

Oracle8™ JDBC Drivers

Oracle’s JDBC drivers, Release 8.0.4.0.0, implement the standard JDBC (Java
Database Connectivity) interface as defined by JavaSoft. These drivers comply with
JDBC version 1.22. In addition to the standard JDBC API, Oracle drivers have
extensions to properties, types, and performance.

This document describes the installation and use of the drivers, as well as Oracle’s
extensions.

 JDBC is based on the X/Open SQL Call Level Interface, and complies with the
SQL92 Entry Level standard.

A description of JDBC can be found at http://www.javasoft.com.

Contents
■ Copyright Information.

■ Introduction. JDBC versions and how they differ.

■ Getting Started. How to obtain and install JDBC.

■ Using Oracle’s JDBC Drivers.

■ Features of All Oracle JDBC Drivers.

■ Features of Specific Oracle JDBC Drivers. Thin versus OCI drivers.

■ Extensions to JDBC. Features added to the drivers by Oracle.

■ Features Not Implemented.

■ Applets. How to make applets with the JDBC Thin driver.

■ Streams Tutorial. Short code samples and explanations.

■ Common Problems and Frequently Asked Questions.
 1

Copyright Information
Copyright Information
Copyright © 1997, Oracle Corporation. All Rights Reserved.

The accompanying software includes parts that are copyrighted by Javasoft and
reproduced by permission.

The remaining software is Copyright © 1997, Oracle Corporation. All Rights
Reserved.
2 Oracle8 JDBC Drivers

Introduction
Introduction
Oracle supports JDBC 1.22, not JDBC 1.01.

Oracle provides two categories of JDBC drivers:

■ JDBC Thin for Java applets and applications

■ JDBC OCI for Java applications

JDBC Thin
Oracle’s JDBC Thin driver is a Type 4 driver that uses Java sockets to connect
directly to Oracle. It provides its own implementation of a TCP/IP version of
Oracle’s Net8. Because it is written entirely in Java, this driver is
platform-independent.

The Thin driver does not require Oracle software on the client side. It connects to
any Oracle database of version 8.0.4 and higher. The driver requires a TCP/IP
listener on the server side.

JDBC OCI
Oracle’s JDBC OCI drivers are Type 2 JDBC drivers. They provide an
implementation of the JDBC interfaces that uses the OCI (Oracle Call Interface) to
interact with an Oracle database. This driver can access Oracle8.0.4 and higher
servers.

Because they use native methods, they are platform-specific. The supported
platforms are:

■ Solaris: version 2.5 and above.

■ Windows: 95 and NT 3.51 and above.

The JDBC OCI driver requires an Oracle 8.0.4 client installation including Net8 and
all other dependent files.

JDK Versions
Because Java has undergone significant changes over its brief life, you must use a
driver version that matches your Java Development Kit.

■ JDK 1.0.2

■ JDK 1.1.1 and higher
 3

Introduction
The Java classes for JDK 1.0.2 contain the JDBC 1.22 classes from Javasoft. The Java
classes for JDK 1.1.1 do not contain the JDBC classes, because those are a standard
part of JDK 1.1.1.

Configuration
You can use the JDBC Thin driver in Java applets that can be downloaded into a
web browser, such as Netscape 3.0 or 4.0.

The Thin driver is entirely self contained, requiring no Oracle-specific software or
files on the client side. It does, however, need to open a Java socket. It cannot run
successfully in a browser that does not allow that operation.

The Oracle JDBC OCI driver is not appropriate for Java applets, because it uses a C
library that is platform specific and is not downloadable into a Web browser.

It is appropriate for Java applications and Java code running in the Oracle Web
Application Server 3.0 and higher.

Changes From the Beta Release
The JDBC Thin driver supports databases that use multibyte character sets.
4 Oracle8 JDBC Drivers

Getting Started
Getting Started
Getting started with JDBC has a few basic steps:

1. Identify and obtain the correct distribution file for your platform.

2. Install the files.

3. Set environment variables.

4. Test the installation.

Distribution Files
Oracle provides three distribution files. The correct choice depends only on your
platform. Each distribution file contains all versions that run on that platform.

