
Oracle Call Interface

Programmer’s Guide, Volumes 1 & 2

Release 8.0

December 1997

Part No. A58234-01

 Oracle Call Interface Programmer’s Guide

Part No. A58234-01

Release 8.0

Copyright © 1997, Oracle Corporation. All rights reserved.

Primary Author: Phil Locke

Contributors: John Bellemore, John Boonleungtomnu, Sashi Chandrasekaran, Debashish Chatterjee,
Ernest Chen, Calvin Cheng, Luxi Chidambaran, Diana Foch-Lorentz, Sreenivas Gollapudi, Brajesh Goyal,
Radhakrishna Hari, Don Herkimer, Amit Jasuja, Sanjay Kaluskar, Kai Korot, Susan Kotsovolos,
Srinath Krishnaswamy, Ramkumar Krishnan, Sanjeev Kumar, Thomas Kurian, Paul Lane, Shoaib Lari,
Chon Lei, Nancy Liu, Valarie Moore, Tin Nguyen, Denise Oertel, Rosanne Park, Jacqui Pons,
Den Raphaely, Anindo Roy, Tim Smith, Ekrem Soylemez, Ashwini Surpur, Sudheer Thakur,
Alan Thiessen, Peter Vasterd, Randall Whitman, Joyo Wijaya, Allen Zhao

This book is dedicated to the memory of Denise Elizabeth Oertel.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright patent and other intellectual property law. Reverse
engineering of the Programs is prohibited.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be licensee's responsibility to take all appropriate fail-safe,
back up, redundancy and other measures to ensure the safe use of such applications if the Programs
are used for such purposes, and Oracle disclaims liability for any damages caused by such use of the
Programs.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. No part of this document may be reproduced or transmitted in any form or by any
means, electronic or mechanical, for any purpose, without the express written permission of Oracle
Corporation.

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is
delivered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are 'commercial
computer software' and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are 'restricted computer software' and use, duplication and
disclosure of the Programs shall be subject to the restrictions in FAR 52..227-14, Rights in Data -- General,
including Alternate III (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle, SQL*Forms, SQL*Net, and SQL*Plus are registered trademarks of Oracle Corporation,
 Redwood Shores, California.

Oracle Call Interface, Oracle7, Oracle7 Server, Oracle8, Oracle Forms, PL/SQL, Pro*C, Pro*C/C++,
Pro*COBOL, Net8, and Trusted Oracle are trademarks of Oracle Corporation, Redwood Shores,
 California.

All other products or company names are used for identification purposes only, and may be trademarks
of their respective owners.

Contents

Send Us Your Comments .. xxvii

Preface .. xxix

Purpose of this Guide .. xxx
Audience... xxx
Feature Coverage and Availability ... xxxi
How to Use this Guide.. xxxi
How this Guide Is Organized .. xxxii
Conventions Used in this Guide ... xxxv
Your Comments Are Welcome... xxxvi

Part I Basic OCI Concepts

1 Introduction and New Features

The Oracle Call Interface .. 1-2
SQL Statements ... 1-4

Data Definition Language ... 1-4
Control Statements ... 1-5
 iii

Data Manipulation Language ... 1-5
Queries ... 1-5
PL/SQL .. 1-6
Embedded SQL ... 1-7

Special OCI/SQL Terms ... 1-8
Object Support in the OCI .. 1-8
Parts of the OCI ... 1-10
Release 8.0 New Features... 1-10
Obsolescent and Obsolete OCI Calls.. 1-11
Compiling and Linking ... 1-11

2 OCI Programming Basics

Overview... 2-2
OCI Program Structure .. 2-3
OCI Data Structures ... 2-5
Handles ... 2-6

Allocating and Freeing Handles... 2-7
Environment Handle.. 2-8
Error Handle.. 2-8
Service Context and Associated Handles.. 2-8
Statement Handle, Bind Handle, and Define Handle ... 2-10
Describe Handle.. 2-10
Complex Object Retrieval Handle.. 2-10
Security Handle... 2-10
Handle Attributes ... 2-11
User Memory Allocation ... 2-12

Descriptors and Locators ... 2-12
Snapshot Descriptor ... 2-13
LOB/FILE Datatype Locator... 2-13
Parameter Descriptor ... 2-14
ROWID Descriptor ... 2-15
Complex Object Descriptor ... 2-15
Advanced Queueing Descriptors ... 2-15
User Memory Allocation ... 2-15

OCI Programming Steps.. 2-16
 iv

Initialization, Connection, and Session Creation... 2-17
Initialize an OCI Process.. 2-17
Allocate Handles and Descriptors ... 2-18
Application Initialization, Connection, and Session Creation ... 2-18

Understanding Multiple Connections and Handles ... 2-21
A Connection Example .. 2-21

Processing SQL Statements .. 2-23
Commit or Rollback ... 2-23
Terminating the Application .. 2-24
Error Handling .. 2-25

Functions Returning Other Values .. 2-27
Additional Coding Guidelines .. 2-27

Parameter Types ... 2-27
Nulls ... 2-28
Indicator Variables ... 2-29
Canceling Calls.. 2-31
Positioned Updates and Deletes... 2-31
Application Linking ... 2-32

Using PL/SQL in an OCI Program... 2-32

3 Datatypes

Oracle Datatypes ... 3-2
Internal Datatype Codes.. 3-4
External Datatype Codes ... 3-4

Internal Datatypes .. 3-5
LONG, RAW, LONG RAW, VARCHAR2.. 3-5
Character Strings and Byte Arrays... 3-6

External Datatypes.. 3-7
VARCHAR2 .. 3-9
NUMBER ... 3-10
INTEGER ... 3-11
FLOAT.. 3-11
STRING .. 3-12
VARNUM .. 3-13
LONG ... 3-13
 v

VARCHAR... 3-13
ROWID ... 3-14
DATE .. 3-14
RAW.. 3-15
VARRAW... 3-15
LONG RAW... 3-15
UNSIGNED.. 3-16
LONG VARCHAR.. 3-16
LONG VARRAW.. 3-16
CHAR ... 3-16
CHARZ... 3-17
MLSLABEL .. 3-18

New OCI 8.0 External Datatypes.. 3-18
NAMED DATA TYPE.. 3-18
REF.. 3-19
LOB ... 3-19
New C Datatype Mappings... 3-21

Data Conversions .. 3-22
Typecodes ... 3-24

Relationship Between SQLT and OCI_TYPECODE Values ... 3-25
Definitions in oratypes.h ... 3-27

4 SQL Statement Processing

Overview... 4-2
Processing SQL Statements... 4-2
Preparing Statements ... 4-4

Using Prepared Statements on Multiple Servers ... 4-5
Binding.. 4-5
Executing Statements ... 4-6

Execution Snapshots... 4-7
Execution Modes... 4-7

Describing Select-List Items ... 4-8
Implicit Describe ... 4-9
Explicit Describe of Queries .. 4-10

Defining .. 4-11
 vi

Fetching Results .. 4-12
Fetching LOB Data ... 4-12
Setting Prefetch Count ... 4-12

5 Binding and Defining

Binding ... 5-2
Named Binds and Positional Binds ... 5-4
OCI Array Interface.. 5-4
Binding Placeholders in PL/SQL... 5-5
Steps Used in Binding.. 5-6
PL/SQL Example.. 5-7
Advanced Binds.. 5-9

Advanced Bind Operations... 5-9
Static Array Binds... 5-10
Named Data Type Binds ... 5-10
Binding REFs ... 5-10
Binding LOBs .. 5-10
Binding in OCI_DATA_AT_EXEC Mode ... 5-11
Binding Ref Cursor Variables ... 5-12
Summary of Bind Information.. 5-12

Defining .. 5-13
Steps Used in Defining .. 5-14
Advanced Defines .. 5-15

Advanced Define Operations ... 5-16
Defining Named Data Type Output Variables .. 5-16
Defining REF Output Variables.. 5-16
Defining LOB Output Variables ... 5-16
Defining PL/SQL Output Variables .. 5-17
Defining For a Piecewise Fetch... 5-17
Defining Arrays of Structures... 5-17

Arrays of Structures.. 5-17
Skip Parameters .. 5-18
OCI Calls Used with Arrays of Structures.. 5-20
Arrays of Structures and Indicator Variables... 5-20

DML with RETURNING Clause ... 5-21
 vii

Using DML with RETURNING Clause... 5-21
Binding RETURNING...INTO variables.. 5-22
Error Handling.. 5-23
DML with RETURNING REF...INTO clause.. 5-23
Additional Notes About Callbacks .. 5-25

NCHAR and Character Conversion Issues .. 5-25
NCHAR Issues .. 5-25
OCI_ATTR_MAXDATA_SIZE Attribute .. 5-26
Character Count Attribute... 5-26

PL/SQL REF CURSORs and Nested Tables... 5-27

6 Describing Schema Metadata

Overview... 6-2
Using OCIDescribeAny() .. 6-2

Restrictions... 6-3
Note on Datatype Codes.. 6-4
Note on Describing Types ... 6-4
Note on OCI_ATTR_LIST_ARGUMENTS.. 6-5
Parameter Attributes .. 6-5
Table/View Attributes... 6-7
Procedure/Function Attributes .. 6-7
Package Attributes.. 6-8
Type Attributes ... 6-9
Type Attribute Attributes .. 6-10
Type Method Attributes .. 6-12
Collection Attributes .. 6-13
Synonym Attributes ... 6-14
Sequence Attributes.. 6-15
Column Attributes.. 6-15
Argument/Result Attributes .. 6-17
List Attributes.. 6-19

Examples ... 6-20
Retrieving column data types for a table .. 6-20
Describing the stored procedure .. 6-21
 viii

Retrieving attributes of an object type... 6-23
Retrieving the collection element’s data type of a named collection type 6-25

7 OCI Programming Advanced Topics

Overview .. 7-2
Transactions ... 7-3

Levels of Transactional Complexity .. 7-3
Transaction Examples .. 7-9
Related Initialization Parameters ... 7-10

User Authentication and Password Management .. 7-11
Authentication .. 7-11
Password Management ... 7-12

Thread Safety... 7-13
Advantages of OCI Thread Safety ... 7-13
Thread Safety and Three-Tier Architectures .. 7-13
Basic Concepts of Multi-threaded Development ... 7-14
Implementing Thread Safety with OCI 8.0... 7-14

Run Time Data Allocation and Piecewise Operations .. 7-16
Providing INSERT or UPDATE Data at Run Time ... 7-18
Piecewise Operations With PL/SQL ... 7-20
Providing FETCH Information at Run Time .. 7-20
Additional Information About Piecewise Operations with No Callbacks......................... 7-23

LOB and FILE Operations ... 7-24
LOBs and LOB Locators .. 7-24
FILEs... 7-26
Creating and Modifying Internal LOBs .. 7-26
Associating a FILE in a Table with an OS File.. 7-27
Writing to a LOB Attribute of an Object ... 7-27
Transient Objects with LOB Attributes ... 7-27
LOB Buffering ... 7-28
LOB/FILE Functions.. 7-28
Server Roundtrips for LOB Functions ... 7-31
LOB Read/Write Callbacks... 7-31
The Callback Interface for Streaming .. 7-31
Reading LOBs using Callbacks... 7-32
 ix

Writing LOBs using Callbacks.. 7-34
OCI Callbacks From External Procedures .. 7-35
Application Failover Callbacks .. 7-36

Failover Callback Overview.. 7-36
Failover Callback Structure and Parameters .. 7-36
Failover Callback Registration.. 7-37
Failover Callback Example.. 7-38

OCI and Advanced Queueing .. 7-40
OCI Advanced Queueing Functions.. 7-40
OCI Advanced Queueing Descriptors... 7-40
Advanced Queueing in OCI vs. PL/SQL.. 7-41

Writing Oracle Security Services Applications ... 7-43

Part II OCI Object Concepts

8 OCI Object-Relational Programming

Chapter Overview ... 8-2
OCI Object Overview... 8-3
Working with Objects in the OCI .. 8-4

 Basic Object Program Structure ... 8-4
Persistent Objects, Transient Objects, and Values ... 8-5

Developing an OCI Object Application... 8-8
Representing Objects in C Applications.. 8-8
Initializing Environment and Object Cache.. 8-10
Making Database Connections ... 8-10
Retrieving an Object Reference from the Server .. 8-11
Pinning an Object.. 8-12
Manipulating Object Attributes.. 8-13
Marking Objects and Flushing Changes ... 8-14
Fetching Embedded Objects.. 8-15
Object Meta-Attributes... 8-17
Complex Object Retrieval .. 8-21
COR Prefetching ... 8-25
Pin Count and Unpinning ... 8-28
Nullness.. 8-28
 x

Creating, Freeing, and Copying Objects ... 8-31
Object Reference and Type Reference ... 8-32
Error Handling in Object Applications ... 8-32

9 Object-Relational Datatypes

Overview .. 9-2
Mapping Oracle8 Datatypes to C... 9-3

OCI Type Mapping Methodology.. 9-5
Manipulating C Datatypes With OCI ... 9-5

Precision of Oracle Number Operations ... 9-7
Date (OCIDate).. 9-7

Date Conversion Functions... 9-7
Date Assignment and Retrieval Functions ... 9-8
Date Arithmetic and Comparison Functions.. 9-8
Date Information Accessor Functions ... 9-8
Date Validity Checking Functions ... 9-8
Date Example .. 9-9

Number (OCINumber) .. 9-10
Number Arithmetic Functions.. 9-11
Number Conversion Functions .. 9-11
Exponential and Logarithmic Functions... 9-12
Trigonometric Functions ... 9-12
Number Assignment and Comparison Functions... 9-12
Number Example.. 9-13

Fixed or Variable-Length String (OCIString) .. 9-15
String Functions .. 9-15
String Example.. 9-15

Raw (OCIRaw) .. 9-16
Raw Functions... 9-16
Raw Example... 9-17

Collections (OCITable, OCIArray, OCIColl, OCIIter)... 9-17
Generic Collection Functions .. 9-17
Collection Data Manipulation Functions .. 9-18
Collection Scanning Functions ... 9-19
Varray/Collection Iterator Example.. 9-19
 xi

Nested Table Manipulation Functions .. 9-20
REF (OCIRef) ... 9-22

REF Manipulation Functions .. 9-22
REF Example ... 9-22

Object Type Information Storage and Access ... 9-23
Descriptor Objects... 9-23

10 Binding and Defining in Object Applications

Binding.. 10-2
Named Data Type Binds.. 10-2
Binding REFs ... 10-3
Additional Information for Named Data Type and REF Binds... 10-3

Defining .. 10-4
Defining Named Data Type Output Variables... 10-4
Defining REF Output Variables.. 10-4
Additional Information for Object and REF Defines, and PL/SQL OUT Binds 10-5

Binding And Defining Oracle8 C Datatypes ... 10-6
Bind and Define Examples .. 10-8
3 Salary Update Examples... 10-10

SQLT_NTY Bind/Define Example ... 10-13
Bind Example .. 10-13
Define Example ... 10-14

11 Object Cache and Object Navigation

Chapter Overview ... 11-2
The Object Cache and Memory Management... 11-2

Cache Consistency and Coherency .. 11-4
Object Cache Parameters ... 11-5
Object Cache Operations ... 11-6
Operations for Loading and Removing Object Copies ... 11-6
Operations for Making Changes to Object Copies .. 11-9
Operations for Synchronizing Object Copies with Server.. 11-10
Other Operations .. 11-12
Commit and Rollback in Object Applications .. 11-13
Object Duration... 11-13
 xii

Memory Layout of an Instance... 11-15
Object Navigation... 11-16

Simple Object Navigation.. 11-16
OCI Navigational Functions... 11-18

Pin/Unpin/Free Functions ... 11-18
Flush and Refresh Functions... 11-19
Mark and Unmark Functions.. 11-19
Object Meta-Attribute Accessor Functions ... 11-19
Other Functions .. 11-20

12 Using the Object Type Translator

OTT Overview... 12-2
Using the Object Type Translator .. 12-2

Creating Types in the Database.. 12-4
Invoking the OTT ... 12-5

The OTT Command Line .. 12-6
OTT ... 12-6
userid.. 12-6
intype.. 12-6
outtype ... 12-6
code... 12-7
hfile ... 12-7
initfile.. 12-7
initfunc ... 12-8

The Intype File .. 12-8
OTT Datatype Mappings .. 12-9

Null Indicator Structs... 12-15
The Outtype File ... 12-16
Using the OTT with OCI Applications .. 12-18

Accessing and Manipulating Objects with OCI... 12-19
Calling the Initialization Function ... 12-20
Tasks of the Initialization Function.. 12-22

OTT Reference .. 12-22
OTT Command Line Syntax ... 12-23
OTT Parameters .. 12-24
 xiii

Where OTT Parameters Can Appear ... 12-28
Structure of the Intype File.. 12-29
Nested #include File Generation .. 12-31
SCHEMA_NAMES Usage ... 12-33
Default Name Mapping ... 12-35
Restrictions... 12-37

Part III OCI Reference

13 OCI Relational Functions

Introduction ... 13-2
OCI Quick Reference ... 13-3
Calling OCI Functions ... 13-6

Server Roundtrips for LOB Functions ... 13-6
The OCI Relational Functions.. 13-7
OCIAQDeq() .. 13-8
OCIAQEnq() .. 13-11
OCIAttrGet() .. 13-23
OCIAttrSet() ... 13-25
OCIBindArrayOfStruct() ... 13-28
OCIBindByName() ... 13-30
OCIBindByPos() .. 13-34
OCIBindDynamic()... 13-38
OCIBindObject() ... 13-42
OCIBreak() ... 13-45
OCIDefineArrayOfStruct().. 13-46
OCIDefineByPos()... 13-48
OCIDefineDynamic() ... 13-52
OCIDefineObject().. 13-55
OCIDescribeAny() .. 13-57
OCIDescriptorAlloc() ... 13-60
OCIDescriptorFree() ... 13-62
OCIEnvInit() .. 13-63
OCIErrorGet() .. 13-65
OCIHandleAlloc()... 13-68
 xiv

OCIHandleFree()... 13-70
OCIInitialize() ... 13-72
OCILdaToSvcCtx() .. 13-75
OCILobAppend() .. 13-76
OCILobAssign() .. 13-78
OCILobCharSetForm()... 13-80
OCILobCharSetId() .. 13-81
OCILobCopy() ... 13-82
OCILobDisableBuffering() ... 13-84
OCILobEnableBuffering() .. 13-85
OCILobErase() ... 13-86
OCILobFileClose().. 13-88
OCILobFileCloseAll() .. 13-89
OCILobFileExists() ... 13-90
OCILobFileGetName() .. 13-91
OCILobFileIsOpen() .. 13-93
OCILobFileOpen().. 13-95
OCILobFileSetName() ... 13-96
OCILobFlushBuffer() ... 13-98
OCILobGetLength() ... 13-100
OCILobIsEqual()... 13-102
OCILobLoadFromFile() ... 13-103
OCILobLocatorIsInit() ... 13-105
OCILobRead() ... 13-107
OCILobTrim() .. 13-111
OCILobWrite() ... 13-112
OCILogoff().. 13-116
OCILogon() .. 13-117
OCIParamGet().. 13-119
OCIParamSet()... 13-121
OCIPasswordChange() .. 13-123
OCIServerAttach() .. 13-125
OCIServerDetach() ... 13-127
OCIServerVersion() .. 13-128
OCISessionBegin() ... 13-129
 xv

OCISessionEnd().. 13-132
OCIStmtExecute() .. 13-134
OCIStmtFetch()... 13-137
OCIStmtGetBindInfo() ... 13-139
OCIStmtGetPieceInfo() .. 13-141
OCIStmtPrepare() .. 13-143
OCIStmtSetPieceInfo() ... 13-145
OCISvcCtxToLda() ... 13-147
OCITransCommit() .. 13-149
OCITransDetach() .. 13-152
OCITransForget().. 13-154
OCITransPrepare() ... 13-155
OCITransRollback()... 13-156
OCITransStart() .. 13-157

14 OCI Navigation and Type Functions

Introduction ... 14-2
Object Types and Lifetimes .. 14-2
Terminology ... 14-4
Navigational Function Return Values... 14-4
Navigational Function Error Codes ... 14-5
Server Roundtrips for Cache and Object Functions .. 14-7
OCI Navigational Functions Quick Reference ... 14-8
The OCI Navigational Functions ... 14-10
OCICacheFlush()... 14-11
OCICacheFree() ... 14-13
OCICacheRefresh()... 14-14
OCICacheUnmark() .. 14-16
OCICacheUnpin() ... 14-17
OCIObjectArrayPin() ... 14-18
OCIObjectCopy() .. 14-20
OCIObjectExists() ... 14-22
OCIObjectFlush().. 14-23
OCIObjectFree() .. 14-24
OCIObjectGetAttr() .. 14-26
 xvi

OCIObjectGetInd()... 14-28
OCIObjectGetObjectRef() .. 14-29
OCIObjectGetProperty() ... 14-30
OCIObjectGetTypeRef().. 14-34
OCIObjectIsDirty()... 14-35
OCIObjectIsLocked() ... 14-36
OCIObjectLock()... 14-37
OCIObjectMarkDelete().. 14-38
OCIObjectMarkDeleteByRef() .. 14-40
OCIObjectMarkUpdate() .. 14-41
OCIObjectNew() ... 14-43
OCIObjectPin() ... 14-46
OCIObjectPinCountReset() .. 14-49
OCIObjectPinTable() ... 14-51
OCIObjectRefresh() ... 14-53
OCIObjectSetAttr()... 14-55
OCIObjectUnmark()... 14-57
OCIObjectUnmarkByRef() ... 14-58
OCIObjectUnpin() .. 14-59
OCITypeArrayByName()... 14-61
OCITypeArrayByRef() ... 14-64
OCITypeByName() ... 14-66
OCITypeByRef().. 14-69

15 OCI Datatype Mapping and Manipulation Functions

Introduction ... 15-2
Datatype Mapping and Manipulation Function Return Values ... 15-2
Functions Returning Other Values.. 15-3
Server Roundtrips for Datatype Mapping and Manipulation Functions.............................. 15-3
OCI Datatype Mapping Functions Quick Reference .. 15-4
OCICollAppend() ... 15-9
OCICollAssign() ... 15-11
OCICollAssignElem() .. 15-13
OCICollGetElem() .. 15-15
OCICollMax() .. 15-18
 xvii

OCICollSize()... 15-19
OCICollTrim().. 15-21
OCIDateAddDays() .. 15-22
OCIDateAddMonths() ... 15-23
OCIDateAssign()... 15-24
OCIDateCheck() .. 15-25
OCIDateCompare()... 15-27
OCIDateDaysBetween() .. 15-28
OCIDateFromText() .. 15-29
OCIDateGetDate() .. 15-31
OCIDateGetTime() ... 15-32
OCIDateLastDay() .. 15-33
OCIDateNextDay() ... 15-34
OCIDateSetDate() ... 15-36
OCIDateSetTime() .. 15-37
OCIDateSysDate() .. 15-38
OCIDateToText() ... 15-39
OCIDateZoneToZone() .. 15-41
OCIIterCreate() .. 15-43
OCIIterDelete().. 15-45
OCIIterGetCurrent()... 15-46
OCIIterInit() ... 15-47
OCIIterNext() ... 15-48
OCIIterPrev() ... 15-50
OCINumberAbs() ... 15-52
OCINumberAdd()... 15-53
OCINumberArcCos() ... 15-54
OCINumberArcSin() .. 15-55
OCINumberArcTan().. 15-56
OCINumberArcTan2().. 15-57
OCINumberAssign() .. 15-58
OCINumberCeil() ... 15-59
OCINumberCmp() .. 15-60
OCINumberCos() .. 15-61
OCINumberDiv() .. 15-62
 xviii

OCINumberExp().. 15-63
OCINumberFloor() ... 15-64
OCINumberFromInt().. 15-65
OCINumberFromReal()... 15-67
OCINumberFromText() ... 15-68
OCINumberHypCos().. 15-70
OCINumberHypSin() .. 15-71
OCINumberHypTan() .. 15-72
OCINumberIntPower().. 15-73
OCINumberIsZero()... 15-74
OCINumberLn().. 15-75
OCINumberLog().. 15-76
OCINumberMod() .. 15-77
OCINumberMul()... 15-78
OCINumberNeg() ... 15-79
OCINumberPower() ... 15-80
OCINumberRound() .. 15-81
OCINumberSetZero() .. 15-82
OCINumberSign() .. 15-83
OCINumberSin() .. 15-84
OCINumberSqrt()... 15-85
OCINumberSub() ... 15-86
OCINumberTan() .. 15-87
OCINumberToInt()... 15-88
OCINumberToReal() .. 15-90
OCINumberToText()... 15-91
OCINumberTrunc() .. 15-93
OCIRawAllocSize() .. 15-94
OCIRawAssignBytes() ... 15-95
OCIRawAssignRaw()... 15-96
OCIRawPtr() .. 15-97
OCIRawResize().. 15-98
OCIRawSize() .. 15-99
OCIRefAssign()... 15-100
OCIRefClear().. 15-101
 xix

OCIRefFromHex().. 15-102
OCIRefHexSize().. 15-104
OCIRefIsEqual()... 15-105
OCIRefIsNull() ... 15-106
OCIRefToHex() ... 15-107
OCIStringAllocSize() .. 15-109
OCIStringAssign() ... 15-110
OCIStringAssignText().. 15-111
OCIStringPtr() .. 15-112
OCIStringResize().. 15-113
OCIStringSize() .. 15-114
OCITableDelete() ... 15-115
OCITableExists() .. 15-116
OCITableFirst() ... 15-117
OCITableLast().. 15-118
OCITableNext() .. 15-119
OCITablePrev() ... 15-121
OCITableSize() ... 15-123

16 OCI External Procedure Functions

Introduction ... 16-2
The OCI External Procedure Functions .. 16-3
OCIExtProcAllocCallMemory() ... 16-4
OCIExtProcRaiseExcp().. 16-5
OCIExtProcRaiseExcpWithMsg()... 16-6
OCIExtProcGetEnv()... 16-8

Part IV Appendices

A Upgrading Release 7.x OCI Applications to Release 8.0

Compatibility and Upgrade Overview ... A-2
Obsolescent OCI Routines .. A-2
Obsolete OCI Routines .. A-4
Compatibility... A-4
 xx

Upgrading... A-6
Application Linking Issues... A-7

Non-deferred linking ... A-7
Single-task linking .. A-9

B Handle and Descriptor Attributes

Conventions ... B-2
Environment Handle Attributes .. B-3

OCI_ATTR_CACHE_MAX_SIZE .. B-3
OCI_ATTR_CACHE_OPT_SIZE.. B-3
OCI_ATTR_OBJECT .. B-3
OCI_ATTR_FNCODE .. B-4
OCI_ATTR_PINOPTION .. B-4
OCI_ATTR_ALLOC_DURATION... B-4
OCI_ATTR_PIN_DURATION.. B-6

Service Context Handle Attributes.. B-7
OCI_ATTR_SQLCODE.. B-7
OCI_ATTR_ENV .. B-7
OCI_ATTR_SERVER.. B-7
OCI_ATTR_SESSION... B-9
OCI_ATTR_TRANS ... B-9
OCI_ATTR_IN_V8_MODE ... B-9

Server Handle Attributes .. B-11
OCI_ATTR_ENV .. B-11
OCI_ATTR_FNCODE .. B-11
OCI_ATTR_EXTERNAL_NAME... B-11
OCI_ATTR_INTERNAL_NAME ... B-12
OCI_ATTR_IN_V8_MODE ... B-12
OCI_ATTR_FOCBK.. B-12

User Session Handle Attributes... B-13
OCI_ATTR_USERNAME .. B-13
OCI_ATTR_PASSWORD .. B-13

Transaction Handle Attributes ... B-14
OCI_ATTR_TRANS_NAME... B-14
OCI_ATTR_XID.. B-14
 xxi

Statement Handle Attributes ... B-15
OCI_ATTR_FNCODE ... B-15
OCI_ATTR_ROW_COUNT.. B-15
OCI_ATTR_SQLFNCODE.. B-15
OCI_ATTR_ENV.. B-16
OCI_ATTR_STMT_TYPE.. B-16
OCI_ATTR_ROWID .. B-17
OCI_ATTR_PARAM_COUNT .. B-17
OCI_ATTR_PREFETCH_ROWS.. B-18
OCI_ATTR_PREFETCH_MEMORY... B-18

Bind Handle Attributes .. B-19
OCI_ATTR_FNCODE ... B-19
OCI_ATTR_CHAR_COUNT ... B-19
OCI_ATTR_CHARSET_ID... B-19
OCI_ATTR_CHARSET_FORM.. B-20
OCI_ATTR_MAXDATA_SIZE .. B-20
OCI_ATTR_PDSCL ... B-20
OCI_ATTR_PDFMT .. B-21
OCI_ATTR_ROWS_RETURNED .. B-21

Define Handle Attributes ... B-22
OCI_ATTR_FNCODE ... B-22
OCI_ATTR_CHAR_COUNT ... B-22
OCI_ATTR_CHARSET_ID... B-22
OCI_ATTR_CHARSET_FORM.. B-23
OCI_ATTR_PDSCL ... B-23
OCI_ATTR_PDFMT .. B-23

Describe Handle Attributes ... B-24
OCI_ATTR_PARAM_COUNT .. B-24

Parameter Descriptor Attributes ... B-24
LOB Locator Attributes ... B-25

OCI_ATTR_LOBEMPTY .. B-25
Complex Object Attributes .. B-26

Complex Object Retrieval Handle Attributes.. B-26
OCI_ATTR_COMPLEXOBJECT_LEVEL .. B-26
OCI_ATTR_COMPLEXOBJECT_COLL_OUTOFLINE .. B-26
 xxii

Complex Object Retrieval Descriptor Attributes ... B-27
OCI_ATTR_COMPLEXOBJECTCOMP_TYPE ... B-27
OCI_ATTR_COMPLEXOBJECTCOMP_TYPE_LEVEL... B-27

Advanced Queueing Descriptor Attributes... B-28
OCIAQEnqOptions Descriptor Attributes.. B-28

OCI_ATTR_RELATIVE_MSGID... B-28
OCI_ATTR_SEQUENCE_DEVIATION... B-28
OCI_ATTR_VISIBILITY ... B-29

OCIAQDeqOptions Descriptor Attributes ... B-29
OCI_ATTR_CONSUMER_NAME.. B-29
OCI_ATTR_CORRELATION .. B-30
OCI_ATTR_DEQ_MODE... B-30
OCI_ATTR_DEQ_MSGID.. B-31
OCI_ATTR_NAVIGATION... B-31
OCI_ATTR_VISIBILITY ... B-32
OCI_ATTR_WAIT... B-32

OCIAQMsgProperties Descriptor Attributes ... B-33
OCI_ATTR_ATTEMPTS... B-33
OCI_ATTR_CORRELATION .. B-33
OCI_ATTR_DELAY .. B-33
OCI_ATTR_ENQ_TIME... B-34
OCI_ATTR_EXCEPTION_QUEUE... B-34
OCI_ATTR_EXPIRATION... B-35
OCI_ATTR_MSG_STATE .. B-35
OCI_ATTR_PRIORITY ... B-36
OCI_ATTR_RECIPIENT_LIST .. B-36

OCIAQAgent Descriptor Attributes .. B-37
OCI_ATTR_AGENT_ADDRESS... B-37
OCI_ATTR_AGENT_NAME... B-37
OCI_ATTR_AGENT_PROTOCOL ... B-37
 xxiii

C Oracle Reserved Words, Keywords and Namespaces

Oracle Reserved Words and Keywords ... C-2
PL/SQL Reserved Words... C-10
Oracle Reserved Namespaces .. C-11

D Code Examples

Example 1, SQL Processing .. D-2
Example 2, Object Retrieval ... D-11
Example 3, DML with RETURNING Clause.. D-25
Example 4, Describing an Object .. D-55
Example 5, CLOB/BLOB Operations.. D-76
Example 6, LOB Buffering.. D-96
Example 7, REF Pinning and Navigation .. D-118

E OCI Function Server Roundtrips

Overview... E-2
LOB Function Roundtrips ... E-2
Object and Cache Function Roundtrips ... E-4
Describe Operation Roundtrips... E-5
Datatype Mapping and Manipulation Function Roundtrips... E-6
Other Local Functions .. E-7

F Oracle8 OCI New Features

Introduction ... F-2
Oracle8 OCI Enhancements .. F-2

Encapsulated/Opaque Interfaces... F-2
Simplified User Authentication and Password Management.. F-3
Extensions to Improve Application Performance and Scalability... F-4
Consistent Interface for Transaction Management.. F-4
Oracle8 OCI Object Support.. F-4
Runtime Environment for Objects.. F-6
Type Management, Mapping and Manipulation Functions .. F-6
Object Type Translator... F-7
OCI Support for Oracle Advanced Queueing .. F-7
 xxiv

Benefits of the OCI’s New Features... F-8
Comprehensive Support for Oracle8 Objects ... F-8
Improved Application Performance.. F-8
Greater Scalability .. F-9
Simplified Migration of Existing Applications .. F-9
Enhanced Application Extensibility .. F-10

Index
 xxv

 xxvi

Send Us Your Comments

Oracle Call Interface Programmer’s Guide, Release 8.0

Part No. A58234-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

■ electronic mail - infodev@us.oracle.com
■ FAX - (650)506-7228
■ postal service:

Oracle Corporation
Oracle Server Documentation Manager
500 Oracle Parkway
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, and telephone number below.
 xxvii

xxviii

Preface

The Oracle Call Interface (OCI) is an application programming interface (API) that
allows applications written in C to interact with one or more Oracle servers. The
OCI gives your programs the capability to perform the full range of database
operations that are possible with an Oracle8 server, including SQL statement
processing and object manipulation.

The Preface includes the following sections:

■ Purpose of this Guide

■ Audience

■ Feature Coverage and Availability

■ How to Use this Guide

■ How this Guide Is Organized

■ Conventions Used in this Guide

■ Your Comments Are Welcome
 xxix

Purpose of this Guide
This guide gives you a sound basis for developing applications using the OCI. The
guide is divided into two volumes.

Volume I contains information about the following topics:

■ the structure of an OCI application

■ conversion of data between the server and variables in your OCI application

■ object functions that provide navigational access to objects, type management,
and data type mapping and manipulation

Volume II contains the following information:

■ a description of every OCI function call, along with syntax information and
parameter descriptions

■ a listing of all OCI handle attributes

■ a listing of Oracle reserved words, keywords, and reserved namespaces

■ sample programs that illustrate the features of the OCI

■ upgrading applications from earlier releases of the OCI to release 8.0

■ server roundtrips required for most OCI calls

Audience
The Oracle Call Interface Programmer’s Guide is intended for programmers
developing new applications or converting existing applications to run in the
Oracle environment. This comprehensive treatment of the OCI will also be valuable
to systems analysts, project managers, and others interested in the development of
database applications.

This guide assumes that you have a working knowledge of application
programming using C. Readers should also be familiar with the use of Structured
Query Language (SQL) to access information in relational database systems. In
addition, some sections of this guide also assume a knowledge of the basic
concepts of object-oriented programming.
xxx

For information about SQL, refer to the Oracle8 SQL Reference and the Oracle8
Administrator’s Guide. For information about basic Oracle concepts, see Oracle8
Concepts. For information about the Oracle Precompilers, which enable you to
embed SQL commands in a third-generation language (3GL) application, refer to
the Pro*C/C++ Precompiler Programmer’s Guide and the Pro*COBOL Precompiler
Programmer’s Guide.

Feature Coverage and Availability
The Oracle Call Interface Programmer’s Guide contains information that describes the
features and functionality of the Oracle8 and the Oracle8 Enterprise Edition
products. Oracle8 and Oracle8 Enterprise Edition have the same basic features.
However, several advanced features are available only with the Enterprise Edition,
and some of these are optional. For example, to use object functionality, you must
have the Enterprise Edition and the Objects Option.

For information about the differences between Oracle8 and the Oracle8 Enterprise
Edition and the features and options that are available to you, see Getting to Know
Oracle8 and the Oracle8 Enterprise Edition.

How to Use this Guide
The Oracle Call Interface Programmer’s Guide provides an introduction to the features
of the OCI for both new OCI programmers and those programmers who have
previously worked with earlier versions of the OCI.

VOLUME I

Part 1

Part 1 of this guide (Chapters 1 through 7) provides conceptual information about
how to program with the OCI to access relational data in an Oracle database. This
part describes the basics of OCI programming and builds the foundation for the
discussion of object-relational features in Part 2.

Part 2

Part 2 of this guide (Chapters 8 through 12) describes OCI functionality for
accessing object-relational data with the OCI. The chapters in this part describe
how to retrieve and manipulate objects through an Oracle8 server.
xxxi

VOLUME II

Part 3

Part 3 of this book (Chapters 13 through 16) lists all function calls in the Oracle8
OCI library.

Part 4

Part 4 of this book (Appendices A through F) provides additional information
about OCI programming, along with complete code examples.

Where to Begin
Because of the many enhancements to the OCI for Release 8.0, both new and
experienced users should read the conceptual material in Part 1. Although most
basic concepts (e.g., binding, defining, etc.) have remained the same as in Release
7.3, those concepts have a new implementation in Release 8.0.

Readers familiar with the current version of the OCI and interested in its object
capabilities may want to skim Part 1 and then begin reading the chapters in Part 2.

Readers looking for reference information (e.g., OCI function syntax, handle
attribute descriptions) should refer to Volume II.

How this Guide Is Organized
The Oracle Call Interface Programmer’s Guide contains four parts, split between two
volumes. A brief summary of what you will find in each chapter and appendix
follows:

VOLUME I

PART 1: OCI RELATIONAL APPLICATIONS

Chapter 1: Introduction and New Features
This chapter introduces you to the Oracle Call Interface and describes special terms
and typographical conventions that are used in describing the interfaces. This
chapter also mentions features new to the current release.
xxxii

Chapter 2: OCI Programming Basics
This chapter gives you the basic concepts needed to develop an OCI program. It
discusses the essential steps each OCI program must include, and how to retrieve
and understand error messages

Chapter 3: Datatypes
Understanding how data is converted between Oracle tables and variables in your
host program is essential for using the OCI interfaces. This chapter discusses
Oracle internal and external datatypes, and data conversions.

Chapter 4: SQL Statement Processing
This chapter discusses the steps involved in SQL statements using the Oracle8 OCI.

Chapter 5: Binding and Defining
This chapter discusses OCI bind and define operations in detail, including a
discussion of advanced bind and define operations.

Chapter 6: Describing Schema Metadata
This chapter discusses how to use the OCIDescribeAny() call to obtain information
about schema objects and their associated elements.

Chapter 7: OCI Programming Advanced Topics
This chapter covers more sophisticated OCI programming topics, including
descriptions of transaction management, LOB support, advanced binding and
defining, and other functionality.

PART 2: OCI OBJECT-RELATIONAL APPLICATIONS

Chapter 8: OCI Object-Relational Programming
This chapter provides an introduction to the concepts involved when using the OCI
to access objects in an Oracle8 server. The chapter includes a discussion of basic
object concepts and object pinning, and the basic structure of object-relational
applications.

Chapter 9: Object-Relational Datatypes
This chapter outlines the object datatypes used in OCI programming.

Chapter 10: Binding and Defining in Object Applications
This chapter discusses the C mappings of user-defined datatypes in an Oracle8
database, and the functions that manipulate such data. Binding and defining using
these C mappings is also covered.
xxxiii

Chapter 11: Object Cache and Object Navigation
This chapter provides an introduction to the concepts involved when using the OCI
to access objects in an Oracle8 server. This chapter also discusses the Object Cache,
and the use of the OCI navigational calls to manipulate objects retrieved from the
server.

Chapter 12: Using the Object Type Translator
This chapter discusses the use of the Object Type Translator to convert database
object definitions to C structure representations for use in OCI applications.

VOLUME II

PART 3: OCI REFERENCE

Chapter 13: OCI Relational Functions
This chapter contains a list of the OCI relational functions, including syntax,
comments, parameter descriptions, and other useful information.

Chapter 14: OCI Navigation and Type Functions
This chapter contains a list of the OCI navigational functions, including syntax,
comments, parameter descriptions, and other useful information.

Chapter 15: OCI Datatype Mapping and Manipulation Functions
This chapter contains a list of the OCI datatype mapping and manipulation
functions, including syntax, comments, parameter descriptions, and other useful
information.

Chapter 16: OCI External Procedure Functions
This chapter discusses special OCI functions used by external procedures.

PART 4: APPENDICES

Appendix A: Upgrading Release 7.x OCI Applications to Release 8.0
This appendix discusses the issues involved in upgrading existing OCI applications
to use the new Oracle8 OCI. This includes lists of those OCI calls which are now
obsolescent or obsolete.

Appendix B: Handle and Descriptor Attributes
This appendix describes the attributes of OCI application handles that can be set or
read using OCI calls.
xxxiv

Appendix C: Oracle Reserved Words, Keywords and Namespaces
This appendix lists words that have a special meaning to Oracle, and namespaces
reserved by Oracle products.

Appendix D: Code Examples
This appendix includes complete OCI application code examples.

Appendix E: OCI Function Server Roundtrips
This appendix includes tables which show the number of server roundtrips
required by various OCI applications.

Appendix F: Oracle8 OCI New Features
This appendix provides detailed information about features and enhancements
available in the Oracle8 OCI.

Conventions Used in this Guide
The following notational and text formatting conventions are used in this guide:

[]
Square brackets indicate that the enclosed item is optional. Do not type the brackets.

{ }
Braces enclose items of which only one is required.

|
A vertical bar separates items within braces, and may also be used to indicate that
multiple values are passed to a function parameter.

...
In code fragments, an ellipsis means that code not relevant to the discussion has
been omitted.

font change
SQL or C code examples are shown in monospaced font.

italics
Italics are used for OCI parameters, OCI routines names, file names, and data fields.

UPPERCASE
Uppercase is used for SQL keywords, like SELECT or UPDATE.
xxxv

bold
Boldface type is used to identify the names of C datatypes, like ub4 , sword , or
OCINumber .

This guide uses special text formatting to draw the reader’s attention to some
information. A paragraph that is indented and begins with a bold text label may
have special meaning. The following paragraphs describe the different types of
information that are flagged this way.

Note: The “Note” flag indicates that the reader should pay particular attention
to the information to avoid a common problem or increase understanding of a
concept.

7.x Upgrade Note: An item marked with “7.x Upgrade Note” typically alerts
the programmer to something that is done much differently in the release 8.0
OCI than in the 7.x OCIs.

Warning: An item marked as “Warning” indicates something that an OCI
programmer must be careful to do or not do in order for an application to work
correctly.

See Also: Text marked “See Also” points you to another section of this guide,
or to other documentation, for additional information about the topic being
discussed.

Your Comments Are Welcome
We value and appreciate your comments as an Oracle user and reader of our
manuals. As we write, revise, and evaluate our documentation, your opinions are
the most important feedback we receive.

You can send comments and suggestions about this manual to the following e-mail
address:

infodev@us.oracle.com

If you prefer, you can send letters or faxes containing your comments to the
following address:

Oracle8 Server Documentation Manager

Oracle Corporation

500 Oracle Parkway

Redwood Shores, CA 94065

Fax: (650) 506-7228
xxxvi

Part I

Basic OCI Concepts

This part of the guide contains chapters that describe basic OCI programming
concepts:

■ Chapter 1, “Introduction and New Features”, provides an introduction to the
OCI and discusses features that are new to release 8.0.

■ Chapter 2, “OCI Programming Basics”, discusses the basic concepts of OCI
programming.

■ Chapter 3, “Datatypes”, describes datatypes used in OCI applications and
within the Oracle8 Server.

■ Chapter 4, “SQL Statement Processing”, discusses how to process SQL
statements using the Oracle8 OCI.

■ Chapter 5, “Binding and Defining”, discusses bind and define operations in
detail.

■ Chapter 6, “Describing Schema Metadata”, discusses the OCIDescribeAny()
function.

■ Chapter 7, “OCI Programming Advanced Topics”, covers some advanced
topics in OCI programming.

 Introduction and New Fea
1

Introduction and New Features

This chapter introduces you to the Oracle Call Interface, Release 8.0. It gives you
background information that you need to develop applications using the OCI. It
also introduces special terms that are used in discussing the OCI.

This chapter also discusses the changes in the OCI since release 7.3.

The following topics are covered:

■ The Oracle Call Interface

■ SQL Statements

■ Special OCI/SQL Terms

■ Object Support in the OCI

■ Parts of the OCI

■ Release 8.0 New Features

■ Obsolescent and Obsolete OCI Calls

■ Compiling and Linking
tures 1-1

The Oracle Call Interface
The Oracle Call Interface
Structured Query Language (SQL) is a nonprocedural language. A program in a
nonprocedural language specifies the set of data to be operated on, but does not
specify precisely what operations will be performed, or how the operations are to
be carried out. The nonprocedural nature of SQL makes it an easy language to
learn and to use to perform database transactions. It is also the standard language
used to access and manipulate data in modern relational and object-relational
database systems.

However, most programming languages, such as C and C++ are procedural. The
execution of most statements depends on previous or subsequent statements and
on control structures, such as loops or conditional branches, which are not available
in SQL. The procedural nature of these languages makes them more complex than
SQL, but it also makes them very flexible and powerful.

The Oracle Call Interface (OCI) allows you to develop applications that combine
the nonprocedural data access power of SQL with the procedural capabilities of C.
The OCI supports all SQL data definition, data manipulation, query, and
transaction control facilities that are available through an Oracle8 server.

You can also take advantage of PL/SQL, Oracle’s procedural extension to SQL.
Thus, the applications you develop can be more powerful and flexible than
applications written in SQL alone. The OCI also provides facilities for accessing
and manipulating objects in an Oracle8 server.

The OCI is an application programming interface (API) that allows you to
manipulate data and schemas in an Oracle database. As Figure 1–1 shows, you
compile and link an OCI program in the same way that you compile and link a
nondatabase application. There is no need for a separate preprocessing or
precompilation step.
1-2 Oracle Call Interface Programmer’s Guide

The Oracle Call Interface
Figure 1–1 The OCI Development Process

Note: On some platforms, it may be necessary to include other libraries, in
addition to the OCI library, to properly link your OCI programs. Check your
Oracle system-specific documentation for further information about extra
libraries that may be required.

Source Files

Host Language Compiler

Object Files

Host Linker

Application

OCI Library

Oracle8
Server
 Introduction and New Features 1-3

SQL Statements
SQL Statements
One of the main tasks of an OCI application is to process SQL statements. Different
types of SQL statements require different processing steps in your program. It is
important to take this into account when coding your OCI application.

Oracle8 recognizes eight kinds of SQL statements:

■ Data Definition Language

■ Control Statements (3 types)

– Transaction Control

– Session Control

– System Control

■ Data Manipulation Language (DML)

■ Queries

Note: Queries are often classified as DML statements, but OCI applications
process queries differently, so they are considered separately here.

■ PL/SQL

■ Embedded SQL

Data Definition Language
Data Definition Language (DDL) statements manage schema objects in the
database. DDL statements create new tables, drop old tables, and establish other
schema objects. They also control access to schema objects. For example:

CREATE TABLE employees
 (name VARCHAR2(20),

ssn VARCHAR2(12),
empno NUMBER(6),
mgr NUMBER(6),
salary NUMBER(6))

GRANT UPDATE, INSERT, DELETE ON employees TO donna
REVOKE UPDATE ON employees FROM jamie

DDL statements also allow you to work with objects in the Oracle8 server, as in the
following series of statements which creates an object table:
1-4 Oracle Call Interface Programmer’s Guide

SQL Statements
CREATE TYPE person_t AS OBJECT (
name VARCHAR2(30),
ssn VARCHAR2(12),
address VARCHAR2(50))

CREATE TABLE person_tab OF person_t

Control Statements
OCI applications treat transaction control, session control, and system control
statements like DML statements. See the Oracle8 SQL Reference for information
about these types of statements.

Data Manipulation Language
Data manipulation language (DML) statements can change data in the database
tables. For example, DML statements are used to

■ INSERT new rows into a table

■ UPDATE column values in existing rows

■ DELETE rows from a table

■ LOCK a table in the database

■ EXPLAIN the execution plan for a SQL statement

DML statements can require an application to supply data to the database using
input (bind) variables. See the section “Binding” on page 4-5 for more information
about input bind variables.

DML statements also allow you to work with objects in the Oracle8 server, as in the
following example, which inserts an instance of type person_t into the object
table person_tab :

INSERT INTO person_tab
VALUES (person_t(’Steve May’,’123-45-6789’,’146 Winfield Street’))

Queries
Queries are statements that retrieve data from a database. A query can return zero,
one, or many rows of data. All queries begin with the SQL keyword SELECT, as in
the following example:

SELECT dname FROM dept
WHERE deptno = 42
 Introduction and New Features 1-5

SQL Statements
Queries access data in tables, and they are often classified with DML statements.
However, OCI applications process queries differently, so they are considered
separately in this guide.

Queries can require the program to supply data to the database using input (bind)
variables, as in the following example:

SELECT name
FROM employees
WHERE empno = :empnumber

In the above SQL statement, :empnumber is a placeholder for a value that will be
supplied by the application.

When processing a query, an OCI application also needs to define output variables
to receive the returned results. In the above statement, you would need to define an
output variable to receive any name values returned from the query.

See Also: See the section “Binding” on page 5-2 for more information about
input bind variables.

See the section “Defining” on page 5-13 for information about defining output
variables.

See Chapter 4, “SQL Statement Processing”, for detailed information about
how SQL statements are processed in an OCI program.

PL/SQL
PL/SQL is Oracle’s procedural extension to the SQL language. PL/SQL processes
tasks that are more complicated than simple queries and SQL Data manipulation
language statements. PL/SQL allows a number of constructs to be grouped into a
single block and executed as a unit. Among these are:

■ one or more SQL statements

■ variable declarations

■ assignment statements

■ procedural control statements (IF...THEN...ELSE statements and loops)

■ exception handling
1-6 Oracle Call Interface Programmer’s Guide

SQL Statements
You can use PL/SQL blocks in your OCI program to

■ call Oracle stored procedures and stored functions

■ combine procedural control statements with several SQL statements, to be exe-
cuted as a single unit

■ access special PL/SQL features such as records, tables, cursor FOR loops, and
exception handling

■ use cursor variables

■ access and manipulate objects in an Oracle8 server

The following PL/SQL example issues a SQL statement to retrieve values from a
table of employees, given a particular employee number. This example also
demonstrates the use of placeholders in PL/SQL statements.

BEGIN
SELECT ename, sal, comm INTO :emp_name, :salary, :commission
FROM emp
WHERE ename = :emp_number;

END;

Keep in mind that the placeholders in this statement are not PL/SQL variables.
They represent input values passed to Oracle when the statement is processed.
These placeholders need to be bound to C language variables in your program.

See Also: See the PL/SQL User’s Guide and Reference for information about
coding PL/SQL blocks.

See the section “Binding Placeholders in PL/SQL” on page 5-5 for information
about working with placeholders in PL/SQL.

Embedded SQL
The OCI processes SQL statements as text strings, which an application passes to
Oracle on execution. The Oracle precompilers (Pro*C/C++, Pro*COBOL,
Pro*FORTRAN) allow programmers to embed SQL statements directly into their
application code. A separate precompilation step is then necessary to generate an
executable application.

It is possible to mix OCI calls and embedded SQL in a precompiler program. Refer
to the Pro*COBOL Precompiler Programmer’s Guide for more information.
 Introduction and New Features 1-7

Special OCI/SQL Terms
Special OCI/SQL Terms
This guide uses special terms to refer to the different parts of a SQL statement. For
example, a SQL statement such as

SELECT customer, address
FROM customers
WHERE bus_type = 'SOFTWARE'
AND sales_volume = :sales

contains the following parts:

■ a SQL command — SELECT

■ two select-list items — customer and address

■ a table name in the FROM clause — customers

■ two column names in the WHERE clause — bus_type and sales_volume

■ a literal input value in the WHERE clause — ‘SOFTWARE’

■ a placeholder for an input variable in the second part of the WHERE clause —
:sales

When you develop your OCI application, you call routines that specify to the
Oracle8 server the address (location) of input and output variables in your
program. In this guide, specifying the address of a placeholder variable for data
input is called a bind operation. Specifying the address of a variable to receive select-
list items is called a define operation.

For PL/SQL, both input and output specifications are called bind operations.

These terms and operations are described in detail in Chapter 4.

Object Support in the OCI
With Release 8.0, the Oracle server has facilities for working with object types and
objects. An object type is a user-defined data structure representing an abstraction
of a real-world entity. For example, the database might contain a definition of a
person object. That object might have attributes—first_name , last_name , and
age—which represent a person’s identifying characteristics.

The object type definition serves as the basis for creating objects, which represent
instances of the object type. Using the object type as a structural definition, a
person object could be created with the attributes ‘John’, ‘Bonivento’, and ‘30’.
1-8 Oracle Call Interface Programmer’s Guide

Object Support in the OCI
Object types may also contain methods—programmatic functions that represent the
behavior of that object type.

See Also: For a more detailed explanation of object types and objects, see
Oracle8 Concepts.

The Oracle8 OCI includes functions that extend the capabilities of the OCI to
handle objects in an Oracle8 server. Specifically, the following capabilities have
been added to the OCI:

■ support for execution of SQL statements that manipulate object data and
schema information

■ support for passing object references and instances as input variables in SQL
statements.

■ support for declaring object references and instances as variables to receive the
output of SQL statements

■ support for fetching object references and instances from a database

■ support for describing the properties of SQL statements that return object
instances and references

■ support for describing PL/SQL procedures or functions with object parameters
or results

■ commit and rollback calls have been extended to synchronize object and rela-
tional functionality

Additional OCI calls are provided to support manipulation of objects after they
have been accessed by way of SQL statements.

Note: For a more detailed description of enhancements and new features,
please refer to Appendix F, “Oracle8 OCI New Features”.
 Introduction and New Features 1-9

Parts of the OCI
Parts of the OCI
The OCI encompasses four main sets of functionality:

■ OCI relational functions, for managing database access and processing SQL state-
ments

■ OCI navigational functions, for manipulating objects retrieved from an Oracle8
server

■ OCI datatype mapping and manipulation functions, for manipulating data
attributes of Oracle8 types

■ OCI external procedure functions, which are used for writing C callbacks from
PL/SQL

These terms are used throughout this guide.

Release 8.0 New Features
The Oracle8 OCI provides a wide range of new features and functions. All calls
available in Release 7.3 are still supported, but they are not able to take full
advantage of new Oracle8 features.

Note: For a more detailed description of enhancements and new features,
please refer to Appendix F, “Oracle8 OCI New Features”.

Release 8.0 has the following new features and performance advantages:

■ increased client-side processing and reduced server-side requirements

■ implicit prefetching of SELECT statement result set rows

■ API access to both objects and relational data

■ reduction of the number of network round trips

■ the ability to handle LOB columns

■ a set of API calls for performing operations on LOBs and FILEs

■ improved national language support (NLS) capabilities

■ a migration path for existing OCI applications, and some ability to mix old and
new calls within a single application

■ improved support for multithreaded environments

■ additional functionality to provide navigational access to objects in an Oracle8
server
1-10 Oracle Call Interface Programmer’s Guide

Compiling and Linking
Each of these features is discussed in greater detail in later chapters of this guide.

Release 8.0 of the OCI contains an entirely new set of API calls that replace those
used in earlier releases. Additionally, new calls are included to provide
functionality not available in earlier releases.

See Also: See the section “Obsolescent OCI Routines” on page A-2 for
information about new calls that supersede existing routines.

See Chapters 13, 14, 15, and 16 for complete listings of all OCI calls.

Obsolescent and Obsolete OCI Calls
Refer to Appendix A for lists of OCI calls that are now considered to be obsolescent
or obsolete.

Compiling and Linking
Oracle Corporation supports most popular third-party compilers. The details of
linking an OCI program vary from system to system. See your Oracle system-
specific documentation and the installation guide for more information about
compiling and linking an OCI application for your specific platform.
 Introduction and New Features 1-11

Compiling and Linking
1-12 Oracle Call Interface Programmer’s Guide

 OCI Programming B
2

OCI Programming Basics

This chapter introduces you to the basic concepts involved in programming with
the Oracle Call Interface.

This chapter covers the following topics:

■ Overview

■ OCI Program Structure

■ OCI Data Structures

■ Handles

■ Descriptors and Locators

■ OCI Programming Steps

■ Initialization, Connection, and Session Creation

■ Processing SQL Statements

■ Commit or Rollback

■ Terminating the Application

■ Error Handling

■ Additional Coding Guidelines

■ Using PL/SQL in an OCI Program
asics 2-1

Overview
Overview
This chapter provides an introduction to the concepts and procedures involved in
developing an OCI application. After reading this chapter, you should have most of
the tools necessary to understand and create a basic OCI application.

New users should pay particular attention to the information presented in this
chapter, because it forms the basis for the rest of the material presented in this
guide.

This information in this chapter is supplemented by information in later chapters.
More specifically, after reading this chapter you may want to continue with any or
all of the following:

■ Chapter 3, for detailed information about OCI internal and external datatypes

■ Chapter 4, for information about processing SQL statements

■ Chapter 5, for more information about binding and defining

■ Chapter 6, for information about the OCIDescribe() call.

■ Chapter 7, for a discussion of advanced OCI concepts and techniques

■ Chapters 8 through 12, for information about writing OCI applications that
take advantage of the object capabilities of the Oracle8 server

■ Chapter 13, for a complete listing of all of the OCI relational function calls,
including descriptions, syntax, and parameters

■ Appendix D, for code examples

This chapter is broken down into the following major sections:

■ OCI Program Structure - covers the basic overall structure of an OCI
application, including the major steps involved in creating one.

■ OCI Data Structures - discusses handles, descriptors, and locators.

■ OCI Programming Steps - discusses in detail each of the steps involved in
coding an OCI application.

■ Error Handling - covers error handling in OCI applications.

■ Additional Coding Guidelines - provides additional useful information to keep
in mind when coding an OCI application.

■ Using PL/SQL in an OCI Program - discusses some important points to keep in
mind when working with PL/SQL in an OCI application.
2-2 Oracle Call Interface Programmer’s Guide

OCI Program Structure
OCI Program Structure
The general goal of an OCI application is to connect to an Oracle server, engage in
some sort of data exchange, and perform necessary data processing. While some
flexibility exists in the order in which specific tasks can be performed, every OCI
application needs to accomplish particular steps.

The OCI uses the following basic program structure:

1. Initialize the OCI programming environment and processes.

2. Allocate necessary handles, and establish a server connection and a user
session.

3. Issue SQL statements to the server, and perform necessary application data
processing.

4. Free statements and handles not to be reused or reexecute prepared statements
again, or prepare a new statement.

5. Terminate user session and server connection.

Figure 2–1 illustrates the flow of steps in an OCI application. Each step is described
in more detail in the section “OCI Programming Steps” on page 2-16.
 OCI Programming Basics 2-3

OCI Program Structure
Figure 2–1 Basic OCI Program Flow

Keep in mind that the above diagram and the list of steps on page 2-3 present a
simple generalization of OCI programming steps. Variations are possible,
depending on the functionality of the program. OCI applications that include more
sophisticated functionality (e.g., managing multiple transactions, using objects,
etc.) will require additional steps.

Once the OCI process is initialized, an application may choose to create multiple
environments, as illustrated in the following figure:

Allocate Handles
and Data Structures

Connect to Server
and Begin Session

Issue SQL
and Process Data

Free Handles
& Data Structures

Disconnect

Initialize
Environment

Initialize
Process
2-4 Oracle Call Interface Programmer’s Guide

OCI Data Structures
Figure 2–2 Multiple Environments Within an OCI Process

Note: It is possible to have more than one active connection and statement in
an OCI application.

See Also: For information about accessing and manipulating objects, see
Chapter 8.

OCI Data Structures
Handles and descriptors are opaque data structures which are defined in OCI
applications and may be allocated directly, through specific allocate calls, or may be
implicitly allocated by other OCI functions.

7.x Upgrade Note: Programmers who have previously written 7.x OCI
applications will need to become familiar with these new data structures which
are used by most OCI calls.

Handles and descriptors store information pertaining to data, connections, or
application behavior. Handles are defined in more detail in the following section.
Descriptors are discussed in the section “Descriptors and Locators” on page 2-12.

Allocate Handles
and Data Structures

Connect to Server
and Begin Session

Issue SQL
and Process Data

Free Handles
& Data Structures

Disconnect

Initialize
Environment

Initialize
Process

Allocate Handles
and Data Structures

Connect to Server
and Begin Session

Issue SQL
and Process Data

Free Handles
& Data Structures

Disconnect

Initialize
Environment

Allocate Handles
and Data Structures

Connect to Server
and Begin Session

Issue SQL
and Process Data

Free Handles
& Data Structures

Disconnect

Initialize
Environment
 OCI Programming Basics 2-5

Handles
Handles
Almost all Oracle8 OCI calls include in their parameter list one or more handles. A
handle is an opaque pointer to a storage area allocated by the OCI library. A handle
may be used to store context or connection information, (e.g., an environment or
service context handle), or it may store information about other OCI functions or
data (e.g., an error or describe handle). Handles can make programming easier,
because the library, rather than the application, maintains this data.

Most OCI applications will need to access the information stored in handles. The
get and set attribute OCI calls, OCIAttrGet() and OCIAttrSet(), access this
information.

See Also: For more information about using handle attributes, see the section
“Handle Attributes” on page 2-11.

The following table lists the handles defined for the OCI. For each handle type, the
C datatype and handle type constant (used to identify the handle type in OCI calls)
are listed.

Table 2–1 OCI Handle Types

C Type Description Handle Type

OCIEnv OCI environment handle OCI_HTYPE_ENV

OCIError OCI error handle OCI_HTYPE_ERROR

OCISvcCtx OCI service context handle OCI_HTYPE_SVCCTX

OCIStmt OCI statement handle OCI_HTYPE_STMT

OCIBind OCI bind handle OCI_HTYPE_BIND

OCIDefine OCI define handle OCI_HTYPE_DEFINE

OCIDescribe OCI describe handle OCI_HTYPE_DESCRIBE

OCIServer OCI server handle OCI_HTYPE_SERVER

OCISession OCI user session handle OCI_HTYPE_SESSION

OCITrans OCI transaction handle OCI_HTYPE_TRANS

OCIComplexObject OCI complex object retrieval (COR) handle OCI_HTYPE_COMPLEXOBJECT

OCISecurity OCI security service handle OCI_HTYPE_SECURITY
2-6 Oracle Call Interface Programmer’s Guide

Handles
Allocating and Freeing Handles
Your application allocates all handles (except the bind and define handles) with
respect to particular environment handle. You pass the environment handle as one
of the parameters to the handle allocation call. The allocated handles is then
specific to that particular environment.

The bind and define handles are allocated with respect to a statement handle, and
contain information about the statement represented by that handle.

Note: The bind and define handles are implicitly allocated by the OCI library,
and do not require user allocation.

Figure 2–3 illustrates the relationship between the various types of handles.

Figure 2–3 Hierarchy of Handles:

All user-allocated handles, except the environment handle, must be allocated using
the OCI handle allocation call, OCIHandleAlloc(). The environment handle is
allocated and initialized with a call to OCIEnvInit(), which is required by all OCI
applications.

An application must free all handles when they are no longer needed. The
OCIHandleFree() function frees handles.

Bind
Handle

Define
Handle

Security
Handle

COR
Handle

Error
Handle

Statement
Handle

Describe
Handle

Environment
Handle

Service Context
Handle

Server Context
Handle

User Session
Handle

Transaction
Handle

Components of a
Service Context
 OCI Programming Basics 2-7

Handles
Note: When a parent handle is freed, all child handles associated with it are
also freed, and may no longer be used. For example, when a statement handle
is freed, any bind and define handles associated with it are also freed.

Handles obviate the need for global variables. Handles also make error reporting
easier. An error handle is used to return errors and diagnostic information.

See Also: For sample code demonstrating the allocation and use of OCI
handles, see the first example program in Appendix D.

The various handle types are described in more detail in the following sections.

Environment Handle
The environment handle defines a context in which all OCI functions are invoked.
Each environment handle contains a memory cache, which allows for fast memory
management in a threaded environment where each thread has its own
environment. When multiple threads share a single environment, they may block
on access to the cache.

The environment handle is passed as the parenth parameter to the OCIHandleAlloc()
call to allocate all other handle types, except for the bind and define handles.

Error Handle
The error handle is passed as a parameter to most OCI calls. The error handle
maintains information about errors that occur during an OCI operation. If an error
occurs in a call, the error handle can be passed to OCIErrorGet() to obtain additional
information about the error that occurred.

Allocating the error handle is one of the first steps in an OCI application.

Service Context and Associated Handles
A service context handle defines attributes that determine the operational context for
OCI calls to a server. You must allocate and initialize the service context handle
with OCIHandleAlloc() or OCILogon() before you can use it.

The service context contains three additional handles that represent a server
connection, a user session, and a transaction, as illustrated in the following figure.
2-8 Oracle Call Interface Programmer’s Guide

Handles
Figure 2–4 Components of a Service Context

■ A server handle identifies a data source. It translates into a physical connection
in a connection-oriented transport mechanism.

■ A user session handle defines a user’s roles and privileges (also known as the
user’s security domain), and the operational context on which the calls execute.

■ A transaction handle defines the transaction in which the SQL operations are
performed. The transaction context includes user session state information,
including the fetch state and package instantiation, if any.

Breaking the service context down in this way provides scalability and enables
programmers to create sophisticated three-tiered applications and transaction
processing (TP) monitors to execute requests on behalf of multiple users on
multiple application servers and different transaction contexts.

Applications maintaining only a single user session per database connection at any
time can call OCILogon() to allocate the service context and its associated handles.

In applications requiring more complex session management, the service context
must be explicitly allocated, and the server handle and user session handle must be
explicitly set into the service context by calling OCIServerAttach() and
OCISessionBegin(), respectively. An application may need to define a transaction
explicitly, as well, or it may be able to work with the implicit transaction created
when the application makes changes to the database.

See Also: For more information about transactions, see the section
“Transactions” on page 7-3.

For more information about establishing a server connection and user session,
see the sections “Initialization, Connection, and Session Creation” on page 2-17,
and “User Authentication and Password Management” on page 7-11.

Server
Handle

Transaction
Handle

Service Context
Handle

User Session
Handle
 OCI Programming Basics 2-9

Handles
Statement Handle, Bind Handle, and Define Handle
A statement handle is the context that identifies a SQL or PL/SQL statement and its
associated attributes.

Information about input variables is stored in bind handles. The OCI library
allocates a bind handle for each placeholder bound with the OCIBindByName() or
OCIBindByPos() function. The user does not need to allocate bind handles. They are
implicitly allocated by the bind call.

Fetched data returned by a query is converted and stored according to the
specifications of the define handles. The OCI library allocates a define handle for
each output variable defined with OCIDefineByPos(). The user does not need to
allocate define handles. They are implicitly allocated by the define call.

Describe Handle
The describe handle is used by the OCI describe call, OCIDescribeAny(). This call
obtains information about schema objects in a database (e.g., functions,
procedures). The call takes a describe handle as one of its parameters, along with
information about the object being described. When the call completes, the describe
handle is populated with information about the object. The OCI application can
then obtain describe information through the attributes of parameter descriptors.

See Also: See Chapter 6, “Describing Schema Metadata”, for more information
about using the OCIDescribeAny() function.

Complex Object Retrieval Handle
The complex object retrieval (COR) handle is used by some OCI applications that
work with objects in an Oracle8 server. This handle contains COR descriptors, which
provide instructions to the OCI about retrieving objects referenced by another
object.

See Also: For information about complex object retrieval and the complex
object retrieval handle, refer to “Complex Object Retrieval” on page 8-21.

Security Handle
For information about the security handle, and about using OCI calls to write
Oracle Security Services applications, refer to the Oracle Security Server Guide.
2-10 Oracle Call Interface Programmer’s Guide

Handles
Handle Attributes
All OCI handles have attributes associated with them. These attributes represent
data stored in that handle. You can read handle attributes using the attribute get
call, OCIAttrGet(), and you can change them with the attribute set call, OCIAttrSet().

For example, the following statements set the username in the transaction handle
by writing to the OCI_ATTR_USERNAME attribute:

text username[] = "scott";
err = OCIAttrSet ((dvoid*) mysessp, OCI_HTYPE_SESSION, (dvoid*) username,
 (ub4) strlen(username), OCI_ATTR_USERNAME,
 (OCIError *) myerrhp);

The next set of statements demonstrates the use of OCIAttrGet() to read the
function code of the last OCI function processed on a handle (in this case a bind
handle):

ub4 fcode = 0;
OCIBind *mybndp;
err = OCIAttrGet((dvoid*) mybndp, OCI_HTYPE_BIND, (dvoid*) &fcode,
 (ub4) 0, OCI_ATTR_FNCODE,(OCIError *) myerrhp);

Some OCI functions require that particular handle attributes be set before the
function is called. For example, when OCISessionBegin() is called to establish a
user’s login session, the username and password must be set in the user session
handle before the call is made.

Other OCI functions provide useful return data in handle attributes after the
function completes. For example, when OCIStmtExecute() is called to execute a SQL
query, describe information relating to the select-list items is returned in the
statement handle.

For a list of all handle attributes, refer to Appendix B, “Handle and Descriptor
Attributes”.

See Also: See the description of OCIAttrGet() on page 13 - 11 for an example
showing the username and password handle attributes being set.
 OCI Programming Basics 2-11

Descriptors and Locators
User Memory Allocation
The OCIEnvInit() call, which initializes the environment handle, and the generic
handle allocation (OCIHandleAlloc()) and descriptor/locator allocation
(OCIDescriptorAlloc()) calls have an xtramem_sz parameter in their parameter list.
This parameter is used to specify an amount of user memory which should be
allocated along with that handle.

Typically, an application uses this parameter to allocate an application-defined
structure that has the same lifetime as the handle. This structure maybe used for
application “bookkeeping” or storing context information.

Using the xtramem_sz parameter means that the application does not need to
explicitly allocate and deallocate memory as each handle is allocated and
deallocated. The memory is allocated along with the handle, and freeing the handle
frees up the user’s data structures as well.

Descriptors and Locators
OCI descriptors and locators are opaque data structures that maintain specific data-
information. The OCI has six descriptor and locator types. The following table lists
them, along with their C datatype, and the OCI type constant that allocates a
descriptor of that type in a call to OCIDescriptorAlloc(). The OCIDescriptorFree()
function frees descriptors and locators.

Table 2–2 Descriptor Types

C Type Description OCI Type Constant

OCISnapshot snapshot descriptor OCI_DTYPE_SNAP

OCILobLocator LOB datatype locator OCI_DTYPE_LOB

OCILobLocator FILE datatype locator OCI_DTYPE_FILE

OCIParam read-only parameter descriptor OCI_DTYPE_PARAM

OCIRowid ROWID descriptor OCI_DTYPE_ROWID

OCIComplexObjectComp complex object descriptor OCI_DTYPE_COMPLEXOBJECTCOMP

OCIAQEnqOptions advanced queueing enqueue options OCI_DTYPE_AQENQ_OPTIONS

OCIAQDeqOptions advanced queueing dequeue options OCI_DTYPE_AQDEQ_OPTIONS

OCIAQMsgProperties advanced queueing message properties OCI_DTYPE_AQMSG_PROPERTIES

OCIAQAgent advanced queueing agent OCI_DTYPE_AQAGENT
2-12 Oracle Call Interface Programmer’s Guide

Descriptors and Locators
Note: Although there is a single C type for OCILobLocator, this locator is
allocated with a different OCI type constant for internal and external LOBs.
The section below on LOB locators discusses this difference.

The main purpose of each descriptor type is listed here, and each descriptor type is
described in the following sections:

■ OCISnapshot - used in statement execution

■ OCILOBLocator - used for LOB (OCI_DTYPE_LOB) or FILE
(OCI_DTYPE_FILE) calls

■ OCIParam - used in describe calls

■ OCIRowid - used for binding or defining ROWID values

■ OCIComplexObjectComp - used for complex object retrieval

■ OCIAQEnqOptions, OCIAQDeqOptions, OCIAQMsgProperties,
OCIAQAgent - used for advanced queueing

Snapshot Descriptor
The snapshot descriptor is an optional parameter to the execute call,
OCIStmtExecute(). It indicates that a query is being executed against a particular
database snapshot. A database snapshot represents the state of a database at a
particular point in time.

You allocate a snapshot descriptor with a call to OCIDescriptorAlloc(), by passing
OCI_DTYPE_SNAP as the type parameter.

See Also: For more information about OCIStmtExecute() and database
snapshots, see the section “Execution Snapshots” on page 4-7.

LOB/FILE Datatype Locator
A LOB (large object) is an Oracle datatype that can hold up to 4 gigabytes of binary
(BLOB) or character (CLOB) data. In the database, an opaque data structure called
a LOB locator is stored in a LOB column of a database row, or in the place of a LOB
attribute of an object. The locator serves as a pointer to the actual LOB value, which
is stored in a separate location.

The OCI LOB locator is used to perform OCI operations against a LOB (BLOB or
CLOB) or FILE (BFILE). OCI functions do not take actual LOB values as
parameters; all OCI calls operate on the LOB locator. This descriptor—
OCILobLocator—is also used for operations on FILEs.
 OCI Programming Basics 2-13

Descriptors and Locators
The LOB locator is allocated with a call to OCIDescriptorAlloc(), by passing
OCI_DTYPE_LOB as the type parameter for BLOBs or CLOBs, and
OCI_DTYPE_FILE for BFILEs.

Warning: The two LOB locator types are not interchangeable. When binding or
defining a BLOB or CLOB, the application must take care that the locator is
properly allocated using OCI_DTYPE_LOB. Similarly, when binding or
defining a BFILE, the application must be sure to allocate the locator using
OCI_DTYPE_FILE.

An OCI application can retrieve a LOB locator from the server by issuing a SQL
statement containing a LOB column or attribute as an element in the select list. In
this example, the application would first allocate the LOB locator and then use it to
define an output variable.

Similarly, a LOB locator can be used as part of a bind operation to create an
association between a LOB and a placeholder in a SQL statement.

The LOB locator datatype (OCILobLocator) is not a valid datatype when
connected to an Oracle7 Server.

See Also: For more information about OCI LOB operations, see the section
“LOB and FILE Operations” on page 7-24.

Parameter Descriptor
OCI applications use parameter descriptors to obtain information about select-list
columns or schema objects. This information is obtained through a describe
operation.

The parameter descriptor is the one descriptor type that is not allocated using
OCIDescriptorAlloc(). You can obtain it only as an attribute of a describe, statement,
or complex object retrieval handle by specifying the position of the parameter
using an OCIParamGet() call.

See Also: See Chapter 6, “Describing Schema Metadata”, and “Describing
Select-List Items” on page 4-8 for more information about obtaining and using
parameter descriptors.
2-14 Oracle Call Interface Programmer’s Guide

Descriptors and Locators
ROWID Descriptor
The ROWID descriptor is used by applications that need to retrieve and use Oracle
ROWIDs. The size and structure of the ROWID has changed from Oracle7 to
Oracle8, and is opaque to the user. To work with a ROWID using the Oracle8 OCI,
an application can define a ROWID descriptor for a position in a SQL select-list,
and retrieve a ROWID into the descriptor. This same descriptor can later be bound
to an input variable in an INSERT statement or WHERE clause.

Complex Object Descriptor
For information about the complex object descriptor and its use, refer to “Complex
Object Retrieval” on page 8-21.

Advanced Queueing Descriptors
For information about advanced queueing and its related descriptors, refer to “OCI
and Advanced Queueing” on page 7-40.

User Memory Allocation
The OCIDescriptorAlloc() call has an xtramem_sz parameter in its parameter list. This
parameter is used to specify an amount of user memory which should be allocated
along with a descriptor or locator.

Typically, an application uses this parameter to allocate an application-defined
structure that has the same lifetime as the descriptor or locator. This structure
maybe used for application “bookkeeping” or storing context information.

Using the xtramem_sz parameter means that the application does not need to
explicitly allocate and deallocate memory as each descriptor or locator is allocated
and deallocated. The memory is allocated along with the descriptor or locator, and
freeing the descriptor or locator (with OCIDescriptorFree()) frees up the user’s data
structures as well.

The OCIHandleAlloc() call has a similar parameter for allocating user memory
which will have the same lifetime as the handle.

The OCIEnvInit() call has a similar parameter for allocating user memory which
will have the same lifetime as the environment handle.
 OCI Programming Basics 2-15

OCI Programming Steps
OCI Programming Steps
Each of the steps that you perform in an OCI application is described in greater
detail in the following sections. Some of the steps are optional. For example, you do
not need to describe or define select-list items if the statement is not a query.

Note: For an example showing the use of OCI calls for processing SQL
statements, see the first sample program in Appendix D.

The special case of dynamically providing data at run time is described in detail in
the section “Run Time Data Allocation and Piecewise Operations” on page 7-16.

Special considerations for operations involving arrays of structures are described in
the section “Arrays of Structures” on page 5-17.

Refer to the section “Error Handling” on page 2-25 for an outline of the steps
involved in processing a SQL statement within an OCI program.

For information on using the OCI to write multithreaded applications, refer to
“Thread Safety” on page 7-13.

For more information about types of SQL statements, refer to the section “SQL
Statements” on page 1-4.

The following sections describe the steps that are required of a release 8.0 OCI
application:

■ Initialization, Connection, and Session Creation

■ Processing SQL Statements

■ Commit or Rollback

■ Terminating the Application

■ Error Handling

Application-specific processing will also occur in between any and all of the OCI
function steps.

7.x Upgrade Note: OCI programmers should take note that OCI programs no
longer require an explicit parse step. This means that 8.0 applications must
issue an execute command for both DML and DDL statements.
2-16 Oracle Call Interface Programmer’s Guide

Initialization, Connection, and Session Creation
Initialization, Connection, and Session Creation
This section describes how to initialize the Oracle8 OCI environment, establish a
connection to a server, and authorize a user to perform actions against a database.

The three main steps in initializing the OCI environment are described in this
section:

1. Initialize an OCI Process

2. Allocate Handles and Descriptors

3. Initialize the Application, Connection, and Authorization

Additionally, this section describes connection modes for OCI applications.

Initialize an OCI Process
The initialize process call, OCIInitialize(), must be invoked before any other OCI
call. The mode parameter of this call specifies whether the application will run in a
threaded environment (mode = OCI_THREADED), and whether or not it will use
objects (mode = OCI_OBJECT). Initializing in object mode is necessary if the
application will be binding and defining objects, or if the application will be using
the OCI’s object navigation calls.

The program may also choose to use neither of these features (mode =
OCI_DEFAULT) or both, separating the options with a vertical bar (mode =
(OCI_THREADED | OCI_OBJECT)).

The OCIInitialize() call can also specify user-defined memory management
functions.

See Also: See the description of OCIInitialize() on on page 13-72 for more
information about the call.

For information about using the OCI to write multithreaded applications, refer
to “Thread Safety” on page 7-13.
 OCI Programming Basics 2-17

Initialization, Connection, and Session Creation
Allocate Handles and Descriptors
Oracle provides OCI functions to allocate and deallocate handles and descriptors.
You must allocate handles using OCIHandleAlloc() before passing them into an OCI
call, unless the OCI call allocates the handles for you (e.g. OCIBindByPos()).

You can allocate the following types of handles with OCIHandleAlloc():

■ error handle

■ service context handle

■ statement handle

■ describe handle

■ server handle

■ user session handle

■ transaction handle

■ complex object retrieval handle

Depending on the functionality of your application, it will need to allocate some or
all of these handles.

See Also: See the description of OCIHandleAlloc() on on page 13-68 for more
information about using this call.

Application Initialization, Connection, and Session Creation
Once OCIInitialize() has been called, an application must call OCIEnvInit() to
initialize the OCI environment handle. Following this step, the application has two
options for establishing a server connection and beginning a user session: Single
User, Single Connection; or Multiple Sessions or Connections.

Option 1: Single User, Single Connection
This option is the simplified logon method.

If an application will maintain only a single user session per database connection at
any time, the application can take advantage of the OCI’s simplified logon
procedure.

When an application calls OCILogon(), the OCI library initializes the service context
handle that is passed to it and creates a connection to the specified server for the
user whose username and password are passed to the function.
2-18 Oracle Call Interface Programmer’s Guide

Initialization, Connection, and Session Creation
The following is an example of what a call to OCILogon() might look like:

OCILogon(envhp, errhp, &svchp, "scott", nameLen, "tiger",
passwdLen, "oracle8", dbnameLen)

The parameters to this call include the service context handle (which will be
initialized), the username, the user’s password, and the name of the database that
will be used to establish the connection. The server and user session handles are
also implicitly allocated by this function.

If an application uses this logon method, the service context, server, and user
session handles will all be “read only”, which means that the application cannot
switch session or transaction by changing the appropriate attributes of the service
context handle, using OCIAttrSet().

An application that creates its session and authorization using OCILogon() should
terminate them using OCILogoff().

Option 2: Multiple Sessions or Connections
This option uses explicit attach and begin session calls.

If an application needs to maintain multiple user sessions on a database
connection, the application requires a different set of calls to set up the sessions and
connections. This includes specific calls to attach to the server and begin sessions:

■ OCIServerAttach() creates an access path to a data source for OCI operations.

■ OCISessionBegin() establishes a session for a user against a particular server.
This call is required for the user to be able to execute any operation on the
server.

These calls set up an operational environment that allows you to execute SQL and
PL/SQL statements against a database. The database must be up and running
before the calls are made, or else they will fail.

These calls are described in more detail in Chapter 13. Refer to Chapter 7, “OCI
Programming Advanced Topics”, for more information about maintaining multiple
sessions, transactions, and connections.

Example
The following example demonstrates the use of the OCI initialization calls. In the
example, a server context is created and set in the service handle. Then a user
session handle is created and initialized using a database username and password.
For the sake of simplicity, error checking is not included.
 OCI Programming Basics 2-19

Initialization, Connection, and Session Creation
main()
{
OCIEnv *myenvhp; /* the environment handle */
OCIServer *mysrvhp; /* the server handle */
OCIError *myerrhp; /* the error handle */
OCISession *myusrhp; /* user session handle */

(void) OCIInitialize (OCI_THREADED | OCI_OBJECT, (dvoid *)0,
 mymalloc, myrealloc, myfree);
/* initialize the mode to be the threaded and object environment */

(void) OCIEnvInit (&myenvhp, OCI_DEFAULT, 0, (dvoid **)0);

(void) OCIHandleAlloc ((dvoid *)myenvhp, (dvoid **)&mysrvhp,
 OCI_HTYPE_SVR, 0, (dvoid **) 0);

 /* allocate a server handle */

(void) OCIHandleAlloc ((dvoid *)myenvhp, (dvoid **)&myerrhp,
 OCI_HTYPE_ERROR, 0, (dvoid **) 0);

 /* allocate an error handle */

(void) OCIServerAttach (mysrvhp, myerrhp, (text *)"inst1_alias",
 strlen ("inst1_alias"), OCI_DEFAULT);

 /* create a server context */

(void) OCIAttrSet ((dvoid *)mysvchp, OCI_HTYPE_SVCCTX,
 (dvoid *)mysrvhp, (ub4) 0, OCI_ATTR_SERVER, myerrhp);

 /* set the server context in the service context */

(void) OCIHandleAlloc ((dvoid *)myenvhp, (dvoid **)&myusrhp,
 OCI_HTYPE_SESSION, 0, (dvoid **), 0);

 /* allocate a user session handle */

 (void) OCIAttrSet ((dvoid *)myusrhp, OCI_HTYPE_SESSION,
 (dvoid *)"scott", (ub4)strlen("scott"),
 OCI_ATTR_USERNAME, myerrhp);

 /* set username attribute in user session handle */
2-20 Oracle Call Interface Programmer’s Guide

Understanding Multiple Connections and Handles
 (void) OCIAttrSet ((dvoid *)myusrhp, OCI_HTYPE_SESSION,
 (dvoid *)"tiger", (ub4)strlen("tiger"),
 OCI_ATTR_PASSWORD, myerrhp);

 /* set password attribute in user session handle */

 (void) OCISessionBegin ((dvoid *) mysvchp, myerrhp, myusrhp,
 OCI_CRED_RDBMS, OCI_DEFAULT);

 (void) OCIAttrSet ((dvoid *)mysvchp, OCI_HTYPE_SVCCTX,
 (dvoid *)myusrhp, (ub4) 0, OCI_ATTR_SESSION, myerrhp);
 /* set the user session in the service context */

Understanding Multiple Connections and Handles
This section presents one possible scenario for an application which is managing
multiple user, multiple server connections, and multithreading. This example is
intended to help the reader understand some of the issues involved in
programming such an application.

A Connection Example
An application is supporting two users, User1 and User2. The application has
completed the following steps:

■ initialized the OCI process in OCI_THREADED mode with a call to
OCIInitialize()

■ allocated a single environment handle with OCIEnvInit()

■ in two different threads, connected to two different databases, DB1 and DB2,
residing on the same machine

User1 performs the following actions:

■ Attaches to DB1

■ Starts two new transactions, TX1 and TX2

■ Prepares and executes a statement in each transaction at the same time in
different threads (STMT1 in TX1, STMT2 in TX2).

■ Commits TX1 and TX2

■ Detaches from DB1
 OCI Programming Basics 2-21

Understanding Multiple Connections and Handles
User2 performs the following actions:

■ Attaches to DB2

■ Starts two new transactions, TX3 and TX4

■ Prepares and executes a statement in each transaction at the same time (STMT3
in TX3, STMT4 in TX4).

■ Commits TX3 and TX4

■ Detaches from DB2

The following questions and answers relate to the above scenario:

Q1. How many server handles are required?

A1. Even though DB1 and DB2 reside on the same server machine, 2 server handles
are required. Each server handle represents a database connection, and is identified
by its own connect string.

Q2. How many service context handles are required?

A2. Four service context handles are required. Each user is executing two
transactions simultaneously, so each requires its own service context. 2 users x 2
transactions = 4 service context handles. If each user had executed the statements in
the same transaction, each would require only a single service context.

Q3. How many user session handles are required?

A3. Four user session handles are required. Each user needs a user session handle
on each server. If each user executed their statements serially, then two sessions
would be sufficient.

Q4. How many transaction handles are required?

A4. Four transaction handles are required; one for each concurrent transaction.
However, the application could also take advantage of the implicit transaction
created when database changes are made, and avoid allocating transaction handles
altogether.
2-22 Oracle Call Interface Programmer’s Guide

Commit or Rollback
Q5. Could the example use multiple environment handles?

A5. Yes. Since there are two databases involved, the application should use two
environment handles so that accesses to each database can be completely
concurrent.

Q6. If a single user in a single environment wants to execute four different
statements on 4 transactions concurrently against the same database, how many
server handles are required?

A6. Four server handles are required; one for each concurrent transaction. There
can be at most a single outstanding call on any one server handle at a time.

Processing SQL Statements
For information about processing SQL statements, refer to Chapter 4, “SQL
Statement Processing”.

Commit or Rollback
An application commits changes to the database by calling OCITransCommit(). This
call takes a service context as one of its parameters. The transaction currently
associated with the service context is the one whose changes are committed. This
may be a transaction explicitly created by the application or the implicit transaction
created when the application modifies the database.

Note: Using the OCI_COMMIT_ON_SUCCESS mode of the OCIExecute() call,
the application can selectively commit transactions at the end of each statement
execution.

If you want to roll back a transaction, use the OCITransRollback() call.

If an application disconnects from Oracle in some way other than a normal logoff
(for example, losing a network connection), and OCITransCommit() has not been
called, all active transactions are rolled back automatically.

See Also: For more information about implicit transactions and transaction
processing, see the section “Service Context and Associated Handles” on
page 2-8, and the section “Transactions” on page 7-3.
 OCI Programming Basics 2-23

Terminating the Application
Terminating the Application
An OCI application should perform the following three steps before it terminates:

1. Delete the user session by calling OCISessionEnd() for each session.

2. Delete access to the data source(s) by calling OCIServerDetach() for each source.

3. Explicitly deallocate all handles by calling OCIHandleFree() for each handle, or

4. Delete the environment handle, which deallocates all other handles associated
with it.

Note: When a parent OCI handle is freed, any child handles associated with it
are freed automatically.

The calls to OCIServerDetach() and OCISessionEnd() are not mandatory. If the
application terminates, and OCITransCommit() (transaction commit) has not been
called, any pending transactions are automatically rolled back. For an example
showing handles being freed at the end of an application, refer to the first sample
program in Appendix D, “Code Examples”.

Note: If the application has used the simplified logon method provided by
OCILogon(), then a call to OCILogoff() will terminate the session, disconnect
from the server, and free the service context and associated handles. The
application is still responsible for freeing other handles it has allocated.
2-24 Oracle Call Interface Programmer’s Guide

Error Handling
Error Handling
OCI function calls have a set of return codes, listed below in Table 2–3, which
indicate the success or failure of the call (e.g., OCI_SUCCESS or OCI_ERROR) or
provide other information that may be required by the application (e.g.,
OCI_NEED_DATA or OCI_STILL_EXECUTING). Most OCI calls return one of
these codes. For exceptions, see “Functions Returning Other Values” on page 2-27.

If the return code indicates that an error has occurred, the application can retrieve
Oracle-specific error codes and messages by calling OCIErrorGet(). One of the
parameters to OCIErrorGet() is the error handle passed to the call that caused the
error.

Note: Multiple error records can be retrieved by calling OCIErrorGet()
repeatedly until there are no more records (OCI_NO_DATA is returned).
OCIErrorGet() returns at most a single diagnostic record at any time.

The following example code, taken from the first sample program in Appendix D,
“Code Examples”, returns error information given an error handle and the return
code from an OCI function call. If the return code is OCI_ERROR, the function
prints out diagnostic information. OCI_SUCCESS results in no printout, and other
return codes print the return code information.

STATICF void checkerr(errhp, status)
OCIError *errhp;
sword status;

Table 2–3 OCI Return Codes

OCI Return Code Description

OCI_SUCCESS The function completed successfully.

OCI_SUCCESS_WITH_INFO The function completed successfully; a call to OCIErrorGet() will
return additional diagnostic information. This may include warn-
ings.

OCI_NO_DATA The function completed, and there is no further data.

OCI_ERROR The function failed; a call to OCIErrorGet() will return additional
information.

OCI_INVALID_HANDLE An invalid handle was passed as a parameter. No further diagnos-
tics are available.

OCI_NEED_DATA The application must provide run-time data.
 OCI Programming Basics 2-25

Error Handling
{
 text errbuf[512];
 ub4 buflen;
 ub4 errcode;

 switch (status)
 {
 case OCI_SUCCESS:
 break;
 case OCI_SUCCESS_WITH_INFO:
 (void) printf("Error - OCI_SUCCESS_WITH_INFO\n");
 break;
 case OCI_NEED_DATA:
 (void) printf("Error - OCI_NEED_DATA\n");
 break;
 case OCI_NO_DATA:
 (void) printf("Error - OCI_NODATA\n");
 break;
 case OCI_ERROR:
 (void) OCIErrorGet (errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), OCI_HTYPE_ERROR);
 (void) printf("Error - %s\n", errbuf);
 break;
 case OCI_INVALID_HANDLE:
 (void) printf("Error - OCI_INVALID_HANDLE\n");
 break;
 case OCI_STILL_EXECUTING:
 (void) printf("Error - OCI_STILL_EXECUTE\n");
 break;
default:
 break;
 }
}

2-26 Oracle Call Interface Programmer’s Guide

Additional Coding Guidelines
Functions Returning Other Values
Some functions return values other than the OCI error codes listed in Table 2–3.
When using these function be sure to take into account that they return a value
directly from the function call, rather than through an OUT parameter. More
detailed information about each function and its return values is listed in Volume II.

■ OCICollMax()

■ OCIRawPtr()

■ OCIRawSize()

■ OCIRefHexSize()

■ OCIRefIsEqual()

■ OCIRefIsNull()

■ OCIStringPtr()

■ OCIStringSize()

Additional Coding Guidelines
This section explains some additional factors to keep in mind when coding
applications using the Oracle Call Interface.

Parameter Types
OCI functions take a variety of different types of parameters, including integers,
handles, and character strings. Special considerations must be taken into account
for some types of parameters, as described in the following sections.

For more information about parameter datatypes and parameter passing
conventions, refer to the introductory section in Chapter 13, “OCI Relational
Functions”, which covers the function calls for the OCI.

Address Parameters
Address parameters pass the address of the variable to Oracle. You should be
careful when developing in C, which normally passes scalar parameters by value,
to make sure that the parameter is an address. In all cases, you should pass your
pointers carefully.
 OCI Programming Basics 2-27

Additional Coding Guidelines
Integer Parameters
Binary integer parameters are numbers whose size is system dependent. Short
binary integer parameters are smaller numbers whose size is also system
dependent. See your Oracle system-specific documentation for the size of these
integers on your system.

Character String Parameters
Character strings are a special type of address parameter. This section describes
additional rules that apply to character string address parameters.

Each OCI routine that allows a character string to be passed as a parameter also has
a string length parameter. The length parameter should be set to the length of the
string.

7.x Upgrade Note: Unlike earlier versions of the OCI, in release 8.0 you should
not pass -1 for the string length parameter of a null-terminated string.

Nulls
You can insert a null into a database column in several ways. One method is to use
a literal NULL in the text of an INSERT or UPDATE statement. For example, the
SQL statement

INSERT INTO emp (ename, empno, deptno)
VALUES (NULL, 8010, 20)

makes the ENAME column null.

Another method is to use indicator variables in the OCI bind call. See the section
“Indicator Variables” on page 2-29 for more information.

One other method to insert a NULL is to set the buffer length and maximum length
parameters both to zero on a bind call.

Note: Following SQL92 requirements, Oracle8 returns an error if an attempt is
made to fetch a null select-list item into a variable that does not have an
associated indicator variable specified in the define call.
2-28 Oracle Call Interface Programmer’s Guide

Additional Coding Guidelines
Indicator Variables
Each bind and define OCI call has a parameter that allows you to associate an
indicator variable, or an array of indicator variables if you are using arrays, with a
DML statement, PL/SQL statement, or query.

Host languages do not have the concept of null values; therefore you associate
indicator variables with input variables to specify whether the associated
placeholder is a NULL. When data is passed to Oracle, the values of these indicator
variables determine whether or not a NULL is assigned to a database field.

For output variables, indicator variables determine whether the value returned
from Oracle is a NULL or a truncated value. In the case of a NULL fetch (on
OCIStmtFetch()) or a truncation (on OCIStmtExecute() or OCIStmtFetch()), the OCI
call returns OCI_SUCCESS_WITH_INFO. The corresponding indicator variable is
set to the appropriate value, as listed in the “Output” section below. If the
application provided a return code variable in the corresponding OCIDefineByPos()
call, the OCI assigns a value of ORA-01405 (for NULL fetch) or ORA-01406 (for
truncation) to the return code variable.

The datatype of indicator variables is sb2. In the case of arrays of indicator
variables, the individual array elements should be of type sb2.

Input
For input host variables, the OCI application can assign the following values to an
indicator variable:

Input Indicator Value Action Taken by Oracle

-1 Oracle assigns a NULL to the column, ignoring the value of the
input variable.

>=0 Oracle assigns the value of the input variable to the column.
 OCI Programming Basics 2-29

Additional Coding Guidelines
Output
On output, Oracle can assign the following values to an indicator variable:

Indicator Variables for Named Data Types and REFs
Indicator variables for most new (release 8.0) datatypes function as described
above. The only exception is SQLT_NTY (a named datatype). Data of type
SQLT_REF uses a standard scalar indicator, just like other variable types. For data
of type SQLT_NTY, the indicator variable must be a pointer to an indicator
structure.

When database types are translated into C struct representations using the Object
Type Translator (OTT), a null indicator structure is generated for each object type.
This structure includes an atomic null indicator, plus indicators for each object
attribute.

See Also: See the documentation for the OTT in Chapter 12, “Using the Object
Type Translator”, and the section “Nullness” on page 8-28 of this manual for
information about null indicator structures.

See the descriptions of OCIBindByName() and OCIBindByPos() in Chapter 13,
and the sections “Additional Information for Named Data Type and REF
Binds” on page 10-3, and “Additional Information for Named Data Type and
REF Defines, and PL/SQL OUT Binds” on page 10-5, for more information
about setting indicator parameters for named datatypes and REFs.

Output Indicator Value Meaning

-2 The length of the item is greater than the length of the output
variable; the item has been truncated. Additionally, the original
length is longer than the maximum data length that can be
returned in the sb2 indicator variable.

-1 The selected value is null, and the value of the output variable
is unchanged.

0 Oracle assigned an intact value to the host variable.

>0 The length of the item is greater than the length of the output
variable; the item has been truncated. The positive value
returned in the indicator variable is the actual length before
truncation.
2-30 Oracle Call Interface Programmer’s Guide

Additional Coding Guidelines
Canceling Calls
On most platforms, you can cancel a long-running or repeated OCI call. You do this
by entering the operating system’s interrupt character (usually CTRL-C) from the
keyboard.

Note: This is not to be confused with cancelling a cursor, which is
accomplished by calling OCIStmtFetch() with the nrows parameter set to zero.

When you cancel the long-running or repeated call using the operating system
interrupt, the error code ORA-01013 ("user requested cancel of current operation")
is returned.

Given a particular service context pointer or server context pointer, the OCIBreak()
function performs an immediate (asynchronous) abort of any currently executing
OCI function that is associated with the server. It is normally used to stop a long-
running OCI call being processed on the server.

Positioned Updates and Deletes
You can use the binary ROWID associated with a SELECT...FOR UPDATE OF...
statement in a later UPDATE or DELETE statement. The ROWID is retrieved by
calling OCIAttrGet() on the statement handle to retrieve the handle’s
OCI_ATTR_ROWID attribute.

For example, for a SQL statement such as

SELECT ename FROM emp WHERE empno = 7499 FOR UPDATE OF sal

when the fetch is performed, the ROWID attribute in the handle contains the row
identifier of the SELECTed row. You can retrieve the ROWID into a buffer in your
program by calling OCIAttrGet() as follows:

OCIRowid *rowid; /* the rowid in opaque format */
/* allocate descriptor with OCIDescriptorAlloc() */
err = OCIAttrGet ((dvoid*) mystmtp, OCI_HTYPE_STMT,

(dvoid*) &rowid, (ub4 *) 0, OCI_ATTR_ROWID, (OCIError *) myerrhp);

You can then use the saved ROWID in a DELETE or UPDATE statement. For
example, if MY_ROWID is the buffer in which the row identifier has been saved,
you can later process a SQL statement such as

UPDATE emp SET sal = :1 WHERE rowid = :2
 OCI Programming Basics 2-31

Using PL/SQL in an OCI Program
by binding the new salary to the :1 placeholder and MY_ROWID to the :2
placeholder. Be sure to use datatype code 104 (ROWID descriptor) when binding
MY_ROWID to :2 .

Application Linking
For information about application linking modes, including Oracle support for non-
deferred linking and single task linking in various versions of the OCI, please refer
to "Application Linking Issues" on page A-7.

Using PL/SQL in an OCI Program
PL/SQL is Oracle’s procedural extension to the SQL language. PL/SQL processes
tasks that are more complicated than simple queries and SQL data manipulation
language (DML) statements. PL/SQL allows you to group a number of constructs
into a single block and execute them as a unit. These constructs include:

■ one or more SQL statements

■ variable declarations

■ assignment statements

■ procedural control statements such as IF...THEN...ELSE statements and loops

■ exception handling

You can use PL/SQL blocks in your OCI program to perform the following
operations:

■ call Oracle stored procedures and stored functions

■ combine procedural control statements with several SQL statements, to be
executed as a single unit

■ access special PL/SQL features such as records, tables, CURSOR FOR loops,
and exception handling

■ use cursor variables

■ operate on objects in an Oracle8 server

Note: While the OCI can only directly process anonymous blocks, and not
named packages or procedures, the user can always put the package or
procedure call within an anonymous block and process that block.

Warning: When writing PL/SQL code, it is important to keep in mind that the
parser treats everything that starts with “--” to a carriage return as a comment.
2-32 Oracle Call Interface Programmer’s Guide

Using PL/SQL in an OCI Program
So if comments are indicated on each line by “--”, the C compiler can
concatenate all lines in a PL/SQL block into a single line without putting a
carriage return “/n” for each line. In this particular case, the parser fails to
extract the PL/SQL code of a line if the previous line ends with a comment. To
avoid the problem, the programmer should put “/n” after each “--” comment
to make sure the comment ends there.

See the PL/SQL User’s Guide and Reference for information about coding PL/SQL
blocks.
 OCI Programming Basics 2-33

Using PL/SQL in an OCI Program
2-34 Oracle Call Interface Programmer’s Guide

 Data
3

Datatypes

This chapter provides a reference to Oracle external datatypes used by OCI
applications. It also provides a general discussion of Oracle datatypes, including
special datatypes new to Release 8.0. The information in this chapter is useful for
understanding the conversions between internal and external representations that
occur when you transfer data between your program and Oracle.

For detailed information about Oracle internal datatypes, see the Oracle8 SQL
Reference.

This chapter contains the following sections:

■ Oracle Datatypes

■ Internal Datatypes

■ External Datatypes

■ New OCI 8.0 External Datatypes

■ Data Conversions

■ Typecodes

■ Definitions in oratypes.h
types 3-1

Oracle Datatypes
Oracle Datatypes
One of the main functions of an OCI program is to communicate with a database
through an Oracle server. The OCI application may retrieve data from database
tables through SQL SELECT queries, or it may modify existing data in tables
through INSERTs, UPDATEs, or DELETEs.

Inside a database, values are stored in columns in tables. Internally, Oracle
represents data in particular formats known as internal datatypes. Examples of
internal datatypes include NUMBER, CHAR, and DATE.

In general, OCI applications do not work with internal datatype representations of
data. OCI applications work with host language datatypes which are predefined by
the language in which they are written. When data is transferred between an OCI
client application and a database table, the OCI libraries convert the data between
internal datatypes and external datatypes.

External datatypes are host language types that have been defined in the OCI
header files. When an OCI application binds input variables, one of the bind
parameters is an indication of the external datatype code (or SQLT code) of the
variable. Similarly, when output variables are specified in a define call, the external
representation of the retrieved data must be specified.

In some cases, external datatypes are similar to internal types. External types
provide a convenience for the programmer by making it possible to work with host
language types instead of proprietary data formats.

Note: Even though some external types are similar to internal types, an OCI
application never binds to internal datatypes. They are discussed here because
it can be useful to understand how internal types can map to external types.

The OCI is capable of performing a wide range of datatype conversions when
transferring data between Oracle and an OCI application. There are more OCI
external datatypes than Oracle internal datatypes. In some cases a single external
type maps to an internal type; in other cases multiple external types map to an
single internal type.

The many-to-one mappings for some datatypes provide flexibility for the OCI
programmer.For example, if you are processing the SQL statement

SELECT sal FROM emp WHERE empno = :employee_number

and you want the salary to come back as character data, rather than in a binary
floating-point format, specify an Oracle external string datatype, such as
VARCHAR2 (code = 1) or CHAR (code = 96) for the dty parameter in the
3-2 Oracle Call Interface Programmer’s Guide

Oracle Datatypes
OCIDefineByPos() call for the sal column. You also need to declare a string variable
in your program and specify its address in the valuep parameter.

If you want the salary information to be returned as a binary floating-point value,
however, specify the FLOAT (code = 4) external datatype. You also need to define a
variable of the appropriate type for the valuep parameter.

Oracle performs most data conversions transparently. The ability to specify almost
any external datatype provides a lot of power for performing specialized tasks. For
example, you can input and output DATE values in pure binary format, with no
character conversion involved, by using the DATE external datatype (code = 12).
See the description of the DATE external datatype on page 3 - 14 for more
information.

To control data conversion, you must use the appropriate external datatype codes
in the bind and define routines. You must tell Oracle where the input or output
variables are in your OCI program and their datatypes and lengths.

The Oracle8 OCI also supports an additional set of OCI typecodes which are used
by Oracle8’s type management system to represent datatypes of object type
attributes. There is a set of predefined constants which can be used to represent
these typecodes. The constants each contain the prefix “OCI_TYPECODE”.

In summary, the OCI programmer must be aware of the following different
datatypes or data representations:

■ Internal Oracle datatypes, which are used by table columns in an Oracle
database. These also include datatypes used by PL/SQL which are not used by
Oracle columns (e.g., indexed table, boolean, record). For more information, see
“Internal Datatypes” on page 3-5 and “Internal Datatype Codes” on page 3-4.

■ External OCI datatypes, which are used to specify host language
representations of Oracle data. For more information, see “External Datatypes”
on page 3-7, and “External Datatype Codes” on page 3-4.

■ OCI_TYPECODE values, which are used to Oracle to represent type
information for object type attributes. For more information, see “Typecodes”
on page 3-24, and “Relationship Between SQLT and OCI_TYPECODE Values”
on page 3-25.
 Datatypes 3-3

Oracle Datatypes
Internal Datatype Codes
In some circumstances, an OCI application needs to know the internal
representation of Oracle data. For example, you many need to know the datatype
of a column in a dynamic SQL query so that you can define output variables to
received the fetched data. After executing the query, you can use a combination of
the OCIParamGet() and OCIAttrGet() functions to obtain describe information about
select-list items from the statement handle. You can get the same information from
a describe handle without executing the statement by calling OCIDescribeAny(), and
then the combination of OCIParamGet() and OCIAttrGet().

Information about a column’s internal datatype is conveyed to your application in
the form of an internal datatype code. Once your application knows what type of
data will be returned, it can make appropriate decisions about how to convert and
format the output data. The Oracle internal datatype codes are listed in the section
“Internal Datatypes” on page 3-5.

See Also: For detailed information about Oracle internal datatypes, see the
Oracle8 SQL Reference. For information about describing select-list items in a
query, see the section “Describing Select-List Items” on page 4-8.

External Datatype Codes
An external datatype code indicates to Oracle how a host variable represents data
in your program. This determines how the data is converted when returned to
output variables in your program, or how it is converted from input (bind)
variables to Oracle column values. For example, if you want to convert a NUMBER
in an Oracle column to a variable-length character array, you specify the
VARCHAR2 external datatype code in the OCIDefineByPos() call that defines the
output variable.

To convert a bind variable to a value in an Oracle column, specify the external
datatype code that corresponds to the type of the bind variable. For example, if you
want to input a character string such as ‘02-FEB-65’ to a DATE column, specify the
datatype as a character string and set the length parameter to nine.

It is always the programmer’s responsibility to make sure that values are
convertible. If you try to INSERT the string ‘MY BIRTHDAY’ into a DATE column,
you will get an error when you execute the statement.

For a complete list of the external datatypes and datatype codes, see Table 3–2 on
page 3-7.
3-4 Oracle Call Interface Programmer’s Guide

Internal Datatypes
Internal Datatypes
The following table lists the Oracle internal datatypes, along with each type’s
maximum internal length and datatype code.

For more information about any of these internal datatypes, see the Oracle8 SQL
Reference. The following sections provide OCI-specific information about these
datatypes.

LONG, RAW, LONG RAW, VARCHAR2
You can use the piecewise capabilities provided by OCIBindByName(),
OCIBindByPos(), OCIDefineByPos(), OCIStmtGetPieceInfo() and OCIStmtSetPieceInfo()
to perform inserts, updates or fetches involving column data of these types.

Table 3–1 Internal Oracle Datatypes

Internal Oracle Datatype Maximum Internal Length Datatype Code

VARCHAR2 4000 bytes 1

NUMBER 21 bytes 2

LONG 2^31-1 bytes 8

ROWID 10 bytes 11

DATE 7 bytes 12

RAW 2000 bytes 23

LONG RAW 2^31-1 bytes 24

CHAR 2000 bytes 96

MLSLABEL 255 bytes 105

User-defined type (object type,
VARRAY, Nested Table)

<N/A> 108

REF <N/A> 111

CLOB <N/A> 112

BLOB <N/A> 113
 Datatypes 3-5

Internal Datatypes
Character Strings and Byte Arrays
You can use five Oracle internal datatypes to specify columns that contain
characters or arrays of bytes: CHAR, VARCHAR2, RAW, LONG, and LONG RAW.

Note: LOBs and FILEs may also contain characters or binary data. They are
handled differently than other types, so they are not included in this
discussion. See the section “LOB and FILE Operations” on page 7-24 for more
information about these data types.

CHAR, VARCHAR2, and LONG columns normally hold character data. RAW and
LONG RAW hold bytes that are not interpreted as characters, for example, pixel
values in a bit-mapped graphics image. Character data can be transformed when
passed through a gateway between networks. For example, character data passed
between machines using different languages (where single characters may be
represented by differing numbers of bytes) can be significantly changed in length.
Raw data is never converted in this way.

It is the responsibility of the database designer to choose the appropriate Oracle
internal datatype for each column in the table. The OCI programmer must be
aware of the many possible ways that character and byte-array data can be
represented and converted between variables in the OCI program and Oracle tables.

When an array holds characters, the length parameter for the array in an OCI call is
always passed in and returned in bytes, not characters.
3-6 Oracle Call Interface Programmer’s Guide

External Datatypes
External Datatypes
Table 3–2 lists datatype codes for external datatypes. For each datatype, the table
lists the program variable types for C from or to which Oracle internal data is
normally converted.

Table 3–2 External Datatypes and Codes

EXTERNAL DATATYPE

TYPE OF PROGRAM VARIABLE OCI DEFINED CONSTANTNAME CODE

VARCHAR2 1 char[n] SQLT_CHR

NUMBER 2 unsigned char[21] SQLT_NUM

8-bit signed INTEGER 3 signed char SQLT_INT

16-bit signed INTEGER 3 signed short, signed int SQLT_INT

32-bit signed INTEGER 3 signed int, signed long SQLT_INT

FLOAT 4 float, double SQLT_FLT

Null-terminated STRING 5 char[n+1] SQLT_STR

VARNUM 6 char[22] SQLT_VNU

LONG 8 char[n] SQLT_LNG

VARCHAR 9 char[n+sizeof(short integer)] SQLT_VCS

ROWID 11 char[n] SQLT_RID (see note 1)

DATE 12 char[7] SQLT_DAT

VARRAW 15 unsigned char[n+sizeof(short integer)] SQLT_VBI

RAW 23 unsigned char[n] SQLT_BIN

LONG RAW 24 unsigned char[n] SQLT_LBI

UNSIGNED INT 68 unsigned SQLT_UIN

LONG VARCHAR 94 char[n+sizeof(integer)] SQLT_LVC

LONG VARRAW 95 unsigned char[n+sizeof(integer)] SQLT_LVB

CHAR 96 char[n] SQLT_AFC

CHARZ 97 char[n+1] SQLT_AVC

ROWID descriptor 104 OCIRowid SQLT_RDD

MLSLABEL 106 char[n] SQLT_LAB
 Datatypes 3-7

External Datatypes
Note: Where the length is shown as n, it is a variable, and depends on the
requirements of the program (or of the operating system in the case of ROWID).

Each of the external datatypes is described below. Datatypes that are new as of
release 8.0 are described in the section “New OCI 8.0 External Datatypes” on
page 3-18.

The following three types are internal to PL/SQL and cannot be returned as values
by OCI:

■ Boolean, SQLT_BOL

■ Indexed Table, SQLT_TAB

■ Record, SQLT_REC

NAMED DATA TYPE 108 struct SQLT_NTY

REF 110 OCIRef SQLT_REF

Character LOB 112 OCILobLocator (see note 3) SQLT_CLOB

Binary LOB 113 OCILobLocator (see note 3) SQLT_BLOB

Binary FILE 114 OCILobLocator SQLT_FILE

OCI string type 155 OCIString SQLT_VST (see note 2)

OCI date type 156 OCIDate SQLT_ODT (see note 2)

Notes:

(1) This type is valid only for version 7.x OCI calls. Oracle8 OCI applications should use the ROWID descriptor
(type 104).

(2) For more information on the use of these datatypes, refer to Chapter 9, “Object-Relational Datatypes”.

(3) In applications using datatype mappings generated by OTT, CLOBs may be mapped as OCIClobLocator,
and BLOBs may be mapped as OCIBlobLocator. For more information, refer to Chapter 12, “Using the Object
Type Translator”.

Table 3–2 External Datatypes and Codes (Cont.)

EXTERNAL DATATYPE

TYPE OF PROGRAM VARIABLE OCI DEFINED CONSTANTNAME CODE
3-8 Oracle Call Interface Programmer’s Guide

External Datatypes
VARCHAR2
The VARCHAR2 datatype is a variable-length string of characters with a maximum
length of 4000 bytes.

Note: If you are using Oracle8 objects, you can work with a special OCIString
external datatype using a set of predefined OCI functions. Refer to Chapter 9,
“Object-Relational Datatypes” for more information about this datatype.

Input
The value_sz parameter determines the length in the OCIBindByName() or
OCIBindByPos() call.

If the value_sz parameter is greater than zero, Oracle obtains the bind variable value
by reading exactly that many bytes, starting at the buffer address in your program.
Trailing blanks are stripped, and the resulting value is used in the SQL statement or
PL/SQL block. If, in the case of an INSERT statement, the resulting value is longer
than the defined length of the database column, the INSERT fails, and an error is
returned.

Note: A trailing null is not stripped. Variables should be blank-padded but not
null-terminated.

If the value_sz parameter is zero, Oracle treats the bind variable as a null, regardless
of its actual content. Of course, a null must be allowed for the bind variable value
in the SQL statement. If you try to insert a null into a column that has a NOT NULL
integrity constraint, Oracle issues an error, and the row is not inserted.

When the Oracle internal (column) datatype is NUMBER, input from a character
string that contains the character representation of a number is legal. Input
character strings are converted to internal numeric format. If the VARCHAR2
string contains an illegal conversion character, Oracle returns an error and the
value is not inserted into the database.

Output
Specify the desired length for the return value in the value_sz parameter of the
OCIDefineByPos() call, or the value_sz parameter of OCIBindByName() or
OCIBindByPos() for PL/SQL blocks. If zero is specified for the length, no data is
returned.

If you omit the rlenp parameter of OCIDefineByPos(), returned values are blank-
padded to the buffer length, and nulls are returned as a string of blank characters.
If rlenp is included, returned values are not blank-padded. Instead, their actual
lengths are returned in the rlenp parameter.
 Datatypes 3-9

External Datatypes
To check if a null is returned or if character truncation has occurred, include an
indicator parameter in the OCIDefineByPos() call. Oracle sets the indicator
parameter to -1 when a null is fetched and to the original column length when the
returned value is truncated. Otherwise, it is set to zero. If you do not specify an
indicator parameter and a null is selected, the fetch call returns the error code
OCI_SUCCESS_WITH_INFO. Retrieving diagnostic information on the error will
return ORA-1405.

See Also: For more information about indicator variables, see the section
“Indicator Variables” on page 2-29.

You can also request output to a character string from an internal NUMBER
datatype. Number conversion follows the conventions established by National
Language Support for your system. For example, your system might be configured
to recognize a comma rather than period as the decimal point.

NUMBER
You should not need to use NUMBER as an external datatype. If you do use it,
Oracle returns numeric values in its internal 21-byte binary format and will expect
this format on input. The following discussion is included for completeness only.

Note: If you are using objects in Oracle8, you can work with a special
OCINumber datatype using a set of predefined OCI functions. Refer to
Chapter 9, “Object-Relational Datatypes” for more information about this
datatype.

Oracle stores values of the NUMBER datatype in a variable-length format. The first
byte is the exponent and is followed by 1 to 20 mantissa bytes. The high-order bit of
the exponent byte is the sign bit; it is set for positive numbers. The lower 7 bits
represent the exponent, which is a base-100 digit with an offset of 65.

Each mantissa byte is a base-100 digit, in the range 1..100. For positive numbers, the
digit has 1 added to it. So, the mantissa digit for the value 5 is 6. For negative
numbers, instead of adding 1, the digit is subtracted from 101. So, the mantissa
digit for the number -5 is 96 (101-5). Negative numbers have a byte containing 102
appended to the data bytes. However, negative numbers that have 20 mantissa
bytes do not have the trailing 102 byte. Because the mantissa digits are stored in
base 100, each byte can represent 2 decimal digits. The mantissa is normalized;
leading zeroes are not stored.

Up to 20 data bytes can represent the mantissa. However, only 19 are guaranteed to
be accurate. The 19 data bytes, each representing a base-100 digit, yield a maximum
precision of 38 digits for an Oracle NUMBER.
3-10 Oracle Call Interface Programmer’s Guide

External Datatypes
If you specify the datatype code 2 in the dty parameter of an OCIDefineByPos() call,
your program receives numeric data in this Oracle internal format. The output
variable should be a 21-byte array to accommodate the largest possible number.
Note that only the bytes that represent the number are returned. There is no blank
padding or null termination. If you need to know the number of bytes returned,
use the VARNUM external datatype instead of NUMBER. See the description of
VARNUM on on page 3-13 for examples of the Oracle internal number format.

INTEGER
The INTEGER datatype converts numbers. An external integer is a signed binary
number; the size in bytes is system dependent. The host system architecture
determines the order of the bytes in the variable. A length specification is required
for input and output. If the number being returned from Oracle is not an integer,
the fractional part is discarded, and no error or other indication is returned. If the
number to be returned exceeds the capacity of a signed integer for the system,
Oracle returns an "overflow on conversion" error.

FLOAT
The FLOAT datatype processes numbers that have fractional parts or that exceed
the capacity of an integer. The number is represented in the host system’s floating-
point format. Normally the length is either four or eight bytes. The length
specification is required for both input and output.

The internal format of an Oracle number is decimal, and most floating-point
implementations are binary; therefore Oracle can represent numbers with greater
precision than floating-point representations.

Note: You may receive a round-off error when converting between FLOAT and
NUMBER. Thus, using a FLOAT as a bind variable in a query may return an
ORA-1403 error. You can avoid this situation by converting the FLOAT into a
STRING and then using datatype code 1 or 5 for the operation.
 Datatypes 3-11

External Datatypes
STRING
The null-terminated STRING format behaves like the VARCHAR2 format
(datatype code 1), except that the string must contain a null terminator character.
This datatype is most useful for C programs.

Input
The string length supplied in the OCIBindByName() or OCIBindByPos() call limits
the scan for the null terminator. If the null terminator is not found within the length
specified, Oracle issues the error

ORA-01480: trailing null missing from STR bind value

If the length is not specified in the bind call, the OCI uses an implied maximum
string length of 4000.

The minimum string length is two bytes. If the first character is a null terminator
and the length is specified as two, a null is inserted in the column, if permitted.
Unlike types 1 and 96, a string containing all blanks is not treated as a null on
input; it is inserted as is.

Note: Unlike earlier versions of the OCI, in release 8.0 you cannot pass -1 for
the string length parameter of a null-terminated string.

Output
A null terminator is placed after the last character returned. If the string exceeds
the field length specified, it is truncated and the last character position of the
output variable contains the null terminator.

A null select-list item returns a null terminator character in the first character
position. An ORA-01405 error is possible, as well.
3-12 Oracle Call Interface Programmer’s Guide

External Datatypes
VARNUM
The VARNUM datatype is like the external NUMBER datatype, except that the first
byte contains the length of the number representation. This length does not include
the length byte itself. Reserve 22 bytes to receive the longest possible VARNUM.
Set the length byte when you send a VARNUM value to Oracle.

Table 3 - 3 shows several examples of the VARNUM values returned for numbers
in an Oracle table.

LONG
The LONG datatype stores character strings longer than 4000 bytes. You can store
up to two gigabytes (2^31-1 bytes) in a LONG column. Columns of this type are
used only for storage and retrieval of long strings. They cannot be used in
functions, expressions, or WHERE clauses. LONG column values are generally
converted to and from character strings.

VARCHAR
The VARCHAR datatype stores character strings of varying length. The first two
bytes contain the length of the character string, and the remaining bytes contain the
string. The specified length of the string in a bind or a define call must include the
two length bytes, so the largest VARCHAR string that can be received or sent is
65533 bytes long, not 65535. For converting longer strings, use the LONG
VARCHAR external datatype.

Table 3–3 VARNUM Examples

Decimal
Value Length Byte

Exponent
Byte

Mantissa
Bytes

Terminator
Byte

0 1 128 n/a n/a

5 2 193 6 n/a

-5 3 62 96 102

2767 3 194 28, 68 n/a

-2767 4 61 74, 34 102

100000 2 195 11 n/a

1234567 5 196 2, 24, 46, 68 n/a
 Datatypes 3-13

External Datatypes
ROWID
The ROWID datatype identifies a particular row in a database table. ROWID can be
a select-list item in a query; for example:

SELECT rowid, ename, sal FROM emp FOR UPDATE OF sal
In this case, you use the returned ROWID in further INSERT, UPDATE, or DELETE
statements. This can be the fastest way to access a particular row.

In the Oracle8 OCI, you access ROWIDs through the use of a ROWID descriptor,
which you can use as a bind or define variable. See the sections “Descriptors and
Locators” on page 2-12 and “Positioned Updates and Deletes” on page 2-31 for
more information about the use of the ROWID descriptor.

DATE
The DATE datatype can update, insert, or retrieve a date value using the Oracle
internal date binary format. A date in binary format contains seven bytes, as shown
in Table 3–4.

The century and year bytes are in an excess-100 notation. Dates Before Common
Era (BCE) are less than 100. The era begins on 01-JAN-4712 BCE, which is Julian
day 1. For this date, the century byte is 53, and the year byte is 88. The hour,
minute, and second bytes are in excess-1 notation. The hour byte ranges from 1 to
24, the minute and second bytes from 1 to 60. If no time was specified when the
date was created, the time defaults to midnight (1, 1, 1).

When you enter a date in binary format using the DATE external datatype, the
database does not do consistency or range checking. All data in this format must be
carefully validated before input.

Note: There is little need to use the Oracle external DATE datatype in ordinary
database operations. It is much more convenient to convert DATEs into
character format, because the program usually deals with data in a character
format, such as ‘DD-MON-YY’.

Table 3–4 Format of the DATE Datatype

Byte 1 2 3 4 5 6 7

Meaning Century Year Month Day Hour Minute Second

Example
(for 30-NOV-1992,
3:17 PM)

119 192 11 30 16 18 1
3-14 Oracle Call Interface Programmer’s Guide

External Datatypes
When a DATE column is converted to a character string in your program, it is
returned using the default format mask for your session, or as specified in the
INIT.ORA file.

Note: If you are using objects in Oracle8, you can work with a special OCIDate
datatype using a set of predefined OCI functions. Refer to Chapter 9, “Object-
Relational Datatypes” for more information about this datatype.

RAW
The RAW datatype is used for binary data or byte strings that are not to be
interpreted by Oracle, for example, to store graphics character sequences. The
maximum length of a RAW column is 2000 bytes. For more information, see the
Oracle8 SQL Reference.

When RAW data in an Oracle table is converted to a character string in a program,
the data is represented in hexadecimal character code. Each byte of the RAW data is
returned as two characters that indicate the value of the byte, from ’00’ to ’FF’. If
you want to input a character string in your program to a RAW column in an
Oracle table, you must code the data in the character string using this hexadecimal
code.

You can use the piecewise capabilities provided by OCIDefineByPos(),
OCIBindByName(), OCIBindByPos(), OCIStmtGetPieceInfo(), and
OCIStmtSetPieceInfo() to perform inserts, updates, or fetches involving RAW (or
LONG RAW) columns.

Note: If you are using objects in Oracle8, you can work with a special OCIRaw
datatype using a set of predefined OCI functions. Refer to Chapter 9, “Object-
Relational Datatypes” for more information about this datatype.

VARRAW
The VARRAW datatype is similar to the RAW datatype. However, the first two
bytes contain the length of the data. The specified length of the string in a bind or a
define call must include the two length bytes. So the largest VARRAW string that
can be received or sent is 65533 bytes long, not 65535. For converting longer strings,
use the LONG VARRAW external datatype.

LONG RAW
The LONG RAW datatype is similar to the RAW datatype, except that it stores raw
data with a length up to two gigabytes (2^31-1 bytes).
 Datatypes 3-15

External Datatypes
UNSIGNED
The UNSIGNED datatype is used for unsigned binary integers. The size in bytes is
system dependent. The host system architecture determines the order of the bytes
in a word. A length specification is required for input and output. If the number
being output from Oracle is not an integer, the fractional part is discarded, and no
error or other indication is returned. If the number to be returned exceeds the
capacity of an unsigned integer for the system, Oracle returns an "overflow on
conversion" error.

LONG VARCHAR
The LONG VARCHAR datatype stores data from and into an Oracle LONG
column. The first four bytes of a LONG VARCHAR contain the length of the item.
So, the maximum length of a stored item is 2^31-5 bytes.

LONG VARRAW
The LONG VARRAW datatype is used to store data from and into an Oracle LONG
RAW column. The length is contained in the first four bytes. The maximum length
is 2^31-5 bytes.

CHAR
The CHAR datatype is a string of characters, with a maximum length of 2000.
CHAR strings are compared using blank-padded comparison semantics (see the
Oracle8 SQL Reference).

Input
The length is determined by the value_sz parameter in the OCIBindByName() or
OCIBindByPos() call.

Note: The entire contents of the buffer (value_sz chars) is passed to the
database, including any trailing blanks or nulls.

If the value_sz parameter is zero, Oracle treats the bind variable as a null, regardless
of its actual content. Of course, a null must be allowed for the bind variable value
in the SQL statement. If you try to insert a null into a column that has a NOT NULL
integrity constraint, Oracle issues an error and does not insert the row.

Negative values for the value_sz parameter are not allowed for CHARs.

When the Oracle internal (column) datatype is NUMBER, input from a character
string that contains the character representation of a number is legal. Input
3-16 Oracle Call Interface Programmer’s Guide

External Datatypes
character strings are converted to internal numeric format. If the CHAR string
contains an illegal conversion character, Oracle returns an error and does not insert
the value. Number conversion follows the conventions established by National
Language Support settings for your system. For example, your system might be
configured to recognize a comma (,) rather than a period (.) as the decimal point.

Output
Specify the desired length for the return value in the value_sz parameter of the
OCIDefineByPos() call. If zero is specified for the length, no data is returned.

If you omit the rlenp parameter of OCIDefineByPos(), returned values are blank
padded to the buffer length, and nulls are returned as a string of blank characters.
If rlenp is included, returned values are not blank padded. Instead, their actual
lengths are returned in the rlenp parameter.

To check whether a null is returned or if character truncation has occurred, include
an indicator parameter or array of indicator parameters in the OCIDefineByPos()
call. An indicator parameter is set to -1 when a null is fetched and to the original
column length when the returned value is truncated. Otherwise, it is set to zero. If
you do not specify an indicator parameter and a null is selected, the fetch call
returns an ORA-01405 error.

See Also: For more information about indicator variables, see “Indicator
Variables” on page 2-29

You can also request output to a character string from an internal NUMBER
datatype. Number conversion follows the conventions established by the National
Language Support settings for your system. For example, your system might use a
comma (,) rather than a period (.) as the decimal point.

CHARZ
The CHARZ external datatype is similar to the CHAR datatype, except that the
string must be null terminated on input, and Oracle places a null-terminator
character at the end of the string on output. The null terminator serves only to
delimit the string on input or output; it is not part of the data in the table.

On input, the length parameter must indicate the exact length, including the null
terminator. For example, if an array in C is declared as

char my_num[] = "123.45";

then the length parameter when you bind my_num must be seven. Any other value
would return an error for this example.
 Datatypes 3-17

New OCI 8.0 External Datatypes
MLSLABEL
Trusted Oracle provides the MLSLABEL datatype, which stores Trusted Oracle’s
internal representation of labels generated by multilevel secure operating systems.
Trusted Oracle uses labels to control database access.

You can define a column using the MLSLABEL datatype in Oracle8 for
compatibility with Trusted Oracle applications, but the only valid value for the
column in Oracle8 is NULL.

See the Trusted Oracle Server Administrator’s Guide for more information about the
MLSLABEL datatype and Trusted Oracle.

New OCI 8.0 External Datatypes
The following new external datatypes are being introduced with release 8.0. These
datatypes are not supported when connect to an Oracle7 server.

Note: Both internal and external datatypes have Oracle-defined constant values
(e.g., SQLT_NTY, SQLT_REF) corresponding to their datatype codes. Although
the constants are not listed for all of the types in this chapter, they are used in
this section when discussing new Oracle8 datatypes. The datatype constants
are also used in other chapters of this guide when referring to these new types.

Note: Named data types and REFs are only available if you have purchased the
Oracle8 Enterprise Edition.

NAMED DATA TYPE
Named data types are user-defined types which are specified with the CREATE
TYPE command in SQL. Examples include object types, varrays, and nested tables.
In the OCI, “named data type” refers to a host language representation of the type.
The SQLT_NTY datatype code is used when binding or defining named data types.

In a C application, named data types are represented as C structs. These structs can
be generated from types stored in the database by using the Object Type Translator.
These types correspond to OCI_TYPECODE_OBJECT.

See Also: For more information about working with named data types in the
OCI, refer to Part 2 of this guide.

For information about how named data types are represented as C structs, refer
to Chapter 12, “Using the Object Type Translator”.
3-18 Oracle Call Interface Programmer’s Guide

New OCI 8.0 External Datatypes
REF
This is a reference to a named data type. The C language representation of a REF is
a variable declared to be of type OCIRef *. The SQLT_REF datatype code is used
when binding or defining REFs.

Access to REFs is only possible when an OCI application has been initialized in
object mode. When REFs are retrieved from the server, they are stored in the client-
side object cache.

To allocate a REF for use in your application, you should declare a variable to be a
pointer to a REF, and then call OCIObjectNew(), passing OCI_TYPECODE_REF as
the typecode parameter.

See Also: For more information about working with REFs in the OCI, refer to
Part 2 of this guide.

LOB
A LOB (Large OBject) stores binary or character data up to 4 gigabytes in length.
Binary data is stored in a BLOB (Binary LOB), and character data is stored in a
CLOB (Character LOB) or NCLOB (National Character LOB).

LOB values may or may not be stored inline with other row data in the database. In
either case, LOBs have the full transactional support of the database server. A
database table stores a LOB locator which points to the LOB value which may be in
a different storage space.

When an OCI application issues a SQL query which includes a LOB column or
attribute in its select-list, fetching the result(s) of the query returns the locator,
rather than the actual LOB value. In the OCI, the LOB locator maps to a variable of
type OCILobLocator.

See Also: For more information about descriptors, including the LOB locator,
see the section “Descriptors and Locators” on page 2-12.

For more information about LOBs refer to the Oracle8 SQL Reference and the
Oracle8 Application Developer’s Guide.

The OCI functions for LOBs take a LOB locator as one of their arguments. The OCI
functions assume that the locator has already been created, whether or not the LOB
to which it points contains data.

Bind and define operations are performed on the LOB locator, which is allocated
with the OCIDescriptorAlloc() function.
 Datatypes 3-19

New OCI 8.0 External Datatypes
The locator is always fetched first using SQL or OCIObjectPin(), and then
operations are performed using the locator. The OCI functions never take the actual
LOB value as a parameter.

See Also: For more information about OCI LOB functions, see the section “LOB
and FILE Operations” on page 7-24.

The datatype codes available for binding or defining LOBs are:

■ SQLT_BLOB - a binary LOB data type.

■ SQLT_CLOB - a character LOB data type.

The NCLOB is a special type of CLOB with the following requirements:

■ To write into or read from an NCLOB, the user must set the character set form
(csfrm) parameter to be SQLCS_NCHAR.

■ The “amount” (amtp) parameter in calls involving CLOBS and NCLOBS is
always interpreted in terms of characters, rather than bytes.

FILE
The FILE datatype provides access to file LOBs that are stored in file systems
outside the Oracle8 database. Oracle8 currently supports access to binary files, or
BFILEs.

A BFILE column or attribute stores a file LOB locator, which serves as a pointer to a
binary file on the server’s file system. The locator maintains the directory alias and
the filename.

Binary file LOBs do not participate in transactions. Rather, the underlying
operating system provides file integrity and durability. The maximum file size
supported is 4 gigabytes.

The database administrator must ensure that the file exists and that Oracle8
processes have operating system read permissions on the file.

The BFILE datatype allows read-only support of large binary files; you cannot
modify a file through Oracle. Oracle8 provides APIs to access file data. The primary
interfaces that you use to access file data are the PL/SQL DBMS_LOB package, and
the OCI.

The datatype code available for binding or defining FILEs is:

■ SQLT_BFILE - a binary FILE LOB data type (see the next section)

For more information about directory aliases, refer to the Oracle8 Application
Developer’s Guide.
3-20 Oracle Call Interface Programmer’s Guide

New OCI 8.0 External Datatypes
BLOB
The BLOB datatype stores unstructured binary large objects. BLOBs can be thought
of as bitstreams with no character set semantics. BLOBs can store up to four
gigabytes of binary data.

BLOBs have full transactional support; changes made through the PL/SQL
DBMS_LOB package, or the OCI participate fully in the transaction. The BLOB
value manipulations can be committed or rolled back. You cannot save a BLOB
locator in a PL/SQL or OCI variable in one transaction and then use it in another
transaction or session.

CLOB
The CLOB datatype stores single-byte character data. Varying-width character sets
are not supported. CLOBs can store up to 4 gigabytes of character data.

CLOBs have full transactional support; changes made through the PL/SQL
DBMS_LOB package or the OCI participate fully in the transaction. The CLOB
value manipulations can be committed or rolled back. You cannot save a CLOB
locator in a PL/SQL or OCI variable in one transaction and then use it in another
transaction or session.

NCLOB An NCLOB is a national character version of a CLOB. It stores fixed-width,
single- or multi-byte national character set character (NCHAR) data. Varying-width
character sets are not supported. NCLOBs can store up to 4 gigabytes of character
text data.

NCLOBs have full transactional support; changes made through the PL/SQL
DBMS_LOB package, or the OCI participate fully in the transaction. NCLOB value
manipulations can be committed or rolled back. You cannot save a NCLOB locator
in a PL/SQL or OCI variable in one transaction and then use it in another
transaction or session.

You cannot create an object with NCLOB attributes, but you can specify NCLOB
parameters in methods.

New C Datatype Mappings
The OCI now includes support for Oracle-defined C datatypes used to map user-
defined datatypes and ADT attributes to C representations (e.g. OCINumber,
OCIArray). The OCI provides a set of calls to operate on these datatypes, and to
use these datatypes in bind and define operations, in conjunction with OCI external
datatype codes. For information on using these Oracle-defined C datatypes, refer to
Chapter 9, “Object-Relational Datatypes”.
 Datatypes 3-21

Data Conversions
Data Conversions
Table 3–5 shows the supported conversions from internal Oracle datatypes to
external datatypes, and from external datatypes into internal column
representations, for all datatypes available through release 7.3. Information about
data conversions for data types new to release 8.0 is listed here:

■ REFs stored in the database are converted to SQLT_REF on output.

■ SQLT_REF is converted to the internal representation of REFs on input.

■ Named Data Types stored in the database can be converted to SQLT_NTY (and
represented by a C struct in the application) on output.

■ SQLT_NTY (represented by a C struct in an application) is converted to the
internal representation of the corresponding type on input.

■ LOBs and BFILEs are represented by descriptors in OCI applications, so there
are no input or output conversions.

■ For information about OCIString, OCINumber, and other new Oracle8
datatypes, refer to Chapter 9, “Object-Relational Datatypes”, and Chapter 10,
“Binding and Defining in Object Applications”.

Table 3–5 Data Conversions

EXTERNAL

DATATYPES

INTERNAL DATATYPES

1
VARCHAR2

2
NUMBER

8
LONG

11
ROWID

12
DATE

23
RAW

24
LONG RAW

96
CHAR

105
MLSLABEL

1 VARCHAR I/O I/O I/O I/O(1) I/O(2) I/O(3) I/O(3) I/O(7)

2 NUMBER I/O(4) I/O I I/O(4)

3 INTEGER I/O(4) I/O I I/O(4)

4 FLOAT I/O(4) I/O I I/O(4)

5 STRING I/O I/O I/O I/O(1) I/O(2) I/O(3) I/O(3, 5) I/O I/O(7)

6 VARNUM I/O(4) I/O I I/O(4)

7 DECIMAL I/O(4) I/O I I/O(4)

8 LONG I/O I/O I/O I/O(1) I/O(2) I/O(3) I/O(3, 5) I/O I/O(7)

9 VARCHAR I/O I/O I/O I/O(1) I/O(2) I/O(3) I/O(3, 5) I/O I/O(7)

11 ROWID I I I/O I

12 DATE I/O I I/O I/O

15 VARRAW I/O(6) I(5, 6) I/O I/O I/O(6)
3-22 Oracle Call Interface Programmer’s Guide

Data Conversions
23 RAW I/O(6) I(5, 6) I/O I/O I/O(6)

24 LONG RAW O(6) I(5, 6) I/O I/O O(6)

68 UNSIGNED I/O(4) I/O I I/O(4)

94 LONG VARCHAR I/O I/O I/O I/O(1) I/O(2) I/O(3) I/O(3, 5) I/O I/O(7)

95 LONG VARRAW I/O(6) I(5, 6) I/O I/O I/O(6)

96 CHAR I/O I/O I/O I/O(1) I/O(2) I/O(3) I(3) I/O I/O(7)

97 CHARZ I/O I/O I/O I/O(1) I/O(2) I/O(3) I(3) I/O I/O(7)

104 ROWID DESC.

106 MLSLABEL I/O(8)

Notes:

(1) For input, host string must be in Oracle ROWID format.
On output, column value is returned in Oracle ROWID format.

(2) For input, host string must be in the Oracle DATE character format.
On output, column value is returned in Oracle DATE format.

(3) For input, host string must be in hex format.
On output, column value is returned in hex format.

(4) For output, column value must represent a valid number.

(5) Length must be less than or equal to 2000.

(6) On input, column value is stored in hex format.
On output, column value must be in hex format.

(7) For input, host string must be a valid OS label in text format.
On output, column value is returned in OS label text format.

(8) For character representation of MLSLABEL, use the TO_CHAR(mlscolumn) function.

Legend:

I = Conversion valid for input only

O = Conversion valid for output only

I/O = Conversion valid for input or output

Table 3–5 Data Conversions (Cont.)

EXTERNAL

DATATYPES

INTERNAL DATATYPES

1
VARCHAR2

2
NUMBER

8
LONG

11
ROWID

12
DATE

23
RAW

24
LONG RAW

96
CHAR

105
MLSLABEL
 Datatypes 3-23

Typecodes
Typecodes
There is a unique typecode associated with each Oracle8 type, whether scalar,
collection, reference, or object type. This typecode identifies the type, and is used
by Oracle to manage information about object type attributes. This typecode
system is designed to be generic and extensible, and is not tied to a direct one-to-
one mapping to Oracle datatypes. Consider the following SQL statements:

CREATE TYPE my_type AS OBJECT
(attr1 NUMBER,

attr2 INTEGER,
attr3 SMALLINT)

CREATE TABLE my_table AS TABLE OF my_type;

These statements create an object type and an object table. When it is created,
my_table will have three columns, all of which are of Oracle NUMBER type,
because SMALLINT and INTEGER map internally to NUMBER. The internal
representation of the attributes of my_type , however, maintains the distinction
between the datatypes of the three attributes: attr1 is
OCI_TYPECODE_NUMBER, attr2 is OCI_TYPECODE_INTEGER, and attr3 is
OCI_TYPECODE_SMALLINT. If an application describes my_type , these
typecodes are returned.

OCITypeCode is the C datatype of the typecode. The typecode is used by some
OCI functions, like OCIObjectNew() (where it helps determine what type of object is
created). It is also returned as the value of some attributes when an object is
described; e.g., querying the OCI_ATTR_TYPECODE attribute of a type returns an
OCITypeCode value.

Table 3–6 lists the possible values for an OCITypeCode. There is a value
corresponding to each Oracle8 datatype.

Table 3–6 OCITypeCode Values

Value Datatype

OCI_TYPECODE_REF REF

OCI_TYPECODE_DATE date

OCI_TYPECODE_REAL single-precision real

OCI_TYPECODE_DOUBLE double-precision real

OCI_TYPECODE_FLOAT floating-point

OCI_TYPECODE_NUMBER Oracle number
3-24 Oracle Call Interface Programmer’s Guide

Typecodes
Relationship Between SQLT and OCI_TYPECODE Values
Oracle recognizes two different sets of datatype code values. One set is
distinguished by the “SQLT_” prefix, the other by the “OCI_TYPECODE_” prefix.

The SQLT typecodes are used by OCI to specify a datatype in a bind or define
operation. In this way, the SQL typecodes help to control data conversions between
Oracle and OCI client applications. The OCI_TYPECODE types are used by
Oracle8’s type system to reference or describe predefined types when manipulating
or creating user-defined types.

In many cases there are direct mappings between SQLT and OCI_TYPECODE
values. In other cases, however, there is not a direct one-to-one mapping. For
example OCI_TYPECODE_SIGNED16, OCI_TYPECODE_SIGNED32,
OCI_TYPECODE_INTEGER, OCI_TYPECODE_OCTET, and
OCI_TYPECODE_SMALLINT are all mapped to the SQLT_INT type.

OCI_TYPECODE_DECIMAL decimal

OCI_TYPECODE_OCTET octet

OCI_TYPECODE_INTEGER integer

OCI_TYPECODE_SMALLINT smallint

OCI_TYPECODE_RAW RAW

OCI_TYPECODE_VARCHAR2 variable string ANSI SQL, i.e., VARCHAR2

OCI_TYPECODE_VARCHAR variable string Oracle SQL, i.e., VARCHAR

OCI_TYPECODE_CHAR fixed-length string inside SQL, i.e. SQL CHAR

OCI_TYPECODE_VARRAY variable-length array (varray)

OCI_TYPECODE_TABLE multiset

OCI_TYPECODE_CLOB character large object (CLOB)

OCI_TYPECODE_BLOB binary large object (BLOB)

OCI_TYPECODE_BFILE binary large object file (BFILE)

OCI_TYPECODE_OBJECT named object type

OCI_TYPECODE_NAMEDCOLLECTION Domain (named primitive type)

Table 3–6 OCITypeCode Values (Cont.)

Value Datatype
 Datatypes 3-25

Typecodes
The following table illustrates the mappings between SQLT and OCI_TYPECODE
types.

Table 3–7 OCI_TYPECODE to SQLT Mappings

Oracle Type System Typename Oracle Type System Type Equivalent SQLT Type

BFILE OCI_TYPECODE_BFILE SQLT_BFILE

BLOB OCI_TYPECODE_BLOB SQLT_BLOB

CHAR OCI_TYPECODE_CHAR (n) SQLT_AFC(n) [note 1]

CLOB OCI_TYPECODE_CLOB SQLT_CLOB

COLLECTION OCI_TYPECODE_NAMEDCOLLECTION SQLT_NCO

DATE OCI_TYPECODE_DATE SQLT_DAT

FLOAT OCI_TYPECODE_FLOAT (b) SQLT_FLT (8) [note 2]

DECIMAL OCI_TYPECODE_DECIMAL (p) SQLT_NUM (p, 0) [note 3]

DOUBLE OCI_TYPECODE_DOUBLE SQLT_FLT (8)

INTEGER OCI_TYPECODE_INTEGER SQLT_INT (i) [note 4]

NUMBER OCI_TYPECODE_NUMBER (p, s) SQLT_NUM (p, s) [note 5]

OCTECT OCI_TYPECODE_OCTECT SQLT_INT (1)

POINTER OCI_TYPECODE_PTR <NONE>

RAW OCI_TYPECODE_RAW SQLT_LVB

REAL OCI_TYPECODE_REAL SQLT_FLT (4)

REF OCI_TYPECODE_REF SQLT_REF

OBJECT OCI_TYPECODE_OBJECT SQLT_NTY

SIGNED(8) OCI_TYPECODE_SIGNED8 SQLT_INT (1)

SIGNED(16) OCI_TYPECODE_SIGNED16 SQLT_INT (2)

SIGNED(32) OCI_TYPECODE_SIGNED32 SQLT_INT (4)

SMALLINT OCI_TYPECODE_SMALLINT SQLT_INT (i) [note 4]

TABLE [note 6] OCI_TYPECODE_TABLE SQLT_TAB

UNSIGNED(8) OCI_TYPECODE_UNSIGNED8 SQLT_UIN (1)

UNSIGNED(16) OCI_TYPECODE_UNSIGNED16 SQLT_UIN (2)

UNSIGNED(32) OCI_TYPECODE_UNSIGNED32 SQLT_UIN (4)

VARRAY [note 6] OCI_TYPECODE_VARRAY SQLT_NAR
3-26 Oracle Call Interface Programmer’s Guide

Definitions in oratypes.h
Definitions in oratypes.h
Throughout this guide you will see references to datatypes like ub2 or sb4, or to
constants like UB4MAXVAL. These types are defined in the oratypes.h header file,
an example of which is included here. The exact contents may vary according to the
platform you are using.

#ifndef ORASTDDEF
include <stddef.h>
define ORASTDDEF
#endif

#ifndef ORALIMITS
include <limits.h>
define ORALIMITS
#endif

#ifndef SX_ORACLE
#define SX_ORACLE
#define SX
#define ORATYPES

#ifndef TRUE
define TRUE 1
define FALSE 0
#endif

#ifdef lint

VARCHAR OCI_TYPECODE_VARCHAR (n) SQLT_CHR (n) [note 1]

VARCHAR2 OCI_TYPECODE_VARCHAR2 (n) SQLT_VCS (n) [note 1]

Notes:

1. n is the size of the string in bytes

2. These are floating point numbers, the precision is given in terms of binary digits. b is the precision of the number in binary digits.

3. This is equivalent to a NUMBER with no decimal places.

4. i is the size of the number in bytes, set as part of an OCI call.

5. p is the precision of the number in decimal digits; s is the scale of the number in decimal digits.

6. Can only be part of a named collection type.

Table 3–7 OCI_TYPECODE to SQLT Mappings (Cont.)

