compliant firewalls are
available from many leading vendors; a more detailed discussion of these firewalls
is beyond the scope of this manual.

An unsigned applet can access only the same host from which it was downloaded.
In this case, the Net8-compliant firewall must be installed on that host. In contrast, a
signed applet can connect to any host. In this case, the firewall on the target host
controls the access.

Connecting through a firewall requires two steps, described in the following
sections:

■ Configuring a Firewall for Applets that use the JDBC Thin Driver

■ Writing a Connect String to Connect through a Firewall

Configuring a Firewall for Applets that use the JDBC Thin Driver
The instructions in this section assume that you are running a Net8-compliant
firewall.

Java applets do not have access to the local system—that is, they cannot get the
hostname or environment variables locally—because of security limitations. As a
result, the JDBC Thin driver cannot access the hostname on which it is running. The
firewall cannot be provided with the hostname. To allow requests from JDBC Thin
clients to go through the firewall, you must do the following two things to the
firewall’s list of rules:

■ Add the IP address (not the hostname) of the host on which the JDBC applet is
running.

■ Ensure that the hostname "__jdbc__" never appears in the firewall’s rules.
This hostname has been hard-coded as a false hostname inside the driver to
force an IP address lookup. If you do enter this hostname in the list of rules,
then every applet using Oracle's JDBC Thin driver will be able to go through
your firewall.
Advanced Topics 15-21

JDBC in Applets
By not including the Thin driver’s hostname, the firewall is forced to do an IP
address lookup and base its access decision on the IP address, instead of the
hostname.

Writing a Connect String to Connect through a Firewall
To write a connect string that allows you to connect through a firewall, you must
specify the name of the firewall host and the name of the database host to which
you want to connect.

For example, if you want to connect to a database on host oraHost, listening on
port 1521, with SID ORCL, and you are going though a firewall on host
fireWallHost, listening on port 1610, then use the following connect string:

Connection conn =
 DriverManager.getConnection ("jdbc:oracle:thin:" +
 "@(description=(address_list=" +
 (address=(protocol=tcp)(host=<firewall-host>)(port=1610))" +
 "(address=(protocol=tcp)(host=oraHost)(port=1521)))" +
 "(source_route=yes)" +
 "(connect_data=(sid=orcl)))", "scott", "tiger");

The first element in the address_list represents the connection to the firewall.
The second element represents the database to which you want to connect. Note
that the order in which you specify the addresses is important.

Notice that you can also write the preceding connect string in this format:

String connString =
 "jdbc:oracle:thin:@(description=(address_list=
 (address=(protocol=tcp)(port=1600)(host=fireWallHost))
 (address=(protocol=tcp)(port=1521)(host=oraHost)))
 (connect_data=(sid=orcl))
 (source_route=yes))";
Connection conn = DriverManager.getConnection(connString, "scott", "tiger");

Note: To connect through a firewall, you cannot specify the
connection string in host:port:sid syntax. For example, a
connection string specified as follows will not work:

String connString =
 "jdbc:oracle:thin:@ixta.us.oracle.com:1521:orcl";
conn = DriverManager.getConnection (connString, "scott",
 "tiger");
15-22 JDBC Developer’s Guide and Reference

JDBC in Applets
When your applet uses a connect string similar to the one above, it will behave as if
it were connected to the database on host oraHost.

For more information on the parameters used in the above example, see the Net8
Administrator’s Guide. For more information on how to configure a firewall, please
see your firewall’s documentation or contact your firewall vendor.

Packaging Applets
After you have coded your applet, you must package it and make it available to
users. To package an applet, you will need your applet class files and the JDBC
driver class files (these will be contained in either classes12.zip, if you are
targeting a browser that incorporates a JDK 1.2.x version, or classes111.zip, for
a browser incorporating a JDK 1.1.x version).

Follow these steps:

1. Move the JDBC driver classes file classes12.zip (or classes111.zip) to
an empty directory.

If your applet will connect to a database with a non-US7ASCII and
non-WE8ISO8859P1 character set, then also move the nls_charset12.zip
or nls_charset11.zip file to the same directory.

2. Unzip the JDBC driver classes ZIP file (and NLS character set ZIP file, if
applicable).

3. Add your applet classes files to the directory, and any other files the applet
might require.

4. Zip the applet classes and driver classes together into a single ZIP or JAR file.
The single zip file should contain the following:

■ class files from classes12.zip or classes111.zip (and required class
files from nls_charset12.zip or nls_charset11.zip if the applet
requires NLS)

■ your applet classes

Note: All the parameters shown in the preceding example are
required. In the address_list, the firewall address must precede
the database server address.
Advanced Topics 15-23

JDBC in Applets
Additionally, if you are using DatabaseMetaData entry points in your applet,
include the oracle/jdbc/driver/OracleDatabaseMetaData.class file.
Note that this file is very large and might have a negative impact on
performance. If you do not use DatabaseMetaData methods, omit this file.

5. Ensure that the ZIP or JAR file is not compressed.

You can now make the applet available to users. One way to do this is to add the
APPLET tag to the HTML page from which the applet will be run. For example:

<APPLET WIDTH=500 HEIGHT=200 CODE=JdbcApplet ARCHIVE=JdbcApplet.zip
 CODEBASE=Applet_Samples
</APPLET>

You can find a description of the APPLET, CODE, ARCHIVE, CODEBASE, WIDTH, and
HEIGHT parameters in the next section.

Specifying an Applet in an HTML Page
The APPLET tag specifies an applet that runs in the context of an HTML page. The
APPLET tag can have these parameters: CODE, ARCHIVE, CODEBASE, WIDTH, and
HEIGHT to specify the name of the applet and its location, and the height and width
of the applet display area. These parameters are described in the following sections.

CODE, HEIGHT, and WIDTH
The HTML page that runs the applet must have an APPLET tag with an initial
width and height to specify the size of the applet display area. You use the HEIGHT
and WIDTH parameters to specify the size, measured in pixels. This size should not
count any windows or dialogs that the applet opens.

The APPLET tag must also specify the name of the file that contains the applet’s
compiled Applet subclass—specify the file name with the CODE parameter. Any
path must be relative to the base URL of the applet—the path cannot be absolute.

In the following example, JdbcApplet.class is the name of the Applet’s
compiled applet subclass:

<APPLET CODE="JdbcApplet" WIDTH=500 HEIGHT=200>
</APPLET>

If you use this form of the CODE tag, then the classes for the applet and the classes
for the JDBC Thin driver must be in the same directory as the HTML page.

Notice that in the CODE specification, you do not include the file name extension
".class".
15-24 JDBC Developer’s Guide and Reference

JDBC in Applets
CODEBASE
The CODEBASE parameter is optional and specifies the base URL of the applet; that
is, the name of the directory that contains the applet’s code. If it is not specified,
then the document’s URL is used. This means that the classes for the applet and the
JDBC Thin driver must be in the same directory as the HTML page. For example, if
the current directory is my_Dir:

<APPLET WIDTH=500 HEIGHT=200 CODE=JdbcApplet CODEBASE="."
</APPLET>

The entry CODEBASE="." indicates that the applet resides in the current directory
(my_Dir). If the value of codebase was set to Applet_Samples, for example:

CODEBASE="Applet_Samples"

This would indicate that the applet resides in the my_Dir/Applet_Samples
directory.

ARCHIVE
The ARCHIVE parameter is optional and specifies the name of the archive file (either
a .zip or .jar file), if applicable, that contains the applet classes and resources the
applet needs. Oracle recommends using a .zip file or .jar file, which saves many
extra roundtrips to the server.

The .zip (or .jar) file will be preloaded. If you have more than one archive in the
list, separate them with commas. In the following example, the class files are stored
in the archive file JdbcApplet.zip:

<APPLET CODE="JdbcApplet" ARCHIVE="JdbcApplet.zip" WIDTH=500 HEIGHT=200>
</APPLET>

Note: Version 3.0 browsers do not support the ARCHIVE
parameter.
Advanced Topics 15-25

JDBC in the Server: the Server-Side Internal Driver
JDBC in the Server: the Server-Side Internal Driver
This section covers the following topics:

■ Connecting to the Database with the Server-Side Internal Driver

■ Exception-Handling Extensions for the Server-Side Internal Driver

■ Session and Transaction Context for the Server-Side Internal Driver

■ Testing JDBC on the Server

■ Server-Side Character Set Conversion of oracle.sql.CHAR Data

Any Java program, Enterprise JavaBean (EJB), or Java stored procedure that runs
inside the target database must use the server-side internal driver to access the local
SQL engine.

This driver is intrinsically tied to the Oracle8i database and to the Java virtual
machine (JVM). The driver runs as part of the same process as the database. It also
runs within the default session—the same session in which the JVM was invoked.

The server-side internal driver is optimized to run within the database server and
provide direct access to SQL data and PL/SQL subprograms on the local database.
The entire JVM operates in the same address space as the database and the SQL
engine. Access to the SQL engine is a function call; there is no network. This
enhances the performance of your JDBC programs and is much faster than
executing a remote Net8 call to access the SQL engine.

The server-side internal driver supports the same features, APIs, and Oracle
extensions as the client-side drivers. This makes application partitioning very
straightforward. For example, if you have a Java application that is data-intensive,
you can easily move it into the database server for better performance, without
having to modify the application-specific calls.

For general information about the Oracle Java platform server-side configuration or
functionality, see the Oracle8i Java Developer’s Guide.

Connecting to the Database with the Server-Side Internal Driver
As described in the preceding section, the server-side internal driver runs within a
default session. You are already "connected". There are two methods you can use to
access the default connection:

■ Use the static DriverManager.getConnection() method, with either
jdbc:oracle:kprb or jdbc:default:connection as the URL string.
15-26 JDBC Developer’s Guide and Reference

JDBC in the Server: the Server-Side Internal Driver
■ Use the Oracle-specific defaultConnection() method of the
OracleDriver class.

Using defaultConnection() is generally recommended.

The remainder of this section provides more information.

Connecting with the OracleDriver Class defaultConnection() Method
The oracle.jdbc.driver.OracleDriver class defaultConnection()
method is an Oracle extension and always returns the same connection object. Even
if you invoke this method multiple times, assigning the resulting connection object
to different variable names, just a single connection object is reused.

You do not need to include a connect string in the defaultConnection() call.
For example:

import java.sql.*;
import oracle.jdbc.driver.*;

class JDBCConnection
{
 public static Connection connect() throws SQLException
 {
 Connection conn = null;
 try {
 // connect with the server-side internal driver
 OracleDriver ora = new OracleDriver();
 conn = ora.defaultConnection();
 }

 } catch (SQLException e) {...}
 return conn;
 }
}

Note: With release 8.1.6, you are no longer required to register the
OracleDriver class for connecting with the server-side internal
driver, although there is no harm in doing so. This is true whether
you are using getConnection() or defaultConnection() to
make the connection.
Advanced Topics 15-27

JDBC in the Server: the Server-Side Internal Driver
Note that there is no conn.close() call in the example. When JDBC code is
running inside the target server, the connection is an implicit data channel, not an
explicit connection instance as from a client. It should typically not be closed.

If you do call the close() method, be aware of the following:

■ All connection instances obtained through the defaultConnection()
method, which actually all reference the same connection object, will be closed
and unavailable for further use, with state and resource cleanup as appropriate.
Executing defaultConnection() afterward would result in a new
connection object.

■ Even though the connection object is closed, the implicit connection to the
database will not be closed.

Connecting with the DriverManager.getConnection() Method
To connect to the internal server connection from code that is running within the
target server, you can use the static DriverManager.getConnection() method
with either of the following connect strings:

DriverManager.getConnection("jdbc:oracle:kprb:");

or:

DriverManager.getConnection("jdbc:default:connection:");

Any user name or password you include in the URL string is ignored in connecting
to the server default connection.

The DriverManager.getConnection() method returns a new Java
Connection object every time you call it. Note that although the method is not
creating a new physical connection (only a single implicit connection is used), it is
returning a new object.

The fact that DriverManager.getConnection() returns a new connection
object every time you call it is significant if you are working with object maps (or
"type maps"). A type map is associated with a specific Connection object and with
any state that is part of the object. If you want to use multiple type maps as part of
your program, then you can call getConnection() to create a new Connection
object for each type map.
15-28 JDBC Developer’s Guide and Reference

JDBC in the Server: the Server-Side Internal Driver
Exception-Handling Extensions for the Server-Side Internal Driver
The server-side internal driver, in addition to having standard exception-handling
capabilities such as getMessage(), getErrorCode(), and getSQLState() (as
described in "Processing SQL Exceptions" on page 3-33), offers extended features
through the oracle.jdbc.driver.OracleSQLException class. This class is a
subclass of the standard java.sql.SQLException class and is not available to
the client-side JDBC drivers or the server-side Thin driver.

When an error condition occurs in the server, it often results in a series of related
errors being placed in an internal error stack. The JDBC server-side internal driver
retrieves errors from the stack and places them in a chain of
OracleSQLException objects.

You can use the following methods in processing these exceptions:

■ SQLException getNextException() (standard method)

This method returns the next exception in the chain (or null if no further
exceptions). You can start with the first exception you receive and work through
the chain.

■ int getNumParameters() (Oracle extension)

Errors from the server usually include parameters, or variables, that are part of
the error message. These may indicate what type of error occurred, what kind
of operation was being attempted, or the invalid or affected values.

This method returns the number of parameters included with this error.

■ Object[] getParameters() (Oracle extension)

This method returns a Java Object[] array containing the parameters
included with this error.

Example Following is an example of server-side error processing:

try
{
 // should get "ORA-942: table or view does not exist"
 stmt.execute("drop table no_such_table");
}
catch (OracleSQLException e)
{
 System.out.println(e.getMessage());
 // prints "ORA-942: table or view does not exist"
Advanced Topics 15-29

JDBC in the Server: the Server-Side Internal Driver
 System.out.println(e.getNumParameters());
 // prints "1"

 Object[] params = e.getParameters();
 System.out.println(params[0]);
 // prints "NO_SUCH_TABLE"
}

Session and Transaction Context for the Server-Side Internal Driver
The server-side driver operates within a default session and default transaction
context. The default session is the session in which the JVM was invoked. In effect,
you are already connected to the database on the server. This is different from the
client side where there is no default session: you must explicitly connect to the
database.

Auto-commit mode is disabled in the server. You must manage transaction COMMIT
and ROLLBACK operations explicitly by using the appropriate methods on the
connection object:

conn.commit();

or:

conn.rollback();

Testing JDBC on the Server
Almost any JDBC program that can run on a client can also run on the server. All
the programs in the samples directory can be run on the server with only minor
modifications. Usually, these modifications concern only the connection statement.

For example, consider the test program JdbcCheckup.java described in "Testing
JDBC and the Database Connection: JdbcCheckup" on page 2-8. If you want to run
this program on the server and connect with the
DriverManager.getConnection() method, then open the file in your favorite
text editor and change the driver name in the connection string from "oci8" to
"kprb". For example:

Connection conn = DriverManager.getConnection
 ("jdbc:oracle:kprb:@" + database, user, password);
15-30 JDBC Developer’s Guide and Reference

JDBC in the Server: the Server-Side Internal Driver
The advantage of using this method is that must change only a short string in your
original program. The disadvantage is that you still must provide the user,
password, and database information, even though the driver will discard it. In
addition, if you issue the getConnection() method again, the driver will create
another new (and unnecessary) connection object.

However, if you connect with defaultConnection(), the preferred method of
connecting to the database from the server-side internal driver, you do not have to
enter any user, password, or database information. You can delete these statements
from your program.

For the connection statement, use:

Connection conn = new oracle.jdbc.driver.OracleDriver().defaultConnection();

The following example is a rewrite of the JdbcCheckup.java program which
uses the defaultConnection() connection statement. The connection statement
is printed in bold. The unnecessary user, password, and database information
statements, along with the utility function to read from standard input, have been
deleted.

/*
 * This sample can be used to check the JDBC installation.
 * Just run it and provide the connect information. It will select
 * "Hello World" from the database.
 */
// You need to import the java.sql package to use JDBC
import java.sql.*;
// We import java.io to be able to read from the command line
import java.io.*;

class JdbcCheckup
{
 public static void main (String args []) throws SQLException, IOException
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 Connection conn =
 new oracle.jdbc.driver.OracleDriver ().defaultConnection ();

 // Create a statement
 Statement stmt = conn.createStatement ();

 // Do the SQL "Hello World" thing
Advanced Topics 15-31

JDBC in the Server: the Server-Side Internal Driver
 ResultSet rset = stmt.executeQuery ("SELECT ’Hello World’ FROM dual");

 while (rset.next ())
 System.out.println (rset.getString (1));
 System.out.println ("Your JDBC installation is correct.");
 }
}

Loading an Application into the Server
When loading an application into the server, you can load .class files that you
have already compiled on the client, or you can load .java source files and have
them compiled automatically in the server.

In either case, use the Oracle loadjava client-side utility to load your files. You can
either specify source file names on the command line (note that the command line
understands wildcards), or put the files into a JAR file and specify the JAR file name
on the command line. The loadjava utility is discussed in detail in the Oracle8i
Java Developer’s Guide.

The loadjava script, which runs the actual utility, is in the bin subdirectory under
your [Oracle Home] directory. This directory should already be in your path once
Oracle has been installed.

Loading Class Files into the Server
Consider a case where you have three class files in your application: Foo1.class,
Foo2.class, and Foo3.class. The following three examples demonstrate: 1)
specifying the individual class file names; 2) specifying the class file names using a
wildcard; and 3) specifying a JAR file that contains the class files.

Each class is written into its own class schema object in the server.

These three examples use the default OCI8 driver in loading the files:

loadjava -user scott/tiger Foo1.class Foo2.class Foo3.class

or:

loadjava -user scott/tiger Foo*.class

Note: As of release 8.1.6, the loadjava utility does support
compressed files.
15-32 JDBC Developer’s Guide and Reference

JDBC in the Server: the Server-Side Internal Driver
or:

loadjava -user scott/tiger Foo.jar

Or use the following command to load with the Thin driver (specifying the -thin
option and an appropriate URL):

loadjava -thin -user scott/tiger@localhost:1521:ORCL Foo.jar

(Whether to use an OCI driver or the Thin driver to load classes depends on your
particular environment and which performs better for you.)

Loading Source Files into the Server
If you enable the loadjava -resolve option in loading a .java source file, then
the server-side compiler will compile your application as it is loaded, resulting in
both a source schema object for the original source code, and one or more class
schema objects for the compiled output.

If you do not specify -resolve, then the source is loaded into a source schema
object without any compilation. In this case, however, the source is implicitly
compiled the first time an attempt is made to use a class defined in the source.

For example, run loadjava as follows to load and compile Foo.java, using the
default OCI driver:

loadjava -user scott/tiger -resolve Foo.java

Or use the following command to load with the Thin driver (specifying the -thin
option and an appropriate URL):

loadjava -thin -user scott/tiger@localhost:1521:ORCL -resolve Foo.java

Either of these will result in appropriate class schema objects being created in
addition to the source schema object.

Note: Because the server-side embedded JVM uses JDK 1.2.x, it is
advisable to compile classes under JDK 1.2.x if they will be loaded
into the server. This will catch incompatibilities during compilation,
instead of at runtime (for example, JDK 1.1.x artifacts such as
leftover use of the oracle.jdbc2 package).
Advanced Topics 15-33

JDBC in the Server: the Server-Side Internal Driver
Server-Side Character Set Conversion of oracle.sql.CHAR Data
The server-side internal driver performs character set conversions for
oracle.sql.CHAR in C. This is a different implementation than for the client-side
drivers, which perform character set conversions for oracle.sql.CHAR in Java,
and offers better performance. For more information on the oracle.sql.CHAR
class, see "Class oracle.sql.CHAR" on page 5-13.

Note: Oracle generally recommends compiling source on the
client whenever possible, and loading the .class files instead of
the source files into the server.
15-34 JDBC Developer’s Guide and Reference

Coding Tips and Troubles
16

Coding Tips and Troubleshooting

This chapter describes how to optimize and troubleshoot a JDBC application or
applet, including the following topics:

■ JDBC and Multithreading

■ Performance Optimization

■ Common Problems

■ Basic Debugging Procedures

■ Transaction Isolation Levels and Access Modes
hooting 16-1

JDBC and Multithreading
JDBC and Multithreading
The Oracle JDBC drivers provide full support for programs that use Java
multithreading. The following example creates a specified number of threads and
lets you determine whether or not the threads will share a connection. If you choose
to share the connection, then the same JDBC connection object will be used by all
threads (each thread will have its own statement object, however).

Because all Oracle JDBC API methods are synchronized, if two threads try to use
the connection object simultaneously, then one will be forced to wait until the other
one finishes its use.

The program displays each thread ID and the employee name and employee ID
associated with that thread.

Execute the program by entering:

java JdbcMTSample [number_of_threads] [share]

Where number_of_threads is the number of threads that you want to create, and
share specifies that you want the threads to share the connection. If you do not
specify the number of threads, then the program creates 10 by default.

This example is repeated in "Multithreading—JdbcMTSample.java" on page 17-12.

// This sample is a multi-threaded JDBC program.

import java.sql.*;
import oracle.jdbc.driver.OracleStatement;

public class JdbcMTSample extends Thread
{
 // Default no of threads to 10
 private static int NUM_OF_THREADS = 10;

 int m_myId;

 static int c_nextId = 1;
 static Connection s_conn = null;
 static boolean share_connection = false;

 synchronized static int getNextId()
 {
 return c_nextId++;
 }
16-2 JDBC Developer’s Guide and Reference

JDBC and Multithreading
 public static void main (String args [])
 {
 try
 {
 /* Load the JDBC driver */
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // If NoOfThreads is specified, then read it
 if ((args.length > 2) ||
 ((args.length > 1) && !(args[1].equals("share"))))
 {
 System.out.println("Error: Invalid Syntax. ");
 System.out.println("java JdbcMTSample [NoOfThreads] [share]");
 System.exit(0);
 }

 if (args.length > 1)
 {
 share_connection = true;
 System.out.println
 ("All threads will be sharing the same connection");
 }

 // get the no of threads if given
 if (args.length > 0)
 NUM_OF_THREADS = Integer.parseInt (args[0]);

 // get a shared connection
 if (share_connection)
 s_conn = DriverManager.getConnection
 ("jdbc:oracle:" +args[1], "scott","tiger");

 // Create the threads
 Thread[] threadList = new Thread[NUM_OF_THREADS];

 // spawn threads
 for (int i = 0; i < NUM_OF_THREADS; i++)
 {
 threadList[i] = new JdbcMTSample();
 threadList[i].start();
 }

 // Start everyone at the same time
 setGreenLight ();
Coding Tips and Troubleshooting 16-3

JDBC and Multithreading
 // wait for all threads to end
 for (int i = 0; i < NUM_OF_THREADS; i++)
 {
 threadList[i].join();
 }

 if (share_connection)
 {
 s_conn.close();
 s_conn = null;
 }

 }
 catch (Exception e)
 {
 e.printStackTrace();
 }

 }

 public JdbcMTSample()
 {
 super();
 // Assign an Id to the thread
 m_myId = getNextId();
 }

 public void run()
 {
 Connection conn = null;
 ResultSet rs = null;
 Statement stmt = null;

 try
 {
 // Get the connection

 if (share_connection)
 stmt = s_conn.createStatement (); // Create a Statement
 else
 {
 conn = DriverManager.getConnection("jdbc:oracle:oci8:@",
 "scott","tiger");
 stmt = conn.createStatement (); // Create a Statement
 }
16-4 JDBC Developer’s Guide and Reference

JDBC and Multithreading
 while (!getGreenLight())
 yield();

 // Execute the Query
 rs = stmt.executeQuery ("select * from EMP");

 // Loop through the results
 while (rs.next())
 {
 System.out.println("Thread " + m_myId +
 " Employee Id : " + rs.getInt(1) +
 " Name : " + rs.getString(2));
 yield(); // Yield To other threads
 }

 // Close all the resources
 rs.close();
 rs = null;

 // Close the statement
 stmt.close();
 stmt = null;

 // Close the local connection
 if ((!share_connection) && (conn != null))
 {
 conn.close();
 conn = null;
 }
 System.out.println("Thread " + m_myId + " is finished. ");
 }
 catch (Exception e)
 {
 System.out.println("Thread " + m_myId + " got Exception: " + e);
 e.printStackTrace();
 return;
 }
 }

 static boolean greenLight = false;
 static synchronized void setGreenLight () { greenLight = true; }
 synchronized boolean getGreenLight () { return greenLight; }

}

Coding Tips and Troubleshooting 16-5

Performance Optimization
Performance Optimization
You can significantly enhance the performance of your JDBC programs by using
any of these features:

■ Disabling Auto-Commit Mode

■ Standard Fetch Size and Oracle Row Prefetching

■ Standard and Oracle Update Batching

Disabling Auto-Commit Mode
Auto-commit mode indicates to the database whether to issue an automatic COMMIT
operation after every SQL operation. Being in auto-commit mode can be expensive
in terms of time and processing effort if, for example, you are repeating the same
statement with different bind variables.

By default, new connection objects are in auto-commit mode. However, you can
disable auto-commit mode with the setAutoCommit() method of the connection
object (either java.sql.Conection or oracle.jdbc.OracleConnection).

In auto-commit mode, the COMMIT operation occurs either when the statement
completes or the next execute occurs, whichever comes first. In the case of
statements returning a ResultSet, the statement completes when the last row of
the ResultSet has been retrieved or when the ResultSet has been closed. In
more complex cases, a single statement can return multiple results as well as output
parameter values. Here, the COMMIT occurs when all results and output parameter
values have been retrieved.

If you disable auto-commit mode with a setAutoCommit(false) call, then you
must manually commit or roll back groups of operations using the commit() or
rollback() method of the connection object.

Example: Disabling AutoCommit The following example illustrates loading the driver
and connecting to the database. Because new connections are in auto-commit mode
by default, this example shows how to disable auto-commit. In the example, conn
represents the Connection object, and stmt represents the Statement object.

// Load the Oracle JDBC driver
DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You can put a database hostname after the @ sign in the connection URL.
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");
16-6 JDBC Developer’s Guide and Reference

Performance Optimization

 // It’s faster when auto commit is off
 conn.setAutoCommit (false);

 // Create a Statement
 Statement stmt = conn.createStatement ();
 ...

Standard Fetch Size and Oracle Row Prefetching
Oracle JDBC connection and statement objects allow you to specify the number of
rows to prefetch into the client with each trip to the database while a result set is
being populated during a query. You can set a value in a connection object that
affects each statement produced through that connection, and you can override that
value in any particular statement object. The default value in a connection object is
10. Prefetching data into the client reduces the number of round trips to the server.

Similarly, and with more flexibility, JDBC 2.0 allows you to specify the number of
rows to fetch with each trip, both for statement objects (affecting subsequent
queries) and for result set objects (affecting row refetches). By default, a result set
uses the value for the statement object that produced it. If you do not set the JDBC
2.0 fetch size, then the Oracle connection row-prefetch value is used by default.

For more information, see "Oracle Row Prefetching" on page 12-20 and "Fetch Size"
on page 11-24.

Standard and Oracle Update Batching
The Oracle JDBC drivers allow you to accumulate INSERT, DELETE, and UPDATE
operations of prepared statements at the client and send them to the server in
batches. This feature reduces round trips to the server. You can either use Oracle
update batching, which typically executes a batch implicitly once a pre-set batch
value is reached, or standard update batching, where the batch is executed
explicitly.

For a description of the update batching models and how to use them, see "Update
Batching" on page 12-2.
Coding Tips and Troubleshooting 16-7

Common Problems
Common Problems
This section describes some common problems that you might encounter while
using the Oracle JDBC drivers. These problems include:

■ Space Padding for CHAR Columns Defined as OUT or IN/OUT Variables

■ Memory Leaks and Running Out of Cursors

■ Boolean Parameters in PL/SQL Stored Procedures

■ Opening More Than 16 OCI Connections for a Process

Space Padding for CHAR Columns Defined as OUT or IN/OUT Variables
In PL/SQL, CHAR columns defined as OUT or IN/OUT variables are returned to a
length of 32767 bytes, padded with spaces as needed. Note that VARCHAR2 columns
do not exhibit this behavior.

To avoid this problem, use the setMaxFieldSize() method on the Statement
object to set a maximum limit on the length of the data that can be returned for any
column. The length of the data will be the value you specify for
setMaxFieldSize(), padded with spaces as needed. You must select the value
for setMaxFieldSize() carefully, because this method is statement-specific and
affects the length of all CHAR, RAW, LONG, LONG RAW, and VARCHAR2 columns.

To be effective, you must invoke the setMaxFieldSize() method before you
register your OUT variables.

Memory Leaks and Running Out of Cursors
If you receive messages that you are running out of cursors or that you are running
out of memory, make sure that all your Statement and ResultSet objects are
explicitly closed. The Oracle JDBC drivers do not have finalizer methods. They
perform cleanup routines by using the close() method of the ResultSet and
Statement classes. If you do not explicitly close your result set and statement
objects, significant memory leaks can occur. You could also run out of cursors in the
database. Closing a result set or statement releases the corresponding cursor in the
database.

Similarly, you must explicitly close Connection objects to avoid leaking and
running out of cursors on the server side. When you close the connection, the JDBC
driver closes any open statement objects associated with it, thus releasing the cursor
objects on the server side.
16-8 JDBC Developer’s Guide and Reference

Common Problems
Boolean Parameters in PL/SQL Stored Procedures
Due to a restriction in the OCI layer, the JDBC drivers do not support the passing of
BOOLEAN parameters to PL/SQL stored procedures. If a PL/SQL procedure
contains BOOLEAN values, you can work around the restriction by wrapping the
PL/SQL procedure with a second PL/SQL procedure that accepts the argument as
an INT and passes it to the first stored procedure. When the second procedure is
called, the server performs the conversion from INT to BOOLEAN.

The following is an example of a stored procedure, BOOLPROC, that attempts to pass
a BOOLEAN parameter, and a second procedure, BOOLWRAP, that performs the
substitution of an INT value for the BOOLEAN.

CREATE OR REPLACE PROCEDURE boolproc(x boolean)
AS
BEGIN
[...]
END;

CREATE OR REPLACE PROCEDURE boolwrap(x int)
AS
BEGIN
IF (x=1) THEN
 boolproc(TRUE);
ELSE
 boolproc(FALSE);
END IF;
END;

// Create the database connection
Connection conn = DriverManager.getConnection
 ("jdbc:oracle:oci8:@<...hoststring...>", "scott", "tiger");
CallableStatement cs = conn.prepareCall ("begin boolwrap(?); end;");
cs.setInt(1, 1);
cs.execute ();

Opening More Than 16 OCI Connections for a Process
You might find that you are not able to open more than approximately 16 JDBC-OCI
connections for a process at any given time. The most likely reasons for this would
be either that the number of processes on the server exceeded the limit specified in
the initialization file, or that the per-process file descriptors limit was exceeded. It is
Coding Tips and Troubleshooting 16-9

Common Problems
important to note that one JDBC-OCI connection can use more than one file
descriptor (it might use anywhere between 3 and 4 file descriptors).