The choices are:

■ Oracle8.0.4 CD

■ Windows zip file (requires Windows 95 or Windows NT 3.51 or higher)

■ Solaris tar file (requires Solaris 2.5 or higher)

■ Other (tar or zip)

Installation
If you have used a previous version of Oracle JDBC drivers, deinstall them before
proceeding.

Installing From CD
■ Run Oracle Installer.

■ Select JDBC driver from the list of products and install.

For Downloaded Windows95 or Windows NT, with the Oracle Installer
■ Unzip the distribution in c:\temp.

■ Point the installer to c:\temp.

■ Use Oracle Installer to install JDBC OCI for Windows95 or Windows NT.
Select it in the Products Available window, and click the Install button. The
installer places all files within a hierarchy whose top directory appears follow-
ing the words “Products Installed on” on the installer screen above the Prod-
ucts Installed window. The remainder of this document refers to that top
 5

Getting Started
directory as [ORACLE HOME]. The JDBC files reside in a directory structure
beginning at [ORACLE HOME]\JDBC.

■ Add [ORACLE HOME]\JDBC\LIB\CLASSES111.zip to your CLASSPATH.

■ Add [ORACLE HOME]\JDBC\LIB\CLASSES102.zip to your CLASSPATH
instead, if you are using JDK 1.0.2.

For Downloaded Windows95 or Windows NT, without the Oracle Installer
■ Un-zip the distribution in C:\JDBC.

■ Add C:\JDBC\LIB\CLASSES111.zip to your CLASSPATH. Or,

■ Add C:\JDBC\LIB\CLASSES102.zip to your CLASSPATH instead, if you
are using JDK 1.0.2.

■ Add C:\JDBC\LIB to your PATH.

The Windows version contains the dynamically linked library file
OCI80JDBC.DLL for JDBC OCI8. The directory containing it must be in your
PATH. If you used the Oracle Installer it moved the DLLs to the
[ORACLE_HOME]\BIN directory, which is already in your PATH.

For Downloaded Solaris
■ Create a directory /local/jdbc.

■ Un-tar the distribution in /local/jdbc.

■ Add /local/jdbc/lib/classes111.zip to CLASSPATH (For JDK 1.1.1).
Or,

■ Add /local/jdbc/lib/classes102.zip to CLASSPATH instead, if you
are using JDK 1.0.2.

■ Add /local/jdbc/lib to LD_LIBRARY_PATH.

The Solaris version contains the shared object library liboci80jdbc.so for
JDBC OCI8. The directory containing it must be in your LD_LIBRARY_PATH.

Other Platforms
See your platform-specific documentation.
6 Oracle8 JDBC Drivers

Getting Started
Files Installed
Aside from differences in upper and lower case and the direction in which the
slashes point, all three installations produce the same contents of the jdbc
directory:

readme.txt doc/ samples/ lib/

Read the readme.txt file that contains a concise presentation of up-to-the-minute
facts that may not be in this document.

The doc directory contains documentation.

The samples directory contains sample programs. These include examples of how
to use SQL92 and Oracle SQL syntax, PL/SQL blocks, streams, and the Oracle
JDBC type and performance extensions.

The lib directory contains the Java classes in zip files: classes111.zip and
classes102.zip, the first for JDK 1.1.1 and the second for JDK 1.0.2. Place only
one of these zip files into your CLASSPATH. Do not unzip them.

The other distribution contains only the JDBC Thin driver, so there are no
additional files in the lib directory.

Environment Variables
For all Oracle JDBC drivers you must set your CLASSPATH to include the zip file
containing the Java classes that implement the driver. One way to do this is to place
[ORACLE HOME]/jdbc/classes111.zip or
[ORACLE HOME]/jdbc/classes102.zip into your CLASSPATH.

For Oracle JDBC OCI drivers you must also set your PATH (Windows) or
LD_LIBRARY_PATH (Solaris) to include the directory containing the appropriate
DLL or so library file.