Oracle Type System Typename Oracle Type System Type Equivalent SQLT Type
 Datatypes 3-27

Definitions in oratypes.h
ifndef mips
define signed
endif
#endif

#ifdef ENCORE_88K
ifndef signed
define signed
endif
#endif

#if defined(SYSV_386) || defined(SUN_OS)
ifdef signed
undef signed
endif
define signed
#endif

#ifndef lint
typedef int eword;
typedef unsigned int uword;
typedef signed int sword;
#else
#define eword int
#define uword unsigned int
#define sword signed int
#endif

#define EWORDMAXVAL ((eword) INT_MAX)
#define EWORDMINVAL ((eword) 0)
#define UWORDMAXVAL ((uword)UINT_MAX)
#define UWORDMINVAL ((uword) 0)
#define SWORDMAXVAL ((sword) INT_MAX)
#define SWORDMINVAL ((sword) INT_MIN)
#define MINEWORDMAXVAL ((eword) 32767)
#define MAXEWORDMINVAL ((eword) 0)
#define MINUWORDMAXVAL ((uword) 65535)
#define MAXUWORDMINVAL ((uword) 0)
#define MINSWORDMAXVAL ((sword) 32767)
#define MAXSWORDMINVAL ((sword) -32767)

#ifndef lint
ifdef mips
3-28 Oracle Call Interface Programmer’s Guide

Definitions in oratypes.h
typedef signed char eb1;
else
typedef char eb1;
endif
typedef unsigned char ub1;
typedef signed char sb1;
#else
#define eb1 char
#define ub1 unsigned char
#define sb1 signed char
#endif

#define EB1MAXVAL ((eb1)SCHAR_MAX)
#define EB1MINVAL ((eb1) 0)
#if defined(mips)
ifndef lint
define UB1MAXVAL (UCHAR_MAX)
endif
#endif
#ifndef UB1MAXVAL
ifdef SCO_UNIX
define UB1MAXVAL (UCHAR_MAX)
else
define UB1MAXVAL ((ub1)UCHAR_MAX)
endif
#endif
#define UB1MINVAL ((ub1) 0)
#define SB1MAXVAL ((sb1)SCHAR_MAX)
#define SB1MINVAL ((sb1)SCHAR_MIN)
#define MINEB1MAXVAL ((eb1) 127)
#define MAXEB1MINVAL ((eb1) 0)
#define MINUB1MAXVAL ((ub1) 255)
#define MAXUB1MINVAL ((ub1) 0)
#define MINSB1MAXVAL ((sb1) 127)
#define MAXSB1MINVAL ((sb1) -127)

#define UB1BITS CHAR_BIT
#define UB1MASK ((1 << ((uword)CHAR_BIT)) - 1)

typedef unsigned char OraText;

#ifndef LUSEMFC
define text OraText
#endif
 Datatypes 3-29

Definitions in oratypes.h
#ifndef lint
typedef short eb2;
typedef unsigned short ub2;
typedef signed short sb2;
#else
#define eb2 short
#define ub2 unsigned short
#define sb2 signed short
#endif

#define EB2MAXVAL ((eb2) SHRT_MAX)
#define EB2MINVAL ((eb2) 0)
#define UB2MAXVAL ((ub2)USHRT_MAX)
#define UB2MINVAL ((ub2) 0)
#define SB2MAXVAL ((sb2) SHRT_MAX)
#define SB2MINVAL ((sb2) SHRT_MIN)
#define MINEB2MAXVAL ((eb2) 32767)
#define MAXEB2MINVAL ((eb2) 0)
#define MINUB2MAXVAL ((ub2) 65535)
#define MAXUB2MINVAL ((ub2) 0)
#define MINSB2MAXVAL ((sb2) 32767)
#define MAXSB2MINVAL ((sb2)-32767)

#if defined(A_OSF)

#ifndef lint
typedef int eb4;
typedef unsigned int ub4;
typedef signed int sb4;
#else
#define eb4 int
#define ub4 unsigned int
#define sb4 signed int
#endif

#define EB4MAXVAL ((eb4) INT_MAX)
#define EB4MINVAL ((eb4) 0)
#define UB4MAXVAL ((ub4) UINT_MAX)
#define UB4MINVAL ((ub4) 0)
#define SB4MAXVAL ((sb4) INT_MAX)
#define SB4MINVAL ((sb4) INT_MIN)
#define MINEB4MAXVAL ((eb4) 2147483647)
#define MAXEB4MINVAL ((eb4) 0)
3-30 Oracle Call Interface Programmer’s Guide

Definitions in oratypes.h
#define MINUB4MAXVAL ((ub4) 4294967295)
#define MAXUB4MINVAL ((ub4) 0)
#define MINSB4MAXVAL ((sb4) 2147483647)
#define MAXSB4MINVAL ((sb4)-2147483647)

#else

#ifndef lint
typedef long eb4;
typedef unsigned long ub4;
typedef signed long sb4;
#else
#define eb4 long
#define ub4 unsigned long
#define sb4 signed long
#endif

#define EB4MAXVAL ((eb4) LONG_MAX)
#define EB4MINVAL ((eb4) 0)
#define UB4MAXVAL ((ub4)ULONG_MAX)
#define UB4MINVAL ((ub4) 0)
#define SB4MAXVAL ((sb4) LONG_MAX)
#define SB4MINVAL ((sb4) LONG_MIN)
#define MINEB4MAXVAL ((eb4) 2147483647)
#define MAXEB4MINVAL ((eb4) 0)
#define MINUB4MAXVAL ((ub4) 4294967295)
#define MAXUB4MINVAL ((ub4) 0)
#define MINSB4MAXVAL ((sb4) 2147483647)
#define MAXSB4MINVAL ((sb4)-2147483647)
#endif

#ifndef lint
typedef unsigned long ubig_ora;
typedef signed long sbig_ora;
#else
#define ubig_ora unsigned long
#define sbig_ora signed long
#endif

#define UBIG_ORAMAXVAL ((ubig_ora)ULONG_MAX)
#define UBIG_ORAMINVAL ((ubig_ora) 0)
#define SBIG_ORAMAXVAL ((sbig_ora) LONG_MAX)
#define SBIG_ORAMINVAL ((sbig_ora) LONG_MIN)
 Datatypes 3-31

Definitions in oratypes.h
#define MINUBIG_ORAMAXVAL ((ubig_ora) 4294967295)
#define MAXUBIG_ORAMINVAL ((ubig_ora) 0)
#define MINSBIG_ORAMAXVAL ((sbig_ora) 2147483647)
#define MAXSBIG_ORAMINVAL ((sbig_ora)-2147483647)

#define UBIGORABITS (UB1BITS * sizeof(ubig_ora))

#define SLU8NATIVE
#define SLS8NATIVE

#ifdef SLU8NATIVE

#ifndef lint
typedef unsigned long long ub8;
#else
#define ub8 unsigned long long
#endif

#define UB8ZERO ((ub8)0)

#define UB8MINVAL ((ub8)0)
#define UB8MAXVAL ((ub8)18446744073709551615)

#define MAXUB8MINVAL ((ub8)0)
#define MINUB8MAXVAL ((ub8)18446744073709551615)

#endif

#ifdef SLS8NATIVE

#ifndef lint
typedef signed long long sb8;
#else
#define sb8 signed long long
#endif

#define SB8ZERO ((sb8)0)

#define SB8MINVAL ((sb8)-9223372036854775808)
#define SB8MAXVAL ((sb8) 9223372036854775807)
3-32 Oracle Call Interface Programmer’s Guide

Definitions in oratypes.h
#define MAXSB8MINVAL ((sb8)-9223372036854775807)
#define MINSB8MAXVAL ((sb8) 9223372036854775807)

#endif

#undef CONST

#ifdef _olint
define CONST const
#else
#if defined(PMAX) && defined(__STDC__)
define CONST const
#else
ifdef M88OPEN
define CONST const
else
if defined(SEQ_PSX) && defined(__STDC__)
define CONST const
else
ifdef A_OSF
if defined(__STDC__)
define CONST const
else
define CONST
endif
else
define CONST
endif
endif
endif
#endif
#endif

#ifdef lint
define dvoid void
#else

ifdef UTS2
define dvoid char
else
define dvoid void
endif
 Datatypes 3-33

Definitions in oratypes.h
#endif

typedef void (*lgenfp_t)(void);

#ifndef ORASYSTYPES
include <sys/types.h>
define ORASYSTYPES
#endif
#define boolean int

#ifdef sparc
define SIZE_TMAXVAL SB4MAXVAL
#else
define SIZE_TMAXVAL UB4MAXVAL
#endif

#define MINSIZE_TMAXVAL (size_t)65535

#endif
3-34 Oracle Call Interface Programmer’s Guide

 SQL Statement Proce
4

SQL Statement Processing

This chapter discusses the concepts and steps involved in processing SQL
statements with the Oracle Call Interface.

The following topics are covered in this chapter:

■ Overview

■ Processing SQL Statements

■ Preparing Statements

■ Binding

■ Executing Statements

■ Describing Select-List Items

■ Defining

■ Fetching Results
ssing 4-1

Overview
Overview
Chapter 2 discussed the basic steps involved in any OCI application. This chapter
presents a more detailed look at the specific tasks involved in processing SQL
statements in an OCI program.

Processing SQL Statements
One of the most common tasks of an OCI program is to accept and process SQL
statements. This section outlines the specific steps involved in processing SQL.

Once you have allocated the necessary handles and attached to a server, the basic
steps in processing a SQL statement are the following, as illustrated in Figure 4–1:

1. Prepare. Define an application request using OCIStmtPrepare().

2. Bind. For DML statements and queries with input variables, perform one or
more bind calls using OCIBindByPos(), OCIBindByName(), OCIBindObject(),
OCIBindDynamic() or OCIBindArrayOfStruct() to bind the address of each input
variable (or PL/SQL output variable) or array to each placeholder in the
statement.

3. Execute. Call OCIStmtExecute() to execute the statement. For DDL statements,
no further steps are necessary.

4. Describe. Describe the select-list items, if necessary, using OCIParamGet() and
OCIAttrGet(). This is an optional step; it is not required if the number of select-
list items and the attributes of each item (such as its length and datatype) are
known at compile time.

5. Define. For queries, perform one or more define calls to OCIDefineByPos(),
OCIDefineObject(), OCIDefineDynamic(), or OCIDefineArrayOfStruct() to define
an output variable for each select-list item in the SQL statement. Note that you
do not use a define call to define the output variables in an anonymous
PL/SQL block. You have done this when you have bound the data.

6. Fetch. For queries, call OCIStmtFetch() to fetch the results of the query.

Following these steps, the application can free allocated handles and then detach
from the server, or it may process additional statements.

7.x Upgrade Note: OCI programs no longer require an explicit parse step. If a
statement must be parsed, that step takes place on execute. This means that 8.0
applications must issue an execute command for both DML and DDL
statements.
4-2 Oracle Call Interface Programmer’s Guide

Processing SQL Statements
Figure 4–1 Steps In Processing SQL Statements

For each of the steps in the diagram, the corresponding OCI function calls are
listed. In some cases multiple calls may be required.

Each step above is described in detail in the following sections.

Note: Some variation in the order of steps is possible. For example, it is
possible to do the define step before the execute if the datatypes and lengths of
returned values are known at compile time. Also, as indicated by the asterisks
(*), some steps may not be required by your application.

Additional steps beyond those listed above may be required if your application
needs to do the following:

– initiate and manage multiple transactions

– manage multiple threads of execution

– perform piecewise inserts, updates, or fetches

These topics are described in Chapter 7.

Bind
Placeholders*

Execute
Statement

Describe
Select-list Items*

Define
Output Variables*

Fetch and
Process Data*

Prepare
Statement

* These steps performed
if necessary

OCIStmtPrepare()

OCIStmtExecute()

OCIStmtFetch()

OCIDefineByPos()
OCIDefineObject()
OCIDefineArrayOfStruct()
OCIDefineDynamic()

OCIParamGet()
OCIAttrGet()

OCIBindByName() or OCIBindByPos()
OCIBindObject()
OCIBindArrayOfStruct()
OCIBindDynamic()
 SQL Statement Processing 4-3

Preparing Statements
Preparing Statements
SQL and PL/SQL statements need to be prepared for execution by using the
statement prepare call and bind calls (if necessary). In this phase, the application
specifies a SQL or PL/SQL statement and binds associated placeholders in the
statement to data for execution. The client-side library allocates storage to maintain
the statement prepared for execution.

An application requests a SQL or PL/SQL statement to be prepared for execution
using the OCIStmtPrepare() call and passing it a previously allocated statement
handle. This is a completely local call, requiring no round-trip to the server. No
association is made at this point between the statement and a particular server.

Following the request call, an application can call OCIAttrGet() on the statement
handle, passing OCI_ATTR_STMT_TYPE to the attrtype parameter, to determine
what type of SQL statement was prepared. The possible attribute values, and
corresponding statement types are listed in Table 4–1.

See Also: For more information on the specifics of using PL/SQL in an OCI
application, see the section “Using PL/SQL in an OCI Program” on page 2-32.

The OCIStmtPrepare() call is described in more detail in Chapter 13, “OCI
Relational Functions”.

Table 4–1 OCI_ATTR_STMT_TYPE Values and Statement Types

Attribute Value Statement Type

OCI_STMT_SELECT SELECT statement

OCI_STMT_UPDATE UPDATE statement

OCI_STMT_DELETE DELETE statement

OCI_STMT_INSERT INSERT statement

OCI_STMT_CREATE CREATE statement

OCI_STMT_DROP DROP statement

OCI_STMT_ALTER ALTER statement

OCI_STMT_BEGIN BEGIN... (PL/SQL)

OCI_STMT_DECLARE DECLARE... (PL/SQL)
4-4 Oracle Call Interface Programmer’s Guide

Binding
Using Prepared Statements on Multiple Servers
A prepared application request can be executed on multiple servers at run time by
reassociating the statement handle with the respective service context handles for
the servers. All information cached about the current service context and statement
handle association is lost when a new association is made.

For example, consider an application such as a network manager, which manages
multiple servers. In many cases, it is likely that the same SELECT statement will
need to be executed against multiple servers to retrieve information for display.
The OCI allows the server manager application to prepare a SELECT statement
once and execute it against multiple servers. It must fetch all of the required rows
from each server prior to reassociating the prepared statement with the next server.

Note: If a prepared statement must be reexecuted frequently on the same
server, it is efficient to prepare a new statement for another service context.

Binding
Most DML statements, and some queries (such as those with a WHERE clause),
require a program to pass data to Oracle as part of a SQL or PL/SQL statement.
Such data can be constant or literal data, known when your program is compiled.
For example, the following SQL statement, which adds an employee to a database
contains several literals, such as ‘BESTRY’ and 2365:

INSERT INTO emp VALUES
 (2365, ‘BESTRY’, ‘PROGRAMMER’, 2000, 20)

Hard coding a statement like this into an application would severely limit its
usefulness. You would need to change the statement and recompile the program
each time you add a new employee to the database. To make the program more
flexible, you can write the program so that a user can supply input data at run time.

When you prepare a SQL statement or PL/SQL block that contains input data to be
supplied at run time, placeholders in the SQL statement or PL/SQL block mark
where data must be supplied. For example, the following SQL statement contains
five placeholders, indicated by the leading colons (e.g., :ename), that show where
input data must be supplied by the program.

INSERT INTO emp VALUES
 (:empno, :ename, :job, :sal, :deptno)

You can use placeholders for input variables in any DELETE, INSERT, SELECT, or
UPDATE statement, or PL/SQL block, in any position in the statement where you
 SQL Statement Processing 4-5

Executing Statements
can use an expression or a literal value. In PL/SQL, placeholders can also be used
for output variables.

Note: Placeholders cannot be used to represent other Oracle objects such as
tables. For example, the following is not a valid use of the :emp placeholder:

INSERT INTO :emp VALUES
 (12345, ’OERTEL’, ’WRITER’, 50000, 30)

For each placeholder in the SQL statement or PL/SQL block, you must call an OCI
routine that binds the address of a variable in your program to the placeholder.
When the statement executes, Oracle gets the data that your program placed in the
input, or bind, variables and passes it to the server with the SQL statement.

For detailed information about implementing bind operations, please refer to
Chapter 5, “Binding and Defining”.

Executing Statements
An OCI application executes prepared statements individually using
OCIStmtExecute().

When an OCI application executes a query, it receives data from Oracle that
matches the query specifications. Within the database, the data is stored in Oracle-
defined formats. When the results are returned, an OCI application can request that
data be converted to a particular host language format, and stored in a particular
output variable or buffer.

For each item in the select-list of a query, the OCI application must define an
output variable to receive the results of the query. The define step indicates the
address of the buffer and the type of the data to be retrieved.

Note: If output variables are defined for a SELECT statement before a call to
OCIStmtExecute(), the number of rows specified by the iters parameter are
fetched directly into the defined output buffers and additional rows equivalent
to the prefetch count are prefetched. If there are no additional rows, then the
fetch is complete without calling OCIStmtFetch().

For non-queries, the iters parameter of the OCIStmtExecute() call controls how many
times the statement is executed during array operations. For example, if an array of
10 items is bound to a placeholder for an INSERT statement, and iters is set to 10,
all 10 items will be inserted in a single execute call.

See Also: See the section “Defining” on page 4-11 for more information about
defining output variables.
4-6 Oracle Call Interface Programmer’s Guide

Executing Statements
Execution Snapshots
The OCIStmtExecute() call provides the ability to ensure that multiple service
contexts operate on the same consistent snapshot of the database’s committed data.
This is achieved by taking the contents of the snap_out parameter of one
OCIStmtExecute() call and passing that value in the snap_in parameter of the next
OCIStmtExecute() call.

Note: Uncommitted data in one service context is not visible to another context,
even when using the same snapshot.

The datatype of both the snap_out and snap_in parameter is OCISnapshot, an OCI
snapshot descriptor. This descriptor is allocated with the OCIDescAlloc() function.

See Also: For more information about descriptors, see the section “Descriptors
and Locators” on page 2-12.

It is not necessary to specify a snapshot when calling OCIStmtExecute(). The
following sample code shows a basic execution in which the snapshot parameters
are passed as NULL.

checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *)NULL, (OCISnapshot *) NULL, OCI_DEFAULT))

Note: The checkerr() function evaluates the return code from an OCI
application. The code for the function is listed in the section “Error Handling”
on page 2-25.

Execution Modes
A user can specify one of three modes for the OCIStmtExecute() call:

■ OCI_DEFAULT. Calling OCIStmtExecute() in this mode executes the statement.
It also implicitly returns describe information about the select-list.

■ OCI_DESCRIBE_ONLY. This mode is for users who wish to describe a query
prior to execution. Calling OCIStmtExecute() in this mode does not execute the
statement, but it does return the select-list description.

■ OCI_COMMIT_ON_SUCCESS - When a statement is executed in this mode,
the current transaction is committed after execution, provided that execution
completes successfully.
 SQL Statement Processing 4-7

Describing Select-List Items
Describing Select-List Items
If your OCI application is processing a query, you may need to obtain more
information about the items in the select-list. This is particularly true for dynamic
queries whose contents are not known until run time. In this case, the program may
need to obtain information about the datatypes and column lengths of the select-
list items. This information is necessary to define output variables that will receive
query results.

For example, a user might enter a query such as

SELECT * FROM employees

where the program has no prior information about the columns in the employees
table.

In release 8.0, there are two types of describes available: implicit and explicit. An
implicit describe is one which does not require any special calls to retrieve describe
information from the server (although special calls are necessary to access the
information). An explicit describe is one which requires the application to call a
particular function to bring the describe information from the server.

An application may describe a select-list (query) either implicitly or explicitly.
Other schema elements must be described explicitly.

An implicit describe allows an application to obtain select-list information as an
attribute of the statement handle after a statement has been executed without making a
specific describe call. It is called “implicit”, because no describe call is required. The
describe information comes “free” with the execute.

Users may choose to describe a query explicitly prior to execution. To do this,
specify OCI_DESCRIBE_ONLY as the mode of OCIStmtExecute(). Calling
OCIStmtExecute() in this mode does not execute the statement, but it does return
the select-list description. For performance reasons, however, it is recommended
that applications take advantage of the implicit describe that comes “free” with a
standard statement execution.

An explicit describe with the OCIDescribeAny() call obtains information about
schema objects rather than select-lists.

In all cases, the specific information about columns and datatypes is retrieved by
reading handle attributes.

See Also: For information about using OCIDescribeAny() to obtain meta-data
pertaining to schema objects, refer to Chapter 6, “Describing Schema
Metadata”.
4-8 Oracle Call Interface Programmer’s Guide

Describing Select-List Items
Implicit Describe
After a SQL statement is executed, information about the select-list is available as
an attribute of the statement handle. No explicit describe call is needed.

To retrieve information about select-list items from the statement handle, the
application must call OCIParamGet() once for each position in the select-list to
allocate a parameter descriptor for that position. Select-list positions are 1-based,
meaning that the first item in the select-list is considered to be position number 1.

To retrieve information about multiple select-list items, an application can call
OCIParamGet() with the pos parameter set to 1 the first time, and then iterate the
value of pos and repeat the OCIParamGet() call until OCI_NO_DATA is returned.
An application could also specify any position n to get a column at random.

Once a parameter descriptor has been allocated for a position in the select-list, the
application can retrieve specific information by calling OCIAttrGet() on the
parameter descriptor. Information available from the parameter descriptor includes
the datatype and maximum size of the parameter.

The following sample code shows a loop that retrieves the column names and data
types corresponding to a query following query execution. The query was
associated with the statement handle by a prior call to OCIStmtPrepare().

OCIParam *mypard;
ub4 counter;
ub2 dtype;
text *col_name;
ub4 col_name_len;
sb4 parm_status;

...

/* Request a parameter descriptor for position 1 in the select-list */
counter = 1;
parm_status = OCIParamGet(stmthp, OCI_HTYPE_STMT, errhp, &mypard,

(ub4) counter);

/* Loop only if a descriptor was successfully retrieved for
current position, starting at 1 */

while (parm_status==OCI_SUCCESS) {

/* Retrieve the data type attribute */
checkerr(errhp, OCIAttrGet((dvoid*) mypard, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &dtype,(ub4 *) 0, (ub4) OCI_ATTR_DATA_TYPE,
 (OCIError *) errhp));
 SQL Statement Processing 4-9

Describing Select-List Items
/* Retrieve the column name attribute */
checkerr(errhp, OCIAttrGet((dvoid*) mypard, (ub4) OCI_DTYPE_PARAM,

(dvoid**) &col_name,(ub4 *) &col_name_len, (ub4) OCI_ATTR_NAME,
(OCIError *) errhp));

printf("column=%s datatype=%d\n\n", col_name, dtype);
fflush(stdout);

/* increment counter and get next descriptor, if there is one */
counter++;
parm_status = OCIParamGet(stmthp, OCI_HTYPE_STMT, errhp, &mypard,

(ub4) counter);
}

Note: Error handling for the initial OCIParamGet() call is not included in this
example. Ellipses (...) indicate portions of code that have been omitted for this
example.

The checkerr() function is used for error handling. The complete listing can be
found in the first sample application in Appendix D, “Code Examples”.

The calls to OCIAttrGet() and OCIParamGet() are local calls that do not require a
network round trip, because all of the select-list information is cached on the client
side after the statement is executed.

See Also: See the descriptions of OCIParamGet() and OCIAttrGet() in
Chapter 13, “OCI Relational Functions”, for more information about these calls.

See the section “Parameter Attributes” on page 6-5 for a list of the specific
attributes of the parameter descriptor which may be read by OCIAttrGet().

Explicit Describe of Queries
Users may choose to describe a query explicitly prior to execution. To do this,
specify OCI_DESCRIBE_ONLY as the mode of OCIStmtExecute(). Calling
OCIStmtExecute() in this mode does not execute the statement, but it does return
the select-list description.

Note: To maximize performance, it is recommended that applications execute
the statement in default mode and use the implicit describe which accompanies
the execution.

The following short example demonstrates the use of this mechanism to perform
an explicit describe of a select-list to return information about the columns in the
select-list. This pseudo-code shows how to retrieve column information (for
example, data type).
4-10 Oracle Call Interface Programmer’s Guide

Defining
/* initialize svchp, stmhp, errhp, rowoff, iters, snap_in, snap_out */
/* set the execution mode to OCI_DESCRIBE_ONLY. Note that setting the mode to
OCI_DEFAULT does an implicit describe of the statement in addition to executing
the statement */

OCIParam *colhd; /* column handle */
checkerr(errhp, OCIStmtExecute(svchp, stmhp, errhp, iters, rowoff,

snap_in, snap_out, OCI_DESCRIBE_ONLY);

/* Get the number of columns in the query */
checkerr(errhp, OCIAttrGet(stmhp, OCI_HTYPE_STMT, &numcols,
 0, OCI_ATTR_PARAM_COUNT, errh));

/* go through the column list and retrieve the data type of each column. We
start from pos = 1 */
for (i = 1; i <= numcols; i++)
{

/* get parameter for column i */
checkerr(errhp, OCIParamGet(stmhp, OCI_HTYPE_STMT, errh, &colhd, i));

/* get data-type of column i */
checkerr(errhp, OCIAttrGet(colhd, OCI_DTYPE_PARAM,

&type[i-1], 0, OCI_ATTR_DATA_TYPE, errh));
}

Defining
Query statements return data from the database to your application. When
processing a query, you must define an output variable or an array of output
variables for each item in the select-list from which you want to retrieve data. The
define step creates an association which determines where returned results are
stored, and in what format.

For example, if your OCI statement processes the following statement:

SELECT name, ssn FROM employees
WHERE empno = :empnum

you would normally need to define two output variables, one to receive the value
returned from the name column, and one to receive the value returned from the
ssn column.

For information about implementing define operations, please refer to Chapter 5,
“Binding and Defining”.
 SQL Statement Processing 4-11

Fetching Results
Fetching Results
If an OCI application has processed a query, it is typically necessary to fetch the
results with OCIStmtFetch() after the statement has been executed.

Fetched data is retrieved into output variables that have been specified by define
operations.

Note: If output variables are defined for a SELECT statement before a call to
OCIStmtExecute(), the number of rows specified by the iters parameter is
fetched directly into the defined output buffers.

See Also: These statements fetch data associated with the sample code in the
section “Steps Used in Defining” on page 5-14. Refer to that example for more
information.

For information about defining output variables, see the section “Defining” on
page 5-13.

Fetching LOB Data
If LOB columns or attributes are part of a select-list, LOB locators are returned as
results of the query. The actual LOB value is not returned by the fetch. The
application can perform further operations on these locators.

See Also: See the section “LOB and FILE Operations” on page 7-24 for more
information about working with LOB locators in the OCI.

Setting Prefetch Count
In order to minimize server round trips and maximize the performance of
applications, the OCI can prefetch result set rows when executing a query. The OCI
programmer can customize this prefetching by setting the
OCI_ATTR_PREFETCH_ROWS or OCI_ATTR_PREFETCH_MEMORY attribute of
the statement handle using the OCIAttrSet() function.

OCI_ATTR_PREFETCH_ROWS sets the number of rows to be prefetched.

OCI_ATTR_PREFETCH_MEMORY sets the memory allocated for rows to be
prefetched. The application then fetches as many rows as will fit into that much
memory.

When both of these attributes are set, the OCI prefetches rows up to the
OCI_ATTR_PREFETCH_ROWS limit unless the
OCI_ATTR_PREFETCH_MEMORY limit is reached, in which case the OCI returns
as many rows as will fit in a buffer of size OCI_ATTR_PREFETCH_MEMORY.
4-12 Oracle Call Interface Programmer’s Guide

Fetching Results
By default, prefetching is turned on, and the OCI fetches an extra row all the time.
To turn prefetching off, set both the OCI_ATTR_PREFETCH_ROWS and
OCI_ATTR_PREFETCH_MEMORY attributes to zero.

Note: Prefetching is not in effect if LONG columns are part of the query.
Queries containing LOB columns can be prefetched, because the LOB locator,
rather than the data, is returned by the query.

See Also: For more information about these handle attributes, see the section
"Statement Handle Attributes" on page B-15.
 SQL Statement Processing 4-13

Fetching Results
4-14 Oracle Call Interface Programmer’s Guide

 Binding and De
5

Binding and Defining

Chapter 2, “OCI Programming Basics”, introduced the concepts of binding and
defining in OCI applications. This chapter revisits the basic concepts, and provides
more detailed information about the different types of binds and defines you may
use in OCI applications. The chapter includes short code examples to demonstrate
the use of these different binds and defines.

Additionally, this chapter discusses the use of arrays of structures, as well as other
issues involved in binding, defining, and character conversions.

Note: For information about binding and defining new Oracle8 datatypes for
object applications, refer to Chapter 10.

This chapter includes the following sections:

■ Binding

■ Advanced Bind Operations

■ Defining

■ Advanced Define Operations

■ Arrays of Structures

■ DML with RETURNING Clause

■ NCHAR and Character Conversion Issues

■ PL/SQL REF CURSORs and Nested Tables
fining 5-1

Binding
Binding
Most DML statements, and some queries (such as those with a WHERE clause),
require a program to pass data to Oracle as part of a SQL or PL/SQL statement.
Such data can be constant or literal data, known when your program is compiled.
For example, the following SQL statement, which adds an employee to a database
contains several literals, such as ‘BESTRY’ and 2365:

INSERT INTO emp VALUES
 (2365, ‘BESTRY’, ‘PROGRAMMER’, 2000, 20)

Hard coding a statement like this into an application would severely limit its
usefulness. You would need to change the statement and recompile the program
each time you add a new employee to the database. To make the program more
flexible, you can write the program so that a user can supply input data at run time.

When you prepare a SQL statement or PL/SQL block that contains input data to be
supplied at run time, placeholders in the SQL statement or PL/SQL block mark
where data must be supplied. For example, the following SQL statement contains
five placeholders, indicated by the leading colons (e.g., :ename), that show where
input data must be supplied by the program.

INSERT INTO emp VALUES
 (:empno, :ename, :job, :sal, :deptno)

You can use placeholders for input variables in any DELETE, INSERT, SELECT, or
UPDATE statement, or PL/SQL block, in any position in the statement where you
can use an expression or a literal value. In PL/SQL, placeholders can also be used
for output variables.

Note: Placeholders cannot be used to name other Oracle objects such as tables
or columns.

For each placeholder in the SQL statement or PL/SQL block, you must call an OCI
routine that binds the address of a variable in your program to the placeholder.
When the statement executes, Oracle gets the data that your program placed in the
input, or bind, variables and passes it to the server with the SQL statement. Data
does not have to be in a bind variable when you perform the bind step. At the bind
step, you are only specifying the address, datatype, and length of the variable.

Note: If program variables do not contain data at bind time, make sure they
contain valid data when you execute the SQL statement or PL/SQL block using
OCIStmtExecute().

For example, given the INSERT statement
5-2 Oracle Call Interface Programmer’s Guide

Binding
INSERT INTO emp VALUES
 (:empno, :ename, :job, :sal, :deptno)

and the following variable declarations

text *ename, *job
sword empno, sal, deptno

the bind step makes an association between the placeholder name and the address
of the program variables. The bind also indicates the datatype and length of the
program variables, as illustrated in Figure 5–1. The code that implements this
example is found in the section “Steps Used in Binding” on page 5-6.

Figure 5–1 Using OCIBindByName() to Associate Placeholders with Program
Variables

If you change only the value of a bind variable, it is not necessary to rebind in order
to execute the statement again. The bind is a bind by reference, so as long as the
address of the bind variable and bind handle remain valid, you can reexecute a
statement that references the variable without rebinding.

Note: At the interface level, all bind variables are considered at least IN and
thus must be properly initialized (to zero if they are pure OUT bind variables).

For release 8.0, new datatypes have been implemented for named data types, REFs
and LOBs, and they may be bound as placeholders in a SQL statement.

Note: For opaque data types (e.g., descriptors and locators) whose sizes are not
known to the user, the address of the descriptor or locator pointer must be
passed. Set the size parameter set to the size of the appropriate data structure
(e.g., sizeof(structure))

INSERT INTO emp

OCIBindByName ()

(empno, ename, job, sal, deptno)

VALUES (:empno, :ename, :job, :sal, :deptno)

Address &empno ename job sal &deptno

Data Type integer string string integer integer

Length sizeof(empno) strlen(ename)+1 strlen(job)+1 sizeof(sal) sizeof(deptno)
 Binding and Defining 5-3

Binding
Named Binds and Positional Binds
The SQL statement in the previous section is an example of a named bind. Each
placeholder in the statement has a name associated with it (e.g., ‘ename’ or ‘sal’).
When this statement is prepared and the placeholders are associated with values in
the application, the association is made by the name of the placeholder using the
OCIBindByName() call with the name of the placeholder passed in the placeholder
parameter.

A second type of bind is known as a positional bind. In a positional bind, the
placeholders are referred to by their position in the statement rather than their
names. For binding purposes, an association is made between an input value and
the position of the placeholder, using the OCIBindByPos() call.

The example from the previous section could also be used for a positional bind:

INSERT INTO emp VALUES
 (:empno, :ename, :job, :sal, :deptno)

The five placeholders would then each be bound by calling OCIBindByPos() and
passing the position number of the placeholder in the position parameter. For
example, the :empno placeholder would be bound by calling OCIBindByPos() with
a position of 1, :ename with a position of 2, and so on.

In the case of a duplicate bind, only a single bind call may be necessary. Consider
the following SQL statement, which queries the database for those employees
whose commission and salary are both greater than a given amount:

SELECT empno FROM emp
 WHERE sal > :some_value
 AND comm > :some_value

An OCI application could complete the binds for this statement with a single call to
OCIBindByName() to bind the :some_value placeholder by name. In this case, the
second placeholder inherits the bind information from the first placeholder.

OCI Array Interface
You can pass data to Oracle in various ways. You can execute a SQL statement
repeatedly using the OCIStmtExecute() routine and supply different input values on
each iteration. Alternatively, you can use the Oracle array interface and input many
values with a single statement and a single call to OCIStmtExecute(). In this case
you bind an array to an input placeholder, and the entire array can be passed at the
same time, under the control of the iters parameter.
5-4 Oracle Call Interface Programmer’s Guide

Binding
The array interface significantly reduces round-trips to Oracle when you need to
update or insert a large volume of data. This reduction can lead to considerable
performance gains in a busy client/server environment. For example, consider an
application that needs to insert 10 rows into the database. Calling OCIStmtExecute()
ten times with single values results in ten network round-trips to insert all the data.
The same result is possible with a single call to OCIStmtExecute() using an input
array, which involves only one network round-trip.

Note: When using the OCI array interface to perform inserts, row triggers in
the database are fired as each row of the insert gets inserted.

Binding Placeholders in PL/SQL
You process a PL/SQL block by placing the block in a string variable, binding any
variables, and executing the statement containing the block, just as you would with
a single SQL statement.

When you bind placeholders in a PL/SQL block to program variables, you must
use OCIBindByName() or OCIBindByPos() to perform the basic bind binds. You can
use OCIBindByName() or OCIBindByPos() to bind host variables that are either
scalars or arrays.

The following short PL/SQL block contains two placeholders, which represent IN
parameters to a procedure that updates an employee’s salary, given the employee
number and the new salary amount:

char plsql_statement[] = “BEGIN\
 RAISE_SALARY(:emp_number, :new_sal);\
 END;” ;

These placeholders can be bound to input variables in the same way as
placeholders in a SQL statement.

When processing PL/SQL statements, output variables are also associated with
program variables using bind calls.

For example, in a PL/SQL block such as

BEGIN
SELECT ename,sal,comm INTO :emp_name, :salary, :commission
FROM emp
WHERE ename = :emp_number;

END;
 Binding and Defining 5-5

Binding
you would use OCIBindByName() to bind variables in place of the :emp_name ,
:salary , and :commission output placeholders, and in place of the input
placeholder :emp_number .

7.x Upgrade Note: In the Oracle7 OCI, it was sufficient for applications to
initialize only IN-bind buffers. In Oracle8, all buffers, even pure OUT buffers,
must be initialized by setting the buffer length to zero in the bind call, or by
setting the corresponding indicator to -1.

See Also: For more information about binding PL/SQL placeholders see
“Additional Information for Named Data Type and REF Binds” on page 10-3.

Steps Used in Binding
Binding placeholders is done in one or more steps. For a simple scalar or array
bind, it is only necessary to specify an association between the placeholder and the
data. This is done by using OCI bind by name (OCIBindByName()) or OCI bind by
position (OCIBindByPos()) call.

Note: See the section “Named Binds and Positional Binds” on page 5-4 for
information about the difference between these types of binds.

Once the bind is complete, the OCI library knows where to find the input data (or
where to put PL/SQL output data) when the SQL statement is executed. As
mentioned in the section “Binding” on page 5-2, program input data does not need
to be in the program variable when it is bound to the placeholder, but the data
must be there when the statement is executed.

The following code example shows handle allocation and binding for each of five
placeholders in a SQL statement.

Note: The checkerr() function evaluates the return code from an OCI
application. The code for the function is listed in the section “Error Handling”
on page 2-25.

...
/* The SQL statement, associated with stmthp (the statement handle)
by calling OCIStmtPrepare() */
text *insert = (text *) "INSERT INTO emp(empno, ename, job, sal, deptno)\
 VALUES (:empno, :ename, :job, :sal, :deptno)";
...

/* Bind the placeholders in the SQL statement, one per bind handle. */
checkerr(errhp, OCIBindByName(stmthp, &bnd1p, errhp, (text *) ":ENAME",
 strlen(":ENAME"), (ub1 *) ename, enamelen+1, STRING_TYPE, (dvoid *) 0,
 (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT))
5-6 Oracle Call Interface Programmer’s Guide

Binding
checkerr(errhp, OCIBindByName(stmthp, &bnd2p, errhp, (text *) ":JOB",
 strlen(":JOB"), (ub1 *) job, joblen+1, STRING_TYPE, (dvoid *)
 &job_ind, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT))
checkerr(errhp, OCIBindByName(stmthp, &bnd3p, errhp, (text *) ":SAL",
 strlen(":SAL"), (ub1 *) &sal, (sword) sizeof(sal), INT_TYPE,
 (dvoid *) &sal_ind, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0,
 OCI_DEFAULT))
checkerr(errhp, OCIBindByName(stmthp, &bnd4p, errhp, (text *) ":DEPTNO",
 strlen(":DEPTNO"), (ub1 *) &deptno,(sword) sizeof(deptno), INT_TYPE,
 (dvoid *) 0, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT))
checkerr(errhp, OCIBindByName(stmthp, &bnd5p, errhp, (text *) ":EMPNO",
 strlen(":EMPNO"), (ub1 *) &empno, (sword) sizeof(empno), INT_TYPE,
 (dvoid *) 0, (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0,OCI_DEFAULT))

PL/SQL Example
Perhaps the most common use for PL/SQL blocks in an OCI program is to call
stored procedures or stored functions. For example, assume that there is a
procedure called RAISE_SALARY stored in the database, and you want to call this
procedure from an OCI program. You do this by embedding a call to that
procedure in an anonymous PL/SQL block, then processing the PL/SQL block in
the OCI program.

The following program fragment shows how to embed a stored procedure call in
an OCI application. For the sake of brevity, only the relevant portions of the
program are reproduced here.

The program passes an employee number and a salary increase as inputs to a
stored procedure called raise_salary , which takes these parameters:

raise_salary (employee_num IN, sal_increase IN, new_salary OUT);

This procedure raises a given employee’s salary by a given amount. The increased
salary which results is returned in the stored procedure’s OUT variable
new_salary , and the program displays this value.

/* Define PL/SQL statement to be used in program. */
text *give_raise = (text *) "BEGIN\
 RAISE_SALARY(:emp_number,:sal_increase, :new_salary);\
 END;";
OCIBind *bnd1p = NULL; /* the first bind handle */
OCIBind *bnd2p = NULL; /* the second bind handle */
OCIBind *bnd3p = NULL; /* the third bind handle */

static void checkerr();
 Binding and Defining 5-7

Binding
sb4 status;

main()
{
 sword empno, raise, new_sal;
 dvoid *tmp;
 OCISession *usrhp = (OCISession *)NULL;
...
/* attach to database server, and perform necessary initializations
and authorizations */
...
 /* allocate a statement handle */
 checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
 OCI_HTYPE_STMT, 100, (dvoid **) &tmp));

 /* prepare the statement request, passing the PL/SQL text
 block as the statement to be prepared */
checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) give_raise, (ub4)
 strlen(give_raise), OCI_NTV_SYNTAX, OCI_DEFAULT));

 /* bind each of the placeholders to a program variable */
 checkerr(errhp, OCIBindByName(stmthp, &bnd1p, errhp, (text *) ":emp_number",
 -1, (ub1 *) &empno,
 (sword) sizeof(empno), SQLT_INT, (dvoid *) 0,
 (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));

 checkerr(errhp, OCIBindByName(stmthp, &bnd2p, errhp, (text *) ":sal_increase",
 -1, (ub1 *) &raise,
 (sword) sizeof(raise), SQLT_INT, (dvoid *) 0,
 (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));

 /* remember that PL/SQL OUT variable are bound, not defined */

checkerr(OCIBindByName(stmthp, &bnd3p, errhp, (text *) ":new_salary",
 -1, (ub1 *) &new_sal,
 (sword) sizeof(new_sal), SQLT_INT, (dvoid *) 0,
 (ub2 *) 0, (ub2) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT));

 /* prompt the user for input values */
printf("Enter the employee number: ");
scanf("%d", &empno);
 /* flush the input buffer */
myfflush();

printf("Enter employee’s raise: ");
5-8 Oracle Call Interface Programmer’s Guide

Advanced Bind Operations
scanf("%d", &raise);
 /* flush the input buffer */
myfflush();

 /* execute PL/SQL block*/
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *) NULL, (OCISnapshot *) NULL, OCI_DEFAULT));

 /* display the new salary, following the raise */
printf("The new salary is %d\n", new_sal);
}

The following is one possible sample output from this program. Before execution,
the salary of employee 7954 is 2000.

Enter the employee number: 7954
Enter employee’s raise: 1000

The new salary is 3000

Advanced Binds
The previous section and example demonstrated how to perform a simple scalar
bind. In that case, only a single bind call is necessary. In some cases, additional bind
calls are necessary to define specific attributes for specific bind datatypes or
execution modes. These more sophisticated bind operations are discussed in the
following section.

Oracle8 also provides predefined C datatypes that map ADT attributes.
Information about binding these datatypes (e.g., OCIDate, OCINumber) can be
found in Chapter 10.

Advanced Bind Operations
The section “Binding” on page 4-5 discussed how a basic bind operation is
performed to create an association between a placeholder in a SQL statement and a
program variable using OCIBindByName() or OCIBindByPos().

This section covers more advanced bind operations, including multi-step binds,
and binds of named data types and REFs.

In certain cases, additional bind calls are necessary to define specific attributes for
certain bind data types or certain execution modes.
 Binding and Defining 5-9

Advanced Bind Operations
The following sections describe these special cases, and the information about
binding is summarized in Table 5–1 on page 5-12.

Static Array Binds
Static array bind attributes are set using the OCI array of structures bind call
OCIBindArrayOfStruct(). This call is made following a call to OCIBindByName() or
OCIBindByPos().

Note: A static array bind does not refer to binding a column of type ARRAY of
scalars or named data types, but a bind to a PL/SQL table or for multiple row
operations in SQL (INSERTs/UPDATEs).

The OCIBindArrayOfStruct() call is also used to define the skip parameters needed
if the application utilizes arrays of structures functionality.

See Also: For more information on using arrays of structures, see the section
“Arrays of Structures” on page 5-17.

Named Data Type Binds
For information on binding named data types (objects), refer to“Named Data Type
Binds” on page 10-2.

Binding REFs
For information on binding REFs, refer to “Binding REFs” on page 10-3.

Binding LOBs
When working with LOBs, the LOB locators, rather than the actual LOB value, are
bound. The LOB value is written or read by passing a LOB locator to the PL/SQL
DBMS_LOB package or OCI LOB functions.

Either a single locator or an array of locators can be bound in a single bind call. In
each case, the application must pass the address of a LOB locator and not the locator
itself.

For example, if an application has prepared a SQL statement like

INSERT INTO some_table VALUES (:one_lob)

where :one_lob is a bind variable corresponding to a LOB column, and has made
the following declaration:

OCILobLocator * one_lob;
5-10 Oracle Call Interface Programmer’s Guide

Advanced Bind Operations
then the following sequence of steps would be used to bind the placeholder, and
execute the statement

/* initialize single locator */
one_lob = OCIDescriptorAlloc(...OCI_DTYPE_LOB...);
...
/* pass the address of the locator */
OCIBindByName(...,(dvoid *) &one_lob,...);
OCIStmtExecute(...,1,...) /* 1 is the iters parameter */

Note: In these examples, most parameters are omitted for simplicity.

You could also do an array insert using the same SQL INSERT statement. In this
case, the application would include the following code:

OCILobLocator * lob_array[10];
...
for (i=0; i<10, i++)
lob_array[i] = OCIDescriptorAlloc(...OCI_DTYPE_LOB...);
 /* initialize array of locators */
...
OCIBindByName(...,(dvoid *) lob_array,...);
OCIStmtExecute(...,10,...); /* 10 is the iters parameter */

Note that you must allocate descriptors with the OCIDescriptorAlloc() routine before
they can be used. In the case of an array of locators, you must initialize each array
element using OCIDescriptorAlloc(). Use OCI_DTYPE_LOB as the type parameter
when allocating BLOBs, CLOBs, and NCLOBs. Use OCI_DTYPE_FILE when
allocating BFILEs.

See Also: For more information about OCI LOB functions, refer to the section
“LOB and FILE Operations” on page 7-24.

Binding in OCI_DATA_AT_EXEC Mode
If the mode parameter in a call to OCIBindByName() or OCIBindByPos() is set to
OCI_DATA_AT_EXEC, an additional call to OCIBindDynamic() is necessary if the
application will use the callback method for providing data at runtime. The call to
OCIBindDynamic() sets up the callback routines, if necessary, for indicating the data
or piece that is being provided.

If the OCI_DATA_AT_EXEC mode is chosen, but the standard OCI piecewise
polling method will be used instead of callbacks, the call to OCIBindDynamic() is
not necessary.
 Binding and Defining 5-11

Advanced Bind Operations
When binding RETURN clause variables, an application must use
OCI_DATA_AT_EXEC mode, and it must provide callbacks.

See Also: For more information about piecewise operations, please refer to the
section “Run Time Data Allocation and Piecewise Operations” on page 7-16.

Binding Ref Cursor Variables
Ref Cursors are bound to a statement handle with a bind datatype of SQLT_RSET.
See “PL/SQL REF CURSORs and Nested Tables” on page 5-27

Summary of Bind Information
The following table summarizes the bind calls necessary for different types of
binds. For each type, the table lists the bind datatype (passed in the dty parameter
of OCIBindByName() or OCIBindByPos()), and notes about the bind.

Table 5–1 Bind Information for Different Bind Types

Type of Bind Bind Datatype Notes

Scalar any scalar datatype Bind a single scalar using OCIBindByName() or OCIBindBy-
Pos().

Array of Scalars any scalar datatype Bind an array of scalars using OCIBindByName() or OCIBindBy-
Pos().

Named Data Type SQLT_NTY Two bind calls are required:

■ OCIBindByName() or OCIBindByPos()

■ OCIBindObject()

REF SQLT_REF Two bind calls are required:

■ OCIBindByName() or OCIBindByPos()

■ OCIBindObject()

LOB SQLT_BLOB

SQLT_CLOB

Allocate the LOB locator using OCIDescriptorAlloc(), and then
bind its address (OCILobLocator **) with OCIBindByName()
or OCIBindByPos(), using one of the LOB datatypes.
5-12 Oracle Call Interface Programmer’s Guide

Defining
See Also: For more information about datatypes and datatype codes, see
Chapter 3, “Datatypes”.

Defining
Query statements return data from the database to your application. When
processing a query, you must define an output variable or an array of output
variables for each item in the select-list from which you want to retrieve data. The
define step creates an association that determines where returned results are stored,
and in what format.

For example, if your OCI statement processes the following statement:

SELECT name, ssn FROM employees
 WHERE empno = :empnum

you would normally need to define two output variables, one to receive the value
returned from the name column, and one to receive the value returned from the
ssn column.

For information about implementing define operations, please refer to Chapter 5,
“Binding and Defining”.

Note: If you were only interested in retrieving values from the name column,
you would not need to define an output variable for ssn .

If the SELECT statement being processed might return more than a single value for
a query, the output variables you define may be arrays instead of scalar values.

Note: Depending on the application, the define step can take place before or
after the execute. If the datatypes of select-list items are known when the

Array of Structures

 or Static Arrays

varies Two bind calls are required:

■ OCIBindByName() or OCIBindByPos()

■ OCIBindArrayOfStruct()

Piecewise Insert varies OCIBindByName() or OCIBindByPos() is required. The applica-
tion may also need to call OCIBindDynamic() to register piece-
wise callbacks.

REF CURSOR variables SQLT_RSET Allocate a statement handle, OCIStmt, and then bind its
address (OCIStmt **) using the SQLT_RSET datatype.

Table 5–1 Bind Information for Different Bind Types (Cont.)

Type of Bind Bind Datatype Notes
 Binding and Defining 5-13

Defining
application is coded, the define can take place before the statement is executed.
If your application is processing dynamic SQL statements—statements entered
by the user at run time— or statements that do not have a clearly defined select-
list, such as

SELECT * FROM employees

the application must execute the statement and retrieve describe information
before defining output variables. See the section “Describing Select-List Items”
on page 4-8 for more information.

The OCI processes the define call locally, on the client side. In addition to indicating
the location of buffers where results should be stored, the define step also
determines what type of data conversions, if any, will take place when data is
returned to the application.

The dty parameter of the OCIDefineByPos() call specifies the datatype of the output
variable. The OCI is capable of a wide range of data conversions when data is
fetched into the output variable. For example, internal data in Oracle DATE format
can be automatically converted to a string datatype on output.

See Also: For more information about datatypes and conversions, refer to
Chapter 3, “Datatypes”.

Steps Used in Defining
Defining output variables is done in one or more steps. A basic define is
accomplished with the OCI define by position call, OCIDefineByPos(). This step
creates an association between a select-list item and an output variable. Additional
define calls may be necessary for certain datatypes or fetch modes.

Once the define step is complete, the OCI library knows where to put retrieved
data after fetching it from the database.

Note: You can make your define calls again to redefine the output variables
without having to reprepare or reexecute the SQL statement.

The following example code shows a scalar output variable being defined
following an execute and a describe.

/* The following statement was prepared, and associated with statement
handle stmthp1.

SELECT dname FROM dept WHERE deptno = :dept_input

The input placeholder was bound earlier, and the data comes from the
5-14 Oracle Call Interface Programmer’s Guide

Defining
user input below */

printf("Enter employee dept: ");
 scanf("%d", &deptno);
 myfflush();

/* Execute the statement. If OCIStmtExecute() returns OCI_NO_DATA, meaning that
no data matches the query, then the department number is invalid. */

if ((status = OCIStmtExecute(svchp, stmthp1, errhp, 1, 0, 0, 0,
OCI_DEFAULT))

 && (status != OCI_NO_DATA))
 {
 checkerr(errhp, status);
 do_exit(EXIT_FAILURE);
 }
 if (status == OCI_NO_DATA) {
 printf("The dept you entered doesn’t exist.\n");

return 0;
 }
/* The next two statements describe the select-list item, dept, and

return its length */
checkerr(errhp, OCIParamGet(stmthp1, errhp, &parmdp, (ub4) 1));
checkerr(errhp, OCIAttrGet((dvoid*) parmdp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &deptlen, (ub4 *) 0, (ub4) OCI_ATTR_DATA_SIZE,
 (OCIError *) errhp));

/* Use the retrieved length of dept to allocate an output buffer, and
then define the output variable. If the define call returns an error,
exit the application */

dept = (text *) malloc((int) deptlen + 1);
 if (status = OCIDefineByPos(stmthp1, &defnp, errhp,
 1, (ub1 *) dept, deptlen+1,
 SQLT_STRING, (dvoid *) 0,
 (ub2 *) 0, OCI_DEFAULT))
 {
 checkerr(errhp, status);
 do_exit(EXIT_FAILURE);
 }
For an explanation of the describe step, see the section “Describing Select-List
Items” on page 4-8.

Advanced Defines
In some cases the define step requires more than just a call to OCIDefineByPos().
There are additional calls that define the attributes of an array fetch
 Binding and Defining 5-15

Advanced Define Operations
(OCIDefineArrayOfStruct()) or a named data type fetch (OCIDefineObject()). For
example, to fetch multiple rows with a column of named data types, all three calls
must be invoked for the column; but to fetch multiple rows of scalar columns,
OCIDefineArrayOfStruct() and OCIDefineByPos() are sufficient.

These more sophisticated define operations are covered in the section “Advanced
Define Operations” on page 5-16.

Oracle8 also provides pre-defined C datatypes that map object type attributes.
Information about defining these datatypes (e.g., OCIDate, OCINumber) can be
found in Chapter 10.

Advanced Define Operations
The section “Defining” on page 4-11 discussed how a basic bind operation is
performed to create an association between a SQL select-list item and an output
buffer in an application.

This section covers more advanced defined operations, including multi-step
defines, and defines of named data types and REFs.

In some cases the define step requires more than just a call to OCIDefineByPos().
There are additional calls that define the attributes of an array fetch
(OCIDefineArrayOfStruct()) or a named data type fetch (OCIDefineObject()). For
example, to fetch multiple rows with a column of named data types, all the three
calls must be invoked for the column; but to fetch multiple rows of scalar columns
only OCIDefineArrayOfStruct() and OCIDefineByPos() are sufficient.

The following sections discuss specific information pertaining to different types of
defines.

Defining Named Data Type Output Variables
For information on defining named data type (object) output variables, refer to
“Defining Named Data Type Output Variables” on page 10-4.

Defining REF Output Variables
For information on defining REF output variables, refer to “Defining REF Output
Variables” on page 10-4.

Defining LOB Output Variables
For LOBs, the buffer pointer must be a locator of type OCILobLocator, allocated by
the OCIDescriptorAlloc() call. LOB locators, and not LOB values, are always
5-16 Oracle Call Interface Programmer’s Guide

Arrays of Structures
returned for a LOB column. LOB values can then be fetched using OCI LOB calls
on the fetched locator.

Defining PL/SQL Output Variables
You do not use the define calls to define output variables for select-list items in a
SQL SELECT statement in a PL/SQL block. You must use OCI bind calls instead.

See Also: See the section “Additional Information for Named Data Type and
REF Defines, and PL/SQL OUT Binds” on page 10-5 for more information
about defining PL/SQL output variables.

Defining For a Piecewise Fetch
When performing a piecewise fetch, an initial call to OCIDefineByPos() is required.
An additional call to OCIDefineDynamic() is necessary if the application will use
callbacks rather than the standard polling mechanism for fetching data.

See Also: See the section “Run Time Data Allocation and Piecewise
Operations” on page 7-16 for more information.

Defining Arrays of Structures
When using arrays of structures, an initial call to OCIDefineByPos() is required. An
additional call to OCIDefineArrayOfStruct() is necessary to set up additional
parameters, including the skip parameter necessary for arrays of structures
operations.

See Also: For more information, refer to the section “Arrays of Structures” on
page 5-17.

Arrays of Structures
The “arrays of structures” functionality of the Oracle8 OCI can simplify the
processing of multi-row, multi-column operations. The OCI programmer can create
a structure of related scalar data items and then fetch values from the database into
an array of these structures or insert values into the database from an array of these
structures.

For example, an application may need to fetch multiple rows of data from three
columns named NAME, AGE, and SALARY. The OCI application could include the
definition of a structure containing separate fields to hold the NAME, AGE and
SALARY data from one row in the database table. The application would then fetch
data into an array of these structures.
 Binding and Defining 5-17

Arrays of Structures
In order to perform a multi-row, multi-column operation using an array of
structures, the developer associates each column involved in the operation with a
field in a structure. This association, which is part of the OCIDefineArrayOfStruct()
and OCIBindArrayOfStruct() calls, specifies where fetched data will be stored, or
where inserted or updated data will be found.

Figure 5–2 is a graphical representation of this process. In the figure, an application
fetches various fields from a database row into a single structure in an array of
structures. Each column being fetched corresponds to one of the fields in the
structure.

Figure 5–2 Fetching Data Into an Array of Structures

Skip Parameters
When you split column data across an array of structures, it is no longer
contiguous. The single array of structures stores data as though it were composed
of several interleaved arrays of scalars. Because of this fact, developers must
specify a “skip parameter” for each field they are binding or defining. This skip
parameter specifies the number of bytes that need to be skipped in the array of
structures before the same field is encountered again. In general this will be
equivalent to the byte size of one structure.

Oracle Table

column column column

...

1 structure1 field

...

.

Array of
Structures

skip parameter
5-18 Oracle Call Interface Programmer’s Guide

Arrays of Structures
The figure below demonstrates how a skip parameter is determined. In this case
the skip parameter is the sum of the sizes of the fields field1, field2 and field3, which
is 8 bytes. This equals the size of one structure.

Figure 5–3 Determining Skip Parameters.

On some systems it may be necessary to set the skip parameter to be sizeof(one
array element) rather than sizeof(struct). This is because some compilers may insert
padding into a structure. For example, consider an array of C structures consisting
of two fields, a ub4 and a ub1.

struct demo {
 ub4 field1;
 ub1 field2;
};
struct demo demo_array[MAXSIZE];

Some compilers insert three bytes of padding after the ub1 so that the ub4 which
begins the next structure in the array is properly aligned. In this case, the following
statement may return an incorrect value:

skip_parameter = sizeof(struct demo);

On some systems this will produce a proper skip parameter of eight. On other
systems, skip_parameter will be set to five bytes by this statement. In this case,
use the following statement to get the correct value for the skip parameter:

skip_parameter = sizeof(demo_array[0]);

Skip Parameters for Standard Arrays
The ability to work with arrays of structures is an extension of the functionality for
binding and defining arrays of program variables. Programmers can also work
with standard arrays (as opposed to arrays of structures). When specifying a

2 bytes 2 bytes 4 bytes 2 bytes 2 bytes 4 bytes 2 bytes 2 bytes 4 bytes

Array of Structures

.field 1 field 2 field 3 field 1 field 3 field 1 field 3 field 2 field 2

skip 8 bytes skip 8 bytes
 Binding and Defining 5-19

Arrays of Structures
standard array operation, the related skip will be equal to the size of the datatype
of the array under consideration. For example, for an array declared as

text emp_names[4][20]

the skip parameter for the bind or define operation will be 20. Each data element in
the array is then recognized as a separate unit, rather than being part of a structure.

OCI Calls Used with Arrays of Structures
Two OCI calls must be used when performing operations involving arrays of
structures: OCIBindArrayOfStruct() (for binding fields in arrays of structures for
input variables) and OCIDefineArrayOfStruct() (for defining arrays of structures for
output variables).

Note: When binding or defining for arrays of structures, multiple calls are
required. A call to OCIBindByName() or OCIBindByPos() must proceed a call to
OCIBindArrayOfStruct(), and a call to OCIDefineByPos() must proceed a call to
OCIDefineArrayOfStruct().

See Also: See the descriptions of OCIBindArrayOfStruct() and
OCIDefineArrayOfStruct() in Chapter 13 for syntax and parameter descriptions.

Arrays of Structures and Indicator Variables
The implementation of arrays of structures also supports the use of indicator
variables and return codes. OCI application developers can declare parallel arrays
of column-level indicator variables and return codes, corresponding to the arrays
of information being fetched, inserted, or updated. These arrays can have their own
skip parameters, which are specified during a call to OCIBindArrayOfStruct() or
OCIDefineArrayOfStruct().

You can set up arrays of structures of program values and indicator variables in
many ways. For example, consider an application that fetches data from three
database columns into an array of structures containing three fields. You can set up
a corresponding array of indicator variable structures of three fields, each of which
is a column-level indicator variable for one of the columns being fetched from the
database.

Note: A one-to-one relationship between the fields in an indicator struct and
the number of select-list items is not necessary.

See Also: See “Indicator Variables” on page 2-29 for more information about
indicator variables.
5-20 Oracle Call Interface Programmer’s Guide

DML with RETURNING Clause
DML with RETURNING Clause
The OCI supports the use of the RETURNING clause with SQL INSERT, UPDATE,
and DELETE statements. This section outlines the rules an OCI application must
follow to correctly implement DML statements with the RETURNING clause.

Note: For more information about the use of the RETURNING clause with
INSERT, UPDATE, or DELETE statements, please refer to the descriptions of
those commands in the Oracle8 SQL Reference.

For an complete code example, refer to “Example 3, DML with RETURNING
Clause” on page D-25.

Using DML with RETURNING Clause
Using the RETURNING clause with a DML statement allows you to essentially
combine two SQL statements into one, possibly saving you a server round-trip.
This is accomplished by adding an extra clause to the traditional UPDATE,
INSERT, and DELETE statements. The extra clause effectively adds a query to the
DML statement.

In the OCI, the values are returned to the application through the use of OUT bind
variables. The rules for binding these variables are described in the next section. In
the following examples, the bind variables are indicated by the preceding colon
(e.g., :out1). These examples assume the existence of a table called table1 , which
contains three columns: col1 , col2 , and col3 .

For example, the following statement inserts new values into the database and then
retrieves the column values of the affected row from the database, allowing your
application to work with inserted rows.

INSERT INTO table1 VALUES (:1, :2, :3,)
 RETURNING col1, col2, col3
 INTO :out1, :out2, :out3

The next example uses the UPDATE statement. This statement updates the values
of all columns whose col1 value falls within a certain range, and then returns the
affected rows to the application, allowing the application to see which rows were
modified.

UPDATE table1 SET col1 = col1 + :1, col2 = :2, col3 = :3
 WHERE col1 >= :low AND col1 <= :high
 RETURNING col1, col2, col3
 INTO :out1, :out2, :out3
 Binding and Defining 5-21

DML with RETURNING Clause
The following DELETE statement deletes the rows whose col1 value falls within a
certain range, and then returns the data from those rows so that the application can
check them.

DELETE FROM table1 WHERE col1 >= :low AND col2 <= :high
 RETURNING col1, col2, col3
 INTO :out1, :out2, :out3

Note that in both the UPDATE and DELETE examples there is the possibility that
the statement will affect multiple rows in the table. Additionally, a DML statement
could be executed multiple times in a single OCIExecute() statement. Because of this
possibility for multiple returning values, an OCI application may not know how
much data will be returned at runtime. As a result, the variables corresponding to
the RETURNING...INTO placeholders must be bound in OCI_DATA_AT_EXEC
mode. It is an additional requirement that the application must define its own
dynamic data handling callbacks (rather than using the OCI_DATA_AT_EXEC
polling mechanism).

Note: Even if the application can be sure that it will only get a single value back
in the RETURNING clause, it must still bind in OCI_DATA_AT_EXEC mode
and use callbacks.

The returning clause can be particularly useful when working with LOBs.
Normally, an application must insert an empty LOB locator into the database, and
then SELECT it back out again to operate on it. Using the RETURNING clause, the
application can combine these two steps into a single statement:

INSERT INTO some_table VALUES (:in_locator)
RETURNING lob_column
INTO :out_locator

Binding RETURNING...INTO variables
As mentioned in the previous section, an OCI application implements the
placeholders in the RETURNING clause as pure OUT bind variables. An
application must adhere to the following rules when working with these bind
variables:

1. Bind RETURNING clause placeholders in OCI_DATA_AT_EXEC mode using
OCIBindByName() or OCIBindByPos(), followed by a call to OCIBindDynamic()
for each placeholder.

Note: The OCI only supports the callback mechanism for RETURNING clause
binds. The polling mechanism is not supported.
5-22 Oracle Call Interface Programmer’s Guide

DML with RETURNING Clause
2. When binding RETURNING clause placeholders, you must supply a valid out
bind function as the ocbfp parameter of the OCIBindDynamic() call. This func-
tion must provide storage to hold the returned data.

3. The icbfp parameter of OCIBindDynamic() call should provide a “dummy” func-
tion which returns NULL values when called.

4. The piecep parameter of OCIBindDynamic() must be set to OCI_ONE_PIECE.

5. No duplicate binds are allowed in a DML statement with a RETURNING
clause (i.e., no duplication between bind variables in the DML section and the
RETURNING section of the statement).

Error Handling
The out bind function provided to OCIBindDynamic() must be prepared to receive
partial results of a statement in the event of an error. For example, if the application
has issued a DML statement which should be executed 10 times, and an error
occurs during the fifth iteration, the server will still return the data from iterations
1 through 4. The callback function would still be called to receive data for the first
four iterations.

DML with RETURNING REF...INTO clause
The RETURNING clause can also be used to return a REF to an object which is
being inserted into or updated in the database. The following SQL statement shows
how this could be used.

UPDATE EXTADDR E SET E.ZIP = '12345', E.STATE='AZ'
 WHERE E.STATE = 'CA' AND E.ZIP='95117'
 RETURNING REF(E), ZIP
 INTO :addref, :zip

This statement updates several attributes of an object in an object table and then
returns a REF to the object (along with the scalar ZIP code) in the RETURNING
clause.

Binding the REF output variable in an OCI application requires three steps:

1. The initial bind information is set using OCIBindByName()

2. Additional bind information for the REF (including the TDO) is set with OCIB-
indObject()

3. A call to OCIBindDynamic()
 Binding and Defining 5-23

DML with RETURNING Clause
The following pseudocode shows a function which performs the binds necessary
for the above example.

sword bind_output(stmthp, bndhp, errhp)
OCIStmt *stmthp;
OCIBind *bndhp[];
OCIError *errhp;
{
 ub4 i;

/* get TDO for BindObject call */
 if (OCITypeByName(envhp, errhp, svchp, (CONST text *) 0,
 (ub4) 0, (CONST text *) "ADDRESS_OBJECT",
 (ub4) strlen((CONST char *) "ADDRESS_OBJECT"),
 (CONST text *) 0, (ub4) 0,
 OCI_DURATION_SESSION, OCI_TYPEGET_HEADER, &addrtdo))
 {
 return OCI_ERROR;
 }

 /* initial bind call for both variables */
 if (OCIBindByName(stmthp, &bndhp[2], errhp,
 (text *) ":addref", (sb4) strlen((char *) ":addref"),
 (dvoid *) 0, (sb4) sizeof(OCIRef *), SQLT_REF,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC)
 || OCIBindByName(stmthp, &bndhp[3], errhp,
 (text *) ":zip", (sb4) strlen((char *) ":zip"),
 (dvoid *) 0, (sb4) MAXZIPLEN, SQLT_CHR,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC))
 {
 return OCI_ERROR;
 }

 /* object bind for REF variable */
 if (OCIBindObject(bndhp[2], errhp, (OCIType *) addrtdo,
 (dvoid **) &addrref[0], (ub4 *) 0, (dvoid **) 0, (ub4 *) 0))
 {
 return OCI_ERROR;
 }

 for (i = 0; i < MAXCOLS; i++)
 pos[i] = i;

 /* dynamic binds for both RETURNING variables */
5-24 Oracle Call Interface Programmer’s Guide

NCHAR and Character Conversion Issues
 if (OCIBindDynamic(bndhp[2], errhp, (dvoid *) &pos[0], cbf_no_data,
 (dvoid *) &pos[0], cbf_get_data)
 || OCIBindDynamic(bndhp[3], errhp, (dvoid *) &pos[1], cbf_no_data,
 (dvoid *) &pos[1], cbf_get_data))
 {
 return OCI_ERROR;
 }

 return OCI_SUCCESS;
}

Additional Notes About Callbacks
When a callback function is called, the OCI_ATTR_ROWS_RETURNED attribute of
the bind handle tells the application the number of rows being returned in that
particular iteration. Thus, when the callback is called the first time in a particular
iteration (i.e., index=0), the user can allocate space for all the rows which will be
returned for that bind variable. When the callback is called subsequently (with
index>0) within the same iteration, the user can merely increment the buffer
pointer to the correct memory within the allocated space to retrieve the data.

NCHAR and Character Conversion Issues
This section discusses issues involving NCHAR data and character conversions
between the client and the server.

NCHAR Issues
Oracle8 provides support for NCHAR data in the database, and the Oracle8 OCI
provides support for binding and defining NCHAR data. If a database column
containing character data is defined to be an NCHAR column, then a bind or define
involving that column must take into account special considerations for dealing
with character set specifications.

These considerations are necessary in case the width of the client character set is
different from that on the server, and also for proper character conversion between
the client and server. During conversion of data between different character sets,
the size of the data may grow or shrink as much as fourfold. Care must be taken to
insure that buffers provided to hold the data are of sufficient size.

In some cases, it may also be easier for an application to deal with NCHAR data in
terms of numbers of characters, rather than numbers of bytes (which is the usual
case).
 Binding and Defining 5-25

NCHAR and Character Conversion Issues
Each OCI bind and define handle has “form” (OCI_ATTR_CHRSETFORM) and
“character set ID” (OCI_ATTR_CHRSETID) attributes associated with it. An
application can set these attributes with the OCIAttrSet() call in order to specify the
character set ID and form of the bind/define buffer.

The form attribute has two possible values:

■ SQLCS_IMPLICIT - database character set ID

■ SQLCS_NCHAR - NCHAR character set ID

The default value is SQLCS_IMPLICIT.

If the character set ID is not specified, then the default value of the database or
NCHAR character set ID of the client is used, depending on the value of form. That
is the value specified in the NLS_LANG and NLS_NCHAR environment variables.

If nothing is specified, then the default database character set ID of the client is
assumed.

Note: No matter what values are assigned to the character set ID and form of
the client-side bind buffer, the data is converted and inserted into the database
according to the server’s database/NCHAR character set ID and form.

See Also: For more information about NCHAR data, refer to the Oracle8
Reference.

OCI_ATTR_MAXDATA_SIZE Attribute
Every bind handle has a OCI_ATTR_MAXDATA_SIZE attribute. This attribute
specifies the number of bytes to be allocated on the server to accommodate the
client-side bind data after any necessary character set conversions.

Note: Character set conversions performed when data is sent to the server may
result in the data expanding or contracting, so its size on the client may not be
the same as its size on the server.

An application will typically set OCI_ATTR_MAXDATA_SIZE to the maximum
size of the column or the size of the PL/SQL variable, depending on how it is used.
Oracle issues an error if OCI_ATTR_MAXDATA_SIZE is not a large enough value
to accommodate the data after conversion, and the operation will fail.

Character Count Attribute
Bind and define handles have a character count attribute associate with them. An
application can use this attribute to work with data in terms of numbers of
characters, rather than numbers of bytes. If this attribute is set to a non-zero value,
5-26 Oracle Call Interface Programmer’s Guide

PL/SQL REF CURSORs and Nested Tables
it indicates that all calculations should be done in terms of characters instead of
bytes, and any constraint sizes should be thought of in terms of characters rather
than bytes.

This attribute can be set in addition to the OCI_ATTR_MAXDATA_SIZE attribute
for bind handles. For example, if OCI_ATTR_MAXDATA_SIZE is set to 100, and
OCI_ATTR_CHAR_COUNT is set to 0, this means that the maximum possible size
of the data on the server after conversion is 100 bytes. However, if
OCI_ATTR_MAXDATA_SIZE is set to 100, and OCI_ATTR_CHAR_COUNT is set
to a non-zero value, then if the character set has 2 bytes/character, the maximum
possible allocated size is 200 bytes (2 bytes/char * 100 chars).

Note: This attribute is valid only for fixed-width character set IDs. For variable-
width character set IDs, these values are always treated as numbers of bytes,
rather than numbers of characters.

For binds, the OCI_ATTR_CHAR_COUNT attribute sets the number of characters
that an application wants to reserve on the server to store the data being bound.
This overrides the OCI_ATTR_MAXDATA_SIZE attribute. For all datatypes that
have a length prefix as part of their value (e.g., VARCHAR2), the length prefix is
then considered to be the number of characters, rather than the number of bytes. In
this case, indicator lengths and return codes are also in characters.

Note: Regardless of the value of the OCI_ATTR_CHAR_COUNT attribute, the
buffer lengths specified in a bind or define call are always considered to be in
terms of number of bytes. The actual length values sent and received by the
user are also in characters in this case.

For defines, the OCI_ATTR_CHAR_COUNT attribute specifies the maximum
number of characters of data the client application wants to receive. This constraint
overrides the maxlength parameter specified in the OCIDefineByPos() call.

PL/SQL REF CURSORs and Nested Tables
The OCI provides the ability to bind and define PL/SQL REF CURSORs and nested
tables. An application can use a statement handle to bind and define these types of
variables. As an example, consider this PL/SQL block:

static const text *plsql_block = (text *)
 "begin \
 OPEN :cursor1 FOR SELECT empno, ename, job, mgr, sal, deptno \
 FROM emp_rc WHERE job=:job ORDER BY empno; \
 OPEN :cursor2 FOR SELECT * FROM dept_rc ORDER BY deptno; \
 end;";
 Binding and Defining 5-27

PL/SQL REF CURSORs and Nested Tables
An application would allocate a statement handle for binding, by calling
OCIHandleAlloc(), and then bind the :cursor1 placeholder to the statement
handle, as in the following code, where :cursor1 is bound to stm2p . Note that
the handle allocation code is not included here.

err = OCIStmtPrepare (stm1p, errhp, (text *) nst_tab, strlen(nst_tab),
 OCI_NTV_SYNTAX, OCI_DEFAULT);
...
err = OCIBindByName (stm1p, (OCIBind **) bndp, errhp,
 (text *)":cursor1", (sb4)strlen((char *)":cursor1"),
 (dvoid *)&stm2p, (sb4) 0, SQLT_RSET, (dvoid *)0,
 (ub2 *)0, (ub2 *)0, (ub4)0, (ub4 *)0, (ub4)OCI_DEFAULT);

In this code, stm1p is the statement handle for the PL/SQL block, while stm2p is
the statement handle which is bound as a REF CURSOR for later data retrieval. A
value of SQLT_RSET is passed for the dty parameter.

As another example, consider the following:

static const text *nst_tab = (text *)
 "SELECT ename, CURSOR(SELECT dname, loc FROM dept_rc) \
 FROM emp_rc WHERE ename = ’LOCKE’";

In this case the second position is a nested table, which an OCI application can
define as a statement handle as follows. Note that the handle allocation code is not
included here.

err = OCIStmtPrepare (stm1p, errhp, (text *) nst_tab, strlen(nst_tab),
 OCI_NTV_SYNTAX, OCI_DEFAULT);
...
err = OCIDefineByPos (stm1p, (OCIDefine **) dfn2p, errhp, (ub4)2,
 (dvoid *)&stm2p,
 (sb4)0, SQLT_RSET, (dvoid *)0, (ub2 *)0,
 (ub2 *)0, (ub4)OCI_DEFAULT);

After execution, when you fetch a row into stm2p it then becomes a valid
statement handle.

Note: If you have retrieved multiple ref cursors, you must take care when
fetching them into stm2p . If you fetch the first one, you can then perform
fetches on it to retrieve its data. However, once you fetch the second ref cursor
into stm2p , you no longer have access to the data from the first ref cursor.
5-28 Oracle Call Interface Programmer’s Guide

 Describing Schema Met
6

Describing Schema Metadata

This chapter discusses the use of the OCIDescribeAny() function to obtain
information about schema elements.

The following topics are covered in this chapter:

■ Overview

■ Using OCIDescribeAny()

■ Examples
adata 6-1

Overview
Overview
This chapter deals with the use of the OCIDescribeAny() function to describe
schema objects. For information about describing select-list items, refer to the
section “Describing Select-List Items” on page 4-8.

For additional information about the OCIDescribeAny() call and its parameters,
refer to the function description on page 13 - 57.

Using OCIDescribeAny()
The OCIDescribeAny() function allows you to perform an explicit describe of one of
the following schema objects:

■ tables and views

■ synonyms

■ procedures

■ functions

■ packages

■ sequences

■ collections

■ types

Information about other schema elements (procedure/function arguments,
columns, type attributes, and type methods) is available through a describe of one
of the above schema objects. For example, when an application describes a table, it
can then retrieve information about that table’s columns.

The OCIDescribeAny() call requires a describe handle as one of its parameters. The
describe handle must have been previously allocated with a call to
OCIHandleAlloc(). After the call to OCIDescribeAny(), an application can retrieve
information about the described object from the describe handle.
6-2 Oracle Call Interface Programmer’s Guide

Using OCIDescribeAny()
The information returned by OCIDescribeAny() is organized hierarchically like a
tree. For example, the figure shows how description of a certain table might be
organized:

The describe handle returned by OCIDescribeAny() points to such a tree of
descriptions. Each node of the tree has attributes associated with the node and
attributes (which are like recursive describe handles) that point to subtrees
containing more information. If all the attributes are homogenous, as in case of
elements of a list (e.g. column list), then we refer to them as parameters. In this
document, we will use the terms handle and parameter interchangeably. The
attributes associated with any node are returned by OCIAttrGet(), and the
parameters are returned by OCIParamGet().

For example, an OCIAttrGet() on the describe handle for the table can return a
handle to the column-list information. An application can then use OCIParamGet()
to retrieve the handle to the column description of a particular column in the
column-list. The handle to the column descriptor can be passed to OCIAttrGet() to
get further information about the column, such as the name and data type (as
illustrated by following the left-hand side of the above figure).

No subsequent OCIAttrGet() or OCIParamGet() call requires extra round trips, as all
the description is cached on the client side by OCIDescribeAny().

Restrictions
The OCIDescribeAny() call limits information returned to the basic information and
stops expanding a node if it amounts to another describe. For example, if a table
column is of an object type, then the OCI does not return a subtree describing the
type since this information can be obtained by another describe.

columns

column1 column2

data type name

table
description

privileges statistics

#rows indexes

index1 index2
 Describing Schema Metadata 6-3

Using OCIDescribeAny()
For similar reasons, the OCI also does not allow describes on columns, arguments,
or fields of tables, views, functions, procedures, or types. Such information can be
obtained by describing the top-level object containing it.

Note on Datatype Codes
For more information about typecodes (e.g., the OCI_TYPCODE values returned in
the OCI_ATTR_TYPECODE attribute, and the SQLT typecodes returned in the
OCI_ATTR_DATA_TYPE attribute), refer to the section “Typecodes” on page 3-24.

OCI_ATTR_TYPECODE returns typecodes which represent the types supplied by
the user when a new type is created (using the CREATE TYPE statement). These
typecodes are of the enumerated type OCITypeCode, and are represented by
OCI_TYPECODE constants. Internal PL/SQL types (boolean, indexed table) are not
supported.

OCI_ATTR_DATA_TYPE returns typecodes which represent the datatypes stored
in database columns. These are similar to the describe values returned by previous
versions of Oracle. These values are represented by SQLT constants (ub2 values).
BOOLEAN types return SQLT_BOL.

Note on Describing Types
In order to describe type objects, it is necessary to initialize the OCI process in
object mode:

/* Initialize the OCI Process */
 if (OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0,
 (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t))0,
 (void (*)(dvoid *, dvoid *)) 0))
 { (void) printf("FAILED: OCIInitialize()\n");
 return OCI_ERROR; }

For more information on this function, refer to the description of OCIInitialize() on
page 13-72.
6-4 Oracle Call Interface Programmer’s Guide

Using OCIDescribeAny()
Note on OCI_ATTR_LIST_ARGUMENTS
The OCI_ATTR_LIST_ARGUMENTS attribute for type methods represents
“second-level” arguments for the method.

For example, given the following record my_type and the procedure my_proc
which takes an argument of type my_type:

my_rec record(a number, b char)
my_proc (my_input my_rec)

the OCI_ATTR_LIST_ARGUMENTS attribute would apply to arguments a and b
of the my_type record.

Parameter Attributes
A parameter is returned by OCIParamGet(). Parameters can describe different types
of objects or information. Hence, parameters have attributes depending on the type
of description they contain — these are the type-specific attributes. This section
describes the attributes and handles that belong to different parameters.
 Describing Schema Metadata 6-5

Using OCIDescribeAny()
The following table lists the attributes that belong to all parameters:

The subsections that follow list the attributes and handles specific to different types
of parameters.

Table 6–1 Attributes Belonging to All Parameters

Attribute Description Attribute Datatype

OCI_ATTR_PTYPE type of information described by the parameter. Possible
values are:

OCI_PTYPE_TABLE - table

OCI_PTYPE_VIEW - view

OCI_PTYPE_PROC - procedure

OCI_PTYPE_FUNC - function

OCI_PTYPE_PKG - package

OCI_PTYPE_TYPE - type

OCI_PTYPE_TYPE_ATTR - attribute of a type

OCI_PTYPE_TYPE_COLL - collection type information

OCI_PTYPE_TYPE_METHOD - a method of a type

OCI_PTYPE_SYN - synonym

OCI_PTYPE_SEQ - sequence

OCI_PTYPE_COL - column of a table or view

OCI_PTYPE_ARG - argument of a function or procedure

OCI_PTYPE_TYPE_ARG - argument of a type method

OCI_PTYPE_TYPE_RESULT - the results of a method

OCI_PTYPE_LIST - column list for tables and views,
argument list for functions and procedures, or subprogram
list for packages.

ub1

OCI_ATTR_TIMESTAMP the timestamp of the object this description is based on (in
Oracle date format)

ub1 *

OCI_ATTR_NUM_ATTRS the number of attributes ub2

OCI_ATTR_NUM_PARAMS the number of parameters ub2
6-6 Oracle Call Interface Programmer’s Guide

Using OCIDescribeAny()
Table/View Attributes
When a parameter is for a table or view (type OCI_PTYPE_TABLE or
OCI_PTYPE_VIEW), it has the following type specific attributes:

The following are additional attributes which belong to tables:

Procedure/Function Attributes
When a parameter is for a procedure or function (type OCI_PTYPE_PROC or
OCI_PTYPE_FUNC), it has the following type specific attributes:

Table 6–2 Attributes Belonging to Tables or Views

Attribute Description Attribute Datatype

OCI_ATTR_OBJID object id ub4

OCI_ATTR_NUM_COLS number of columns ub2

OCI_ATTR_LIST_COLUMNS column list (type OCI_PTYPE_LIST) dvoid *

Table 6–3 Attributes Specific to Tables

Attribute Description Attribute Datatype

OCI_ATTR_RDBA data block address of the segment header ub4

OCI_ATTR_TABLESPACE tablespace the table resides in word

OCI_ATTR_CLUSTERED whether the table is clustered ub1

OCI_ATTR_PARTITIONED whether the table is partitioned ub1

OCI_ATTR_INDEX_ONLY whether the table is index only ub1

Table 6–4 Attribute Belonging to Procedures or Functions

Attribute Description Attribute Datatype

OCI_ATTR_LIST_ARGUMENTS argument list. See “List Attributes” on
page 6-19.

dvoid *
 Describing Schema Metadata 6-7

Using OCIDescribeAny()
The following attributes are defined only for package subprograms:

Package Attributes
When a parameter is for a package (type OCI_PTYPE_PKG), it has the following
type specific attributes:

Table 6–5 Attributes Specific to Package Subprograms

Attribute Description Attribute Datatype

OCI_ATTR_NAME name of the procedure or function text *

OCI_ATTR_OVERLOAD_ID overloading ID number (relevant in case the
procedure or function is part of a package and
is overloaded). Values returned may be
different from direct query of a PL/SQL
function or procedure.

ub2

Table 6–6 Attributes Belonging to Packages

Attribute Description Attribute Datatype

OCI_ATTR_LIST_SUBPROGRAMS subprogram list. See “List Attributes” on
page 6-19.

dvoid *
6-8 Oracle Call Interface Programmer’s Guide

Using OCIDescribeAny()
Type Attributes
When a parameter is for a type (type OCI_PTYPE_TYPE), it has the attributes listed
in Table 6–7. These attributes are only valid if the application initialized the OCI
process in OCI_OBJECT mode in a call to OCIInitialize().

Table 6–7 Attributes Belonging to Types

Attribute Description Attribute Datatype

OCI_ATTR_REF_TDO returns the in-memory REF of the type
descriptor object for the type, if the column type
is an object type. If space has not been reserved
for the OCIRef, then it is allocated implicitly in
the cache. The caller can then pin the TDO with
OCIObjectPin().

OCIRef *

OCI_ATTR_TYPECODE typecode. See “Note on Datatype Codes” on
page 6-4. Currently can be only
OCI_TYPECODE_OBJECT or
OCI_TYPECODE_NAMEDCOLLECTION.

OCITypeCode

OCI_ATTR_COLLECTION_TYPECODE typecode of collection if type is collection;
invalid otherwise. See “Note on Datatype
Codes” on page 6-4. Currently can be only
OCI_TYPECODE_VARRAY or
OCI_TYPECODE_TABLE. Error is returned if
this attribute is queried for non-collection type.

OCITypeCode

OCI_ATTR_VERSION a null terminated string containing the user-
assigned version

text *

OCI_ATTR_IS_INCOMPLETE_TYPE is this an incomplete type? ub1

OCI_ATTR_IS_SYSTEM_TYPE is this a system type? ub1

OCI_ATTR_IS_PREDEFINED_TYPE is this a predefined type? ub1

OCI_ATTR_IS_TRANSIENT_TYPE is this a transient type? ub1

OCI_ATTR_IS_SYSTEM_

GENERATED_TYPE

 is this a system-generated type? ub1

OCI_ATTR_HAS_NESTED_TABLE does this type contain a nested table attribute? ub1

OCI_ATTR_HAS_LOB does this type contain a LOB attribute? ub1

OCI_ATTR_HAS_FILE does this type contain a FILE attribute? ub1
 Describing Schema Metadata 6-9

Using OCIDescribeAny()
Type Attribute Attributes
When a parameter is for an attribute of a type (type OCI_PTYPE_TYPE_ATTR), it
has the attributes listed in Table 6–8.

OCI_ATTR_COLLECTION_ELEMENT handle to collection element. See “Collection
Attributes” on page 6-13.

dvoid *

OCI_ATTR_NUM_TYPE_ATTRS number of type attributes ub4

OCI_ATTR_LIST_TYPE_ATTRS list of type attributes. See “List Attributes” on
page 6-19.

dvoid *

OCI_ATTR_NUM_TYPE_METHODS number of type methods ub4

OCI_ATTR_LIST_TYPE_METHODS list of type methods. See “List Attributes” on
page 6-19.

dvoid *

OCI_ATTR_MAP_METHOD map method of type. See “Type Method
Attributes” on page 6-12.

dvoid *

OCI_ATTR_ORDER_METHOD order method of type. See “Type Method
Attributes” on page 6-12.

dvoid *

Table 6–8 Attributes Belonging to Type Attributes

Attribute Description Attribute Datatype

OCI_ATTR_DATA_SIZE the maximum size of the type attribute. This
length is returned in bytes and not characters for
strings and raws. It returns 22 for NUMBERs.

ub2

OCI_ATTR_TYPECODE typecode. See “Note on Datatype Codes” on
page 6-4.

OCITypeCode

OCI_ATTR_DATA_TYPE the data type of the type attribute. See “Note on
Datatype Codes” on page 6-4.

ub2

OCI_ATTR_NAME a pointer to a string which is the type attribute
name

text *

Table 6–7 Attributes Belonging to Types (Cont.)

Attribute Description Attribute Datatype
6-10 Oracle Call Interface Programmer’s Guide

Using OCIDescribeAny()
OCI_ATTR_PRECISION the precision of numeric type attributes. If a
describe returns a value of zero for precision or -
127 for scale, this indicates that the item being
described is uninitialized; i.e., it is NULL in the
data dictionary.

ub1

OCI_ATTR_SCALE the scale of numeric type attributes. If a describe
returns a value of zero for precision or -127 for
scale, this indicates that the item being described
is uninitialized; i.e., it is NULL in the data
dictionary.

sb1

OCI_ATTR_TYPE_NAME a string which is the type name. The returned
value will contain the type name if the data type
is SQLT_NTY or SQLT_REF. If the data type is
SQLT_NTY, the name of the named data type’s
type is returned. If the data type is SQLT_REF,
the type name of the named data type pointed to
by the REF is returned

text *

OCI_ATTR_SCHEMA_NAME a string with the schema name under which the
type has been created

text *

OCI_ATTR_REF_TDO returns the in-memory REF of the TDO for the
type, if the column type is an object type. If space
has not been reserved for the OCIRef, then it is
allocated implicitly in the cache. The caller can
then pin the TDO with OCIObjectPin().

OCIRef *

OCI_ATTR_CHARSET_ID the character set id, if the type attribute is of a
string/character type

ub2

OCI_ATTR_CHARSET_FORM the character set form, if the type attribute is of a
string/character type

ub1

Table 6–8 Attributes Belonging to Type Attributes (Cont.)

Attribute Description Attribute Datatype
 Describing Schema Metadata 6-11

Using OCIDescribeAny()
Type Method Attributes
When a parameter is for a method of a type (type OCI_PTYPE_TYPE_METHOD), it
has the attributes listed in Table 6–9.

As a reference, the following code shows the possible method flags which are used
when determining the corresponding procedure/function attributes:

OCITypeMethodFlag
{ OCI_TYPEMETHOD_INLINE = 0x0001, /* inline */
 OCI_TYPEMETHOD_CONSTANT = 0x0002, /* constant */
 OCI_TYPEMETHOD_VIRTUAL = 0x0004, /* virtual */
 OCI_TYPEMETHOD_CONSTRUCTOR = 0x0008, /* constructor */
 OCI_TYPEMETHOD_DESTRUCTOR = 0x0010, /* destructor */
 OCI_TYPEMETHOD_OPERATOR = 0x0020, /* operator */
 OCI_TYPEMETHOD_SELFISH = 0x0040, /* selfish method (generic otherwise) */

Table 6–9 Attributes Belonging to Type Methods

Attribute Description Attribute Datatype

OCI_ATTR_NAME name of method (procedure or function) text *

OCI_ATTR_ENCAPSULATION encapsulation level of the method (either
OCI_TYPEENCAP_PRIVATE or
OCI_TYPEENCAP_PUBLIC)

OCITypeEncap

OCI_ATTR_LIST_ARGUMENTS argument list. See “Note on
OCI_ATTR_LIST_ARGUMENTS” on page 6-5,
and “List Attributes” on page 6-19.

dvoid *

OCI_ATTR_IS_CONSTRUCTOR is method a constructor? ub1

OCI_ATTR_IS_DESTRUCTOR is method a destructor? ub1

OCI_ATTR_IS_OPERATOR is method an operator? ub1

OCI_ATTR_IS_SELFISH is method selfish? ub1

OCI_ATTR_IS_MAP is method a map method? ub1

OCI_ATTR_IS_ORDER is method an order method? ub1

OCI_ATTR_IS_RNDS is “Read No Data State” set for method? ub1

OCI_ATTR_IS_RNPS is “Read No Process State” set for method? ub1

OCI_ATTR_IS_WNDS is “Write No Data State” set for method? ub1

OCI_ATTR_IS_WNPS is “Write No Process State” set for method? ub1
6-12 Oracle Call Interface Programmer’s Guide

Using OCIDescribeAny()
 OCI_TYPEMETHOD_MAP = 0x0080, /* map (relative ordering) */
 OCI_TYPEMETHOD_ORDER = 0x0100, /* order (relative ordering) */
 /* OCI_TYPEMETHOD_MAP and OCI_TYPEMETHOD_ORDER are mutually exclusive */

 OCI_TYPEMETHOD_RNDS= 0x0200, /* Read no Data State (default) */
 OCI_TYPEMETHOD_WNDS= 0x0400, /* Write no Data State */
 OCI_TYPEMETHOD_RNPS= 0x0800, /* Read no Process State */
 OCI_TYPEMETHOD_WNPS= 0x1000 /* Write no Process State */ }

Collection Attributes
When a parameter is for a collection type (type OCI_PTYPE_COLL), it has the
attributes listed in Table 6–10.

Table 6–10 Attributes Belonging to Collection Types

Attribute Description Attribute Datatype

OCI_ATTR_DATA_SIZE the maximum size of the type attribute. This
length is returned in bytes and not characters for
strings and raws. It returns 22 for NUMBERs.

ub2

OCI_ATTR_TYPECODE typecode. See “Note on Datatype Codes” on
page 6-4.

OCITypeCode

OCI_ATTR_DATA_TYPE the data type of the type attribute. See “Note on
Datatype Codes” on page 6-4.

ub2

OCI_ATTR_NUM_ELEMENTS the number of elements in an array. It is only
valid for collections that are arrays

ub4

OCI_ATTR_NAME a pointer to a string which is the type attribute
name

text *

OCI_ATTR_PRECISION the precision of numeric type attributes. If a
describe returns a value of zero for precision or -
127 for scale, this indicates that the item being
described is uninitialized; i.e., it is NULL in the
data dictionary.

ub1

OCI_ATTR_SCALE the scale of numeric type attributes. If a describe
returns a value of zero for precision or -127 for
scale, this indicates that the item being described
is uninitialized; i.e., it is NULL in the data
dictionary.

sb1
 Describing Schema Metadata 6-13

Using OCIDescribeAny()
Synonym Attributes
When a parameter is for a synonym (type OCI_PTYPE_SYN), it has the attributes
listed in Table 6–11.

OCI_ATTR_TYPE_NAME a string which is the type name. The returned
value will contain the type name if the data type
is SQLT_NTY or SQLT_REF. If the data type is
SQLT_NTY, the name of the named data type’s
type is returned. If the data type is SQLT_REF,
the type name of the named data type pointed to
by the REF is returned

text *

OCI_ATTR_SCHEMA_NAME a string with the schema name under which the
type has been created

text *

OCI_ATTR_REF_TDO returns the in-memory REF of the TDO for the
type, if the column type is an object type. If space
has not been reserved for the OCIRef, then it is
allocated implicitly in the cache. The caller can
then pin the TDO with OCIObjectPin().

OCIRef *

OCI_ATTR_CHARSET_ID the character set id, if the type attribute is of a
string/character type

ub2

OCI_ATTR_CHARSET_FORM the character set form, if the type attribute is of a
string/character type

ub1

Table 6–11 Attributes Belonging to Synonyms

Attribute Description Attribute Datatype

OCI_ATTR_OBJID object id ub4

OCI_ATTR_SCHEMA a null-terminated string containing the schema
name of the synonym translation

text *

OCI_ATTR_NAME a null-terminated string containing the object name
of the synonym translation

text *

OCI_ATTR_LINK a null-terminated string containing the database
link name of the synonym translation

text *

Table 6–10 Attributes Belonging to Collection Types (Cont.)

Attribute Description Attribute Datatype
6-14 Oracle Call Interface Programmer’s Guide

Using OCIDescribeAny()
Sequence Attributes
When a parameter is for a sequence (type OCI_PTYPE_SEQ), it has the attributes
listed in Table 6–12.

Column Attributes
When a parameter is for a column of a table or view (type OCI_PTYPE_COL), it
has the attributes listed in Table 6–13.

Table 6–12 Attributes Belonging to Sequences

Attribute Description Attribute Datatype

OCI_ATTR_OBJID object id ub4

OCI_ATTR_MIN minimum value (in Oracle number format) ub1 *

OCI_ATTR_MAX maximum value (in Oracle number format) ub1 *

OCI_ATTR_INCR increment (in Oracle number format) ub1 *

OCI_ATTR_CACHE number of sequence numbers cached; zero if
the sequence is not a cached sequence (in
Oracle number format)

ub1 *

OCI_ATTR_ORDER whether the sequence is ordered ub1

OCI_ATTR_HW_MARK high-water mark (in Oracle number format) ub1 *

Table 6–13 Attributes Belonging to Columns of Tables or Views

Attribute Description Attribute Datatype

OCI_ATTR_DATA_SIZE the maximum size of the column. This length
is returned in bytes and not characters for
strings and raws. It returns 22 for NUMBERs.

ub2

OCI_ATTR_DATA_TYPE the data type of the column. See “Note on
Datatype Codes” on page 6-4.

ub2

OCI_ATTR_NAME a pointer to a string which is the column name text *
 Describing Schema Metadata 6-15

Using OCIDescribeAny()
OCI_ATTR_PRECISION the precision of numeric columns. If a describe
returns a value of zero for precision or -127 for
scale, this indicates that the item being
described is uninitialized; i.e., it is NULL in
the data dictionary.

ub1

OCI_ATTR_SCALE the scale of numeric columns. If a describe
returns a value of zero for precision or -127 for
scale, this indicates that the item being
described is uninitialized; i.e., it is NULL in
the data dictionary.

sb1

OCI_ATTR_IS_NULL returns 0 if null values are not permitted for
the column

ub1

OCI_ATTR_TYPE_NAME returns a string which is the type name. The
returned value will contain the type name if
the data type is SQLT_NTY or SQLT_REF. If
the data type is SQLT_NTY, the name of the
named data type’s type is returned. If the data
type is SQLT_REF, the type name of the named
data type pointed to by the REF is returned

text *

OCI_ATTR_SCHEMA_NAME returns a string with the schema name under
which the type has been created

text *

OCI_ATTR_REF_TDO the REF of the TDO for the type, if the column
type is an object type

OCIRef *

OCI_ATTR_CHARSET_ID the character set id, if the column is of a string/
character type

ub2

OCI_ATTR_CHARSET_FORM the character set form, if the column is of a
string/character type

ub1

Table 6–13 Attributes Belonging to Columns of Tables or Views (Cont.)

Attribute Description Attribute Datatype
6-16 Oracle Call Interface Programmer’s Guide

Using OCIDescribeAny()
Argument/Result Attributes
When a parameter is for an argument of a procedure/function (type
OCI_PTYPE_ARG), for a type method argument (type OCI_PTYPE_TYPE_ARG) or
for method results (type OCI_PTYPE_TYPE_RESULT), it has the attributes listed in
Table 6–14.

Table 6–14 Attributes Belonging to Arguments/Results

Attribute Description Attribute Datatype

OCI_ATTR_NAME returns a pointer to a string which is the
argument name

text *

OCI_ATTR_POSITION the position of the argument in the argument
list. Always returns zero.

ub2

OCI_ATTR_TYPECODE typecode. See “Note on Datatype Codes” on
page 6-4.

OCITypeCode

OCI_ATTR_DATA_TYPE the data type of the argument. See “Note on
Datatype Codes” on page 6-4.

ub2

OCI_ATTR_DATA_SIZE the size of the data type of the argument.
This length is returned in bytes and not
characters for strings and raws. It returns 22
for NUMBERs.

ub2

OCI_ATTR_PRECISION the precision of numeric arguments. If a
describe returns a value of zero for precision
or -127 for scale, this indicates that the item
being described is uninitialized; i.e., it is
NULL in the data dictionary.

ub1

OCI_ATTR_SCALE the scale of numeric arguments. If a describe
returns a value of zero for precision or -127
for scale, this indicates that the item being
described is uninitialized; i.e., it is NULL in
the data dictionary.

sb1

OCI_ATTR_LEVEL the data type levels. This attribute always
returns zero.

ub2

OCI_ATTR_HAS_DEFAULT indicates whether an argument has a default ub1

OCI_ATTR_LIST_ARGUMENTS the list of arguments at the next level (when
the argument is of a record or table type).

dvoid *
 Describing Schema Metadata 6-17

Using OCIDescribeAny()
OCI_ATTR_IOMODE indicates the argument mode:

0 is IN (OCI_TYPEPARAM_IN),

1 is OUT (OCI_TYPEPARAM_OUT),

2 is IN/OUT (OCI_TYPEPARAM_INOUT)

OCITypeParamMode

OCI_ATTR_RADIX returns a radix (if number type) ub1

OCI_ATTR_IS_NULL returns 0 if null values are not permitted for
the column

ub1

OCI_ATTR_TYPE_NAME returns a string which is the type name, or
the package name in the case of package
local types. The returned value will contain
the type name if the data type is SQLT_NTY
or SQLT_REF. If the data type is SQLT_NTY,
the name of the named data type’s type is
returned. If the data type is SQLT_REF, the
type name of the named data type pointed to
by the REF is returned.

text *

OCI_ATTR_SCHEMA_NAME for SQLT_NTY or SQLT_REF, returns a string
with the schema name under which the type
was created, or under which the package
was created in the case of package local types

text *

OCI_ATTR_SUB_NAME for SQLT_NTY or SQLT_REF, returns a string
with the type name, in the case of package
local types

text *

OCI_ATTR_LINK for SQLT_NTY or SQLT_REF, returns a string
with the database link name of the database
on which the type exists. This can happen
only in the case of package local types, when
the package is remote.

text *

OCI_ATTR_REF_TDO returns the REF of the TDO for the type, if
the argument type is an object

OCIRef *

OCI_ATTR_CHARSET_ID returns the character set ID if the argument is
of a string/character type

ub2

OCI_ATTR_CHARSET_FORM returns the character set form if the
argument is

of a string/character type

ub1

Table 6–14 Attributes Belonging to Arguments/Results (Cont.)

Attribute Description Attribute Datatype
6-18 Oracle Call Interface Programmer’s Guide

Using OCIDescribeAny()
List Attributes
When a parameter is for a list of columns, arguments, or subprograms (type
OCI_PTYPE_LIST), it has the following type specific attributes and handles
(parameters):

■ The list has an OCI_ATTR_LIST_TYPE attribute which designates the list type.
The possible values are:

– OCI_LTYPE_COL - column list

– OCI_LTYPE_ARG_PROC - procedure argument list

– OCI_LTYPE_ARG_FUNC - function argument list

– OCI_LTYPE_SUBPRG - subprogram list

– OCI_LTYPE_TYPE_ATTR - type attribute list

– OCI_LTYPE_TYPE_METHOD - type method list

– OCI_LTYPE_TYPE_ARG_PROC - type method without result argument list

– OCI_LTYPE_TYPE_ARG_FUNC - type method without result argument list

■ The list has an OCI_ATTR_NUM_PARAMS attribute, which tells the number of
elements in the list.

■ The list has 1..OCI_ATTR_NUM_PARAMS parameters for each of the columns,
arguments, or subprograms in the list (type OCI_PTYPE_COL,
OCI_PTYPE_ARG, OCI_PTYPE_PROC, or OCI_PTYPE_FUNC). In the case of
a function argument list, position 0 has a parameter for the return value (type
OCI_PTYPE_ARG).
 Describing Schema Metadata 6-19

Examples
Examples
The following examples demonstrate the use of OCIDescribeAny() for describing
different types of schema objects. For a more detailed code sample, refer to
“Example 4, Describing an Object” on page D-55.

Retrieving column data types for a table
This example illustrates the use of an explicit describe. Let us take an example
application, which needs to retrieve the column datatypes for a table. The
following pseudo-code shows how an application would be able to use the
describe interface:

text objptr[] = <table-name>;
ub4 objp_len = strlen(<table_name>);
OCIParam *parmh; /* parameter handle */
OCIParam *collsthd; /* handle to list of columns */
OCIParam *colhd; /* column handle */

/* get the describe handle for the table */
if (OCIDescribeAny(svch, errh, objptr, objp_len, OCI_OTYPE_NAME, 0,

OCI_PTYPE_TABLE, &dschp))
return error;

/* get the parameter handle */
if (OCIAttrGet(dschp, OCI_HTYPE_DESCRIBE, &parmh, 0, OCI_ATTR_PARAM,

errh))
return error;

/* The type information of the object, in this case, OCI_PTYPE_TABLE,
is obtained from the parameter descriptor returned by the OCIAttrGet */
/* get the number of columns in the table */
if (OCIAttrGet(parmh, OCI_DTYPE_PARAM, &numcols, 0,

OCI_ATTR_NUM_COLS, errh))
return error;

/* get the handle to the column list of the table */
if (OCIAttrGet(parmh, OCI_DTYPE_PARAM, &collsthd, 0,

OCI_ATTR_LIST_COLUMNS, errh)==OCI_NO_DATA)
return error;

/* go through the column list and retrieve the data-type of each column,
and then recursively describe column types. */

for (i = 1; i <= numcols; i++)
{

/* get parameter for column i */
if (OCIParamGet(collsthd, OCI_DTYPE_PARAM, errh, &colhd, i))

return error;
6-20 Oracle Call Interface Programmer’s Guide

Examples
/* for example, get data type for ith column */
if (OCIAttrGet(colhd, OCI_DTYPE_PARAM, &datatype[i-1], 0,

OCI_ATTR_DATA_TYPE, errh))
return error;

}

Describing the stored procedure
Let us consider a stored procedure or a function.The difference between a
procedure and a function is that the latter has a return type at position 0 in the
argument list, while the former has no argument associated with position 0 in the
argument list. The steps required to describe type methods (also divided into
functions and procedures) are identical to that of regular PL/SQL functions and
procedures. Note that procedures/functions can take default types of objects as
arguments. Let us consider the following procedure:

P1 (arg1 emp.sal%type, arg2 emp%rowtype)

Furthermore, let us assume that each row in emp table has two columns name
(VARCHAR2(20)), and sal (NUMBER). Thus, in the argument list for P1, we have
two arguments, arg1 and arg2 , at positions 1 and 2 respectively at level 0, and
arguments name and sal at positions 1and 2 respectively at level 1. Description of
P1 returns the number of arguments as two while returning the higher level (> 0)
arguments as attributes of the 0 zero level arguments.

The following pseudocode elucidates the description of P1.

text objptr[] = “P1”; /* procedure name */
ub4 objp_len = strlen(“P1”);
OCIParam *parmh; /* parameter handle */
OCIParam *arglst; /* list of args */
OCIParam *arg; /* argument handle */
ub2 numargs, pos, level;
text *name;
ub4 namelen;

/* get the describe handle for the table */
if (OCIDescribeAny(svch, errh, objptr, objp_len, OCI_OTYPE_NAME, 0,

OCI_PTYPE_PROC, &dschp))
return error;

/* get the parameter handle */
if (OCIAttrGet(dschp, OCI_HTYPE_DESCRIBE, &parmh, 0, OCI_ATTR_PARAM,

errh))
return error;
 Describing Schema Metadata 6-21

Examples
/* Get the number of arguments and the arg list */
if (OCIAttrGet (parmh, OCI_DTYPE_PARAM, &arglst,
0, OCI_ATTR_LIST_ARGUMENTS, errh))

return error;
if (OCIAttrGet (parmh, OCI_DTYPE_PARAM, &numargs, 0,

OCI_ATTR_NUM_PARAMS, errh))
return error;

/* For a procedure, we begin with i = 1; for a
function, we begin with i = 0. */

for (i = 1; i < numargs; i++) {
OCIParamGet (arglst, OCI_DTYPE_PARAM, errh, &arg, i);
OCIAttrGet (arg, OCI_DTYPE_PARAM, &name, &namelen, OCI_ATTR_NAME,

errh);
...
/* to print the attributes of the argument of type record
(arguments at the next level), traverse the argument list */

OCIAttrGet (arg, OCI_DTYPE_PARAM, &arglst1, 0,
OCI_ATTR_LIST_ARGUMENTS, erh);

/* check if the current argument is a record. For arg1 in P1
arglst1 is NULL. */

if (arglst1) {
OCIAttrGet (arg, OCI_DTYPE_PARAM, &numargs1,0, OCI_ATTR_NUM_PARAMS,

errh);

/* Note that for both functions and procedures,the next higher level
arguments start from index 1. For arg2 in P1, the number of arguments at
the level 1 would be 2 */

for (i = 1; i < numargs1, i++) {
OCIParamGet (arglst1, OCI_DTYPE_PARAM, errh, &arg1, i);
OCIAttrGet (arg1, OCI_DTYPE_PARAM, &name1, &namelen1,

OCI_ATTR_NAME, errh);
...
}

}
}

6-22 Oracle Call Interface Programmer’s Guide

Examples
Retrieving attributes of an object type
This example illustrates the use of an explicit describe on a named object type. We
illustrate how you can describe an object by its name or by its object reference
(OCIRef). The following pseudo-code attempts to retrieve the data type value each
of the object type’s attribute. It is very similar to the first example on page 6 - 20.

text type_name[] = <type_name>;
ub4 type_name_len = strlen(<type_name>);
OCIRef *type_ref = <type_ref>;
un4 numattrs;
OCIDescribe *dschp; /* describe handle */
OCIParam *parmh; /* parameter handle */
OCIParam *attrlsthd; /* handle to list of attrs */
OCIParam *attrhd; /* attribute handle */

/* allocate describe handle */
if (OCIHandleAlloc((dvoid *)envh, (dvoid **)&dschp,
 (ub4)OCI_HTYPE_DESCRIBE, (size_t)0, (dvoid **)0))

return error;

/* get the describe handle for the type */
if (describe_by_name)

if (OCIDescribeAny(svch, errh, (dvoid*)type_name, type_name_len,
OCI_OTYPE_NAME, 0, OCI_PTYPE_TYPE, dschp))
return error;

else
if (OCIDescribeAny(svch, errh, (dvoid*)type_ref, 0, OCI_OTYPE_REF,

0, OCI_PTYPE_TYPE, dschp))
return error;

/* get the parameter handle */
if (OCIAttrGet(dschp, OCI_HTYPE_DESCRIBE, &parmh, 0, OCI_ATTR_PARAM,

errh))
return error;

/* The type information of the object, in this case, OCI_PTYPE_TYPE, is
obtained from the parameter descriptor returned by the OCIAttrGet */

/* get the number of attributes in the type */
if (OCIAttrGet(parmh, OCI_DTYPE_PARAM, &numattrs, 0,

OCI_ATTR_NUM_TYPE_ATTRS, errh))
return error;

/* get the handle to the attribute list of the type */
 Describing Schema Metadata 6-23

Examples
if (OCIAttrGet(parmh, OCI_DTYPE_PARAM, (dvoid *)&attrlsthd, 0,
OCI_ATTR_LIST_TYPE_ATTRS, errh)==OCI_NO_DATA)

return error;

/* go through the attribute list and retrieve the data-type of each attribute,
and then recursively describe attribute types. */

for (i = 1; i <= numattrs; i++)
{
/* get parameter for attribute i */
if (OCIParamGet(attrlsthd, OCI_DTYPE_PARAM, errh, &attrhd, i))

return error;

/* for example, get data type and typecode for attribute; note that
OCI_ATTR_DATA_TYPE returns the SQLT code, while OCI_ATTR_TYPECODE returns the
Oracle Type System typecode. */
if (OCIAttrGet(attrhd, OCI_DTYPE_PARAM,&datatype[i-1], 0,

OCI_ATTR_DATA_TYPE,errh))
return error;

/* for example, get data type for attribute*/
if (OCIAttrGet(attrhd, OCI_DTYPE_PARAM,&typecode[i-1], 0,

OCI_ATTR_TYPECODE, errh))
return error;

/* if attribute is an object type, recursively describe it */
if (typecode[i-1] == OCI_TYPECODE_OBJECT)
{
OCIRef *attr_type_ref;
OCIDescribe *nested_dschp;

/* allocate describe handle */
if (OCIHandleAlloc((dvoid *)envh,(dvoid**)&dschp,
(ub4)OCI_HTYPE_DESCRIBE,(size_t)0, (dvoid **)0))
return error;

if (OCIAttrGet(attrhd, OCI_DTYPE_PARAM,
&attr_type_ref, 0, OCI_ATTR_REF_TDO,errh))

return error;
OCIDescribeAny(svch, errh,(dvoid*)attr_type_ref, 0,

OCI_OTYPE_REF, 0, OCI_PTYPE_TYPE, nested_dschp);
/* go on describing the type... */

}
}

6-24 Oracle Call Interface Programmer’s Guide

Examples
Retrieving the collection element’s data type of a named collection type
This example illustrates the use of an explicit describe on a named collection type.
We illustrate how you can describe an object by its name or by its object reference
(OCIRef). The following pseudo-code attempts to retrieve the data type value each
of the object type’s attribute. It is very similar to the first example on page 6 - 20.

text type_name[] = <type_name>;
ub4 type_name_len = strlen(<type_name>);
OCIRef *type_ref = <type_ref>;
un4 numattrs;
OCIDescribe *dschp; /* describe handle */
OCIParam *parmh; /* parameter handle */
OCIParam *attrlsthd; /* handle to list of attrs */
OCIParam *attrhd; /* attribute handle */

/* allocate describe handle */
if (OCIHandleAlloc((dvoid *)envh, (dvoid **)&dschp,
 (ub4)OCI_HTYPE_DESCRIBE, (size_t)0, (dvoid **)0))

return error;

/* get the describe handle for the type */
if (describe_by_name)

if (OCIDescribeAny(svch, errh, (dvoid*)type_name, type_name_len,
OCI_OTYPE_NAME, 0, OCI_PTYPE_TYPE, dschp))
return error;

else
if (OCIDescribeAny(svch, errh, (dvoid*)type_ref, 0, OCI_OTYPE_REF, 0,

OCI_PTYPE_TYPE, &dschp))
return error;

/* get the parameter handle */
if (OCIAttrGet(dschp, OCI_HTYPE_DESCRIBE, &parmh, 0, OCI_ATTR_PARAM,

errh))
return error;

/* get the Oracle Type System type code of the type to determine that this is a
collection type */
if (OCIAttrGet(attrhd, OCI_DTYPE_PARAM,&typecode, 0, OCI_ATTR_TYPECODE,

errh))
return error;

/* if typecode is OCI_TYPECODE_NAMEDCOLLECTION,
proceed to describe collection element */

if (typecode == OCI_TYPECODE_NAMEDCOLLECTION)
 Describing Schema Metadata 6-25

Examples
{
/* get the collection’s type: ie, OCI_TYPECODE_VARRAY or OCI_TYPECODE_TABLE */

if (OCIAttrGet(parmh, OCI_DTYPE_PARAM, (dvoid *)&collection_typecode, 0,
OCI_ATTR_COLLECTION_TYPECODE, errh))

return error;

/* get the collection element; you MUST use this to further retrieve
information about the collection’s element */
if (OCIAttrGet(parmh, OCI_DTYPE_PARAM, &collection_element_parmh, 0,
OCI_ATTR_COLLECTION_ELEMENT, errh))

return error;

/* get the number of elements if collection is a VARRAY; not valid for nested
tables */
if (collection_typecode == OCI_TYPECODE_VARRAY)

if OCIAttrGet(collection_element_parmh, OCI_DTYPE_PARAM,
(dvoid *)&num_elements, 0, OCI_ATTR_NUM_ELEMENTS, errh))
return error;

/* now use the collection_element parameter handle to retrieve information
about the collection element */
if OCIAttrGet(collection_element_parmh, OCI_DTYPE_PARAM,

(dvoid *)&element_typecode, 0, OCI_ATTR_TYPECODE, errh))
return error;

/* do the same to describe additional collection element information; this is
very similar to describing type attributes */
}

6-26 Oracle Call Interface Programmer’s Guide

 OCI Programming Advanced T
7

OCI Programming Advanced Topics

The following topics are covered in this chapter:

■ Overview

■ Transactions

■ User Authentication and Password Management

■ Thread Safety

■ Run Time Data Allocation and Piecewise Operations

■ LOB and FILE Operations

■ OCI Callbacks From External Procedures

■ Application Failover Callbacks

■ OCI and Advanced Queueing

■ Writing Oracle Security Services Applications

Note: for information on using the OCI to manipulate objects in an Oracle8
server, see Chapter 8, “OCI Object-Relational Programming”.
opics 7-1

Overview
Overview
Chapter 2 introduced the basic concepts of OCI programming. This chapter is
designed to introduce more advanced concepts, including the following:

Transactions Chapter 2 described how a simple transaction can be committed or
rolled back. This section talks about different levels of transaction complexity,
including global transactions, and the operations that are possible through OCI
calls.

User Authentication and Password Management Chapter 2 talked about the
OCISessionBegin() call as part of OCI initialization. This section describes additional
options available with OCISessionBegin(). It also describes user authentication and
password management using the OCIPasswordChange() call.

Thread Safety This section describes OCI support for thread safety and
multithreaded application development.

Run Time Data Allocation and Piecewise Operations Inserting, updating, and fetching
data in a piecewise fashion is described in this section.

LOB and FILE Operations This section describes OCI functions available for operating
on LOBs and FILEs.

OCI Callbacks From External Procedures This section contains a pointer to information
about writing external subroutines.

Application Failover Callbacks This section discusses how to write and use application
failover callback functions.

OCI and Advanced Queueing This section covers the OCI functions related to
Oracle8’s Advanced Queueing feature.

Writing Oracle Security Services Applications This section contains a pointer to
information on writing Oracle Security Services Applications.
7-2 Oracle Call Interface Programmer’s Guide

Transactions
Transactions
Release 8.0 of the Oracle Call Interface provides a set of API calls to support
operations on both local and global transactions. These calls include object support,
so that if an OCI application is running in object mode, the commit and rollback
calls will synchronize the object cache with the state of the transaction.

The functions listed below perform transaction operations. Each call takes a service
context handle that should be initialized with the proper server context and user
session handle. The transaction handle is the third element of the service context; it
stores specific information related to a transaction. When a SQL statement is
prepared, it is associated with a particular service context. When the statement is
executed, its effects (query, fetch, insert) become part of the transaction that is
currently associated with the service context.

■ OCITransStart() - marks the start of a transaction

■ OCITransDetach() - detaches a transaction

■ OCITransCommit() - commits a transaction

■ OCITransRollback() - rolls back a transaction

■ OCITransPrepare() - prepares a transaction to be committed in a distributed
processing environment

■ OCITransForget() - causes the server to forget a heuristically completed global
transaction.

Depending on the level of transactional complexity in your application, you may
need all or only a few of these calls. The following section discusses this in more
detail.

See Also: For more specific information about these calls, refer to the function
descriptions in Chapter 10.

Levels of Transactional Complexity
The OCI supports three levels of transaction complexity. Each level is described in
one of the following sections.

1. Simple Local Transactions

2. Serializable or Read-Only Local Transactions

3. Global Transactions
 OCI Programming Advanced Topics 7-3

Transactions
Simple Local Transactions
Many applications work with only simple local transactions. In these applications,
an implicit transaction is created when the application makes database changes.
The only transaction-specific calls needed by such applications are:

■ OCITransCommit() - to commit the transaction

■ OCITransRollback() - to roll back the transaction

As soon as one transaction has been committed or rolled back, the next
modification to the database creates a new implicit transaction for the application.

Only one implicit transaction can be active at any time on a service context.
Attributes of the implicit transaction are opaque to the user.

If an application creates multiple authorizations, each one can have an implicit
transaction associated with it.

For sample code showing the use of simple local transactions, refer to the example
on page 13-150.

Serializable or Read-Only Local Transactions
Applications requiring serializable or read-only transactions require an additional
OCI call beyond those needed by applications operating on simple local
transactions. To initiate a serializable or read-only transactions, the application
must create the transaction by calling OCITransStart() to start the transaction.

The call to OCITransStart() should specify OCI_TRANS_SERIALIZABLE or
OCI_TRANS_READONLY, as appropriate, for the flags parameter. If no flag is
specified, the default value is OCI_TRANS_READWRITE for a standard read-write
transaction.

Specifying the read-only option in the OCITransStart() call saves the application
from performing a server round-trip to execute a SET TRANSACTION READ
ONLY statement.

Global Transactions
Global transactions are necessary only in more sophisticated transaction-processing
applications.

Note: Users not operating in distributed or global transaction environments
may skip this section.

This section provides some background about global transactions, and then gives
specific information about using OCI calls to process global transactions.
7-4 Oracle Call Interface Programmer’s Guide

Transactions
Transaction Identifiers Three-tiered applications such as transaction processing (TP)
monitors create and manage global transactions. They supply a global transaction
identifier (XID), which a server then associates with a local transaction.

A global transaction has one or more branches. Each branch is identified by an XID.
The XID consists of a global transaction identifier (gtrid) and a branch qualifier (bqual).
This structure is based on the standard XA specification.

For example, the following is the structure for one possible XID of 1234:

See Also: For more information about transaction identifiers, refer to the
Oracle8 Distributed Database Systems manual.

The transaction identifier used by OCI transaction calls is set in the
OCI_ATTR_XID attribute of the transaction handle, using OCIAttrSet(). Alternately,
the transaction can be identified by a name set in the OCI_ATTR_TRANS_NAME
attribute.

Transaction Branches Within a single global transaction, Oracle8 supports both
tightly coupled and loosely coupled relationships between a pair of branches.

■ Tightly coupled branches are different branches that share the same local
transaction. In this case, the gtrid references a unique local transaction, and
multiple branches point to that same transaction. The owner of the transaction
is the branch that was created first.

■ Loosely coupled branches are different branches that use different local
transactions. In this case the gtrid and bqual together map to a unique local
transaction. Each branch points to a different transaction.

The flags parameter of OCITransStart() allows applications to pass
OCI_TRANS_TIGHT or OCI_TRANS_LOOSE to specify the type of coupling.

In the Oracle8 OCI, a session corresponds to a user session, created with
OCISessionBegin().

The following figure illustrates tightly coupled branches within an application. In
the figure, S1 and S2, are sessions, B1 and B2 are branches, and T is a transaction. In
this first example, the XIDs of the two branches would share the same gtrid,

Component Value

gtrid 12

bqual 34

gtrid+bqual=XID 1234
 OCI Programming Advanced Topics 7-5

Transactions
because they are operating on the same transaction, but they would have a
different bqual, because they are separate branches

Figure 7–1 Multiple Tightly Coupled Branches

It is also possible for a single session to operate on different branches. In this case,
illustrated in the next figure, gtrid component of the XIDs would be different,
because they are separate global transactions

Figure 7–2 Session Operating on Multiple Branches

For sample code demonstrating this scenario, refer to the example on page 13-158.

It is possible for a single session to operate on multiple branches that share the
same transaction, but this scenario does not have much practical value. Sample
code demonstrating this scenario can be found in the example on page 13-161.

Session

Branch

Transact ion
T

B1

S1

B2

S2

Session

Branch

Transact ion

T1 T2

B1

S1

B2
7-6 Oracle Call Interface Programmer’s Guide

Transactions
The following figure illustrates loosely coupled branches:

Figure 7–3 Loosely Coupled Branches

Branch States Transaction branches are classified into two states: active branches and
inactive branches.

A branch is active if a server process is executing requests on the branch. A branch
is inactive if no server processes are executing requests in the branch. In this case
no session is the parent of the branch, and the branch becomes owned by the
PMON process in the server.

Detaching and Resuming Branches A branch becomes inactive when an OCI
application detaches it, using the OCITransDetach() call. The branch can be made
active again by resuming it with a call to OCITransStart() with the flags parameter
set to OCI_TRANS_RESUME.

When an application detaches a branch with OCITransDetach(), it utilizes the value
specified in the timeout parameter of the OCITransStart() call that created the
branch. The timeout specifies the number of seconds the transaction can remain
dormant as a child of PMON before being deleted.

When an application wants to resume a branch, it calls OCITransStart(), specifying
the XID of the branch as an attribute of the transaction handle,
OCI_TRANS_RESUME for the flags parameter, and a different timeout parameter.
This timeout value for this call specifies the length of time that the session will wait
for the branch to become available if it is currently in use by another process. If no
other processes are accessing the branch, it can be resumed immediately.

Session

Branch

Transaction
T1 T2

B2B1

S2S1
 OCI Programming Advanced Topics 7-7

Transactions
Note: A transaction can be resumed by a different process than the one that
detached it, as long as that process has the same authorization as the one that
detached the transaction.

Setting Client Database Name The server handle has OCI_ATTR_EXTERNAL_NAME
and OCI_ATTR_INTERNAL_NAME attributes associated with it. These attributes
set the client database name that will be recorded when performing global
transactions. The name can be used by the DBA to track transactions that may be
pending in a prepared state due to failures.

Warning: An OCI application should set these attributes, using OCIAttrSet(),
before logging on and using global transactions.

One-Phase Versus Two-Phase Commit Global transactions may be committed in one or
two phases. The simplest situation is when a single transaction is operating against
a single database. In this case, the application can perform a one-phase commit of
the transaction, by calling OCITransCommit(), because the default value of the call is
for one-phase commit.

The situation is more complicated if the application is processing transactions
against multiple databases or multiple Oracle servers. In this case, a two-phase
commit is necessary. A two-phase commit consists of these steps:

1. Prepare - The application issues a prepare call, OCITransPrepare() against each
transaction. The transaction returns a value indicating whether it is able to com-
mit its current work (OCI_SUCCESS) or not (OCI_ERROR).

2. Commit - If each prepare call returns a value of OCI_SUCCESS, the application
can issue a commit call, OCITransCommit() to each transaction. The flags param-
eter of the commit call must be explicitly set to OCI_TRANS_TWOPHASE for
the appropriate behavior. The default for this call is for a one-phase commit.

Note: The prepare call can also return OCI_SUCCESS_WITH_INFO if a
transaction needs to indicate that it is read-only, so that a commit is neither
appropriate nor necessary.

An additional call, OCITransForget() indicates that a database should forget a
heuristically completed transaction. This call is for situations in which a problem
has occurred that requires that a two-phase commit be aborted. When a server
receives a OCITransForget() call, it “forgets” all information about the transaction.

See Also: For more information about two-phase commit, refer to the Oracle8
Distributed Database Systems manual.
7-8 Oracle Call Interface Programmer’s Guide

Transactions
Transaction Examples
This section provides examples of how to use the transaction OCI calls. The
following tables provide series of OCI calls and other actions, along with their
resulting behavior. For the sake of simplicity, not all parameters to these calls are
listed; rather, the flow of calls which is being demonstrated.

The “OCI Action” column indicates what the OCI application is doing, or what call
it is making. The “XID” column lists the transaction identifier, when necessary. The
“Flags” column lists the value(s) passed in the flags parameter. The “Result”
column describes the result of the call.

Update Successfully, One-Phase Commit

Start a Transaction, Detach, Resume, Prepare, Two-Phase Commit

Step OCI Action XID Flags Result

1 OCITransStart 1234 OCI_TRANS_NEW Starts new read-write transaction

2 SQL UPDATE Update rows

3 OCITransCommit Commit succeeds

Step OCI Action XID Flags Result

1 OCITransStart 1234 OCI_TRANS_NEW Starts new read-only transaction

2 SQL UPDATE Update rows

3 OCITransDetach Transaction is detached

4 OCITransStart 1234 OCI_TRANS_RESUME Transaction is resumed

5 SQL UPDATE

6 OCITransPrepare Transaction prepared for two-phase
commit

7 OCITransCommit OCI_TRANS_TWOPHASE Transaction is committed.

Note: In step 4, above, the transaction could have been resumed by a different process, as long as it had the
same authorization.
 OCI Programming Advanced Topics 7-9

Transactions
Read-Only Update Fails

Start a Read-Only Transaction, Select and Commit

Related Initialization Parameters
Two initialization parameters relate to the use of global transaction branches
and migratable open connections:

■ TRANSACTIONS - This parameter specifies the maximum number of global
transaction branches in the entire system. In contrast,
MAX_TRANSACTION_BRANCHES specifies the number of branches on a
single global transaction.

■ OPEN_LINKS_PER_INSTANCE - This parameter specifies the maximum
number of migratable open connections. Migratable open connections are used
by global transactions so that connections are cached after a transaction is
committed. This is different from the OPEN_LINKS parameter, which is the
number of connections from a section (and is not applicable to applications that
use global transactions).

Step OCI Action XID Flags Result

1 OCITransStart 1234 OCI_TRANS_NEW |

OCI_TRANS_READONLY

Starts new read-only transaction

2 SQL UPDATE Update fails, because transaction is
read-only

3 OCITransCommit Commit has no effect

Step OCI Action XID Flags Result

1 OCITransStart 1234 OCI_TRANS_NEW |

OCI_TRANS_READONLY

Starts new read-only transaction

2 SQL SELECT Query database

3 OCITransCommit No effect — transaction is read-only,
no changes made
7-10 Oracle Call Interface Programmer’s Guide

User Authentication and Password Management
User Authentication and Password Management
Beginning with release 8.0, the OCI provides the ability to authenticate and
maintain multiple users in an OCI application. There is also a new OCI call which
allows the application to update a user’s password. This is particularly helpful if an
expired password message is returned by an authentication attempt.

Authentication
The OCISessionBegin() call is used to authenticate a user against the server set in the
service context handle.

For Oracle8, OCISessionBegin() must be called for any given server handle before
requests can be made against it. Also, OCISessionBegin() only supports
authenticating the user for access to the Oracle server specified by the server
handle in the service context. In other words, after OCIServerAttach() is called to
initialize a server handle, OCISessionBegin() must be called to authenticate the user
for that given server.

When OCISessionBegin() is called for the first time for a given server handle, the
user session may not be created in migratable (OCI_MIGRATE) mode.

After OCISessionBegin() has been called for a server handle, the application may call
OCISessionBegin() again to initialize another user session handle with different (or
the same) credentials and different (or the same) operation modes. If an application
wants to authenticate a user in OCI_MIGRATE mode, the service handle must
already be associated with a non-migratable user handle. The user ID of that user
handle becomes the ownership ID of the migratable user session. Every migratable
session must have a non-migratable parent session.

If the OCI_MIGRATE mode is not specified, then the user session context can only
ever be used with the same server handle set in svchp . If OCI_MIGRATE mode is
specified, then the user authentication may be set with different server handles.
However, the user session context may only be used with server handles which
resolve to the same database instance. Security checking is done during session
switching. A process or circuit is allowed to switch to a migratable session only if
the ownership ID of the session matches the user ID of a non-migratable session
currently connected to that same process or circuit, unless it is the creator of the
session.

OCI_SYSDBA, OCI_SYSOPER, and OCI_PRELIM_AUTH may only be used with a
primary user session context.

To provide credentials for a call to OCISessionBegin(), one of two methods are
supported. The first is to provide a valid username and password pair for database
 OCI Programming Advanced Topics 7-11

User Authentication and Password Management
authentication in the user session handle passed to OCISessionBegin(). This involves
using OCIAttrSet() to set the OCI_ATTR_USERNAME and
OCI_ATTR_PASSWORD attributes on the user session handle. Then
OCISessionBegin() is called with OCI_CRED_RDBMS.

Note: When the user session handle is terminated using OCISessionEnd(), the
username and password attributes remain unchanged and thus can be re-used
in a future call to OCISessionBegin(). Otherwise, they must be reset to new
values before the next OCISessionBegin() call.

The second type of credentials supported are external credentials. No attributes
need to be set on the user session handle before calling OCISessionBegin(). The
credential type is OCI_CRED_EXT. This is equivalent to the Oracle7 ‘connect /’
syntax. If values have been set for OCI_ATTR_USERNAME and
OCI_ATTR_PASSWORD, then these are ignored if OCI_CRED_EXT is used.

Password Management
The release 8.0 OCI provides the OCIPasswordChange() to allow an OCI application
to modify a user’s database password as necessary. This is particularly useful if a
call to OCISessionBegin() returns an error message or warning indicating that a
user’s password has expired.

Applications can also use OCIPasswordChange() to establish a user authentication
context, as well as to change password, if appropriate flags are set. If
OCIPasswordChange() is called with an uninitialized service context, it establishes a
service context and authenticates the user’s account using the old password, and
then changes the password to the new password. If the OCI_AUTH flag is set, it
leaves the user session initialized. Otherwise, the user session is cleared.

If the service context passed to OCIPasswordChange() is already initialized, then
OCIPasswordChange() authenticates the given account using the old password and
changes the password to the new password. In this case, no matter how the flag is
set, the user session remains initialized.
7-12 Oracle Call Interface Programmer’s Guide

Thread Safety
Thread Safety
The thread safety feature of the Oracle8 server and OCI libraries allows developers
to use the OCI in a multithreaded environment. With thread safety, OCI code can
be reentrant, with multiple threads of a user program making OCI calls without
side effects from one thread to another.

Note: Thread safety is not available on every platform. Check your Oracle
system-specific documentation for more information.

The following sections describe how you can use the OCI to develop multithreaded
applications.

Advantages of OCI Thread Safety
The implementation of thread safety in the Oracle Call Interface provides the
following benefits and advantages:

■ Multiple threads of execution can make OCI calls with the same result as
successive calls made by a single thread.

■ When multiple threads make OCI calls, there are no side effects between
threads.

■ Users who do not write multithreaded programs do not pay a performance
penalty for using thread-safe OCI calls.

■ Use of multiple threads can improve program performance. Gains may be seen
on multiprocessor systems where threads run concurrently on separate
processors, and on single processor systems where overlap can occur between
slower operations and faster operations.

Thread Safety and Three-Tier Architectures
In addition to client-server applications, where the client can be a multithreaded
program, a typical use of multithreaded applications is in three-tier (also called
client-agent-server) architectures. In this architecture the client is concerned only
with presentation services. The agent (or application server) processes the
application logic for the client application. Typically, this relationship is a many-to-
one relationship, with multiple clients sharing the same application server.

The server tier in this scenario is an Oracle database. The applications server
(agent) is very well suited to being a multithreaded application server, with each
thread serving a client application. In an Oracle environment this application
server is an OCI or precompiler program.
 OCI Programming Advanced Topics 7-13

Thread Safety
Basic Concepts of Multi-threaded Development
Threads are lightweight processes that exist within a larger process. Threads share
the same code and data segments but have their own program counters, machine
registers, and stack. Global and static variables are common to all threads, and a
mutual exclusivity mechanism may be required to manage access to these variables
from multiple threads within an application.

Once spawned, threads run asynchronously to one another. They can access
common data elements and make OCI calls in any order. Because of this shared
access to data elements, a mechanism is required to maintain the integrity of data
being accessed by multiple threads.

The mechanism to manage data access takes the form of mutexes (mutual
exclusivity locks), which ensure that no conflicts arise between multiple threads
that are accessing shared resources within an application. In the Oracle8 OCI,
mutexes are granted on a per-environment-handle basis.

Implementing Thread Safety with OCI 8.0
In order to take advantage of thread safety in the Oracle8 OCI, an application must
be running on a thread-safe platform. Then the application must tell the OCI layer
that the application is running in multithreaded mode, by specifying
OCI_THREADED for the mode parameter of the opening call to OCIInitialize(),
which must be the first OCI function called in the application.

Note: Applications running on non-thread-safe platforms should not pass a
value of OCI_THREADED to OCIInitialize().

If an application is single-threaded, whether or not the platform is thread safe, the
application should pass a value of OCI_DEFAULT to OCIInitialize(). Single-
threaded applications which run in OCI_THREADED mode may incur
performance hits.

If a multi-threaded application is running on a thread-safe platform, the OCI
library will manage mutexing for the application on a per-environment-handle
basis. If the application programmer desires, this application can override this
feature and maintain its own mutexing scheme. This is done by specifying a value
of OCI_NO_MUTEX to the OCIEnvInit() call.

The following three scenarios are possible, depending on how many connections
exist per environment handle, and how many threads will be spawned per
connection.

1. If an application has multiple environment handles, but each only has one
thread (one session exists per environment handle), no mutexing is required.
7-14 Oracle Call Interface Programmer’s Guide

Thread Safety
2. If an application (running in OCI_THREADED mode) maintains multiple envi-
ronment handles, each of which has one connection which can spawn multiple
threads, the programmer has the following options:

■ Pass a value of OCI_NO_MUTEX for the mode of OCIEnvInit(). In this case
the application must mutex OCI calls made on the same environment han-
dle by itself. This has the advantage that the mutexing scheme can be opti-
mized based on the application design. The programmer must also insure
that only one OCI call is in process on the environment handle connection
at any given time.

■ Pass a value of OCI_DEFAULT to OCIEnvInit(). In this case, the OCI library
automatically gets a mutex on every OCI call on the environment handle.

3. If an application (running in OCI_THREADED mode) maintains one or more
environment handles, each of which has multiple connections, it also has the
following options:

■ Pass a value of OCI_NO_MUTEX for the mode of OCIEnvInit(). In this case
the application must mutex OCI calls by made on the same environment
handle itself. This has the advantage that the mutexing scheme can be opti-
mized based on the application design. The programmer must also insure
that only one OCI call is in process on the environment handle connection
at any given time.

■ Pass a value of OCI_DEFAULT to OCIEnvInit(). In this case, the OCI library
automatically gets a mutex on every OCI call on the same environment han-
dle.

In this case, however, the programmer should be aware that if the application
has two calls on the same environment handle, and one call operating on the
server is mutexed, application performance can degrade if the mutexed call is
long-running, thus tying up the server connection.

Mixing 7.x and 8.0 OCI calls
If an application is mixing 8.0 and 7.x OCI calls, and the application has been
initialized as thread safe (with the appropriate 8.0 calls), it is not necessary to call
opinit() to achieve thread safety. The application will get 7.x behavior on any
subsequent 7.x function calls.
 OCI Programming Advanced Topics 7-15

Run Time Data Allocation and Piecewise Operations
Run Time Data Allocation and Piecewise Operations
You can use the OCI to perform piecewise inserts and updates, and fetches of data.
You can also use the OCI to provide data dynamically in the case of array inserts or
updates, instead of providing a static array of bind values. You can insert or
retrieve a very large column as a series of chunks of smaller size, minimizing client-
side memory requirements.

The size of individual pieces is determined at run time by the application. Each
piece may be of the same size as other pieces, or it may be of a different size.

The OCI’s piecewise functionality can be particularly useful when you are
performing operations on extremely large blocks of string or binary data (for
example, operations involving database columns that store LOB, LONG or LONG
RAW data). See the section “Valid Datatypes for Piecewise Operations” on
page 7-17 for information about which datatypes are valid for piecewise operations.

Figure 2 - 8 shows a single long column being inserted piecewise into a database
table through a series of insert operations (i1, i2, i3...in). In this example the
inserted pieces are of varying sizes.

Figure 7–4 Piecewise Insert of a LONG Column

Column To Be Inserted Piecewise

Server

Database

i i i i
1 2 3 n

. . .
7-16 Oracle Call Interface Programmer’s Guide

Run Time Data Allocation and Piecewise Operations
You can perform piecewise operations in two ways:

■ Use calls provided in the OCI library to execute piecewise operations under a
polling paradigm, as in release 7.3.

■ Employ user-defined callback functions to provide the necessary information
and data blocks.

When you set the mode parameter of an OCIBindByPos() or OCIBindByName() call to
OCI_DATA_AT_EXEC, this indicates that an OCI application will be providing
data for an INSERT or UPDATE dynamically at run time.

Similarly, when you set the mode parameter of an OCIDefineByPos() call to
OCI_DYNAMIC_FETCH, this indicates that an application will dynamically
provide allocation space for receiving data at the time of the fetch.

In each case, you can provide the run-time information for the INSERT, UPDATE,
or FETCH in one of two ways: through callback functions, or by using piecewise
operations. If callbacks are desired, an additional bind or define call is necessary to
register the callbacks.

The following sections give specific information about run-time data allocation and
piecewise operations for inserts, updates, and fetches.

Note: In addition to SQL statements, piecewise operations are also valid for
PL/SQL blocks.

Valid Datatypes for Piecewise Operations
Only some datatypes can be manipulated in pieces. OCI applications can perform
piecewise fetches, inserts, or updates of the following data types:

■ VARCHAR2

■ STRING

■ LONG

■ LONG RAW

Some LOB/FILE operations also provide piecewise semantics for reading or
writing data. See the descriptions of OCILobWrite() on page 13-112 and
OCILobRead() on page 13-107 for more information about these operations.

Another way of using this feature for all datatypes is to provide data dynamically
for array inserts or updates. Note, however, that the callbacks should always
specify OCI_ONE_PIECE for the piecep parameter of the callback for datatypes that
do not support piecewise operations.
 OCI Programming Advanced Topics 7-17

Run Time Data Allocation and Piecewise Operations
Providing INSERT or UPDATE Data at Run Time
When you specify the OCI_DATA_AT_EXEC mode in a call to OCIBindByPos() or
OCIBindByName(), the value_sz parameter defines the total size of the data that can
be provided at run time. The application must be ready to provide to the OCI
library the run-time IN data buffers on demand as many times as is necessary to
complete the operation. When the allocated buffers are not required any more, they
should be freed by the client.

Run-time data is provided in one of the two ways:

■ You can define a callback using the OCIBindDynamic() function which when
called at run time returns a piece or the whole data.

■ If no callbacks are defined, the call to OCIStmtExecute() to process the SQL
statement returns the OCI_NEED_DATA error code. The client application
then provides the IN/OUT data buffer or piece using the OCIStmtSetPieceInfo()
call. OCIStmtGetPieceInfo() provides information about which bind and which
piece are being used.

Performing a Piecewise Insert
Once the OCI environment has been initialized, and a database connection and
session have been established, a piecewise insert begins with calls to prepare a SQL
or PL/SQL statement and to bind input values. Piecewise operations using
standard OCI calls, rather than user-defined callbacks, do not require a call to
OCIBindDynamic().

Note: Additional bind variables in the statement that are not part of piecewise
operations may require additional bind calls, depending on their datatypes.

Following the statement preparation and bind, the application performs a series of
calls to OCIStmtExecute(), OCIStmtGetPieceInfo() and OCIStmtSetPieceInfo() to
complete the piecewise operation. Each call to OCIStmtExecute() returns a value
that determines what action should be performed next. In general, the application
retrieves a value indicating that the next piece needs to be inserted, populates a
buffer with that piece, and then executes an insert. When the last piece has been
inserted, the operation is complete.

Keep in mind that the insert buffer can be of arbitrary size and is provided at run
time. In addition, each inserted piece does not need to be of the same size. The size
of each piece to be inserted is established by each OCIStmtSetPieceInfo() call.

Note: If the same piece size is used for all inserts, and the size of the data being
inserted is not evenly divisible by the piece size, the final inserted piece will be
smaller than the pieces that preceded it. For example, if a data value 10,050,036
7-18 Oracle Call Interface Programmer’s Guide

Run Time Data Allocation and Piecewise Operations
bytes long is inserted in chunks of 500 bytes each, the last remaining piece will
be only 36 bytes. The programmer must account for this by indicating the
smaller size in the final OCIStmtSetPieceInfo() call.

The following steps outline the procedure involved in performing a piecewise
insert. The procedure is illustrated in on the following page.

Step 1. Initialize the OCI environment, allocate the necessary handles, connect
to a server, authorize a user, and prepare a statement request. These steps are
described in the section “OCI Programming Steps” on page 2-16.

Step 2. Bind a placeholder using OCIBindByName() or OCIBindByPos(). At this
point you do not need to specify the actual size of the pieces you will use, but
you must provide the total size of the data that can be provided at run time.

7.x Upgrade Note: The context pointer that was formerly part of the
obindps() and ogetpi() routines does not exist in release 8.0. Clients wishing
to provide their own context can use the callback method.

Step 3. Call OCIStmtExecute() for the first time. At this point no data is actually
inserted, and the OCI_NEED_DATA error code is returned to the application.

If any other value is returned, it indicates that an error occurred.

Step 4. Call OCIStmtGetPieceInfo() to retrieve information about the piece that
needs to be inserted. The parameters of OCIStmtGetPieceInfo() include a pointer
that returns a value indicating whether the required piece is the first piece
(OCI_FIRST_PIECE) or a subsequent piece (OCI_NEXT_PIECE).

Step 5. The application populates a buffer with the piece of data to be inserted
and calls OCIStmtSetPieceInfo(). The parameters passed to OCIStmtSetPieceInfo()
include a pointer to the piece, a pointer to the length of the piece, and a value
indicating whether this is the first piece (OCI_FIRST_PIECE), an intermediate
piece (OCI_NEXT_PIECE) or the last piece (OCI_LAST_PIECE).

Step 6. Call OCIStmtExecute() again. If OCI_LAST_PIECE was indicated in Step
5 and OCIStmtExecute() returns OCI_SUCCESS, all pieces were inserted
successfully. If OCIStmtExecute() returns OCI_NEED_DATA, go back to Step 3
for the next insert. If OCIStmtExecute() returns any other value, an error
occurred.

The piecewise operation is complete when the final piece has been successfully
inserted. This is indicated by the OCI_SUCCESS return value from the final
OCIStmtExecute() call.
 OCI Programming Advanced Topics 7-19

Run Time Data Allocation and Piecewise Operations
Figure 7–5 Steps for Performing Piecewise Insert

Piecewise updates are performed in a similar manner. In a piecewise update
operation the insert buffer is populated with the data that is being updated, and
OCIStmtExecute() is called to execute the update.

Note: For additional important information about piecewise operations, see the
section “Additional Information About Piecewise Operations with No
Callbacks” on page 7-23.

Piecewise Operations With PL/SQL
An OCI application can perform piecewise operations with PL/SQL for IN, OUT,
and IN/OUT bind variables in a method similar to that outlined above. Keep in
mind that all placeholders in PL/SQL statements are bound, rather than defined.
The call to OCIBindDynamic() specifies the appropriate callbacks for OUT or IN/
OUT parameters.

Providing FETCH Information at Run Time
When a call is made to OCIDefineByPos() with the mode parameter set to
OCI_DYNAMIC_FETCH, an application can specify information about the data
buffer at the time of fetch. The user also may need to call OCIDefineDynamic() to set
up the callback function that will be invoked to get information about the user’s
data buffer.

Run-time data is provided in one of the two ways:

■ You can define a callback using the OCIDefineDynamic() call. The value_sz
parameter defines the maximum size of the data that will be provided at run

Bind
OCIBindByName()/

OCIBindByPos()

Execute
OCIStmtExecute()

Error
OtherOCI_NEED_DATAGet Piece Info

OCIStmtGetPieceInfo()

Set Piece Info
OCIStmtSetPieceInfo()

Done

Prepare Statement
OCIStmtPrepare()

OCI_SUCCESS
7-20 Oracle Call Interface Programmer’s Guide

Run Time Data Allocation and Piecewise Operations
time. When the client library needs a buffer to return the fetched data, the
callback will be invoked to provide a run-time buffer into which a piece or the
whole data will be returned.

■ If no callbacks are defined, the OCI_NEED_DATA error code is returned and
the OUT data buffer or piece can then be provided by the client application
using OCIStmtSetPieceInfo() call. The OCIStmtGetPieceInfo() call provides
Information about which define and which piece are involved.

See Also: For information about which datatypes are valid for piecewise
operations, refer to the section “Valid Datatypes for Piecewise Operations” on
page 7-17.

Performing a Piecewise Fetch
Once the OCI environment has been initialized, and a database connection and
session have been established, a piecewise fetch begins with calls to prepare a SQL
or PL/SQL statement and to define output variables. Piecewise operations using
standard OCI calls, rather than user-defined callbacks, do not require a call to
OCIDefineDynamic().

Following the statement preparation and define, the application performs a series
of calls to OCIStmtFetch(), OCIStmtGetPieceInfo(), and OCIStmtSetPieceInfo() to
complete the piecewise operation. Each call to OCIStmtFetch() returns a value that
determines what action should be performed next. In general, the application
retrieves a value indicating that the next piece needs to be fetched, and then fetches
that piece into a buffer. When the last piece has been fetched, the operation is
complete.

Keep in mind that the fetch buffer can be of arbitrary size. In addition, each fetched
piece does not need to be of the same size. The only requirement is that the size of
the final fetch must be exactly the size of the last remaining piece. The size of each
piece to be fetched is established by each OCIStmtSetPieceInfo() call.

The following steps outline the method for fetching a row piecewise.

Step 1. Initialize the OCI environment, allocate necessary handles, connect to a
database, authorize a user, prepare a statement, and execute the statement.
These steps are described on page 2-16.