If the server allows more than 16 processes, then the problem could be with the
per-process file descriptor limit. The possible solution would be to increase this
limit.
16-10 JDBC Developer’s Guide and Reference

Basic Debugging Procedures
Basic Debugging Procedures
This section describes strategies for debugging a JDBC program:

■ Net8 Tracing to Trap Network Events

■ Third Party Debugging Tools

For information about processing SQL exceptions, including printing stack traces to
aid in debugging, see "Processing SQL Exceptions" on page 3-33.

Net8 Tracing to Trap Network Events
You can enable client and server Net8 trace to trap the packets sent over Net8. You
can use client-side tracing only for the JDBC OCI driver; it is not supported for the
JDBC Thin driver. You can find more information on tracing and reading trace files
in the Net8 Administrator’s Guide.

The trace facility produces a detailed sequence of statements that describe network
events as they execute. "Tracing" an operation lets you obtain more information on
the internal operations of the event. This information is output to a readable file that
identifies the events that led to the error. Several Net8 parameters in the
SQLNET.ORA file control the gathering of trace information. After setting the
parameters in SQLNET.ORA, you must make a new connection for tracing to be
performed.

The higher the trace level, the more detail is captured in the trace file. Because the
trace file can be hard to understand, start with a trace level of 4 when enabling
tracing. The first part of the trace file contains connection handshake information,
so look beyond this for the SQL statements and error messages related to your JDBC
program.

Note: The trace facility uses a large amount of disk space and
might have significant impact upon system performance. Therefore,
enable tracing only when necessary.
Coding Tips and Troubleshooting 16-11

Basic Debugging Procedures
Client-Side Tracing
 Set the following parameters in the SQLNET.ORA file on the client system.

TRACE_LEVEL_CLIENT

TRACE_DIRECTORY_CLIENT

TRACE_FILE_CLIENT

TRACE_UNIQUE_CLIENT

Purpose: Turns tracing on/off to a certain specified level.

Default Value: 0 or OFF

Available
Values:

■ 0 or OFF - No trace output

■ 4 or USER - User trace information

■ 10 or ADMIN - Administration trace information

■ 16 or SUPPORT - WorldWide Customer Support trace information

Example: TRACE_LEVEL_CLIENT=10

Purpose: Specifies the destination directory of the trace file.

Default Value: $ORACLE_HOME/network/trace

Example: on UNIX: TRACE_DIRECTORY_CLIENT=/oracle/traces

on Windows NT: TRACE_DIRECTORY_CLIENT=C:\ORACLE\TRACES

Purpose: Specifies the name of the client trace file.

Default Value: SQLNET.TRC

Example: TRACE_FILE_CLIENT=cli_Connection1.trc

Note: Be sure to use different names for the
TRACE_FILE_CLIENT file and TRACE_FILE_SERVER file.

Purpose: Gives each client-side trace a unique name to prevent each trace file from
being overwritten with the next occurrence of a client trace. The PID is
attached to the end of the file name.

Default Value: OFF

Example: TRACE_UNIQUE_CLIENT = ON
16-12 JDBC Developer’s Guide and Reference

Basic Debugging Procedures
Server-Side Tracing
Set the following parameters in the SQLNET.ORA file on the server system. Each
connection will generate a separate file with a unique file name.

TRACE_LEVEL_SERVER

TRACE_DIRECTORY_SERVER

TRACE_FILE_SERVER

Third Party Debugging Tools
You can use tools such as JDBCSpy and JDBCTest from Intersolv to troubleshoot at
the JDBC API level. These tools are similar to ODBCSpy and ODBCTest.

Purpose: Turns tracing on/off to a certain specified level.

Default Value: 0 or OFF

Available
Values:

■ 0 or OFF - No trace output

■ 4 or USER - User trace information

■ 10 or ADMIN - Administration trace information

■ 16 or SUPPORT - WorldWide Customer Support trace information

Example: TRACE_LEVEL_SERVER=10

Purpose: Specifies the destination directory of the trace file.

Default Value: $ORACLE_HOME/network/trace

Example: TRACE_DIRECTORY_SERVER=/oracle/traces

Purpose: Specifies the name of the server trace file.

Default Value: SERVER.TRC

Example: TRACE_FILE_SERVER= svr_Connection1.trc

Note: Be sure to use different names for the
TRACE_FILE_CLIENT file and TRACE_FILE_SERVER file.
Coding Tips and Troubleshooting 16-13

Transaction Isolation Levels and Access Modes
Transaction Isolation Levels and Access Modes
Read-only connections are supported by the Oracle server, but not by the Oracle
JDBC drivers.

For transactions, the Oracle server supports only the
TRANSACTION_READ_COMMITTED and TRANSACTION_SERIALIZABLE
transaction isolation levels. The default is TRANSACTION_READ_COMMITTED. Use
the following methods of the oracle.jdbc.driver.OracleConnection class
to get and set the level:

■ getTransactionIsolation(): Gets this connection’s current transaction
isolation level.

■ setTransactionIsolation(): Changes the transaction isolation level,
using one of the TRANSACTION_* values.
16-14 JDBC Developer’s Guide and Reference

Sample Appli
17

Sample Applications

This chapter presents sample applications covering a range of both standard and
Oracle-specific JDBC features, categorized as follows:

■ Basic Samples

■ Samples of PL/SQL in JDBC

■ Intermediate Samples

■ Samples for JDBC 2.0 Types

■ Samples for Oracle Type Extensions

■ Samples for Custom Object Classes

■ JDBC 2.0 Result Set Enhancement Samples

■ Performance Enhancement Samples

■ Samples for Connection Pooling and Distributed Transactions

■ Sample Applet

■ JDBC versus SQLJ Sample Code

These samples are located in subdirectories under the following directory on the
product CD:

[Oracle Home]/jdbc/demo/samples

Note: Aside from the sample applet, which requires the Thin
driver, all samples in this chapter work with any JDBC driver. Do
not be misled by the fact that most of the samples are located under
the oci8 directory on the product CD.
cations 17-1

Basic Samples
Basic Samples
This section provides elementary samples that print employee information from a
table and insert employee information into the table.

■ Listing Names from the EMP Table—Employee.java

■ Inserting Names into the EMP Table—InsertExample.java

These samples are located in the following directory on the product CD:

[Oracle Home]/jdbc/demo/samples/oci8/basic-samples

For a step-by-step discussion of basic JDBC functionality, see "First Steps in JDBC"
on page 3-2.

Listing Names from the EMP Table—Employee.java
This example retrieves and prints all the employee names from the EMP table.

// This sample shows how to list all the names from the EMP table

// You need to import the java.sql package to use JDBC
import java.sql.*;

class Employee
{
 public static void main (String args [])
 throws SQLException
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You can put a database name after the @ sign in the connection URL.
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");

 // Create a Statement
 Statement stmt = conn.createStatement ();

Note: Do not confuse this Employee.java with the one used
later as an example of a CustomDatum implementation of a custom
Java class.
17-2 JDBC Developer’s Guide and Reference

Basic Samples
 // Select the ENAME column from the EMP table
 ResultSet rset = stmt.executeQuery ("select ENAME from EMP");

 // Iterate through the result and print the employee names
 while (rset.next ())
 System.out.println (rset.getString (1));

 // Close the RseultSet
 rset.close();

 // Close the Statement
 stmt.close();

 // Close the connection
 conn.close();
 }
}

Inserting Names into the EMP Table—InsertExample.java
This sample uses a prepared statement to insert new employee rows into the EMP
table.

// This sample shows how to insert data in a table.

// You need to import the java.sql package to use JDBC
import java.sql.*;

class InsertExample
{
 public static void main (String args [])
 throws SQLException
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You can put a database name after the @ sign in the connection URL.
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");

 // Prepare a statement to cleanup the emp table
 Statement stmt = conn.createStatement ();
Sample Applications 17-3

Basic Samples
 try
 {
 stmt.execute ("delete from EMP where EMPNO = 1500");
 }
 catch (SQLException e)
 {
 // Ignore an error here
 }

 try
 {
 stmt.execute ("delete from EMP where EMPNO = 507");
 }
 catch (SQLException e)
 {
 // Ignore an error here too
 }

 // Close the statement
 stmt.close();

 // Prepare to insert new names in the EMP table
 PreparedStatement pstmt =
 conn.prepareStatement ("insert into EMP (EMPNO, ENAME) values (?, ?)");

 // Add LESLIE as employee number 1500
 pstmt.setInt (1, 1500); // The first ? is for EMPNO
 pstmt.setString (2, "LESLIE"); // The second ? is for ENAME
 // Do the insertion
 pstmt.execute ();

 // Add MARSHA as employee number 507
 pstmt.setInt (1, 507); // The first ? is for EMPNO
 pstmt.setString (2, "MARSHA"); // The second ? is for ENAME
 // Do the insertion
 pstmt.execute ();

 // Close the statement
 pstmt.close();

 // Close the connecion
 conn.close();

 }
}

17-4 JDBC Developer’s Guide and Reference

Samples of PL/SQL in JDBC
Samples of PL/SQL in JDBC
The following examples demonstrate the interoperability between PL/SQL and
JDBC, contrasting standard SQL92 calling syntax with Oracle PL/SQL block syntax:

■ Executing Procedures in PL/SQL Blocks—PLSQL.java

■ Calling PL/SQL Stored Procedures—PLSQLExample.java

These samples are located in the following directory on the product CD:

[Oracle Home]/jdbc/demo/samples/oci8/basic-samples

For related discussion, see "PL/SQL Stored Procedures" on page 3-31.

Calling PL/SQL Stored Procedures—PLSQLExample.java
This sample defines a stored function and executes it using SQL92 CALL syntax in a
callable statement. The function takes an employee name and salary as input and
raises the salary by a set amount.

/* This sample shows how to call a PL/SQL stored procedure using the SQL92
 * syntax. See also the other sample PLSQL.java.
 */
import java.sql.*;
import java.io.*;

class PLSQLExample
{
 public static void main (String args [])
 throws SQLException, IOException
 {
 // Load the driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You can put a database name after the @ sign in the connection URL.
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");

 // Create a statement
 Statement stmt = conn.createStatement ();

 // Create the stored function
 stmt.execute ("create or replace function RAISESAL (name CHAR, raise NUMBER)
 return NUMBER is begin return raise + 100000; end;");
Sample Applications 17-5

Samples of PL/SQL in JDBC
 // Close the statement
 stmt.close();

 // Prepare to call the stored procedure RAISESAL.
 // This sample uses the SQL92 syntax
 CallableStatement cstmt = conn.prepareCall ("{? = call RAISESAL (?, ?)}");

 // Declare that the first ? is a return value of type Int
 cstmt.registerOutParameter (1, Types.INTEGER);

 // We want to raise LESLIE’s salary by 20,000
 cstmt.setString (2, "LESLIE"); // The name argument is the second ?
 cstmt.setInt (3, 20000); // The raise argument is the third ?

 // Do the raise
 cstmt.execute ();

 // Get the new salary back
 int new_salary = cstmt.getInt (1);

 System.out.println ("The new salary is: " + new_salary);

 // Close the statement
 cstmt.close();

 // Close the connection
 conn.close();
 }
}

Executing Procedures in PL/SQL Blocks—PLSQL.java
This sample defines PL/SQL stored procedures and functions and executes them
from within Oracle PL/SQL BEGIN...END blocks in callable statements. Stored
procedures and functions with input, output, input-output, and return parameters
are shown.

/* This sample shows how to call PL/SQL blocks from JDBC.
 */
import java.sql.*;

class PLSQL
{

17-6 JDBC Developer’s Guide and Reference

Samples of PL/SQL in JDBC
 public static void main (String args [])
 throws SQLException, ClassNotFoundException
 {
 // Load the driver
 Class.forName ("oracle.jdbc.driver.OracleDriver");

 // Connect to the database
 // You can put a database name after the @ sign in the connection URL.
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");

 // Create the stored procedures
 init (conn);

 // Cleanup the plsqltest database
 Statement stmt = conn.createStatement ();
 stmt.execute ("delete from plsqltest");

 // Close the statement
 stmt.close();

 // Call a procedure with no parameters
 {
 CallableStatement procnone = conn.prepareCall ("begin procnone; end;");
 procnone.execute ();
 dumpTestTable (conn);
 procnone.close();
 }
 // Call a procedure with an IN parameter
 {
 CallableStatement procin = conn.prepareCall ("begin procin (?); end;");
 procin.setString (1, "testing");
 procin.execute ();
 dumpTestTable (conn);
 procin.close();
 }
 // Call a procedure with an OUT parameter
 {
 CallableStatement procout = conn.prepareCall ("begin procout (?); end;");
 procout.registerOutParameter (1, Types.CHAR);
 procout.execute ();
 System.out.println ("Out argument is: " + procout.getString (1));
 procout.close();
 }

Sample Applications 17-7

Samples of PL/SQL in JDBC
 // Call a procedure with an IN/OUT prameter
 {
 CallableStatement procinout = conn.prepareCall
 ("begin procinout (?); end;");
 procinout.registerOutParameter (1, Types.VARCHAR);
 procinout.setString (1, "testing");
 procinout.execute ();
 dumpTestTable (conn);
 System.out.println ("Out argument is: " + procinout.getString (1));
 procinout.close();
 }

 // Call a function with no parameters
 {
 CallableStatement funcnone = conn.prepareCall
 ("begin ? := funcnone; end;");
 funcnone.registerOutParameter (1, Types.CHAR);
 funcnone.execute ();
 System.out.println ("Return value is: " + funcnone.getString (1));
 funcnone.close();
 }

 // Call a function with an IN parameter
 {
 CallableStatement funcin = conn.prepareCall
 ("begin ? := funcin (?); end;");
 funcin.registerOutParameter (1, Types.CHAR);
 funcin.setString (2, "testing");
 funcin.execute ();
 System.out.println ("Return value is: " + funcin.getString (1));
 funcin.close();
 }

 // Call a function with an OUT parameter
 {
 CallableStatement funcout = conn.prepareCall
 ("begin ? := funcout (?); end;");
 funcout.registerOutParameter (1, Types.CHAR);
 funcout.registerOutParameter (2, Types.CHAR);
 funcout.execute ();
 System.out.println ("Return value is: " + funcout.getString (1));
 System.out.println ("Out argument is: " + funcout.getString (2));
 funcout.close();
 }
17-8 JDBC Developer’s Guide and Reference

Samples of PL/SQL in JDBC
 // Close the connection
 conn.close();
 }

 // Utility function to dump the contents of the PLSQLTEST table and
 // clear it
 static void dumpTestTable (Connection conn)
 throws SQLException
 {
 Statement stmt = conn.createStatement ();
 ResultSet rset = stmt.executeQuery ("select * from plsqltest");
 while (rset.next ())
 System.out.println (rset.getString (1));
 stmt.execute ("delete from plsqltest");
 rset.close();
 stmt.close();
 }

 // Utility function to create the stored procedures
 static void init (Connection conn)
 throws SQLException
 {
 Statement stmt = conn.createStatement ();
 try { stmt.execute ("drop table plsqltest"); } catch (SQLException e) { }
 stmt.execute ("create table plsqltest (x char(20))");
 stmt.execute ("create or replace procedure procnone
 is begin insert into plsqltest values (’testing’); end;");
 stmt.execute ("create or replace procedure procin (y char)
 is begin insert into plsqltest values (y); end;");
 stmt.execute ("create or replace procedure procout (y out char)
 is begin y := ’tested’; end;");
 stmt.execute ("create or replace procedure procinout (y in out varchar)
 is begin insert into plsqltest values (y);
 y := ’tested’; end;");

 stmt.execute ("create or replace function funcnone return char
 is begin return ’tested’; end;");
 stmt.execute ("create or replace function funcin (y char) return char
 is begin return y || y; end;");
 stmt.execute ("create or replace function funcout (y out char) return char
 is begin y := ’tested’; return ’returned’; end;");
 stmt.close();
 }
}

Sample Applications 17-9

Intermediate Samples
Intermediate Samples
Samples in this section demonstrate intermediate-level JDBC functionality.

■ Streams—StreamExample.java

■ Multithreading—JdbcMTSample.java

These samples are located in the following directory on the product CD:

[Oracle Home]/jdbc/demo/samples/oci8/basic-samples

Streams—StreamExample.java
The JDBC drivers support the manipulation of data streams in both directions
between client and server. The code sample in this section demonstrates this by
connecting to a database and inserting and fetching LONG data using standard JDBC
stream API.

For a complete discussion of this topic, see "Java Streams in JDBC" on page 3-19.

/*
 * This example shows how to stream data from the database
 */

import java.sql.*;
import java.io.*;

class StreamExample
{
 public static void main (String args [])
 throws SQLException, IOException
 {
 // Load the driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You can put a database name after the @ sign in the connection URL.
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");

 // It’s faster when you don’t commit automatically
 conn.setAutoCommit (false);

 // Create a Statement
 Statement stmt = conn.createStatement ();
17-10 JDBC Developer’s Guide and Reference

Intermediate Samples
 // Create the example table
 try
 {
 stmt.execute ("drop table streamexample");
 }
 catch (SQLException e)
 {
 // An exception would be raised if the table did not exist
 // We just ignore it
 }

 // Create the table
 stmt.execute ("create table streamexample
 (NAME varchar2 (256), DATA long)");

 // Let’s insert some data into it. We’ll put the source code
 // for this very test in the database.
 File file = new File ("StreamExample.java");
 InputStream is = new FileInputStream ("StreamExample.java");
 PreparedStatement pstmt =
 conn.prepareStatement ("insert into streamexample
 (data, name) values (?, ?)");
 pstmt.setAsciiStream (1, is, (int)file.length ());
 pstmt.setString (2, "StreamExample");
 pstmt.execute ();

 // Do a query to get the row with NAME ’StreamExample’
 ResultSet rset =
 stmt.executeQuery ("select DATA from streamexample where
 NAME=’StreamExample’");

 // Get the first row
 if (rset.next ())
 {
 // Get the data as a Stream from Oracle to the client
 InputStream gif_data = rset.getAsciiStream (1);

 // Open a file to store the gif data
 FileOutputStream os = new FileOutputStream ("example.out");

 // Loop, reading from the gif stream and writing to the file
 int c;
 while ((c = gif_data.read ()) != -1)
 os.write (c);
Sample Applications 17-11

Intermediate Samples
 // Close the file
 os.close ();
 }

 // Close all the resources
 if (rset != null)
 rset.close();

 if (stmt != null)
 stmt.close();

 if (pstmt != null)
 pstmt.close();

 if (conn != null)
 conn.close();
 }
}

Multithreading—JdbcMTSample.java
The Oracle JDBC drivers provide full support for programs that use Java
multithreading. The following sample program creates a specified number of
threads and lets you determine whether or not the threads will share a connection.
If you choose to share the connection, then the same JDBC connection object will be
used by all threads (each thread will have its own statement object, however).

Because all Oracle JDBC API methods (except the cancel() method) are
synchronized, if two threads try to use the connection object simultaneously, then
one will be forced to wait until the other one finishes its use.

The program displays each thread ID and the employee name and employee ID
associated with that thread.

This sample is repeated in "JDBC and Multithreading" on page 16-2.

/*
 * This sample is a multi-threaded JDBC program.
 */

import java.sql.*;
import oracle.jdbc.driver.OracleStatement;

public class JdbcMTSample extends Thread
17-12 JDBC Developer’s Guide and Reference

Intermediate Samples
{
 // Default no of threads to 10
 private static int NUM_OF_THREADS = 10;

 int m_myId;

 static int c_nextId = 1;
 static Connection s_conn = null;
 static boolean share_connection = false;

 synchronized static int getNextId()
 {
 return c_nextId++;
 }

 public static void main (String args [])
 {
 try
 {
 /* Load the JDBC driver */
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // If NoOfThreads is specified, then read it
 if ((args.length > 2) ||
 ((args.length > 1) && !(args[1].equals("share"))))
 {
 System.out.println("Error: Invalid Syntax. ");
 System.out.println("java JdbcMTSample [NoOfThreads] [share]");
 System.exit(0);
 }

 if (args.length > 1)
 {
 share_connection = true;
 System.out.println
 ("All threads will be sharing the same connection");
 }
 // get the no of threads if given
 if (args.length > 0)
 NUM_OF_THREADS = Integer.parseInt (args[0]);

 // get a shared connection
 if (share_connection)
 s_conn = DriverManager.getConnection
 ("jdbc:oracle:oci8:@", "scott","tiger");
Sample Applications 17-13

Intermediate Samples

 // Create the threads
 Thread[] threadList = new Thread[NUM_OF_THREADS];

 // spawn threads
 for (int i = 0; i < NUM_OF_THREADS; i++)
 {
 threadList[i] = new JdbcMTSample();
 threadList[i].start();
 }

 // Start everyone at the same time
 setGreenLight ();

 // wait for all threads to end
 for (int i = 0; i < NUM_OF_THREADS; i++)
 {
 threadList[i].join();
 }

 if (share_connection)
 {
 s_conn.close();
 s_conn = null;
 }

 }
 catch (Exception e)
 {
 e.printStackTrace();
 }

 }

 public JdbcMTSample()
 {
 super();
 // Assign an Id to the thread
 m_myId = getNextId();
 }

 public void run()
 {
 Connection conn = null;
 ResultSet rs = null;
17-14 JDBC Developer’s Guide and Reference

Intermediate Samples
 Statement stmt = null;

 try
 {
 // Get the connection

 if (share_connection)
 stmt = s_conn.createStatement (); // Create a Statement
 else
 {
 conn = DriverManager.getConnection("jdbc:oracle:oci8:@",
 "scott","tiger");
 stmt = conn.createStatement (); // Create a Statement
 }

 while (!getGreenLight())
 yield();

 // Execute the Query
 rs = stmt.executeQuery ("select * from EMP");

 // Loop through the results
 while (rs.next())
 {
 System.out.println("Thread " + m_myId +
 " Employee Id : " + rs.getInt(1) +
 " Name : " + rs.getString(2));
 yield(); // Yield To other threads
 }

 // Close all the resources
 rs.close();
 rs = null;

 // Close the statement
 stmt.close();
 stmt = null;

 // Close the local connection
 if ((!share_connection) && (conn != null))
 {
 conn.close();
 conn = null;
 }
 System.out.println("Thread " + m_myId + " is finished. ");
Sample Applications 17-15

Intermediate Samples
 }
 catch (Exception e)
 {
 System.out.println("Thread " + m_myId + " got Exception: " + e);
 e.printStackTrace();
 return;
 }
 }

 static boolean greenLight = false;
 static synchronized void setGreenLight () { greenLight = true; }
 synchronized boolean getGreenLight () { return greenLight; }

}

17-16 JDBC Developer’s Guide and Reference

Samples for JDBC 2.0 Types
Samples for JDBC 2.0 Types
This section contains sample code for the Oracle implementations of standard JDBC
2.0 types:

■ BLOBs and CLOBs—LobExample.java

■ Weakly Typed Objects—PersonObject.java

■ Weakly Typed Object References—StudentRef.java

■ Weakly Typed Arrays—ArrayExample.java

These samples are located in the following directory on the product CD:

[Oracle Home]/jdbc/demo/samples/oci8/object-samples

BLOBs and CLOBs—LobExample.java
This sample demonstrates basic JDBC support for LOBs. It illustrates how to create
a table containing LOB columns and includes utility programs to read from a LOB,
write to a LOB, and dump the LOB contents. For more information on LOBs, see
"Working with BLOBs and CLOBs" on page 7-3.

/*
 * This sample demonstrate basic LOB support.
 */

import java.sql.*;
import java.io.*;
import java.util.*;
import oracle.jdbc.driver.*;

//needed for new CLOB and BLOB classes
import oracle.sql.*;

public class LobExample
{
 public static void main (String args [])
 throws Exception
 {
 // Register the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You can put a database name after the @ sign in the connection URL.
Sample Applications 17-17

Samples for JDBC 2.0 Types
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");

 // It’s faster when auto commit is off
 conn.setAutoCommit (false);

 // Create a Statement
 Statement stmt = conn.createStatement ();

 try
 {
 stmt.execute ("drop table basic_lob_table");
 }
 catch (SQLException e)
 {
 // An exception could be raised here if the table did not exist already.
 }

 // Create a table containing a BLOB and a CLOB
 stmt.execute ("create table basic_lob_table
 (x varchar2 (30), b blob, c clob)");

 // Populate the table
 stmt.execute ("insert into basic_lob_table values
 (’one’, ’010101010101010101010101010101’, ’onetwothreefour’)");
 stmt.execute ("insert into basic_lob_table values
 (’two’, ’0202020202020202020202020202’, ’twothreefourfivesix’)");

 System.out.println ("Dumping lobs");

 // Select the lobs
 ResultSet rset = stmt.executeQuery ("select * from basic_lob_table");
 while (rset.next ())
 {
 // Get the lobs
 BLOB blob = ((OracleResultSet)rset).getBLOB (2);
 CLOB clob = ((OracleResultSet)rset).getCLOB (3);

 // Print the lob contents
 dumpBlob (conn, blob);
 dumpClob (conn, clob);

 // Change the lob contents
 fillClob (conn, clob, 2000);
 fillBlob (conn, blob, 4000);
17-18 JDBC Developer’s Guide and Reference

Samples for JDBC 2.0 Types
 }

 System.out.println ("Dumping lobs again");

 rset = stmt.executeQuery ("select * from basic_lob_table");
 while (rset.next ())
 {
 // Get the lobs
 BLOB blob = ((OracleResultSet)rset).getBLOB (2);
 CLOB clob = ((OracleResultSet)rset).getCLOB (3);

 // Print the lobs contents
 dumpBlob (conn, blob);
 dumpClob (conn, clob);
 }
 // Close all resources
 rset.close();
 stmt.close();
 conn.close();
 }

 // Utility function to dump Clob contents
 static void dumpClob (Connection conn, CLOB clob)
 throws Exception
 {
 // get character stream to retrieve clob data
 Reader instream = clob.getCharacterStream();

 // create temporary buffer for read
 char[] buffer = new char[10];

 // length of characters read
 int length = 0;

 // fetch data
 while ((length = instream.read(buffer)) != -1)
 {
 System.out.print("Read " + length + " chars: ");

 for (int i=0; i<length; i++)
 System.out.print(buffer[i]);
 System.out.println();
 }

 // Close input stream
Sample Applications 17-19

Samples for JDBC 2.0 Types
 instream.close();
 }

 // Utility function to dump Blob contents
 static void dumpBlob (Connection conn, BLOB blob)
 throws Exception
 {
 // Get binary output stream to retrieve blob data
 InputStream instream = blob.getBinaryStream();

 // Create temporary buffer for read
 byte[] buffer = new byte[10];

 // length of bytes read
 int length = 0;

 // Fetch data
 while ((length = instream.read(buffer)) != -1)
 {
 System.out.print("Read " + length + " bytes: ");

 for (int i=0; i<length; i++)
 System.out.print(buffer[i]+" ");
 System.out.println();
 }

 // Close input stream
 instream.close();
 }

 // Utility function to put data in a Clob
 static void fillClob (Connection conn, CLOB clob, long length)
 throws Exception
 {
 Writer outstream = clob.getCharacterOutputStream();

 int i = 0;
 int chunk = 10;

 while (i < length)
 {
 outstream.write(i + "hello world", 0, chunk);

 i += chunk;
 if (length - i < chunk)
17-20 JDBC Developer’s Guide and Reference

Samples for JDBC 2.0 Types
 chunk = (int) length - i;
 }
 outstream.close();
 }

 // Utility function to put data in a Blob
 static void fillBlob (Connection conn, BLOB blob, long length)
 throws Exception
 {
 OutputStream outstream = blob.getBinaryOutputStream();

 int i = 0;
 int chunk = 10;

 byte [] data = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 while (i < length)
 {
 data [0] = (byte)i;
 outstream.write(data, 0, chunk);

 i += chunk;
 if (length - i < chunk)
 chunk = (int) length - i;
 }
 outstream.close();
 }
}

Weakly Typed Objects—PersonObject.java
This sample demonstrates the functionality of the Oracle classes
oracle.sql.STRUCT and oracle.sql.StructDescriptor for weakly typed
support of SQL structured objects. It defines the SQL object types PERSON and
ADDRESS (an attribute of PERSON).

For a complete discussion of weakly typed STRUCT class functionality, see "Using
the Default STRUCT Class for Oracle Objects" on page 8-3.

/*
 * This sample demonstrate basic Object support
 */

import java.sql.*;
Sample Applications 17-21

Samples for JDBC 2.0 Types
import java.io.*;
import java.util.*;
import java.math.BigDecimal;
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class PersonObject
{
 public static void main (String args [])
 throws Exception
 {
 // Register the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You need to put your database name after the @ sign in
 // the connection URL.
 //
 // The sample retrieves an object of type "STUDENT",
 // materializes the object as an object of type ADT.
 // The Object is then modified and inserted back into the database.

 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@",
 "scott", "tiger");

 // It’s faster when auto commit is off
 conn.setAutoCommit (false);

 // Create a Statement
 Statement stmt = conn.createStatement ();

 try
 {
 stmt.execute ("drop table people");
 stmt.execute ("drop type PERSON FORCE");
 stmt.execute ("drop type ADDRESS FORCE");
 }
 catch (SQLException e)
 {
 // the above drop and create statements will throw exceptions
 // if the types and tables did not exist before
 }

 stmt.execute ("create type ADDRESS as object
17-22 JDBC Developer’s Guide and Reference

Samples for JDBC 2.0 Types
 (street VARCHAR (30), num NUMBER)");
 stmt.execute ("create type PERSON as object
 (name VARCHAR (30), home ADDRESS)");
 stmt.execute ("create table people (empno NUMBER, empid PERSON)");

 stmt.execute ("insert into people values
 (101, PERSON (’Greg’, ADDRESS (’Van Ness’, 345)))");
 stmt.execute ("insert into people values
 (102, PERSON (’John’, ADDRESS (’Geary’, 229)))");

 ResultSet rs = stmt.executeQuery ("select * from people");
 showResultSet (rs);
 rs.close();

 //now insert a new row

 // create a new STRUCT object with a new name and address
 // create the embedded object for the address
 Object [] address_attributes = new Object [2];
 address_attributes [0] = "Mission";
 address_attributes [1] = new BigDecimal (346);

 StructDescriptor addressDesc =
 StructDescriptor.createDescriptor ("ADDRESS", conn);
 STRUCT address = new STRUCT (addressDesc, conn, address_attributes);

 Object [] person_attributes = new Object [2];
 person_attributes [0] = "Gary";
 person_attributes [1] = address;

 StructDescriptor personDesc =
 StructDescriptor.createDescriptor("PERSON", conn);
 STRUCT new_person = new STRUCT (personDesc, conn, person_attributes);

 PreparedStatement ps =
 conn.prepareStatement ("insert into people values (?,?)");
 ps.setInt (1, 102);
 ps.setObject (2, new_person);

 ps.execute ();
 ps.close();

 rs = stmt.executeQuery ("select * from people");
 System.out.println ();
 System.out.println (" a new row has been added to the people table");
Sample Applications 17-23

Samples for JDBC 2.0 Types
 System.out.println ();
 showResultSet (rs);

 rs.close();
 stmt.close();
 conn.close();
 }

 public static void showResultSet (ResultSet rs)
 throws SQLException
 {
 while (rs.next ())
 {
 int empno = rs.getInt (1);
 // retrieve the STRUCT
 STRUCT person_struct = (STRUCT)rs.getObject (2);
 Object person_attrs[] = person_struct.getAttributes();

 System.out.println ("person name: " + (String) person_attrs[0]);

 STRUCT address = (STRUCT) person_attrs[1];

 System.out.println ("person address: ");

 Object address_attrs[] = address.getAttributes();

 System.out.println ("street: " + (String) address_attrs[0]);
 System.out.println ("number: " +
 ((BigDecimal) address_attrs[1]).intValue());
 System.out.println ();
 }
 }
}

Weakly Typed Object References—StudentRef.java
This sample demonstrates the functionality of the Oracle class oracle.sql.REF
for weakly typed support of SQL object references. It defines the SQL object type
STUDENT and uses references to that object type.