Testing the Installation
The samples directory contains a subdirectory of sample programs for each Oracle
JDBC driver. Two programs are common to all of these directories:
JdbcCheckup.java and Employee.java. The first is designed to test the installation,
and the second performs an elementary database operation.

The following two sections of this document contain a summary of the principles
of using an Oracle JDBC driver to connect to an Oracle database and a sample
program.
 7

Using Oracle’s JDBC Drivers
Using Oracle’s JDBC Drivers
This section describes what you need to do in your Java programs to use the Oracle
JDBC drivers.

There are subtle differences in using the JDBC OCI, the JDBC Thin for JDK 1.1.1,
and the JDBC Thin for JDK 1.0.2 drivers. Please read the information corresponding
to the JDBC driver that you want to use.

Using JDBC OCI
Your program needs to do the following three steps before using the JDBC API to
access the database:

 1- Import the JDBC classes

 2- Register the JDBC OCI driver

 3- Open a connection to the database

Import the JDBC Classes
Import the JDBC classes by adding the following import statements at the
beginning of your program. The first import statement brings in the JDBC classes,
the second adds the BigDecimal classes.

 import java.sql.*;
 import java.math.*;

Register the JDBC OCI Driver
Register the JDBC driver with the following call. This needs to be done only once in
your Java application.

 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());

Open a Connection to the Database
Open a connection to the database with the JDBC getConnection method. This
method needs a "connect string" that identifies the JDBC driver to use and the
database to connect to. You also need to pass the user logon and password.

For the JDBC OCI driver, the database can be specified by a TNSNAMES entry; this
is one of the database names you use from SQL*Plus. The available TNSNAMES
8 Oracle8 JDBC Drivers

Using Oracle’s JDBC Drivers
entries are listed in the file [ORACLE_HOME]/network/admin/tnsnames.ora on
the client computer you are connecting from.

 For example, if you want to connect to the database "mydatabase" as user "scott"
with password "tiger":

Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@mydatabase",
 "scott", "tiger");

Note that the ":" and "@" characters are both necessary.

For the JDBC OCI driver you can also specify the database with a Net8 name-value
pair. This is less readable than a TNSNAMES entry but does not depend on the
accuracy of the TNSNAMES.ORA file. This also works with the other JDBC drivers.

For example, if you want to connect to the database on host "myhost" that has a
TCP/IP listener up on port 1521, and the SID (system identifier) is "orcl", use a
statement such as:

Connection conn =
DriverManager.getConnection("jdbc:oracle:oci8:@(description=(address=(host=
myhost)(protocol=tcp)(port=1521))(connect_data=(sid=orcl)))",
"scott", "tiger");

NOTE: All parentheses and equal signs are necessary.

Sample Program for JDBC OCI8
The following program lists the contents of the ENAME column of the EMP table.
It loads an Oracle JDBC driver, connects to the database mydatabase, submits a
query, receives a result set, and outputs the employee names.

import java.sql.*;

class JdbcTest {
 public static void main (String args []) throws SQLException {
 // Load Oracle driver
 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());

 // Connect to the local database
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:@mydatabase", "scott", "tiger");

 // Query the employee names
 Statement stmt = conn.createStatement ();
 ResultSet rset = stmt.executeQuery ("select ename from emp");
 9

Using Oracle’s JDBC Drivers
 // Print the name out
 while (rset.next ())
 System.out.println (rset.getString (1));
 }
}

Using JDBC Thin Driver With JDK 1.1.1
The JDBC Thin driver does not support TNSNAMES entries for the database name.
See Step 3 for how to specify the database.

Your program must execute the following three steps before using the JDBC API to
access the database:

1- Import the JDBC classes

2- Register the JDBC Thin driver

3- Open a connection to the database

Import the JDBC Classes
Import the JDBC classes by adding the following import statements at the
beginning of your program. The first import statement brings in the JDBC classes,
the second adds the BigDecimal classes.

 import java.sql.*;
 import java.math.*;

Register the JDBC Thin Driver
Register the JDBC driver with the following call. This needs to be done only once in
your Java application.