Step 2. Define an output variable using OCIDefineByPos(), with mode set to
OCI_DYNAMIC_FETCH. At this point you do not need to specify the actual
size of the pieces you will use, but you must provide the total size of the data
that will be fetched at run time.
 OCI Programming Advanced Topics 7-21

Run Time Data Allocation and Piecewise Operations
7.x Upgrade Note: The context pointer that was part of the odefinps() and
ogetpi() routines does not exist in release 8.0. Clients wishing to provide
their own context can use the callback method.

Step 3. Call OCIStmtFetch() for the first time. At this point no data is actually
retrieved, and the OCI_NEED_DATA error code is returned to the application.

If any other value is returned, an error occurred.

Step 4. Call OCIStmtGetPieceInfo() to obtain information about the piece to be
fetched. The piecep parameter indicates whether it is the first piece
(OCI_FIRST_PIECE), a subsequent piece (OCI_NEXT_PIECE), or the last piece
(OCI_LAST_PIECE).

Step 5. Call OCIStmtSetPieceInfo() to specify the buffer into which you wish to
fetch the piece.

Step 6. Call OCIStmtFetch() again to retrieve the actual piece. If OCIStmtFetch()
returns OCI_SUCCESS, all the pieces have been fetched successfully. If
OCIStmtFetch() returns OCI_NEED_DATA, return to Step 4 to process the next
piece. If any other value is returned, an error occurred.

The piecewise fetch is complete when the final OCIStmtFetch() call returns a value
of OCI_SUCCESS.
7-22 Oracle Call Interface Programmer’s Guide

Run Time Data Allocation and Piecewise Operations
Figure 7–6 Steps for Performing Piecewise Fetch

Additional Information About Piecewise Operations with No Callbacks
In both the piecewise fetch and insert, it is important to understand the sequence of
calls necessary for the operation to complete successfully. In particular, keep in
mind that for a piecewise insert you must call OCIStmtExecute() one time more than
the number of pieces to be inserted (if callbacks are not used). This is because the
first time OCIStmtExecute() is called, it merely returns a value indicating that the
first piece to be inserted is required. As a result, if you are inserting n pieces, you
must call OCIStmtExecute() a total of n+1 times.

Similarly, when performing a piecewise fetch, you must call OCIStmtFetch() once
more than the number of pieces to be fetched.

Users who are binding to PL/SQL tables can retrieve a pointer to the current index
of the table during the OCIStmtGetPieceInfo() calls.

Define
OCIDefineByPos()

Fetch
OCIStmtFetch()

Error
OtherOCI_NEED_DATAGet Piece Info

OCIStmtGetPieceInfo()

Set Piece Info
OCIStmtSetPieceInfo()

Done

Execute Statement
OCIStmtExecute()

OCI_SUCCESS
 OCI Programming Advanced Topics 7-23

LOB and FILE Operations
LOB and FILE Operations
The Oracle8 OCI includes a set of functions for performing operations on large
objects (LOBs) in a database. Internal LOBs (BLOBs, CLOBs, NCLOBs) are stored in
the database tablespaces in a way that optimizes space and provides efficient
access. These LOBs have the full transactional support of the database server.
External LOBs (FILEs) are large data objects stored in the server’s operating system
files outside the database tablespaces.

The maximum length of a LOB/FILE is 4 gigabytes.

FILE functionality is read-only. Oracle8 currently supports only binary files
(BFILEs).

See Also: For code samples showing the use of LOB operations, refer to
“Example 5, CLOB/BLOB Operations” on page D-76, and “Example 6, LOB
Buffering” on page D-96.

Customers who are interested in using the dbms_lob package to work with
LOBs should refer to the Oracle8 Application Developer’s Guide

LOBs and LOB Locators
A database table stores a LOB locator which points to the LOB data. When an OCI
application issues a SQL query that includes a LOB column in its select-list,
fetching the result(s) of the query returns the locator, rather than the actual LOB
value. In the OCI, the LOB locator maps to the datatype OCILobLocator.

Note: The LOB value can be stored inline in a database table if it is less than
approximately 4,000 bytes.

Internal LOBs have copy semantics. Thus, if a LOB in one row is copied to a LOB in
another row, the actual LOB value is copied, and a new LOB locator is created for
the copied LOB.

The OCI functions for LOBs take LOB locators as their arguments. The OCI
functions assume that the LOB to which the locator points has already been
created, whether or not the LOB contains some value.

An application first fetches the locator using SQL, and then performs further
operations using the locator. The OCI functions never take the actual LOB value as
a parameter. It is good practice to use a locator in a LOB modification call if and
only if its snapshot is recent enough that it sees the current value of the LOB data,
since it is the current value that gets modified.
7-24 Oracle Call Interface Programmer’s Guide

LOB and FILE Operations
You allocate memory for an internal LOB locator with a call to OCIDescriptorAlloc()
by passing OCI_DTYPE_LOB as the descriptor type. To allocate memory for an
external LOB (FILE) locator, pass OCI_DTYPE_FILE.

Once you have allocated the LOB locator memory, you must initialize it before
passing it to any OCI LOB routines. You can accomplish this by any of the
following methods:

1. SELECTing the LOB from the database (which contains a valid LOB locator)
into the LOB locator you have just allocated.

2. Using the locator in the RETURNING clause of a SQL INSERT or UPDATE
statement.

3. Assigning a different, already initialized LOB locator to the newly allocated
LOB locator.

You can also initialize a LOB locator to empty by calling OCIAttrSet() on the
locator’s OCI_ATTR_LOBEMPTY attribute. A locator initialized in this way may
only be used to create an empty LOB in the database. Thus, it can only be used in
the VALUES clause of a SQL INSERT statement, or as the source of the SET clause
of a SQL UPDATE statement.

Warning: Locators for LOB and FILE operations are not interchangeable.
Locators for LOB operations must be allocated as type OCI_DTYPE_LOB, and
locators for FILE operations must be allocated as type OCI_DTYPE_FILE. An
internal LOB locator may not be assigned to an external LOB (FILE) locator,
and vice versa.

See Also: For more information about locators, including the LOB locator, see
the section “Descriptors and Locators” on page 2-12.

For sample code showing the use of OCI LOB calls, refer to Example 3 in
Appendix B, and the description of OCILobWrite() on page 13-112.

For more information about LOBs, locators, and read-consistent LOBs, see the
Oracle8 Application Developer’s Guide.
 OCI Programming Advanced Topics 7-25

LOB and FILE Operations
FILEs
A FILE locator may be considered to be a pointer to a file on the server’s file
system. Oracle does not provide any transactional semantics on FILEs, and Oracle8
currently supports only read-only operations on binary FILEs (BFILEs).

Since operations on both internal LOBs and FILEs are similar, all OCI LOB/FILE
functions expect a LOB locator as an input to all operations. The only difference is
in the way the FILE locator is allocated. When allocating a locator for FILEs, you
must pass OCI_DTYPE_FILE as the descriptor type in the OCIDescriptorAlloc() call.

Warning: Locators for LOB and FILE operations are not interchangeable.
Locators for LOB operations must be allocated as type OCI_DTYPE_LOB, and
locators for FILE operations must be allocated as type OCI_DTYPE_FILE. An
internal LOB locator may not be assigned to an external LOB (FILE) locator,
and vice versa.

See Also: For information about associating a BFILE with an OS file, see the
section “Associating a FILE in a Table with an OS File” on page 7-27.

Creating and Modifying Internal LOBs
You create a new internal LOB by initializing a new LOB locator using
OCIDescriptorAlloc(), calling OCIAttrSet() to set it to empty (using the
OCI_ATTR_LOBEMPTY attribute), and then binding the locator to a placeholder in
an INSERT statement. Doing so inserts the empty locator into a table with a LOB
column or attribute. You can then SELECT...FOR UPDATE this row to get the
locator, and then write to it using one of the OCI LOB functions.

Note: Whenever you want to modify a LOB column or attribute (write, copy,
trim, and so forth), you must lock the row containing the LOB. One way to do
this is to use a SELECT...FOR UPDATE statement to select the locator before
performing the operation.

For any LOB write command to be successful, a transaction must be open. This
means that if you commit a transaction before writing the data, then you must
relock the row (by reissuing the SELECT...FOR UPDATE, for example), because the
commit closes the transaction.

Note: LOB reads and writes are not allowed from within a trigger.

See Also: For information about binding LOB locators to placeholders, and
using them in INSERT statements, refer to the section “Binding LOBs” on
page 5-10.
7-26 Oracle Call Interface Programmer’s Guide

LOB and FILE Operations
Associating a FILE in a Table with an OS File
The BFILENAME() function can be used in an INSERT statement to associate an
external server-side (OS) file with a BFILE column/attribute in a table. Using
BFILENAME() in an UPDATE statement associates the BFILE column or attribute
with a different OS file.

See Also: For more information about the BFILENAME() function, please refer
to the Oracle8 Application Developer’s Guide.

Writing to a LOB Attribute of an Object
It is possible to use the OCI to create a new persistent object with a LOB attribute
and write to that LOB attribute. The application would follow these steps:

1. Call OCIObjectNew() to create a persistent object with a LOB attribute.

2. Mark the object as dirty.

3. Flush the object, thereby inserting a row into the table

4. Repin the latest version of the object (or refresh the object), thereby retrieving
the object from the database and acquiring a valid locator for the LOB

5. Call OCILobWrite() using the LOB locator in the object to write the data.

For more information about object operations, such as marking, flushing, and
refreshing, refer to Chapter 8, “OCI Object-Relational Programming”.

Transient Objects with LOB Attributes
An application can call OCIObjectNew() and create a transient object with an
internal LOB (BLOB, CLOB, NCLOB) attribute. However, the user cannot perform
any operations (e.g., read or write) on the LOB attribute because transient LOBs are
not currently supported. Calling OCIObjectNew() to create a transient internal LOB
type will not fail, but the application cannot use any LOB operations with the
transient LOB.

An application can, however, create a transient object with a FILE attribute and use
the FILE attribute to read data from the file stored in the server’s file system. The
application can also call OCIObjectNew() to create a transient FILE and use that
FILE to read from the server’s file.
 OCI Programming Advanced Topics 7-27

LOB and FILE Operations
LOB Buffering
The Oracle8 OCI provides several calls for controlling LOB buffering for small
reads and writes of internal LOB values:

■ OCILobEnableBuffering()

■ OCILobDisableBuffering()

■ OCILobFlushBuffer()

These functions provide performance improvements by allowing applications
using internal LOBs (BLOB, CLOB, NCLOB) to buffer small reads and writes of
LOBs in client-side buffers. This reduces the number of network roundtrips and
LOB versions, thereby improving LOB performance significantly for small reads
and writes.

See Also: For more information on LOB buffering, refer to the chapter on LOBs
in the Oracle8 Application Developer’s Guide, and the LOB buffering code
example in Appendix D of this guide.

For a code sample showing the use of LOB buffering, refer to “Example 6, LOB
Buffering” on page D-96.

LOB/FILE Functions
The functions in Table 7–1 are available to operate on LOBs and FILEs. More
detailed information about each function is found in Chapter 13.

These LOB/FILE calls are not valid when an application is connected to an Oracle7
Server.

Note: In all LOB operations that involve offsets into the data, the offset begins
at 1. BLOB and BFILE offsets and amounts are in terms of bytes. CLOB and
NCLOB offsets and amounts are in terms of characters.
7-28 Oracle Call Interface Programmer’s Guide

LOB and FILE Operations
See Also: For more information about FILEs, refer to the description of BFILEs
in the Oracle8 Application Developer’s Guide.

Table 7–1 OCI LOB and FILE Functions

Function Restrictions Purpose

OCILobAppend() Internal LOBs
only

This function appends data from one internal LOB onto another
internal LOB. The source and the destination LOBs must already
exist. The destination LOB is extended to accommodate the
newly written data if it extends beyond the current length of the
destination LOB.

It is an error to extend the destination LOB beyond the maximum
length allowed (4 gigabytes) or to try to append from a NULL
LOB.

OCILobAssign() Assigns one LOB/FILE locator to another.

OCILobCharSetForm() Gets the character set form of a CLOB/NCLOB.

OCILobCharSetId() Gets the character set ID of a CLOB/NCLOB.

OCILobCopy() Internal LOBs
only

This function copies a portion of an internal LOB into another
internal LOB. The source and destination LOBs must already
exist. If data already exists at the destination’s start position, it is
overwritten with the source data.

If the destination’s start position is beyond the end of the current
value, zero-byte fillers (BLOBs) or spaces (CLOBs/NCLOBs) are
placed in the LOB from the end of the destination value to the
beginning of the newly written data from the source. The destina-
tion LOB is extended to accommodate the newly written data if it
extends beyond the current length of the destination LOB. It is an
error to extend the destination LOB beyond the maximum length
allowed (4 gigabytes).

LOB copy operations must be performed on LOBS of the same
type; i.e., one CLOB can be copied to another CLOB, and one
BLOB can be copied to another BLOB, but a CLOB cannot be cop-
ied to a BLOB, and vice versa.

OCILobDisableBuffering() Internal LOBs
only

Disables LOB buffering for a given internal locator.

OCILobEnableBuffering() Internal LOBs
only

Enables LOB buffering for a given internal locator.
 OCI Programming Advanced Topics 7-29

LOB and FILE Operations
OCILobErase() Internal LOBs
only

Erases a specified portion of the internal LOB value starting at a
specified offset. The actual number of characters/bytes erased is
returned. The actual number of characters/bytes and the
requested number of characters/bytes will differ if the end of the
LOB data is reached before erasing the requested number of char-
acters/bytes.

If the LOB is NULL, this routine shows that 0 characters/bytes
were erased.

OCILobFileClose(),
OCILobFileCloseAll()

Closes a previously opened FILE, or all open FILEs. It is an error
if this function is called for an internal LOB. No error is returned
if the FILE exists but is not opened.

OCILobFileExists() Tests to see if a FILE exists on the server.

OCILobFileGetName() Gets the name and the directory alias of a FILE.

OCILobFileIsOpen() Tests to see if a FILE has been opened with the input locator.

OCILobFileOpen() Opens a FILE. The FILE can be opened for read-only access. It is
an error if this call is made on an internal LOB.

OCILobFileSetName() Sets the name and the directory alias of a FILE.

OCILobFlushBuffer() Internal LOBs
only

Flushes the LOB buffer.

OCILobGetLength() This function gets the length of a LOB/FILE. If the LOB/FILE is
NULL, the length is undefined. Empty internal LOBs have a
length of zero.

OCILobIsEqual() Tests to see if two LOB/FILE locators are equal. Two locators are
equal if and only if they both refer to the same LOB/FILE value.

OCILobLoadFromFile() Populates all or part of a LOB with data from a FILE.

OCILobLocatorIsInit() Tests to see if a LOB/FILE locator is initialized.

OCILobRead() This function reads a portion of the LOB/FILE value into a buffer.
It is an error to try to read from a NULL LOB/FILE.

OCILobTrim() Internal LOBs
only

This function truncates a LOB, trimming the LOB value to a speci-
fied smaller length.

OCILobWrite() Internal LOBs
only

This function writes data from a buffer into an internal LOB. If
data already exists in the LOB, it is overwritten with the data
stored in the buffer.

Table 7–1 OCI LOB and FILE Functions (Cont.)

Function Restrictions Purpose
7-30 Oracle Call Interface Programmer’s Guide

LOB and FILE Operations
Server Roundtrips for LOB Functions
For a table showing the number of server roundtrips required for individual OCI
LOB functions, refer to Appendix E, “OCI Function Server Roundtrips”.

LOB Read/Write Callbacks
The OCI LOB read and write functions provide the ability to define callback
functions which can be used to provide data to be written or handle data that was
read. This allows the client application to perform optional processing on the data.
One example usage of this would be to use the callbacks to implement a
compression algorithm for writing the data and a decompression algorithm for
reading it.

Note: The LOB read/write streaming callbacks provides a fast method for
using reading/writing large amounts of LOB data.

The following sections describe the use of callbacks in more detail.

The Callback Interface for Streaming
Your application can use user-defined read and write callback functions to insert
data into or retrieve data from a LOB. This provides an alternative to the polling
method for streaming data into a LOB and retrieving data from a LOB. The user-
defined callbacks have a specific prototype which is described below. These
functions are implemented by the user and registered with OCI through the
OCILobRead() and OCILobWrite() calls. The callback functions are called by OCI
whenever required.

User-defined
callback

OCI

User Application

IN parameters

OUT parameters
 OCI Programming Advanced Topics 7-31

LOB and FILE Operations
Reading LOBs using Callbacks
The user-defined read callback function is registered through the OCILobRead()
function. The callback function should have the following prototype:

<CallbackFunctionName> (dvoid *ctxp, CONST dvoid *bufp, ub4 len, ub1 piece)

The first parameter, ctxp, is the context of the callback that is passed to OCI in the
OCILobRead() function call. When the callback function is called, the information
provided by the user in ctxp is passed back to the user (the OCI does not use this
information on the way IN). The bufp parameter is the pointer to the storage where
the LOB data is returned and bufl is the length of this buffer. It tells the user how
much data has been read into the buffer provided by the user.

If the buffer length provided by the user in the original OCILobRead() call is
insufficient to store all the data returned by the server, then the user-defined
callback is called. In this case the piece parameter indicates to the user whether the
information returned in the buffer in the first, next or last piece.

The following is a code fragment of a typical way to implement read callback
functions.

Assume here that lobl is a valid locator that has been previously selected, svchp is a
valid service handle and errhp is a valid error handle.

...
ub4 offset = 1;
ub4 loblen = 0;
ub1 bufp[MAXBUFLEN];
ub4 amtp = 0;

sword retval;

amtp = 4294967295; /* 4 gigabytes */

if (retval = OCILobRead(svchp, errhp, lobl, &amtp, offset, (dvoid *) bufp,
 (ub4) MAXBUFLEN, (dvoid *) bufp, cbk_read_lob,
 (ub2) 0, (ub1) SQLCS_IMPLICIT))
 {
 (void) printf(“ERROR: OCILobRead() LOB.\n”);
 report_error();
 }
...
sb4 cbk_read_lob(ctxp, bufxp, lenp, piece)
dvoid *ctxp;
CONST dvoid *bufxp;
7-32 Oracle Call Interface Programmer’s Guide

LOB and FILE Operations
ub4 lenp;
ub1 piece;

{
static ub4 piece_count = 0;

piece_count++;

switch (piece)
{
 case OCI_LAST_PIECE:

 /* process buffer bufxp */
 --- buffer processing code goes here ---

 (void) printf(“callback read the %d th piece\n\n”, piece_count);

 piece_count = 0;

 break;

 case OCI_FIRST_PIECE:
 case OCI_NEXT_PIECE:

 /* process buffer bufxp */
 --- buffer processing code goes here ---

 (void) printf(“callback read the %d th piece\n”, piece_count);

 break;

 default:

 (void) printf(“callback read error: unkown piece = %d.\n”, piece);

 return OCI_ERROR;
 }
 return OCI_CONTINUE;
}

In the above example the user defined function cbk_read_lob is repeatedly called
until all the LOB data has been read by the user.
 OCI Programming Advanced Topics 7-33

LOB and FILE Operations
Writing LOBs using Callbacks
Similar to read callbacks, the user-defined write callback function is registered
through the OCILobWrite() function. The callback function should have the
following prototype:

 <CallbackFunctionName> (dvoid *ctxp, dvoid *bufp, ub4 *len, ub1 *piece)

The first parameter, ctxp, is the context of the callback that is passed to OCI in the
OCILobWrite() function call. The information provided by the user in ctxp, is passed
back to the user when the callback function is called by the OCI (the OCI does not
use this information on the way IN). The bufp parameter is the pointer to a storage
area that contains the LOB data to be inserted, and bufl is the length of this storage
area. The user provides this pointer in the call to OCILobWrite(). After inserting the
data provided in the call to OCILobWrite() if there is more to write, then the user
defined callback is called. In the callback the user should provide the data to insert
in the storage indicated by bufp and also specify the length in bufl. The user should
also indicate whether it is the next (OCI_NEXT_PIECE) or the last
(OCI_LAST_PIECE) piece using the piece parameter. Note that the user is
completely responsible for the storage pointer the application provides and should
make sure that it does not write more than the allocated size of the storage.

The following is a code fragment of a typical way to implement write callback
functions.

Assume here that lobl is a valid locator that has been locked for updating, svchp is a
valid service handle and errhp is a valid error handle

...

ub4 offset = 1;
ub1 bufp[MAXBUFLEN];
ub4 amtp = MAXBUFLEN * 20;
ub4 nbytes = MAXBUFLEN;

/* Fill bufp with some data */

-- code to fill bufp with data goes here. nbytes should reflect the size and
should be less than or equal to MAXBUFLEN --

 if (retval = OCILobWrite(svchp, errhp, lobl, &amtp, offset, (dvoid*)
 bufp,(ub4)nbytes, OCI_FIRST_PIECE, (dvoid *)0, cbk_write_lob,
 (ub2) 0, (ub1) SQLCS_IMPLICIT))

 {
7-34 Oracle Call Interface Programmer’s Guide

OCI Callbacks From External Procedures
 (void) printf(“ERROR: OCILobWrite().\n”);
 report_error();
 return;
 }
 ...

sb4 cbk_write_lob(ctxp, bufxp, lenp, piece)
dvoid *ctxp;
dvoid *bufxp;
ub4 *lenp;
ub1 *piece;

{
 /* Fill bufxp with data */

 -- code to fill bufxp with data goes here. *lenp should reflect the size
 and should be less than or equal to MAXBUFLEN --

 if (this is the last data buffer)

 *piecep = OCI_LAST_PIECE;

 else

 *piecep = OCI_NEXT_PIECE;;

 return OCI_CONTINUE;
}

In the above example, the user defined function cbk_write_lob is repeatedly called
until the user indicates that the application is providing the last piece using the
piecep parameter.

OCI Callbacks From External Procedures
There are four OCI functions that can be used as callbacks from external
procedures. These functions are listed in Chapter 16, “OCI External Procedure
Functions”.

For information about writing C subroutines that can be called from
PL/SQL code, including a list of which OCI calls can be used, and some example
code, refer to the PL/SQL User’s Guide and Reference.
 OCI Programming Advanced Topics 7-35

Application Failover Callbacks
Application Failover Callbacks
Application failover callbacks can be used in the event of the failure of one
database instance, and failover to another instance. Because of the delay which can
occur during failover, the application developer may want to inform the user that
failover is in progress, and request that the user stand by. Additionally, the session
on the initial instance may have received some ALTER SESSION commands. These
will not be automatically replayed on the second instance. Consequently, the
developer may wish to replay these ALTER SESSION commands on the second
instance.

Note: To use application failover you must be using the Oracle8 Enterprise
Edition with the Parallel Server Option.

See Also: For more detailed information about application failover, refer to the
Oracle8 Parallel Server Concepts and Administration manual.

Failover Callback Overview
To address the problems described above, the application developer can register a
failover callback function. In the event of failover, the callback function is invoked
several times during the course of reestablishing the user's session.

The first call to the callback function occurs when Oracle first detects an instance
connection loss. This callback is intended to allow the application to inform the
user of an upcoming delay. If failover is successful, a second call to the callback
function occurs when the connection is reestablished and usable. At this time the
client may wish to replay ALTER SESSION commands and inform the user that
failover has happened. If failover is unsuccessful, then the callback is called to
inform the application that failover will not take place. Additionally, the callback is
called each time a user handle besides the primary handle is reauthenticated on the
new connection. Since each user handle represents a server-side session, the client
may wish to replay ALTER SESSION commands for that session.

Failover Callback Structure and Parameters
The basic structure of a user-defined application failover callback function is as
follows:

sb4 callback_fn (dvoid * svchp,
 dvoid * envhp,
 dvoid * fo_ctx,
 ub4 fo_type,
 ub4 fo_event);
7-36 Oracle Call Interface Programmer’s Guide

Application Failover Callbacks
Each of the parameters is described below, and an example is provided in the
section “Failover Callback Example” on page 7-38.

svchp The first parameter, svchp, is the service context handle. It is of type dvoid *.

envhp The second parameter, envhp, is the OCI environment handle. It is of type
dvoid *.

fo_ctx The third parameter, fo_ctx, is a client context. It is a pointer to memory
specified by the client. In this area the client can keep any necessary state or
context. It is passed as a dvoid *.

fo_type The fourth parameter, fo_type, is the failover type. This lets the callback
know what type of failover the client has requested. The usual values are:

■ OCI_FO_SESSION, which indicates that the user has requested only session
failover, and

■ OCI_FO_SELECT, which indicates that the user has requested select failover as
well.

fo_event The last parameter is the failover event. This indicates to the callback why
it is being called. It has several possible values:

■ OCI_FO_BEGIN indicates that failover has detected a lost connection and
failover is starting.

■ OCI_FO_END indicates successful completion of failover.

■ OCI_FO_ABORT indicates that failover was unsuccessful.

■ OCI_FO_REAUTH indicates that a user handle has been reauthenticated. To
find out which, the application should check the OCI_ATTR_SESSION
attribute of the service context handle (which is the first parameter).

Failover Callback Registration
For the failover callback to be used, it must be registered on the server context
handle. This registration is done by creating a callback definition structure and
setting the OCI_ATTR_FOCBK attribute of the server handle to this structure. The
callback definition structure must be of type OCIFocbkStruct. It has two fields:
callback_function, which contains the address of the function to call, and fo_ctx
which contains the address of the client context.
 OCI Programming Advanced Topics 7-37

Application Failover Callbacks
An example of callback registration is included as part of the example in the next
section.

Failover Callback Example
The following code shows an example of a simple user-defined callback function
definition and registration.

Part 1, Failover Callback Definition
sb4 callback_fn(svchp, envhp, fo_ctx, fo_type, fo_event)
dvoid * svchp;
dvoid * envhp;
dvoid *fo_ctx;
ub4 fo_type;
ub4 fo_event;
{
switch (fo_event)
 {
 case OCI_FO_BEGIN:
 {
 printf(" Failing Over ... Please stand by \n");
 printf(" Failover type was found to be %s \n",
 ((fo_type==OCI_FO_SESSION) ? "SESSION"
 :(fo_type==OCI_FO_SELECT) ? "SELECT"
 : "UNKNOWN!"));
 printf(" Failover Context is :%s\n",
 (fo_ctx?(char *)fo_ctx:"NULL POINTER!"));
 break;
 }
 case OCI_FO_ABORT:
 {
 printf(" Failover aborted. Failover will not take place.\n");
 break;
 }
 case OCI_FO_END:
 {
 printf(" Failover ended ...resuming services\n");
 break;
 }
 case OCI_FO_REAUTH:
 {
 printf(" Failed over user. Resuming services\n");
 break;
 }
7-38 Oracle Call Interface Programmer’s Guide

Application Failover Callbacks
 default:
 {
 printf("Bad Failover Event: %d.\n", fo_event);
 return -20000; /* error -should not have happened */
 }
 }
 return 0;
}

Part 2, Failover Callback Registration
int register_callback(svrh, errh)
dvoid *svrh;/* the server handle */
OCIError *errh; /* the error handle */
{
 OCIFocbkStruct failover; /* failover callback structure */

 /* allocate memory for context */
 if (!(failover.fo_ctx = (dvoid *)malloc(strlen("my context."))))
 return(1);

 /* initialize the context. */
 strcpy((char *)failover.context_function, "my context.");

 failover.callback_function = &callback_fn;

 /* do the registration */
 if (OCIAttrSet(srvh, (ub4) OCI_HTYPE_SRV,
 (dvoid *) &failover, (ub4) 0,
 (ub4) OCI_ATTR_FOCBK, errh) != OCI_SUCCESS)
 return(2);

 /* successful conclusion */
 return (0);
}

 OCI Programming Advanced Topics 7-39

OCI and Advanced Queueing
OCI and Advanced Queueing
The OCI provides an interface to Oracle8’s Advanced Queueing feature. Oracle AQ
provides message queuing as an integrated part of the Oracle server. Oracle AQ
provides this functionality by integrating the queuing system with the database,
thereby creating a message-enabled database. By providing an integrated solution
Oracle AQ frees application developers to devote their efforts to their specific
business logic rather than having to construct a messaging infrastructure.

Note: In order to use advanced queueing, you must be using the Oracle8
Enterprise Edition. To use AQ with queues of datatypes other than RAW, you
must also have purchased the Objects Option.

See Also: For detailed information about AQ, including concepts, features, and
examples, refer to the chapter on Advanced Queueing in the Oracle8 Application
Developer’s Guide.

For example code demonstrating the use of the OCI with AQ, refer to the
description of OCIAQEnq() on page 13-11.

OCI Advanced Queueing Functions
The OCI library includes two functions related to advanced queueing:

■ OCIAQEnq()

■ OCIAQDeq()

Chapter 13, “OCI Relational Functions”, contains complete descriptions of these
functions and their parameters.

OCI Advanced Queueing Descriptors
The following descriptors are used by OCI AQ operations:

■ OCIAQEnqOptions - equivalent to dbms_aq.enqueue_options_t

■ OCIAQDeqOptions - equivalent to dbms_aq.dequeue_options_t

■ OCIAQMsgProperties - equivalent to dbms_aq.message_properties_t

■ OCIAQAgent - equivalent to sys.aq$_agent

You can allocate these descriptors with respect to the service handle using the
standard OCIDescriptorAlloc() call. The following code shows examples of this:

OCIDescriptorAlloc(svch, &enqueue_options, OCI_DTYPE_AQENQ_OPTIONS, 0, 0);
OCIDescriptorAlloc(svch, &dequeue_options, OCI_DTYPE_AQDEQ_OPTIONS, 0, 0);
7-40 Oracle Call Interface Programmer’s Guide

OCI and Advanced Queueing
OCIDescriptorAlloc(svch, &message_properties, OCI_DTYPE_AQMSG_PROPERTIES, 0, 0);
OCIDescriptorAlloc(svch, &agent, OCI_DTYPE_AQAGENT, 0, 0);

As with other OCI descriptors, the structure of these descriptors is opaque to the
user. Each descriptor has a variety of attributes which can be set and/or read.
These attributes are described in more detail in “Advanced Queueing Descriptor
Attributes” on page B-28.

Advanced Queueing in OCI vs. PL/SQL
The following tables compare functions, parameters, and options for OCI AQ
functions and descriptors, and PL/SQL AQ functions in the dbms_aq package.

PL/SQL Function OCI Function

DBMS_AQ.ENQUEUE OCIAQEnq()

DBMS_AQ.DEQUEUE OCIAQDeq()

DBMS_AQ.ENQUEUE Parameter OCIAQEnq() Parameter

queue_name queue_name

enqueue_options enqueue_options

message_properties message_properties

payload payload

msgid msgid

Note: OCIAQEnq() also requires the following additional parameters: svch,
errh, payload_tdo, payload_ind, and flags

DBMS_AQ.DEQUEUE Parameter OCIAQDeq() Parameter

queue_name queue_name

dequeue_options dequeue_options

message_properties message_properties

payload payload

msgid msgid

Note: OCIAQDeq() also requires the following additional parameters: svch,
errh, payload_tdo, payload_ind, and flags
 OCI Programming Advanced Topics 7-41

OCI and Advanced Queueing
PL/SQL Agent Parameter OCIAQAgent Attribute

name OCI_ATTR_AGENT_NAME

address OCI_ATTR_AGENT_ADDRESS

protocol OCI_ATTR_AGENT_PROTOCOL

PL/SQL Message Property OCIAQMsgProperties Attribute

priority OCI_ATTR_PRIORITY

delay OCI_ATTR_DELAY

expiration OCI_ATTR_EXPIRATION

correlation OCI_ATTR_CORRELATION

attempts OCI_ATTR_ATTEMPTS

recipient_list OCI_ATTR_RECIPIENT_LIST

exception_queue OCI_ATTR_EXCEPTION_QUEUE

enqueue_time OCI_ATTR_ENQ_TIME

state OCI_ATTR_MSG_STATE

PL/SQL Enqueue Option OCIAQEnqOptions Attribute

visibility OCI_ATTR_VISIBILITY

relative_msgid OCI_ATTR_RELATIVE_MSGID

sequence_deviation OCI_ATTR_SEQUENCE_DEVIATION
7-42 Oracle Call Interface Programmer’s Guide

Writing Oracle Security Services Applications
Writing Oracle Security Services Applications
For information about writing C applications using the Oracle Security Services
Toolkit, refer to the Oracle Security Server Guide.

PL/SQL Dequeue Option OCIAQDeqOptions Attribute

consumer_name OCI_ATTR_CONSUMER_NAME

dequeue_mode OCI_ATTR_DEQ_MODE

navigation OCI_ATTR_NAVIGATION

visibility OCI_ATTR_VISIBILITY

wait OCI_ATTR_WAIT

msgid OCI_ATTR_DEQ_MSGID

correlation OCI_ATTR_CORRELATION
 OCI Programming Advanced Topics 7-43

Writing Oracle Security Services Applications
7-44 Oracle Call Interface Programmer’s Guide

Part II

OCI Object Concepts

This part of the book contains chapters that describe the use of Oracle8 objects with
the OCI:

■ Chapter 8, “OCI Object-Relational Programming”, provides an introduction to
object concepts and object-relational programming with the OCI.

■ Chapter 9, “Object-Relational Datatypes”, discusses object datatypes and how
you can represent database objects as C structures. This chapter also describes
OCI functions that map and manipulate datatypes.

■ Chapter 10, “Binding and Defining in Object Applications”, covers binding and
defining object-relational datatypes.

■ Chapter 11, “Object Cache and Object Navigation”, describes the object cache
and how to navigate between objects.

■ Chapter 12, “Using the Object Type Translator”, discusses how the OTT is used
to convert database type definitions into host language representations.

Note: The functionality described in this part of the book is only available if
you have purchased the Oracle8 Enterprise Edition with the Objects Option.

 OCI Object-Relational Program
8

OCI Object-Relational Programming

This chapter introduces the OCI’s facility for working with objects in an Oracle8
server. It also discusses the OCI’s object navigational function calls.

This chapter includes the following sections:

■ Chapter Overview

■ OCI Object Overview

■ Working with Objects in the OCI

■ Developing an OCI Object Application

Note: The functionality described in this chapter is only available if you have
purchased the Oracle8 Enterprise Edition with the Objects Option.
ming 8-1

Chapter Overview
Chapter Overview
This chapter is divided into three sections covering the basic concepts involved in
writing OCI applications to manipulate Oracle8 objects. The chapter also covers the
OCI navigational function calls.

The following specific sections are included:

■ OCI Object Overview presents a brief introduction to the OCI facilities for
working with objects.

■ Working with Objects in the OCI describes the basic structure of an OCI
object application and the different types of objects with which the OCI works.
This section provides a foundation upon which the rest of the chapter builds.

■ Developing an OCI Object Application discusses each of the main elements
of an OCI object application in more detail. Simple examples illustrate the most
important points.

The next four chapters contain additional information about using the OCI to work
with objects:

■ Chapter 9, “Object-Relational Datatypes”, discusses the datatypes used by OCI
object-relational applications. This information supplements that found in
Chapter 3, “Datatypes”. This chapter also includes a discussion of the OCI
datatype mapping and manipulation functions.

■ Chapter 10, “Binding and Defining in Object Applications”, discusses
information about bind and define operations specific to object-relational
datatypes. This information supplements that in Chapter 2, “OCI
Programming Basics”, and Chapter 5, “Binding and Defining”.

■ Chapter 11, “Object Cache and Object Navigation”, discusses the object cache
and object navigation. This chapter includes a discussion of the OCI
navigational functions.

■ Chapter 12, “Using the Object Type Translator” discusses the Object Type
Translator.

Complete descriptions of all of the OCI object-relational functions are contained in
Chapter 14, “OCI Navigation and Type Functions”, and Chapter 15, “OCI Datatype
Mapping and Manipulation Functions”. Additionally, some object functionality is
included in those functions contained in Chapter 13, “OCI Relational Functions”.
8-2 Oracle Call Interface Programmer’s Guide

OCI Object Overview
OCI Object Overview
The Oracle Call Interface (OCI) provides functions for managing database access
and processing SQL statements. These functions are described in detail in Part 1 of
this book. The SQL capabilities of the OCI relational interface allow an application
to access objects from an Oracle8 server through SQL statements.

Note: The Oracle8 OCI libraries are supported only for C.

The OCI allows applications to access any of the datatypes found in the Oracle8
server, including scalar values, collections, and instances of any object type. This
includes all of the following:

■ objects

■ variable-length arrays (VARRAYs)

■ nested tables (multisets)

■ references (REFs)

■ LOBs

In order to take full advantage of Oracle8 server object capabilities, most
applications need to do more than just access objects. Once the object has been
retrieved, the application must navigate through references from that object to
other objects. The OCI provides the capability to do this.

Through the OCI’s object navigational calls, an application can perform any of the
following functions on Oracle8 objects:

■ creating, accessing, locking, deleting, copying, and flushing objects

■ getting references to the objects and their meta-objects

■ dynamically getting and setting values of objects’ attributes

The OCI navigational calls are discussed in more detail later in this chapter.

The OCI also provides the ability to access type information stored in an Oracle8
database. The OCIDescribeAny() function enables an application to access most
information relating to types stored in the database, including information about
methods, attributes, and type meta-data.

OCIDescribeAny() is discussed in Chapter 6, “Describing Schema Metadata”.

Applications interacting with Oracle8 objects need a way to represent those objects
in a host language format. Oracle8 provides a utility called the Object Type
Translator (OTT), which can convert type definitions in the database to C struct
 OCI Object-Relational Programming 8-3

Working with Objects in the OCI
declarations. The declarations are stored in a header file that can be included in an
OCI application.

When type definitions are represented in C, the types of attributes are mapped to
special C variable types that are new to Oracle8. The OCI includes a set of datatype
mapping and manipulation functions that enable an application to manipulate these
datatypes, and thus manipulate the attributes of objects. These functions are
discussed in more detail in Chapter 9, “Object-Relational Datatypes”.

The terminology for objects can occasionally become confusing. In the remainder of
this chapter, the terms object and instance both refer to an object that is either stored
in the database or is present in the object cache.

Working with Objects in the OCI
Many of the programming principles that govern a relational OCI application (as
discussed in Chapters 2 through 6) are the same for an object-relational application.
An object-relational application uses the standard OCI calls to establish database
connections and process SQL statements. The difference is that the SQL statements
issued retrieve object references (or objects by value), which can then be
manipulated with the OCI’s object functions.

 Basic Object Program Structure
The basic structure of an OCI application that uses objects is essentially the same as
that for a relational OCI application, as described in the section “OCI Program
Structure” on page 2-3. That paradigm is reproduced here, with extra information
covering basic object functionality.

1. Initialize the OCI programming environment.

Note: You must initialize the environment in object mode.

Your application will most likely also need to include C struct representations
of database objects in a header file. These structs can be created by the
programmer, or, more easily, they can be generated by the Object Type
Translator (OTT), as described in Chapter 12, “Using the Object Type
Translator”.

2. Allocate necessary handles, and establish a connection to a server.

3. Prepare a SQL statement for execution. This is a local (client-side) step, which
may include binding placeholders and defining output variables. In an object-
relational application, this SQL statement should return a reference (REF) to an
object.
8-4 Oracle Call Interface Programmer’s Guide

Working with Objects in the OCI
Note: It is also possible to fetch an entire object, rather than just a reference
(REF). If you SELECT a referenceable object, rather than pinning it, you get that
object “by value”. Alternately, you can select a non-referenceable object, as
described in “Fetching Embedded Objects” on page 8-15

4. Associate the prepared statement with a database server, and execute the state-
ment.

5. Fetch returned results.

In an object-relational application, this step entails retrieving the REF, and then
pinning the object to which it refers. Once the object is pinned, your application
will do some or all of the following:

– Manipulate the attributes of the object and mark it as “dirty”

– Follow a REF to another object or series of objects

– Access type and attribute information

– Navigate a complex object retrieval graph

– Flush modified objects to the server

6. Commit the transaction. This step implicitly flushes all modified objects to the
server and commits the changes.

7. Free statements and handles not to be reused or reexecute prepared statements
again.

All of these steps are discussed in more detail in the remainder of this chapter.

See Also: For information about using the OCI to connect to a server, process
SQL statements, and allocate handles, see Chapter 2 and the description of the
OCI relational functions in Chapter 13.

For information about the OTT, refer to the section “Representing Objects in C
Applications” on page 8-8, and Chapter 12, “Using the Object Type Translator”.

Persistent Objects, Transient Objects, and Values
Instances of an Oracle8 type are categorized into persistent objects and transient
objects based on their lifetime. Instances of persistent objects can be further divided
into standalone objects and embedded objects depending on whether or not they are
referenceable by way of an object identifier.

Note: The terms object and instance are used interchangeably in this manual.
 OCI Object-Relational Programming 8-5

Working with Objects in the OCI
See Also: For more information about objects, refer to the Oracle8 Concepts
manual.

Persistent Objects
A persistent object is an object which is stored in an Oracle8 database. It may be
fetched into the object cache and modified by an OCI application. The lifetime of a
persistent object can exceed that of the application which is accessing it. Once it is
created, it remains in the database until it is explicitly deleted. There are two types
of persistent objects:

■ Standalone instances are stored in rows of a object table, and each one has a
unique object identifier. An OCI application can retrieve a REF to a standalone
instance, pin the object and navigate from the pinned object to other related
objects.

Standalone object may also be referred to as referenceable objects.

It is also possible to SELECT a referenceable object, in which case you fetch the
object “by value” instead of fetching its REF.

■ Embedded instances are not stored as rows in a object table. They are
embedded within other structures. Examples of embedded objects are objects
which are attributes of another object, or instances which exist in an object
column of a database table. Embedded instances do not have object identifiers,
and OCI applications cannot get REFs to embedded instances.

Embedded objects may also be referred to as non-referenceable objects or value
instances. You may sometimes see them referred to as values, which is not to be
confused with scalar data values. The context should make the meaning clear.

The following SQL examples demonstrate the difference between these two types
of persistent objects.

Example 1, Standalone Objects
CREATE TYPE person_t AS OBJECT
 (name varchar2(30),
 age number(3));
CREATE TABLE person_tab OF person_t;

Objects which are stored in the object table person_tab are standalone instances.
They have object identifiers and are referenceable. They can be pinned in an OCI
application.
8-6 Oracle Call Interface Programmer’s Guide

Working with Objects in the OCI
Example 2, Embedded Objects
CREATE TABLE department
 (deptno number,
 deptname varchar2(30),
 manager person_t);

Objects which are stored in the manager column of the department table are
embedded objects. They do not have object identifiers, and they are not
referenceable. This means they cannot be pinned in an OCI application, and they
also never need to be unpinned. They are always retrieved into the object cache “by
value”.

Transient Objects
A transient object is an instance of an object type. It may have an object identifier,
and it has a lifetime which is determined by the application when the instance is
created. The application can also delete a transient object at any time.

Transient objects are often created by the application using the OCIObjectNew()
function to store temporary values for computation.

Transient objects cannot be converted to persistent objects. Their role is fixed at the
time they are instantiated.

See Also: See the section “Creating, Freeing, and Copying Objects” on
page 8-31 for more information about using OCIObjectNew().

Values
In the context of this manual, a value refers to either:

■ a scalar value which is stored in a non-object column of a database table. An
OCI application can fetch values from a database by issuing SQL statements.

■ an embedded or non-referenceable object.

The context should make it clear which meaning is intended.

Note: It is possible to SELECT a referenceable object into the object cache,
rather than pinning it, in which case you fetch the object “by value” instead of
fetching its REF.
 OCI Object-Relational Programming 8-7

Developing an OCI Object Application
Developing an OCI Object Application
This section discusses the steps involved in developing a basic OCI object
application. Each step mentioned in the section “Basic Object Program Structure”
on page 8-4 is described here in more detail.

The following figure shows a simple program logic flow for how an application
might work with objects. For simplicity, some required steps are omitted. Each step
in this diagram is discussed in the following sections.

Figure 8–1 Basic Object Operational Flow

Representing Objects in C Applications
Before an OCI application can work with object types, those types must exist in the
database. Typically, you create types with SQL DDL statements (e.g., CREATE
TYPE).

When the Oracle8 server processes the type definition DDL commands, it stores the
type definitions in the data dictionary as type descriptor objects (TDOs).

When your application retrieves instances of object types from the database, it
needs to have a client-side representation of the objects. In a C program, the
representation of an object type is a struct . In an OCI object application, you may
also include a null indicator structure corresponding to each object type structure.

Pin Object (Brings object into
client-side cache)

Operate on Object
in Cache

Mask Object
as Dirtied

Refresh Object

Flush Changes
to Object

Initialize OCI in
Object Mode
8-8 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application
Oracle8 provides a utility called the Object Type Translator (OTT), which generates
C struct representations of database object types for you. For example, if you have a
type in your database declared as

CREATE TYPE emp_t AS OBJECT
(name VARCHAR2(30),
 empno NUMBER,
 deptno NUMBER,
 hiredate DATE,
 salary NUMBER);

the OTT produces the following C struct and corresponding null indicator struct:

struct emp_t
{
 OCIString * name;
 OCINumber empno;
 OCINumber deptno;
 OCIDate hiredate;
 OCINumber salary;
};
typedef struct emp_t emp_t

struct emp_t_ind
{
 OCIInd _atomic;
 OCIInd name;
 OCIInd empno;
 OCIInd deptno;
 OCIInd hiredate;
 OCIInd salary;
};
typedef struct emp_t_ind emp_t_ind;

The variable types used in the struct declarations are special types employed by the
OCI object calls. A subset of OCI functions manipulate data of these types. These
functions are mentioned later in this chapter, and are discussed in more detail in
Chapter 9, “Object-Relational Datatypes”.

These struct declarations are automatically written to a .h file whose name is
determined by the OTT input parameters. You can include this header file in the
code files for an application to provide access to objects.

See Also: For more information about the OTT, see Chapter 12, “Using the
Object Type Translator”.
 OCI Object-Relational Programming 8-9

Developing an OCI Object Application
For more information on the use of the NULL indicator struct, see the section
“Nullness” on page 8-28.

Initializing Environment and Object Cache
If your OCI application will be accessing and manipulating objects, it is essential
that you specify a value of OCI_OBJECT for the mode parameter of the
OCIInitialize() call, which is the first OCI call in any OCI application. Specifying this
value for mode indicates to the OCI libraries that your application will be working
with objects. This notification has the following important effects:

■ it establishes the object run-time environment

■ it sets up the object cache

If the mode parameter of OCIInitialize() is not set to OCI_OBJECT, any attempt to
use an object-related function will result in an error.

The client-side object cache is allocated in the program's process space. This cache
is the memory for objects that have been retrieved from the server and are available
to your application.

Note: If you initialize the OCI environment in object mode, your application
allocates memory for the object cache, whether or not the application actually
uses object calls.

See Also: The object cache is mentioned throughout this chapter. For a detailed
explanation of the object cache, see Chapter 11, “Object Cache and Object
Navigation”.

Making Database Connections
Once the OCI environment has been properly initialized, the application can
connect to a server. This is accomplished through the standard OCI connect calls
described in “OCI Programming Steps” on page 2-16. When using these calls, no
additional considerations need to be made because this application will be
accessing objects.

There is only one object cache allocated per OCI environment. All objects retrieved
or created via different connections within the environment use the same physical
object cache.
8-10 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application
Retrieving an Object Reference from the Server
In order to work with objects, your application must first retrieve one or more
objects from the server. You accomplish this by issuing a SQL statement that
returns REFs to one or more objects.

Note: It is also possible for a SQL statement to fetch embedded objects, rather
than REFs, from a database. See the section “Fetching Embedded Objects” on
page 8-15 for more information.

In the following example, the application declares a text block that stores a SQL
statement designed to retrieve a REF to a single employee object from a object table
of employees (emp_tab) in the database, given a particular employee number
which is passed as an input variable (:emp_num) at run time:

text *selemp = (text *) "SELECT REF(e)
 FROM emp_tab e
 WHERE empno = :emp_num";

Your application should prepare and process this statement in the same way that it
would handle any relational SQL statement, as described in Chapter 2:

■ Prepare an application request, using OCIStmtPrepare().

■ Bind the host input variable using the appropriate bind call(s).

■ Declare and prepare an output variable to receive the employee object
reference. Here you would use an employee object reference, like the one
declared in “Representing Objects in C Applications” on page 8-8:

OCIRef *emp1_ref = (OCIRef *) 0;
 /* reference to an employee object */

When defining the output variable, set the dty datatype parameter for the
define call to SQLT_REF, the datatype constant for REF.

■ Execute the statement with OCIStmtExecute().

■ Fetch the resulting REF into emp1_ref , using OCIStmtFetch().

At this point, you could use the object reference to access and manipulate an object
or objects from the database.

See Also: For general information about preparing and executing SQL
statements, see the section “OCI Programming Steps” on page 2-16. For specific
information about binding and defining REF variables, refer to the sections
“Advanced Bind Operations” on page 5-9 and “Advanced Define Operations”
on page 5-16.
 OCI Object-Relational Programming 8-11

Developing an OCI Object Application
For a code example showing REF retrieval and pinning, see “Example 7, REF
Pinning and Navigation” on page D-118.

Pinning an Object
Upon completion of the fetch step, your application has a REF, or pointer, to an
object. The actual object is not currently available to work with. Before you can
manipulate an object, it must be pinned. Pinning an object loads the object instance
into the object cache, and enables you to access and modify the instance’s attributes
and follow references from that object to other objects, if necessary. Your
application also controls when modified objects are written back to the server.

Note: This section deals with a simple pin operation involving a single object at
a time. For information about retrieving multiple objects through complex
object retrieval, see the section “Complex Object Retrieval” on page 8-21.

An application pins an object by calling the function OCIObjectPin(). The
parameters for this function allow you to specify the pin option, pin duration, and
lock option for the object.

The following sample code illustrates a pin operation for the employee reference
we retrieved in the previous section:

if (OCIObjectPin(env, err, &emp1_ref, (OCIComplexObject *) 0,
 OCI_PIN_ANY,
 OCI_DURATION_TRANS,
 OCI_LOCK_X, &emp1) != OCI_SUCCESS)
 process_error(err);

In this example, process_error() represents an error-handling function. If the call to
OCIObjectPin() returns anything but OCI_SUCCESS, the error-handling function is
called. The parameters of the OCIObjectPin() function are as follows:

■ env is the OCI environment handle.

■ err is the OCI error handle.

■ emp1_ref is the reference that was retrieved through SQL.

■ (OCIComplexObject *) 0 indicates that this pin operation is not utilizing
complex object retrieval.

■ OCI_PIN_ANY is the pin option. See “Pinning an Object Copy” on page 11-6
for more information.

■ OCI_DURATION_TRANS is the pin duration. See “Object Duration” on
page 11-13 for more information.
8-12 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application
■ OCI_LOCK_X is the lock option. See “Locking Objects For Update” on
page 11-12 for more information.

■ emp1 is an out parameter, which returns a pointer to the pinned object.

Now that the object has been pinned, the OCI application can modify that object. In
this simple example, the object contains no references to other objects. For an
example of navigation from one instance to another, see the section “Simple Object
Navigation” on page 11-16.

Array Pin
Given an array of references, an OCI application can pin an array of objects by
calling OCIObjectArrayPin(). The references may point to objects of different types.

Manipulating Object Attributes
Once an object has been pinned, an OCI application can modify its attributes. The
OCI provides a set of function for working with datatypes of object type structs,
known as the OCI datatype mapping and manipulation functions.

Note: Changes made to objects pinned in the object cache affect only those
object copies (instances), and not the original object in the database. In order for
changes made by the application to reach the database, those changes must be
flushed/committed to the server. See “Marking Objects and Flushing Changes”
on page 8-14 for more information.

For example, assume that the employee object in the previous section was pinned
so that the employee’s salary could be increased. Assume also that at this company,
yearly salary increases are prorated for employees who have been at the company
for less than 180 days.

So for this example we will need to access the employee’s hire date and check
whether it is more or less than 180 days prior to the current date. Based on that
calculation, the employee’s salary is increased by either $5000 (for more than 180
days) or $3000 (for less than 180 days). The sample code on the following page
demonstrates this process.

Note that the datatype mapping and manipulation functions work with a specific
set of datatypes; you must convert other types, like int, to the appropriate OCI
types before using them in calculations.

/* assume that sysdate has been fetched into sys_date, a string. */
/* emp1 and emp1_ref are the same as in previous sections. */
/* err is the OCI error handle. */
/* NOTE: error handling code is not included in this example. */
 OCI Object-Relational Programming 8-13

Developing an OCI Object Application
sb4 num_days; /* the number of days between today and hiredate */
OCIDate curr_date; /* holds the current date for calculations */
int raise; /* holds the employee’s raise amount before calculations */
OCINumber raise_num; /* holds employee’s raise for calculations */
OCINumber new_sal; /* holds the employee’s new salary */

/* convert date string to an OCIDate */
OCIDateFromText(err, (text *) sys_date, (ub4) strlen(sys_date), (text *)
 NULL, (ub1) 0, (text *) NULL, (ub4) 0, &curr_date);

 /* get number of days between hire date and today */
OCIDateDaysBetween(err, &curr_date, &emp1->hiredate, &num_days);

/* calculate raise based on number of days since hiredate */
if num_days > 180
 raise = 5000
else
 raise = 3000;

/* convert raise value to an OCINumber */
OCINumberFromInt(err, (dvoid *)&raise, (uword)sizeof(raise),
 OCI_NUMBER_SIGNED, &raise_num);

/* add raise amount to salary */
OCINumberAdd(err, &raise_num, &emp1->salary, &new_sal);
OCINumberAssign(err, &new_sal, &emp1->salary);

This example points out how values must be converted to OCI datatypes (e.g.,
OCIDate, OCINumber) before being passed as parameters to the OCI datatype
mapping and manipulation functions.

See Also: For more information about the OCI datatypes and the datatype
mapping and manipulation functions, refer to Chapter 9, “Object-Relational
Datatypes”.

Marking Objects and Flushing Changes
In the example in the previous section, an attribute of an object instance was
changed. At this point, however, that change exists only in the client-side object
cache. The application must take specific steps to insure that the change is written
in the database.

The first step is to indicate that the object has been modified. This is done with the
OCIObjectMarkUpdate() function. This function marks the object as dirty (modified).
8-14 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application
Objects that have had their dirty flag set must be flushed to the server for the
changes to be recorded in the database. You can do this in three ways:

■ Flush a single dirty object by calling OCIObjectFlush().

■ Flush the entire cache using OCICacheFlush(). In this case the OCI traverses the
dirty list maintained by the cache and flushes the dirty objects to the server.

■ Call OCITransCommit() to commit a transaction. Doing so also traverses the
dirty list and flushes objects to the server.

The flush operations work only on persistent objects in the cache. Transient objects
are never flushed to the server.

Flushing an object to the server can activate triggers in the database. In fact, on
some occasions an application may want to explicitly flush objects just to fire
triggers on the server side.

See Also: For more information about OCITransCommit() see the section
“Transactions” on page 7-3.

For information about transient and persistent objects, see the section
“Creating, Freeing, and Copying Objects” on page 8-31.

For information about seeing and checking object meta-attributes (like “dirty”),
see the section “Object Meta-Attributes” on page 8-17.

Fetching Embedded Objects
If your application needs to fetch an embedded object instance—an object stored in
a column of a regular table, rather than an object table—you cannot use the REF
retrieval mechanism described in the section “Retrieving an Object Reference from
the Server” on page 8-11. Embedded instances do not have object identifiers, so it is
not possible to get a REF to them. This means that they cannot serve as the basis for
object navigation. There are still many situations, however, in which an application
will want to fetch embedded instances.

For example, assume that an address type has been created.

CREATE TYPE address AS OBJECT
(street1 varchar2(50),
 street2 varchar2(50),
 city varchar2(30),
 state char(2),
 zip number(5))

You could then use that type as the datatype of a column in another table:
 OCI Object-Relational Programming 8-15

Developing an OCI Object Application
CREATE TABLE clients
(name varchar2(40),
 addr address)

Your OCI application could then issue the following SQL statement:

SELECT addr FROM clients
WHERE name=’BEAR BYTE DATA MANAGEMENT’

This statement would return an embedded address object from the clients
table. The application could then use the values in the attributes of this object for
other processing.

Your application should prepare and process this statement in the same way that it
would handle any relational SQL statement, as described in Chapter 2:

■ Prepare an application request, using OCIStmtPrepare().

■ Bind the input variable using the appropriate bind call(s).

■ Define an output variable to receive the address instance. You use a C struct
representation of the object type that was generated by the OTT, as described in
the section “Representing Objects in C Applications” on page 8-8:

addr1 *address; /* variable of the address struct type */

When defining the output variable, set the dty datatype parameter for the
define call to SQLT_NTY, the datatype constant for named data types.

■ Execute the statement with OCIStmtExecute()

■ Fetch the resulting instance into addr1 , using OCIStmtFetch().

Following this, you can access the attributes of the instance, as described in the
section “Manipulating Object Attributes” on page 8-13, or pass the instance as an
input parameter for another SQL statement.

Note: Changes made to an embedded instance can be made persistent only by
executing a SQL UPDATE statement.

See Also: For more information about preparing and executing SQL
statements, see the section “OCI Programming Steps” on page 2-16.
8-16 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application
Object Meta-Attributes
An object’s meta-attributes serve as flags which can provide information to an
application, or to the object cache, about the status of an object. For example, one of
the meta-attributes of an object indicates whether or not it has been flushed to the
server. These can help an application control the behavior of instances.

Persistent and transient object instances have different sets of meta-attributes. The
meta-attributes for persistent objects are further broken down into persistent meta-
attributes and transient meta-attributes. Transient meta-attributes exist only when an
instance is in memory. Persistent meta-attributes also apply to objects stored in the
server.

Persistent Object Meta-Attributes
The following table shows the meta-attributes for standalone persistent objects.

Note: Embedded persistent objects only have the nullness and allocation duration
attributes, which are transient.

The OCI provides the OCIObjectGetProperty() function, which allows an application
to check the status of a variety of attributes of an object.

Persistent
Meta-Attributes Meaning

existent does the object exist?

nullness null information of the instance

locked has the object been locked?

dirty has the object been marked as “dirtied”?

Transient
Meta-Attributes

pinned is the object pinned?

allocation duration see “Object Duration” on page 11-13

pin duration see “Object Duration” on page 11-13
 OCI Object-Relational Programming 8-17

Developing an OCI Object Application
The syntax of the function is:

sword OCIObjectGetProperty (OCIEnv *envh,
 OCIError *errh,
 CONST dvoid *obj,
 OCIObjectPropId propertyId,
 dvoid *property,
 ub4 *size);

The propertyId and property parameters are used to retrieve information about any
of a variety of properties or attributes

The different property ids and the corresponding type of property argument are
given below. For more information, see OCIObjectGetProperty() on page 14-30.

OCI_OBJECTPROP_LIFETIME
This identifies whether the given object is a persistent object or a transient object or
a value instance. The property argument must be a pointer to a variable of type
OCIObjectLifetime. Possible values include:

■ OCI_OBJECT_PERSISTENT

■ OCI_OBJECT_TRANSIENT

■ OCI_OBJECT_VALUE

OCI_OBJECTPROP_SCHEMA
This returns the schema name of the table in which the object exists. An error is
returned if the given object points to a transient instance or a value. If the input
buffer is not big enough to hold the schema name an error is returned, the error
message will communicate the required size. Upon success, the size of the returned
schema name in bytes is returned via size. The property argument must be an array
of type text and size should be set to size of array in bytes by the caller.

OCI_OBJECTPROP_TABLE
This returns the table name in which the object exists. An error is returned if the
given object points to a transient instance or a value. If the input buffer is not big
enough to hold the table name an error is returned, the error message will
communicate the required size. Upon success, the size of the returned table name
in bytes is returned via size. The property argument must be an array of type text
and size should be set to size of array in bytes by the caller.
8-18 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application
OCI_OBJECTPROP_PIN_DURATION
This returns the pin duration of the object. An error is returned if the given object
points to a value instance. The property argument must be a pointer to a variable of
type OCIDuration. Valid values include:

■ OCI_DURATION_SESSION

■ OCI_DURATION_TRANS

For more information about durations, see “Object Duration” on page 11-13.

OCI_OBJECTPROP_ALLOC_DURATION
This returns the allocation duration of the object. The property argument must be a
pointer to a variable of type OCIDuration. Valid values include:

■ OCI_DURATION_SESSION

■ OCI_DURATION_TRANS

For more information about durations, see “Object Duration” on page 11-13.

OCI_OBJECTPROP_LOCK
This returns the lock status of the object. The possible lock status is enumerated by
OCILockOpt. An error is returned if the given object points to a transient or value
instance. The property argument must be a pointer to a variable of type
OCILockOpt. Note, the lock status of an object can also be retrieved by calling
OCIObjectIsLocked().

OCI_OBJECTPROP_MARKSTATUS
This returns the dirty status and indicates whether the object is a new object,
updated object or deleted object. An error is returned if the given object points to a
transient or value instance. The property argument must be of type
OCIObjectMarkStatus. Valid values include:

■ OCI_OBJECT_NEW

■ OCI_OBJECT_DELETED

■ OCI_OBJECT_UPDATED

The following macros are available to test the object mark status:

■ OCI_OBJECT_IS_UPDATED(flag)

■ OCI_OBJECT_IS_DELETED(flag)

■ OCI_OBJECT_IS_NEW(flag)

■ OCI_OBJECT_IS_DIRTY(flag)
 OCI Object-Relational Programming 8-19

Developing an OCI Object Application
OCI_OBJECTPROP_VIEW
This identifies whether the specified object is a view object or not. If the property
value returned is TRUE, it indicates the object is a view otherwise it is not. An error
is returned if the given object points to a transient or value instance. The property
argument must be of type boolean.

Additional Attribute Functions
The OCI also provides routines which allow an application to set or check some of
these attributes directly or indirectly, as shown in the following table:

Transient Object Meta-Attributes
Transient objects have no persistent attributes, and the following transient
attributes:

Meta-Attribute Set With Check With

nullness <none> OCIObjectGetInd()

existence <none> OCIObjectExists()

locked OCIObjectLock() OCIObjectIsLocked()

dirty OCIObjectMark() OCIObjectIsDirty()

Transient
Meta-Attributes Meaning

existent does the object exist?

pinned is the object being accessed by the application?

dirty has the object been marked as “dirtied”?

nullness null information of the instance

allocation duration see “Object Duration” on page 11-13

pin duration see “Object Duration” on page 11-13
8-20 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application
Complex Object Retrieval
In the examples earlier in this chapter, only a single instance at a time was fetched
or pinned. In these cases, each pin operation involved a separate server round trip
to retrieve the object.

Object-oriented applications often model their problems as a set of interrelated
objects that form graphs of objects. The applications process objects by starting at
some initial set of objects, and then using the references in these initial objects to
traverse the remaining objects. In a client-server setting, each of these traversals
could result in costly network roundtrips to fetch objects.

Application performance when dealing with objects may be increased through the
use of complex object retrieval (COR). This is a prefetching mechanism in which an
application specifies a criteria for retrieving a set of linked objects in a single
operation.

Note: As described below, this does not mean that these prefetched objects are
all pinned. They are fetched into the object cache, so that subsequent pin calls
are local operations.

A complex object is a set of logically related objects consisting of a root object, and a
set of objects each of which is prefetched based on a given depth level. The root object
is explicitly fetched or pinned. The depth level is the shortest number of references
that need to be traversed from the root object to a given prefetched object in a
complex object.

An application specifies a complex object by describing its content and boundary.
The fetching of complex objects is constrained by an environment’s prefetch limit,
the amount of memory in the object cache that is available for prefetching objects.

The use of COR does not add functionality; it only improves performance.
Therefore, its use is optional.

As an example for this discussion, consider the following type declaration:

CREATE TYPE customer(...);
CREATE TYPE line_item(...);
CREATE TYPE line_item_varray as VARRAY(100) of REF line_item;
CREATE TYPE purchase_order AS OBJECT
(po_number NUMBER,
 cust REF customer,
 related_orders REF purchase_order,
 line_items line_item_varray)
 OCI Object-Relational Programming 8-21

Developing an OCI Object Application
The purchase_order type contains a scalar value for po_number , a VARRAY of
line items, and two references. The first is to a customer type, and the second is to
a purchase_order type, indicating that this type may be implemented as a
linked list.

When fetching a complex object, an application must specify the following:

1. a REF to the desired root object.

2. one or more pairs of type and depth information to specify the boundaries of
the complex object. The type information indicates which REF attributes
should be followed for COR, and the depth level indicates how many levels
deep those links should be followed.

In the case of the purchase order object above, the application must specify the
following:

1. the REF to the root purchase order object

2. one or more pairs of type and depth information for cust , related_orders ,
or line_items

An application fetching a purchase order will very likely need access to the
customer information for that order. Using simple navigation, this would require
two server accesses to retrieve the two objects. Through complex object retrieval,
the customer can be prefetched when the application pins the purchase order. In
this case, the complex object would consist of the purchase order object and the
customer object it references.

In the above example, the application would specify the purchase_order REF,
and would indicate that the cust REF attribute should be followed to a depth level
of 1:

1. REF(PO object)

2. {(customer, 1)}

If the application wanted to prefetch the purchase_order object and all objects in
the object graph it contains, the application would specify that both the cust and
related_orders should be followed to the maximum depth level possible.

1. REF(PO object)

2. {(customer, 1), (purchase_order, UB4MAXVAL)}

where UB4MAXVAL specifies that all objects of the specified type reachable through
references from the root object should be prefetched.
8-22 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application
If an application wanted to fetch a PO and all the associated line items, it would
specify:

1. REF(PO object)

2. {(line_item, 1)}

The application can also choose to fetch all objects reachable from the root object by
way of REFs (transitive closure) to a certain depth. To do so, set the level parameter
to the depth desired. For the above two examples, the application could also
specify (PO object REF, UB4MAXVAL) and (PO object REF, 1)
respectively to prefetch required objects. Doing so results in many extraneous
fetches but is quite simple to specify, and requires only one server round trip.

Prefetching Objects
After specifying and fetching a complex object, subsequent fetches of objects
contained in the complex object do not incur the cost of a network round trip,
because these objects have already been prefetched and are in the object cache.
Keep in mind that excessive prefetching of objects can lead to a flooding of the
object cache. This flooding, in turn, may force out other objects that the application
had already pinned leading to a performance degradation instead of performance
improvement.

Note: If there is insufficient memory in the cache to hold all prefetched objects,
some objects may not be prefetched. The application will then incur a network
round-trip when those objects are accessed later.

The SELECT privilege is needed for all prefetched objects. Objects in the complex
object for which the application does not have SELECT privilege will not be
prefetched.

Implementing Complex Object Retrieval in the OCI
Complex Object Retrieval (COR) allows an application to prefetch a complex object
while fetching the root object. The complex object specifications are passed to the
same OCIObjectPin() function used for simple objects.

An application specifies the parameters for complex object retrieval using a complex
object retrieval handle. This handle is of type OCIComplexObject and is allocated in
the same way as other OCI handles.

The complex object retrieval handle contains a list of complex object retrieval
descriptors. The descriptors are of type OCIComplexObjectComp, and are allocated
in the same way as other OCI descriptors.
 OCI Object-Relational Programming 8-23

Developing an OCI Object Application
Each COR descriptor contains a type REF and a depth level. The type REF specifies
a type of reference to be followed while constructing the complex object. The depth
level indicates how far a particular type of reference should be followed. Specify an
integer value, or the constant UB4MAXVAL for the maximum possible depth level.

The application can also specify the depth level in the COR handle without creating
COR descriptors for type and depth parameters. In this case, all REFs are followed
to the depth specified in the COR handle. The COR handle can also be used to
specify whether a collection attribute should be fetched separately on demand (out-
of-line) as opposed to the default case of fetching it along with the containing object
(inline).

The application uses OCIAttrSet() to set the attributes of a COR handle. The
attributes are:

OCI_ATTR_COMPLEXOBJECT_LEVEL - the depth level

OCI_ATTR_COMPLEXOBJECT_COLL_OUTOFLINE - fetch collection
attribute in an object type out-of-line

The application allocates the COR descriptor using OCIDescriptorAlloc() and then
can set the following attributes:

OCI_ATTR_COMPLEXOBJECTCOMP_TYPE - the type REF

OCI_ATTR_COMPLEXOBJECTCOMP_LEVEL - the depth level for references
of the above type

Once these attributes are set, the application calls OCIParamSet() to put the
descriptor into a complex object retrieval handle. The handle has an
OCI_ATTR_PARAM_COUNT attribute which specifies the number of descriptors on
the handle. This attribute can be read with OCIAttrGet().

Once the handle has been populated, it can be passed to the OCIObjectPin() call to
pin the root object and prefetch the remainder of the complex object.

The complex object retrieval handles and descriptors must be freed explicitly when
they are no longer needed.

See Also: For more information about handles and descriptors, see “Handles”
on page 2-6 and “Descriptors and Locators” on page 2-12.
8-24 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application
COR Prefetching
The application specifies a complex object while fetching the root object. The
prefetched objects are obtained by doing a breadth-first traversal of the graph(s) of
objects rooted at a given root object(s). The traversal stops when all required objects
have been prefetched, or when the total size of all the prefetched objects exceeds
the prefetch limit.

COR interface
The interface for fetching complex objects is the OCI pin interface. The application
can pass an initialized COR handle to OCIObjectPin() (or an array of handles to
OCIObjectArrayPin()) to fetch the root object and the prefetched objects specified in
the COR handle.

sword OCIObjectPin (OCIEnv *env,
 OCIError *err,
 OCIRef *object_ref,
 OCIComplexObject *corhdl,
 OCIPinOpt pin_option,
 OCIDuration pin_duration,
 OCILockOpt lock_option,
 dvoid **object);

sword OCIObjectArrayPin (OCIEnv *env,
 OCIError *err,
 OCIRef **ref_array,
 ub4 array_size,
 OCIComplexObject **cor_array,
 ub4 cor_array_size,
 OCIPinOpt pin_option,
 OCIDuration pin_duration,
 OCILockOpt lock,
 dvoid **obj_array,
 ub4 *pos);

Keep the following points in mind when using COR:

1. A null COR handle argument defaults to pinning just the root object.

2. A COR handle with type of the root object and a depth level of 0 fetches only
the root object and is thus equivalent to a null COR handle.

3. The lock options apply only to the root object.
 OCI Object-Relational Programming 8-25

Developing an OCI Object Application
Note: In order to specify lock options for prefetched objects, the application can
visit all the objects in a complex object, create an array of REFs, and lock the
entire complex object in another round trip using the array interface
(OCIObjectArrayPin()).

Example of COR
The following example illustrates how an application program can be modified to
use complex object retrieval.

Consider an application that displays a purchase order and the line items
associated with it. The code in boldface accomplishes this. The rest of the code uses
complex object retrieval for prefetching and thus enhances the application’s
performance.

OCIEnv *envhp;
OCIError *errhp;
OCIRef *liref;
OCIRef *poref;
OCIIter *itr;
boolean eoc;
purchase_order *po = (purchase_order *)0;
line_item *li = (line_item *)0;
OCISvcCtx *svchp;
OCIComplexObject *corhp;
OCIComplexObjectComp *cordp;
OCIType *litdo;
ub4 level = 0;

/* get COR Handle */
OCIHandleAlloc((dvoid *) envhp, (dvoid **) &corhp, (ub4)
 OCI_HTYPE_COMPLEXOBJECT, 0, (dvoid **)0);

/* get COR descriptor for type line_item */
OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &cordp, (ub4)
 OCI_DTYPE_COMPLEXOBJECTCOMP, 0, (dvoid **) 0);

/* get type of line_item to set in COR descriptor */
OCITypeByName(envhp, errhp, svchp, (const text *) 0, (ub4) 0,
 const text *) “LINE_ITEM”, (ub4) strlen((const char *)
 “LINE_ITEM”), OCI_DURATION_SESSION, &litdo);

/* set line_item type in COR descriptor */
OCIAttrSet((dvoid *) cordp, (ub4) OCI_DTYPE_COMPLEXOBJECTCOMP,
 dvoid *) litdo, (ub4) sizeof(dvoid *), (ub4)
8-26 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application
 OCI_ATTR_COMPLEXOBJECTCOMP_TYPE, (OCIError *) errhp);
level = 1;

/* set depth level for line_item_varray in COR descriptor */
OCIAttrSet((dvoid *) cordp, (ub4) OCI_DTYPE_COMPLEXOBJECTCOMP,
 (dvoid *) &level, (ub4) sizeof(ub4), (ub4)
 OCI_ATTR_COMPLEXOBJECTCOMP_TYPE_LEVEL, (OCIError *) errhp);

/* put COR descriptor in COR handle */
OCIParamSet(corhp, OCI_HTYPE_COMPLEXOBJECT, &errhp, cordp,
 OCI_DTYPE_COMPLEXOBJECTCOMP, 1);

/* pin the purchase order */
OCIObjectPin(envhp, errhp, poref, corhp, OCI_PIN_LATEST,
 OCI_REFRESH_LOADED, OCI_DURATION_SESSION,
 OCI_LOCK_NONE, (ub2) 1, (dvoid **)&po)

/* free COR descriptor and COR handle */
OCIDescriptorFree((dvoid *) cordp, (ub4) OCI_DTYPE_COMPLEXOBJECTCOMP);
OCIHandleFree((dvoid *) corhp, (ub4) OCI_HTYPE_COMPLEXOBJECT);

/* iterate and print line items for this purchase order */
OCIIterCreate(envhp, errhp, po.line_items, &itr);

/* get first line item */
OCIIterNext(envhp, errhp, itr, &liref, (dvoid **)0, &eoc);
while (!eoc) /* not end of collection */
{
/* pin line item */
 OCIObjectPin(envhp, errhp, liref, (dvoid *)0, OCI_PIN_RECENT,
 OCI_REFRESH_LOADED, OCI_DURATION_SESSION,
 OCI_LOCK_NONE, (ub2) 1, (dvoid **)&li);
 display_line_item(li);

/* get next line item */
OCIIterNext(envhp, errhp, itr, &liref, (dvoid **)0, &eoc);
}

 OCI Object-Relational Programming 8-27

Developing an OCI Object Application
Pin Count and Unpinning
Each object in the object cache has a pin count associated with it. The pin count
essentially indicates the number of code modules that are concurrently accessing
the object. The pin count is set to 1 when an object is pinned into the cache for the
first time. Objects prefetched with complex object retrieval enter the object cache
with a pin count of zero.

It is possible to pin an already-pinned object. Doing so increases the pin count by
one. When a process finishes using an object, it should unpin it, using
OCIObjectUnpin(). This call decrements the pin count by one.

When the pin count of an object reaches zero, that object is eligible to be aged out of
the cache if necessary, freeing up the memory space occupied by the object.

The pin count of an object can be set to zero explicitly by calling
OCIObjectPinCountReset().

An application can unpin all objects in the cache related to a specific connection, by
calling OCICacheUnpin().

See Also: See the section “Freeing an Object Copy” on page 11-8 for more
information about the conditions under which objects with zero pin count are
removed from the cache.

For information about explicitly flushing an object or the entire cache, see the
section “Marking Objects and Flushing Changes” on page 8-14.

See the section “Freeing an Object Copy” on page 11-8 for more information
about objects being aged out of the cache.

Nullness
If a column in a row of a database table has no value, then that column is said to be
NULL, or to contain a NULL. Two different types of nulls can apply to objects:

■ Any attribute of an object can have a null value. This indicates that the value of
that attribute of the object is not known.

■ An object instance may be atomically null. This means that the value of the
entire object is unknown.

Atomic nullness is not the same thing as nonexistence. An atomically null instance
still exists, its value is just not known. It may be thought of as an existing object
with no data.

When working with objects in the OCI, an application can define a null indicator
structure for each object type used by the application. In most cases, doing so
8-28 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application
simply requires including the null indicator structure generated by the OTT along
with the struct declaration. When the OTT output header file is included, the null
indicator struct becomes available to your application.

For each type, the null indicator structure includes an atomic null indicator (whose
type is OCIInd), and a null indicator for each attribute of the instance. If the type
has an object attribute, the null indicator structure includes that attribute’s null
indicator structure. The following example shows the C representations of types
with their corresponding null indicator structures.

struct address
{
 OCINumber no;
 OCIString *street;
 OCIString *state;
 OCIString *zip;
};
typedef struct address address;

struct address_ind
{
 OCIInd _atomic;
 OCIInd no;
 OCIInd street;
 OCIInd state;
 OCIInd zip;
};
typedef struct address_ind address_ind;

struct person
{
 OCIString *fname;
 OCIString *lname;
 OCINumber age;
 OCIDate birthday;
 OCIArray *dependentsAge;
 OCITable *prevAddr;
 OCIRaw *comment1;
 OCILobLocator *comment2;
 address addr;
 OCIRef *spouse;
};
typedef struct person person;
 OCI Object-Relational Programming 8-29

Developing an OCI Object Application
struct person_ind
{
 OCIInd _atomic;
 OCIInd fname;
 OCIInd lname;
 OCIInd age;
 OCIInd birthday;
 OCIInd dependentsAge;
 OCIInd prevAddr;
 OCIInd comment1;
 OCIInd comment2;
 address_ind addr;
 OCIInd spouse;
};
typedef struct person_ind person_ind;

Note: The dependentsAge field of person_ind indicates whether the entire
varray (dependentsAge field of person) is atomically null or not. Null
information of individual elements of dependentsAge can be retrieved
through the elemind parameter of a call to OCICollGetElem(). Similarly, the
prevAddr field of person_ind indicates whether the entire nested table
(prevAddr field of person) is atomically null or not. Null information of
individual elements of prevAddr can be retrieved through the elemind
parameter of a call to OCICollGetElem().

For an object type instance, the first field of the null-indicator structure is the
atomic null indicator, and the remaining fields are the attribute null indicators
whose layout resembles the layout of the object type instance’s attributes.

Checking the value of the atomic null indicator allows an application to test
whether an instance is atomically NULL. Checking any of the others allows an
application to test the NULL status of that attribute, as in the following code
sample:

person_ind *my_person_ind
if (my_person_ind -> _atomic = OCI_IND_NULL)
{
 /* instance is atomically null */
}
if (my_person_ind -> fname = OCI_IND_NULL)
{
 /* fname attribute is NULL */
}

8-30 Oracle Call Interface Programmer’s Guide

Developing an OCI Object Application
In the above example, the value of the atomic null indicator, or one of the attribute
null indicators, is compared to the predefined value OCI_IND_NULL to test its
nullness. The following predefined values are available for such a comparison:

■ OCI_IND_NOTNULL, indicating that the value is not NULL

■ OCI_IND_NULL, indicating that the value is NULL

■ OCI_IND_BADNULL, indicates that an enclosing object (or parent object) is
NULL. This is used by PL/SQL, and may also be referred to as an
INVALID_NULL. For example if a type instance is NULL, then its attributes
are INVALID_NULLs.

Use the OCIObjectGetInd() function to allocate storage for and retrieve the null
indicator structure of an object.

See Also: For more information about OTT-generated null indicator structs,
refer to Chapter 12.

Creating, Freeing, and Copying Objects
An OCI application can create any object using OCIObjectNew(). To create a
persistent object, the application must specify the object table where the new object
will reside. This value can be retrieved by calling OCIObjectPinTable(), and it is
passed in the table parameter. To create a transient object, the application needs to
pass only the type descriptor object (retrieved by calling OCITypeByName()) for the
type of object being created.

OCIObjectNew() can also be used to create instances of scalars (e.g., REF, LOB,
string, raw, number, and date) and collections (e.g., varray and nested table) by
passing the appropriate value for the typecode parameter.

Use OCIObjectFree() to free memory allocated through OCIObjectNew(). Freeing an
object deallocates all the memory allocated for the object, including the associated
null indicator structure. This procedure deletes an object before its lifetime expires.
An application can also use OCIObjectMarkDelete() to delete a persistent object.

An application can copy one instance to another instance of the same type using
OCIObjectCopy().

See Also: See the descriptions of these functions in Chapter 14 for more
information.
 OCI Object-Relational Programming 8-31

Developing an OCI Object Application
Object Reference and Type Reference
The object extensions to the OCI provide the application with the flexibility to
access the contents of objects using their pointers or their references. The OCI
provides the function OCIObjectGetObjectRef() to return a reference to an object
given the object’s pointer.

For applications that also want to access the type information of objects, the OCI
provides the function OCIObjectGetProperty() to return a reference to an object’s
type descriptor object (TDO), given a pointer to the object.

Error Handling in Object Applications
Error handling in OCI applications is the same, whether or not the application uses
objects. For more information about function return codes and error messages, see
the section “Error Handling” on page 2-25.
8-32 Oracle Call Interface Programmer’s Guide

 Object-Relational Data
9

Object-Relational Datatypes

The OCI datatype mapping and manipulation functions provide OCI programs
with the ability to manipulate instances of Oracle predefined datatypes in a C
application. This chapter discusses those functions, and also includes information
about how object types are stored in the database. For information about bind and
define operations using the Oracle8 C datatypes, refer to Chapter 10, “Binding and
Defining in Object Applications”.

The following topics are covered in this chapter:

■ Overview

■ Mapping Oracle8 Datatypes to C

■ Manipulating C Datatypes With OCI

■ Date (OCIDate)

■ Number (OCINumber)

■ Fixed or Variable-Length String (OCIString)

■ Raw (OCIRaw)

■ Collections (OCITable, OCIArray, OCIColl, OCIIter)

■ REF (OCIRef)

■ Object Type Information Storage and Access

Note: The functionality described in this chapter is only available if you have
purchased the Oracle8 Enterprise Edition with the Objects Option.
types 9-1

Overview
Overview
The OCI datatype mapping and manipulation functions provide the ability to
manipulate instances of predefined Oracle8 C datatypes. These datatypes are used
to represent the attributes of user-defined datatypes, including object types in
Oracle8.

Each group of functions within the OCI is distinguished by a particular naming
convention. The datatype mapping and manipulation functions, for example, can
be easily recognized because the function names start with the prefix “OCI”,
followed by the name of a datatype, as in OCIDateFromText() and OCIRawSize(). As
will be explained later, the names can be further broken down into function groups
that operate on a particular type of data.

Additionally, the predefined Oracle8 C types on which these functions operate are
also distinguished by names which begin with the prefix “OCI”, as in OCIDate or
OCIString.

The datatype mapping and manipulation functions are used when an application
needs to manipulate, bind, or define attributes of objects that are stored in an
Oracle8 database, or which have been retrieved by a SQL query. Retrieved objects
are stored in the client-side object cache, as was described in Chapter 6.

This chapter describes the purpose and structure of each of the datatypes that can
be manipulated by the OCI datatype mapping and manipulation functions. It also
summarizes the different function groups, and gives lists of available functions and
their purposes.

This chapter also provides information about how to use these datatypes in bind
and define operations within an OCI application.

These functions are valid only when an OCI application is running in object mode.
For information about initializing the OCI in object mode, and creating an OCI
application that accesses and manipulates objects, refer to the section “Initializing
Environment and Object Cache” on page 8-10.

For detailed information about object types, attributes, and collection datatypes,
refer to Oracle8 Concepts.
9-2 Oracle Call Interface Programmer’s Guide

Mapping Oracle8 Datatypes to C
Mapping Oracle8 Datatypes to C
Oracle8 provides a rich set of predefined datatypes with which you can create
tables and specify user-defined datatypes (including object types). Object types
extend the functionality of Oracle8 by allowing you to create datatypes that
precisely model the types of data with which they work. This can provide
increased efficiency and ease-of-use for programmers who are accessing the data.

Database tables and object types are based upon the datatypes supplied by Oracle.
These tables and types are created with SQL statements and stored using a specific
set of Oracle internal datatypes, like VARCHAR2 or NUMBER. For example, the
following SQL statements create a user-defined address datatype and an object
table to store instances of that type:

CREATE TYPE address AS OBJECT
(street1 varchar2(50),
street2 varchar2(50),
city varchar2(30),
state char(2),
zip number(5));
CREATE TABLE address_table OF address;

The new address type could also be used to create a regular table with an object
column:

CREATE TABLE employees
(name varchar2(30),
birthday date,
home_addr address);

An OCI application can manipulate information in the name and birthday
columns of the employees table using straightforward bind and define operations
in association with SQL statements. Accessing information stored as attributes of
objects requires some extra steps.

The OCI application first needs a way to represent the objects in a C-language
format. This is accomplished by using the Object Type Translator (OTT) to generate
C struct representations of user-defined types. The elements of these structs have
datatypes that represent C language mappings of Oracle8 datatypes. The following
table lists the available Oracle types you can use as object attribute types and their
C mappings:
 Object-Relational Datatypes 9-3

Mapping Oracle8 Datatypes to C
An additional C type, OCIInd, is used to represent null indicator information
corresponding to attributes of object types.

See Also: For more information and examples regarding the use of the OTT,
refer to Chapter 12.

Table 9–1 C Language Mappings of Object Type Attributes

Attribute Type C Mapping

VARCHAR2(N) OCIString *

VARCHAR(N) OCIString *

CHAR(N), CHARACTER(N) OCIString *

NUMBER, NUMBER(N), NUMBER(N,N) OCINumber

NUMERIC, NUMERIC(N), NUMERIC(N,N) OCINumber

REAL OCINumber

INT, INTEGER, SMALLINT OCINumber

FLOAT, FLOAT(N), DOUBLE PRECISION OCINumber

DEC, DEC(N), DEC(N,N) OCINumber

DECIMAL, DECIMAL(N), DECIMAL(N,N) OCINumber

DATE OCIDate

BLOB OCILobLocator * or
OCIBlobLocator *

CLOB OCILobLocator * or
OCIClobLocator *

BFILE OCIBFileLocator*

REF OCIRef *

RAW(N) OCIRaw *

VARRAY OCIArray *

Nested Table OCITable *
9-4 Oracle Call Interface Programmer’s Guide

Manipulating C Datatypes With OCI
OCI Type Mapping Methodology
Oracle followed a distinct design philosophy when specifying the mappings of
Oracle predefined types. The current system has the following benefits and
advantages:

■ The actual representation of datatypes like OCINumber is opaque to client
applications, and the datatypes are manipulated with a set of predefined
functions. This allows for the internal representation to change to
accommodate future enhancements without breaking user code.

■ The implementation is consistent with object-oriented paradigms in which
class implementation is hidden and only the required operations are exposed.

■ This implementation can have advantages for programmers. Consider a C
program that wants to manipulate Oracle number variables without losing the
accuracy provided by Oracle numbers. To do this in Oracle7, you would have
had to issue a “SELECT...FROM DUAL” statement. In Oracle8, this is
accomplished by invoking the OCINumber*() functions.

Manipulating C Datatypes With OCI
In an OCI application, the manipulation of data may be as simple as adding
together two integer variables and storing the result in a third variable:

integer int_1, int_2, sum;
...
/* some initialization occurs */
...
sum = int_1 + int_2;

The C language provides a set of predefined operations on simple types like
integer. However, the C datatypes listed in Table 9–1 are not simple C primitives.
Types like OCIString and OCINumber are actually structs with a specific Oracle-
defined internal structure. It is not possible to simply add together two
OCINumbers and store the value in the third.

The following is not valid:

OCINumber num_1, num_2, sum;
...
/* some initialization occurs */
...
sum = num_1 + num_2; /* NOT A VALID OPERATION */
 Object-Relational Datatypes 9-5

Manipulating C Datatypes With OCI
The OCI datatype mapping and manipulation functions are provided to enable you
to perform operations on these new datatypes. For example, the above addition of
OCINumbers could be accomplished as follows, using the OCINumberAdd()
function:

OCINumber num_1, num_2, sum;
...
/* some initialization occurs */
...
OCINumberAdd(errhp, &num_1, &num_2, &sum): /* errhp is error handle */

The OCI provides functions to operate on each of the new datatypes. The names of
the functions provide information about the datatype on which they operate. The
first three letters, “OCI”, indicate that the function is part of the OCI. The next part
of the name indicates the datatype on which the function operates. The following
table shows the various function prefixes, along with example function names and
the datatype on which those functions operate:

The structure of each of the datatypes is described later in this chapter, along with a
list of the functions that manipulate that type.

Function Prefix Example Operates On

OCIDate OCIDateDaysBetween() OCIDate

OCINumber OCINumberAdd() OCINumber

OCIString OCIStringSize() OCIString *

OCIRef OCIRefAssign() OCIRef *

OCIRaw OCIRawResize() OCIRaw *

OCIColl OCICollGetElem() OCIColl,
OCIIter,
OCITable,
OCIArray

OCIIter OCIIterInit() OCIIter

OCITable OCITableLast() OCITable *
9-6 Oracle Call Interface Programmer’s Guide

Date (OCIDate)
Precision of Oracle Number Operations
Oracle numbers have a precision of 38 decimal digits. All Oracle number
operations are accurate to the full precision, with the following exceptions:

■ Inverse trigonometric functions are accurate to 28 decimal digits.

■ Other transcendental functions, including trigonometric functions, are accurate
to approximately 37 decimal digits.

■ Conversions to and from native floating-point types have the precision of the
relevant floating-point type, not to exceed 38 decimal digits.

Date (OCIDate)
The Oracle date format is mapped in C by the OCIDate type, which is an opaque C
struct. Elements of the struct represent the year, month, day, hour, minute, and
second of the date. The specific elements can be set and retrieved using the
appropriate OCI functions.

The OCIDate datatype can be bound or defined directly using the external
typecode SQLT_ODT in the bind or define call.

The OCI date manipulation functions are listed in the following tables, which are
organized according to functionality. Unless otherwise specified, the term “date” in
these tables refers to a value of type OCIDate.

See Also: The prototypes and descriptions for all the functions are provided in
Chapter 15, “OCI Datatype Mapping and Manipulation Functions”.

Date Conversion Functions
The following functions perform date conversion.

Function Purpose

OCIDateToText() convert date to string

OCIDateFromText() convert text string to date

OCIDateZoneToZone() convert date from one time zone to
another
 Object-Relational Datatypes 9-7

Date (OCIDate)
Date Assignment and Retrieval Functions
The following functions retrieve and assign date elements.

Date Arithmetic and Comparison Functions
The following functions perform date arithmetic and comparison.

Date Information Accessor Functions
The following functions access date information.

Date Validity Checking Functions
The following function checks date validity.

Function Purpose

OCIDateAssign() OCIDate assignment

OCIDateGetDate() get the date portion of an OCIDate

OCIDateSetDate() set the date portion of an OCIDate

OCIDateGetTime() get the time portion of an OCIDate

OCIDateSetTime() set the time portion of an OCIDate

Function Purpose

OCIDateAddDays() add days

OCIDateAddMonths() add months

OCIDateCompare() compare dates

OCIDateDaysBetween() calculate the number of days between two
dates

Function Purpose

OCIDateLastDay() the last day of the month

OCIDateNextDay() the first named day after a given date

OCIDateSysDate() the system date

Function Purpose

OCIDateCheck() check whether a given date is valid
9-8 Oracle Call Interface Programmer’s Guide

Date (OCIDate)
Date Example
The following code provides examples of how to manipulate an attribute of type
OCIDate using OCI calls.

#define FMT "DAY, MONTH DD, YYYY"
#define LANG "American"
struct person
{
OCIDate start_date;
};
typedef struct person person;

OCIError *err;
person *tim;
sword status; /* error status */
uword invalid;
OCIDate last_day, next_day;
text buf[100], last_day_buf[100], next_day_buf[100];
ub4 buflen = sizeof(buf);

/* For this example, assume the OCIEnv and OCIError have been
* initialized as described in Chapter 2. */
/* Pin tim person object in the object cache. See Chapter 6 for
* information about pinning. For this example, assume that
* tim is pointing to the pinned object. */
/* set the start date of tim */
OCIDateSetTime(&tim->start_date,8,0,0);
OCIDateSetDate(&tim->start_date,1990,10,5)

/* check if the date is valid */
if (OCIDateCheck(err, &tim->start_date, &invalid) != OCI_SUCCESS)
/* error handling code */

if (invalid)
/* error handling code */

/* get the last day of start_date’s month */
if (OCIDateLastDay(err, &tim->start_date, &last_day) != OCI_SUCCESS)
/* error handling code */

/* get date of next named day */
if (OCIDateNextDay(err, &tim->start_date, "Wednesday", strlen("Wednesday"),
&next_day) != OCI_SUCCESS)
/* error handling code */
 Object-Relational Datatypes 9-9

Number (OCINumber)
/* convert dates to strings and print the information out */
/* first convert the date itself*/
buflen = sizeof(buf);
if (OCIDateToText(err, &tim->start_date, FMT, sizeof(FMT)-1, LANG,

sizeof(LANG)-1, &buflen, buf) != OCI_SUCCESS)
/* error handling code */

/* now the last day of the month */
buflen = sizeof(last_day_buf);
if (OCIDateToText(err, &last_day, FMT, sizeof(FMT)-1, LANG, sizeof(LANG)-1,
&buflen, last_day_buf) != OCI_SUCCESS)
/* error handling code */

/* now the first Wednesday after this date */
buflen = sizeof(next_day_out);
if (OCIDateToText(err, &next_day, FMT, sizeof(FMT)-1, LANG,

sizeof(LANG)-1, &buflen, next_day_buf) != OCI_SUCCESS)
/* error handling code */

/* print out the info */
printf("For: %s\n", buf);
printf("The last day of the month is: %s\n", last_day_buf);
printf("The next Wednesday is: %s\n", next_day_buf);

The output will be:

For: Monday, May 13, 1996
The last day of the month is: Friday, May 31
The next Wednesday is: Wednesday, May 15

Number (OCINumber)
The OCINumber datatype is an opaque structure used to represent Oracle numeric
datatypes (NUMBER, FLOAT, DECIMAL, and so forth).

This type can be bound and defined using the external typecode SQLT_VNU in the
bind or define call.

The OCINumber manipulation functions are listed in the following tables, which
are organized according to functionality. Unless otherwise specified, the term
“number” in these tables refers to a value of type OCINumber.

See Also: The prototypes and descriptions for all the functions are provided in
Chapter 15, “OCI Datatype Mapping and Manipulation Functions”.
9-10 Oracle Call Interface Programmer’s Guide

Number (OCINumber)
Number Arithmetic Functions
The following functions perform arithmetic operations.

Number Conversion Functions
The following functions perform conversions between numbers and reals, integers,
and strings.

Function Purpose

OCINumberAbs() get the absolute value of a number

OCINumberAdd() add two numbers together

OCINumberCeil() get the ceiling value of a number

OCINumberDiv() divide one number by another

OCINumberFloor() get the floor value of a number

OCINumberMod() get the modulus from the division of two numbers

OCINumberMul() multiply two numbers together

OCINumberNeg() negate a number

OCINumberRound() round a number to a specified decimal place

OCINumberSign() get the sign of a number

OCINumberSqrt() get the square root of a number

OCINumberSub() subtract one number from another

OCINumberTrunc() truncate a number to a specified decimal place

OCINumberSIgn() returns the sign of a given number

Function Purpose

OCINumberToInt() convert number to integer

OCINumberFromInt() convert integer to number

OCINumberToReal() convert number to real

OCINumberFromReal() convert real to number

OCINumberToText() convert number to string

OCINumberFromText() convert string to number
 Object-Relational Datatypes 9-11

Number (OCINumber)
Exponential and Logarithmic Functions
The following functions perform exponential and logarithmic operations.

Trigonometric Functions
The following functions perform trigonometric operations on numbers.

Number Assignment and Comparison Functions
The following functions perform assign and compare operations on numbers.

Function Purpose

OCINumberPower() take a number base to a given number exponent

OCINumberExp() take the exponent with base e

OCINumberLog() take the logarithm of a given base

OCINumberLn() take the natural logarithm (base e)

OCINumberIntPower() take a number base to a given integer power

Function Purpose

OCINumberArcCos() calculate arc cosine

OCINumberArcSin() calculate arc sine

OCINumberArcTan() / OCINumberArcTan2() calculate arc tangent / of two numbers

OCINumberCos() calculate cosine

OCINumberHypCos() calculate cosine hyperbolic

OCINumberSin() calculate sine

OCINumberHypSin() calculate sine hyperbolic

OCINumberTan() calculate tangent

OCINumberHypTan() calculate tangent hyperbolic

Function Purpose

OCINumberAssign() assign one number to another

OCINumberCmp() compare two numbers

OCINumberIsZero() test if equal to zero

OCINumberSetZero() initialize number to zero
9-12 Oracle Call Interface Programmer’s Guide

Number (OCINumber)
Number Example
The following example shows how to manipulate an attribute of type OCINumber.

struct person
{
OCINumber sal;
};
typedef struct person person;
OCIError *err;
person* steve;
person* scott;
person* jason;
OCINumber *stevesal;
OCINumber *scottsal;
OCINumber *debsal;
sword status;
int inum;
double dnum;
OCINumber ornum;
char buffer[21];
ub4 buflen;
sword result;

/* For this example, assume OCIEnv and OCIError are initialized. */
/* For this example, assume that steve, scott and jason are pointing to

person objects which have been pinned in the object cache. */
stevesal = &steve->sal;
scottsal = &scott->sal;
debsal = &jason->sal;

/* initialize steve’s salary to be $12,000 */
OCINumberInit(err, stevesal);
inum = 12000;
status = OCINumberFromInt(err, &inum, sizeof(inum), OCI_NUMBER_SIGNED,

stevesal);
if (status != OCI_SUCCESS) /* handle error from OCINumberFromInt */;

/* initialize scott’s salary to be same as steve */
OCINumberAssign(err, stevesal, scottsal);

/* initialize jason’s salary to be 20% more than steve’s */
dnum = 1.2;
status = OCINumberFromReal(err, &dnum, DBL_DIG, &ornum);
if (status != OCI_SUCCESS) /* handle error from OCINumberFromReal */;
status = OCINumberMul(err, stevesal, &ornum, debsal);
 Object-Relational Datatypes 9-13

Number (OCINumber)
if (status != OCI_SUCCESS) /* handle error from OCINumberMul */;

/* give scott a 50% raise */
dnum = 1.5;
status = OCINumberFromReal(err, &dnum, DBL_DIG, &ornum);
if (status != OCI_SUCCESS) /* handle error from OCINumberFromReal */;
status = OCINumberMul(err, scottsal, &ornum, scottsal);
if (status != OCI_SUCCESS) /* handle error from OCINumberMul */;

/* double steve’s salary */
status = OCINumberAdd(err, stevesal, stevesal, stevesal);
if (status != OCI_SUCCESS) /* handle error from OCINumberAdd */;

/* get steve’s salary in integer */
status = OCINumberToInt(err, stevesal, sizeof(inum), OCI_NUMBER_SIGNED,

&inum);
if (status != OCI_SUCCESS) /* handle error from OCINumberToInt */;

/* inum is set to 24000 */
/* get jason’s salary in double */
status = OCINumberToReal(err, debsal, sizeof(dnum), &dnum);
if (status != OCI_SUCCESS) /* handle error from OCINumberToReal */;

/* dnum is set to 14400 */
/* print scott’s salary as DEM0001̀ 8000.00 */
buflen = sizeof(buffer);
status = OCINumberToText(err, scottsal, “C0999G9999D99”, 13,

"NLS_NUMERIC_CHARACTERS=’.̀ ’ NLS_ISO_CURRENCY=’Germany’",
54, &buflen, buffer);

if (status != OCI_SUCCESS) /* handle error from OCINumberToText */;
printf("scott’s salary = %s\n", buffer);

/* compare steve and scott’s salaries */
status = OCINumberCmp(err, stevesal, scottsal, &result);
if (status != OCI_SUCCESS) /* handle error from OCINumberCmp */;

/* result is positive */
/* read jason’s new salary from string */
status = OCINumberFromText(err, "48̀ 000.00", 9, “99G999D99”, 9,

"NLS_NUMERIC_CHARACTERS=’.̀ ’", 27, debsal);
if (status != OCI_SUCCESS) /* handle error from OCINumberFromText */;
/* jason’s salary is now 48000.00 */
9-14 Oracle Call Interface Programmer’s Guide

Fixed or Variable-Length String (OCIString)
Fixed or Variable-Length String (OCIString)
Fixed or variable-length string data is represented to C programs as an OCIString *.

The length of the string does not include the null character.

For binding and defining variables of type OCIString * use the external typecode
SQLT_VST.

See Also: The prototypes and descriptions for all the functions are provided in
Chapter 15, “OCI Datatype Mapping and Manipulation Functions”.

String Functions
The following functions allow the C programmer to manipulate an instance of a
string.

String Example
This example assigns a text string to a string, then gets a pointer to the string part
of the string, as well as the string size, and prints it out.

Note the double indirection used in passing the vstring1 parameter in
OCIStringAssignText().

OCIEnv *envhp;
OCIError *errhp;
OCIString *vstring1 = (OCIString *)0;
OCIString *vstring2 = (OCIString *)0;
text c_string[20];
text *text_ptr;
sword status;

strcpy(c_string, "hello world");
/* Assign a text string to an OCIString */

Function Purpose

OCIStringAssign() assign one string to another

OCIStringAssignText() assign text string to string

OCIStringAllocSize() get allocated size of string memory in bytes

OCIStringPtr() get pointer to string part of string

OCIStringSize() get string size

OCIStringResize() resize string memory
 Object-Relational Datatypes 9-15

Raw (OCIRaw)
status = OCIStringAssignText(envhp, errhp, c_string,
 (ub4)strlen(c_string),&vstring1);
/* Memory for vstring1 is allocated as part of string assignment */

status = OCIStringAssignText(envhp, errhp, "hello again",
 (ub4)strlen("This is a longer string."),&vstring1);
/* vstring1 is automatically resized to store the longer string */

/* Get a pointer to the string part of vstring1 */
text_ptr = OCIStringPtr(envhp, vstring1);
/* text_ptr now points to "hello world" */
printf("%s\n", text_ptr);

Raw (OCIRaw)
Variable-length raw data is represented in C using the OCIRaw * datatype.

For binding and defining variables of type OCIRaw *, use the external typecode
SQLT_LVB.

See Also: The prototypes and descriptions for all the functions are provided in
Chapter 15, “OCI Datatype Mapping and Manipulation Functions”.

Raw Functions
The following functions perform OCIRaw operations.

Function Purpose

OCIRawAssignBytes() assign raw data (ub1 *) to OCIRaw *

OCIRawAssignRaw() assign one OCIRaw * to another

OCIRawAllocSize() get the allocated size of raw memory in bytes

OCIRawPtr() get pointer to raw data

OCIRawSize() get size of raw data

OCIRawResize() resize memory of variable-length raw data
9-16 Oracle Call Interface Programmer’s Guide

Collections (OCITable, OCIArray, OCIColl, OCIIter)
Raw Example
In this example, a raw data block is set up and a pointer to its data is obtained.

Note the double indirection in the call to OCIRawAssignBytes().

OCIEnv *envhp;
OCIError *errhp;
sword status;
ub1 data_block[10000];
ub4 data_block_len = 10000;
OCIRaw *raw1;
ub1 *raw1_pointer;

/* Set up the RAW */
/* assume ’data_block’ has been initialized */
status = OCIRawAssignBytes(envhp, errhp, data_block, data_block_len, &raw);

/* Get a pointer to the data part of the RAW */
raw1_pointer = OCIRawPtr(envhp, raw1);

Collections (OCITable, OCIArray, OCIColl, OCIIter)
Oracle8 provides two types of collections: variable-length arrays (varrays) and
nested tables. In C applications, varrays are represented as OCIArray *, and nested
tables are represented as OCITable *. Both of these datatypes (along with OCIColl
and OCIIter, described later) are opaque structures.

A variety of generic collection functions enable you to manipulate collection data.
You can use these functions on both varrays and nested tables. In addition, there is
a set of functions specific to nested tables; see “Nested Table Manipulation
Functions” on page 9-20.

You can allocate an instance of a varray or nested table using OCIObjectNew() and
free it using OCIObjectFree().

See Also: The prototypes and descriptions for all the functions are provided in
Chapter 15, “OCI Datatype Mapping and Manipulation Functions”.

Generic Collection Functions
Oracle8 provides two types of collections: variable-length arrays (varrays) and
nested tables. Both varrays and nested tables can be viewed as sub-types of a
generic collection type.
 Object-Relational Datatypes 9-17

Collections (OCITable, OCIArray, OCIColl, OCIIter)
In C, a generic collection is represented as OCIColl *, a varray is represented as
OCIArray *, and a nested table as OCITable *. Oracle provides a set of functions to
operated on generic collections (such as OCIColl *). These functions start with the
prefix OCIColl, as in OCICollGetElem(). The OCIColl*() functions can also be called
to operate on varrays and nested tables.

The generic collection functions are grouped into two main categories:

■ manipulating varray or nested table data

■ scanning through a collection with a collection iterator

The generic collection functions represent a complete set of functions for
manipulating varrays. Additional functions are provided to operate specifically on
nested tables. They are identified by the prefix OCITable, as in OCITableExists().
These are described in the section “Nested Table Manipulation Functions” on
page 9-20.

Note: Indexes passed to collection functions are zero-based.

Collection Data Manipulation Functions
The following generic functions manipulate collection data:

Function Purpose

OCICollAppend() append an element

OCICollAssignElem() assign element at given index

OCICollAssign() assign one collection to another

OCICollGetElem() get pointer to an element given its index

OCICollMax() get upper bound of collection

OCICollSize() get current size of collection

OCICollTrim() trim n elements from the end of the col-
lection
9-18 Oracle Call Interface Programmer’s Guide

Collections (OCITable, OCIArray, OCIColl, OCIIter)
Collection Scanning Functions
The following generic functions enable you to scan collections with a collection
iterator. The iterator is of type OCIIter, and is created by first calling OCIIterCreate().

Varray/Collection Iterator Example
This example creates and uses a collection iterator to scan through a varray.

OCIEnv *envhp;
OCIError *errhp;
text *text_ptr;
sword status;
OCIArray *clients;
OCIString *client_elem;
OCIIter *iterator;
boolean eoc;
dvoid *elem;
OCIInd *elemind;

/* Assume envhp, errhp have been initialized */
/* Assume clients points to a varray */

/* Print the elements of clients */
/* To do this, create an iterator to scan the varray */
status = OCIIterCreate(envhp, errhp, clients, &iterator);

/* Get the first element of the clients varray */
printf("Clients' list:\n");
status = OCIIterNext(envhp, errhp, iterator, &elem,
 (dvoid **) &elemind, &eoc);

while (!eoc && (status == OCI_SUCCESS))

Function Purpose

OCIIterCreate() create an iterator for scanning collection

OCIIterDelete() delete iterator

OCIIterGetCurrent() get pointer to current element pointed by iter-
ator

OCIIterInit() initialize iterator to scan the given collection

OCIIterNext() get pointer to next element

OCIIterPrev() get pointer to previous element
 Object-Relational Datatypes 9-19

Collections (OCITable, OCIArray, OCIColl, OCIIter)
{
 client_elem = *(OCIString)**elem;
 /* client_elem points to the string */

 /*
 the element pointer type returned by OCIIterNext() via 'elem' is
 the same as that of OCICollGetElem(). Refer to OCICollGetElem() for
 details. */

 /*
 client_elem points to an OCIString descriptor, so to print it out,
 get a pointer to where the text begins
 */
 text_ptr = OCIStringPtr(envhp, client_elem);

 /*
 text_ptr now points to the text part of the client OCIString, which is a
NULL-terminated string
 */
 printf(" %s\n", text_ptr);
 status = OCIIterNext(envhp, errhp, iterator, &elem,
 (dvoid **)&elemind, &eoc);
}

if (status != OCI_SUCCESS)
{
 /* handle error */
}

/* destroy the iterator */
status = OCIIterDelete(envhp, errhp, &iterator);

Nested Table Manipulation Functions
As its name implies, one table may be nested or contained within another, as a
variable, attribute, parameter or column. Nested tables may have elements deleted,
by means of the OCITableDelete() function.

For example, suppose a table is created with 10 elements, and OCITableDelete() is
used to delete elements at index 0 through 4 and 9. The first existing element is
now element 5, and the last existing element is element 8.

As noted above, the generic collection functions may be used to map to and
manipulate nested tables. In addition, the following functions are specific to nested
tables. They should not be used on varrays.
9-20 Oracle Call Interface Programmer’s Guide

Collections (OCITable, OCIArray, OCIColl, OCIIter)
Nested Table Element Ordering
When a nested table is fetched into the object cache, its elements are given a
transient ordering, numbered from zero to the number of elements, minus 1. For
example, a table with 40 elements would be numbered from 0 to 39.

You can use these position ordinals to fetch and assign the values of elements (for
example, fetch to element i, or assign to element j, where i and j are valid position
ordinals for the given table).

When the table is copied back to the database, its transient ordering is lost. Delete
operations may be performed against elements of the table. Delete operations
create transient “holes”; that is, they do not change the position ordinals of the
remaining table elements.

Function Purpose

OCITableDelete() delete an element at a given index

OCITableExists() test whether an element exists at a given index

OCITableFirst() return index for first existing element of table

OCITableLast() return index for last existing element of table

OCITableNext() return index for next existing element of table

OCITablePrev() return index for previous existing element of table

OCITableSize() return table size, not including deleted elements
 Object-Relational Datatypes 9-21

REF (OCIRef)
REF (OCIRef)
In Oracle8, a REF (reference) is an identifier to an object. It is an opaque structure
that uniquely locates the object. An object may point to another object by way of a
REF.

In C applications, the REF is represented by OCIRef *.

See Also: The prototypes and descriptions for all the functions are provided in
Chapter 15, “OCI Datatype Mapping and Manipulation Functions”.

REF Manipulation Functions
The following functions perform REF operations.

REF Example
This example tests two REFs for NULL, compares them for equality, and assigns
one REF to another.

Note the double indirection in the call to OCIRefAssign().

OCIEnv *envhp;
OCIError *errhp;
sword status;
boolean refs_equal;
OCIRef *ref1, ref2;

/* assume refs have been initialized to point to valid objects */
/*Compare two REFs for equality */
refs_equal = OCIRefIsEqual(envhp, ref1, ref2);
printf("After first OCIRefIsEqual:\n");
if(refs_equal)

Function Purpose

OCIRefToHex() convert REF to a hexadecimal string

OCIRefAssign() assign one REF to another

OCIRefClear() clear or nullify a REF

OCIRefIsEqual() compare two REFs for equality

OCIRefFromHex() convert hexadecimal string to a REF

OCIRefIsNull() test whether a REF is NULL

OCIRefHexSize() return size of hex string representation of REF
9-22 Oracle Call Interface Programmer’s Guide

Object Type Information Storage and Access
 printf("REFs equal\n");
else
 printf("REFs not equal\n");

/*Assign ref1 to ref2 */
status = OCIRefAssign (envhp, errhp, ref1, &ref2);
if(status != OCI_SUCCESS)
/*error handling*/

/*Compare the two REFs again for equality */
refs_equal = OCIRefIsEqual(envhp, ref1, ref2);
printf("After second OCIRefIsEqual:\n");
if(refs_equal)
 printf("REFs equal\n");
else
 printf("REFs not equal\n");

Object Type Information Storage and Access

Descriptor Objects
When a given type is created with the CREATE TYPE statement, it is stored in the
server and associated with a type descriptor object (TDO). In addition, the database
stores descriptor objects for each data attribute of the type, each method of the
type, each parameter of each method, and the results returned by methods. The
following table lists the OCI datatypes associated with each type of descriptor
object.

Several OCI functions (including OCIBindObject() and OCIObjectNew()) require a
TDO as an input parameter. An application can obtain the TDO by calling
OCITypeByName(), which gets the type’s TDO in an OCIType variable. Once you
obtain the TDO, you can pass it, as necessary to other calls.

Information Type OCI Datatype

Type OCIType

Type Attributes Collection Elements
Method Parameters Method Results

OCITypeElem

Method OCITypeMethod
 Object-Relational Datatypes 9-23

Object Type Information Storage and Access
9-24 Oracle Call Interface Programmer’s Guide

 Binding and Defining in Object Appli
10

Binding and Defining in Object Applications

The concepts of binding and defining were introduced and discussed in Chapter 2,
“OCI Programming Basics” and in Chapter 5, “Binding and Defining”. This chapter
provides additional information necessary for users who are developing object
applications. This includes information about binding and defining object
datatypes, as well as additional datatypes which have been introduced to support
objects.

This chapter assumes that readers are familiar with the basics of binding and
defining described in the earlier chapters.

This chapter includes the following sections:

■ Binding

■ Defining

■ Binding And Defining Oracle8 C Datatypes

Note: The functionality described in this chapter is only available if you have
purchased the Oracle8 Enterprise Edition with the Objects Option.
cations 10-1

Binding
Binding
This section provides information on binding named data types (e.g., objects,
collections) and REFs.

Named Data Type Binds
For a named data type (object type or collection) bind, a second bind call is
necessary (following OCIBindByName() or OCIBindByPos()). The OCI Bind Object
Type call, OCIBindObject(), sets up additional attributes specific to the object type
bind. An OCI application uses this call when fetching data from a table which has a
column with an object datatype.

The OCIBindObject() call takes, among other parameters, a Type Descriptor Object
(TDO) for the named data type. The TDO, of datatype OCIType is created and
stored in the database when a named data type is created. It contains information
about the type and its attributes. An application can obtain a TDO by calling
OCITypeByName().

The OCIBindObject() call also sets up the indicator variable or structure for the
named data type bind.

When binding a named data type, use the SQLT_NTY datatype constant to indicate
the datatype of program variable being bound. SQLT_NTY indicates that a C struct
representing the named data type is being bound. A pointer to this structure is
passed to the bind call.

It is possible that working with named data types may require the use of three bind
calls in some circumstances. For example, to bind a static array of named data types
to a PL/SQL table, three calls must be invoked: OCIBindByName(),
OCIBindArrayOfStruct(), and OCIBindObject().

See Also: For information about using these data types to fetch an embedded
object from the database, refer to the section “Fetching Embedded Objects” on
page 8-15.

For additional important information, see the section “Additional Information
for Named Data Type and REF Binds” on page 10-3

For more information about descriptor objects, see “Descriptor Objects” on
page 9-23.
10-2 Oracle Call Interface Programmer’s Guide

Binding
Binding REFs
As with named data types, binding REFs is a two-step process. First, call
OCIBindByName() or OCIBindByPos(), and then call OCIBindObject().

REFs are bound using the SQLT_REF datatype. When SQLT_REF is used, then the
program variable being bound must be of type OCIRef *.

See Also: For information about binding and pinning REFs to objects, see
“Retrieving an Object Reference from the Server” on page 8-11.

For additional important information, see the section “Additional Information
for Named Data Type and REF Binds” on page 10-3.

Additional Information for Named Data Type and REF Binds
This section presents some additional important information to keep in mind when
working with named data type and REF defines. It includes pointers about
memory allocation and indicator variable usage.

■ If the datatype being bound is SQLT_NTY, the indicator struct parameter of the
OCIBindObject() call (dvoid ** indpp) is used, and the scalar indicator is
completely ignored.

■ If the datatype is SQLT_REF, the scalar indicator is used, and the indicator
struct parameter of OCIBindObject() is completely ignored.

■ The use of indicator structures is optional. The user can pass a NULL pointer in
the indpp parameter for the OCIBindObject() call. During the bind, this means
that the object is not atomically NULL and none of its attributes are NULL.

■ The indicator struct size pointer, indsp, and program variable size pointer,
pgvsp, in the OCIBindObject() call is optional. Users can pass NULL if these
parameters are not needed.

Information Regarding Array Binds
For doing array binds of named data types or REFs, for array inserts or fetches, the
user needs to pass in an array of pointers to buffers (pre-allocated or otherwise) of
the appropriate type. Similarly, an array of scalar indicators (for SQLT_REF types)
or an array of pointers to indicator structs (for SQLT_NTY types) needs to be
passed.

See Also: For more information about SQLT_NTY, see the section “New OCI
8.0 External Datatypes” on page 3-18.
 Binding and Defining in Object Applications 10-3

Defining
Defining
This section provides information on defining named data types (e.g., objects,
collections) and REFs.

Defining Named Data Type Output Variables
For a named data type (object type, nested table, varray) define, two define calls are
necessary. The application should first call OCIDefineByPos(), specifying SQLT_NTY
in the dty parameter. Following OCIDefineByPos(), the application must call
OCIDefineObject(). In this case, the data buffer pointer in OCIDefineByPos() is
ignored and additional attributes pertaining to a named data type define are set up
using the OCI Define Object attributes call, OCIDefineObject().

There SQLT_NTY datatype constant is specified for a named datatype define. In
this case, the application fetches the result data into a host-language representation
of the named data type. In most cases, this will be a C struct generated by the
Object Type Translator.

When making an OCIDefineObject() call, a pointer to the address of the C struct
(preallocated or otherwise) must be provided. The object may have been created
with OCIObjectNew(), allocated in the cache, or with user-allocated memory.

Note: Please refer to the section“Additional Information for Named Data Type
and REF Defines, and PL/SQL OUT Binds” on page 10-5 for more important
information about defining named data types.

Defining REF Output Variables
As with named data types, defining for a REF output variable is a two-step process.
The first step is a call to OCIDefineByPos(), and the second is a call to
OCIDefineObject(). Also as with named data types, the SQLT_REF datatype constant
is passed to the dty parameter of OCIDefineByPos().

SQLT_REF indicates that the application will be fetching the result data into a
variable of type OCIRef *. This REF can then be used as part of object pinning and
navigation, as described in Chapter 6.

Note: Please refer to the section“Additional Information for Named Data Type
and REF Defines, and PL/SQL OUT Binds” on page 10-5 for more important
information about defining REFs.
10-4 Oracle Call Interface Programmer’s Guide

Defining
Additional Information for Named Data Type and REF Defines, and PL/SQL OUT Binds
This section presents some additional important information to keep in mind when
working with named data type and REF defines. It includes pointers about
memory allocation and indicator variable usage.

A PL/SQL OUT bind refers to binding a placeholder to an output variable in a PL/
SQL block. Unlike a SQL statement, where output buffers are set up with define
calls, in a PL/SQL block, output buffers are set up with bind calls. Refer to the
section “Binding Placeholders in PL/SQL” on page 5-5 for more information.

■ If the datatype being defined is SQLT_NTY, the indicator struct parameter of
the OCIDefineObject() call (dvoid ** indpp) is used, and the scalar indicator is
completely ignored.

■ If the datatype is SQLT_REF, the scalar indicator is used, and the indicator
struct parameter of OCIDefineObject() is completely ignored.

■ The use of indicator structures is optional. The user can pass a NULL pointer in
the indpp parameter for the OCIDefineObject() call. During a fetch or PL/SQL
OUT bind, this means that the user is not interested in any NULLness
information.

■ In a SQL define or PL/SQL OUT bind, if the user passes in preallocated
memory for either the output variable or the indicator, then that preallocated
memory is used to store result data, and all secondary memory (out-of-line
memory), if any, will get deallocated. The pre-allocated memory can either
come from the cache (the result of an OCIObjectNew() call), or from the client’s
private memory space.

Note: If a client application wants to allocate memory from its own private
memory space, instead of the cache, it must insure that there is no secondary
out-of-line memory in the object.

■ In a SQL define or PL/SQL OUT bind, if the user passes in a NULL address for
the output variable or the indicator, memory for the variable or the indicator
will be implicitly allocated by OCI.

■ If an output object of type SQLT_NTY is atomically NULL (in a SQL define or
PL/SQL OUT bind), only the NULL indicator struct will get allocated
(implicitly if necessary) and populated accordingly to indicate the atomic
NULLness of the object. The top-level object, itself, will not get implicitly
allocated.

■ An application can free indicators by calling OCIObjectFree(). If there is a top-
level object (as in the case of a non-atomically NULL object), then the indicator
 Binding and Defining in Object Applications 10-5

Binding And Defining Oracle8 C Datatypes
is freed when the top-level object is freed with OCIObjectFree(). If the object is
atomically null, then there is no top-level object, so the indicator must be freed
separately.

■ The indicator struct size pointer, indsp, and program variable size pointer,
pgvsp, in the OCIDefineObject() call is optional. Users can pass NULL if these
parameters are not needed.

Information About Array Defines
For doing array defines of named data types or REFs, the user needs to pass in an
array of pointers to buffers (pre-allocated or otherwise) of the appropriate type.
Similarly, an array of scalar indicators (for SQLT_REF types) or an array of pointers
to indicator structs (for SQLT_NTY types) needs to be passed.

Binding And Defining Oracle8 C Datatypes
Previous chapters of this book have discussed OCI bind and define operations.
“Binding” on page 4-5 discussed the basics of OCI bind operations, while
“Defining” on page 4-11 discusses the basics of OCI define operations. Information
specific to binding and defining named data types and REFs is found in Chapter 5,
“Binding and Defining”.

The sections covering basic bind and define functionality showed how an
application could use a scalar variable or array of scalars as an input (bind) value in
a SQL statement, or as an output (define) buffer for a query.

The sections covering named data types and REFs showed how to bind or define
an object or reference. Chapter 8 expanded on this to talk about pinning object
references, object navigation, and fetching embedded instances.

The purpose of this section is to cover binding and defining of individual attribute
values, using the datatype mappings explained in this chapter.

Variables of one of the types defined in this chapter (e.g., OCINumber, OCIString)
can typically be declared in an application and used directly in an OCI bind or
define operation as long as the appropriate datatype code is specified. The
following table lists the datatypes that can be used for binds and defines, along
with their C mapping, and the OCI external datatype which must be specified in
the dty (datatype code) parameter of the bind or define call.
10-6 Oracle Call Interface Programmer’s Guide

Binding And Defining Oracle8 C Datatypes
Note 1: Before fetching data into a define variable of type OCIString *, the size
of the string must first be set using the OCIStringResize() routine. This may
require a describe operation to obtain the length of the select-list data.
Similarly, an OCIRaw * must be first sized with OCIRawResize().

The following section presents examples of how to use C-mapped datatypes in an
OCI application.

See Also: For a discussion of OCI external datatypes, and a list of datatype
codes, refer to Chapter 3, “Datatypes”.

Table 10–1 Datatype Mappings for Binds and Defines

Datatype C Mapping OCI External Datatype and Code

Oracle number OCINumber VARNUM (SQLT_VNU)

Oracle date OCIDate SQLT_ODT

VARCHAR2 OCIString * SQLT_VST (see Note 1 below)

RAW OCIRaw * SQLT_LVB (see Note 1 below)

CHAR OCIString * SQLT_VST

OBJECT struct * Named Data Type (SQLT_NTY)

REF OCIRef * REF (SQLT_REF)

VARRAY OCIArray * Named Data Type (SQLT_NTY)

Nested Table OCITable * Named Data Type (SQLT_NTY)
 Binding and Defining in Object Applications 10-7

Binding And Defining Oracle8 C Datatypes
Bind and Define Examples
The examples in this section demonstrate how variables of type OCINumber can
be used in OCI bind and define operations.

Note: The examples in this section are intended to demonstrate the flow of calls
used to perform certain OCI tasks. An expanded pseudocode is used for the
examples in this section. Actual function names are used, but for the sake of
simplicity not all parameters and typecasts are filled in. Additionally, other
necessary OCI calls, like handle allocations, have been omitted.

Assume, for this example, that the following person object type was created:

CREATE TYPE person AS OBJECT
(name varchar2(30),
salary number);

This type is then used to create an employees table which has a column of type
person .

CREATE TABLE employees
(emp_id number,
job_title varchar2(30),
emp person);

OTT generates the following C struct and null indicator struct for person :

struct person
{ OCIString * name;

OCINumber salary;};
typedef struct person person;

struct person_ind
{ OCIInd _atomic;

OCIInd name;
OCIInd salary;}

typedef struct person_ind person_ind;

Assume that the employees table has been populated with values, and an OCI
application has declared a person variable:

person *my_person;

and fetched an object into that variable through a SELECT statement, like

text *mystmt = (text *) “SELECT person FROM employees
WHERE emp.name=’ANDREA’”;
10-8 Oracle Call Interface Programmer’s Guide

Binding And Defining Oracle8 C Datatypes
This would require defining my_person to be the output variable for this
statement, using appropriate OCI define calls for named datatypes, as described in
the section “Advanced Define Operations” on page 5-16. Executing the statement
would retrieve the person object named ‘ANDREA’ into the my_person variable.

Once the object is retrieved into my_person , the OCI application now has access to
the attributes of my_person , including the name and the salary.

The application could go on to update another employee’s salary to be the same as
Andrea’s, as in

text *updstmt = (text *) “UPDATE employees SET emp.salary = :newsal
WHERE emp.name = ‘MONGO’”

Andrea’s salary (stored in my_person->salary) would be bound to the
placeholder :newsal, specifying an external datatype of VARNUM (datatype
code=6) in the bind operation:

OCIBindByName(...,”:newsal”,...,&my_person->salary,...,6,...);
OCIStmtExecute(...,updstmt,...)

Executing the statement updates Mongo’s salary in the database to be equal to
Andrea’s, as stored in my_person.

Conversely, the application could update Andrea’s salary to be the same as
Mongo’s, by querying the database for Mongo’s salary, and then making the
necessary salary assignment:

text *selstmt = (text *) “SELECT emp.salary FROM employees
WHERE emp.name = ‘MONGO’”

OCINumber mongo_sal;
...
OCIDefineByPos(...,1,...,&mongo_sal,...,6,...);
OCIStmtExecute(...,selstmt,...);
OCINumberAssign(...,&mongo_sal, &my_person->salary);

In this case, the application declares an output variable of type OCINumber and
uses it in the define step. In this case we define an output variable for position 1,
and use the appropriate datatype code (6 for VARNUM).

The salary value is fetched into the mongo_sal OCINumber, and the appropriate
OCI function, OCINumberAssign(), is used to assign the new salary to the copy of
the Andrea object currently in the cache. To modify the data in the database, the
change must be flushed to the server.
 Binding and Defining in Object Applications 10-9

Binding And Defining Oracle8 C Datatypes
3 Salary Update Examples
The examples in the previous section should give some idea of the flexibility which
the new Oracle8 datatypes provide for bind and define operations. The goal of this
section is to show how the same operation can be performed in several different
ways. The goal is to give you some idea of the variety of ways in which these
datatypes can be used in OCI applications.

The examples in this section are intended to demonstrate the flow of calls used to
perform certain OCI tasks. An expanded pseudocode is used for the examples in
this section. Actual function names are used, but for the sake of simplicity not all
parameters and typecasts are filled in. Additionally, other necessary OCI calls, like
handle allocations, have been omitted.

The Scenario
The scenario for these examples is as follows:

1. An employee named ‘BRUCE’ exists in the employees database for a hospital
(see person type and employees table creation statements in previous sec-
tion).

2. Bruce’s current job title is ‘RADIOLOGIST’.

3. Bruce is being promoted to ‘RADIOLOGY_CHIEF’, and along with the promo-
tion comes a salary increase.

4. Hospital salaries are in whole dollar values, are set according to job title, and
stored in a table called salaries, defined as follows:

CREATE TABLE salaries
(job_title varchar2(20),
salary integer));

5. Bruce’s salary needs to be updated to reflect his promotion.

Accomplishing the above task requires that the application retrieve the salary
corresponding to ‘RADIOLOGY_CHIEF’ from the salaries table, and update
Bruce’s salary. A separate step would write his new title and the modified object
back to the database.

Assuming that a variable of type person has been declared

person * my_person;

and the object corresponding to Bruce has been fetched into it, the following
sections present three different ways in which the salary update could be
performed.
10-10 Oracle Call Interface Programmer’s Guide

Binding And Defining Oracle8 C Datatypes
Method 1 - fetch, convert, assign
This example uses the following method:

1. Do a traditional OCI define using an integer variable to retrieve the new salary
from the database.

2. Convert the integer to an OCINumber.

3. Assign the new salary to Bruce.

#define INT_TYPE 3 /* datatype code for sword integer define */

text *getsal = (text *) “SELECT salary FROM salaries
WHERE job_title=’RADIOLOGY_CHIEF’

sword new_sal;
OCINumber orl_new_sal;
...
OCIDefineByPos(...,1,...,new_sal,...,INT_TYPE,...);

/* define int output */
OCIStmtExecute(...,getsal,...);

/* get new salary as int */
OCINumberFromInt(...,new_sal,...,&orl_new_sal);

/* convert salary to OCINumber */
OCINumberAssign(...,&orl_new_sal, &my_person->salary);

/* assign new salary */

Method 2 - fetch, assign
This method eliminates one of the steps in Method 1:

1. Define an output variable of type OCINumber, so that no conversion is neces-
sary after the value is retrieved.

2. Assign the new salary to Bruce

#define VARNUM_TYPE 6 /* datatype code for defining VARNUM */

text *getsal = (text *) “SELECT salary FROM salaries
 WHERE job_title=’RADIOLOGY_CHIEF’
OCINumber orl_new_sal;
...
OCIDefineByPos(...,1,...,orl_new_sal,...,VARNUM_TYPE,...);
 /* define OCINumber output */
OCIStmtExecute(...,getsal,...); /* get new salary as OCINumber */
OCINumberAssign(...,&orl_new_sal, &my_person->salary);
 /* assign new salary */
 Binding and Defining in Object Applications 10-11

Binding And Defining Oracle8 C Datatypes
Method 3 - direct fetch
This method accomplishes the entire operation with a single define and fetch. No
intervening output variable is used, and the value retrieved from the database is
fetched directly into the salary attribute of the object stored in the cache.

1. Since Bruce is pinned in the object cache, use the location of his salary attribute
as the define variable, and execute/fetch directly into it.

#define VARNUM_TYPE 6 /* datatype code for defining VARNUM */

text *getsal = (text *) “SELECT salary FROM salaries
 WHERE job_title=’RADIOLOGY_CHIEF’
...
OCIDefineByPos(...,1,...,&my_person->salary,...,VARNUM_TYPE,...);
 /* define bruce’s salary in cache as output variable */
OCIStmtExecute(...,getsal,...);
 /* execute and fetch directly */

Summary and Notes
As the previous three examples show, the Oracle8 C datatypes provide flexibility
for binding and defining. In these examples an integer can be fetched, and then
converted to an OCINumber for manipulation; an OCINumber could be used as
intermediate variable to store the results of a query; or data can be fetched directly
into a desired OCINumber attribute of an object.

Note: In all of these examples it is important to keep in mind that in the
Oracle8 OCI, if an output variable is defined before the execution of a query,
the resulting data will be prefetched directly into the output buffer.

In the above examples, extra steps would be necessary to insure that changes are
written to the database permanently. This may involve SQL UPDATE calls and OCI
transaction commit calls.

These examples all dealt with define operations, but a similar situation applies for
binding.

Similarly, although these examples dealt exclusively with the OCINumber type, a
similar variety of operations are possible for the other Oracle8 C types described in
the remainder of this chapter.
10-12 Oracle Call Interface Programmer’s Guide

SQLT_NTY Bind/Define Example
SQLT_NTY Bind/Define Example
The following code fragments demonstrate the use of SQLT_NTY bind and define
calls, including OCIBindObject() and OCIDefineObject(). In each example, a
previously defined SQL statement is being processed.

Bind Example
/*
** This example performs a SQL insert statement
*/
STATICF void insert(envhp, svchp, stmthp, errhp, insstmt, nrows)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
OCIError *errhp;
text *insstmt;
ub2 nrows;
{
 orttdo *addr_tdo = NULLP(orttdo);
 address addrs;
 null_address naddrs;
 address *addr = &addrs;
 null_address *naddr = &naddrs;
 sword custno =300;
 OCIBind *bnd1p, *bnd2p;
 ub2 i;

 /* define the application request */
 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) insstmt,
 (ub4) strlen((char *)insstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 /* bind the input variable */
 checkerr(errhp, OCIBindByName(stmthp, &bnd1p, errhp, (text *) ":custno",
 (sb4) -1, (dvoid *) &custno,
 (sb4) sizeof(sword), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0, (ub4) 0, (ub4 *) 0,
 (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIBindByName(stmthp, &bnd2p, errhp, (text *) ":addr",
 (sb4) -1, (dvoid *) 0,
 (sb4) 0, SQLT_NTY, (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT));
 Binding and Defining in Object Applications 10-13

SQLT_NTY Bind/Define Example
 checkerr(errhp, OCITypeByName(envhpx, errhp, svchpx, (const text *)
 SCHEMA, (ub4) strlen((char *)SCHEMA), (const text *)
 "ADDRESS_VALUE", (ub4) strlen((char *)"ADDRESS_VALUE"),
 OCI_DURATION_SESSION, &addr_tdo));

 if(!addr_tdo)
 {
 DISCARD printf("Null tdo returned\n");
 goto done_insert;
 }

 checkerr(errhp, OCIBindObject(bnd2p, errhp, addr_tdo, (dvoid **) &addr,
 (ub4 *) 0, (dvoid **) &naddr, (ub4 *) 0));

Define Example
/*
** This example executes a SELECT statement from a table which includes
** an object.
*/

STATICF void selectval(envhp, svchp, stmthp, errhp)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
OCIError *errhp;
{
 orttdo *addr_tdo = NULLP(orttdo);
 OCIDefine *defn1p, *defn2p;
 address *addr = (address *)NULL;
 sword custno =0;
 sb4 status;

 /* define the application request */
 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) selvalstmt,
 (ub4) strlen((char *)selvalstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 /* define the output variable */
checkerr(errhp, OCIDefineByPos(stmthp, &defn1p, errhp, (ub4) 1, (dvoid *)
 &custno, (sb4) sizeof(sword), SQLT_INT, (dvoid *) 0, (ub2 *)0,
 (ub2 *)0, (ub4) OCI_DEFAULT));

checkerr(errhp, OCIDefineByPos(stmthp, &defn2p, errhp, (ub4) 2, (dvoid *)
 0, (sb4) 0, SQLT_NTY, (dvoid *) 0, (ub2 *)0,
10-14 Oracle Call Interface Programmer’s Guide

SQLT_NTY Bind/Define Example
 (ub2 *)0, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCITypeByName(envhpx, errhp, svchpx, (const text *)
 SCHEMA, (ub4) strlen((char *)SCHEMA), (const text *)
 "ADDRESS_VALUE", (ub4) strlen((char *)"ADDRESS_VALUE"),OROODTSES,
 &addr_tdo));

 if(!addr_tdo)
 {
 printf("NULL tdo returned\n");
 goto done_selectval;
 }

 checkerr(errhp, OCIDefineObject(defn2p, errhp, addr_tdo, (dvoid **)
 &addr, (ub4 *) 0, (dvoid **) 0, (ub4 *) 0));

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *) NULL, (OCISnapshot *) NULL, (ub4) OCI_DEFAULT));
 Binding and Defining in Object Applications 10-15

SQLT_NTY Bind/Define Example
10-16 Oracle Call Interface Programmer’s Guide

 Object Cache and Object Nav
11

Object Cache and Object Navigation

This chapter introduces the OCI’s facility for working with objects in an Oracle8
server. It also discusses the OCI’s object navigational function calls.

This chapter includes the following sections:

■ Chapter Overview

■ The Object Cache and Memory Management

■ Object Navigation

■ OCI Navigational Functions

Note: The functionality described in this chapter is only available if you have
purchased the Oracle8 Enterprise Edition with the Objects Option.
igation 11-1

Chapter Overview
Chapter Overview
This chapter is broken down into several main sections that cover the basic
concepts involved in writing OCI applications to manipulate Oracle8 objects. The
chapter also covers the OCI navigational function calls.

The following specific sections are included:

■ The Object Cache and Memory Management - This section discusses OCI
object programming in more detail, including more sophisticated options.

■ Object Navigation - This section discusses basic object navigation using the
Oracle8 OCI.

■ OCI Navigational Functions - This section introduces the OCI functions that
enable an application to navigate through a graph of objects.

Complete descriptions of the OCI navigational functions can be found in
Chapter 14, “OCI Navigation and Type Functions”.

The Object Cache and Memory Management
The object cache is a client-side memory buffer that provides lookup and memory
management support for objects. It stores and tracks object instances that have
been fetched by an OCI application.

When objects are fetched by the application through a SQL SELECT, or through an
OCI pin operation, a copy of the object is stored in the object cache. Objects that are
fetched directly through a SELECT statement are fetched by value, and they are non-
referenceable objects which cannot be pinned. Only referenceable objects may be
pinned.

If an object is being pinned, and an appropriate version already exists in the cache,
it does not need to be fetched from the server.

Every client program that uses the Oracle8 OCI to dereference REFs to retrieve
objects utilizes the object cache. A client-side object cache is allocated for every OCI
environment handle initialized in object mode. Multiple threads of a process can
share the same client-side cache by sharing the same OCI environment handle.

Exactly one copy of each referenceable object exists in the cache per connection.
Dereferencing a REF many times or dereferencing several equivalent REFs returns
the same copy of the object.

If you modify a copy of an object in the cache, you must flush the changes to the
server before they are visible to other processes. Objects that are no longer needed
11-2 Oracle Call Interface Programmer’s Guide

The Object Cache and Memory Management
can be unpinned or freed; they can then be swapped out of the cache, freeing the
memory space they occupied.

The object cache maintains the association between all object copies in the cache
and their corresponding objects in the database.

The cache does not manage the contents of object copies; it does not automatically
refresh object copies. The application must ensure the correctness and consistency
of the contents of object copies. For example, if the application marks an object
copy for insert, update, or delete, then aborts the transaction, the cache simply
unmarks the object copy but does not purge or invalidate the copy. The application
must pin “recent” or “latest”, or refresh the object copy in the next transaction. If it
pins “any”, it may get the same object copy with its uncommitted changes from the
previous aborted transaction.

See Also: For more information about pin options, see “Pinning an Object
Copy” on page 11-6.

The object cache is created when the OCI environment is initialized in object mode,
using OCIInitialize(). Each application processes running against the same server
has its own object cache, as shown in Figure 11–1.
 Object Cache and Object Navigation 11-3

The Object Cache and Memory Management
Figure 11–1 The Object Cache

The object cache tracks the objects that are currently in memory, maintains
references to the objects, manages automatic object swapping, and tracks object
meta-attributes.

Cache Consistency and Coherency
The object cache does not automatically maintain value coherency or consistency
between object copies and their corresponding objects in the database. In other
words, if an application makes changes to an object copy, the changes are not
automatically applied to the corresponding object in the database, and vice versa.

Application 1
Object Cache

Application 2
Object Cache

System Global
Area (SGA)

ORACLE8
DATABASE
11-4 Oracle Call Interface Programmer’s Guide

The Object Cache and Memory Management
The cache provides operations such as flushing a modified object copy to the
database and refreshing a stale object copy with the latest value from the database
to enable the program to maintain some coherency.

Note: Oracle8 does not support automatic cache coherency with the server's
buffer cache or database. Automatic cache coherency refers to the mechanism
by which the object cache refreshes local object copies when the corresponding
objects have been modified in the server's buffer cache, and the object cache
flushes the changes made to local object copies to the buffer cache before any
direct access of corresponding objects in the server. Direct access includes using
SQL, triggers, or stored procedures to read or modify objects in the server.

Object Cache Parameters
The object cache has two important parameters associated with it, which are
attributes of the environment handle:

■ OCI_ATTR_CACHE_MAX_SIZE, the maximum cache size

■ OCI_ATTR_CACHE_OPT_SIZE, the optimal cache size

These parameters refer to levels of cache memory usage, and they help to
determine when the cache automatically ages out eligible objects to free up memory.

If the memory occupied by the objects currently in the cache reaches or exceeds the
high watermark, the cache automatically begins to free unmarked objects which
have a pin count of zero. The cache continues freeing such objects until memory
usage in the cache reaches the optimal size, or until it runs out of objects eligible for
freeing.

OCI_ATTR_CACHE_MAX_SIZE is specified as a percentage of
OCI_ATTR_CACHE_OPT_SIZE. The maximum object cache size (in bytes) is
computed by incrementing OCI_ATTR_CACHE_OPT_SIZE by
OCI_ATTR_CACHE_MAX_SIZE percentage:

maximum_cache_size = optimal_size + optimal_size * max_size_percentage / 100

or

maximum_cache_size = OCI_ATTR_CACHE_OPT_SIZE + OCI_ATTR_CACHE_OPT_SIZE *
OCI_ATTR_CACHE_MAX_SIZE / 100

The default value for OCI_ATTR_CACHE_MAX_SIZE is 10%.

The default value for OCI_ATTR_CACHE_OPT_SIZE is 200k bytes.

See the section "Environment Handle Attributes" on page B-3 for more information.
 Object Cache and Object Navigation 11-5

The Object Cache and Memory Management
Object Cache Operations
This section describes the most important functions the object cache provides to
operate on object copies. All of the OCI’s navigational and cache/object
management functions are listed in the section “OCI Navigational Functions” on
page 11-18.

Pinning and unpinning Pinning an object copy allows the application to access it in
the cache by dereferencing the REF to it.

Unpinning an object indicates to the cache that the object currently is not being
used. Objects should be unpinned when they are no longer needed to make them
eligible for implicit freeing by the cache, thus freeing up memory.

Freeing Freeing an object copy removes it from the cache and frees its memory.

Marking and unmarking Marking an object notifies the cache that an object copy has
been updated in the cache and the corresponding object must be updated in the
server when the object copy is flushed.

Unmarking an object removes the indication that the object has been updated.

Flushing Flushing an object writes local changes made to marked object copies in
the cache to the corresponding objects in the server. When this happens, the copies
in the object cache are unmarked.

Refreshing Refreshing an object copy in the cache replaces it with the latest value of
the corresponding object in the server.

Note: Pointers to top-level object memory are valid after a refresh. Pointers to
secondary-level memory (e.g., string text pointers, collections, etc.) may
become invalid after a refresh.

Operations for Loading and Removing Object Copies
Pin, unpin, and free functions are discussed in this section.

Pinning an Object Copy
When an application needs to dereference a REF in the object cache, it calls
OCIObjectPin(). This call dereferences the REF and pins the object copy in the cache.
As long as the object copy is pinned, it is guaranteed to be accessible by the
application. Another variation of OCIObjectPin() is OCIObjectPinArray() which
takes an array of REFs, dereferences the REFs, and pins the object copies. Both
11-6 Oracle Call Interface Programmer’s Guide

The Object Cache and Memory Management
OCIObjectPin() and OCIObjectPinArray() take a pin option, “any”, “recent”, or
“latest”. The datatype of the pin option is OCIPinOpt.

■ If the “any” (OCI_PIN_ANY) option is specified, the object cache immediately
returns the object copy that is already in the cache, if there is one. If no copy is
in the cache, the object cache loads the latest object copy from the database and
then returns the object copy. The “any” option is appropriate for read-only,
informational, fact, or meta objects (such as products, salesmen, vendors,
regions, parts, offices, etc.). These objects usually don't change often, and even
if they change, the change does not affect the application.

■ If the “latest” (OCI_PIN_LATEST) option is specified, the object cache loads
into the cache the latest object copy from the database and returns that copy
unless the object copy is locked in the cache, in which case the marked object
copy is returned immediately. If the object is already in the cache and not
locked, the latest object copy is loaded and overwrites the existing one. The
“latest” option is appropriate for operational objects (such as purchase orders,
bugs, line items, bank accounts, stock quotes, etc.); these objects usually change
often, and the program cares to access these objects at their latest possible state.

■ If the “recent” (OCI_PIN_RECENT) option is specified, there are two
possibilities:

a. If, in the same transaction, the object copy has been previously pinned
using the “latest” or “recent” option, the “recent” option becomes equiva-
lent to the “any” option. Otherwise,

b. the “recent” option becomes equivalent to the “latest” option.

When the program pins an object, the program also specifies one of two possible
values for the pin duration: “session” or “transaction”. The datatype of the
duration is OCIDuration.

■ If the pin duration is “session” (OCI_DURATION_SESSION), the object copy
remains pinned until the end of session (i.e., end of connection) or until it is
unpinned explicitly by the program (by calling OCIObjectUnpin()).

■ If the pin duration is “transaction” (OCI_DURATION_TRANS), the object copy
remains pinned until the end of transaction or until it is unpinned explicitly.

When loading an object copy into the cache from the database, the cache effectively
executes

SELECT VALUE(t) FROM t WHERE REF(t) = :r
 Object Cache and Object Navigation 11-7

The Object Cache and Memory Management
where t is the object table storing the object, and r is the REF, and the fetched value
becomes the value of the object copy in the cache.

Since the object cache effectively executes a separate SELECT statement to load
each object copy into the cache, in a read-committed transaction, object copies are
not guaranteed to be read-consistent with each other.

In a serializable transaction, object copies (pinned “recent” or “latest”) are read-
consistent with each other because the SELECT statements to load these object
copies are executed based on the same database snapshot.

The object cache model is orthogonal to or independent of the Oracle transaction
model. The behavior of the object cache does not change based on the transaction
model, even though the objects that are retrieved from the server through the object
cache can be different when running the same program under different transaction
models (e.g., read committed versus serializable).

Unpinning an Object Copy
An object copy can be unpinned when it is no longer used by the program. It then
becomes available to be freed. An object copy must be both completely unpinned
and unmarked in order to become eligible to be implicitly freed by the cache when
the cache begins to run out of memory. To be completely unpinned, an object copy
that has been pinned N times must be unpinned N times.

An unpinned but marked object copy is not eligible for implicit freeing until the
object copy is flushed or explicitly unmarked by the user. However, the object cache
implicitly frees object copies only when it begins to run out of memory, so an
unpinned object copy need not necessarily be freed. If it has not been implicitly
freed and is pinned again (with the any or recent options), the program gets the
same object copy.

An application calls OCIObjectUnpin() or OCIObjectPinCountReset() to unpin an
object copy. In addition, a program can call OCICacheUnpin() to completely unpin
all object copies in the cache for a specific connection.

Freeing an Object Copy
Freeing an object copy removes it from the object cache and frees up its memory.
The cache supports two methods for freeing up memory:

1. Explicit freeing - A program explicitly frees or removes an object copy from the
cache by calling OCIObjectFree() which takes an option to (forcefully) free either
a marked or pinned object copy. The program can also call OCICacheFree() to
free all object copies in the cache.
11-8 Oracle Call Interface Programmer’s Guide

The Object Cache and Memory Management
2. Implicit freeing - Should the cache begin to run out of memory, it implicitly
frees object copies that are both unpinned and unmarked. Unpinned objects
that are marked are eligible for implicitly freeing only when the object copy is
flushed or unmarked. For more information, see the section “Object Cache
Parameters” on page 11-5.

For memory management reasons, it is important that applications unpin objects
when they are no longer needed. This makes these objects available for aging out of
the cache, and makes it easier for the cache to free memory when necessary.

The OCI does not provide a function to free unreferenced objects in the client-side
cache.

Operations for Making Changes to Object Copies
Functions for marking and unmarking object copies are discussed in this section.