For a complete discussion of weakly typed REF class functionality, see Chapter 9,
"Working with Oracle Object References".

/* This sample demonstrate basic Ref support
17-24 JDBC Developer’s Guide and Reference

Samples for JDBC 2.0 Types
*/
import java.sql.*;
import java.io.*;
import java.util.*;
import java.math.BigDecimal;
import oracle.sql.*;
import oracle.jdbc.driver.*;

public class StudentRef
{
 public static void main (String args [])
 throws Exception
 {
 // Register the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You need to put your database name after the @ sign in
 // the connection URL.
 //
 // The sample retrieves an object of type "person",
 // materializes the object as an object of type ADT.
 // The Object is then modified and inserted back into the database.

 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@",
 "scott", "tiger");

 // It’s faster when auto commit is off
 conn.setAutoCommit (false);

 // Create a Statement
 Statement stmt = conn.createStatement ();

 try
 {
 stmt.execute ("drop table student_table");
 stmt.execute ("drop type STUDENT");
 }
 catch (SQLException e)
 {
 // the above drop and create statements will throw exceptions
 // if the types and tables did not exist before
 }
Sample Applications 17-25

Samples for JDBC 2.0 Types
 stmt.execute ("create type STUDENT as object
 (name VARCHAR (30), age NUMBER)");
 stmt.execute ("create table student_table of STUDENT");
 stmt.execute ("insert into student_table values (’John’, 20)");

 ResultSet rs = stmt.executeQuery ("select ref (s) from student_table s");
 rs.next ();

 // retrieve the ref object
 REF ref = (REF) rs.getObject (1);

 //retrieve the object value that the ref points to in the
 // object table

 STRUCT student = (STRUCT) ref.getValue ();
 Object attributes[] = student.getAttributes();

 System.out.println ("student name: " + (String) attributes[0]);
 System.out.println ("student age: " + ((BigDecimal)
 attributes[1]).intValue());

 rs.close();
 stmt.close();
 conn.close();
 }
}

Weakly Typed Arrays—ArrayExample.java
This sample program uses JDBC to create a table with a VARRAY. It inserts a new
array object into the table, then prints the contents of the table. For more
information on arrays, see Chapter 10, "Working with Oracle Collections".

import java.sql.*;
import oracle.sql.*;
import oracle.jdbc.oracore.Util;
import oracle.jdbc.driver.*;
import java.math.BigDecimal;

public class ArrayExample
{
 public static void main (String args[])
 throws Exception
 {
17-26 JDBC Developer’s Guide and Reference

Samples for JDBC 2.0 Types
 // Register the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You need to put your database name after the @ sign in
 // the connection URL.
 //
 // The sample retrieves an varray of type "NUM_VARRAY",
 // materializes the object as an object of type ARRAY.
 // A new ARRAY is then inserted into the database.

 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@",
 "scott", "tiger");

 // It’s faster when auto commit is off
 conn.setAutoCommit (false);

 // Create a Statement
 Statement stmt = conn.createStatement ();

 try
 {
 stmt.execute ("DROP TABLE varray_table");
 stmt.execute ("DROP TYPE num_varray");
 }
 catch (SQLException e)
 {
 // the above drop statements will throw exceptions
 // if the types and tables did not exist before. Just ingore it.
 }

 stmt.execute ("CREATE TYPE num_varray AS VARRAY(10) OF NUMBER(12, 2)");
 stmt.execute ("CREATE TABLE varray_table (col1 num_varray)");
 stmt.execute ("INSERT INTO varray_table VALUES (num_varray(100, 200))");

 ResultSet rs = stmt.executeQuery("SELECT * FROM varray_table");
 showResultSet (rs);

 //now insert a new row

 // create a new ARRAY object
 int elements[] = { 300, 400, 500, 600 };
 ArrayDescriptor desc = ArrayDescriptor.createDescriptor("NUM_VARRAY", conn);
 ARRAY newArray = new ARRAY(desc, conn, elements);
Sample Applications 17-27

Samples for JDBC 2.0 Types

 PreparedStatement ps =
 conn.prepareStatement ("insert into varray_table values (?)");
 ((OraclePreparedStatement)ps).setARRAY (1, newArray);

 ps.execute ();

 rs = stmt.executeQuery("SELECT * FROM varray_table");
 showResultSet (rs);

 // Close all the resources
 rs.close();
 ps.close();
 stmt.close();
 conn.close();

 }

 public static void showResultSet (ResultSet rs)
 throws SQLException
 {
 int line = 0;
 while (rs.next())
 {
 line++;
 System.out.println("Row "+line+" : ");
 ARRAY array = ((OracleResultSet)rs).getARRAY (1);

 System.out.println ("Array is of type "+array.getSQLTypeName());
 System.out.println
 ("Array element is of typecode "+array.getBaseType());
 System.out.println ("Array is of length "+array.length());

 // get Array elements
 BigDecimal[] values = (BigDecimal[]) array.getArray();

 for (int i=0; i<values.length; i++)
 {
 BigDecimal value = (BigDecimal) values[i];
 System.out.println(">> index "+i+" = "+value.intValue());
 }
 }
 }
}

17-28 JDBC Developer’s Guide and Reference

Samples for Oracle Type Extensions
Samples for Oracle Type Extensions
This section contains sample code for some of the Oracle type extensions:

■ REF CURSORs—RefCursorExample.java

■ BFILEs—FileExample.java

The REF CURSOR sample is located in the following directory on the product CD:

[Oracle Home]/jdbc/demo/samples/oci8/basic-samples

The BFILE example is in the object-samples directory.

REF CURSORs—RefCursorExample.java
This sample program shows Oracle JDBC REF CURSOR functionality, creating a
PL/SQL package that includes a stored function that returns a REF CURSOR type.
The sample retrieves the REF CURSOR into a result set object. For information on
REF CURSORs, see "Oracle REF CURSOR Type Category" on page 5-27.

/*
 * This sample shows how to call a PL/SQL function that opens
 * a cursor and get the cursor back as a Java ResultSet.
 */

import java.sql.*;
import java.io.*;
import oracle.jdbc.driver.*;

class RefCursorExample
{
 public static void main (String args [])
 throws SQLException
 {
 // Load the driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You can put a database name after the @ sign in the connection URL.
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");

 // Create the stored procedure
 init (conn);
Sample Applications 17-29

Samples for Oracle Type Extensions
 // Prepare a PL/SQL call
 CallableStatement call =
 conn.prepareCall ("{ ? = call java_refcursor.job_listing (?)}");

 // Find out all the SALES person
 call.registerOutParameter (1, OracleTypes.CURSOR);
 call.setString (2, "SALESMAN");
 call.execute ();
 ResultSet rset = (ResultSet)call.getObject (1);

 // Dump the cursor
 while (rset.next ())
 System.out.println (rset.getString ("ENAME"));

 // Close all the resources
 rset.close();
 call.close();
 conn.close();

 }

 // Utility function to create the stored procedure
 static void init (Connection conn)
 throws SQLException
 {
 Statement stmt = conn.createStatement ();

 stmt.execute ("create or replace package java_refcursor as " +
 " type myrctype is ref cursor return EMP%ROWTYPE; " +
 " function job_listing (j varchar2) return myrctype; " +
 "end java_refcursor;");

 stmt.execute ("create or replace package body java_refcursor as " +
 " function job_listing (j varchar2) return myrctype is " +
 " rc myrctype; " +
 " begin " +
 " open rc for select * from emp where job = j; " +
 " return rc; " +
 " end; " +
 "end java_refcursor;");
 stmt.close();
 }
}

17-30 JDBC Developer’s Guide and Reference

Samples for Oracle Type Extensions
BFILEs—FileExample.java
This sample demonstrates Oracle JDBC BFILE support. It illustrates filling a table
with BFILEs and includes a utility for dumping the contents of a BFILE. For
information on BFILEs, see "Working with BFILEs" on page 7-16.

/*
 * This sample demonstrate basic File support
 */

import java.sql.*;
import java.io.*;
import java.util.*;

//including this import makes the code easier to read
import oracle.jdbc.driver.*;

// needed for new BFILE class
import oracle.sql.*;

public class FileExample
{
 public static void main (String args [])
 throws Exception
 {
 // Register the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You can put a database name after the @ sign in the connection URL.
 //
 // The sample creates a DIRECTORY and you have to be connected as
 // "system" to be able to run the test.
 // I you can’t connect as "system" have your system manager
 // create the directory for you, grant you the rights to it, and
 // remove the portion of this program that drops and creates the directory.
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "system", "manager");

 // It’s faster when auto commit is off
 conn.setAutoCommit (false);

 // Create a Statement
 Statement stmt = conn.createStatement ();
Sample Applications 17-31

Samples for Oracle Type Extensions
 try
 {
 stmt.execute ("drop directory TEST_DIR");
 }
 catch (SQLException e)
 {
 // An error is raised if the directory does not exist. Just ignore it.
 }
 stmt.execute ("create directory TEST_DIR as ’/tmp/filetest’");

 try
 {
 stmt.execute ("drop table test_dir_table");
 }
 catch (SQLException e)
 {
 // An error is raised if the table does not exist. Just ignore it.
 }

 // Create and populate a table with files
 // The files file1 and file2 must exist in the directory TEST_DIR created
 // above as symbolic name for /private/local/filetest.
 stmt.execute ("create table test_dir_table (x varchar2 (30), b bfile)");
 stmt.execute ("insert into test_dir_table values
 (’one’, bfilename (’TEST_DIR’, ’file1’))");
 stmt.execute ("insert into test_dir_table values
 (’two’, bfilename (’TEST_DIR’, ’file2’))");

 // Select the file from the table
 ResultSet rset = stmt.executeQuery ("select * from test_dir_table");
 while (rset.next ())
 {
 String x = rset.getString (1);
 BFILE bfile = ((OracleResultSet)rset).getBFILE (2);
 System.out.println (x + " " + bfile);

 // Dump the file contents
 dumpBfile (conn, bfile);
 }

 // Close all resources
 rset.close();
 stmt.close();
 conn.close();
 }
17-32 JDBC Developer’s Guide and Reference

Samples for Oracle Type Extensions
 // Utility function to dump the contents of a Bfile
 static void dumpBfile (Connection conn, BFILE bfile)
 throws Exception
 {
 System.out.println ("Dumping file " + bfile.getName());
 System.out.println ("File exists: " + bfile.fileExists());
 System.out.println ("File open: " + bfile.isFileOpen());

 System.out.println ("Opening File: ");

 bfile.openFile();

 System.out.println ("File open: " + bfile.isFileOpen());

 long length = bfile.length();
 System.out.println ("File length: " + length);

 int chunk = 10;

 InputStream instream = bfile.getBinaryStream();

 // Create temporary buffer for read
 byte[] buffer = new byte[chunk];

 // Fetch data
 while ((length = instream.read(buffer)) != -1)
 {
 System.out.print("Read " + length + " bytes: ");

 for (int i=0; i<length; i++)
 System.out.print(buffer[i]+" ");
 System.out.println();
 }

 // Close input stream
 instream.close();

 // close file handler
 bfile.closeFile();
 }
}

Sample Applications 17-33

Samples for Custom Object Classes
Samples for Custom Object Classes
This section demonstrates the functionality of custom Java classes to map from SQL
structured objects, providing examples of both a standard SQLData
implementation and an Oracle CustomDatum implementation:

■ SQLData Implementation—SQLDataExample.java

■ CustomDatum Implementation—CustomDatumExample.java

This includes examples of the code you must provide to define custom Java classes
for Oracle objects, and sample applications that make use of these custom Java class
definitions. You create the custom classes by implementing either the standard
java.sql.SQLData interface or the Oracle oracle.sql.CustomDatum
interface. These interfaces provide a way to create and populate the custom Java
class for the Oracle object and its attributes.

SQLData and CustomDatum both populate a Java object from a SQL object, with
the SQLData interface providing more portability and the CustomDatum interface
providing more utility and flexibility in how you present the data.

The SQLData interface is a JDBC standard. For more information on this interface,
see "Understanding the SQLData Interface" on page 8-14.

The CustomDatum interface is provided by Oracle. For more information on the
CustomDatum interface, see "Understanding the CustomDatum Interface" on
page 8-20.

You can write your own code to create custom Java classes that implement either
interface, but the Oracle JPublisher utility can generate classes to implement either
interface as well.

For more information about JPublisher, see "Using JPublisher to Create Custom
Object Classes" on page 8-28 and the Oracle8i JPublisher User’s Guide.

The sample applications and custom Java class definitions in this section are located
in the following directory on the product CD:

[Oracle Home]/jdbc/demo/samples/oci8/object-samples
17-34 JDBC Developer’s Guide and Reference

Samples for Custom Object Classes
SQLData Implementation—SQLDataExample.java
This section contains code that illustrates how to define and use a custom Java type
corresponding to a given SQL object type, using a SQLData implementation.

SQL Object Definition
Following is the SQL definition of an EMPLOYEE object. The object has two
attributes: a VARCHAR2 attribute EMPNAME (employee name) and an INTEGER
attribute EMPNO (employee number).

 -- SQL definition
CREATE TYPE employee AS OBJECT
(
 empname VARCHAR2(50),
 empno INTEGER
);

Custom Object Class—SQLData Implementation
The following code defines the custom Java class EmployeeObj (defined in
EmployeeObj.java) to correspond to the SQL type EMPLOYEE. Notice that the
definition of EmployeeObj contains a string empName (employee name) attribute
and an integer empNo (employee number) attribute. Also notice that the Java
definition of the EmployeeObj custom Java class implements the SQLData
interface and includes the implementations of a get method and the required
readSQL() and writeSQL() methods.

import java.sql.*;
import oracle.jdbc.*;

public class EmployeeObj implements SQLData
{
 private String sql_type;

 public String empName;
 public int empNo;

 public EmployeeObj()
 {
 }

 public EmployeeObj (String sql_type, String empName, int empNo)
 {
Sample Applications 17-35

Samples for Custom Object Classes
 this.sql_type = sql_type;
 this.empName = empName;
 this.empNo = empNo;
 }

 ////// implements SQLData //////

 public String getSQLTypeName() throws SQLException
 {
 return sql_type;
 }

 public void readSQL(SQLInput stream, String typeName)
 throws SQLException
 {
 sql_type = typeName;

 empName = stream.readString();
 empNo = stream.readInt();
 }

 public void writeSQL(SQLOutput stream)
 throws SQLException
 {
 stream.writeString(empName);
 stream.writeInt(empNo);
 }
}

Sample Application Using SQLData Custom Object Class
After you create the EmployeeObj Java class, you can use it in a program. The
following program creates a table that stores employee name and number data. The
program uses the EmployeeObj object to create a new employee object and insert it
in the table. It then applies a SELECT statement to get the contents of the table and
prints its contents.

For information about using SQLData implementations to access and manipulate
SQL object data, see "Reading and Writing Data with a SQLData Implementation"
on page 8-17.

import java.sql.*;
import oracle.jdbc.driver.*;
import oracle.sql.*;
17-36 JDBC Developer’s Guide and Reference

Samples for Custom Object Classes
import java.math.BigDecimal;
import java.util.Dictionary;

public class SQLDataExample
{

 public static void main(String args []) throws Exception
 {

 // Connect
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver ());
 OracleConnection conn = (OracleConnection)
 DriverManager.getConnection("jdbc:oracle:oci8:@",
 "scott", "tiger");

 Dictionary map = (Dictionary)conn.getTypeMap();
 map.put("EMPLOYEE", Class.forName("EmployeeObj"));

 // Create a Statement
 Statement stmt = conn.createStatement ();
 try
 {
 stmt.execute ("drop table EMPLOYEE_TABLE");
 stmt.execute ("drop type EMPLOYEE");
 }
 catch (SQLException e)
 {
 // An error is raised if the table/type does not exist. Just ignore it.
 }

 // Create and populate tables
 stmt.execute ("CREATE TYPE EMPLOYEE AS OBJECT
 (EmpName VARCHAR2(50),EmpNo INTEGER)");
 stmt.execute ("CREATE TABLE EMPLOYEE_TABLE (ATTR1 EMPLOYEE)");
 stmt.execute ("INSERT INTO EMPLOYEE_TABLE VALUES
 (EMPLOYEE(’Susan Smith’, 123))");
 stmt.close();

 // Create a SQLData object
 EmployeeObj e = new EmployeeObj("SCOTT.EMPLOYEE", "George Jones", 456);

 // Insert the SQLData object
 PreparedStatement pstmt
 = conn.prepareStatement ("insert into employee_table values (?)");
Sample Applications 17-37

Samples for Custom Object Classes
 pstmt.setObject(1, e, OracleTypes.STRUCT);
 pstmt.executeQuery();
 System.out.println("insert done");
 pstmt.close();

 // Select now
 Statement s = conn.createStatement();
 OracleResultSet rs = (OracleResultSet)
 s.executeQuery("select * from employee_table");

 while(rs.next())
 {
 EmployeeObj ee = (EmployeeObj) rs.getObject(1);
 System.out.println("EmpName: " + ee.empName + " EmpNo: " + ee.empNo);
 }
 rs.close();
 s.close();

 if (conn != null)
 {
 conn.close();
 }
 }
}

CustomDatum Implementation—CustomDatumExample.java
This section contains code that illustrates how to define and use a custom Java type
corresponding to a given SQL object type, using a CustomDatum implementation.

SQL Object Definition
Following is the SQL definition of an EMPLOYEE object. The object has two
attributes: a VARCHAR2 attribute EMPNAME (employee name) and an INTEGER
attribute EMPNO (employee number).

CREATE TYPE employee AS OBJECT
(
 empname VARCHAR2(50),
 empno INTEGER
);
17-38 JDBC Developer’s Guide and Reference

Samples for Custom Object Classes
Custom Object Class—CustomDatum Implementation
The following code defines the custom Java class Employee (defined in
Employee.java) to correspond to the SQL type EMPLOYEE. Notice that the
definition of Employee contains accessor methods for a string empname (employee
name) and an integer empno (employee number). Also notice that the Java
definition of the Employee custom Java class implements the CustomDatum and
CustomDatumFactory interfaces. A custom Java class that implements
CustomDatum has a static getFactory() method that returns a
CustomDatumFactory object. The JDBC driver uses the CustomDatumFactory
object’s create() method to return a CustomDatum instance.

Note that instead of writing the custom Java class yourself, you can use the
JPublisher utility to generate class definitions that implement the CustomDatum
and CustomDatumFactory interfaces. In fact, the Employee.java code shown
here was generated by JPublisher.

import java.sql.SQLException;
import oracle.jdbc.driver.OracleConnection;
import oracle.jdbc.driver.OracleTypes;
import oracle.sql.CustomDatum;
import oracle.sql.CustomDatumFactory;
import oracle.sql.Datum;
import oracle.sql.STRUCT;
import oracle.jpub.runtime.MutableStruct;

public class Employee implements CustomDatum, CustomDatumFactory
{
 public static final String _SQL_NAME = "SCOTT.EMPLOYEE";
 public static final int _SQL_TYPECODE = OracleTypes.STRUCT;

 MutableStruct _struct;

 static int[] _sqlType =
 {
 12, 4
 };

 static CustomDatumFactory[] _factory = new CustomDatumFactory[2];

 static final Employee _EmployeeFactory = new Employee();
 public static CustomDatumFactory getFactory()
 {
 return _EmployeeFactory;
 }
Sample Applications 17-39

Samples for Custom Object Classes
 /* constructor */
 public Employee()
 {
 _struct = new MutableStruct(new Object[2], _sqlType, _factory);
 }

 /* CustomDatum interface */
 public Datum toDatum(OracleConnection c) throws SQLException
 {
 return _struct.toDatum(c, _SQL_NAME);
 }

 /* CustomDatumFactory interface */
 public CustomDatum create(Datum d, int sqlType) throws SQLException
 {
 if (d == null) return null;
 Employee o = new Employee();
 o._struct = new MutableStruct((STRUCT) d, _sqlType, _factory);
 return o;
 }

 /* accessor methods */
 public String getEmpname() throws SQLException
 { return (String) _struct.getAttribute(0); }

 public void setEmpname(String empname) throws SQLException
 { _struct.setAttribute(0, empname); }

 public Integer getEmpno() throws SQLException
 { return (Integer) _struct.getAttribute(1); }

 public void setEmpno(Integer empno) throws SQLException
 { _struct.setAttribute(1, empno); }
}

Sample Application Using CustomDatum Custom Object Class
This sample program shows how you can use the Employee class generated by
JPublisher. The sample code creates a new Employee object, fills it with data, then
inserts it into the database. The sample code then retrieves the Employee data from
the database.
17-40 JDBC Developer’s Guide and Reference

Samples for Custom Object Classes
For information about using CustomDatum implementations to access and
manipulate SQL object data, see "Reading and Writing Data with a CustomDatum
Implementation" on page 8-23.

import java.sql.*;
import oracle.jdbc.driver.*;
import oracle.sql.*;
import java.math.BigDecimal;

public class CustomDatumExample
{

 public static void main(String args []) throws Exception
 {

 // Connect
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver ());
 OracleConnection conn = (OracleConnection)
 DriverManager.getConnection("jdbc:oracle:oci8:@",
 "scott", "tiger");

 // Create a Statement
 Statement stmt = conn.createStatement ();
 try
 {
 stmt.execute ("drop table EMPLOYEE_TABLE");
 stmt.execute ("drop type EMPLOYEE");
 }
 catch (SQLException e)
 {
 // An error is raised if the table/type does not exist. Just ignore it.
 }

 // Create and populate tables
 stmt.execute ("CREATE TYPE EMPLOYEE AS OBJECT
 (EmpName VARCHAR2(50),EmpNo INTEGER)");
 stmt.execute ("CREATE TABLE EMPLOYEE_TABLE (ATTR1 EMPLOYEE)");
 stmt.execute ("INSERT INTO EMPLOYEE_TABLE VALUES
 (EMPLOYEE(’Susan Smith’, 123))");
 stmt.close();

 // Create a CustomDatum object
 Employee e = new Employee("George Jones", new BigDecimal("456"));
Sample Applications 17-41

Samples for Custom Object Classes
 // Insert the CustomDatum object
 PreparedStatement pstmt
 = conn.prepareStatement ("insert into employee_table values (?)");

 pstmt.setObject(1, e, OracleTypes.STRUCT);
 pstmt.executeQuery();
 System.out.println("insert done");
 pstmt.close();

 // Select now
 Statement s = conn.createStatement();
 OracleResultSet rs = (OracleResultSet)
 s.executeQuery("select * from employee_table");

 while(rs.next())
 {
 Employee ee = (Employee) rs.getCustomDatum(1, Employee.getFactory());
 System.out.println("EmpName: " + ee.empName + " EmpNo: " + ee.empNo);
 }
 rs.close();
 s.close();

 if (conn != null)
 {
 conn.close();
 }
 }
}

17-42 JDBC Developer’s Guide and Reference

JDBC 2.0 Result Set Enhancement Samples
JDBC 2.0 Result Set Enhancement Samples
This section provides samples that demonstrate the functionality of result set
enhancements available with JDBC 2.0. This includes positioning in a scrollable
result set, updating a result set, using a scroll-sensitive result set that can
automatically see external updates, and explicitly refetching data into a result set:

■ Positioning in a Result Set—ResultSet2.java

■ Inserting and Deleting Rows in a Result Set—ResultSet3.java

■ Updating Rows in a Result Set—ResultSet4.java

■ Scroll-Sensitive Result Set—ResultSet5.java

■ Refetching Rows in a Result Set—ResultSet6.java

The sample applications in this section are located in the following directory on the
product CD:

[Oracle Home]/jdbc/demo/samples/oci8/jdbc20-samples

Positioning in a Result Set—ResultSet2.java
This section demonstrates scrollable result set functionality—moving to relative and
absolute row positions and iterating backwards through the result set.

For discussion on these topics, see "Positioning and Processing in Scrollable Result
Sets" on page 11-13.

/* A simple sample to demonstrate previous(), absolute() and relative().
 */
import java.sql.*;

public class ResultSet2
{
 public static void main(String[] args) throws SQLException
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You can put a database name after the @ sign in the connection URL.
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");
Sample Applications 17-43

JDBC 2.0 Result Set Enhancement Samples
 // Create a Statement
 Statement stmt = conn.createStatement (ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);

 // Query the EMP table
 ResultSet rset = stmt.executeQuery ("select ENAME from EMP");

 // iterate through the result using next()
 show_resultset_by_next(rset);

 // iterate through the result using previous()
 show_resultset_by_previous(rset);

 // iterate through the result using absolute()
 show_resultset_by_absolute(rset);

 // iterate through the result using relative()
 show_resultset_by_relative(rset);

 // Close the ResultSet
 rset.close();

 // Close the Statement
 stmt.close();

 // Close the connection
 conn.close();
 }

 /**
 * Iterate through the result using next().
 *
 * @param rset a result set object
 */
 public static void show_resultset_by_next(ResultSet rset)
 throws SQLException
 {
 System.out.println ("List the employee names using ResultSet.next():");

 // Make sure the cursor is placed right before the first row
 if (!rset.isBeforeFirst())
 {
 // Place the cursor right before the first row
 rset.beforeFirst ();
 }
17-44 JDBC Developer’s Guide and Reference

JDBC 2.0 Result Set Enhancement Samples

 // Iterate through the rows using next()
 while (rset.next())
 System.out.println (rset.getString (1));

 System.out.println ();
 }

 /**
 * Iterate through the result using previous().
 *
 * @param rset a result set object
 */
 public static void show_resultset_by_previous(ResultSet rset)
 throws SQLException
 {
 System.out.println ("List the employee names using ResultSet.previous():");

 // Make sure the cursor is placed after the last row
 if (!rset.isAfterLast())
 {
 // Place the cursor after the last row
 rset.afterLast ();
 }

 // Iterate through the rows using previous()
 while (rset.previous())
 System.out.println (rset.getString (1));

 System.out.println ();
 }

 /**
 * Iterate through the result using absolute().
 *
 * @param rset a result set object
 */
 public static void show_resultset_by_absolute (ResultSet rset)
 throws SQLException
 {
 System.out.println ("List the employee names using ResultSet.absolute():");

 // The begin index for ResultSet.absolute (idx)
 int idx = 1;
Sample Applications 17-45

JDBC 2.0 Result Set Enhancement Samples
 // Loop through the result set until absolute() returns false.
 while (rset.absolute(idx))
 {
 System.out.println (rset.getString (1));
 idx ++;
 }
 System.out.println ();
 }

 /**
 * Iterate through the result using relative().
 *
 * @param rset a result set object
 */
 public static void show_resultset_by_relative (ResultSet rset)
 throws SQLException
 {
 System.out.println ("List the employee names using ResultSet.relative():");

 // getRow() returns 0 if there is no current row
 if (rset.getRow () == 0 || !rset.isLast())
 {
 // place the cursor on the last row
 rset.last ();
 }

 // Calling relative(-1) is similar to previous(), but the cursor
 // has to be on a valid row before calling relative().
 do
 {
 System.out.println (rset.getString (1));
 }
 while (rset.relative (-1));

 System.out.println ();
 }
}

17-46 JDBC Developer’s Guide and Reference

JDBC 2.0 Result Set Enhancement Samples
Inserting and Deleting Rows in a Result Set—ResultSet3.java
This sample shows some of the functionality of an updatable result set—inserting
and deleting rows that will in turn be inserted into or deleted from the database.

For discussion on these topics, see "Performing an INSERT Operation in a Result
Set" on page 11-21 and "Performing a DELETE Operation in a Result Set" on
page 11-18.

/* A simple sample to to demonstrate ResultSet.insertRow() and
 * ResultSet.deleteRow().
 */
import java.sql.*;

public class ResultSet3
{
 public static void main(String[] args) throws SQLException
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You can put a database name after the @ sign in the connection URL.
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");

 // Cleanup
 cleanup (conn);

 // Create a Statement
 Statement stmt = conn.createStatement (ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
 // Query the EMP table
 ResultSet rset = stmt.executeQuery ("select EMPNO, ENAME from EMP");

 // Add three new employees using ResultSet.insertRow()
 addEmployee (rset, 1001, "PETER");
 addEmployee (rset, 1002, "MARY");
 addEmployee (rset, 1003, "DAVID");

 // Close the result set
 rset.close ();

 // Verify the insertion
 System.out.println ("\nList EMPNO and ENAME in the EMP table: ");
Sample Applications 17-47

JDBC 2.0 Result Set Enhancement Samples
 rset = stmt.executeQuery ("select EMPNO, ENAME from EMP");
 while (rset.next())
 {
 // We expect to see the three new employees
 System.out.println (rset.getInt(1)+" "+rset.getString(2));
 }
 System.out.println ();

 // Delete the new employee ’PETER’ using ResultSet.deleteRow()
 removeEmployee (rset, 1001);
 rset.close ();

 // Verify the deletion
 System.out.println ("\nList EMPNO and ENAME in the EMP table: ");
 rset = stmt.executeQuery ("select EMPNO, ENAME from EMP");
 while (rset.next())
 {
 // We expect "PETER" is removed
 System.out.println (rset.getInt(1)+" "+rset.getString(2));
 }
 System.out.println ();

 // Close the RseultSet
 rset.close();

 // Close the Statement
 stmt.close();

 // Cleanup
 cleanup(conn);

 // Close the connection
 conn.close();
 }

 /**
 * Add a new employee to EMP table.
 */
 public static void addEmployee (ResultSet rset,
 int employeeId,
 String employeeName)
 throws SQLException
 {
 System.out.println ("Adding new employee: "+employeeId+" "+employeeName);
17-48 JDBC Developer’s Guide and Reference

JDBC 2.0 Result Set Enhancement Samples
 // Place the cursor on the insert row
 rset.moveToInsertRow();

 // Assign the new values
 rset.updateInt (1, employeeId);
 rset.updateString (2, employeeName);

 // Insert the new row to database
 rset.insertRow();
 }

 /**
 * Remove the employee from EMP table.
 */
 public static void removeEmployee (ResultSet rset,
 int employeeId)
 throws SQLException
 {
 System.out.println ("Removing the employee: id="+employeeId);

 // Place the cursor right before the first row if it doesn’t
 if (!rset.isBeforeFirst())
 {
 rset.beforeFirst();
 }

 // Iterate the result set
 while (rset.next())
 {
 // Place the cursor the row with matched employee id
 if (rset.getInt(1) == employeeId)
 {
 // Delete the current row
 rset.deleteRow();
 break;
 }
 }
 }

 /**
 * Generic cleanup.
 */
 public static void cleanup (Connection conn)
 throws SQLException
 {
Sample Applications 17-49

JDBC 2.0 Result Set Enhancement Samples
 Statement stmt = conn.createStatement ();
 stmt.execute
 ("DELETE FROM EMP WHERE EMPNO=1001 OR EMPNO=1002 OR EMPNO=1003");
 stmt.execute ("COMMIT");
 stmt.close ();
 }
}

Updating Rows in a Result Set—ResultSet4.java
This sample shows some of the functionality of an updatable result set—updating
rows that will in turn be updated in the database.