 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver ());

Open a Connection to the Database
Open a connection to the database with the JDBC getConnection method. This
method needs a connect string that identifies the JDBC driver you are using and the
database you are connecting to. You also need to pass the user logon and password.

Since the JDBC Thin driver can be used in applets that do not have an Oracle
installation you cannot use a TNSNAMES entry to identify the database you want
to connect to. You have to list explicitly the host name, TCP/IP port and Oracle SID
10 Oracle8 JDBC Drivers

Using Oracle’s JDBC Drivers
of the database you want to connect to. Please see your database administrator if
you are not sure of the correct values.

For example, if you want to connect to the database on host "myhost" , that has a
TCP/IP listener on port 1521 for the database SID (system identifier) "orcl", logon
as user "scott", with password "tiger", write:

 Connection conn =
 DriverManager.getConnection
 ("jdbc:oracle:thin:@myhost:1521:orcl", "scott", "tiger");

You can also specify the database with a Net8 name-value pair. This is less readable
than the first version, but also works with the other JDBC drivers.

 Connection conn =
 DriverManager.getConnection
("jdbc:oracle:thin:@(description=(address=(host=myhost)(protocol=tcp)
 (port=1521))(connect_data=(sid=orcl)))", "scott", "tiger");

Sample for JDBC Thin and JDK 1.1.1
The following program lists the contents of the ENAME column of the EMP table.
It loads an Oracle JDBC driver, connects to the database, submits a query, receives a
result set, and outputs the employee names.

import java.sql.*;

class JdbcTest {
 public static void main (String args []) throws SQLException {
 // Load Oracle driver
 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());

 // Connect to the local database
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:thin:@myhost:1521:orcl",
 "scott", "tiger");

 // Query the employee names
 Statement stmt = conn.createStatement ();
 ResultSet rset = stmt.executeQuery ("select ename from emp");

 // Print the name out
 while (rset.next ())
 System.out.println (rset.getString (1));
 }
 11

Using Oracle’s JDBC Drivers
}

Using JDBC Thin with JDK 1.0.2
With JDK 1.0.2 you have to import the JDBC classes from the package jdbc.sql
instead of java.sql. The driver class is oracle.jdbc.dnlddriver.OracleDriver.

Your program must execute the following three steps before using the JDBC API to
access the database:

 1- Import the JDBC classes

 2- Register the JDBC Thin driver

 3- Open a connection to the database

 Import the JDBC Classes
Import the JDBC classes by adding the following import statements at the
beginning of your program. The first import line brings in the JDBC classes, the
second line adds the BigDecimal classes.

 import jdbc.sql.*;
 import jdbc.math.*;

Register the Thin Driver
Register the JDBC driver with the following call. This needs to be done only once in
your Java application. Note that the driver is called "dnlddriver".

 DriverManager.registerDriver (new oracle.jdbc.dnlddriver.OracleDriver();

Open a Connection to the Database
Open a connection to the database with the JDBC getConnection method. This
method needs a connect string that identifies the JDBC driver you want to use, the
database you are connecting to, the user logon and password.

 Since the JDBC Thin driver can be used in applets that do not have an Oracle
installation you cannot use a TNSNAMES entry to identify the database you want
to connect to. You have to list explicitly the host name, TCP/IP port, and Oracle
SID of the database you are connecting to. Please see your database administrator if
you are not sure of the correct values.
12 Oracle8 JDBC Drivers

Using Oracle’s JDBC Drivers
For example, if you want to connect to the database on host "myhost", that has a
TCP/IP listener on port 1521, an SID (system identifier) "orcl", and logon is as user
"scott", with password "tiger":

Connection conn = DriverManager.getConnection
("jdbc:oracle:dnldthin:@myhost:1521:orcl","scott", "tiger");

Note that the driver is called "dnldthin". You can also specify the database with a
Net8 name-value pair. This is less readable than the first version but also works
with the other JDBC drivers.