Marking an Object Copy
 An object copy can be created, updated, and deleted locally in the cache. If the
object copy is created in the cache (by calling OCIObjectNew()), the object copy is
marked for insert by the object cache, so that the object will be inserted in the
server when the object copy is flushed.

If the object copy is updated in the cache, the user has to notify the object cache by
marking the object copy for update (by calling OCIObjectMarkUpdate()). When the
object copy is flushed, the corresponding object in the server is updated with the
value in the object copy.

If the object copy is deleted, the object copy is marked for delete in the object cache
(by calling OCIObjectMarkDelete()). When the object copy is flushed, the
corresponding object in the server is deleted. The memory of the marked object
copy is not freed until it is flushed and unpinned. When pinning an object marked
for delete, the program receives an error, as if the program is dereferencing a
dangling reference.

When a user makes multiple changes to an object copy, it is the final results of these
changes which are applied to the object in the server when the copy is flushed. For
example, if the user updates and deletes an object copy, the object in the server is
simply deleted when the object copy is flushed. Similarly, if an attribute of an object
copy is updated multiple times, it is the final value of this attribute which is
updated in the server when the object copy is flushed.

The program can mark an object copy as updated or deleted only if the object copy
has been loaded into the object cache.
 Object Cache and Object Navigation 11-9

The Object Cache and Memory Management
Unmarking an Object Copy
A marked object copy can be unmarked in the object cache. By unmarking a
marked object copy, the changes that are made to the object copy are not flushed to
the server. The object cache does not undo the local changes that are already made
to the object copy.

A program calls OCIObjectUnmark() to unmark an object. In addition, a program
can call OCICacheUnmark() to unmark all object copies in the cache for a specific
connection.

Operations for Synchronizing Object Copies with Server
Cache/server synchronization operations (flushing, refreshing) are discussed in
this section.

Flushing Changes to Server
The local changes made to a marked object copy in the cache are written to the
server when the object copy is flushed. The program can call OCIObjectFlush() to
flush a single object copy or OCICacheFlush() to flush all marked object copies in the
cache or a list of selected marked object copies. OCICacheFlush() flushes objects
associated with a specific service context.

After flushing an object copy, the object copy is unmarked. (Note that the object is
locked in the server after it is flushed; the object copy is therefore marked as locked
in the cache.)

Note: The OCICacheFlush() operation incurs only a single server roundtrip even
if multiple objects are being flushed.

If an application wishes to flush only dirty objects of a certain type, this
functionality is available through the callback function which is an optional
argument to the OCICacheFlush() call. The application can define a callback which
returns only the desired objects. In this case the operation still incurs only a single
server roundtrip for the flush.

Refreshing an Object Copy
When refreshed, an object copy is reloaded with the latest value of the
corresponding object in the server. The latest value may contain changes made by
other committed transactions and changes made directly (not through the object
cache) in the server by the transaction. The program can change objects directly in
the server using SQL DML, triggers, or stored procedures.
11-10 Oracle Call Interface Programmer’s Guide

The Object Cache and Memory Management
To refresh a marked object copy, the program must first unmark the object copy. An
unpinned object copy is simply freed when it is refreshed (i.e., when the whole
cache is refreshed).

The program can call OCIObjectRefresh() to refresh a single object copy or
OCICacheRefresh() to refresh all object copies in the cache, all object copies that are
loaded in a transaction (i.e., object copies that are pinned recent or pinned latest), or
a list of selected object copies.

When an object is flushed to the server, triggers can be fired to modify more objects
in the server. The same objects (modified by the triggers) in the object cache become
out-of-date, and must be refreshed before they can be locked or flushed.

The various meta-attribute flags and durations of an object are modified as
described in Table 11–1 after being refreshed:

During refresh, the object cache loads the new data into the top-level memory of an
object copy, thus reusing the top level memory. The top-level memory of an object
copy contains the in-line attributes of the object. On the other hand, the memory for
the out-of-line attributes of an object copy may be freed and relocated, since the out-
of-line attributes can vary in size.

See Also: See the section “Memory Layout of an Instance” on page 11-15 for
more information about object memory.

Table 11–1 Object Attributes After Refresh

Object Attribute Status After Refresh

existent set to appropriate value

pinned unchanged

flushed reset

allocation duration unchanged

pin duration unchanged
 Object Cache and Object Navigation 11-11

The Object Cache and Memory Management
Other Operations
Other pertinent OCI functions are discussed in this section.

Locking Objects For Update
The program can optionally call OCIObjectLock() to lock an object for update. This
call instructs the object cache to get a row lock on the object in the database. This is
similar to executing

SELECT NULL FROM t WHERE REF(t) = :r FOR UPDATE

where t is the object table storing the object to be locked and r is the REF
identifying the object. The object copy is marked locked in the object cache after
OCIObjectLock() is called.

To lock a graph or set of objects, several OCIObjectLock() calls are required, one per
object, or the array pin OCIObjectArrayPin() call can be used for better performance.

By locking an object, the application is guaranteed that the object in the cache is up-
to-date. No other transaction can modify the object while the application has it
locked.

At the end of a transaction, all locks are released automatically by the server. The
locked indicator in the object copy is reset.

Implementing Optimistic Locking
It is possible to implement optimistic locking in an OCI application if you run your
transactions at the serializable level.

The Oracle8 OCI supports calls that allow you to dereference and pin objects in the
object cache without locking them, modify them in the cache (again without
locking them), and then flush them (the dirtied objects) to the database.

During the flush, if a dirty object has been modified by another committed
transaction since the beginning of your transaction, a non-serializable transaction
error is returned. If none of the dirty objects has been modified by any other any
other transaction since the beginning of your transaction, then the changes are
written to the database successfully.

Note: OCITransCommit() first flushes dirty objects into the database before
committing a transaction.

The above mechanism effectively implements an optimistic locking model.
11-12 Oracle Call Interface Programmer’s Guide

The Object Cache and Memory Management
Commit and Rollback in Object Applications
When a transaction is committed (OCITransCommit()), all marked objects are
flushed to the server. If an object copy is pinned with a transaction duration, the
object copy is unpinned.

When a transaction is rolled back, all marked objects are unmarked. If an object
copy is pinned with a transaction duration, the object copy is unpinned.

Object Duration
In order to maintain free space in memory, the object cache attempts to reuse
objects’ memory whenever possible. The object cache reuses an object’s memory
when the object’s lifetime (allocation duration) expires or when the object’s pin
duration expires. The allocation duration is set when an object is created with
OCIObjectNew(), and the pin duration is set when an object is pinned with
OCIObjectPin(). The datatype of the duration value is OCIDuration.

Note: The pin duration for an object cannot be longer than the object’s
allocation duration.

When an object reaches the end of its allocation duration, it is automatically deleted
and its memory can be reused. The pin duration indicates when an object’s
memory can be reused, and memory is reused when the cache is full.

The OCI supports two predefined durations:

1. transaction (OCI_DURATION_TRANS)

2. session (OCI_DURATION_SESSION)

The transaction duration expires when the containing transaction ends (commits or
aborts). The session duration expires when the containing session/connection ends.

The application can explicitly unpin an object using OCIObjectUnpin. To minimize
explicit unpinning of individual objects, the application can unpin all objects
currently pinned in the object cache using the function OCICacheUnpin. By default,
all objects are unpinned at the end of the pin duration.

Durations Example
Table 11–2 illustrates the use of the different durations in an application. Four
objects are created or pinned in this application over the course of one connection
and three transactions. The first column indicates the action performed by the
database, and the second column indicates the function which performs the action.
 Object Cache and Object Navigation 11-13

The Object Cache and Memory Management
The remaining columns indicate the states of the various objects at each point in the
application.

For example, Object 1 comes into existence at T2 when it is created with a
connection duration, and it exists until T19 when the connection is terminated.
Object 2 is pinned at T7 with a transaction duration, after being fetched at T6, and it
remains pinned until T9 when the transaction is committed.

Table 11–2 Example of Allocation and Pin Durations

Time Application Action Function Object 1 Object 2 Object 3 Object 4

T1 Establish connection

T2 Create object 1 - allocation
duration = connection

OCIObjectNew() exists

T5 Start Transaction1 OCITransStart() exists

T6 SQL - fetch REF to object 2 exists

T7 Pin object 2 - pin duration =
transaction

OCIObjectPin() exists pinned

T8 Process application data exists pinned

T9 Commit Transaction1 OCITransCommit() exists unpinned

T10 Start Transaction2 OCITransStart() exists

T11 Create object 3 - allocation
duration = transaction

OCIObjectNew() exists exists

T12 SQL - fetch REF to object 4 exists exists

T13 Pin object 4 -
pin duration = connection

OCIObjectPin() exists exists pinned

T14 Commit Transaction2 OCITransCommit() exists deleted pinned

T15 Terminate session1 OCIDurationEnd() exists pinned

T16 Start Transaction3 OCITransStart() exists pinned

T17 Process application data exists pinned

T18 Commit Transaction3 OCITransCommit() exists pinned

T19 Terminate connection deleted unpinned
11-14 Oracle Call Interface Programmer’s Guide

The Object Cache and Memory Management
See Also: See the descriptions of OCIObjectNew() and OCIObjectPin() in
Chapter 14 for specific information about parameter values which can be
passed to these functions.

See the section “Creating, Freeing, and Copying Objects” on page 8-31 for
information about freeing up an object’s memory before its allocation duration
has expired.

Memory Layout of an Instance
An instance in memory is composed of a top-level memory chunk of the instance, a
top-level memory of the null indicator structure and optionally, a number of
secondary memory chunks. Consider a DEPARTMENT row type,

CREATE TYPE department AS OBJECT
(dep_name varchar2(20),

budget number,
 manager person, /* person is an object type */
employees person_array); /* varray of person objects */

and its C representation

struct department
{
OCIString * dep_name;
OCINumber budget;
struct person manager;
OCIArray * employees;
);
typedef struct department department;

Each instance of DEPARTMENT has a top-level memory chunk which contains the
top-level attributes such as dep_name, budget , manager and employees . The
attributes dep_name and employees are themselves actually pointers to the
additional memory (the secondary memory chunks). The secondary memory is
used to contain the actual data for the embedded instances (e.g. employees varray
and dep_name string).

The top-level memory of the null indicator structure contains the null statuses of
the attributes in the top level memory chunk of the instance. From the above
example, the top level memory of the null structure contains the null statuses of the
attributes dep_name, budget , manager and the atomic nullness of employees .
 Object Cache and Object Navigation 11-15

Object Navigation
Object Navigation
This section discusses how OCI applications can navigate through graphs of objects
in the object cache.

Simple Object Navigation
In the example in the previous sections, the object retrieved by the application was
a simple object, whose attributes were all scalar values. If an application retrieves
an object with an attribute which is a REF to another object, the application can use
OCI calls to traverse the object graph and access the referenced instance.

As an example, consider the following declaration for a new type in the database:

CREATE TYPE person_t AS OBJECT
(name VARCHAR2(30),
 mother REF person_t,
 father REF person_t);

An object table of person_t objects is created with the following statement:

CREATE TABLE person_table OF person_t;

Instances of the person_t type can now be stored in the typed table. Each instance
of person_t includes references to two other objects, which would also be stored
in the table. A NULL reference could represent a parent about whom information is
not available.

An object graph is a graphical representation of the REF links between object
instances. For example, on the following page depicts an object graph of
person_t instances, showing the links from one object to another. The circles
represent objects, and the arrows represent references to other objects.
11-16 Oracle Call Interface Programmer’s Guide

Object Navigation
Figure 11–2 Object Graph of person_t Instances

In this case, each object has links to two other instances of the same object. This
need not always be the case. Objects may have links to other object types. Other
types of graphs are also possible. For example, if a set of objects is implemented as
a linked list, the object graph could be viewed as a simple chain, where each object
references the previous and/or next objects in the linked list.

You can use the methods described earlier in this chapter to retrieve a reference to a
person_t instance and then pin that instance. The OCI provides functionality
which allows you to traverse the object graph by following a reference from one
object to another.

As an example, assume that an application fetches the person1 instance in the
above graph and pins it as pers_1 . Once that has been done, the application can
access the mother instance of person1 and pin it into pers_2 through a second
pin operation:

OCIObjectPin(env, err, pers_1->mother, OCI_PIN_ANY, OCI_DURATION_TRANS,
OCI_LOCK_X, (OCIComplexObject *) 0, &pers_2);

person1

M F

person2

M F

person3

M F

person4

M F

person5

M F

person6

M F

NULL
 Object Cache and Object Navigation 11-17

OCI Navigational Functions
In this case, an OCI fetch operation is not required to retrieve the second instance.

The application could then pin the father instance of person1 , or it could operate
on the reference links of person2 .

Note: Attempting to pin a NULL or dangling REF results in an error on the
OCIObjectPin() call.

OCI Navigational Functions
This section provides a brief summary of the available OCI navigational functions.
The functions are grouped according to their general functionality. More detailed
descriptions of each of these functions can be found in Chapter 14, “OCI
Navigation and Type Functions”.

The use of these functions is described in the earlier sections of this chapter.

The navigational functions follow a naming scheme which uses different prefixes
for different types of functionality:

OCICache*() - these functions are Cache operations

OCIObject*() - these functions are individual Object operations

Pin/Unpin/Free Functions
The following functions are available to pin, unpin, or free objects:

Function Purpose

OCIObjectPin() Pin an object

OCIObjectUnpin() Unpin an object

OCIObjectPinCountReset() Unpin an object to zero pin count

OCICacheUnpin() Unpin persistent objects in cache or connection

OCIObjectArrayPin() Pin an array of references

OCIObjectPinTable() Pin a table object with a given duration

OCICacheFree() Free all instances in the cache

OCIObjectFree() Free and unpin a standalone instance
11-18 Oracle Call Interface Programmer’s Guide

OCI Navigational Functions
Flush and Refresh Functions
The following functions are available to flush modified objects to the server:

Mark and Unmark Functions
The following functions allow an application to mark or unmark an object by
modifying one of its meta-attributes:

Object Meta-Attribute Accessor Functions
The following functions allow an application to access the meta-attributes of an
object:

Function Purpose

OCICacheFlush() Flush modified persistent objects in cache to server

OCIObjectFlush() Flush a modified persistent object to the server

OCICacheRefresh() Refresh pinned persistent objects in the cache

OCIObjectRefresh() Refresh a single persistent object

Function Purpose

OCIObjectMarkDelByRef() Mark an object deleted given a REF

OCIObjectMarkUpd() Mark an object as updated/dirty

OCIObjectMarkDel() Mark an object deleted / delete a value instance

OCICacheUnmark() Unmarks all objects in the cache

OCIObjectUnmark() Marks a given object as updated

OCIObjectUnmarkByRef() Marks an object as updated, given a REF

Function Purpose

OCIObjectExists() Get existence status of an instance

OCIObjectFlushStatus() Get the flush status of an instance

OCIObjectGetInd() Get null structure of an instance

OCIObjectIsDirtied() Has an object been marked as updated?

OCIObjectIsLocked() Is an object locked?
 Object Cache and Object Navigation 11-19

OCI Navigational Functions
Other Functions
The following functions provide additional object functionality for OCI
applications:

Function Purpose

OCIObjectCopy() Copy one instance to another

OCIObjectGetObjectRef() Return reference to a given object

OCIObjectGetTypeRef() Get a reference to a TDO of an instance

OCIObjectLock() Lock a persistent object

OCIObjectNew() Create a new instance
11-20 Oracle Call Interface Programmer’s Guide

 Using the Object Type Tra
12

Using the Object Type Translator

This chapter discusses the Object Type Translator (OTT), which is used to map
database object types and named collection types to C structs for use in OCI and
Pro*C/C++ applications. The chapter includes the following sections:

■ OTT Overview

■ Using the Object Type Translator

■ Using the OTT with OCI Applications

■ OTT Reference

Note: For information specific to Pro*C/C++, please refer to the Pro*COBOL
Precompiler Programmer’s Guide.

Note: The functionality described in this chapter is only available if you have
purchased the Oracle8 Enterprise Edition with the Objects Option.
nslator 12-1

OTT Overview
OTT Overview
OTT (The Object Type Translator) is a new product released with Oracle8. It assists
in the development of C language applications which make use of user-defined
types in an Oracle8 server.

Through the use of SQL CREATE TYPE statements, you can create object types. The
definitions of these types are stored in the database, and can be used in the creation
of database tables. Once these tables are populated, an OCI or Pro*C/C++
programmer can access objects stored in the tables.

An application which accesses object data needs to be able to represent the data in a
host language format. This is accomplished by representing object types as C
structs. It would be possible for a programmer to code struct declarations by hand
to represent database object types, but this can be very time-consuming and error-
prone if many types are involved. The OTT simplifies this step by automatically
generating appropriate struct declarations. For Pro*C/C++, the application only
needs to include the header file generated by the OTT. In OCI, the application also
needs to call an initialization function generated by the OTT.

In addition to creating structs which represent stored datatypes, the OTT also
generates parallel indicator structs which indicate whether an object type or its
fields are null.

Using the Object Type Translator
The Object Type Translator (OTT) converts database definitions of object types and
named collection types into C struct declarations which can be included in an OCI
or Pro*C/C++ application.

You must explicitly invoke the OTT to translate database types to C
representations. You must also initialize a data structure called the Type Version
Table with information about the user-defined types required by the program.
Code to perform this initialization is generated by the OTT.

On most operating systems, the OTT is invoked on the command line. It takes as
input an intype file, and it generates an outtype file and one or more C header files and
an optional implementation file. The following is an example of a command which
invokes the OTT:

ott userid=scott/tiger intype=demoin.typ outtype=demoout.typ code=c hfile=demo.h

This command causes the OTT to connect to the database with username ‘scott ’
and password ‘tiger ’, and translate database types to C structs, based on
instructions in the intype file (demoin.typ). The resulting structs are output to
12-2 Oracle Call Interface Programmer’s Guide

Using the Object Type Translator
the header file (demo.h), for the host language (C) specified by the code
parameter. The outtype file (demoout.typ) receives information about the
translation.

Each of these parameters is described in more detail in later sections of this chapter.

Sample demoin.typ file:

CASE=LOWER
TYPE employee

Sample demoout.typ file:

CASE = LOWER
TYPE EMPLOYEE AS employee
 VERSION = "$8.0"
 HFILE = demo.h

In this example, the demoin.typ file contains the type to be translated, preceded
by TYPE (e.g., TYPE employee). The structure of the outtype file is similar to the
intype file, with the addition of information obtained by the OTT.

Once the OTT has completed the translation, the header file contains a C struct
representation of each type specified in the intype file, and a null indicator struct
corresponding to each type. For example, if the employee type listed in the intype
file was defined as

CREATE TYPE employee AS OBJECT
(
 name VARCHAR2(30),
 empno NUMBER,
 deptno NUMBER,
 hiredate DATE,
 salary NUMBER
);

the header file generated by the OTT (demo.h) includes, among other items, the
following declarations:

struct employee
{
 OCIString * name;
 OCINumber empno;
 OCINumber deptno;
 OCIDate hiredate;
 OCINumber salary;
};
 Using the Object Type Translator 12-3

Using the Object Type Translator
typedef struct emp_type emp_type;

struct employee_ind
{
 OCIInd _atomic;
 OCIInd name;
 OCIInd empno;
 OCIInd deptno;
 OCIInd hiredate;
 OCIInd salary;
};
typedef struct employee_ind employee_ind;

Note: Parameters in the intype file control the way generated structs are
named. In this example, the struct name employee matches the database type
name employee . The struct name is in lower case because of the line
CASE=lower in the intype file.

The datatypes which appear in the struct declarations (e.g., OCIString, OCIInd)
are special datatypes which are new to Oracle8. For more information about
these types, see the section “OTT Datatype Mappings” on page 12-9.

The following sections describe these aspects of using the OTT:

■ Creating Types in the Database

■ Invoking the OTT

■ The OTT Command Line

■ The Intype File

■ OTT Datatype Mappings

■ Null Indicator Structs

■ The Outtype File

The remaining sections of the chapter discuss the use of the OTT with OCI,
followed by a reference section which describes command line syntax, parameters,
intype file structure, nested #include file generation, schema names usage,
default name mapping, and restrictions.

Creating Types in the Database
The first step in using the OTT is to create object types or named collection types
and store them in the database. This is accomplished through the use of the SQL
CREATE TYPE statement.
12-4 Oracle Call Interface Programmer’s Guide

Using the Object Type Translator
See Also: For information about the CREATE TYPE statement, refer to the
Oracle8 SQL Reference.

Invoking the OTT
The next step is to invoke the OTT. OTT parameters can be specified on the
command line, or in a file called a configuration file. Certain parameters can also be
specified in the INTYPE file.

If a parameter is specified in more than one place, its value on the command line
will take precedence over its value in the INTYPE file, which takes precedence over
its value in a user-defined configuration file, which takes precedence over its value
in the default configuration file.

Command Line
Parameters (also called options) set on the command line override any set
elsewhere. See the next section, "The OTT Command Line", for more information.

Configuration File
A configuration file is a text file that contains OTT parameters. Each non-blank line
in the file contains one parameter, with its associated value or values. If more than
one parameter is put on a line, only the first one will be used. No whitespace may
occur on any non-blank line of a configuration file.

A configuration file may be named on the command line. In addition, a default
configuration file is always read. This default configuration file must always exist,
but can be empty. The name of the default configuration file is ottcfg.cfg, and the
location of the file is system-specific. For example, on Solaris, the file specification
is $ORACLE_HOME/precomp/admin/ottcfg.cfg. See your platform-specific
documentation for further information.

INTYPE File
The INTYPE file gives a list of types for the OTT to translate.

The parameters CASE, HFILE, INITFUNC, and INITFILE can appear in the
INTYPE file. See “The Intype File” on page 12-8 for more information.
 Using the Object Type Translator 12-5

The OTT Command Line
The OTT Command Line
On most platforms, the OTT is invoked on the command line. You can specify the
input and output files, and the database connection information, among other
things. Consult your platform-specific documentation to see how to invoke the
OTT on your platform.

Example 1 The following is an example of an OTT invocation from the command
line:

ott userid=bren/bigkitty intype=demoin.typ outtype=demoout.typ code=c hfile=demo.h

Note: No spaces are permitted around the equals sign (=).

The following sections describe the elements of the command line used in this
example.

For a detailed discussion of the various OTT command line options, please refer to
the section “OTT Reference” on page 12-22.

OTT
Causes the OTT to be invoked. It must be the first item on the command line.

userid
Specifies the database connection information which the OTT will use.

In Example 1, the OTT will attempt to connect with username ‘bren ’ and
password ‘bigkitty ’.

intype
Specifies the name of the intype file which will be used.

In Example 1, the name of the intype file is specified as demoin.typ .

outtype
Specifies the name of the outtype file. When the OTT generates the C header file, it
also writes information about the translated types into the outtype file. This file
contains an entry for each of the types which is translated, including its version
string, and the header file to which its C representation was written.

In “Example 1” on page 12-6, the name of the outtype file is specified as
demoout.typ .
12-6 Oracle Call Interface Programmer’s Guide

The OTT Command Line
Note: If the file specified by the outtype keyword already exists, it is
overwritten when the OTT runs. If the name of the outtype file is the same as
the name of the intype file, the outtype information overwrites the intype file.

code
Specifies the target language for the translation. The following options are available:

■ C (equivalent to ANSI_C)

■ ANSI_C (for ANSI C)

■ KR_C (for Kernighan & Ritchie C)

There is currently no default option, so this parameter is required.

Struct declarations are identical in both C dialects. The style in which the
initialization function defined in the INITFILE file is defined depends on whether
KR_C is used. If the INITFILE option is not used, all three options are equivalent.

hfile
Specifies the name of the C header file to which the generated structs should be
written.

In “Example 1” on page 12-6, the generated structs will be stored in a file called
demo.h .

Note: If the file specified by the hfile keyword already exists, it will be
overwritten when the OTT runs, with one exception: if the contents of the file
as generated by the OTT are identical to the previous contents of the file, the
OTT will not actually write to the file. This preserves the modification time of
the file so that UNIX make and similar facilities on other platforms do not
perform unnecessary recompilations.

initfile
Specifies the use of the C source file into which the type initialization function is to
be written.

Note: If the file specified by the initfile keyword already exists, it will be
overwritten when the OTT runs, with one exception: if the contents of the file
as generated by the OTT are identical to the previous contents of the file, the
OTT will not actually write to the file. This preserves the modification time of
the file so that UNIX make and similar facilities on other platforms do not
perform unnecessary recompilations.
 Using the Object Type Translator 12-7

The Intype File
initfunc
Specifies the name of the initialization function to be defined in the initfile.

If this parameter is not used and an initialization function is generated, the name of
the initialization function will be the same as the base name of the initfile.

The Intype File
When running the OTT, the INTYPE file tells the OTT which database types should
be translated, and it can also control the naming of the generated structs. The
intype file can be a user-created file, or it may be the outtype file of a previous
invocation of the OTT. If the INTYPE parameter is not used, all types in the schema
to which the OTT connects are translated.

The following is a simple example of a user-created intype file:

CASE=LOWER
TYPE employee
 TRANSLATE SALARY$ AS salary
 DEPTNO AS department
TYPE ADDRESS
TYPE item
TYPE "Person"
TYPE PURCHASE_ORDER AS p_o

The first line, with the CASE keyword, indicates that generated C identifiers should
be in lower case. However, this CASE option is only applied to those identifiers
that are not explicitly mentioned in the intype file. Thus, employee and ADDRESS
would always result in C structures employee and ADDRESS, respectively. The
members of these structures would be named in lower case.

See Also: See the description of “case” on page 12-27 for further information
regarding the CASE option.

The lines which begin with the TYPE keyword specify which types in the database
should be translated: in this case, the EMPLOYEE, ADDRESS, ITEM, PERSON, and
PURCHASE_ORDER types.

The TRANSLATE...AS keywords specify that the name of an object attribute should
be changed when the type is translated into a C struct. In this case, the SALARY$
attribute of the employee type is translated to salary .

The AS keyword in the final line specifies that the name of an object type should be
changed when it is translated into a struct. In this case, the purchase_order
database type is translated into a struct called p_o .
12-8 Oracle Call Interface Programmer’s Guide

OTT Datatype Mappings
If AS is not used to translate a type or attribute name, the database name of the
type or attribute will be used as the C identifier name, except that the CASE option
will be observed, and any characters that cannot be mapped to a legal C identifier
character will be replaced by an underscore. Reasons for translating a type or
attribute name include:

■ the name contains characters other than letters, digits, and underscores

■ the name conflicts with a C keyword

■ the type name conflicts with another identifier in the same scope.
This may happen, for example, if the program uses two types with the same
name from different schemas.

■ the programmer prefers a different name

The OTT may need to translate additional types which are not listed in the intype
file. This is because the OTT analyzes the types in the intype file for type
dependencies before performing the translation, and translates other types as
necessary. For example, if the ADDRESStype were not listed in the intype file, but
the “Person” type had an attribute of type ADDRESS, the OTT would still
translate ADDRESS because it is required to define the “Person” type.

A normal case-insensitive SQL identifier can be spelled in any combination of
upper and lower case in the INTYPE file, and is not quoted.

Use quotation marks, such as TYPE "Person", to reference SQL identifiers that have
been created in a case-sensitive manner, e.g., CREATE TYPE "Person". A SQL
identifier is case-sensitive if it was quoted when it was declared. Quotation marks
can also be used to refer to a SQL identifier that is an OTT-reserved word, e.g.,
TYPE "CASE". When a name is quoted for this reason, the quoted name must be in
upper case if the SQL identifier was created in a case-insensitive manner, e.g.,
CREATE TYPE Case. If an OTT-reserved word is used to refer to the name of a SQL
identifier but is not quoted, the OTT will report a syntax error in the INTYPE file.

See Also: For a more detailed specification of the structure of the intype file
and the available options, refer to the section “Structure of the Intype File” on
page 12-29.

OTT Datatype Mappings
When the OTT generates a C struct from a database type, the struct contains one
element corresponding to each attribute of the object type. The datatypes of the
attributes are mapped to types which are used in Oracle8’s object data types. The
 Using the Object Type Translator 12-9

OTT Datatype Mappings
datatypes found in Oracle8 include a set of predefined, primitive types, and
provide for the creation of user-defined types, like object types and collections.

The set of predefined types in Oracle8 includes standard types which are familiar
to most programmers, including number and character types. It also includes new
datatypes being introduced with Oracle8 (e.g., BLOB, CLOB).

Oracle8 also includes a set of predefined types which are used to represent object
type attributes in C structs. As an example, consider the following object type
definition, and its corresponding OTT-generated struct declarations:

CREATE TYPE employee AS OBJECT
(name VARCHAR2(30),
 empno NUMBER,
 deptno NUMBER,
 hiredate DATE,
 salary$ NUMBER);

The OTT output, assuming CASE=LOWER and no explicit mappings of type or
attribute names, is:

struct employee
{ OCIString * name;
 OCINumber empno;
 OCINumber department;
 OCIDate hiredate;
 OCINumber salary_;
};
typedef struct emp_type emp_type;
struct employee_ind
{
 OCIInd _atomic;
 OCIInd name;
 OCIInd empno;
 OCIInd department;
 OCIInd hiredate;
 OCIInd salary_;
}
typedef struct employee_ind employee_ind;

The indicator struct (struct employee_ind) is explained in the section, “Null Indicator
Structs” on page 12-15.

The datatypes in the struct declarations—OCIString, OCINumber, OCIDate,
OCIInd—are new C mappings of object types being introduced with Oracle8. They
are used here to map the datatypes of the object type attributes. The number
12-10 Oracle Call Interface Programmer’s Guide

OTT Datatype Mappings
datatype of the empno attribute, maps to the new OCINumber datatype, for
example. These new datatypes can also be used as the types of bind and define
variables.

Mapping Object Datatypes to C
This section describes the mappings of Oracle8 object attribute types to C types
generated by the OTT. The following section “OTT Type Mapping Example” on
page 12-12 includes examples of many of these different mappings. The following
table lists the mappings from types which can be used as attributes to object
datatypes which are generated by the OTT.

Table 12–1 Object Datatype Mappings for Object Type Attributes

Object Attribute Types C Mapping

VARCHAR2(N) OCIString *

VARCHAR(N) OCIString *

CHAR(N), CHARACTER(N) OCIString *

NUMBER, NUMBER(N), NUMBER(N,N) OCINumber

NUMERIC, NUMERIC(N), NUMERIC(N,N) OCINumber

REAL OCINumber

INT, INTEGER, SMALLINT OCINumber

FLOAT, FLOAT(N), DOUBLE PRECISION OCINumber

DEC, DEC(N), DEC(N,N) OCINumber

DECIMAL, DECIMAL(N), DECIMAL(N,N) OCINumber

DATE OCIDate

BLOB OCIBlobLocator *

CLOB OCIClobLocator *

BFILE OCIBfileLocator *

Nested Object Type C name of the nested object type

REF declared using typedef;
equivalent to OCIRef *
See the following example.

RAW(N) OCIRaw *
 Using the Object Type Translator 12-11

OTT Datatype Mappings
The next table shows the mappings of named collection types to Oracle8 object
datatypes generated by the OTT:

Note: For REF, VARRAY, and NESTED TABLE types, the OTT generates a
typedef. The type declared in the typedef is then used as the type of the data
member in the struct declaration. For examples, see the next section, “OTT
Type Mapping Example”.

If an object type includes an attribute of a REF or collection type, a typedef for the
REF or collection type is first generated. Then the struct declaration corresponding
to the object type is generated. The struct includes an element whose type is a
pointer to the REF or collection type.

If an object type includes an attribute whose type is another object type, the OTT
first generates the nested type. It then maps the object type attribute to a nested
struct of the type of the nested object type.

The Oracle8 C datatypes to which the OTT maps non-object database attribute
types are structures, which, except for OCIDate, are opaque.

OTT Type Mapping Example
The following example is presented to demonstrate the various type mappings
created by the OTT.

Given the following database types

CREATE TYPE my_varray AS VARRAY(5) of integer;

CREATE TYPE object_type AS OBJECT
(object_name VARCHAR2(20));

CREATE TYPE my_table AS TABLE OF object_type;

Table 12–2 Object Datatype Mappings for Collection Types

Named Collection Type C Mapping

VARRAY declared using typedef; equivalent to

OCIArray *

See the following example.

NESTED TABLE declared using typedef; equivalent to

OCITable *

See the following example.
12-12 Oracle Call Interface Programmer’s Guide

OTT Datatype Mappings
CREATE TYPE many_types AS OBJECT
(the_varchar VARCHAR2(30),
 the_char CHAR(3),
 the_blob BLOB,
 the_clob CLOB,
 the_object object_type,
 another_ref REF other_type,
 the_ref REF many_types,
 the_varray my_varray,
 the_table my_table,
 the_date DATE,
 the_num NUMBER,
 the_raw RAW(255));

and an intype file which includes

CASE = LOWER
TYPE many_types

the OTT would generate the following C structs:

Note: Comments are provided here to help explain the structs. These
comments are not part of actual OTT output.

#ifndef MYFILENAME_ORACLE
#define MYFILENAME_ORACLE

#ifndef OCI_ORACLE
#include <oci.h>
#endif

typedef OCIRef many_types_ref;
typedef OCIRef object_type_ref;
typedef OCIArray my_varray; /* part of many_types */
typedef OCITable my_table; /* part of many_types*/
typedef OCIRef other_type_ref;
struct object_type /* part of many_types */
{
 OCIString * object_name;
};
typedef struct object_type object_type;

struct object_type_ind /*indicator struct for*/
{ /*object_types*/
 Using the Object Type Translator 12-13

OTT Datatype Mappings
 OCIInd _atomic;
 OCIInd object_name;
};
typedef struct object_type_ind object_type_ind;

struct many_types
{
 OCIString * the_varchar;
 OCIString * the_char;
 OCIBlobLocator * the_blob;
 OCIClobLocator * the_clob;
 struct object_type the_object;
 other_type_ref * another_ref;
 many_types_ref * the_ref;
 my_varray * the_varray;
 my_table * the_table;
 OCIDate the_date;
 OCINumber the_num;
 OCIRaw * the_raw;
};
typedef struct many_types many_types;

struct many_types_ind /*indicator struct for*/
{ /*many_types*/
 OCIInd _atomic;
 OCIInd the_varchar;
 OCIInd the_char;
 OCIInd the_blob;
 OCIInd the_clob;
 struct object_type_ind the_object; /*nested*/
 OCIInd another_ref;
 OCIInd the_ref;
 OCIInd the_varray;
 OCIInd the_table;
 OCIInd the_date;
 OCIInd the_num;
 OCIInd the_raw;
};
typedef struct many_types_ind many_types_ind;

#endif

Notice that even though only one item was listed for translation in the intype file,
two object types and two named collection types were translated. As described in
the section “The OTT Command Line” on page 12-6, the OTT automatically
12-14 Oracle Call Interface Programmer’s Guide

OTT Datatype Mappings
translates any types which are used as attributes of a type being translated, in order
to complete the translation of the listed type.

This is not the case for types which are only accessed by a pointer or ref in an object
type attribute. For example, although the many_types type contains the attribute
another_ref REF other_type , a declaration of struct other_type was not
generated.

This example also illustrates how typedefs are used to declare VARRAY, NESTED
TABLE, and REF types.

The typedefs occur near the beginning:

typedef OCIRef many_types_ref;
typedef OCIRef object_type_ref;
typedef OCIArray my_varray;
typedef OCITable my_table;
typedef OCIRef other_type_ref;

In the struct many_types, the VARRAY, NESTED TABLE, and REF attributes are
declared:

struct many_types
{ ...
 other_type_ref * another_ref;
 many_types_ref * the_ref;
 my_varray * the_varray;
 my_table * the_table;
 ...
}

Null Indicator Structs
Each time the OTT generates a C struct to represent a database object type, it also
generates a corresponding null indicator struct. When an object type is selected into
a C struct, null indicator information may be selected into a parallel struct.

For example, the following null indicator struct was generated in the example in
the previous section:

struct many_types_ind
{
OCIInd _atomic;
OCIInd the_varchar;
OCIInd the_char;
OCIInd the_blob;
OCIInd the_clob;
 Using the Object Type Translator 12-15

The Outtype File
struct object_type_ind the_object;
OCIInd another_ref;
OCIInd the_ref;
OCIInd the_varray;
OCIInd the_table;
OCIInd the_date;
OCIInd the_num;
OCIInd the_raw;
};
typedef struct many_types_ind many_types_ind;
The layout of the null struct is important. The first element in the struct (_atomic)
is the atomic null indicator. This value indicates the null status for the object type as a
whole. The atomic null indicator is followed by an indicator element corresponding
to each element in the OTT-generated struct representing the object type.

Notice that when an object type contains another object type as part of its definition
(in the above example it is the object_type attribute), the indicator entry for
that attribute is the null indicator struct (object_type_ind) corresponding to the
nested object type.

VARRAYs and NESTED TABLEs contain the null information for their elements.

The datatype for all other elements of a null indicator struct is OCIInd.

See Also: For more information about atomic nullness, refer to the section
“Nullness” on page 8-28.

The Outtype File
The outtype file is named on the OTT command line. When the OTT generates the
C header file, it also writes the results of the translation into the outtype file. This
file contains an entry for each of the types which is translated, including its version
string, and the header file to which its C representation was written.

The outtype file from one OTT run can be used as the intype file for a subsequent
OTT invocation.

For example, given the simple intype file used earlier in this chapter

CASE=LOWER
TYPE employee
 TRANSLATE SALARY$ AS salary
 DEPTNO AS department
TYPE ADDRESS
TYPE item
TYPE person
12-16 Oracle Call Interface Programmer’s Guide

The Outtype File
TYPE PURCHASE_ORDER AS p_o

the user has chosen to specify the case for OTT-generated C identifiers, and has
provided a list of types which should be translated. In two of these types, naming
conventions are specified.

The following is an example of what the outtype file might look like after running
the OTT:

CASE = LOWER
TYPE EMPLOYEE AS employee
 VERSION = "$8.0"
 HFILE = demo.h
 TRANSLATE SALARY$ AS salary
 DEPTNO AS department
TYPE ADDRESS AS ADDRESS
 VERSION = "$8.0"
 HFILE = demo.h
TYPE ITEM AS item
 VERSION = "$8.0"
 HFILE = demo.h
TYPE "Person" AS Person
 VERSION = "$8.0"
 HFILE = demo.h
TYPE PURCHASE_ORDER AS p_o
 VERSION = "$8.0"
 HFILE = demo.h

When examining the contents of the outtype file, you might discover types listed
which were not included in the intype specification. For example, if the intype file
only specified that the person type was to be translated

CASE = LOWER
TYPE PERSON

and the definition of the person type includes an attribute of type address , then
the outtype file will include entries for both PERSON and ADDRESS. The person
type cannot be translated completely without first translating address .

As described in the section “The OTT Command Line” on page 12-6, the OTT
analyzes the types in the intype file for type dependencies before performing the
translation, and translates other types as necessary.
 Using the Object Type Translator 12-17

Using the OTT with OCI Applications
Using the OTT with OCI Applications
C header and implementation files which have been generated by the OTT can be
used by an OCI application that accesses objects in an Oracle8 server. The header
file is incorporated into the OCI code with an #include statement.

Once the header file has been included, the OCI application can access and
manipulate object data in the host language format.

 shows the steps involved in using the OTT with the OCI:

1. SQL is used to create type definitions in the database.

2. The OTT generates a header file containing C representations of object types
and named collection types. It also generates an implementation file, as named
with the INITFILE option.

3. The application is written. User-written code in the OCI application declares
and calls the INITFUNC function.

4. The header file is included in an OCI source code file.

5. The OCI application, including the implementation file generated by the OTT,
is compiled and linked with the OCI libraries.

6. The OCI executable is run against the Oracle8 server.
12-18 Oracle Call Interface Programmer’s Guide

Using the OTT with OCI Applications
Figure 12–1 Using the OTT with OCI

Accessing and Manipulating Objects with OCI
Within the application, the OCI program can perform bind and define operations
using program variables declared to be of types which appear in the OTT-
generated header file.

For example, an application might fetch a REF to an object using a SQL SELECT
statement and then pin that object using the appropriate OCI function. Once the
object has been pinned, its attribute data can be accessed and manipulated with
other OCI functions.

SQL DDL

Object File

OCI library

Executable

Object File

Linker

ORACLE8
Database

Type
Definitions

Compiler

OTT

Implementation
File

Header
File

OCI source
File

#include
 Using the Object Type Translator 12-19

Using the OTT with OCI Applications
OCI includes a set of datatype mapping and manipulation functions which are
specifically designed to work on attributes of object types and named collection
types.

The following are examples of the available functions:

■ OCIStringSize() gets the size of an OCIString string.

■ OCINumberAdd() adds two OCINumber numbers together.

■ OCILobIsEqual() compares two LOB locators for equality.

■ OCIRawPtr() gets a pointer to an OCIRaw raw datatype.

■ OCICollAppend() appends an element to a collection type (OCIArray or
OCITable).

■ OCITableFirst() returns the index for the first existing element of a nested table
(OCITable).

■ OCIRefIsNull() tests if a REF (OCIRef) is null

These functions are described in detail in other chapters of this guide.

Calling the Initialization Function
The OTT generates a C initialization function if requested. The initialization
function tells the environment, for each object type used in the program, which
version of the type is used. You may specify a name for the initialization function
when invoking the OTT with the INITFUNC option, or may allow the OTT to
select a default name based on the name of the implementation file (INITFILE)
containing the function.

The initialization function takes two arguments, an environment handle pointer
and an error handle pointer. There is typically a single initialization function, but
this is not required. If a program has several separately compiled pieces requiring
different types, you may want to execute the OTT separately for each piece
requiring, for each piece, one initialization file, containing an initialization function.

After an environment handle is created by an explicit OCI object call, for example,
by calling OCIEnvInit(), you must also explicitly call the initialization functions. All
the initialization functions must be called for each explicitly created environment
handle. This gives each handle access to all the Oracle8 datatypes used in the entire
program.

If an environment handle is implicitly created via embedded SQL statements, such
as EXEC SQL CONTEXT USE and EXEC SQL CONNECT, the handle is initialized
12-20 Oracle Call Interface Programmer’s Guide

Using the OTT with OCI Applications
implicitly, and the initialization functions need not be called. This is only relevant
when Pro*C/C++ is being combined with OCI applications.

The following example shows and initialization function.

Given an intype file, ex2c.typ, containing

TYPE BREN.PERSON
TYPE BREN.ADDRESS

and the command line

ott userid=bren/bigkitty intype=ex2c outtype=ex2co hfile=ex2ch.h
initfile=ex2cv.c

the OTT generates the following to the file ex2cv.c:

#ifndef OCI_ORACLE
#include <oci.h>
#endif

sword ex2cv(OCIEnv *env, OCIError *err)
{
 sword status = OCITypeVTInit(env, err);
 if (status == OCI_SUCCESS)
 status = OCITypeVTInsert(env, err,
 "BREN", 5,
 "PERSON", 6,
 "$8.0", 4);
 if (status == OCI_SUCCESS)
 status = OCITypeVTInsert(env, err,
 "BREN", 5,
 "ADDRESS", 7,
 "$8.0", 4);
 return status;
}

The function ex2cv creates the type version table and inserts the types
BREN.PERSON and BREN.ADDRESS.

If a program explicitly creates an environment handle, all the initialization
functions must be generated, compiled, and linked, because they must be called for
each explicitly created handle. If a program does not explicitly create any
environment handles, initialization functions are not required.

A program that uses an OTT-generated header file must also use the initialization
function generated at the same time. More precisely, if a header file generated by
 Using the Object Type Translator 12-21

OTT Reference
the OTT is included in a compilation that generates code that is linked into
program P, and an environment handle is explicitly created somewhere in program
P, the implementation file generated by the same invocation of the OTT must also
be compiled and linked into program P. Doing this correctly is the user’s
responsibility.

Tasks of the Initialization Function
The C initialization function supplies version information about the types
processed by the OTT. It adds to the type-version table the name and version
identifier of every OTT-processed object datatype.

The type-version table is used by Oracle’s type manager to determine which
version of a type a particular program uses. Different initialization functions
generated by the OTT at different times may add some of the same types to the
type version table. When a type is added more than once, Oracle ensures the same
version of the type is registered each time.

It is the OCI programmer’s responsibility to declare a function prototype for the
initialization function, and to call the function.

Note: In the current release of Oracle8, each type has only one version.
Initialization of the type version table is required only for compatibility with
future releases of Oracle8.

OTT Reference
Behavior of the OTT is controlled by parameters which can appear on the OTT
command line or in a CONFIG file. Certain parameters may also appear in the
INTYPE file.

This section provides detailed information about the following topics:

■ OTT Command Line Syntax

■ OTT Parameters

■ Where OTT Parameters Can Appear

■ Structure of the Intype File

■ Nested #include File Generation

■ SCHEMA_NAMES Usage

■ Default Name Mapping

■ Restrictions
12-22 Oracle Call Interface Programmer’s Guide

OTT Reference
The following conventions are used in this chapter to describe OTT syntax:

■ Angle brackets (<...>) enclose strings to be supplied by the user.

■ Strings in UPPERCASE are entered as shown, except that case is not significant.

■ OTT keywords are listed in a lower-case monospaced font in examples and
headings, but are printed in upper-case in text to make them more distinctive.

■ Square brackets [...] enclose optional items.

■ An ellipsis (...) immediately following an item (or items enclosed in brackets)
means that the item can be repeated any number of times.

■ Punctuation symbols other than those described above are entered as shown.
These include ‘.’, ‘@’, etc.

OTT Command Line Syntax
The OTT command-line interface is used when explicitly invoking the OTT to
translate database types into C structs. This is always required when developing
OCI applications that use objects.

An OTT command line statement consists of the keyword OTT, followed by a list of
OTT parameters.

The parameters which can appear on an OTT command line statement are as
follows:

[userid =<username>/<password>[@<db_name>]]

[intype =<in_filename>]

outtype =<out_filename>

code =<C|ANSI_C|KR_C>

[hfile =<filename>]

[errtype =<filename>]

[config =<filename>]

[initfile =<filename>]

[initfunc =<filename>]

[case =<SAME|LOWER|UPPER|OPPOSITE>]

[schema_name=<ALWAYS|IF_NEEDED|FROM_INTYPE>]
 Using the Object Type Translator 12-23

OTT Reference
Note: Generally, the order of the parameters following the OTT command does
not matter, and only the OUTTYPE and CODE parameters are always required.

The HFILE parameter is almost always used. If omitted, HFILE must be
specified individually for each type in the INTYPE file. If the OTT determines
that a type not listed in the INTYPE file must be translated, an error will be
reported. Therefore, it is safe to omit the HFILE parameter only if the INTYPE
file was previously generated as an OTT OUTTYPE file.

If the INTYPE file is omitted, the entire schema will be translated. See the
parameter descriptions in the following section for more information.

The following is an example of an OTT command line statement:

OTT userid=marc/cayman intype=in.typ outtype=out.typ code=c hfile=demo.h
errtype=demo.tls case=lower

Each of the OTT command line parameters is described in the following sections.

OTT Parameters
Enter parameters on the OTT command line using the following format:

parameter=value

where parameter is the literal parameter string and value is a valid parameter
setting. The literal parameter string is not case sensitive.

Separate command-line parameters using either spaces or tabs.

Parameters can also appear within a configuration file, but, in that case, no
whitespace is permitted within a line, and each parameter must appear on a
separate line. Additionally, the parameters CASE, HFILE, INITFUNC, and
INITFILE can appear in the INTYPE file.

userid
The USERID parameter specifies the Oracle username, password, and optional
database name (Net8 database specification string). If the database name is
omitted, the default database is assumed. The syntax of this parameter is:

userid =<username/password[@db_name]>

If this is the first parameter, "USERID=" may be omitted as shown here:

OTTusername/password...
12-24 Oracle Call Interface Programmer’s Guide

OTT Reference
The USERID parameter is optional. If omitted, the OTT automatically attempts to
connect to the default database as user OPS$username, where username is the user’s
operating system user name.

intype
The INTYPE parameter specifies the name of the file from which to read the list of
object type specifications. The OTT translates each type in the list.

The syntax for this parameter is

intype =<filename>

"INTYPE=" may be omitted if USERID and INTYPE are the first two parameters, in
that order, and "USERID=" is omitted. If INTYPE is not specified, all types in the
user’s schema will be translated.

OTTusername/password filename...

The INTYPE file can be thought of as a makefile for type declarations. It lists the
types for which C struct declarations are needed. The format of the INTYPE file is
described in section “Structure of the Intype File” on page 12-29.

If the file name on the command line or in the INTYPE file does not include an
extension, a platform-specific extension such as "TYP" or ".typ" will be added.

outtype
The name of a file into which the OTT will write type information for all the object
datatypes it processes. This includes all types explicitly named in the INTYPE file,
and may include additional types that are translated because they are used in the
declarations of other types that need to be translated. This file may be used as an
INTYPE file in a future invocation of the OTT.

outtype =<filename>

If the INTYPE and OUTTYPE parameters refer to the same file, the new INTYPE
information replaces the old information in the INTYPE file. This provides a
convenient way for the same INTYPE file to be used repeatedly in the cycle of
altering types, generating type declarations, editing source code, precompiling,
compiling, and debugging.

OUTTYPE must be specified.

If the file name on the command line or in the INTYPE file does not include an
extension, a platform-specific extension such as "TYP" or ".typ" will be added.
 Using the Object Type Translator 12-25

OTT Reference
code
This is the desired host language for OTT output, which may be specified as
CODE=C, CODE=KR_C, or CODE=ANSI_C. "CODE=C" is equivalent to
"CODE=ANSI_C".

CODE= C|KR_C|ANSI_C

There is no default value for this parameter; it must be supplied.

initfile
The INITFILE parameter specifies the name of the file where the OTT-generated
initialization file is to be written. The initialization function will not be generated if
this parameter is omitted.

For Pro*C/C++ programs, the INITFILE is not necessary, because the SQLLIB run-
time library performs the necessary initializations. An OCI program user must
compile and link the INITFILE file(s), and must call the initialization function(s)
when an environment handle is created.

If the file name of an INITFILE on the command line or in the INTYPE file does not
include an extension, a platform-specific extension such as "C" or ".c" will be added.

initfile =<filename>

initfunc
The INITFUNC parameter is only used in OCI programs. It specifies the name of
the initialization function generated by the OTT. If this parameter is omitted, the
name of the initialization function is derived from the name of the INITFILE.

initfunc =<filename>

hfile
The name of the include (.h) file to be generated by the OTT for the declarations of
types that are mentioned in the INTYPE file but whose include files are not
specified there. This parameter is required unless the include file for each type is
specified individually in the INTYPE file. This parameter is also required if a type
not mentioned in the INTYPE file must be generated because other types require it,
and these other types are declared in two or more different files.

If the file name of an HFILE on the command line or in the INTYPE file does
not include an extension, a platform-specific extension such as "H" or ".h" will be
added.

hfile =<filename>
12-26 Oracle Call Interface Programmer’s Guide

OTT Reference
config
The CONFIG parameter specifies the name of the OTT configuration file, which
lists commonly used parameter specifications. Parameter specifications are also
read from a system configuration file in a platform-dependent location. All
remaining parameter specifications must appear on the command line, or in the
INTYPE file.

config =<filename>

Note: A CONFIG parameter is not allowed in the CONFIG file.

errtype
If this parameter is supplied, a listing of the INTYPE file is written to the ERRTYPE
file, along with all informational and error messages. Informational and error
messages are sent to the standard output whether or not ERRTYPE is specified.

Essentially, the ERRTYPE file is a copy of the INTYPE file with error messages
added. In most cases, an error message will include a pointer to the text which
caused the error.

If the file name of an ERRTYPE on the command line or in the INTYPE file does not
include an extension, a platform-specific extension such as "TLS" or ".tls" will be
added.

errtype =<filename>

case
This parameter affects the case of certain C identifiers generated by the OTT. The
possible values of CASE are SAME, LOWER, UPPER, and OPPOSITE. If CASE =
SAME, the case of letters is not changed when converting database type and
attribute names to C identifiers. If CASE=LOWER, all uppercase letters are
converted to lowercase. If CASE=UPPER, all lowercase letters are converted to
uppercase. If CASE=OPPOSITE, all uppercase letters are converted to lower-case,
and vice-versa.

CASE=[SAME|LOWER|UPPER|OPPOSITE]

This option affects only those identifiers (attributes or types not explicitly listed)
not mentioned in the INTYPE file. Case conversion takes place after a legal
identifier has been generated.

Note: The case of the C struct identifier for a type specifically mentioned in the
INTYPE is the same as its case in the INTYPE file. For example, if the INTYPE
file includes the following line
 Using the Object Type Translator 12-27

OTT Reference
TYPE Worker

then the OTT generates

struct Worker {...};

On the other hand, if the INTYPE file were written as

TYPE wOrKeR

the OTT generates

struct wOrKeR {...};

following the case of the INTYPE file.

Case-insensitive SQL identifiers not mentioned in the INTYPE file will appear in
upper case if CASE=SAME, and in lower case if CASE=OPPOSITE. A SQL
identifier is case-insensitive if it was not quoted when it was declared.

schema_names
This option offers control in qualifying the database name of a type from the
default schema with a schema name in the OUTTYPE file. The OUTTYPE file
generated by the OTT contains information about the types processed by the OTT,
including the type names.

See “SCHEMA_NAMES Usage” on page 12-33 for further information.

Where OTT Parameters Can Appear
OTT parameters can appear on the command line, in a CONFIG file named on the
command line, or both. Some parameters are also allowed in the INTYPE file.

The OTT is invoked as follows:

OTT username/password <parameters>

If one of the parameters on the command line is

config=<filename>

additional parameters are read from the configuration file <filename> .

In addition, parameters are also read from a default configuration file in a platform-
dependent location. This file must exist, but can be empty. Parameters in a
configuration file must appear one per line, with no whitespace on the line.
12-28 Oracle Call Interface Programmer’s Guide

OTT Reference
If the OTT is executed without any arguments, an on-line parameter reference is
displayed.

The types for the OTT to translate are named in the file specified by the INTYPE
parameter. The parameters CASE, INITFILE, INITFUNC, and HFILE may also
appear in the INTYPE file. OUTTYPE files generated by the OTT include the CASE
parameter, and include the INITFILE, and INITFUNC parameters if an
initialization file was generated. The OUTTYPE file specifies the HFILE
individually for each type.

The case of the OTT command is platform-dependent.

Structure of the Intype File
The intype and outtype files list the types translated by the OTT, and provide all
the information needed to determine how a type or attribute name is translated to a
legal C identifier. These files contain one or more type specifications. These files
also may contain specifications of the following options:

■ CASE

■ HFILE

■ INITFILE

■ INITFUNC

If the CASE, INITFILE, or INITFUNC options are present, they must precede any
type specifications. If these options appear both on the command line and in the
intype file, the value on the command line is used.

For an example of a simple user-defined intype file, and of the full outtype file that
the OTT generates from it, see “The Outtype File” on page 12-16.

Intype File Type Specifications
A type specification in the INTYPE names an object datatype that is to be
translated. A type specification in the OUTTYPE file names an object datatype that
has been translated,

TYPE PERSON AS PERSON
 VERSION = "$8.0"
 HFILE = demo.h
The structure of a type specification is as follows:
TYPE <type_name> [AS <type_identifier>]
[VERSION [=] <version_string>]
[HFILE [=] <hfile_name>]
 Using the Object Type Translator 12-29

OTT Reference
[TRANSLATE{<member_name> [AS <identifier>]}...]

The syntax of type_name is:
[<schema_name>.]<type_name>

where schema_name is the name of the schema which owns the given object
datatype, and type_name is the name of the type. The default schema is that of the
user running the OTT. The default database is the local database.

The components of a type specification are described below.

■ <type_name> is the name of an Oracle8 object datatype.

■ <type_identifier> is the C identifier used to represent the type. If omitted,
the default name mapping algorithm will be used.

■ <version_string> is the version string of the type which was used when
the code was generated by a previous invocation of the OTT. The version string
is generated by the OTT and written to the OUTTYPE file, which may later be
used as the INTYPE file when the OTT is later executed. The version string
does not affect the OTT’s operation, but will eventually be used to select which
version of the object datatype should be used in the running program.

■ <type_identifier> is the C identifier used to represent the type. If omitted,
the default type mapping algorithm will be used. For further information, see
“Default Name Mapping” on page 12-35.

■ <member_name> is the name of an attribute (data member) which is to be
translated to the following <identifier> .

■ <identifier > is the C identifier used to represent the attribute in the user
program. Identifiers may be specified in this way for any number of attributes.
The default name mapping algorithm will be used for the attributes that are
not mentioned.

■ <hfile_name> is the name of the header file in which the declarations of the
corresponding struct or class appears or will appear. If <hfile name> is
omitted, the file named by the command-line HFILE parameter will be used if
a declaration is generated.

An object datatype may need to be translated for one of two reasons:

■ It appears in the INTYPE file.

■ It is required to declare another type that must be translated.
12-30 Oracle Call Interface Programmer’s Guide

OTT Reference
If a type that is not mentioned explicitly is required by types declared in exactly
one file, the translation of the required type is written to the same file(s) as the
explicitly declared types that require it.

If a type that is not mentioned explicitly is required by types declared in two or
more different files, the translation of the required type is written to the global
HFILE file.

Nested #include File Generation
Every HFILE generated by the OTT #includes other necessary files, and
#defines a symbol constructed from the name of the file, which may be used to
determine if the HFILE has already been included. Consider, for example, a
database with the following types:

create type px1 AS OBJECT (col1 number, col2 integer);
create type px2 AS OBJECT (col1 px1);
create type px3 AS OBJECT (col1 px1);

where the intype file contains:

CASE=lower
type pxl
 hfile tott95a.h
type px3
 hfile tott95b.h

If we invoke the OTT with

ott scott/tiger tott95i.typ outtype=tott95o.typ code=c

then it will generate the two following header files.

File tott95b.h is:

#ifndef TOTT95B_ORACLE
#define TOTT95B_ORACLE
#ifndef OCI_ORACLE
#include <oci.h>
#endif
#ifndef TOTT95A_ORACLE
#include "tott95a.h"
#endif
typedef OCIRef px3_ref;
struct px3
{

 Using the Object Type Translator 12-31

OTT Reference
 struct px1 col1;
};
typedef struct px3 px3;
struct px3_ind
{
 OCIInd _atomic;
 struct px1_ind col1
};
typedef struct px3_ind px3_ind;
#endif

File tott95a.h is:

#ifndef TOTT95A_ORACLE
#define TOTT95A_ORACLE
#ifndef OCI_ORACLE
#include <oci.h>
#endif
typedef OCIRef px1_ref;
struct px1
{
 OCINumber col1;
 OCINumber col2;
}
typedef struct px1 px1;
struct px1_ind
{
 OCIInd _atomic;
 OCIInd col1;
 OCIInd col2;
}
typedef struct px1_ind px1_ind;
#endif

In this file, the symbol TOTT95B_ORACLE is defined first so that the programmer
may conditionally include tott95b.h without having to worry whether tott95b.h
depends on the include file using the following construct:

#ifndef TOTT95B_ORACLE
#include "tott95b.h"
#endif

Using this technique, the programmer may include tott95b.h from some file, say
foo.h, without having to know whether some other file included by foo.h also
includes tott95b.h.
12-32 Oracle Call Interface Programmer’s Guide

OTT Reference
After the definition of the symbol TOTT95B_ORACLE, the file oci.h is #included .
Every HFILE generated by the OTT includes oci.h, which contains type and
function declarations that the Pro*C/C++ or OCI programmer will find useful. This
is the only case in which the OTT uses angle brackets in a #include .

Next, the file tott95a.h is included. This file is included because it contains the
declaration of "struct px1 ", which tott95b.h requires. When the user’s INTYPE
file requests that type declarations be written to more than one file, the OTT
determines which other files each HFILE must include, and will generate the
necessary #includes .

Note that the OTT uses quotes in this #include . When a program including
tott95b.h is compiled, the search for tott95a.h will begin where the source program
was found, and will thereafter follow an implementation-defined search rule. If
tott95a.h cannot be found in this way, a complete file name (e.g., a UNIX absolute
pathname beginning with /) should be used in the INTYPE file to specify the
location of tott95a.h.

SCHEMA_NAMES Usage
This parameter affects whether the name of a type from the default schema to
which the OTT is connected is qualified with a schema name in the OUTTYPE file.

The name of a type from a schema other that the default schema is always qualified
with a schema name in the OUTTYPE file.

The schema name, or its absence, determines in which schema the type is found
during program execution.

There are three settings:

■ schema_names =ALWAYS (default)

All type names in the OUTTYPE file are qualified with a schema name.

■ schema_names =IF_NEEDED

The type names in the OUTTYPE file that belong to the default schema are not
qualified with a schema name. As always, type names belonging to other
schemas are qualified with the schema name.

■ schema_names =FROM_INTYPE

A type mentioned in the INTYPE file is qualified with a schema name in the
OUTTYPE file if, and only if, it was qualified with a schema name in the
INTYPE file. A type in the default schema that is not mentioned in the INTYPE
file but that has to be generated because of type dependencies will be written
 Using the Object Type Translator 12-33

OTT Reference
with a schema name only if the first type encountered by the OTT that depends
on it was written with a schema name. However, a type that is not in the
default schema to which the OTT is connected will always be written with an
explicit schema name.

The OUTTYPE file generated by the OTT is an input parameter to Pro*C/C++.
From the point of view of Pro*C/C++, it is the Pro*C/C++ INTYPE file. This file
matches database type names to C struct names. This information is used at run-
time to make sure that the correct database type is selected into the struct. If a type
appears with a schema name in the OUTTYPE file (Pro*C/C++ INTYPE file), the
type will be found in the named schema during program execution. If the type
appears without a schema name, the type will be found in the default schema to
which the program connects, which may be different from the default schema the
OTT used.

An Example If SCHEMA_NAMES is set to FROM_INTYPE, and the INTYPE file
reads:

TYPE Person
TYPE david.Dept
TYPE eric.Company

then the Pro*C/C++ application that uses the OTT-generated structs will use the
types sam.Company, david.Dept , and Person . Using Person without a schema
name refers to the Person type in the schema to which the application is
connected.

If the OTT and the application both connect to schema david , the application will
use the same type (david.Person) that the OTT used. If the OTT connected to
schema david but the application connects to schema jana , the application will
use the type jana.Person . This behavior is appropriate only if the same
"CREATE TYPE Person " statement has been executed in schema david and
schema jana .

On the other hand, the application will use type david.Dept regardless of to
which schema the application is connected. If this is the behavior you want, be sure
to include schema names with your type names in the INTYPE file.

In some cases, the OTT translates a type that the user did not explicitly name. For
example, consider the following SQL declarations:

CREATE TYPE Address AS OBJECT
(street VARCHAR2(40),

city VARCHAR(30),
state CHAR(2),
12-34 Oracle Call Interface Programmer’s Guide

OTT Reference
zip_code CHAR(10));

CREATE TYPE Person AS OBJECT
(name CHAR(20),

age NUMBER,
addr ADDRESS);

Now suppose that the OTT connects to schema david ,
SCHEMA_NAMES=FROM_INTYPE is specified, and the user’s INTYPE files
include either

TYPE Person

or

TYPE david.Person

but do not mention the type david.Address , which is used as a nested object
type in type david.Person . If "TYPE david.Person " appeared in the INTYPE
file, "TYPE david.Person " and "TYPE david.Address " will appear in the
OUTTYPE file. If "Type Person " appeared in the INTYPE file, "TYPE Person "
and "TYPE Address " will appear in the OUTTYPE file.

If the david.Address type is embedded in several types translated by the OTT,
but is not explicitly mentioned in the INTYPE file, the decision of whether to use a
schema name is made the first time the OTT encounters the embedded
david.Address type. If, for some reason, the user wants type david.Address
to have a schema name but does not want type Person to have one, the user
should explicitly request

TYPE david.Address

in the INTYPE FILE.

The main point is that in the usual case in which each type is declared in a single
schema, it is safest for the user to qualify all type names with schema names in the
INTYPE file.

Default Name Mapping
When the OTT creates a C identifier name for an object type or attribute, it
translates the name from the database character set to a legal C identifier. First, the
name is translated from the database character set to the character set used by the
OTT. Next, if a translation of the resulting name is supplied in the INTYPE file, that
translation is used. Otherwise, the OTT translates the name character-by-character
 Using the Object Type Translator 12-35

OTT Reference
to the compiler character set, applying the CASE option. This process is described
in more detail below:

When the OTT reads the name of a database entity, the name is automatically
translated from the database character set to the character set used by the OTT. In
order for the OTT to read the name of the database entity successfully, all the
characters of the name must be found in the OTT character set, although a
character may have different encodings in the two character sets.

The easiest way to guarantee that the character set used by the OTT contains all the
necessary characters is to make it the same as the database character set. Note,
however, that the OTT character set must be a superset of the compiler character
set. That is, if the compiler character set is 7-bit ASCII, the OTT character set must
include 7-bit ASCII as a subset, and if the compiler character set is 7-bit EBCDIC,
the OTT character set must include 7-bit EBCDIC as a subset. The user specifies the
character set that the OTT uses by setting the NLS_LANG environment variable, or
by some other platform-specific mechanism.

Once the OTT has read the name of a database entity, it translates the name from
the character set used by the OTT to the compiler's character set. If a translation of
the name appears in the INTYPE file, the OTT uses that translation.

Otherwise, the OTT attempts to translate the name as follows:

1. First, if the OTT character set is a multi-byte character set, all multi-byte charac-
ters in the name that have single-byte equivalents are converted to those single-
byte equivalents.

2. Next, the name is converted from the OTT character set to the compiler charac-
ter set. The compiler character set is a single-byte character set such as
US7ASCII.

3. Finally, the case of letters is set according to the CASE option in effect, and any
character that is not legal in a C identifier, or that has no translation in the com-
piler character set, is replaced by an underscore. If at least one character is
replaced by an underscore, the OTT gives a warning message. If all the charac-
ters in a name are replaced by underscores, the OTT gives an error message.

Character-by-character name translation does not alter underscores, digits, or
single-byte letters that appear in the compiler character set, so legal C identifiers
are not altered.

Name translation may, for example, translate accented single-byte characters such
as “o” with an umlaut or “a” with an accent grave to “o” or “a”, and may translate
a multi-byte letter to its single-byte equivalent. Name translation will typically fail
12-36 Oracle Call Interface Programmer’s Guide

OTT Reference
if the name contains multi-byte characters that lack single-byte equivalents. In this
case, the user must specify name translations in the INTYPE file.

The OTT will not detect a naming clash caused by two or more database identifiers
being mapped to the same C name, nor will it detect a naming problem where a
database identifier is mapped to a C keyword.

Restrictions
The following restrictions exist which affect use of the OTT.

File Name Comparison
Currently, the OTT determines if two files are the same by comparing the file
names provided by the user on the command line or in the INTYPE file. But one
potential problem can occur when the OTT needs to know if two file names refer to
the same file. For example, if the OTT-generated file foo.h requires a type
declaration written to foo1.h , and another type declaration written to /private/
elias/foo1.h , the OTT should generate one #include if the two files are the
same, and two #includes if the files are different. In practice, though, it would
conclude that the two files are different, and would generate two #includes , as
follows:

#ifndef FOO1_ORACLE
#include "foo1.h"
#endif
#ifndef FOO1_ORACLE
#include "/private/elias/foo1.h"
#endif

If foo1.h and /private/elias/foo1.h are different files, only the first one will
be included. If foo1.h and /private/elias/foo1.h are the same file, a
redundant #include will be written.

Therefore, if a file is mentioned several times on the command line or in the
INTYPE file, each mention of the file should use exactly the same file name.
 Using the Object Type Translator 12-37

OTT Reference
12-38 Oracle Call Interface Programmer’s Guide

Part III

OCI Reference

This part of the book contains the OCI function reference chapters:

■ Chapter 13, “OCI Relational Functions”

■ Chapter 14, “OCI Navigation and Type Functions”

■ Chapter 15, “OCI Datatype Mapping and Manipulation Functions”

■ Chapter 16, “OCI External Procedure Functions”

 OCI Relational Fu
13

OCI Relational Functions

This chapter describes the Oracle8 OCI relational functions for C. It includes
information about calling OCI functions in your application, along with detailed
descriptions of each function call.

This chapter contains the following sections:

■ Introduction

■ OCI Quick Reference

■ The OCI Relational Functions

■ Calling OCI Functions
nctions 13-1

Introduction
Introduction

This chapter describes the OCI relational function calls. This chapter covers those
functions in the basic OCI. The function calls for manipulating objects are described
in the next three chapters.

For information about return codes and error handling, refer to the section “Error
Handling” on page 2-25.
13-2 Oracle Call Interface Programmer’s Guide

OCI Quick Reference
OCI Quick Reference

This table directs you to the location of a given OCI call in this chapter. The
following list includes all OCI relational and type information accessor functions,
grouped by functional category.

Table 13–1 OCI Quick Reference

Function Purpose Page

CONNECT / INITIALIZE/AUTHORIZE

OCIInitialize() Initialize OCI process environment 13 - 72

OCIEnvInit() Initialize an environment handle 13 - 63

OCIServerAttach() Attach to a server; initialize server context handle 13 - 125

OCIServerDetach() Detach from a server; uninitialize server context handle 13 - 127

OCISessionBegin() Authenticate a user 13 - 129

OCISessionEnd() Terminate a user session 13 - 132

OCILogon() Simplified single-session logon 13 - 117

OCILogoff() Simplified single-session logoff 13 - 116

HANDLES / DESCRIPTORS

OCIAttrGet() Get the attributes of a handle 13 - 11

OCIAttrSet() Set an attribute of a handle or descriptor 13 - 25

OCIDescriptorAlloc() Allocate and initialize a descriptor or LOB locator 13 - 60

OCIDescriptorFree() Free a previously allocated descriptor 13 - 62

OCIHandleAlloc() Allocate and initialize a handle 13 - 68

OCIHandleFree() Free a previously allocated handle 13 - 70

OCIParamGet() Get a parameter descriptor 13 - 119

OCIParamSet() Set parameter descriptor in COR handle 13 - 121

TRANSACTION MANAGEMENT

OCITransCommit() Commit a transaction on a service context 13 - 149

OCITransDetach() Detach a transaction from a service context 13 - 152

OCITransRollback() Roll back a transaction 13 - 156

OCITransStart() Start a transaction on a service context 13 - 157

OCITransPrepare() Prepare a global transaction for commit 13 - 155
 OCI Relational Functions 13-3

OCI Quick Reference
OCITransForget() Forget a prepared global transaction 13 - 154

BIND

OCIBindDynamic() Set additional attributes after bind with OCI_DATA_AT_EXEC mode 13 - 38

OCIBindByName Bind by name 13 - 30

OCIBindByPos() Bind by position 13 - 11

OCIBindObject() Set additional attributes for bind of named data type 13 - 42

OCIBindArrayOfStruct() Set skip parameters for static array bind 13 - 28

OCIStmtGetBindInfo() Get bind and indicator variable names and handles 13 - 139

DEFINE

OCIDefineArrayOfStruct() Set additional attributes for static array define 13 - 46

OCIDefineDynamic() Set additional attributes for define in OCI_DYNAMIC_FETCH mode 13 - 52

OCIDefineByPos() Define an output variable association 13 - 48

OCIDefineObject() Set additional attributes for define of named data type 13 - 55

DESCRIBE

OCIDescribeAny() Describe existing schema objects 13 - 57

PREPARE/EXECUTE/FETCH

OCIStmtPrepare() Establish an application request 13 - 143

OCIStmtExecute() Send statements to server for execution 13 - 134

OCIStmtFetch() Fetch rows from a query 13 - 137

LOB/FILE OPERATIONS

OCILobFileClose() Close a previously opened FILE 13 - 88

OCILobFileCloseAll() Close all previously opened files 13 - 89

OCILobFileOpen() Open a FILE 13 - 95

OCILobAppend() Append to a LOB 13 - 76

OCILobCopy() Copy a LOB 13 - 82

OCILobErase() Erase a portion of a LOB 13 - 86

OCILobGetLength() Get length of a LOB or FILE 13 - 100

OCILobRead() Read a portion of a LOB or FILE 13 - 107

Table 13–1 OCI Quick Reference (Cont.)

Function Purpose Page
13-4 Oracle Call Interface Programmer’s Guide

OCI Quick Reference
OCILobTrim() Truncate a LOB 13 - 111

OCILobWrite() Write into a LOB 13 - 112

OCILobAssign() Assign one LOB locator to another 13 - 78

OCILobIsEqual() Compare two LOB locators for Equality 13 - 102

OCILobFileGetName() Get directory alias and file NaMe from the LOB locator 13 - 91

OCILobFileIsOpen() Check if file on server is open via this locator 13 - 93

OCILobFileSetName() Set directory alias and file name in the LOB locator 13 - 96

OCILobLocatorIsInit() Check to see if a LOB locator is initialized 13 - 105

OCILobCharSetID Get character set ID from LOB locator 13 - 81

OCILobCharSetForm() Get character set form from LOB locator 13 - 80

OCILobFileExists() Check if a file exists on the server 13 - 90

OCILobLoadFromFile() Load a LOB from a FILE 13 - 103

OCILobDisableBuffering() Turn LOB buffering off 13 - 84

OCILobEnableBuffering() Turn LOB buffering on 13 - 85

OCILobFlushBuffer() Flush the LOB buffer 13 - 98

MISCELLANEOUS

OCIBreak() Perform an immediate asynchronous break 13 - 45

OCIServerVersion() Get the Oracle version string 13 - 128

OCIPasswordChange() Change password 13 - 123

OCIErrorGet() Return error message and Oracle error 13 - 65

OCIStmtGetPieceInfo() Get piece information for piecewise operations 13 - 141

OCIStmtSetPieceInfo() Set piece information for piecewise operations 13 - 145

OCILdaToSvcCtx() Toggle Lda_Def to service context handle 13 - 75

OCISvcCtxToLda() Toggle service context handle to Lda_Def 13 - 147

OCIAQEnq() Advanced queueing enqueue 13 - 11

OCIAQDeq() Advanced queueing dequeue 13 - 8

Table 13–1 OCI Quick Reference (Cont.)

Function Purpose Page
 OCI Relational Functions 13-5

Calling OCI Functions
Calling OCI Functions

Unlike earlier versions of the OCI, in release 8.0 you cannot pass -1 for the string
length parameter of a null-terminated string.

When you pass string lengths as parameters, do not include the NULL terminator
byte in the length. The OCI does not expect strings to be NULL-terminated.

Server Roundtrips for LOB Functions

For a table showing the number of server roundtrips required for individual OCI
LOB functions, refer to Appendix E, “OCI Function Server Roundtrips”.
13-6 Oracle Call Interface Programmer’s Guide

The OCI Relational Functions
The OCI Relational Functions

The remainder of this chapter specifies the release 8.0 OCI relational functions for
C. For each function, the following information is listed:

Purpose
A brief description of the action performed by the function.

Syntax
A code snippet showing the syntax for calling the function, including the ordering
and types of the parameters.

Parameters
A description of each of the function’s parameters. This includes the parameter’s
mode. The mode of a parameter has three possible values, as described below.

Comments
More detailed information about the function (if available). This may include
restrictions on the use of the function, or other information that might be useful
when using the function in an application.

Example
A complete or partial code example demonstrating the use of the function call
being described. Not all function descriptions include an example.

Related Functions
A list of related function calls.

Mode Description

IN A parameter that passes data to the OCI

OUT A parameter that receives data from the OCI on this call

IN/OUT A parameter that passes data on the call and receives
data on the return from this or a subsequent call.
 OCI Relational Functions 13-7

OCIAQDeq()
OCIAQDeq()

Purpose
This call is used for an advanced queueing dequeue.

Syntax
sword OCIAQDeq (OCISvcCtx *svch,
 OCIError *errh,
 text *queue_name,
 OCIAQDeqOptions *dequeue_options,
 OCIAQMsgProperties *message_properties,
 OCIType *payload_tdo,
 dvoid **payload,
 dvoid **payload_ind,
 OCIRaw **msgid,
 ub4 flags);

Parameters

svch (IN)
OCI service context.

errh (IN)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

queue_name (IN)
The target queue for the dequeue operation.

dequeue_options (IN)
The options for the dequeue operation; stored in an OCIAQDeqOptions descriptor.

message_properties (OUT)
The message properties for the message; stored in an OCIAQMsgProperties
descriptor.

payload_tdo (IN)
The TDO (type descriptor object) of an object type. For a raw queue, this parameter
should point to the TDO of SYS.RAW.
13-8 Oracle Call Interface Programmer’s Guide

OCIAQDeq()
payload (IN/OUT)
A pointer to a pointer to a program variable buffer that is an instance of an object
type. For a raw queue, this parameter should point to an instance of OCIRaw.

Memory for the payload is dynamically allocated in the object cache. The
application can optionally call OCIObjectFree() to deallocate the payload instance
when it is no longer needed. If the pointer to the program variable buffer
(*payload) is passed as NULL, the buffer is implicitly allocated in the cache.

The application may choose to pass NULL for payload the first time OCIAQDeq() is
called, and let the OCI allocate the memory for the payload. It can then use a
pointer to that previously allocated memory in subsequent calls to OCIAQDeq().

The OCI provides functions which allow the user to set attributes of the payload,
such as its text. For information about setting these attributes, refer to
“Manipulating Object Attributes” on page 8-13.

payload_ind (IN/OUT)
A pointer to a pointer to the program variable buffer containing the parallel
indicator structure for the object type.

The memory allocation rules for payload_ind are the same as those for payload,
above.

msgid (OUT)
The message ID.

flags (IN)
Not currently used; pass as OCI_DEFAULT.

Comments
This function is used to perform an Advanced Queueing dequeue operation using
the OCI.

Users must have the aq_user_role or privileges to execute the dbms_aq package in
order to use this call.

The OCI environment must be initialized in object mode (using OCIInitialize()) to
use this call.

For more information about OCI and Advanced Queueing, refer to “OCI and
Advanced Queueing” on page 7-40.

For additional information about Advanced Queueing, refer to Oracle8 Application
Developer’s Guide.
 OCI Relational Functions 13-9

OCIAQDeq()
To obtain a TDO for the payload, use OCITypeByName(), or OCITypeByRef().

Examples
For examples demonstrating the use of OCIAQDeq(), refer to the description of
OCIAQEnq() on page 13-11.

Related Functions
OCIAQEnq(), OCIInitialize()
13-10 Oracle Call Interface Programmer’s Guide

OCIAQEnq()
OCIAQEnq()

Purpose
This call is used for an advanced queueing enqueue.

Syntax
sword OCIAQEnq (OCISvcCtx *svch,
 OCIError *errh,
 text *queue_name,
 OCIAQEnqOptions *enqueue_options,
 OCIAQMsgProperties *message_properties,
 OCIType *payload_tdo,
 dvoid **payload,
 dvoid **payload_ind,
 OCIRaw **msgid,
 ub4 flags);

Parameters

svch (IN)
OCI service context.

errh (IN)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

queue_name (IN)
The target queue for the enqueue operation.

enqueue_options (IN)
The options for the enqueue operation; stored in an OCIAQEnqOptions descriptor.

message_properties (IN)
The message properties for the message; stored in an OCIAQMsgProperties
descriptor.

payload_tdo (IN)
The TDO (type descriptor object) of an object type. For a raw queue, this parameter
should point to the TDO of SYS.RAW.
 OCI Relational Functions 13-11

OCIAQEnq()
payload (IN)
A pointer to a pointer to an instance of an object type. For a raw queue, this
parameter should point to an instance of OCIRaw.

The OCI provides functions which allow the user to set attributes of the payload,
such as its text. For information about setting these attributes, refer to
“Manipulating Object Attributes” on page 8-13.

payload_ind (IN)
A pointer to a pointer to the program variable buffer containing the parallel
indicator structure for the object type.

msgid (OUT)
The message ID.

flags (IN)
Not currently used; pass as OCI_DEFAULT.

Comments
This function is used to perform an Advanced Queueing enqueue operation using
the OCI.

Users must have the aq_user_role or privileges to execute the dbms_aq package in
order to use this call.

The OCI environment must be initialized in object mode (using OCIInitialize()) to
use this call.

For more information about OCI and Advanced Queueing, refer to “OCI and
Advanced Queueing” on page 7-40.

For additional information about Advanced Queueing, refer to Oracle8 Application
Developer’s Guide.

To obtain a TDO for the payload, use OCITypeByName(), or OCITypeByRef().

Examples
The following four examples demonstrate the use of OCIAQEnq() and OCIAQDeq()
in several different situations.

These examples assume that the database is set up as illustrated in the section
“Oracle Advanced Queueing By Example” in the advanced queueing chapter of the
Oracle8 Application Developer’s Guide.
13-12 Oracle Call Interface Programmer’s Guide

OCIAQEnq()
Example 1
Enqueue and dequeue of a payload object.

struct message
{
 OCIString *subject;
 OCIString *data;
};
typedef struct message message;

struct null_message
{
 OCIInd null_adt;
 OCIInd null_subject;
 OCIInd null_data;
};
typedef struct null_message null_message;

int main()
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 dvoid *tmp;
 OCIType *mesg_tdo = (OCIType *) 0;
 message msg;
 null_message nmsg;
 message *mesg = &msg;
 null_message *nmesg = &nmsg;
 message *deqmesg = (message *)0;
 null_message *ndeqmesg = (null_message *)0;

 OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
 (dvoid * (*)()) 0, (void (*)()) 0);

 OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
 52, (dvoid **) &tmp);

 OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
 52, (dvoid **) &tmp);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);
 OCI Relational Functions 13-13

OCIAQEnq()
 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);
 OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,
 (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

 OCILogon(envhp, errhp, &svchp, "AQ", strlen("AQ"), "AQ", strlen("AQ"), 0, 0);

 /* obtain TDO of message_type */
 OCITypeByName(envhp, errhp, svchp, (CONST text *)"AQ", strlen("AQ"),
 (CONST text *)"MESSAGE_TYPE", strlen("MESSAGE_TYPE"),
 (text *)0, 0, OCI_DURATION_SESSION, OCI_TYPEGET_ALL, &mesg_tdo);

 /* prepare the message payload */
 mesg->subject = (OCIString *)0;
 mesg->data = (OCIString *)0;
 OCIStringAssignText(envhp, errhp, (CONST text *)"NORMAL MESSAGE",
 strlen("NORMAL MESSAGE"), &mesg->subject);
 OCIStringAssignText(envhp, errhp,(CONST text *)"OCI ENQUEUE",
 strlen("OCI ENQUEUE"), &mesg->data);
 nmesg->null_adt = nmesg->null_subject = nmesg->null_data = OCI_IND_NOTNULL;

 /* enqueue into the msg_queue */
 OCIAQEnq(svchp, errhp, (CONST text *)"msg_queue", 0, 0,
 mesg_tdo, (dvoid **)&mesg, (dvoid **)&nmesg, 0, 0);
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* dequeue from the msg_queue */
 OCIAQDeq(svchp, errhp, (CONST text *)"msg_queue", 0, 0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, 0, 0);
 printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
 printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));
 OCITransCommit(svchp, errhp, (ub4) 0);
}

Example 2
Enqueue and dequeue using correlation IDs.

struct message
{
 OCIString *subject;
 OCIString *data;
};
13-14 Oracle Call Interface Programmer’s Guide

OCIAQEnq()
typedef struct message message;

struct null_message
{
 OCIInd null_adt;
 OCIInd null_subject;
 OCIInd null_data;
};
typedef struct null_message null_message;

int main()
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 dvoid *tmp;
 OCIType *mesg_tdo = (OCIType *) 0;
 message msg;
 null_message nmsg;
 message *mesg = &msg;
 null_message *nmesg = &nmsg;
 message *deqmesg = (message *)0;
 null_message *ndeqmesg = (null_message *)0;
 OCIRaw*firstmsg = (OCIRaw *)0;
 OCIAQMsgProperties *msgprop = (OCIAQMsgProperties *)0;
 OCIAQDeqOptions *deqopt = (OCIAQDeqOptions *)0;
 text correlation1[30], correlation2[30];

 OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
 (dvoid * (*)()) 0, (void (*)()) 0);
 OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
 52, (dvoid **) &tmp);

 OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
 52, (dvoid **) &tmp);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);
 OCI Relational Functions 13-15

OCIAQEnq()
 OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,
 (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

 OCILogon(envhp, errhp, &svchp, "AQ", strlen("AQ"), "AQ", strlen("AQ"), 0, 0);

 /* allocate message properties descriptor */
 OCIDescriptorAlloc(envhp, (dvoid **)&msgprop,
 OCI_DTYPE_AQMSG_PROPERTIES, 0, (dvoid **)0);
 strcpy(correlation1, "1st message");
 OCIAttrSet(msgprop, OCI_DTYPE_AQMSG_PROPERTIES, (dvoid *)&correlation1,
 strlen(correlation1), OCI_ATTR_CORRELATION, errhp);

 /* obtain TDO of message_type */
 OCITypeByName(envhp, errhp, svchp, (CONST text *)"AQ", strlen("AQ"),
 (CONST text *)"MESSAGE_TYPE", strlen("MESSAGE_TYPE"),
 (text *)0, 0, OCI_DURATION_SESSION, OCI_TYPEGET_ALL, &mesg_tdo);

 /* prepare the message payload */
 mesg->subject = (OCIString *)0;
 mesg->data = (OCIString *)0;
 OCIStringAssignText(envhp, errhp, (CONST text *)"NORMAL ENQUEUE1",
 strlen("NORMAL ENQUEUE1"), &mesg->subject);
 OCIStringAssignText(envhp, errhp,(CONST text *)"OCI ENQUEUE",
 strlen("OCI ENQUEUE"), &mesg->data);
 nmesg->null_adt = nmesg->null_subject = nmesg->null_data = OCI_IND_NOTNULL;

 /* enqueue into the msg_queue, store the message id into firstmsg */
 OCIAQEnq(svchp, errhp, (CONST text *)"msg_queue", 0, msgprop,
 mesg_tdo, (dvoid **)&mesg, (dvoid **)&nmesg, &firstmsg, 0);

 /* enqueue into the msg_queue with a different correlation id */
 strcpy(correlation2, "2nd message");
 OCIAttrSet(msgprop, OCI_DTYPE_AQMSG_PROPERTIES, (dvoid*)&correlation2,
 strlen(correlation2), OCI_ATTR_CORRELATION, errhp);
 OCIStringAssignText(envhp, errhp, (CONST text *)"NORMAL ENQUEUE2",
 strlen("NORMAL ENQUEUE2"), &mesg->subject);
 OCIAQEnq(svchp, errhp, (CONST text *)"msg_queue", 0, msgprop,
 mesg_tdo, (dvoid **)&mesg, (dvoid **)&nmesg, 0, 0);

 OCITransCommit(svchp, errhp, (ub4) 0);

 /* first dequeue by correlation id "2nd message" */
 /* allocate dequeue options descriptor and set the correlation option */
 OCIDescriptorAlloc(envhp, (dvoid **)&deqopt,
 OCI_DTYPE_AQDEQ_OPTIONS, 0, (dvoid **)0);
13-16 Oracle Call Interface Programmer’s Guide

OCIAQEnq()
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)correlation2,
 strlen(correlation2), OCI_ATTR_CORRELATION, errhp);

 /* dequeue from the msg_queue */
 OCIAQDeq(svchp, errhp, (CONST text *)"msg_queue", deqopt, 0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, 0, 0);
 printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
 printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* second dequeue by message id */
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)&firstmsg,
 OCIRawSize(envhp, firstmsg), OCI_ATTR_DEQ_MSGID, errhp);
 /* clear correlation id option */
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS,
 (dvoid *)correlation2, 0, OCI_ATTR_CORRELATION, errhp);

 /* dequeue from the msg_queue */
 OCIAQDeq(svchp, errhp, (CONST text *)"msg_queue", deqopt, 0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, 0, 0);
 printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
 printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));
 OCITransCommit(svchp, errhp, (ub4) 0);
}

Example 3
Enqueue and dequeue of a raw queue.

int main()
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 dvoid *tmp;
 OCIType *mesg_tdo = (OCIType *) 0;
 char msg_text[100];
 OCIRaw *mesg = (OCIRaw *)0;
 OCIRaw*deqmesg = (OCIRaw *)0;
 OCIInd ind = 0;
 dvoid *indptr = (dvoid *)&ind;
 inti;

 OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
 (dvoid * (*)()) 0, (void (*)()) 0);
 OCI Relational Functions 13-17

OCIAQEnq()
 OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
 52, (dvoid **) &tmp);

 OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
 52, (dvoid **) &tmp);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);
 OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,
 (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

 OCILogon(envhp, errhp, &svchp, "AQ", strlen("AQ"), "AQ", strlen("AQ"), 0, 0);

 /* obtain the TDO of the RAW data type */
 OCITypeByName(envhp, errhp, svchp, (CONST text *)"SYS", strlen("SYS"),
 (CONST text *)"RAW", strlen("RAW"),
 (text *)0, 0, OCI_DURATION_SESSION, OCI_TYPEGET_ALL, &mesg_tdo);

 /* prepare the message payload */
 strcpy(msg_text, "Enqueue to a RAW queue");
 OCIRawAssignBytes(envhp, errhp, msg_text, strlen(msg_text), &mesg);

 /* enqueue the message into raw_msg_queue */
 OCIAQEnq(svchp, errhp, (CONST text *)"raw_msg_queue", 0, 0,
 mesg_tdo, (dvoid **)&mesg, (dvoid **)&indptr, 0, 0);
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* dequeue the same message into C variable deqmesg */
 OCIAQDeq(svchp, errhp, (CONST text *)"raw_msg_queue", 0, 0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&indptr, 0, 0);
 for (i = 0; i < OCIRawSize(envhp, deqmesg); i++)
 printf("%c", *(OCIRawPtr(envhp, deqmesg) + i));
 OCITransCommit(svchp, errhp, (ub4) 0);
}

13-18 Oracle Call Interface Programmer’s Guide

OCIAQEnq()
Example 4
Enqueue and dequeue using OCIAQAgent.

struct message
{
 OCIString *subject;
 OCIString *data;
};
typedef struct message message;

struct null_message
{
 OCIInd null_adt;
 OCIInd null_subject;
 OCIInd null_data;
};
typedef struct null_message null_message;

int main()
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 dvoid *tmp;
 OCIType *mesg_tdo = (OCIType *) 0;
 message msg;
 null_message nmsg;
 message *mesg = &msg;
 null_message *nmesg = &nmsg;
 message *deqmesg = (message *)0;
 null_message *ndeqmesg = (null_message *)0;
 OCIAQMsgProperties *msgprop = (OCIAQMsgProperties *)0;
 OCIAQAgent *agents[2];
 OCIAQDeqOptions *deqopt = (OCIAQDeqOptions *)0;
 ub4wait = OCI_DEQ_NO_WAIT;
 ub4 navigation = OCI_DEQ_FIRST_MSG;

 OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
 (dvoid * (*)()) 0, (void (*)()) 0);

 OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
 52, (dvoid **) &tmp);

 OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);
 OCI Relational Functions 13-19

OCIAQEnq()
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
 52, (dvoid **) &tmp);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);

 OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,
 (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

 OCILogon(envhp, errhp, &svchp, "AQ", strlen("AQ"), "AQ", strlen("AQ"), 0, 0);

 /* obtain TDO of message_type */
 OCITypeByName(envhp, errhp, svchp, (CONST text *)"AQ", strlen("AQ"),
 (CONST text *)"MESSAGE_TYPE", strlen("MESSAGE_TYPE"),
 (text *)0, 0, OCI_DURATION_SESSION, OCI_TYPEGET_ALL, &mesg_tdo);

 /* prepare the message payload */
 mesg->subject = (OCIString *)0;
 mesg->data = (OCIString *)0;
 OCIStringAssignText(envhp, errhp,
 (CONST text *)"MESSAGE 1", strlen("MESSAGE 1"),
 &mesg->subject);
 OCIStringAssignText(envhp, errhp,
 (CONST text *)"mesg for queue subscribers",
 strlen("mesg for queue subscribers"), &mesg->data);
 nmesg->null_adt = nmesg->null_subject = nmesg->null_data = OCI_IND_NOTNULL;

 /* enqueue MESSAGE 1 for subscribers to the queue i.e. for RED and GREEN */
 OCIAQEnq(svchp, errhp, (CONST text *)"msg_queue_multiple", 0, 0,
 mesg_tdo, (dvoid **)&mesg, (dvoid **)&nmesg, 0, 0);

 /* enqueue MESSAGE 2 for specified recipients i.e. for RED and BLUE */
 /* prepare message payload */
 OCIStringAssignText(envhp, errhp,
 (CONST text *)"MESSAGE 2", strlen("MESSAGE 2"),
 &mesg->subject);
 OCIStringAssignText(envhp, errhp,
 (CONST text *)"mesg for two recipients",
 strlen("mesg for two recipients"), &mesg->data);
13-20 Oracle Call Interface Programmer’s Guide

OCIAQEnq()
 /* allocate AQ message properties and agent descriptors */
 OCIDescriptorAlloc(envhp, (dvoid **)&msgprop,
 OCI_DTYPE_AQMSG_PROPERTIES, 0, (dvoid **)0);
 OCIDescriptorAlloc(envhp, (dvoid **)&agents[0],
 OCI_DTYPE_AQAGENT, 0, (dvoid **)0);
 OCIDescriptorAlloc(envhp, (dvoid **)&agents[1],
 OCI_DTYPE_AQAGENT, 0, (dvoid **)0);

 /* prepare the recipient list, RED and BLUE */
 OCIAttrSet(agents[0], OCI_DTYPE_AQAGENT, "RED", strlen("RED"),
 OCI_ATTR_AGENT_NAME, errhp);
 OCIAttrSet(agents[1], OCI_DTYPE_AQAGENT, "BLUE", strlen("BLUE"),
 OCI_ATTR_AGENT_NAME, errhp);
 OCIAttrSet(msgprop, OCI_DTYPE_AQMSG_PROPERTIES, (dvoid *)agents, 2,
 OCI_ATTR_RECIPIENT_LIST, errhp);

 OCIAQEnq(svchp, errhp, (CONST text *)"msg_queue_multiple", 0, msgprop,
 mesg_tdo, (dvoid **)&mesg, (dvoid **)&nmesg, 0, 0);

 OCITransCommit(svchp, errhp, (ub4) 0);

 /* now dequeue the messages using different consumer names */
 /* allocate dequeue options descriptor to set the dequeue options */
 OCIDescriptorAlloc(envhp, (dvoid **)&deqopt, OCI_DTYPE_AQDEQ_OPTIONS, 0,
 (dvoid **)0);

 /* set wait parameter to NO_WAIT so that the dequeue returns immediately */
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)&wait, 0,
 OCI_ATTR_WAIT, errhp);

 /* set navigation to FIRST_MESSAGE so that the dequeue resets the position */
 /* after a new consumer_name is set in the dequeue options */
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)&navigation, 0,
 OCI_ATTR_NAVIGATION, errhp);

 /* dequeue from the msg_queue_multiple as consumer BLUE */
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)"BLUE", strlen("BLUE"),
 OCI_ATTR_CONSUMER_NAME, errhp);
 while (OCIAQDeq(svchp, errhp, (CONST text *)"msg_queue_multiple", deqopt, 0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, 0, 0)
 == OCI_SUCCESS)
 {
 printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
 printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));
 }
 OCI Relational Functions 13-21

OCIAQEnq()
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* dequeue from the msg_queue_multiple as consumer RED */
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)"RED", strlen("RED"),
 OCI_ATTR_CONSUMER_NAME, errhp);
 while (OCIAQDeq(svchp, errhp, (CONST text *)"msg_queue_multiple", deqopt, 0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, 0, 0)
 == OCI_SUCCESS)
 {
 printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
 printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));
 }
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* dequeue from the msg_queue_multiple as consumer GREEN */
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS,(dvoid *)"GREEN",strlen("GREEN"),
 OCI_ATTR_CONSUMER_NAME, errhp);
 while (OCIAQDeq(svchp, errhp, (CONST text *)"msg_queue_multiple", deqopt, 0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, 0, 0)
 == OCI_SUCCESS)
 {
 printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
 printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));
 }
 OCITransCommit(svchp, errhp, (ub4) 0);
}

Related Functions
OCIAQDeq(), OCIInitialize()
13-22 Oracle Call Interface Programmer’s Guide

OCIAttrGet()
OCIAttrGet()

Purpose
This call is used to get a particular attribute of a handle.

Syntax
sword OCIAttrGet (CONST dvoid *trgthndlp,
 ub4 trghndltyp,
 dvoid *attributep,
 ub4 *sizep,
 ub4 attrtype,
 OCIError *errhp);

Parameters

trgthndlp (IN)
Pointer to a handle type.

trghndltyp (IN)
The handle type.

attributep (OUT)
Pointer to the storage for an attribute value. The attribute value is filled in.

sizep (OUT)
The size of storage for the attribute value. This can be passed in as NULL for
parameters whose size is well known. For text* parameters, a pointer to a ub4 must
be passed in to get the length of the string.

attrtype (IN)
The type of attribute being retrieved.

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.
 OCI Relational Functions 13-23

OCIAttrGet()
Comments
This call is used to get a particular attribute of a handle.

See Appendix B, “Handle and Descriptor Attributes”, for a list of handle types and
their readable attributes.

Related Functions
OCIAttrSet()
13-24 Oracle Call Interface Programmer’s Guide

OCIAttrSet()
OCIAttrSet()

Purpose
This call is used to set a particular attribute of a handle or a descriptor.

Syntax
sword OCIAttrSet (dvoid *trgthndlp,
 ub4 trghndltyp,
 dvoid *attributep,
 ub4 size,
 ub4 attrtype,
 OCIError *errhp);

Parameters

trgthndlp (IN/OUT)
Pointer to a handle type whose attribute gets modified.

trghndltyp (IN/OUT)
The handle type.

attributep (IN)
Pointer to an attribute value. The attribute value is copied into the target handle. If
the attribute value is a pointer, then only the pointer is copied, not the contents of
the pointer.

size (IN)
The size of an attribute value. This can be passed in as 0 for most attributes as the
size is already known by the OCI library. For text* attributes, a ub4 must be passed
in set to the length of the string.

attrtype (IN)
The type of attribute being set.

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.
 OCI Relational Functions 13-25

OCIAttrSet()
Comments
This call is used to set a particular attribute of a handle or a descriptor.

See Appendix B, “Handle and Descriptor Attributes”, for a list of handle types and
their writable attributes.

Example
The following code sample demonstrates OCIAttrSet() being used several times
near the beginning of an application.

int main()
{
OCIEnv *envhp;
OCIServer *srvhp;
OCIError *errhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
OCISession *usrhp;

OCIInitialize((ub4) OCI_THREADED | OCI_OBJECT, (dvoid *)0,
(dvoid * (*)()) 0,(dvoid * (*)()) 0, (void (*)()) 0);

OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
0, (dvoid **) &tmp);

OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 0, (dvoid **) &tmp);
OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4)

OCI_HTYPE_ERROR, 0, (dvoid **) &tmp);
OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4)

OCI_HTYPE_SERVER, 0, (dvoid **) &tmp);
OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);
OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp,

(ub4) OCI_HTYPE_SVCCTX, , (dvoid **) &tmp);

 /* set attribute server context in the service context */
OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *) srvhp,

(ub4) 0, (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

/* allocate a user session handle */
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp,

(ub4) OCI_HTYPE_SESSION, (size_t) 0, (dvoid **) 0);
OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION, (dvoid *)"sherry",

(ub4)strlen("sherry"), OCI_ATTR_USERNAME, errhp);
OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION, (dvoid *)"penfield",

(ub4)strlen("penfield"), OCI_ATTR_PASSWORD, errhp);
13-26 Oracle Call Interface Programmer’s Guide

OCIAttrSet()
checkerr(errhp, OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS,
OCI_DEFAULT));

OCIAttrSet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX, (dvoid *)usrhp,
(ub4)0, OCI_ATTR_SESSION, errhp);

Related Functions
OCIAQEnq()
 OCI Relational Functions 13-27

OCIBindArrayOfStruct()
OCIBindArrayOfStruct()

Purpose
This call sets up the skip parameters for a static array bind.

Syntax
sword OCIBindArrayOfStruct (OCIBind *bindp,
 OCIError *errhp,
 ub4 pvskip,
 ub4 indskip,
 ub4 alskip,
 ub4 rcskip);

Parameters

bindp (IN/OUT)
The handle to a bind structure.

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

pvskip (IN)
Skip parameter for the next data value.

indskip (IN)
Skip parameter for the next indicator value or structure.

alskip (IN)
Skip parameter for the next actual length value.

rcskip (IN)
Skip parameter for the next column-level return code value.

Comments
This call sets up the skip parameters necessary for a static array bind.

This call follows a call to OCIBindByName() or OCIBindByPos(). The bind handle
returned by that initial bind call is used as a parameter for the
OCIBindArrayOfStruct() call.
13-28 Oracle Call Interface Programmer’s Guide

OCIBindArrayOfStruct()
For information about skip parameters, see the section “Arrays of Structures” on
page 5-17.

Related Functions
OCIBindByName(), OCIBindByPos()
 OCI Relational Functions 13-29

OCIBindByName()
OCIBindByName()

Purpose
Creates an association between a program variable and a placeholder in a SQL
statement or PL/SQL block.

Syntax
sword OCIBindByName (OCIStmt *stmtp,
 OCIBind **bindpp,
 OCIError *errhp,
 CONST text *placeholder,
 sb4 placeh_len,
 dvoid *valuep,
 sb4 value_sz,
 ub2 dty,
 dvoid *indp,
 ub2 *alenp,
 ub2 *rcodep,
 ub4 maxarr_len,
 ub4 *curelep,
 ub4 mode);

Parameters

stmtp (IN/OUT)
The statement handle to the SQL or PL/SQL statement being processed.

bindpp (IN/OUT)
An address of a bind handle which is implicitly allocated by this call. The bind
handle maintains all the bind information for this particular input value. The
handle is freed implicitly when the statement handle is deallocated. On input, the
value of the pointer must be NULL or a valid bind handle.

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

placeholder (IN)
The placeholder attributes are specified by name if OCIBindByName() is being
called.
13-30 Oracle Call Interface Programmer’s Guide

OCIBindByName()
placeh_len (IN)
The length of the placeholder name specified in placeholder.

valuep (IN/OUT)
An address of a data value or an array of data values of the type specified in the dty
parameter. An array of data values can be specified for mapping into a PL/SQL
table or for providing data for SQL multiple-row operations. When an array of bind
values is provided, this is called an array bind in OCI terms.

For SQLT_NTY or SQLT_REF binds, the valuep parameter is ignored. The pointers
to OUT buffers are set in the pgvpp parameter initialized by OCIBindObject().

value_sz (IN)
The size of a data value. In the case of an array bind, this is the maximum size of
any element possible with the actual sizes being specified in the alenp parameter.

For descriptors, locators, or REFs, whose size is unknown to client applications use
the size of the structure you are passing in; e.g., sizeof (OCILobLocator *).

dty (IN)
The data type of the value(s) being bound. Named data types (SQLT_NTY) and
REFs (SQLT_REF) are valid only if the application has been initialized in object
mode. For named data types, or REFs, additional calls must be made with the bind
handle to set up the datatype-specific attributes.

indp (IN/OUT)
Pointer to an indicator variable or array. For all data types except SQLT_NTY, this
is a pointer to sb2 or an array of sb2s.

For SQLT_NTY, this pointer is ignored and the actual pointer to the indicator
structure or an array of indicator structures is initialized in a subsequent call
OCIBindObject(). This parameter is ignored for dynamic binds.

See the section “Indicator Variables” on page 2-29 for more information about
indicator variables.

alenp (IN/OUT)
Pointer to array of actual lengths of array elements. Each element in alenp is the
length of the data in the corresponding element in the bind value array before and
after the execute. This parameter is ignored for dynamic binds.

rcodep (OUT)
Pointer to array of column level return codes. This parameter is ignored for
dynamic binds.
 OCI Relational Functions 13-31

OCIBindByName()
maxarr_len (IN)
The maximum possible number of elements of type dty in a PL/SQL binds. This
parameter is not required for non-PL/SQL binds. If maxarr_len is non-zero, then
either OCIBindDynamic() or OCIBindArrayOfStruct() can be invoked to set up
additional bind attributes.

curelep(IN/OUT)
A pointer to the actual number of elements. This parameter is only required for
PL/SQL binds.

mode (IN)
The valid modes for this parameter are:

OCI_DEFAULT - This is default mode.

OCI_DATA_AT_EXEC - When this mode is selected, the value_sz parameter
defines the maximum size of the data that can be ever provided at runtime. The
application must be ready to provide the OCI library runtime IN data buffers at
any time and any number of times. Runtime data is provided in one of the two
ways:

■ callbacks using a user-defined function which must be registered with a
subsequent call to OCIBindDynamic().

■ a polling mechanism using calls supplied by the OCI. This mode is
assumed if no callbacks are defined.

For more information about using the OCI_DATA_AT_EXEC mode, see the
section “Run Time Data Allocation and Piecewise Operations” on page 7-16.

When the allocated buffers are not required any more, they should be freed by
the client.

Comments
This call is used to perform a basic bind operation. The bind creates an association
between the address of a program variable and a placeholder in a SQL statement or
PL/SQL block. The bind call also specifies the type of data which is being bound,
and may also indicate the method by which data will be provided at runtime.

This function also implicitly allocates the bind handle indicated by the bindpp
parameter. If a non-NULL pointer is passed in **bindpp, the OCI assumes that this
points to a valid handle that has been previously allocated with a call to
OCIHandleAlloc() or OCIBindByName().
13-32 Oracle Call Interface Programmer’s Guide

OCIBindByName()
Data in an OCI application can be bound to placeholders statically or dynamically.
Binding is static when all the IN bind data and the OUT bind buffers are well-
defined just before the execute. Binding is dynamic when the IN bind data and the
OUT bind buffers are provided by the application on demand at execute time to the
client library. Dynamic binding is indicated by setting the mode parameter of this
call to OCI_DATA_AT_EXEC.

See Also: For more information about dynamic binding, see the section “Run
Time Data Allocation and Piecewise Operations” on page 7-16.

Both OCIBindByName() and OCIBindByPos() take as a parameter a bind handle,
which is implicitly allocated by the bind call A separate bind handle is allocated for
each placeholder the application is binding.

Additional bind calls may be required to specify particular attributes necessary
when binding certain data types or handling input data in certain ways:

■ If arrays of structures are being utilized, OCIBindArrayOfStruct() must be called
to set up the necessary skip parameters.

■ If data is being provided dynamically at runtime, and the application will be
using user-defined callback functions, OCIBindDynamic() must be called to
register the callbacks.

■ If a named data type is being bound, OCIBindObject() must be called to specify
additional necessary information.

■ If a statement with RETURNING clause is used, a call to OCIBindDynamic()
must follow this call.

Related Functions
OCIBindDynamic(), OCIBindObject(), OCIBindArrayOfStruct()
 OCI Relational Functions 13-33

OCIBindByPos()
OCIBindByPos()

Purpose
Creates an association between a program variable and a placeholder in a SQL
statement or PL/SQL block.

Syntax
sword OCIBindByPos (OCIStmt *stmtp,
 OCIBind **bindpp,
 OCIError *errhp,
 ub4 position,
 dvoid *valuep,
 sb4 value_sz,
 ub2 dty,
 dvoid *indp,
 ub2 *alenp,
 ub2 *rcodep,
 ub4 maxarr_len,
 ub4 *curelep,
 ub4 mode);

Parameters

stmtp (IN/OUT)
The statement handle to the SQL or PL/SQL statement being processed.

bindpp (IN/OUT)
An address of a bind handle which is implicitly allocated by this call. The bind
handle maintains all the bind information for this particular input value. The
handle is freed implicitly when the statement handle is deallocated. On input, the
value of the pointer must be NULL or a valid bind handle.

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

position (IN)
The placeholder attributes are specified by position if OCIBindByPos() is being
called.
13-34 Oracle Call Interface Programmer’s Guide

OCIBindByPos()
valuep (IN/OUT)
An address of a data value or an array of data values of the type specified in the dty
parameter. An array of data values can be specified for mapping into a PL/SQL
table or for providing data for SQL multiple-row operations. When an array of bind
values is provided, this is called an array bind in OCI terms.

For SQLT_NTY or SQLT_REF binds, the valuep parameter is ignored. The pointers
to OUT buffers are set in the pgvpp parameter initialized by OCIBindObject().

value_sz (IN)
The size of a data value. In the case of an array bind, this is the maximum size of
any element possible with the actual sizes being specified in the alenp parameter.

For descriptors, locators, or REFs, whose size is unknown to client applications use
the size of the structure you are passing in; e.g., sizeof (OCILobLocator *).

dty (IN)
The data type of the value(s) being bound. Named data types (SQLT_NTY) and
REFs (SQLT_REF) are valid only if the application has been initialized in object
mode. For named data types, or REFs, additional calls must be made with the bind
handle to set up the datatype-specific attributes.

indp (IN/OUT)
Pointer to an indicator variable or array. For all data types, this is a pointer to sb2
or an array of sb2s. The only exception is SQLT_NTY, when this pointer is ignored
and the actual pointer to the indicator structure or an array of indicator structures
is initialized by OCIBindObject(). Ignored for dynamic binds.

See the section “Indicator Variables” on page 2-29 for more information about
indicator variables.

alenp (IN/OUT)
Pointer to array of actual lengths of array elements. Each element in alenp is the
length of the data in the corresponding element in the bind value array before and
after the execute. This parameter is ignored for dynamic binds.

rcodep (OUT)
Pointer to array of column level return codes. This parameter is ignored for
dynamic binds.

maxarr_len (IN)
The maximum possible number of elements of type dty in a PL/SQL binds. This
parameter is not required for non-PL/SQL binds. If maxarr_len is non-zero, then
 OCI Relational Functions 13-35

OCIBindByPos()
either OCIBindDynamic() or OCIBindArrayOfStruct() can be invoked to set up
additional bind attributes.

curelep(IN/OUT)
A pointer to the actual number of elements. This parameter is only required for
PL/SQL binds.

mode (IN)
The valid modes for this parameter are:

OCI_DEFAULT - This is default mode.

OCI_DATA_AT_EXEC - When this mode is selected, the value_sz parameter
defines the maximum size of the data that can be ever provided at runtime. The
application must be ready to provide the OCI library runtime IN data buffers at
any time and any number of times. Runtime data is provided in one of the two
ways:

■ callbacks using a user-defined function which must be registered with a
subsequent call to OCIBindDynamic().

■ a polling mechanism using calls supplied by the OCI. This mode is
assumed if no callbacks are defined.

For more information about using the OCI_DATA_AT_EXEC mode, see the
section “Run Time Data Allocation and Piecewise Operations” on page 7-16.

When the allocated buffers are not required any more, they should be freed by
the client.

Comments
This call is used to perform a basic bind operation. The bind creates an association
between the address of a program variable and a placeholder in a SQL statement or
PL/SQL block. The bind call also specifies the type of data which is being bound,
and may also indicate the method by which data will be provided at runtime.

This function also implicitly allocates the bind handle indicated by the bindpp
parameter. If a non-NULL pointer is passed in **bindpp, the OCI assumes that this
points to a valid handle that has been previously allocated with a call to
OCIHandleAlloc() or OCIBindByPos().

Data in an OCI application can be bound to placeholders statically or dynamically.
Binding is static when all the IN bind data and the OUT bind buffers are well-
defined just before the execute. Binding is dynamic when the IN bind data and the
OUT bind buffers are provided by the application on demand at execute time to the
13-36 Oracle Call Interface Programmer’s Guide

OCIBindByPos()
client library. Dynamic binding is indicated by setting the mode parameter of this
call to OCI_DATA_AT_EXEC.

See Also: For more information about dynamic binding, see the section “Run
Time Data Allocation and Piecewise Operations” on page 7-16

Both OCIBindByName() and OCIBindByPos() take as a parameter a bind handle,
which is implicitly allocated by the bind call A separate bind handle is allocated for
each placeholder the application is binding.

Additional bind calls may be required to specify particular attributes necessary
when binding certain data types or handling input data in certain ways:

■ If arrays of structures are being utilized, OCIBindArrayOfStruct() must be called
to set up the necessary skip parameters.

■ If data is being provided dynamically at runtime, and the application will be
using user-defined callback functions, OCIBindDynamic() must be called to
register the callbacks.

■ If a named data type is being bound, OCIBindObject() must be called to specify
additional necessary information.

■ If a statement with RETURNING clause is used, a call to OCIBindDynamic()
must follow this call.

Related Functions
OCIBindDynamic(), OCIBindObject(), OCIBindArrayOfStruct()
 OCI Relational Functions 13-37

OCIBindDynamic()
OCIBindDynamic()

Purpose
This call is used to register user callbacks for dynamic data allocation.

Syntax
sword OCIBindDynamic (OCIBind *bindp,
 OCIError *errhp,
 dvoid *ictxp,
 OCICallbackInBind (icbfp)(/*_
 dvoid *ictxp,
 OCIBind *bindp,
 ub4 iter,
 ub4 index,
 dvoid **bufpp,
 ub4 *alenp,
 ub1 *piecep,
 dvoid **indpp */),
 dvoid *octxp,
 OCICallbackOutBind (ocbfp)(/*_
 dvoid *octxp,
 OCIBind *bindp,
 ub4 iter,
 ub4 index,
 dvoid **bufpp,
 ub4 **alenpp,
 ub1 *piecep,
 dvoid **indpp,
 ub2 **rcodepp _*/));

Parameters

bindp (IN/OUT)
A bind handle returned by a call to OCIBindByName() or OCIBindByPos().

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

ictxp (IN)
The context pointer required by the call back function icbfp.
13-38 Oracle Call Interface Programmer’s Guide

OCIBindDynamic()
icbfp (IN)
The callback function which returns a pointer to the IN bind value or piece at run
time. The callback takes in the following parameters:

ictxp (IN/OUT)
The context pointer for this callback function.

bindp (IN)
The bind handle passed in to uniquely identify this bind variable.

iter (IN)
0-based execute iteration value.

index (IN)
Index of the current array, for an array bind in PL/SQL. For SQL it is the row
index. The value is 0-based and not greater than curelep parameter of the bind
call.

bufpp (OUT)
The pointer to the buffer or storage. For descriptors, *bufpp contains a pointer
to the descriptor. For example if you define

OCILOBLocator *lobp;

then you would set *bufpp to lobp not *lobp.

For REFs, pass the address of the ref; i.e., pass &my_ref for *bufpp.

alenp (OUT)
A pointer to a storage for OCI to fill in the size of the bind
value/piece after it has been read. For descriptors, pass the size of the pointer
to the descriptor; e.g., sizeof(OCILobLocator *) .

piecep (OUT)
Which piece of the bind value. This can be one of the following values
OCI_ONE_PIECE, OCI_FIRST_PIECE, OCI_NEXT_PIECE and
OCI_LAST_PIECE. For datatypes that do not support piecewise operations,
you must pass OCI_ONE_PIECE or an error will be generated.

indp (OUT)
Contains the indicator value. This is a pointer to either an sb2 value or a
pointer to an indicator structure for binding named data types.
 OCI Relational Functions 13-39

OCIBindDynamic()
octxp (IN)
The context pointer required by the callback function ocbfp.

ocbfp (IN)
The callback function which returns a pointer to the OUT bind value or piece at run
time. The callback takes in the following parameters:

octxp (IN/OUT)
The context pointer for this call back function.

bindp (IN)
The bind handle passed in to uniquely identify this bind variable.

iter (IN)
0-based execute iteration value.

index (IN)
For PL/SQL index of the current array, for an array bind. For SQL, the index is
the row number in the current iteration. It is 0-based, and must not be greater
than curelep parameter of the bind call.

bufpp (OUT)
A pointer to a buffer to write the bind value/piece.

alenpp (IN/OUT)
A pointer to a storage for OCI to fill in the size of the bind value/piece after it
has been read.

piecep (IN/OUT)
Returns a piece value from the callback (application) to Oracle, as follows:

■ IN - The value can be OCI_ONE_PIECE or OCI_NEXT_PIECE.

■ OUT - Depends on the IN value:

If IN value is OCI_ONE_PIECE, then OUT value can be
OCI_ONE_PIECE or OCI_FIRST_PIECE

If IN value is OCI_NEXT_PIECE then OUT value can be
OCI_NEXT_PIECE or OCI_LAST_PIECE

indpp (OUT)
Returns a pointer to contain the indicator value which either an sb2 value or a
pointer to an indicator structure for named data types.
13-40 Oracle Call Interface Programmer’s Guide

OCIBindDynamic()
rcodepp (OUT)
Returns a pointer to contains the return code.

Comments
This call is used to register user-defined callback functions for providing or
receiving data if OCI_DATA_AT_EXEC mode was specified in a previous call to
OCIBindByName() or OCIBindByPos().

The callback function pointers must return OCI_CONTINUE if it the call is
successful. Any return code other than OCI_CONTINUE signals that the client
wishes to abort processing immediately.

For more information about the OCI_DATA_AT_EXEC mode, see the section “Run
Time Data Allocation and Piecewise Operations” on page 7-16.

When passing the address of a storage area, make sure that the storage area will
exist even after the application returns from the callback. This means that you
should not allocate such storage on the stack.

Related Functions
OCIBindByName(), OCIBindByPos()
 OCI Relational Functions 13-41

OCIBindObject()
OCIBindObject()

Purpose
This function sets up additional attributes which are required for a named data
type (object) bind.

Syntax
sword OCIBindObject (OCIBind *bindp,
 OCIError *errhp,
 CONST OCIType *type,
 dvoid **pgvpp,
 ub4 *pvszsp,
 dvoid **indpp,
 ub4 *indszp,);

Parameters

bindp (IN/OUT)
The bind handle returned by the call to OCIBindByName() or OCIBindByPos().

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

type (IN)
Points to the TDO which describes the type of the program variable being bound.
Retrieved by calling OCITypeByName(). Optional for REFs in SQL, but required for
REFs in PL/SQL.

pgvpp (IN/OUT)
Address of the program variable buffer. For an array, pgvpp points to an array of
addresses. When the bind variable is also an OUT variable, the OUT Named Data
Type value or REF is allocated in the Object Cache, and a REF is returned.

pgvpp is ignored if the OCI_DATA_AT_EXEC mode is set. Then the Named Data
Type buffers are requested at runtime. For static array binds, skip factors may be
specified using the OCIBindArrayOfStruct() call. The skip factors are used to
compute the address of the next pointer to the value, the indicator structure and
their sizes.
13-42 Oracle Call Interface Programmer’s Guide

OCIBindObject()
pvszsp (OUT) [optional]
Points to the size of the program variable. The size of the named data type is not
required on input. For an array, pvszsp is an array of ub4s. On return, for OUT bind
variables, this points to size(s) of the Named Data Types and REFs received. pvszsp
is ignored if the OCI_DATA_AT_EXEC mode is set. Then the size of the buffer is
taken at runtime.

indpp (IN/OUT)[optional]
Address of the program variable buffer containing the parallel indicator structure.
For an array, points to an array of pointers. When the bind variable is also an OUT
bind variable, memory is allocated in the object cache, to store the OUT indicator
values. At the end of the execute when all OUT values have been received, indpp
points to the pointer(s) to these newly allocated indicator structure(s). Required
only for SQLT_NTY binds.

indpp is ignored if the OCI_DATA_AT_EXEC mode is set. Then the indicator is
requested at runtime.

indszp (IN/OUT)
Points to the size of the IN indicator structure program variable. For an array, it is
an array of sb2s. On return for OUT bind variables, this points to size(s) of the
received OUT indicator structures.

indszp is ignored if the OCI_DATA_AT_EXEC mode is set. Then the indicator size is
requested at runtime.

Comments
This function sets up additional attributes which binding a named data type or a
REF. An error will be returned if this function is called when the OCI environment
has been initialized in non-object mode.

This call takes as a parameter a type descriptor object (TDO) of datatype OCIType
for the named data type being defined. The TDO can be retrieved with a call to
OCITypeByName().

If the OCI_DATA_AT_EXEC mode was specified in OCIBindByName() or
OCIBindByPos(), the pointers to the IN buffers are obtained either using the
callback icbfp registered in the OCIBindDynamic() call or by the
OCIStmtSetPieceInfo() call. The buffers are dynamically allocated for the OUT data
and the pointers to these buffers are returned either by calling ocbfp() registered by
the OCIBindDynamic() or by setting the pointer to the buffer in the buffer passed in
by OCIStmtSetPieceInfo() called when OCIStmtExecute() returned
 OCI Relational Functions 13-43

OCIBindObject()
OCI_NEED_DATA. The memory of these client library-allocated buffers must be
freed when not in use anymore by using the OCIObjectFree() call.

Related Functions
OCIBindByName(), OCIBindByPos()
13-44 Oracle Call Interface Programmer’s Guide

OCIBreak()
OCIBreak()

Purpose
This call performs an immediate (asynchronous) abort of any currently executing
OCI function that is associated with a server.

Syntax
sword OCIBreak (dvoid *hndlp,
 OCIError *errhp);

Parameters

hndlp (IN/OUT)
The service context handle or the server context handle.

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

Comments
This call performs an immediate (asynchronous) abort of any currently executing
OCI function that is associated with a server. It is normally used to stop a long-
running OCI call being processed on the server.

This call can take either the service context handle or the server context handle as a
parameter to identify the function to be aborted.

Related Functions
 OCI Relational Functions 13-45

OCIDefineArrayOfStruct()
OCIDefineArrayOfStruct()

Purpose
This call specifies additional attributes necessary for a static array define.

Syntax
sword OCIDefineArrayOfStruct (OCIDefine *defnp,
 OCIError *errhp,
 ub4 pvskip,
 ub4 indskip,
 ub4 rlskip,
 ub4 rcskip);

Parameters

defnp (IN/OUT)
The handle to the define structure which was returned by a call to OCIDefineByPos().

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

pvskip (IN)
Skip parameter for the next data value.

indskip (IN)
Skip parameter for the next indicator location.

rlskip (IN)
Skip parameter for the next return length value.

rcskip (IN)
Skip parameter for the next return code.

Comments
This call specifies additional attributes necessary for an array define, used in an
array of structures (multi-row, multi-column) fetch. This call follows a call to
OCIDefineByPos().
13-46 Oracle Call Interface Programmer’s Guide

OCIDefineArrayOfStruct()
For more information about skip parameters, see the section “Skip Parameters” on
page 5-18.

If the application is binding an array of structures involving objects, it must call
OCIDefineObject() first, and then call OCIDefineArrayOfStruct().

Related Functions
OCIDefineByPos(), OCIDefineObject()
 OCI Relational Functions 13-47

OCIDefineByPos()
OCIDefineByPos()

Purpose
Associates an item in a select-list with the type and output data buffer.

Syntax
sword OCIDefineByPos (OCIStmt *stmtp,
 OCIDefine **defnpp,
 OCIError *errhp,
 ub4 position,
 dvoid *valuep,
 sb4 value_sz,
 ub2 dty,
 dvoid *indp,
 ub2 *rlenp,
 ub2 *rcodep,
 ub4 mode);

Parameters

stmtp (IN/OUT)
A handle to the requested SQL query operation.

defnpp (IN/OUT)
A pointer to a pointer to a define handle. If this parameter is passed as NULL, this
call implicitly allocates the define handle. In the case of a redefine, a non-NULL
handle can be passed in this parameter. This handle is used to store the define
information for this column.

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

position (IN)
The position of this value in the select list. Positions are 1-based and are numbered
from left to right. For example, in the SELECT statement

SELECT empno, ssn, mgrno FROM employees;

empno is at position 1, ssn is at position 2, and mgrno is at position 3.
13-48 Oracle Call Interface Programmer’s Guide

OCIDefineByPos()
valuep (IN/OUT)
A pointer to a buffer or an array of buffers of the type specified in the dty
parameter. A number of buffers can be specified when results for more than one
row are desired in a single fetch call.

value_sz (IN)
The size of each valuep buffer in bytes. If the data is stored internally in
VARCHAR2 format, the number of characters desired, if different from the buffer
size in bytes, may be additionally specified by the using OCIAttrSet().

In an NLS conversion environment, a truncation error will be generated if the
number of bytes specified is insufficient to handle the number of characters desired.

dty (IN)
The data type. Named data type (SQLT_NTY) and REF (SQLT_REF) are valid only
if the environment has been initialized with in object mode. For a listing of
datatype codes and values, refer to Chapter 3, “Datatypes”.

indp (IN)
pointer to an indicator variable or array. For scalar data types, pointer to sb2 or an
array of sb2s. Ignored for SQLT_NTY defines. For SQLT_NTY defines, a pointer to
a named data type indicator structure or an array of named data type indicator
structures is associated by a subsequent OCIDefineObject() call.

See the section “Indicator Variables” on page 2-29 for more information about
indicator variables.

rlenp (IN/OUT)
Pointer to array of length of data fetched. Each element in rlenp is the length of the
data in the corresponding element in the row after the fetch.

rcodep (OUT)
Pointer to array of column-level return codes

mode (IN)
The valid modes are:

■ OCI_DEFAULT - This is the default mode.

■ OCI_DYNAMIC_FETCH - For applications requiring dynamically allocated
data at the time of fetch, this mode must be used. The user may additionally
call OCIDefineDynamic() to set up a callback function that will be invoked to
receive the dynamically allocated buffers and. The valuep and value_sz
parameters are ignored in this mode.
 OCI Relational Functions 13-49

OCIDefineByPos()
Comments
This call defines an output buffer which will receive data retrieved from Oracle.
The define is a local step which is necessary when a SELECT statement returns data
to your OCI application.

This call also implicitly allocates the define handle for the select-list item. If a non-
NULL pointer is passed in *defnpp, the OCI assumes that this points to a valid
handle that has been previously allocated with a call to OCIHandleAlloc() or
OCIDefineByPos(). This would be true in the case of an application which is
redefining a handle to a different addresses so it can reuse the same define handle
for multiple fetches.

Defining attributes of a column for a fetch is done in one or more calls. The first call
is to OCIDefineByPos(), which defines the minimal attributes required to specify the
fetch.

Following the call to OCIDefineByPos() additional define calls may be necessary for
certain data types or fetch modes:

■ A call to OCIDefineArrayOfStruct() is necessary to set up skip parameters for an
array fetch of multiple columns.

■ A call to OCIDefineObject() is necessary to set up the appropriate attributes of a
named data type (i.e., object or collection) or REF fetch. In this case the data
buffer pointer in OCIDefineByPos() is ignored.

■ Both OCIDefineArrayOfStruct() and OCIDefineObject() must be called after
OCIDefineByPos() in order to fetch multiple rows with a column of named data
types.

For a LOB define, the buffer pointer must be a pointer to a lob locator of type
OCILobLocator, allocated by the OCIDescriptorAlloc() call. LOB locators, and not
LOB values, are always returned for a LOB column. LOB values can then be
fetched using OCI LOB calls on the fetched locator. This same mechanism is true
for all descriptor datatypes.

For NCHAR (fixed and varying length), the buffer pointer must point to an array of
bytes sufficient for holding the required NCHAR characters.

Nested table columns are defined and fetched like any other named data type.

When defining an array of descriptors or locators, you should pass in an array of
pointers to descriptors or locators.

When doing an array define for character columns, you should pass in an array of
character buffers.
13-50 Oracle Call Interface Programmer’s Guide

OCIDefineByPos()
If the mode parameter is this call is set to OCI_DYNAMIC_FETCH, the client
application can fetch data dynamically at runtime. Runtime data can be provided
in one of two ways:

■ callbacks using a user-defined function which must be registered with a
subsequent call to OCIDefineDynamic(). When the client library needs a buffer
to return the fetched data, the callback will be invoked and the runtime buffers
provided will return a piece or the whole data.

■ a polling mechanism using calls supplied by the OCI. This mode is assumed if
no callbacks are defined. In this case, the fetch call returns the
OCI_NEED_DATA error code, and a piecewise polling method is used to
provide the data.

See Also: For more information about using the OCI_DYNAMIC_FETCH
mode, see the section “Run Time Data Allocation and Piecewise Operations”
on page 7-16.

For more information about defines, see “Defining” on page 5-13.

Related Functions
OCIDefineArrayOfStruct(), OCIDefineDynamic(), OCIDefineObject()
 OCI Relational Functions 13-51

OCIDefineDynamic()
OCIDefineDynamic()

Purpose
This call is used to set the additional attributes required if the
OCI_DYNAMIC_FETCH mode was selected in OCIDefineByPos().

Syntax
sword OCIDefineDynamic (OCIDefine *defnp,
 OCIError *errhp,
 dvoid *octxp,
 OCICallbackDefine (ocbfp)(/*_
 dvoid *octxp,
 OCIDefine *defnp,
 ub4 iter,
 dvoid **bufpp,
 ub4 **alenpp,
 ub1 *piecep,
 dvoid **indpp,
 ub2 **rcodep _*/));

Parameters

defnp (IN/OUT)
The handle to a define structure returned by a call to OCIDefineByPos().

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

octxp (IN)
Points to a context for the callback function.

ocbfp (IN)
Points to a callback function. This is invoked at runtime to get a pointer to the
buffer into which the fetched data or a piece of it will be retrieved. The callback
also specifies the indicator, the return code and the lengths of the data piece and
indicator.

Warning: When working with callback parameters, it is important to keep in
mind what is meant by IN and OUT for the parameter mode. Normally, in an
13-52 Oracle Call Interface Programmer’s Guide

OCIDefineDynamic()
OCI function, an IN parameter refers to data being passed to Oracle, and an
OUT parameter refers to data coming back from Oracle. In the case of
callbacks, this is reversed. IN means data is coming from Oracle into the
callback, and OUT means data is coming out of the callback and going to
Oracle.

The callback parameters are listed below:

octxp (IN/OUT)
A context pointer passed as an argument to all the callback functions.

defnp (IN)
The define handle.

iter (IN)
Which row of this current fetch; 0-based.

bufpp (OUT)
Returns to Oracle a pointer to a buffer to store the column value, i.e., *bufpp
points to some appropriate storage for the column value.

alenpp (IN/OUT)
Used by the application to set the size of the storage it is providing in *bufpp.
After data is fetched into the buffer, alenpp indicates the actual size of the data.

piecep (IN/OUT)
Returns a piece value from the callback (application) to Oracle, as follows:

■ IN - The value can be OCI_ONE_PIECE or OCI_NEXT_PIECE.

■ OUT - Depends on the IN value:

If IN value is OCI_ONE_PIECE, then OUT value can be
OCI_ONE_PIECE or OCI_FIRST_PIECE

If IN value is OCI_NEXT_PIECE then OUT value can be
OCI_NEXT_PIECE or OCI_LAST_PIECE

indpp (IN)
Indicator variable pointer

rcodep (IN)
Return code variable pointer
 OCI Relational Functions 13-53

OCIDefineDynamic()
Comments
This call is used to set the additional attributes required if the
OCI_DYNAMIC_FETCH mode has been selected in a call to OCIDefineByPos().

If OCI_DYNAMIC_FETCH mode was selected, and the call to OCIDefineDynamic()
is skipped, then the application can fetch data piecewise using OCI calls
(OCIStmtGetPieceInfo() and OCIStmtSetPieceInfo()).

For more information about OCI_DYNAMIC_FETCH mode, see the section “Run
Time Data Allocation and Piecewise Operations” on page 7-16.

Related Functions
OCIDefineByPos()
13-54 Oracle Call Interface Programmer’s Guide

OCIDefineObject()
OCIDefineObject()

Purpose
Sets up additional attributes necessary for a Named Data Type or REF define.

Syntax
sword OCIDefineObject (OCIDefine *defnp,
 OCIError *errhp,
 CONST OCIType *type,
 dvoid **pgvpp,
 ub4 *pvszsp,
 dvoid **indpp,
 ub4 *indszp);

Parameters

defnp (IN/OUT)
A define handle previously allocated in a call to OCIDefineByPos().

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

type (IN) [optional]
Points to the Type Descriptor Object (TDO) which describes the type of the
program variable. Only used for program variables of type SQLT_NTY. This
parameter is optional, and may be passed as NULL if it is not being used.

pgvpp (IN/OUT)
Points to a pointer to a program variable buffer. For an array, pgvpp points to an
array of pointers. Memory for the fetched named data type instance(s) is
dynamically allocated in the object cache. At the end of the fetch when all the
values have been received, pgvpp points to the pointer(s) to these newly allocated
named data type instance(s). The application must call OCIObjectFree() to
deallocate the named data type instance(s) when they are no longer needed.

Note: If the application wants the buffer to be implicitly allocated in the cache,
*pgvpp should be passed in as NULL.
 OCI Relational Functions 13-55

OCIDefineObject()
pvszsp (IN/OUT)
Points to the size of the program variable. For an array, it is an array of ub4s.

indpp (IN/OUT)
Points to a pointer to the program variable buffer containing the parallel indicator
structure. For an array, points to an array of pointers. Memory is allocated to store
the indicator structures in the object cache. At the end of the fetch when all values
have been received, indpp points to the pointer(s) to these newly allocated indicator
structure(s).

indszp (IN/OUT)
Points to the size(s) of the indicator structure program variable. For an array, it is an
array of ub4s.

Comments
This function follows a call to OCIDefineByPos() to set initial define information.
This call sets up additional attributes necessary for a Named Data Type define. An
error will be returned if this function is called when the OCI environment has been
initialized in non-Object mode.

This call takes as a parameter a type descriptor object (TDO) of datatype OCIType
for the named data type being defined. The TDO can be retrieved with a call to
OCIDescribeAny().

See Also: See the description of OCIInitialize() on page 13 - 72 for more
information about initializing the OCI process environment.

Related Functions
OCIDefineByPos()
13-56 Oracle Call Interface Programmer’s Guide

OCIDescribeAny()
OCIDescribeAny()

Purpose
Describes existing schema objects.

Syntax
sword OCIDescribeAny (OCISvcCtx *svchp,
 OCIError *errhp,
 dvoid *objptr,
 ub4 objnm_len,
 ub1 objptr_typ,
 ub1 info_level,
 ub1 objtyp,
 OCIDescribe *dschp);

Parameters

svchp (IN)
A service context handle.

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

objptr (IN)
This parameter can be either

1. a string containing the name of the schema object to be described

2. a pointer to a REF to the TDO (for a type)

3. a pointer to a TDO (for a type).

These cases are distinguished by passing the appropriate value for objptr_typ. This
parameter must be non-NULL.

In case 1, the string containing the object name should be in the format <schema-
name>.<object-name>. No database links are allowed.

The object name is interpreted by the following SQL rules:

■ If <schema-name> is NULL, the name refers to the object (of type table / view
/ procedure / function / package / type / synonym / sequence) with name
 OCI Relational Functions 13-57

OCIDescribeAny()
described by <object-name> in the schema of the current user. When connected
to an Oracle7 Server, the only valid types are procedure and function.

■ If <schema-name> is non-NULL, the name refers to the object with name
described by <object-name>, in the schema with name described by <schema-
name>.

objnm_len (IN)
The length of the name string pointed to by objptr. Must be non-zero if a name is
passed. Can be zero if objptr is a pointer to a TDO or its REF.

objptr_typ (IN)
The type of object passed in objptr. Valid values are:

■ OCI_OTYPE_NAME, if objptr points to the name of a schema object

■ OCI_OTYPE_REF, if objptr is a pointer to a REF to a TDO

■ OCI_OTYPE_PTR, if objptr is a pointer to a TDO

info_level (IN)
Reserved for future extensions. Pass OCI_DEFAULT.

objtyp (IN/OUT)
The type of schema object being described. Valid values are:

■ OCI_PTYPE_TABLE, for tables

■ OCI_PTYPE_VIEW, for views

■ OCI_PTYPE_PROC, for procedures

■ OCI_PTYPE_FUNC, for functions

■ OCI_PTYPE_PKG, for packages

■ OCI_PTYPE_TYPE, for types

■ OCI_PTYPE_SYN, for synonyms

■ OCI_PTYPE_SEQ, for sequences

■ OCI_PTYPE_UNK, for unknown schema objects

A value for this argument must be specified. If OCI_PTYPE_UNK is specified, then
the description of an object with the specified name in the current schema is
returned, if such an object exists, along with the actual type of the object.
13-58 Oracle Call Interface Programmer’s Guide

OCIDescribeAny()
dschp (IN/OUT)
A describe handle that is populated with describe information about the object
after the call. Must be non-NULL.

Comments
This is a generic describe call that describes existing schema objects: tables, views,
synonyms, procedures, functions, packages, sequences, and types. This call
populates the describe handle with the object-specific attributes which can be
obtained through an OCIAttrGet() call.

An OCIParamGet() on the describe handle returns a parameter descriptor for a
specified position. Parameter positions begin with 1. Calling OCIAttrGet() on the
parameter descriptor returns the specific attributes of a stored procedure or
function parameter or a table column descriptor as the case may be.

These subsequent calls do not need an extra round trip to the server because the
entire schema object description cached on the client side by OCIDescribeAny().
Calling OCIAttrGet() on the describe handle can also return the total number of
positions.

See Chapter 6, “Describing Schema Metadata”, for more information about
describe operations.

Related Functions
OCIAQEnq(), OCIParamGet()
 OCI Relational Functions 13-59

OCIDescriptorAlloc()
OCIDescriptorAlloc()

Purpose
Allocates storage to hold descriptors or LOB locators.

Syntax
sword OCIDescriptorAlloc (CONST dvoid *parenth,
 dvoid **descpp,
 ub4 type,
 size_t xtramem_sz,
 dvoid **usrmempp);

Parameters

parenth (IN)
An environment handle.

descpp (OUT)
Returns a descriptor or LOB locator of desired type.

type (IN)
Specifies the type of descriptor or LOB locator to be allocated:

■ OCI_DTYPE_SNAP - specifies generation of snapshot descriptor of C type
OCISnapshot

■ OCI_DTYPE_LOB - specifies generation of a LOB value type locator (for a
BLOB or CLOB) of C type OCILobLocator

■ OCI_DTYPE_FILE - specifies generation of a FILE value type locator of C type
OCILobLocator.

■ OCI_DTYPE_ROWID - specifies generation of a ROWID descriptor of C type
OCIRowid.

■ OCI_DTYPE_COMPLEXOBJECTCOMP - specifies generation of a complex
object retrieval descriptor of C type OCIComplexObjectComp.

■ OCI_DTYPE_AQENQ_OPTIONS - specifies generation of an advanced
queueing enqueue options descriptor of C type OCIAQEnqOptions.

■ OCI_DTYPE_AQDEQ_OPTIONS - specifies generation of an advanced
queueing dequeue options descriptor of C type OCIAQDeqOptions.
13-60 Oracle Call Interface Programmer’s Guide

OCIDescriptorAlloc()
■ OCI_DTYPE_AQMSG_PROPERTIES - specifies generation of an advanced
queueing message properties descriptor of C type OCIAQMsgProperties.

■ OCI_DTYPE_AQAGENT - specifies generation of an advanced queueing agent
descriptor of C type OCIAQAgent.

xtramem_sz (IN)
Specifies an amount of user memory to be allocated for use by the application for
the lifetime of the descriptor.

usrmempp (OUT)
Returns a pointer to the user memory of size xtramem_sz allocated by the call for
the user for the lifetime of the descriptor.

Comments
Returns a pointer to an allocated and initialized descriptor, corresponding to the
type specified in type. A non-NULL descriptor or LOB locator is returned on
success. No diagnostics are available on error.

This call returns OCI_SUCCESS if successful, or OCI_INVALID_HANDLE if an out-
of-memory error occurs.

For more information about the xtramem_sz parameter and user memory allocation,
refer to “User Memory Allocation” on page 2-12.

Related Functions
OCIDescriptorFree()
 OCI Relational Functions 13-61

OCIDescriptorFree()
OCIDescriptorFree()

Purpose
Deallocates a previously allocated descriptor.

Syntax
sword OCIDescriptorFree (dvoid *descp,
 ub4 type);

Parameters

descp (IN)
An allocated descriptor.

type (IN)
Specifies the type of storage to be freed. The specific types are:

■ OCI_DTYPE_SNAP - snapshot descriptor

■ OCI_DTYPE_LOB - a LOB value type descriptor

■ OCI_DTYPE_FILE - a FILE value type descriptor

■ OCI_DTYPE_ROWID - a ROWID descriptor

■ OCI_DTYPE_COMPLEXOBJECTCOMP - a complex object retrieval descriptor

■ OCI_DTYPE_AQENQ_OPTIONS - an AQ enqueue options descriptor

■ OCI_DTYPE_AQDEQ_OPTIONS - an AQ dequeue options descriptor

■ OCI_DTYPE_AQMSG_PROPERTIES - an AQ message properties descriptor

■ OCI_DTYPE_AQAGENT - an AQ agent descriptor

Comments
This call frees storage associated with a descriptor. Returns OCI_SUCCESS or
OCI_INVALID_HANDLE. All descriptors may be explicitly deallocated, however
the OCI will deallocate a descriptor if the environment handle is deallocated.

Related Functions
OCIDescriptorAlloc()
13-62 Oracle Call Interface Programmer’s Guide

OCIEnvInit()
OCIEnvInit()

Purpose
This call allocates and initializes an OCI environment handle.

Syntax
sword OCIEnvInit (OCIEnv **envhpp,
 ub4 mode,
 size_t xtramemsz,
 dvoid **usrmempp);

Parameters

envhpp (OUT)
A pointer to a handle to the environment.

mode (IN)
Specifies initialization of an environment mode. Valid modes are:

■ OCI_DEFAULT

■ OCI_NO_MUTEX.

In OCI_DEFAULT mode, the OCI library always mutexes handles. In
OCI_NO_MUTEX modes, there is no mutexing in this environment.

xtramemsz (IN)
Specifies the amount of user memory to be allocated for the duration of the
environment.

usrmempp (OUT)
Returns a pointer to the user memory of size xtramemsz allocated by the call for the
user for the duration of the environment.

Comments
This call allocates and initializes an OCI environment handle. No changes are done
to an already initialized handle. If OCI_ERROR or OCI_SUCCESS_WITH_INFO is
returned, the environment handle can be used to obtain ORACLE specific errors
and diagnostics.

This call is processed locally, without a server round-trip.
 OCI Relational Functions 13-63

OCIEnvInit()
The environment handle can be freed using OCIHandleFree().

For more information about the xtramemsz parameter and user memory allocation,
refer to “User Memory Allocation” on page 2-12.

Related Functions
OCIHandleAlloc(), OCIHandleFree()
13-64 Oracle Call Interface Programmer’s Guide

OCIErrorGet()
OCIErrorGet()

Purpose
Returns an error message in the buffer provided and an ORACLE error.

Syntax
sword OCIErrorGet (dvoid *hndlp,
 ub4 recordno,
 text *sqlstate,
 sb4 *errcodep,
 text *bufp,
 ub4 bufsiz,
 ub4 type);

Parameters

hndlp (IN)
The error handle, in most cases, or the environment handle (for errors on
OCIEnvInit(), OCIHandleAlloc()).

recordno (IN)
Indicates the status record from which the application seeks info. Starts from 1.

sqlstate (OUT)
Not supported in Version 8.0.

errcodep (OUT)
An ORACLE Error is returned.

bufp (OUT)
The error message text is returned.

bufsiz (IN)
The size of the buffer provide to get the error message.

type (IN)
The type of the handle (OCI_HTYPE_ERR or OCI_HTYPE_ENV).
 OCI Relational Functions 13-65

OCIErrorGet()
Comments
Returns an error message in the buffer provided and an ORACLE error code. This
function does not support SQL state. This function can be called multiple times if
there are more than one diagnostic record for an error.

The error handle is originally allocated with a call to OCIHandleAlloc().

Example
The following sample code demonstrates how you can use OCIErrorGet() in an
error-handling routine. This routine prints out the type of status code returned by
an OCI function, and if an error occurred, OCIErrorGet() retrieves the text of the
message, which is printed.

static void checkerr(errhp, status)
OCIError *errhp;
sword status;
{
 text errbuf[512];
 ub4 buflen;
 ub4 errcode;

switch (status)
 {
 case OCI_SUCCESS:
 break;
 case OCI_SUCCESS_WITH_INFO:
 printf("ErrorOCI_SUCCESS_WITH_INFO\n");
 break;
 case OCI_NEED_DATA:
 printf("ErrorOCI_NEED_DATA\n");
 break;
 case OCI_NO_DATA:
 printf("ErrorOCI_NO_DATA\n");
 break;
 case OCI_ERROR:
 OCIErrorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), (ub4) OCI_HTYPE_ERROR);
 printf("Error%s\n", errbuf);
 break;
 case OCI_INVALID_HANDLE:
 printf("ErrorOCI_INVALID_HANDLE\n");
 break;
 case OCI_STILL_EXECUTING:
 printf("ErrorOCI_STILL_EXECUTE\n");
13-66 Oracle Call Interface Programmer’s Guide

OCIErrorGet()
 break;
 case OCI_CONTINUE:
 printf("ErrorOCI_CONTINUE\n");
 break;
 default:
 break;
 }
}

Related Functions
OCIHandleAlloc()
 OCI Relational Functions 13-67

OCIHandleAlloc()
OCIHandleAlloc()

Purpose
This call returns a pointer to an allocated and initialized handle.

Syntax
sword OCIHandleAlloc (CONST dvoid *parenth,
 dvoid **hndlpp,
 ub4 type,
 size_t xtramem_sz,
 dvoid **usrmempp);

Parameters

parenth (IN)
An environment handle.

hndlpp (OUT)
Returns a handle.

type (IN)
Specifies the type of handle to be allocated. The allowed types are:

■ OCI_HTYPE_ERROR - specifies generation of an error report handle of C type
OCIError

■ OCI_HTYPE_SVCCTX - specifies generation of a service context handle of C
type OCISvcCtx

■ OCI_HTYPE_STMT - specifies generation of a statement (application request)
handle of C type OCIStmt

■ OCI_HTYPE_DESCRIBE - specifies generation of a select list description
handle of C type OCIDescribe

■ OCI_HTYPE_SERVER - specifies generation of a server context handle of C
type OCIServer

■ OCI_HTYPE_SESSION - specifies generation of a user session handle of C type
OCISession

■ OCI_HTYPE_TRANS - specifies generation of a transaction context handle of C
type OCITrans
13-68 Oracle Call Interface Programmer’s Guide

OCIHandleAlloc()
■ OCI_HTYPE_COMPLEXOBJECT - specifies generation of a complex object
retrieval handle of C type OCIComplexObject

■ OCI_HTYPE_SECURITY - specifies generation of a security handle of C type
OCISecurity

xtramem_sz (IN)
Specifies an amount of user memory to be allocated.

usrmempp (OUT)
Returns a pointer to the user memory of size xtramem_sz allocated by the call for
the user.