For a discussion on this topic, see "Performing an UPDATE Operation in a Result
Set" on page 11-19.

/* A simple sample to demonstrate ResultSet.udpateRow().
 */
import java.sql.*;

public class ResultSet4
{
 public static void main(String[] args) throws SQLException
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You can put a database name after the @ sign in the connection URL.
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");

 // Create a Statement
 Statement stmt = conn.createStatement (ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
 // Query the EMP table
 ResultSet rset = stmt.executeQuery ("select EMPNO, ENAME, SAL from EMP");

 // Give everybody a $500 raise
 adjustSalary (rset, 500);

 // Verify the sarlary changes
 System.out.println ("Verify the changes with a new query: ");
 rset = stmt.executeQuery ("select EMPNO, ENAME, SAL from EMP");
17-50 JDBC Developer’s Guide and Reference

JDBC 2.0 Result Set Enhancement Samples
 while (rset.next())
 {
 System.out.println (rset.getInt(1)+" "+rset.getString(2)+" "+
 rset.getInt(3));
 }
 System.out.println ();

 // Close the RseultSet
 rset.close();

 // Close the Statement
 stmt.close();

 // Cleanup
 cleanup(conn);

 // Close the connection
 conn.close();
 }

 /**
 * Update the ResultSet content using updateRow().
 */
 public static void adjustSalary (ResultSet rset, int raise)
 throws SQLException
 {
 System.out.println ("Give everybody in the EMP table a $500 raise\n");

 int salary = 0;

 while (rset.next ())
 {
 // save the old value
 salary = rset.getInt (3);

 // update the row
 rset.updateInt (3, salary + raise);

 // flush the changes to database
 rset.updateRow ();

 // show the changes
 System.out.println (rset.getInt(1)+" "+rset.getString(2)+" "+
 salary+" -> "+rset.getInt(3));
 }
Sample Applications 17-51

JDBC 2.0 Result Set Enhancement Samples
 System.out.println ();
 }

 /**
 * Generic cleanup.
 */
 public static void cleanup (Connection conn) throws SQLException
 {
 Statement stmt = conn.createStatement ();
 stmt.execute ("UPDATE EMP SET SAL = SAL - 500");
 stmt.execute ("COMMIT");
 stmt.close ();
 }
}

Scroll-Sensitive Result Set—ResultSet5.java
This sample shows the functionality of a scroll-sensitive result. Such a result set can
implicitly see updates to the database that were made externally.

For more information about scroll-sensitive result sets and how they are
implemented, see "Oracle Implementation of Scroll-Sensitive Result Sets" on
page 11-30.

/* A simple sample to demonstrate scroll sensitive result set.
 */
import java.sql.*;

public class ResultSet5
{
 public static void main(String[] args) throws SQLException
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You can put a database name after the @ sign in the connection URL.
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");

 // Create a Statement
 Statement stmt = conn.createStatement (ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATABLE);
17-52 JDBC Developer’s Guide and Reference

JDBC 2.0 Result Set Enhancement Samples
 // Set the statement fetch size to 1
 stmt.setFetchSize (1);

 // Query the EMP table
 ResultSet rset = stmt.executeQuery ("select EMPNO, ENAME, SAL from EMP");

 // List the result set’s type, concurrency type, ..., etc
 showProperty (rset);

 // List the query result
 System.out.println ("List ENO, ENAME and SAL from the EMP table: ");
 while (rset.next())
 {
 System.out.println (rset.getInt(1)+" "+rset.getString(2)+" "+
 rset.getInt(3));
 }
 System.out.println ();

 // Do some changes outside the result set
 doSomeChanges (conn);

 // Place the cursor right before the first row
 rset.beforeFirst ();

 // List the employee information again
 System.out.println ("List ENO, ENAME and SAL again: ");
 while (rset.next())
 {
 // We expect to see the changes made in "doSomeChanges()"
 System.out.println (rset.getInt(1)+" "+rset.getString(2)+" "+
 rset.getInt(3));
 }

 // Close the RseultSet
 rset.close();

 // Close the Statement
 stmt.close();

 // Cleanup
 cleanup(conn);

 // Close the connection
 conn.close();
 }
Sample Applications 17-53

JDBC 2.0 Result Set Enhancement Samples
 /**
 * Update the EMP table.
 */
 public static void doSomeChanges (Connection conn)
 throws SQLException
 {
 System.out.println ("Update the employee salary outside the result set\n");

 Statement otherStmt = conn.createStatement ();
 otherStmt.execute ("update emp set sal = sal + 500");
 otherStmt.execute ("commit");
 otherStmt.close ();
 }

 /**
 * Show the result set properties like type, concurrency type, fetch
 * size,..., etc.
 */
 public static void showProperty (ResultSet rset) throws SQLException
 {
 // Verify the result set type
 switch (rset.getType())
 {
 case ResultSet.TYPE_FORWARD_ONLY:
 System.out.println ("Result set type: TYPE_FORWARD_ONLY");
 break;
 case ResultSet.TYPE_SCROLL_INSENSITIVE:
 System.out.println ("Result set type: TYPE_SCROLL_INSENSITIVE");
 break;
 case ResultSet.TYPE_SCROLL_SENSITIVE:
 System.out.println ("Result set type: TYPE_SCROLL_SENSITIVE");
 break;
 default:
 System.out.println ("Invalid type");
 break;
 }

 // Verify the result set concurrency
 switch (rset.getConcurrency())
 {
 case ResultSet.CONCUR_UPDATABLE:
 System.out.println
 ("Result set concurrency: ResultSet.CONCUR_UPDATABLE");
 break;
17-54 JDBC Developer’s Guide and Reference

JDBC 2.0 Result Set Enhancement Samples
 case ResultSet.CONCUR_READ_ONLY:
 System.out.println
 ("Result set concurrency: ResultSet.CONCUR_READ_ONLY");
 break;
 default:
 System.out.println ("Invalid type");
 break;
 }

 // Verify the fetch size
 System.out.println ("fetch size: "+rset.getFetchSize ());

 System.out.println ();
 }

 /**
 * Generic cleanup.
 */
 public static void cleanup (Connection conn) throws SQLException
 {
 Statement stmt = conn.createStatement ();
 stmt.execute ("UPDATE EMP SET SAL = SAL - 500");
 stmt.execute ("COMMIT");
 stmt.close ();
 }
}

Refetching Rows in a Result Set—ResultSet6.java
This sample shows how to explicitly refetch data from the database to update the
result set. This functionality is available in scroll-sensitive and
scroll-insensitive/updatable result sets.

For more information, see "Refetching Rows" on page 11-26.

/* A simple sample to demonstrate ResultSet.refreshRow().
 */
import java.sql.*;

public class ResultSet6
{
 public static void main(String[] args) throws SQLException
 {
 // Load the Oracle JDBC driver
Sample Applications 17-55

JDBC 2.0 Result Set Enhancement Samples
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You can put a database name after the @ sign in the connection URL.
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");

 // Create a Statement
 Statement stmt = conn.createStatement (ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);

 // Set the statement fetch size to 1
 stmt.setFetchSize (1);

 // Query the EMP table
 ResultSet rset = stmt.executeQuery ("select EMPNO, ENAME, SAL from EMP");

 // List the result set’s type, concurrency type, ..., etc
 showProperty (rset);

 // List the query result
 System.out.println ("List ENO, ENAME and SAL from the EMP table: ");
 while (rset.next())
 {
 System.out.println (rset.getInt(1)+" "+rset.getString(2)+" "+
 rset.getInt(3));
 }
 System.out.println ();

 // Do some changes outside the result set
 doSomeChanges (conn);

 // Place the cursor right before the first row
 rset.beforeFirst ();

 // List the employee information again
 System.out.println ("List ENO, ENAME and SAL again: ");
 int salary = 0;
 while (rset.next())
 {
 // save the original salary
 salary = rset.getInt (3);

 // refresh the row
 rset.refreshRow ();
17-56 JDBC Developer’s Guide and Reference

JDBC 2.0 Result Set Enhancement Samples

 // We expect to see the changes made in "doSomeChanges()"
 System.out.println (rset.getInt(1)+" "+rset.getString(2)+" "+
 salary+" -> "+rset.getInt(3));
 }

 // Close the RseultSet
 rset.close();

 // Close the Statement
 stmt.close();

 // Cleanup
 cleanup(conn);

 // Close the connection
 conn.close();
 }

 /**
 * Update the EMP table.
 */
 public static void doSomeChanges (Connection conn)
 throws SQLException
 {
 System.out.println ("Update the employee salary outside the result set\n");

 Statement otherStmt = conn.createStatement ();
 otherStmt.execute ("update emp set sal = sal + 500");
 otherStmt.execute ("commit");
 otherStmt.close ();
 }

 /**
 * Show the result set properties like type, concurrency type, fetch
 * size,..., etc.
 */
 public static void showProperty (ResultSet rset) throws SQLException
 {
 // Verify the result set type
 switch (rset.getType())
 {
 case ResultSet.TYPE_FORWARD_ONLY:
 System.out.println ("Result set type: TYPE_FORWARD_ONLY");
 break;
Sample Applications 17-57

JDBC 2.0 Result Set Enhancement Samples
 case ResultSet.TYPE_SCROLL_INSENSITIVE:
 System.out.println ("Result set type: TYPE_SCROLL_INSENSITIVE");
 break;
 case ResultSet.TYPE_SCROLL_SENSITIVE:
 System.out.println ("Result set type: TYPE_SCROLL_SENSITIVE");
 break;
 default:
 System.out.println ("Invalid type");
 break;
 }

 // Verify the result set concurrency
 switch (rset.getConcurrency())
 {
 case ResultSet.CONCUR_UPDATABLE:
 System.out.println
 ("Result set concurrency: ResultSet.CONCUR_UPDATABLE");
 break;
 case ResultSet.CONCUR_READ_ONLY:
 System.out.println
 ("Result set concurrency: ResultSet.CONCUR_READ_ONLY");
 break;
 default:
 System.out.println ("Invalid type");
 break;
 }

 // Verify the fetch size
 System.out.println ("fetch size: "+rset.getFetchSize ());

 System.out.println ();
 }

 /**
 * Generic cleanup.
 */
 public static void cleanup (Connection conn) throws SQLException
 {
 Statement stmt = conn.createStatement ();
 stmt.execute ("UPDATE EMP SET SAL = SAL - 500");
 stmt.execute ("COMMIT");
 stmt.close ();
 }
}

17-58 JDBC Developer’s Guide and Reference

Performance Enhancement Samples
Performance Enhancement Samples
This section provides sample applications for performance enhancement features
such as update batching:

■ Standard Update Batching—BatchUpdates.java

■ Oracle Update Batching with Implicit Execution—SetExecuteBatch.java

■ Oracle Update Batching with Explicit Execution—SendBatch.java

■ Oracle Row Prefetching Specified in Connection—RowPrefetch_connection.java

■ Oracle Row Prefetching Specified in Statement—RowPrefetch_statement.java

■ Oracle Column Type Definitions—DefineColumnType.java

The sample applications for Oracle-specific performance enhancements are located
in the following directory on the product CD:

[Oracle Home]/jdbc/demo/samples/oci8/basic-samples

The standard update batching sample is located in the jdbc20-samples directory.

Standard Update Batching—BatchUpdates.java
This sample shows how to use standard update batching as specified by JDBC 2.0.
For more information, see "Standard Update Batching" on page 12-11.

For comparison and contrast between the standard and Oracle-specific update
batching models, see "Overview of Update Batching Models" on page 12-2.

/**
 * A simple sample to demonstrate standard JDBC 2.0 update batching.
 */

import java.sql.*;

public class BatchUpdates
{
 public static void main(String[] args)
 {
 Connection conn = null;
 Statement stmt = null;
 PreparedStatement pstmt = null;
 ResultSet rset = null;
 int i = 0;
Sample Applications 17-59

Performance Enhancement Samples
 try
 {
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 conn = DriverManager.getConnection(
 "jdbc:oracle:oci8:@", "scott", "tiger");

 stmt = conn.createStatement();
 try { stmt.execute(
 "create table mytest_table (col1 number, col2 varchar2(20))");
 } catch (Exception e1) {}

 //
 // Insert in a batch.
 //
 pstmt = conn.prepareStatement("insert into mytest_table values (?, ?)");

 pstmt.setInt(1, 1);
 pstmt.setString(2, "row 1");
 pstmt.addBatch();

 pstmt.setInt(1, 2);
 pstmt.setString(2, "row 2");
 pstmt.addBatch();

 pstmt.executeBatch();

 //
 // Select and print results.
 //
 rset = stmt.executeQuery("select * from mytest_table");
 while (rset.next())
 {
 System.out.println(rset.getInt(1) + ", " + rset.getString(2));
 }
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 finally
 {
 if (stmt != null)
 {
 try { stmt.execute("drop table mytest_table"); } catch (Exception e) {}
17-60 JDBC Developer’s Guide and Reference

Performance Enhancement Samples
 try { stmt.close(); } catch (Exception e) {}
 }
 if (pstmt != null)
 {
 try { pstmt.close(); } catch (Exception e) {}
 }
 if (conn != null)
 {
 try { conn.close(); } catch (Exception e) {}
 }
 }
 }
}

Oracle Update Batching with Implicit Execution—SetExecuteBatch.java
This sample shows how to use Oracle update batching, with the batch being
executed implicitly when the batch value (the number of statements to collect before
sending them to the database) is reached.

For information about Oracle update batching, see "Oracle Update Batching" on
page 12-4.

For comparison and contrast between the standard and Oracle-specific update
batching models, see "Overview of Update Batching Models" on page 12-2.

/*
 * This sample shows how to use the batching extensions.
 * In this example, we set the defaultBatch value from the
 * connection object. This affects all statements created from
 * this connection.
 * It is possible to set the batch value individually for each
 * statement. The API to use on the statement object is setExecuteBatch().
 */

// You need to import the java.sql package to use JDBC
import java.sql.*;

// You need to import oracle.jdbc.driver.* in order to use the
// API extensions.
import oracle.jdbc.driver.*;

class SetExecuteBatch
{

Sample Applications 17-61

Performance Enhancement Samples
 public static void main (String args [])
 throws SQLException
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You can put a database name after the @ sign in the connection URL.
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");

 // Default batch value set to 2 for all prepared statements belonging
 // to this connection.
 ((OracleConnection)conn).setDefaultExecuteBatch (2);

 PreparedStatement ps =
 conn.prepareStatement ("insert into dept values (?, ?, ?)");

 ps.setInt (1, 12);
 ps.setString (2, "Oracle");
 ps.setString (3, "USA");

 // No data is sent to the database by this call to executeUpdate
 System.out.println ("Number of rows updated so far: "
 + ps.executeUpdate ());

 ps.setInt (1, 11);
 ps.setString (2, "Applications");
 ps.setString (3, "Indonesia");

 // The number of batch calls to executeUpdate is now equal to the
 // batch value of 2. The data is now sent to the database and
 // both rows are inserted in a single roundtrip.
 int rows = ps.executeUpdate ();
 System.out.println ("Number of rows updated now: " + rows);

 ps.close ();
 conn.close();
 }
}

17-62 JDBC Developer’s Guide and Reference

Performance Enhancement Samples
Oracle Update Batching with Explicit Execution—SendBatch.java
This sample shows how to use Oracle update batching, with the batch being
executed explicitly with a sendBatch() call.

For information about Oracle update batching, see "Oracle Update Batching" on
page 12-4.

For comparison and contrast between the standard and Oracle-specific update
batching models, see "Overview of Update Batching Models" on page 12-2.

/*
 * This sample shows how to use the batching extensions.
 * In this example, we demonstrate the use of the "sendBatch" API.
 * This allows the user to actually execute a set of batched
 * execute commands.
 */

// You need to import the java.sql package to use JDBC
import java.sql.*;

// You need to import oracle.jdbc.driver.* in order to use the
// API extensions.
import oracle.jdbc.driver.*;

class SendBatch
{
 public static void main (String args [])
 throws SQLException
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You can put a database name after the @ sign in the connection URL.
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");

 Statement stmt = conn.createStatement ();

 // Default batch value set to 50 for all prepared statements belonging
 // to this connection.
 ((OracleConnection)conn).setDefaultExecuteBatch (50);

 PreparedStatement ps =
 conn.prepareStatement ("insert into dept values (?, ?, ?)");
Sample Applications 17-63

Performance Enhancement Samples

 ps.setInt (1, 32);
 ps.setString (2, "Oracle");
 ps.setString (3, "USA");

 // this execute does not actually happen at this point
 System.out.println (ps.executeUpdate ());

 ps.setInt (1, 33);
 ps.setString (2, "Applications");
 ps.setString (3, "Indonesia");

 // this execute does not actually happen at this point
 int rows = ps.executeUpdate ();

 System.out.println ("Number of rows updated before calling sendBatch: "
 + rows);

 // Execution of both previously batched executes will happen
 // at this point. The number of rows updated will be
 // returned by sendBatch.
 rows = ((OraclePreparedStatement)ps).sendBatch ();

 System.out.println ("Number of rows updated by calling sendBatch: "
 + rows);

 ps.close ();
 conn.close ();
 }
}

Oracle Row Prefetching Specified in Connection—RowPrefetch_connection.java
This section demonstrates how to use Oracle row prefetching-functionality, setting
the row prefetch value in the connection object and thereby affecting every
statement produced from that connection.

Note that Oracle row prefetching is fundamentally similar to JDBC 2.0 fetch size
functionality.

For information about Oracle row prefetching, see "Oracle Row Prefetching" on
page 12-20. For information about JDBC 2.0 fetch size and some comparison with
row prefetching, see "Fetch Size" on page 11-24.
17-64 JDBC Developer’s Guide and Reference

Performance Enhancement Samples
/*
 * This sample shows how to use the Oracle performance extensions
 * for row-prefetching. This allows the driver to fetch multiple
 * rows in one round-trip, saving unecessary round-trips to the database.
 *
 * This example shows how to set the rowPrefetch for the connection object,
 * which will be used for all statements created from this connection.
 * Please see RowPrefetch_statement.java for examples of how to set
 * the rowPrefetch for statements individually.
 */

// You need to import the java.sql package to use JDBC
import java.sql.*;

// You need to import oacle.jdbc.driver in order to use the oracle extensions.
import oracle.jdbc.driver.*;

class RowPrefetch_connection
{
 public static void main (String args [])
 throws SQLException
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You can put a database name after the @ sign in the connection URL.
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");

 // set the RowPrefetch value from the Connection object
 // This sets the rowPrefetch for *all* statements belonging
 // to this connection.
 // The rowPrefetch value can be overriden for specific statements by
 // using the setRowPrefetch API on the statement object. Please look
 // at RowPrefetch_statement.java for an example.

 // Please note that any statements created *before* the connection
 // rowPrefetch was set, will use the default rowPrefetch.

 ((OracleConnection)conn).setDefaultRowPrefetch (30);

 Statement stmt = conn.createStatement ();

Sample Applications 17-65

Performance Enhancement Samples
 // Check to verify statement rowPrefetch value is 30.
 int row_prefetch = ((OracleStatement)stmt).getRowPrefetch ();
 System.out.println ("The RowPrefetch for the statement is: "
 + row_prefetch + "\n");

 ResultSet rset = stmt.executeQuery ("select ename from emp");

 while(rset.next ())
 {
 System.out.println (rset.getString (1));
 }
 rset.close ();
 stmt.close ();
 conn.close ();
 }
}

Oracle Row Prefetching Specified in Statement—RowPrefetch_statement.java
This section demonstrates how to use Oracle row prefetching functionality, setting
the row prefetch value in a particular statement object to override the value in the
connection object producing the statement.

Note that Oracle row prefetching is fundamentally similar to JDBC 2.0 fetch size
functionality.

For information about Oracle row prefetching, see "Oracle Row Prefetching" on
page 12-20. For information about JDBC 2.0 fetch size and some comparison with
row prefetching, see "Fetch Size" on page 11-24.

/*
 * This sample shows how to use the Oracle performance extensions
 * for row-prefetching. This allows the driver to fetch multiple
 * rows in one round-trip, saving unecessary round-trips to the database.
 * This example shows how to set the rowPrefetch for individual
 * statements.
 */
// You need to import the java.sql package to use JDBC
import java.sql.*;

// You need to import oracle.jdbc.driver in order to use the
// Oracle extensions
import oracle.jdbc.driver.*;
17-66 JDBC Developer’s Guide and Reference

Performance Enhancement Samples
class RowPrefetch_statement
{
 public static void main (String args [])
 throws SQLException
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You can put a database name after the @ sign in the connection URL.
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");

 // get the value of the default row prefetch from the connection object

 int default_row_prefetch =
 ((OracleConnection)conn).getDefaultRowPrefetch ();
 System.out.println ("The Default RowPrefetch for the connection is: "
 + default_row_prefetch);
 Statement stmt = conn.createStatement ();

 // set the RowPrefetch value from the statement object
 // This sets the rowPrefetch only for this particular statement.
 // All other statements will use the default RowPrefetch from the
 // connection.

 ((OracleStatement)stmt).setRowPrefetch (30);

 // Check to verify statement rowPrefetch value is 30.
 int row_prefetch = ((OracleStatement)stmt).getRowPrefetch ();
 System.out.println ("The RowPrefetch for the statement is: "
 + row_prefetch + "\n");
 ResultSet rset = stmt.executeQuery ("select ename from emp");

 while(rset.next ())
 {
 System.out.println (rset.getString (1));
 }
 rset.close ();
 stmt.close ();
 stmt.close ();
 }
}

Sample Applications 17-67

Performance Enhancement Samples
Oracle Column Type Definitions—DefineColumnType.java
This sample shows how to use Oracle extensions to predefine result set column
types to reduce round trips to the database for a query.

For information about column type definitions, see "Defining Column Types" on
page 12-23.

/*
 * This sample shows how to use the "define" extensions.
 * The define extensions allow the user to specify the types
 * under which to retrieve column data in a query.
 *
 * This saves round-trips to the database (otherwise necessary to
 * gather information regarding the types in the select-list) and
 * conversions from native types to the types under which the user
 * will get the data.
 *
 * This can also be used to avoid streaming of long columns, by defining
 * them as CHAR or VARCHAR types.
 */

// You need to import the java.sql package to use JDBC
import java.sql.*;

// You need to import oracle.jdbc.driver.* in order to use the
// API extensions.
import oracle.jdbc.driver.*;

class DefineColumnType
{
 public static void main (String args [])
 throws SQLException
 {
 // Load the Oracle JDBC driver
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());

 // Connect to the database
 // You can put a database name after the @ sign in the connection URL.
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");

 Statement stmt = conn.createStatement ();

 // Call DefineColumnType to specify that the column will be
 // retrieved as a String to avoid conversion from NUMBER to String
17-68 JDBC Developer’s Guide and Reference

Performance Enhancement Samples
 // on the client side. This also avoids a round-trip to the
 // database to get the column type.
 //
 // There are 2 defineColumnType API. We use the one with 3 arguments.
 // The 3rd argument allows us to specify the maximum length
 // of the String. The values obtained for this column will
 // not exceed this length.

 ((OracleStatement)stmt).defineColumnType (1, Types.VARCHAR, 7);

 ResultSet rset = stmt.executeQuery ("select empno from emp");
 while (rset.next ())
 {
 System.out.println (rset.getString (1));
 }

 // Close the resultSet
 rset.close();

 // Close the statement
 stmt.close ();

 // Close the connection
 conn.close();
 }
}

Sample Applications 17-69

Samples for Connection Pooling and Distributed Transactions
Samples for Connection Pooling and Distributed Transactions
This section includes samples of JDBC 2.0 extension features for data sources,
connection pooling, connection caching, and distributed transactions (XA), as
follows:

■ Data Source without JNDI—DataSource.java

■ Data Source with JNDI—DataSourceJNDI.java

■ Pooled Connection—PooledConnection.java

■ Oracle Connection Cache (dynamic)—CCache1.java

■ Oracle Connection Cache ("fixed with no wait")—CCache2.java

■ XA with Suspend and Resume—XA2.java

■ XA with Two-Phase Commit Operation—XA4.java

Data Source without JNDI—DataSource.java
This example shows how to use JDBC 2.0 data sources without JNDI. For general
information about data sources, including how to use them with or without JNDI,
see "Data Sources" on page 13-2.

/* A Simple DataSource sample without using JNDI.
 */

// You need to import the java.sql package to use JDBC
import java.sql.*;
import javax.sql.*;
import oracle.jdbc.driver.*;
import oracle.jdbc.pool.OracleDataSource;

public class DataSource
{
 public static void main (String args [])
 throws SQLException
 {
 // Create a OracleDataSource instance explicitly
 OracleDataSource ods = new OracleDataSource();

 // Set the user name, password, driver type and network protocol
 ods.setUser("scott");
 ods.setPassword("tiger");
 ods.setDriverType("oci8");
17-70 JDBC Developer’s Guide and Reference

Samples for Connection Pooling and Distributed Transactions
 ods.setNetworkProtocol("ipc");

 // Retrieve a connection
 Connection conn = ods.getConnection();
 getUserName(conn);
 // Close the connection
 conn.close();
 conn = null;
 }

 static void getUserName(Connection conn)
 throws SQLException
 {
 // Create a Statement
 Statement stmt = conn.createStatement ();

 // Select the ENAME column from the EMP table
 ResultSet rset = stmt.executeQuery ("select USER from dual");

 // Iterate through the result and print the employee names
 while (rset.next ())
 System.out.println ("User name is " + rset.getString (1));

 // Close the RseultSet
 rset.close();
 rset = null;

 // Close the Statement
 stmt.close();
 stmt = null;
 }
}

Data Source with JNDI—DataSourceJNDI.java
This example shows how to use JDBC 2.0 data sources with JNDI. For general
information about data sources, including how to use them with or without JNDI,
see "Data Sources" on page 13-2.

This class includes do_bind() and do_lookup() methods for JNDI functionality,
as well as a getUserName() method.

/* A Simple DataSource sample with JNDI.
 * This is tested using File System based reference
Sample Applications 17-71

Samples for Connection Pooling and Distributed Transactions
 * implementation of JNDI SPI driver from JavaSoft.
 * You need to download fscontext1_2beta2.zip from
 * JavaSoft site.
 * Include providerutil.jar & fscontext.jar extracted
 * from the above ZIP in the classpath.
 * Create a directory /tmp/JNDI/jdbc
 */

// You need to import the java.sql package to use JDBC
import java.sql.*;
import javax.sql.*;
import oracle.jdbc.driver.*;
import oracle.jdbc.pool.OracleDataSource;
import javax.naming.*;
import javax.naming.spi.*;
import java.util.Hashtable;

public class DataSourceJNDI
{
 public static void main (String args [])
 throws SQLException, NamingException
 {
 // Initialize the Context
 Context ctx = null;
 try {
 Hashtable env = new Hashtable (5);
 env.put (Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");
 env.put (Context.PROVIDER_URL, "file:/tmp/JNDI");
 ctx = new InitialContext(env);
 } catch (NamingException ne)
 {
 ne.printStackTrace();
 }

 do_bind(ctx, "jdbc/sampledb");
 do_lookup(ctx, "jdbc/sampledb");

 }

 static void do_bind (Context ctx, String ln)
 throws SQLException, NamingException
 {
 // Create a OracleDataSource instance explicitly
 OracleDataSource ods = new OracleDataSource();
17-72 JDBC Developer’s Guide and Reference

Samples for Connection Pooling and Distributed Transactions
 // Set the user name, password, driver type and network protocol
 ods.setUser("scott");
 ods.setPassword("tiger");
 ods.setDriverType("oci8");
 ods.setNetworkProtocol("ipc");

 // Bind it
 System.out.println ("Doing a bind with the logical name : " + ln);
 ctx.bind (ln,ods);
 }

 static void do_lookup (Context ctx, String ln)
 throws SQLException, NamingException
 {

 System.out.println ("Doing a lookup with the logical name : " + ln);
 OracleDataSource ods = (OracleDataSource) ctx.lookup (ln);

 // Retrieve a connection
 Connection conn = ods.getConnection();
 getUserName(conn);
 // Close the connection
 conn.close();
 conn = null;
 }

 static void getUserName(Connection conn)
 throws SQLException
 {
 // Create a Statement
 Statement stmt = conn.createStatement ();

 // Select the ENAME column from the EMP table
 ResultSet rset = stmt.executeQuery ("select USER from dual");

 // Iterate through the result and print the employee names
 while (rset.next ())
 System.out.println ("User name is " + rset.getString (1));

 // Close the RseultSet
 rset.close();
 rset = null;

 // Close the Statement
Sample Applications 17-73

Samples for Connection Pooling and Distributed Transactions
 stmt.close();
 stmt = null;
 }
}

Pooled Connection—PooledConnection.java
This is a simple example of how to use JDBC 2.0 pooled connection functionality.
For general information about connection pooling, see "Connection Pooling" on
page 13-11.

/* A simple Pooled Connection Sample
 */

import java.sql.*;
import javax.sql.*;
import oracle.jdbc.driver.*;
import oracle.jdbc.pool.*;

class PooledConnection1
{
 public static void main (String args [])
 throws SQLException
 {

 // Create a OracleConnectionPoolDataSource instance
 OracleConnectionPoolDataSource ocpds =
 new OracleConnectionPoolDataSource();

 // Set connection parameters
 ocpds.setURL("jdbc:oracle:oci8:@");
 ocpds.setUser("scott");
 ocpds.setPassword("tiger");

 // Create a pooled connection
 PooledConnection pc = ocpds.getPooledConnection();

 // Get a Logical connection
 Connection conn = pc.getConnection();

 // Create a Statement
 Statement stmt = conn.createStatement ();

 // Select the ENAME column from the EMP table
17-74 JDBC Developer’s Guide and Reference

Samples for Connection Pooling and Distributed Transactions
 ResultSet rset = stmt.executeQuery ("select ENAME from EMP");

 // Iterate through the result and print the employee names
 while (rset.next ())
 System.out.println (rset.getString (1));

 // Close the RseultSet
 rset.close();
 rset = null;

 // Close the Statement
 stmt.close();
 stmt = null;

 // Close the logical connection
 conn.close();
 conn = null;

 // Close the pooled connection
 pc.close();
 pc = null;
 }
}

Oracle Connection Cache (dynamic)—CCache1.java
This is the first of two examples of connection caching using the Oracle sample
implementation available with class OracleConnectionCacheImpl.