 Connection conn =
 DriverManager.getConnection
 ("jdbc:oracle:dnldthin:@(description=(address=(host=myhost)
 (protocol=tcp)(port=1521))(connect_data=(sid=orcl)))", "scott", "tiger");

Sample Program for JDBC Thin and JDK 1.0.2
The following program lists the contents of the ENAME column of the EMP table.
It loads an Oracle JDBC driver, connects to the database, submits a query, receives a
result set, and outputs the employee names.

import jdbc.sql.*;

class JdbcTest {
 public static void main (String args []) throws SQLException {
 // Load Oracle driver
 DriverManager.registerDriver (new oracle.jdbc.dnlddriver.OracleDriver());

 // Connect to the local database
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:dnldthin:@myhost:1521:orcl",
 "scott", "tiger");

 // Query the employee names
 Statement stmt = conn.createStatement ();
 ResultSet rset = stmt.executeQuery ("select ename from emp");

 // Print the name out
 while (rset.next ())
 System.out.println (rset.getString (1));
 }
}
 13

Using Oracle’s JDBC Drivers
An Oracle extension to the JDBC drivers is a form of the getConnection method that
uses a Properties object. See Connection Properties.
14 Oracle8 JDBC Drivers

Features of All Oracle JDBC Drivers
Features of All Oracle JDBC Drivers
Oracle JDBC drivers support JDBC 1.22, the version supplied with the Java
Development Kit (JDK) version 1.1.1 and available as an add-on to JDK 1.0.2.

Datatypes
The Oracle JDBC driver supports the SQL datatypes required by JDBC 1.22. In
addition, Oracle JDBC drivers support the Oracle-specific datatypes ROWID and
REFCURSOR. Discussion of how to use these Oracle-specific datatypes appears in
Type Extensions.

The tables show how codes in the java.sql.Types class and
oracle.jdbc.driver.OracleTypes class map into Oracle datatypes.

LOB datatypes
Oracle8 provides datatypes for LOBs (large objects and external files). The
datatypes are BLOB (unstructured binary data), CLOB (single-byte character data),
BFILE (external file of binary data), CFILE (external file of single-byte character
data).

Table 1–1 Mapping JDBC Type Codes to Oracle Datatypes

JDBC Type Code Oracle Datatype

Types.CHAR CHAR

Types.VARCHAR VARCHAR2

Types.LONGVARCHAR LONG

Types.VARBINARY RAW

Types.LONGVARBINARY LONG RAW

All numeric types NUMBER

All date types DATE

Table 1–2 Mapping Oracle Type Codes to Oracle Datatypes

Oracle Type Code Oracle Datatype

OracleTypes.ROWID ROWID

OracleTypes.REFCURSOR REFCURSOR

OracleTypes.BLOB BLOB

Oracle.Types.CLOB CLOB

Oracle.Types.BFILE BFILE

Oracle.Types.CFILE CFILE
 15

Features of All Oracle JDBC Drivers
Note: Only the JDBC OCI8 driver supports LOBs.

The JDBC extensions for LOB access to be used off the ResultSet or
CallableStatement (the resultSet and callableStatement objects will have to be cast
to OracleResultSet and OracleCallableStatement respectively in order to use these
API) :

 OracleBlob getBlobValue (int index)

 OracleClob getClobValue (int index)

 OracleBfile getBfileValue (int index)

 OracleCfile getCfileValue (int index)

These API return the LOB descriptor or file descriptor. The JDBC API off the
PreparedStatement to bind the descriptor values are (the prepared statement object
will have to be cast to an OraclePreparedStatement in order to use these API):

 void setBlob (int parameterIndex, OracleBlob lob)

 void setClob (int parameterIndex, OracleClob lob)

 void setBfile (int parameterIndex, OracleBfile file)

 void setCfile (int parameterIndex, OracleCfile file)

Please refer to the sample program, LobExample.java for usage examples.

Multibyte Character Sets
The JDBC Thin driver can access databases that use any Oracle character set. This is
achieved by converting the characters to Unicode 1.2. Java itself uses Unicode 2.0,
so there is a mismatch, largely affecting Korean characters.