Comments
Returns a pointer to an allocated and initialized handle, corresponding to the type
specified in type. A non-NULL handle is returned on success. All handles are
allocated with respect to an environment handle which is passed in as a parent
handle.

No diagnostics are available on error. This call returns OCI_SUCCESS if successful,
or OCI_INVALID_HANDLE if an error occurs.

Handles must be allocated using OCIHandleAlloc() before they can be passed into
an OCI call.

To allocate and initialize an environment handle, call OCIEnvInit().

See Also: For more information about using the xtramem_sz parameter for user
memory allocation, refer to “User Memory Allocation” on page 2-12.

Example
The following sample code shows OCIHandleAlloc() being used to allocate a variety
of handles at the beginning of an application:

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4)
OCI_HTYPE_ERROR, 0, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4)
OCI_HTYPE_SERVER, 0, (dvoid **) &tmp);

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4)
OCI_HTYPE_SVCCTX, 0, (dvoid **) &tmp);

Related Functions
OCIHandleFree(), OCIEnvInit()
 OCI Relational Functions 13-69

OCIHandleFree()
OCIHandleFree()

Purpose
This call explicitly deallocates a handle.

Syntax
sword OCIHandleFree (dvoid *hndlp,
 ub4 type);

Parameters

hndlp (IN)
A handle allocated by OCIHandleAlloc().

type (IN)
Specifies the type of storage to be freed. The specific types are:

■ OCI_HTYPE_ENV - an environment handle

■ OCI_HTYPE_ERROR - an error report handle

■ OCI_HTYPE_SVCCTX - a service context handle

■ OCI_HTYPE_STMT - a statement (application request) handle

■ OCI_HTYPE_DESCRIBE - a select list description handle

■ OCI_HTYPE_SERVER - a server handle

■ OCI_HTYPE_SESSION - a user session handle

■ OCI_HTYPE_TRANS - a transaction handle

■ OCI_HTYPE_COMPLEXOBJECT - a complex object retrieval handle

■ OCI_HTYPE_SECURITY - a security handle

Comments
This call frees up storage associated with a handle, corresponding to the type
specified in the type parameter.

This call returns either OCI_SUCCESS or OCI_INVALID_HANDLE.
13-70 Oracle Call Interface Programmer’s Guide

OCIHandleFree()
All handles may be explicitly deallocated. The OCI will deallocate a child handle if
the parent is deallocated.

Related Functions
OCIHandleAlloc(), OCIEnvInit()
 OCI Relational Functions 13-71

OCIInitialize()
OCIInitialize()

Purpose
Initializes the OCI process environment.

Syntax
sword OCIInitialize (ub4 mode,
 CONST dvoid *ctxp,
 CONST dvoid *(*malocfp)
 (/* dvoid *ctxp,
 size_t size _*/),
 CONST dvoid *(*ralocfp)
 (/*_ dvoid *ctxp,
 dvoid *memptr,
 size_t newsize _*/),
 CONST void (*mfreefp)
 (/*_ dvoid *ctxp,
 dvoid *memptr _*/));

Parameters

mode (IN)
Specifies initialization of the mode. The valid modes are:

■ OCI_DEFAULT - default mode.

■ OCI_THREADED - threaded environment. In this mode, internal data
structures not exposed to the user are protected from concurrent accesses by
multiple threads.

■ OCI_OBJECT - will use object features.

ctxp (IN)
User defined context for the memory call back routines.

malocfp (IN)
User-defined memory allocation function. If mode is OCI_THREADED, this
memory allocation routine must be thread safe.

ctxp (IN/OUT)
Context pointer for the user-defined memory allocation function.
13-72 Oracle Call Interface Programmer’s Guide

OCIInitialize()
size (IN)
Size of memory to be allocated by the user-defined memory allocation function

ralocfp (IN)
User-defined memory re-allocation function. If mode is OCI_THREADED, this
memory allocation routine must be thread safe.

ctxp (IN/OUT)
Context pointer for the user-defined memory reallocation function.

memptr (IN/OUT)
Pointer to memory block

newsize (IN)
New size of memory to be allocated

mfreefp (IN)
User-defined memory free function. If mode is OCI_THREADED, this memory free
routine must be thread safe.

ctxp (IN/OUT)
Context pointer for the user-defined memory free function.

memptr (IN/OUT)
Pointer to memory to be freed

Comments
This call initializes the OCI process environment.

OCIInitialize() must be invoked before any other OCI call.

This function provides the ability for the application to define its own memory
management functions through callbacks. If the application has defined such
functions (i.e., memory allocation, memory re-allocation, memory free), they
should be registered using the callback parameters in this function.

These memory callbacks are optional. If the application passes NULL values for the
memory callbacks in this function, the default process memory allocation
mechanism is used.
 OCI Relational Functions 13-73

OCIInitialize()
Example
The following statement shows an example of how to call OCIInitialize() in both
threaded and object mode, with no user-defined memory functions:

OCIInitialize((ub4) OCI_THREADED | OCI_OBJECT, (dvoid *)0,
(dvoid * (*)()) 0, (dvoid * (*)()) 0, (void (*)()) 0);

Related Functions
OCIEnvInit()
13-74 Oracle Call Interface Programmer’s Guide

OCILdaToSvcCtx()
OCILdaToSvcCtx()

Purpose
Converts a V7 Lda_Def to a V8 service context handle.

Syntax
sword OCILdaToSvcCtx (OCISvcCtx **svchpp,
 OCIError *errhp,
 Lda_Def *ldap);

Parameters

svchpp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

ldap (IN/OUT)
The Oracle7 logon data area returned by OCISvcCtxToLda() from this service
context.

Comments
Converts an Oracle7 Lda_Def to an Oracle8 service context handle. The action of
this call can be reversed by passing the resulting service context handle to the
OCISvcCtxToLda() function.

If the Service context has been converted to an Lda_Def, only Oracle7 calls may be
used. It is illegal to make Oracle8 OCI calls without first resetting the Lda_Def to a
service context.

The OCI_ATTR_IN_V8_MODE attribute of the server handle or service context
handle enables an application to determine whether the application is currently in
Oracle7 mode or Oracle8 mode. See Appendix B, “Handle and Descriptor
Attributes”, for more information.

Related Functions
OCISvcCtxToLda()
 OCI Relational Functions 13-75

OCILobAppend()
OCILobAppend()

Purpose
Appends a LOB value at the end of another LOB as specified.

Syntax
sword OCILobAppend (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *dst_locp,
 OCILobLocator *src_locp);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
Error handle. The OCI error handle. If there is an error, it is recorded in err and this
function returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

dst_locp (IN/OUT)
An internal LOB locator uniquely referencing the destination LOB. This locator
must be a locator that was obtained from the server specified by svchp.

src_locp (IN)
An internal LOB locator uniquely referencing the source LOB. This locator must be
a locator that was obtained from the server specified by svchp.

Comments
Appends a LOB value at the end of another LOB as specified. The data is copied
from the source to the destination at the end of the destination. The source and
destination LOBs must already exist. The destination LOB is extended to
accommodate the newly written data.

It is an error to extend the destination LOB beyond the maximum length allowed
(i.e., 4 gigabytes) or to try to copy from a NULL LOB.
13-76 Oracle Call Interface Programmer’s Guide

OCILobAppend()
Both the source and the destination LOB locators must be of the same type (i.e.,
they must both be BLOBs or both be CLOBs). LOB buffering must not be enabled
for either type of locator.

This function does not accept a FILE locator as the source or the destination.

Related Functions
OCILobTrim(), OCILobWrite(), OCILobCopy(), OCIErrorGet()
 OCI Relational Functions 13-77

OCILobAssign()
OCILobAssign()

Purpose
Assigns one LOB/FILE locator to another.

Syntax
sword OCILobAssign (OCIEnv *envhp,
 OCIError *errhp,
 CONST OCILobLocator *src_locp,
 OCILobLocator **dst_locpp);

Parameters

envhp (IN/OUT)
OCI environment handle.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

src_locp (IN)
LOB/FILE locator to copy from.

dst_locpp (IN/OUT)
LOB/FILE locator to copy to. The caller must have allocated space for the
destination locator by calling OCIDescriptorAlloc().

Comments
Assign source locator to destination locator. After the assignment, both locators refer
to the same LOB value. For internal LOBs, the source locator's LOB value gets
copied to the destination locator's LOB value only when the destination locator gets
stored in the table. Therefore, issuing a flush of the object containing the destination
locator will copy the LOB value.

For FILEs, only the locator that refers to the file is copied to the table. The OS file
itself is not copied.

It is an error to assign a FILE locator to an internal LOB locator, and vice versa.
13-78 Oracle Call Interface Programmer’s Guide

OCILobAssign()
If the source locator is for an internal LOB that was enabled for buffering, and the
source locator has been used to modify the LOB data through the LOB buffering
subsystem, and the buffers have not been flushed since the write, then the source
locator may not be assigned to the destination locator. This is because only one
locator per LOB may modify the LOB data through the LOB buffering subsystem.

The value of the input destination locator must either be NULL, or it must have
already been allocated with a call to OCIDescriptorAlloc(). For example, assume the
following declarations:

OCILobLocator *source_loc = (OCILobLocator *) 0;
OCILobLocator *dest_loc = (OCILobLocator *) 0;

An application could allocate the source_loc locator as follows:

if (OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &source_loc,
(ub4) OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0))
handle_error;

Assume that it then selects a LOB from a table into the source_loc in order to
initialize it. The application could then do one of the following to assign the value
of source_loc to dest_loc :

1. Pass in NULL for the value of the destination locator and let OCILobAssign()
allocate space for dest_loc and copy the source into it:

if (OCILobAssign(envhp, errhp, source_loc, &dest_loc))
handle_error;

2. Allocate dest_loc , and pass the preallocated destination locator to
OCILobAssign():

if (OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &dest_loc,
(ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0))
handle_error;

if (OCILobAssign(envhp, errhp, source_loc, &dest_loc))
handle_error;

Related Functions
OCIErrorGet(), OCILobIsEqual(), OCILobLocatorIsInit(), OCILobEnableBuffering()
 OCI Relational Functions 13-79

OCILobCharSetForm()
OCILobCharSetForm()

Purpose
Gets the LOB locator’s character set form, if any.

Syntax
sword OCILobCharSetForm (OCIEnv *envhp,
 OCIError *errhp,
 CONST OCILobLocator *locp,
 ub1 *csfrm);

Parameters

envhp (IN/OUT)
OCI environment handle.

errhp (IN/OUT)
Error handle. The OCI error handle. If there is an error, it is recorded in err and this
function returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

locp (IN)
LOB locator for which to get the character set form.

csfrm (OUT)
Character set form of the input LOB locator. If the input locator is for a BLOB or a
BFILE, csfrm is set to 0 since there is no concept of a character set for binary LOBs/
FILEs. The caller must allocate space for the csfrm ub1.

Comments
Returns the character set form of the input LOB locator in the csfrm output
parameter. This function makes sense only for character LOBs (i.e., CLOBs and
NCLOBs).

Related Functions
OCIErrorGet(), OCILobCharSetId(), OCILobLocatorIsInit()
13-80 Oracle Call Interface Programmer’s Guide

OCILobCharSetId()
OCILobCharSetId()

Purpose
Gets the LOB locator’s character set ID, if any.

Syntax
sword OCILobCharSetId (OCIEnv *envhp,
 OCIError *errhp,
 CONST OCILobLocator *locp,
 ub2 *csid);

Parameters

envhp (IN/OUT)
OCI environment handle.

errhp (IN/OUT)
Error handle. The OCI error handle. If there is an error, it is recorded in err and this
function returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

locp (IN)
LOB locator for which to get the character set ID.

csid (OUT)
Character set ID of the input LOB locator. If the input locator is for a BLOB or a
BFILE, csid is set to 0 since there is no concept of a character set for binary LOBs/
FILEs. The caller must allocate space for the csid ub2.

Comments
Returns the character set ID of the input LOB locator in the csid output parameter.

This function makes sense only for character LOBs (i.e., CLOBs, NCLOBs).

Related Functions
OCIErrorGet(), OCILobCharSetForm(), OCILobLocatorIsInit()
 OCI Relational Functions 13-81

OCILobCopy()
OCILobCopy()

Purpose
Copies all or a portion of a LOB value into another LOB value

Syntax
sword OCILobCopy (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *dst_locp,
 OCILobLocator *src_locp,
 ub4 amount,
 ub4 dst_offset,
 ub4 src_offset);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
Error handle. The OCI error handle. If there is an error, it is recorded in err and this
function returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

dst_locp (IN/OUT)
An internal LOB locator uniquely referencing the destination LOB. This locator
must be a locator that was obtained from the server specified by svchp.

src_locp (IN)
An internal LOB locator uniquely referencing the source LOB. This locator must be
a locator that was obtained from the server specified by svchp.

amount (IN)
The maximum number of characters or bytes, as appropriate, to be copied from the
source LOB to the destination LOB.

dst_offset (IN)
This is the absolute offset for the destination LOB. For character LOBs it is the
number of characters from the beginning of the LOB at which to begin writing. For
13-82 Oracle Call Interface Programmer’s Guide

OCILobCopy()
binary LOBs it is the number of bytes from the beginning of the LOB from which to
begin writing. The offset starts at 1.

src_offset (IN)
This is the absolute offset for the source LOB. For character LOBs it is the number
of characters from the beginning of the LOB, for binary LOBs it is the number of
bytes. Starts at 1.

Comments
Copies all or a portion of an internal LOB value into another internal LOB as
specified. The data is copied from the source to the destination. The source
(src_locp) and the destination (dst_locp) LOBs must already exist.

If the data already exists at the destination’s start position, it is overwritten with the
source data. If the destination’s start position is beyond the end of the current data,
zero-byte fillers (for BLOBs) or spaces (for CLOBs) are written into the destination
LOB from the end of the current data to the beginning of the newly written data
from the source. The destination LOB is extended to accommodate the newly
written data if it extends beyond the current length of the destination LOB. It is an
error to extend the destination LOB beyond the maximum length allowed (i.e., 4
gigabytes) or to try to copy from a NULL LOB.

Both the source and the destination LOB locators must be of the same type (i.e.,
they must both be BLOBs or both be CLOBs). LOB buffering must not be enabled
for either locator.

This function does not accept a FILE locator as the source or the destination.

The amount parameter indicates the maximum amount to copy. If the end of the
source LOB is reached before the specified amount is copied, the operation
terminates without error. This makes it possible to copy from a starting offset to the
end of the LOB without first needing to determine the length of the LOB.

Note: You can call OCILobGetLength() to determine the length of the source
LOB.

Related Functions
OCIErrorGet(), OCILobAppend(), OCILobTrim(), OCILobWrite()
 OCI Relational Functions 13-83

OCILobDisableBuffering()
OCILobDisableBuffering()

Purpose
Disable LOB buffering for the input locator.

Syntax
sword OCILobDisableBuffering (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

locp (IN/OUT)
An internal LOB locator uniquely referencing the LOB.

Comments
Disables LOB buffering for the input internal LOB locator. The next time data is
read from or written to the LOB through the input locator, the LOB buffering
subsystem is not used. Note that this call does not implicitly flush the changes
made in the buffering subsystem. The user must explicitly call OCILobFlushBuffer()
to do this.

This function does not accept a FILE locator.

Related Functions
OCILobEnableBuffering(), OCIErrorGet(), OCILobFlushBuffer()
13-84 Oracle Call Interface Programmer’s Guide

OCILobEnableBuffering()
OCILobEnableBuffering()

Purpose
Enable LOB buffering for the input locator.

Syntax
sword OCILobEnableBuffering (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

locp (IN/OUT)
An internal LOB locator uniquely referencing the LOB.

Comments
Enables LOB buffering for the input internal LOB locator. The next time data is
read from or written to the LOB through the input locator, the LOB buffering
subsystem is used.

Once LOB buffering is enabled for a locator, if that locator is passed to one of the
following routines, an error is returned: OCILobCopy(), OCILobAppend(),
OCILobErase(), OCILobGetLength(), OCILobTrim(), or OCILobLoadFromFile().

This function does not accept a FILE locator.

Related Functions
OCILobDisableBuffering(), OCIErrorGet(), OCILobWrite(), OCILobRead(),
OCILobFlushBuffer()
 OCI Relational Functions 13-85

OCILobErase()
OCILobErase()

Purpose
Erases a specified portion of the LOB data starting at a specified offset.

Syntax
sword OCILobErase (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 *amount,
 ub4 offset);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
Error handle. The OCI error handle. If there is an error, it is recorded in err and this
function returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

locp (IN/OUT)
An internal LOB locator that uniquely references the LOB. This locator must be a
locator that was obtained from the server specified by svchp.

amount (IN/OUT)
On IN, the number of characters/bytes to erase. On OUT, the actual number of
characters/bytes erased.

offset (IN)
Absolute offset from the beginning of the LOB value from which to start erasing
data. Starts at 1.

Comments
Erases a specified portion of the internal LOB data starting at a specified offset. The
actual number of characters/bytes erased is returned. The actual number of
characters/bytes and the requested number of characters/bytes will differ if the
13-86 Oracle Call Interface Programmer’s Guide

OCILobErase()
end of the LOB value is reached before erasing the requested number of characters/
bytes.

Note: For BLOBs, erasing means that zero-byte fillers overwrite the existing
LOB value. For CLOBs, erasing means that spaces overwrite the existing LOB
value.

If the LOB is NULL, this routine will indicate that 0 characters/bytes were erased.

This function is valid only for internal LOBs; FILEs are not allowed.

Related Functions
OCIErrorGet(), OCILobRead(), OCILobWrite()
 OCI Relational Functions 13-87

OCILobFileClose()
OCILobFileClose()

Purpose
Closes a previously opened FILE.

Syntax
sword OCILobFileClose (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *filep);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
Error handle. The OCI error handle. If there is an error, it is recorded in err and this
function returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

filep (IN/OUT)
A pointer to a FILE locator that refers to the FILE to be closed.

Comments
Closes a previously opened FILE. It is an error if this function is called for an
internal LOB. No error is returned if the FILE exists but is not opened.

This function is only meaningful the first time it is called for a particular FILE
locator. Subsequent calls to this function using the same FILE locator have no effect.

See Also: For more information about FILEs, refer to the description of BFILEs
in the Oracle8 Application Developer’s Guide.

Related Functions
OCIErrorGet(), OCILobFileCloseAll(), OCILobFileExists()
13-88 Oracle Call Interface Programmer’s Guide

OCILobFileCloseAll()
OCILobFileCloseAll()

Purpose
Closes all open FILEs on a given service context.

Syntax
sword OCILobFileCLoseAll (OCISvcCtx *svchp,
 OCIError *errhp);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
Error handle. The OCI error handle. If there is an error, it is recorded in err and this
function returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

Comments
Closes all open FILEs on a given service context.

It is an error to call this function for an internal LOB.

See Also: For more information about FILEs, refer to the description of BFILEs
in the Oracle8 Application Developer’s Guide.

Related Functions
OCILobFileClose(), OCIErrorGet(), OCILobFileExists(), OCILobFileIsOpen()
 OCI Relational Functions 13-89

OCILobFileExists()
OCILobFileExists()

Purpose
Tests to see if the FILE exists on the server’s OS

Syntax
sword OCILobFileExists (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *filep,
 boolean *flag);

Parameters

svchp (IN)
The OCI service context handle.

errhp (IN/OUT)
Error handle. The OCI error handle. If there is an error, it is recorded in err and this
function returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

filep (IN)
Pointer to the FILE locator that refers to the file.

flag (OUT)
Returns TRUE if the FILE exists on the server; FALSE if it does not.

Comments
Checks to see if the FILE exists on the server’s file system.

It is an error to call this function for an internal LOB.

See Also: For more information about FILEs, refer to the description of BFILEs
in the Oracle8 Application Developer’s Guide.

Related Functions
OCIErrorGet(), OCILobFileClose(), OCILobFileCloseAll(), OCILobFileIsOpen()
13-90 Oracle Call Interface Programmer’s Guide

OCILobFileGetName()
OCILobFileGetName()

Purpose
Gets the FILE locator’s directory alias and file name.

Syntax
sword OCILobFileGetName (OCIEnv *envhp,
 OCIError *errhp,
 CONST OCILobLocator *filep,
 text *dir_alias,
 ub2 *d_length,
 text *filename,
 ub2 *f_length);

Parameters

envhp (IN/OUT)
OCI environment handle.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

filep (IN)
FILE locator for which to get the directory alias and file name.

dir_alias (OUT)
Buffer into which the directory alias name is placed. The caller must allocate
enough space for the directory alias name. The maximum length for the directory
alias is 30 bytes.

d_length (IN/OUT)
Serves the following purposes

■ IN: length of the input dir_alias string

■ OUT: length of the returned dir_alias string
 OCI Relational Functions 13-91

OCILobFileGetName()
filename (OUT)
Buffer into which the file name is placed. The caller must allocate enough space for
the file name. The maximum length for the file name is 255 bytes.

f_length (IN/OUT)
Serves the following purposes

■ IN: length of the input filename buffer

■ OUT: length of the returned filename string

Comments
Returns the directory alias and file name associated with this FILE locator.

It is an error to call this function for an internal LOB.

See Also: For more information about FILEs, refer to the description of BFILEs
in the Oracle8 Application Developer’s Guide.

Related Functions
OCILobFileSetName(), OCIErrorGet()
13-92 Oracle Call Interface Programmer’s Guide

OCILobFileIsOpen()
OCILobFileIsOpen()

Purpose
Tests to see if the FILE is open

Syntax
sword OCILobFileIsOpen (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *filep,
 boolean *flag);

Parameters

svchp (IN)
The OCI service context handle.

errhp (IN/OUT)
Error handle. The OCI error handle. If there is an error, it is recorded in err and this
function returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

filep (IN)
Pointer to the FILE locator being examined.

flag (OUT)
Returns TRUE if the FILE was opened using this particular locator; FALSE if it was
not.

Comments
Checks to see if a file on the server was opened with the filep FILE locator.

It is an error to call this function for an internal LOB.

If the input FILE locator was never passed to the OCILobFileOpen() command, the
file is considered not to be opened by this locator. However, a different locator may
have the file open. Openness is associated with a particular locator.

See Also: For more information about FILEs, refer to the description of BFILEs
in the Oracle8 Application Developer’s Guide.
 OCI Relational Functions 13-93

OCILobFileIsOpen()
Related Functions
OCIErrorGet(), OCILobFileClose(), OCILobFileCloseAll()
13-94 Oracle Call Interface Programmer’s Guide

OCILobFileOpen()
OCILobFileOpen()

Purpose
Opens a FILE for read-only access.

Syntax
sword OCILobFileOpen (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *filep,
 ub1 mode);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
Error handle. The OCI error handle. If there is an error, it is recorded in err and this
function returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

filep (IN/OUT)
The FILE to open. It is an error if the locator does not refer to a FILE.

mode (IN)
Mode in which to open the file. The only valid mode is OCI_FILE_READONLY.

Comments
Opens a FILE. The FILE can be opened for read-only access. FILEs may not be
written through Oracle. It is an error to call this function for an internal LOB.

This function is only meaningful the first time it is called for a particular FILE
locator. Subsequent calls to this function using the same FILE locator have no effect.

See Also: For more information about FILEs, refer to the description of BFILEs
in the Oracle8 Application Developer’s Guide.

Related Functions
OCILobFileClose(), OCIErrorGet(), OCILobFileIsOpen(), OCILobFileSetName()
 OCI Relational Functions 13-95

OCILobFileSetName()
OCILobFileSetName()

Purpose
Sets the directory alias and file name in the FILE locator.

Syntax
sword OCILobFileSetName (OCIEnv *envhp,
 OCIError *errhp,
 OCILobLocator **filepp,
 CONST text *dir_alias,
 ub2 d_length,
 CONST text *filename,
 ub2 f_length);

Parameters

envhp (IN/OUT)
OCI environment handle.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

filepp (IN/OUT)
FILE locator for which to set the directory alias and file name.

dir_alias (IN)
Buffer that contains the directory alias name to set in the FILE locator.

d_length (IN)
Length of the input dir_alias parameter.

filename (IN)
Buffer that contains the file name to set in the FILE locator.

f_length (IN)
Length of the input filename parameter.
13-96 Oracle Call Interface Programmer’s Guide

OCILobFileSetName()
Comments
Sets the directory alias and file name in the FILE locator.

It is an error to call this function for an internal LOB.

See Also: For more information about FILEs, refer to the description of BFILEs
in the Oracle8 Application Developer’s Guide.

Related Functions
OCILobFileGetName(), OCIErrorGet()
 OCI Relational Functions 13-97

OCILobFlushBuffer()
OCILobFlushBuffer()

Purpose
Flush/write all buffers for this lob to the server.

Syntax
sword OCILobFlushBuffer (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp
 ub4 flag);

Parameters

svchp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

locp (IN/OUT)
An internal locator uniquely referencing the LOB.

flag (IN)
When set to OCI_LOB_BUFFER_FREE, the buffer resources for the LOB are freed
after the flush. See comments below.

Comments
Flushes to the server, changes made to the buffering subsystem that are associated
with the LOB referenced by the input locator. This routine will actually write the
data in the buffer to the LOB in the database. LOB buffering must have already
been enabled for the input LOB locator.

The flush operation, by default, does not free the buffer resources for reallocation to
another buffered LOB operation. However, if you want to free the buffer explicitly,
you can set the flag parameter to OCI_LOB_BUFFER_FREE.

The effects of freeing the buffer are mostly transparent to the user, except that the
next access to the same range in the LOB involves a round-trip to the server, and
13-98 Oracle Call Interface Programmer’s Guide

OCILobFlushBuffer()
also the cost of acquiring buffer resources and initializing it with the data read from
the LOB. This option is intended for the following situations:

■ If the client environment has low on-board memory.

■ If the client application intends to read the buffer value after the flush and
knows in advance that the current value in the buffer is the desired value. In
this case there is no need to reread the data from the server.

Related Functions
OCILobEnableBuffering(), OCIErrorGet(), OCILobWrite(), OCILobRead(),
OCILobDisableBuffering()
 OCI Relational Functions 13-99

OCILobGetLength()
OCILobGetLength()

Purpose
Gets the length of a LOB/FILE.

Syntax
sword OCILobGetLength (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 *lenp);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
Error handle. The OCI error handle. If there is an error, it is recorded in err and this
function returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

locp (IN)
A LOB/FILE locator that uniquely references the LOB/FILE. For internal LOBs,
this locator must be a locator that was obtained from the server specified by svchp.
For FILEs, the locator can be set via OCILobFileSetName(), via a SELECT statement,
or via OCIObjectPin.

lenp (OUT)
On output, it is the length of the LOB/FILE if the LOB/FILE is not NULL for
character LOBs it is the number of characters, for binary LOBs and BFILEs it is the
number of bytes in the LOB/FILE.

Comments
Gets the length of a LOB/FILE. If the LOB/FILE is NULL, the length is undefined.

The length of a FILE includes the EOF, if it exists.

The length is expressed in terms of bytes for BLOBs and BFILEs, and in terms of
characters for CLOBs. The length of an empty internal LOB is zero.
13-100 Oracle Call Interface Programmer’s Guide

OCILobGetLength()
Note: Any zero-byte or space fillers in the LOB written by previous calls to
OCILobErase() or OCILobWrite() are also included in the length count.

Related Functions
OCIErrorGet(), OCILobFileSetName(), OCILobRead(), OCILobWrite(), OCILobCopy(),
OCILobAppend(), OCILobLoadFromFile()
 OCI Relational Functions 13-101

OCILobIsEqual()
OCILobIsEqual()

Purpose
Compares two LOB/FILE locators for equality.

Syntax
sword OCILobIsEqual (OCIEnv *envhp,
 CONST OCILobLocator *x,
 CONST OCILobLocator *y,
 boolean *is_equal);

Parameters

envhp (IN)
The OCI environment handle.

x (IN)
LOB locator to compare.

y (IN)
LOB locator to compare.

is_equal (OUT)
TRUE, if the LOB locators are equal; FALSE if they are not.

Comments
Compares the given LOB/FILE locators for equality. Two LOB/FILE locators are
equal if and only if they both refer to the same LOB/FILE value.

Two NULL locators are considered not equal by this function.

Related Functions
OCILobAssign(), OCILobLocatorIsInit()
13-102 Oracle Call Interface Programmer’s Guide

OCILobLoadFromFile()
OCILobLoadFromFile()

Purpose
Load/copy all or a portion of the file into an internal LOB.

Syntax
sword OCILobLoadFromFile (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *dst_locp,
 OCILobLocator *src_locp,
 ub4 amount,
 ub4 dst_offset,
 ub4 src_offset);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

dst_locp (IN/OUT)
A locator uniquely referencing the destination internal LOB which may be of type
BLOB, CLOB, or NCLOB.

src_locp (IN/OUT)
A locator uniquely referencing the source FILE.

amount (IN)
The maximum number of bytes to be loaded.

dst_offset (IN)
This is the absolute offset for the destination LOB. For character LOBs it is the
number of characters from the beginning of the LOB at which to begin writing. For
binary LOBs it is the number of bytes from the beginning of the LOB from which to
begin reading. The offset starts at 1.
 OCI Relational Functions 13-103

OCILobLoadFromFile()
src_offset (IN)
This is the absolute offset for the source FILE. It is the number of bytes from the
beginning of the FILE. The offset starts at 1.

Comments
Loads/copies a portion or all of a FILE value into an internal LOB as specified. The
data is copied from the source FILE to the destination internal LOB (BLOB/CLOB).
No character set conversions are performed when copying the FILE data to a
CLOB/NCLOB. Therefore, the FILE data must already be in the same character set
as the CLOB/NCLOB in the database. No error checking is performed to verify this.

The source (src_locp) and the destination (dst_locp) LOBs must already exist. If the
data already exists at the destination's start position, it is overwritten with the
source data. If the destination's start position is beyond the end of the current data,
zero-byte fillers (for BLOBs) or spaces (for CLOBs) are written into the destination
LOB from the end of the data to the beginning of the newly written data from the
source. The destination LOB is extended to accommodate the newly written data if
it extends beyond the current length of the destination LOB.

It is an error to extend the destination LOB beyond the maximum length allowed (4
gigabytes) or to try to copy from a NULL FILE.

The amount parameter indicates the maximum amount to load. If the end of the
source FILE is reached before the specified amount is loaded, the operation
terminates without error. This makes it possible to load from a starting offset to the
end of the FILE without first needing to determine the length of the file.

Related Functions
OCIErrorGet(), OCILobAppend(), OCILobWrite(), OCILobTrim(), OCILobCopy(),
OCILobGetLength()
13-104 Oracle Call Interface Programmer’s Guide

OCILobLocatorIsInit()
OCILobLocatorIsInit()

Purpose
Tests to see if a given LOB/FILE locator is initialized.

Syntax
sword OCILobLocatorIsInit (OCIEnv *envhp,
 OCIError *errhp,
 CONST OCILobLocator *locp,
 boolean *is_initialized);

Parameters

envhp (IN/OUT)
OCI environment handle.

errhp (IN/OUT)
Error handle. The OCI error handle. If there is an error, it is recorded in err and this
function returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

locp (IN)
The LOB/FILE locator being tested

is_initialized (OUT)
Returns TRUE if the given LOB/FILE locator is initialized; FALSE if it is not.

Comments
Tests to see if a given LOB/FILE locator is initialized.

Internal LOB locators can be initialized by one of the following methods:

■ SELECTing a non-NULL LOB into the locator,

■ pinning an object that contains a non-NULL LOB attribute via OCIObjectPin()

■ setting the locator to empty via OCIAttrSet() (see “LOB Locator Attributes” on
page B-25 for more information.)

FILE locators can be initialized by one of the following methods:

■ SELECTing a non-NULL FILE into the locator
 OCI Relational Functions 13-105

OCILobLocatorIsInit()
■ pinning an object that contains a non-NULL FILE attribute via OCIObjectPin()

■ calling OCILobFileSetName()

Related Functions
OCIErrorGet(), OCILobIsEqual()
13-106 Oracle Call Interface Programmer’s Guide

OCILobRead()
OCILobRead()

Purpose
Reads a portion of a LOB/FILE, as specified by the call, into a buffer.

Syntax
sword OCILobRead (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 *amtp,
 ub4 offset,
 dvoid *bufp,
 ub4 bufl,
 dvoid *ctxp,
 OCICallbackLobRead (cbfp)
 (dvoid *ctxp,
 CONST dvoid *bufp,
 ub4 len,
 ub1 piece)
 ub2 csid,
 ub1 csfrm);

Parameters

svchp (IN/OUT)
The service context handle.

errhp (IN/OUT)
Error handle. The OCI error handle. If there is an error, it is recorded in err and this
function returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

locp (IN)
A LOB/FILE locator that uniquely references the LOB/FILE. This locator must be a
locator that was obtained from the server specified by svchp.

amtp (IN/OUT)
On input, the number of characters (for CLOBs or NCLOBs) or bytes (for BLOBs
and BFILEs) to be read. On output, the actual number of bytes or characters read.
 OCI Relational Functions 13-107

OCILobRead()
If the amount of bytes to be read is larger than the buffer length it is assumed that
the LOB is being read in a streamed mode from the input offset until the end of the
LOB, or until the specified number of bytes have been read, whichever comes first.
On input if this value is 0, then the data shall be read in streamed mode from the
input offset until the end of the LOB.

The streamed mode (implemented with either polling or callbacks) reads the LOB
value sequentially from the input offset.

If the data is read in pieces, *amtp always contains the length of the piece just read.

If a callback function is defined, then this callback function will be invoked each
time bufl bytes are read off the pipe. Each piece will be written into bufp.

If the callback function is not defined, then the OCI_NEED_DATA error code will
be returned. The application must call OCILobRead() over and over again to read
more pieces of the LOB until the OCI_NEED_DATA error code is not returned. The
buffer pointer and the length can be different in each call if the pieces are being
read into different sizes and locations.

offset (IN)
On input, this is the absolute offset from the beginning of the LOB value. For
character LOBs (CLOBs, NCLOBs) it is the number of characters from the
beginning of the LOB, for binary LOBs/FILEs it is the number of bytes. The first
position is 1.

bufp (IN/OUT)
The pointer to a buffer into which the piece will be read. The length of the allocated
memory is assumed to be bufl.

bufl (IN)
The length of the buffer in octets. This value will differ from the amtp value in the
following cases:

■ For CLOBs and for NCLOBs (csfrm=SQLCS_NCHAR), the amtp parameter is
specified in terms of characters, while the bufl parameter is specified in terms of
bytes.

■ The user may allocate a single big buffer to be reused by several LOB read/
write calls. In this case bufl may be larger than the amtp requested.

ctxp (IN)
The context for the callback function. Can be NULL.
13-108 Oracle Call Interface Programmer’s Guide

OCILobRead()
cbfp (IN)
A callback that may be registered to be called for each piece. If this is NULL, then
OCI_NEED_DATA will be returned for each piece.

The callback function must return OCI_CONTINUE for the read to continue. If any
other error code is returned, the LOB read is aborted.

ctxp (IN)
The context for the callback function. Can be NULL.

bufp (IN/OUT)
A buffer pointer for the piece.

len (IN)
The length of the current piece in bufp.

piece (IN)
Which piece: OCI_FIRST_PIECE, OCI_NEXT_PIECE or OCI_LAST_PIECE.

csid (IN)
The character set ID of the buffer data.

csfrm (IN)
The character set form of the buffer data.

Comments
Reads a portion of a LOB/FILE as specified by the call into a buffer. It is an error to
try to read from a NULL LOB/FILE.

Note: When reading or writing LOBs, the character set form (csfrm) specified
should match the form of the locator itself.

For FILEs, the OS file must already exist on the server, and it must have been
opened via OCILobFileOpen() using the input locator. Oracle must have permission
to read the OS file, and the user must have read permission on the directory object.

When using the polling mode for OCILobRead(), the first call needs to specify values
for offset and amtp, but on subsequent polling calls to OCILobRead(), the user need
not specify these values.

See Also: For more information about FILEs, refer to the description of BFILEs
in the Oracle8 Application Developer’s Guide.

For a code sample showing the use of LOB reads and writes, refer to “Example
5, CLOB/BLOB Operations” on page D-76.
 OCI Relational Functions 13-109

OCILobRead()
For general information about piecewise OCI operations, refer to “Run Time
Data Allocation and Piecewise Operations” on page 7-16.

Related Functions
OCIErrorGet(), OCILobWrite(), OCILobFileSetName()
13-110 Oracle Call Interface Programmer’s Guide

OCILobTrim()
OCILobTrim()

Purpose
Trims/truncates the LOB value to a shorter length.

Syntax
sword OCILobTrim (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 newlen);

Parameters

svchp (IN)
The service context handle.

errhp (IN/OUT)
Error handle. The OCI error handle. If there is an error, it is recorded in err and this
function returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

locp (IN/OUT)
An internal LOB locator that uniquely references the LOB. This locator must be a
locator that was obtained from the server specified by svchp.

newlen (IN)
The new length of the LOB value, which must be less than or equal to the current
length.

Comments
Trims the LOB data to a specified shorter length.

The function returns an error if newlen is greater than the current LOB length.

This function is valid only for internal LOBs. FILEs are not allowed.

Related Functions
OCIErrorGet(). OCILobErase(), OCILobAppend(), OCILobCopy(), OCILobWrite()
 OCI Relational Functions 13-111

OCILobWrite()
OCILobWrite()

Purpose
Writes a buffer into a LOB

Syntax
sword OCILobWrite (OCISvcCtx *svchp,
 OCIError *errhp,
 OCILobLocator *locp,
 ub4 *amtp,
 ub4 offset,
 dvoid *bufp,
 ub4 buflen,
 ub1 piece,
 dvoid *ctxp,
 OCICallbackLobWrite (cbfp)
 (/*_
 dvoid *ctxp,
 dvoid *bufp,
 ub4 *lenp,
 ub1 *piecep */)
 ub2 csid,
 ub1 csfrm);

Parameters

svchp (IN/OUT)
The service context handle.

errhp (IN/OUT)
Error handle. The OCI error handle. If there is an error, it is recorded in err and this
function returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

locp (IN/OUT)
An internal LOB locator that uniquely references the LOB. This locator must be a
locator that was obtained from the server specified by svchp.
13-112 Oracle Call Interface Programmer’s Guide

OCILobWrite()
amtp (IN/OUT)
On input, takes the number of characters or bytes to be written. On output, returns
the actual number of bytes or characters written.

If the amount is specified on input, and the data is written in pieces, *amtp will
contain the total length of the pieces written at the end of the call (last piece
written) and is undefined in between. (Note it is different from the piecewise read
case). An error is returned if that amount is not sent to the server.

If amtp is zero, then streaming mode is assumed, and data is written until the user
specifies OCI_LAST_PIECE.

offset (IN)
On input, it is the absolute offset from the beginning of the LOB value. For
character LOBs it is the number of characters from the beginning of the LOB, for
binary LOBs it is the number of bytes. The first position is 1.

bufp (IN)
The pointer to a buffer from which the piece will be written. The length of the
allocated memory is assumed to be the value passed in buflen. Even if the data is
being written in pieces using the polling method, bufp must contain the first piece
of the LOB when this call is invoked. If a callback is provided, bufp must not be
used to provide data or an error will result.

buflen (IN)
the length of the buffer in bytes. This value will differ from the amtp value in the
following cases:

■ For CLOBs and NCLOBs, the amtp parameter is specified in terms of
characters, which the bufl parameter is specified in terms of bytes.

■ The user may allocate a single big buffer to be reused by several LOB read/
write calls. In this case bufl may be larger than the amtp requested.

Note: This parameter assumes an 8-bit byte. If your platform uses a longer
byte, the value of buflen must be adjusted accordingly.

piece (IN)
Which piece of the buffer is being written. The default value for this parameter is
OCI_ONE_PIECE, indicating the buffer will be written in a single piece.

The following other values are also possible for piecewise or callback mode:
OCI_FIRST_PIECE, OCI_NEXT_PIECE and OCI_LAST_PIECE.
 OCI Relational Functions 13-113

OCILobWrite()
ctxp (IN)
The context for the callback function. Can be NULL.

cbfp (IN)
A callback that may be registered to be called for each piece in a piecewise write. If
this is NULL, the standard polling method will be used.

The callback function must return OCI_CONTINUE for the write to continue. If
any other error code is returned, the LOB write is aborted. The callback takes the
following parameters:

ctxp (IN)
The context for the callback function. Can be NULL.

bufp (IN/OUT)
A buffer pointer for the piece.

lenp (IN/OUT)
The length of the buffer in octets (IN),

and the length of current piece in bufp in octets (OUT).

piecep (OUT)
Which piece: OCI_NEXT_PIECE or OCI_LAST_PIECE.

csid (IN)
The LOB character set ID of the buffer data.

csfrm (IN)
The LOB character set form of the buffer data.

Comments
Writes a buffer into a LOB as specified. If LOB data already exists it is overwritten
with the data stored in the buffer.

The buffer can be written to the LOB in a single piece with this call, or it can be
provided piecewise using callbacks or a standard polling method.

Note: When reading or writing LOBs, the character set form (csfrm) specified
should match the form of the locator itself.

When using the polling mode for OCILobWrite(), the first call needs to specify
values for offset and amtp, but on subsequent polling calls to OCILobWrite(), the user
need not specify these values.
13-114 Oracle Call Interface Programmer’s Guide

OCILobWrite()
If the value of the piece parameter is OCI_FIRST_PIECE, data may need to be
provided through callbacks or polling.

If a callback function is defined in the cbfp parameter, then this callback function
will be invoked to get the next piece after a piece is written to the pipe. Each piece
will be written from bufp.

If no callback function is defined, then OCILobWrite() returns the
OCI_NEED_DATA error code. The application must call OCILobWrite() again to
write more pieces of the LOB. In this mode, the buffer pointer and the length can be
different in each call if the pieces are of different sizes and from different locations.

A piece value of OCI_LAST_PIECE terminates the piecewise write, regardless of
whether the polling or callback method is used.

If the amount of data passed to Oracle (through either input mechanism) is less
than the amount specified by the amtp parameter, an ORA-22993 error is returned.

This function is valid for internal LOBs only. FILEs are not allowed, since they are
read-only.

See Also: For a code sample showing the use of LOB reads and writes, refer to
“Example 5, CLOB/BLOB Operations” on page D-76.

For general information about piecewise OCI operations, refer to “Run Time
Data Allocation and Piecewise Operations” on page 7-16.

Related Functions
OCIErrorGet(), OCILobRead(), OCILobAppend(), OCILobCopy()
 OCI Relational Functions 13-115

OCILogoff()
OCILogoff()

Purpose
This function is used to terminate a connection and session created with
OCILogon().

Syntax
sword OCILogoff (OCISvcCtx *svchp
 OCIError *errhp);

Parameters

svchp (IN)
The service context handle which was used in the call to OCILogon().

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

Comments
This call is used to terminate a session and connection which were created with
OCILogon(). This call implicitly deallocates the server, user session, and service
context handles.

Note: For more information on logging on and off in an application, refer to the
section “Application Initialization, Connection, and Session Creation” on
page 2-18.

Related Functions
OCILogon()
13-116 Oracle Call Interface Programmer’s Guide

OCILogon()
OCILogon()

Purpose
This function is used to create a simple logon session.

Syntax
sword OCILogon (OCIEnv *envhp,
 OCIError *errhp,
 OCISvcCtx **svchp,
 CONST text *username,
 ub4 uname_len,
 CONST text *password,
 ub4 passwd_len,
 CONST text *dbname,
 ub4 dbname_len);

Parameters

envhp (IN)
The OCI environment handle.

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

svchp (IN/OUT)
The service context pointer.

username (IN)
The username.

uname_len (IN)
The length of username.

password (IN)
The user’s password.

passwd_len (IN)
The length of password.
 OCI Relational Functions 13-117

OCILogon()
dbname (IN)
The name of the database to connect to.

dbname_len (IN)
The length of dbname.

Comments
This function is used to create a simple logon session for an application.

Note: Users requiring more complex sessions (e.g., TP monitor applications)
should refer to the section “Application Initialization, Connection, and Session
Creation” on page 2-18.

This call allocates the error and service context handles which are passed to it.

This call also implicitly allocates server and user session handles associated with
the session. These handles can be retrieved by calling OCIAQEnq() on the service
context handle.

Related Functions
OCILogoff()
13-118 Oracle Call Interface Programmer’s Guide

OCIParamGet()
OCIParamGet()

Purpose
Returns a descriptor of a parameter specified by position in the describe handle or
statement handle.

Syntax
sword OCIParamGet (CONST dvoid *hndlp,
 ub4 htype,
 OCIError *errhp,
 dvoid **parmdpp,
 ub4 pos);

Parameters

hndlp (IN)
A statement handle or describe handle. The OCIParamGet() function will return a
parameter descriptor for this handle.

htype (IN)
the type of the handle passed in the handle parameter. Valid types are

■ OCI_DTYPE_PARM, for a parameter descriptor

■ OCI_HTYPE_COR, for a complex object retrieval handle

■ OCI_HTYPE_STMT, for a statement handle

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

parmdpp (OUT)
A descriptor of the parameter at the position given in the pos parameter.

pos (IN)
Position number in the statement handle or describe handle. A parameter
descriptor will be returned for this position.

Note: OCI_NO_DATA may be returned if there are no parameter descriptors
for this position.
 OCI Relational Functions 13-119

OCIParamGet()
Comments
This call returns a descriptor of a parameter specified by position in the describe
handle or statement handle. Parameter descriptors are always allocated internally
by the OCI library. They are read-only.

OCI_NO_DATA may be returned if there are no parameter descriptors for this
position.

See Appendix B, “Handle and Descriptor Attributes”, for more detailed
information about parameter descriptor attributes.

Related Functions
OCIAQEnq(), OCIAttrSet(), OCIParamSet()
13-120 Oracle Call Interface Programmer’s Guide

OCIParamSet()
OCIParamSet()

Purpose
Used to set a complex object retrieval descriptor into a complex object retrieval
handle.

Syntax
sword OCIParamSet (dvoid *hndlp,
 ub4 htype,
 OCIError *errhp,
 CONST dvoid *dscp,
 ub4 dtyp,
 ub4 pos);

Parameters

hndlp (IN/OUT)
Handle pointer.

htype (IN)
Handle type.

errhp (IN/OUT)
Error handle.

dscp (IN)
Complex object retrieval descriptor pointer.

dtyp (IN)
Descriptor type. The descriptor type for a COR descriptor is
OCI_DTYPE_COMPLEXOBJECTCOMP.

pos (IN)
Position number.

Comments
This call sets a given complex object retrieval descriptor into a complex object
retrieval handle.
 OCI Relational Functions 13-121

OCIParamSet()
The handle must have been previously allocated using OCIHandleAlloc(), and the
descriptor must have been previously allocated using OCIDescriptorAlloc().
Attributes of the descriptor are set using OCIAttrSet().

For more information about complex object retrieval, see “Complex Object
Retrieval” on page 8-21.

Related Functions
OCIParamGet()
13-122 Oracle Call Interface Programmer’s Guide

OCIPasswordChange()
OCIPasswordChange()

Purpose
This call allows the password of an account to be changed.

Syntax
sword OCIPasswordChange (OCISvcCtx *svchp,
 OCIError *errhp,
 CONST text *user_name,
 ub4 usernm_len,
 CONST text *opasswd,
 ub4 opasswd_len,
 CONST text *npasswd,
 sb4 npasswd_len,
 ub4 mode);

Parameters

svchp (IN/OUT)
A handle to a service context. The service context handle must be initialized and
have a server context handle associated with it.

errhp (IN)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

user_name (IN)
Specifies the user name. It points to a character string, whose length is specified in
usernm_len. This parameter must be NULL if the service context has been
initialized with an user session handle.

usernm_len (IN)
The length of the user name string specified in user_name. For a valid user name
string, usernm_len must be non-zero.

opasswd (IN)
Specifies the user’s old password. It points to a character string, whose length is
specified in opasswd_len.
 OCI Relational Functions 13-123

OCIPasswordChange()
opasswd_len (IN)
The length of the old password string specified in opasswd. For a valid password
string, opasswd_len must be non-zero.

npasswd (IN)
Specifies the user’s new password. It points to a character string, whose length is
specified in npasswd_len which must be non-zero for a valid password string. If the
password complexity verification routine is specified in the user’s profile to verify
the new password’s complexity, the new password must meet the complexity
requirements of the verification function.

npasswd_len (IN)
Then length of the new password string specified in npasswd. For a valid password
string, npasswd_len must be non-zero.

mode (IN)
Can be OCI_DEFAULT and/or OCI_AUTH. If set to OCI_AUTH, the following
happens:

■ If a user session context is not created, this call creates the user session context
and changes the password. At the end of the call, the user session context is not
cleared. Hence the user remains logged in.

■ If the user session context is already created, this call just changes the password
and the flag has no effect on the session. Hence the user still remains logged in.

Comments
This call allows the password of an account to be changed. This call is similar to
OCISessionBegin() with the following differences:

■ If the user session is already established, it authenticates the account using the
old password and then changes the password to the new password

■ If the user session is not established, it establishes a user session and
authenticates the account using the old password, then changes the password
to the new password.

This call is useful when the password of an account is expired and
OCISessionBegin() returns an error or warning which indicates that the password
has expired.

Related Functions
OCISessionBegin()
13-124 Oracle Call Interface Programmer’s Guide

OCIServerAttach()
OCIServerAttach()

Purpose
Creates an access path to a data source for OCI operations.

Syntax
sword OCIServerAttach (OCIServer *srvhp,
 OCIError *errhp,
 CONST text *dblink,
 sb4 dblink_len,
 ub4 mode);

Parameters

srvhp (IN/OUT)
An uninitialized server handle, which gets initialized by this call. Passing in an
initialized server handle causes an error.

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

dblink (IN)
Specifies the database (server) to use. This parameter points to a character string
which specifies a connect string or a service point. If the connect string is NULL,
then this call attaches to the default host. The length of dblink is specified in
dblink_len. The dblink pointer may be freed by the caller on return.

dblink_len (IN)
The length of the string pointed to by dblink. For a valid connect string name or
alias, dblink_len must be non-zero.

mode (IN)
Specifies the various modes of operation. For release 8.0, pass as OCI_DEFAULT. In
this mode, calls made to the server on this server context are made in blocking
mode.
 OCI Relational Functions 13-125

OCIServerAttach()
Comments
This call is used to create an association between an OCI application and a
particular server.

This call initializes a server context handle, which must have been previously
allocated with a call to OCIHandleAlloc().

The server context handle initialized by this call can be associated with a service
context through a call to OCIAttrSet(). Once that association has been made, OCI
operations can be performed against the server.

If an application is operating against multiple servers, multiple server context
handles can be maintained. OCI operations are performed against whichever
server context is currently associated with the service context.

Example
The following example demonstrates the use of OCIServerAttach(). This code
segment allocates the server handle, makes the attach call, allocates the service
context handle, and then sets the server context into it.

OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4)
OCI_HTYPE_SERVER, 0, (dvoid **) &tmp);

OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);
OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4)

OCI_HTYPE_SVCCTX, 0, (dvoid **) &tmp);
/* set attribute server context in the service context */
OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *) srvhp,

(ub4) 0, (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

Related Functions
OCIServerDetach()
13-126 Oracle Call Interface Programmer’s Guide

OCIServerDetach()
OCIServerDetach()

Purpose
Deletes an access to a data source for OCI operations.

Syntax
sword OCIServerDetach (OCIServer *srvhp,
 OCIError *errhp,
 ub4 mode);

Parameters

srvhp (IN)
A handle to an initialized server context, which gets reset to uninitialized state. The
handle is not de-allocated.

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

mode (IN)
Specifies the various modes of operation. The only valid mode is OCI_DEFAULT
for the default mode.

Comments
This call deletes an access to data source for OCI operations, which was established
by a call to OCIServerAttach().

Related Functions
OCIServerAttach()
 OCI Relational Functions 13-127

OCIServerVersion()
OCIServerVersion()

Purpose
Returns the version string of the Oracle server.

Syntax
sword OCIServerVersion (dvoid *hndlp,
 OCIError *errhp,
 text *bufp,
 ub4 bufsz
 ub1 hndltype);

Parameters

hndlp (IN)
The service context handle or the server context handle.

errhp (IN)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

bufp (IN)
The buffer in which the version information is returned.

bufsz (IN)
The length of the buffer.

hndltype (IN)
The type of handle passed to the function.

Comments
This call returns the version string of the Oracle server. For example, the following
might be returned as the version string if your application is running against a 7.3.2
server:

Oracle7 Server Release 7.3.2.0.0 Production Release
PL/SQL Release 2.3.2.0.0 Production
CORE Version 3.5.2.0.0 Production
TNS for SEQUENT DYNIX/ptx: Version 2.3.2.0.0 Production
NLSRTL Version 3.2.2.0.0 Production
13-128 Oracle Call Interface Programmer’s Guide

OCISessionBegin()
OCISessionBegin()

Purpose
Creates a user session and begins a user session for a given server.

Syntax
sword OCISessionBegin (OCISvcCtx *svchp,
 OCIError *errhp,
 OCISession *usrhp,
 ub4 credt,
 ub4 mode);

Parameters

svchp (IN)
A handle to a service context. There must be a valid server handle set in svchp.

errhp (IN)
An error handle to the retrieve diagnostic information.

usrhp (IN/OUT)
A handle to an user session context, which is initialized by this call.

credt (IN)
Specifies the type of credentials to use for establishing the user session. Valid
values for credt are:

■ OCI_CRED_RDBMS - authenticate using a database username and password
pair as credentials. The attributes OCI_ATTR_USERNAME and
OCI_ATTR_PASSWORD should be set on the user session context before this
call.

■ OCI_CRED_EXT - authenticate using external credentials. No username or
password is provided.

mode (IN)
Specifies the various modes of operation. Valid modes are:

■ OCI_DEFAULT - in this mode, the user session context returned may only ever
be set with the same server context specified in svchp.
 OCI Relational Functions 13-129

OCISessionBegin()
■ OCI_MIGRATE - in this mode, the new user session context may be set in a
service handle with a different server handle. This mode establishes the user
session context. To create a migratable session, the service handle must already
be set with a non-migratable user session. A migratable session must have a
non-migratable parent session.

■ OCI_SYSDBA - in this mode, the user is authenticated for SYSDBA access.

■ OCI_SYSOPER - in this mode, the user is authenticated for SYSOPER access.

■ OCI_PRELIM_AUTH - this mode may only be used with OCI_SYSDBA or
OCI_SYSOPER to authenticate for certain administration tasks.

Comments
The OCISessionBegin() call is used to authenticate a user against the server set in the
service context handle.

For Oracle8, OCISessionBegin() must be called for any given server handle before
requests can be made against it. Also, OCISessionBegin() only supports
authenticating the user for access to the Oracle server specified by the server
handle in the service context. In other words, after OCIServerAttach() is called to
initialize a server handle, OCISessionBegin() must be called to authenticate the user
for that given server.

When OCISessionBegin() is called for the first time for a given server handle, the
user session may not be created in migratable (OCI_MIGRATE) mode.

After OCISessionBegin() has been called for a server handle, the application may call
OCISessionBegin() again to initialize another user session handle with different (or
the same) credentials and different (or the same) operation modes. If an application
wants to authenticate a user in OCI_MIGRATE mode, the service handle must
already be associated with a non-migratable user handle. The user ID of that user
handle becomes the ownership ID of the migratable user session. Every migratable
session must have a non-migratable parent session.

If the OCI_MIGRATE mode is not specified, then the user session context can only
ever be used with the same server handle set in svchp. If OCI_MIGRATE mode is
specified, then the user authentication may be set with different server handles.
However, the user session context may only be used with server handles which
resolve to the same database instance. Security checking is done during session
switching. A process or circuit is allowed to switch to a migratable session only if
the ownership ID of the session matches the user ID of a non-migratable session
currently connected to that same process or circuit, unless it is the creator of the
session.
13-130 Oracle Call Interface Programmer’s Guide

OCISessionBegin()
OCI_SYSDBA, OCI_SYSOPER, and OCI_PRELIM_AUTH may only be used with a
primary user session context.

To provide credentials for a call to OCISessionBegin(), one of two methods are
supported. The first is to provide a valid username and password pair for database
authentication in the user session handle passed to OCISessionBegin(). This involves
using OCIAttrSet() to set the OCI_ATTR_USERNAME and
OCI_ATTR_PASSWORD attributes on the user session handle. Then
OCISessionBegin() is called with OCI_CRED_RDBMS.

Note: When the user session handle is terminated using OCISessionEnd(), the
username and password attributes remain unchanged and thus can be re-used
in a future call to OCISessionBegin(). Otherwise, they must be reset to new
values before the next OCISessionBegin() call.

The second type of credentials supported are external credentials. No attributes
need to be set on the user session handle before calling OCISessionBegin(). The
credential type is OCI_CRED_EXT. This is equivalent to the Oracle7 ‘connect /’
syntax. If values have been set for OCI_ATTR_USERNAME and
OCI_ATTR_PASSWORD, then these are ignored if OCI_CRED_EXT is used.

Example
The following example demonstrates the use of OCISessionBegin(). This code
segment allocates the user session handle, sets the username and password
attributes, calls OCISessionBegin(), and then sets the user session into the service
context.

/* allocate a user session handle */
OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4)

OCI_HTYPE_SESSION, (size_t) 0, (dvoid **) 0);
OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION, (dvoid *)"jessica",

(ub4)strlen("jessica"), OCI_ATTR_USERNAME, errhp);
OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION, (dvoid *)"doogie",

(ub4)strlen("doogie"), OCI_ATTR_PASSWORD, errhp);
checkerr(errhp, OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS,

OCI_DEFAULT));
OCIAttrSet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX, (dvoid *)usrhp,

(ub4)0, OCI_ATTR_SESSION, errhp);

Related Functions
OCISessionEnd()
 OCI Relational Functions 13-131

OCISessionEnd()
OCISessionEnd()

Purpose
Terminates a user session context created by OCISessionBegin()

Syntax
sword OCISessionEnd (OCISvcCtx *svchp,
 OCIError *errhp,
 OCISession *usrhp,
 ub4 mode);

Parameters

svchp (IN/OUT)
The service context handle. There must be a valid server handle and user session
handle associated with svchp.

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

usrhp (IN)
De-authenticate this user. If this parameter is passed as NULL, the user in the
service context handle is de-authenticated.

mode (IN)
The only valid mode is OCI_DEFAULT.

Comments
The user security context associated with the service context is invalidated by this
call. Storage for the user session context is not freed. The transaction specified by
the service context is implicitly committed. The transaction handle, if explicitly
allocated, may be freed if not being used.

Resources allocated on the server for this user are freed.

The user session handle may be reused in a new call to OCISessionBegin().
13-132 Oracle Call Interface Programmer’s Guide

OCISessionEnd()
Related Functions
OCISessionBegin()
 OCI Relational Functions 13-133

OCIStmtExecute()
OCIStmtExecute()

Purpose
This call associates an application request with a server.

Syntax
sword OCIStmtExecute (OCISvcCtx *svchp,
 OCIStmt *stmtp,
 OCIError *errhp,
 ub4 iters,
 ub4 rowoff,
 CONST OCISnapshot *snap_in,
 OCISnapshot *snap_out,
 ub4 mode);

Parameters

svchp (IN/OUT)
Service context handle.

stmtp (IN/OUT)
An statement handle. It defines the statement and the associated data to be
executed at the server. It is invalid to pass in a statement handle that has bind of
data types only supported in release 8.0 when svchp points to an Oracle7 server.

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

iters (IN)
The number of times this statement is executed for non-SELECT statements. For
Select statements, if iters is non-zero, then defines must have been done for the
statement handle. The execution fetches iters rows into these predefined buffers
and prefetches more rows depending upon the prefetch row count. This function
returns an error if iters=0 for non-SELECT statements.

rowoff (IN)
The starting index from which the data in an array bind is relevant for this multiple
row execution.
13-134 Oracle Call Interface Programmer’s Guide

OCIStmtExecute()
snap_in (IN)
This parameter is optional. if supplied, must point to a snapshot descriptor of type
OCI_DTYPE_SNAP. The contents of this descriptor must be obtained from the
snap_out parameter of a previous call. The descriptor is ignored if the SQL is not a
SELECT. This facility allows multiple service contexts to ORACLE to see the same
consistent snapshot of the database’s committed data. However, uncommitted data
in one context is not visible to another context even using the same snapshot.

snap_out (OUT)
This parameter optional. if supplied, must point to a descriptor of type
OCI_DTYPE_SNAP. This descriptor is filled in with an opaque representation
which is the current ORACLE “system change number” suitable as a snap_in input
to a subsequent call to OCIStmtExecute(). This descriptor should not be used longer
than necessary in order to avoid “snapshot too old” errors.

mode (IN)
The modes are:

■ OCI_DEFAULT - Calling OCIStmtExecute() in this mode executes the statement.
It also implicitly returns describe information about the select-list.

■ OCI_DESCRIBE_ONLY - This mode is for users who wish to describe a query
prior to execution. Calling OCIStmtExecute() in this mode does not execute the
statement, but it does return the select-list description. To maximize
performance, it is recommended that applications execute the statement in
default mode and use the implicit describe which accompanies the execution.

■ OCI_COMMIT_ON_SUCCESS - When a statement is executed in this mode,
the current transaction is committed after execution, provided that execution
completes successfully.

■ OCI_EXACT_FETCH - Used when the application knows in advance exactly
how many rows it will be fetching. This mode turns prefetching off for Oracle8
mode, and requires that defines be done before the execute call. Using this
mode cancels the cursor after the desired rows are fetched and may result in
reduced server-side resource usage.

Comments
This function is used to execute a prepared SQL statement. Using an execute call,
the application associates a request with a server.

If a SELECT statement is executed, the description of the select-list is available
implicitly as a response. This description is buffered on the client side for describes,
 OCI Relational Functions 13-135

OCIStmtExecute()
fetches and define type conversions. Hence it is optimal to describe a select list only
after an execute. See “Describing Select-List Items” on page 4-8 for more
information.

Also for SELECT statements, some results are available implicitly. Rows will be
received and buffered at the end of the execute. For queries with small row count, a
prefetch causes memory to be released in the server if the end of fetch is reached,
an optimization that may result in memory usage reduction. Set attribute call has
been defined to set the number of rows to be prefetched per result set.

For SELECT statements, at the end of the execute, the statement handle implicitly
maintains a reference to the service context on which it is executed. It is the user’s
responsibility to maintain the integrity of the service context. The implicit reference
is maintained until the statement handle is freed or the fetch is cancelled or an end
of fetch condition is reached.

Note: If output variables are defined for a SELECT statement before a call to
OCIStmtExecute(), the number of rows specified by iters will be fetched directly
into the defined output buffers and additional rows equivalent to the prefetch
count will be prefetched. If there are no additional rows, then the fetch is
complete without calling OCIStmtFetch().

Related Functions
OCIStmtPrepare()
13-136 Oracle Call Interface Programmer’s Guide

OCIStmtFetch()
OCIStmtFetch()

Purpose
Fetches rows from a query.

Syntax
sword OCIStmtFetch (OCIStmt *stmtp,
 OCIError *errhp,
 ub4 nrows,
 ub2 orientation,
 ub4 mode);

Parameters

stmtp (IN)
A statement (application request) handle.

errhp (IN)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

nrows (IN)
Number of rows to be fetched from the current position.

orientation (IN)
For release 8.0, the only acceptable value is OCI_FETCH_NEXT, which is also the
default value.

mode (IN)
For release 8.0, pass as OCI_DEFAULT.

Comments
The fetch call is a local call, if prefetched rows suffice. However, this is transparent
to the application. If LOB columns are being read, LOB locators are fetched for
subsequent LOB operations to be performed on these locators. Prefetching is
turned off if LONG columns are involved.

This function can return OCI_SUCCESS_WITH_INFO if the data is truncated or
EOF is reached.
 OCI Relational Functions 13-137

OCIStmtFetch()
Related Functions
OCIStmtExecute()
13-138 Oracle Call Interface Programmer’s Guide

OCIStmtGetBindInfo()
OCIStmtGetBindInfo()

Purpose
Gets the bind and indicator variable names.

Syntax
sword OCIStmtGetBindInfo (OCIStmt *stmtp,
 OCIError *errhp,
 ub4 size,
 ub4 startloc,
 sb4 *found,
 text *bvnp[],
 ub1 bvnl[],
 text *invp[],
 ub1 inpl[],
 ub1 dupl[],
 OCIBind *hndl[]);

Parameters

stmtp (IN)
The statement handle.

errhp (IN)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

size (IN)
The number of elements in each array.

startloc (IN)
Position of the bind variable at which to start getting bind information.

found (IN)
Abs(found) gives the total number of bind variables in the statement irrespective of
the start position. Positive value if the number of bind variables returned is less
than the size provided, otherwise negative.

bvnp (OUT)
Array of pointers to hold bind variable names.
 OCI Relational Functions 13-139

OCIStmtGetBindInfo()
bvnl (OUT)
Array to hold the length of the each bvnp element.

invp (OUT)
Array of pointers to hold indicator variable names.

inpl (OUT)
Array of pointers to hold the length of the each invp element.

dupl (OUT)
An array whose element value is 0 or 1 depending on whether the bind position is
duplicate of another.

hndl (OUT)
An array which returns the bind handle if binds have been done for the bind
position. No handle is returned for duplicates.

Comments
This call returns information about bind variables after a statement has been
prepared. This includes bind names, indicator names, and whether or not binds are
duplicate binds. This call also returns an associated bind handle if there is one. The
call sets the found parameter to the total number of bind variables and not just the
number of distinct bind variables.

This function does not include SELECT INTO list variables, because they are not
considered to be binds.

The statement must have been prepared with a call to OCIStmtPrepare() prior to this
call.

This call is processed locally.

Related Functions
OCIStmtPrepare()
13-140 Oracle Call Interface Programmer’s Guide

OCIStmtGetPieceInfo()
OCIStmtGetPieceInfo()

Purpose
Returns piece information for a piecewise operation.

Syntax
sword OCIStmtGetPieceInfo(CONST OCIStmt *stmtp,
 OCIError *errhp,
 dvoid **hndlpp,
 ub4 *typep,
 ub1 *in_outp,
 ub4 *iterp,
 ub4 *idxp,
 ub1 *piecep);

Parameters

stmtp (IN)
The statement when executed returned OCI_NEED_DATA.

errhp (OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

hndlpp (OUT)
Returns a pointer to the bind or define handle of the bind or define whose runtime
data is required or is being provided.

typep (OUT)
The type of the handle pointed to by hndlpp: OCI_HTYPE_BIND (for a bind
handle) or OCI_HTYPE_DEFINE (for a define handle).

in_outp (OUT)
Returns OCI_PARAM_IN if the data is required for an IN bind value. Returns
OCI_PARAM_OUT if the data is available as an OUT bind variable or a define
position value.

iterp (OUT)
Returns the row number of a multiple row operation.
 OCI Relational Functions 13-141

OCIStmtGetPieceInfo()
idxp (OUT)
The index of an array element of a PL/SQL array bind operation.

piecep (OUT)
Returns one of the following defined values OCI_ONE_PIECE, OCI_FIRST_PIECE,
OCI_NEXT_PIECE and OCI_LAST_PIECE.

Comments
When an execute/fetch call returns OCI_NEED_DATA to get/return a dynamic
bind/define value or piece, OCIStmtGetPieceInfo() returns the relevant information:
bind/define handle, iteration, index number and which piece.

See the section “Run Time Data Allocation and Piecewise Operations” on page 7-16
for more information about using OCIStmtGetPieceInfo().

Related Functions
OCIAQEnq(), OCIAQEnq(), OCIStmtExecute(), OCIStmtFetch(), OCIStmtSetPieceInfo()
13-142 Oracle Call Interface Programmer’s Guide

OCIStmtPrepare()
OCIStmtPrepare()

Purpose
This call prepares a SQL or PL/SQL statement for execution.

Syntax
sword OCIStmtPrepare (OCIStmt *stmtp,
 OCIError *errhp,
 CONST text *stmt,
 ub4 stmt_len,
 ub4 language,
 ub4 mode);

Parameters

stmtp (IN)
A statement handle.

errhp (IN)
An error handle to retrieve diagnostic information.

stmt (IN)
SQL or PL/SQL statement to be executed. Must be a null-terminated string. The
pointer to the text of the statement must be available as long as the statement is
executed, or data is fetched from it.

stmt_len (IN)
Length of the statement. Must not be zero.

language (IN)
Specifies V7, V8, or native syntax. Possible values are:

■ OCI_V7_SYNTAX - V7 ORACLE parsing syntax

■ OCI_V8_SYNTAX - V8 ORACLE parsing syntax

■ OCI_NTV_SYNTAX - syntax depends upon the version of the server.

mode (IN)
The only defined mode is OCI_DEFAULT for default mode.
 OCI Relational Functions 13-143

OCIStmtPrepare()
Comments
An OCI application uses this call to prepare a SQL or PL/SQL statement for
execution. The OCIStmtPrepare() call defines an application request.

This is a purely local call. Data values for this statement initialized in subsequent
bind calls will be stored in a bind handle which will hang off this statement handle.

This call does not create an association between this statement handle and any
particular server.

See the section “Preparing Statements” on page 4-4 for more information about
using this call.

Related Functions
OCIAQEnq(), OCIStmtExecute()
13-144 Oracle Call Interface Programmer’s Guide

OCIStmtSetPieceInfo()
OCIStmtSetPieceInfo()

Purpose
Sets piece information for a piecewise operation.

Syntax
sword OCIStmtSetPieceInfo (dvoid *hndlp,
 ub4 type,
 OCIError *errhp,
 CONST dvoid *bufp,
 ub4 *alenp,
 ub1 piece,
 CONST dvoid *indp,
 ub2 *rcodep);

Parameters

hndlp (IN/OUT)
The bind/define handle.

type (IN)
Type of the handle.

errhp (OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

bufp (IN/OUT)
A pointer to a storage containing the data value or the piece when it is an IN bind
variable, otherwise bufp is a pointer to storage for getting a piece or a value for
OUT binds and define variables. For named data types or REFs, a pointer to the
object or REF is returned.

alenp (IN/OUT)
The length of the piece or the value.
 OCI Relational Functions 13-145

OCIStmtSetPieceInfo()
piece (IN)
The piece parameter. Valid values:

■ OCI_ONE_PIECE

■ OCI_FIRST_PIECE

■ OCI_NEXT_PIECE

■ OCI_LAST_PIECE

This parameter is used for IN bind variables only.

indp (IN/OUT)
Indicator. A pointer to a sb2 value or pointer to an indicator structure for named
data types (SQLT_NTY) and REFs (SQLT_REF), i.e., *indp is either an sb2 or a
dvoid * depending upon the data type.

rcodep (IN/OUT)
Return code.

Comments
When an execute call returns OCI_NEED_DATA to get a dynamic IN/OUT bind
value or piece, OCIStmtSetPieceInfo() sets the piece information: the buffer, the
length, which piece is currently being processed, the indicator, and the return code
for this column.

For more information about using OCIStmtSetPieceInfo() see the section “Run Time
Data Allocation and Piecewise Operations” on page 7-16.

Related Functions
OCIAQEnq(), OCIAQEnq(), OCIStmtExecute(), OCIStmtFetch(), OCIStmtGetPieceInfo()
13-146 Oracle Call Interface Programmer’s Guide

OCISvcCtxToLda()
OCISvcCtxToLda()

Purpose
Toggles between a V8 service context handle and a V7 Lda_Def.

Syntax
sword OCISvcCtxToLda (OCISvcCtx *srvhp,
 OCIError *errhp,
 Lda_Def *ldap);

Parameters

svchp (IN/OUT)
The service context handle.

errhp (IN/OUT)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

ldap (IN/OUT)
A Logon Data Area for Oracle7-style OCI calls which is initialized by this call.

Comments
Toggles between an Oracle8 service context handle and an Oracle7 Lda_Def.

This function can only be called after a service context has been properly initialized.

Once the service context has been translated to an Lda_Def, it can be used in
release 7.x OCI calls (e.g., obindps(), ofen()).

Note: If there are multiple service contexts which share the same server handle,
only one can be in Oracle7 mode at any time.

The action of this call can be reversed by passing the resulting Lda_Def to the
OCILdaToSvcCtx() function.

The OCI_ATTR_IN_V8_MODE attribute of the server handle or service context
handle enables an application to determine whether the application is currently in
Oracle7 mode or Oracle8 mode. See Appendix B, “Handle and Descriptor
Attributes”, for more information.
 OCI Relational Functions 13-147

OCISvcCtxToLda()
Related Functions
OCILdaToSvcCtx()
13-148 Oracle Call Interface Programmer’s Guide

OCITransCommit()
OCITransCommit()

Purpose
Commits the transaction associated with a specified service context.

Syntax
sword OCITransCommit (OCISvcCtx *svchp,
 OCIError *errhp,
 ub4 flags);

Parameters

svchp (IN)
The service context handle.

errhp (IN)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

flags (IN)
See the “Comments” section below.

Comments
The transaction currently associated with the service context is committed. If it is a
global transaction that the server cannot commit, this call additionally retrieves the
state of the transaction from the database to be returned to the user in the error
handle.

If the application has defined multiple transactions, this function operates on the
transaction currently associated with the service context. If the application is
working with only the implicit local transaction created when database changes are
made, that implicit transaction is committed.

If the application is running in the object mode, then the modified or updated
objects in the object cache for this transaction are also flushed and committed.

The flags parameter is used for one-phase commit optimization in global
transactions. If the transaction is non-distributed, the flags parameter is ignored,
and OCI_DEFAULT can be passed as its value. OCI applications managing global
 OCI Relational Functions 13-149

OCITransCommit()
transactions should pass a value of OCI_TRANS_TWOPHASE to the flags
parameter for a two-phase commit. The default is one-phase commit.

Under normal circumstances, OCITransCommit() returns with a status indicating
that the transaction has either been committed or rolled back. With global
transactions, it is possible that the transaction is now in-doubt (i.e., neither
committed nor aborted). In this case, OCITransCommit() attempts to retrieve the
status of the transaction from the server. The status is returned.

Example
The following example demonstrates the use of a simple local transaction, as
described in the section “Simple Local Transactions” on page 7-4.

int main()
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 OCIStmt *stmthp;
 dvoid *tmp;
 text sqlstmt[128];

 OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
 (dvoid * (*)()) 0, (void (*)()) 0);

 OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
 0, (dvoid **) &tmp);

 OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
 52, (dvoid **) &tmp);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&stmthp, OCI_HTYPE_STMT, 0, 0);

 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)srvhp, 0,
13-150 Oracle Call Interface Programmer’s Guide

OCITransCommit()
 OCI_ATTR_SERVER, errhp);

 OCILogon(envhp, errhp, &svchp, "SCOTT", strlen("SCOTT"),
 "TIGER", strlen("TIGER"), 0, 0);

 /* update scott.emp empno=7902, increment salary */
 sprintf((char *)sqlstmt, "UPDATE EMP SET SAL = SAL + 1 WHERE EMPNO = 7902");
 OCIStmtPrepare(stmthp, errhp, sqlstmt, strlen(sqlstmt), OCI_NTV_SYNTAX, 0);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, 0, 0, 0);
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* update scott.emp empno=7902, increment salary again, but rollback */
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, 0, 0, 0);
 OCITransRollback(svchp, errhp, (ub4) 0);
}

Related Functions
OCITransRollback()
 OCI Relational Functions 13-151

OCITransDetach()
OCITransDetach()

Purpose
Detaches a transaction.

Syntax
sword OCITransDetach (OCISvcCtx *svchp,
 OCIError *errhp,
 ub4 flags);

Parameters

svchp (IN)
The service context handle.

errhp (IN)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

flags (IN)
You must pass a value of OCI_DEFAULT for this parameter.

Comments
Detaches a global transaction from the service context handle. The transaction
currently attached to the service context handle becomes inactive at the end of this
call. The transaction may be resumed later by calling OCITransStart(), specifying a
flags value of OCI_TRANS_RESUME.

When a transaction is detached, the value which was specified in the timeout
parameter of OCITransStart() when the transaction was started is used to determine
the amount of time the branch can remain inactive before being deleted by the
server’s PMON process.

Note: The transaction can be resumed by a different process than the one that
detached it, provided that the transaction has the same authorization.

If this function is called before a transaction is actually started, this function is a
no-op.
13-152 Oracle Call Interface Programmer’s Guide

OCITransDetach()
Related Functions
OCITransStart()
 OCI Relational Functions 13-153

OCITransForget()
OCITransForget()

Purpose
Causes the server to forget a heuristically completed global transaction.

Syntax
sword OCITransForget (OCISvcCtx *svchp,
 OCIError *errhp,
 ub4 flags);

Parameters

svchp (IN)
The service context handle in which the transaction resides.

errhp (IN)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

flags (IN)
You must pass OCI_DEFAULT for this parameter.

Comments
Forgets a heuristically completed global transaction. The server deletes the status of
the transaction from the system’s pending transaction table.

The XID of the transaction to be forgotten is set as an attribute of the transaction
handle (OCI_ATTR_XID).

Related Functions
OCITransCommit(), OCITransRollback()
13-154 Oracle Call Interface Programmer’s Guide

OCITransPrepare()
OCITransPrepare()

Purpose
Prepares a transaction for commit.

Syntax
sword OCITransPrepare (OCISvcCtx *svchp,
 OCIError *errhp,
 ub4 flags);

Parameters

svchp (IN)
The service context handle.

errhp (IN)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

flags (IN)
You must pass OCI_DEFAULT for this parameter.

Comments
Prepares the specified global transaction for commit.

This call is valid only for global transactions.

The call returns OCI_SUCCESS_WITH_INFO if the transaction has not made any
changes. The error handle will indicate that the transaction is read-only. The flag
parameter is not currently used.

Related Functions
OCITransCommit(), OCITransForget()
 OCI Relational Functions 13-155

OCITransRollback()
OCITransRollback()

Purpose
Rolls back the current transaction.

Syntax
sword OCITransRollback (dvoid *svchp,
 OCIError *errhp,
 ub4 flags);

Parameters

svchp (IN)
A service context handle. The transaction currently set in the service context handle
is rolled back.

errhp (IN)
An error handle which can be passed to OCIErrorGet() for diagnostic information in
the event of an error.

flags (IN)
You must pass a value of OCI_DEFAULT for this parameter.

Comments
The current transaction— defined as the set of statements executed since the last
OCITransCommit() or since OCISessionBegin()—is rolled back.

If the application is running under object mode then the modified or updated
objects in the object cache for this transaction are also rolled back.

An error is returned if an attempt is made to roll back a global transaction that is
not currently active.

Related Functions
OCITransCommit()
13-156 Oracle Call Interface Programmer’s Guide

OCITransStart()
OCITransStart()

Purpose
Sets the beginning of a transaction.

Syntax
sword OCITransStart (OCISvcCtx *svchp,
 OCIError *errhp,
 uword timeout,
 ub4 flags);

Parameters

svchp (IN/OUT)
The service context handle. The transaction context in the service context handle is
initialized at the end of the call if the flag specified a new transaction to be started.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Diagnostic information can be obtained by calling
OCIErrorGet().

timeout (IN)
The time, in seconds, to wait for a transaction to become available for resumption
when OCI_TRANS_RESUME is specified. When OCI_TRANS_NEW is specified,
the timeout parameter indicates the number of seconds the transaction can be
inactive before it is automatically aborted by the system. A transaction is inactive
between the time it is detached (with OCITransDetach()) and the time it is resumed
with OCITransStart().

flags (IN)
Specifies whether a new transaction is being started or an existing transaction is
being resumed. Also specifies serializiability or read-only status. More than a single
value can be specified. By default, a read/write transaction is started. The flag
values are:

■ OCI_TRANS_NEW - starts a new transaction branch. By default starts a tightly
coupled and migratable branch.

■ OCI_TRANS_TIGHT - explicitly specifies a tightly coupled branch
 OCI Relational Functions 13-157

OCITransStart()
■ OCI_TRANS_LOOSE - specifies a loosely coupled branch

■ OCI_TRANS_RESUME - resumes an existing transaction branch.

■ OCI_TRANS_READONLY - start a read-only transaction

■ OCI_TRANS_SERIALIZABLE - start a serializable transaction

Comments
This function sets the beginning of a global or serializable transaction. The
transaction context currently associated with the service context handle is
initialized at the end of the call if the flags parameter specifies that a new
transaction should be started.

The XID of the transaction is set as an attribute of the transaction handle
(OCI_ATTR_XID)

Examples
The following examples demonstrate the use of OCI transactional calls for
manipulating global transactions.

Example 1
This example shows a single session operating on different branches. This concept
is illustrated by Figure 7–2, “Session Operating on Multiple Branches” on page 7-6.

int main()
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 OCISession *usrhp;
 OCIStmt *stmthp1, *stmthp2;
 OCITrans *txnhp1, *txnhp2;
 dvoid *tmp;
 XID gxid;
 text sqlstmt[128];

 OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
 (dvoid * (*)()) 0, (void (*)()) 0);

 OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
 0, (dvoid **) &tmp);
13-158 Oracle Call Interface Programmer’s Guide

OCITransStart()
 OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
 52, (dvoid **) &tmp);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&stmthp1, OCI_HTYPE_STMT, 0, 0);
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&stmthp2, OCI_HTYPE_STMT, 0, 0);

 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)srvhp, 0,
 OCI_ATTR_SERVER, errhp);

 /* set the external name and internal name in server handle */
 OCIAttrSet((dvoid *)srvhp, OCI_HTYPE_SERVER, (dvoid *) "demo", 0,
 OCI_ATTR_EXTERNAL_NAME, errhp);
 OCIAttrSet((dvoid *)srvhp, OCI_HTYPE_SERVER, (dvoid *) "txn demo", 0,
 OCI_ATTR_INTERNAL_NAME, errhp);

 /* allocate a user context handle */
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE_SESSION,
 (size_t) 0, (dvoid **) 0);

 OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION, (dvoid *)"scott",
 (ub4)strlen("scott"), OCI_ATTR_USERNAME, errhp);
 OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION, (dvoid *)"tiger",
 (ub4)strlen("tiger"),OCI_ATTR_PASSWORD, errhp);

 OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS, 0);

 OCIAttrSet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
 (dvoid *)usrhp, (ub4)0, OCI_ATTR_SESSION, errhp);

 /* allocate transaction handle 1 and set it in the service handle */
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&txnhp1, OCI_HTYPE_TRANS, 0, 0);
 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)txnhp1, 0,
 OCI_ATTR_TRANS, errhp);

 /* start a transaction with global transaction id = [1000, 123, 1] */
 gxid.formatID = 1000; /* format id = 1000 */
 OCI Relational Functions 13-159

OCITransStart()
 gxid.gtrid_length = 3; /* gtrid = 123 */
 gxid.data[0] = 1; gxid.data[1] = 2; gxid.data[2] = 3;
 gxid.bqual_length = 1; /* bqual = 1 */
 gxid.data[3] = 1;

 OCIAttrSet((dvoid *)txnhp1, OCI_HTYPE_TRANS, (dvoid *)&gxid, sizeof(XID),
 OCI_ATTR_XID, errhp);

 /* start global transaction 1 with 60 second time to live when detached */
 OCITransStart(svchp, errhp, 60, OCI_TRANS_NEW);

 /* update scott.emp empno=7902, increment salary */
 sprintf((char *)sqlstmt, "UPDATE EMP SET SAL = SAL + 1 WHERE EMPNO = 7902");
 OCIStmtPrepare(stmthp1, errhp, sqlstmt, strlen(sqlstmt), OCI_NTV_SYNTAX, 0);
 OCIStmtExecute(svchp, stmthp1, errhp, 1, 0, 0, 0, 0);

 /* detach the transaction */
 OCITransDetach(svchp, errhp, 0);

 /* allocate transaction handle 2 and set it in the service handle */
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&txnhp2, OCI_HTYPE_TRANS, 0, 0);
 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)txnhp2, 0,
 OCI_ATTR_TRANS, errhp);

 /* start a transaction with global transaction id = [1000, 124, 1] */
 gxid.formatID = 1000; /* format id = 1000 */
 gxid.gtrid_length = 3; /* gtrid = 124 */
 gxid.data[0] = 1; gxid.data[1] = 2; gxid.data[2] = 4;
 gxid.bqual_length = 1; /* bqual = 1 */
 gxid.data[3] = 1;

 OCIAttrSet((dvoid *)txnhp2, OCI_HTYPE_TRANS, (dvoid *)&gxid, sizeof(XID),
 OCI_ATTR_XID, errhp);

 /* start global transaction 2 with 90 second time to live when detached */
 OCITransStart(svchp, errhp, 90, OCI_TRANS_NEW);

 /* update scott.emp empno=7934, increment salary */
 sprintf((char *)sqlstmt, "UPDATE EMP SET SAL = SAL + 1 WHERE EMPNO = 7934");
 OCIStmtPrepare(stmthp2, errhp, sqlstmt, strlen(sqlstmt), OCI_NTV_SYNTAX, 0);
 OCIStmtExecute(svchp, stmthp2, errhp, 1, 0, 0, 0, 0);

 /* detach the transaction */
 OCITransDetach(svchp, errhp, 0);
13-160 Oracle Call Interface Programmer’s Guide

OCITransStart()
 /* Resume transaction 1, increment salary and commit it */
 /* Set transaction handle 1 into the service handle */
 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)txnhp1, 0,
 OCI_ATTR_TRANS, errhp);

 /* attach to transaction 1, wait for 10 seconds if the transaction is busy */
 /* The wait is clearly not required in this example because no other */
 /* process/thread is using the transaction. It is only for illustration */
 OCITransStart(svchp, errhp, 10, OCI_TRANS_RESUME);
 OCIStmtExecute(svchp, stmthp1, errhp, 1, 0, 0, 0, 0);
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* attach to transaction 2 and commit it */
 /* set transaction handle2 into the service handle */
 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)txnhp2, 0,
 OCI_ATTR_TRANS, errhp);
 OCITransCommit(svchp, errhp, (ub4) 0);
}

Example 2
This example demonstrates a single session operating on multiple branches that
share the same transaction.

int main()
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 OCISession *usrhp;
 OCIStmt *stmthp;
 OCITrans *txnhp1, *txnhp2;
 dvoid *tmp;
 XID gxid;
 text sqlstmt[128];

 OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
 (dvoid * (*)()) 0, (void (*)()) 0);

 OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
 0, (dvoid **) &tmp);

 OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
 OCI Relational Functions 13-161

OCITransStart()
 52, (dvoid **) &tmp);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&stmthp, OCI_HTYPE_STMT, 0, 0);

 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)srvhp, 0,
 OCI_ATTR_SERVER, errhp);

 /* set the external name and internal name in server handle */
 OCIAttrSet((dvoid *)srvhp, OCI_HTYPE_SERVER, (dvoid *) "demo", 0,
 OCI_ATTR_EXTERNAL_NAME, errhp);
 OCIAttrSet((dvoid *)srvhp, OCI_HTYPE_SERVER, (dvoid *) "txn demo2", 0,
 OCI_ATTR_INTERNAL_NAME, errhp);

 /* allocate a user context handle */
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE_SESSION,
 (size_t) 0, (dvoid **) 0);

 OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION, (dvoid *)"scott",
 (ub4)strlen("scott"), OCI_ATTR_USERNAME, errhp);
 OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION, (dvoid *)"tiger",
 (ub4)strlen("tiger"),OCI_ATTR_PASSWORD, errhp);

 OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS, 0);

 OCIAttrSet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
 (dvoid *)usrhp, (ub4)0, OCI_ATTR_SESSION, errhp);

 /* allocate transaction handle 1 and set it in the service handle */
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&txnhp1, OCI_HTYPE_TRANS, 0, 0);
 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)txnhp1, 0,
 OCI_ATTR_TRANS, errhp);

 /* start a transaction with global transaction id = [1000, 123, 1] */
 gxid.formatID = 1000; /* format id = 1000 */
 gxid.gtrid_length = 3; /* gtrid = 123 */
 gxid.data[0] = 1; gxid.data[1] = 2; gxid.data[2] = 3;
 gxid.bqual_length = 1; /* bqual = 1 */
 gxid.data[3] = 1;
13-162 Oracle Call Interface Programmer’s Guide

OCITransStart()
 OCIAttrSet((dvoid *)txnhp1, OCI_HTYPE_TRANS, (dvoid *)&gxid, sizeof(XID),
 OCI_ATTR_XID, errhp);

 /* start global transaction 1 with 60 second time to live when detached */
 OCITransStart(svchp, errhp, 60, OCI_TRANS_NEW);

 /* update scott.emp empno=7902, increment salary */
 sprintf((char *)sqlstmt, "UPDATE EMP SET SAL = SAL + 1 WHERE EMPNO = 7902");
 OCIStmtPrepare(stmthp, errhp, sqlstmt, strlen(sqlstmt), OCI_NTV_SYNTAX, 0);
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, 0, 0, 0);

 /* detach the transaction */
 OCITransDetach(svchp, errhp, 0);

 /* allocate transaction handle 2 and set it in the service handle */
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&txnhp2, OCI_HTYPE_TRANS, 0, 0);
 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)txnhp2, 0,
 OCI_ATTR_TRANS, errhp);

 /* start a transaction with global transaction id = [1000, 123, 2] */
 /* The global transaction will be tightly coupled with earlier transaction */
 /* There is not much practical value in doing this but the example */
 /* illustrates the use of tightly-coupled transaction branches */
 /* In a practical case the second transaction that tightly couples with */
 /* the first can be executed from a different process/thread */

 gxid.formatID = 1000; /* format id = 1000 */
 gxid.gtrid_length = 3; /* gtrid = 123 */
 gxid.data[0] = 1; gxid.data[1] = 2; gxid.data[2] = 3;
 gxid.bqual_length = 1; /* bqual = 2 */
 gxid.data[3] = 2;

 OCIAttrSet((dvoid *)txnhp2, OCI_HTYPE_TRANS, (dvoid *)&gxid, sizeof(XID),
 OCI_ATTR_XID, errhp);

 /* start global transaction 2 with 90 second time to live when detached */
 OCITransStart(svchp, errhp, 90, OCI_TRANS_NEW);

 /* update scott.emp empno=7902, increment salary */
 /* This is possible even if the earlier transaction has locked this row */
 /* because the two global transactions are tightly coupled */
 OCIStmtExecute(svchp, stmthp, errhp, 1, 0, 0, 0, 0);

 /* detach the transaction */
 OCI Relational Functions 13-163

OCITransStart()
 OCITransDetach(svchp, errhp, 0);

 /* Resume transaction 1 and prepare it. This will return */
 /* OCI_SUCCESS_WITH_INFO because all branches except the last branch */
 /* are treated as read-only transactions for tightly-coupled transactions */

 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)txnhp1, 0,
 OCI_ATTR_TRANS, errhp);
 if (OCITransPrepare(svchp, errhp, (ub4) 0) == OCI_SUCCESS_WITH_INFO)
 {
 text errbuf[512];
 ub4 buflen;
 sb4 errcode;

 OCIErrorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), (ub4) OCI_HTYPE_ERROR);
 printf("OCITransPrepare - %s\n", errbuf);
 }

 /* attach to transaction 2 and commit it */
 /* set transaction handle2 into the service handle */
 OCIAttrSet((dvoid *)svchp, OCI_HTYPE_SVCCTX, (dvoid *)txnhp2, 0,
 OCI_ATTR_TRANS, errhp);
 OCITransCommit(svchp, errhp, (ub4) 0);
}

Related Functions
OCITransDetach()
13-164 Oracle Call Interface Programmer’s Guide

 OCI Navigation and Type Fu
14

OCI Navigation and Type Functions

This chapter describes the OCI navigational functions which are used to navigate
through objects retrieved from an Oracle8 server. It also contains the descriptions of
the functions which are used to obtain type descriptor objects (TDOs). The chapter
contains the following sections:

■ Introduction

■ OCI Navigational Functions Quick Reference

■ The OCI Navigational Functions

Note: The functions described in this chapter are only available if you have
purchased the Oracle8 Enterprise Edition with the Objects Option.
nctions 14-1

Object Types and Lifetimes
Introduction

In an object navigational paradigm, data is represented as a graph of objects
connected by references. Objects in the graph are reached by following the
references. The OCI provides a navigational interface to objects in the Oracle8
server. Those calls are described in this chapter.

The OCI object environment is initialized when the application calls OCIInitialize()
in OCI_OBJECT mode.

See Also: For more information about using the calls in this chapter, refer to
Chapter 8, “OCI Object-Relational Programming”, and Chapter 11, “Object
Cache and Object Navigation”.

Object Types and Lifetimes
An object instance is an occurrence of a type defined in an Oracle database. This
section describes how an object instance can be represented in OCI. In OCI, an
object instance can be classified based on the type, the lifetime and referenceability
(see Figure 14–1 below):

1. A persistent object is an instance of an object type. A persistent object resides in
a row of a table in the server and can exist longer than the duration of a session
(connection). Persistent objects can be identified by object references which con-
tain the object identifiers. A persistent object is obtained by pinning its object
reference.

2. A transient object is an instance of an object type. A transient object cannot
exist longer than the duration of a session, and it is used to contain temporary
computing results. Transient objects can also be identified by references which
contain transient object identifiers.

3. A value is an instance of an user-defined type (object type or collection type) or
any built-in Oracle type. Unlike objects, values of object types are identified by
memory pointers, rather than by references.

A value can be standalone or embedded. A standalone value is usually obtained by
issuing a select statement. OCI also allows the client program to select a row of
object table into a value by issuing a SQL statement. Thus, a referenceable object (in
the database) can be represented as a value (which cannot be identified by a
reference). A standalone value can also be an out-of-line attribute in an object (e.g.,
VARCHAR, raw) or an out-of-line element in a collection (e.g., VARCHAR, raw,
object).
14-2 Oracle Call Interface Programmer’s Guide

Object Types and Lifetimes
An embedded value is physically included in a containing instance. An embedded
value can be an in-line attribute in an object (e.g. number, nested object) or an in-
line element in a collection.

All values are considered to be transient by OCI, e.g. OCI does not support
automatic flushing a value to the database, and the client has to explicitly execute a
SQL statement to store a value into the database. For embedded values, they are
flushed when their containing instance are flushed.

The following figure shows how instances can be classified according to their type
and lifetime:

Figure 14–1 Classification of Instances by Type and Lifetime

The distinction between various instances is further illustrated by the following
table:

Persistent Object Transient Object Value

Type object type object type object type,
built-in,
collection

Maximum Lifetime until object is deleted session session

Referenceable yes yes no

Embeddable no no yes

Lifetime

Type

Instance

OBJECT VALUE

PERSISTENT TRANSIENT
 OCI Navigation and Type Functions 14-3

Navigational Function Return Values
Terminology
In the remainder of this chapter, the following terms will be used:

1) The term object can be generally used to refer to a persistent object, a transient
object, a standalone value of object type, or an embedded value of object type.

2) The term referenceable object refers to a persistent object or a transient object.

3) The term standalone object refers to a persistent object, a transient object or a
standalone value of object type.

4) The term embedded object refers to a embedded value of object type.

For a further discussion of the terms used to refer to different types of objects,
please see “Persistent Objects, Transient Objects, and Values” on page 8-5.

An object is dirty if it has been created (newed), or marked updated or deleted.

Navigational Function Return Values
The OCI navigational functions typically return one of the following values:

Function-specific return information follows the description of each function in this
chapter. Information about specific error codes returned by each function is
presented in the following section.

See Also: For more information about return codes and error handling, see the
section “Error Handling” on page 2-25.

Return Value Meaning

OCI_SUCCESS The operation succeeded

OCI_ERROR The operation failed. The specific error can be
retrieved by calling OCIErrorGet() on the error
handle passed to the function.

OCI_INVALID_HANDLE The environment or error handle passed to the
function is NULL.
14-4 Oracle Call Interface Programmer’s Guide

Navigational Function Error Codes
Navigational Function Error Codes
Table 14–1 lists the external Oracle error codes which can be returned by each of the
OCI navigational functions. The list following the table identifies what each error
represents.

Table 14–1 OCI Navigational Functions Error Codes

Function Possible ORA Errors

OCIObjectNew() 24350, 21560, 21705, 21710

OCIObjectPin() 24350, 21560, 21700, 21702

OCIObjectUnpin() 24350, 21560, 21710

OCIObjectPinCountReset() 24350, 21560, 21710

OCIObjectLock() 24350, 21560, 21701, 21708, 21710

OCIObjectMarkUpdate() 24350, 21560, 21700, 21701, 21710

OCIObjectUnmark() 24350, 21560, 21710

OCIObjectUnmarkByRef() 24350, 21560

OCIObjectFree() 24350, 21560, 21603, 21710

OCIObjectMarkDelete() 24350, 21560, 21700, 21701, 21702, 21710

OCIObjectMarkDeleteByRef() 24350, 21560

OCIObjectFlush() 24350, 21560, 21701, 21703, 21708, 21710

OCIObjectRefresh() 24350, 21560, 21709, 21710

OCIObjectCopy() 24350, 21560, 21705, 21710

OCIObjectGetTypeRef() 24350, 21560, 21710

OCIOjectGetObjectRef() 24350, 21560, 21710

OCIObjectGetInd() 24350, 21560, 21710

OCIObjectExists() 24350, 21560, 21710

OCIObjectIsLocked() 24350, 21560, 21710

OCIObjectIsDirty() 24350, 21560, 21710

OCIObjectPinTable() 24350, 21560, 21705

OCIObjectArrayPin() 24350, 21560

OCICacheFlush() 24350, 21560, 21705
 OCI Navigation and Type Functions 14-5

Navigational Function Error Codes
The ORA errors in Table 14–1 have the following meanings.

■ ORA-21560 - name argument should not be NULL

■ ORA-21600 - path expression too long

■ ORA-21601 - attribute is not an instance of user-defined type

■ ORA-21603 - cannot free a dirtied persistent object

■ ORA-21700 - object does not exist or has been deleted

■ ORA-21701 - invalid object

■ ORA-21702 - object is not instantiated in the cache

■ ORA-21703 - cannot flush an object that is not modified

■ ORA-21704 - terminate cache or connection without flushing

■ ORA-21705 - service context is invalid

■ ORA-21708 - operations cannot be performed on a transient object

■ ORA-21709 - operations can only be performed on a current object

■ ORA-21710 - invalid pointer or value passed to the function

■ ORA-22279 - cannot perform operation with LOB buffering enabled

■ ORA-22305 - name argument is invalid

■ ORA-24350 - this OCI call is not allowed from external subroutines

OCICacheRefresh() 24350, 21560, 21705

OCICacheUnpin() 24350, 21560, 21705

OCICacheFree() 24350, 21560, 21705

OCICacheUnmark() 24350, 21560, 21705

OCIObjectSetAttr() 21560, 21600, 22305, 22279, 21601

OCIObjectGetAttr() 21560, 21600, 22305

Table 14–1 OCI Navigational Functions Error Codes (Cont.)

Function Possible ORA Errors
14-6 Oracle Call Interface Programmer’s Guide

Server Roundtrips for Cache and Object Functions
Server Roundtrips for Cache and Object Functions
For a table showing the number of server roundtrips required for individual
OCI cache and object functions, refer to Appendix E, “OCI Function Server
Roundtrips”.
 OCI Navigation and Type Functions 14-7

OCI Navigational Functions Quick Reference
OCI Navigational Functions Quick Reference

This section is intended to help you figure out which OCI navigational call you
need to use in a given situation. Table 14–2 includes all of the navigational
functions, grouped by categories of functionality. The list includes the name of each
call, a brief description of its purpose, and the page number on which the full
description can be found.

Table 14–2 OCI Navigational Functions Quick Reference

Function Purpose Page

FLUSH OR REFRESH OBJECT/CACHE

OCICacheFlush() Flush modified persistent objects in cache to server 14 - 11

OCIObjectFlush() Flush a modified persistent object to the server 14 - 23

OCICacheRefresh() Refresh pinned persistent objects 14 - 14

OCIObjectRefresh() Refresh a persistent object 14 - 53

MARK OR UNMARK OBJECT/CACHE

OCIObjectMarkDeleteByRef() Mark an object deleted given a ref 14 - 40

OCIObjectMarkUpdate() Mark an object as updated/dirty 14 - 41

OCIObjectMarkDelete() Mark an object deleted / delete a value instance 14 - 38

OCICacheUnmark() Unmarks objects in the cache 14 - 16

OCIObjectUnmark() Unmarks an object 14 - 57

OCIObjectUnmarkByRef() Unmarks an object, given a ref to it 14 - 58

GET OBJECT STATUS

OCIObjectExists() Get the existent status of an instance 14 - 22

OCIObjectIsDirty() Get the dirtied status of an instance 14 - 35

OCIObjectIsLocked() Get the locked status of an instance 14 - 36

OCIObjectGetProperty() Get the status of a particular object property 14 - 30
14-8 Oracle Call Interface Programmer’s Guide

OCI Navigational Functions Quick Reference
PIN/UNPIN/FREE

OCIObjectPin() Pin an object 14 - 46

OCIObjectUnpin() Unpin an object 14 - 59

OCIObjectPinCountReset() Unpin an object to zero pin count 14 - 49

OCICacheUnpin() Unpin persistent objects in cache or connection 14 - 17

OCIObjectArrayPin() Pin an array of references 14 - 18

OCIObjectPinTable() Pin a table object with a given duration 14 - 51

OCICacheFree() Free objects in the cache 14 - 13

OCIObjectFree() Free a previously allocated object 14 - 24

OTHER FUNCTIONS

OCIObjectCopy() Copy one instance to another 14 - 20

OCIObjectGetInd() Get null structure of an instance 14 - 28

OCIObjectGetObjectRef() Return reference to a given object 14 - 29

OCIObjectGetTypeRef() Get a reference to a TDO of an instance 14 - 30

OCIObjectLock() Lock a persistent object 14 - 37

OCIObjectNew() Create a new instance 14 - 43

TYPE INFORMATION ACCESSOR FUNCTIONS

OCITypeArrayByName() Get an array of TDOs given an array of object names 14 - 61

OCITypeArrayByRef() Get an array of TDOs given an array of object references 14 - 64

OCITypeByName() Get a TDO given an object name 14 - 66

OCITypeByRef() Get a TDO given an object reference 14 - 69

Table 14–2 OCI Navigational Functions Quick Reference

Function Purpose Page
 OCI Navigation and Type Functions 14-9

The OCI Navigational Functions
The OCI Navigational Functions

This chapter describes the functions which belong to the object navigational
component of the OCI. The entries for each function contain the following
information:

Purpose
A brief description of what the function does.

Syntax
A code snippet showing the syntax for calling the function, including the ordering
and types of the parameters.

Comments
Detailed information about the function (if available). This may include restrictions
on the use of the function, or other information that might be useful when using
the function in an application.

Parameters
A description of each of the function’s parameters. This includes the parameter’s
mode. The mode of a parameter has three possible values, as described below:

Returns
A description of what value is returned by the function if the function returns
something other than the standard return codes listed above.

Related Functions
A list of related calls which may provide additional useful information.

Mode Description

IN A parameter that passes data to Oracle

OUT A parameter that receives data from Oracle on this or a subsequent call

IN/OUT A parameter that passes data on the call and receives data on the return
from this or a subsequent call.
14-10 Oracle Call Interface Programmer’s Guide

OCICacheFlush()
OCICacheFlush()

Purpose
Flushes modified persistent objects to the server

Syntax
sword OCICacheFlush (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 dvoid *context,
 OCIRef *(*get)
 (dvoid *context,
 ub1 *last),
 OCIRef **ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service context.

context (IN) [optional]
Specifies an user context that is an argument to the client callback function get. This
parameter is set to NULL if there is no user context.

get (IN) [optional]
A client-defined function which acts an iterator to retrieve a batch of dirty objects
that need to be flushed. If the function is not NULL, this function will be called to
get a reference of a dirty object. This is repeated until a null reference is returned by
the client function or the parameter last is set to TRUE. The parameter context is
passed to get() for each invocation of the client function. This parameter should be
NULL if user callback is not given. If the object that is returned by the client
function is not a dirtied persistent object, the object is ignored.
 OCI Navigation and Type Functions 14-11

OCICacheFlush()
All the objects that are returned from the client function must be newed or pinned
using the same service context, otherwise an error is signalled. Note that the cache
flushes the returned objects in the order in which they were marked dirty.

If this parameter is passed as NULL (e.g., no client-defined function is provided),
then all dirty persistent objects for the given service context are flushed in the order
in which they were dirtied.

ref (OUT) [optional]
If there is an error in flushing the objects (*ref) will point to the object that is causing
the error. If ref is NULL, then the object will not be returned. If *ref is NULL, then a
reference will be allocated and set to point to the object. If *ref is not NULL, then the
reference of the object is copied into the given space. If the error is not caused by
any of the dirtied object, the given REF is initialized to be a NULL reference
(OCIRefIsNull(*ref) is TRUE).

The REF is allocated for session duration (OCI_DURATION_SESSION). The
application can free the allocated REF using the OCIObjectFree() function.

Comments
This function flushes the modified persistent objects from the object cache to the
server. The objects are flushed in the order that they are newed or marked updated
or deleted.

This function incurs at most one network round-trip.

See OCIObjectFlush() for more information about flushing.

Related Functions
OCIObjectFlush()
14-12 Oracle Call Interface Programmer’s Guide

OCICacheFree()
OCICacheFree()

Purpose
Frees all objects and values in the cache for the specified connection

Syntax
sword OCICacheFree (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
An OCI service context.

Comments
If a connection is specified, this function frees the persistent objects, transient
objects and values allocated for that connection. Otherwise, all persistent objects,
transient objects and values in the object cache are freed. Objects are freed
regardless of their pin count.

See OCIObjectFree() for more information about freeing an instance.

Related Functions
OCIObjectFree()
 OCI Navigation and Type Functions 14-13

OCICacheRefresh()
OCICacheRefresh()

Purpose
Refreshes all pinned persistent objects in the cache.

Syntax
sword OCICacheRefresh (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 OCIRefreshOpt option,
 dvoid *context,
 OCIRef *(*get)(dvoid *context),
 OCIRef **ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service context.

option (IN) [optional]
If OCI_REFRESH_LOADED is specified, all objects that are loaded within the
transaction are refreshed. If the option is OCI_REFRESH_LOADED and the
parameter get is not NULL, this function will ignore the parameter.

context (IN) [optional]
Specifies an user context that is an argument to the client callback function get. This
parameter is set to NULL if there is no user context.

get (IN) [optional]
A client-defined function which acts an iterator to retrieve a batch of objects that
need to be refreshed. If the function is not NULL, this function will be called to get
a reference of an object. If the reference is not NULL, then the object will be
14-14 Oracle Call Interface Programmer’s Guide

OCICacheRefresh()
refreshed. These steps are repeated until a null reference is returned by this
function. The parameter context is passed to get() for each invocation of the client
function. This parameter should be NULL if user callback is not given.

ref (OUT) [optional]
If there is an error in refreshing the objects, (*ref) will point to the object that is
causing the error. If ref is NULL, then the object will not be returned. If *ref is
NULL, then a reference will be allocated and set to point to the object. If *ref is not
NULL, then the reference of the object is copied into the given space. If the error is
not caused by any of the object, the given ref is initialized to be a NULL reference
(OCIRefIsNull(*ref) is TRUE).

Comments
This function refreshes all pinned persistent objects.

All unpinned persistent objects are freed from the object cache.

For more information about refreshing, see the description of OCIObjectRefresh() on
page 14-53, and the section “Refreshing an Object Copy” on page 11-10.

Warning: When objects are refreshed, the secondary-level memory of those
objects could potentially move to a different place in memory. As a result, any
pointers to attributes which were saved prior to this call may be invalidated.
Examples of attributes using secondary-level memory include OCIString *,
OCIColl *, and OCIRaw *.

Related Functions
OCIObjectRefresh()
 OCI Navigation and Type Functions 14-15

OCICacheUnmark()
OCICacheUnmark()

Purpose
Unmarks all dirty objects in the object cache.

Syntax
sword OCICacheUnmark (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service context.

Comments
If a connection is specified, this function unmarks all dirty objects in that
connection. Otherwise, all dirty objects in the cache are unmarked. See
OCIObjectUnmark() for more information about unmarking an object.

Related Functions
OCIObjectUnmark()
14-16 Oracle Call Interface Programmer’s Guide

OCICacheUnpin()
OCICacheUnpin()

Purpose
Unpins persistent objects

Syntax
sword OCICacheUnpin (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
An OCI service context handle. The objects on the specified connection are
unpinned.

Comments
This function completely unpins all of the persistent objects for the given
connection.

The pin count for the objects is reset to zero.

For more information about pinning and unpinning, see “Pinning an Object” on
page 8-12, and “Pin Count and Unpinning” on page 8-28.

Related Functions
OCIObjectUnpin()
 OCI Navigation and Type Functions 14-17

OCIObjectArrayPin()
OCIObjectArrayPin()

Purpose
Pins an array of references

Syntax
sword OCIObjectArrayPin (OCIEnv *env,
 OCIError *err,
 OCIRef **ref_array,
 ub4 array_size,
 OCIComplexObject **cor_array,
 ub4 cor_array_size,
 OCIPinOpt pin_option,
 OCIDuration pin_duration,
 OCILockOpt lock,
 dvoid **obj_array,
 ub4 *pos);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

ref_array (IN)
Array of references to be pinned

array_size (IN)
Number of elements in the array of references

cor_array
An array of COR handles corresponding to the objects being pinned.

cor_array_size
The number of elements in cor_array.
14-18 Oracle Call Interface Programmer’s Guide

OCIObjectArrayPin()
pin_option (IN)
Pin option. See OCIObjectPin().

pin_duration (IN)
Pin duration. See OCIObjectPin().

lock (IN)
Lock option. See OCIObjectPin().

obj_array (OUT)
If this argument is not NULL, the pinned objects will be returned in the array. The
user must allocate this array with element type being dvoid *. The size of this array
is identical to array_size.

pos (OUT)
If there is an error, this argument indicates the element that is causing the error.
Note that this argument is set to 1 for the first element in the ref_array.

Comments
This function pins an array of references. All the pinned objects are retrieved from
the database in one network roundtrip. If the user specifies an output array
(obj_array), then the address of the pinned objects will be assigned to the elements
in the array.

Related Functions
OCIObjectPin()
 OCI Navigation and Type Functions 14-19

OCIObjectCopy()
OCIObjectCopy()

Purpose
Copies a source instance to a destination

Syntax
sword OCIObjectCopy (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 dvoid *source,
 dvoid *null_source,
 dvoid *target,
 dvoid *null_target,
 OCIType *tdo,
 OCIDuration duration,
 ub1 option);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
An OCI service context handle, specifying the service context on which the copy
operation is taking place

source (IN)
A pointer to the source instance; if it is an object, it must be pinned. See
OCIObjectPin().

null_source (IN)
Pointer to the NULL structure of the source object.

target (IN)
A pointer to the target instance; if it is an object is must be pinned.
14-20 Oracle Call Interface Programmer’s Guide

OCIObjectCopy()
null_target (IN)
A pointer to the NULL structure of the target object.

tdo (IN)
The TDO for both the source and the target. Can be retrieved with
OCIDescribeAny().

duration (IN)
Allocation duration of the target memory.

option (IN)
This parameter is currently unused. Pass as zero or OCI_DEFAULT.

Comments
This function copies the contents of the source instance to the target instance. This
function performs a deep-copy such that all of the following is copied:

■ all the top level attributes (see the exceptions below)

■ all secondary memory (of the source) reachable from the top level attributes

■ the NULL structure of the instance

Memory is allocated with the duration specified in the duration parameter.

Certain data items are not copied:

■ If the option OCI_OBJECTCOPY_NOREF is specified in the option parameter,
then all references in the source are not copied. Instead, the references in the tar-
get are set to NULL.

■ If the attribute is an internal LOB, then only the LOB locator from the source
object is copied. A copy of the LOB data is not made until OCIObjectFlush() is
called. Before the target object is flushed, both the source and the target locators
refer to the same LOB value.

The target or the containing instance of the target must be already have been
created. This may be done with OCIObjectNew().

The source and target instances must be of the same type. If the source and target are
located in a different databases, then the same type must exist in both databases.

Related Functions
OCIObjectPin()
 OCI Navigation and Type Functions 14-21

OCIObjectExists()
OCIObjectExists()

Purpose
Returns the existence meta-attribute of a standalone instance

Syntax
sword OCIObjectExists (OCIEnv *env,
 OCIError *err,
 dvoid *ins,
 boolean *exist);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

ins (IN)
Pointer to an instance. If it is an object, it must be pinned.

exist (OUT)
Return value for the existence status.

Comments
This function returns the existence of an instance. If the instance is a value, this
function always returns TRUE.

The instance must be a standalone persistent or transient object.

For more information about object meta-attributes, see “Object Meta-Attributes” on
page 8-17.

Related Functions
OCIObjectPin()
14-22 Oracle Call Interface Programmer’s Guide

OCIObjectFlush()
OCIObjectFlush()

Purpose
Flushes a modified persistent object to the server

Syntax
sword OCIObjectFlush (OCIEnv *env,
 OCIError *err,
 dvoid *object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to the persistent object. The object must be pinned before this call.

Comments
This function flushes a modified persistent object to the server. An exclusive lock is
obtained implicitly for the object when it is flushed. When the object is written to
the server, triggers may be fired. This function returns an error for transient objects
and values, and for unmodified persistent objects.

Objects can be modified by triggers at the server. To keep objects in the cache
consistent with the database, an application can free or refresh objects in the cache.

If the object to flush contains an internal LOB attribute, and the LOB attribute was
modified due to an OCIObjectCopy() or OCILobAssign(), or by assigning another
LOB locator to it, the flush makes a copy of the LOB value that existed in the source
LOB at the time of the assignment or copy of the internal LOB locator or object.

Related Functions
OCIObjectPin(), OCICacheFlush()
 OCI Navigation and Type Functions 14-23

OCIObjectFree()
OCIObjectFree()

Purpose
Frees and unpins an object instance

Syntax
sword OCIObjectFree (OCIEnv *env,
 OCIError *err,
 dvoid *instance,
 ub2 flags);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

instance (IN)
Pointer to a standalone instance. If it is an object, it must be pinned.

flags (IN)
If OCI_OBJECTFREE_FORCE is passed, free the object even if it is pinned or dirty.
If OCI_OBJECTFREE_NONULL is passed, the null structure is not freed.

Comments
This function deallocates all the memory allocated for an object instance, including
the null structure. The following rules apply for different instance types:

For Persistent Objects
This function returns an error if the client is attempting to free a dirty persistent
object that has not been flushed. The client should either flush the persistent object,
unmark it, or set the parameter flags to OCI_OBJECTFREE_FORCE.

This function calls OCIObjectUnpin() once to check if the object can be completely
unpin. If it succeeds, the rest of the function proceeds to free the object. If it fails,
14-24 Oracle Call Interface Programmer’s Guide

OCIObjectFree()
then an error is returned unless the parameter flag is set to
OCI_OBJECTFREE_FORCE.

Freeing a persistent object in memory does not change the persistent state of that
object at the server. For example, the object remains locked after the object is freed.

For Transient Objects
This function will call OCIObjectUnpin() once to check if the object can be
completely unpin. If it succeeds, the rest of the function will proceed to free the
object. If it fails, then an error is returned unless the parameter flag is set to
OCI_OBJECTFREE_FORCE.

For Values
The memory of the object is freed immediately.

Related Functions
OCICacheFree()
 OCI Navigation and Type Functions 14-25

OCIObjectGetAttr()
OCIObjectGetAttr()

Purpose
Retrieves an object attribute

Syntax
sword OCIObjectGetAttr (OCIEnv *env,
 OCIError *err,
 dvoid *instance,
 dvoid *null_struct,
 struct OCIType *tdo,
 CONST text **names,
 CONST ub4 *lengths,
 CONST ub4 name_count,
 CONST ub4 *indexes,
 CONST ub4 index_count,
 OCIInd *attr_null_status,
 dvoid **attr_null_struct,
 dvoid **attr_value,
 struct OCIType **attr_tdo);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

instance (IN)
Pointer to an object.

null_struct (IN)
The null structure of the object or array.

tdo (IN)
Pointer to the TDO.
14-26 Oracle Call Interface Programmer’s Guide

OCIObjectGetAttr()
names (IN)
Array of attribute names. This is used to specify the names of the attributes in the
path expression.

lengths (IN)
Array of lengths of attribute names.

name_count (IN)
Number of element in the array names.

indexes (IN) [optional]
Not currently supported. Pass as (ub4 *)0.

index_count (IN) [optional]
Not currently supported. Pass as (ub4)0.

attr_null_status (OUT)
The null status of the attribute if the type of attribute is primitive.

attr_null_struct (OUT)
The null structure of an object or collection attribute.

attr_value (OUT)
Pointer to the attribute value.

attr_tdo (OUT)
Pointer to the TDO of the attribute.

Comments
This function gets a value from an object or from an array. If the parameter instance
points to an object, then the path expression specifies the location of the attribute in
the object. It is assumed that the object is pinned and that the value returned is
valid until the object is unpinned.

Related Functions
OCIObjectSetAttr()
 OCI Navigation and Type Functions 14-27

OCIObjectGetInd()
OCIObjectGetInd()

Purpose
Gets the NULL structure of a standalone instance

Syntax
sword OCIObjectGetInd (OCIEnv *env,
 OCIError *err,
 dvoid *instance,
 dvoid **null_struct);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

instance (IN)
A pointer to the instance whose NULL structure is being retrieved. The instance
must be standalone. If instance is an object, it must already be pinned.

null_struct (OUT)
The NULL structure for the instance.

Comments
This function returns the NULL structure of an instance.

Related Functions
OCIObjectPin()
14-28 Oracle Call Interface Programmer’s Guide

OCIObjectGetObjectRef()
OCIObjectGetObjectRef()

Purpose
Returns a reference to a given persistent object

Syntax
sword OCIObjectGetObjectRef (OCIEnv *env,
 OCIError *err,
 dvoid *object,
 OCIRef *object_ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
Pointer to a persistent object. It must already be pinned.

object_ref (OUT)
A reference to the object specified in object. The reference must already be allocated.
This can be accomplished with OCIObjectNew().

Comments
This function returns a reference to the given persistent object, given a pointer to
the object.

Passing a value (rather than an object) to this function causes an error.

See Also: For more information about object meta-attributes, see “Object Meta-
Attributes” on page 8-17.

Related Functions
OCIObjectNew(), OCIObjectPin()
 OCI Navigation and Type Functions 14-29

OCIObjectGetProperty()
OCIObjectGetProperty()

Purpose
Retrieve a given property of an object.

Syntax
sword OCIObjectGetProperty (OCIEnv *envh,
 OCIError *errh,
 CONST dvoid *obj,
 OCIObjectPropId propertyId,
 dvoid *property,
 ub4 *size);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

obj (IN)
The object whose property is returned.

propertyId (IN)
The identifier which identifies the desired property (see “Comments” below).

property (OUT)
The buffer into which the desired property is copied.

size (IN/OUT)
On input, this parameter specifies the size of the property buffer passed by caller.

On output it contains the size in bytes of the property returned. This parameter is
required for string-type properties only (e.g OCI_OBJECTPROP_SCHEMA,
OCI_OBJECTPROP_TABLE). For non-string properties this parameter is ignored
since the size is fixed.
14-30 Oracle Call Interface Programmer’s Guide

OCIObjectGetProperty()
Comments
This function returns the specified property of the object. The desired property is
identified by propertyId. The property value is copied into property and for string
typed properties the string size is returned via size.

Objects are classified as persistent, transient and value depending upon the lifetime
and referenceability of the object. Some of the properties are applicable only to
persistent objects and some others only apply to persistent and transient objects.
An error is returned if the user tries to get a property which in not applicable to the
given object. To avoid such an error, the user should first check whether the object
is persistent or transient or value (OCI_OBJECTPROP_LIFETIME property) and
then appropriately query for other properties.

The different property ids and the corresponding type of property argument are
given below.

OCI_OBJECTPROP_LIFETIME
This identifies whether the given object is a persistent object or a transient object or
a value instance. The property argument must be a pointer to a variable of type
OCIObjectLifetime. Possible values include:

■ OCI_OBJECT_PERSISTENT

■ OCI_OBJECT_TRANSIENT

■ OCI_OBJECT_VALUE

OCI_OBJECTPROP_SCHEMA
This returns the schema name of the table in which the object exists. An error is
returned if the given object points to a transient instance or a value. If the input
buffer is not big enough to hold the schema name an error is returned, the error
message will communicate the required size. Upon success, the size of the returned
schema name in bytes is returned via size. The property argument must be an array
of type text and size should be set to size of array in bytes by the caller.

OCI_OBJECTPROP_TABLE
This returns the table name in which the object exists. An error is returned if the
given object points to a transient instance or a value. If the input buffer is not big
enough to hold the table name an error is returned, the error message will
communicate the required size. Upon success, the size of the returned table name
in bytes is returned via size. The property argument must be an array of type text
and size should be set to size of array in bytes by the caller.
 OCI Navigation and Type Functions 14-31

OCIObjectGetProperty()
OCI_OBJECTPROP_PIN_DURATION
This returns the pin duration of the object. An error is returned if the given object
points to a value instance. The property argument must be a pointer to a variable of
type OCIDuration. Valid values include

■ OCI_DURATION_SESSION

■ OCI_DURATION_TRANS

For more information about durations, see “Object Duration” on page 11-13.

OCI_OBJECTPROP_ALLOC_DURATION
This returns the allocation duration of the object. The property argument must be a
pointer to a variable of type OCIDuration. Valid values include:

■ OCI_DURATION_SESSION

■ OCI_DURATION_TRANS

For more information about durations, see “Object Duration” on page 11-13.

OCI_OBJECTPROP_LOCK
This returns the lock status of the object. The possible lock statuses are enumerated
by OCILockOpt. An error is returned if the given object points to a transient or
value instance. The property argument must be a pointer to a variable of type
OCILockOpt. Note, the lock status of an object can also be retrieved by calling
OCIObjectIsLocked(). Valid values include:

■ OCI_LOCK_NONE - for no lock

■ OCI_LOCK_X - for an exclusive lock

OCI_OBJECTPROP_MARKSTATUS
This returns the dirty status and indicates whether the object is a new object,
updated object or deleted object. An error is returned if the given object points to a
transient or value instance. The property argument must be of type
OCIObjectMarkStatus. Valid values include:

■ OCI_OBJECT_NEW

■ OCI_OBJECT_DELETED

■ OCI_OBJECT_UPDATED
14-32 Oracle Call Interface Programmer’s Guide

OCIObjectGetProperty()
The following macros are available to test the object mark status:

■ OCI_OBJECT_IS_UPDATED(flag)

■ OCI_OBJECT_IS_DELETED(flag)

■ OCI_OBJECT_IS_NEW(flag)

■ OCI_OBJECT_IS_DIRTY(flag)

OCI_OBJECTPROP_VIEW
This identifies whether the specified object is a view object or not. If the property
value returned is TRUE, it indicates the object is a view otherwise it is not. An error
is returned if the given object points to a transient or value instance. The property
argument must be of type boolean.

Related Functions
OCIObjectLock(), OCIObjectMarkDelete(), OCIObjectMarkUpdate(), OCIObjectNew(),
OCIObjectPin()
 OCI Navigation and Type Functions 14-33

OCIObjectGetTypeRef()
OCIObjectGetTypeRef()

Purpose
Returns a reference to the TDO of a standalone instance

Syntax
sword OCIObjectGetTypeRef (OCIEnv *env,
 OCIError *err,
 dvoid *instance,
 OCIRef *type_ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

instance (IN)
A pointer to the standalone instance. It must be standalone, and if it is an object, it
must already be pinned.

type_ref (OUT)
A reference to the type of the object. The reference must already be allocate. This
can be accomplished with OCIObjectNew().

Comments
This function returns a reference to the type descriptor object (TDO) of a
standalone instance.

Related Functions
OCIObjectNew(), OCIObjectPin()
14-34 Oracle Call Interface Programmer’s Guide

OCIObjectIsDirty()
OCIObjectIsDirty()

Purpose
Check to see if an object is marked as dirty

Syntax
sword OCIObjectIsDirty (OCIEnv *env,
 OCIError *err,
 dvoid *ins,
 boolean *dirty);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

ins (IN)
Pointer to an instance.

dirty (OUT)
Return value for the dirty status.

Comments
The instance passed to this function must be standalone. If the instance is an object,
the instance must be pinned.

This function returns the dirty status of an instance. If the instance is a value, this
function always returns FALSE for the dirty status.

Related Functions
OCIObjectMarkUpdate(), OCIObjectGetProperty()
 OCI Navigation and Type Functions 14-35

OCIObjectIsLocked()
OCIObjectIsLocked()

Purpose
Get lock status of an object.

Syntax
sword OCIObjectIsLocked (OCIEnv *env,
 OCIError *err,
 dvoid *ins,
 boolean *lock);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

ins (IN)
Pointer to an instance. The instance must be standalone, and if it is an object it must
be pinned.

lock (OUT)
Return value for the lock status.

Comments
This function returns the lock status of an instance. If the instance is a value, this
function always returns FALSE.

Related Functions
OCIObjectLock(), OCIObjectGetProperty()
14-36 Oracle Call Interface Programmer’s Guide

OCIObjectLock()
OCIObjectLock()

Purpose
Locks a persistent object at the server

Syntax
sword OCIObjectLock (OCIEnv *env,
 OCIError *err,
 dvoid *object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to the persistent object being locked. It must already be pinned.

Comments
This function locks a persistent object at the server. This function will return an
error for transient objects and values.

For more information about object locking, see “Locking Objects For Update” on
page 11-12.

This function returns an error if the object does not exist.

Related Functions
OCIObjectPin(), OCIObjectIsLocked(), OCIObjectGetProperty()
 OCI Navigation and Type Functions 14-37

OCIObjectMarkDelete()
OCIObjectMarkDelete()

Purpose
Marks a standalone instance as deleted, given a pointer to the instance

Syntax
sword OCIObjectMarkDelete (OCIEnv *env,
 OCIError *err,
 dvoid *instance);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

instance (IN)
Pointer to the instance. It must be standalone, and if it is an object it must be
pinned.

Comments
This function accepts a pointer to a standalone instance and marks the object as
deleted. The object is freed according to the following rules:

For Persistent Objects
The object is marked deleted. The memory of the object is not freed. The object is
deleted in the server when the object is flushed.

For Transient Objects
The object is marked deleted. The memory of the object is not freed.

For Values
This function frees a value immediately.
14-38 Oracle Call Interface Programmer’s Guide

OCIObjectMarkDelete()
Related Functions
OCIObjectMarkDeleteByRef(), OCIObjectGetProperty()
 OCI Navigation and Type Functions 14-39

OCIObjectMarkDeleteByRef()
OCIObjectMarkDeleteByRef()

Purpose
Marks an object as deleted, given a reference to the object

Syntax
sword OCIObjectMarkDeleteByRef (OCIEnv *env,
 OCIError *err,
 OCIRef *object_ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object_ref (IN)
Reference to the object to be deleted.

Comments
This function accepts a reference to an object, and marks the object designated by
object_ref as deleted. The object is marked and freed as follows:

For Persistent Objects
If the object is not loaded, then a temporary object is created and is marked deleted.
Otherwise, the object is marked deleted.

The object is deleted in the server when the object is flushed.

For Transient Objects
The object is marked deleted. The object is not freed until it is unpinned.

Related Functions
OCIObjectMarkDelete(), OCIObjectGetProperty()
14-40 Oracle Call Interface Programmer’s Guide

OCIObjectMarkUpdate()
OCIObjectMarkUpdate()

Purpose
Marks a persistent object as updated, or ‘dirty’

Syntax
sword OCIObjectMarkUpdate (OCIEnv *env,

 OCIError *err,
 dvoid *object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to the persistent object, which must already be pinned.

Comments
This function marks a persistent object as updated, or ‘dirty.’ The following special
rules apply to different types of objects. The dirty status of an object may be
checked by calling OCIObjectIsDirty().

For Persistent Objects
This function marks the specified persistent object as updated. The persistent
objects will be written to the server when the object cache is flushed. The object is
not locked or flushed by this function. It is an error to update a deleted object.

After an object is marked updated and flushed, this function must be called again
to mark the object as updated if it has been dirtied after it is being flushed.

For Transient Objects
This function marks the specified transient object as updated. The transient objects
will NOT be written to the server. It is an error to update a deleted object.
 OCI Navigation and Type Functions 14-41

OCIObjectMarkUpdate()
For Values
This function is an no-op for values.

For more information about the use of this function, see “Marking Objects and
Flushing Changes” on page 8-14.

Related Functions
OCIObjectPin(), OCIObjectGetProperty()
14-42 Oracle Call Interface Programmer’s Guide

OCIObjectNew()
OCIObjectNew()

Purpose
Creates a standalone instance

Syntax
sword OCIObjectNew (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 OCITypeCode typecode,
 OCIType *tdo,
 dvoid *table,
 OCIDuration duration,
 boolean value,
 dvoid **instance);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN) [optional]
OCI service handle. It must be given if the program wants to associate the duration
of an instance with an OCI service (e.g. free a string when the transaction is
committed). This parameter is ignored if the TDO is given.

typecode (IN)
The typecode of the type of the instance. See “Typecodes” on page 3-24 for more
information.

tdo (IN) [optional]
Pointer to the type descriptor object. The TDO describes the type of the instance
that is to be created. Refer to OCITypeByName() for obtaining a TDO. The TDO is
required for creating a named type (e.g. an object or a collection).
 OCI Navigation and Type Functions 14-43

OCIObjectNew()
table (IN) [optional]
Pointer to a table object which specifies a table in the server. This parameter can be
set to NULL if no table is given. See the description below to find out how the table
object and the TDO are used together to determine the kind of instances (persistent,
transient, value) to be created. Also see OCIObjectPinTable() for retrieving a table
object.

duration (IN)
This is an overloaded parameter. The use of this parameter is based on the kind of
the instance that is to be created.

■ Persistent object. This parameter specifies the pin duration.

■ Transient object. This parameter specifies the allocation duration and pin
duration.

■ Value. This parameter specifies the allocation duration.

value (IN)
Specifies whether the created object is a value. If TRUE, then a value is created.
Otherwise, a referenceable object is created. If the instance is not an object, then this
parameter is ignored.

instance (OUT)
Address of the newly created instance

Comments
This function creates a new instance of the type specified by the typecode or the
TDO. Based on the parameters typecode (or tdo), value and table, different kinds of
instances can be created:

For more information about typecodes, see “Typecodes” on page 3-24.

Value of table Parameter

TYPE Not NULL NULL

object type (value=TRUE) value value

object type (value=FALSE) persistent object transient object

built-in type value value

collection type value value
14-44 Oracle Call Interface Programmer’s Guide

OCIObjectNew()
This function allocates the top-level memory chunk of an instance. The attributes in
the top-level memory are initialized (e.g. an attribute of varchar2 is initialized to a
OCIString of 0 length).

If the instance is an object, the object is marked existed but is atomically null.

For Persistent Objects
The object is marked dirty and existed. The allocation duration for the object is
session. The object is pinned and the pin duration is specified by the given
parameter duration. Creating a persistent object does not cause any entries to be
made into a database table until the object is flushed to the server.

For Transient Objects
The object is pinned. The allocation duration and the pin duration are specified by
the given parameter duration.

For Values
The allocation duration is specified by the given parameter duration.

Objects with LOB Attributes
If the object contains an internal LOB attribute, the LOB is set to empty. The object
must be marked as dirty and flushed (in order to insert the object into the table)
and repinned before the user can start writing data into the LOB. When pinning the
object after creating it, you must use the OCI_PIN_LATEST pin option in order to
retrieve the newly updated LOB locator from the server.

If the object contains an external LOB attribute (FILE), the FILE locator is allocated
but not initialized. The user must call OCILobFileSetName() to initialize the FILE
attribute. Once the filename is set, the user can start reading from the FILE.

Note: Oracle8 supports only binary FILEs (BFILEs).

Related Functions
OCIObjectPinTable(), OCIObjectFree()
 OCI Navigation and Type Functions 14-45

OCIObjectPin()
OCIObjectPin()

Purpose
Pin a referenceable object

Syntax
sword OCIObjectPin (OCIEnv *env,
 OCIError *err,
 OCIRef *object_ref,
 OCIComplexObject *corhdl,
 OCIPinOpt pin_option,
 OCIDuration pin_duration,
 OCILockOpt lock_option,
 dvoid **object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object_ref (IN)
The reference to the object.

corhdl (IN)
Handle for complex object retrieval.

pin_option (IN)
See description under “Comments” below.

pin_duration (IN)
The duration of which the object is being accessed by a client. The object is
implicitly unpinned at the end of the pin duration. If OCI_DURATION_NULL is
passed, there is no pin promotion if the object is already loaded into the cache. If
the object is not yet loaded, then the pin duration is set to
OCI_DURATION_DEFAULT in the case of OCI_DURATION_NULL.
14-46 Oracle Call Interface Programmer’s Guide

OCIObjectPin()
lock_option (IN)
Lock option (e.g., exclusive). If a lock option is specified, the object is locked in the
server. See oro.h for description about lock option.

object (OUT)
The pointer to the pinned object.

Comments
This function pins a referenceable object instance given the object reference. The
process of pinning serves two purposes:

1. locate an object given its reference. This is done by the object cache which
keeps track of the objects in the object cache.

2. notify the object cache that a persistent object is being in use such that the per-
sistent object cannot be aged out. Since a persistent object can be loaded from
the server whenever is needed, the memory utilization can be increased if a
completely unpinned persistent object can be freed (aged out), even before the
allocation duration is expired. An object can be pinned many times. A pinned
object will remain in memory until it is completely unpinned (see OCIObjectUn-
pin()).

Also see OCIObjectUnpin() for more information about unpinning.

For Persistent Objects
When pinning a persistent object, if it is not in the cache, the object will be fetched
from the persistent store. The allocation duration of the object is session. If the
object is already in the cache, it is returned to the client. The object will be locked in
the server if a lock option is specified.

This function will return an error for a non-existent object.

A pin option is used to specify the copy of the object that is to be retrieved:

■ If pin_option is OCI_PIN_ANY (pin any), if the object is already in the object
cache, return this object. Otherwise, the object is retrieved from the database.
This option is useful when the client knows that he has the exclusive access to
the data in a session.

■ If pin_option is OCI_PIN_LATEST (pin latest), if the object is not locked, it is
retrieved from the database. If the object is cached, it is refreshed with the latest
version. See OCIObjectRefresh() for more information about refreshing.
 OCI Navigation and Type Functions 14-47

OCIObjectPin()
■ If pin_option is OCI_PIN_RECENT (pin recent), if the object is loaded into
the cache in the current transaction, the object is returned. If the object is
not loaded in the current transaction, the object is refreshed from the server.

For Transient Objects
This function will return an error if the transient object has already been freed. This
function does not return an error if an exclusive lock is specified in the lock option.

Related Functions
OCIObjectUnpin(), OCIObjectPinCountReset()
14-48 Oracle Call Interface Programmer’s Guide

OCIObjectPinCountReset()
OCIObjectPinCountReset()

Purpose
Completely unpins an object, setting its pin count to zero

Syntax
sword OCIObjectPinCountReset (OCIEnv *env,
 OCIError *err,
 dvoid *object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to an object, which must already be pinned.

Comments
This function completely unpins an object, setting its pin count to zero. When an
object is completely unpinned, it can be freed implicitly by the OCI at any time
without error.

The following rules apply for specific object types:

For Persistent Objects
When a persistent object is completely unpinned, it becomes a candidate for aging.
The memory of an object is freed when it is aged out. Aging is used to maximize
the utilization of memory. An dirty object cannot be aged out unless it is flushed.

For Transient Objects
The pin count of the object is decremented. A transient can be freed only at the end
of its allocation duration or when it is explicitly freed by calling OCIObjectFree().
 OCI Navigation and Type Functions 14-49

OCIObjectPinCountReset()
For Values
This function will return an error for value.

For more information about the use of this function, see “Pin Count and
Unpinning” on page 8-28.

Related Functions
OCIObjectPin(), OCIObjectUnpin()
14-50 Oracle Call Interface Programmer’s Guide

OCIObjectPinTable()
OCIObjectPinTable()

Purpose
Pins a table object for a specified duration

Syntax
sword OCIObjectPinTable (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 CONST text *schema_name,
 ub4 s_n_length,
 CONST text *object_name,
 ub4 o_n_length,
 dvoid *not_used,
 OCIDuration pin_duration,
 dvoid **object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
The OCI service context handle.

schema_name (IN) [optional]
The schema name of the table.

s_n_length (IN) [optional]
The length of the schema name indicated in schema_name.

object_name (IN)
The name of the table.
 OCI Navigation and Type Functions 14-51

OCIObjectPinTable()
o_n_length (IN)
The length of the table name specified in object_name.

not_used (IN/OUT)
This parameter is not currently used. Pass as NULL.

pin_duration (IN)
The pin duration. See description in OCIObjectPin().

object (OUT)
The pinned table object.

Comments
This function pins a table object with the specified pin duration.

The client can unpin the object by calling OCIObjectUnpin().

The table object pinned by this call can be passed as a parameter to OCIObjectNew()
to create a standalone persistent object.

Related Functions
OCIObjectPin(), OCIObjectUnpin()
14-52 Oracle Call Interface Programmer’s Guide

OCIObjectRefresh()
OCIObjectRefresh()

Purpose
Refreshes a persistent object from the most current database snapshot

Syntax
sword OCIObjectRefresh (OCIEnv *env,
 OCIError *err,
 dvoid *object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to the persistent object, which must already be pinned.

Comments
This function refreshes an object with data retrieved from the latest snapshot in the
server. An object should be refreshed when the objects in the object cache are
inconsistent with the objects at the server.

Note: When an object is flushed to the server, triggers can be fired to modify
more objects in the server. The same objects (modified by the triggers) in the
object cache become out-of-date, and must be refreshed before they can be
locked or flushed.

This occurs when the user issues a SQL statement or PL/SQL procedure to
modify any object in the server.

Warning: Modifications made to objects (dirty objects) since the last flush are
lost if object are refreshed by this function.
 OCI Navigation and Type Functions 14-53

OCIObjectRefresh()
The various meta-attribute flags and durations of an object are modified as
followed after being refreshed:

The object that is refreshed will be “replaced-in-place”. When an object is replaced-
in-place, the top-level memory of the object will be reused so that new data can be
loaded into the same memory address. The top level memory of the null structure
is also reused. Unlike the top-level memory chunk, the secondary memory chunks
will be freed and reallocated. The client should be careful when holding on to a
pointer to the secondary memory chunk (e.g. assigning the address of a secondary
memory to a local variable), since this pointer can become invalid after the object is
refreshed.

This function does nothing for transient objects or values.

Related Functions
OCICacheRefresh()

Object Attribute Status After Refresh

existent set to appropriate value

pinned unchanged

allocation duration unchanged

pin duration unchanged
14-54 Oracle Call Interface Programmer’s Guide

OCIObjectSetAttr()
OCIObjectSetAttr()

Purpose
Set an object attribute.

Syntax
sword OCIObjectSetAttr (OCIEnv *env,
 OCIError *err,
 dvoid *instance,
 dvoid *null_struct,
 struct OCIType *tdo,
 CONST text **names,
 CONST ub4 *lengths,
 CONST ub4 name_count,
 CONST ub4 *indexes,
 CONST ub4 index_count,
 CONST OCIInd null_status,
 CONST dvoid *attr_null_struct,
 CONST dvoid *attr_value);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

instance (IN)
Pointer to an object instance.

null_struct (IN)
The null structure of the object instance or array.

tdo (IN)
Pointer to the TDO.
 OCI Navigation and Type Functions 14-55

OCIObjectSetAttr()
names (IN)
Array of attribute names. This is used to specify the names of the attributes in the
path expression.

lengths (IN)
Array of lengths of attribute names.

name_count (IN)
Number of element in the array names.

indexes (IN) [optional]
Not currently supported. Pass as (ub4 *)0.

index_count (IN) [optional]
Not currently supported. Pass as (ub4)0.

attr_null_status (IN)
The null status of the attribute if the type of attribute is primitive.

attr_null_struct (IN)
The null structure of an object or collection attribute.

attr_value (IN)
Pointer to the attribute value.

Comments
This function sets the attribute of the given object with the given value. The
position of the attribute is specified as a path expression which is an array of names
and an array of indexes.

Example
For the path expression stanford.cs.stu[5].addr, the arrays will look like:

names = {"stanford", "cs", "stu", "addr"}

lengths = {8, 2, 3, 4}

indexes = {5}

Related Functions
OCIObjectGetAttr()
14-56 Oracle Call Interface Programmer’s Guide

OCIObjectUnmark()
OCIObjectUnmark()

Purpose
Unmarks an object as dirty.

Syntax
sword OCIObjectUnmark (OCIEnv *env,
 OCIError *err,
 dvoid *object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
Pointer to the persistent object. It must be pinned.

Comments

For Persistent Objects and Transient Objects
This function unmarks the specified persistent object as dirty. Changes that are
made to the object will not be written to the server. If the object is marked locked, it
remains marked locked. The changes that have already made to the object will not
be undone implicitly.

For Values
This function is an no-op for values. This means that the function will have no
effect if called on a value.

Related Functions
OCIObjectUnmarkByRef()
 OCI Navigation and Type Functions 14-57

OCIObjectUnmarkByRef()
OCIObjectUnmarkByRef()

Purpose
Unmarks an object as dirty, given a REF to the object.

Syntax
sword OCIObjectUnmarkByRef (OCIEnv *env,
 OCIError *err,
 OCIRef *ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

ref (IN)
Reference of the object. It must be pinned.

Comments
This function unmarks an object as dirty. This function is identical to
OCIObjectUnmark(), except that it takes a REF to the object as an argument.

For Persistent Objects and Transient Objects
This function unmarks the specified persistent object as dirty. Changes that are
made to the object will not be written to the server. If the object is marked locked, it
remains marked locked. The changes that have already made to the object will not
be undone implicitly.

For Values
This function is a no-op for values.

Related Functions
OCIObjectUnmark()
14-58 Oracle Call Interface Programmer’s Guide

OCIObjectUnpin()
OCIObjectUnpin()

Purpose
Unpins an object

Syntax
sword OCIObjectUnpin (OCIEnv *env,
 OCIError *err,
 dvoid *object);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

object (IN)
A pointer to an object, which must already be pinned.

Comments
There is a pin count associated with each object which is incremented whenever an
object is pinned. When the pin count of the object is zero, the object is said to be
completely unpinned. An unpinned object can be freed implicitly by the OCI at any
time without error.

This function unpins an object. An object is completely unpinned when any of the
following is true:

1. The object’s pin count reaches zero (i.e., it is unpinned a total of N times after
being pinned a total of N times).

2. It is the end of the object’s pin duration.

3. The function OCIObjectPinCountReset() is called on the object.

When an object is completely unpinned, it can be freed implicitly by the OCI at any
time without error.
 OCI Navigation and Type Functions 14-59

OCIObjectUnpin()
The following rules apply for unpinning different types of objects:

For Persistent Objects
When a persistent object is completely unpinned, it becomes a candidate for aging.
The memory of an object is freed when it is aged out. Aging is used to maximize
the utilization of memory. An dirty object cannot be aged out unless it is flushed.

For Transient Objects
The pin count of the object is decremented. A transient can be freed only at the end
of its allocation duration or when it is explicitly deleted by calling OCIObjectFree().

For Values
This function returns an error for values.

Related Functions
OCIObjectPin(), OCIObjectPinCountReset()
14-60 Oracle Call Interface Programmer’s Guide

OCITypeArrayByName()
OCITypeArrayByName()

Purpose
Get an array of types given an array of names.

Syntax
sword OCITypeArrayByName (OCIEnv *envhp,
 OCIError *errhp,
 CONST OCISvcCtx *svc,
 ub4 array_len,
 CONST text *schema_name[],
 ub4 s_length[],
 CONST text *type_name[],
 ub4 t_length[],
 CONST text *version_name[],
 ub4 v_length[],
 OCIDuration pin_duration,
 OCITypeGetOpt get_option,
 OCIType *tdo[]);

Parameters

envhp (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service handle.

array_len (IN)
Number of schema_name/type_name/version_name entries to be retrieved.

schema_name (IN, optional)
Array of schema names associated with the types to be retrieved. The array must
have array_len elements if specified. If 0 is supplied, the default schema is assumed,
 OCI Navigation and Type Functions 14-61

OCITypeArrayByName()
otherwise it MUST have array_len number of elements. 0 can be supplied for one or
more of the entries to indicate that the default schema is desired for those entries.

s_length (IN)
Array of schema_name lengths with each entry corresponding to the length of the
corresponding schema_name entry in the schema_name array in bytes. The array
must either have array_len number of elements or it MUST be 0 if schema_name is
not specified.

type_name (IN)
Array of the names of the types to retrieve. This MUST have array_len number of
elements.

t_length (IN)
Array of the lengths of type names in the type_name array in bytes.

version_name (IN)
Array of the version names of the types to retrieve corresponding. This can be 0 to
indicate retrieval of the most current versions, or it MUST have array_len number of
elements.

If 0 is supplied, the most current version is assumed, otherwise it MUST have
array_len number of elements. 0 can be supplied for one or more of the entries to
indicate that the current version is desired for those entries.

Note: In release 8.0 the version parameters are ignored.

v_length (IN)
Array of the lengths of version names in the version_name array in bytes.

Note: In release 8.0 the version parameters are ignored.

pin_duration (IN)
Pin duration (e.g. until the end of current transaction) for the types retrieved. See
oro.h for a description of each option.

get_option (IN)
Options for loading the types. It can be one of two values:

■ OCI_TYPEGET_HEADER - for only the header to be loaded, or

■ OCI_TYPEGET_ALL - for the TDO and all ADO and MDOs to be loaded.
14-62 Oracle Call Interface Programmer’s Guide

OCITypeArrayByName()
tdo (OUT)
Output array for the pointers to each pinned type in the object cache. It must have
space for array_len pointers. Use OCIObjectGetObjectRef() to obtain the CREF to each
pinned type descriptor.

Comments
Gets pointers to the existing types associated with the schema/type name array.

The get_option parameter can be used to control the portion of the TDO that gets
loaded per roundtrip.

This function returns an error if

■ any of the required parameters is null.

■ one or more object types associated with a schema/type name entry do not
exist.

To retrieve a single type, rather than an array, use OCITypeByName().