This example uses the dynamic scheme for situations where the maximum number
of pooled connections has already been reached—new pooled connection instances
are created as needed, but each one is automatically closed and freed as soon as the
JDBC application is done using the logical connection instance that the pooled
connection instance provided.

For information about connection caching in general and Oracle’s sample
implementation in particular, see "Connection Caching" on page 13-15.

/* JDBC 2.0 Spec doesn’t mandate that JDBC vendors implement a
 * Connection Cache. However, we implemented a basic one with two
 * schemes as an example.
 * A Sample demo to illustrate DYNAMIC_SCHEME of OracleConnectionCacheImpl.
 * Dynamic Scheme : This is the default scheme. New connections could be
 * created beyond the Max limit upon request but closed and freed when the
Sample Applications 17-75

Samples for Connection Pooling and Distributed Transactions
 * logical connections are closed. When all the connections are active and
 * busy, requests for new connections willend up creating new physical
 * connections. But these physical connections are closed when the
 * corresponding logical connections are closed. A typical grow and shrink
 * scheme.
 */

import java.sql.*;
import javax.sql.*;
import oracle.jdbc.driver.*;
import oracle.jdbc.pool.*;

class CCache1
{
 public static void main (String args [])
 throws SQLException
 {
 OracleConnectionCacheImpl ods = new OracleConnectionCacheImpl();
 ods.setURL("jdbc:oracle:oci8:@");
 ods.setUser("scott");
 ods.setPassword("tiger");

 // Set the Max Limit
 ods.setMaxLimit (3);

 Connection conn1 = null;
 conn1 = ods.getConnection();
 if (conn1 != null)
 System.out.println("Connection 1 " + " Succeeded!");
 else
 System.out.println("Connection 1 " + " Failed !!!");

 Connection conn2 = null;
 conn2 = ods.getConnection();
 if (conn2 != null)
 System.out.println("Connection 2 " + " Succeeded!");
 else
 System.out.println("Connection 2 " + " Failed !!!");

 Connection conn3 = null;
 conn3 = ods.getConnection();
 if (conn3 != null)
 System.out.println("Connection 3 " + " Succeeded!");
 else
 System.out.println("Connection 3 " + " Failed !!!");
17-76 JDBC Developer’s Guide and Reference

Samples for Connection Pooling and Distributed Transactions
 Connection conn4 = null;
 conn4 = ods.getConnection();
 if (conn4 != null)
 System.out.println("Connection 4 " + " Succeeded!");
 else
 System.out.println("Connection 4 " + " Failed !!!");

 Connection conn5 = null;
 conn5 = ods.getConnection();
 if (conn5 != null)
 System.out.println("Connection 5 " + " Succeeded!");
 else
 System.out.println("Connection 5 " + " Failed !!!");

 System.out.println("Active size : " + ods.getActiveSize());
 System.out.println("Cache Size is " + ods.getCacheSize());

 // Close 3 logical Connections
 conn1.close();
 conn2.close();
 conn3.close();

 System.out.println("Active size : " + ods.getActiveSize());
 System.out.println("Cache Size is " + ods.getCacheSize());

 // close the Data Source
 ods.close();

 System.out.println("Active size : " + ods.getActiveSize());
 System.out.println("Cache Size is " + ods.getCacheSize());
 }
}

Oracle Connection Cache ("fixed with no wait")—CCache2.java
This is the second of two examples of connection caching using the Oracle sample
implementation available with class OracleConnectionCacheImpl.

This example uses the "fixed with no wait" scheme for situations where the
maximum number of pooled connections has already been reached—a null is
returned when a connection is requested.
Sample Applications 17-77

Samples for Connection Pooling and Distributed Transactions
For information about connection caching in general and Oracle’s sample
implementation in particular, see "Connection Caching" on page 13-15.

/* JDBC 2.0 Spec doesn’t mandate that JDBC vendors implement a
 * Connection Cache. However, we implemented a basic one with 2
 * schemes as an Example.
 * A Sample demo to illustrate FIXED_RETURN_NULL_SCHEME of
 * OracleConnectionCacheImpl.
 * Fixed with NoWait : At no instance there will be more active
 * connections than the Maximum limit. Request for new connections
 * beyond the max limit will return null.
 */

// You need to import the java.sql package to use JDBC
import java.sql.*;
import javax.sql.*;
import oracle.jdbc.driver.*;
import oracle.jdbc.pool.*;

public class CCache2 {

 public static void main (String args [])
 throws SQLException
 {

 // Create a OracleConnectionPoolDataSource as an factory
 // of PooledConnections for the Cache to create.
 OracleConnectionPoolDataSource ocpds =
 new OracleConnectionPoolDataSource();
 ocpds.setURL("jdbc:oracle:oci8:@");
 ocpds.setUser("scott");
 ocpds.setPassword("tiger");

 // Associate it with the Cache
 OracleConnectionCacheImpl ods = new OracleConnectionCacheImpl(ocpds);

 // Set the Max Limit
 ods.setMaxLimit (3);

 // Set the Scheme
 ods.setCacheScheme (OracleConnectionCacheImpl.FIXED_RETURN_NULL_SCHEME);

 Connection conn = null;
 for (int i=0; i < 5; ++i)
 {
17-78 JDBC Developer’s Guide and Reference

Samples for Connection Pooling and Distributed Transactions
 conn = ods.getConnection();
 if (conn != null)
 System.out.println("Connection " + i + " Succeeded!");
 else
 System.out.println("Connection " + i + " Failed !!!");
 }

 System.out.println("Active size : " + ods.getActiveSize());
 System.out.println("Cache Size is " + ods.getCacheSize());

 // close the Data Source
 ods.close();

 System.out.println("Active size : " + ods.getActiveSize());
 System.out.println("Cache Size is " + ods.getCacheSize());

 }
}

XA with Suspend and Resume—XA2.java
This sample shows how to suspend and resume a transaction. It uses standard XA
resource functionality to suspend and resume the transaction, but includes
comments about how to use the Oracle extension suspend() and resume()
methods as an alternative.

This class includes a createXid() method to form transaction IDs for purposes of
this example.

For general information about distributed transactions and XA functionality, see
Chapter 14, "Distributed Transactions".

/*
 A simple XA demo with suspend and resume. Opens 2 global
 transactions each of one branch. Does some DML on the first one
 and suspends it and does some DML on the 2nd one and resumes the
 first one and commits. Basically, to illustrate interleaving
 of global transactions.
 Need a java enabled 8.1.6 database to run this demo.
 */

// You need to import the java.sql package to use JDBC
import java.sql.*;
import javax.sql.*;
Sample Applications 17-79

Samples for Connection Pooling and Distributed Transactions
import oracle.jdbc.driver.*;
import oracle.jdbc.pool.*;
import oracle.jdbc.xa.OracleXid;
import oracle.jdbc.xa.OracleXAException;
import oracle.jdbc.xa.client.*;
import javax.transaction.xa.*;

class XA2
{
 public static void main (String args [])
 throws SQLException
 {

 try
 {
 DriverManager.registerDriver(new OracleDriver());

 // You can put a database name after the @ sign in the connection URL.
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@", "scott", "tiger");

 // Prepare a statement to create the table
 Statement stmt = conn.createStatement ();

 try
 {
 // Drop the test table
 stmt.execute ("drop table my_table");
 }
 catch (SQLException e)
 {
 // Ignore an error here
 }

 try
 {
 // Create a test table
 stmt.execute ("create table my_table (col1 int)");
 }
 catch (SQLException e)
 {
 // Ignore an error here too
 }

 try
17-80 JDBC Developer’s Guide and Reference

Samples for Connection Pooling and Distributed Transactions
 {
 // Drop the test table
 stmt.execute ("drop table my_tab");
 }
 catch (SQLException e)
 {
 // Ignore an error here
 }

 try
 {
 // Create a test table
 stmt.execute ("create table my_tab (col1 int)");
 }
 catch (SQLException e)
 {
 // Ignore an error here too
 }

 // Create a XADataSource instance
 OracleXADataSource oxds = new OracleXADataSource();
 oxds.setURL("jdbc:oracle:oci8:@");
 oxds.setUser("scott");
 oxds.setPassword("tiger");

 // get a XA connection
 XAConnection pc = oxds.getXAConnection();
 // Get a logical connection
 Connection conn1 = pc.getConnection();

 // Get XA resource handle
 XAResource oxar = pc.getXAResource();
 Xid xid1 = createXid(111,111);

 // Start a transaction branch
 oxar.start (xid1, XAResource.TMNOFLAGS);

 // Create a Statement
 Statement stmt1 = conn1.createStatement ();

 // Do some DML
 stmt1.executeUpdate ("insert into my_table values (2727)");

 // Suspend the first global transaction
 // ((OracleXAResource)oxar).suspend (xid1); or
Sample Applications 17-81

Samples for Connection Pooling and Distributed Transactions
 oxar.end (xid1, XAResource.TMSUSPEND);

 Xid xid2 = createXid(222,222);
 oxar.start (xid2, XAResource.TMNOFLAGS);
 Statement stmt2 = conn1.createStatement ();
 stmt2.executeUpdate ("insert into my_tab values (7272)");
 oxar.commit (xid2, true);
 stmt2.close();
 stmt2 = null;

 // Close the Statement
 stmt1.close();
 stmt1 = null;

 // Resume the first global transaction
 // ((OracleXAResource)oxar).resume (xid1); or
 oxar.start (xid1, XAResource.TMRESUME);

 // End the branch
 oxar.end(xid1, XAResource.TMSUCCESS);

 // Do a 1 phase commit
 oxar.commit (xid1, true);

 // Close the connection
 conn1.close();
 conn1 = null;

 // close the XA connection
 pc.close();
 pc = null;

 ResultSet rset = stmt.executeQuery ("select col1 from my_table");
 while (rset.next())
 System.out.println("Col1 is " + rset.getInt(1));

 rset.close();
 rset = null;

 rset = stmt.executeQuery ("select col1 from my_tab");
 while (rset.next())
 System.out.println("Col1 is " + rset.getString(1));

 rset.close();
 rset = null;
17-82 JDBC Developer’s Guide and Reference

Samples for Connection Pooling and Distributed Transactions
 stmt.close();
 stmt = null;

 conn.close();
 conn = null;

 } catch (SQLException sqe)
 {
 sqe.printStackTrace();
 } catch (XAException xae)
 {
 if (xae instanceof OracleXAException)
 {
 System.out.println("XA error is " +
 ((OracleXAException)xae).getXAError());
 System.out.println("SQL error is " +
 ((OracleXAException)xae).getOracleError());
 }
 xae.printStackTrace();
 }
 }

 static Xid createXid(int gd, int bd)
 throws XAException
 {
 byte[] gid = new byte[1]; gid[0]= (byte) gd;
 byte[] bid = new byte[1]; bid[0]= (byte) bd;
 byte[] gtrid = new byte[64];
 byte[] bqual = new byte[64];
 System.arraycopy (gid, 0, gtrid, 0, 1);
 System.arraycopy (bid, 0, bqual, 0, 1);
 Xid xid = new OracleXid(0x1234, gtrid, bqual);
 return xid;
 }
}

Sample Applications 17-83

Samples for Connection Pooling and Distributed Transactions
XA with Two-Phase Commit Operation—XA4.java
This example shows basic two-phase COMMIT functionality for a distributed
transaction.

This class includes a createXid() method to form transaction IDs for purposes of
this example. It also includes doSomeWork1() and doSomeWork2() methods to
perform SQL operations.

For general information about distributed transactions and XA functionality, see
Chapter 14, "Distributed Transactions".

/*
 A simple 2 phase XA demo. Both the branches talk to different RMS
 Need 2 java enabled 8.1.6 databases to run this demo.
 -> start-1
 -> start-2
 -> Do some DML on 1
 -> Do some DML on 2
 -> end 1
 -> end 2
 -> prepare-1
 -> prepare-2
 -> commit-1
 -> commit-2
 Please change the URL2 before running this.
 */
// You need to import the java.sql package to use JDBC
import java.sql.*;
import javax.sql.*;
import oracle.jdbc.driver.*;
import oracle.jdbc.pool.*;
import oracle.jdbc.xa.OracleXid;
import oracle.jdbc.xa.OracleXAException;
import oracle.jdbc.xa.client.*;
import javax.transaction.xa.*;

class XA4
{
 public static void main (String args [])
 throws SQLException
 {
 try
 {
 String URL1 = "jdbc:oracle:oci8:@";
17-84 JDBC Developer’s Guide and Reference

Samples for Connection Pooling and Distributed Transactions
 String URL2 = "jdbc:oracle:thin:@
 (description=(address=(host=dlsun991)(protocol=tcp)
 (port=5521))(connect_data=(sid=rdbms2)))";

 DriverManager.registerDriver(new OracleDriver());

 // You can put a database name after the @ sign in the connection URL.
 Connection conna =
 DriverManager.getConnection (URL1, "scott", "tiger");

 // Prepare a statement to create the table
 Statement stmta = conna.createStatement ();

 Connection connb =
 DriverManager.getConnection (URL2, "scott", "tiger");

 // Prepare a statement to create the table
 Statement stmtb = connb.createStatement ();

 try
 {
 // Drop the test table
 stmta.execute ("drop table my_table");
 }
 catch (SQLException e)
 {
 // Ignore an error here
 }

 try
 {
 // Create a test table
 stmta.execute ("create table my_table (col1 int)");
 }
 catch (SQLException e)
 {
 // Ignore an error here too
 }

 try
 {
 // Drop the test table
 stmtb.execute ("drop table my_tab");
 }
 catch (SQLException e)
Sample Applications 17-85

Samples for Connection Pooling and Distributed Transactions
 {
 // Ignore an error here
 }

 try
 {
 // Create a test table
 stmtb.execute ("create table my_tab (col1 char(30))");
 }
 catch (SQLException e)
 {
 // Ignore an error here too
 }

 // Create a XADataSource instance
 OracleXADataSource oxds1 = new OracleXADataSource();
 oxds1.setURL("jdbc:oracle:oci8:@");
 oxds1.setUser("scott");
 oxds1.setPassword("tiger");

 OracleXADataSource oxds2 = new OracleXADataSource();

 oxds2.setURL
 ("jdbc:oracle:thin:@(description=(address=(host=dlsun991)
 (protocol=tcp)(port=5521))(connect_data=(sid=rdbms2)))");
 oxds2.setUser("scott");
 oxds2.setPassword("tiger");

 // Get a XA connection to the underlying data source
 XAConnection pc1 = oxds1.getXAConnection();

 // We can use the same data source
 XAConnection pc2 = oxds2.getXAConnection();

 // Get the Physical Connections
 Connection conn1 = pc1.getConnection();
 Connection conn2 = pc2.getConnection();

 // Get the XA Resources
 XAResource oxar1 = pc1.getXAResource();
 XAResource oxar2 = pc2.getXAResource();

 // Create the Xids With the Same Global Ids
 Xid xid1 = createXid(1);
 Xid xid2 = createXid(2);
17-86 JDBC Developer’s Guide and Reference

Samples for Connection Pooling and Distributed Transactions
 // Start the Resources
 oxar1.start (xid1, XAResource.TMNOFLAGS);
 oxar2.start (xid2, XAResource.TMNOFLAGS);

 // Do something with conn1 and conn2
 doSomeWork1 (conn1);
 doSomeWork2 (conn2);

 // END both the branches -- THIS IS MUST
 oxar1.end(xid1, XAResource.TMSUCCESS);
 oxar2.end(xid2, XAResource.TMSUCCESS);

 // Prepare the RMs
 int prp1 = oxar1.prepare (xid1);
 int prp2 = oxar2.prepare (xid2);

 System.out.println("Return value of prepare 1 is " + prp1);
 System.out.println("Return value of prepare 2 is " + prp2);

 boolean do_commit = true;

 if (!((prp1 == XAResource.XA_OK) || (prp1 == XAResource.XA_RDONLY)))
 do_commit = false;

 if (!((prp2 == XAResource.XA_OK) || (prp2 == XAResource.XA_RDONLY)))
 do_commit = false;

 System.out.println("do_commit is " + do_commit);
 System.out.println("Is oxar1 same as oxar2 ? " + oxar1.isSameRM(oxar2));

 if (prp1 == XAResource.XA_OK)
 if (do_commit)
 oxar1.commit (xid1, false);
 else
 oxar1.rollback (xid1);

 if (prp2 == XAResource.XA_OK)
 if (do_commit)
 oxar2.commit (xid2, false);
 else
 oxar2.rollback (xid2);

 // Close connections
 conn1.close();
Sample Applications 17-87

Samples for Connection Pooling and Distributed Transactions
 conn1 = null;
 conn2.close();
 conn2 = null;

 pc1.close();
 pc1 = null;
 pc2.close();
 pc2 = null;

 ResultSet rset = stmta.executeQuery ("select col1 from my_table");
 while (rset.next())
 System.out.println("Col1 is " + rset.getInt(1));

 rset.close();
 rset = null;

 rset = stmtb.executeQuery ("select col1 from my_tab");
 while (rset.next())
 System.out.println("Col1 is " + rset.getString(1));

 rset.close();
 rset = null;

 stmta.close();
 stmta = null;
 stmtb.close();
 stmtb = null;

 conna.close();
 conna = null;
 connb.close();
 connb = null;

 } catch (SQLException sqe)
 {
 sqe.printStackTrace();
 } catch (XAException xae)
 {
 if (xae instanceof OracleXAException) {
 System.out.println("XA Error is " +
 ((OracleXAException)xae).getXAError());
 System.out.println("SQL Error is " +
 ((OracleXAException)xae).getOracleError());
 }
 }
17-88 JDBC Developer’s Guide and Reference

Samples for Connection Pooling and Distributed Transactions
 }

 static Xid createXid(int bids)
 throws XAException
 {
 byte[] gid = new byte[1]; gid[0]= (byte) 9;
 byte[] bid = new byte[1]; bid[0]= (byte) bids;
 byte[] gtrid = new byte[64];
 byte[] bqual = new byte[64];
 System.arraycopy (gid, 0, gtrid, 0, 1);
 System.arraycopy (bid, 0, bqual, 0, 1);
 Xid xid = new OracleXid(0x1234, gtrid, bqual);
 return xid;
 }

 private static void doSomeWork1 (Connection conn)
 throws SQLException
 {
 // Create a Statement
 Statement stmt = conn.createStatement ();

 int cnt = stmt.executeUpdate ("insert into my_table values (4321)");

 System.out.println("No of rows Affected " + cnt);

 stmt.close();
 stmt = null;
 }

 private static void doSomeWork2 (Connection conn)
 throws SQLException
 {
 // Create a Statement
 Statement stmt = conn.createStatement ();

 int cnt = stmt.executeUpdate ("insert into my_tab values (’test’)");

 System.out.println("No of rows Affected " + cnt);

 stmt.close();
 stmt = null;
 }

}

Sample Applications 17-89

Sample Applet
Sample Applet
This section demonstrates the use of the Oracle JDBC Thin driver for a simple
applet that selects "Hello World" and the date from the database. Both the HTML
page and applet code are shown here. A JDBC applet, like any typical applet, can be
deployed using any standard Web server and run from any standard browser.

In this example, the Web server and database must be on the same host, as this is
not a signed applet and does not use Oracle Connection Manager. For more
information, see "Connecting to a Database on a Different Host Than the Web
Server" on page 15-17. For a complete discussion of how to use JDBC with applets,
see "JDBC in Applets" on page 15-15.

HTML Page—JdbcApplet.htm
Here is the HTML code for the user interface for the applet.

<html>
<head>
<title>JDBC applet</title>
</head>
<body>

<h1>JDBC applet</h1>

This page contains an example of an applet that uses the Thin JDBC
driver to connect to Oracle.<p>

The source code for the applet is in JdbcApplet.java. Please check carefully
the driver class name and the connect string in the code.<p>

The Applet tag in this file contains a CODEBASE entry that must be set
to point to a directory containing the Java classes from the Thin JDBC
distribution *and* the compiled JdbcApplet.class.<p>

As distributed it will *not* work because the classes*.zip files are not
in this directory.<p>

<hr>
<applet codebase="." archive="classes111.zip"
code="JdbcApplet" width=500 height=200>
</applet>
<hr>
17-90 JDBC Developer’s Guide and Reference

Sample Applet
Applet Code—JdbcApplet.java
Here is the source code for the applet.

/*
 * This sample applet just selects ’Hello World’ and the date from the database
 */

// Import the JDBC classes
import java.sql.*;

// Import the java classes used in applets
import java.awt.*;
import java.io.*;
import java.util.*;

public class JdbcApplet extends java.applet.Applet
{

 // The connect string
 static final String connect_string =
 "jdbc:oracle:thin:scott/tiger@langer:5521:rdbms";

 /* This is the kind of string you would use if going through the
 * Oracle connection manager which lets you run the database on a
 * different host than the Web Server. See the Net8 Administrator’s Guide
 * for more information.
 * static final String connect_string = "jdbc:oracle:thin:scott/tiger@
 * (description=(address_list=(address=(protocol=tcp)
 * (host=dlsun511)(port=1610))(address=(protocol=tcp)
 * (host=pkrishna-pc2)(port=1521)))
 * (source_route=yes)(connect_data=(sid=orcl)))";
 */

 // The query we will execute
 static final String query = "select 'Hello JDBC: ' || sysdate from dual";

 // The button to push for executing the query
 Button execute_button;

 // The place where to dump the query result
 TextArea output;

 // The connection to the database
Sample Applications 17-91

Sample Applet
 Connection conn;

 // Create the User Interface
 public void init ()
 {
 this.setLayout (new BorderLayout ());
 Panel p = new Panel ();
 p.setLayout (new FlowLayout (FlowLayout.LEFT));
 execute_button = new Button ("Hello JDBC");
 p.add (execute_button);
 this.add ("North", p);
 output = new TextArea (10, 60);
 this.add ("Center", output);
 }

 // Do the work
 public boolean action (Event ev, Object arg)
 {
 if (ev.target == execute_button)
 {
 try
 {

 // See if we need to open the connection to the database
 if (conn == null)
 {
 // Load the JDBC driver
 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());

 // Connect to the databse
 output.appendText ("Connecting to " + connect_string + "\n");
 conn = DriverManager.getConnection (connect_string);
 output.appendText ("Connected\n");
 }

 // Create a statement
 Statement stmt = conn.createStatement ();

 // Execute the query
 output.appendText ("Executing query " + query + "\n");
 ResultSet rset = stmt.executeQuery (query);

 // Dump the result
 while (rset.next ())
 output.appendText (rset.getString (1) + "\n");
17-92 JDBC Developer’s Guide and Reference

Sample Applet
 // We’re done
 output.appendText ("done.\n");
 }
 catch (Exception e)
 {
 // Oops
 output.appendText (e.getMessage () + "\n");
 }
 return true;
 }
 else
 return false;
 }
}

Sample Applications 17-93

JDBC versus SQLJ Sample Code
JDBC versus SQLJ Sample Code
This section contains a side-by-side comparison of two versions of the same sample
code using Oracle CustomDatum functionality: one version is written in JDBC and
the other in SQLJ. The objective of this section is to point out the differences in
coding requirements between SQLJ and JDBC.

In the sample, two methods are defined: getEmployeeAddress() selects into a
table and returns an employee’s address based on the employee’s number;
updateAddress() takes the retrieved address, calls a stored procedure, and
returns the updated address to the database.

In both versions of the sample code, these assumptions have been made:

■ The ObjectDemo.sql SQL script (described below) has been run to create the
necessary database entities.

■ A PL/SQL stored function UPDATE_ADDRESS, which updates a given address,
exists.

■ The connection object (for JDBC) and default connection context (for SQLJ) have
previously been created by the caller.

■ Exceptions are handled by the caller.

■ The value of the address argument (addr) passed to the updateAddress
method can be null.

SQL Program to Create Tables and Objects
Following is a listing of the ObjectDemo.sql script that creates the tables and
objects referenced by the two versions of the sample code. The ObjectDemo.sql
script creates a PERSON object, an ADDRESS object, a typed table (PERSONS) of
PERSON objects, and a relational table (EMPLOYEES) for employee data.

/*** Using objects in SQLJ ***/
SET ECHO ON;
/**
/*** Clean up ***/
DROP TABLE EMPLOYEES
/
DROP TABLE PERSONS

Note: The JDBC and SQLJ versions of the code are partial samples
only. They cannot be run independently.
17-94 JDBC Developer’s Guide and Reference

JDBC versus SQLJ Sample Code
/
DROP TYPE PERSON FORCE
/
DROP TYPE ADDRESS FORCE
/
/*** Create an address object ***/
CREATE TYPE address AS OBJECT
(
 street VARCHAR(60),
 city VARCHAR(30),
 state CHAR(2),
 zip_code CHAR(5)
)
/
/*** Create a person object containing an embedded Address object ***/
CREATE TYPE person AS OBJECT
(
 name VARCHAR(30),
 ssn NUMBER,
 addr address
)
/
/*** Create a typed table for person objects ***/
CREATE TABLE persons OF person
/

/*** Create a relational table with two columns that are REFs
 to person objects, as well as a column which is an Address object.***/

CREATE TABLE employees
(empnumber INTEGER PRIMARY KEY,
 person_data REF person,
 manager REF person,
 office_addr address,
 salary NUMBER
)
/
/*** insert code for UPDATE_ADDRESS stored procedure here
/

/*** Now let’s put in some sample data
 Insert 2 objects into the persons typed table ***/

INSERT INTO persons VALUES (
 person(’Wolfgang Amadeus Mozart’, 123456,
Sample Applications 17-95

JDBC versus SQLJ Sample Code
 address(’Am Berg 100’, ’Salzburg’, ’AU’,’10424’)))
/
INSERT INTO persons VALUES (
 person(’Ludwig van Beethoven’, 234567,
 address(’Rheinallee’, ’Bonn’, ’DE’, ’69234’)))
/

/** Put a row in the employees table **/

INSERT INTO employees (empnumber, office_addr, salary) " +
 " VALUES (1001, address(’500 Oracle Parkway’, " +
 " ’Redwood City’, ’CA’, ’94065’), 50000)
/

/** Set the manager and person REFs for the employee **/

UPDATE employees
 SET manager =
 (SELECT REF(p) FROM persons p WHERE p.name = ’Wolfgang Amadeus Mozart’)
/

UPDATE employees
 SET person_data =
 (SELECT REF(p) FROM persons p WHERE p.name = ’Ludwig van Beethoven’)
/

COMMIT
/
QUIT

JDBC Version of the Sample Code
Following is the JDBC version of the sample code, which defines methods to
retrieve an employee’s address from the database, update the address, and return it
to the database. Note, the "TO DOs" in the comment lines indicate where you might
want to add additional code to enhance the usefulness of the code sample.

import java.sql.*;
import oracle.jdbc.driver.*;

/**
 This is what we have to do in JDBC
 **/
public class SimpleDemoJDBC // line 7
{

17-96 JDBC Developer’s Guide and Reference

JDBC versus SQLJ Sample Code
//TO DO: make a main that calls this

 public Address getEmployeeAddress(int empno, Connection conn)
 throws SQLException // line 13
 {
 Address addr;
 PreparedStatement pstmt = // line 16
 conn.prepareStatement("SELECT office_addr FROM employees" +
 " WHERE empnumber = ?");
 pstmt.setInt(1, empno);
 OracleResultSet rs = (OracleResultSet)pstmt.executeQuery();
 rs.next(); // line 21
 //TO DO: what if false (result set contains no data)?
 addr = (Address)rs.getCustomDatum(1, Address.getFactory());
 //TO DO: what if additional rows?
 rs.close(); // line 25
 pstmt.close();
 return addr; // line 27

 }

 public Address updateAddress(Address addr, Connection conn)
 throws SQLException // line 30

 {
 OracleCallableStatement cstmt = (OracleCallableStatement)
 conn.prepareCall("{ ? = call UPDATE_ADDRESS(?) }"); //line 34
 cstmt.registerOutParameter(1, Address._SQL_TYPECODE, Address._SQL_NAME);
 // line 36
 if (addr == null) {
 cstmt.setNull(2, Address._SQL_TYPECODE, Address._SQL_NAME);
 } else {
 cstmt.setCustomDatum(2, addr);
 }

 cstmt.executeUpdate(); // line 43
 addr = (Address)cstmt.getCustomDatum(1, Address.getFactory());
 cstmt.close(); // line 45
 return addr;
 }
}
Sample Applications 17-97

JDBC versus SQLJ Sample Code
Line 12: In the getEmployeeAddress() method definition, you must pass the
connection object to the method definition explicitly.

Lines 16-20: Prepare a statement that selects an employee’s address from the
EMPLOYEES table on the basis of the employee number. The employee number is
represented by a marker variable, which is set with the setInt() method. Note
that because the prepared statement does not recognize the "INTO" syntax used in
"SQL Program to Create Tables and Objects" on page 17-94, you must provide your
own code to populate the address (addr) variable. Since the prepared statement is
returning a custom object, cast the output to an Oracle result set.

Lines 21-23: Because the Oracle result set contains a custom object of type Address,
use the getCustomDatum() method to retrieve it (the Address object could be
created by JPublisher). The getCustomDatum() method requires you to use the
static factory method Address.getFactory() to materialize an instance of an
Address object. Since getCustomDatum() returns a Datum, cast the output to an
Address object.

Note that the routine assumes a one-row result set. The "TO DOs" in the comment
statements indicate that you must write additional code for the cases where the
result set contains either no rows or more than one row.

Lines 25-27: Close the result set and prepared statement objects, then return the
addr variable.

Line 29: In the updateAddress() definition, you must pass the connection object
and the Address object explicitly.

The updateAddress() method passes an address to the database for update and
fetches it back. The actual updating of the address is performed by the
UPDATE_ADDRESS stored procedure (the code for this procedure is not illustrated
in this example).

Line 33-43: Prepare an Oracle callable statement that takes an address object
(Address) and passes it to the UPDATE_ADDRESS stored procedure. To register an
object as an output parameter, you must know the object’s SQL typecode and SQL
type name.

Before passing the address object (addr) as an input parameter, the program must
determine whether addr has a value or is null. Depending on the value of addr, the
program calls different set methods. If addr is null, the program calls setNull();
if it has a value, the program calls setCustomDatum().
17-98 JDBC Developer’s Guide and Reference

JDBC versus SQLJ Sample Code
Line 44: Fetch the return result addr. Since the Oracle callable statement returns a
custom object of type Address, use the getCustomDatum() method to retrieve it
(the Address object could be created by JPublisher). The getCustomDatum()
method requires you to use the static factory method Address.getFactory to
materialize an instance of an Address object. Because getCustomDatum() returns
a Datum, cast the output to an Address object.

Lines 45, 46: Close the Oracle callable statement, then return the addr variable.

Coding Requirements of the JDBC Version
Note the following coding requirements for the JDBC version of the sample code:

■ The getEmployeeAddress() and updateAddress() definitions must
explicitly include the connection object.

■ Long SQL strings must be concatenated with the SQL concatenation character
("+").

■ You must explicitly manage resources (for example, close result set and
statement objects).

■ You must cast datatypes as needed.

■ You must know the _SQL_TYPECODE and _SQL_NAME of the factory objects
that you are registering as output parameters.

■ Null data must be explicitly handled.

■ Host variables must be represented by parameter markers in callable and
prepared statements.

Maintaining JDBC Programs
JDBC programs have the potential of being expensive in terms of maintenance. For
example, in the above code sample, if you add another WHERE clause, then you
must change the SELECT string. If you append another host variable, then you must
increment the index of the other host variables by one. A simple change to one line
in a JDBC program might require changes in several other areas of the program.

SQLJ Version of the Sample Code
Following is the SQLJ version of the sample code that defines methods to retrieve
an employee’s address from the database, update the address, and return it to the
database.
Sample Applications 17-99

JDBC versus SQLJ Sample Code
import java.sql.*;

/**
 This is what we have to do in SQLJ
 **/
public class SimpleDemoSQLJ // line 6
{
 //TO DO: make a main that calls this?

 public Address getEmployeeAddress(int empno) // line 10
 throws SQLException
 {
 Address addr; // line 13
 #sql { SELECT office_addr INTO :addr FROM employees
 WHERE empnumber = :empno };
 return addr;
 }
 // line 18
 public Address updateAddress(Address addr)
 throws SQLException
 {
 #sql addr = { VALUES(UPDATE_ADDRESS(:addr)) }; // line 23
 return addr;
 }
}

Line 10: The getEmployeeAddress() method does not require a connection
object. SQLJ uses a default connection context instance, which would have been
defined previously somewhere in your application.

Lines 13-15: The getEmployeeAddress() method retrieves an employee address
according to employee number. Use standard SQLJ SELECT INTO syntax to select
an employee’s address from the employee table if their employee number matches
the one (empno) passed in to getEmployeeAddress(). This requires a declaration
of the Address object (addr) that will receive the data. The empno and addr
variables are used as input host variables. (Host variables are sometimes also
referred to as bind variables.)

Line 16: The getEmployeeAddress() method returns the addr object.

Line 19: The updateAddress() method also uses the default connection context
instance.
17-100 JDBC Developer’s Guide and Reference

JDBC versus SQLJ Sample Code
Lines 19-23: The address is passed to the updateAddress() method, which passes
it to the database. The database updates it and passes it back. The actual updating
of the address is performed by the UPDATE_ADDRESS stored function (the code for
this function is not shown here). Use standard SQLJ function-call syntax to receive
the address object (addr) output by UPDATE_ADDRESS.

Line 24: The updateAddress() method returns the addr object.

Coding Requirements of the SQLJ Version
Note the following coding requirements (and lack of requirements) for the SQLJ
version of the sample code:

■ An explicit connection is not required; a default connection context will have
been defined previously in your application.

■ No datatype casting is required.

■ SQLJ does not require knowledge of _SQL_TYPECODE, _SQL_NAME, or
factories.

■ Null data is handled implicitly.

■ No explicit code for resource management is required (for closing statements or
result sets, for example).

■ SQLJ embeds host variables, in contrast to JDBC, which uses parameter
markers.

■ String concatenation for long SQL statements is not required.

■ You do not have to register output parameters.

■ SQLJ syntax is simpler; for example, SELECT INTO syntax is supported and
OBDC-style escapes are not used.
Sample Applications 17-101

JDBC versus SQLJ Sample Code
17-102 JDBC Developer’s Guide and Reference

Reference Info
18

Reference Information

This chapter contains detailed JDBC reference information, including the following
topics:

■ Valid SQL-JDBC Datatype Mappings

■ Supported SQL and PL/SQL Datatypes

■ Embedded SQL92 Syntax

■ Oracle JDBC Notes and Limitations

■ Related Information
rmation 18-1

Valid SQL-JDBC Datatype Mappings
Valid SQL-JDBC Datatype Mappings
Table 3–2 in Chapter 3 describes the default mappings between Java classes and
SQL datatypes supported by the Oracle JDBC drivers. Compare the contents of the
JDBC Datatypes, Standard Java Types and SQL Datatypes columns in Table 3–2
with the contents of Table 18–1 below.

Table 18–1 lists all the possible Java types to which a given SQL datatype can be
validly mapped. The Oracle JDBC drivers will support these "non-default"
mappings. For example, to materialize SQL CHAR data in an oracle.sql.CHAR
object use the getCHAR() method. To materialize it as a java.math.BigDecimal
object, use the getBigDecimal() method.

Table 18–1 Valid SQL Datatype-Java Class Mappings

These SQL datatypes: Can be materialized as these Java types:

CHAR, VARCHAR2, LONG oracle.sql.CHAR

java.lang.String

 java.sql.Date

 java.sql.Time

 java.sql.Timestamp

java.lang.Byte

java.lang.Short

java.lang.Integer

java.lang.Long

java.lang.Float

java.lang.Double

java.math.BigDecimal

byte, short, int, long, float, double

DATE oracle.sql.DATE

java.sql.Date

java.sql.Time

java.sql.Timestamp

java.lang.String
18-2 JDBC Developer’s Guide and Reference

Valid SQL-JDBC Datatype Mappings
NUMBER oracle.sql.NUMBER

java.lang.Byte

java.lang.Short

java.lang.Integer

java.lang.Long

java.lang.Float

java.lang.Double

java.math.BigDecimal

byte, short, int, long, float, double

RAW, LONG RAW oracle.sql.RAW

 byte[]

ROWID oracle.sql.CHAR

oracle.sql.ROWID

java.lang.String

BFILE oracle.sql.BFILE

BLOB oracle.sql.BLOB

java.sql.Blob (oracle.jdbc2.Blob under JDK 1.1.x)

CLOB oracle.sql.CLOB

 java.sql.Clob (oracle.jdbc2.Clob under JDK 1.1.x)

OBJECT oracle.sql.STRUCT

java.sql.Struct (oracle.jdbc2.Struct under JDK 1.1.x)

oracle.sql.CustomDatum

oracle.sql.SqlData

REF oracle.sql.REF

java.sql.Ref (oracle.jdbc2.Ref under JDK 1.1.x)

TABLE (nested), VARRAY oracle.sql.ARRAY

 java.sql.Array (oracle.jdbc2.Array under JDK 1.1.x)

Table 18–1 Valid SQL Datatype-Java Class Mappings (Cont.)

These SQL datatypes: Can be materialized as these Java types:
Reference Information 18-3

Valid SQL-JDBC Datatype Mappings
any of the above SQL types oracle.sql.CustomDatum or oracle.sql.Datum

Notes:

■ The type UROWID is not supported.

■ The oracle.sql.Datum class is abstract. The value passed to
a parameter of type oracle.sql.Datum must be of the Java
type corresponding to the underlying SQL type. Likewise, the
value returned by a method with return type
oracle.sql.Datum must be of the Java type corresponding
to the underlying SQL type.

■ The mappings to oracle.sql classes are optimal if no
conversion from SQL format to Java format is necessary.

Table 18–1 Valid SQL Datatype-Java Class Mappings (Cont.)

These SQL datatypes: Can be materialized as these Java types:
18-4 JDBC Developer’s Guide and Reference

Supported SQL and PL/SQL Datatypes
Supported SQL and PL/SQL Datatypes
The tables in this section list SQL and PL/SQL datatypes, and whether the Oracle
JDBC drivers and SQLJ support them. Table 18–2 describes Oracle JDBC driver and
SQLJ support for SQL datatypes.

Table 18–3 describes Oracle JDBC driver and SQLJ support for the ANSI-supported
SQL datatypes.

Table 18–2 Support for SQL Datatypes

SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?

BFILE yes yes

BLOB yes yes

CHAR yes yes

CLOB yes yes

DATE yes yes

NCHAR no no

NCHAR VARYING no no

NUMBER yes yes

NVARCHAR2 no no

RAW yes yes

REF yes yes

ROWID yes yes

UROWID no no

VARCHAR2 yes yes

Table 18–3 Support for ANSI-Supported SQL Datatypes

ANSI-Supported SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?

CHARACTER yes yes

DEC yes yes

DECIMAL yes yes

DOUBLE PRECISION yes yes
Reference Information 18-5

Supported SQL and PL/SQL Datatypes
Table 18–4 describes Oracle JDBC driver and SQLJ support for PL/SQL datatypes.
Note that PL/SQL datatypes include these categories:

■ scalar types

■ scalar character types (includes boolean and date datatypes)

■ composite types

■ reference types

■ LOB types

FLOAT yes yes

INT yes yes

INTEGER yes yes

NATIONAL CHARACTER no no

NATIONAL CHARACTER
VARYING

no no

NATIONAL CHAR no no

NATIONAL CHAR VARYING no no

NCHAR no no

NCHAR VARYING no no

NUMERIC yes yes

REAL yes yes

SMALLINT yes yes

VARCHAR yes yes

Table 18–4 Support for PL/SQL Datatypes

PL/SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?

Scalar Types:

binary integer yes yes

dec yes yes

Table 18–3 Support for ANSI-Supported SQL Datatypes (Cont.)

ANSI-Supported SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?
18-6 JDBC Developer’s Guide and Reference

Supported SQL and PL/SQL Datatypes
decimal yes yes

double precision yes yes

float yes yes

int yes yes

integer yes yes

natural yes yes

naturaln no no

number yes yes

numeric yes yes

pls_integer yes yes

positive yes yes

positiven no no

real yes yes

signtype yes yes

smallint yes yes

Scalar Character Types:

char yes yes

character yes yes

long yes yes

long raw yes yes

nchar no no

nvarchar2 no no

raw yes yes

rowid yes yes

string yes yes

urowid no no

varchar yes yes

Table 18–4 Support for PL/SQL Datatypes (Cont.)

PL/SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?
Reference Information 18-7

Supported SQL and PL/SQL Datatypes
varchar2 yes yes

boolean yes yes

date yes yes

Composite Types:

record no no

table no no

varray yes yes

Reference Types:

REF CURSOR types yes yes

object REF types yes yes

LOB Types:

BFILE yes yes

BLOB yes yes

CLOB yes yes

NCLOB no no

Notes:

■ The types NATURAL, NATURALn, POSITIVE, POSITIVEn, and
SIGNTYPE are subtypes of BINARY INTEGER.

■ The types DEC, DECIMAL, DOUBLE PRECISION, FLOAT, INT,
INTEGER, NUMERIC, REAL, and SMALLINT are subtypes of
NUMBER.

Table 18–4 Support for PL/SQL Datatypes (Cont.)

PL/SQL Datatype Supported by JDBC Drivers? Supported by SQLJ?
18-8 JDBC Developer’s Guide and Reference

Embedded SQL92 Syntax
Embedded SQL92 Syntax
Oracle’s JDBC drivers support some embedded SQL92 syntax. This is the syntax
that you specify between curly braces. The current support is basic. This section
describes the support offered by the drivers for the following SQL92 constructs:

■ Time and Date Literals

■ Scalar Functions

■ LIKE Escape Characters

■ Outer Joins

■ Function Call Syntax

Where driver support is limited, these sections also describe possible workarounds.

Disabling Escape Processing Escape processing for SQL92 syntax is enabled by
default, which results in the JDBC driver performing escape substitution before
sending the SQL code to the database. If you want the driver to use regular Oracle
SQL syntax, which is more efficient than SQL92 syntax and escape processing, then
use this statement:

stmt.setEscapeProcessing(false);

Time and Date Literals
Databases differ in the syntax they use for date, time, and timestamp literals. JDBC
supports dates and times written only in a specific format. This section describes the
formats you must use for date, time, and timestamp literals in SQL statements.

Date Literals
The JDBC drivers support date literals in SQL statements written in the format:

{d ’yyyy-mm-dd’}

Where yyyy-mm-dd represents the year, month, and day—for example:

{d ’1995-10-22’}

Note: Because prepared statements have usually been parsed
prior to a call to setEscapeProcessing(), disabling escape
processing for prepared statements will probably have no affect.
Reference Information 18-9

Embedded SQL92 Syntax
The JDBC drivers will replace this escape clause with the equivalent Oracle
representation: "22 OCT 1995".

This code snippet contains an example of using a date literal in a SQL statement.

// Connect to the database
// You can put a database name after the @ sign in the connection URL.
Connection conn = DriverManager.getConnection
 ("jdbc:oracle:oci8:@", "scott", "tiger");

// Create a Statement
Statement stmt = conn.createStatement ();

// Select the ename column from the emp table where the hiredate is Jan-23-1982
ResultSet rset = stmt.executeQuery
 ("SELECT ename FROM emp WHERE hiredate = {d ’1982-01-23’}");

// Iterate through the result and print the employee names
while (rset.next ())
 System.out.println (rset.getString (1));

Time Literals
The JDBC drivers support time literals in SQL statements written in the format:

{t ’hh:mm:ss’}

where hh:mm:ss represents the hours, minutes, and seconds—for example:

{t ’05:10:45’}

The JDBC drivers will replace this escape clause with the equivalent Oracle
representation: "05:10:45".

If the time is specified as:

{t ’14:20:50’}

Then the equivalent Oracle representation would be "14:20:50", assuming the server
is using a 24-hour clock.

This code snippet contains an example of using a time literal in a SQL statement.

ResultSet rset = stmt.executeQuery
 ("SELECT ename FROM emp WHERE hiredate = {t '12:00:00'}");
18-10 JDBC Developer’s Guide and Reference

Embedded SQL92 Syntax
Timestamp Literals
The JDBC drivers support timestamp literals in SQL statements written in the
format:

{ts ’yyyy-mm-dd hh:mm:ss.f...’}

where yyyy-mm-dd hh:mm:ss.f... represents the year, month, day, hours,
minutes, and seconds. The fractional seconds portion (".f...") is optional and can be
omitted. For example: {ts ’1997-11-01 13:22:45’} represents, in Oracle
format, NOV 01 1997 13:22:45.

This code snippet contains an example of using a timestamp literal in a SQL
statement.

ResultSet rset = stmt.executeQuery
 ("SELECT ename FROM emp WHERE hiredate = {ts ’1982-01-23 12:00:00’}");

Scalar Functions
The Oracle JDBC drivers do not support all scalar functions. To find out which
functions the drivers support, use the following methods supported by the
Oracle-specific oracle.jdbc.driver.OracleDatabaseMetaData and the
standard Java java.sql.DatabaseMetadata interfaces:

■ getNumericFunctions() : Returns a comma-separated list of math functions
supported by the driver. For example, ABS(number), COS(float),
SQRT(float).

■ getStringFunctions() : Returns a comma-separated list of string functions
supported by the driver. For example, ASCII (string), LOCATE(string1,
string2, start).

■ getSystemFunctions() : Returns a comma-separated list of system functions
supported by the driver. For example, DATABASE(), IFNULL (expression,
value), USER().

■ getTimeDateFunctions() : Returns a comma-separated list of time and date
functions supported by the driver. For example, CURDATE(),
DAYOFYEAR(date), HOUR(time).

Oracle’s JDBC drivers do not support the function keyword, ’fn ’. If you try to use
this keyword, for example:

{fn concat ("Oracle", "8i") }
Reference Information 18-11

Embedded SQL92 Syntax
Then you will get the error "Non supported SQL92 token at position xx:
fn" when you run your Java application. The workaround is to use Oracle SQL
syntax.

For example, instead of using the fn keyword in embedded SQL92 syntax:

Statement stmt = conn.createStatement ();
stmt.executeUpdate("UPDATE emp SET ename = {fn CONCAT(’My’, ’Name’)}");

Use Oracle SQL syntax:

stmt.executeUpdate("UPDATE emp SET ename = CONCAT(’My’, ’Name’)");

LIKE Escape Characters
The characters "%" and "_" have special meaning in SQL LIKE clauses (you use "%"
to match zero or more characters, "_" to match exactly one character). If you want to
interpret these characters literally in strings, you precede them with a special escape
character. For example, if you want to use the ampersand "&" as the escape
character, you identify it in the SQL statement as {escape ’&’}:

Statement stmt = conn.createStatement ();

// Select the empno column from the emp table where the ename starts with ’_’
ResultSet rset = stmt.executeQuery
 ("SELECT empno FROM emp WHERE ename LIKE ’&_%’ {ESCAPE ’&’}");

// Iterate through the result and print the employee numbers
while (rset.next ())
 System.out.println (rset.getString (1));

Outer Joins
Oracle’s JDBC drivers do not support outer join syntax: {oj outer-join}. The
workaround is to use Oracle outer join syntax:

Instead of:

Statement stmt = conn.createStatement ();

Note: If you want to use the backslash character (\) as an escape
character, you must enter it twice (that is, \\). For example:

ResultSet rset = stmt.executeQuery("SELECT empno FROM emp
 WHERE ename LIKE ’_%’ {escape ’\\’}");
18-12 JDBC Developer’s Guide and Reference

Embedded SQL92 Syntax
ResultSet rset = stmt.executeQuery
 ("SELECT ename, dname
 FROM {OJ dept LEFT OUTER JOIN emp ON dept.deptno = emp.deptno}
 ORDER BY ename");

Use Oracle SQL syntax:

Statement stmt = conn.createStatement ();
ResultSet rset = stmt.executeQuery
 ("SELECT ename, dname
 FROM emp a, dept b WHERE a.deptno = b.deptno(+)
 ORDER BY ename");

Function Call Syntax
Oracle’s JDBC drivers support the following procedure and function call syntax:

Procedure calls (without a return value):

{ call procedure_name (argument1, argument2,...) }

Function calls (with a return value):

{ ? = call procedure_name (argument1, argument2,...) }

SQL92 to SQL Syntax Example
You can write a simple program to translate SQL92 syntax to standard SQL syntax.
The following program prints the comparable SQL syntax for SQL92 statements for
function calls, date literals, time literals, and timestamp literals. In the program, the
oracle.jdbc.driver.OracleSql class parse() method performs the
conversions.

import oracle.jdbc.driver.OracleSql;

public class Foo
{
 public static void main (String args[]) throws Exception
 {
 show ("{call foo(?, ?)}");
 show ("{? = call bar (?, ?)}");
 show ("{d ’1998-10-22’}");
 show ("{t ’16:22:34’}");
 show ("{ts ’1998-10-22 16:22:34’}");
 }
Reference Information 18-13

Embedded SQL92 Syntax

 public static void show (String s) throws Exception
 {
 System.out.println (s + " => " + new OracleSql().parse (s));
 }
}

The following code is the output that prints the comparable SQL syntax.

{call foo(?, ?)} => BEGIN foo(:1, :2); END;
{? = call bar (?, ?)} => BEGIN :1 := bar (:2, :3); END;
{d ’1998-10-22’} => TO_DATE (’1998-10-22’, ’YYYY-MM-DD’)
{t ’16:22:34’} => TO_DATE (’16:22:34’, ’HH24:MI:SS’)
{ts ’1998-10-22 16:22:34’} => TO_DATE (’1998-10-22 16:22:34’, ’YYYY-MM-DD
HH24:MI:SS’)
18-14 JDBC Developer’s Guide and Reference

Oracle JDBC Notes and Limitations
Oracle JDBC Notes and Limitations
The following limitations exist in the Oracle JDBC implementation, but all are either
insignificant or have easy workarounds.

CursorName
Oracle JDBC drivers do not support the getCursorName() and
setCursorName() methods, because there is no convenient way to map them to
Oracle constructs. Oracle recommends using ROWID instead. For more information
on how to use and manipulate ROWIDs, see "Oracle ROWID Type" on page 5-26.

SQL92 Outer Join Escapes
Oracle JDBC drivers do not support SQL92 outer join escapes. Use Oracle SQL
syntax with "(+)" instead. For more information on SQL92 syntax, see "Embedded
SQL92 Syntax" on page 18-9.

PL/SQL TABLE, BOOLEAN and RECORD Types
It is not feasible for Oracle JDBC drivers to support calling arguments or return
values of the PL/SQL types TABLE (now known as indexed-by tables), RECORD, or
BOOLEAN.

As a workaround, you can create wrapper procedures that handle the data as types
supported by JDBC. For example, to wrap a stored procedure that uses PL/SQL
booleans, you can create a stored procedure that takes a character or number from
JDBC and passes it to the original procedure as BOOLEAN, or, for an output
parameter, accepts a BOOLEAN argument from the original procedure and passes it
as a CHAR or NUMBER to JDBC. Similarly, to wrap a stored procedure that uses
PL/SQL records, you can create a stored procedure that handles a record in its
individual components (such as CHAR and NUMBER) or in a structured object type.
To wrap a stored procedure that uses PL/SQL tables, you can break the data into
components or perhaps use Oracle collection types.

For an example of a workaround for BOOLEAN, see "Boolean Parameters in PL/SQL
Stored Procedures" on page 16-9.

IEEE 754 Floating Point Compliance
The arithmetic for the Oracle NUMBER type does not comply with the IEEE 754
standard for floating-point arithmetic. Therefore, there can be small disagreements
Reference Information 18-15

Oracle JDBC Notes and Limitations
between the results of computations performed by Oracle and the same
computations performed by Java.

Oracle stores numbers in a format compatible with decimal arithmetic and
guarantees 38 decimal digits of precision. It represents zero, minus infinity, and plus
infinity exactly. For each positive number it represents, it represents a negative
number of the same absolute value.

It represents every positive number between 10-30 and (1 – 10-38) * 10126 to full
38-digit precision.

Catalog Arguments to DatabaseMetaData Calls
Certain DatabaseMetaData methods define a catalog parameter. This
parameter is one of the selection criteria for the method. Oracle does not have
multiple catalogs, but it does have packages. For more information on how the
Oracle JDBC drivers treat the catalog argument, see "DatabaseMetaData
TABLE_REMARKS Reporting" on page 12-27.

SQLWarning Class
The java.sql.SQLWarning class provides information on a database access
warning. Warnings typically contain a description of the warning and a code that
identifies the warning. Warnings are silently chained to the object whose method
caused it to be reported. The Oracle JDBC drivers generally do not support
SQLWarning. (As an exception to this, scrollable result set operations do generate
SQL warnings, but the SQLWarning instance is created on the client, not in the
database.)

For information on how the Oracle JDBC drivers handle errors, see "Processing SQL
Exceptions" on page 3-33.

Bind by Name
Binding by name is not supported. Under certain circumstances, previous versions
of the Oracle JDBC drivers have allowed binding statement variables by name. In
the following statement, the named variable EmpId would be bound to the integer
314159.

PreparedStatement p = conn.prepareStatement
 ("SELECT name FROM emp WHERE id = :EmpId");
p.setInt(1, 314159);

18-16 JDBC Developer’s Guide and Reference

Oracle JDBC Notes and Limitations
This capability to bind by name is not part of the JDBC specification, either 1.0 or
2.0, and Oracle does not support it. The JDBC drivers can throw a SQLException
or produce unexpected results.

Prior releases of the Oracle JDBC drivers did not retain bound values from one call
of execute to the next as specified in JDBC 1.0. Bound values are now retained. For
example:

PreparedStatement p = conn.prepareStatement
 ("SELECT name FROM emp WHERE id = :? AND dept = :?");
p.setInt(1, 314159);
p.setString(2, "SALES");
ResultSet r1 = p.execute();
p.setInt(1, 425260);
ResultSet r2 = p.execute();

Previously, a SQLException would be thrown by the second execute() call
because no value was bound to the second argument. In this release, the second
execute will return the correct value, retaining the binding of the second argument
to the string "SALES".

If the retained bound value is a stream, then the Oracle JDBC drivers will not reset
the stream. Unless the application code resets, repositions, or otherwise modifies
the stream, the subsequent execute calls will send NULL as the value of the
argument.
Reference Information 18-17

Related Information
Related Information
This section lists Web sites that contain useful information for JDBC programmers.
Many of the sites are referenced in other sections of this manual. In this list you can
find references to the Oracle JDBC drivers, Oracle SQLJ, Java technology, the Java
Developer’s Kit APIs (for versions 1.2.x and 1.1.x), the Java Security API, and
resources to help you write signed applets.

Oracle JDBC Drivers and SQLJ
Oracle JDBC Driver Home Page (Oracle Corporation)

http://www.oracle.com/java/jdbc

Oracle SQLJ Home Page (Oracle Corporation)

http://www.oracle.com/java/sqlj

Java Technology
Java Technology Home Page (Sun Microsystems, Inc.):

http://www.javasoft.com

Java Development Kit (JDK1.2.x and 1.1.x) (Sun Microsystems, Inc.):

http://java.sun.com/products/jdk
18-18 JDBC Developer’s Guide and Reference

JDBC Error Mess
A

JDBC Error Messages

This appendix briefly discusses the general structure of JDBC error messages, then
lists general JDBC error messages and TTC error messages that the Oracle JDBC
drivers can return. The appendix is organized as follows:

■ General Structure of JDBC Error Messages

■ General JDBC Messages

■ TTC Messages

Each of the two message lists is first sorted by ORA number, and then alphabetically.

For general information about processing JDBC exceptions, see "Processing SQL
Exceptions" on page 3-33.

Note: "Cause" and "Action" information for each message will be
provided in a later release.
ages A-1

General Structure of JDBC Error Messages
General Structure of JDBC Error Messages
The general JDBC error message structure allows runtime information to be
appended to the end of a message, following a colon, as follows:

<error_message>:<extra_info>

For example, a "closed statement" error might be output as follows:

Closed Statement:next

This indicates that the exception was thrown during a call to the next() method
(of a result set object).

In some cases, the user can find the same information in a stack trace.
A-2 JDBC Developer’s Guide and Reference

General JDBC Messages
General JDBC Messages
This section lists general JDBC error messages, first sorted by ORA number, and then
alphabetically.

JDBC Messages Sorted by ORA Number

ORA-17001 Internal Error

ORA-17002 Io exception

ORA-17003 Invalid column index

ORA-17004 Invalid column type

ORA-17005 Unsupported column type

ORA-17006 Invalid column name

ORA-17007 Invalid dynamic column

ORA-17008 Closed Connection

ORA-17009 Closed Statement

ORA-17010 Closed Resultset

ORA-17011 Exhausted Resultset

ORA-17012 Parameter Type Conflict

ORA-17014 ResultSet.next was not called

ORA-17015 Statement was cancelled

ORA-17016 Statement timed out

ORA-17017 Cursor already initialized

ORA-17018 Invalid cursor

ORA-17019 Can only describe a query

ORA-17020 Invalid row prefetch

ORA-17021 Missing defines

ORA-17022 Missing defines at index

ORA-17023 Unsupported feature

ORA-17024 No data read

ORA-17025 Error in defines.isNull ()
JDBC Error Messages A-3

General JDBC Messages
ORA-17026 Numeric Overflow

ORA-17027 Stream has already been closed

ORA-17028 Can not do new defines until the current
ResultSet is closed

ORA-17029 setReadOnly: Read-only connections not
supported

ORA-17030 READ_COMMITTED and SERIALIZABLE are the only
valid transaction levels

ORA-17031 setAutoClose: Only support auto close mode on

ORA-17032 cannot set row prefetch to zero

ORA-17033 Malformed SQL92 string at position

ORA-17034 Non supported SQL92 token at position

ORA-17035 Character Set Not Supported !!

ORA-17036 exception in OracleNumber

ORA-17037 Fail to convert between UTF8 and UCS2

ORA-17038 Byte array not long enough

ORA-17039 Char array not long enough

ORA-17040 Sub Protocol must be specified in connection
URL

ORA-17041 Missing IN or OUT parameter at index:

ORA-17042 Invalid Batch Value

ORA-17043 Invalid stream maximum size

ORA-17044 Internal error: Data array not allocated

ORA-17045 Internal error: Attempt to access bind values
beyond the batch value

ORA-17046 Internal error: Invalid index for data access

ORA-17047 Error in Type Descriptor parse

ORA-17048 Undefined type

ORA-17049 Inconsistent java and sql object types

ORA-17050 no such element in vector
A-4 JDBC Developer’s Guide and Reference

General JDBC Messages
ORA-17051 This API cannot be be used for non-UDT types

ORA-17052 This ref is not valid

ORA-17053 The size is not valid

ORA-17054 The LOB locator is not valid

ORA-17055 Invalid character encountered in

ORA-17056 Non supported character set

ORA-17057 Closed LOB

ORA-17058 Internal error: Invalid NLS Conversion ratio

ORA-17059 Fail to convert to internal representation

ORA-17060 Fail to construct descriptor

ORA-17061 Missing descriptor

ORA-17062 Ref cursor is invalid

ORA-17063 Not in a transaction

ORA-17064 Invalid Sytnax or Database name is null

ORA-17065 Conversion class is null

ORA-17066 Access layer specific implementation needed

ORA-17067 Invalid Oracle URL specified

ORA-17068 Invalid argument(s) in call

ORA-17069 Use explicit XA call

ORA-17070 Data size bigger than max size for this type

ORA-17071 Exceeded maximum VARRAY limit

ORA-17072 Inserted value too large for column

ORA-17073 Logical handle no longer valid

ORA-17074 invalid name pattern

ORA-17075 Invalid operation for forward only resultset

ORA-17076 Invalid operation for read only resultset

ORA-17077 Fail to set REF value

ORA-17078 Cannot do the operation as connections are
already opened
JDBC Error Messages A-5

General JDBC Messages
JDBC Messages Sorted Alphabetically

ORA-17079 User credentials doesn’t match the existing
ones

ORA-17080 invalid batch command

ORA-17081 error occurred during batching

ORA-17082 No current row

ORA-17083 Not on the insert row

ORA-17084 Called on the insert row

ORA-17085 Value conflicts occurs

ORA-17086 Undefined column value on the insert row

ORA-17087 Ignored performance hint: setFetchDirection()

ORA-17088 Unsupported syntax for requested resultset
type and concurrency level

ORA-17089 internal error

ORA-17090 operation not allowed

ORA-17091 Unable to create resultset at the requested
type and/or concurrency level

ORA-17092 JDBC statements cannot be created or executed
at end of call processing

ORA-17066 Access layer specific implementation needed

ORA-17038 Byte array not long enough

ORA-17084 Called on the insert row

ORA-17028 Can not do new defines until the current
ResultSet is closed

ORA-17019 Can only describe a query

ORA-17078 Cannot do the operation as connections are
already opened

ORA-17032 cannot set row prefetch to zero

ORA-17039 Char array not long enough
A-6 JDBC Developer’s Guide and Reference

General JDBC Messages
ORA-17035 Character Set Not Supported !!