Related Functions
OCITypeArrayByRef(), OCITypeByName(), OCITypeByRef()
 OCI Navigation and Type Functions 14-63

OCITypeArrayByRef()
OCITypeArrayByRef()

Purpose
Get an array of types given an array of references.

Syntax
sword OCITypeArrayByRef (OCIEnv *envhp,
 OCIError *errhp,
 ub4 array_len,
 CONST OCIRef *type_ref[],
 OCIDuration pin_duration,
 OCITypeGetOpt get_option,
 OCIType *tdo[]);

Parameters

envhp (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

errhp (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

array_len (IN)
Number of schema_name/type_name/version_name entries to be retrieved.

type_ref (IN)
Array of OCIRef * pointing to the particular version of the type descriptor object to
obtain. The array must have array_len elements if specified.

pin_duration (IN)
Pin duration (e.g. until the end of current transaction) for the types retrieved. See
oro.h for a description of each option.
14-64 Oracle Call Interface Programmer’s Guide

OCITypeArrayByRef()
get_option (IN)
Options for loading the types. It can be one of two values:

■ OCI_TYPEGET_HEADER - for only the header to be loaded

■ OCI_TYPEGET_ALL - for the TDO and all ADO and MDOs to be loaded.

tdo (OUT)
Output array for the pointers to each pinned type in the object cache. It must have
space for array_len pointers. Use OCIObjectGetObjectRef() to obtain the CREF to each
pinned type descriptor.

Comments
Gets pointers to the with the schema/type name array.

This function returns an error if:

■ any of the required parameters is null.

■ one or more object types associated with a schema/type name entry does not
exist.

To retrieve a single type, rather than an array of types, use OCITypeByName().

Related Functions
OCITypeArrayByName(), OCITypeByRef(), OCITypeByName()
 OCI Navigation and Type Functions 14-65

OCITypeByName()
OCITypeByName()

Name
OCI Get Existing Type By Name

Purpose
Get the most current version of an existing type by name.

Syntax
sword OCITypeByName (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 CONST text *schema_name,
 ub4 s_length,
 CONST text *type_name,
 ub4 t_length,
 CONST text *version_name,
 ub4 v_length,
 OCIDuration pin_duration,
 OCITypeGetOpt get_option
 OCIType **tdo);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service handle.

schema_name (IN, optional)
Name of schema associated with the type. By default, the user's schema name is
used.
14-66 Oracle Call Interface Programmer’s Guide

OCITypeByName()
s_length (IN)
Length of the schema_name parameter.

type_name (IN)
Name of the type to get.

t_length (IN)
Length of the type_name parameter.

version_name (IN, optional)
User-readable version of the type. Pass as (text *) 0 to retrieve the most current
version. For release 8.0 only a single version is supported.

v_length (IN)
Length of version_name in bytes. Pass as 0 if the most current version is to be
retrieved.

pin_duration (IN)
Pin duration. Refer to the section “Object Duration” on page 11-13 for more
information.

get_option ((IN)
Options for loading the types. It can be one of two values:

■ OCI_TYPEGET_HEADER for only the header to be loaded, or

■ OCI_TYPEGET_ALL for the TDO and all ADO and MDOs to be loaded.

tdo (OUT)
Pointer to the pinned type in the object cache.

Comments
Gets a pointer to the existing type associated with schema/type name.

This function returns an error if any of the required parameters is NULL, or if the
object type associated with schema/type name does not exist.

Note: Schema and type names are CASE-SENSITIVE. If they have been created
via SQL, you need to use uppercase names.

An application can retrieve an array of TDOs by calling OCITypeArrayByName(), or
OCITypeArrayByRef().
 OCI Navigation and Type Functions 14-67

OCITypeByName()
See Also
OCITypeByRef(), OCITypeArrayByName(), OCITypeArrayByRef()
14-68 Oracle Call Interface Programmer’s Guide

OCITypeByRef()
OCITypeByRef()

Name
OCI Type By Reference

Purpose
Get a type given a reference.

Syntax
sword OCITypeByRef (OCIEnv *env,
 OCIError *err,
 CONST OCIRef *type_ref,
 OCIDuration pin_duration,
 OCITypeGetOpt get_option,
 OCIType *tdo);

Comments
Gets a pointer to a type given a REF. This is similar to OCITypeByName().

This function returns an error if

■ any of the required parameters is null.

■ one or more object types associated with a schema/type name entry does not
exist.

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

type_ref (IN)
An OCIRef * pointing to the particular version of the type descriptor object to
obtain.
 OCI Navigation and Type Functions 14-69

OCITypeByRef()
pin_duration (IN)
Pin duration (e.g. until the end of current transaction) for the type to retrieve. See
oro.h for a description of each option.

get_option (IN)
Options for loading the type. It can be one of two values:

■ OCI_TYPEGET_HEADER - for only the header to be loaded, or

■ OCI_TYPEGET_ALL - for the TDO and all ADO and MDOs to be loaded.

tdo (OUT)
Pointer to the pinned type in the object cache.

See Also
OCITypeByName(), OCITypeArrayByName(), OCITypeArrayByRef()
14-70 Oracle Call Interface Programmer’s Guide

 OCI Datatype Mapping and Manipulation Fu
15

OCI Datatype Mapping and Manipulation

Functions

This chapter describes the OCI datatype mapping and manipulation functions,
which is Oracle’s external C Language interface to Oracle8 predefined types.

The following sections are included in this chapter:

■ Introduction

■ OCI Datatype Mapping Functions Quick Reference

■ The OCI Datatype Mapping and Manipulation Functions

Note: The functions described in this chapter are only available if you have
purchased the Oracle8 Enterprise Edition with the Objects Option.
nctions 15-1

Datatype Mapping and Manipulation Function Return Values
Introduction
This chapter describes the OCI datatype mapping and manipulation functions in
detail.

See Also: For more information about the functions listed in this chapter, refer
to Chapter 9, “Object-Relational Datatypes”.

Datatype Mapping and Manipulation Function Return Values
The OCI datatype mapping and manipulation functions typically return one of the
following values:

Function-specific return information follows the description of each function in this
chapter. For more information about return codes and error handling, see the
section “Error Handling” on page 2-25.

Table 15–1 Function Return Values

Return Value Meaning

OCI_SUCCESS The operation succeeded

OCI_ERROR The operation failed. The specific error can be
retrieved by calling OCIErrorGet() on the error
handle passed to the function.

OCI_INVALID_HANDLE The environment or error handle passed to the
function is NULL.
15-2 Oracle Call Interface Programmer’s Guide

Examples
Functions Returning Other Values
Some functions return values other than those listed in Table 15–1. When using
these function be sure to take into account that they return a value directly from the
function call, rather than through an OUT parameter.

■ OCICollMax()

■ OCIRawPtr()

■ OCIRawSize()

■ OCIRefHexSize()

■ OCIRefIsEqual()

■ OCIRefIsNull()

■ OCIStringPtr()

■ OCIStringSize()

Server Roundtrips for Datatype Mapping and Manipulation Functions
For a table showing the number of server roundtrips required for individual
OCI datatype mapping and manipulation functions, refer to Appendix E,
“OCI Function Server Roundtrips”.

Examples
For more information about these functions, including some code examples,
refer to Chapter 9, “Object-Relational Datatypes”.
 OCI Datatype Mapping and Manipulation Functions 15-3

OCI Datatype Mapping Functions Quick Reference
OCI Datatype Mapping Functions Quick Reference

This section is intended to help you figure out which function you need to use in a
given situation.

Table 15–2 OCI Datatype Mapping and Manipulation Functions Quick Reference

Function Purpose Page

COLLECTION ITERATOR FUNCTIONS

OCICollAppend() Collection append element 15 - 9

OCICollAssignElem() Collection assign element 15 - 13

OCICollAssign() Assign collection 15 - 11

OCICollSize() Get current size of collection (in number of elements) 15 - 19

OCICollTrim() Trim elements from the collection 15 - 21

OCICollGetElem() Get pointer to an element 15 - 15

OCICollMax() Return maximum number of elements in collection 15 - 18

OCIIterCreate() Create iterator to scan the varray elements 15 - 43

OCIIterGetCurrent() Get current collection element 15 - 46

OCIIterDelete() Delete iterator 15 - 45

OCIIterInit() Initialize iterator to scan the given collection 15 - 47

OCIIterNext() Get next collection element 15 - 48

OCIIterPrev() Get previous collection element, 15 - 50

DATE FUNCTIONS

OCIDateToText() Convert date to String 15 - 39

OCIDateAddDays() Add or subtract days 15 - 22

OCIDateAddMonths() Add or subtract months 15 - 23

OCIDateDaysBetween() Get number of days between two dates 15 - 28

OCIDateCheck() Check if the given date is valid 15 - 25

OCIDateCompare() Compare dates 15 - 27

OCIDateLastDay() Get date of last day of month 15 - 33

OCIDateNextDay() get date of next day 15 - 34
15-4 Oracle Call Interface Programmer’s Guide

OCI Datatype Mapping Functions Quick Reference
OCIDateFromText () Convert string to date 15 - 29

OCIDateSysDate() Get current system date and time 15 - 38

OCIDateZoneToZone() Convert date from one time zone to another zone 15 - 41

OCIDateAssign() Assign date 15 - 24

OCIDateGetDate() Get the date portion of a date 15 - 31

OCIDateGetTime() Get the time portion of a date 15 - 32

OCIDateSetDate() Set the date portion of a date 15 - 36

OCIDateSetTime() Set the time portion of a date 15 - 37

NUMBER FUNCTIONS

OCINumberToInt() Convert number to integer 15 - 88

OCINumberToReal() Convert number to real 15 - 90

OCINumberToText() Convert number to string 15 - 91

OCINumberAbs() Absolute value 15 - 52

OCINumberArcCos() Arc cosine 15 - 54

OCINumberAdd() Add numbers 15 - 53

OCINumberAssign() Assign number 15 - 58

OCINumberArcSin () Arc sine 15 - 55

OCINumberArcTan() Arc tangent 15 - 56

OCINumberArcTan2() Arc tangent 2 15 - 57

OCINumberExp() Arbitrary base exponentiation 15 - 80

OCINumberCeil() Ceiling of number 15 - 70

OCINumberCmp() Compare numbers 15 - 60

OCINumberCos() Cosine 15 - 61

OCINumberHypCos() Cosine hyperbolic 15 - 70

OCINumberDiv() Divide numbers 15 - 62

OCINumberPower() Exponentiation to base e 15 - 80

OCINumberFloor() Floor of number 15 - 64

OCINumberFromInt() Convert integer to number 15 - 65

Table 15–2 OCI Datatype Mapping and Manipulation Functions Quick Reference

Function Purpose Page
 OCI Datatype Mapping and Manipulation Functions 15-5

OCI Datatype Mapping Functions Quick Reference
OCINumberIsZero() Comparison with zero 15 - 74

OCINumberLn() Logarithm natural 15 - 75

OCINumberLog () Logarithm to arbitrary base 15 - 76

OCINumberMod() Modulo division 15 - 77

OCINumberMul() Multiply numbers 15 - 78

OCINumberNeg() Negate number 15 - 79

OCINumberIntPower() Take an arbitrary base to an arbitrary integer power 15 - 63

OCINumberFromReal() Convert real to number 15 - 67

OCINumberRound() Round Oracle number to a specified decimal place 15 - 81

OCINumberSetZero() Initialize number to zero 15 - 82

OCINumberFromText() Convert string to number 15 - 68

OCINumberSign() Obtain sign of an Oracle number 15 - 83

OCINumberSin() Sine 15 - 84

OCINumberHypSin() Sine Hyperbolic 15 - 71

OCINumberSqrt() Square root of number 15 - 85

OCINumberSub() Subtract numbers 15 - 86

OCINumberTan() Tangent 15 - 87

OCINumberHypTan() Tangent hyperbolic 15 - 72

OCINumberTrunc() Truncate an Oracle number at a specified decimal place 15 - 93

 REF FUNCTIONS

OCIRefToHex() Convert REF to hexadecimal string 15 - 107

OCIRefAssign() Assign one REF to another 15 - 100

OCIRefClear() Clear or nullify a REF 15 - 101

OCIRefIsEqual() Compare two REFs for equality 15 - 105

OCIRefFromHex() Convert hexadecimal string to REF 15 - 102

OCIRefHexSize() Return size of hexadecimal representation of REF 15 - 104

OCIRefIsNull() Test if a REF is NULL 15 - 106

Table 15–2 OCI Datatype Mapping and Manipulation Functions Quick Reference

Function Purpose Page
15-6 Oracle Call Interface Programmer’s Guide

OCI Datatype Mapping Functions Quick Reference
 TABLE FUNCTIONS

OCITableDelete() Delete element 15 - 115

OCITableExists() Test whether element exists 15 - 116

OCITableFirst() Return first index of table 15 - 117

OCITableLast() Return last index of table 15 - 118

OCITableNext() Return next available index of table 15 - 119

OCITablePrev() Return previous available index of table 15 - 121

OCITableSize() Return current size of table 15 - 123

 STRING FUNCTIONS

OCIStringAssign() Assign string to string 15 - 110

OCIStringAllocSize() Get allocated size of string memory in bytes 15 - 109

OCIStringAssignText() Assign text string to string 15 - 111

OCIStringPtr() Get string pointer 15 - 112

OCIStringSize() Get string size 15 - 114

OCIStringResize() Resize string memory 15 - 113

 RAW FUNCTIONS

OCIRawAssignBytes() Assign raw bytes to raw 15 - 95

OCIRawAssignRaw() Assign raw to raw 15 - 96

OCIRawAllocSize() Get allocated size of raw memory in bytes 15 - 94

OCIRawPtr() Get raw data Pointer 15 - 97

OCIRawSize() Get raw size 15 - 99

OCIRawResize() Resize memory of variable-length raw 15 - 98

Table 15–2 OCI Datatype Mapping and Manipulation Functions Quick Reference

Function Purpose Page
 OCI Datatype Mapping and Manipulation Functions 15-7

The OCI Datatype Mapping and Manipulation Functions
The OCI Datatype Mapping and Manipulation Functions
This chapter describes the OCI datatype mapping and manipulation functions. The
entries for each function contain the following information:

Purpose
A brief statement of the purpose of the function.

Syntax
A code snippet showing the syntax for calling the function, including the ordering
and types of the parameters.

Comments
Detailed information about the function (if available). This may include restrictions
on the use of the function, or other information that might be useful when using
the function in an application.

Parameters
A description of each of the function’s parameters. This includes the parameter’s
mode. The mode of a parameter has three possible values, as described below:

Returns
A description of what value is returned by the function if the function returns
something other than the standard return codes listed in the table above.

Related Functions
A list of related functions.

Mode Description

IN A parameter that passes data to Oracle

OUT A parameter that receives data from Oracle on this or a
subsequent call

IN/OUT A parameter that passes data on the call and receives
data on the return from this or a subsequent call.
15-8 Oracle Call Interface Programmer’s Guide

OCICollAppend()
OCICollAppend()

Purpose
Appends an element to a collection

Syntax
sword OCICollAppend (OCIEnv *env,
 OCIError *err,
 CONST dvoid *elem,
 CONST dvoid *elemind,
 OCIColl *coll);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

elem (IN)
Pointer to the element which is appended to the end of the given collection.

elemind (IN) [optional]
Pointer to the element’s null indicator information; if (elemind == NULL) then the
null indicator information of the appended element will be set to non-null.

coll (IN/OUT)
Updated collection.
 OCI Datatype Mapping and Manipulation Functions 15-9

OCICollAppend()
Comments
Appends the given element to the end of the given collection.

Appending an element is equivalent to:

■ increasing the size of the collection by 1 element

■ updating (deep-copying) the last element’s data with the given element’s data

Note that the pointer to the given element elem will not be saved by this function.
So elem is strictly an input parameter. This function returns an error if the current
size of the collection is equal to the max size (upper-bound) of the collection prior
to appending the element.

This function returns an error if any of the input parameters is NULL.

Related Functions
OCIErrorGet()
15-10 Oracle Call Interface Programmer’s Guide

OCICollAssign()
OCICollAssign()

Purpose
Assigns (deep-copies) one collection to another

Syntax
sword OCICollAssign (OCIEnv *env,
 OCIError *err,
 CONST OCIColl *rhs,
 OCIColl *lhs);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

rhs (IN)
Right-hand side (source) collection to be assigned from.

lhs (OUT)
Left-hand side (target) collection to be assigned to.

Comments
Assigns rhs (source) to lhs (target). The lhs collection may be decreased or increased
depending upon the size of rhs. If the lhs contains any elements then the elements
will be deleted prior to the assignment. This function performs a deep copy. The
memory for the elements comes from the object cache.

An error is returned if the element types of the lhs and rhs collections do not match.
Also, an error is returned if the upper-bound of the lhs collection is less than the
current number of elements in the rhs collection.
 OCI Datatype Mapping and Manipulation Functions 15-11

OCICollAssign()
This function returns an error if:

■ any of the input parameters is NULL

■ there is a type mismatch between the lhs and rhs collections

■ the upper bound of lhs collection is less than the current number of elements in
the rhs collection

Related Functions
OCIErrorGet()
15-12 Oracle Call Interface Programmer’s Guide

OCICollAssignElem()
OCICollAssignElem()

Purpose
Assign an element to a collection

Syntax
sword OCICollAssignElem (OCIEnv *env,
 OCIError *err,
 sb4 index,
 CONST dvoid *elem,
 CONST dvoid *elemind,
 OCIColl *coll);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

index (IN)
Index of the element whose is assigned to.

elem (IN)
Element which is assigned from (source element).

elemind (IN) [optional]
Pointer to the element’s null indicator information; if (elemind == NULL) then the
null indicator information of the assigned element will be set to non-null.

coll (IN/OUT)
Collection to be updated.
 OCI Datatype Mapping and Manipulation Functions 15-13

OCICollAssignElem()
Comments
Assigns the given element value elem to the element at coll[index].

If the collection is of type nested table, the element at the given index may not exist
(i.e. may have been deleted). In this case, the given element is inserted at index
index. Otherwise, the element at index index is updated with the value of elem.

Note that the given element is deep-copied and elem is strictly an input parameter.

This function returns an error if any input parameter is NULL or if the given index
is beyond the bounds of the given collection.

Related Functions
OCIErrorGet()
15-14 Oracle Call Interface Programmer’s Guide

OCICollGetElem()
OCICollGetElem()

Purpose
Gets a pointer to the element at the given index

Syntax
sword OCICollGetElem (OCIEnv *env,
 OCIError *err,
 CONST OCIColl *coll,
 sb4 index,
 boolean *exists,
 dvoid **elem,
 dvoid **elemind);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

coll (IN)
Pointer to the element in this collection is returned.

index (IN)
Index of the element whose pointer is returned.

exists (OUT)
Set to FALSE if the element at the specified index does not exist; otherwise, set to
TRUE.

elem (OUT)
Address of the desired element is returned.

elemind (OUT) [optional]
Address of the null indicator information is returned; if (elemind == NULL) then the
null indicator information will NOT be returned.
 OCI Datatype Mapping and Manipulation Functions 15-15

OCICollGetElem()
Comments
Gets the address of the element at the given position. Optionally this function also
returns the address of the element's null indicator information.

The following table describes for each collection element type what the
corresponding element pointer type is. The element pointer is returned via the elem
parameter of OCICollGetElem().

The element pointer returned by OCICollGetElem() is in a form such that it can not
only be used to access the element data but also is in a form that can be used as the
target (i.e., left-hand-side) of an assignment statement.

For example, assume the user is iterating over the elements of a collection whose
element type is object reference (OCIRef*). A call to OCICollGetElem() returns
pointer to a reference handle (i.e. OCIRef**). After getting, the pointer to the
collection element, the user may wish to modify it by assigning a new reference.

This can be accomplished via the ref assignment function shown below:

sword OCIRefAssign(OCIEnv *env, OCIError *err, CONST OCIRef *source,
OCIRef **target);

Note that the target parameter of OCIRefAssign() is of type OCIRef**. Hence
OCICollGetElem() returns OCIRef**. If *target equals NULL, a new REF will be
allocated by OCIRefAssign() and returned via the target parameter.

Similarly, if the collection element was of type string (OCIString*),
OCICollGetElem() returns pointer to string handle (i.e. OCIString**). If a new string
is assigned, via OCIStringAssign() or OCIStringAssignText() the type of the target
must be OCIString **.

Element Type *elem is set to

Oracle Number (OCINumber) OCINumber*

Date (OCIDate) OCIDate*

Variable-length string (OCIString*) OCIString**

Variable-length raw (OCIRaw*) OCIRaw**

object reference (OCIRef*) OCIRef**

lob locator (OCILobLocator*) OCILobLocator**

object type (e.g. person) person*
15-16 Oracle Call Interface Programmer’s Guide

OCICollGetElem()
If the collection element is of type Oracle number, OCICollGetElem() returns
OCINumber*. The prototype of OCINumberAssign() is shown below:

sword OCINumberAssign(OCIError *err, CONST OCINumber *from,
OCINumber *to);

This function returns an error if any of the input parameters is NULL.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-17

OCICollMax()
OCICollMax()

Purpose
Gets the maximum size (in number of elements) of the given collection

Syntax
sb4 OCICollMax (OCIEnv *env,
 CONST OCIColl *coll);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

coll (IN)
Collection whose number of elements is returned. coll must point to a valid
collection descriptor.

Comments
Returns the maximum number of elements that the given collection can hold. A
value of zero indicates that the collection has no upper bound.

Returns
the upper bound of the given collection

Related Functions
OCIErrorGet()
15-18 Oracle Call Interface Programmer’s Guide

OCICollSize()
OCICollSize()

Purpose
Gets the current size (in number of elements) of the given collection

Syntax
sword OCICollSize (OCIEnv *env,
 OCIError *err,
 CONST OCIColl *coll
 sb4 *size);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

coll (IN)
Collection whose number of elements is returned. Must point to a valid collection
descriptor.

size (OUT)
Current number of elements in the collection.

Comments
Returns the current number of elements in the given collection.

For the case of nested table, this count will NOT be decremented upon deleting
elements. So, this count includes any “holes” created by deleting elements. A trim
operation (OCICollTrim()) will decrement the count by the number of trimmed
elements. To get the count minus the deleted elements use OCITableSize().
 OCI Datatype Mapping and Manipulation Functions 15-19

OCICollSize()
The following pseudocode shows some examples:

OCICollSize(...);
// assume 'size' returned is equal to 5
OCITableDelete(...); // delete one element
OCICollSize(...);
// 'size' returned is still 5

To get the count minus the deleted elements use OCITableSize(). Continuing the
above example:

OCITableSize(...)
// 'size' returned is equal to 4

A trim operation (OCICollTrim()) decrements the count by the number of trimmed
elements. Continuing the above example:

OCICollTrim(..,1..); // trim one element
OCICollSize(...);
// 'size' returned is equal to 4

This function returns an error if an error occurs during the loading of the collection
into object cache or if any of the input parameters is null.

Related Functions
OCIErrorGet()
15-20 Oracle Call Interface Programmer’s Guide

OCICollTrim()
OCICollTrim()

Purpose
Trims the given number of elements from the end of the collection

Syntax
sword OCICollTrim (OCIEnv *env,
 OCIError *err,
 sb4 trim_num,
 OCIColl *coll);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

trim_num (IN)
Number of elements to trim.

coll (IN/OUT)
This function removes (frees) trim_num elements from the end of coll.

Comments
Trim the collection by the given number of elements. The elements are removed
from the end of the collection. An error is returned if trim_num is greater than the
current size of the collection.

This function returns an error if trim_num is greater than the current size of the
collection.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-21

OCIDateAddDays()
OCIDateAddDays()

Purpose
Adds or subtracts days from a given date.

Syntax
sword OCIDateAddDays (OCIError *err,
 CONST OCIDate *date,
 sb4 num_days,
 OCIDate *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
This function adds or subtracts num_days from date.

num_days (IN)
Number of days to be added or subtracted (a negative value will be subtracted).

result (IN/OUT)
Result of adding days to, or subtracting days from, date.

Comments
Adds or subtracts num_days from the date date.

This function returns and error if an invalid date is passed to it.

Related Functions
OCIErrorGet()
15-22 Oracle Call Interface Programmer’s Guide

OCIDateAddMonths()
OCIDateAddMonths()

Purpose
Adds or subtracts months from a given date.

Syntax
sword OCIDateAddMonths (OCIError *err,
 CONST OCIDate *date,
 sb4 num_months,
 OCIDate *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
This function adds or subtracts num_months from date.

num_months (IN)
Number of months to be added or subtracted (a negative value is subtracted).

result (IN/OUT)
Result of adding days to, or subtracting days from, date.

Comments
Adds or subtracts num_months from the date date.

If the input date is the last day of a month, then the appropriate adjustments are
made to ensure that the output date is also the last day of the month. For example,
Feb. 28 + 1 month = March 31, and November 303 months = August 31. Otherwise
the result date has the same day component as date.

This function returns an error if invalid date is passed to it.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-23

OCIDateAssign()
OCIDateAssign()

Purpose
Performs date assignment

Syntax
sword OCIDateAssign (OCIError *err,
 CONST OCIDate *from,
 OCIDate *to);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

from (IN)
Date to be assigned.

to (OUT)
Target of assignment.

Comments
This function assigns a value from one OCIDate variable to another.

Related Functions
OCIErrorGet()
15-24 Oracle Call Interface Programmer’s Guide

OCIDateCheck()
OCIDateCheck()

Purpose
Checks if the given date is valid.

Syntax
sword OCIDateCheck (OCIError *err,
 CONST OCIDate *date,
 uword *valid);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
Date to be checked

valid (OUT)
Returns zero for a valid date, otherwise the ORed combination of all error bits
specified below:

Macro name Bit number Error
---------- ---------- -----------------------------
OCI_DATE_INVALID_DAY 0x1 Bad day
OCI_DATE_DAY_BELOW_VALID 0x2 Bad day low/high bit (1=low)
OCI_DATE_INVALID_MONTH 0x4 Bad month
OCI_DATE_MONTH_BELOW_VALID 0x8 Bad month low/high bit (1=low)
OCI_DATE_INVALID_YEAR 0x10 Bad year
OCI_DATE_YEAR_BELOW_VALID 0x20 Bad year low/high bit (1=low)
OCI_DATE_INVALID_HOUR 0x40 Bad hour
OCI_DATE_HOUR_BELOW_VALID 0x80 Bad hour low/high bit (1=low)
OCI_DATE_INVALID_MINUTE 0x100 Bad minute
OCI_DATE_MINUTE_BELOW_VALID 0x200 Bad minute Low/high bit (1=low)
OCI_DATE_INVALID_SECOND 0x400 Bad second
OCI_DATE_SECOND_BELOW_VALID 0x800 Bad second Low/high bit (1=low)
OCI_DATE_DAY_MISSING_FROM_1582 0x1000 Day is one of those "missing" from 1582
OCI_DATE_YEAR_ZERO 0x2000 Year may not equal zero
OCI_DATE_INVALID_FORMAT 0x8000 Bad date format input
 OCI Datatype Mapping and Manipulation Functions 15-25

OCIDateCheck()
So, for example, if the date passed in was 2/0/1990 25:61:10 in (month/day/year
hours:minutes:seconds format), the error returned would be
OCI_DATE_INVALID_DAY | OCI_DATE_DAY_BELOW_VALID |
OCI_DATE_INVALID_HOUR | OCI_DATE_INVALID_MINUTE

Comments
Checks if the given date is valid.

This function returns an error if date or valid pointer is NULL.

Related Functions
OCIErrorGet()
15-26 Oracle Call Interface Programmer’s Guide

OCIDateCompare()
OCIDateCompare()

Purpose
Compares two dates.

Syntax
sword OCIDateCompare (OCIError *err,
 CONST OCIDate *date1,
 CONST OCIDate *date2,
 sword *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date1, date2 (IN)
Dates to be compared.

result (OUT)
Comparison result:

Comments
Compares two dates.

This function returns and error if an invalid date is passed to it.

Related Functions
OCIErrorGet()

Comparison result Output in result parameter

date1 < date2 -1

date1 = date2 0

date1 > date2 1
 OCI Datatype Mapping and Manipulation Functions 15-27

OCIDateDaysBetween()
OCIDateDaysBetween()

Purpose
Gets the number of days between two dates

Syntax
sword OCIDateDaysBetween (OCIError *err,
 CONST OCIDate *date1,
 CONST OCIDate *date2,
 sb4 *num_days);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date1 (IN)
Input date.

date2 (IN)
Input date.

num_days (OUT)
Number of days between date1 and date2.

Comments
Returns the number of days between date1 and date2. The time is ignored in this
computation.

This function returns an error if invalid date is passed to it.

Related Functions
OCIErrorGet()
15-28 Oracle Call Interface Programmer’s Guide

OCIDateFromText()
OCIDateFromText()

Purpose
Converts a character string to a date type.

Syntax
sword OCIDateFromText (OCIError *err,
 CONST text *date_str,
 ub4 d_str_length,
 CONST text *fmt,
 ub1 fmt_length,
 CONST text *lang_name,
 ub4 lang_length,
 OCIDate *date);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date_str (IN)
Input string to be converted to Oracle date.

d_str_length (IN)
Size of the input string, if the length is -1 then date_str is treated as a NULL
terminated string.

fmt (IN)
Conversion format. If fmt is a null pointer, then the string is expected to be in ‘DD-
MON-YY’ format.

fmt_length (IN)
Length of the fmt parameter.

lang_name (IN)
Language in which the names and abbreviations of days and months are specified.
If lang_name is a NULL string, (text *) 0, then the default language of the session is
used.
 OCI Datatype Mapping and Manipulation Functions 15-29

OCIDateFromText()
lang_length (IN)
Length of the lang_name parameter.

date (OUT)
Given string converted to date.

Comments
Converts the given string to Oracle date according to the specified format.

Refer to the TO_DATE conversion function described in Chapter 3 of the Oracle8
SQL Reference for a description of format and NLS arguments.

This function returns an error if it receives an invalid format, language, or input
string.

Related Functions
OCIErrorGet()
15-30 Oracle Call Interface Programmer’s Guide

OCIDateGetDate()
OCIDateGetDate()

Purpose
Get the year, month, and day stored in an Oracle date.

Syntax
void OCIDateGetDate (CONST OCIDate *date,
 sb2 *year,
 ub1 *month,
 ub1 *day);

Parameters

date (IN)
Oracle date whose year, month, day data is retrieved.

year (OUT)
Year value returned.

month (OUT)
Month value returned.

day (OUT)
Day value returned.

Comments
Returns year, month, day information stored in the given date.

Related Functions
OCIDateSetDate()
 OCI Datatype Mapping and Manipulation Functions 15-31

OCIDateGetTime()
OCIDateGetTime()

Purpose
Get the time stored in an Oracle date.

Syntax
void OCIDateGetTime (CONST OCIDate *date,
 ub1 *hour,
 ub1 *min,
 ub1 *sec);

Parameters

date (IN)
Oracle date whose time data is retrieved.

hour (OUT)
Hour value returned.

min (OUT)
Minute value returned.

sec (OUT)
Second value returned.

Comments
Returns time information stored in the given date. The time information returned
is: hour, minute and seconds.

Related Functions
OCIDateSetTime()
15-32 Oracle Call Interface Programmer’s Guide

OCIDateLastDay()
OCIDateLastDay()

Purpose
Gets the date of the last day of the month.

Syntax
sword OCIDateLastDay (OCIError *err,
 CONST OCIDate *date,
 OCIDate *last_day);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
Input date.

last_day (OUT)
Last day of the month in date.

Comments
Returns the date of the last day of the month specified in date.

This function returns an error if invalid date is passed to it.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-33

OCIDateNextDay()
OCIDateNextDay()

Purpose
Gets the date of next day of the week, after a given date.

Syntax
sword OCIDateNextDay (OCIError *err,
 CONST OCIDate *date,
 CONST text *day,
 ub4 day_length,
 OCIDate *next_day);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
Returned date should be later than this date.

day (IN)
First day of week named by this is returned.

day_length (IN)
Length in bytes of string day.

next_day (OUT)
First day of the week named by day later than date.

Comments
Returns the date of the first day of the week named by day that is later than date
date.
15-34 Oracle Call Interface Programmer’s Guide

OCIDateNextDay()
Example
 Get the date of the next Monday after April 18, 1996 (a Thursday).

OCIDateNextDay(&err, ‘18-APR-96’, ‘MONDAY’, strlen(‘MONDAY’), &next_day)

OCIDateNextDay() returns ‘22-APR-96’.

This function returns and error if an invalid date or day is passed to it.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-35

OCIDateSetDate()
OCIDateSetDate()

Purpose
Set the values in an Oracle date.

Syntax
void OCIDateSetDate (OCIDate *date,
 sb2 year,
 ub1 month,
 ub1 day);

Parameters

date (OUT)
Oracle date whose time data is set.

year (IN)
Year value to be set.

month (IN)
Month value to be set.

day (IN)
Day value to be set.

Comments
Sets the date with the given information.

Related Functions
OCIDateGetDate()
15-36 Oracle Call Interface Programmer’s Guide

OCIDateSetTime()
OCIDateSetTime()

Purpose
Set the time information in an Oracle date.

Syntax
void OCIDateSetTime (OCIDate *date,
 ub1 hour,
 ub1 min,
 ub1 sec);

Parameters

date (OUT)
Oracle date whose time data is set.

hour (IN)
Hour value to be set.

min (IN)
Minute value to be set.

sec (IN)
Second value to be set.

Comments
Sets the date with the given time information.

Related Functions
OCIDateGetTime()
 OCI Datatype Mapping and Manipulation Functions 15-37

OCIDateSysDate()
OCIDateSysDate()

Purpose
Gets current system date and time.

Syntax
sword OCIDateSysDate (OCIError *err,
 OCIDate *sys_date);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

sys_date (OUT)
Current system date and time.

Comments
Returns the current system date and time.

Related Functions
OCIErrorGet()
15-38 Oracle Call Interface Programmer’s Guide

OCIDateToText()
OCIDateToText()

Purpose
Converts a date type to a character string.

Syntax
sword OCIDateToText (OCIError *err,
 CONST OCIDate *date,
 CONST text *fmt,
 ub1 fmt_length,
 CONST text *lang_name,
 ub4 lang_length,
 ub4 *buf_size,
 text *buf);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date (IN)
Oracle date to be converted.

fmt (IN)
Conversion format, if NULL string pointer, (text *) 0 , then the date is
converted to a character string in the default date format, “DD-MON-YY”.

fmt_length (IN)
Length of the fmt parameter.

lang_name (IN)
Specifies the language in which names and abbreviations of months and days are
returned; default language of session is used if lang_name is NULL ((text *) 0).

lang_length (IN)
Length of the lang_name parameter.
 OCI Datatype Mapping and Manipulation Functions 15-39

OCIDateToText()
buf_size (IN/OUT)
■ Size of the buffer (IN);

■ Size of the resulting string is returned via this parameter(OUT).

buf (OUT)
Buffer into which the converted string is placed.

Comments
Converts the given date to a string according to the specified format. The converted
NULL-terminated date string is stored in buf.

Refer to the TO_DATE conversion function described in Chapter 3 of the Oracle8
SQL Reference for a description of format and NLS arguments.

This function returns an error if the buffer is too small, or if the function is passed
an invalid format or unknown language. Overflow also causes an error. For
example, converting a value of 10 into format ’9’ causes an error.

Related Functions
OCIErrorGet()
15-40 Oracle Call Interface Programmer’s Guide

OCIDateZoneToZone()
OCIDateZoneToZone()

Purpose
Converts a date from one time zone to another.

Syntax
sword OCIDateZoneToZone (OCIError *err,
 CONST OCIDate *date1,
 CONST text *zon1,
 ub4 zon1_length,
 CONST text *zon2,
 ub4 zon2_length,
 OCIDate *date2);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

date1 (IN)
Date to convert.

zon1 (IN)
Zone of input date.

zon1_length (IN)
Length in bytes of zon1.

zon2 (IN)
Zone to be converted to.

zon2_length (IN)
Length in bytes of zon2.

date2 (OUT)
Converted date (in zon2).
 OCI Datatype Mapping and Manipulation Functions 15-41

OCIDateZoneToZone()
Comments
Converts date from one time zone to another. Given date date1 in time zone zon1,
returns date date2 in time zone zon2.

For a list of valid zone strings, refer to the description of the “NEW_TIME”
function in Chapter 3 of the Oracle8 SQL Reference. Examples of valid zone strings
include:

■ “AST”, Atlantic Standard Time

■ “ADT”, Atlantic Daylight Time

■ “BST”, Bering Standard Time

■ “BDT”, Bering Daylight Time

This function returns and error if an invalid date or time zone is passed to it.

Related Functions
OCIErrorGet()
15-42 Oracle Call Interface Programmer’s Guide

OCIIterCreate()
OCIIterCreate()

Purpose
Creates an iterator to scan collection elements.

Syntax
sword OCIIterCreate (OCIEnv *env,
 OCIError *err,
 CONST OCIColl *coll,
 OCIIter **itr);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

coll (IN)
Collection which will be scanned. For release 8.0, valid collection types include
varrays and nested tables.

itr (OUT)
Address to the allocated collection iterator is returned by this function.

Comments
Creates an iterator to scan the elements of the collection. The iterator is created in
the object cache. The iterator is initialized to point to the beginning of the
collection.

If OCIIterNext() is called immediately after creating the iterator then the first
element of the collection is returned. If OCIIterPrev() is called immediately after
creating the iterator then “at beginning of collection” error is returned.

This function returns an error if any of the input parameters is NULL.
 OCI Datatype Mapping and Manipulation Functions 15-43

OCIIterCreate()
Related Functions
OCIErrorGet(), OCIIterDelete()
15-44 Oracle Call Interface Programmer’s Guide

OCIIterDelete()
OCIIterDelete()

Purpose
Deletes a collection iterator.

Syntax
sword OCIIterDelete (OCIEnv *env,
 OCIError *err,
 OCIIter **itr);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

itr (IN/OUT)
The allocated collection iterator which is destroyed and set to NULL prior to
returning.

Comments
Deletes an iterator which was previously created by a call to OCIIterCreate().

This function returns an error if any of the input parameters is null.

Related Functions
OCIErrorGet(), OCIIterCreate()
 OCI Datatype Mapping and Manipulation Functions 15-45

OCIIterGetCurrent()
OCIIterGetCurrent()

Purpose
Gets a pointer to the current iterator collection element.

Syntax
sword OCIIterGetCurrent (OCIEnv *env,
 OCIError *err,
 CONST OCIIter *itr,
 dvoid **elem,
 dvoid **elemind);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

itr (IN)
Iterator which points to the current element.

elem (OUT)
Address of the element pointed by the iterator is returned.

elemind (OUT) [optional]
Address of the element’s NULL indicator information is returned; if (elem_ind ==
NULL) then the NULL indicator information will not be returned.

Comments
Returns pointer to the current iterator collection element and its corresponding
NULL information. This function returns an error if any input parameter is NULL.

Related Functions
OCIErrorGet()
15-46 Oracle Call Interface Programmer’s Guide

OCIIterInit()
OCIIterInit()

Purpose
Initializes an iterator to scan a collection.

Syntax
sword OCIIterInit (OCIEnv *env,
 OCIError *err,
 CONST OCIColl *coll,
 OCIIter *itr);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

coll (IN)
Collection which will be scanned. For release 8.0, valid collection types include
varrays and nested tables.

itr (IN/OUT)
Pointer to an allocated collection iterator.

Comments
Initializes given iterator to point to the beginning of given collection. Returns an
error if any input parameter is NULL. This function can be used to:

■ reset an iterator to point back to the beginning of the collection, or

■ reuse an allocated iterator to scan a different collection.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-47

OCIIterNext()
OCIIterNext()

Purpose
Gets a pointer to the next iterator collection element.

Syntax
sword OCIIterNext (OCIEnv *env,
 OCIError *err,
 OCIIter *itr,
 dvoid **elem,
 dvoid **elemind,
 boolean *eoc);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

itr (IN/OUT)
Iterator is updated to point to the next element.

elem (OUT)
After updating the iterator to point to the next element, address of the element is
returned.

elemind (OUT) [optional]
Address of the element’s NULL indicator information is returned; if (elem_ind ==
NULL) then the NULL indicator information will not be returned.

eoc (OUT)
TRUE if iterator is at End of Collection (i.e. next element does not exist); otherwise,
FALSE.
15-48 Oracle Call Interface Programmer’s Guide

OCIIterNext()
Comments
Returns a pointer to the next iterator collection element and its corresponding
NULL information. Updates the iterator to point to the next element.

If the iterator is pointing to the last element of the collection prior to executing this
function, then calling this function will set the eoc flag to TRUE. The iterator will be
left unchanged in that case.

This function returns an error if any input parameter is NULL.

Related Functions
OCIErrorGet(), OCIIterPrev()
 OCI Datatype Mapping and Manipulation Functions 15-49

OCIIterPrev()
OCIIterPrev()

Purpose
Gets a pointer to the previous iterator collection element

Syntax
sword OCIIterPrev (OCIEnv *env,
 OCIError *err,
 OCIIter *itr,
 dvoid **elem,
 dvoid **elemind,
 boolean *boc);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

itr (IN/OUT)
Iterator which is updated to point to the previous element.

elem (OUT)
Address of the previous element; returned after the iterator is updated to point to it.

elemind (OUT) [optional]
Address of the element’s NULL indicator; if (elem_ind == NULL) then the NULL
indicator will not be returned.

boc (OUT)
TRUE if iterator is at beginning of collection (i.e. previous element does not exist);
otherwise, FALSE.
15-50 Oracle Call Interface Programmer’s Guide

OCIIterPrev()
Comments
Returns pointer to the previous iterator collection element and its corresponding
NULL information. The iterator is updated to point to the previous element.

If the iterator is pointing to the first element of the collection prior to executing this
function, then calling this function will set boc to TRUE. The iterator is left
unchanged in that case.

This function returns an error if any input parameter is NULL.

Related Functions
OCIErrorGet(), OCIIterNext()
 OCI Datatype Mapping and Manipulation Functions 15-51

OCINumberAbs()
OCINumberAbs()

Purpose
Computes the absolute value of an Oracle number.

Syntax
sword OCINumberAbs (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Input number.

result (OUT)
The absolute value of the input number.

Comments
Computes the absolute value of an Oracle number.

This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet()
15-52 Oracle Call Interface Programmer’s Guide

OCINumberAdd()
OCINumberAdd()

Purpose
Adds two Oracle numbers together.

Syntax
sword OCINumberAdd (OCIError *err,
 CONST OCINumber *number1,
 CONST OCINumber *number2,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1, number2 (IN)
Numbers to be added.

result (OUT)
Result of adding number1 to number2.

Comments
Adds number1 to number2 and returns result in result.

This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-53

OCINumberArcCos()
OCINumberArcCos()

Purpose
Takes the arc cosine of an Oracle number.

Syntax
sword OCINumberArcCos (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the arc cosine.

result (OUT)
Result of the arc cosine in radians.

Comments
Takes the arc cosine in radians of an Oracle number.

This function returns an error if any of the number arguments is NULL, or if
number < -1 or if number > 1.

Related Functions
OCIErrorGet()
15-54 Oracle Call Interface Programmer’s Guide

OCINumberArcSin()
OCINumberArcSin()

Purpose
Takes the arc sine of an Oracle number.

Syntax
sword OCINumberArcSin (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the arc sine.

result (OUT)
Result of the arc sine in radians.

Comments
Takes the arc sine in radians of an Oracle number.

This function returns an error if any of the number arguments is NULL, or if
number < -1 or if number > 1.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-55

OCINumberArcTan()
OCINumberArcTan()

Purpose
Takes the arc tangent of an Oracle number.

Syntax
sword OCINumberArcTan (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the arc tangent.

result (OUT)
Result of the arc tangent in radians.

Comments
Takes the arc tangent in radians of an Oracle number.

This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet()
15-56 Oracle Call Interface Programmer’s Guide

OCINumberArcTan2()
OCINumberArcTan2()

Purpose
Takes the arc tangent of two Oracle numbers.

Syntax
sword OCINumberArcTan2 (OCIError *err,
 CONST OCINumber *number1,
 CONST OCINumber *number2,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1 (IN)
Argument 1 of the arc tangent.

number2 (IN)
Argument 2 of the arc tangent.

result (OUT)
Result of the arc tangent in radians.

Comments
Takes the atan2(number1, number2).

This function returns an error if any of the number arguments is NULL, or if
number2 = 0.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-57

OCINumberAssign()
OCINumberAssign()

Purpose
Assigns one Oracle number to another Oracle number.

Syntax
sword OCINumberAssign (OCIError *err,
 CONST OCINumber *from,
 OCINumber *to);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

from (IN)
Number to be assigned.

to (OUT)
Number copied into.

Comments
Assigns number from to to.

This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet()
15-58 Oracle Call Interface Programmer’s Guide

OCINumberCeil()
OCINumberCeil()

Purpose
Computes the ceiling value of an Oracle number.

Syntax
sword OCINumberCeil (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Input number.

result (OUT)
Output which will contain the ceiling value of the input number.

Comments
Computes the ceiling value of an Oracle number.

This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-59

OCINumberCmp()
OCINumberCmp()

Purpose
Compares two Oracle numbers.

Syntax
sword OCINumberCmp (OCIError *err,
 CONST OCINumber *number1,
 CONST OCINumber *number2,
 sword *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1, number2 (IN)
Numbers to compare.

result (OUT)
Comparison result:

Comments
Compares two Oracle numbers.

This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet()

Comparison result Output in result parameter

number1 < number2 negative

number1 = number2 0

number1 > number2 positive
15-60 Oracle Call Interface Programmer’s Guide

OCINumberCos()
OCINumberCos()

Purpose
Takes the cosine of an Oracle number.

Syntax
sword OCINumberCos (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the cosine in radians.

result (OUT)
Result of the cosine.

Comments
Takes the cosine in radians of an Oracle number.

This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-61

OCINumberDiv()
OCINumberDiv()

Purpose
Divides two Oracle numbers.

Syntax
sword OCINumberDiv (OCIError *err,
 CONST OCINumber *number1,
 CONST OCINumber *number2,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1 (IN)
Pointer to the numerator.

number2 (IN)
Pointer to the denominator.

result (OUT)
Division result.

Comments
Divides number1 by number2 and returns result in result.

This function returns an error if:

■ any of the number arguments is NULL

■ there is an underflow error

■ there is a divide-by-zero error

Related Functions
OCIErrorGet()
15-62 Oracle Call Interface Programmer’s Guide

OCINumberExp()
OCINumberExp()

Purpose
Raises e to the specified Oracle number power.

Syntax
sword OCINumberExp (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
This function raises e to this Oracle number power.

result (OUT)
Output of exponentiation.

Comments
Raises e to a given power, specified by an Oracle number.

This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-63

OCINumberFloor()
OCINumberFloor()

Purpose
Computes the floor value of an Oracle number.

Syntax
sword OCINumberFloor (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Input number.

result (OUT)
The floor value of the input number.

Comments
Computes the floor value of an Oracle number.

This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet()
15-64 Oracle Call Interface Programmer’s Guide

OCINumberFromInt()
OCINumberFromInt()

Purpose
Converts integer to Oracle number.

Syntax
sword OCINumberFromInt (OCIError *err,
 CONST dvoid *inum,
 uword inum_length,
 uword inum_s_flag,
 OCINumber *number);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

inum (IN)
Pointer to the integer to convert.

inum_length (IN)
Size of the integer.

inum_s_flag (IN)
Flag that designates the sign of the integer, as follows:
::

number (OUT)
Given integer converted to Oracle number.

Predefined Constant Use

OCI_NUMBER_UNSIGNED Unsigned values

OCI_NUMBER_SIGNED Signed values
 OCI Datatype Mapping and Manipulation Functions 15-65

OCINumberFromInt()
Comments
This is a native type conversion function. It converts any Oracle standard machine-
native integer type (e.g. ub4, sb2) to an Oracle number.

This function returns an error if the number is too big to fit into an Oracle number,
if number or inum is NULL, or if an invalid sign flag value is passed in inum_s_flag.

Related Functions
OCIErrorGet()
15-66 Oracle Call Interface Programmer’s Guide

OCINumberFromReal()
OCINumberFromReal()

Purpose
Converts a real (floating-point) type to an Oracle number.

Syntax
sword OCINumberFromReal (OCIError *err,
 CONST dvoid *rnum,
 uword rnum_length,
 OCINumber *number);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

rnum (IN)
Pointer to the floating point number to convert.

rnum_length (IN)
The size of the desired result. Will be equal to sizeof({float | double | long double}).

number (OUT)
Given float converted to Oracle number.

Comments
This is a native type conversion function. It converts a machine-native floating
point type to an Oracle number.

This function returns an error if number or rnum is NULL, or if rnum_length equals
zero.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-67

OCINumberFromText()
OCINumberFromText()

Purpose
Converts character string to Oracle number.

Syntax
sword OCINumberFromText (OCIError *err,
 CONST text *str,
 ub4 str_length,
 CONST text *fmt,
 ub4 fmt_length,
 CONST text *nls_params,
 ub4 nls_p_length,
 OCINumber *number);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

str (IN)
Input string to convert to Oracle number.

str_length (IN)
Size of the input string.

fmt (IN)
Conversion format.

fmt_length (IN)
Length of the fmt parameter.

nls_params (IN)
NLS format specification, if NULL string ("") then the default parameters for the
session is used.

nls_p_length (IN)
Length of the nls_params parameter.
15-68 Oracle Call Interface Programmer’s Guide

OCINumberFromText()
number (OUT)
Given string converted to number.

Comments
Converts the given string to a number according to the specified format. Refer to
the TO_NUMBER conversion function described in the Oracle8 SQL Reference for a
description of format and NLS parameters.

This function returns an error if there is an invalid format, an invalid NLS format,
or an invalid input string, if number or str is NULL, or if str_length is zero.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-69

OCINumberHypCos()
OCINumberHypCos()

Purpose
Takes the hyperbolic cosine of an Oracle number.

Syntax
sword OCINumberHypCos (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the cosine hyperbolic.

result (OUT)
Result of the cosine hyperbolic.

Comments
Takes the hyperbolic cosine of an Oracle number.

This function returns an error if any of the number arguments is NULL.

Warning: An Oracle number overflow causes an unpredictable result value.

Related Functions
OCIErrorGet()
15-70 Oracle Call Interface Programmer’s Guide

OCINumberHypSin()
OCINumberHypSin()

Purpose
Takes the hyperbolic sine of an Oracle number.

Syntax
sword OCINumberHypSin (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the sine hyperbolic.

result (OUT)
Result of the sine hyperbolic.

Comments
Takes the hyperbolic sine of an Oracle number.

This function returns an error if any of the number arguments is NULL.

Warning: An Oracle number overflow causes an unpredictable result value.

Related Functions
OCIErrorGet(), OCINumberHypCos(), OCINumberHypTan()
 OCI Datatype Mapping and Manipulation Functions 15-71

OCINumberHypTan()
OCINumberHypTan()

Purpose
Takes the hyperbolic tangent of an Oracle number.

Syntax
sword OCINumberHypTan (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the tangent hyperbolic.

result (OUT)
Result of the tangent hyperbolic.

Comments
Takes the hyperbolic tangent of an Oracle number.

This function returns an error if any of the number arguments is NULL.

Warning: An Oracle number overflow causes an unpredictable result value.

Related Functions
OCIErrorGet(), OCINumberHypCos(), OCINumberHypSin()
15-72 Oracle Call Interface Programmer’s Guide

OCINumberIntPower()
OCINumberIntPower()

Purpose
Raises a given base to a given integer power.

Syntax
sword OCINumberIntPower (OCIError *err,
 CONST OCINumber *base,
 CONST sword exp,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

base (IN)
Base of the exponentiation.

exp (IN)
Exponent to which the base is raised.

result (OUT)
Output of exponentiation.

Comments
Raises an arbitrary base to an arbitrary integer power.

This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-73

OCINumberIsZero()
OCINumberIsZero()

Purpose
Tests if the given number is equal to zero.

Syntax
sword OCINumberIsZero (OCIError *err,
 CONST OCINumber *number,
 boolean *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Number to compare.

result (OUT)
Set to TRUE if equal to zero; otherwise, set to FALSE.

Comments
Tests if the given number is equal to zero.

This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet()
15-74 Oracle Call Interface Programmer’s Guide

OCINumberLn()
OCINumberLn()

Purpose
Takes the natural logarithm (base e) of an Oracle number.

Syntax
sword OCINumberLn (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Logarithm of this number is computed.

result (OUT)
Logarithm result.

Comments
Takes the logarithm (base e) of the given Oracle number.

This function returns an error if any of the number arguments is NULL, or if
numberI is less than or equal to zero.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-75

OCINumberLog()
OCINumberLog()

Purpose
Takes the logarithm, to any base, of an Oracle number.

Syntax
sword OCINumberLog (OCIError *err,
 CONST OCINumber *base,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

base (IN)
Base of the logarithm.

number (IN)
Operand.

result (OUT)
Logarithm result.

Comments
Takes the logarithm with the specified base of an Oracle number.

This function returns an error if:

■ any of the number arguments is NULL.

■ number <= 0

■ base <= 0

Related Functions
OCIErrorGet()
15-76 Oracle Call Interface Programmer’s Guide

OCINumberMod()
OCINumberMod()

Purpose
Gets the modulus (remainder) of the division of two Oracle numbers.

Syntax
sword OCINumberMod (OCIError *err,
 CONST OCINumber *number1,
 CONST OCINumber *number2,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1 (IN)
Pointer to the numerator.

number2 (IN)
Pointer to the denominator.

result (OUT)
Remainder of the result.

Comments
Finds the remainder of the division of two Oracle numbers.

This function returns an error if number1 or number2 is NULL, or if there is a divide-
by-zero error.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-77

OCINumberMul()
OCINumberMul()

Purpose
Multiplies two Oracle numbers

Syntax
sword OCINumberMul (OCIError *err,
 CONST OCINumber *number1,
 CONST OCINumber *number2,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1 (IN)
Number to multiply.

number2 (IN)
Number to multiply.

result (OUT)
Multiplication result.

Comments
Multiplies number1 with number2 and returns result in result.

This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet()
15-78 Oracle Call Interface Programmer’s Guide

OCINumberNeg()
OCINumberNeg()

Purpose
Negates an Oracle number.

Syntax
sword OCINumberNeg (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Number to negate.

result (OUT)
Contains negated value of number.

Comments
Negates an Oracle number.

This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-79

OCINumberPower()
OCINumberPower()

Purpose
Raises a given base to a given exponent.

Syntax
sword OCINumberPower (OCIError *err,
 CONST OCINumber *base,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

base (IN)
Base of the exponentiation.

number (IN)
Exponent to which the base is to be raised.

result (OUT)
Output of exponentiation.

Comments
Raises an arbitrary base to an arbitrary power.

This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet()
15-80 Oracle Call Interface Programmer’s Guide

OCINumberRound()
OCINumberRound()

Purpose
Rounds an Oracle number to a specified decimal place.

Syntax
sword OCINumberRound (OCIError *err,
 CONST OCINumber *number,
 sword decplace,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Number to round.

decplace (IN)
Number of decimal digits to the right of the decimal point to round to. Negative
values are allowed.

result (OUT)
Output of rounding.

Comments
Rounds an Oracle number to a specified decimal place.

This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-81

OCINumberSetZero()
OCINumberSetZero()

Purpose
Initializes an Oracle number to zero

Syntax
void OCINumberSetZero (OCIError *err
 OCINumber *num);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

num (IN/OUT)
Number to initialize to zero value.

Comments
Initializes the given number to value 0.

Related Functions
OCIErrorGet()
15-82 Oracle Call Interface Programmer’s Guide

OCINumberSign()
OCINumberSign()

Purpose
Gets sign of an Oracle number.

Syntax
sword OCINumberSign (OCIError *err,
 CONST OCINumber *number,
 sword *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Number whose sign is returned.

result (OUT)
Possible values:

Comments
Obtains the sign of an Oracle number.

This function returns an error if number or result is NULL.

Related Functions
OCIErrorGet()

Value of number Output in result parameter

number < 0 -1

number == 0 0

number > 0 1
 OCI Datatype Mapping and Manipulation Functions 15-83

OCINumberSin()
OCINumberSin()

Purpose
Takes the sine of an Oracle number.

Syntax
sword OCINumberSin (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the sine in radians.

result (OUT)
Result of the sine.

Comments
Takes the sine in radians of an Oracle number.

This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet()
15-84 Oracle Call Interface Programmer’s Guide

OCINumberSqrt()
OCINumberSqrt()

Purpose
Computes the square root of an Oracle number.

Syntax
sword OCINumberSqrt (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Input number.

result (OUT)
Output which will contain the square root of the input number.

Comments
Computes the square root of an Oracle number.

This function returns an error if number is NULL or number is negative.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-85

OCINumberSub()
OCINumberSub()

Purpose
Subtract two Oracle numbers.

Syntax
sword OCINumberSub (OCIError *err,
 CONST OCINumber *number1,
 CONST OCINumber *number2,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number1, number2 (IN)
This function subtracts number2 from number1.

result (OUT)
Subtraction result.

Comments
Subtracts number2 from number1 and returns result in result.

This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet()
15-86 Oracle Call Interface Programmer’s Guide

OCINumberTan()
OCINumberTan()

Purpose
Takes the tangent of an Oracle number.

Syntax
sword OCINumberTan (OCIError *err,
 CONST OCINumber *number,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Argument of the tangent in radians.

result (OUT)
Result of the tangent.

Comments
Takes the tangent in radians of an Oracle number.

This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-87

OCINumberToInt()
OCINumberToInt()

Purpose
Converts an Oracle number type to integer.

Syntax
sword OCINumberToInt (OCIError *err,
 CONST OCINumber *number,
 uword rsl_length,
 uword rsl_flag,
 dvoid *rsl);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Number to convert.

rsl_length (IN)
Size of the desired result.

rsl_flag (IN)
Flag denoting the desired sign of the output; set as follows:

rsl (OUT)
Pointer to space for the result.

Predefined Constant Use

OCI_NUMBER_UNSIGNED Unsigned values

OCI_NUMBER_SIGNED Signed values
15-88 Oracle Call Interface Programmer’s Guide

OCINumberToInt()
Comments
This is a native type conversion function. It converts the given Oracle number into
an integer of the form xbn (e.g. ub2, ub4, sb2, etc.)

This function returns an error if number or rsl is NULL, if number is too big
(overflow) or too small (underflow), or if an invalid sign flag value is passed in
rsl_flag.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-89

OCINumberToReal()
OCINumberToReal()

Purpose
Converts an Oracle number type to Real.

Syntax
sword OCINumberToReal (OCIError *err,
 CONST OCINumber *number,
 uword rsl_length,
 dvoid *rsl);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Number to convert.

rsl_length (IN)
The size of the desired result. This will be equal to sizeof({ float | double | long
double}).

rsl (OUT)
Pointer to space for storing the result.

Comments
This is a native type conversion function. It converts an Oracle number into a
machine-native real type. This function only converts numbers up to LDBL_DIG,
DBL_DIG, or FLT_DIG digits of precision and removes trailing zeroes. The above
constants are defined in float.h.

This function returns an error if number or rsl is NULL, or if rsl_length = 0.

Related Functions
OCIErrorGet(), OCINumberFromReal()
15-90 Oracle Call Interface Programmer’s Guide

OCINumberToText()
OCINumberToText()

Purpose
Converts an Oracle number to a character string.

Syntax
sword OCINumberToText (OCIError *err,
 CONST OCINumber *number,
 CONST text *fmt,
 ub4 fmt_length,
 CONST text *nls_params,
 ub4 nls_p_length,
 ub4 *buf_size,
 text *buf);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Oracle number to convert.

fmt (IN)
Conversion format.

fmt_length (IN)
Length of the fmt parameter.

nls_params (IN)
NLS format specification. If NULL string (i.e., (text *)0), then the default
parameters for the session is used.

nls_p_length (IN)
Length of the nls_params parameter.

buf_size (IN)
Size of the buffer.
 OCI Datatype Mapping and Manipulation Functions 15-91

OCINumberToText()
buf (OUT)
Buffer into which the converted string is placed.

Comments
Converts a given number to a character string according to a specified format.
Refer to the TO_NUMBER conversion function described in the Oracle8 SQL
Reference for a description of format and NLS parameters.

The converted number string is stored in buf, up to a maximum of buf_size bytes.
This function returns an error if:

■ number or buf is NULL

■ buffer is too small

■ invalid format or invalid NLS format is passed

■ number to text translation for given format causes an overflow

Related Functions
OCIErrorGet()
15-92 Oracle Call Interface Programmer’s Guide

OCINumberTrunc()
OCINumberTrunc()

Purpose
Truncates an Oracle number at a specified decimal place.

Syntax
sword OCINumberTrunc (OCIError *err,
 CONST OCINumber *number,
 sword decplace,
 OCINumber *result);

Parameters

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

number (IN)
Input number.

decplace (IN)
Number of decimal digits to the right of the decimal point at which to truncate.
Negative values are allowed.

result (OUT)
Output of truncation.

Comments
Truncates an Oracle number at a specified decimal place.

This function returns an error if any of the number arguments is NULL.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-93

OCIRawAllocSize()
OCIRawAllocSize()

Purpose
Gets allocated size of raw memory in bytes.

Syntax
sword OCIRawAllocSize (OCIEnv *env,
 OCIError *err,
 CONST OCIRaw *raw,
 ub4 *allocsize);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

raw (IN)
Raw data whose allocated size in bytes is returned. This must be a non-NULL
pointer.

allocsize (OUT)
The allocated size of raw memory in bytes is returned.

Comments
Retrieves the allocated size of the raw memory in bytes. The allocated size is
greater than or equal to the actual raw size.

Related Functions
OCIErrorGet()
15-94 Oracle Call Interface Programmer’s Guide

OCIRawAssignBytes()
OCIRawAssignBytes()

Purpose
Assigns raw bytes of type ub1* to Oracle OCIRaw* datatype.

Syntax
sword OCIRawAssignBytes (OCIEnv *env,
 OCIError *err,
 CONST ub1 *rhs,
 ub4 rhs_len,
 OCIRaw **lhs);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

rhs (IN)
Right-hand side (source) of the assignment, of datatype ub1.

rhs_len (IN)
Length of the rhs raw bytes.

lhs (IN/OUT)
Left-hand side (target) of the assignment OCIRaw data.

Comments
Assigns rhs raw bytes to lhs raw datatype. The lhs raw may be resized depending
upon the size of the rhs. The raw bytes assigned are of type ub1.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-95

OCIRawAssignRaw()
OCIRawAssignRaw()

Purpose
Assign one Oracle raw datatype to another Oracle raw datatype.

Syntax
sword OCIRawAssignRaw (OCIEnv *env,
 OCIError *err,
 CONST OCIRaw *rhs,
 OCIRaw **lhs);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

rhs (IN)
Right-hand side (source) of the assignment; OCIRaw data.

lhs (IN/OUT)
Left-hand side (target) of the assignment; OCIRaw data.

Comments
Assigns rhs raw to lhs raw. The lhs raw may be resized depending upon the size of
the rhs.

Related Functions
OCIErrorGet()
15-96 Oracle Call Interface Programmer’s Guide

OCIRawPtr()
OCIRawPtr()

Purpose
Gets pointer to raw data.

Syntax
ub1 *OCIRawPtr (OCIEnv *env,
 CONST OCIRaw *raw);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

raw (IN)
Pointer to the data of a given raw is returned.

Returns
pointer to the data of a given raw.

Comments
Returns a pointer to the data of a given raw.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-97

OCIRawResize()
OCIRawResize()

Purpose
Resizes the memory of a given variable-length raw.

Syntax
sword OCIRawResize (OCIEnv *env,
 OCIError *err,
 ub2 new_size,
 OCIRaw **raw);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

new_size (IN)
New size of the raw data in bytes.

raw (IN)
Variable-length raw pointer; the raw is resized to new_size.

Comments
This function resizes the memory of the given variable-length raw in the object
cache. The previous contents of the raw are not preserved. This function may
allocate the raw in a new memory region in which case the original memory
occupied by the given raw will be freed. If the input raw is NULL (raw == NULL),
then this function will allocate memory for the raw data.

If the new_size is 0, then this function frees the memory occupied by raw and a
NULL pointer value is returned.

Related Functions
OCIErrorGet()
15-98 Oracle Call Interface Programmer’s Guide

OCIRawSize()
OCIRawSize()

Purpose
Gets the size of a given raw.

Syntax
ub4 OCIRawSize (OCIEnv *env,
 CONST OCIRaw *raw);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

raw (IN/OUT)
Raw whose size is returned.

Returns
size of the raw in bytes.

Comments
Returns the size of the given raw in bytes.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-99

OCIRefAssign()
OCIRefAssign()

Purpose
Assigns one REF to another, such that both reference the same object.

Syntax
sword OCIRefAssign (OCIEnv *env,
 OCIError *err,
 CONST OCIRef *source,
 OCIRef **target);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

source (IN)
REF to copy from.

target (IN/OUT)
REF to copy to.

Comments
Copies source REF to target REF; both then reference the same object. If the target
REF pointer is NULL (i.e. *target == NULL), then OCIRefAssign() will allocate
memory for the target REF in the OCI object cache prior to the copy.

Related Functions
OCIErrorGet()
15-100 Oracle Call Interface Programmer’s Guide

OCIRefClear()
OCIRefClear()

Purpose
Clears or nullifies a REF

Syntax
void OCIRefClear (OCIEnv *env,
 OCIRef *ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

ref (IN/OUT)
REF to clear.

Comments
Clears or nullifies the given REF. A REF is considered to be a NULL REF if it no
longer points to an object. Logically, a NULL REF is a dangling REF.

Note that a null ref is still a valid SQL value and is not SQL-ly null. It can be used
as a valid non-null constant ref value for NOT NULL column or attribute of a row
in a table.

If a NULL pointer value is passed as a REF, then this function is a no-op.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-101

OCIRefFromHex()
OCIRefFromHex()

Purpose
Converts the given hexadecimal string into a REF.

Syntax
sword OCIRefFromHex (OCIEnv *env,
 OCIError *err,
 CONST OCISvcCtx *svc,
 CONST text *hex,
 ub4 length,
 OCIRef **ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

svc (IN)
OCI service context handle; if the resulting ref is initialized with this service context.

hex (IN)
Hexadecimal text string (previously output by OCIRefToHex()) to convert into a
REF.

length (IN)
Length of the hexadecimal text string.

ref (IN/OUT)
The REF into which the hexadecimal string is converted. If *ref is NULL on input,
then space for the REF is allocated in the object cache, otherwise the memory
occupied by the given REF is re-used.
15-102 Oracle Call Interface Programmer’s Guide

OCIRefFromHex()
Comments
Converts the given hexadecimal text string into a REF. This function ensures that
the resulting REF is well formed. It does not ensure that the object pointed to by the
resulting REF exists or not.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-103

OCIRefHexSize()
OCIRefHexSize()

Purpose
Returns the size of the hex representation of a REF.

Syntax
ub4 OCIRefHexSize (OCIEnv *env,
 CONST OCIRef *ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

ref (IN)
REF whose size in hexadecimal representation in bytes is returned.

Returns
The size of the hexadecimal representation of the REF.

Comments
Returns the size of the buffer in bytes required for the hexadecimal representation
of the ref. A buffer of at least this size must be passed to the ref-to-hex
(OCIRefToHex()) conversion function.

Related Functions
OCIRefAssign()
15-104 Oracle Call Interface Programmer’s Guide

OCIRefIsEqual()
OCIRefIsEqual()

Purpose
Compares two REFs to determine if they are equal.

Syntax
boolean OCIRefIsEqual (OCIEnv *env,
 CONST OCIRef *x,
 CONST OCIRef *y);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

x (IN)
REF to compare.

y (IN)
REF to compare.

Returns
TRUE if the two REFs are equal

FALSE if the two REFs are not equal, or x is NULL, or y is NULL

Comments
Compares the given REFs for equality.

Two REFs are equal if and only if they are both referencing the same object,
whether persistent or transient.

Note: Two NULL REFs are considered not equal by this function.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-105

OCIRefIsNull()
OCIRefIsNull()

Purpose
Tests if a REF is NULL

Syntax
boolean OCIRefIsNull (OCIEnv *env,
 CONST OCIRef *ref);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

ref (IN)
REF to test for NULL.

Returns
TRUE if the given REF is NULL.

FALSE if the given REF is not NULL.

Comments
Returns TRUE if the given REF is NULL; otherwise, returns FALSE.

A REF is NULL if and only if:

■ it is supposed to be referencing a persistent object, but the object’s identifier is
NULL, or

■ it is supposed to be referencing a transient object, but it is currently not point-
ing to an object.

Note: A REF is a dangling REF if the object that it points to does not exist.

Related Functions
OCIErrorGet()
15-106 Oracle Call Interface Programmer’s Guide

OCIRefToHex()
OCIRefToHex()

Purpose
Converts a REF to a hexadecimal string

Syntax
sword OCIRefToHex (OCIEnv *env,
 OCIError *err,
 CONST OCIRef *ref,
 text *hex,
 ub4 *hex_length);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

ref (IN)
REF to be converted into a hexadecimal string; if ref is a NULL REF (i.e.
OCIRefIsNull(ref) == TRUE) then zero hex_length value is returned.

hex (OUT)
Buffer that is large enough to contain the resulting hexadecimal string; the contents
of the string is opaque to the caller.

hex_length (IN/OUT)
On input specifies the size of the hex buffer on output specifies the actual size of the
hexadecimal string being returned in hex.

Comments
Converts the given REF into a hexadecimal string, and returns the length of the
string. The resulting string is opaque to the caller.
 OCI Datatype Mapping and Manipulation Functions 15-107

OCIRefToHex()
This function returns an error if the given buffer is not big enough to hold the
resulting string.

Related Functions
OCIErrorGet(), OCIRefHexSize(), OCIRefIsNull()
15-108 Oracle Call Interface Programmer’s Guide

OCIStringAllocSize()
OCIStringAllocSize()

Purpose
Gets allocated size of string memory in bytes.

Syntax
sword OCIStringAllocSize (OCIEnv *env,
 CONST OCIString *vs,
 ub4 *allocsize);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

vs (IN)
String whose allocated size in bytes is returned. vs must be a non-NULL pointer.

allocsize (OUT)
The allocated size of string memory in bytes is returned.

Comments
Returns the allocated size of the string memory in bytes. The allocated size is
greater than or equal to the actual string size.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-109

OCIStringAssign()
OCIStringAssign()

Purpose
Assigns one string to another string.

Syntax
sword OCIStringAssign (OCIEnv *env,
 OCIError *err,
 CONST OCIString *rhs,
 OCIString **lhs);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

rhs (IN)
Right-hand side (source) of the assignment.

lhs (IN/OUT)
Left-hand side (target) of the assignment.

Comments
Assigns rhs string to lhs string. The lhs string may be resized depending upon the
size of the rhs. The assigned string is NULL-terminated.

The length field will not include the extra byte needed for null termination.

This function returns an error if the assignment operation runs out of space.

Related Functions
OCIErrorGet()
15-110 Oracle Call Interface Programmer’s Guide

OCIStringAssignText()
OCIStringAssignText()

Purpose
Assigns the source text string to the target string.

Syntax
sword OCIStringAssignText (OCIEnv *env,
 OCIError *err,
 CONST text *rhs,
 ub2 rhs_len,
 OCIString **lhs);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

rhs (IN)
Right-hand side (source) of the assignment, a text string.

rhs_len (IN)
Length of the rhs string.

lhs (IN/OUT)
Left-hand side (target) of the assignment.

Comments
Assigns rhs string to lhs string. The lhs string may be resized depending upon the
size of the rhs. The assigned string is NULL-terminated.

The length field will not include the extra byte needed for null termination.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-111

OCIStringPtr()
OCIStringPtr()

Purpose
Gets a pointer to a given string.

Syntax
text *OCIStringPtr (OCIEnv *env,
 CONST OCIString *vs);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

vs (IN)
Pointer to the text of this string is returned.

Returns
pointer to the text of the string.

Comments
Returns the pointer to the text of the given string.

Related Functions
OCIErrorGet()
15-112 Oracle Call Interface Programmer’s Guide

OCIStringResize()
OCIStringResize()

Purpose
Resizes the memory of a given string.

Syntax
sword OCIStringResize (OCIEnv *env,
 OCIError *err,
 ub4 new_size,
 OCIString **str);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

new_size (IN)
New memory size of the string in bytes. new_size must include space for the NULL
character (’\0’) as string terminator.

str (IN/OUT)
Allocated memory for the string which is freed from the OCI object cache.

Comments
This function resizes the memory of the given variable-length string in the object
cache. Contents of the string are not preserved. This function may allocate the
string in a new memory region, in which case the original memory occupied by the
given string is freed. If str is NULL, this function allocates memory for the string. If
new_size is 0, this function frees the memory occupied by str and a NULL pointer
value is returned.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-113

OCIStringSize()
OCIStringSize()

Purpose
Gets string size.

Syntax
ub4 OCIStringSize (OCIEnv *env,
 CONST OCIString *vs);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

vs (IN)
String whose size is returned.

Returns
size of the string in bytes.

Comments
Returns the size of the given string in bytes. The returned size does not include an
extra byte for NULL termination.

Related Functions
OCIErrorGet()
15-114 Oracle Call Interface Programmer’s Guide

OCITableDelete()
OCITableDelete()

Purpose
Deletes the element at the specified index.

Syntax
sword OCITableDelete (OCIEnv *env,
 OCIError *err,
 sb4 index,
 OCITable *tbl);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

index (IN)
Index of the element which must be deleted.

tbl (IN)
Table whose element is deleted.

Comments
Deletes the element at the given index.

Note: The position ordinals of the remaining elements of the table are not
changed by OCITableDelete(). The delete operation creates “holes” in the table.

This function returns an error if the element at the given index has already
been deleted or if the given index is not valid for the given table. It is also an
error if any input parameter is NULL.

Related Functions
OCIErrorGet()
 OCI Datatype Mapping and Manipulation Functions 15-115

OCITableExists()
OCITableExists()

Purpose
Tests whether an element exists at the given index.

Syntax
sword OCITableExists (OCIEnv *env,
 OCIError *err,
 CONST OCITable *tbl,
 sb4 index,
 boolean *exists);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

tbl (IN)
Table in which the given index is checked.

index (IN)
Index of the element which is checked for existence.

exists (OUT)
Set to TRUE if element at given index exists; otherwise, it is set to FALSE.

Comments
Tests whether an element exists at the given index, index.

This function returns an error if any input parameter is NULL.

Related Functions
OCIErrorGet()
15-116 Oracle Call Interface Programmer’s Guide

OCITableFirst()
OCITableFirst()

Purpose
Returns the first index of an existing element in a given table.

Syntax
sword OCITableFirst (OCIEnv *env,
 OCIError *err,
 CONST OCITable *tbl,
 sb4 *index);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

tbl (IN)
Table to scan.

index (OUT)
First index of the element which exists in the given table is returned.

Comments
Returns the index of the first element which exists in a given table.

For example, if OCITableDelete() deleted the first 5 elements of a table,
OCITableFirst() returns 6.

See OCITableDelete() for information regarding non-data “holes” in tables.

This function returns an error if the table is empty.

Related Functions
OCIErrorGet(), OCITableDelete()
 OCI Datatype Mapping and Manipulation Functions 15-117

OCITableLast()
OCITableLast()

Purpose
Returns the index of the last existing element of a table.

Syntax
sword OCITableLast (OCIEnv *env,
 OCIError *err,
 CONST OCITable *tbl,
 sb4 *index);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

tbl (IN)
Table to scan.

index (OUT)
Index of the last existing element in the table.

Comments
Returns the index of the last existing element in the given table.

This function returns an error if the table is empty.

Related Functions
OCIErrorGet()
15-118 Oracle Call Interface Programmer’s Guide

OCITableNext()
OCITableNext()

Purpose
Returns the index of the next existing element of a table.

Syntax
sword OCITableNext (OCIEnv *env,
 OCIError *err,
 sb4 index,
 CONST OCITable *tbl,
 sb4 *next_index
 boolean *exists);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

index (IN)
Index for starting point of scan.

tbl (IN)
Table to scan.

next_index (OUT)
Index of the next existing element after tbl(index).

exists (OUT)
FALSE if no next index is available, else TRUE.
 OCI Datatype Mapping and Manipulation Functions 15-119

OCITableNext()
Comments
Returns the smallest position j, greater than index, such that exists(j) is TRUE

See Also: Refer to the description of OCIStringAllocSize() on page 15-109,
regarding the existence of non-data “holes” in tables.

Related Functions
OCITablePrev()
15-120 Oracle Call Interface Programmer’s Guide

OCITablePrev()
OCITablePrev()

Purpose
Returns the index of the previous existing element of a table.

Syntax
sword OCITablePrev (OCIEnv *env,
 OCIError *err,
 sb4 index,
 CONST OCITable *tbl,
 sb4 *prev_index
 boolean *exists);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

index (IN)
Index for starting point of scan.

tbl (IN)
Table to scan.

prev_index (OUT)
Index of the previous existing element before tbl(index).

exists (OUT)
FALSE if no previous index is available, else TRUE.
 OCI Datatype Mapping and Manipulation Functions 15-121

OCITablePrev()
Comments
Return the largest position j, less than index, such that exists(j) is TRUE

See Also: Refer to the description of OCIStringAllocSize() on page 15-109,
regarding the existence of non-data “holes” in tables.

Related Functions
OCITableNext()
15-122 Oracle Call Interface Programmer’s Guide

OCITableSize()
OCITableSize()

Purpose
Return size of the given table (not including deleted elements).

Syntax
sword OCITableSize (OCIEnv *env,
 OCIError *err,
 CONST OCITable *tbl
 sb4 *size);

Parameters

env (IN/OUT)
The OCI environment handle initialized in object mode. See the description of
OCIInitialize() in Chapter 13 for more information.

err (IN/OUT)
The OCI error handle. If there is an error, it is recorded in err and this function
returns OCI_ERROR. Obtain diagnostic information by calling OCIErrorGet().

tbl (IN)
Nested table whose number of elements is returned.

size (OUT)
Current number of elements in the nested table. The count does not include deleted
elements.

Comments
Returns the count of elements in the given table.

This count will be decremented upon deleting elements from the nested table. So
this count does not include any “holes” created by deleting elements. To get the
count not including the deleted elements, use OCICollSize().

For example:

OCITableSize(...);
// assume 'size' returned is equal to 5
OCITableDelete(...); // delete one element
 OCI Datatype Mapping and Manipulation Functions 15-123

OCITableSize()
OCITableSize(...);
// 'size' returned is equal to 4

To get the count plus the count of deleted elements use OCICollSize(). Continuing
the above example:

OCICollSize(...)
// 'size' returned is still equal to 5

This function returns an error if an error occurs during the loading of the nested
table into the object cache, or if any of the input parameters is NULL.

Related Functions
OCICollSize()
15-124 Oracle Call Interface Programmer’s Guide

 OCI External Procedure Fu
16

OCI External Procedure Functions

The chapter contains the following sections:

■ Introduction

■ The OCI External Procedure Functions
nctions 16-1

Introduction
Introduction
This chapter describes the OCI External Procedure Functions. These functions
enable users of external procedures to raise errors, allocate some memory, and get
OCI context information. For more information about using these functions, refer
to the PL/SQL User’s Guide and Reference.

Return Codes
Success and error return codes are defined for certain external procedure interface
functions. If a particular interface function returns OCIEXTPROC_SUCCESS or
OCIEXTPROC_ERROR, then applications must use these macros to check for
return values.

OCIEXTPROC_SUCCESS - External Procedure Success Return Code

OCIEXTPROC_ERROR - External Procedure Failure Return Code

With_Context Type
The C callable interface to PL/SQL external procedures requires the with_context
parameter to be passed. The type of this structure is OCIExtProcContext, which is
opaque to the user.

The user can declare the with_context parameter in the application as

OCIExtProcContext *with_context;
16-2 Oracle Call Interface Programmer’s Guide

The OCI External Procedure Functions
The OCI External Procedure Functions
The remainder of this chapter specifies the release 8.0 OCI external procedure func-
tions for C. For each function, the following information is listed:

Purpose
A brief description of the action performed by the function.

Syntax
A code snippet showing the syntax for calling the function, including the ordering
and types of the parameters.

Parameters
A description of each of the function’s parameters. This includes the parameter’s
mode. The mode of a parameter has three possible values, as described below:

Comments
More detailed information about the function (if available). This may include
restrictions on the use of the function, or other information that might be useful
when using the function in an application.

Returns
A list of possible return values for the function.

Example
A complete or partial code example demonstrating the use of the function call
being described. Not all function descriptions include an example.

Related Functions
A list of related function calls.

Mode Description

IN A parameter that passes data to Oracle

OUT A parameter that receives data from Oracle on this or a subsequent call

IN/OUT A parameter that passes data on the call and receives data on the return
from this or a subsequent call.
 OCI External Procedure Functions 16-3

OCIExtProcAllocCallMemory()
OCIExtProcAllocCallMemory()

Purpose
Allocate N bytes of memory for the duration of the External Procedure.

Syntax
dvoid * OCIExtProcAllocCallMemory (OCIExtProcContext *with_context,
 size_t amount)

Parameters

with_context (IN)
The with_context pointer that is passed to the C External Procedure. See
“With_Context Type” on page 16-2.

amount (IN)
The number of bytes to allocate.

Comments
This call allocates amount bytes of memory for the duration of the call of the exter-
nal procedure.

Any memory allocated by this call is freed by PL/SQL upon return from the exter-
nal procedure. The application must not use any kind of 'free' function on memory
allocated by OCIExtProcAllocCallMemory(). Use this function to allocate memory for
function returns.

A zero return value should be treated as an error

Returns
An untyped (opaque) Pointer to the allocated memory.

Example
text *ptr = (text *)OCIExtProcAllocCallMemory(wctx, 1024)

Related Functions
16-4 Oracle Call Interface Programmer’s Guide

OCIExtProcRaiseExcp()
OCIExtProcRaiseExcp()

Purpose
Raise an Exception to PL/SQL.

Syntax
size_t OCIExtProcRaiseExcp (OCIExtProcContext *with_context,
 int errnum)

 Parameters

with_context (IN)
The with_context pointer that is passed to the C External Procedure. See
“With_Context Type” on page 16-2.

errnum (IN)
Oracle Error number to signal to PL/SQL. errnum must be a positive number and
in the range 1 to 32767.

Comments
Calling this function signals an exception back to PL/SQL. After a successful return
from this function, the external procedure must start its exit handling and return
back to PL/SQL. Once an exception is signalled to PL/SQL, IN/OUT and OUT
arguments, if any, are not processed at all.

Returns
OCIEXTPROC_SUCCESS - If the call was successful.

OCIEXTPROC_ERROR - If the call failed.

Related Functions
OCIExtProcRaiseExcpWithMsg()
 OCI External Procedure Functions 16-5

OCIExtProcRaiseExcpWithMsg()
OCIExtProcRaiseExcpWithMsg()

Purpose
Raise an exception with a message.

Syntax
size_t OCIExtProcRaiseExcpWithMsg (OCIExtProcContext *with_context,
 int errnum,
 char *errmsg,
 size_t msglen)

 Parameters

with_context (IN)
The with_context pointer that is passed to the C External Procedure. See
“With_Context Type” on page 16-2.

errnum (IN)
Oracle Error number to signal to PL/SQL. The value of errnum must be a positive
number and in the range 1 to 32767

errmsg (IN)
The error message associated with the errnum.

len (IN)
The length of the error message. Pass zero if errmsg is a null terminated string.

Comments
Raise an exception to PL/SQL. In addition, substitute the following error message
string within the standard Oracle error message string. See the description of
OCIExtProcRaiseExcp() for more information.

Returns
OCIEXTPROC_SUCCESS - If the call was successful.

OCIEXTPROC_ERROR - If the call failed.
16-6 Oracle Call Interface Programmer’s Guide

OCIExtProcRaiseExcpWithMsg()
Related Functions
OCIExtProcRaiseExcp()
 OCI External Procedure Functions 16-7

OCIExtProcGetEnv()
OCIExtProcGetEnv()

Purpose
Get OCI Environment

Syntax
sword OCIExtProcGetEnv (OCIExtProcContext *with_context,
 OCIEnv envh,
 OCISvcCtx svch,
 OCIError errh)

Parameters

with_context (IN)
The with_context pointer that is passed to the C External Procedure. See
“With_Context Type” on page 16-2.

envh (OUT)
The OCI Environment handle.

svch (OUT)
The OCI Service handle.

errh (OUT)
The OCI Error handle.

Comments
Gets the OCI environment, service context, and error handles.

The primary purpose of this function is to allow OCI callbacks to use the database
in the same transaction. The OCI handles obtained by this function should be used
in OCI callbacks to the database. If these handles are obtained through standard
OCI calls, then these handles use a new connection to the database and cannot be
used for callbacks in the same transaction. In one external procedure you can use
either callbacks or a new connection, but not both.
16-8 Oracle Call Interface Programmer’s Guide

OCIExtProcGetEnv()
Returns
OCI_SUCCESS, on successful completion of the function.

OCI_ERROR, on error.

Related Functions
 OCI External Procedure Functions 16-9

OCIExtProcGetEnv()
16-10 Oracle Call Interface Programmer’s Guide

Part IV

Appendices

This part of the book contains the appendices:

■ Appendix A, “Upgrading Release 7.x OCI Applications to Release 8.0”,
discusses issues involved in upgrading Release 7.x OCI applications to Release
8.0. This includes lists of obsolete and obsolescent OCI calls.

■ Appendix B, “Handle and Descriptor Attributes”, lists the attributes of the
various OCI handles.

■ Appendix C, “Oracle Reserved Words, Keywords and Namespaces”, provides
information about reserved words, keywords and reserved namespaces.

■ Appendix D, “Code Examples”, includes code examples.

■ Appendix E, “OCI Function Server Roundtrips”, provides information about
the server roundtrips required by most OCI functions.

■ Appendix F, “Oracle8 OCI New Features”, provides detailed information
about features and enhancements available in the Oracle8 OCI.

 Upgrading Release 7.x OCI Applications to Releas
A

Upgrading Release 7.x OCI Applications to

Release 8.0

This appendix covers issues of compatibility between Oracle7 and Oracle8 OCI
applications and servers. It also discusses issues involved in upgrading
applications from the 7.x OCI to the 8.0 OCI.

The appendix contains the following sections:

■ Compatibility and Upgrade Overview

■ Obsolescent OCI Routines

■ Obsolete OCI Routines

■ Compatibility

■ Upgrading
e 8.0 A-1

Compatibility and Upgrade Overview
Compatibility and Upgrade Overview
Release 8.0 of the Oracle server provides support for applications written with
either the 7.x OCI and the 8.0 OCI.

The remaining sections of this chapter discuss changes in the OCI library routines,
issues concerning compatibility between different versions of the OCI and server,
as well as issues involved in migrating an application from the release 7.x OCI to
the release 8.0 OCI.

Obsolescent OCI Routines
Release 8.0 of the Oracle Call Interface contains an entirely new set of functions
which were not available in release 7.3. The earlier calls are still available, but
Oracle recommends that existing applications start using the new calls to improve
performance and provide increased functionality.

Table A–1 lists the 7.x OCI calls with their release 8.0 equivalents. For more
information about the 8.0 OCI calls, see the earlier chapters of this volume. For
more information about the 7.x calls, see the Programmer’s Guide to the Oracle Call
Interface, Release 7.3. These calls are obsolescent, meaning that Oracle may not
support these calls in future versions of the OCI.

Note: In many cases the new OCI routines do not map directly onto the 7.x rou-
tines, so it may not be possible to simply replace one function call and parame-
ter list with another. Additional program logic may be required before or after
the new call is made. See the remaining chapters of this guide for more informa-
tion.

Table A–1 Obsolescent OCI Routines

7.x OCI Routine Equivalent or Similar 8.0 OCI Routine

obindps(), obndra(), obn-
drn(), obndrv()

OCIBindByName(), OCIBindByPos() (Note: additional bind
calls may be necessary for some data types)

obreak() OCIBreak()

ocan() none

oclose() Note: cursors are not used in Release 8.0

ocof(), ocon() OCIStmtExecute() in OCI_COMMIT_ON_SUCCESS mode

ocom() OCITransCommit()

odefin(), odefinps() OCIDefineByPos() (Note: additional define calls may be neces-
sary for some data types)
A-2 Oracle Call Interface Programmer’s Guide

Obsolescent OCI Routines
odescr() Note: schema objects are described with OCIDescribeAny(). A
describe, as used in release 7.x , will most often be done by call-
ing OCIAttrGet() on the statement handle after SQL statement
execution.

odessp() OCIDescribeAny()

oerhms() OCIErrorGet()

oexec(), oexn() OCIStmtExecute() (or ociflsh())

oexfet() OCIStmtExecute(), OCIStmtFetch() (Note: result set rows can
be implicitly prefetched)

ofen(), ofetch() OCIStmtFetch()

oflng() none

ogetpi() OCIStmtGetPieceInfo()

olog() OCISvcCtxLogon()

ologof() OCISvcCtxLogoff()

onbclr(), onbset(), onbtst() Note: non-blocking mode can be set or checked by calling OCI-
AttrSet() or OCIAttrGet() on the server context handle or ser-
vice context handle

oopen() Note: cursors are not used in Release 8.0

oopt() none

oparse() Note: there is no explicit parse step in the 8.0 OCI.

opinit() OCIInitialize()

orol() OCITransRollback()

osetpi() OCIStmtSetPieceInfo()

sqlld2() none

sqllda() none

odsc() Note: see odescr() above

oermsg() OCIErrorGet()

olon() OCISvcCtxLogon()

orlon() OCISvcCtxLogon()

Table A–1 Obsolescent OCI Routines (Cont.)

7.x OCI Routine Equivalent or Similar 8.0 OCI Routine
 Upgrading Release 7.x OCI Applications to Release 8.0 A-3

Obsolete OCI Routines
See Also: For information about the additional functionality provided by new
release 8.0 functions not listed here, see the remaining chapters of this guide.

Obsolete OCI Routines
Some OCI routines that were available in previous versions of the OCI are now
obsolete, meaning that they are not supported for Release 8.0. They are listed in
Table A–2:

Compatibility
This section addresses compatibility between different versions of the OCI and
Oracle server.

7.x Applications
Existing 7.x applications with no new release 8.0 OCI calls have two choices:

■ do not relink the application

■ relink with the new 8.0 OCI library

oname() Note: see odescr() above

osql3() Note: see oparse() above

Table A–2 Obsolete OCI Routines

Obsolete OCI Routine Equivalent or Similar 8.0 OCI Routine

obind() OCIBindByName(), OCIBindByPos() (Note: additional
bind calls may be necessary for some data types)

obindn() OCIBindByName(), OCIBindByPos() (Note: additional
bind calls may be necessary for some data types)

odfinn() OCIDefineByPos() (Note: additional define calls may be
necessary for some data types)

odsrbn() Note: see odescr() in Table A–1

ologon() OCISvcCtxLogon()

osql() Note: see oparse() Table A–1

Table A–1 Obsolescent OCI Routines (Cont.)

7.x OCI Routine Equivalent or Similar 8.0 OCI Routine
A-4 Oracle Call Interface Programmer’s Guide

Compatibility
In either case, the application will work against both Oracle7 and Oracle8 servers.
The application will not be able to use Oracle8’s object features, and will not get
any of the performance or scalability benefits provided by the Oracle8 OCI.

8.0 Applications
New applications written completely in the release 8.0 OCI will work seamlessly
against both Oracle7 and Oracle8 servers with the following exceptions:

■ Against Oracle7 servers, none of Oracle8’s object features are supported, and
the following datatypes are not supported:

– SQLT_NTY - named data type

– SQLT_REF - reference to named data type in host language representation.

– SQLT_CLOB - a character LOB data type.

– SQLT_BLOB - a binary LOB data type.

– SQLT_NCLOB - a national character set LOB data type.

– SQLT_NCHAR - fixed or varying national character set datatype.

– SQLT_BFILE - a binary FILE LOB data type.

– SQLT_RSET - result set data type.

■ Against Oracle7 Servers, the following calls or features are not supported, or
are supported with restrictions:

Table A–3 8.0 OCI Restrictions When Running Against Oracle7 Servers

Function Restrictions

OCIBindObject() not supported

OCIPasswordChange() not supported

OCIDefineObject() not supported

OCIDescribeAny() only supports description of select lists or stored procedures

OCIErrorGet() only a subset of Oracle error codes can be returned

OCIStmtFetch() prefetching options not supported

OCILob*() calls LOB/FILE calls are not supported

OCIAttrSet() setting NCHAR attributes not supported

OCIAttrGet() getting NCHAR attributes not supported
 Upgrading Release 7.x OCI Applications to Release 8.0 A-5

Upgrading
Upgrading
Programmers who wish to incorporate new release 8.0 functionality into existing
OCI applications have two options:

■ Completely rewrite the application to use only new OCI calls

■ Incorporate new release 8.0 OCI calls into the application, while still using 7.x
calls for some operations.

This manual, along with Volume I, should provide the information necessary to
rewrite an existing application to use only new OCI calls.

Adding 8.0 Calls to 7.x Applications
The following guidelines apply to programmers who want to incorporate new
Oracle8 datatypes and features by using new OCI calls, while keeping 7.x calls for
some operations:

■ Change the existing logon to use OCILogon instead of olog() (or other logon
call). The service context handle can be used with new OCI calls or can be con-
verted into a Lda_Def to be used with 7.x OCI calls.

Note: See the description of OCIServerAttach() on page 13-125 and the descrip-
tion of OCISessionBegin() on page 13-129 for information about the logon calls
necessary for applications which are maintaining multiple sessions.

■ Once the server context handle has been initialized, it can be used with Oracle8
OCI calls.

■ To use Oracle7 OCI calls, convert the server context handle to an Lda_Def
using OCISvcCtxToLda(), and pass the resulting Lda_Def to the 7.x calls.

Note: If there are multiple service contexts which share the same server handle,
only one can be in Oracle7 mode at any time.

■ To begin using 8.0 calls again, the application must convert the Lda_Def back
to a server context handle using OCILdaToSvcCtx().

■ The application may toggle between the Lda_Def and server context as often
as necessary in the application.

This approach allows an application to use a single connection, but two different
APIs, to accomplish different tasks.

You can mix and match OCI 7.x and OCI 8.0 calls within a transaction, but not
within a statement. So you can execute one SQL or PL/SQL statement with OCI 7.x
A-6 Oracle Call Interface Programmer’s Guide

Application Linking Issues
calls and the next SQL or PL/SQL statement within that transaction with OCI 8.0
calls.

Warning: You can not open a cursor, and parse with OCI 7.x calls and then exe-
cute the statement with OCI 8.0 calls.

Application Linking Issues
This section discusses issues related to application linking, including the use of
non-deferred linking and single-task linking with various OCI versions.

Non-deferred linking
Application developers are cautioned that Oracle plans to desupport non-deferred
mode linking beginning with the release of Oracle9 (it will continue to be
supported with all the releases of Oracle8). Recognizing these plans, application
developers should no longer use non-deferred mode linking in developing new
applications. Version 7.3 of the OCI supports two linking modes:

1. Non-deferred linking: The Oracle6 OCI (client) only supported non-deferred
linking which meant that for each SQL statement, a parse, a bind and a define
call were each executed separately with individual round trips between the cli-
ent and the server. This significantly increased network traffic between the cli-
ent and the server and reduced both the performance and scalability of OCI
applications.

2. Deferred linking: Unlike the Oracle6 OCI, the Oracle7 OCI supports both
non-deferred linking and deferred linking. Deferred mode linking essentially
defers the bind and define steps until the statement executes - that is it automat-
ically bundles and defers the bind and define calls to execution time. Further,
when the application is linked with deferred mode and a special parsing call is
used (the OPARSE call with the DEFFLG set to a non-zero value), even the
parse call can be deferred to execution time. Note that deferred mode linking
does not depend on the specific OCI calls that the application uses, only on the
link option that is selected.

Deferred mode linking therefore significantly reduces the number of round trips
between the client and the server and as a result improves the performance and
scalability of OCI applications. The default behavior of Oracle7 OCI connected to
the Oracle7 server is deferred mode linking. However, Oracle7 OCI also supports
non-deferred linking by setting specific link time options.

Further, Oracle8 OCI has two types of calls: first, all the Oracle7 OCI calls are
supported with Oracle8 OCI i.e. they will work with a Oracle8 OCI client by
 Upgrading Release 7.x OCI Applications to Release 8.0 A-7

Application Linking Issues
relinking the version 8 OCI libraries. Second, there are additional Oracle8-specific
OCI calls. The default mode with the first type of calls continues to be deferred
mode linking; however, non-deferred mode linking is supported for these calls
through all releases of Oracle8 by setting link time options. However,
Oracle8-specific calls use a different paradigm and as a result non-deferred mode
linking is not necessary.

The various combinations of client-side libraries and server with which
non-deferred linking is currently supported are summarized in the following table:

Oracle will continue to support deferred-mode linking with all the releases of
Oracle8 (all 8.* releases). This has the following implications:

Applications using Oracle6 OCI libraries
Since the Oracle6 OCI library is not supported against the Oracle8 database,
applications using the Oracle6 OCI library cannot be run against an Oracle8
database.

Applications using Oracle7 OCI libraries
Applications using Oracle7 OCI libraries can run in two configurations against an
Oracle8 database:

Table A–4 Supported Linking Modes for Various Client and Server Versions

Client Oracle6 OCI Oracle7 OCI Oracle8 OCI

(7.x calls)

Oracle8 OCI

(8.0 calls)

Oracle9 OCI

Server

Oracle9 Not supported Default: deferred
Non-deferred
supported

Default: deferred
Non-deferred
supported

Not supported Not supported

Oracle8 Not supported Default: deferred
Non-deferred
supported

Default: deferred
Non-deferred
supported

Not supported Not supported

Oracle7 Non-deferred
mode only

Default: deferred
Non-deferred
supported

Default: deferred
Non-deferred
supported

Not supported Not supported

Oracle6 Non-deferred
mode only

Default: deferred
Non-deferred
supported

Not supported Not supported Not supported
A-8 Oracle Call Interface Programmer’s Guide

Application Linking Issues
1. They can be run with Oracle7 OCI libraries against an Oracle8 database in
non-deferred mode provided link time options are set appropriately.

2. They can also be relinked with the Oracle8 OCI libraries and run in
non-deferred mode provided link time options are set appropriately. Oracle
will support the first configuration through all the releases of Oracle8. How-
ever, the second configuration will not be supported in Oracle9. Therefore,
applications that require non-deferred linking will not be able to upgrade to
Oracle9 client-side libraries.

Applications using Oracle8 OCI libraries
Applications using Oracle8- specific OCI calls, such as those used to access
Oracle8's object types, do not need to use non-deferred mode linking since the
Oracle8 OCI uses a different paradigm. Applications using only Oracle7 OCI calls
will be able to use non-deferred mode linking but only through release 8.1

Single-task linking
Single-task linking is a feature used by a limited number of Oracle's customers,
primarily on the OpenVMS platform. Some Oracle platforms support single-task
linking, others no longer support it. Application developers are cautioned that
Oracle will desupport single task on ALL platforms beginning with the first server
release after Oracle8. Oracle will continue to support single-task linking for all
Oracle8.x releases on those platforms that do support it today. Application
developers are referred to the product-line specific documentation to determine
whether or not their platform supports single-task linking today.

With single-task linking, Oracle supports two configurations to link Oracle
products and user-written applications against the Oracle database:

1. Single-task linking: In this case, applications are directly linked against the Ora-
cle shareable image making single-task connection to Oracle

2. Two-task linking: In this case, applications linked in a standalone configuration
can only connect to Oracle using Net8's two task drivers such as Net8 DECnet
or Net8 VMS Mailbox on the OpenVMS platform. This is the typical configura-
tion used in the large majority of client-server applications. With two task link-
ing applications and tools connect with the Oracle7 database through a
programmatic interface that creates a shadow process for each user process.
This shadow process runs a copy of the Oracle shareable image on behalf of the
user process using Net8 protocols to communicate between the user and
shadow processes. Therefore, with this interface, user routines that invoke the
 Upgrading Release 7.x OCI Applications to Release 8.0 A-9

Application Linking Issues
Oracle7 Server functions run as one process or task, and the Oracle7 routines
that execute these functions run as the second task.

Oracle will continue to support single-task linking with all the releases of Oracle8
(all 8.* releases) but will desupport it beginning with the first release after Oracle8.
Application developers who would like to use single-task linking to run their
applications will not be able to do so against the first server release after Oracle8.
A-10 Oracle Call Interface Programmer’s Guide

 Handle and Descriptor Attri
B

Handle and Descriptor Attributes

This Appendix describes attributes for OCI handles and descriptors, which can be
read with OCIAttrGet(), and can be modified with OCIAttrSet().

The following handle types are included:

■ Environment Handle Attributes

■ Service Context Handle Attributes

■ Server Handle Attributes

■ User Session Handle Attributes

■ Transaction Handle Attributes

■ Statement Handle Attributes

■ Bind Handle Attributes

■ Define Handle Attributes

■ Describe Handle Attributes

■ Parameter Descriptor Attributes

■ LOB Locator Attributes

■ Complex Object Attributes

■ Advanced Queueing Descriptor Attributes
butes B-1

Conventions
Conventions

For each handle type, the attributes which can be read or changed are listed.

Each attribute listing includes the following information:

Mode
The following modes are possible:

READ - the attribute can be read using OCIAttrGet()

WRITE - the attribute can be modified using OCIAttrSet()

READ/WRITE - the attribute can be read using OCIAttrGet(), and it can be
modified using OCIAttrSet().

Description
This is a description of the purpose of the attribute.

Attribute Datatype
This is the datatype of the attribute. If necessary, a distinction is made between the
datatype for READ and WRITE modes.

Possible Values
In some cases, only certain values are allowed, and they are listed here.

Example
In some cases an example is included.
B-2 Oracle Call Interface Programmer’s Guide

Environment Handle Attributes
Environment Handle Attributes

OCI_ATTR_CACHE_MAX_SIZE

Mode
READ/WRITE

Description
Sets the maximum size (high watermark) for the client-side object cache as a
percentage of the optimal size. The default value is 10%. See the section “Object
Cache Parameters” on page 11-5 for more information.

Attribute Datatype
ub4 *

OCI_ATTR_CACHE_OPT_SIZE

Mode
READ/WRITE

Description
Sets the optimal size for the client-side object cache in bytes. The default value is
200k bytes. See the section “Object Cache Parameters” on page 11-5 for more
information.

Attribute Datatype
ub4 *

OCI_ATTR_OBJECT

Mode
READ

Description
Returns TRUE if the environment was initialized in object mode.

Attribute Datatype
boolean *
 Handle and Descriptor Attributes B-3

OCI_ATTR_FNCODE
OCI_ATTR_FNCODE

Mode
READ

Description
Returns the function code of the last OCI operation on a handle. Each OCI function
has a ub4 value.

The OCI function codes are listed in Table B–1 on page B - 5.

Attribute Datatype
ub4 *

OCI_ATTR_PINOPTION

Mode
READ/WRITE

Description
This attribute sets the value of OCI_PIN_DEFAULT for the application associated
with the environment handle.

For example, if OCI_ATTR_PINOPTION is set to OCI_PIN_RECENT, then if
OCIObjectPin() is called with the pin_option parameter set to OCI_PIN_DEFAULT,
then the object is pinned in OCI_PIN_RECENT mode.

Attribute Datatype
OCIPinOpt *

OCI_ATTR_ALLOC_DURATION

Mode
READ/WRITE

Description
This attribute sets the value of OCI_DURATION_DEFAULT for allocation
durations for the application associated with the environment handle.

Attribute Datatype
OCIDuration *
B-4 Oracle Call Interface Programmer’s Guide

Environment Handle Attributes
Table B–1 OCI Function Codes

OCI Routine # OCI Routine # OCI Routine

1 OCIInitialize 27 OCIDefineArrayOfStruct 53 (NOT USED)

2 OCIHandleAlloc 28 OCIStmtFetch 54 OCIAttrGet

3 OCIHandleFree 29 OCIStmtGetBindInfo 55 OCIAttrSet

4 OCIDescriptorAlloc 30 (NOT USED) 56 OCIParamSet

5 OCIDescriptorFree 31 (NOT USED) 57 OCIParamGet

6 OCIEnvInit 32 OCIDescribeAny 58 OCIStmtGetPieceInfo

7 OCIServerAttach 33 OCITransStart 59 OCILdaToSvcCtx

8 OCIServerDetach 34 OCITransDetach 60 (NOT USED)

9 (NOT USED) 35 OCITransCommit 61 OCIStmtSetPieceInfo

10 OCISessionBegin 36 (NOT USED) 62 OCITransForget

11 OCISessionEnd 37 OCIErrorGet 63 OCITransPrepare

12 OCIPasswordChange 38 OCILobFileOpen 64 OCITransRollback

13 OCIStmtPrepare 39 OCILobFileClose 65 OCIDefineByPos

14 (NOT USED) 40 (NOT USED) 66 OCIBindByPos

15 (NOT USED) 41 (NOT USED) 67 OCIBindByName

16 (NOT USED) 42 OCILobCopy 68 OCILobAssign

17 OCIBindDynamic 43 OCILobAppend 69 OCILobIsEqual

18 OCIBindObject 44 OCILobErase 70 OCILobLocatorIsInit

19 (NOT USED) 45 OCILobGetLength 71 OCILobEnableBuffering

20 OCIBindArrayOfStruct 46 OCILobTrim 72 OCILobCharSetID

21 OCIStmtExecute 47 OCILobRead 73 OCILobCharSetForm

22 (NOT USED) 48 OCILobWrite 74 OCILobFileSetName

23 (NOT USED) 49 (NOT USED) 75 OCILobFileGetName

24 (NOT USED) 50 OCIBreak 76 OCILogon

25 OCIDefineObject 51 OCIServerVersion 77 OCILogoff

26 OCIDefineDynamic 52 (NOT USED) 78 OCILobDisableBuffering

79 OCILobFlushBuffer

80 OCILobLoadFromFile
 Handle and Descriptor Attributes B-5

OCI_ATTR_PIN_DURATION
OCI_ATTR_PIN_DURATION

Mode
READ/WRITE

Description
This attribute sets the value of OCI_DURATION_DEFAULT for pin durations for
the application associated with the environment handle.

Attribute Datatype
OCIDuration *
B-6 Oracle Call Interface Programmer’s Guide

Service Context Handle Attributes
Service Context Handle Attributes

OCI_ATTR_SQLCODE

Mode
READ

Description
Returns the code of the last SQL command processed on the service context handle.
Each SQL command has a ub4 value.

The SQL command codes are listed in Table B–2 on page B - 8.

Attribute Datatype
ub2 *

OCI_ATTR_ENV

Mode
READ

Description
returns the environment context associated with the service context.

Attribute Datatype
OCIEnv **

OCI_ATTR_SERVER

Mode
READ/WRITE

Description
When read, returns the pointer to the server context attribute of the service context.

When changed, sets the server context attribute of the service context.

Attribute Datatype
OCIServer ** (READ) / OCIServer * (WRITE)
 Handle and Descriptor Attributes B-7

OCI_ATTR_SERVER
Table B–2 SQL Command Codes

Code SQL Function Code SQL Function Code SQL Function
01 CREATE TABLE 35 LOCK 69 (NOT USED)

02 SET ROLE 36 NOOP 70 ALTER RESOURCE COST

03 INSERT 37 RENAME 71 CREATE SNAPSHOT LOG

04 SELECT 38 COMMENT 72 ALTER SNAPSHOT LOG

05 UPDATE 39 AUDIT 73 DROP SNAPSHOT LOG

06 DROP ROLE 40 NO AUDIT 74 CREATE SNAPSHOT

07 DROP VIEW 41 ALTER INDEX 75 ALTER SNAPSHOT

08 DROP TABLE 42 CREATE EXTERNAL DATABASE 76 DROP SNAPSHOT

09 DELETE 43 DROP EXTERNAL DATABASE 77 CREATE TYPE

10 CREATE VIEW 44 CREATE DATABASE 78 DROP TYPE

11 DROP USER 45 ALTER DATABASE 79 ALTER ROLE

12 CREATE ROLE 46 CREATE ROLLBACK SEGMENT 80 ALTER TYPE

13 CREATE SEQUENCE 47 ALTER ROLLBACK SEGMENT 81 CREATE TYPE BODY

14 ALTER SEQUENCE 48 DROP ROLLBACK SEGMENT 82 ALTER TYPE BODY

15 (NOT USED) 49 CREATE TABLESPACE 83 DROP TYPE BODY

16 DROP SEQUENCE 50 ALTER TABLESPACE 84 DROP LIBRARY

17 CREATE SCHEMA 51 DROP TABLESPACE 85 TRUNCATE TABLE

18 CREATE CLUSTER 52 ALTER SESSION 86 TRUNCATE CLUSTER

19 CREATE USER 53 ALTER USER 87 CREATE BITMAPFILE

20 CREATE INDEX 54 COMMIT (WORK) 88 ALTER VIEW

21 DROP INDEX 55 ROLLBACK 89 DROP BITMAPFILE

22 DROP CLUSTER 56 SAVEPOINT 90 SET CONSTRAINTS

23 VALIDATE INDEX 57 CREATE CONTROL FILE 91 CREATE FUNCTION

24 CREATE PROCEDURE 58 ALTER TRACING 92 ALTER FUNCTION

25 ALTER PROCEDURE 59 CREATE TRIGGER 93 DROP FUNCTION

26 ALTER TABLE 60 ALTER TRIGGER 94 CREATE PACKAGE

27 EXPLAIN 61 DROP TRIGGER 95 ALTER PACKAGE

28 GRANT 62 ANALYZE TABLE 96 DROP PACKAGE

29 REVOKE 63 ANALYZE INDEX 97 CREATE PACKAGE BODY

30 CREATE SYNONYM 64 ANALYZE CLUSTER 98 ALTER PACKAGE BODY

31 DROP SYNONYM 65 CREATE PROFILE 99 DROP PACKAGE BODY

32 ALTER SYSTEM SWITCH LOG 66 DROP PROFILE 157 CREATE DIRECTORY

33 SET TRANSACTION 67 ALTER PROFILE 158 DROP DIRECTORY

34 PL/SQL EXECUTE 68 DROP PROCEDURE 159 CREATE LIBRARY
B-8 Oracle Call Interface Programmer’s Guide

Service Context Handle Attributes
OCI_ATTR_SESSION

Mode
READ/WRITE

Description
When read, returns the pointer to the authentication context attribute of the service
context.

When changed, sets the authentication context attribute of the service context.

Attribute Datatype
OCISession ** (READ) / OCISession * (WRITE)

OCI_ATTR_TRANS

Mode
READ/WRITE

Description
When read, returns the pointer to the transaction context attribute of the service
context.

When changed, sets the transaction context attribute of the service context.

Attribute Datatype
OCITrans ** (READ) / OCITrans * (WRITE)

OCI_ATTR_IN_V8_MODE

Mode
READ

Description
Allows you to determine whether an application has switched to Oracle7 mode
(e.g., through an OCISvcCtxToLda() call). A non-zero (true) return value indicates
that the application is currently running in Oracle8 mode, a zero (false) return
value indicates that the application is currently running in Oracle7 mode.

Attribute Datatype
ub1 *
 Handle and Descriptor Attributes B-9

OCI_ATTR_IN_V8_MODE
Example
The following code sample shows how this parameter might be used:

in_v8_mode = 0;
OCIAttrGet ((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX, (ub1 *)&in_v8_mode,
 (ub4) 0, OCI_ATTR_IN_V8_MODE, errhp);
if (in_v8_mode)

fprintf (stdout, "In V8 mode\n");
else

fprintf (stdout, "In V7 mode\n");
B-10 Oracle Call Interface Programmer’s Guide

Server Handle Attributes
Server Handle Attributes

OCI_ATTR_ENV

Mode
READ

Description
Returns the environment context associated with the server context.

Attribute Datatype
OCIEnv **

OCI_ATTR_FNCODE

Mode
READ

Description
Returns the function code of the last OCI operation on a handle. Each OCI function
has a ub4 value.

The OCI function codes are listed in Table B–1 on page B-5.

Attribute Datatype
ub4 *

OCI_ATTR_EXTERNAL_NAME

Mode
READ/WRITE

Description
The external name is the user-friendly global name stored in sys.props$.value$
where name = ‘GLOBAL_DB_NAME’. It is not guaranteed to be unique unless all
databases register their names with a network directory service.

Database names can be exchanged with the server in case of distributed transaction
coordination. Server database names can only be accessed if the database is open at
the time the OCISessionBegin() call is issued.
 Handle and Descriptor Attributes B-11

OCI_ATTR_INTERNAL_NAME
Attribute Datatype
text ** (READ) / text * (WRITE)

OCI_ATTR_INTERNAL_NAME

Mode
READ/WRITE

Description
Sets the client database name that will be recorded when performing global
transactions. The name can be used by the DBA to track transactions that may be
pending in a prepared state due to failures.

Attribute Datatype
text ** (READ) / text * (WRITE)

OCI_ATTR_IN_V8_MODE

Mode
READ

Description
Allows you to determine whether an application has switched to Oracle7 mode
(e.g., through an OCISvcCtxToLda() call). A non-zero (true) return value indicates
that the application is currently running in Oracle8 mode, a zero (false) return
value indicates that the application is currently running in Oracle7 mode.

Attribute Datatype
ub1 *

OCI_ATTR_FOCBK

Mode
READ/WRITE

Description
See “Application Failover Callbacks” on page 7-36 for more information.

Attribute Datatype
OCIFocbkStruct *
B-12 Oracle Call Interface Programmer’s Guide

User Session Handle Attributes
User Session Handle Attributes

OCI_ATTR_USERNAME

Mode
WRITE

Description
Specifies a username to use for authentication.

Attribute Datatype
text *

OCI_ATTR_PASSWORD

Mode
WRITE

Description
Specifies a password to use for authentication.

Attribute Datatype
text *
 Handle and Descriptor Attributes B-13

Transaction Handle Attributes
Transaction Handle Attributes

OCI_ATTR_TRANS_NAME

Mode
READ/WRITE

Description
Can be used to establish or read a text string which identifies a transaction. This is
an alternative to using the XID to identify the transaction. The text string can be up
to 64 bytes long.

Attribute Datatype
text ** (READ) / text * (WRITE)

OCI_ATTR_XID

Mode
READ/WRITE

Description
Can set or read an XID which identifies a transaction.

Attribute Datatype
XID ** (READ) / XID * (WRITE)
B-14 Oracle Call Interface Programmer’s Guide

Statement Handle Attributes
Statement Handle Attributes

OCI_ATTR_FNCODE

Mode
READ

Description
Returns the function code of the last OCI operation on a handle. Each OCI function
has a ub4 value. The OCI function codes are listed in Table B–1 on page B-5.

Attribute Datatype
ub4 *

OCI_ATTR_ROW_COUNT

Mode
READ

Description
Returns the number of rows processed so far. The default value is 1.

Attribute Datatype
ub4 *

OCI_ATTR_SQLFNCODE

Mode
READ

Description
Returns the function code of the SQL command associated with the statement.

Attribute Datatype
ub2 *

Notes
The SQL command codes are listed in Table B–2 on page B - 8.
 Handle and Descriptor Attributes B-15

OCI_ATTR_ENV
OCI_ATTR_ENV

Mode
READ

Description
Returns the environment context associated with the statement.

Attribute Datatype
OCIEnv **

OCI_ATTR_STMT_TYPE

Mode
READ

Description
The type of statement associated with the handle. Possible values are:

■ OCI_STMT_SELECT

■ OCI_STMT_UPDATE

■ OCI_STMT_DELETE

■ OCI_STMT_INSERT

■ OCI_STMT_CREATE

■ OCI_STMT_DROP

■ OCI_STMT_ALTER

■ OCI_STMT_BEGIN (PL/SQL statement)

■ OCI_STMT_DECLARE (PL/SQL statement)

Attribute Datatype
ub2 *
B-16 Oracle Call Interface Programmer’s Guide

Statement Handle Attributes
OCI_ATTR_ROWID

Mode
READ

Description
Returns the rowid of the current row inserted, updated or fetched in a character
string format. If execute had been a multiple row operation then, len should
contain the iteration number of the row the application is interested in. When
connected to an Oracle7 Server only the rowid of the last row inserted, updated, or
fetched can be obtained.

Attribute Datatype
OCIRowid **

OCI_ATTR_PARAM_COUNT

Mode
READ

Description
This attribute can be used to get the number of columns in the select-list for the
statement associated with the statement handle.

Attribute Datatype
ub4 *

Example
The following code sample shows how this attribute might be used:

/* Describe of a select-list */
text *selstmt = "SELECT * FROM EMP";
ub4 parmcnt;
OCIParam *parmdp;

err = OCIStmtPrepare (stmhp, errhp, selstmt,
(ub4)strlen((char *)selstmt),

(ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

err = OCIStmtExecute (svchp, stmhp, errhp, (ub4)1, (ub4)0,
(const OCISnapshot*) 0, (OCISnapshot*)0, OCI_DESCRIBE_ONLY);
 Handle and Descriptor Attributes B-17

OCI_ATTR_PREFETCH_ROWS
/* get the number of columns in the select list */
err = OCIAttrGet ((dvoid *)stmhp, (ub4)OCI_HTYPE_STMT, (dvoid *)

&parmcnt, (ub4 *) 0, (ub4)OCI_ATTR_PARAM_COUNT, errhp);

/* get describe information for each column */
for (i = 0; i < parmcnt; i++) {
 OCIParamGet (dvoid *)stmhp, OCI_HTYPE_STMT, errhp, &parmdp, i);
/* get the attributes for each column */
 }

OCI_ATTR_PREFETCH_ROWS

Mode
WRITE

Description
Sets the number of top level rows to be prefetched. The default value is 1 row.

Attribute Datatype
ub4 *

OCI_ATTR_PREFETCH_MEMORY

Mode
WRITE

Description
Sets the memory level for top level rows to be prefetched. Rows up to the specified
top level row count are fetched if it occupies no more than the specified memory
usage limit. The default value is 0, which means that memory size is not included
in computing the number of rows to prefetch.

Attribute Datatype
ub4 *
B-18 Oracle Call Interface Programmer’s Guide

Bind Handle Attributes
Bind Handle Attributes

OCI_ATTR_FNCODE

Mode
READ

Description
Returns the function code of the last OCI operation on a handle. Each OCI function
has a ub4 value. The OCI function codes are listed in Table B–1 on page B-5.

Attribute Datatype
ub4 *

OCI_ATTR_CHAR_COUNT

Mode
WRITE

Description
See “Character Count Attribute” on page 5-26.

Attribute Datatype
ub4 *

OCI_ATTR_CHARSET_ID

Mode
READ/WRITE

Description
Character set ID of the bind handle.

Attribute Datatype
ub2 *
 Handle and Descriptor Attributes B-19

OCI_ATTR_CHARSET_FORM
OCI_ATTR_CHARSET_FORM

Mode
READ/WRITE

Description
Character set form of the bind handle.

Attribute Datatype
ub1 *

OCI_ATTR_MAXDATA_SIZE

Mode
READ/WRITE

Description
See “OCI_ATTR_MAXDATA_SIZE Attribute” on page 5-26.

Attribute Datatype
sb4 *

OCI_ATTR_PDSCL

Mode
WRITE

Description
Sets the number of digits to the right of the decimal point for fields where the data
type is SQLT_PDN.

Attribute Datatype
ub2 *
B-20 Oracle Call Interface Programmer’s Guide

Bind Handle Attributes
OCI_ATTR_PDFMT

Mode
WRITE

Description
Specifies a format string.

Attribute Datatype
text **

OCI_ATTR_ROWS_RETURNED

Mode
READ

Description
This attribute returns the number of rows that are going to be returned in the
current iteration when we are in the OUT callback function for binding a DML
statement with RETURNING clause.

Attribute Datatype
ub4 *
 Handle and Descriptor Attributes B-21

Define Handle Attributes
Define Handle Attributes

OCI_ATTR_FNCODE

Mode
READ

Description
Returns the function code of the last OCI operation on a handle. Each OCI function
has a ub4 value.

The OCI function codes are listed in Table B–1 on page B-5.

Attribute Datatype
ub4 *

OCI_ATTR_CHAR_COUNT

Mode
WRITE

Description
Sets the number of characters in a character type data. This specifies the number of
characters desired in the define buffer. The define buffer length as specified in the
define call must be greater than number of characters.

Attribute Datatype
ub4 *

OCI_ATTR_CHARSET_ID

Mode
READ/WRITE

Description
The character set ID of the define handle.

Attribute Datatype
ub2 *
B-22 Oracle Call Interface Programmer’s Guide

Define Handle Attributes
OCI_ATTR_CHARSET_FORM

Mode
READ/WRITE

Description
The character set form of the define handle.

Attribute Datatype
ub1 *

OCI_ATTR_PDSCL

Mode
WRITE

Description
Sets the number of digits to the right of the decimal point for fields where the data
type is SQLT_PDN.

Attribute Datatype
ub2 *

OCI_ATTR_PDFMT

Mode
WRITE

Description
Specifies a format string.

Attribute Datatype
text **
 Handle and Descriptor Attributes B-23

Describe Handle Attributes
Describe Handle Attributes

OCI_ATTR_PARAM_COUNT

Mode
READ

Description
Returns the number of parameters in the describe handle. When the describe
handle is a description of the select list, this refers to the number of columns in the
select list.

Attribute Datatype
ub4 *

Parameter Descriptor Attributes

For a detailed list of parameter descriptor attributes, refer to Chapter 6, “Describing
Schema Metadata”.
B-24 Oracle Call Interface Programmer’s Guide

LOB Locator Attributes
LOB Locator Attributes

OCI_ATTR_LOBEMPTY

Mode
WRITE

Description
Sets the internal LOB locator to empty. The locator can then be used as a bind
variable for an INSERT or UPDATE statement to initialize the LOB to empty. Once
the LOB is empty, OCILobWrite() can be called to populate the LOB with data. This
attribute is only valid for internal LOBs (i.e., BLOB, CLOB, NCLOB).

Applications should pass address of a ub4 which has a value of 0; e.g., declare

ub4 lobEmpty = 0

then pass address &lobEmpty .

Attribute Datatype
ub4 *
 Handle and Descriptor Attributes B-25

Complex Object Attributes
Complex Object Attributes

For information about complex object retrieval, see “Complex Object Retrieval” on
page 8-21.

Complex Object Retrieval Handle Attributes

OCI_ATTR_COMPLEXOBJECT_LEVEL

Mode
WRITE

Description
The depth level for complex object retrieval.

Attribute Datatype
ub4 *

OCI_ATTR_COMPLEXOBJECT_COLL_OUTOFLINE

Mode
WRITE

Description
Whether to fetch collection attributes in an object type out-of-line.

Attribute Datatype
ub1 *
B-26 Oracle Call Interface Programmer’s Guide

Complex Object Attributes
Complex Object Retrieval Descriptor Attributes

OCI_ATTR_COMPLEXOBJECTCOMP_TYPE

Mode
WRITE

Description
A type of REF to follow for complex object retrieval.

Attribute Datatype
dvoid *

OCI_ATTR_COMPLEXOBJECTCOMP_TYPE_LEVEL

Mode
WRITE

Description
Depth level for following REFs of type OCI_ATTR_COMPLEXOBJECT_COMP_TYPE.

Attribute Datatype
ub4 *
 Handle and Descriptor Attributes B-27

Advanced Queueing Descriptor Attributes
Advanced Queueing Descriptor Attributes

For more information about Advanced Queueing, properties, and options, refer to
the Advanced Queueing chapter of the Oracle8 Application Developer’s Guide.

OCIAQEnqOptions Descriptor Attributes
The following attributes are properties of the OCIAQEnqOptions descriptor:

OCI_ATTR_RELATIVE_MSGID

Mode
READ/WRITE

Description
Specifies the message identifier of the message which is referenced in the sequence
deviation operation. This value is valid if and only if OCI_ENQ_BEFORE is
specified in OCI_ATTR_SEQUENCE_DIVISION. This value is ignored if the
sequence deviation is not specified.

Attribute Datatype
OCIRaw *

OCI_ATTR_SEQUENCE_DEVIATION

Mode
READ/WRITE

Description
Specifies whether the message being enqueued should be dequeued before other
message(s) already in the queue.

Attribute Datatype
ub4

Possible Values
The only valid values are:

■ OCI_ENQ_BEFORE - the message is enqueued ahead of the message specified
by OCI_ATTR_RELATIVE_MSGID.
B-28 Oracle Call Interface Programmer’s Guide

Advanced Queueing Descriptor Attributes
■ OCI_ENQ_TOP - the message is enqueued ahead of any other messages.

OCI_ATTR_VISIBILITY

Mode
READ/WRITE

Description
Specifies the transactional behavior of the enqueue request.

Attribute Datatype
ub4

Possible Values
The only valid values are:

■ OCI_ENQ_ON_COMMIT - the enqueue is part of the current transaction. The
operation is complete when the transaction commits. This is the default case.

■ OCI_ENQ_IMMEDIATE - the enqueue is not part of the current transaction.
The operation constitutes a transaction of its own.

OCIAQDeqOptions Descriptor Attributes
The following attributes are properties of the OCIAQDeqOptions descriptor:

OCI_ATTR_CONSUMER_NAME

Mode
READ/WRITE

Description
Name of the consumer. Only those messages matching the consumer name are
accessed. If a queue is not set up for multiple consumers, this field should be set to
NULL.

Attribute Datatype
text *
 Handle and Descriptor Attributes B-29

OCIAQDeqOptions Descriptor Attributes
OCI_ATTR_CORRELATION

Mode
READ/WRITE

Description
Specifies the correlation identifier of the message to be dequeued. Special pattern
matching characters, such as the percent sign (%) and the underscore (_) can be
used. If more than one message satisfies the pattern, the order of dequeuing is
undetermined.

Attribute Datatype
text *

OCI_ATTR_DEQ_MODE

Mode
READ/WRITE

Description
Specifies the locking behavior associated with the dequeue.

Attribute Datatype
ub4

Possible Values
The only valid values are:

■ OCI_DEQ_BROWSE - read the message without acquiring any lock on the
message. This is equivalent to a SELECT statement.

■ OCI_DEQ_LOCKED - read and obtain a write lock on the message. The lock
lasts for the duration of the transaction. This is equivalent to a SELECT FOR
UPDATE statement.

■ OCI_DEQ_REMOVE - read the message and update or delete it. This is the
default. The message can be retained in the queue table based on the retention
properties.
B-30 Oracle Call Interface Programmer’s Guide

Advanced Queueing Descriptor Attributes
OCI_ATTR_DEQ_MSGID

Mode
READ/WRITE

Description
Specifies the message identifier of the message to be dequeued.

Attribute Datatype
OCIRaw *

OCI_ATTR_NAVIGATION

Mode
READ/WRITE

Description
Specifies the position of the message that will be retrieved. First, the position is
determined. Second, the search criterion is applied. Finally, the message is retrieved.

Attribute Datatype
ub4

Possible Values
The only valid values are:

■ OCI_DEQ_FIRST_MSG - retrieves the first message which is available and
matches the search criteria. This will reset the position to the beginning of the
queue.

■ OCI_DEQ_NEXT_MSG - retrieves the next message which is available and
matches the search criteria. If the previous message belongs to a message
group, AQ will retrieve the next available message which matches the search
criteria and belongs to the message group. This is the default.

■ OCI_DEQ_NEXT_TRANSACTION - skips the remainder of the current
transaction group (if any) and retrieves the first message of the next transaction
group. This option can only be used if message grouping is enabled for the
current queue.
 Handle and Descriptor Attributes B-31

OCIAQDeqOptions Descriptor Attributes
OCI_ATTR_VISIBILITY

Mode
READ/WRITE

Description
Specifies whether the new message is dequeued as part of the current
transaction.The visibility parameter is ignored when using the BROWSE mode.

Attribute Datatype
ub4

Possible Values
The only valid values are:

■ OCI_DEQ_ON_COMMIT - the dequeue will be part of the current transaction.
This is the default case.

■ OCI_DEQ_IMMEDIATE - the dequeued message is not part of the current
transaction. It constitutes a transaction on its own.

OCI_ATTR_WAIT

Mode
READ/WRITE

Description
Specifies the wait time if there is currently no message available which matches the
search criteria. This parameter is ignored if messages in the same group are being
dequeued.

Attribute Datatype
ub4

Possible Values
Any ub4 value is valid, but the following predefined constants are provided:

■ OCI_DEQ_WAIT_FOREVER - wait forever. This is the default.

■ OCI_DEQ_NO_WAIT - do not wait.
B-32 Oracle Call Interface Programmer’s Guide

Advanced Queueing Descriptor Attributes
OCIAQMsgProperties Descriptor Attributes
The following attributes are properties of the OCIAQMsgProperties descriptor:

OCI_ATTR_ATTEMPTS

Mode
READ

Description
Specifies the number of attempts that have been made to dequeue the message.
This parameter cannot be set at enqueue time.

Attribute Datatype
sb4

Possible Values
Any sb4 value is valid.

OCI_ATTR_CORRELATION

Mode
READ/WRITE

Description
Specifies the identification supplied by the producer for a message at enqueuing.

Attribute Datatype
text *

Possible Values
Any string up to 128 bytes is valid.

OCI_ATTR_DELAY

Mode
READ/WRITE

Description
Specifies the number of seconds to delay the enqueued message. The delay
represents the number of seconds after which a message is available for dequeuing.
Dequeuing by msgid overrides the delay specification. A message enqueued with
 Handle and Descriptor Attributes B-33

OCIAQMsgProperties Descriptor Attributes
delay set will be in the WAITING state, when the delay expires the messages goes to
the READY state. DELAY processing requires the queue monitor to be started. Note
that delay is set by the producer who enqueues the message.

Attribute Datatype
sb4

Possible Values
Any sb4 value is valid, but the following predefined constant is available:

■ OCI_MSG_NO_DELAY - indicates the message is available for immediate
dequeuing.

OCI_ATTR_ENQ_TIME

Mode
READ

Description
Specifies the time the message was enqueued. This value is determined by the
system and cannot be set by the user.

Attribute Datatype
OCIDate

OCI_ATTR_EXCEPTION_QUEUE

Mode
READ/WRITE

Description
Specifies the name of the queue to which the message is moved to if it cannot be
processed successfully. Messages are moved in two cases: If the number of
unsuccessful dequeue attempts has exceeded max_retries; or if the message has
expired. All messages in the exception queue are in the EXPIRED state.

The default is the exception queue associated with the queue table. If the exception
queue specified does not exist at the time of the move the message will be moved
to the default exception queue associated with the queue table and a warning will
be logged in the alert file. If the default exception queue is used, the parameter will
return a NULL value at dequeue time.

This attribute must refer to a valid queue name.
B-34 Oracle Call Interface Programmer’s Guide

Advanced Queueing Descriptor Attributes
Attribute Datatype
text *

OCI_ATTR_EXPIRATION

Mode
READ/WRITE

Description
Specifies the expiration of the message. It determines, in seconds, the duration the
message is available for dequeuing. This parameter is an offset from the delay.
Expiration processing requires the queue monitor to be running.

While waiting for expiration, the message remains in the READY state. If the
message is not dequeued before it expires, it will be moved to the exception queue
in the EXPIRED state.

Attribute Datatype
sb4

Possible Values
Any sb4 value is valid, but the following predefined constant is available:

■ OCI_MSG_NO_EXPIRATION - the message will not expire.

OCI_ATTR_MSG_STATE

Mode
READ

Description
Specifies the state of the message at the time of the dequeue. This parameter cannot
be set at enqueue time.

Attribute Datatype
ub4

Possible Values
These are the only values which are returned:

■ OCI_MSG_WAITING - the message delay has not yet been reached.

■ OCI_MSG_READY - the message is ready to be processed.
 Handle and Descriptor Attributes B-35

OCIAQMsgProperties Descriptor Attributes
■ OCI_MSG_PROCESSED - the message has been processed and is retained.

■ OCI_MSG_EXPIRED - the message has been moved to the exception queue.

OCI_ATTR_PRIORITY

Mode
READ/WRITE

Description
Specifies the priority of the message. A smaller number indicates higher priority.
The priority can be any number, including negative numbers.

The default value is zero.

Attribute Datatype
sb4

OCI_ATTR_RECIPIENT_LIST

Mode
WRITE

Description
This parameter is only valid for queues which allow multiple consumers. The
default recipients are the queue subscribers. This parameter is not returned to a
consumer at dequeue time.

Attribute Datatype
OCIAQAgent **
B-36 Oracle Call Interface Programmer’s Guide

Advanced Queueing Descriptor Attributes
OCIAQAgent Descriptor Attributes
The following attributes are properties of the OCIAQAgent descriptor:

OCI_ATTR_AGENT_ADDRESS

Mode
READ/WRITE

Description
Protocol-specific address of the recipient. If the protocol is 0 (default), the address is
of the form [schema.]queue[@dblink].

Attribute Datatype
text *

Possible Values
Can be any string up to 128 bytes.

OCI_ATTR_AGENT_NAME

Mode
READ/WRITE

Description
Name of a producer or consumer of a message.

Attribute Datatype
text *

Possible Values
Can be any Oracle identifier, up to 30 bytes.

OCI_ATTR_AGENT_PROTOCOL

Mode
READ/WRITE

Description
Protocol to interpret the address and propagate the message. The default (and
currently the only supported) value is 0.
 Handle and Descriptor Attributes B-37

OCIAQAgent Descriptor Attributes
Attribute Datatype
ub1

Possible Values
The only valid value is zero, which is also the default.
B-38 Oracle Call Interface Programmer’s Guide

 Oracle Reserved Words, Keywords and Namesp
C

Oracle Reserved Words, Keywords and

Namespaces

This appendix lists words that have a special meaning to Oracle. Each word plays a
specific role in the context in which it appears. For example, in an INSERT
statement, the reserved word INTO introduces the tables to which rows will be
added. But, in a FETCH or SELECT statement, the reserved word INTO introduces
the output host variables to which column values will be assigned.

The following sections are included:

■ Oracle Reserved Words and Keywords

■ PL/SQL Reserved Words

■ Oracle Reserved Namespaces
aces C-1

Oracle Reserved Words and Keywords
Oracle Reserved Words and Keywords
Oracle reserved words have a special meaning to Oracle and so cannot be
redefined. For this reason, you cannot use them to name database objects such as
columns, tables, or indexes.

Keywords also have a special meaning to Oracle but are not reserved words and so
can be redefined. However, some might eventually become reserved words, so care
should be taken when using them as variable or function names in an application.

The following table lists the Oracle reserved words and keywords:
C-2 Oracle Call Interface Programmer’s Guide

Oracle Reserved Words and Keywords
Table C–1 Keywords and Reserved Words
Word Type Word Type

| Reserved word AS Reserved Word

& Reserved word ASC Reserved Word

: Reserved word AT Key Word

, Reserved word AUDIT Reserved Word

- Reserved word AUTHENTICATED Key Word

= Reserved word AUTHORIZATION Key Word

> Reserved word AUTOEXTEND Key Word

[Reserved word AUTOMATIC Key Word

< Reserved word AVG Key Word

(Reserved word

. Reserved word BACKUP Key Word

+ Reserved word BECOME Key Word

] Reserved word BEFORE Key Word

) Reserved word BEGIN Key Word

! Reserved word BETWEEN Reserved Word

/ Reserved word BFILE Key Word

* Reserved word BITMAP Key Word

^ Reserved word BLOB Key Word

@ Reserved word BLOCK Key Word

BODY Key Word

ACCESS Reserved Word BY Reserved Word

ACCOUNT Key Word

ACTIVATE Key Word CACHE Key Word

ADD Reserved Word CACHE_INSTANCES Key Word

ADMIN Key Word CANCEL Key Word

ADVISE Key Word CASCADE Key Word

AFTER Key Word CAST Key Word

ALL Reserved Word CFILE Key Word

ALL_ROWS Key Word CHAINED Key Word

ALLOCATE Key Word CHANGE Key Word

ALTER Reserved Word CHAR Reserved Word

ANALYZE Key Word CHAR_CS Key Word

AND Reserved Word CHARACTER Key Word

ANY Reserved Word CHECK Reserved Word

ARCHIVE Key Word CHECKPOINT Key Word

ARCHIVELOG Key Word CHOOSE Key Word

ARRAY Key Word CHUNK Key Word

ARRAYLEN Key Word CLEAR Key Word
 Oracle Reserved Words, Keywords and Namespaces C-3

Oracle Reserved Words and Keywords
CLOB Key Word DATAFILE Key Word

CLONE Key Word DATAFILES Key Word

CLOSE Key Word DATAOBJNO Key Word

CLOSE_CACHED_OPEN_CURSORS Key Word DATE Reserved Word

CLUSTER Reserved Word DBA Key Word

COALESCE Key Word

COBOL Key Word

COLUMN Reserved Word

COLUMNS Key Word DEALLOCATE Key Word

COMMENT Reserved Word DEBUG Key Word

COMMIT Key Word DEC Key Word

COMMITTED Key Word DECIMAL Reserved Word

COMPATIBILITY Key Word DECLARE Key Word

COMPILE Key Word DEFAULT Reserved Word

COMPLETE Key Word DEFERRABLE Key Word

COMPOSITE_LIMIT Key Word DEFERRED Key Word

COMPRESS Reserved Word DEGREE Key Word

COMPUTE Key Word DELETE Reserved Word

CONNECT Reserved Word DEREF Key Word

CONNECT_TIME Key Word DESC Reserved Word

CONSTRAINT Key Word DIRECTORY Key Word

CONSTRAINTS Key Word DISABLE Key Word

CONTENTS Key Word DISCONNECT Key Word

CONTINUE Key Word DISMOUNT Key Word

CONTROLFILE Key Word DISTINCT Reserved Word

CONVERT Key Word DISTRIBUTED Key Word

COST Key Word DML Key Word

COUNT Key Word DOUBLE Key Word

CPU_PER_CALL Key Word DROP Reserved Word

CPU_PER_SESSION Key Word DUMP Key Word

CREATE Reserved Word

CURRENT Reserved Word EACH Key Word

CURRENT_SCHEMA Key Word ELSE Reserved Word

CURRENT_USER Key Word ENABLE Key Word

CURSOR Reserved Word END Key Word

CYCLE Key Word ENFORCE Key Word

ENTRY Key Word

DANGLING Key Word ESCAPE Key Word

DATABASE Key Word ESTIMATE Key Word

Table C–1 Keywords and Reserved Words (Cont.)
Word Type Word Type
C-4 Oracle Call Interface Programmer’s Guide

Oracle Reserved Words and Keywords
EVENTS Key Word GO Key Word

EXCEPT Key Word GOTO Key Word

EXCEPTIONS Key Word GRANT Reserved Word

EXCHANGE Key Word GROUP Reserved Word

EXCLUDING Key Word GROUPS Key Word

EXCLUSIVE Reserved Word

EXEC Key Word HASH Key Word

EXECUTE Key Word HASHKEYS Key Word

EXISTS Reserved Word HAVING Reserved Word

EXPIRE Key Word HEADER Key Word

EXPLAIN Key Word HEAP Key Word

EXTENT Key Word

EXTENTS Key Word IDENTIFIED Reserved Word

EXTERNALLY Key Word IDGENERATORS Key Word

IDLE_TIME Key Word

FAILED_LOGIN_ATTEMPTS Key Word IF Key Word

FALSE Key Word IMMEDIATE Reserved Word

FAST Key Word IN Reserved Word

FETCH Key Word INCLUDING Key Word

FILE Reserved Word INCREMENT Reserved Word

FIRST_ROWS Key Word INDEX Reserved Word

FLAGGER Key Word INDEXED Key Word

FLOAT Reserved Word INDEXES Key Word

FLOB Key Word INDICATOR Key Word

FLUSH Key Word IND_PARTITION Key Word

FOR Reserved Word INITIAL Reserved Word

FORCE Key Word INITIALLY Key Word

FOREIGN Key Word INITRANS Key Word

FORTRAN Key Word INSERT Reserved Word

FOUND Key Word INSTANCE Key Word

FREELIST Key Word INSTANCES Key Word

FREELISTS Key Word INSTEAD Key Word

FROM Reserved Word INT Key Word

FULL Key Word INTEGER Reserved Word

FUNCTION Key Word INTERMEDIATE Key Word

INTERSECT Reserved Word

GLOBAL Key Word INTO Reserved Word

GLOBALLY Key Word IS Reserved Word

GLOBAL_NAME Key Word ISOLATION Key Word

Table C–1 Keywords and Reserved Words (Cont.)
Word Type Word Type
 Oracle Reserved Words, Keywords and Namespaces C-5

Oracle Reserved Words and Keywords
ISOLATION_LEVEL Key Word MAXSIZE Key Word

MAXTRANS Key Word

KEEP Key Word MAXVALUE Key Word

KEY Key Word MIN Key Word

KILL Key Word MEMBER Key Word

MINIMUM Key Word

LABEL Key Word MINEXTENTS Key Word

LANGUAGE Key Word MINUS Reserved Word

LAYER Key Word MINVALUE Key Word

LESS Key Word MLSLABEL Reserved Word

LEVEL Reserved Word

LIBRARY Key Word

LIKE Reserved Word MODE Reserved Word

LIMIT Key Word MODIFY Reserved Word

LINK Key Word MODULE Key Word

LIST Key Word MOUNT Key Word

LISTS Key Word MOVE Key Word

LOB Key Word MTS_DISPATCHERS Key Word

LOCAL Key Word MULTISET Key Word

LOCK Reserved Word

LOCKED Key Word NATIONAL Key Word

LOG Key Word NCHAR Key Word

LOGFILE Key Word NCHAR_CS Key Word

LOGGING Key Word NCLOB Key Word

LOGICAL_READS_PER_CALL Key Word NEEDED Key Word

LOGICAL_READS_PER_SESSION Key Word NESTED Key Word

LONG Reserved Word NETWORK Key Word

NEW Key Word

MANAGE Key Word NEXT Key Word

MANUAL Key Word NOARCHIVELOG Key Word

MASTER Key Word NOAUDIT Reserved Word

MAX Key Word NOCACHE Key Word

MAXARCHLOGS Key Word NOCOMPRESS Reserved Word

MAXDATAFILES Key Word NOCYCLE Key Word

MAXEXTENTS Reserved Word NOFORCE Key Word

MAXINSTANCES Key Word NOLOGGING Key Word

MAXLOGFILES Key Word NOMAXVALUE Key Word

MAXLOGHISTORY Key Word NOMINVALUE Key Word

MAXLOGMEMBERS Key Word NONE Key Word

Table C–1 Keywords and Reserved Words (Cont.)
Word Type Word Type
C-6 Oracle Call Interface Programmer’s Guide

Oracle Reserved Words and Keywords
NOORDER Key Word

NOOVERRIDE Key Word PACKAGE Key Word

NOPARALLEL Key Word PACKED Key Word

NORESETLOGS Key Word PARALLEL Key Word

NOREVERSE Key Word PARTITION Key Word

NORMAL Key Word PASSWORD Key Word

NOSORT Key Word PASSWORD_GRACE_TIME Key Word

NOT Reserved Word PASSWORD_LIFE_TIME Key Word

NOTFOUND Reserved Word PASSWORD_LOCK_TIME Key Word

NOTHING Key Word PASSWORD_REUSE_MAX Key Word

NOWAIT Reserved Word PASSWORD_REUSE_TIME Key Word

NULL Reserved Word PASSWORD_VERIFY_FUNCTION Key Word

NUMBER Reserved Word PCTFREE Reserved Word

NUMERIC Key Word PCTINCREASE Key Word

NVARCHAR2 Key Word PCTTHRESHOLD Key Word

PCTUSED Key Word

OBJECT Key Word PCTVERSION Key Word

OBJNO Key Word PERCENT Key Word

OBJNO_REUSE Key Word PERMANENT Key Word

OF Reserved Word PLAN Key Word

OFF Key Word PLI Key Word

OFFLINE Reserved Word PLSQL_DEBUG Key Word

OID Key Word POST_TRANSACTION Key Word

OIDINDEX Key Word PRECISION Key Word

OLD Key Word PRESERVE Key Word

ON Reserved Word PRIMARY Key Word

ONLINE Reserved Word PRIOR Reserved Word

ONLY Key Word PRIVATE Key Word

OPCODE Key Word PRIVATE_SGA Key Word

OPEN Key Word PRIVILEGE Key Word

OPTIMAL Key Word PRIVILEGES Reserved Word

OPTIMIZER_GOAL Key Word PROCEDURE Key Word

OPTION Reserved Word PROFILE Key Word

OR Reserved Word PUBLIC Reserved Word

ORDER Reserved Word PURGE Key Word

ORGANIZATION Key Word

QUEUE Key Word

OVERFLOW Key Word QUOTA Key Word

OWN Key Word

Table C–1 Keywords and Reserved Words (Cont.)
Word Type Word Type
 Oracle Reserved Words, Keywords and Namespaces C-7

Oracle Reserved Words and Keywords
RANGE Key Word SCAN_INSTANCES Key Word

RAW Reserved Word SCHEMA Key Word

RBA Key Word SCN Key Word

READ Key Word SCOPE Key Word

SD_ALL Key Word

REAL Key Word SD_INHIBIT Key Word

REBUILD Key Word SD_SHOW Key Word

RECOVER Key Word SECTION Key Word

RECOVERABLE Key Word SEGMENT Key Word

RECOVERY Key Word SEG_BLOCK Key Word

REF Key Word SEG_FILE Key Word

REFERENCES Key Word SELECT Reserved Word

REFERENCING Key Word SEQUENCE Key Word

REFRESH Key Word SERIALIZABLE Key Word

RENAME Reserved Word SESSION Reserved Word

REPLACE Key Word SESSION_CACHED_CURSORS Key Word

RESET Key Word SESSIONS_PER_USER Key Word

RESETLOGS Key Word SET Reserved Word

RESIZE Key Word SHARE Reserved Word

RESOURCE Reserved Word SHARED Key Word

RESTRICTED Key Word SHARED_POOL Key Word

RETURN Key Word SHRINK Key Word

RETURNING Key Word SIZE Reserved Word

REUSE Key Word SKIP Key Word

REVERSE Key Word SKIP_UNUSABLE_INDEXES Key Word

REVOKE Reserved Word SMALLINT Reserved Word

ROLE Key Word SNAPSHOT Key Word

ROLES Key Word SOME Key Word

ROLLBACK Key Word SORT Key Word

ROW Reserved Word SPECIFICATION Key Word

ROWID Reserved Word SPLIT Key Word

ROWLABEL Reserved Word SQL Key Word

ROWNUM Reserved Word SQLBUF Reserved Word

ROWS Reserved Word SQLCODE Key Word

RULE Key Word SQLERROR Key Word

SQLSTATE Key Word

SAMPLE Key Word SQL_TRACE Key Word

SAVEPOINT Key Word STANDBY Key Word

SB4 Key Word START Reserved Word

Table C–1 Keywords and Reserved Words (Cont.)
Word Type Word Type
C-8 Oracle Call Interface Programmer’s Guide

Oracle Reserved Words and Keywords
STATEMENT_ID Key Word TX Key Word

STATISTICS Key Word TYPE Key Word

STOP Key Word

STORAGE Key Word UB2 Key Word

STORE Key Word UBA Key Word

STRUCTURE Key Word UID Reserved Word

SUCCESSFUL Reserved Word UNARCHIVED Key Word

SUM Key Word UNDER Key Word

SWITCH Key Word UNDO Key Word

SYS_OP_ENFORCE_NOT_NULL$ Key Word UNION Reserved Word

SYS_OP_NTCIMG$ Key Word UNIQUE Reserved Word

SYNONYM Reserved Word UNLIMITED Key Word

SYSDATE Reserved Word UNLOCK Key Word

SYSDBA Key Word UNPACKED Key Word

SYSOPER Key Word UNRECOVERABLE Key Word

SYSTEM Key Word UNTIL Key Word

UNUSABLE Key Word

TABLE Reserved Word UNUSED Key Word

TABLES Key Word UPDATABLE Key Word

TABLESPACE Key Word UPDATE Reserved Word

TABLESPACE_NO Key Word USAGE Key Word

TABNO Key Word USE Key Word

TEMPORARY Key Word USER Reserved Word

THAN Key Word USING Key Word

THE Key Word

THEN Reserved Word VALIDATE Reserved Word

THREAD Key Word VALIDATION Reserved Word

TIMESTAMP Key Word VALUE Reserved Word

TIME Key Word VALUES Reserved Word

TO Reserved Word VARCHAR Reserved Word

TOPLEVEL Key Word VARCHAR2 Reserved Word

TRACE Key Word VARYING Key Word

TRACING Key Word VIEW Reserved Word

TRANSACTION Key Word

TRANSITIONAL Key Word WHEN Key Word

TRIGGER Reserved Word WHENEVER Reserved Word

TRIGGERS Key Word WHERE Reserved Word

TRUE Key Word WITH Reserved Word

TRUNCATE Key Word WITHOUT Key Word

Table C–1 Keywords and Reserved Words (Cont.)
Word Type Word Type
 Oracle Reserved Words, Keywords and Namespaces C-9

PL/SQL Reserved Words
PL/SQL Reserved Words
For information about PL/SQL reserved words and keywords, refer to the
PL/SQL User’s Guide and Reference.