ORA-17008 Closed Connection

ORA-17057 Closed LOB

ORA-17010 Closed Resultset

ORA-17009 Closed Statement

ORA-17065 Conversion class is null

ORA-17017 Cursor already initialized

ORA-17070 Data size bigger than max size for this type

ORA-17025 Error in defines.isNull ()

ORA-17047 Error in Type Descriptor parse

ORA-17081 error occurred during batching

ORA-17071 Exceeded maximum VARRAY limit

ORA-17036 exception in OracleNumber

ORA-17011 Exhausted Resultset

ORA-17060 Fail to construct descriptor

ORA-17037 Fail to convert between UTF8 and UCS2

ORA-17059 Fail to convert to internal representation

ORA-17077 Fail to set REF value

ORA-17087 Ignored performance hint: setFetchDirection()

ORA-17049 Inconsistent java and sql object types

ORA-17072 Inserted value too large for column

ORA-17001 Internal Error

ORA-17089 internal error

ORA-17045 Internal error: Attempt to access bind values
beyond the batch value

ORA-17044 Internal error: Data array not allocated

ORA-17046 Internal error: Invalid index for data access

ORA-17058 Internal error: Invalid NLS Conversion ratio

ORA-17068 Invalid argument(s) in call
JDBC Error Messages A-7

General JDBC Messages
ORA-17080 invalid batch command

ORA-17042 Invalid Batch Value

ORA-17055 Invalid character encountered in

ORA-17003 Invalid column index

ORA-17006 Invalid column name

ORA-17004 Invalid column type

ORA-17018 Invalid cursor

ORA-17007 Invalid dynamic column

ORA-17074 invalid name pattern

ORA-17075 Invalid operation for forward only resultset

ORA-17076 Invalid operation for read only resultset

ORA-17067 Invalid Oracle URL specified

ORA-17020 Invalid row prefetch

ORA-17043 Invalid stream maximum size

ORA-17064 Invalid Sytnax or Database name is null

ORA-17002 Io exception

ORA-17092 JDBC statements cannot be created or executed
at end of call processing

ORA-17073 Logical handle no longer valid

ORA-17033 Malformed SQL92 string at position

ORA-17021 Missing defines

ORA-17022 Missing defines at index

ORA-17061 Missing descriptor

ORA-17041 Missing IN or OUT parameter at index:

ORA-17082 No current row

ORA-17024 No data read

ORA-17050 no such element in vector

ORA-17056 Non supported character set

ORA-17034 Non supported SQL92 token at position
A-8 JDBC Developer’s Guide and Reference

General JDBC Messages
ORA-17063 Not in a transaction

ORA-17083 Not on the insert row

ORA-17026 Numeric Overflow

ORA-17090 operation not allowed

ORA-17012 Parameter Type Conflict

ORA-17030 READ_COMMITTED and SERIALIZABLE are the only
valid transaction levels

ORA-17062 Ref cursor is invalid

ORA-17014 ResultSet.next was not called

ORA-17031 setAutoClose: Only support auto close mode on

ORA-17029 setReadOnly: Read-only connections not
supported

ORA-17016 Statement timed out

ORA-17015 Statement was cancelled

ORA-17027 Stream has already been closed

ORA-17040 Sub Protocol must be specified in connection
URL

ORA-17054 The LOB locator is not valid

ORA-17053 The size is not valid

ORA-17051 This API cannot be be used for non-UDT types

ORA-17052 This ref is not valid

ORA-17091 Unable to create resultset at the requested
type and/or concurrency level

ORA-17086 Undefined column value on the insert row

ORA-17048 Undefined type

ORA-17005 Unsupported column type

ORA-17023 Unsupported feature

ORA-17088 Unsupported syntax for requested resultset
type and concurrency level

ORA-17069 Use explicit XA call
JDBC Error Messages A-9

General JDBC Messages
ORA-17079 User credentials doesn’t match the existing
ones

ORA-17085 Value conflicts occurs
A-10 JDBC Developer’s Guide and Reference

TTC Messages
TTC Messages
This section lists TTC error messages, first sorted by ORA number, and then
alphabetically.

TTC Messages Sorted by ORA Number

ORA-17401 Protocol violation

ORA-17402 Only one RPA message is expected

ORA-17403 Only one RXH message is expected

ORA-17404 Received more RXDs than expected

ORA-17405 UAC length is not zero

ORA-17406 Exceeding maximum buffer length

ORA-17407 invalid Type Representation(setRep)

ORA-17408 invalid Type Representation(getRep)

ORA-17409 invalid buffer length

ORA-17410 No more data to read from socket

ORA-17411 Data Type representations mismatch

ORA-17412 Bigger type length than Maximum

ORA-17413 Exceding key size

ORA-17414 Insufficient Buffer size to store Columns
Names

ORA-17415 This type hasn’t been handled

ORA-17416 FATAL

ORA-17417 NLS Problem, failed to decode column names

ORA-17418 Internal structure’s field length error

ORA-17419 Invalid number of columns returned

ORA-17420 Oracle Version not defined

ORA-17421 Types or Connection not defined

ORA-17422 Invalid class in factory

ORA-17423 Using a PLSQL block without an IOV defined
JDBC Error Messages A-11

TTC Messages
TTC Messages Sorted Alphabetically

ORA-17424 Attempting different marshaling operation

ORA-17425 Returning a stream in PLSQL block

ORA-17426 Both IN and OUT binds are NULL

ORA-17427 Using Uninitialized OAC

ORA-17428 Logon must be called after connect

ORA-17429 Must be at least connected to server

ORA-17430 Must be logged on to server

ORA-17431 SQL Statement to parse is null

ORA-17432 invalid options in all7

ORA-17433 invalid arguments in call

ORA-17434 not in streaming mode

ORA-17435 invalid number of in_out_binds in IOV

ORA-17436 invalid number of outbinds

ORA-17437 Error in PLSQL block IN/OUT argument(s)

ORA-17438 Internal - Unexpected value

ORA-17439 Invalid SQL type

ORA-17440 DBItem/DBType is null

ORA-17441 Oracle Version not supported. Minimum
supported version is 7.2.3.

ORA-17442 Refcursor value is invalid

ORA-17443 Null user or password not supported in THIN
driver

ORA-17444 TTC Protocol version received from server not
supported

ORA-17424 Attempting different marshaling operation

ORA-17412 Bigger type length than Maximum

ORA-17426 Both IN and OUT binds are NULL
A-12 JDBC Developer’s Guide and Reference

TTC Messages
ORA-17411 Data Type representations mismatch

ORA-17440 DBItem/DBType is null

ORA-17437 Error in PLSQL block IN/OUT argument(s)

ORA-17413 Exceding key size

ORA-17406 Exceeding maximum buffer length

ORA-17416 FATAL

ORA-17414 Insufficient Buffer size to store Columns
Names

ORA-17438 Internal - Unexpected value

ORA-17418 Internal structure’s field length error

ORA-17433 invalid arguments in call

ORA-17409 invalid buffer length

ORA-17422 Invalid class in factory

ORA-17419 Invalid number of columns returned

ORA-17435 invalid number of in_out_binds in IOV

ORA-17436 invalid number of outbinds

ORA-17432 invalid options in all7

ORA-17439 Invalid SQL type

ORA-17408 invalid Type Representation(getRep)

ORA-17407 invalid Type Representation(setRep)

ORA-17428 Logon must be called after connect

ORA-17429 Must be at least connected to server

ORA-17430 Must be logged on to server

ORA-17417 NLS Problem, failed to decode column names

ORA-17410 No more data to read from socket

ORA-17434 not in streaming mode

ORA-17443 Null user or password not supported in THIN
driver

ORA-17402 Only one RPA message is expected
JDBC Error Messages A-13

TTC Messages
ORA-17403 Only one RXH message is expected

ORA-17420 Oracle Version not defined

ORA-17441 Oracle Version not supported. Minimum
supported version is 7.2.3.

ORA-17401 Protocol violation

ORA-17404 Received more RXDs than expected

ORA-17442 Refcursor value is invalid

ORA-17425 Returning a stream in PLSQL block

ORA-17431 SQL Statement to parse is null

ORA-17415 This type hasn’t been handled

ORA-17444 TTC Protocol version received from server not
supported

ORA-17421 Types or Connection not defined

ORA-17405 UAC length is not zero

ORA-17423 Using a PLSQL block without an IOV defined

ORA-17427 Using Uninitialized OAC
A-14 JDBC Developer’s Guide and Reference

Index

A
absolute positioning in result sets, 11-2
absolute() method (result set), 11-14
addBatch() method, 12-12
addConnectionEventListener() method (connection

cache), 13-19
afterLast() method (result sets), 11-14
ANO (Oracle Advanced Security), 15-8
APPLET HTML tag, 15-24
applets

connecting to a database, 15-15
deploying in an HTML page, 15-24
for JDK 1.2.x or 1.1.x browser, 15-23
packaging, 15-23
packaging and deploying, 1-11
signed applets

browser security, 15-20
object-signing certificate, 15-20
using, 15-20

using with firewalls, 15-20
working with, 15-15

ARCHIVE, parameter for APPLET tag, 15-25
ARRAY class

and nested tables, 5-12
and VARRAYs, 5-12
creating instances, 10-9
described, 10-2
getArray() method, 10-6
getBaseType() method, 10-6
getBaseTypeName() method, 10-6
getConnection() method, 10-6
getDescriptor() method, 10-6
getOracleArray() method, 10-6

getResultSet() method, 10-6
getSQLTypeName() method, 10-6
length() method, 10-6
overview, 5-12

array descriptors
creating, 10-16
described, 10-8
introduced, 5-12

ArrayDescriptor class
createDescriptor() method, 10-10
creating instances, 10-9
get methods, 10-10
getArrayType() method, 10-10
getBaseName() method, 10-10
getBaseType() method, 10-10
getConnection() method, 10-10
getMaxLength() method, 10-10

arrays
defined, 10-2
example program, 17-26
getting, 10-15
passing to callable statement, 10-17
retrieving from a result set, 10-11
retrieving partial arrays, 10-14
using type maps, 10-18
working with, 10-2

ASO (Oracle Advanced Security), 15-8
authentication (security), 15-9
AUTHENTICATION_LEVEL parameter, 15-18
auto-commit mode

defined, 3-13
disabling, 16-6
Index-1

B
batch updates--see update batching
batch value

checking value, 12-7
connection batch value, setting, 12-5
connection vs. statement value, 12-4
default value, 12-5
overriding value, 12-7
statement batch value, setting, 12-6

BatchUpdateException, 12-17
beforeFirst() method (result sets), 11-13
BFILE

accessing data, 7-21
creating and populating columns, 7-19
defined, 3-28
example program, 17-31
introduction, 7-2
locators, 7-16

getting from a result set, 7-16
getting from callable statement, 7-17
passing to callable statements, 7-17
passing to prepared statements, 7-17
selecting, 5-12

manipulating data, 7-21
reading data, 7-18

BFILE class
closeFile() method, 7-22
getBinaryStream() method, 7-22
getBytes() method, 7-22
getDirAlias() method, 7-22
getName() method, 7-22
isFileOpen() method, 7-22
length() method, 7-22
openFile() method, 7-22
overview, 5-12
position() method, 7-22

BigDecimal mapping (for attributes), 8-30
bind by name limitations, 18-16
BLOB

creating and populating, 7-10
creating columns, 7-11
introduction, 7-2
locators

getting from result set, 7-4

passing to callable statements, 7-6
passing to prepared statement, 7-5
retrieving, 7-3
selecting, 5-12

manipulating data, 7-12
populating columns, 7-11
reading data, 7-6, 7-8
writing data, 7-9

BLOB class
getBinaryOutputStream() method, 7-13
getBinaryStream() method, 7-13
getBufferSize() method, 7-13
getBytes() method, 7-13
getChunkSize() method, 7-13
length() method, 7-14
overview, 5-12
position() method, 7-14
putBytes() method, 7-14

Boolean parameters, restrictions, 16-9
branch qualifier (distributed transactions), 14-13

C
cache schemes (connection cache), 13-24
caching, client-side

custom use for scrollable result sets, 11-6
Oracle use for scrollable result sets, 11-5

callable statement
use for stored procedures, 3-31
using getOracleObject() method, 6-5

cancelRowUpdates() method (result set), 11-20
casting return values, 6-10
catalog arguments (DatabaseMetaData), 18-16
CHAR class

conversions with server-side internal
driver, 15-34

creating instances, 5-13
described, 5-13
getString() method, 5-14
getStringWithReplacement() method, 5-15
toString() method, 5-15

CHAR columns
NLS size restrictions, Thin, 15-6
space padding, 16-8
using setFixedCHAR() to match in
Index-2

WHERE, 6-17
character sets

client-server conversions, 5-15
conversions with server-side internal

driver, 15-34
CharacterSet class, 5-13
checksums

code example, 15-13
setting parameters in Java, 15-13
support by OCI drivers, 15-11
support by Thin driver, 15-12

Class.forName() method, 3-3
CLASSPATH, specifying, 2-6
clearBatch() method, 12-14
clearDefines() method, 12-24
client installation, 1-10
CLOB

creating and populating, 7-10
creating columns, 7-11
introduction, 7-2
locators

getting from result set, 7-4
passing to callable statements, 7-6
passing to prepared statement, 7-5
retrieving, 7-3
selecting, 5-12

manipulating data, 7-12
populating columns, 7-11
reading data, 7-6, 7-8
writing data, 7-9

CLOB class
getAsciiOutputStream() method, 7-14
getAsciiStream() method, 7-14
getBufferSize() method, 7-14
getCharacterOutputStream() method, 7-14
getCharacterStream() method, 7-14
getChars() method, 7-14
getChunkSize() method, 7-14
getSubString() method, 7-14
length() method, 7-14
overview, 5-12
position() method, 7-15
putChars() method, 7-15
putString() method, 7-15
supported character sets, 7-13

close() method, callable statement, 5-20
close() method, OracleConnectionCache

interface, 13-21
close() method, prepared statement, 5-19
close() method, statement objects, 5-19
closeFile() method for BFILEs, 7-22
closePooledConnection() method, 13-21
CMAN.ORA file, creating, 15-18
CODE, parameter for APPLET tag, 15-24
CODEBASE, parameter for APPLET tag, 15-25
collections

creating strongly typed, 10-8
defined, 10-2

column types, defining, 12-23
commit

changes to database, 3-13
distributed transaction branch, 14-12

CONCUR_READ_ONLY result sets, 11-9
CONCUR_UPDATABLE result sets, 11-9
concurrency types in result sets, 11-4
connect string

for database connection, 3-3
for server-side internal driver, 15-28
for the Oracle8 Connection Manager, 15-18

connection
closing, 3-14
from an applet, 15-15
opening, 3-3
opening for JDBC OCI driver, 3-8
opening for JDBC Thin driver, 3-9
Properties object, 3-6
read-only, 16-14
testing, 2-8
via multiple Connection Managers, 15-19
with server-side internal driver, 1-12, 15-26

connection caching
adding connection event listener, 13-19
basics, accessing the cache, 13-16
basics, closing connections, 13-17
basics, opening connections, 13-16
basics, setting up a cache, 13-15
cache instance getConnection() method, 13-16
connection events, 13-17
creating connection event listener, 13-19
implementation scenarios, 13-17
Index-3

OracleConnectionCache interface, 13-21
OracleConnectionCacheImpl class, 13-22
OracleConnectionEventListener class, 13-25
overview, 13-15
preliminary steps, 13-18
removing connection event listener, 13-20
steps in closing a connection, 13-20
steps in opening a connection, 13-18

connection event listener, 13-19
Connection Manager

installing, 15-17
starting, 15-18
using multiple managers, 15-19
with applets, 1-10, 15-16, 15-17
writing the connect string, 15-18

connection methods, JDBC 2.0 result sets, 11-32
connection pooling

concepts, 13-11
creating data source and connecting, 13-13
introduction, 13-11
Oracle data source implementation, 13-12
pooled connections, 13-13
sample application, 17-74
standard data source interface, 13-12

connection properties
database, 3-7
defaultBatchValue, 3-7
defaultRowPrefetch, 3-7
password, 3-7
put() method, 3-8
remarksReporting, 3-7
user, 3-7

connectionClosed() method (connection event
listener), 13-26

connectionErrorOccurred() method (connection
event listener), 13-26

CREATE DIRECTORY statement, BFILEs, 7-19
CREATE TABLE statement

to create BFILE columns, 7-19
to create BLOB, CLOB columns, 7-10

create() method, CustomDatumFactory
interface, 8-21

createDescriptor() method, ArrayDescriptor, 10-10
createDescriptor() method, StructDescriptor, 8-5
createStatement() method, 5-17

CursorName limitations, 18-15
cursors, closing resources, 16-8
custom collection classes

and JPublisher, 10-20
defined, 10-2, 10-20

custom Java classes
creating, 17-35, 17-38, 17-39
defined, 8-2

custom object classes
creating, 8-9
creating with JPublisher, 8-28
defined, 8-2

custom reference classes
and JPublisher, 9-10
defined, 9-2, 9-10

CustomDatum interface
additional uses, 8-26
advantages, 8-10
described, 8-20
example program, 17-38, 17-39
introduced, 5-4
reading data, 8-23
writing data, 8-25

CustomDatumFactory interface, 8-20

D
data conversions

considerations, 6-2
LONG, 3-20
LONG RAW, 3-20

data sources
creating and connecting (with JNDI), 13-7
creating and connecting (without JNDI), 13-7
logging and tracing, 13-9
Oracle implementation, 13-3
PrintWriter, 13-9
properties, 13-4
sample application (with JNDI), 17-70
sample application (without JNDI), 17-71
standard interface, 13-3

database connection property, 3-7
database meta data

catalog parameter, 18-16
entry points for applets, 15-24
Index-4

methods regarding scalar function
support, 18-11

methods, JDBC 2.0 result sets, 11-35
datatypes

classes, 5-7
Java, 3-16
Java native, 3-16
JDBC, 3-16
mappings, 3-16
Oracle SQL, 3-16

DATE class, 5-15
Datum class, 5-7
DBMS_LOB package, 7-6
debugging JDBC programs, 16-11
DEFAULT_CHARSET character set value, 5-14
defaultBatchValue connection property, 3-7
defaultConnection() method, 15-26
defaultRowPrefetch connection property, 3-7
defineColumnType() method, 3-24, 5-19, 12-24
DELETE in a result set, 11-18
deleteRow() method (result set), 11-18
deletesAreDetected() method (database meta

data), 11-29
Dictionary class (for type maps), 8-11
distributed transactions

branch qualifier, 14-13
check for same resource manager, 14-13
commit a transaction branch, 14-12
components and scenarios, 14-2
concepts, 14-3
distributed transaction ID component, 14-13
end a transaction branch, 14-11
example of implementation, 14-18
global transaction identifier, 14-13
ID format identifier, 14-13
introduction, 14-2
Oracle XA connection implementation, 14-7
Oracle XA data source implementation, 14-6
Oracle XA ID implementation, 14-13
Oracle XA optimizations, 14-17
Oracle XA resource implementation, 14-8
prepare a transaction branch, 14-11
roll back a transaction branch, 14-12
sample application (suspend/resume), 17-79
sample application (two-phase commit), 17-84

start a transaction branch, 14-10
transaction branch ID component, 14-13
XA connection interface, 14-7
XA data source interface, 14-6
XA error handling, 14-16
XA exception classes, 14-15
XA ID interface, 14-13
XA resource functionality, 14-9
XA resource interface, 14-8

DriverManager class, 3-3
dynamic SQL, 1-2
DYNAMIC_SCHEME (connection cache), 13-24

E
encryption

code example, 15-13
overview, 15-10
setting parameters in Java, 15-13
support by OCI drivers, 15-11
support by Thin driver, 15-12

end a distributed transaction branch, 14-11
environment variables, checking, 2-6
errors

general JDBC message structure, A-2
general JDBC messages, listed, A-3
TTC messages, listed, A-11

exceptions
printing stack trace, 3-34
processing, 3-33
retrieving error code, 3-33
retrieving message, 3-33
retrieving SQL state, 3-33

executeBatch() method, 12-13
executeQuery() method, 5-18
executeUpdate() method, 12-9
extensions to JDBC, Oracle, 5-1, 6-1, 8-1, 9-1, 10-1
external changes (result set)

defined, 11-27
seeing, 11-28
visibility vs. detection, 11-29

external file, defined, 3-28
Index-5

F
fetch direction in result sets, 11-17
fetch size, result sets, 11-24
firewalls

configuring for applets, 15-21
connect string, 15-22
described, 15-21
required rule list items, 15-21
using with applets, 1-11, 15-20

first() method (result sets), 11-14
FIXED_RETURN_NULL_SCHEME (connection

cache), 13-24
floating-point compliance, 18-15
format identifier, transaction ID, 14-13
forward-only result sets, 11-3
function call syntax, SQL92 syntax, 18-13

G
getActiveSize() method (connection cache), 13-25
getArray() method

introduced, 10-11
usage, 10-6
using type maps, 10-13

getARRAY() method, retrieving an array, 10-11
getArrayType() method, 10-10
getAsciiOutputStream() method for CLOBs, 7-7,

7-14
getAsciiStream() method for CLOBs, 7-7, 7-14
getAttributes() method for embedded objects, 8-14
getAttributes() method for STRUCTs, 8-3
getBaseName() method, 10-10
getBaseType() method, 10-6, 10-10, 10-15
getBaseTypeName() method, 9-5, 10-6
getBinaryOutputStream() method for BLOBs, 7-7,

7-13
getBinaryStream() method for BFILEs, 7-18, 7-22
getBinaryStream() method for BLOBs, 7-7, 7-13
getBinaryStream() method for LONG RAW, 3-22
getBufferSize() method for BLOBs, 7-13
getBufferSize() method for CLOBs, 7-14
getBytes() method for BFILEs, 7-22
getBytes() method for BLOBs, 7-13
getBytes() method for LONG RAW, 3-23

getBytes() method, general, 5-10
getCacheSize() method (connection cache), 13-25
getCharacterOutputStream() method for

CLOBs, 7-7, 7-14
getCharacterStream() method for CLOBs, 7-7, 7-14
getChars() method for CLOBs, 7-14
getChunkSize() method for BLOBs, 7-13
getChunkSize() method for CLOBs, 7-14
getColumnCount() method, 5-21
getColumnName() method, 5-21
getColumns() method, 12-27
getColumnType() method, 5-21, 6-19
getColumnTypeName() method, 5-21, 6-19
getConcurrency() method (result set), 11-12
getConnection() method

its forms and signatures, 3-4
with server-side internal driver, 15-26

getConnection() method for array
descriptors, 10-10

getConnection() method for arrays, 10-6
getConnection() method for STRUCTs, 8-4
getCursor() method, 5-28, 5-29
getCursorName() method, limitations, 18-15
getCustomDatum() method, 8-21, 8-23
getDefaultExecuteBatch() method, 5-18, 12-7
getDefaultRowPrefetch() method, 5-18, 12-21
getDescriptor() method

for ARRAYs, 10-6
getDescriptor() method, for STRUCTs, 8-4
getDirAlias() method for BFILEs, 7-21, 7-22
getErrorCode() method (SQLException), 3-33
getExecuteBatch() method, 5-19, 12-6, 12-7
getFetchSize() method, 11-24
getMaxLength() method for arrays, 10-10
getMessage() method (SQLException), 3-33
getName() method for BFILEs, 7-21, 7-22
getNumericFunctions() method, 18-11
getObject() method

and SQLInput streams, 8-15
and SQLOutput streams, 8-16
casting return values, 6-10
for CustomDatum objects, 8-22
for Struct objects, 8-6
return types, 6-4, 6-6
to get BFILE locators, 7-16
Index-6

to get Oracle objects, 8-7
used with CustomDatum interface, 8-24

getOracleArray() method, 10-6, 10-11, 10-15
getOracleAttributes() method, 8-4, 8-7
getOracleObject() method

casting return values, 6-10
in callable statements, 5-20
in result sets, 5-21
return types, 6-4, 6-6
using in callable statement, 6-5
using in result set, 6-5

getProcedureColumns() method, 12-27
getProcedures() method, 12-27
getREF() method, 9-6, 9-7
getRemarksReporting() method, 5-18
getResultSet() method, arrays, 10-6
getResultSet() method, statement objects, 5-19
getRow() method (result set), 11-15
getRowPrefetch() method, 5-19, 12-21
getSQLState() method (SQLException), 3-33
getSQLTypeName() method for ARRAYs, 10-6,

10-15
getSQLTypeName() method for STRUCTs, 8-3
getString() method

to get ROWIDs, 5-26
usage, 5-14

getStringFunctions() method, 18-11
getStringWithReplacement() method, 5-15
getSTRUCT() method, 8-7
getSubString() method for CLOBs, 7-7, 7-14
getSystemFunctions() method, 18-11
getTableName() method, 5-21
getTimeDateFunctions() method, 18-11
getTransactionIsolation() method, 5-18, 16-14
getType() method (result set), 11-12
getTypeMap() method, 5-18, 8-12
getUpdateCounts() method

(BatchUpdateException), 12-17
getValue() method, REFs, 9-5, 9-6
getXXX() methods

casting return values, 6-10
for specific datatypes, 6-7
in callable statements, 5-20
in result sets, 5-21

global transaction identifier (distributed

transactions), 14-13
global transactions, 14-2

H
HEIGHT, parameter for APPLET tag, 15-24
HTML tags, to deploy applets, 15-24
HTTP protocol, 1-7

I
IEEE 754 floating-point compliance, 18-15
INSERT in a result set, 11-21
insertRow() method (result set), 11-22
insertsAreDetected() method (database meta

data), 11-29
installation

client, 1-10
directories and files, 2-4
verifying on the client, 2-4

integrity
code example, 15-13
overview, 15-10
setting parameters in Java, 15-13
support by OCI drivers, 15-11
support by Thin driver, 15-12

internal changes (result set)
defined, 11-27
seeing, 11-27

isAfterLast() method (result set), 11-15
isBeforeFirst() method (result set), 11-15
isFileOpen() method for BFILEs, 7-22
isFirst() method (result set), 11-15
isLast() method (result set), 11-15
isSameRM() (distributed transactions), 14-13

J
Java

compiling and running, 2-7
datatypes, 3-16
native datatypes, 3-16
stored procedures, 3-32
stream data, 3-19

Java Naming and Directory Interface (JNDI), 13-2
Index-7

Java Sockets, 1-7
java.math, Java math packages, 3-2
java.sql, JDBC packages, 3-2
JDBC

and IDEs, 1-14
and Oracle Application Server, 1-14
basic program, 3-2
datatypes, 3-16
defined, 1-2
guidelines for using, 1-4
importing packages, 3-2
Oracle JDBC limitations, 18-15
sample files, 2-7
testing, 2-8

JDBC 2.0 support
datatype support, 4-3
extended feature support, 4-5
introduction, 4-2
JDK 1.2.x vs. JDK 1.1.x, 4-3
overview of features, 4-7
standard feature support, 4-4

JDBC drivers
and NLS, 15-3
applets, 1-10
applications, 1-10
choosing a driver for your needs, 1-9
common features, 1-6
common problems, 16-8
compatibilities, 2-2
determining driver version, 2-7
introduction, 1-5
registering, 3-3
requirements, 2-2
restrictions, 16-9
SQL92 syntax, 18-9

JDBC mapping (for attributes), 8-29
JdbcCheckup program, 2-8
JDeveloper, 1-14
JDK

migration from 1.1.x to 1.2.x, 4-5
versions supported, 1-13

JNDI
looking up data source, 13-9
overview of Oracle support, 13-2
registering data source, 13-8

JPublisher utility
creating custom collection classes, 10-20
creating custom Java classes, 8-28
creating custom reference classes, 9-10
described, 5-4, 8-9
SQL type categories and mapping options, 8-29
type mapping modes and settings, 8-29
type mappings, 8-28

L
last() method (result set), 11-14
LD_LIBRARY_PATH variable, specifying, 2-6
length() method for arrays, 10-6
length() method for BFILEs, 7-22
length() method for BLOBs, 7-14
length() method for CLOBs, 7-14
LIKE escape characters, SQL92 syntax, 18-12
limitations

bind by name, 18-16
catalog arguments to DatabaseMetaData

calls, 18-16
CursorName, 18-15
IEEE 754 floating-point compliance, 18-15
on setBytes() and setString(), use of streams to

avoid, 3-30
PL/SQL TABLE, BOOLEAN, RECORD

types, 18-15
read-only connection, 16-14
SQL92 outer join escapes, 18-15
SQLWarning class, 18-16

LOB
defined, 3-27
introduction, 7-2
locators, 7-2

getting from callable statements, 7-4
getting from result sets, 7-4
passing, 7-5

reading data, 7-6
sample program, 17-17

locators
getting for BFILEs, 7-16
getting for BLOBs, 7-3
getting for CLOBs, 7-3
LOB, 7-2
Index-8

logging with a data source, 13-9
logical connection instance, 13-11
LONG data conversions, 3-20
LONG RAW data conversions, 3-20

M
Map interface (for type maps), 8-11, 10-14
memory leaks, closing resources, 16-8
migration from JDK 1.1.x to 1.2.x, 4-5
moveToCurrentRow() method (result set), 11-21
moveToInsertRow() method (result set), 11-21
mutable arrays, 10-20

N
named collections, 10-2, 10-8
National Language Support--see NLS
nested tables

defined, 10-3
usage of arrays to materialize, 10-5

Net8
name-value pair, 3-4
protocol, 1-7

network events, trapping, 16-11
next() method (result set), 11-16
NLS

and JDBC drivers, 15-3
conversions, 15-3

for JDBC OCI drivers, 15-3
for JDBC Thin drivers, 15-4
for server-side internal driver, 15-4

Java methods that employ, 15-2
Thin driver CHAR/VARCHAR2 size

restrictions, 15-6
using, 15-2

NLS_LANG environment variable, 15-3
NULL data, converting, 6-2
NUMBER class, 5-15

O
object references

accessing object values, 9-7, 9-9
described, 9-2

passing to prepared statements, 9-8
retrieving, 9-6
retrieving from callable statement, 9-7
updating object values, 9-7, 9-9

object-JDBC mapping (for attributes), 8-29
OCI driver

applications, 1-10
described, 1-8
NLS considerations, 15-3

openFile() method for BFILEs, 7-22
optimization, performance, 16-6
Oracle Advanced Security

support by JDBC, 15-8
support by OCI drivers, 15-8
support by Thin driver, 15-9

Oracle Application Server, 1-14
Oracle datatypes, 6-1
Oracle extensions

datatype support, 5-3
object support, 5-4
packages, 5-2
performance extensions, 12-1
result sets, 6-3
schema naming support, 5-5
statements, 6-3
support under 8.0.x/7.3.x drivers, 5-29
to JDBC, 5-1, 6-1, 8-1, 9-1, 10-1

Oracle mapping (for attributes), 8-29
Oracle objects

and JDBC, 8-2
converting with CustomDatum interface, 8-20
converting with SQLData interface, 8-14
getting with getObject() method, 8-7
Java classes which support, 8-3
mapping to custom object classes, 8-9
reading data by using SQLData interface, 8-17
working with, 8-2
writing data by using SQLData interface, 8-19

Oracle SQL datatypes, 3-16
OracleCallableStatement class

close() method, 5-20
described, 5-20
getOracleObject() method, 5-20
getXXX() methods, 5-20, 6-7
registerOutParameter() method, 5-20, 6-13
Index-9

setNull() method, 5-20
setOracleObject() method, 5-20
setXXX() methods, 5-20

OracleConnection class
createStatement() method, 5-17
described, 5-17
getDefaultExecuteBatch() method, 5-18
getDefaultRowPrefetch() method, 5-18
getRemarksReporting() method, 5-18
getTransactionIsolation() method, 5-18, 16-14
getTypeMap() method, 5-18
prepareCall() method, 5-18
prepareStatement() method, 5-17
setDefaultExecuteBatch() method, 5-18
setDefaultRowPrefetch() method, 5-18
setRemarksReporting() method, 5-18
setTransactionIsolation() method, 5-18, 16-14
setTypeMap() method, 5-18

OracleConnectionCache interface
close() method, 13-21
closePooledConnection() method, 13-21
described, 13-21
reusePooledConnection() method, 13-21

OracleConnectionCacheImpl class
described, 13-22
getActiveSize() method, 13-25
getCacheSize() method, 13-25
instantiating and setting properties, 13-22
schemes for new pooled connections, 13-24
setCacheScheme() method, 13-24
setConnectionPoolDataSource() method, 13-23
setMaxLimit() method, 13-24
setting maximum pooled connections, 13-24

OracleConnectionEventListener class
connectionClosed() method, 13-26
connectionErrorOccurred() method, 13-26
described, 13-25
instantiating, 13-25
setDataSource() method, 13-26

OracleConnectionPoolDataSouorce class, 13-12
OracleDataSource class, 13-3
OracleDriver class

defaultConnection() method, 15-27
described, 5-17

oracle.jdbc2 package, described, 5-24

oracle.jdbc.driver package, 5-16
oracle.jdbc.pool package, 13-14
oracle.jdbc.xa package and subpackages, 14-5
OraclePooledConnection class, 13-13
OraclePreparedStatement class

close() method, 5-19
described, 5-19
getExecuteBatch() method, 5-19
setCustomDatum() method, 5-19
setExecuteBatch() method, 5-19
setNull() method, 5-19
setOracleObject() method, 5-19
setXXX() methods, 5-19

OracleResultSet class
described, 5-21
getOracleObject() method, 5-21
getXXX() methods, 5-21, 6-7

OracleResultSetCache interface, 11-6
OracleResultSetMetaData class

described, 5-21
getColumnCount() method, 5-21
getColumnName() method, 5-21
getColumnType() method, 5-21
getColumnTypeName() method, 5-21
getTableName() method, 5-21
using, 6-19

oracle.sql package
data conversions, 6-2
datatype classes, 5-7
datatype support, 5-9
described, 5-7

OracleSql.parse() method, 18-13
OracleStatement class

close() method, 5-19
defineColumnType(), 5-19
described, 5-18
executeQuery() method, 5-18
getResultSet() method, 5-19
getRowPrefetch() method, 5-19
setRowPrefetch() method, 5-19

OracleTypes class (for typecodes), 5-22, 12-24
OracleXAConnection class, 14-7
OracleXADataSource class, 14-6
OracleXAResource class, 14-8
OracleXid class, 14-13
Index-10

othersDeletesAreVisible() method (database meta
data), 11-28

othersInsertsAreVisible() method (database meta
data), 11-28

othersUpdatesAreVisible() method (database meta
data), 11-28

outer joins, SQL92 syntax, 18-12
ownDeletesAreVisible() method (database meta

data), 11-28
ownInsertsAreVisible() method (database meta

data), 11-28
ownUpdatesAreVisible() method (database meta

data), 11-28

P
password connection property, 3-7
password, specifying, 3-5
PATH variable, specifying, 2-6
performance extensions

defining column types, 12-23
introduction, 12-1
prefetching rows, 12-20
standard vs. Oracle, 4-5
TABLE_REMARKS reporting, 12-27

performance optimization, 16-6
PL/SQL

JDBC type support limitations, 18-15
restrictions, 16-9
space padding, 16-8
stored procedures, 3-31

pooled connections
Oracle implementation, 13-13
standard interface, 13-13

position() method for BFILEs, 7-22
position() method for BLOBs, 7-14
position() method for CLOBs, 7-15
positioning in result sets, 11-2
prefetching rows

described, 12-20
suggested default, 12-23

prepare a distributed transaction branch, 14-11
prepareCall() method, 5-18
prepared statement

creating prepared statement object, 3-12

using setObject() method, 6-12
using setOracleObject() method, 6-12

prepareStatement() method, 5-17
previous() method (result set), 11-16
printStackTrace() method (SQLException), 3-34
PrintWriter for a data source, 13-9
put() method

for Properties object, 3-8
for type maps, 8-12

putBytes() method for BLOBs, 7-14
putChars() method for CLOBs, 7-15
putString() method for CLOBs, 7-15

Q
query, executing, 3-10

R
RAW class, 5-15
read-only result set concurrency type, 11-4
readSQL() method

described, 8-14
implementing, 8-15

REF class
described, 9-2
getBaseTypeName() method, 9-5
getValue() method, 9-5
overview, 5-11
setValue() method, 9-5

REF CURSORs
defined, 5-28
example program, 17-29
materialized as result set objects, 5-28

refetching rows into a result set, 11-26, 11-29
refreshRow() method (result set), 11-26
registerDriver() method, 5-17
registering Oracle JDBC drivers, class for, 5-17
registerOutParameter() method, 5-20, 6-13
relative positioning in result sets, 11-2
relative() method (result set), 11-14
remarksReporting

connection property, 3-7
flag, 12-20

removeConnectionEventListener method
Index-11

(connection cache), 13-20
resource managers, 14-3
result set

closing, 3-11
fetch size, 11-24
metadata, 5-21
methods, JDBC 2.0, 11-32
Oracle extensions, 6-3
processing, 3-11
query, return result set, 3-10
types for scrollability and sensitivity, 11-3
using getOracleObject() method, 6-5

result set enhancements
concurrency types, 11-4
downgrade rules, 11-11
fetch size, 11-24
limitations, 11-10
Oracle scrollability requirements, 11-5
Oracle updatability requirements, 11-5
positioning, 11-2
positioning result sets, 11-13
processing result sets, 11-16
refetching rows, 11-26, 11-29
result set types, 11-3
scrollability, 11-2
seeing external changes, 11-28
seeing internal changes, 11-27
sensitivity to database changes, 11-2
specifying scrollability, updatability, 11-8
summary of methods, 11-32
summary of visibility of changes, 11-30
updatability, 11-4
updating result sets, 11-18
visibility vs. detection of external

changes, 11-29
ResultSet class, 3-10
return types

for getXXX() methods, 6-8
getObject() method, 6-6
getOracleObject() method, 6-6

return values, casting, 6-10
reusePooledConnection() method, 13-21
roll back

changes to database, 3-13
distributed transaction branch, 14-12

row prefetching
and data streams, 3-30
described, 12-20

ROWID class
defined, 5-26
described, 5-15
usage, 5-26

ROWID, use for result set updates, 11-5

S
scalar functions, SQL92 syntax, 18-11
schema naming conventions, 5-5
scrollability in result sets, 11-2
scrollable result sets

creating, 11-8
fetch direction, 11-17
implementation of scroll-sensitivity, 11-30
positioning, 11-13
processing backward/forward, 11-16
refetching rows, 11-26, 11-29
scroll-insensitive result sets, 11-3
scroll-sensitive result sets, 11-3
seeing external changes, 11-28
visibility vs. detection of external

changes, 11-29
scroll-sensitive result sets, limitations, 11-10
security

authentication, 15-9
encryption, 15-10
integrity, 15-10
Oracle Advanced Security support, 15-8
overview, 15-8

sendBatch() method, 12-7, 12-9
sensitivity in result sets to database changes, 11-2
server-side internal driver

connect string for, 15-28
connection to database, 15-26
described, 15-26
introduced, 1-8
NLS considerations, 15-4
relation to the SQL engine, 15-26
session context, 15-30
testing, 15-30
transaction context, 15-30
Index-12

server-side Thin driver, described, 1-8
session context, server-side internal driver, 1-12,

15-30
setAsciiStream() method, 6-16
setAutoCommit() method, 16-6
setBFILE() method, 7-17
setBinaryStream() method, 6-16
setBLOB() method, 7-5
setBlob() method, JDK 1.1.x, 7-5
setBlob() method, JDK 1.2.x, 7-5
setBytes() limitations, using streams to avoid, 3-30
setCacheScheme() method (connection

cache), 13-24
setCharacterStream() method, 6-16
setCLOB() method, 7-5
setClob() method, JDK 1.1.x, 7-5
setClob() method, JDK 1.2.x, 7-5
setConnectionPoolDataSource method (connection

cache), 13-23
setCursorName() method, limitations, 18-15
setCustomDatum() method, 5-19, 8-22, 8-25
setDataSource() method (connection event

listener), 13-26
setDate() method, 6-17
setDefaultExecuteBatch() method, 5-18, 12-5
setDefaultRowPrefetch() method, 5-18, 12-21
setEscapeProcessing() method, 18-9
setExecuteBatch() method, 5-19, 12-6
setFetchSize() method, 11-24
setFixedCHAR() method, 6-17
setMaxFieldSize() method, 12-25, 16-8
setNull() method

forms and signatures, 6-13
in callable statements, 5-20
in prepared statements, 5-19

setObject() method
for BFILES, 7-17
for BLOBs and CLOBs, 7-5
for CustomDatum objects, 8-22
for object references, 9-8
for STRUCT objects, 8-8
to write object data, 8-26
usage, 6-11
using in prepared statements, 6-12

setOracleObject() method

for BFILES, 7-17
for BLOBs and CLOBs, 7-5
in callable statements, 5-20
in prepared statements, 5-19
usage, 6-11
using in prepared statements, 6-12

setREF() method, 9-8
setRemarksReporting() method, 5-18, 12-27
setResultSetCache() method, 11-7
setRowPrefetch() method, 5-19, 12-21
setString() method

limitations, using streams to avoid, 3-30
to bind ROWIDs, 5-26

setTime() method, 6-17
setTimestamp() method, 6-17
setTransactionIsolation() method, 5-18, 16-14
setTypeMap() method, 5-18
setUnicodeStream() method, 6-16
setValue() method, REFs, 9-5
setXXX() methods

for specific datatypes, 6-12
in callable statements, 5-20
in prepared statements, 5-19

signed applets, 1-10
SQL

data converting to Java datatypes, 6-2
primitive types, 5-7
structured types, 5-7

SQL engine, relation to server-side internal
driver, 15-26

SQL syntax (Oracle), 18-9
SQL92 syntax, 18-9

function call syntax, 18-13
LIKE escape characters, 18-12
outer joins, 18-12
scalar functions, 18-11
time and date literals, 18-9
translating to SQL example, 18-13

SQLData interface
advantages, 8-10
described, 8-14
example program, 17-35
introduced, 5-4
Oracle implementation, 5-25
reading data from Oracle objects, 8-17
Index-13

using with type map, 8-14
writing data from Oracle objects, 8-19

SQLException class, 3-33
SQLInput interface

described, 8-15
introduced, 8-14

SQLJ
advantages over JDBC, 1-3
guidelines for using, 1-4

SQLNET.ORA, parameters for tracing, 16-11
SQLOutput interface

described, 8-15
introduced, 8-14

SQLWarning class, limitations, 18-16
start a distributed transaction branch, 14-10
statement methods, JDBC 2.0 result sets, 11-35
Statement object

closing, 3-11
creating, 3-10

statements, Oracle extensions, 6-3
static SQL, 1-2
stored procedures

Java, 3-32
PL/SQL, 3-31

stream data
avoiding streams, 3-24
bypassing stream column, 3-26
CHAR columns, 3-24
closing, 3-28
example, 3-22
example program, 17-10
external files, 3-27
LOBs, 3-27, 7-6
LONG columns, 3-19
LONG RAW columns, 3-19
multiple columns, 3-25
overview, 3-19
precautions, 3-28
RAW columns, 3-24
row prefetching, 3-30
UPDATE/COMMIT statements, 7-8
use to avoid setBytes() and setString()

limitations, 3-30
VARCHAR columns, 3-24

STRUCT

creating instances, 8-5
descriptor, 8-5
embedded object, 8-6
nested objects, 5-11
object attributes, 5-10
retrieving, 8-6
retrieving attributes as oracle.sql types, 8-7

STRUCT class
getConnection() method, 8-4
getDescriptor() method, 8-4
getOracleAttributes() method, 8-4
overview, 5-10
toJdbc() method, 8-4

STRUCT descriptor, 8-6
Struct interface

getAttributes() method, 8-3
getSQLTypeName() method, 8-3
implementation by STRUCT class, 5-10

StructDescriptor class
createDescriptor() method, 8-5
creating instances, 8-5
get methods, 8-6
usage, 8-5

T
TABLE_REMARKS reporting, 12-27
TCP/IP protocol, 1-7, 3-10
Thin driver

applets, 1-10, 15-15
applications, 1-10
CHAR/VARCHAR2 NLS size restrictions, 15-6
described, 1-7
NLS considerations, 15-4
server-side, described, 1-8

time and date literals, SQL92 syntax, 18-9
TNSNAMES entries, 3-4
toDatum() method

applied to CustomDatum objects, 8-10, 8-21
called by setCustomDatum() method, 8-26

toJdbc() method, 5-10, 8-4
toString() method, 5-15
trace facility, 16-11
trace parameters

client-side, 16-12
Index-14

server-side, 16-13
tracing with a data source, 13-9
transaction branch

defined, 14-2
ID component, 14-13

transaction context, server-side internal
driver, 1-12, 15-30

transaction IDs (distributed transactions), 14-5
transaction managers, 14-2
TTC error messages, listed, A-11
TTC protocol, 1-7
type map

adding entries, 8-12
and STRUCTs, 8-14
creating a new map, 8-13
defined, 5-4
relationship to database connection, 15-28
usage by getObject(), 6-4
usage with arrays, 10-18
usage with custom object classes, 8-9
usage with structured object arrays, 10-13
used with SQLData interface, 8-14

type mapping
BigDecimal mapping, 8-30
JDBC mapping, 8-29
JPublisher options, 8-28
object JDBC mapping, 8-29
Oracle mapping, 8-29

TYPE_FORWARD_ONLY result sets, 11-8
TYPE_SCROLL_INSENSITIVE result sets, 11-8
TYPE_SCROLL_SENSITIVE result sets, 11-8
typecodes, standard and Oracle extensions, 5-22
Types class (for typecodes), 12-24

U
updatability in result sets, 11-4
updatable result sets

concurrency type, 11-4
creating, 11-8
DELETE operations, 11-18
INSERT operations, 11-21
limitations, 11-10
refetching rows, 11-26, 11-29
seeing internal changes, 11-27

update conflicts, 11-23
UPDATE operations, 11-19

update batching
overview, Oracle vs. standard model, 12-2
overview, statements supported, 12-3

update batching (Oracle model)
batch value, checking, 12-7
batch value, overriding, 12-7
committing changes, 12-9
connection batch value, setting, 12-5
connection vs. statement batch value, 12-4
default batch value, 12-5
disable auto-commit, 12-4
example, 12-9
limitations and characteristics, 12-5
overview, 12-4
statement batch value, setting, 12-6
stream types not allowed, 12-5
update counts, 12-9

update batching (standard model)
adding to batch, 12-12
clearing the batch, 12-14
committing changes, 12-14
error handling, 12-17
example, 12-16
executing the batch, 12-13
intermixing batched and non-batched, 12-18
overview, 12-11
sample application, 17-59
stream types not allowed, 12-12
update counts, 12-15
update counts upon error, 12-17

update conflicts in result sets, 11-23
update counts

Oracle update batching, 12-9
standard update batching, 12-15
upon error (standard batching), 12-17

UPDATE in a result set, 11-19
updateRow() method (result set), 11-20
updatesAreDetected() method (database meta

data), 11-29
updateXXX() methods (result set), 11-19, 11-21
URL for database

including userid and password, 3-6
specifying, 3-5
Index-15

user connection property, 3-7
userid, specifying, 3-5

V
VARCHAR2, NLS restrictions, Thin, 15-6
VARRAYs

defined, 10-3
example program, 17-26
usage of arrays to materialize, 10-5

W
WIDTH, parameter for APPLET tag, 15-24
window, scroll-sensitive result sets, 11-30
writeSQL() method

described, 8-14
implementing, 8-16
usage, 8-16

X
XA

connection implementation, 14-7
connections (definition), 14-4
data source implementation, 14-6
data sources (definition), 14-3
definition, 14-2
error handling, 14-16
example of implementation, 14-18
exception classes, 14-15
Oracle optimizations, 14-17
Oracle transaction ID implementation, 14-13
resource implementation, 14-8
resources (definition), 14-4
sample application (suspend/resume), 17-79
sample application (two-phase commit), 17-84
transaction ID interface, 14-13
Index-16

	PDF Directory
	Send Us Your Comments
	Preface
	1 Overview
	Introduction
	What is JDBC?
	JDBC versus SQLJ

	Overview of the Oracle JDBC Drivers
	Common Features of Oracle JDBC Drivers
	JDBC Thin Driver
	JDBC OCI Drivers
	JDBC Server-Side Thin Driver
	JDBC Server-Side Internal Driver
	Choosing the Appropriate Driver

	Overview of Application and Applet Functionality
	Application Basics
	Applet Basics
	Oracle Extensions

	Server-Side Basics
	Session and Transaction Context
	Connecting to the Database

	Environments and Support
	Supported JDK and JDBC Versions
	JNI and Java Environments
	JDBC and the Oracle Application Server
	JDBC and IDEs

	2 Getting Started
	Requirements and Compatibilities for Oracle JDBC Drivers
	Verifying a JDBC Client Installation
	Check Installed Directories and Files
	Check the Environment Variables
	Make Sure You Can Compile and Run Java
	Determine the Version of the JDBC Driver
	Testing JDBC and the Database Connection: JdbcCheckup

	3 Basic Features
	First Steps in JDBC
	Import Packages
	Register the JDBC Drivers
	Open a Connection to a Database
	Create a Statement Object
	Execute a Query and Return a Result Set Object
	Process the Result Set
	Close the Result Set and Statement Objects
	Make Changes to the Database
	Commit Changes
	Close the Connection

	Sample: Connecting, Querying, and Processing the Results
	Datatype Mappings
	Table of Mappings
	Notes Regarding Mappings

	Java Streams in JDBC
	Streaming LONG or LONG RAW Columns
	Streaming CHAR, VARCHAR, or RAW Columns
	Data Streaming and Multiple Columns
	Streaming LOBs and External Files
	Closing a Stream
	Notes and Precautions on Streams

	Stored Procedure Calls in JDBC Programs
	PL/SQL Stored Procedures
	Java Stored Procedures

	Processing SQL Exceptions
	Retrieving Error Information
	Printing the Stack Trace

	4 Overview of JDBC 2.0 Support
	Introduction
	JDBC 2.0 Support: JDK 1.2.x versus JDK 1.1.x
	Datatype Support
	Standard Feature Support
	Extended Feature Support
	Standard versus Oracle Performance Enhancement APIs
	Migration from JDK 1.1.x to JDK 1.2.x

	Overview of JDBC 2.0 Features

	5 Overview of Oracle Extensions
	Introduction to Oracle Extensions
	Support Features of the Oracle Extensions
	Support for Oracle Datatypes
	Support for Oracle Objects
	Support for Schema Naming

	Oracle JDBC Packages and Classes
	Package oracle.sql
	Package oracle.jdbc.driver
	Package oracle.jdbc2 (for JDK 1.1.x only)

	Oracle Type Extensions
	Oracle ROWID Type
	Oracle REF CURSOR Type Category
	Support for Oracle Extensions in 8.0.x and 7.3.x JDBC Drivers

	6 Accessing and Manipulating Oracle Data
	Data Conversion Considerations
	Standard Types versus Oracle Types
	Converting SQL NULL Data

	Result Set and Statement Extensions
	Comparison of Oracle get and set Methods to Standard JDBC
	Standard getObject() Method
	Oracle getOracleObject() Method
	Summary of getObject() and getOracleObject() Return Types
	Other getXXX() Methods
	Casting Your get Method Return Values
	Standard setObject() and Oracle setOracleObject() Methods
	Other setXXX() Methods
	Limitations of the Oracle 8.0.x and 7.3.x JDBC Drivers

	Using Result Set Meta Data Extensions

	7 Working with LOBs and BFILEs
	Oracle Extensions for LOBs and BFILEs
	Working with BLOBs and CLOBs
	Getting and Passing BLOB and CLOB Locators
	Reading and Writing BLOB and CLOB Data
	Creating and Populating a BLOB or CLOB Column
	Accessing and Manipulating BLOB and CLOB Data
	Additional BLOB and CLOB Features

	Working with BFILEs
	Getting and Passing BFILE Locators
	Reading BFILE Data
	Creating and Populating a BFILE Column
	Accessing and Manipulating BFILE Data
	Additional BFILE Features

	8 Working with Oracle Object Types
	Mapping Oracle Objects
	Using the Default STRUCT Class for Oracle Objects
	STRUCT Class Functionality
	Creating STRUCT Objects and Descriptors
	Retrieving STRUCT Objects and Attributes
	Binding STRUCT Objects into Statements

	Creating and Using Custom Object Classes for Oracle Objects
	Relative Advantages of CustomDatum versus SQLData
	Understanding Type Maps for SQLData Implementations
	Creating a Type Map Object and Defining Mappings for a SQLData Implementation
	Understanding the SQLData Interface
	Reading and Writing Data with a SQLData Implementation
	Understanding the CustomDatum Interface
	Reading and Writing Data with a CustomDatum Implementation
	Additional Uses for CustomDatum

	Using JPublisher to Create Custom Object Classes
	JPublisher Functionality
	JPublisher Type Mappings

	Describing an Object Type
	Functionality for Getting Object Meta Data
	Steps for Retrieving Object Meta Data

	9 Working with Oracle Object References
	Oracle Extensions for Object References
	Overview of Object Reference Functionality
	Object Reference Getter and Setter Methods
	Key REF Class Methods

	Retrieving and Passing an Object Reference
	Retrieving an Object Reference from a Result Set
	Retrieving an Object Reference from a Callable Statement
	Passing an Object Reference to a Prepared Statement

	Accessing and Updating Object Values through an Object Reference
	Custom Reference Classes with JPublisher

	10 Working with Oracle Collections
	Oracle Extensions for Collections (Arrays)
	Choices in Materializing Collections
	Creating Collections

	Overview of Collection (Array) Functionality
	Array Getter and Setter Methods
	ARRAY Descriptors and ARRAY Class Functionality

	Creating and Using Arrays
	Creating ARRAY Objects and Descriptors
	Retrieving an Array and Its Elements
	Passing Arrays to Statement Objects

	Using a Type Map to Map Array Elements
	Custom Collection Classes with JPublisher

	11 Result Set Enhancements
	Overview
	Result Set Functionality and Result Set Categories Supported in JDBC 2.0
	Oracle JDBC Implementation Overview for Result Set Enhancements

	Creating Scrollable or Updatable Result Sets
	Specifying Result Set Scrollability and Updatability
	Result Set Limitations and Downgrade Rules

	Positioning and Processing in Scrollable Result Sets
	Positioning in a Scrollable Result Set
	Processing a Scrollable Result Set

	Updating Result Sets
	Performing a DELETE Operation in a Result Set
	Performing an UPDATE Operation in a Result Set
	Performing an INSERT Operation in a Result Set
	Update Conflicts

	Fetch Size
	Setting the Fetch Size
	Use of Standard Fetch Size versus Oracle Row-Prefetch Setting

	Refetching Rows
	Seeing Database Changes Made Internally and Externally
	Seeing Internal Changes
	Seeing External Changes
	Visibility versus Detection of External Changes
	Summary of Visibility of Internal and External Changes
	Oracle Implementation of Scroll-Sensitive Result Sets

	Summary of New Methods for Result Set Enhancements
	Modified Connection Methods
	New Result Set Methods
	New Statement Methods
	New Database Meta Data Methods

	12 Performance Extensions
	Update Batching
	Overview of Update Batching Models
	Oracle Update Batching
	Standard Update Batching

	Additional Oracle Performance Extensions
	Oracle Row Prefetching
	Defining Column Types
	DatabaseMetaData TABLE_REMARKS Reporting

	13 Connection Pooling and Caching
	Data Sources
	A Brief Overview of Oracle Data Source Support for JNDI
	Data Source Features and Properties
	Creating a Data Source Instance and Connecting (without JNDI)
	Creating a Data Source Instance, Registering with JNDI, and Connecting
	Logging and Tracing

	Connection Pooling
	Connection Pooling Concepts
	Connection Pool Data Source Interface and Oracle Implementation
	Pooled Connection Interface and Oracle Implementation
	Creating a Connection Pool Data Source and Connecting

	Connection Caching
	Overview of Connection Caching
	Typical Steps in Using a Connection Cache
	Oracle Connection Cache Specification: OracleConnectionCache Interface
	Oracle Connection Cache Implementation: OracleConnectionCacheImpl Class
	Oracle Connection Event Listener: OracleConnectionEventListener Class

	14 Distributed Transactions
	Overview
	Distributed Transaction Components and Scenarios
	Distributed Transaction Concepts
	Oracle XA Packages

	XA Components
	XA Data Source Interface and Oracle Implementation
	XA Connection Interface and Oracle Implementation
	XA Resource Interface and Oracle Implementation
	XA Resource Method Functionality and Input Parameters
	XA ID Interface and Oracle Implementation

	Error Handling and Optimizations
	XA Exception Classes and Methods
	Mapping between Oracle Errors and XA Errors
	XA Error Handling
	Oracle XA Optimizations

	Implementing a Distributed Transaction
	Summary of Imports for Oracle XA
	Oracle XA Code Sample

	15 Advanced Topics
	JDBC and NLS
	How JDBC Drivers Perform NLS Conversions
	NLS Support and Object Types
	CHAR and VARCHAR2 Data Size Restrictions with the Thin Driver

	JDBC Client-Side Security Features
	JDBC Support for Oracle Advanced Security
	JDBC Support for Login Authentication
	JDBC Support for Data Encryption and Integrity

	JDBC in Applets
	Connecting to the Database through the Applet
	Connecting to a Database on a Different Host Than the Web Server
	Using Applets with Firewalls
	Packaging Applets
	Specifying an Applet in an HTML Page

	JDBC in the Server: the Server-Side Internal Driver
	Connecting to the Database with the Server-Side Internal Driver
	Exception-Handling Extensions for the Server-Side Internal Driver
	Session and Transaction Context for the Server-Side Internal Driver
	Testing JDBC on the Server
	Loading an Application into the Server
	Server-Side Character Set Conversion of oracle.sql.CHAR Data

	16 Coding Tips and Troubleshooting
	JDBC and Multithreading
	Performance Optimization
	Disabling Auto-Commit Mode
	Standard Fetch Size and Oracle Row Prefetching
	Standard and Oracle Update Batching

	Common Problems
	Space Padding for CHAR Columns Defined as OUT or IN/OUT Variables
	Memory Leaks and Running Out of Cursors
	Boolean Parameters in PL/SQL Stored Procedures
	Opening More Than 16 OCI Connections for a Process

	Basic Debugging Procedures
	Net8 Tracing to Trap Network Events
	Third Party Debugging Tools

	Transaction Isolation Levels and Access Modes

	17 Sample Applications
	Basic Samples
	Listing Names from the EMP Table—Employee.java
	Inserting Names into the EMP Table—InsertExample.java

	Samples of PL/SQL in JDBC
	Calling PL/SQL Stored Procedures—PLSQLExample.java
	Executing Procedures in PL/SQL Blocks—PLSQL.java

	Intermediate Samples
	Streams—StreamExample.java
	Multithreading—JdbcMTSample.java

	Samples for JDBC 2.0 Types
	BLOBs and CLOBs—LobExample.java
	Weakly Typed Objects—PersonObject.java
	Weakly Typed Object References—StudentRef.java
	Weakly Typed Arrays—ArrayExample.java

	Samples for Oracle Type Extensions
	REF CURSORs—RefCursorExample.java
	BFILEs—FileExample.java

	Samples for Custom Object Classes
	SQLData Implementation—SQLDataExample.java
	CustomDatum Implementation—CustomDatumExample.java

	JDBC 2.0 Result Set Enhancement Samples
	Positioning in a Result Set—ResultSet2.java
	Inserting and Deleting Rows in a Result Set—ResultSet3.java
	Updating Rows in a Result Set—ResultSet4.java
	Scroll-Sensitive Result Set—ResultSet5.java
	Refetching Rows in a Result Set—ResultSet6.java

	Performance Enhancement Samples
	Standard Update Batching—BatchUpdates.java
	Oracle Update Batching with Implicit Execution—SetExecuteBatch.java
	Oracle Update Batching with Explicit Execution—SendBatch.java
	Oracle Row Prefetching Specified in Connection—RowPrefetch_connection.java
	Oracle Row Prefetching Specified in Statement—RowPrefetch_statement.java
	Oracle Column Type Definitions—DefineColumnType.java

	Samples for Connection Pooling and Distributed Transactions
	Data Source without JNDI—DataSource.java
	Data Source with JNDI—DataSourceJNDI.java
	Pooled Connection—PooledConnection.java
	Oracle Connection Cache (dynamic)—CCache1.java
	Oracle Connection Cache ("fixed with no wait")—CCache2.java
	XA with Suspend and Resume—XA2.java
	XA with Two-Phase Commit Operation—XA4.java

	Sample Applet
	HTML Page—JdbcApplet.htm
	Applet Code—JdbcApplet.java

	JDBC versus SQLJ Sample Code
	SQL Program to Create Tables and Objects
	JDBC Version of the Sample Code
	SQLJ Version of the Sample Code

	18 Reference Information
	Valid SQL-JDBC Datatype Mappings
	Supported SQL and PL/SQL Datatypes
	Embedded SQL92 Syntax
	Time and Date Literals
	Scalar Functions
	LIKE Escape Characters
	Outer Joins
	Function Call Syntax
	SQL92 to SQL Syntax Example

	Oracle JDBC Notes and Limitations
	CursorName
	SQL92 Outer Join Escapes
	PL/SQL TABLE, BOOLEAN and RECORD Types
	IEEE 754 Floating Point Compliance
	Catalog Arguments to DatabaseMetaData Calls
	SQLWarning Class
	Bind by Name

	Related Information
	Oracle JDBC Drivers and SQLJ
	Java Technology

	A JDBC Error Messages
	General Structure of JDBC Error Messages
	General JDBC Messages
	JDBC Messages Sorted by ORA Number
	JDBC Messages Sorted Alphabetically

	TTC Messages
	TTC Messages Sorted by ORA Number
	TTC Messages Sorted Alphabetically

	Index