WORK Key Word

WRITE Key Word

XID Key Word

Table C–1 Keywords and Reserved Words (Cont.)
Word Type Word Type
C-10 Oracle Call Interface Programmer’s Guide

Oracle Reserved Namespaces
Oracle Reserved Namespaces
Table C–2 contains a list of namespaces that are reserved by Oracle. The initial
characters of function names in Oracle libraries are restricted to the character
strings in this list. Because of potential name conflicts, use function names that do
not begin with these characters.

For example, the SQL*Net Transparent Network Service functions all begin with
the characters NS,” so you need to avoid naming functions that begin with “NS.”

The list in Table C–2 is not a comprehensive list of all functions within the Oracle
Reserved Namespaces. For a complete list of functions within a particular
namespace, refer to the document that corresponds to the appropriate Oracle
library.

Table C–2 Oracle Reserved Namespaces

Namespace Library

 XA external functions for XA applications only

 SQ external SQLLIB functions used by Oracle Precompiler and
SQL*Module applications

 O, OCI external OCI functions internal OCI functions

 UPI, KP function names from the Oracle UPI layer

NA
NC
ND
NL
NM
NR
NS
NT
NZ
OSN
TTC

SQL*Net Native services product
SQL*Net RPC project
SQL*Net Directory
SQL*Net Network Library layer
SQL*Net Net Management Project
SQL*Net Interchange
SQL*Net Transparent Network Service
SQL*Net Drivers
SQL*Net Security Service
SQL*Net V1
SQL*Net Two task

 GEN, L, ORA Core library functions

 LI, LM, LX function names from the Oracle NLS layer

 S function names from system-dependent libraries
 Oracle Reserved Words, Keywords and Namespaces C-11

Oracle Reserved Namespaces
C-12 Oracle Call Interface Programmer’s Guide

 Code Exam
D

Code Examples

This Appendix contains code examples illustrating the use of OCI calls. These pro-
grams are provided for demonstration purposes, and are not guaranteed to run on
all platforms. When a specific header or SQL file is required by the application, its
listing is included after the application code.

These and other demonstration programs may be available in the demo directory
of your Oracle installation.

■ Example 1, SQL Processing

■ Example 2, Object Retrieval

■ Example 3, DML with RETURNING Clause

■ Example 4, Describing an Object

■ Example 5, CLOB/BLOB Operations

■ Example 6, LOB Buffering

■ Example 7, REF Pinning and Navigation
ples D-1

Example 1, SQL Processing
Example 1, SQL Processing
/*
 * -- cdemo81.c --
 * An example program which adds new employee
 * records to the personnel data base. Checking
 * is done to insure the integrity of the data base.
 * The employee numbers are automatically selected using
 * the current maximum employee number as the start.
 *
 * The program queries the user for data as follows:
 *
 * Enter employee name:
 * Enter employee job:
 * Enter employee salary:
 * Enter employee dept:
 *
 * The program terminates if return key (CR) is entered
 * when the employee name is requested.
 *
 * If the record is successfully inserted, the following is printed:
 *
 * "ename" added to department "dname" as employee # "empno"
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <oci.h>

static text *username = (text *) "SCOTT";
static text *password = (text *) "TIGER";

/* Define SQL statements to be used in program. */
static text *insert = (text *) "INSERT INTO emp(empno, ename, job, sal, \
 deptno)VALUES (:empno, :ename, :job, :sal, :deptno)";
static text *seldept = (text *) "SELECT dname FROM dept WHERE deptno = :1";
static text *maxemp = (text *) "SELECT NVL(MAX(empno), 0) FROM emp";
static text *selemp = (text *) "SELECT ename, job FROM emp";

static OCIEnv *envhp;
static OCIServer *srvhp;
static OCIError *errhp;
static OCISvcCtx *svchp;
static OCIStmt *stmthp, *stmthp1;
D-2 Oracle Call Interface Programmer’s Guide

Example 1, SQL Processing
static OCIDefine *defnp = (OCIDefine *) 0;

static OCIBind *bnd1p = (OCIBind *) 0; /* the first bind handle */
static OCIBind *bnd2p = (OCIBind *) 0; /* the second bind handle */
static OCIBind *bnd3p = (OCIBind *) 0; /* the third bind handle */
static OCIBind *bnd4p = (OCIBind *) 0; /* the fourth bind handle */
static OCIBind *bnd5p = (OCIBind *) 0; /* the fifth bind handle */
static OCIBind *bnd6p = (OCIBind *) 0; /* the sixth bind handle */

static void checkerr(/*_ OCIError *errhp, sword status _*/);
static void cleanup(/*_ void _*/);
static void myfflush(/*_ void _*/);
int main(/*_ int argc, char *argv[] _*/);

static sword status;

int main(argc, argv)
int argc;
char *argv[];
{

 sword empno, sal, deptno;
 sword len, len2, rv, dsize, dsize2;
 sb4 enamelen = 10;
 sb4 joblen = 9;
 sb4 deptlen = 14;
 sb2 sal_ind, job_ind;
 sb2 db_type, db2_type;
 sb1 name_buf[20], name2_buf[20];
 text *cp, *ename, *job, *dept;

 sb2 ind[2];
 ub2 alen[2];
 ub2 rlen[2];
 OCIDescribe *dschndl1 = (OCIDescribe *) 0,
 *dschndl2 = (OCIDescribe *) 0,
 *dschndl3 = (OCIDescribe *) 0;
 OCISession *authp = (OCISession *) 0;

 (void) OCIInitialize((ub4) OCI_DEFAULT, (dvoid *)0,
 (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t))0,
 (void (*)(dvoid *, dvoid *)) 0);

 (void) OCIEnvInit((OCIEnv **) &envhp, OCI_DEFAULT, (size_t) 0,
 Code Examples D-3

Example 1, SQL Processing
 (dvoid **) 0);

 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, OCI_HTYPE_ERROR,
 (size_t) 0, (dvoid **) 0);

 /* server contexts */
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, OCI_HTYPE_SERVER,
 (size_t) 0, (dvoid **) 0);

 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, OCI_HTYPE_SVCCTX,
 (size_t) 0, (dvoid **) 0);

 (void) OCIServerAttach(srvhp, errhp, (text *)"inst1_alias",
 strlen("inst1_alias"), 0);

 /* set attribute server context in the service context */
 (void) OCIAttrSet((dvoid *) svchp, OCI_HTYPE_SVCCTX, (dvoid *)srvhp,
 (ub4) 0, OCI_ATTR_SERVER, (OCIError *) errhp);

 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **)&authp,
 (ub4) OCI_HTYPE_SESSION, (size_t) 0, (dvoid **) 0);

 (void) OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) username, (ub4) strlen((char *)username),
 (ub4) OCI_ATTR_USERNAME, errhp);

 (void) OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) password, (ub4) strlen((char *)password),
 (ub4) OCI_ATTR_PASSWORD, errhp);

 checkerr(errhp, OCISessionBegin (svchp, errhp, authp, OCI_CRED_RDBMS,
 (ub4) OCI_DEFAULT));

 (void) OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
 (dvoid *) authp, (ub4) 0,
 (ub4) OCI_ATTR_SESSION, errhp);

 checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
 OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));

 checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp1,
 OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0));

 /* Retrieve the current maximum employee number. */
 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, maxemp,
D-4 Oracle Call Interface Programmer’s Guide

Example 1, SQL Processing
 (ub4) strlen((char *) maxemp),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 /* bind the input variable */
 checkerr(errhp, OCIDefineByPos(stmthp, &defnp, errhp, 1, (dvoid *) &empno,
 (sword) sizeof(sword), SQLT_INT, (dvoid *) 0, (ub2 *)0,
 (ub2 *)0, OCI_DEFAULT));

 /* execute and fetch */
 if (status = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot *) NULL, (OCISnapshot *) NULL, OCI_DEFAULT))
 {
 if (status == OCI_NO_DATA)
 empno = 10;
 else
 {
 checkerr(errhp, status);
 cleanup();
 return OCI_ERROR;
 }
 }

 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, insert,
 (ub4) strlen((char *) insert),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtPrepare(stmthp1, errhp, seldept,
 (ub4) strlen((char *) seldept),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 /* Allocate output buffers. Allow for \n and '\0'. */
 ename = (text *) malloc((size_t) enamelen + 2);
 job = (text *) malloc((size_t) joblen + 2);

 /* Bind the placeholders in the INSERT statement. */
 if ((status = OCIBindByName(stmthp, &bnd1p, errhp, (text *) ":ENAME",
 -1, (dvoid *) ename,
 enamelen+1, SQLT_STR, (dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT)) ||
 (status = OCIBindByName(stmthp, &bnd2p, errhp, (text *) ":JOB",
 -1, (dvoid *) job,
 joblen+1, SQLT_STR, (dvoid *) &job_ind,
 (ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT)) ||
 Code Examples D-5

Example 1, SQL Processing
 (status = OCIBindByName(stmthp, &bnd3p, errhp, (text *) ":SAL",
 -1, (dvoid *) &sal,
 (sword) sizeof(sal), SQLT_INT, (dvoid *) &sal_ind,
 (ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT)) ||
 (status = OCIBindByName(stmthp, &bnd4p, errhp, (text *) ":DEPTNO",
 -1, (dvoid *) &deptno,
 (sword) sizeof(deptno), SQLT_INT, (dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT)) ||
 (status = OCIBindByName(stmthp, &bnd5p, errhp, (text *) ":EMPNO",
 -1, (dvoid *) &empno,
 (sword) sizeof(empno), SQLT_INT, (dvoid *) 0,
 (ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4 *) 0, OCI_DEFAULT)))
 {
 checkerr(errhp, status);
 cleanup();
 return OCI_ERROR;
 }

 /* Bind the placeholder in the "seldept" statement. */
 if (status = OCIBindByPos(stmthp1, &bnd6p, errhp, 1,
 (dvoid *) &deptno, (sword) sizeof(deptno),SQLT_INT,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0, (ub4) 0, (ub4 *) 0,OCI_DEFAULT))
 {
 checkerr(errhp, status);
 cleanup();
 return OCI_ERROR;
 }

 /* Allocate the dept buffer now that you have length. */
 /* the deptlen should eventually get from dschndl3. */
 deptlen = 14;
 dept = (text *) malloc((size_t) deptlen + 1);

 /* Define the output variable for the select-list. */
 if (status = OCIDefineByPos(stmthp1, &defnp, errhp, 1,
 (dvoid *) dept, deptlen+1, SQLT_STR,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0, OCI_DEFAULT))
 {
 checkerr(errhp, status);
 cleanup();
 return OCI_ERROR;
 }

 for (;;)
 {
D-6 Oracle Call Interface Programmer’s Guide

Example 1, SQL Processing
 /* Prompt for employee name. Break on no name. */
 printf("\nEnter employee name (or CR to EXIT): ");
 fgets((char *) ename, (int) enamelen+1, stdin);
 cp = (text *) strchr((char *) ename, '\n');
 if (cp == ename)
 {
 printf("Exiting... ");
 cleanup();
 return OCI_SUCCESS;
 }
 if (cp)
 *cp = '\0';
 else
 {
 printf("Employee name may be truncated.\n");
 myfflush();
 }
 /* Prompt for the employee's job and salary. */
 printf("Enter employee job: ");
 job_ind = 0;
 fgets((char *) job, (int) joblen + 1, stdin);
 cp = (text *) strchr((char *) job, '\n');
 if (cp == job)
 {
 job_ind = -1; /* make it NULL in table */
 printf("Job is NULL.\n");/* using indicator variable */
 }
 else if (cp == 0)
 {
 printf("Job description may be truncated.\n");
 myfflush();
 }
 else
 *cp = '\0';

 printf("Enter employee salary: ");
 scanf("%d", &sal);
 myfflush();
 sal_ind = (sal <= 0) ? -2 : 0; /* set indicator variable */

 /*
 * Prompt for the employee's department number, and verify
 * that the entered department number is valid
 * by executing and fetching.
 */
 Code Examples D-7

Example 1, SQL Processing
 do
 {
 printf("Enter employee dept: ");
 scanf("%d", &deptno);
 myfflush();
 if ((status = OCIStmtExecute(svchp, stmthp1, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot *) NULL, (OCISnapshot *) NULL, OCI_DEFAULT))
 && (status != OCI_NO_DATA))
 {
 checkerr(errhp, status);
 cleanup();
 return OCI_ERROR;
 }
 if (status == OCI_NO_DATA)
 printf("The dept you entered doesn't exist.\n");
 } while (status == OCI_NO_DATA);

 /*
 * Increment empno by 10, and execute the INSERT
 * statement. If the return code is 1 (duplicate
 * value in index), then generate the next
 * employee number.
 */
 empno += 10;
 if ((status = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot *) NULL, (OCISnapshot *) NULL, OCI_DEFAULT))
 && status != 1)
 {
 checkerr(errhp, status);
 cleanup();
 return OCI_ERROR;
 }
 while (status == 1)
 {
 empno += 10;
 if ((status = OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot *) NULL, (OCISnapshot *) NULL, OCI_DEFAULT))
 && status != 1)
 {
 checkerr(errhp, status);
 cleanup();
 return OCI_ERROR;
 }
 } /* end for (;;) */
D-8 Oracle Call Interface Programmer’s Guide

Example 1, SQL Processing
 /* Commit the change. */
 if (status = OCITransCommit(svchp, errhp, 0))
 {
 checkerr(errhp, status);
 cleanup();
 return OCI_ERROR;
 }
 printf("\n\n%s added to the %s department as employee number %d\n",
 ename, dept, empno);
 }
}

void checkerr(errhp, status)
OCIError *errhp;
sword status;
{
 text errbuf[512];
 sb4 errcode = 0;

 switch (status)
 {
 case OCI_SUCCESS:
 break;
 case OCI_SUCCESS_WITH_INFO:
 (void) printf("Error - OCI_SUCCESS_WITH_INFO\n");
 break;
 case OCI_NEED_DATA:
 (void) printf("Error - OCI_NEED_DATA\n");
 break;
 case OCI_NO_DATA:
 (void) printf("Error - OCI_NODATA\n");
 break;
 case OCI_ERROR:
 (void) OCIErrorGet((dvoid *)errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), OCI_HTYPE_ERROR);
 (void) printf("Error - %.*s\n", 512, errbuf);
 break;
 case OCI_INVALID_HANDLE:
 (void) printf("Error - OCI_INVALID_HANDLE\n");
 break;
 case OCI_STILL_EXECUTING:
 (void) printf("Error - OCI_STILL_EXECUTE\n");
 break;
 case OCI_CONTINUE:
 Code Examples D-9

Example 1, SQL Processing
 (void) printf("Error - OCI_CONTINUE\n");
 break;
 default:
 break;
 }
}

/*
 * Exit program with an exit code.
 */
void cleanup()
{
 if (stmthp)
 checkerr(errhp, OCIHandleFree((dvoid *) stmthp, OCI_HTYPE_STMT));
 if (stmthp1)
 checkerr(errhp, OCIHandleFree((dvoid *) stmthp1, OCI_HTYPE_STMT));

 if (errhp)
 (void) OCIServerDetach(srvhp, errhp, OCI_DEFAULT);
 if (srvhp)
 checkerr(errhp, OCIHandleFree((dvoid *) srvhp, OCI_HTYPE_SERVER));
 if (svchp)
 (void) OCIHandleFree((dvoid *) svchp, OCI_HTYPE_SVCCTX);
 if (errhp)
 (void) OCIHandleFree((dvoid *) errhp, OCI_HTYPE_ERROR);
 return;
}

void myfflush()
{
 eb1 buf[50];

 fgets((char *) buf, 50, stdin);
}

D-10 Oracle Call Interface Programmer’s Guide

Example 2, Object Retrieval
Example 2, Object Retrieval
/* NAME
 cdemo82.c - oci object sample program ; run cdemo82.sql */

#ifndef CDEMO82_ORACLE
#include <cdemo82.h>
#endif

#define SCHEMA "CDEMO82"

/***/
static void pin_display_addr(envhp, errhp, addrref)
OCIEnv *envhp;
OCIError *errhp;
OCIRef *addrref;
{
 sword status;
 address *addr = (address *)0;

 checkerr(errhp, OCIObjectPin(envhp, errhp, addrref, (OCIComplexObject *)0,
 OCI_PIN_ANY, OCI_DURATION_SESSION, OCI_LOCK_NONE,
 (dvoid **)&addr));

 if (addr)
 {
 printf("address.state = %.2s address.zip = %.10s\n",
 OCIStringPtr(envhp, addr->state), OCIStringPtr(envhp, addr->zip));
 }
 else
 {
 printf("Pinned address pointer is null\n");
 }

 checkerr(errhp, OCIObjectUnpin(envhp, errhp, (dvoid *) addr));
}

/***/
static void checkerr(errhp, status)
OCIError *errhp;
sword status;
{
 text errbuf[512];
 ub4 buflen;
 Code Examples D-11

Example 2, Object Retrieval
 ub4 errcode;

 switch (status)
 {
 case OCI_SUCCESS:
 break;
 case OCI_SUCCESS_WITH_INFO:
 printf("Error - OCI_SUCCESS_WITH_INFO\n");
 break;
 case OCI_NEED_DATA:
 printf("Error - OCI_NEED_DATA\n");
 break;
 case OCI_NO_DATA:
 printf("Error - OCI_NO_DATA\n");
 break;
 case OCI_ERROR:
 OCIErrorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), (ub4) OCI_HTYPE_ERROR);
 printf("Error - %s\n", errbuf);
 break;
 case OCI_INVALID_HANDLE:
 printf("Error - OCI_INVALID_HANDLE\n");
 break;
 case OCI_STILL_EXECUTING:
 printf("Error - OCI_STILL_EXECUTE\n");
 break;
 case OCI_CONTINUE:
 printf("Error - OCI_CONTINUE\n");
 break;
 default:
 break;
 }
}

/**/
/*
 ** execute "selvalstmt" statement -- selects from a table with an object.
 **
 */
static void selectval(envhp, svchp, stmthp, errhp)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
OCIError *errhp;
{

D-12 Oracle Call Interface Programmer’s Guide

Example 2, Object Retrieval
 OCIType *addr_tdo = (OCIType *) 0;
 OCIDefine *defn1p = (OCIDefine *) 0, *defn2p = (OCIDefine *) 0;
 address *addr = (address *)NULL;
 sword custno =0;
 int i = 0;
 OCIRef *addrref = (OCIRef *) 0;
 OCIRef *type_ref = (OCIRef *) 0;
 sb4 status;
 OCIDescribe *dschp = (OCIDescribe *) 0;
 OCIParam *parmp;

 /* allocate describe handle for OCIDescribeAny */
 checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &dschp,
 (ub4) OCI_HTYPE_DESCRIBE,
 (size_t) 0, (dvoid **) 0));

 /* define the application request */
 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) selvalstmt,
 (ub4) strlen(selvalstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 /* bind the input variable */
 checkerr(errhp, OCIDefineByPos(stmthp, &defn1p, errhp, (ub4) 1, (dvoid *)
 &custno,
 (sb4) sizeof(sword), SQLT_INT, (dvoid *) 0, (ub2 *)0,
 (ub2 *)0, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIDefineByPos(stmthp, &defn2p, errhp, (ub4) 2, (dvoid *) 0,
 (sb4) 0, SQLT_NTY, (dvoid *) 0, (ub2 *)0,
 (ub2 *)0, (ub4) OCI_DEFAULT));

 /* checkerr(errhp, OCITypeByName(envhp, errhp, svchp, (const text *) 0,
 (ub4) 0, (const text *) "ADDRESS_VALUE",
 (ub4) strlen((const char *) "ADDRESS_VALUE"),
 (CONST text *) 0, (ub4) 0,
 OCI_DURATION_SESSION, OCI_TYPEGET_HEADER,
 &addr_tdo)); */

 checkerr(errhp, OCIDescribeAny(svchp, errhp, (text *)"ADDRESS_VALUE",
 (ub4) strlen((char *)"ADDRESS_VALUE"), OCI_OTYPE_NAME,
 (ub1)1,
 (ub1) OCI_PTYPE_TYPE, dschp));

 checkerr(errhp, OCIAttrGet((dvoid *) dschp, (ub4) OCI_HTYPE_DESCRIBE,
 Code Examples D-13

Example 2, Object Retrieval
 (dvoid *)&parmp, (ub4 *)0, (ub4)OCI_ATTR_PARAM, errhp));

 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &type_ref, (ub4 *) 0,
 (ub4) OCI_ATTR_REF_TDO, (OCIError *) errhp));

 checkerr(errhp, OCIObjectPin(envhp, errhp, type_ref, (OCIComplexObject *) 0,
 OCI_PIN_ANY, OCI_DURATION_SESSION, OCI_LOCK_NONE,
 (dvoid **)&addr_tdo));

 if(!addr_tdo)
 {
 printf("NULL tdo returned\n");
 goto done_selectval;
 }

 checkerr(errhp, OCIDefineObject(defn2p, errhp, addr_tdo, (dvoid **) &addr,
 (ub4 *) 0, (dvoid **) 0, (ub4 *) 0));

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *) NULL, (OCISnapshot *) NULL, (ub4)
 OCI_DEFAULT));

 /* execute and fetch */
 do
 {
 if (addr)
 printf("custno = %d address.state = %.2s address.zip = %.10s\n", custno,
 OCIStringPtr(envhp, addr->state), OCIStringPtr(envhp, addr->zip));
 else
 printf("custno = %d fetched address is NULL\n", custno);

 addr = (address *)NULL;
 }
 while ((status = OCIStmtFetch(stmthp, errhp, (ub4) 1, (ub4) OCI_FETCH_NEXT,
 (ub4) OCI_DEFAULT)) == OCI_SUCCESS ||
 status == OCI_SUCCESS_WITH_INFO);

 if (status!= OCI_NO_DATA)
 checkerr(errhp, status);

 printf("\n\n");
D-14 Oracle Call Interface Programmer’s Guide

Example 2, Object Retrieval
 done_selectval:

 checkerr(errhp, OCIHandleFree((dvoid *) defn1p, (ub4) OCI_HTYPE_DEFINE));
 checkerr(errhp, OCIHandleFree((dvoid *) defn2p, (ub4) OCI_HTYPE_DEFINE));

}

/**
 ** execute "selobjstmt" -- selects records from a table with a REF.
 */
static void selectobj(envhp, svchp, stmthp, errhp)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
OCIError *errhp;
{
 OCIType *addr_tdo = (OCIType *) 0;
 OCIDefine *defn1p = (OCIDefine *) 0, *defn2p = (OCIDefine *) 0;
 sword status;
 OCIRef *addrref = (OCIRef *) 0, *addrref1 = (OCIRef *) 0;
 sword custno =0;
 int i = 0;
 address *addr;
 ub4 ref_len;

 /* define the application request */
 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) selobjstmt,
 (ub4) strlen(selobjstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIDefineByPos(stmthp, &defn1p, errhp, (ub4) 1, (dvoid *)
 &custno, (sb4) sizeof(sword), SQLT_INT, (dvoid *) 0, (ub2 *)0,
 (ub2 *)0, (ub4) OCI_DEFAULT));

 addrref = (OCIRef *)NULL;

 checkerr(errhp, OCIDefineByPos(stmthp, &defn2p, errhp, (ub4) 2, (dvoid *)
 NULL, (sb4) 0, SQLT_REF, (dvoid *) 0, (ub2 *)0,
 (ub2 *)0, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIDefineObject(defn2p, errhp, (OCIType *)NULL,
 (dvoid **)&addrref, &ref_len, (dvoid **)0, (ub4 *)0));

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 Code Examples D-15

Example 2, Object Retrieval
 (OCISnapshot *) NULL, (OCISnapshot *) NULL, (ub4) OCI_DEFAULT));

 do
 {
 printf("custno = %d fetched address\n", custno);

 if (addrref)
 {
 pin_display_addr(envhp, errhp, addrref);
 }
 else
 printf("Address ref is NULL\n");

 }
 while ((status = OCIStmtFetch(stmthp, errhp, (ub4) 1, (ub4) OCI_FETCH_NEXT,
 (ub4) OCI_DEFAULT)) == OCI_SUCCESS ||
 status == OCI_SUCCESS_WITH_INFO);

 if (status != OCI_NO_DATA)
 checkerr(errhp, status);

 printf("\n\n");
 checkerr(errhp, OCIHandleFree((dvoid *) defn1p, (ub4) OCI_HTYPE_DEFINE));
 checkerr(errhp, OCIHandleFree((dvoid *) defn2p, (ub4) OCI_HTYPE_DEFINE));

}

/***/
/***/
/*
 ** execute "insstmt"
 **
 */
static void insert(envhp, svchp, stmthp, errhp, insstmt, nrows)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
OCIError *errhp;
text *insstmt;
ub2 nrows;
{
 OCIType *addr_tdo = (OCIType *) 0;
 address addrs;
D-16 Oracle Call Interface Programmer’s Guide

Example 2, Object Retrieval
 null_address naddrs;
 address *addr = &addrs;
 null_address *naddr = &naddrs;
 sword custno =300;
 OCIBind *bnd1p = (OCIBind *) 0, *bnd2p = (OCIBind *) 0;
 char buf[20];
 ub2 i;
 OCIRef *type_ref = (OCIRef *) 0;
 OCIDescribe *dschp = (OCIDescribe *) 0;
 OCIParam *parmp;

 /* allocate describe handle for OCIDescribeAny */
 checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &dschp,
 (ub4) OCI_HTYPE_DESCRIBE,
 (size_t) 0, (dvoid **) 0));

 /* define the application request */
 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) insstmt,
 (ub4) strlen(insstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 /* bind the input variable */
 checkerr(errhp, OCIBindByName(stmthp, &bnd1p, errhp, (text *) ":custno",
 (sb4) -1, (dvoid *) &custno,
 (sb4) sizeof(sword), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0, (ub4) 0, (ub4 *) 0,
 (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIBindByName(stmthp, &bnd2p, errhp, (text *) ":addr",
 (sb4) -1, (dvoid *) 0,
 (sb4) 0, SQLT_NTY, (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT));

 /* checkerr(errhp, OCITypeByName(envhp, errhp, svchp, (const text *) 0,
 (ub4) 0, (const text *) "ADDRESS_VALUE",
 (ub4) strlen((const char *) "ADDRESS_VALUE"),
 (CONST text *) 0, (ub4) 0,
 OCI_DURATION_SESSION, OCI_TYPEGET_HEADER,
 &addr_tdo)); */

 checkerr(errhp, OCIDescribeAny(svchp, errhp, (text *)"ADDRESS_VALUE",
 (ub4) strlen((char *)"ADDRESS_VALUE"), OCI_OTYPE_NAME,
 (ub1)1, (ub1) OCI_PTYPE_TYPE, dschp));

 checkerr(errhp, OCIAttrGet((dvoid *) dschp, (ub4) OCI_HTYPE_DESCRIBE,
 Code Examples D-17

Example 2, Object Retrieval
 (dvoid *)&parmp, (ub4 *)0, (ub4)OCI_ATTR_PARAM, errhp));

 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &type_ref, (ub4 *) 0,
 (ub4) OCI_ATTR_REF_TDO, (OCIError *) errhp));

 checkerr(errhp, OCIObjectPin(envhp, errhp, type_ref, (OCIComplexObject *) 0,
 OCI_PIN_ANY, OCI_DURATION_SESSION, OCI_LOCK_NONE,
 (dvoid **)&addr_tdo));

 if(!addr_tdo)
 {
 printf("Null tdo returned\n");
 goto done_insert;
 }

 checkerr(errhp, OCIBindObject(bnd2p, errhp, addr_tdo, (dvoid **) &addr,
 (ub4 *) 0, (dvoid **) &naddr, (ub4 *) 0));

 for(i = 0; i <= nrows; i++)
 {
 addr->state = (OCIString *) 0;
 sprintf(buf, "%cA", 65+i%27);
 checkerr(errhp, OCIStringAssignText(envhp, errhp, (CONST text*) buf,
 2, &addr->state));
 addr->zip = (OCIString *) 0;
 sprintf(buf, "94%d ", i+455);
 checkerr(errhp, OCIStringAssignText(envhp, errhp, (CONST text*) buf, 10,
 &addr->zip));

 naddr->null_object = 0;
 naddr->null_state = 0;
 naddr->null_zip = 0;

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *) NULL, (OCISnapshot *) NULL, (ub4) OCI_DEFAULT));
 }
 checkerr(errhp, OCITransCommit(svchp, errhp, (ub4) 0));

 done_insert:

 checkerr(errhp, OCIHandleFree((dvoid *) bnd1p, (ub4) OCI_HTYPE_BIND));
 checkerr(errhp, OCIHandleFree((dvoid *) bnd2p, (ub4) OCI_HTYPE_BIND));

}

D-18 Oracle Call Interface Programmer’s Guide

Example 2, Object Retrieval
/**/
int main()
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 OCIStmt *stmthp;
 OCISession *usrhp;

 OCIInitialize((ub4) OCI_THREADED | OCI_OBJECT, (dvoid *)0, (dvoid * (*)())
 0,(dvoid * (*)()) 0, (void (*)()) 0);

 OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
 52, (dvoid **) &tmp);

 OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
 52, (dvoid **) &tmp);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);

 /* set attribute server context in the service context */
 OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
 (dvoid *) srvhp, (ub4) 0,
 (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

 /* allocate a user context handle */
 OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp, (ub4) OCI_HTYPE_SESSION,
 (size_t) 0, (dvoid **) 0);

 OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
 (dvoid *)"cdemo82", (ub4)strlen("cdemo82"),
 OCI_ATTR_USERNAME, errhp);

 OCIAttrSet((dvoid *)usrhp, (ub4)OCI_HTYPE_SESSION,
 (dvoid *)"cdemo82", (ub4)strlen("cdemo82"),
 OCI_ATTR_PASSWORD, errhp);
 Code Examples D-19

Example 2, Object Retrieval
 checkerr(errhp, OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS,
 OCI_DEFAULT));

 OCIAttrSet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
 (dvoid *)usrhp, (ub4)0,
 OCI_ATTR_SESSION, errhp);

 checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
 (ub4) OCI_HTYPE_STMT, 50, (dvoid **) &tmp));

 /* execute "insstmt" */
 printf("--- Test insertion into extent table.\n");
 insert(envhp, svchp, stmthp, errhp, insstmt, 26);

 /* execute "selstmt" */
 printf("--- Test selection of a table with one object column.\n");
 selectval(envhp, svchp, stmthp, errhp);

 /* execute "selobjstmt" */
 printf("--- Test selection of a table with one object REF.\n");
 selectobj(envhp, svchp, stmthp, errhp);

 checkerr(errhp, OCIHandleFree((dvoid *) stmthp, (ub4) OCI_HTYPE_STMT));

 OCISessionEnd(svchp, errhp, usrhp, (ub4)OCI_DEFAULT);
 OCIServerDetach(srvhp, errhp, (ub4) OCI_DEFAULT);
 checkerr(errhp, OCIHandleFree((dvoid *) srvhp, (ub4) OCI_HTYPE_SERVER));
 checkerr(errhp, OCIHandleFree((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX));
 checkerr(errhp, OCIHandleFree((dvoid *) errhp, (ub4) OCI_HTYPE_ERROR));

}

cdemo82.h
/*
 NAME
 cdemo82.h - header file for oci object sample program
*/

 #ifndef CDEMO82_ORACLE
define CDEMO82_ORACLE
D-20 Oracle Call Interface Programmer’s Guide

Example 2, Object Retrieval
#ifndef OCI_ORACLE
#include <oci.h>
#endif

/*---
 PRIVATE TYPES AND CONSTANTS
 --*/
#define SERVER "ORACLE"
#define ADDRESS_TYPE_NAME "ADDRESS_OBJECT"
#define EMB_ADDRESS_TYPE_NAME "EMBEDDED_ADDRESS"
#define ADDREXT "ADDREXT"
#define EMBADDREXT "EMBADDREXT"
#define RETURN_ON_ERROR(error) if (error) return (error)
#define BIG_RECORD_SIZE 1000

struct address
{
 OCIString *state;
 OCIString *zip;
};
typedef struct address address;

struct null_address
{
 sb4 null_object;
 sb4 null_state;
 sb4 null_zip;
};
typedef struct null_address null_address;

struct embaddress
{
 OCIString *state;
 OCIString *zip;
 OCIRef *preaddrref;
};
typedef struct embaddress embaddress;

struct null_embaddress
{
 sb4 null_state;
 sb4 null_zip;
 sb4 null_preaddrref;
};
 Code Examples D-21

Example 2, Object Retrieval
typedef struct null_embaddress null_embaddress;

struct person
{
 OCIString *name;
 OCINumber age;
 address addr;
};
typedef struct person person;

struct null_person
{
 sb4 null_name;
 sb4 null_age;
 null_address null_addr;
};

typedef struct null_person null_person;

static const text *const names[] =
{(text *) "CUSTOMERVAL", (text *) "ADDRESS", (text *) "STATE"};

static const text *const selvalstmt = (text *)
 "SELECT custno, addr FROM customerval";

static const text *const selobjstmt = (text *)
 "SELECT custno, addr FROM customerobj";

static const text *const selref = (text *)
 "SELECT REF(extaddr) from extaddr";

static const text *const deleteref = (text *)
 "DELETE extaddr";

static const text *const insertref = (text *)
"insert into extaddr values(address_object('CA', '98765'))";

static const text *const modifyref = (text *)
"update extaddr set object_column = address_object('TX', '61111')";

static const text *const selembref = (text *)
 "SELECT REF(exbextaddr) from embextaddr";

static const text *const bndref = (text *)
"update extaddr set object_column.state = 'GA' where object_column = :addrref";
D-22 Oracle Call Interface Programmer’s Guide

Example 2, Object Retrieval
static const text *const insstmt =
(text *)"INSERT INTO customerval (custno, addr) values (:custno, :addr)";

dvoid *tmp;

/*--
 PUBLIC FUNCTIONS
 ---*/
OCIRef *cbfunc(/*_ dvoid *context _*/);

/*---
 PRIVATE FUNCTIONS
 ---*/
static void checkerr(/*_ OCIError *errhp, sword status _*/);
static void selectval(/*_ OCIEnv *envhp, OCISvcCtx *svchp,
 OCIStmt *stmthp, OCIError *errhp _*/);
static void selectobj(/*_ OCIEnv *envhp, OCISvcCtx *svchp,
 OCIStmt *stmthp, OCIError *errhp _*/);
static void insert(/*_ OCIEnv *envhp, OCISvcCtx *svchp,
 OCIStmt *stmthp, OCIError *errhp,
 text *insstmt, ub2 nrows _*/);

static void pin_display_addr(/*_ OCIEnv *envhp, OCIError *errhp,
 OCIRef *addrref _*/);

int main(/*_ void _*/);

cdemo82.sql
Rem cdemo82.sql
Rem
Rem NAME
Rem cdemo82.sql - sql to be executed before cdemo82
Rem

set echo on;
connect internal;
drop user cdemo82 cascade;
create user cdemo82 identified by cdemo82;
grant connect, resource to cdemo82;
connect cdemo82/cdemo82;
drop table customerval;
drop table customerobj;
drop table extaddr;
 Code Examples D-23

Example 2, Object Retrieval
drop table embextaddr;
drop type embedded_address;
drop type address_object;
drop type person;
drop table emp;
create type address_object as object (state char(2), zip char(10));
create type embedded_address as object (state char(2), zip char(10),
 preaddr REF address_object);
drop type address_value;
create type address_value as object (state char(2), zip char(10));
create table customerval (custno number, addr address_value);
insert into customerval values(100, address_value('CA', '94065'));
create table extaddr of address_object;
create table customerobj (custno number, addr REF address_object);
insert into extaddr values (address_object('CA', '94065'));
insert into customerobj values(1000, null);
update customerobj set addr = (select ref(extaddr) from extaddr where
 zip='94065');
insert into extaddr values (address_object('CA', '98765'));
insert into extaddr values (address_object('CA', '95117'));
select REFTOHEX(ref(extaddr)) from extaddr;
create table embextaddr of embedded_address;
insert into embextaddr values (embedded_address('CA', '95117', NULL));
select objectTOHEX(p) from embextaddr p;
drop table extper;
drop table empref;
drop table emp;
drop type person;
create type person as object (name char(20), age number, address
 address_object);
create table emp (emp_id number, emp_info person);
create table empref (emp_id number, emp_info REF person);
create table extper of person;
create or replace procedure upd_addr(addr IN OUT address_object) is
begin
 addr.state := 'CA';
 addr.zip := '95117';
end;
/
commit;
set echo off;
D-24 Oracle Call Interface Programmer’s Guide

Example 3, DML with RETURNING Clause
Example 3, DML with RETURNING Clause
/* NAME
 cdemord1.c - C DEMO program for DML with RETURNING clause - #1.

 DESCRIPTION
 This Demo program demonstrates the use of INSERT/UPDATE/DELETE
 statements with a RETURNING clause in it.
*/

#include <cdemodr1.h>

/*------------------------ Global Variables -------------------------------*/

static boolean logged_on = FALSE;

/* TAB1 columns */
static int in1[MAXITER]; /* for INTEGER */
static text in2[MAXITER][40]; /* for CHAR(40) */
static text in3[MAXITER][40]; /* for VARCHAR2(40) */
static float in4[MAXITER]; /* for FLOAT */
static int in5[MAXITER]; /* for DECIMAL */
static float in6[MAXITER]; /* for DECIMAL(8,3) */
static int in7[MAXITER]; /* for NUMERIC */
static float in8[MAXITER]; /* for NUMERIC(7,2) */
static ub1 in9[MAXITER][7]; /* for DATE */
static ub1 in10[MAXITER][40]; /* for RAW(40) */

/* output buffers */
static int *p1[MAXITER]; /* for INTEGER */
static text *p2[MAXITER]; /* for CHAR(40) */
static text *p3[MAXITER]; /* for VARCHAR2(40) */
static float *p4[MAXITER]; /* for FLOAT */
static int *p5[MAXITER]; /* for DECIMAL */
static float *p6[MAXITER]; /* for DECIMAL(8,3) */
static int *p7[MAXITER]; /* for NUMERIC */
static float *p8[MAXITER]; /* for NUMERIC(7,2) */
static ub1 *p9[MAXITER]; /* for DATE */
static ub1 *p10[MAXITER]; /* for RAW(40) */

static short *ind[MAXCOLS][MAXITER]; /* indicators */
static ub2 *rc[MAXCOLS][MAXITER]; /* return codes */
static ub4 *rl[MAXCOLS][MAXITER]; /* return lengths */
 Code Examples D-25

Example 3, DML with RETURNING Clause
/* skip values for binding TAB1 */
static ub4 s1 = (ub4) sizeof(in1[0]);
static ub4 s2 = (ub4) sizeof(in2[0]);
static ub4 s3 = (ub4) sizeof(in3[0]);
static ub4 s4 = (ub4) sizeof(in4[0]);
static ub4 s5 = (ub4) sizeof(in5[0]);
static ub4 s6 = (ub4) sizeof(in6[0]);
static ub4 s7 = (ub4) sizeof(in7[0]);
static ub4 s8 = (ub4) sizeof(in8[0]);
static ub4 s9 = (ub4) sizeof(in9[0]);
static ub4 s10= (ub4) sizeof(in10[0]);

/* Rows returned in each iteration */
static ub2 rowsret[MAXITER];

/* indicator skips */
static ub4 indsk[MAXCOLS] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
/* return length skips */
static ub4 rlsk[MAXCOLS] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
/* return code skips */
static ub4 rcsk[MAXCOLS] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };

static int lowc1[MAXITER], highc1[MAXITER];

static ub4 pos[MAXCOLS];

static OCIError *errhp;

/*------------------------end of Global variables--------------------*/

/*========================== UTILITY FUNCTIONS ======================*/
/*
 * These functions are generic functions that can be used in any
 * OCI program.
 */

/* --- */
/* Initialize environment, allocate handles */
/* --- */
sword init_handles(envhp, svchp, errhp, srvhp, authp, init_mode)
OCIEnv **envhp;
OCISvcCtx **svchp;
OCIError **errhp;
OCIServer **srvhp;
OCISession **authp;
D-26 Oracle Call Interface Programmer’s Guide

Example 3, DML with RETURNING Clause
ub4 init_mode;
{
 (void) printf("Environment setup\n");

 /* Initialize the OCI Process */
 if (OCIInitialize(init_mode, (dvoid *)0,
 (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t))0,
 (void (*)(dvoid *, dvoid *)) 0))
 {
 (void) printf("FAILED: OCIInitialize()\n");
 return OCI_ERROR;
 }

 /* Inititialize the OCI Environment */
 if (OCIEnvInit((OCIEnv **) envhp, (ub4) OCI_DEFAULT,
 (size_t) 0, (dvoid **) 0))
 {
 (void) printf("FAILED: OCIEnvInit()\n");
 return OCI_ERROR;
 }

 /* Allocate a service handle */
 if (OCIHandleAlloc((dvoid *) *envhp, (dvoid **) svchp,
 (ub4) OCI_HTYPE_SVCCTX, (size_t) 0, (dvoid **) 0))
 {
 (void) printf("FAILED: OCIHandleAlloc() on svchp\n");
 return OCI_ERROR;
 }

 /* Allocate an error handle */
 if (OCIHandleAlloc((dvoid *) *envhp, (dvoid **) errhp,
 (ub4) OCI_HTYPE_ERROR, (size_t) 0, (dvoid **) 0))
 {
 (void) printf("FAILED: OCIHandleAlloc() on errhp\n");
 return OCI_ERROR;
 }

 /* Allocate a server handle */
 if (OCIHandleAlloc((dvoid *) *envhp, (dvoid **) srvhp,
 (ub4) OCI_HTYPE_SERVER, (size_t) 0, (dvoid **) 0))
 {
 (void) printf("FAILED: OCIHandleAlloc() on srvhp\n");
 return OCI_ERROR;
 }
 Code Examples D-27

Example 3, DML with RETURNING Clause
 /* Allocate a authentication handle */
 if (OCIHandleAlloc((dvoid *) *envhp, (dvoid **) authp,
 (ub4) OCI_HTYPE_SESSION, (size_t) 0, (dvoid **) 0))
 {
 (void) printf("FAILED: OCIHandleAlloc() on authp\n");
 return OCI_ERROR;
 }

 return OCI_SUCCESS;
}

/* --- */
/* Attach to server with a given mode. */
/* --- */
sword attach_server(mode, srvhp, errhp, svchp)
ub4 mode;
OCIServer *srvhp;
OCIError *errhp;
OCISvcCtx *svchp;
{
 text *cstring = (text *)"";

 if (OCIServerAttach(srvhp, errhp, (text *) cstring,
 (sb4) strlen((char *)cstring), (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIServerAttach()\n");
 return OCI_ERROR;
 }

 /* Set the server handle in the service handle */
 if (OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
 (dvoid *) srvhp, (ub4) 0, (ub4) OCI_ATTR_SERVER, errhp))
 {
 (void) printf("FAILED: OCIAttrSet() server attribute\n");
 return OCI_ERROR;
 }

 return OCI_SUCCESS;
}
/* --- */
/* Logon to the database using given username, password & credentials*/
/* --- */
sword log_on(authp, errhp, svchp, uid, pwd, credt, mode)
OCISession *authp;
D-28 Oracle Call Interface Programmer’s Guide

Example 3, DML with RETURNING Clause
OCIError *errhp;
OCISvcCtx *svchp;
text *uid;
text *pwd;
ub4 credt;
ub4 mode;
{
 /* Set attributes in the authentication handle */
 if (OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) uid, (ub4) strlen((char *) uid),
 (ub4) OCI_ATTR_USERNAME, errhp))
 {
 (void) printf("FAILED: OCIAttrSet() userid\n");
 return OCI_ERROR;
 }
 if (OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) pwd, (ub4) strlen((char *) pwd),
 (ub4) OCI_ATTR_PASSWORD, errhp))
 {
 (void) printf("FAILED: OCIAttrSet() passwd\n");
 return OCI_ERROR;
 }

 (void) printf("Logging on as %s \n", uid);

 if (OCISessionBegin(svchp, errhp, authp, credt, mode))
 {
 (void) printf("FAILED: OCIAttrSet() passwd\n");
 return OCI_ERROR;
 }

 (void) printf("%s logged on.\n", uid);

 /* Set the authentication handle in the Service handle */
 if (OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
 (dvoid *) authp, (ub4) 0, (ub4) OCI_ATTR_SESSION, errhp))
 {
 (void) printf("FAILED: OCIAttrSet() session\n");
 return OCI_ERROR;
 }

 return OCI_SUCCESS;
}

/*---*/
 Code Examples D-29

Example 3, DML with RETURNING Clause
/* Allocate all required bind handles */
/*---*/

sword init_bind_handle(stmthp, bndhp, nbinds)
OCIStmt *stmthp;
OCIBind *bndhp[];
int nbinds;
{
 int i;
 /*
 * This function init the specified number of bind handles
 * from the given statement handle.
 */
 for (i = 0; i < nbinds; i++)
 bndhp[i] = (OCIBind *) 0;

 return OCI_SUCCESS;
}

/* --- */
/* Print the returned raw data. */
/* --- */
void print_raw(raw, rawlen)
ub1 *raw;
ub4 rawlen;
{
 ub4 i;
 ub4 lim;
 ub4 clen = 0;

 if (rawlen > 120)
 {
 ub4 llen = rawlen;

 while (llen > 120)
 {
 lim = clen + 120;
 for(i = clen; i < lim; ++i)
 (void) printf("%02.2x", (ub4) raw[i] & 0xFF);

 (void) printf("\n");
 llen -= 120;
 clen += 120;
 }
 lim = clen + llen;
D-30 Oracle Call Interface Programmer’s Guide

Example 3, DML with RETURNING Clause
 }
 else
 lim = rawlen;

 for(i = clen; i < lim; ++i)
 (void) printf("%02.2x", (ub4) raw[i] & 0xFF);

 (void) printf("\n");

 return;
}

/* --- */
/* Free the specified handles */
/* --- */
void free_handles(envhp, svchp, srvhp, errhp, authp, stmthp)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIServer *srvhp;
OCIError *errhp;
OCISession *authp;
OCIStmt *stmthp;
{
 (void) printf("Freeing handles ...\n");

 if (srvhp)
 (void) OCIHandleFree((dvoid *) srvhp, (ub4) OCI_HTYPE_SERVER);
 if (svchp)
 (void) OCIHandleFree((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX);
 if (errhp)
 (void) OCIHandleFree((dvoid *) errhp, (ub4) OCI_HTYPE_ERROR);
 if (authp)
 (void) OCIHandleFree((dvoid *) authp, (ub4) OCI_HTYPE_SESSION);
 if (stmthp)
 (void) OCIHandleFree((dvoid *) stmthp, (ub4) OCI_HTYPE_STMT);
 if (envhp)
 (void) OCIHandleFree((dvoid *) envhp, (ub4) OCI_HTYPE_ENV);

 return;
}

/* --- */
/* Print the error message */
/* --- */
void report_error(errhp)
 Code Examples D-31

Example 3, DML with RETURNING Clause
OCIError *errhp;
{
 text msgbuf[512];
 sb4 errcode = 0;

 (void) OCIErrorGet((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
 msgbuf, (ub4) sizeof(msgbuf), (ub4) OCI_HTYPE_ERROR);
 (void) printf("ERROR CODE = %d\n", errcode);
 (void) printf("%.*s\n", 512, msgbuf);
 return;
}

/*---*/
/* Logout and detach from the server */
/*---*/
void logout_detach_server(svchp, srvhp, errhp, authp, userid)
OCISvcCtx *svchp;
OCIServer *srvhp;
OCIError *errhp;
OCISession *authp;
text *userid;
{
 if (OCISessionEnd(svchp, errhp, authp, (ub4) 0))
 {
 (void) printf("FAILED: OCISessionEnd()\n");
 report_error(errhp);
 }

 (void) printf("%s Logged off.\n", userid);

 if (OCIServerDetach(srvhp, errhp, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCISessionEnd()\n");
 report_error(errhp);
 }

 (void) printf("Detached from server.\n");

 return;
}

/*---*/
/* Finish demo and clean up */
/*---*/
sword finish_demo(loggedon, envhp, svchp, srvhp, errhp, authp, stmthp, userid)
D-32 Oracle Call Interface Programmer’s Guide

Example 3, DML with RETURNING Clause
boolean loggedon;
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIServer *srvhp;
OCIError *errhp;
OCISession *authp;
OCIStmt *stmthp;
text *userid;
{

 if (loggedon)
 logout_detach_server(svchp, srvhp, errhp, authp, userid);

 free_handles(envhp, svchp, srvhp, errhp, authp, stmthp);

 return OCI_SUCCESS;
}

/*===================== END OF UTILITY FUNCTIONS ======================*/

/*========================= MAIN ======================================*/
int main(argc, argv)
int argc;
char *argv[];
{
 text *username = (text *)"scott";
 text *password = (text *)"tiger";

 OCIEnv *envhp;
 OCIServer *srvhp;
 OCISvcCtx *svchp;
 OCISession *authp;
 OCIStmt *stmthp;
 OCIBind *bndhp[MAXBINDS];
 int i;

 /* Initialize the Environment and allocate handles */
 if (init_handles(&envhp, &svchp, &errhp, &srvhp, &authp, (ub4)OCI_DEFAULT))
 {
 (void) printf("FAILED: init_handles()\n");
 return finish_demo(logged_on, envhp, svchp, srvhp, errhp, authp,
 stmthp, username);
 }
 Code Examples D-33

Example 3, DML with RETURNING Clause
 /* Attach to the database server */
 if (attach_server((ub4) OCI_DEFAULT, srvhp, errhp, svchp))
 {
 (void) printf("FAILED: attach_server()\n");
 return finish_demo(logged_on, envhp, svchp, srvhp, errhp, authp,
 stmthp, username);
 }

 /* Logon to the server and begin a session */
 if (log_on(authp, errhp, svchp, username, password,
 (ub4) OCI_CRED_RDBMS, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: log_on()\n");
 return finish_demo(logged_on, envhp, svchp, srvhp, errhp, authp,
 stmthp, username);
 }
 logged_on = TRUE;

 /* Allocate a statement handle */
 if (OCIHandleAlloc((dvoid *)envhp, (dvoid **) &stmthp,
 (ub4)OCI_HTYPE_STMT, (CONST size_t) 0, (dvoid **) 0))
 {
 (void) printf("FAILED: alloc statement handle\n");
 return finish_demo(logged_on, envhp, svchp, srvhp, errhp, authp,
 stmthp, username);
 }

 /* bind handles will be implicitly allocated in the bind calls */
 /* need to initialize them to null prior to first usage in bind calls */

 for (i = 0; i < MAXBINDS; i++)
 bndhp[i] = (OCIBind *) 0;

 /* Demonstrate INSERT with RETURNING clause */
 if (demo_insert(svchp, stmthp, bndhp, errhp))
 (void) printf("FAILED: demo_insert()\n");
 else
 (void) printf("SUCCESS: demo_insert()\n");

 /* Demonstrate UPDATE with RETURNING clause */
 if (demo_update(svchp, stmthp, bndhp, errhp))
 (void) printf("FAILED: demo_update()\n");
 else
 (void) printf("SUCCESS: demo_update()\n");
D-34 Oracle Call Interface Programmer’s Guide

Example 3, DML with RETURNING Clause
 /* Demonstrate DELETE with RETURNING clause */
 if (demo_delete(svchp, stmthp, bndhp, errhp))
 (void) printf("FAILED: demo_delete()\n");
 else
 (void) printf("SUCCESS: demo_delete()\n");

 /* clean up */
 return finish_demo(logged_on, envhp, svchp, srvhp, errhp, authp,
 stmthp, username);
}

/* =================== End Main =====================================*/

/* ===================== Local Functions ============================*/
/* --- */
/* bind all the columns of TAB1 by positions. */
/* --- */
static sword bind_pos(OCIStmt *stmthp, OCIBind *bndhp[], OCIError *errhp)
{

 if (OCIBindByPos(stmthp, &bndhp[0], errhp, (ub4) 1,
 (dvoid *) &in1[0], (sb4) sizeof(in1[0]), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT)
 || OCIBindByPos(stmthp, &bndhp[1], errhp, (ub4) 2,
 (dvoid *) in2[0], (sb4) sizeof(in2[0]), SQLT_AFC,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT)
 || OCIBindByPos(stmthp, &bndhp[2], errhp, (ub4) 3,
 (dvoid *) in3[0], (sb4) sizeof(in3[0]), SQLT_CHR,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT)
 || OCIBindByPos(stmthp, &bndhp[3], errhp, (ub4) 4,
 (dvoid *) &in4[0], (sb4) sizeof(in4[0]), SQLT_FLT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT)
 || OCIBindByPos(stmthp, &bndhp[4], errhp, (ub4) 5,
 (dvoid *) &in5[0], (sb4) sizeof(in5[0]), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT)
 || OCIBindByPos(stmthp, &bndhp[5], errhp, (ub4) 6,
 (dvoid *) &in6[0], (sb4) sizeof(in6[0]), SQLT_FLT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT)
 || OCIBindByPos(stmthp, &bndhp[6], errhp, (ub4) 7,
 Code Examples D-35

Example 3, DML with RETURNING Clause
 (dvoid *) &in7[0], (sb4) sizeof(in7[0]), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT)
 || OCIBindByPos(stmthp, &bndhp[7], errhp, (ub4) 8,
 (dvoid *) &in8[0], (sb4) sizeof(in8[0]), SQLT_FLT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT)
 || OCIBindByPos(stmthp, &bndhp[8], errhp, (ub4) 9,
 (dvoid *) in9[0], (sb4) sizeof(in9[0]), SQLT_DAT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT)
 || OCIBindByPos(stmthp, &bndhp[9], errhp, (ub4) 10,
 (dvoid *) in10[0], (sb4) sizeof(in10[0]), SQLT_BIN,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIBindByPos()\n");
 report_error(errhp);
 return OCI_ERROR;
 }

 return OCI_SUCCESS;
}

/* --- */
/* bind all the columns of TAB1 by name. */
/* --- */
static sword bind_name(OCIStmt *stmthp, OCIBind *bndhp[], OCIError *errhp)
{

 if (OCIBindByName(stmthp, &bndhp[10], errhp,
 (text *) ":out1", (sb4) strlen((char *) ":out1"),
 (dvoid *) 0, (sb4) sizeof(int), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC)
 || OCIBindByName(stmthp, &bndhp[11], errhp,
 (text *) ":out2", (sb4) strlen((char *) ":out2"),
 (dvoid *) 0, (sb4) MAXCOLLEN, SQLT_AFC,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC)
 || OCIBindByName(stmthp, &bndhp[12], errhp,
 (text *) ":out3", (sb4) strlen((char *) ":out3"),
 (dvoid *) 0, (sb4) MAXCOLLEN, SQLT_CHR,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC)
D-36 Oracle Call Interface Programmer’s Guide

Example 3, DML with RETURNING Clause
 || OCIBindByName(stmthp, &bndhp[13], errhp,
 (text *) ":out4", (sb4) strlen((char *) ":out4"),
 (dvoid *) 0, (sb4) sizeof(float), SQLT_FLT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC)
 || OCIBindByName(stmthp, &bndhp[14], errhp,
 (text *) ":out5", (sb4) strlen((char *) ":out5"),
 (dvoid *) 0, (sb4) sizeof(int), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC)
 || OCIBindByName(stmthp, &bndhp[15], errhp,
 (text *) ":out6", (sb4) strlen((char *) ":out6"),
 (dvoid *) 0, (sb4) sizeof(float), SQLT_FLT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC)
 || OCIBindByName(stmthp, &bndhp[16], errhp,
 (text *) ":out7", (sb4) strlen((char *) ":out7"),
 (dvoid *) 0, (sb4) sizeof(int), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC)
 || OCIBindByName(stmthp, &bndhp[17], errhp,
 (text *) ":out8", (sb4) strlen((char *) ":out8"),
 (dvoid *) 0, (sb4) sizeof(float), SQLT_FLT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC)
 || OCIBindByName(stmthp, &bndhp[18], errhp,
 (text *) ":out9", (sb4) strlen((char *) ":out9"),
 (dvoid *) 0, (sb4) DATBUFLEN, SQLT_DAT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC)
 || OCIBindByName(stmthp, &bndhp[19], errhp,
 (text *) ":out10", (sb4) strlen((char *) ":out10"),
 (dvoid *) 0, (sb4) MAXCOLLEN, SQLT_BIN,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DATA_AT_EXEC))
 {
 (void) printf("FAILED: OCIBindByName()\n");
 report_error(errhp);
 return OCI_ERROR;
 }

 return OCI_SUCCESS;
}

 Code Examples D-37

Example 3, DML with RETURNING Clause
/* --- */
/* bind array structs for TAB1 columns. */
/* --- */
static sword bind_array(OCIBind *bndhp[], OCIError *errhp)
{
 if (OCIBindArrayOfStruct(bndhp[0], errhp, s1, indsk[0], rlsk[0], rcsk[0])
 || OCIBindArrayOfStruct(bndhp[1], errhp, s2, indsk[1], rlsk[1], rcsk[1])
 || OCIBindArrayOfStruct(bndhp[2], errhp, s3, indsk[2], rlsk[2], rcsk[2])
 || OCIBindArrayOfStruct(bndhp[3], errhp, s4, indsk[3], rlsk[3], rcsk[3])
 || OCIBindArrayOfStruct(bndhp[4], errhp, s5, indsk[4], rlsk[4], rcsk[4])
 || OCIBindArrayOfStruct(bndhp[5], errhp, s6, indsk[5], rlsk[5], rcsk[5])
 || OCIBindArrayOfStruct(bndhp[6], errhp, s7, indsk[6], rlsk[6], rcsk[6])
 || OCIBindArrayOfStruct(bndhp[7], errhp, s8, indsk[7], rlsk[7], rcsk[7])
 || OCIBindArrayOfStruct(bndhp[8], errhp, s9, indsk[8], rlsk[8], rcsk[8])
 || OCIBindArrayOfStruct(bndhp[9], errhp, s10, indsk[9], rlsk[9], rcsk[9]))
 {
 (void) printf("FAILED: OCIBindArrayOfStruct()\n");
 report_error(errhp);
 return OCI_ERROR;
 }

 return OCI_SUCCESS;
}

/* --- */
/* bind dynamic for returning TAB1 columns. */
/* --- */
static sword bind_dynamic(OCIBind *bndhp[], OCIError *errhp)
{
 /*
 * Note here that both IN & OUT BIND callback functions have to be
 * provided. However, since the bind variables in the RETURNING
 * clause are pure OUT Binds the IN callback fuctions (cbf_no_data)
 * is essentially a "do-nothing" function.
 *
 * Also note here that although in this demonstration the IN and OUT
 * callback functions are same, in practice you can have a different
 * callback function for each bind handle.
 */

 ub4 i;

 for (i = 0; i < MAXCOLS; i++)
 pos[i] = i;
D-38 Oracle Call Interface Programmer’s Guide

Example 3, DML with RETURNING Clause
 if (OCIBindDynamic(bndhp[10], errhp, (dvoid *) &pos[0], cbf_no_data,
 (dvoid *) &pos[0], cbf_get_data)
 || OCIBindDynamic(bndhp[11], errhp, (dvoid *) &pos[1], cbf_no_data,
 (dvoid *) &pos[1], cbf_get_data)
 || OCIBindDynamic(bndhp[12], errhp, (dvoid *) &pos[2], cbf_no_data,
 (dvoid *) &pos[2], cbf_get_data)
 || OCIBindDynamic(bndhp[13], errhp, (dvoid *) &pos[3], cbf_no_data,
 (dvoid *) &pos[3], cbf_get_data)
 || OCIBindDynamic(bndhp[14], errhp, (dvoid *) &pos[4], cbf_no_data,
 (dvoid *) &pos[4], cbf_get_data)
 || OCIBindDynamic(bndhp[15], errhp, (dvoid *) &pos[5], cbf_no_data,
 (dvoid *) &pos[5], cbf_get_data)
 || OCIBindDynamic(bndhp[16], errhp, (dvoid *) &pos[6], cbf_no_data,
 (dvoid *) &pos[6], cbf_get_data)
 || OCIBindDynamic(bndhp[17], errhp, (dvoid *) &pos[7], cbf_no_data,
 (dvoid *) &pos[7], cbf_get_data)
 || OCIBindDynamic(bndhp[18], errhp, (dvoid *) &pos[8], cbf_no_data,
 (dvoid *) &pos[8], cbf_get_data)
 || OCIBindDynamic(bndhp[19], errhp, (dvoid *) &pos[9], cbf_no_data,
 (dvoid *) &pos[9], cbf_get_data))
 {
 (void) printf("FAILED: OCIBindDynamic()\n");
 report_error(errhp);
 return OCI_ERROR;
 }

 return OCI_SUCCESS;
}

/* --- */
/* bind input variables. */
/* --- */
static sword bind_input(OCIStmt *stmthp, OCIBind *bndhp[], OCIError *errhp)
{
 /* bind the input data by positions */
 if (bind_pos(stmthp, bndhp, errhp))
 return OCI_ERROR;

 /* bind input array attributes*/
 return (bind_array(bndhp, errhp));
}

 Code Examples D-39

Example 3, DML with RETURNING Clause
/* --- */
/* bind output variables. */
/* --- */
static sword bind_output(OCIStmt *stmthp, OCIBind *bndhp[], OCIError *errhp)
{

 /* bind the returning bind buffers by names */
 if (bind_name(stmthp, bndhp, errhp))
 return OCI_ERROR;

 /* bind the returning bind buffers dynamically */
 return (bind_dynamic(bndhp, errhp));
}

/* --- */
/* bind row indicator variables. */
/* --- */
static sword bind_low_high(OCIStmt *stmthp, OCIBind *bndhp[], OCIError *errhp)
{
 if (OCIBindByName(stmthp, &bndhp[23], errhp,
 (text *) ":low", (sb4) strlen((char *) ":low"),
 (dvoid *) &lowc1[0], (sb4) sizeof(lowc1[0]), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT)
 || OCIBindByName(stmthp, &bndhp[24], errhp,
 (text *) ":high", (sb4) strlen((char *) ":high"),
 (dvoid *) &highc1[0], (sb4) sizeof(highc1[0]), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIBindByName()\n");
 report_error(errhp);
 return OCI_ERROR;
 }

 if (OCIBindArrayOfStruct(bndhp[23], errhp, s1, indsk[0], rlsk[0], rcsk[0])
 || OCIBindArrayOfStruct(bndhp[24], errhp, s1, indsk[0], rlsk[0], rcsk[0]))
 {
 (void) printf("FAILED: OCIBindArrayOfStruct()\n");
 report_error(errhp);
 return OCI_ERROR;
 }

 return OCI_SUCCESS;
}

D-40 Oracle Call Interface Programmer’s Guide

Example 3, DML with RETURNING Clause
/* --- */
/* Demontrate INSERT with RETURNING clause. */
/* --- */
static sword demo_insert(OCISvcCtx *svchp, OCIStmt *stmthp,
 OCIBind *bndhp[], OCIError *errhp)
{
 int i, j;

 /*
 * This function inserts values for 10 columns in table TAB1 and
 * uses the RETURN clause to get back the inserted column values.
 * It inserts MAXITER (10) such rows. Thus it expects MAXITER values
 * for each column to be returned.
 */
 /* The Insert Statement with RETURNING clause */
 text *sqlstmt = (text *)
 "INSERT INTO TAB1 VALUES (:1, :2, :3, :4, :5, :6, :7, :8, :9, :10) \
 RETURNING C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 \
 INTO :out1, :out2, :out3, :out4, :out5, :out6, \
 :out7, :out8, :out9, :out10";

 /* Prepare the statement */
 if (OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtPrepare() insert\n");
 report_error(errhp);
 return OCI_ERROR;
 }

 /* Initialise the buffers for update */
 for (i = 0; i < MAXITER; i++)
 {
 in1[i] = i + 1;
 memset((void *)in2[i], (int) 'A'+i%26, (size_t) 40);
 memset((void *)in3[i], (int) 'a'+i%26, (size_t) 40);
 in4[i] = 400.555 + (float) i;
 in5[i] = 500 + i;
 in6[i] = 600.250 + (float) i;
 in7[i] = 700 + i;
 in8[i] = 800.350 + (float) i;
 in9[i][0] = 119;
 in9[i][1] = 185 + (ub1)i%10;
 Code Examples D-41

Example 3, DML with RETURNING Clause
 in9[i][2] = (ub1)i%12 + 1;
 in9[i][3] = (ub1)i%25 + 1;
 in9[i][4] = 0;
 in9[i][5] = 0;
 in9[i][6] = 0;
 for (j = 0; j < 40; j++)
 in10[i][j] = (ub1) (i%0x10);

 rowsret[i] = 0;
 }

 /* Bind all the input buffers to place holders (:1, :2. :3, etc) */
 if (bind_input(stmthp, bndhp, errhp))
 return OCI_ERROR;

 /* Bind all the output buffers to place holders (:out1, :out2 etc */
 if (bind_output(stmthp, bndhp, errhp))
 return OCI_ERROR;

 /* Execute the Insert statement */
 if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) MAXITER, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtExecute() insert\n");
 report_error(errhp);
 return OCI_ERROR;
 }

 /* Commit the changes */
 (void) OCITransCommit(svchp, errhp, (ub4) 0);

 /* Print out the values in the return rows */
 (void) printf("\n\n DEMONSTRATING INSERT....RETURNING \n");
 (void) print_return_data((int)MAXITER);

 return OCI_SUCCESS;
}

/* --- */
/* Demonstrate UPDATE with RETURNING clause. */
/* --- */
static sword demo_update(OCISvcCtx *svchp, OCIStmt *stmthp,
 OCIBind *bndhp[], OCIError *errhp)
{

D-42 Oracle Call Interface Programmer’s Guide

Example 3, DML with RETURNING Clause
 int i, j;
 int range_size = 3; /* iterations */

 /*
 * This function updates columns in table TAB1, for certain rows
 * depending on the values of the :low and :high values in
 * in the WHERE clause. It executes this statement 3 times, (3 iterations)
 * each time with a different set of values for :low and :high
 * Thus for each iteration, multiple rows are returned depending
 * on the number of rows that matched the WHERE clause.
 *
 * The rows it updates here are the rows that were inserted by the
 * cdemodr1.sql script.
 */

 /* The Update Statement with RETURNING clause */
 text *sqlstmt = (text *)
 "UPDATE TAB1 SET C1 = C1 + :1, C2 = :2, C3 = :3, \
 C4 = C4 + :4, C5 = C5 + :5, C6 = C6 + :6, \
 C7 = C7 + :7, C8 = C8 + :8, C9 = :9, C10 = :10 \
 WHERE C1 >= :low AND C1 <= :high \
 RETURNING C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 \
 INTO :out1, :out2, :out3, :out4, :out5, :out6, \
 :out7, :out8, :out9, :out10";

 /* Prepare the statement */
 if (OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtPrepare() update\n");
 report_error(errhp);
 return OCI_ERROR;
 }

 /* Initialise the buffers for insertion */
 for (i = 0; i < MAXITER; i++)
 {
 in1[i] = 300 + i;
 memset((void *)in2[i], (int) 'a'+i%26, (size_t) 40);
 memset((void *)in3[i], (int) 'A'+i%26, (size_t) 40);
 in4[i] = 400.555 + (float)i;
 in5[i] = 500 + i;
 in6[i] = 600.280 + (float)i;
 in7[i] = 700 + i;
 Code Examples D-43

Example 3, DML with RETURNING Clause
 in8[i] = 800.620 + (float)i;
 in9[i][0] = 119;
 in9[i][1] = 185 - (ub1)i%10;
 in9[i][2] = (ub1)i%12 + 1;
 in9[i][3] = (ub1)i%25 + 1;
 in9[i][4] = 0;
 in9[i][5] = 0;
 in9[i][6] = 0;
 for (j = 0; j < 40; j++)
 in10[i][j] = (ub1) (i%0x08);

 rowsret[i] =0;
 }

 /* Bind all the input buffers to place holders (:1, :2. :3, etc) */
 if (bind_input(stmthp, bndhp, errhp))
 return OCI_ERROR;

 /* Bind all the output buffers to place holders (:out1, :out2 etc */
 if (bind_output(stmthp, bndhp, errhp))
 return OCI_ERROR;

 /* bind row indicator low, high */
 if (bind_low_high(stmthp, bndhp, errhp))
 return OCI_ERROR;

 /* update rows
 between 101 and 103; -- expecting 3 rows returned (update 3 rows)
 between 105 and 106; -- expecting 2 rows returned (update 2 rows)
 between 109 and 113; -- expecting 5 rows returned (update 5 rows)
 */
 lowc1[0] = 101;
 highc1[0] = 103;

 lowc1[1] = 105;
 highc1[1] = 106;

 lowc1[2] = 109;
 highc1[2] = 113;

 (void) printf("\n\n DEMONSTRATING UPDATE....RETURNING \n");
 if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) range_size, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT))
 {
D-44 Oracle Call Interface Programmer’s Guide

Example 3, DML with RETURNING Clause
 (void) printf("FAILED: OCIStmtExecute() update\n");
 report_error(errhp);
 return OCI_ERROR;
 }

 /* Commit the changes */
 (void) OCITransCommit(svchp, errhp, (ub4) 0);

 /* Print out the values in the return rows */
 (void) print_return_data(range_size);

 return OCI_SUCCESS;
}

/* --- */
/* Demonstrate DELETE with RETURNING clause. */
/* --- */
static sword demo_delete(OCISvcCtx *svchp, OCIStmt *stmthp,
 OCIBind *bndhp[], OCIError *errhp)
{
 int i, range_size = 3; /* iterations */
 sword retval;

 /*
 * This function deletes certain rows from table TAB1
 * depending on the values of the :low and :high values in
 * the WHERE clause. It executes this statement 3 times, (3 iterations)
 * each time with a different set of values for :low and :high
 * Thus for each iteration, multiples rows are returned depending
 * on the number of rows that matched the WHERE clause.
 *
 * The rows it deletes here are the rows that were inserted by the
 * cdemodr1.sql script.
 */

 /* The Delete Statement with RETURNING clause */
 text *sqlstmt = (text *)
 "DELETE FROM TAB1 WHERE C1 >= :low AND C1 <= :high \
 RETURNING C1, C2, C3, C4, C5, C6, C7, C8, C9, C10 \
 INTO :out1, :out2, :out3, :out4, :out5, :out6, \
 :out7, :out8, :out9, :out10";

 /* Prepare the statement */
 if (OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4)strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 Code Examples D-45

Example 3, DML with RETURNING Clause
 {
 (void) printf("FAILED: OCIStmtPrepare() delete\n");
 report_error(errhp);
 return OCI_ERROR;
 }

 /* Bind all the output buffers to place holders (:out1, :out2 etc */
 if (bind_output(stmthp, bndhp, errhp))
 return OCI_ERROR;

 /* bind row indicator low, high */
 if (bind_low_high(stmthp, bndhp, errhp))
 return OCI_ERROR;

 /* delete rows
 between 201 and 203; -- expecting 3 rows returned (3 rows deleted)
 between 205 and 209; -- expecting 5 rows returned (2 rows deleted)
 between 211 and 213; -- expecting 3 rows returned (5 rows deleted)
 */
 lowc1[0] = 201;
 highc1[0] = 203;

 lowc1[1] = 205;
 highc1[1] = 209;

 lowc1[2] = 211;
 highc1[2] = 213;

 for (i=0; i<MAXITER; i++)
 rowsret[i] = 0;

 (void) printf("\n\n Demonstrating DETELE....RETURNING \n");
 if ((retval = OCIStmtExecute(svchp, stmthp, errhp, (ub4) range_size, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT)) != OCI_SUCCESS &&
 retval != OCI_SUCCESS_WITH_INFO)
 {
 (void) printf("FAILED: OCIStmtExecute() delete, retval = %d\n", retval);
 report_error(errhp);
 }

 /* Commit the changes */
 (void) OCITransCommit(svchp, errhp, (ub4) 0);
D-46 Oracle Call Interface Programmer’s Guide

Example 3, DML with RETURNING Clause
 /* Print out the values in the return rows */
 (void) print_return_data(range_size);

 return OCI_SUCCESS;
}

/* --- */
/* IN bind callback that does not do any data input. */
/* --- */
static sb4 cbf_no_data(dvoid *ctxp, OCIBind *bindp, ub4 iter, ub4 index,
 dvoid **bufpp, ub4 *alenpp, ub1 *piecep, dvoid **indpp)
{
 /*
 * This is a dummy input callback function that provides input data
 * for the bind variables in the RETURNING clause.
 */
 *bufpp = (dvoid *) 0;
 *alenpp = 0;
 *indpp = (dvoid *) 0;
 *piecep = OCI_ONE_PIECE;

 return OCI_CONTINUE;
}

/* --- */
/* Outbind callback for returning data. */
/* --- */
static sb4 cbf_get_data(dvoid *ctxp, OCIBind *bindp, ub4 iter, ub4 index,
 dvoid **bufpp, ub4 **alenp, ub1 *piecep,
 dvoid **indpp, ub2 **rcodepp)
{
 /*
 * This is the callback function that is called to receive the OUT
 * bind values for the bind variables in the RETURNING clause
 */

 static ub4 rows = 0;
 ub4 pos = *((ub4 *)ctxp);

 /* For each iteration the OCI_ATTR_ROWS_RETURNED tells us the number
 * of rows returned in that iteration. So we can use this information
 * to dynamically allocate storage for all the returned rows for that
 * bind.
 */
 if (index == 0)
 Code Examples D-47

Example 3, DML with RETURNING Clause
 {
 (void) OCIAttrGet((CONST dvoid *)bindp, OCI_HTYPE_BIND, (dvoid *)&rows,
 (ub4 *) sizeof(ub4), OCI_ATTR_ROWS_RETURNED, errhp);
 rowsret[iter] = (ub2)rows;

 /* Dynamically allocate storage */
 if (alloc_buffer(pos, iter, rows))
 return OCI_ERROR;
 }

 /* Provide the address of the storage where the data is to be returned */
 switch(pos)
 {
 case 0:
 rl[pos][iter][index] = sizeof(int);
 *bufpp = (dvoid *) (p1[iter]+ index);
 break;
 case 1:
 rl[pos][iter][index] = (ub4) MAXCOLLEN;
 *bufpp = (dvoid *) (p2[iter]+(index * MAXCOLLEN));
 break;
 case 2:
 rl[pos][iter][index] = (ub4) MAXCOLLEN;
 *bufpp = (dvoid *) (p3[iter]+(index * MAXCOLLEN));
 break;
 case 3:
 rl[pos][iter][index] = sizeof(float);
 *bufpp = (dvoid *) (p4[iter]+ index);
 break;
 case 4:
 rl[pos][iter][index] = sizeof(int);
 *bufpp = (dvoid *) (p5[iter]+index);
 break;
 case 5:
 rl[pos][iter][index] = sizeof(float);
 *bufpp = (dvoid *) (p6[iter]+index);
 break;
 case 6:
 rl[pos][iter][index] = sizeof(int);
 *bufpp = (dvoid *) (p7[iter]+ index);
 break;
 case 7:
 rl[pos][iter][index] = sizeof(float);
 *bufpp = (dvoid *) (p8[iter]+index);
 break;
D-48 Oracle Call Interface Programmer’s Guide

Example 3, DML with RETURNING Clause
 case 8:
 rl[pos][iter][index] = DATBUFLEN;
 *bufpp = (dvoid *) (p9[iter]+(index * DATBUFLEN));
 break;
 case 9:
 rl[pos][iter][index] = (ub4) MAXCOLLEN;
 *bufpp = (dvoid *) (p10[iter]+(index * MAXCOLLEN));
 break;
 default:
 *bufpp = (dvoid *) 0;
 *alenp = (ub4 *) 0;
 (void) printf("ERROR: invalid position number: %d\n", *((ub2 *)ctxp));
 }

 *piecep = OCI_ONE_PIECE;

 /* provide address of the storage where the indicator will be returned */
 ind[pos][iter][index] = 0;
 *indpp = (dvoid *) &ind[pos][iter][index];

 /* provide address of the storage where the return code will be returned */
 rc[pos][iter][index] = 0;
 *rcodepp = &rc[pos][iter][index];

 /*
 * provide address of the storage where the actual length will be
 * returned
 */
 *alenp = &rl[pos][iter][index];

 return OCI_CONTINUE;
}

/* --- */
/* allocate buffers for callback. */
/* --- */
static sword alloc_buffer(ub4 pos, ub4 iter, ub4 rows)
{
 switch(pos)
 {
 case 0:
 p1[iter] = (int *) malloc(sizeof(int) * rows);
 break;
 case 1:
 Code Examples D-49

Example 3, DML with RETURNING Clause
 p2[iter] = (text *) malloc(rows * MAXCOLLEN);
 break;
 case 2:
 p3[iter] = (text *) malloc(rows * MAXCOLLEN);
 break;
 case 3:
 p4[iter] = (float *) malloc(sizeof(float) * rows);
 break;
 case 4:
 p5[iter] = (int *) malloc(sizeof(int) * rows);
 break;
 case 5:
 p6[iter] = (float *) malloc(sizeof(float) * rows);
 break;
 case 6:
 p7[iter] = (int *) malloc(sizeof(int) * rows);
 break;
 case 7:
 p8[iter] = (float *) malloc(sizeof(float) * rows);
 break;
 case 8:
 p9[iter] = (ub1 *) malloc(rows * DATBUFLEN);
 break;
 case 9:
 p10[iter] = (ub1 *) malloc(rows * MAXCOLLEN);
 break;
 default:
 (void) printf("ERROR: invalid position number: %d\n", pos);
 return OCI_ERROR;
 }

 ind[pos][iter] = (short *) malloc(rows * sizeof(short));
 rc[pos][iter] = (ub2 *) malloc(rows * sizeof(ub2));
 rl[pos][iter] = (ub4 *) malloc(rows * sizeof(ub4));

 return OCI_SUCCESS;
}

/* --- */
/* print the returned data. */
/* --- */
static sword print_return_data(iters)
int iters;
{
 int i, j;
D-50 Oracle Call Interface Programmer’s Guide

Example 3, DML with RETURNING Clause
 for (i = 0; i < iters; i++)
 {
 (void) printf("\n*** ITERATION *** : %d\n", i);
 (void) printf("(...returning %d rows)\n", rowsret[i]);

 for (j = 0; j < rowsret[i] ; j++)
 {
 /* Column 1 */
 (void) printf("COL1 [%d]: ind = %d, rc = %d, retl = %d\n",
 j, ind[0][i][j], rc[0][i][j], rl[0][i][j]);
 if (ind[0][i][j] == -1)
 (void) printf("COL1 [%d]: NULL\n", j);
 else
 (void) printf("COL1 [%d]: %d\n", j, *(p1[i]+j));

 /* Column 2 */
 (void) printf("COL2 [%d]: ind = %d, rc = %d, retl = %d\n",
 j, ind[1][i][j], rc[1][i][j], rl[1][i][j]);
 if (ind[1][i][j] == -1)
 (void) printf("COL2 [%d]: NULL\n", j);
 else
 (void) printf("COL2 [%d]: %.*s\n", j, rl[1][i][j],p2[i]+(j*MAXCOLLEN));

 /* Column 3 */
 (void) printf("COL3 [%d]: ind = %d, rc = %d, retl = %d\n",
 j, ind[2][i][j], rc[2][i][j], rl[2][i][j]);
 if (ind[2][i][j] == -1)
 (void) printf("COL3 [%d]: NULL\n", j);
 else
 (void) printf("COL3 [%d]: %.*s\n", j, rl[2][i][j],p3[i]+(j*MAXCOLLEN));
 /* Column 4 */
 (void) printf("COL4 [%d]: ind = %d, rc = %d, retl = %d\n",
 j, ind[3][i][j], rc[3][i][j], rl[3][i][j]);
 if (ind[3][i][j] == -1)
 (void) printf("COL4 [%d]: NULL\n", j);
 else
 (void) printf("COL4 [%d]: %8.3f\n", j, *(p4[i]+j));

 /* Column 5 */
 (void) printf("COL5 [%d]: ind = %d, rc = %d, retl = %d\n",
 j, ind[4][i][j], rc[4][i][j], rl[4][i][j]);
 if (ind[4][i][j] == -1)
 (void) printf("COL5 [%d]: NULL\n", j);
 else
 Code Examples D-51

Example 3, DML with RETURNING Clause
 (void) printf("COL5 [%d]: %d\n", j, *(p5[i]+j));

 /* Column 6 */
 (void) printf("COL6 [%d]: ind = %d, rc = %d, retl = %d\n",
 j, ind[5][i][j], rc[5][i][j], rl[5][i][j]);
 if (ind[5][i][j] == -1)
 (void) printf("COL6 [%d]: NULL\n", j);
 else
 (void) printf("COL6 [%d]: %8.3f\n", j, *(p6[i]+j));

 /* Column 7 */
 (void) printf("COL7 [%d]: ind = %d, rc = %d, retl = %d\n",
 j, ind[6][i][j], rc[6][i][j], rl[6][i][j]);
 if (ind[6][i][j] == -1)
 (void) printf("COL7 [%d]: NULL\n", j);
 else
 (void) printf("COL7 [%d]: %d\n", j, *(p7[i]+j));

 /* Column 8 */
 (void) printf("COL8 [%d]: ind = %d, rc = %d, retl = %d\n",
 j, ind[7][i][j], rc[7][i][j], rl[7][i][j]);
 if (ind[7][i][j] == -1)
 (void) printf("COL8 [%d]: NULL\n", j);
 else
 (void) printf("COL8 [%d]: %8.3f\n", j, *(p8[i]+j));

 /* Column 9 */
 (void) printf("COL9 [%d]: ind = %d, rc = %d, retl = %d\n",
 j, ind[8][i][j], rc[8][i][j], rl[8][i][j]);
 if (ind[8][i][j] == -1)
 (void) printf("COL9 [%d]: NULL\n", j);
 else
 (void) printf("COL9 [%d]: %u-%u-%u%u\n", j,
 *(p9[i]+(j*DATBUFLEN+3)),
 *(p9[i]+(j*DATBUFLEN+2)),
 *(p9[i]+(j*DATBUFLEN+0)) - 100,
 *(p9[i]+(j*DATBUFLEN+1)) - 100);

 /* Column 10 */
 (void) printf("COL10 [%d]: ind = %d, rc = %d, retl = %d\n",
 j, ind[9][i][j], rc[9][i][j], rl[9][i][j]);
 if (ind[9][i][j] == -1)
 (void) printf("COL10 [%d]: NULL\n", j);
 else
 {
D-52 Oracle Call Interface Programmer’s Guide

Example 3, DML with RETURNING Clause
 (void) printf("COL10 [%d]: ", j);
 print_raw(p10[i]+(j*MAXCOLLEN), rl[9][i][j]);
 }
 (void) printf("\n");
 }
 }

 return OCI_SUCCESS;
}

cdemodr1.h

/*--
 * Include Files
 */
#include <stdio.h>
#include <string.h>
#include <oci.h>

/*--
 * Define Constants
 */

#define MAXBINDS 25
#define MAXROWS 5 /* max no of rows returned per iter */
#define MAXCOLS 10
#define MAXITER 10 /* max no of iters in execute */
#define MAXCOLLEN 40 /* if changed, update cdemodr1.sql */
#define DATBUFLEN 7

int main(/*_ int argc, char *argv[] _*/);
static sword init_handles(/*_ OCIEnv **envhp, OCISvcCtx **svchp,
 OCIError **errhp, OCIServer **svrhp,
 OCISession **authp, ub4 mode _*/);

static sword attach_server(/*_ ub4 mode, OCIServer *srvhp,
 OCIError *errhp, OCISvcCtx *svchp _*/);
static sword log_on(/*_ OCISession *authp, OCIError *errhp, OCISvcCtx *svchp,
 text *uid, text *pwd, ub4 credt, ub4 mode _*/);
static sword alloc_bind_handle(/*_ OCIStmt *stmthp, OCIBind *bndhp[],
 int nbinds _*/);
static void print_raw(/*_ ub1 *raw, ub4 rawlen _*/);
 Code Examples D-53

Example 3, DML with RETURNING Clause
static void free_handles(/*_ OCIEnv *envhp, OCISvcCtx *svchp, OCIServer
 *srvhp, OCIError *errhp, OCISession *authp, OCIStmt *stmthp _*/);
void report_error(/*_ OCIError *errhp _*/);
void logout_detach_server(/*_ OCISvcCtx *svchp, OCIServer *srvhp,
 OCIError *errhp, OCISession *authp,
 text *userid _*/);
sword finish_demo(/*_ boolean loggedon, OCIEnv *envhp, OCISvcCtx *svchp,
 OCIServer *srvhp, OCIError *errhp, OCISession *authp,
 OCIStmt *stmthp, text *userid _*/);
static sword demo_insert(/*_ OCISvcCtx *svchp, OCIStmt *stmthp,
 OCIBind *bndhp[], OCIError *errhp _*/);
static sword demo_update(/*_ OCISvcCtx *svchp, OCIStmt *stmthp,
 OCIBind *bndhp[], OCIError *errhp _*/);
static sword demo_delete(/*_ OCISvcCtx *svchp, OCIStmt *stmthp,
 OCIBind *bndhp[], OCIError *errhp _*/);
static sword bind_name(/*_ OCIStmt *stmthp, OCIBind *bndhp[],
 OCIError *errhp _*/);
static sword bind_pos(/*_ OCIStmt *stmthp, OCIBind *bndhp[],
 OCIError *errhp _*/);
static sword bind_input(/*_ OCIStmt *stmthp, OCIBind *bndhp[],
 OCIError *errhp _*/);
static sword bind_output(/*_ OCIStmt *stmthp, OCIBind *bndhp[],
 OCIError *errhp _*/);
static sword bind_array(/*_ OCIBind *bndhp[], OCIError *errhp _*/);
static sword bind_dynamic(/*_ OCIBind *bndhp[], OCIError *errhp _*/);
static sb4 cbf_no_data(/*_ dvoid *ctxp, OCIBind *bindp, ub4 iter, ub4 index,
 dvoid **bufpp, ub4 *alenpp, ub1 *piecep, dvoid **indpp _*/);
static sb4 cbf_get_data(/*_ dvoid *ctxp, OCIBind *bindp, ub4 iter, ub4 index,
 dvoid **bufpp, ub4 **alenpp, ub1 *piecep,
 dvoid **indpp, ub2 **rcodepp _*/);
static sword alloc_buffer(/*_ ub4 pos, ub4 iter, ub4 rows _*/);
static sword print_return_data(/*_ int iter _*/);
D-54 Oracle Call Interface Programmer’s Guide

Example 4, Describing an Object
Example 4, Describing an Object
/*
 NAME
 cdemodsc.c

 DESCRIPTION
 Tests OCIDescribeAny() on an object.

 cdemodsc takes the user name and password and a type name
 (created in the database) as command line arguments and
 dumps all the information about the type --
 its attribute types, methods,
 method parameters, etc.

*/

#ifndef CDEMODSC_ORACLE
#include "cdemodsc.h"
#endif

/***/
static void checkerr(errhp, status)
OCIError *errhp;
sword status;
{
 text errbuf[512];
 sb4 errcode;

 switch (status)
 {
 case OCI_SUCCESS:
 break;
 case OCI_SUCCESS_WITH_INFO:
 break;
 case OCI_NEED_DATA:
 break;
 case OCI_NO_DATA:
 break;
 case OCI_ERROR:
 DISCARD OCIErrorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), (ub4) OCI_HTYPE_ERROR);
 DISCARD printf("Error - %s\n", errbuf);
 exit(1);
 break;
 Code Examples D-55

Example 4, Describing an Object
 case OCI_INVALID_HANDLE:
 break;
 case OCI_STILL_EXECUTING:
 break;
 case OCI_CONTINUE:
 break;
 default:
 break;
 }
}

/*--*/

static void chk_methodlst(envhp, errhp, svchp, parmp, count, comment)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
dvoid *parmp;
ub4 count;
const text *comment;
{
 sword retval;
 ub4 pos;
 dvoid *parmdp;

 for (pos = 1; pos <= count; pos++)
 {
 checkerr(errhp, OCIParamGet((dvoid *)parmp, (ub4) OCI_DTYPE_PARAM, errhp,
 (dvoid *)&parmdp, (ub4) pos));
 chk_method(envhp, errhp, svchp, parmdp, comment);
 }
}

/*--*/

static void chk_method(envhp, errhp, svchp, parmp, comment)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
dvoid *parmp;
const text *comment;
{
 sword retval;
 text method[MAXNAME],
 *namep;
D-56 Oracle Call Interface Programmer’s Guide

Example 4, Describing an Object
 ub4 size;
 ub4 num_arg;
 ub1 has_result,
 is_selfish,
 is_virtual,
 is_inline,
 is_constructor,
 is_destructor,
 is_constant,
 is_operator,
 is_map,
 is_order,
 is_rnds,
 is_rnps,
 is_wnds,
 is_wnps;
 OCITypeEncap encap;
 dvoid *list_arg;

 /* get name of the method */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &namep, (ub4 *) &size,
 (ub4) OCI_ATTR_NAME, (OCIError *) errhp));

 (void) strncpy((char *)method, (char *)namep, (size_t) size);
 method[size] = '\0';

 /* get the number of arguments */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &num_arg, (ub4 *) 0,
 (ub4) OCI_ATTR_NUM_ARGS, (OCIError *) errhp));

 /* encapsulation (public?) */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &encap, (ub4 *) 0,
 (ub4) OCI_ATTR_ENCAPSULATION, (OCIError *) errhp));

 /* has result */
 checkerr(errhp, OCIAttrGet((dvoid *) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid *)&has_result, (ub4 *)0,
 (ub4)OCI_ATTR_HAS_RESULT, (OCIError *) errhp));

 /* map method */
 checkerr(errhp, OCIAttrGet((dvoid *) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid *)&is_map, (ub4 *)0,
 Code Examples D-57

Example 4, Describing an Object
 (ub4)OCI_ATTR_IS_MAP, (OCIError *) errhp));

 /* order method */
 checkerr(errhp, OCIAttrGet((dvoid *) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid *)&is_order, (ub4 *)0,
 (ub4)OCI_ATTR_IS_ORDER, (OCIError *) errhp));

 /* selfish method */
 checkerr(errhp, OCIAttrGet((dvoid *) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid *)&is_selfish, (ub4 *)0,
 (ub4)OCI_ATTR_IS_SELFISH, (OCIError *) errhp));

 /* virtual method */
 checkerr(errhp, OCIAttrGet((dvoid *) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid *)&is_virtual, (ub4 *)0,
 (ub4)OCI_ATTR_IS_VIRTUAL, (OCIError *) errhp));

 /* inline method */
 checkerr(errhp, OCIAttrGet((dvoid *) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid *)&is_inline, (ub4 *)0,
 (ub4)OCI_ATTR_IS_INLINE, (OCIError *) errhp));

 /* constant method */
 checkerr(errhp, OCIAttrGet((dvoid *) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid *)&is_constant, (ub4 *)0,
 (ub4)OCI_ATTR_IS_CONSTANT, (OCIError *) errhp));

 /* operator */
 checkerr(errhp, OCIAttrGet((dvoid *) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid *)&is_operator, (ub4 *)0,
 (ub4)OCI_ATTR_IS_OPERATOR, (OCIError *) errhp));

 /* constructor method */
 checkerr(errhp, OCIAttrGet((dvoid *) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid *)&is_constructor, (ub4 *)0,
 (ub4)OCI_ATTR_IS_CONSTRUCTOR, (OCIError *) errhp));

 /* destructor method */
 checkerr(errhp, OCIAttrGet((dvoid *) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid *)&is_destructor, (ub4 *)0,
 (ub4)OCI_ATTR_IS_DESTRUCTOR, (OCIError *) errhp));

 checkerr(errhp, OCIAttrGet((dvoid *) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid *)&is_rnds, (ub4 *)0,
 (ub4)OCI_ATTR_IS_RNDS, (OCIError *) errhp));
D-58 Oracle Call Interface Programmer’s Guide

Example 4, Describing an Object
 checkerr(errhp, OCIAttrGet((dvoid *) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid *)&is_rnps, (ub4 *)0,
 (ub4)OCI_ATTR_IS_RNPS, (OCIError *) errhp));
 checkerr(errhp, OCIAttrGet((dvoid *) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid *)&is_wnds, (ub4 *)0,
 (ub4)OCI_ATTR_IS_WNDS, (OCIError *) errhp));
 checkerr(errhp, OCIAttrGet((dvoid *) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid *)&is_wnps, (ub4 *)0,
 (ub4)OCI_ATTR_IS_WNPS, (OCIError *) errhp));

 /* get list of arguments */
 checkerr(errhp, OCIAttrGet((dvoid *) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid *)&list_arg, (ub4 *)0,
 (ub4)OCI_ATTR_LIST_ARGUMENTS, (OCIError *) errhp));

 SPACING;
 printf ("\n%s\n", comment);
 SPACING;
 printf ("Name: %s\n", method);
 SPACING;
 printf ("Number of args: %d\n", num_arg);
 SPACING;
 printf ("Encapsulation: %s\n",
 (encap==OCI_TYPEENCAP_PUBLIC) ? "public" : "private");
 SPACING;
 printf ("Has result: %d\n", has_result);
 SPACING;
 printf ("Is selfish: %d\n", is_selfish);
 SPACING;
 printf ("Is virtual: %d\n", is_virtual);
 SPACING;
 printf ("Is inline: %d\n", is_inline);
 SPACING;
 printf ("Is constructor: %d\n", is_constructor);
 SPACING;
 printf ("Is desctructor: %d\n", is_destructor);
 SPACING;
 printf ("Is constant: %d\n", is_constant);
 SPACING;
 printf ("Is operator: %d\n", is_operator);
 SPACING;
 printf ("Is map: %d\n", is_map);
 SPACING;
 printf ("Is order: %d\n", is_order);
 SPACING;
 Code Examples D-59

Example 4, Describing an Object
 printf ("Is RNDS: %d\n", is_rnds);
 SPACING;
 printf ("Is RNPS: %d\n", is_rnps);
 SPACING;
 printf ("Is WNPS: %d\n", is_wnps);
 printf("\n");

 if (has_result)
 chk_arg(envhp, errhp, svchp, list_arg, OCI_PTYPE_TYPE_RESULT, 0, 1);
 if (num_arg > 0)
 chk_arg(envhp, errhp, svchp, list_arg, OCI_PTYPE_TYPE_ARG, 1, num_arg + 1);
}

/*--*/

static void chk_arglst(envhp, errhp, svchp, parmp)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
dvoid *parmp;
{
 dvoid *arglst;
 ub4 numargs;
 ub1 ptype;
 sword retval;

 /* get list of arguments */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &arglst, (ub4 *) 0,
 (ub4) OCI_ATTR_LIST_ARGUMENTS, (OCIError *) errhp));

 /* get number of parameters */
 checkerr(errhp, OCIAttrGet((dvoid*) arglst, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &numargs, (ub4 *) 0,
 (ub4) OCI_ATTR_NUM_PARAMS, (OCIError *) errhp));

 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &ptype, (ub4 *) 0,
 (ub4) OCI_ATTR_PTYPE, (OCIError *) errhp));

 switch (ptype)
 {
 case OCI_PTYPE_FUNC:
 chk_arg (envhp, errhp, svchp, arglst, OCI_PTYPE_ARG, 0, numargs);
 break;
D-60 Oracle Call Interface Programmer’s Guide

Example 4, Describing an Object
 case OCI_PTYPE_PROC:
 chk_arg (envhp, errhp, svchp, arglst, OCI_PTYPE_ARG, 1, numargs);
 }
}

/*---*/

static void chk_arg (envhp, errhp, svchp, parmp, type, start, end)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
dvoid *parmp;
ub1 type;
ub4 start;
ub4 end;
{
 text argname[NPOS][30];
 text *namep;
 ub4 sizep;
 ub2 collen[NPOS];
 ub2 coldesr[NPOS];
 dvoid *parmdp;
 ub4 i, pos;
 sword retval;
 ub2 level[NPOS];
 ub1 radix[NPOS], def[NPOS];
 ub4 iomode[NPOS];
 ub1 precision[NPOS], scale[NPOS], isnull[NPOS];

 for (pos = start; pos < end; pos++)
 {

 checkerr(errhp, OCIParamGet((dvoid *)parmp, (ub4) OCI_DTYPE_PARAM, errhp,
 (dvoid *)&parmdp, (ub4) pos));

 /* get data type */
 checkerr(errhp, OCIAttrGet((dvoid*) parmdp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &coldesr[pos], (ub4 *) 0,
 (ub4) OCI_ATTR_DATA_TYPE,
 (OCIError *) errhp));

 /* method's result has no name */
 iomode[pos] = 0;
 def[pos] = 0;
 Code Examples D-61

Example 4, Describing an Object
 sizep = 0;
 if (type != OCI_PTYPE_TYPE_RESULT)
 {
 /* has default */
 checkerr(errhp, OCIAttrGet((dvoid *)parmdp, (ub4) OCI_DTYPE_PARAM,
 (dvoid *)&def[pos], (ub4 *)0,
 (ub4)OCI_ATTR_HAS_DEFAULT, (OCIError *) errhp));

 /* get iomode */
 checkerr(errhp, OCIAttrGet((dvoid*) parmdp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &iomode[pos], (ub4 *) 0,
 (ub4) OCI_ATTR_IOMODE, (OCIError *) errhp));

 /* get argument name */
 checkerr(errhp, OCIAttrGet((dvoid*) parmdp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &namep, (ub4 *) &sizep,
 (ub4) OCI_ATTR_NAME, (OCIError *) errhp));

 (void) strncpy((char *)argname[pos], (char *)namep,
 (size_t) sizep);
 }
 argname[pos][sizep] = '\0';

 /* the following are not for type arguments and results */
 precision[pos] = 0;
 scale[pos] = 0;
 collen[pos] = 0;
 level[pos] = 0;
 radix[pos] = 0;
 isnull[pos] = FALSE;
 if (type != OCI_PTYPE_TYPE_ARG && type != OCI_PTYPE_TYPE_RESULT)
 {
 /* get the data size */
 checkerr(errhp, OCIAttrGet((dvoid*) parmdp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &collen[pos], (ub4 *) 0,
 (ub4) OCI_ATTR_DATA_SIZE, (OCIError *) errhp));

 /* get the precision of the attribute */
 checkerr(errhp, OCIAttrGet((dvoid*) parmdp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &precision, (ub4 *) 0,
 (ub4) OCI_ATTR_PRECISION, (OCIError *) errhp));

 /* get the scale of the attribute */
 checkerr(errhp, OCIAttrGet((dvoid*) parmdp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &scale, (ub4 *) 0,
D-62 Oracle Call Interface Programmer’s Guide

Example 4, Describing an Object
 (ub4) OCI_ATTR_SCALE, (OCIError *) errhp));

 /* get the level of the attribute */
 checkerr(errhp, OCIAttrGet((dvoid*) parmdp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &level[pos], (ub4 *) 0,
 (ub4) OCI_ATTR_LEVEL, (OCIError *) errhp));

 /* get the radix of the attribute */
 checkerr(errhp, OCIAttrGet((dvoid*) parmdp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &radix[pos], (ub4 *) 0,
 (ub4) OCI_ATTR_RADIX, (OCIError *) errhp));

 /* is null */
 checkerr(errhp, OCIAttrGet((dvoid*) parmdp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &isnull, (ub4 *) 0,
 (ub4) OCI_ATTR_IS_NULL, (OCIError *) errhp));

 /* should get error 24328 */
 if (OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &isnull, (ub4 *) 0,
 (ub4) OCI_ATTR_INDEX_ONLY, (OCIError *) errhp)
 != OCI_ERROR)
 printf("ERROR: should get error here\n");
 }
 }

 SPACING;
 (void)
 printf("Argument Name Length Datatype Level Radix Default Iomode Prec Scl
Null\n");
 SPACING;
 (void)
 printf
 ("___\n");
 for (i = start; i < end; i++)
 {
 SPACING;
 (void) printf("%15s%6d%8d%6d%6d %c%6d%9d%4d%4d\n", argname[i],
 collen[i], coldesr[i], level[i], radix[i],
 (def[i])?'y':'n', iomode[i], precision[i], scale[i],
 isnull[i]);
 }
 printf("\n");

}

 Code Examples D-63

Example 4, Describing an Object
static void chk_collection (envhp, errhp, svchp, parmp, is_array)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
dvoid *parmp;
sword is_array;
{
 text schema[MAXNAME],
 type[MAXNAME],
 *namep;
 ub4 size;
 ub2 len;
 ub4 num_elems;
 OCITypeCode typecode;
 sword retval;

 /* get the data size */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &len, (ub4 *) 0,
 (ub4) OCI_ATTR_DATA_SIZE, (OCIError *) errhp));

 /* get the name of the collection */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &namep, (ub4 *) &size,
 (ub4) OCI_ATTR_TYPE_NAME, (OCIError *) errhp));

 (void) strncpy((char *)type, (char *)namep, (size_t) size);
 type[size] = '\0';

 /* get the name of the schema */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &namep, (ub4 *) &size,
 (ub4) OCI_ATTR_SCHEMA_NAME, (OCIError *) errhp));

 (void) strncpy((char *)schema, (char *)namep, (size_t) size);
 schema[size] = '\0';

 /* get the data type */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &typecode, (ub4 *) 0, (ub4) OCI_ATTR_DATA_TYPE,
 (OCIError *) errhp));

 num_elems = 0;
 if (is_array)
D-64 Oracle Call Interface Programmer’s Guide

Example 4, Describing an Object
 /* get the number of elements */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &num_elems, (ub4 *) 0,
 (ub4) OCI_ATTR_NUM_ELEMS, (OCIError *) errhp));

 SPACING;
 (void)
 printf ("Schema Type Length Datatype Elements\n");
 SPACING;
 (void)
 printf ("__\n");
 SPACING;
 (void) printf("%10s%16s%6d%11d%9d\n", schema, type, len, typecode,
 num_elems);
 printf("\n");
}

/*---*/

static void chk_column(envhp, errhp, svchp, parmp, parmcnt)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
dvoid *parmp;
ub4 parmcnt;
{
 text colname1[NPOS][30], colname2[NPOS][30], colname3[NPOS][30];
 text *namep;
 ub4 sizep;
 ub2 collen[NPOS];
 ub2 coldesr[NPOS];
 dvoid *parmdp;
 ub4 i, pos;
 sword retval;

 /* loop through all the attributes in the type and get all information */
 for (pos = 1; pos <= parmcnt; pos++)
 {
 /* get the parameter list for each attribute */
 checkerr(errhp, OCIParamGet((dvoid *) parmp, (ub4) OCI_DTYPE_PARAM, errhp,
 (dvoid *)&parmdp, (ub4) pos));

 /* size of the attribute (non object or REF) objects */
 checkerr(errhp, OCIAttrGet((dvoid*) parmdp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &collen[pos-1], (ub4 *) 0,
 Code Examples D-65

Example 4, Describing an Object
 (ub4) OCI_ATTR_DATA_SIZE, (OCIError *) errhp));

 /* name of the attribute */
 checkerr(errhp, OCIAttrGet((dvoid*) parmdp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &namep, (ub4 *) &sizep,
 (ub4) OCI_ATTR_NAME, (OCIError *) errhp));

 (void) strncpy((char *)colname1[pos-1], (char *)namep, (size_t) sizep);
 colname1[pos-1][sizep] = '\0';

 /* get the schema name */
 checkerr(errhp, OCIAttrGet((dvoid*) parmdp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &namep, (ub4 *) &sizep,
 (ub4) OCI_ATTR_SCHEMA_NAME, (OCIError *) errhp));

 (void) strncpy((char *)colname2[pos-1], (char *)namep, (size_t) sizep);
 colname2[pos-1][sizep] = '\0';

 /* name of the attribute */
 checkerr(errhp, OCIAttrGet((dvoid*) parmdp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &namep, (ub4 *) &sizep,
 (ub4) OCI_ATTR_TYPE_NAME, (OCIError *) errhp));

 (void) strncpy((char *)colname3[pos-1], (char *)namep, (size_t) sizep);
 colname3[pos-1][sizep] = '\0';

 /* get data type */
 checkerr(errhp, OCIAttrGet((dvoid*) parmdp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &coldesr[pos-1], (ub4 *) 0,
 (ub4) OCI_ATTR_DATA_TYPE,
 (OCIError *) errhp));

 if (coldesr[pos-1] == SQLT_NTY || coldesr[pos-1] == SQLT_REF)
 {
 /* call tst_desc_type here if the type is object or REF */
 tab += 5;
 SPACING;
 printf("!!!!ATTRIBUTE IS A TYPE OR REF!!!!\n");
 SPACING;
 printf("ATTRIBUTE NAME IS %s\n", colname3[pos-1]);
 SPACING;
 printf("ATTRIBUTE TYPE IS %d\n", coldesr[pos-1]);
 tst_desc_type(envhp, errhp, svchp, colname3[pos-1]);
 tab -= 5;
 printf("\n");
D-66 Oracle Call Interface Programmer’s Guide

Example 4, Describing an Object
 }

 }

 SPACING;
 (void)
 printf ("Column Name Schema Type Length Datatype\n");
 SPACING;
 (void)
 printf ("__\n");
 for (i = 1; i <= parmcnt; i++)
 {
 SPACING;
 (void) printf("%15s%10s%16s%6d%8d\n", colname1[i-1], colname2[i-1],
 colname3[i-1], collen[i-1], coldesr[i-1]);
 }
 printf("\n");
}

/*---*/

static void tst_desc_type(envhp, errhp, svchp, objname)
OCIEnv *envhp;
OCIError *errhp;
OCISvcCtx *svchp;
text *objname;
{
 OCIDescribe *dschp = (OCIDescribe *) 0;
 sword retval;
 OCITypeCode typecode,
 collection_typecode;
 text schema[MAXNAME],
 version[MAXNAME],
 *namep,
 *type_name;
 ub4 size,
 text_len;
 OCIRef *type_ref;
 ub2 num_attr,
 num_method;
 ub1 is_incomplete,
 is_system,
 is_predefined,
 is_transient,
 is_sysgen,
 Code Examples D-67

Example 4, Describing an Object
 has_table,
 has_lob,
 has_file;
 dvoid *list_attr,
 *list_method,
 *map_method,
 *order_method,
 *collection_dschp,
 *some_object;
 OCIParam *parmp;
 ub1 objtype;

 /* must allocate describe handle first for OCIDescribeAny */
 checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &dschp,
 (ub4) OCI_HTYPE_DESCRIBE,
 (size_t) 0, (dvoid **) 0));

 /* call OCIDescribeAny and passing in the type name */
 checkerr(errhp, OCIDescribeAny(svchp, errhp, (text *)objname,
 (ub4) strlen((char *)objname), OCI_OTYPE_NAME, (ub1)1,
 (ub1) OCI_PTYPE_TYPE, dschp));

 /* get the parameter list for the requested type */
 checkerr(errhp, OCIAttrGet((dvoid *) dschp, (ub4) OCI_HTYPE_DESCRIBE,
 (dvoid *)&parmp, (ub4 *)0, (ub4)OCI_ATTR_PARAM, errhp));

 /* get the schema name for the requested type */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp,(ub4) OCI_DTYPE_PARAM,
 (dvoid*) &namep, (ub4 *) &size,
 (ub4) OCI_ATTR_SCHEMA_NAME, (OCIError *) errhp));

 (void) strncpy((char *)schema, (char *)namep, (size_t) size);
 schema[size] = '\0';

 /* get the type code for the requested type */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &typecode, (ub4 *) 0,
 (ub4) OCI_ATTR_TYPECODE, (OCIError *) errhp));

 /* get other information for collection type */
 if (typecode == OCI_TYPECODE_NAMEDCOLLECTION)
 {
 checkerr(errhp, OCIAttrGet((dvoid *) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid *)&collection_typecode, (ub4 *)0,
 (ub4)OCI_ATTR_COLLECTION_TYPECODE, (OCIError *)errhp));
D-68 Oracle Call Interface Programmer’s Guide

Example 4, Describing an Object
 checkerr(errhp, OCIAttrGet((dvoid *) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid *)&collection_dschp, (ub4 *)0,
 (ub4)OCI_ATTR_COLLECTION_ELEMENT, (OCIError *)errhp));
 checkerr(errhp, OCIAttrGet((dvoid *) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid *)&collection_dschp, (ub4 *)0,
 (ub4)OCI_ATTR_COLLECTION_ELEMENT, (OCIError *)errhp));
 }

 /* get the ref to the type descriptor */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &type_ref, (ub4 *) 0,
 (ub4) OCI_ATTR_REF_TDO, (OCIError *) errhp));

 /* get the type version */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &namep, (ub4 *) &size,
 (ub4) OCI_ATTR_VERSION, (OCIError *) errhp));

 (void) strncpy((char *)version, (char *)namep, (size_t) size);
 version[size] = '\0';

 /* incomplete type */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &is_incomplete, (ub4 *) 0,
 (ub4) OCI_ATTR_IS_INCOMPLETE_TYPE, (OCIError *) errhp));

 /* system type */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &is_system, (ub4 *) 0,
 (ub4) OCI_ATTR_IS_SYSTEM_TYPE, (OCIError *) errhp));

 /* predefined type */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &is_predefined, (ub4 *) 0,
 (ub4) OCI_ATTR_IS_PREDEFINED_TYPE, (OCIError *) errhp));

 /* transient type */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &is_transient, (ub4 *) 0,
 (ub4) OCI_ATTR_IS_TRANSIENT_TYPE, (OCIError *) errhp));

 /* system generated type */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &is_sysgen, (ub4 *) 0,
 (ub4) OCI_ATTR_IS_SYSTEM_GENERATED_TYPE, (OCIError*) errhp));
 Code Examples D-69

Example 4, Describing an Object
 /* has nested table */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &has_table, (ub4 *) 0,
 (ub4) OCI_ATTR_HAS_NESTED_TABLE, (OCIError *) errhp));

 /* has lob */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &has_lob, (ub4 *) 0,
 (ub4) OCI_ATTR_HAS_LOB, (OCIError *) errhp));

 /* has file */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &has_file, (ub4 *) 0,
 (ub4) OCI_ATTR_HAS_FILE, (OCIError *) errhp));

 /* get the list of attributes */
 checkerr(errhp, OCIAttrGet((dvoid *) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid *)&list_attr, (ub4 *)0,
 (ub4)OCI_ATTR_LIST_TYPE_ATTRS, (OCIError *)errhp));

 /* number of attributes */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &num_attr, (ub4 *) 0,
 (ub4) OCI_ATTR_NUM_TYPE_ATTRS, (OCIError *) errhp));

 /* get method list */
 checkerr(errhp, OCIAttrGet((dvoid *) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid *)&list_method, (ub4 *)0,
 (ub4)OCI_ATTR_LIST_TYPE_METHODS, (OCIError *)errhp));

 /* get number of methods */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &num_method, (ub4 *) 0,
 (ub4) OCI_ATTR_NUM_TYPE_METHODS, (OCIError *) errhp));

 /* get map method list */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &map_method, (ub4 *) 0,
 (ub4) OCI_ATTR_MAP_METHOD, (OCIError *) errhp));

 /* get order method list*/
 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &order_method, (ub4 *) 0,
 (ub4) OCI_ATTR_ORDER_METHOD, (OCIError *) errhp));
D-70 Oracle Call Interface Programmer’s Guide

Example 4, Describing an Object
 SPACING;
 printf ("TYPE : Attributes : \n");
 SPACING;
 printf ("Schema: %s\n", schema);
 SPACING;
 printf ("Typecode: %d\n", typecode);
 if (typecode == OCI_TYPECODE_NAMEDCOLLECTION)
 {
 SPACING;
 printf ("Collection typecode: %d\n", collection_typecode);
 }
 SPACING;
 printf ("Version: %s\n", version);
 SPACING;
 printf ("Number of attrs: %d\n", num_attr);
 SPACING;
 printf ("Number of methods: %d\n", num_method);
 SPACING;
 printf ("Is incomplete: %d\n", is_incomplete);
 SPACING;
 printf ("Is system: %d\n", is_system);
 SPACING;
 printf ("Is predefined: %d\n", is_predefined);
 SPACING;
 printf ("Is sys-gen: %d\n", is_sysgen);
 SPACING;
 printf ("Is transient: %d\n", is_transient);
 SPACING;
 printf ("Has nested table: %d\n", has_table);
 SPACING;
 printf ("Has LOB: %d\n", has_lob);
 SPACING;
 printf ("Has file: %d\n", has_file);
 printf("\n");

 if (num_attr > 0)
 chk_column(envhp, errhp, svchp, list_attr, num_attr);
 else if (typecode == OCI_TYPECODE_NAMEDCOLLECTION)
 chk_collection(envhp, errhp, svchp, collection_dschp,
 collection_typecode == OCI_TYPECODE_VARRAY);
 if (map_method != (dvoid *)0)
 chk_method(envhp, errhp, svchp, map_method, "TYPE MAP
METHOD\n---------------");
 if (order_method != (dvoid *)0)
 Code Examples D-71

Example 4, Describing an Object
 chk_method(envhp, errhp, svchp, order_method, "TYPE ORDER
METHOD\n-----------------");
 if (num_method > 0)
 chk_methodlst(envhp, errhp, svchp, list_method, num_method, "TYPE
METHOD\n-----------");
}

/**/
int main(int argc, char *argv[])
{
 OCIEnv *envhp = (OCIEnv *) 0;
 OCIServer *srvhp = (OCIServer *) 0;
 OCIError *errhp = (OCIError *) 0;
 OCISvcCtx *svchp = (OCISvcCtx *) 0;
 OCISession *usrhp = (OCISession *) 0;
 dvoid *tmp;
 int i;

 tab = 0;

 if (argc < 4)
 {
 (void) printf("Usage -- cdemort <username> <password> <upper case
typename>\n");
 return (0);
 }

 (void) OCIInitialize((ub4) OCI_THREADED | OCI_OBJECT,
 (dvoid *)0, (dvoid * (*)()) 0,
 (dvoid * (*)()) 0, (void (*)()) 0);

 (void) OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp,
 (ub4) OCI_HTYPE_ENV,
 52, (dvoid **) &tmp);

 (void) OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp,
 (ub4) OCI_HTYPE_ERROR,
 52, (dvoid **) &tmp);

 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp,
 (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);
D-72 Oracle Call Interface Programmer’s Guide

Example 4, Describing an Object
 checkerr(errhp, OCIServerAttach(srvhp, errhp, (text *) "",
 (sb4) strlen(""), (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp,
 (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp));

 checkerr(errhp, OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
 (dvoid *) srvhp, (ub4) 0,
 (ub4) OCI_ATTR_SERVER, (OCIError *) errhp));

 checkerr(errhp, OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp,
 (ub4)OCI_HTYPE_SESSION, 0, (dvoid **)0));

 checkerr(errhp, OCIAttrSet((dvoid *) usrhp, (ub4)OCI_HTYPE_SESSION,
 (dvoid *)argv[1], (ub4)strlen(argv[1]),
 (ub4)OCI_ATTR_USERNAME, errhp));

 checkerr(errhp, OCIAttrSet((dvoid *) usrhp, (ub4)OCI_HTYPE_SESSION,
 (dvoid *)argv[2], (ub4)strlen(argv[2]),
 (ub4)OCI_ATTR_PASSWORD, errhp));

 checkerr(errhp, OCISessionBegin (svchp, errhp, usrhp,
 OCI_CRED_RDBMS, OCI_DEFAULT));

 checkerr(errhp, OCIAttrSet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
 (dvoid *)usrhp, (ub4)0,
 (ub4)OCI_ATTR_SESSION, errhp));

 /* dump an object with all the types */
 SPACING;
 (void) printf("%s\n", argv[3]);
 tst_desc_type(envhp, errhp, svchp, argv[3]);
 printf("\n");

 checkerr(errhp, OCISessionEnd (svchp, errhp, usrhp, OCI_DEFAULT));

 (void) OCIServerDetach(srvhp, errhp, (ub4) OCI_DEFAULT);

 checkerr(errhp, OCIHandleFree((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX));
 checkerr(errhp, OCIHandleFree((dvoid *) errhp, (ub4) OCI_HTYPE_ERROR));
 checkerr(errhp, OCIHandleFree((dvoid *) srvhp, (ub4) OCI_HTYPE_SERVER));

 return (0);
 Code Examples D-73

Example 4, Describing an Object
}

/* end of file cdemodsc.c */

cdemodsc.h
/* NAME
 cdemodsc.h - header file for cdemodsc.c
*/

/*---*/
#ifndef CDEMODSC
#define CDEMODSC

#ifndef S
#include <s.h>
#endif

#ifndef HSTDEF
#include <hstdef.h>
#endif

#ifndef SQLDEF
#include <sqldef.h>
#endif

#ifndef OCIDEF
#include <ocidef.h>
#endif
#ifndef OCI_ORACLE
#include <oci.h>
#endif

#include <lnx.h>

/*---*/
/*
** #define
*/

#define MAXNAME 30
#define MAXOBJLEN 60
#define MAXOBJS 7
#define NPOS 40
D-74 Oracle Call Interface Programmer’s Guide

Example 4, Describing an Object
#define SPACING for (glindex = 0; glindex < tab; glindex++)\
 printf(" ")

/*--*/
/*
** Prototypes for functions in cdemodsc.c
*/
static void chk_column(/*_ OCIEnv *envhp, OCIError *errhp, OCISvcCtx *svchp,
dvoid *dschp, ub4 parmcnt _*/);
static void chk_method(/*_ OCIEnv *envhp, OCIError *errhp, OCISvcCtx *svchp,
dvoid *dschp, const text *comment _*/);
static void chk_methodlst(/*_ OCIEnv *envhp, OCIError *errhp, OCISvcCtx *svchp,
dvoid *dschp, ub4 count, const text *comment _*/);
static void chk_arglst(/*_ OCIEnv *envhp, OCIError *errhp, OCISvcCtx *svchp,
dvoid *dschp _*/);
static void chk_arg(/*_ OCIEnv *envhp, OCIError *errhp, OCISvcCtx *svchp, dvoid
dschp, ub1 type, ub4 start, ub4 end _/);
static void chk_collection (/*_ OCIEnv *envhp, OCIError *errhp, OCISvcCtx
*svchp, dvoid *dschp, sword is_array _*/);
static void tst_desc_type(/*_ OCIEnv *envhp, OCIError *errhp, OCISvcCtx *svchp,
text *objname _*/);
static void checkerr(/*_ OCIError *errhp, sword status _*/);

/* Prototype for main function */
int main(/*_ int argc, char *argv[] _*/);
int tab;
int glindex;

#endif /* CDEMODSC */
 Code Examples D-75

Example 5, CLOB/BLOB Operations
Example 5, CLOB/BLOB Operations

/* NAME
 cdemolb2.c - Demonstrates writing and reading of CLOB/BLOB columns
 with stream mode and with callback functions.

 DESCRIPTION
 This program takes 2 input files (the first a text file and the
 second a binary file) and stores the files into CLOB, BLOB columns.

 On output, the program reads the newly populated CLOB/BLOB columns
 and writes them to the output files (txtfile1.log, binfile1.log,
 txtfile2.log, binfile2.log), where

 txtfile1.log -- created for stream reading CLOB contents to it
 binfile1.log -- created for stream reading BLOB contents to it

 txtfile2.log -- created for callback reading CLOB contents to it
 binfile2.log -- created for callback reading BLOB contents to it

 Sample usage: cdemolb2 cdemolb.dat giffile.dat

 cdemolb.dat -- a text file in the demo directory
 giffile.dat -- a gif file in the demo directory

 After successful execution of the program, the files, cdemolb.dat,
 txtfile1.log, and txtfile2.log should be identical. giffile.dat,
 binfile1.log, and binfile2.log should be identical.

*/

#include <stdio.h>
#include <oci.h>

static sb4 init_handles(/*_ void _*/);
static sb4 log_on(/*_ void _*/);
static sb4 setup_table(/*_ void _*/);
static sb4 select_locator(/*_ int rowind _*/);
static ub4 file_length(/*_ FILE *fp _*/);
static sb4 test_file_to_lob(/*_ int rowind, char *tfname, char *bfname _*/);
static void test_lob_to_file(/*_ int rowind _*/);
static void stream_write_lob(/*_ int rowind, OCILobLocator *lobl,
 FILE *fp, ub4 filelen _*/);
D-76 Oracle Call Interface Programmer’s Guide

Example 5, CLOB/BLOB Operations
static void callback_write_lob(/*_ int rowind, OCILobLocator *lobl,
 FILE *fp, ub4 filelen _*/);
static void stream_read_lob(/*_ int rowind, OCILobLocator *lobl, FILE *fp _*/);
static void callback_read_lob(/*_ int rowind, OCILobLocator *lobl,FILE *fp _*/);
static sb4 cbk_fill_buffer(/*_ dvoid *ctxp, dvoid *bufxp, ub4 *lenp,
 ub1 *piece _*/);
static sb4 cbk_write_buffer(/*_ dvoid *ctxp, CONST dvoid *bufxp, ub4 lenp,
 ub1 piece _*/);

static void logout(/*_ void _*/);
static void drop_table(/*_ void _*/);
static void report_error(/*_ void _*/);

int main(/*_ int argc, char *argv[] _*/);

#define TRUE 1
#define FALSE 0

#define MAXBUFLEN 5000

static OCIEnv *envhp;
static OCIServer *srvhp;
static OCISvcCtx *svchp;
static OCIError *errhp;
static OCISession *authp;
static OCIStmt *stmthp;
static OCILobLocator *clob, *blob;
static OCIDefine *defnp1 = (OCIDefine *) 0, *defnp2 = (OCIDefine *) 0;
static OCIBind *bndhp = (OCIBind *) 0;

static FILE *fp1, *fp2;

static ub4 txtfilelen = 0;
static ub4 binfilelen = 0;

static boolean istxtfile;
static boolean tab_exists = FALSE;

/*------------------------end of Inclusions-----------------------------*/

int main(argc, argv)
int argc;
char *argv[];
{
 int rowind;
 Code Examples D-77

Example 5, CLOB/BLOB Operations
 if (argc != 3)
 {
 (void) printf("Usage: %s txtfilename binfilename\n", argv[0]);
 return 0;
 }

 if (init_handles())
 {
 (void) printf("FAILED: init_handles()\n");
 return OCI_ERROR;
 }

 if (log_on())
 {
 (void) printf("FAILED: log_on()\n");
 return OCI_ERROR;
 }

 if (setup_table())
 {
 (void) printf("FAILED: setup_table()\n");
 logout();
 return OCI_ERROR;
 }

 tab_exists = TRUE;

 for (rowind = 1; rowind <= 2; rowind++)
 {
 if (select_locator(rowind))
 {
 (void) printf("FAILED: select_locator()\n");
 logout();
 return OCI_ERROR;
 }

 if (test_file_to_lob(rowind, argv[1], argv[2]))
 {
 (void) printf("FAILED: load files to lobs\n");
 logout();
 return OCI_ERROR;
 }

 test_lob_to_file(rowind);
D-78 Oracle Call Interface Programmer’s Guide

Example 5, CLOB/BLOB Operations
 }

 logout();

 return OCI_SUCCESS;
}

/* --- */
/* initialize environment, allocate handles, etc. */
/* --- */

sb4 init_handles()
{
 if (OCIInitialize((ub4) OCI_DEFAULT, (dvoid *)0,
 (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t))0,
 (void (*)(dvoid *, dvoid *)) 0))
 {
 (void) printf("FAILED: OCIInitialize()\n");
 return OCI_ERROR;
 }

 /* initialize environment handle */
 if (OCIEnvInit((OCIEnv **) &envhp, (ub4) OCI_DEFAULT,
 (size_t) 0, (dvoid **) 0))
 {
 (void) printf("FAILED: OCIEnvInit()\n");
 return OCI_ERROR;
 }

 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp,
 (ub4) OCI_HTYPE_SVCCTX, (size_t) 0, (dvoid **) 0))
 {
 (void) printf("FAILED: OCIHandleAlloc()\n");
 return OCI_ERROR;
 }

 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp,
 (ub4) OCI_HTYPE_ERROR, (size_t) 0, (dvoid **) 0))
 {
 (void) printf("FAILED: OCIHandleAlloc()\n");
 return OCI_ERROR;
 }

 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
 Code Examples D-79

Example 5, CLOB/BLOB Operations
 (ub4) OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0))
 {
 (void) printf("FAILED: OCIHandleAlloc()\n");
 return OCI_ERROR;
 }

 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp,
 (ub4) OCI_HTYPE_SERVER, (size_t) 0, (dvoid **) 0))
 {
 (void) printf("FAILED: OCIHandleAlloc()\n");
 return OCI_ERROR;
 }

 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &authp,
 (ub4) OCI_HTYPE_SESSION, (size_t) 0, (dvoid **) 0))
 {
 (void) printf("FAILED: OCIHandleAlloc()\n");
 return OCI_ERROR;
 }

 if (OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &clob,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0))
 {
 (void) printf("FAILED: OCIDescriptorAlloc()\n");
 return OCI_ERROR;
 }

 /* allocate the lob locator variables */
 if (OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &blob,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0))
 {
 (void) printf("FAILED: OCIDescriptorAlloc()\n");
 return OCI_ERROR;
 }

 return OCI_SUCCESS;
}

/* --- */
/* attach to the server and log on as SCOTT/TIGER */
/* --- */

sb4 log_on()
{
 text *uid = (text *)"SCOTT";
D-80 Oracle Call Interface Programmer’s Guide

Example 5, CLOB/BLOB Operations
 text *pwd = (text *)"TIGER";
 text *cstring = (text *) "";

 /* attach to the server */
 if (OCIServerAttach(srvhp, errhp, (text *) cstring,
 (sb4) strlen((char *)cstring), (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIServerAttach()\n");
 return OCI_ERROR;
 }

 if (OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) uid, (ub4) strlen((char *)uid),
 (ub4) OCI_ATTR_USERNAME, errhp))
 {
 (void) printf("FAILED: OCIAttrSet()\n");
 return OCI_ERROR;
 }

 if (OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) pwd, (ub4) strlen((char *)pwd),
 (ub4) OCI_ATTR_PASSWORD, errhp))
 {
 (void) printf("FAILED: OCIAttrSet()\n");
 return OCI_ERROR;
 }

 /* set the server attribute in the service context */
 if (OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
 (dvoid *) srvhp, (ub4) 0, (ub4) OCI_ATTR_SERVER, errhp))
 {
 (void) printf("FAILED: OCIAttrSet()\n");
 return OCI_ERROR;
 }

 /* log on */
 if (OCISessionBegin(svchp, errhp, authp, (ub4) OCI_CRED_RDBMS,
 (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCISessionBegin()\n");
 return OCI_ERROR;
 }

 /* set the session attribute in the service context */
 if (OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *) authp,
 Code Examples D-81

Example 5, CLOB/BLOB Operations
 (ub4) 0, (ub4) OCI_ATTR_SESSION, errhp))
 {
 (void) printf("FAILED: OCIAttrSet()\n");
 return OCI_ERROR;
 }

 return OCI_SUCCESS;

}

/* --- */
/* Create table FOO with CLOB, BLOB columns and insert one row. */
/* Both columns are empty lobs, not null lobs. */
/* --- */

sb4 setup_table()
{
 int colc;

 text *crtstmt = (text *) "CREATE TABLE FOO (A CLOB, B BLOB, C INTEGER)";
 text *insstmt =
 (text *) "INSERT INTO FOO VALUES (EMPTY_CLOB(), EMPTY_BLOB(), :1)";

 if (OCIStmtPrepare(stmthp, errhp, crtstmt, (ub4) strlen((char *) crtstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtPrepare() crtstmt\n");
 return OCI_ERROR;
 }

 if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot *) 0, (OCISnapshot *) 0,
 (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtExecute() crtstmt\n");
 return OCI_ERROR;
 }

 if (OCIStmtPrepare(stmthp, errhp, insstmt, (ub4) strlen((char *) insstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtPrepare() insstmt\n");
 return OCI_ERROR;
 }
D-82 Oracle Call Interface Programmer’s Guide

Example 5, CLOB/BLOB Operations
 if (OCIBindByPos(stmthp, &bndhp, errhp, (ub4) 1,
 (dvoid *) &colc, (sb4) sizeof(colc), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIBindByPos()\n");
 return OCI_ERROR;
 }

 for (colc = 1; colc <= 2; colc++)
 {
 if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot *) 0, (OCISnapshot *) 0,
 (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtExecute() insstmt\n");
 return OCI_ERROR;
 }
 }

 (void) OCITransCommit(svchp, errhp, (ub4)0);

 return OCI_SUCCESS;
}

/*---*/
/* Select lob locators from the CLOB, BLOB columns. */
/* We need the 'FOR UPDATE' clause since we need to write to the lobs. */
/*---*/

sb4 select_locator(int rowind)
{
 int colc = rowind;
 text *sqlstmt = (text *)"SELECT A, B FROM FOO WHERE C = :1 FOR UPDATE";

 if (OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4) strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtPrepare() sqlstmt\n");
 return OCI_ERROR;
 }

 if (OCIBindByPos(stmthp, &bndhp, errhp, (ub4) 1,
 (dvoid *) &colc, (sb4) sizeof(colc), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 Code Examples D-83

Example 5, CLOB/BLOB Operations
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIBindByPos()\n");
 return OCI_ERROR;
 }

 if (OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *) &clob, (sb4) -1, (ub2) SQLT_CLOB,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT)
 || OCIDefineByPos(stmthp, &defnp2, errhp, (ub4) 2,
 (dvoid *) &blob, (sb4) -1, (ub2) SQLT_BLOB,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIDefineByPos()\n");
 return OCI_ERROR;
 }

 /* execute the select and fetch one row */
 if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtExecute() sqlstmt\n");
 return OCI_ERROR;
 }

 return OCI_SUCCESS;
}

/* --- */
/* Read operating system files into local buffers and then write the */
/* buffers to lobs. */
/* --- */

sb4 test_file_to_lob(int rowind, char *txtfile, char *binfile)
{
 (void) printf("\n===> Testing loading files into lobs\n\n");

 fp1 = fopen((const char *)txtfile, (const char *) "r");
 fp2 = fopen((const char *)binfile, (const char *) "rb");

 if (!(fp1 && fp2))
 {
 (void) printf("ERROR: Failed to open file(s).\n");
 return -1;
D-84 Oracle Call Interface Programmer’s Guide

Example 5, CLOB/BLOB Operations
 }

 txtfilelen = file_length(fp1);
 binfilelen = file_length(fp2);

 switch (rowind)
 {
 case 1:
 stream_write_lob(rowind, clob, fp1, txtfilelen);
 stream_write_lob(rowind, blob, fp2, binfilelen);
 break;
 case 2:
 istxtfile = TRUE;
 callback_write_lob(rowind, clob, fp1, txtfilelen);
 istxtfile = FALSE;
 callback_write_lob(rowind, blob, fp2, binfilelen);
 break;
 default:
 (void) printf("ERROR: Invalid row indicator.\n");
 break;
 }

 (void) fclose(fp1);
 (void) fclose(fp2);

 return 0;
}

/* --- */
/* get the length of the input file. */
/* --- */

ub4 file_length(FILE *fp)
{
 fseek(fp, 0, SEEK_END);
 return (ub4) (ftell(fp));
}

/* --- */
/* Read operating system files into local buffers and then write the */
/* buffers to lobs using stream mode. */
/* --- */

void stream_write_lob(int rowind, OCILobLocator *lobl, FILE *fp, ub4 filelen)
{

 Code Examples D-85

Example 5, CLOB/BLOB Operations
 ub4 offset = 1;
 ub4 loblen = 0;
 ub1 bufp[MAXBUFLEN];
 ub4 amtp = filelen;
 ub1 piece;
 sword retval;
 int readval;
 ub4 len = 0;
 ub4 nbytes;
 ub4 remainder = filelen;

 (void) printf("--> To do streamed write lob, amount = %d\n", filelen);

 (void) OCILobGetLength(svchp, errhp, lobl, &loblen);
 (void) printf("Before stream write, LOB length = %d\n\n", loblen);

 (void) fseek(fp, 0, 0);

 if (filelen > MAXBUFLEN)
 nbytes = MAXBUFLEN;
 else
 nbytes = filelen;

 if (fread((void *)bufp, (size_t)nbytes, 1, fp) != 1)
 {
 (void) printf("ERROR: read file.\n");
 return;
 }

 remainder -= nbytes;

 if (remainder == 0) /* exactly one piece in the file */
 {
 (void) printf("Only one piece, no need for stream write.\n");
 if (retval = OCILobWrite(svchp, errhp, lobl, &amtp, offset, (dvoid *) bufp,
 (ub4) nbytes, OCI_ONE_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid *, dvoid *, ub4 *, ub1 *)) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT) != OCI_SUCCESS)
 {
 (void) printf("ERROR: OCILobWrite(), retval = %d\n", retval);
 return;
 }
 }
 else /* more than one piece */
 {
D-86 Oracle Call Interface Programmer’s Guide

Example 5, CLOB/BLOB Operations
 if (OCILobWrite(svchp, errhp, lobl, &amtp, offset, (dvoid *) bufp,
 (ub4) MAXBUFLEN, OCI_FIRST_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid *, dvoid *, ub4 *, ub1 *)) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT) != OCI_NEED_DATA)
 {
 (void) printf("ERROR: OCILobWrite().\n");
 return;
 }

 piece = OCI_NEXT_PIECE;

 do
 {
 if (remainder > MAXBUFLEN)
 nbytes = MAXBUFLEN;
 else
 {
 nbytes = remainder;
 piece = OCI_LAST_PIECE;
 }

 if (fread((void *)bufp, (size_t)nbytes, 1, fp) != 1)
 {
 (void) printf("ERROR: read file.\n");
 piece = OCI_LAST_PIECE;
 }

 retval = OCILobWrite(svchp, errhp, lobl, &amtp, offset, (dvoid *) bufp,
 (ub4) nbytes, piece, (dvoid *)0,
 (sb4 (*)(dvoid *, dvoid *, ub4 *, ub1 *)) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT);
 remainder -= nbytes;

 } while (retval == OCI_NEED_DATA && !feof(fp));
 }

 if (retval != OCI_SUCCESS)
 {
 (void) printf("Error: stream writing LOB.\n");
 return;
 }

 (void) OCILobGetLength(svchp, errhp, lobl, &loblen);
 (void) printf("After stream write, LOB length = %d\n\n", loblen);
 Code Examples D-87

Example 5, CLOB/BLOB Operations
 return;
}

/* --- */
/* Read operating system files into local buffers and then write the */
/* buffers to lobs using callback function. */
/* --- */

void callback_write_lob(int rowind, OCILobLocator *lobl, FILE *fp, ub4 filelen)
{
 ub4 offset = 1;
 ub4 loblen = 0;
 ub1 bufp[MAXBUFLEN];
 ub4 amtp = filelen;
 ub4 nbytes;
 sword retval;

 (void) printf("--> To do callback write lob, amount = %d\n", filelen);

 (void) OCILobGetLength(svchp, errhp, lobl, &loblen);
 (void) printf("Before callback write, LOB length = %d\n\n", loblen);

 (void) fseek(fp, 0, 0);

 if (filelen > MAXBUFLEN)
 nbytes = MAXBUFLEN;
 else
 nbytes = filelen;

 if (fread((void *)bufp, (size_t)nbytes, 1, fp) != 1)
 {
 (void) printf("ERROR: read file.\n");
 return;
 }

 if (filelen < MAXBUFLEN) /* exactly one piece in the file */
 {
 (void) printf("Only one piece, no need for callback write.\n");
 if (retval = OCILobWrite(svchp, errhp, lobl, &amtp, offset, (dvoid *) bufp,
 (ub4) nbytes, OCI_ONE_PIECE, (dvoid *)0,
 (sb4 (*)(dvoid *, dvoid *, ub4 *, ub1 *)) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT) != OCI_SUCCESS)
 {
 (void) printf("ERROR: OCILobWrite().\n");
D-88 Oracle Call Interface Programmer’s Guide

Example 5, CLOB/BLOB Operations
 return;
 }
 }
 else /* more than one piece */
 {
 if (retval = OCILobWrite(svchp, errhp, lobl, &amtp, offset, (dvoid *)bufp,
 (ub4)nbytes, OCI_FIRST_PIECE, (dvoid *)0,
 cbk_fill_buffer, (ub2) 0, (ub1) SQLCS_IMPLICIT))
 {
 (void) printf("ERROR: OCILobWrite().\n");
 report_error();
 return;
 }
 }

 (void) OCILobGetLength(svchp, errhp, lobl, &loblen);
 (void) printf("After callback write, LOB length = %d\n\n", loblen);

 return;
}

/* --- */
/* callback function to read the file into buffer. */
/* --- */

sb4 cbk_fill_buffer(ctxp, bufxp, lenp, piece)
 dvoid *ctxp;
 dvoid *bufxp;
 ub4 *lenp;
 ub1 *piece;
{
 FILE *fp = (istxtfile ? fp1 : fp2);
 ub4 filelen = (istxtfile ? txtfilelen : binfilelen);
 ub4 nbytes;
 static ub4 len = MAXBUFLEN; /* because 1st piece has been written */

 if ((filelen - len) > MAXBUFLEN)
 nbytes = MAXBUFLEN;
 else
 nbytes = filelen - len;

 *lenp = nbytes;

 if (fread((void *)bufxp, (size_t)nbytes, 1, fp) != 1)
 Code Examples D-89

Example 5, CLOB/BLOB Operations
 {
 (void) printf("ERROR: read file. Abort callback fill buffer\n");
 *piece = OCI_LAST_PIECE;
 len = MAXBUFLEN; /* reset it for the next callback_write_lob() */
 return OCI_CONTINUE;
 }

 len += nbytes;

 if (len == filelen) /* entire file has been read */
 {
 *piece = OCI_LAST_PIECE;
 len = MAXBUFLEN; /* reset it for the next callback_write_lob() */
 }
 else
 *piece = OCI_NEXT_PIECE;

 return OCI_CONTINUE;
}

/* --- */
/* Read lobs into local buffers and then write them to operating */
/* system files. */
/* --- */

void test_lob_to_file(int rowind)
{
 ub4 offset = 1;
 ub4 loblen = 0;
 ub1 bufp[MAXBUFLEN];
 ub4 amtp = MAXBUFLEN;
 text txtfilename[20], binfilename[20];

 (void) sprintf((char *) txtfilename, (char *)"txtfile%d.log", rowind);
 (void) sprintf((char *) binfilename, (char *)"binfile%d.log", rowind);

 (void) printf("\n===> Testing writing lobs to files\n\n");

 fp1 = fopen((char *)txtfilename, (const char *) "w");
 fp2 = fopen((char *)binfilename, (const char *) "wb");

 if (!(fp1 && fp2))
 {
 (void) printf("ERROR: Failed to open file(s).\n");
 return;
D-90 Oracle Call Interface Programmer’s Guide

Example 5, CLOB/BLOB Operations
 }

 switch (rowind)
 {
 case 1:
 stream_read_lob(rowind, clob, fp1);
 stream_read_lob(rowind, blob, fp2);
 break;
 case 2:
 istxtfile = TRUE;
 callback_read_lob(rowind, clob, fp1);

 istxtfile = FALSE;
 callback_read_lob(rowind, blob, fp2);
 break;
 default:
 (void) printf("ERROR: Invalid row indicator.\n");
 break;
 }

 (void) fclose(fp1);
 (void) fclose(fp2);

 return;
}

/* --- */
/* Read lobs using stream mode into local buffers and then write */
/* them to operating system files. */
/* --- */

void stream_read_lob(int rowind, OCILobLocator *lobl, FILE *fp)
{
 ub4 offset = 1;
 ub4 loblen = 0;
 ub1 bufp[MAXBUFLEN];
 ub4 amtp = 4096000000;
 sword retval;
 ub4 piece = 0;
 ub4 remainder; /* the number of bytes for the last piece */

 (void) OCILobGetLength(svchp, errhp, lobl, &loblen);
 /*amtp = loblen;*/

 (void) printf("--> To stream read LOB, loblen = %d.\n", loblen);
 Code Examples D-91

Example 5, CLOB/BLOB Operations
 memset(bufp, '\0', MAXBUFLEN);

 retval = OCILobRead(svchp, errhp, lobl, &amtp, offset, (dvoid *) bufp,
 (loblen < MAXBUFLEN ? loblen : MAXBUFLEN), (dvoid *)0,
 (sb4 (*)(dvoid *, const dvoid *, ub4, ub1)) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT);

 (void) printf(" amtp passed in was 4gb, amtp returned is %u\n", amtp);

 switch (retval)
 {
 case OCI_SUCCESS: /* only one piece */
 (void) printf("stream read %d th piece\n", ++piece);
 (void) fwrite((void *)bufp, (size_t)loblen, 1, fp);
 break;
 case OCI_ERROR:
 report_error();
 break;
 case OCI_NEED_DATA: /* there are 2 or more pieces */

 remainder = loblen;

 (void) fwrite((void *)bufp, MAXBUFLEN, 1, fp); /* full buffer to write */

 do
 {
 memset(bufp, '\0', MAXBUFLEN);
 /*amtp = 0;*/

 remainder -= MAXBUFLEN;

 retval = OCILobRead(svchp, errhp, lobl, &amtp, offset, (dvoid *) bufp,
 (ub4) MAXBUFLEN, (dvoid *)0,
 (sb4 (*)(dvoid *, const dvoid *, ub4, ub1)) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT);

 /* the amount read returned is undefined for FIRST, NEXT pieces */
 (void) printf("stream read %d th piece, amtp = %u\n", ++piece, amtp);

 if (remainder < MAXBUFLEN) /* last piece not a full buffer piece */
 (void) fwrite((void *)bufp, (size_t)remainder, 1, fp);
 else
 (void) fwrite((void *)bufp, MAXBUFLEN, 1, fp);
D-92 Oracle Call Interface Programmer’s Guide

Example 5, CLOB/BLOB Operations
 } while (retval == OCI_NEED_DATA);
 break;
 default:
 (void) printf("Unexpected ERROR: OCILobRead() LOB.\n");
 break;
 }
 return;
}

/* --- */
/* Read lobs using callback function into local buffers and */
/* then write them to operating system files. */
/* --- */

void callback_read_lob(int rowind, OCILobLocator *lobl, FILE *fp)
{
 ub4 offset = 1;
 ub4 loblen = 0;
 ub1 bufp[MAXBUFLEN];
 ub4 amtp = 4096000000;
 sword retval;

 (void) OCILobGetLength(svchp, errhp, lobl, &loblen);

 (void) printf("--> To callback read LOB, loblen = %d.\n", loblen);

 if (retval = OCILobRead(svchp, errhp, lobl, &amtp, offset, (dvoid *) bufp,
 (ub4) MAXBUFLEN, (dvoid *) bufp, cbk_write_buffer,
 (ub2) 0, (ub1) SQLCS_IMPLICIT))
 {
 (void) printf("ERROR: OCILobRead() LOB.\n");
 report_error();
 }
 return;
}

/* --- */
/* callback function to write buffer to the file. */
/* --- */

sb4 cbk_write_buffer(ctxp, bufxp, lenp, piece)
 dvoid *ctxp;
 CONST dvoid *bufxp;
 ub4 lenp;
 ub1 piece;
 Code Examples D-93

Example 5, CLOB/BLOB Operations
{
 static ub4 piece_count = 0;
 FILE *fp = (istxtfile ? fp1 : fp2);

 piece_count++;

 switch (piece)
 {
 case OCI_LAST_PIECE:
 (void) fwrite((void *)bufxp, (size_t)lenp, 1, fp);
 (void) printf("callback read the %d th piece\n\n", piece_count);
 piece_count = 0;
 return OCI_CONTINUE;

 case OCI_FIRST_PIECE:
 case OCI_NEXT_PIECE:
 (void) fwrite((void *)bufxp, (size_t)lenp, 1, fp);
 break;
 default:
 (void) printf("callback read error: unkown piece = %d.\n", piece);
 return OCI_ERROR;
 }

 (void) printf("callback read the %d th piece\n", piece_count);

 return OCI_CONTINUE;
}

/*---*/
/* Drop table FOO before logging off from the server. */
/*---*/

void drop_table()
{
 text *sqlstmt = (text *) "DROP TABLE FOO";

 if (OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4) strlen((char *) sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtPrepare() sqlstmt\n");
 return;
 }

 if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot *) 0, (OCISnapshot *) 0,
D-94 Oracle Call Interface Programmer’s Guide

Example 5, CLOB/BLOB Operations
 (ub4) OCI_DEFAULT))
 (void) printf("FAILED: OCIStmtExecute() sqlstmt\n");
 return;
}

/*---*/
/* Logoff and disconnect from the server. Free handles. */
/*---*/

void logout()
{
 if (tab_exists)
 drop_table();

 (void) OCISessionEnd(svchp, errhp, authp, (ub4) 0);
 (void) OCIServerDetach(srvhp, errhp, (ub4) OCI_DEFAULT);

 (void) printf("Logged off and detached from server.\n");

 (void) OCIHandleFree((dvoid *) srvhp, (ub4) OCI_HTYPE_SERVER);
 (void) OCIHandleFree((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX);
 (void) OCIHandleFree((dvoid *) errhp, (ub4) OCI_HTYPE_ERROR);
 (void) OCIHandleFree((dvoid *) authp, (ub4) OCI_HTYPE_SESSION);
 (void) OCIDescriptorFree((dvoid *) clob, (ub4) OCI_DTYPE_LOB);
 (void) OCIDescriptorFree((dvoid *) blob, (ub4) OCI_DTYPE_LOB);
 (void) OCIHandleFree((dvoid *) stmthp, (ub4) OCI_HTYPE_STMT);

 (void) printf("All handles freed\n");
 return;
}

/* --- */
/* retrieve error message and print it out. */
/* --- */
void report_error()
{
 text msgbuf[512];
 sb4 errcode = 0;

 (void) OCIErrorGet((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
 msgbuf, (ub4) sizeof(msgbuf), (ub4) OCI_HTYPE_ERROR);
 (void) printf("ERROR CODE = %d\n", errcode);
 (void) printf("%.*s\n", 512, msgbuf);
 return;
}

 Code Examples D-95

Example 6, LOB Buffering
Example 6, LOB Buffering
/* NAME
 cdemolbs.c - Demonstrates reading and writing to LOBs through
 the LOB Buffering Subsystem.

 DESCRIPTION
 This program reads from an input binary/text file, writing into an
 initialized B/CLOB column in buffered mode. It then reads in buffered
 mode from the B/CLOB column and populates an output file. After building
 the executable (assume it is called cdemolbs), run program as follows:
 cdemolbs src.txt src.bin dst.txt dst.bin
 where src.txt and src.bin are text and binary files of size <= 512Kbytes.
 IMPORTANT: . This program works only for single-byte CLOBs.
 . Before running this program, ensure that the database is
 started up and a table FOO does not exist in the SCOTT/
 TIGER sample account.
*/

#include <stdio.h>
#include <string.h>
#include <oci.h>

/---------- Public Constants and Variables ----------------------*/

/* Constants */
#define TRUE 1
#define FALSE 0
#define MAXBUFLEN 32768
#define MAXLBSLEN 524288

/* OCI Handles */
static OCIEnv *envhp;
static OCIServer *srvhp;
static OCISvcCtx *svchp;
static OCIError *errhp;
static OCISession *authp;
static OCIStmt *stmthp;
static OCILobLocator *clob, *blob;
static OCIDefine *defnp1 = (OCIDefine *) 0, *defnp2 = (OCIDefine *) 0;
static OCIBind *bndhp = (OCIBind *) 0;

/* Misellaneous */
static FILE *fp1, *fp2;
D-96 Oracle Call Interface Programmer’s Guide

Example 6, LOB Buffering
static ub4 txtfilelen = 0;
static ub4 binfilelen = 0;
static boolean istxtfile;
static boolean tab_exists = FALSE;

/*---------- Public functions - Specification --------------------*/

int main (/*_ int argc, char *argv[] _*/);

static sb4 init_handles (/*_ void _*/);
static sb4 init_table (/*_ void _*/);
static sb4 log_on (/*_ void _*/);
static void log_off (/*_ void _*/);
static sb4 write_lobs (/*_ int rowind, char *txtfile, char *binfile _*/);
static sb4 read_lobs (/*_ int rowind, char *txtfile, char *binfile _*/);

/*----------- Private functions - Specification -------------------*/

static sb4 select_clob (/*_ int rowind _*/);
static sb4 select_blob (/*_ int rowind _*/);
static sb4 select_lobs (/*_ int rowind _*/);
static sb4 buf_write_lob (/*_ int rowind, OCILobLocator *locator, FILE *fp,
 ub4 filelen _*/);
static sb4 buf_read_lob (/*_ int rowind, OCILobLocator *locator,
 FILE *fp _*/);
static void drop_table (/*_ void _*/);
static void report_error (/*_ void _*/);
static ub4 file_length (/*_ FILE *fp _*/);

/*----------------- Public functions ----------------------------*/

/*----------------------- main -----------------------------------*/

/* main driver */
int main(argc, argv)
int argc;
char *argv[];
{
 int rowind;

 /* validate input arguments */
 if (argc != 5)
 {
 (void) printf("Usage: %s srctxtfile srcbinfile desttxtfile destbinfile\n",
 argv[0]);
 Code Examples D-97

Example 6, LOB Buffering
 return 0;
 }
 /* initialize OCI handles */
 if (init_handles())
 {
 (void) printf("FAILED: init_handles()\n");
 return OCI_ERROR;
 }
 /* log on to server */
 if (log_on())
 {
 (void) printf("FAILED: log_on()\n");
 return OCI_ERROR;
 }
 /* init demo table */
 if (init_table())
 {
 (void) printf("FAILED: init_table()\n");
 log_off();
 return OCI_ERROR;
 }
 /* write to LOBs in row 1 through the buffering subsystem,
 reading from src files*/
 rowind = 1;
 if (write_lobs(rowind, argv[1], argv[2]))
 {
 (void) printf("FAILED: write files to lobs\n");
 log_off();
 return OCI_ERROR;
 }
 /* read from LOBs in row 1 through buffering subsystem,
 writing to dest files */
 rowind = 1;
 if (read_lobs(rowind, argv[3], argv[4]))
 {
 (void) printf("FAILED: write lobs to files\n");
 log_off();
 return OCI_ERROR;
 }
 /* clean up and log off from server */
 log_off();

 return OCI_SUCCESS;
}

D-98 Oracle Call Interface Programmer’s Guide

Example 6, LOB Buffering
/*------------------- init_handles --------------------------------*/

/* initialize environment, and allocate all handles */
sb4 init_handles()
{
 if (OCIInitialize((ub4) OCI_DEFAULT, (dvoid *)0,
 (dvoid * (*)(dvoid *, size_t)) 0,
 (dvoid * (*)(dvoid *, dvoid *, size_t))0,
 (void (*)(dvoid *, dvoid *)) 0))
 {
 (void) printf("FAILED: OCIInitialize()\n");
 return OCI_ERROR;
 }
 /* initialize environment handle */
 if (OCIEnvInit((OCIEnv **) &envhp, (ub4) OCI_DEFAULT,
 (size_t) 0, (dvoid **) 0))
 {
 (void) printf("FAILED: OCIEnvInit()\n");
 return OCI_ERROR;
 }
 /* initialize service context */
 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp,
 (ub4) OCI_HTYPE_SVCCTX, (size_t) 0, (dvoid **) 0))
 {
 (void) printf("FAILED: OCIHandleAlloc()\n");
 return OCI_ERROR;
 }
 /* initialize error handle */
 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp,
 (ub4) OCI_HTYPE_ERROR, (size_t) 0, (dvoid **) 0))
 {
 (void) printf("FAILED: OCIHandleAlloc()\n");
 return OCI_ERROR;
 }
 /* initialize statement handle */
 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
 (ub4) OCI_HTYPE_STMT, (size_t) 0, (dvoid **) 0))
 {
 (void) printf("FAILED: OCIHandleAlloc()\n");
 return OCI_ERROR;
 }
 /* initialize server handle */
 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp,
 (ub4) OCI_HTYPE_SERVER, (size_t) 0, (dvoid **) 0))
 {
 Code Examples D-99

Example 6, LOB Buffering
 (void) printf("FAILED: OCIHandleAlloc()\n");
 return OCI_ERROR;
 }
 /* initialize session/authentication handle */
 if (OCIHandleAlloc((dvoid *) envhp, (dvoid **) &authp,
 (ub4) OCI_HTYPE_SESSION, (size_t) 0, (dvoid **) 0))
 {
 (void) printf("FAILED: OCIHandleAlloc()\n");
 return OCI_ERROR;
 }

 /* allocate the lob locator variables */
 if (OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &clob,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0))
 {
 (void) printf("FAILED: OCIDescriptorAlloc()\n");
 return OCI_ERROR;
 }
 if (OCIDescriptorAlloc((dvoid *) envhp, (dvoid **) &blob,
 (ub4)OCI_DTYPE_LOB, (size_t) 0, (dvoid **) 0))
 {
 (void) printf("FAILED: OCIDescriptorAlloc()\n");
 return OCI_ERROR;
 }

 return OCI_SUCCESS;
}

/*---------------------- init_table --------------------------------*/

/* create table FOO with initialized CLOB, BLOB columns, and insert two rows */
sb4 init_table()
{
 int colc;
 text *crtstmt = (text *) "CREATE TABLE FOO (C1 CLOB, C2 BLOB, C3 INTEGER)";
 text *insstmt =
 (text *) "INSERT INTO FOO VALUES (EMPTY_CLOB(), EMPTY_BLOB(), :1)";

 /* prepare create statement */
 if (OCIStmtPrepare(stmthp, errhp, crtstmt, (ub4) strlen((char *) crtstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtPrepare() crtstmt\n");
 return OCI_ERROR;
D-100 Oracle Call Interface Programmer’s Guide

Example 6, LOB Buffering
 }
 /* execute create statement */
 if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot *) 0, (OCISnapshot *) 0,
 (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtExecute() crtstmt\n");
 return OCI_ERROR;
 }
 /* prepare insert statement */
 if (OCIStmtPrepare(stmthp, errhp, insstmt, (ub4) strlen((char *) insstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtPrepare() insstmt\n");
 return OCI_ERROR;
 }
 /* associate variable colc with bind placeholder #1 in the SQL statement */
 if (OCIBindByPos(stmthp, &bndhp, errhp, (ub4) 1,
 (dvoid *) &colc, (sb4) sizeof(colc), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIBindByPos()\n");
 return OCI_ERROR;
 }
 /* insert two rows */
 for (colc = 1; colc <= 2; colc++)
 {
 if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot *) 0, (OCISnapshot *) 0,
 (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtExecute() insstmt\n");
 return OCI_ERROR;
 }
 }

 /* commit the Xn */
 (void) OCITransCommit(svchp, errhp, (ub4)0);

 /* set flag to be used by log_off() to drop the table */
 tab_exists = TRUE;

 return OCI_SUCCESS;
}

 Code Examples D-101

Example 6, LOB Buffering
/*----------------------- log_on ---------------------------------*/

/* attach to the server and log on as SCOTT/TIGER */
sb4 log_on()
{
 text *uid = (text *)"SCOTT";
 text *pwd = (text *)"TIGER";
 text *cstring = (text *)"inst1_alias";

 /* attach to the server */
 if (OCIServerAttach(srvhp, errhp, (text *) cstring,
 (sb4) strlen((char *)cstring), (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIServerAttach()\n");
 return OCI_ERROR;
 }

 /* set username and password attributes of the server handle */
 if (OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) uid, (ub4) strlen((char *)uid),
 (ub4) OCI_ATTR_USERNAME, errhp))
 {
 (void) printf("FAILED: OCIAttrSet()\n");
 return OCI_ERROR;
 }
 if (OCIAttrSet((dvoid *) authp, (ub4) OCI_HTYPE_SESSION,
 (dvoid *) pwd, (ub4) strlen((char *)pwd),
 (ub4) OCI_ATTR_PASSWORD, errhp))
 {
 (void) printf("FAILED: OCIAttrSet()\n");
 return OCI_ERROR;
 }

 /* set the server attribute in the service context */
 if (OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
 (dvoid *) srvhp, (ub4) 0, (ub4) OCI_ATTR_SERVER, errhp))
 {
 (void) printf("FAILED: OCIAttrSet()\n");
 return OCI_ERROR;
 }

 /* log on */
 if (OCISessionBegin(svchp, errhp, authp, (ub4) OCI_CRED_RDBMS,
D-102 Oracle Call Interface Programmer’s Guide

Example 6, LOB Buffering
 (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCISessionBegin()\n");
 return OCI_ERROR;
 }

 /* set the session attribute in the service context */
 if (OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *) authp,
 (ub4) 0, (ub4) OCI_ATTR_SESSION, errhp))
 {
 (void) printf("FAILED: OCIAttrSet()\n");
 return OCI_ERROR;
 }
 return OCI_SUCCESS;
}

/*-------------------------- logoff -------------------------------*/

/* Logoff and disconnect from the server. Free handles */
void log_off()
{
 if (tab_exists)
 drop_table();

 (void) OCISessionEnd(svchp, errhp, authp, (ub4) 0);
 (void) OCIServerDetach(srvhp, errhp, (ub4) OCI_DEFAULT);

 (void) printf("Logged off and detached from server.\n");

 (void) OCIHandleFree((dvoid *) srvhp, (ub4) OCI_HTYPE_SERVER);
 (void) OCIHandleFree((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX);
 (void) OCIHandleFree((dvoid *) errhp, (ub4) OCI_HTYPE_ERROR);
 (void) OCIHandleFree((dvoid *) authp, (ub4) OCI_HTYPE_SESSION);
 (void) OCIDescriptorFree((dvoid *) clob, (ub4) OCI_DTYPE_LOB);
 (void) OCIDescriptorFree((dvoid *) blob, (ub4) OCI_DTYPE_LOB);
 (void) OCIHandleFree((dvoid *) stmthp, (ub4) OCI_HTYPE_STMT);

 (void) printf("All handles freed\n");
 return;
}

/*-------------------- write_lobs -------------------------------*/

/* write from files to LOBs */
sb4 write_lobs (rowind, txtfile, binfile)
 Code Examples D-103

Example 6, LOB Buffering
int rowind;
char *txtfile;
char *binfile;
{
 ub4 loblen = 0;
 text *svptstmt = (text *)"SAVEPOINT cdemolbs_svpt";
 text *rlbkstmt = (text *)"ROLLBACK TO SAVEPOINT cdemolbs_svpt";
 ub4 txtfilelen = 0;
 ub4 binfilelen = 0;

 /* validate row indicator */
 if (!rowind || (rowind > 2))
 {
 (void) printf("ERROR: Invalid row indicator.\n");
 return OCI_ERROR;
 }
 /* open source files */
 fp1 = fopen((CONST char *)txtfile, (CONST char *) "r");
 fp2 = fopen((CONST char *)binfile, (CONST char *) "r");
 if (!(fp1 && fp2))
 {
 (void) printf("ERROR: Failed to open file(s).\n");
 return -1;
 }
 if ((txtfilelen = file_length(fp1)) > MAXLBSLEN)
 {
 (void) printf("ERROR: %s - length > 512Kbytes", txtfile);
 return -1;
 }
 if ((binfilelen = file_length(fp2)) > MAXLBSLEN)
 {
 (void) printf("ERROR: %s - length > 512Kbytes", binfile);
 return -1;
 }

 /* reset file pointers to start of file */
 (void) fseek(fp1, 0, 0);
 (void) fseek(fp2, 0, 0);

 /* set savepoint for Xn before commencing buffered mode operations */
 if (OCIStmtPrepare(stmthp, errhp, svptstmt, (ub4) strlen((char *)svptstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtPrepare() svptstmt\n");
 return OCI_ERROR;
D-104 Oracle Call Interface Programmer’s Guide

Example 6, LOB Buffering
 }
 if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtExecute() svptstmt\n");
 report_error();
 return OCI_ERROR;
 }

 (void) printf("\n===> Writing CLOB from txtfile in buffered mode.....\n\n");

 /* fetch the CLOB's locator from the table for update */
 if (select_clob(rowind))
 {
 (void) printf("FAILED: select_clob()\n");
 log_off();
 return OCI_ERROR;
 }
 /* report LOB length before buffered write begins */
 (void) OCILobGetLength(svchp, errhp, clob, &loblen);
 (void) printf("Before buffered write, CLOB length = %d\n\n", loblen);

 /* enable the CLOB locator for buffering operations */
 if (OCILobEnableBuffering(svchp, errhp, clob))
 {
 (void) printf("FAILED: OCILobEnableBuffering() CLOB\n");
 return OCI_ERROR;
 }
 /* write the text file contents into CLOB through the buffering subsystem */
 if (buf_write_lob(rowind, clob, fp1, txtfilelen) > 0)
 {
 /* if buffered write operation failed, rollback Xn to savepoint & exit */
 if (OCIStmtPrepare(stmthp, errhp, rlbkstmt,
 (ub4) strlen((char *)rlbkstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtPrepare() rlbkstmt\n");
 return OCI_ERROR;
 }
 if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtExecute() rlbkstmt\n");
 Code Examples D-105

Example 6, LOB Buffering
 report_error();
 return OCI_ERROR;
 }

 (void) printf("FAILED: buf_write_lob() CLOB\n");
 return OCI_ERROR;
 }
 /* commit the Xn if the CLOB's buffer was flushed successfully */
 (void) OCITransCommit(svchp, errhp, (ub4)0);

 /* disable CLOB locator from buffering */
 if (OCILobDisableBuffering(svchp, errhp, clob))
 {
 (void) printf("FAILED: OCILobDisableBuffering() CLOB\n");
 return OCI_ERROR;
 }

 (void) printf("\n===> Writing BLOB from binfile in buffered mode.....\n\n");

 /* fetch the BLOB's locator from the table for update */
 if (select_blob(rowind))
 {
 (void) printf("FAILED: select_blob()\n");
 log_off();
 return OCI_ERROR;
 }
 /* report LOB length before buffered write begins */
 (void) OCILobGetLength(svchp, errhp, blob, &loblen);
 (void) printf("Before buffered write, BLOB length = %d\n\n", loblen);

 /* enable the BLOB locator for buffering operations */
 if (OCILobEnableBuffering(svchp, errhp, blob))
 {
 (void) printf("FAILED: OCILobEnableBuffering() BLOB\n");
 return OCI_ERROR;
 }
 /* write the bin file contents into BLOB through the buffering subsystem */
 if (buf_write_lob(rowind, blob, fp2, binfilelen) > 0)
 {
 /* if buffered write operation failed, rollback Xn to savepoint & exit */
 if (OCIStmtPrepare(stmthp, errhp, rlbkstmt,
 (ub4) strlen((char *)rlbkstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtPrepare() rlbkstmt\n");
D-106 Oracle Call Interface Programmer’s Guide

Example 6, LOB Buffering
 return OCI_ERROR;
 }
 if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtExecute() rlbkstmt\n");
 report_error();
 return OCI_ERROR;
 }

 (void) printf("FAILED: buf_write_lob() BLOB\n");
 return OCI_ERROR;
 }
 /* commit the Xn if the BLOB's buffer was flushed successfully */
 (void) OCITransCommit(svchp, errhp, (ub4)0);

 /* disable BLOB locator from buffering */
 if (OCILobDisableBuffering(svchp, errhp, blob))
 {
 (void) printf("FAILED: OCILobDisableBuffering() BLOB\n");
 return OCI_ERROR;
 }

 /* close input files */
 (void) fclose(fp1);
 (void) fclose(fp2);

 return OCI_SUCCESS;
}

/*--------------------- read_lobs --------------------------------*/

/* read from LOBs into files */
sb4 read_lobs (rowind, txtfile, binfile)
int rowind;
char *txtfile;
char *binfile;
{
 ub4 loblen = 0;
 text *svptstmt = (text *)"SAVEPOINT cdemolbs_svpt";
 text *rlbkstmt = (text *)"ROLLBACK TO SAVEPOINT cdemolbs_svpt";

 if (!rowind || (rowind > 2))
 {
 Code Examples D-107

Example 6, LOB Buffering
 (void) printf("ERROR: Invalid row indicator.\n");
 return -1;
 }

 /* open destination files */
 fp1 = fopen((CONST char *)txtfile, (CONST char *) "w");
 fp2 = fopen((CONST char *)binfile, (CONST char *) "w");
 if (!(fp1 && fp2))
 {
 (void) printf("ERROR: Failed to open file(s).\n");
 return -1;
 }

 /* reset file pointers to start of file */
 (void) fseek(fp1, 0, 0);
 (void) fseek(fp2, 0, 0);

 /* fetch the BLOB's locator from the table for reads */
 if (select_lobs(rowind))
 {
 (void) printf("FAILED: select_lobs()\n");
 log_off();
 return OCI_ERROR;
 }
 /* report CLOB length before buffered read begins */
 (void) OCILobGetLength(svchp, errhp, clob, &loblen);
 (void) printf("Before buffered read, CLOB length = %d\n\n", loblen);

 /* report BLOB length before buffered read begins */
 (void) OCILobGetLength(svchp, errhp, blob, &loblen);
 (void) printf("Before buffered read, BLOB length = %d\n\n", loblen);

 /* set savepoint for Xn before commencing buffered mode operations */
 if (OCIStmtPrepare(stmthp, errhp, svptstmt, (ub4) strlen((char *)svptstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtPrepare() svptstmt\n");
 return OCI_ERROR;
 }
 if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtExecute() svptstmt\n");
 report_error();
D-108 Oracle Call Interface Programmer’s Guide

Example 6, LOB Buffering
 return OCI_ERROR;
 }

 /* enable the locators for buffering operations */
 if (OCILobEnableBuffering(svchp, errhp, clob))
 {
 (void) printf("FAILED: OCILobEnableBuffering() CLOB\n");
 return OCI_ERROR;
 }
 if (OCILobEnableBuffering(svchp, errhp, blob))
 {
 (void) printf("FAILED: OCILobEnableBuffering() BLOB\n");
 return OCI_ERROR;
 }

 (void) printf("\n===> Reading CLOB into dst.txt in buffered mode...\n\n");

 /* read the CLOB into buffer and write the contents to a text file */
 if (buf_read_lob(rowind, clob, fp1) > 0)
 {
 /* if buffered read operation failed, rollback Xn to savepoint & exit */
 if (OCIStmtPrepare(stmthp, errhp, rlbkstmt,
 (ub4) strlen((char *)rlbkstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtPrepare() rlbkstmt\n");
 return OCI_ERROR;
 }
 if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtExecute() rlbkstmt\n");
 report_error();
 return OCI_ERROR;
 }

 (void) printf("FAILED: buf_read_lob() CLOB\n");
 return OCI_ERROR;
 }

 (void) printf("\n===> Reading BLOB into dst.bin in buffered mode...\n\n");

 /* read the BLOB into buffer and write the contents to a binary file */
 if (buf_read_lob(rowind, blob, fp2) > 0)
 Code Examples D-109

Example 6, LOB Buffering
 {
 /* if buffered read operation failed, rollback Xn to savepoint & exit */
 if (OCIStmtPrepare(stmthp, errhp, rlbkstmt,
 (ub4) strlen((char *)rlbkstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtPrepare() rlbkstmt\n");
 return OCI_ERROR;
 }
 if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtExecute() rlbkstmt\n");
 report_error();
 return OCI_ERROR;
 }

 (void) printf("FAILED: buf_read_clob()\n");
 return OCI_ERROR;
 }

 /* commit the Xn if buffered reads went off successfully */
 (void) OCITransCommit(svchp, errhp, (ub4)0);

 /* disable locator for buffering */
 if (OCILobDisableBuffering(svchp, errhp, clob))
 {
 (void) printf("FAILED: OCILobDisableBuffering() \n");
 return OCI_ERROR;
 }
 if (OCILobDisableBuffering(svchp, errhp, blob))
 {
 (void) printf("FAILED: OCILobDisableBuffering() \n");
 return OCI_ERROR;
 }

 /* close output files */
 (void) fclose(fp1);
 (void) fclose(fp2);

 return OCI_SUCCESS;
}

/*----------------- Public functions ----------------------------*/
D-110 Oracle Call Interface Programmer’s Guide

Example 6, LOB Buffering
/*------------------ select_clob -------------------------------*/

/* select locator from the CLOB column */
sb4 select_clob(rowind)
int rowind;
{
 int colc = rowind;
 text *sqlstmt = (text *)"SELECT C1 FROM FOO WHERE C3 = :1 FOR UPDATE";
 /* we need the 'FOR UPDATE' clause since we need to write to the lobs */

 /* prepare select statement */
 if (OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4) strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtPrepare() sqlstmt\n");
 return OCI_ERROR;
 }
 /* associate variable colc with bind placeholder #1 in the SQL statement */
 if (OCIBindByPos(stmthp, &bndhp, errhp, (ub4) 1,
 (dvoid *) &colc, (sb4) sizeof(colc), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIBindByPos()\n");
 return OCI_ERROR;
 }
 /* associate clob var with its define handle */
 if (OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *) &clob, (sb4) -1, (ub2) SQLT_CLOB,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIDefineByPos() CLOB\n");
 return OCI_ERROR;
 }
 /* execute the select and fetch one row */
 if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtExecute() sqlstmt\n");
 return OCI_ERROR;
 }
 return OCI_SUCCESS;
}

 Code Examples D-111

Example 6, LOB Buffering
/*------------------------------- select_blob ---------------------------*/

/* select locator from the BLOB column */
sb4 select_blob(rowind)
int rowind;
{
 int colc = rowind;
 text *sqlstmt = (text *)"SELECT C2 FROM FOO WHERE C3 = :1 FOR UPDATE";
 /* we need the 'FOR UPDATE' clause since we need to write to the lobs */

 /* prepare select statement */
 if (OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4) strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtPrepare() sqlstmt\n");
 return OCI_ERROR;
 }
 /* associate variable colc with bind placeholder #1 in the SQL statement */
 if (OCIBindByPos(stmthp, &bndhp, errhp, (ub4) 1,
 (dvoid *) &colc, (sb4) sizeof(colc), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIBindByPos()\n");
 return OCI_ERROR;
 }
 /* associate blob var with its define handle */
 if (OCIDefineByPos(stmthp, &defnp2, errhp, (ub4) 1,
 (dvoid *) &blob, (sb4) -1, (ub2) SQLT_BLOB,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIDefineByPos()\n");
 return OCI_ERROR;
 }
 /* execute the select and fetch one row */
 if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtExecute() sqlstmt\n");
 return OCI_ERROR;
 }
 return OCI_SUCCESS;
}

D-112 Oracle Call Interface Programmer’s Guide

Example 6, LOB Buffering
/*------------------- select_lobs -------------------------------*/

/* select lob locators from the CLOB, BLOB columns */
sb4 select_lobs(rowind)
int rowind;
{
 int colc = rowind;
 text *sqlstmt = (text *)"SELECT C1, C2 FROM FOO WHERE C3 = :1";
 /* we don't need the 'FOR UPDATE' clause since
 we are just reading the LOBs */

 /* prepare select statement */
 if (OCIStmtPrepare(stmthp, errhp, sqlstmt, (ub4) strlen((char *)sqlstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtPrepare() sqlstmt\n");
 return OCI_ERROR;
 }
 /* associate variable colc with bind placeholder #1 in the SQL statement */
 if (OCIBindByPos(stmthp, &bndhp, errhp, (ub4) 1,
 (dvoid *) &colc, (sb4) sizeof(colc), SQLT_INT,
 (dvoid *) 0, (ub2 *)0, (ub2 *)0,
 (ub4) 0, (ub4 *) 0, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIBindByPos()\n");
 return OCI_ERROR;
 }
 /* associate clob and blob vars with their define handles */
 if (OCIDefineByPos(stmthp, &defnp1, errhp, (ub4) 1,
 (dvoid *) &clob, (sb4) -1, (ub2) SQLT_CLOB,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT)
 || OCIDefineByPos(stmthp, &defnp2, errhp, (ub4) 2,
 (dvoid *) &blob, (sb4) -1, (ub2) SQLT_BLOB,
 (dvoid *) 0, (ub2 *) 0, (ub2 *) 0, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIDefineByPos()\n");
 return OCI_ERROR;
 }
 /* execute the select and fetch one row */
 if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot*) 0, (OCISnapshot*) 0,
 (ub4) OCI_DEFAULT))
 {
 Code Examples D-113

Example 6, LOB Buffering
 (void) printf("FAILED: OCIStmtExecute() sqlstmt\n");
 return OCI_ERROR;
 }
 return OCI_SUCCESS;
}

/*-------------------- buf_write_lob -----------------------------*/
/*
 * Read operating system files into local buffers and then write these local
 * buffers to LOBs using buffering system.
 */
sb4 buf_write_lob(rowind, locator, fp, filelen)
int rowind;
OCILobLocator *locator;
FILE *fp;
ub4 filelen;
{
 ub4 offset = 1;
 ub1 bufp[MAXBUFLEN];
 ub4 amtp;
 ub4 nbytes = 0;
 ub4 remainder = filelen;

 /* reset per read/write buffer size and perform the first read */
 amtp = nbytes = (filelen > MAXBUFLEN) ? MAXBUFLEN : filelen;

 /* write into the LOB's client-side buffer
 (upto max 16 pages of 32K each) */
 while (remainder > 0)
 {
 if (fread((void *)bufp, (size_t)nbytes, (size_t)1, fp) != 1)
 {
 (void) printf("ERROR: read file.\n");
 return(OCI_ERROR);
 }
 if (feof(fp))
 {
 (void) printf("Exit - End of file reached\n", amtp, offset);
 break;
 }
 (void) printf("Write %d bytes out of remaining %d bytes at off %d\n",
 amtp, remainder, offset);
 if (OCILobWrite(svchp, errhp, locator, &amtp, (ub4) offset,
 (dvoid *) bufp,
 (ub4) nbytes, OCI_ONE_PIECE, (dvoid *)0,
D-114 Oracle Call Interface Programmer’s Guide

Example 6, LOB Buffering
 (sb4 (*)(dvoid *, dvoid *, ub4 *, ub1 *)) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT))
 {
 (void) printf("FAILED: OCILobWrite() \n");
 return(OCI_ERROR);
 }
 if (amtp < nbytes)
 {
 (void) printf("FAILED: Full file not written \n");
 return(OCI_ERROR);
 }
 amtp = nbytes;
 offset += nbytes;
 remainder -= nbytes;
 }

 /* flush the buffers back to the server */
 (void) printf("Flush LOB's buffer to server\n");
 if (OCILobFlushBuffer(svchp, errhp, locator, OCI_LOB_BUFFER_NOFREE))
 {
 (void) printf("FAILED: OCILobFlushBuffer() \n");
 return OCI_ERROR;
 }
 return OCI_SUCCESS;
}

/*--------------------------------- buf_read_lob ----------------------------*/

/*
 * Read LOBs using buffered mode into local buffers and writes them into
 * operating system files.
 */
sb4 buf_read_lob(rowind, locator, fp)
int rowind;
OCILobLocator *locator;
FILE *fp;
{
 ub4 offset = 1;
 ub1 bufp[MAXBUFLEN];
 ub4 amtp = 0;
 ub4 nbytes = 0;

 /* set amount to be read per iteration */
 amtp = nbytes = MAXBUFLEN;
 Code Examples D-115

Example 6, LOB Buffering
 /*
 * read from CLOB and write to text file (in the process, populating upto
 * 16 pages of 32K each in the buffering subsystem).
 */
 while (amtp)
 {
 (void) printf("Reading %d bytes from offset %d\n", amtp, offset);
 if (OCILobRead(svchp, errhp, locator, &amtp, (ub4) offset, (dvoid *) bufp,
 (ub4) nbytes, (dvoid *)0,
 (sb4 (*)(dvoid *, CONST dvoid *, ub4, ub1)) 0,
 (ub2) 0, (ub1) SQLCS_IMPLICIT))
 {
 (void) printf("FAILED: OCILobRead() \n");
 return OCI_ERROR;
 }
 (void) fwrite((void *)bufp, (size_t)amtp, (size_t)1, fp); /* write
buffer to file */
 offset += nbytes;
 }
 return OCI_SUCCESS;
}

/*---------------------- drop_table ------------------------------*/

/* Drop table FOO before logging off from the server */
void drop_table()
{
 text *dropstmt = (text *) "DROP TABLE FOO";

 /* prepare drop statement */
 if (OCIStmtPrepare(stmthp, errhp, dropstmt, (ub4) strlen((char *) dropstmt),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtPrepare() dropstmt\n");
 return;
 }
 /* execute drop statement */
 if (OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot *) 0, (OCISnapshot *) 0,
 (ub4) OCI_DEFAULT))
 {
 (void) printf("FAILED: OCIStmtExecute() dropstmt\n");
 return;
 }
 return;
D-116 Oracle Call Interface Programmer’s Guide

Example 6, LOB Buffering
}

/*---------------------- report_error -----------------------------*/

/* retrieve error message and print it out */
void report_error()
{
 text msgbuf[512];
 sb4 errcode = 0;

 (void) OCIErrorGet((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
 msgbuf, (ub4) sizeof(msgbuf), (ub4) OCI_HTYPE_ERROR);
 (void) printf("ERROR CODE = %d\n", errcode);
 (void) printf("%.*s\n", 512, msgbuf);
 return;
}

/*---------------------- file_length ------------------------------*/

/* get the length of the input file */
ub4 file_length(fp)
FILE *fp;
{
 fseek(fp, 0, SEEK_END);
 return (ub4) (ftell(fp));
}

 Code Examples D-117

Example 7, REF Pinning and Navigation
Example 7, REF Pinning and Navigation
/*
 NAME
 cdemobj.c

 DESCRIPTION
 Demo of selection of a REF and display the pinned object through
 navigational interface.
*/

#ifndef CDEMO_OBJ_ORACLE
#include "cdemobj.h"
#endif

/* statement to select a ref from an extent table customer_tab */
static const text *const selref = (text *)
 "SELECT REF(customer_tab) from customer_tab";

/* statement to create the type address */
static const text *const create_type_address = (text *)
"CREATE TYPE address AS OBJECT (\
 no NUMBER,\
 street VARCHAR(60),\
 state CHAR(2),\
 zip CHAR(10)\
)";

/* statement to create the typed table address_tab */
static const text *const create_type_addr_tab = (text *)
"create type addr_tab is table of address";

/* statement to create the type person */
static const text *const create_type_person = (text *)
"CREATE TYPE person AS OBJECT (\
 firstname CHAR(20),\
 lastname varchar(20),\
 age int,\
 salary float,\
 bonus double precision,\
 retirement_fund int,\
 number_of_kids smallint,\
 years_of_school numeric(10, 2),\
 preaddr addr_tab,\
 birthday date,\
D-118 Oracle Call Interface Programmer’s Guide

Example 7, REF Pinning and Navigation
 number_of_pets real,\
 comment1 raw(200),\
 comment2 clob,\
 comment3 varchar2(200),\
 addr ADDRESS\
)";

/* statement to create the type customer */
static const text *const create_type_customer = (text *)
"CREATE TYPE customer AS OBJECT (\
 account char(20),\
 aperson REF person\
)";

/* statement to create the typed table person */
static const text *const create_table_person = (text *)
"create table person_tab of person nested table preaddr store as
person_preaddr_table";

/* statement to create the typed table customer_tab */
static const text *const create_table_customer = (text *)
"create table customer_tab of customer";

/* statement to insert data into table customer_tab */
static const text *const insert_customer = (text *)
"insert into customer_tab values('00001', null)";

/* statement to insert data into table person_tab */
static const text *const insert_person = (text *)
"insert into person_tab values('Sandy', 'Wood', 25, 32000, 10000, 20000, 3,\
 15, addr_tab(),\
 to_date('1961 08 23', 'YYYY MM DD'), 2,\
 '1234567890', 'This is a test', 'This is a test',\
 ADDRESS(8888, 'Fenley Road', 'CA', '91406'))";

/* statement to insert data into the nested table in person_tab */
static const text *const insert_address1 = (text *)
"insert into the (select preaddr from person_tab where\
 firstname='Sandy') values\
 (715, 'South Henry', 'ca', '95117')";
static const text *const insert_address2 = (text *)
"insert into the (select preaddr from person_tab where\
 firstname='Sandy') values\
 (6830, 'Woodley Ave', 'ca', '90416')";
 Code Examples D-119

Example 7, REF Pinning and Navigation
/* statement to update the ref in the table customer_tab */
static const text *const update_customer = (text *)
"update customer_tab set aperson = (select ref(person_tab)\
 from person_tab where\
 firstname = 'Sandy')";

/***
* Check the error and display the error message *
**/
static void checkerr(errhp, status)
OCIError *errhp;
sword status;
{
 text errbuf[512];
 sb4 errcode;

 switch (status)
 {
 case OCI_SUCCESS:
 break;
 case OCI_SUCCESS_WITH_INFO:
 break;
 case OCI_NEED_DATA:
 break;
 case OCI_NO_DATA:
 break;
 case OCI_ERROR: /* get the error back and display on the screen */
 (void) OCIErrorGet ((dvoid *) errhp, (ub4) 1, (text *) NULL, &errcode,
 errbuf, (ub4) sizeof(errbuf), (ub4) OCI_HTYPE_ERROR);
 (void) printf("Error - %s\n", errbuf);
 break;
 case OCI_INVALID_HANDLE:
 break;
 case OCI_STILL_EXECUTING:
 break;
 case OCI_CONTINUE:
 break;
 default:
 break;
 }
}
/**
* Display attribute value of an object *
**/
static void display_attr_val(envhp, errhp, names, typecode, attr_value)
D-120 Oracle Call Interface Programmer’s Guide

Example 7, REF Pinning and Navigation
OCIEnv *envhp; /* environment handle */
OCIError *errhp; /* error handle */
text *names; /* the name of the attribute */
OCITypeCode typecode; /* the type code */
dvoid *attr_value; /* the value pointer */
{
 text str_buf[200];
 double dnum;
 ub4 text_len, str_len;
 OCIRaw *raw = (OCIRaw *) 0;
 OCIString *vs = (OCIString *) 0;

 /* display the data based on the type code */
 switch (typecode)
 {
 case OCI_TYPECODE_DATE : /* fixed length string */
 str_len = 200;
 (void) OCIDateToText(errhp, (CONST OCIDate *) attr_value,
 (CONST text*)
 "Month dd, SYYYY, HH:MI A.M.",
 (ub1) 27, (CONST text*) "American", (ub4) 8,
 (ub4 *)&str_len, str_buf);
 str_buf[str_len+1] = '\0';
 (void) printf("attr %s = %s\n", names, (text *) str_buf);
 break;
 case OCI_TYPECODE_RAW : /* RAW */
 raw = *(OCIRaw **) attr_value;
 (void) printf("attr %s = %s\n", names, (text *) OCIRawPtr(envhp, raw));
 break;
 case OCI_TYPECODE_CHAR : /* fixed length string */
 case OCI_TYPECODE_VARCHAR : /* varchar */
 case OCI_TYPECODE_VARCHAR2 : /* varchar2 */
 vs = *(OCIString **) attr_value;
 (void) printf("attr %s = %s\n", names, (text *)
 OCIStringPtr(envhp, vs));
 break;
 case OCI_TYPECODE_SIGNED8: /* BYTE - sb1 */
 (void) printf("attr %s = %d\n", names, *(sb1 *) attr_value);
 break;
 case OCI_TYPECODE_UNSIGNED8: /* UNSIGNED BYTE - ub1 */
 (void) printf("attr %s = %d\n", names, *(ub1 *) attr_value);
 break;
 case OCI_TYPECODE_OCTET: /* OCT */
 (void) printf("attr %s = %d\n", names, *(ub1 *) attr_value);
 break;
 Code Examples D-121

Example 7, REF Pinning and Navigation
 case OCI_TYPECODE_UNSIGNED16: /* UNSIGNED SHORT */
 case OCI_TYPECODE_UNSIGNED32: /* UNSIGNED LONG */
 case OCI_TYPECODE_REAL: /* REAL */
 case OCI_TYPECODE_DOUBLE: /* DOUBLE */
 case OCI_TYPECODE_INTEGER: /* INT */
 case OCI_TYPECODE_SIGNED16: /* SHORT */
 case OCI_TYPECODE_SIGNED32: /* LONG */
 case OCI_TYPECODE_DECIMAL: /* DECIMAL */
 case OCI_TYPECODE_FLOAT: /* FLOAT */
 case OCI_TYPECODE_NUMBER: /* NUMBER */
 case OCI_TYPECODE_SMALLINT: /* SMALLINT */
 (void) OCINumberToReal(errhp, (CONST OCINumber *) attr_value,
 (uword)sizeof(dnum),
 (dvoid *) &dnum);
 (void) printf("attr %s = %f\n", names, dnum);
 break;
 default:
 (void) printf("attr %s - typecode %d\n", names, typecode);
 break;
 }
}

/**
* Dump the info of any object *
**/
static void dump_object(envhp, errhp, svchp, tdo, obj, null_obj)
OCIEnv *envhp; /* environment handle */
OCIError *errhp; /* error handle */
OCISvcCtx *svchp; /* service handle */
OCIType *tdo; /* type descriptor */
dvoid *obj; /* object pointer */
dvoid *null_obj; /* parallel null struct pointer */
{
 text *names[50];
 text *lengths[50];
 text *indexes[50];
 ub2 count, pos;
 OCITypeElem *ado;
 ub4 text_len, str_len;
 ub4 i;
 OCITypeCode typecode;
 OCIInd attr_null_status;
 dvoid *attr_null_struct;
 dvoid *attr_value;
D-122 Oracle Call Interface Programmer’s Guide

Example 7, REF Pinning and Navigation
 OCIType *attr_tdo, *element_type;
 dvoid *object;
 dvoid *null_object;
 OCIType *object_tdo;
 ub1 status;
 OCIRef *type_ref;
 text str_buf[200];
 double dnum;
 dvoid *element = (dvoid *) 0, *null_element = (dvoid *) 0;
 boolean exist, eoc, boc;
 sb4 index;
 OCIDescribe *dschp = (OCIDescribe *) 0, *dschp1 = (OCIDescribe *) 0;
 text *namep, *typenamep;
 dvoid *list_attr;
 OCIIter *itr = (OCIIter *) 0;
 dvoid *parmp = (dvoid *) 0, *parmdp = (dvoid *) 0, *parmp1 = (dvoid *) 0,
 *parmp2 = (dvoid *) 0;
 OCIRef *elem_ref = (OCIRef *) 0;

 checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &dschp,
 (ub4) OCI_HTYPE_DESCRIBE,
 (size_t) 0, (dvoid **) 0));

 checkerr(errhp, OCIDescribeAny(svchp, errhp, (dvoid *) tdo,
 (ub4) 0, OCI_OTYPE_PTR, (ub1)1,
 (ub1) OCI_PTYPE_TYPE, dschp));

 checkerr(errhp, OCIAttrGet((dvoid *) dschp, (ub4) OCI_HTYPE_DESCRIBE,
 (dvoid *)&parmp, (ub4 *)0, (ub4)OCI_ATTR_PARAM, errhp));

 checkerr(errhp, OCIAttrGet((dvoid*) parmp,(ub4) OCI_DTYPE_PARAM,
 (dvoid*) &typenamep, (ub4 *) &str_len,
 (ub4) OCI_ATTR_NAME, (OCIError *) errhp));
 typenamep[str_len] = '\0';

 printf("starting displaying instance of type '%s'\n", typenamep);

 /* loop through all attributes in the type */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &count, (ub4 *) 0,
 (ub4) OCI_ATTR_NUM_TYPE_ATTRS, (OCIError *) errhp));

 checkerr(errhp, OCIAttrGet((dvoid *) parmp, (ub4) OCI_DTYPE_PARAM,
 (dvoid *)&list_attr, (ub4 *)0,
 (ub4)OCI_ATTR_LIST_TYPE_ATTRS, (OCIError *)errhp));
 Code Examples D-123

Example 7, REF Pinning and Navigation
 /* loop through all attributes in the type */
 for (pos = 1; pos <= count; pos++)
 {

 checkerr(errhp, OCIParamGet((dvoid *) list_attr,
 (ub4) OCI_DTYPE_PARAM, errhp,
 (dvoid *)&parmdp, (ub4) pos));

 checkerr(errhp, OCIAttrGet((dvoid*) parmdp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &namep, (ub4 *) &str_len,
 (ub4) OCI_ATTR_NAME, (OCIError *) errhp));
 namep[str_len] = '\0';

 /* get the attribute */
 if (OCIObjectGetAttr(envhp, errhp, obj, null_obj, tdo,
 &namep, &str_len, 1,
 (ub4 *)0, 0, &attr_null_status, &attr_null_struct,
 &attr_value, &attr_tdo) != OCI_SUCCESS)
 (void) printf("BUG -- OCIObjectGetAttr, expect OCI_SUCCESS.\n");

 /* get the type code of the attribute */
 checkerr(errhp, OCIAttrGet((dvoid*) parmdp, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &typecode, (ub4 *) 0,
 (ub4) OCI_ATTR_TYPECODE,
 (OCIError *) errhp));

 /* support only fixed length string, ref and embedded object */
 switch (typecode)
 {
 case OCI_TYPECODE_OBJECT : /* embedded object */
 printf("attribute %s is an embedded object.
 Display instance\n",
 namep);
 /* recursive call to dump nested object data */
 dump_object(envhp, errhp, svchp, attr_tdo, attr_value,
 attr_null_struct);
 break;
 case OCI_TYPECODE_REF : /* embedded object */
 printf("attribute %s is a ref. Pin and display instance ...\n",
 namep);
 /* pin the object */
 if (OCIObjectPin(envhp, errhp, *(OCIRef **)attr_value,
 (OCIComplexObject *)0, OCI_PIN_ANY,
 OCI_DURATION_SESSION, OCI_LOCK_NONE,
D-124 Oracle Call Interface Programmer’s Guide

Example 7, REF Pinning and Navigation
 (dvoid **)&object) != OCI_SUCCESS)
 (void) printf("BUG -- OCIObjectPin, expect OCI_SUCCESS.\n");
 /* allocate the ref */
 if ((status = OCIObjectNew(envhp, errhp, svchp, OCI_TYPECODE_REF,
 (OCIType *)0,
 (dvoid *)0, OCI_DURATION_DEFAULT, TRUE, (dvoid **)
 &type_ref))
 != OCI_SUCCESS)
 (void) printf("BUG -- OCIObjectNew, expect OCI_SUCCESS.\n");
 /* get the ref of the type from the object */
 if ((status = OCIObjectGetTypeRef(envhp, errhp, object, type_ref))
 != OCI_SUCCESS)
 (void) printf("BUG -- ORIOGTR, expect OCI_SUCCESS.\n");
 /* pin the type ref to get the type object */
 if (OCIObjectPin(envhp, errhp, type_ref, (OCIComplexObject *)0,
 OCI_PIN_ANY, OCI_DURATION_SESSION, OCI_LOCK_NONE,
 (dvoid **)&object_tdo) !=
 OCI_SUCCESS)
 (void) printf("BUG -- OCIObjectPin, expect OCI_SUCCESS.\n");
 /* get null struct of the object */
 if ((status = OCIObjectGetInd(envhp, errhp, object,
 &null_object)) != OCI_SUCCESS)
 (void) printf("BUG -- ORIOGNS, expect OCI_SUCCESS.\n");
 /* call the function recursively to dump the pinned object */
 dump_object(envhp, errhp, svchp, object_tdo, object,
 null_object);
 case OCI_TYPECODE_NAMEDCOLLECTION:
 checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &dschp1,
 (ub4) OCI_HTYPE_DESCRIBE,
 (size_t) 0, (dvoid **) 0));

 checkerr(errhp, OCIDescribeAny(svchp, errhp, (dvoid *) attr_tdo,
 (ub4) 0, OCI_OTYPE_PTR, (ub1)1,
 (ub1) OCI_PTYPE_TYPE, dschp1));

 checkerr(errhp, OCIAttrGet((dvoid *) dschp1, (ub4)
 OCI_HTYPE_DESCRIBE,
 (dvoid *)&parmp1, (ub4 *)0, (ub4)OCI_ATTR_PARAM, errhp));

 /* get the collection type code of the attribute */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp1, (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &typecode, (ub4 *) 0,
 (ub4) OCI_ATTR_COLLECTION_TYPECODE,
 (OCIError *) errhp));
 switch (typecode)
 Code Examples D-125

Example 7, REF Pinning and Navigation
 {
 case OCI_TYPECODE_VARRAY: /* variable array */
 (void) printf
 ("\n---> Dump the table from the top to the bottom.\n");
 checkerr(errhp, OCIAttrGet((dvoid*) parmp1, (ub4)
 OCI_DTYPE_PARAM,
 (dvoid*) &parmp2, (ub4 *) 0,
 (ub4) OCI_ATTR_COLLECTION_ELEMENT,
 (OCIError *) errhp));
 checkerr(errhp, OCIAttrGet((dvoid*) parmp2,
 (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &elem_ref, (ub4 *) 0,
 (ub4) OCI_ATTR_REF_TDO,
 (OCIError *) errhp));
 checkerr(OCITypeByRef(envhp, errhp, elem_ref, OCI_PIN_DEFAULT,
 0, &element_type));
 /* initialize the iterator */
 checkerr(errhp, OCIIterCreate(envhp, errhp, (CONST OCIColl*)
 attr_value, &itr));
 /* loop through the iterator */
 for(eoc = FALSE;!OCIIterNext(envhp, errhp, itr, (dvoid **)
 &element,
 (dvoid **)&null_element, &eoc) && !eoc;)
 {
 /* if type is named type, call the same function recursively */
 if (typecode == OCI_TYPECODE_OBJECT)
 dump_object(envhp, errhp, svchp, element_type, element,
 null_element);
 else /* else, display the scaler type attribute */
 display_attr_val(envhp, errhp, namep, typecode, element);
 }
 break;

 case OCI_TYPECODE_TABLE: /* nested table */
 (void) printf
 ("\n---> Dump the table from the top to the bottom.\n");
 /* go to the first element and print out the index */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp1, (ub4)
 OCI_DTYPE_PARAM,
 (dvoid*) &parmp2, (ub4 *) 0,
 (ub4) OCI_ATTR_COLLECTION_ELEMENT,
 (OCIError *) errhp));
 checkerr(errhp, OCIAttrGet((dvoid*) parmp2,
 (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &elem_ref, (ub4 *) 0,
D-126 Oracle Call Interface Programmer’s Guide

Example 7, REF Pinning and Navigation
 (ub4) OCI_ATTR_REF_TDO,
 (OCIError *) errhp));
 checkerr(errhp, OCITypeByRef(envhp, errhp, elem_ref,
 OCI_DURATION_SESSION,
 OCI_TYPEGET_HEADER, &element_type));
 attr_value = *(dvoid **)attr_value;
 /* move to the first element in the nested table */
 checkerr(errhp, OCITableFirst(envhp, errhp, (CONST OCITable*)
 attr_value, &index));
 (void) printf
 (" The index of the first element is : %d.\n", index);
 /* print out the element */
 checkerr(errhp, OCICollGetElem(envhp, errhp,
 (CONST OCIColl *) attr_value, index,
 &exist, (dvoid **) &element,
 (dvoid **) &null_element));
 /* if it is named type, recursively call the same function */
 checkerr(errhp, OCIAttrGet((dvoid*) parmp2,
 (ub4) OCI_DTYPE_PARAM,
 (dvoid*) &typecode, (ub4 *) 0,
 (ub4) OCI_ATTR_TYPECODE,
 (OCIError *) errhp));
 if (typecode == OCI_TYPECODE_OBJECT)
 dump_object(envhp, errhp, svchp, element_type,
 (dvoid *)element, (dvoid *)null_element);
 else
 display_attr_val(envhp, errhp, namep, typecode, element);

 for(;!OCITableNext(envhp, errhp, index, (CONST OCITable *)
 attr_value,
 &index, &exist) && exist;)
 {
 checkerr(errhp, OCICollGetElem(envhp, errhp, (CONST OCIColl *)
 attr_value, index,
 &exist, (dvoid **) &element,
 (dvoid **) &null_element));
 if (typecode == OCI_TYPECODE_OBJECT)
 dump_object(envhp, errhp, svchp, element_type,
 (dvoid *)element, (dvoid *)null_element);
 else
 display_attr_val(envhp, errhp, namep, typecode, element);
 }
 break;
 default:
 break;
 Code Examples D-127

Example 7, REF Pinning and Navigation
 }
 checkerr(errhp, OCIHandleFree((dvoid *) dschp1, (ub4)
 OCI_HTYPE_DESCRIBE));
 break;
 default: /* scaler type, display the attribute value */
 if (attr_null_status == OCI_IND_NOTNULL)
 {
 display_attr_val(envhp, errhp, namep, typecode, attr_value);
 }
 else
 printf("attr %s is null\n", namep);
 break;
 }
 }

 checkerr(errhp, OCIHandleFree((dvoid *) dschp, (ub4) OCI_HTYPE_DESCRIBE));
 printf("finishing displaying instance of type '%s'\n", typenamep);
}

/**
* Setup the schema and insert the data *
***/
void setup(envhp, svchp, stmthp, errhp)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
OCIError *errhp;
{
 /* create the schema and populate the data */
 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) create_type_address,
 (ub4) strlen((const char *) create_type_address),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *)
 NULL, (OCISnapshot *) NULL, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) create_type_addr_tab,
 (ub4) strlen((const char *) create_type_addr_tab),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *)
 NULL, (OCISnapshot *) NULL, (ub4) OCI_DEFAULT));
D-128 Oracle Call Interface Programmer’s Guide

Example 7, REF Pinning and Navigation
 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) create_type_person,
 (ub4) strlen((const char *) create_type_person),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *)
 NULL, (OCISnapshot *) NULL, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) create_type_customer,
 (ub4) strlen((const char *) create_type_customer),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *)
 NULL, (OCISnapshot *) NULL, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) create_table_person,
 (ub4) strlen((const char *) create_table_person),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *)
 NULL, (OCISnapshot *) NULL, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *)
 create_table_customer,
 (ub4) strlen((const char *) create_table_customer),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *)
 NULL, (OCISnapshot *) NULL, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) insert_customer,
 (ub4) strlen((const char *) insert_customer),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *)
 NULL, (OCISnapshot *) NULL, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) insert_person,
 (ub4) strlen((const char *) insert_person),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));
 Code Examples D-129

Example 7, REF Pinning and Navigation
 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *)
 NULL, (OCISnapshot *) NULL, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) insert_address1,
 (ub4) strlen((const char *) insert_address1),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *)
 NULL, (OCISnapshot *) NULL, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) insert_address2,
 (ub4) strlen((const char *) insert_address2),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *)
 NULL, (OCISnapshot *) NULL, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) update_customer,
 (ub4) strlen((const char *) update_customer),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1, (ub4) 0,
 (OCISnapshot *)
 NULL, (OCISnapshot *) NULL, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCITransCommit(svchp, errhp, (ub4) 0));
}

/
***/
void select_pin_display(envhp, svchp, stmthp, errhp)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
OCIError *errhp;
{
 sword status = OCI_SUCCESS;
 OCIDefine *defnp;
 OCIRef *custref = (OCIRef *) 0, *per_type_ref = (OCIRef *) 0;
 OCIRef *cust_type_ref = (OCIRef *) 0;
D-130 Oracle Call Interface Programmer’s Guide

Example 7, REF Pinning and Navigation
 ub4 custsize;
 customer *cust = (customer *) 0, *custnew = (customer *) 0;
 null_customer *null_cust = (null_customer *) 0,
 *null_custnew = (null_customer *) 0;
 person *per = (person *) 0;
 null_person *null_per = (null_person *) 0;
 null_address *nt_null = (null_address *) 0;
 OCIType *pertdo = (OCIType *) 0, *custtdo = (OCIType *) 0;
 address *addr = (address *) 0;
 sb4 index;
 boolean exist;
 dvoid *tabobj = (dvoid *) 0;

 (void) printf("\n===\n");

 /* allocate ref */
 if ((status = OCIObjectNew(envhp, errhp, svchp, OCI_TYPECODE_REF,
 (OCIType *)0,
 (dvoid *)0, OCI_DURATION_DEFAULT, TRUE,
 (dvoid **) &per_type_ref))
 != OCI_SUCCESS)
 (void) printf("BUG -- OCIObjectNew, expect OCI_SUCCESS.\n");

 /* allocate ref */
 if ((status = OCIObjectNew(envhp, errhp, svchp, OCI_TYPECODE_REF,
 (OCIType *)0,
 (dvoid *)0, OCI_DURATION_DEFAULT, TRUE,
 (dvoid **) &cust_type_ref))
 != OCI_SUCCESS)
 (void) printf("BUG -- OCIObjectNew, expect OCI_SUCCESS.\n");

 /* define the application request */
 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) selref,
 (ub4) strlen((const char *) selref),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIHandleAlloc((dvoid *) stmthp, (dvoid **) &defnp,
 (ub4) OCI_HTYPE_DEFINE,
 0, (dvoid **) 0));

 checkerr(errhp, OCIDefineByPos(stmthp, &defnp, errhp, (ub4) 1, (dvoid *) 0,
 (sb4) 0, SQLT_REF, (dvoid *) 0, (ub2 *)0,
 (ub2 *)0, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIDefineObject(defnp, errhp, (OCIType *) 0,
 Code Examples D-131

Example 7, REF Pinning and Navigation
 (dvoid **) &custref,
 &custsize, (dvoid **) 0, (ub4 *) 0));

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 0,
 (ub4) 0, (OCISnapshot *)
 NULL, (OCISnapshot *) NULL,
 (ub4) OCI_DEFAULT));

 while ((status = OCIStmtFetch(stmthp, errhp, (ub4) 1, (ub4) OCI_FETCH_NEXT,
 (ub4) OCI_DEFAULT)) == 0)
 {

 (void) printf("\n---\n");

 /* pin the ref and get the typed table to get to person */
 checkerr(errhp, OCIObjectPin(envhp, errhp, custref,
 (OCIComplexObject *)0,
 OCI_PIN_ANY, OCI_DURATION_SESSION,
 OCI_LOCK_NONE, (dvoid **) &cust));
 (void) printf("The customer account number is %s\n",
 OCIStringPtr(envhp, cust->account));
 if ((status = OCIObjectGetInd(envhp, errhp, (dvoid *) cust,
 (dvoid **) &null_cust)) != OCI_SUCCESS)
 {
 (void) printf("BUG -- ORIOGNS, expect OCI_SUCCESS.\n");
 }
 else
 {
 (void) printf("null_cus = %d, null_account = %d, null_aperson = %d\n",
 null_cust->null_cus, null_cust->null_account,
 null_cust->null_aperson);
 }

 checkerr(errhp, OCIObjectPin(envhp, errhp, cust->aperson,
 (OCIComplexObject *)0,
 OCI_PIN_ANY, OCI_DURATION_SESSION,
 OCI_LOCK_NONE, (dvoid **) &per));

 if ((status = OCIObjectGetInd(envhp, errhp, (dvoid *) per,
 (dvoid **) &null_per)) != OCI_SUCCESS)
 {
 (void) printf("BUG -- ORIOGNS, expect OCI_SUCCESS.\n");
 }
 else
 {
D-132 Oracle Call Interface Programmer’s Guide

Example 7, REF Pinning and Navigation
 checkerr(errhp, OCIObjectGetTypeRef(envhp, errhp, (dvoid *)per,
 per_type_ref));
 checkerr(errhp, OCIObjectPin(envhp, errhp, per_type_ref,
 (OCIComplexObject *)0, OCI_PIN_ANY,
 OCI_DURATION_SESSION, OCI_LOCK_NONE,
 (dvoid **) &pertdo));
 dump_object(envhp, errhp, svchp, pertdo, (dvoid *) per,
 (dvoid *) null_per);
 }
 }

 if (status != OCI_NO_DATA)
 checkerr(errhp, status);

 (void) printf("\n\n");
}

/**
* Clean up the schema and the data *
***/
void cleanup(envhp, svchp, stmthp, errhp)
OCIEnv *envhp;
OCISvcCtx *svchp;
OCIStmt *stmthp;
OCIError *errhp;
{
 /* clean up the schema */
 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) "drop table
customer_tab",
 (ub4) strlen((const char *)"drop table customer_tab"
),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1,
 (ub4) 0, (OCISnapshot *)
 NULL, (OCISnapshot *) NULL, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) "drop table
 person_tab",
 (ub4) strlen((const char *)"drop table person_tab"),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1,
 (ub4) 0, (OCISnapshot *)
 Code Examples D-133

Example 7, REF Pinning and Navigation
 NULL, (OCISnapshot *) NULL, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) "drop type customer",
 (ub4) strlen((const char *)"drop table customer"),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1,
 (ub4) 0, (OCISnapshot *)
 NULL, (OCISnapshot *) NULL, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) "drop type person",
 (ub4) strlen((const char *)"drop table person"),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1,
 (ub4) 0, (OCISnapshot *)
 NULL, (OCISnapshot *) NULL, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) "drop type addr_tab",
 (ub4) strlen((const char *)"drop table addr_tab"),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1,
 (ub4) 0, (OCISnapshot *)
 NULL, (OCISnapshot *) NULL, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtPrepare(stmthp, errhp, (text *) "drop type address",
 (ub4) strlen((const char *) "drop type address"),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCIStmtExecute(svchp, stmthp, errhp, (ub4) 1,
 (ub4) 0, (OCISnapshot *)
 NULL, (OCISnapshot *) NULL, (ub4) OCI_DEFAULT));

 checkerr(errhp, OCITransCommit(svchp, errhp, (ub4) 0));
}

/**/
int main()
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
D-134 Oracle Call Interface Programmer’s Guide

Example 7, REF Pinning and Navigation
 OCISession *usrhp;
 OCIStmt *stmthp;
 dvoid *tmp;

 /* initialize the process */
 (void) OCIInitialize((ub4) OCI_THREADED | OCI_OBJECT,
 (dvoid *)0, (dvoid * (*)()) 0,
 (dvoid * (*)()) 0, (void (*)()) 0);

 /* initialize the environmental handle */
 (void) OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

 /* get the error handle */
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp,
 (ub4) OCI_HTYPE_ERROR,
 52, (dvoid **) &tmp);

 /* two server contexts */
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp,
 (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);
 /* attach the server */
 (void) OCIServerAttach(srvhp, errhp, (text *) "", (sb4) 0, (ub4)
 OCI_DEFAULT);

 /* get the service handle */
 (void) OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp,
 (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);

 /* set attribute server context in the service context */
 (void) OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX,
 (dvoid *) srvhp, (ub4) 0,
 (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

 /* get the user handle */
 (void) OCIHandleAlloc((dvoid *)envhp, (dvoid **)&usrhp,
 (ub4)OCI_HTYPE_SESSION, 0, (dvoid **)0);

 /* set the attribute user name */
 (void) OCIAttrSet((dvoid *) usrhp, (ub4)OCI_HTYPE_SESSION,
 (dvoid *)"scott", (ub4)strlen("scott"),
 (ub4)OCI_ATTR_USERNAME, errhp);

 /* set the attribute password */
 Code Examples D-135

Example 7, REF Pinning and Navigation
 (void) OCIAttrSet((dvoid *) usrhp, (ub4)OCI_HTYPE_SESSION,
 (dvoid *)"tiger", (ub4)strlen("tiger"),
 (ub4)OCI_ATTR_PASSWORD, errhp);

 /* authenticate */
 checkerr(errhp, OCISessionBegin (svchp, errhp, usrhp, OCI_CRED_RDBMS,
 OCI_DEFAULT));

 /* set the attribute user context of the service handle */
 (void) OCIAttrSet((dvoid *)svchp, (ub4)OCI_HTYPE_SVCCTX,
 (dvoid *)usrhp, (ub4)0,
 (ub4)OCI_ATTR_SESSION, errhp);

 /* get the statement handle */
 checkerr(errhp, OCIHandleAlloc((dvoid *) envhp, (dvoid **) &stmthp,
 (ub4) OCI_HTYPE_STMT, 50, (dvoid **) &tmp));

 (void) printf("\n***\n");
 (void) printf("--- Setup the schema and insert the data.\n");
 setup(envhp, svchp, stmthp, errhp);

 (void) printf("\n***\n");
 (void) printf("--- Select a REF, pin the REF, then display the object.\n");
 select_pin_display(envhp, svchp, stmthp, errhp);

 (void) printf("\n***\n");
 (void) printf("--- Clean up the schema and the data.\n");
 cleanup(envhp, svchp, stmthp, errhp);

 checkerr(errhp, OCISessionEnd (svchp, errhp, usrhp, OCI_DEFAULT));

 /* dettach */
 (void) OCIServerDetach(srvhp, errhp, (ub4) OCI_DEFAULT);
 checkerr(errhp, OCIHandleFree((dvoid *) stmthp, (ub4) OCI_HTYPE_STMT));
 checkerr(errhp, OCIHandleFree((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX));
 checkerr(errhp, OCIHandleFree((dvoid *) errhp, (ub4) OCI_HTYPE_ERROR));
 checkerr(errhp, OCIHandleFree((dvoid *) srvhp, (ub4) OCI_HTYPE_SERVER));

 return (0);
}

D-136 Oracle Call Interface Programmer’s Guide

 OCI Function Server Roun
E

OCI Function Server Roundtrips

This appendix provides information about server roundtrips incurred during
various OCI calls. This information can be useful to programmers when
determining the most efficient way to accomplish a particular task in an application.

The appendix contains the following sections:

■ Overview

■ LOB Function Roundtrips

■ Object and Cache Function Roundtrips

■ Describe Operation Roundtrips

■ Datatype Mapping and Manipulation Function Roundtrips

■ Other Local Functions
dtrips E-1

Overview
Overview
This appendix provides information about server roundtrips incurred during
various OCI calls. This information can be useful when determining the most
efficient way to accomplish a particular task in an application.

LOB Function Roundtrips
Table E–1 lists the server roundtrips incurred by the OCILob*() calls. Information
about the read and write calls is listed after the table.

Table E–1 Server Roundtrips for OCILob*() Calls

Function # of Server Roundtrips

OCILobAppend() 1

OCILobAssign() 0

OCILobCharSetForm() 0

OCILobCharSetId() 0

OCILobCopy() 1

OCILobDisableBuffering() 0

OCILobEnableBuffering() 0

OCILobErase() 1

OCILobFileClose() 1

OCILobFileCloseAll() 1

OCILobFileExists() 1

OCILobFileGetName() 0

OCILobFileIsOpen() 1

OCILobFileOpen() 1

OCILobFileSetName() 0

OCILobFlushBuffer() 1 per modified page in the buffer for this LOB

OCILobGetLength() 1

OCILobIsEqual() 0

OCILobLoadFromFile() 1

OCILobLocatorIsInit() 0

OCILobTrim() 1
E-2 Oracle Call Interface Programmer’s Guide

LOB Function Roundtrips
OCILobRead()
The number of roundtrips required depends on how the call is used:

■ In polling mode without callbacks, 1 roundtrip required per OCILobRead() call.

■ In polling mode with callbacks, 1 roundtrip is required, and then the callback
function is called until all data is read.

■ If data is read in one piece using the input buffer, 1 roundtrip is required.

OCILobWrite()
The number of roundtrips required depends on how the call is used:

■ In polling mode without callbacks, 1 roundtrip required per OCILobWrite() call.

■ In polling mode with callbacks, 1 roundtrip is required, and then the callback
function is called until all data is written.

■ If data is written in one piece using the input buffer, 1 roundtrip is required.
 OCI Function Server Roundtrips E-3

Object and Cache Function Roundtrips
Object and Cache Function Roundtrips
Table E–2 lists the number of server round trips required for the object and cache
functions. These values assume the cache is in a “warm” state, meaning that the
type descriptor objects required by the application have been loaded.

Table E–2 Server Roundtrips for Object and Cache Functions

Function # of Server Roundtrips

OCIObjectNew() 0

OCIObjectPin() 1; 0 if the desired object is already in cache

OCIObjectUnpin() 0

OCIObjectPinCountReset() 0

OCIObjectLock() 1

OCIObjectMarkUpdate() 0

OCIObjectUnmark() 0

OCIObjectUnmarkByRef() 0

OCIObjectFree() 0

OCIObjectMarkDelete() 0

OCIObjectMarkDeleteByRef() 0

OCIObjectFlush() 1

OCIObjectRefresh() 1

OCIObjectCopy() 0

OCIObjectGetTypeRef() 0

OCIObjectGetObjectRef() 0

OCIObjectGetInd() 0

OCIObjectExists() 0

OCIObjectIsLocked() 0

OCIObjectIsDirty() 0

OCIObjectPinTable() 1

OCIObjectArrayPin() 1

OCICacheFlush() 1

OCICacheRefresh() 1

OCICacheUnpin() 0

OCICacheFree() 0

OCICacheUnmark() 0
E-4 Oracle Call Interface Programmer’s Guide

Describe Operation Roundtrips
Describe Operation Roundtrips
The number of server round trips required by OCIDescribeAny(), OCIAttrGet(), and
OCIParamGet() are listed in Table E–3:

Table E–3 Server Roundtrips for Describe Operations

Function # of Server Roundtrips

OCIDescribeAny() 1 roundtrip to get the REF of the type descriptor object

OCIAttrGet() 2 roundtrips to describe a type if the type objects are not in
the object cache

1 roundtrip for each collection element, or each type
attribute, method, or method argument descriptor. 1 more
roundtrip if using OCI_ATTR_TYPE_NAME, or
OCI_ATTR_SCHEMA_NAME on the collection element,
type attribute, or method argument.

0 if all the type objects to be described are already in the
object cache following the first OCIAttrGet() call.

OCIParamGet() 0
 OCI Function Server Roundtrips E-5

Datatype Mapping and Manipulation Function Roundtrips
Datatype Mapping and Manipulation Function Roundtrips
The number of round trips for the datatype mapping and manipulation functions
are listed in Table E–4. The asterisks in the table indicate that all functions with a
particular prefix incur the same number of server roundtrips. For example,
OCINumberAdd(), OCINumberPower(), and OCINumberFromText() all incur zero
server roundtrips.

Table E–4 Server Roundtrips for Datatype Manipulation Functions

Function # of Server Roundtrips

OCINumber*() 0

OCIDate*() 0

OCIString*() 0

OCIRaw*() 0

OCIRef*() 0

OCIColl*() 0; 1 if the collection is not loaded in the cache

OCITable*() 0; 1 if the nested table is not loaded in the cache

OCIIter*() 0; 1 if the collection is not loaded in the cache
E-6 Oracle Call Interface Programmer’s Guide

Other Local Functions
Other Local Functions
The following functions are local and do not require a server roundtrip:

Table E–5 Locally Processed Functions

Local Function Name Notes

OCIAttrGet()

OCIAttrSet()

OCIBindByName()

OCIBindByPos()

OCIBindDynamic()

OCIBindObject()

OCIBindArrayOfStruct()

OCIDefineByPos()

OCIDefineDynamic()

OCIDefineArrayOfStruct()

OCIDefineObject()

OCIDescriptorAlloc()

OCIDescriptorFree()

OCIEnvInit()

OCIErrorGet()

OCIHandleAlloc()

OCIHandleFree()

OCILdaToSvcCtx()

OCISvcCtxToLda()

OCIStmtGetBindInfo()

OCIStmtPrepare()

OCIStmtGetBindInfo()

OCIStmtPrepare()

OCIStmtFetch() may be local if retrieving pre-fetched rows
 OCI Function Server Roundtrips E-7

Other Local Functions
E-8 Oracle Call Interface Programmer’s Guide

 Oracle8 OCI New Fea
F

Oracle8 OCI New Features

This chapter provides a detailed overview of the new features of the Oracle8 OCI.
This information supplements that which is contained in Chapter 1, “Introduction
and New Features”. This chapter includes the following sections:

■ Introduction

■ Oracle8 OCI Enhancements

■ Benefits of the OCI’s New Features
tures F-1

Introduction
Introduction
The Oracle Call Interface (OCI) is an application programming interface (API) that
allows an application developer to use a third-generation language’s native
procedures or function calls to access the Oracle database server and control all
phases of SQL statement execution. The OCI provides a library of standard
database access and retrieval functions in the form of a dynamic runtime library,
OCILIB, that can be linked in by the application. This eliminates the need to embed
SQL or PL/SQL within 3GL programs. The OCI supports the datatypes, calling
conventions, syntax and semantics of a number of third-generation languages
including C, C++, COBOL and FORTRAN. Oracle is also planning to provide
support for Java.

The Oracle Call Interface offers programmers the following key benefits:

■ It provides the greatest degree of control over program execution.

■ It allows them to use familiar 3GL programming techniques and application
development tools such as browsers and debuggers.

■ It supports dynamic SQL (method 4).

■ It is available on the broadest range of platforms of all the Oracle Program-
matic Interfaces.

Oracle8 OCI Enhancements
The Oracle8 OCI has many new features that can be broadly categorized in two
primary areas:

■ Encapsulated/Opaque Interfaces

■ Simplified user authentication and password management

■ Extensions to improve application performance and scalability

■ Consistent interface for transaction management

■ OCI extensions to support client-side access to Oracle8 objects

■ OCI support for Oracle Advanced Queueing

Encapsulated/Opaque Interfaces
All the data structures that are used by Oracle8 OCI are encapsulated in the form of
opaque interfaces that are called handles. A handle is an opaque pointer to a
storage area allocated by the OCILIB that stores context information, connection
F-2 Oracle Call Interface Programmer’s Guide

Oracle8 OCI Enhancements
information, error information, or bind information about a SQL or PL/SQL
statement. A client allocates a certain type of handle, populates one or more of
those handles through well-defined interfaces, and sends requests to the server
using those handles. In turn, applications can access the specific information
contained in the handle by using accessor functions. The Oracle8 OCI library
manages a hierarchy of handles. Encapsulating the OCI interfaces using these
handles has several benefits to the application developer including:

■ Reduction in the amount of server side state information that needs to be
retained thereby reducing server side memory usage.

■ Improved application developer productivity by eliminating the need for glo-
bal variables, making error reporting easier and providing consistency in the
way OCI variables are accessed and used.

■ Further, the encapsulation of OCI structures in the form of handles makes them
opaque to the application developer allowing changes to be made to the under-
lying structure without affecting applications.

Simplified User Authentication and Password Management
The Oracle8 OCI provides application developers simplified user authentication
and password management in two ways: (i) it provides the ability for a single OCI
application to authenticate and maintain multiple users, and (ii) Allows the
application to update a user’s password which is particularly helpful if an expired
password message is returned by an authentication attempt.

The Oracle8 OCI supports two types of login sessions:

■ It provides a simplified login function for sessions where a single user connects
to the database using a login name and password.

■ It supports a setup in which a single OCI application authenticates and main-
tains multiple sessions by separating the login session (the session created
when a user logs into an Oracle database) from the user sessions (all other ses-
sions created by a user). This is an important difference from Oracle 7.3, in
which sessions could be created implicitly by starting new transactions once
the user has logged in to the database, a process called session cloning. These
“user” sessions in Oracle 7.3 inherited the privileges and security context from
the login session. Oracle8 OCI requires a client to provide all the necessary
authentication information for each user session. This allows an OCI applica-
tion to support multiple users.
 Oracle8 OCI New Features F-3

Oracle8 OCI Enhancements
Extensions to Improve Application Performance and Scalability
The Oracle8 OCI has several enhancements to improve application performance
and scalability. Application performance has been improved by reducing the
number of client to server round trips required and scalability improvements have
been facilitated by reducing the amount of state information that needs to be
retained on the server side. Some of these features include:

■ Increased client-side processing, and reduced server-side requirements

■ Implicit prefetching of SELECT statement result sets to eliminate the describe
round trip

■ Elimination of open and close cursor round trips

■ Improved support for multi-threaded environments

Consistent Interface for Transaction Management
The Oracle8 OCI supports several improvements to provide a single unified
interface for transaction management in a variety of configurations. Some of the
major improvements are:

■ Consistent support for a variety of configurations including standard 2-tier cli-
ent-server configurations, server-to-server transaction coordination, and 3-tier
TP-monitor configurations

■ Consistent support for local and global transactions including support for the
XA interface’s TM_JOIN operation

■ Improved scalability by providing the ability to concentrate connections, pro-
cesses, and sessions across users on dblink connections and eliminating the
need for separate sessions to be created for each branch of a global transaction

■ Allowing clients to authenticate different users and allow transactions to be
started on their behalf

Oracle8 OCI Object Support
The Oracle8 OCI provides the most comprehensive application programming
interface for programmers seeking to use the Oracle8 server’s object capabilities.
These features can be divided into five major categories:

■ Client-side Object Cache

■ Runtime environment for objects

■ Associative and navigational interfaces to access and manipulate objects
F-4 Oracle Call Interface Programmer’s Guide

Oracle8 OCI Enhancements
■ Type management functions to access information about object types in an Ora-
cle database

■ Type mapping and manipulation functions for manipulating data attributes of
Oracle8 types

■ Object Type Translator utility, which maps internal Oracle8 schema information
to client-side language bind variables

Client-side Object Cache
The object cache is a client-side memory buffer that provides lookup and memory
management support for objects. It stores and tracks objects instances which have
been fetched by an OCI application from the server to the client side. The object
cache is created when the OCI environment is initialized. Multiple applications
running against the same server will each have their own object cache. The cache
tracks the objects which are currently in memory, maintains references to objects,
manages automatic object swapping and tracks the meta-attributes or type
information about objects. The cache provides the following OCI applications:

■ Improved application performance by reducing the number of client-to-server
round trips required to fetch and operate on objects

■ Enhanced scalability by supporting object swapping from the client-side cache

■ Improved concurrency by supporting object-level locking

Associative and Navigational Interfaces
Applications using the Oracle8 OCI can access objects in the Oracle8 server
through two types of interfaces - (i) Using SQL SELECT, INSERT, and UPDATE
statements and (ii) Using a C-style “pointer chasing” scheme to access objects in the
client-side cache by traversing the corresponding smart pointers or REFs

■ The Oracle8 OCI provides a set of functions with extensions to support object
manipulation using SQL SELECT, INSERT, and UPDATE statements.

■ To access Oracle8 objects these SQL statements use a consistent set of steps as if
they were accessing relational tables.

■ The Oracle8 OCI provides the following four sets of functions required to
access objects using SQL statements:

– Binding/defining object type instances and references as input/output vari-
ables of SQL statements

– Executing SQL statements that contain object type instances and references
 Oracle8 OCI New Features F-5

Oracle8 OCI Enhancements
– Fetching object type instances and references

– Describing a select-list item of an Oracle8 object type

■ The Oracle8 OCI also provides a set of functions using a C-style “pointer chas-
ing” scheme to access objects once they have been fetched into the client-side
cache by traversing the corresponding smart pointers or REFs. This “naviga-
tional interface” provides functions for:

– Instantiating a copy of a referenceable persistent object, that is, of a persis-
tent object with object ID in the client-side cache by “pinning” its smart
pointer or REF.

– Traversing a sequence of objects that are “connected” to each other by tra-
versing the REFs that point from one to the other.

– Dynamically getting and setting values of an object’s attributes.

Runtime Environment for Objects
The Oracle8 OCI provides a runtime environment for objects that offers a set of
functions for managing how Oracle8 objects are used on the client-side. These
functions provide the necessary functionality for:

■ Connecting to an Oracle8 server in order to access its object functionality
including initializing a session, logging on to a database server, and registering
a connection.

■ Setting up the client-side object cache and tuning its parameters.

■ Getting errors and warning messages.

■ Controlling transactions that access objects in the server.

■ Associatively accessing objects through SQL.

■ Describing a PL/SQL procedure or function whose parameters or result are of
Oracle type system types.

Type Management, Mapping and Manipulation Functions
The Oracle8 OCI provides two sets of functions to work with Oracle8 objects:

■ Type Mapping functions allow applications to map attributes of an Oracle8
schema which are represented in the server as internal Oracle8 datatypes such
as Oracle’s number, date and string types to their corresponding host language
types such as integer, months and days.
F-6 Oracle Call Interface Programmer’s Guide

Oracle8 OCI Enhancements
■ Type Manipulation functions allow host language applications to manipulate
individual attributes of an Oracle8 schema such as setting/getting their values
and flushing their values to the server.

Additionally, the OCIDescribeAny() function can provide information about objects
stored in the database.

Object Type Translator
The Object Type Translator (OTT) utility translates schema information about
Oracle8 object types into client-side language bindings. That is, the Oracle8 OTT
translates type information into declarations of host language variables (structures
and classes). The OTT takes an “intype” file which contains metadata information
about Oracle8 schema objects (an Oracle8 data dictionary) and generates an
“outtype” file and the necessary header/implementation files that must be
included in a C application that runs against the object schema. Both OCI
applications (and Pro*C precompiler) applications may include code generated by
the OTT. The OTT has many benefits including:

Improves application developer productivity: OTT eliminates the need for
application developers to write by hand the host language variables that
correspond to schema objects.

Maintains SQL as the data-definition language of choice: By providing the ability
to automatically map Oracle8 schema objects that are created using SQL to host
language variables automatically, OTT facilitates using SQL as the data-definition
language of choice. This in turn allows Oracle8 to support a consistent model of the
user’s data, enterprise-wide.

Facilitates schema evolution of object types: OTT provides the ability to regenerate
#include files when the schema is changed allowing Oracle8 applications to support
schema evolution.

OTT is typically invoked from the command line by specifying the intype file, the
outtype file and the specific database connection. With Oracle8, OTT can only
generate C structs which can either be used with OCI programs or with the Pro*C
precompiler programs.

OCI Support for Oracle Advanced Queueing
The OCI provides an interface to Oracle8’s Advanced Queueing feature. Oracle AQ
(Oracle Advanced Queueing) provides message queuing as an integrated part of
the Oracle server. Oracle AQ provides this functionality by integrating the queuing
system with the database, thereby creating a message-enabled database. By providing
 Oracle8 OCI New Features F-7

Benefits of the OCI’s New Features
an integrated solution Oracle AQ frees application developers to devote their
efforts to their specific business logic rather than having to construct a messaging
infrastructure.

For more information about the OCI advanced queueing features, refer to “OCI
and Advanced Queueing” on page 7-40.

Benefits of the OCI’s New Features
The enhancements to the new OCI provide several benefits:

■ Comprehensive support for Oracle8 objects

■ Improved application performance

■ Greater scalability; Enhanced application extensibility

■ Simplified migration of existing applications.

Each of these benefits is described below.

Comprehensive Support for Oracle8 Objects
As has been described above, the OCI provides the most comprehensive support
for Oracle8 objects of all the programmatic interfaces and provides the most highly
tunable interface to access, modify and manipulate Oracle8 object types on the
client side. Further, the many tools and features of the OCI significantly enhance
developer productivity when creating applications that use Oracle8 objects.

Improved Application Performance
The Oracle8 OCI facilitates improved application performance by reducing the
number of client-to-server round trips in three ways.

■ Since Oracle8 OCI does not fundamentally work around the concept of cursors,
no calls are required to open and close cursors.

■ The describe round trip is eliminated due to Oracle8 OCI’s ability to implicitly
prefetch SELECT statement result sets.

■ Oracle8 OCI also reduces the number of client-server round trips when work-
ing with Oracle8 objects - (i) The Oracle8 OCI’s use of a client-side cache allows
applications to update multiple objects from the client to/from the server in a
single round trip using a flush or refresh operation; (ii) Oracle8 OCI’s complex
object retrieval mechanism provides a transparent but configurable approach to
prefetching connected objects from the server in a single round trip.
F-8 Oracle Call Interface Programmer’s Guide

Benefits of the OCI’s New Features
Greater Scalability
Applications written to use Oracle8 OCI will have greater scalability due to the
Oracle8 OCI’s reduced use of server side memory, its ability to pool concurrent
transactions, and its improved support for multi-threaded environments.

■ Oracle8 OCI’s use of handles enables it to carry out more client-side processing
and as a result reduce significantly the amount of state information that needs
to be retained on the server. As a result, server side memory usage is signifi-
cantly reduced and applications, therefore, scale better.

■ The Oracle8 OCI allows multiple concurrent transactions to be a pooled on a
single connection to the server. This substantially reduces the number of con-
nections required between the client and the server. As a result, three tier archi-
tectures that use Oracle8 OCI scale well.

Simplified Migration of Existing Applications
The OCI has been significantly improved with many features, and applications
written to work with Oracle7 OCI have a very smooth migration path to Oracle8
OCI due to the interoperability of the Oracle7 OCI (version7 client) with Oracle8
(server) and Oracle8 OCI (version 8 client) with Oracle7 (server). Specifically:

■ Applications that use Oracle7 OCI work unchanged against the Oracle8 server
(all release 7.3 OCI function calls work against the Oracle8 server).

■ Applications that use Oracle8 OCI work against an Oracle7 server provided
they do not use any of the object capabilities of the OCI or the server.

■ Oracle7 OCI and Oracle8 OCI calls can be mixed in the same application and in
the same transaction provided they are not mixed within the statement.

As a result, customers migrating an existing Oracle7 OCI application have the
following three alternatives:

■ Retain Oracle7 OCI client: Customers can retain their Oracle7 OCI applica-
tions without making any modifications - they will continue to work against an
Oracle8 server.

■ Upgrade to Oracle8 OCI client but do not modify application: Customers who
choose to upgrade from a Oracle7 OCI client to Oracle8 OCI client need only
relink the new version of OCILIB and need NOT recompile their application.
Relinked Oracle7 OCI applications work unchanged against an Oracle8 server.

■ Upgrade to Oracle8 OCI client and modify application: To avail themselves of
the performance and scalability benefits provided by the new OCI, however,
 Oracle8 OCI New Features F-9

Benefits of the OCI’s New Features
customers will need to modify their existing applications to use the new OCI
calls, relink them with the new OCILIB and run them against an Oracle8 server.

Further, if application developers need to use any of the object capabilities of the
Oracle8 server, they will need to upgrade their client to use Oracle8 OCI.

Enhanced Application Extensibility
All the data structures that are used by Oracle8 OCI are encapsulated in the form of
opaque interfaces that are called handles. This encapsulation of the OCI’s interfaces
allows changes to be made to the underlying data structures without affecting
applications. For example, some of the services that are currently provided by the
database and externalized through the OCI’s APIs could in the future be provided
by an application server. By using the OCI’s opaque handles applications will not
need to change significantly if accessing these services from the application server -
this facilitates application extensibility.
F-10 Oracle Call Interface Programmer’s Guide

Index

A
aborting OCI calls, 2-31
ADO. See attribute descriptor object
advanced queueing

dequeue function, 13-8
description, 7-40
enqueue function, 13-11
examples, 13-12
OCI and, 7-40
OCI descriptors for, 7-40
OCI functions for, 7-40
OCI vs. PL/SQL, 7-41

allocation duration
example, 11-13
of objects, 11-13

application failover
callback example, 7-38
callback registration, 7-37
OCI callbacks, 7-36

applications
linking, 2-32

AQ. See advanced queueing.
arguments

attributes, 6-17
array binds, 10-3
array defines, 10-6
arrays

skip parameter for, 5-19
arrays of structures, 5-17

indicator variables, 5-20
OCI calls used, 5-20
skip parameters, 5-18

atomic nullness, 8-28

attribute descriptor object, 9-23
attributes

of handles, 2-11
of objects, 8-17
of parameter descriptors, 6-5
of parameters, 6-5

authentication
of user, 7-11

B
BFILE

datatype, 3-20
BFILE datatype, 3-20
bind handle

attributes, B-19
description, 2-10

bind operation, 4-5, 5-2, 10-2
associations made, 5-3
example, 5-6
LOBs, 5-10
named data types, 5-10, 10-2
named vs. positional, 5-4
OCI array interface, 5-4
OCI_DATA_AT_EXEC mode, 5-11
PL/SQL, 5-5
positional vs. named, 5-4
ref cursor variables, 5-12
REFs, 5-10, 10-3
static arrays, 5-10
steps used, 5-6

binding
arrays, 10-3
OCINumber, 10-8
 Index-1

PL/SQL placeholders, 2-32
summary, 5-12

BLOB
datatype, 3-21

BLOB datatype, 3-21
branches

detaching, 7-7
resuming, 7-7

buffering LOB operations, 7-28

C
C datatypes

manipulating with OCI, 9-5
cache functions

server roundtrips, E-4
callback registration

application failover, 7-37
callbacks

application failover, 7-36
for LOB operations, 7-31
for reading LOBs, 7-32
for writing LOBs, 7-34
from external procedures, 7-35
LOB streaming interface, 7-31
parameter modes, 13-52

canceling OCI calls, 2-31
CASE OTT parameter, 12-27
CHAR

external datatype, 3-16
character set form, 5-25
character set ID, 5-25
CHARZ

external datatype, 3-17
checkerr() function

code listing, 2-25
CLOB

datatype, 3-21
CLOB datatype, 3-21
CODE OTT parameter, 12-26
coherency

of object cache, 11-4
collections

attributes, 6-13
describing, 6-2

columns
attributes, 6-15

commit, 2-23
in object applications, 11-13
one-phase for global transactions, 7-8
two-pahse for global transactions, 7-8

complex object retrieval, 8-21
implementing, 8-23
navigational prefetching, 8-25

complex object retrieval (COR) descriptor, 2-15
attributes, B-27

complex object retrieval (COR) handle, 2-10
attributes, B-26

CONFIG OTT parameter, 12-27
configuration files

and the OTT, 12-5
consistency

of object cache, 11-4
copying objects, 8-31
COR, see complex object retrieval
creating objects, 8-31

D
data definition language

SQL statements, 1-4
data manipulation language

SQL statements, 1-5
data structures

new for 8.0, 2-5
database connection

for object applications, 8-10
datatype

conversions, 3-22
external, 3-4, 3-7
internal, 3-4, 3-5
Oracle, 3-2

datatype code
internal, 3-5

datatype mapping
Oracle methodology, 9-5

datatype mapping and manipulation functions
server roundtrips, E-6

datatype mappings, 12-9
datatypes
Index-2

BFILE, 3-20
BLOB, 3-21
CLOB, 3-21
FILE, 3-20
for piecewise operations, 7-17
manipulating with OCI, 9-5
mapping from Oracle to C, 9-3
NCLOB, 3-21

DATE
external datatype, 3-14

DDL. See data definition language
default file name extensions, 12-35
default name mapping, 12-35
define

arrays, 10-6
define handle

attributes, B-22
description, 2-10

define operation, 4-11, 5-13, 10-4
example, 5-14
LOBs, 5-16
named data types, 5-16, 10-4
piecewise fetch, 5-17
PL/SQL output variables, 5-17
REFs, 5-16, 10-4
static arrays, 5-17
steps used, 5-14

defining
OCINumber, 10-8

deletes
positioned, 2-31

describe
object describe code example, D-55
of collections, 6-2
of packages, 6-2
of sequences, 6-2
of stored functions, 6-2
of stored procedures, 6-2
of synonyms, 6-2
of tables, 6-2
of types, 6-2
of views, 6-2

describe handle
attributes, B-24
description, 2-10

describe operation, 4-8
implicit, 4-9
server roundtrips, E-5

descriptor, 2-12
complex object retrieval, 2-15
parameter, 2-14
ROWID, 2-15
snapshot, 2-13

descriptor objects, 9-23
descriptors

allocating, 2-18
detaching branches, 7-7
DML. See data manipulation language
DML with RETURNING clause

See RETURNING clause
duration

of objects, 11-13
durations

example, 11-13

E
embedded objects

fetching, 8-15
embedded SQL, 1-7

mixing with OCI calls, 1-7
encapsulated interfaces, F-2
environment handle

attributes, B-3
description, 2-8

error codes
navigational functions, 14-5

error handle
description, 2-8

error handling
example, 2-25

errors
handling, 2-25
handling in object applications, 8-32

ERRTYPE OTT parameter, 12-27
executing SQL statements, 4-6
execution

against multiple servers, 4-5
modes, 4-7

execution snapshots, 4-7
 Index-3

extensions
default file name, 12-35

external datatype, 3-4
CHAR, 3-16
CHARZ, 3-17
DATE, 3-14
FLOAT, 3-11
INTEGER, 3-11
LOBs, 3-19
LONG, 3-13
LONG RAW, 3-15
LONG VARCHAR, 3-16
LONG VARRAW, 3-16
MLSLABEL, 3-18
named data types, 3-18
NUMBER, 3-10
RAW, 3-15
REF, 3-19
ROWID, 3-14
SQLT_BLOB, 3-19
SQLT_CLOB

external datatype
SQLT_NCLOB, 3-19

SQLT_NTY, 3-18
SQLT_REF, 3-19
STRING, 3-12
UNSIGNED, 3-16
VARCHAR, 3-13
VARCHAR2, 3-9
VARNUM, 3-13
VARRAW, 3-15

external datatypes, 3-7
conversions, 3-22

external procedure functions
return codes, 16-2
with_context type, 16-2

external procedures
OCI callbacks, 7-35

F
fetch

piecewise, 7-16, 7-20
fetch operation, 4-12

LOB data, 4-12

setting prefetch count, 4-12
FILE

associating with OS file, 7-27
datatype, 3-20
locator, 7-26

FLOAT
external datatype, 3-11

flushing, 11-10
object changes, 8-14

flushing objects, 11-10
freeing objects, 8-31, 11-8
functions

attributes, 6-7

G
global transactions, 7-4
GTRID. See transaction identifer

H
handle attributes, 2-11

reading, 2-11
setting, 2-11

handles, 2-6
advantages of, 2-8
allocating, 2-7, 2-18
bind handle, 2-10
C datatypes, 2-6
child freed when parent freed, 2-8
define handle, 2-10
describe handle, 2-10
environment handle, 2-8
error handle, 2-8
freeing, 2-7
hierarchy of, 2-7
server handle, 2-9
service context handle, 2-8
statement handle, 2-10
transaction handle, 2-9
types, 2-6
user session handle, 2-9

HFILE OTT parameter, 12-26
Index-4

I
indicator variable, 2-29

arrays of structures, 5-20
for named data types, 2-28
for REF, 2-28
named data type defines, 10-5
PL/SQL OUT binds, 10-5
REF defines, 10-5
with named data type bind, 10-3
with REF bind, 10-3

indicator variables
for named data types, 2-30
for REFs, 2-30

INITFILE OTT parameter, 12-26
INITFUNC OTT parameter, 12-26
initialization function

calling, 12-20
tasks of, 12-22

insert
piecewise, 7-16, 7-18

INTEGER
external datatype, 3-11

internal datatype, 3-4, 3-5
datatype codes, 3-5

internal datatypes
conversions, 3-22

intype file, 12-29
providing when running OTT, 12-8
structure of, 12-29

INTYPE OTT parameter, 12-25

K
keywords, C-2

L
linking, 2-32

issues, A-7
modes, A-7
support for single-task, A-9

lists
attributes, 6-19

LOB, 7-24
binding, 5-10

creating, 7-26
defining, 5-16
external data type, 3-19
fetching data, 4-12
locator, 2-13
modifying, 7-26
OCI functions, 7-28
OCI operations on, 7-24

LOB attributes
of transient objects, 7-27

LOB buffering, 7-28
code example, D-96

LOB functions
server roundtrips

LOB locator, 2-13, 7-24
attributes, B-25

LOB operations
buffering, 7-28
callbacks, 7-31
code example, D-76

locator, 2-12
for LOB datatype, 2-13, 7-24

locking, 11-12
locking objects, 11-12
LONG

external datatype, 3-13
LONG RAW

external datatype, 3-15
LONG VARCHAR

external datatype, 3-16
LONG VARRAW

external datatype, 3-16

M
marking objects, 11-9
MDO. See method descriptor object
meta-attributes

of objects, 8-17
of persistent objects, 8-17
of transient objects, 8-20

method descriptor object, 9-23
migration

7.x to 8.0, A-4
MLSLABEL
 Index-5

external datatype, 3-18
multiple servers

executing statement against, 4-5
multi-threaded development

basic concepts, 7-14

N
named data type

binding and defining, 10-6
indicator variable for, 2-28

named data types
binding, 5-10, 10-2
defining, 5-16, 10-4
definition, 3-18
external data types, 3-18
indicator variables, 2-30

namespaces
reserved, C-11

navigation, 11-16
navigational functions

error codes, 14-5
return values, 14-4
terminology, 14-4

NCHAR
issues, 5-25

NCLOB
datatype, 3-21

NCLOB datatype, 3-21
nested table

element ordering, 9-21
new features, F-2

benefits, F-8
enhancements, F-2
introduction, F-2

no-op
definition, 14-57

null indicator struct
generated by OTT, 8-9

null undicator struct, 8-28
nullness

atomic, 8-28
of objects, 8-28

NULLs
detecting, 2-30

inserting, 2-29
inserting into database, 2-28
inserting using indicator variables, 2-28

NUMBER
external datatype, 3-10

O
object

allocation duration, 11-13
array pin, 8-13
attributes

manipulating, 8-13
duration, 11-13
LOB attribute of, 7-27
memory layout of instance, 11-15
nullness, 8-28
pin count, 8-28
pin duration, 11-13
pinning, 8-12
secondary memory, 11-15
top-level memory, 11-15
unpinning, 8-28

object application
database connection, 8-10

object applications
commit, 11-13
rollback, 11-13

object cache, 11-2
coherency, 11-4
consistency, 11-4
initializing, 8-10
loading objects, 11-6
memory parameters, 11-5
operations on, 11-6
removing objects, 11-6
setting the size of, 11-5

object functions
See navigational functions.
server roundtrips, E-4

object identifier
for persistent objects, 8-5

object reference, 8-32
object reference. See REF
object retrieval
Index-6

code example, D-11
object runtime environment

initializing, 8-10
object type translator

sample output, 8-9
See OTT
use with OCI, 8-8

objects
accessing with OCI, 12-19
attributes, 8-17
client-side cache, 11-2
copying, 8-31
creating, 8-31
flushing, 11-10
flushing changes, 8-14
freeing, 8-31, 11-8
lifetime, 14-2
LOB attributes of transient objects, 7-27
locking, 11-12
manipulating with OCI, 12-19
marking, 8-14, 11-9
memory management, 11-2
meta-attributes, 8-17
navigation, 11-16

simple, 11-16
OCI object application structure, 8-4
persistent, 8-5, 8-6
pinning, 11-6
refreshing, 11-10
representing in C applications, 8-8
terminology, 14-2
transient, 8-5, 8-7
types, 8-5, 14-2
unmarking, 11-10
unpinning, 11-8
use with OCI, 8-3

obsolescent OCI functions OCI functions
obsolescent, A-2

obsolete OCI functions OCI functions
obsolete, A-4

OCI
object support, 1-8
overview, 1-2
parts of, 1-10
release 8.0 new features, 1-10

OCI application
compiling, 1-11
general structure, 2-3
initialization example, 2-19
linking, 1-11
steps, 2-16
structure, 2-3
structure using objects, 8-4
terminating, 2-24
with objects

initializing, 8-10
OCI applications

using the OTT with, 12-18
OCI environment

initializing for objects, 8-10
OCI functions

canceling calls, 2-31
return codes, 2-25, 2-27

OCI navigational functions, 11-18
flush functions, 11-19
mark functions, 11-19
meta-attribute accessor functions, 11-19
miscellaneous functions, 11-20
naming scheme, 11-18
pin/unpin/free functions, 11-18

OCI process
initializing, 2-17
initializing for objects, 8-10
modes, 2-17

OCI program. See OCI application
OCI relational functions

guide to reference entries, 13-7, 16-3
quick reference, 13-3

OCI Release 8
accessing and manipulating objects, 12-19

OCI_ATTR_ALLOC_DURATION
environment handle attribute, B-4

OCI_ATTR_CACHE
attribute, 6-15

OCI_ATTR_CACHE_MAX_SIZE
environment handle attribute, B-3

OCI_ATTR_CACHE_OPT_SIZE
environment handle attribute, B-3

OCI_ATTR_CHAR_COUNT
bind handle attribute, B-19
 Index-7

define handle attribute, B-22
use of, 5-26

OCI_ATTR_CHARSET_FORM
attribute, 6-11, 6-14, 6-16
bind handle attribute, B-20
define handle attribute, B-23

OCI_ATTR_CHARSET_ID
attribute, 6-11, 6-14, 6-16, 6-18
bind handle attribute, B-19
define handle attribute, B-22

OCI_ATTR_CLUSTERED
attribute, 6-7

OCI_ATTR_COLLECTION_ELEMENT
attribute, 6-10

OCI_ATTR_COLLECTION_TYPECODE
attribute, 6-9

OCI_ATTR_COMPLEXOBJECT_COLL_
OUTOFLINE

COR handle attribute, B-26
OCI_ATTR_COMPLEXOBJECT_LEVEL

COR handle attribute, B-26
OCI_ATTR_COMPLEXOBJECTCOMP_TYPE

COR descriptor attribute, B-27
OCI_ATTR_COMPLEXOBJECTCOMP_

TYPE_LEVEL
COR descriptor attribute, B-27

OCI_ATTR_DATA_SIZE
attribute, 6-10, 6-13, 6-15, 6-17

OCI_ATTR_DATA_TYPE
attribute, 6-10, 6-13, 6-15, 6-17

OCI_ATTR_DBA
attribute, 6-7

OCI_ATTR_ENCAPSULATION
attribute, 6-12

OCI_ATTR_ENV
server handle attribute, B-11
service context handle attribute, B-7

OCI_ATTR_EXTERNAL_NAME
server handle attribute, B-11

OCI_ATTR_FNCODE
bind handle attribute, B-19
define handle attribute, B-22
environment handle attribute, B-4
server handle attribute, B-11
statement handle attribute, B-15

OCI_ATTR_FOCBK
server handle attribute, B-12

OCI_ATTR_HAS_DEFAULT
attribute, 6-17

OCI_ATTR_HAS_FILE
attribute, 6-9

OCI_ATTR_HAS_LOB
attribute, 6-9

OCI_ATTR_HAS_NESTED_TABLE
attribute, 6-9

OCI_ATTR_HW_MARK
attribute, 6-15

OCI_ATTR_IN_V8_MODE
server handle attribute, B-12
service context handle attribute, B-9

OCI_ATTR_INCR
attribute, 6-15

OCI_ATTR_INDEX_ONLY
attribute, 6-7

OCI_ATTR_INTERNAL_NAME
server handle attribute, B-12

OCI_ATTR_IOMODE
attribute, 6-18

OCI_ATTR_IS_CONSTRUCTOR
attribute, 6-12

OCI_ATTR_IS_DESTRUCTOR
attribute, 6-12

OCI_ATTR_IS_INCOMPLETE_TYPE
attribute, 6-9

OCI_ATTR_IS_MAP
attribute, 6-12

OCI_ATTR_IS_NULL
attribute, 6-16, 6-18

OCI_ATTR_IS_OPERATOR
attribute, 6-12

OCI_ATTR_IS_ORDER
attribute, 6-12

OCI_ATTR_IS_PREDEFINED_TYPE
attribute, 6-9

OCI_ATTR_IS_RNDS
attribute, 6-12

OCI_ATTR_IS_RNPS
attribute, 6-12

OCI_ATTR_IS_SELFISH
attribute, 6-12
Index-8

OCI_ATTR_IS_SYSTEM_GENERATED_TYPE
attribute, 6-9

OCI_ATTR_IS_SYSTEM_TYPE
attribute, 6-9

OCI_ATTR_IS_TRANSIENT_TYPE
attribute, 6-9

OCI_ATTR_IS_WNDS
attribute, 6-12

OCI_ATTR_IS_WNPS
attribute, 6-12

OCI_ATTR_LEVEL
attribute, 6-17

OCI_ATTR_LINK
attribute, 6-14, 6-18

OCI_ATTR_LIST_ARGUMENTS
attribute, 6-7, 6-12

OCI_ATTR_LIST_COLUMNS
attribute, 6-7

OCI_ATTR_LIST_SUBPROGRAMS
attribute, 6-8

OCI_ATTR_LIST_TYPE
attribute, 6-19

OCI_ATTR_LIST_TYPE_ATTRS
attribute, 6-10

OCI_ATTR_LIST_TYPE_METHODS
attribute, 6-10

OCI_ATTR_LOBEMPTY
LOB locator attribute, B-25

OCI_ATTR_MAP_METHOD
attribute, 6-10

OCI_ATTR_MAX
attribute, 6-15

OCI_ATTR_MAXDATA_SIZE
bind handle attribute, B-20
use with binding, 5-26

OCI_ATTR_MIN
attribute, 6-15

OCI_ATTR_NAME
attribute, 6-8, 6-10, 6-12, 6-13, 6-14, 6-15, 6-17

OCI_ATTR_NUM_ATTRS
attribute, 6-6

OCI_ATTR_NUM_COLS
attribute, 6-7

OCI_ATTR_NUM_ELEMENTS
attribute, 6-13

OCI_ATTR_NUM_HANDLES
attribute, 6-19

OCI_ATTR_NUM_PARAMS
attribute, 6-6

OCI_ATTR_NUM_TYPE_ATTRS
attribute, 6-10

OCI_ATTR_NUM_TYPE_METHODS
attribute, 6-10

OCI_ATTR_OBJECT
environment handle attribute, B-3

OCI_ATTR_OBJID
attribute, 6-7, 6-14, 6-15

OCI_ATTR_ORDER
attribute, 6-15

OCI_ATTR_ORDER_METHOD
attribute, 6-10

OCI_ATTR_OVERLOAD
attribute, 6-8

OCI_ATTR_PARAM_COUNT
describe handle attribute, B-24
statement handle attribute, B-17

OCI_ATTR_PARTITIONED
attribute, 6-7

OCI_ATTR_PASSWORD
user session handle attribute, B-13

OCI_ATTR_PDFMT
bind handle attribute, B-21
define handle attribute, B-23

OCI_ATTR_PDSCL
bind handle attribute, B-20
define handle attribute, B-23

OCI_ATTR_PIN_DURATION
environment handle attribute, B-6

OCI_ATTR_PINOPTION
environment handle attribute, B-4

OCI_ATTR_POSITION
attribute, 6-17

OCI_ATTR_PRECISION
attribute, 6-11, 6-13, 6-16, 6-17

OCI_ATTR_PREFETCH_MEMORY
statement handle attribute, B-18

OCI_ATTR_PREFETCH_ROWS
statement handle attribute, B-18

OCI_ATTR_PTYPE
attribute, 6-6
 Index-9

OCI_ATTR_RADIX
attribute, 6-18

OCI_ATTR_REF_TDO
attribute, 6-9, 6-11, 6-14, 6-16, 6-18

OCI_ATTR_ROWID
statement handle attribute, B-17

OCI_ATTR_ROWS_RETURNED
bind handle attribute, B-21
use with callbacks, 5-25

OCI_ATTR_SCALE
attribute, 6-11, 6-13, 6-16, 6-17

OCI_ATTR_SCHEMA
attribute, 6-14

OCI_ATTR_SCHEMA_NAME
attribute, 6-11, 6-14, 6-16, 6-18

OCI_ATTR_SEQ
attributes, 6-15

OCI_ATTR_SERVER
service context handle attribute, B-7

OCI_ATTR_SESSION
service context handle attribute, B-9

OCI_ATTR_SQLCODE
service context handle attribute, B-7

OCI_ATTR_STMT_TYPE
statement handle attribute, B-16

OCI_ATTR_SUB_NAME
attribute, 6-18

OCI_ATTR_TABLESPACE
attribute, 6-7

OCI_ATTR_TIMESTAMP
attribute, 6-6

OCI_ATTR_TRANS
service context handle attribute, B-9

OCI_ATTR_TRANS_NAME
transaction handle attribute, B-14

OCI_ATTR_TYPE_NAME
attribute, 6-11, 6-14, 6-16, 6-18

OCI_ATTR_TYPECODE
attribute, 6-9, 6-10, 6-13, 6-17

OCI_ATTR_USRNAME
user session handle attribute, B-13

OCI_ATTR_VERSION
attribute, 6-9

OCI_ATTR_XID
transaction handle attribute, B-14

OCI_PTYPE_ARG
attributes, 6-17

OCI_PTYPE_COL
attributes, 6-15

OCI_PTYPE_COLL
attributes, 6-13

OCI_PTYPE_FUNC
attributes, 6-7

OCI_PTYPE_LIST
attributes, 6-19

OCI_PTYPE_PKG
attributes, 6-8

OCI_PTYPE_PROC
attributes, 6-7

OCI_PTYPE_SYN
attributes, 6-14

OCI_PTYPE_TABLE
attributes, 6-7

OCI_PTYPE_TYPE
attributes, 6-9

OCI_PTYPE_TYPE_ATTR
attributes, 6-10

OCI_PTYPE_TYPE_FUNC
attributes, 6-12

OCI_PTYPE_TYPE_PROC
attributes, 6-12

OCI_PTYPE_VIEW
attributes, 6-7

OCI_TYPECODE
values, 3-24, 3-25

OCI_TYPECODE values, 3-24
OCIAQDeq(), 13-8
OCIAQEnq(), 13-11
OCIArray, 9-17

binding and defining, 9-17, 10-6
OCIArray manipulation

code example, 9-19
OCIAttrGet(), 13-23

used for describing, 4-9
OCIAttrSet(), 13-25
OCIBindArrayOfStruct(), 13-28
OCIBindByName(), 13-30
OCIBindByPos(), 13-34
OCIBindDynamic(), 13-38
OCIBindObject(), 13-42
Index-10

OCICacheFlush(), 14-11
OCICacheFree(), 14-13
OCICacheRefresh(), 14-14
OCICacheUnmark(), 14-16
OCICacheUnpin(), 14-17
OCIColl, 9-17

binding and defining, 9-17
OCICollAppend(), 15-9
OCICollAssign(), 15-11
OCICollAssignElem(), 15-13
OCICollGetElem(), 15-15
OCICollMax(), 15-18
OCICollSize(), 15-19
OCICollTrim(), 15-21
OCIComplexObject

use of, 8-23
OCIComplexObjectComp

use of, 8-23
OCIDate, 9-7

binding and defining, 9-7, 10-6
OCIDate manipulation

code example, 9-9
OCIDateAddDays(), 15-22
OCIDateAddMonths(), 15-23
OCIDateAssign(), 15-24
OCIDateCheck(), 15-25
OCIDateCompare(), 15-27
OCIDateDaysBetween(), 15-28
OCIDateFromText(), 15-29
OCIDateGetDat(), 15-31
OCIDateGetTime(), 15-32
OCIDateLastDay(), 15-33
OCIDateNextDay(), 15-34
OCIDateSetDate(), 15-36
OCIDateSetTime(), 15-37
OCIDateSysDate(), 15-38
OCIDateToText(), 15-39
OCIDateZoneToZone(), 15-41
OCIDefineArrayOfStruct(), 13-46
OCIDefineByPos(), 13-48
OCIDefineDynamic(), 13-52
OCIDefineObject(), 13-55
OCIDescAlloc(), 13-60
OCIDescFree(), 13-62
OCIDescribeAny(), 13-57

usage examples, 6-20
using, 6-2

OCIDuration
use of, 11-7, 11-13

OCIEnvInit(), 13-63
OCIErrorGet(), 13-65
OCIExtProcAllocCallmemory(), 16-4
OCIExtProcGetEnv(), 16-8
OCIExtProcRaiseExcp(), 16-5
OCIExtProcRaiseExcpWithMsg(), 16-6
OCIHandleAlloc(), 13-68
OCIHandleFree(), 13-70
OCIInd

use of, 8-29
OCIInitialize(), 13-72
OCIIter, 9-17

binding and defining, 9-17
usage example, 9-19

OCIIterCreate(), 15-43
OCIIterDelete(), 15-45
OCIIterGetCurrent(), 15-46
OCIIterInit(), 15-47
OCIIterNext(), 15-48
OCIIterPrev(), 15-50
OCILdaToSvcCtx(), 13-75
OCILobAppend(), 13-76
OCILobAssign(), 13-78
OCILobCharSet(), 13-80, 13-81
OCILobCopy(), 13-82
OCILobDisableBuffering(), 13-84
OCILobEnableBuffering(), 13-85
OCILobErase(), 13-86
OCILobFileClose(), 13-88
OCILobFileCloseAll(), 13-89
OCILobFileExists(), 13-90
OCILobFileIsOpen(), 13-93
OCILobFileOpen(), 13-95
OCILobFlushBuffer(), 13-98
OCILobGetFile(), 13-91
OCILobGetLength(), 13-100
OCILobIsEqual(), 13-102
OCILobLoadFromFile(), 13-103
OCILobLocatorIsInit(), 13-105
OCILobRead(), 13-107
OCILobSetFile(), 13-96
 Index-11

OCILobTrim(), 13-111
OCILobWrite(), 13-112
OCILockOpt

possible values, 14-32
OCILogoff(), 13-116
OCILogon(), 13-117

using, 2-18
OCINumber, 9-10

bind example, 10-8
binding and defining, 9-10, 10-6
define example, 10-8

OCINumber manipulation
code example, 8-13, 9-13

OCINumberAbs(), 15-52
OCINumberAdd(), 15-53
OCINumberArcCos(), 15-54
OCINumberArcSin(), 15-55
OCINumberArcTan(), 15-56
OCINumberArcTan2(), 15-57
OCINumberAssign(), 15-58
OCINumberCeil(), 15-59
OCINumberCompare(), 15-60
OCINumberCos(), 15-61
OCINumberDiv(), 15-62
OCINumberExp(), 15-63
OCINumberFloor(), 15-64
OCINumberFromInt(), 15-65
OCINumberFromReal(), 15-67
OCINumberFromText(), 15-68
OCINumberHypCos(), 15-70
OCINumberHypSin(), 15-71
OCINumberHypTan(), 15-72
OCINumberIntPower(), 15-73
OCINumberIsZero(), 15-74
OCINumberLn(), 15-75
OCINumberLog(), 15-76
OCINumberMod(), 15-77
OCINumberMul(), 15-78
OCINumberNeg(), 15-79
OCINumberPower(), 15-80
OCINumberRound(), 15-81
OCINumberSetZero(), 15-82
OCINumberSign(), 15-83
OCINumberSin(), 15-84
OCINumberSqrt(), 15-85

OCINumberSub(), 15-86
OCINumberTan(), 15-87
OCINumberToInt(), 15-88
OCINumberToReal(), 15-90
OCINumberToText(), 15-91
OCINumberTrunc(), 15-93
OCIObjectArrayPin(), 14-18
OCIObjectCopy(), 14-20
OCIObjectExists(), 14-22
OCIObjectFlush(), 14-23
OCIObjectFree(), 14-24
OCIObjectGetAttr(), 14-26
OCIObjectGetInd(), 14-28
OCIObjectGetObjectRef(), 14-29
OCIObjectGetTypeRef(), 14-34
OCIObjectIsDirty(), 14-35
OCIObjectIsLocked(), 14-36
OCIObjectLifetime

possible values, 14-31
OCIObjectLock(), 14-37
OCIObjectMarkDelete(), 14-38
OCIObjectMarkDeleteByRef(), 14-40
OCIObjectMarkStatus

possible values, 14-32
OCIObjectMarkUpdate(), 14-41
OCIObjectNew(), 14-43
OCIObjectPin(), 14-46
OCIObjectPinCountReset(), 14-49
OCIObjectPinTable(), 14-51
OCIObjectRefresh(), 14-53
OCIObjectSetAttr(), 14-55
OCIObjectUnmark(), 14-57
OCIObjectUnmarkByRef(), 14-58
OCIObjectUnpin(), 14-59
OCIParamGet(), 13-119

used for describing, 4-9
OCIParamSet(), 13-121
OCIPasswordChange(), 13-123
OCIPinOpt

use of, 11-7
OCIRaw, 9-16

binding and defining, 9-16, 10-6
OCIRaw manipulation

code example, 9-17
OCIRawAllocSize(), 15-94
Index-12

OCIRawAssignBytes(), 15-95
OCIRawAssignRaw(), 15-96
OCIRawPtr(), 15-97
OCIRawResize(), 15-98
OCIRawSize(), 15-99
OCIRef, 9-22

binding and defining, 9-22
usage example, 9-22

OCIRefAssign(), 15-100
OCIRefClear(), 15-101
OCIRefFromHex(), 15-102
OCIRefHexSize(), 15-104
OCIRefIsEqual(), 15-105
OCIRefIsNull(), 15-106
OCIRefToHex(), 15-107
OCISBreak()

use of, 2-31
OCIServerAttach(), 13-125
OCIServerDetach(), 13-127
OCIServerVersion(), 13-128
OCISessionBegin(), 13-129
OCISessionEnd(), 13-132
OCIStmtExecute(), 13-134

prefetch during, 4-6
use of iters parameter, 4-6

OCIStmtFetch(), 13-137
OCIStmtGetBind(), 13-139
OCIStmtGetPieceInfo(), 13-141
OCIStmtPrepare(), 13-143

preparing SQL statements, 4-4
OCIStmtSetPieceInfo(), 13-145
OCIString, 9-15

binding and defining, 9-15, 10-6
OCIString manipulation

code example, 9-15
OCIStringAllocSize(), 15-109
OCIStringAssign(), 15-110
OCIStringAssignText(), 15-111
OCIStringPtr(), 15-112
OCIStringResize(), 15-113
OCIStringSize(), 15-114
OCISvcCtxBreak(), 13-45
OCISvcCtxToLda(), 13-147
OCITable, 9-17

binding and defining, 9-17, 10-6

OCITableDelete(), 15-115
OCITableExists(), 15-116
OCITableFirst(), 15-117
OCITableLast(), 15-118
OCITableNext(), 15-119
OCITablePrev(), 15-121
OCITableSize(), 15-123
OCITransCommit(), 13-149
OCITransDetach(), 13-152
OCITransForget(), 13-154
OCITransPrepare(), 13-155
OCITransRollback(), 13-156
OCITransStart(), 13-157
OCIType

description
OCITypeArrayByName(), 14-61
OCITypeArrayByRef(), 14-64
OCITypeByName(), 14-66
OCITypeByRef(), 14-69
OCITypeElem

description
OCITypeMethod

description
OID. See object identifier
opaque interfaces, F-2
Oracle Call Interface. See OCI
Oracle datatypes, 3-2

mapping to C, 9-3
Oracle Security Services, 7-43
Oracle8 datatypes

binding and defining, 10-6
oratypes.h

contents, 3-27
ORE. See object runtime environment
OTT

command line, 12-6
command line syntax, 12-23
creating types in the database, 12-4
datatype mappings, 12-9
invoking, 12-5
outtype file, 12-16
overview, 12-2
parameters, 12-24
providing an intype file, 12-8
reference, 12-22
 Index-13

restrictions, 12-37
using, 12-1

OTT parameters
CASE, 12-27
CODE, 12-26
CONFIG, 12-27
ERRTYPE, 12-27
HFILE, 12-26
INITFILE, 12-26
INITFUNC, 12-26
INTYPE, 12-25
OUTTYPE, 12-25
SCHEMA_NAMES, 12-28
USERID, 12-24
where they appear, 12-28

OTT. See object type translator
outtype file, 12-29

when running OTT, 12-16
OUTTYPE OTT parameter, 12-25

P
packages

attributes, 6-8
describing, 6-2

parameter descriptor, 2-14
attributes, B-24

parameter descriptor object
parameter descriptors

attributes, 6-5
parameters

attributes, 6-5
modes, 13-7, 16-3
passing strings, 2-28
string length, 13-6

password management, 7-11, 7-12
PDO. See parameter descriptor object
persistent objects, 8-6

meta-attributes, 8-17
piecewise fetch, 7-20
piecewise operations, 7-18

fetch, 7-16, 7-21
in PL/SQL, 7-20
insert, 7-16
update, 7-16

valid datatypes, 7-17
pin count, 8-28
pin duration

example, 11-13
of objects, 11-13

pinning, 11-6
pinning objects, 11-6
PL/SQL, 1-6

binding and defining nested tables, 5-27
binding and defining ref cursors, 5-27
binding placeholders, 2-32
defining output variables, 5-17
piecewise operations, 7-20
uses in OCI applications, 2-32
using in OCI applications, 2-32
using in OCI programs, 5-7

positioned deletes, 2-31
positioned updates, 2-31
preface

Send Us Your Comments, xxvii
prefetching

during OCIStmtExecute(), 4-6
setting prefetch memory size, 4-12
setting row count, 4-12

procedures
attributes, 6-7

Q
query

explicit describe, 4-10
query. See SQL query
Quick reference to OCI relational functions, 13-3

R
RAW

external datatype, 3-15
REF

binding, 5-10, 10-3
defining, 5-16, 10-4
external data types, 3-19
indicator variable for, 2-28
retrieving from server, 8-11

ref cursor variables
Index-14

binding, 5-12
ref cursors

binding and defining, 5-27
reference. See REF
refreshing, 11-10
refreshing objects, 11-10
REFs

indicator variables for, 2-30
relational functions

server roundtrips, E-7
release 8.0 enhancements, F-2
reserved namespaces, C-11
reserved words, C-2
resuming branches, 7-7
return values

navigational functions, 14-4
RETURNING clause

binding with, 5-22
code example, D-25
error handling, 5-23
using with OCI
with REFs, 5-23

rollback, 2-23
in object applications, 11-13

roundtrips
See server roundtrips

ROWID
external data type, 3-14
used for positioned updates and deletes, 2-31

ROWID descriptor, 2-15

S
sb1

definition, 3-27
sb2

definition, 3-27
sb4

definition, 3-27
SCHEMA_NAMES OTT parameter, 12-28

usage, 12-33
secondary memory

of object, 11-15
security handle, 2-10
select-list

describing, 4-8
Send Us Your Comments

boilerplate, xxvii
sequences

attributes, 6-15
describing, 6-2

server handle
attributes, B-11
description, 2-9
setting in service context, 2-9

server roundtrips
cache functions, E-4
datatype mapping and manipulation

functions, E-6
describe operation, E-5
LOB functions
object functions, E-4
relational functions, E-7

service context handle
attributes, B-7
description, 2-8
elements of, 2-8

single-task linking
support, A-9

skip parameter
for standard arrays, 5-19

skip parameters
for arrays of structures, 5-18

snapshot descriptor, 2-13
snapshots

executing against, 4-7
SQL processing

code example, D-2
SQL query

binding placeholders. See bind operation
defining output variables, 4-11, 5-13, 10-4
defining output variables. See define operation
fetching results, 4-12
statement type, 1-5

SQL statements, 1-4
binding placeholders in, 4-5, 5-2, 10-2
determining type prepared, 4-4
executing, 4-6
preparing for execution, 4-4
processing, 4-2
 Index-15

types
control statements, 1-5
data definition language, 1-4
data manipulation language, 1-5
embedded SQL, 1-7
PL/SQL, 1-6
queries, 1-5

SQLT typecodes, 3-25
SQLT_NTY

bind example, 10-13
define example, 10-14
description, 3-18

SQLT_REF
definition, 3-19
description, 3-19

statement handle
attributes, B-15
description, 2-10

static arrays
binding, 5-10
defining, 5-17

stored functions
describing, 6-2

stored procedures
describing, 6-2

STRING
external datatype, 3-12

strings
passing as parameters, 2-28

structures
arrays of, 5-17

sword
definition, 3-27

synonyms
attributes, 6-14
describing, 6-2

T
tables

attributes, 6-7
describing, 6-2

TDO
definition, 10-2
description, 9-23

obtaining, 9-23
type descriptor object. See TDO.

TDO. See type descriptor object
terminology

navigational functions, 14-4
used in this manual, 1-8

thread safety, 7-13
advantages of, 7-13
and three-tier architectures, 7-13
basic concepts, 7-14
implementing with OCI, 7-14
mixing 7.x and 8.0 calls, 7-15
required OCI calls, 7-14

three-tier architectures
and thread safety, 7-13

top-level memory
of object, 11-15

transaction handle
attributes, B-14
description, 2-9

transaction identifier, 7-5
transactional complexity

levels in OCI, 7-3
transactions

committing, 2-23
global, 7-4

branch states, 7-7
branches, 7-5
one-phase commit, 7-8
transaction identifier, 7-5
two-phase commit, 7-8

global examples, 7-9
initialization parameters, 7-10
local, 7-4
OCI functions for

transactions, 7-3
read-only, 7-4
rolling back, 2-23
serializable, 7-4

transient objects, 8-7
LOB attributes, 7-27
meta-attributes, 8-20

type attributes
attributes, 6-10

type descriptor object, 9-23
Index-16

type functions
attributes, 6-12

type procedures
attributes, 6-12

type reference, 8-32
typecodes, 3-24
types

attributes, 6-9
describing, 6-2

U
ub1

definition, 3-27
ub2

definition, 3-27
ub4

definition, 3-27
unmarking, 11-10
unmarking objects, 11-10
unpinning, 8-28, 11-8
unpinning objects, 11-8
UNSIGNED

external datatype, 3-16
update

piecewise, 7-16, 7-18
updates

positioned, 2-31
upgrading

7.x to 8.0, A-4
7.x to 8.0 OCI, A-6

user authentication, 7-11
user memory

allocating, 2-15
user session handle

attributes, B-13
description, 2-9
setting in service context, 2-9

USERID OTT parameter, 12-24

V
values, 8-5

in object applications, 8-7
VARCHAR

external datatype, 3-13
VARCHAR2

external datatype, 3-9
VARNUM

external datatype, 3-13
VARRAW

external datatype, 3-15
views

attributes, 6-7
describing, 6-2

W
with_context

argument to external procedure functions, 16-2

X
XID. See transaction identifier
xtramem_sz parameter

using, 2-15
 Index-17

Index-18

	Up
	Contents
	Send Us Your Comments
	Preface
	1 Introduction and New Features
	The Oracle Call Interface
	SQL Statements
	Data Definition Language
	Control Statements
	Data Manipulation Language
	Queries
	PL/SQL
	Embedded SQL

	Special OCI/SQL Terms
	Object Support in the OCI
	Parts of the OCI
	Release 8.0 New Features
	Obsolescent and Obsolete OCI Calls
	Compiling and Linking

	2 OCI Programming Basics
	Overview
	OCI Program Structure
	OCI Data Structures
	Handles
	Allocating and Freeing Handles
	Environment Handle
	Error Handle
	Service Context and Associated Handles
	Statement Handle, Bind Handle, and Define Handle
	Describe Handle
	Complex Object Retrieval Handle
	Security Handle
	Handle Attributes
	User Memory Allocation

	Descriptors and Locators
	Snapshot Descriptor
	LOB/FILE Datatype Locator
	Parameter Descriptor
	ROWID Descriptor
	Complex Object Descriptor
	Advanced Queueing Descriptors
	User Memory Allocation

	OCI Programming Steps
	Initialization, Connection, and Session Creation
	Initialize an OCI Process
	Allocate Handles and Descriptors
	Application Initialization, Connection, and Sessio...

	Understanding Multiple Connections and Handles
	A Connection Example

	Processing SQL Statements
	Commit or Rollback
	Terminating the Application
	Error Handling
	Functions Returning Other Values

	Additional Coding Guidelines
	Parameter Types
	Nulls
	Indicator Variables
	Canceling Calls
	Positioned Updates and Deletes
	Application Linking

	Using PL/SQL in an OCI Program

	3 Datatypes
	Oracle Datatypes
	Internal Datatype Codes
	External Datatype Codes

	Internal Datatypes
	LONG, RAW, LONG RAW, VARCHAR2
	Character Strings and Byte Arrays

	External Datatypes
	VARCHAR2
	NUMBER
	INTEGER
	FLOAT
	STRING
	VARNUM
	LONG
	VARCHAR
	ROWID
	DATE
	RAW
	VARRAW
	LONG RAW
	UNSIGNED
	LONG VARCHAR
	LONG VARRAW
	CHAR
	CHARZ
	MLSLABEL

	New OCI 8.0 External Datatypes
	NAMED DATA TYPE
	REF
	LOB
	New C Datatype Mappings

	Data Conversions
	Typecodes
	Relationship Between SQLT and OCI_TYPECODE Values

	Definitions in oratypes.h

	4 SQL Statement Processing
	Overview
	Processing SQL Statements
	Preparing Statements
	Using Prepared Statements on Multiple Servers

	Binding
	Executing Statements
	Execution Snapshots
	Execution Modes

	Describing Select-List Items
	Implicit Describe
	Explicit Describe of Queries

	Defining
	Fetching Results
	Fetching LOB Data
	Setting Prefetch Count

	5 Binding and Defining
	Binding
	Named Binds and Positional Binds
	OCI Array Interface
	Binding Placeholders in PL/SQL
	Steps Used in Binding
	PL/SQL Example
	Advanced Binds

	Advanced Bind Operations
	Static Array Binds
	Named Data Type Binds
	Binding REFs
	Binding LOBs
	Binding in OCI_DATA_AT_EXEC Mode
	Binding Ref Cursor Variables
	Summary of Bind Information

	Defining
	Steps Used in Defining
	Advanced Defines

	Advanced Define Operations
	Defining Named Data Type Output Variables
	Defining REF Output Variables
	Defining LOB Output Variables
	Defining PL/SQL Output Variables
	Defining For a Piecewise Fetch
	Defining Arrays of Structures

	Arrays of Structures
	Skip Parameters
	OCI Calls Used with Arrays of Structures
	Arrays of Structures and Indicator Variables

	DML with RETURNING Clause
	Using DML with RETURNING Clause
	Binding RETURNING...INTO variables
	Error Handling
	DML with RETURNING REF...INTO clause
	Additional Notes About Callbacks

	NCHAR and Character Conversion Issues
	NCHAR Issues
	OCI_ATTR_MAXDATA_SIZE Attribute
	Character Count Attribute

	PL/SQL REF CURSORs and Nested Tables

	6 Describing Schema Metadata
	Overview
	Using OCIDescribeAny()
	Restrictions
	Note on Datatype Codes
	Note on Describing Types
	Note on OCI_ATTR_LIST_ARGUMENTS
	Parameter Attributes
	Table/View Attributes
	Procedure/Function Attributes
	Package Attributes
	Type Attributes
	Type Attribute Attributes
	Type Method Attributes
	Collection Attributes
	Synonym Attributes
	Sequence Attributes
	Column Attributes
	Argument/Result Attributes
	List Attributes

	Examples
	Retrieving column data types for a table
	Describing the stored procedure
	Retrieving attributes of an object type
	Retrieving the collection element’s data type of a...

	7 OCI Programming Advanced Topics
	Overview
	Transactions
	Levels of Transactional Complexity
	Transaction Examples
	Related Initialization Parameters

	User Authentication and Password Management
	Authentication
	Password Management

	Thread Safety
	Advantages of OCI Thread Safety
	Thread Safety and Three-Tier Architectures
	Basic Concepts of Multi-threaded Development
	Implementing Thread Safety with OCI 8.0

	Run Time Data Allocation and Piecewise Operations
	Providing INSERT or UPDATE Data at Run Time
	Piecewise Operations With PL/SQL
	Providing FETCH Information at Run Time
	Additional Information About Piecewise Operations ...

	LOB and FILE Operations
	LOBs and LOB Locators
	FILEs
	Creating and Modifying Internal LOBs
	Associating a FILE in a Table with an OS File
	Writing to a LOB Attribute of an Object
	Transient Objects with LOB Attributes
	LOB Buffering
	LOB/FILE Functions
	Server Roundtrips for LOB Functions
	LOB Read/Write Callbacks
	The Callback Interface for Streaming
	Reading LOBs using Callbacks
	Writing LOBs using Callbacks

	OCI Callbacks From External Procedures
	Application Failover Callbacks
	Failover Callback Overview
	Failover Callback Structure and Parameters
	Failover Callback Registration
	Failover Callback Example

	OCI and Advanced Queueing
	OCI Advanced Queueing Functions
	OCI Advanced Queueing Descriptors
	Advanced Queueing in OCI vs. PL/SQL

	Writing Oracle Security Services Applications

	8 OCI Object-Relational Programming
	Chapter Overview
	OCI Object Overview
	Working with Objects in the OCI
	Basic Object Program Structure
	Persistent Objects, Transient Objects, and Values

	Developing an OCI Object Application
	Representing Objects in C Applications
	Initializing Environment and Object Cache
	Making Database Connections
	Retrieving an Object Reference from the Server
	Pinning an Object
	Manipulating Object Attributes
	Marking Objects and Flushing Changes
	Fetching Embedded Objects
	Object Meta-Attributes
	Complex Object Retrieval
	COR Prefetching
	Pin Count and Unpinning
	Nullness
	Creating, Freeing, and Copying Objects
	Object Reference and Type Reference
	Error Handling in Object Applications

	9 Object-Relational Datatypes
	Overview
	Mapping Oracle8 Datatypes to C
	OCI Type Mapping Methodology

	Manipulating C Datatypes With OCI
	Precision of Oracle Number Operations

	Date (OCIDate)
	Date Conversion Functions
	Date Assignment and Retrieval Functions
	Date Arithmetic and Comparison Functions
	Date Information Accessor Functions
	Date Validity Checking Functions
	Date Example

	Number (OCINumber)
	Number Arithmetic Functions
	Number Conversion Functions
	Exponential and Logarithmic Functions
	Trigonometric Functions
	Number Assignment and Comparison Functions
	Number Example

	Fixed or Variable-Length String (OCIString)
	String Functions
	String Example

	Raw (OCIRaw)
	Raw Functions
	Raw Example

	Collections (OCITable, OCIArray, OCIColl, OCIIter)...
	Generic Collection Functions
	Collection Data Manipulation Functions
	Collection Scanning Functions
	Varray/Collection Iterator Example
	Nested Table Manipulation Functions

	REF (OCIRef)
	REF Manipulation Functions
	REF Example

	Object Type Information Storage and Access
	Descriptor Objects

	10 Binding and Defining in Object Applications
	Binding
	Named Data Type Binds
	Binding REFs
	Additional Information for Named Data Type and REF...

	Defining
	Defining Named Data Type Output Variables
	Defining REF Output Variables
	Additional Information for Named Data Type and REF...

	Binding And Defining Oracle8 C Datatypes
	Bind and Define Examples
	3 Salary Update Examples

	SQLT_NTY Bind/Define Example
	Bind Example
	Define Example

	11 Object Cache and Object Navigation
	Chapter Overview
	The Object Cache and Memory Management
	Cache Consistency and Coherency
	Object Cache Parameters
	Object Cache Operations
	Operations for Loading and Removing Object Copies
	Operations for Making Changes to Object Copies
	Operations for Synchronizing Object Copies with Se...
	Other Operations
	Commit and Rollback in Object Applications
	Object Duration
	Memory Layout of an Instance

	Object Navigation
	Simple Object Navigation

	OCI Navigational Functions
	Pin/Unpin/Free Functions
	Flush and Refresh Functions
	Mark and Unmark Functions
	Object Meta-Attribute Accessor Functions
	Other Functions

	12 Using the Object Type Translator
	OTT Overview
	Using the Object Type Translator
	Creating Types in the Database
	Invoking the OTT

	The OTT Command Line
	OTT
	userid
	intype
	outtype
	code
	hfile
	initfile
	initfunc

	The Intype File
	OTT Datatype Mappings
	Null Indicator Structs

	The Outtype File
	Using the OTT with OCI Applications
	Accessing and Manipulating Objects with OCI
	Calling the Initialization Function
	Tasks of the Initialization Function

	OTT Reference
	OTT Command Line Syntax
	OTT Parameters
	Where OTT Parameters Can Appear
	Structure of the Intype File
	Nested #include File Generation
	SCHEMA_NAMES Usage
	Default Name Mapping
	Restrictions

	13 OCI Relational Functions
	Introduction
	OCI Quick Reference
	Calling OCI Functions
	Server Roundtrips for LOB Functions

	The OCI Relational Functions
	OCIAQDeq()
	OCIAQEnq()
	OCIAttrGet()
	OCIAttrSet()
	OCIBindArrayOfStruct()
	OCIBindByName()
	OCIBindByPos()
	OCIBindDynamic()
	OCIBindObject()
	OCIBreak()
	OCIDefineArrayOfStruct()
	OCIDefineByPos()
	OCIDefineDynamic()
	OCIDefineObject()
	OCIDescribeAny()
	OCIDescriptorAlloc()
	OCIDescriptorFree()
	OCIEnvInit()
	OCIErrorGet()
	OCIHandleAlloc()
	OCIHandleFree()
	OCIInitialize()
	OCILdaToSvcCtx()
	OCILobAppend()
	OCILobAssign()
	OCILobCharSetForm()
	OCILobCharSetId()
	OCILobCopy()
	OCILobDisableBuffering()
	OCILobEnableBuffering()
	OCILobErase()
	OCILobFileClose()
	OCILobFileCloseAll()
	OCILobFileExists()
	OCILobFileGetName()
	OCILobFileIsOpen()
	OCILobFileOpen()
	OCILobFileSetName()
	OCILobFlushBuffer()
	OCILobGetLength()
	OCILobIsEqual()
	OCILobLoadFromFile()
	OCILobLocatorIsInit()
	OCILobRead()
	OCILobTrim()
	OCILobWrite()
	OCILogoff()
	OCILogon()
	OCIParamGet()
	OCIParamSet()
	OCIPasswordChange()
	OCIServerAttach()
	OCIServerDetach()
	OCIServerVersion()
	OCISessionBegin()
	OCISessionEnd()
	OCIStmtExecute()
	OCIStmtFetch()
	OCIStmtGetBindInfo()
	OCIStmtGetPieceInfo()
	OCIStmtPrepare()
	OCIStmtSetPieceInfo()
	OCISvcCtxToLda()
	OCITransCommit()
	OCITransDetach()
	OCITransForget()
	OCITransPrepare()
	OCITransRollback()
	OCITransStart()

	14 OCI Navigation and Type Functions
	Introduction
	Object Types and Lifetimes
	Terminology
	Navigational Function Return Values
	Navigational Function Error Codes
	Server Roundtrips for Cache and Object Functions
	OCI Navigational Functions Quick Reference
	The OCI Navigational Functions
	OCICacheFlush()
	OCICacheFree()
	OCICacheRefresh()
	OCICacheUnmark()
	OCICacheUnpin()
	OCIObjectArrayPin()
	OCIObjectCopy()
	OCIObjectExists()
	OCIObjectFlush()
	OCIObjectFree()
	OCIObjectGetAttr()
	OCIObjectGetInd()
	OCIObjectGetObjectRef()
	OCIObjectGetProperty()
	OCIObjectGetTypeRef()
	OCIObjectIsDirty()
	OCIObjectIsLocked()
	OCIObjectLock()
	OCIObjectMarkDelete()
	OCIObjectMarkDeleteByRef()
	OCIObjectMarkUpdate()
	OCIObjectNew()
	OCIObjectPin()
	OCIObjectPinCountReset()
	OCIObjectPinTable()
	OCIObjectRefresh()
	OCIObjectSetAttr()
	OCIObjectUnmark()
	OCIObjectUnmarkByRef()
	OCIObjectUnpin()
	OCITypeArrayByName()
	OCITypeArrayByRef()
	OCITypeByName()
	OCITypeByRef()

	15 OCI Datatype Mapping and Manipulation Functi...
	Introduction
	Datatype Mapping and Manipulation Function Return ...
	Functions Returning Other Values
	Server Roundtrips for Datatype Mapping and Manipul...
	Examples
	OCI Datatype Mapping Functions Quick Reference
	The OCI Datatype Mapping and Manipulation Function...
	OCICollAppend()
	OCICollAssign()
	OCICollAssignElem()
	OCICollGetElem()
	OCICollMax()
	OCICollSize()
	OCICollTrim()
	OCIDateAddDays()
	OCIDateAddMonths()
	OCIDateAssign()
	OCIDateCheck()
	OCIDateCompare()
	OCIDateDaysBetween()
	OCIDateFromText()
	OCIDateGetDate()
	OCIDateGetTime()
	OCIDateLastDay()
	OCIDateNextDay()
	OCIDateSetDate()
	OCIDateSetTime()
	OCIDateSysDate()
	OCIDateToText()
	OCIDateZoneToZone()
	OCIIterCreate()
	OCIIterDelete()
	OCIIterGetCurrent()
	OCIIterInit()
	OCIIterNext()
	OCIIterPrev()
	OCINumberAbs()
	OCINumberAdd()
	OCINumberArcCos()
	OCINumberArcSin()
	OCINumberArcTan()
	OCINumberArcTan2()
	OCINumberAssign()
	OCINumberCeil()
	OCINumberCmp()
	OCINumberCos()
	OCINumberDiv()
	OCINumberExp()
	OCINumberFloor()
	OCINumberFromInt()
	OCINumberFromReal()
	OCINumberFromText()
	OCINumberHypCos()
	OCINumberHypSin()
	OCINumberHypTan()
	OCINumberIntPower()
	OCINumberIsZero()
	OCINumberLn()
	OCINumberLog()
	OCINumberMod()
	OCINumberMul()
	OCINumberNeg()
	OCINumberPower()
	OCINumberRound()
	OCINumberSetZero()
	OCINumberSign()
	OCINumberSin()
	OCINumberSqrt()
	OCINumberSub()
	OCINumberTan()
	OCINumberToInt()
	OCINumberToReal()
	OCINumberToText()
	OCINumberTrunc()
	OCIRawAllocSize()
	OCIRawAssignBytes()
	OCIRawAssignRaw()
	OCIRawPtr()
	OCIRawResize()
	OCIRawSize()
	OCIRefAssign()
	OCIRefClear()
	OCIRefFromHex()
	OCIRefHexSize()
	OCIRefIsEqual()
	OCIRefIsNull()
	OCIRefToHex()
	OCIStringAllocSize()
	OCIStringAssign()
	OCIStringAssignText()
	OCIStringPtr()
	OCIStringResize()
	OCIStringSize()
	OCITableDelete()
	OCITableExists()
	OCITableFirst()
	OCITableLast()
	OCITableNext()
	OCITablePrev()
	OCITableSize()

	16 OCI External Procedure Functions
	Introduction
	Return Codes
	With_Context Type

	The OCI External Procedure Functions
	OCIExtProcAllocCallMemory()
	OCIExtProcRaiseExcp()
	OCIExtProcRaiseExcpWithMsg()
	OCIExtProcGetEnv()

	A Upgrading Release 7.x OCI Applications to Rele...
	Compatibility and Upgrade Overview
	Obsolescent OCI Routines
	Obsolete OCI Routines
	Compatibility
	Upgrading
	Application Linking Issues
	Non-deferred linking
	Single-task linking

	B Handle and Descriptor Attributes
	Conventions
	Environment Handle Attributes
	OCI_ATTR_CACHE_MAX_SIZE
	OCI_ATTR_CACHE_OPT_SIZE
	OCI_ATTR_OBJECT
	OCI_ATTR_FNCODE
	OCI_ATTR_PINOPTION
	OCI_ATTR_ALLOC_DURATION
	OCI_ATTR_PIN_DURATION

	Service Context Handle Attributes
	OCI_ATTR_SQLCODE
	OCI_ATTR_ENV
	OCI_ATTR_SERVER
	OCI_ATTR_SESSION
	OCI_ATTR_TRANS
	OCI_ATTR_IN_V8_MODE

	Server Handle Attributes
	OCI_ATTR_ENV
	OCI_ATTR_FNCODE
	OCI_ATTR_EXTERNAL_NAME
	OCI_ATTR_INTERNAL_NAME
	OCI_ATTR_IN_V8_MODE
	OCI_ATTR_FOCBK

	User Session Handle Attributes
	OCI_ATTR_USERNAME
	OCI_ATTR_PASSWORD

	Transaction Handle Attributes
	OCI_ATTR_TRANS_NAME
	OCI_ATTR_XID

	Statement Handle Attributes
	OCI_ATTR_FNCODE
	OCI_ATTR_ROW_COUNT
	OCI_ATTR_SQLFNCODE
	OCI_ATTR_ENV
	OCI_ATTR_STMT_TYPE
	OCI_ATTR_ROWID
	OCI_ATTR_PARAM_COUNT
	OCI_ATTR_PREFETCH_ROWS
	OCI_ATTR_PREFETCH_MEMORY

	Bind Handle Attributes
	OCI_ATTR_FNCODE
	OCI_ATTR_CHAR_COUNT
	OCI_ATTR_CHARSET_ID
	OCI_ATTR_CHARSET_FORM
	OCI_ATTR_MAXDATA_SIZE
	OCI_ATTR_PDSCL
	OCI_ATTR_PDFMT
	OCI_ATTR_ROWS_RETURNED

	Define Handle Attributes
	OCI_ATTR_FNCODE
	OCI_ATTR_CHAR_COUNT
	OCI_ATTR_CHARSET_ID
	OCI_ATTR_CHARSET_FORM
	OCI_ATTR_PDSCL
	OCI_ATTR_PDFMT

	Describe Handle Attributes
	OCI_ATTR_PARAM_COUNT

	Parameter Descriptor Attributes
	LOB Locator Attributes
	OCI_ATTR_LOBEMPTY

	Complex Object Attributes
	Complex Object Retrieval Handle Attributes
	Complex Object Retrieval Descriptor Attributes

	Advanced Queueing Descriptor Attributes
	OCIAQEnqOptions Descriptor Attributes
	OCIAQDeqOptions Descriptor Attributes
	OCIAQMsgProperties Descriptor Attributes
	OCIAQAgent Descriptor Attributes

	C Oracle Reserved Words, Keywords and Namespaces...
	Oracle Reserved Words and Keywords
	PL/SQL Reserved Words
	Oracle Reserved Namespaces

	D Code Examples
	Example 1, SQL Processing
	Example 2, Object Retrieval
	cdemo82.h
	cdemo82.sql

	Example 3, DML with RETURNING Clause
	cdemodr1.h

	Example 4, Describing an Object
	cdemodsc.h

	Example 5, CLOB/BLOB Operations
	Example 6, LOB Buffering
	Example 7, REF Pinning and Navigation

	E OCI Function Server Roundtrips
	Overview
	LOB Function Roundtrips
	Object and Cache Function Roundtrips
	Describe Operation Roundtrips
	Datatype Mapping and Manipulation Function Roundtr...
	Other Local Functions

	F Oracle8 OCI New Features
	Introduction
	Oracle8 OCI Enhancements
	Encapsulated/Opaque Interfaces
	Simplified User Authentication and Password Manage...
	Extensions to Improve Application Performance and ...
	Consistent Interface for Transaction Management
	Oracle8 OCI Object Support
	Runtime Environment for Objects
	Type Management, Mapping and Manipulation Function...
	Object Type Translator
	OCI Support for Oracle Advanced Queueing

	Benefits of the OCI’s New Features
	Comprehensive Support for Oracle8 Objects
	Improved Application Performance
	Greater Scalability
	Simplified Migration of Existing Applications
	Enhanced Application Extensibility

	Index