Streaming
Oracle JDBC drivers support streaming of data in either direction between server
and client. They support all stream conversions: binary, ASCII, and Unicode.

NOTE: Receiving LONG or LONG RAW columns in a streaming fashion (the
default case) requires you to pay special attention to the order in which you receive
data from the database.

A separate section explains the details of streaming. See Streams Tutorial.
16 Oracle8 JDBC Drivers

Features of All Oracle JDBC Drivers
Stored Procedures
Oracle JDBC drivers support execution of PL/SQL stored procedures and
anonymous blocks. They support both SQL92 escape syntax and Oracle escape
syntax. The following PL/SQL calls are all available from any Oracle JDBC driver:

// SQL92 Syntax
CallableStatement cs1 = conn.prepareCall
 ("{call proc (?,?)}") ;
CallableStatement cs2 = conn.prepareCall
 ("{? = call func (?,?)}") ;

// Oracle Syntax
CallableStatement cs3 = conn.prepareCall
 ("begin proc (:1, :2); end;") ;
CallableStatement cs4 = conn.prepareCall
 ("begin :1 := func(:2,:3); end;") ;

Database Metadata
Oracle JDBC drivers support all database metadata entry points. They do so by
issuing queries against Oracle metadata tables. The distribution includes the source
code of the OracleDatabaseMetadata class, which you can use to design your own
metadata calls.

SQL92 Syntax
Oracle JDBC drivers support SQL92 escapes, except for outer joins. See Oracle SQL
documentation for instructions on specifying outer joins.

Extensions to JDBC 1.22
Oracle JDBC drivers provide a variety of extensions to JDBC 1.22. These are
summarized and discussed in Features of All Oracle JDBC Drivers.

Oracle Types
Oracle JDBC drivers support ROWID as a Java string and REFCURSOR as a Java
ResultSet.

Row Prefetching
Oracle JDBC drivers allow you to set a number (default is 10) of rows to prefetch
into the client during queries, thereby reducing round trips to the server. You can
set the amount of prefetching for either the connection or the statement.
 17

Features of All Oracle JDBC Drivers
Execution Batching
Oracle JDBC drivers allow you to accumulate inserts and updates at the client and
send them to the server in batches, thereby reducing round trips to the server. You
can set the batch size (default is 1) for a statement.

Define Query Columns
Oracle JDBC drivers allow you to inform the driver of the types of the columns in
an upcoming query, thereby saving a round trip to the database.

Database Metadata Remarks
Oracle JDBC drivers execute the DatabaseMetaData calls getTables and
getColumns with reporting of the TABLE_REMARKS column turned off by
default, thereby avoiding a time-consuming outer join. You can turn reporting of
the TABLE_REMARKS column back on if you wish.

Limitations
There are a few requirements of JDBC 1.22 that Oracle JDBC drivers do not support:

CursorName
Oracle JDBC drivers do not support the getCursorName and setCursorName calls,
because there is no convenient way to map them to Oracle constructs. Oracle
recommends using ROWID instead.

Catalog Arguments to DatabaseMetaData Calls
There is no Oracle equivalent of the JDBC catalog arguments to DatabaseMetaData
calls. Oracle JDBC drivers ignore catalog arguments.

SQL92 Outer Join Escapes
Oracle JDBC drivers do not support SQL92 outer join escapes. Use Oracle syntax
with "(+)" instead.

PL/SQL BOOLEAN and RECORD Types
Oracle JDBC drivers do not support calling arguments or return values of the
PL/SQL BOOLEAN or RECORD types. For more information, see Features Not
Implemented
18 Oracle8 JDBC Drivers

Features of All Oracle JDBC Drivers
IEEE 754 Floating Point Compliance
Oracle’s arithmetic on its NUMBER type is not compliant with the IEEE 754
standard for floating point arithmetic. Therefore there can be small disagreements
between the results of computations performed by Oracle and the same
computations performed by Java.

Oracle stores numbers in a format compatible with decimal arithmetic and
guarantees 38 decimal digits of precision. It represents zero, minus infinity, and
plus infinity exactly. For each positive number it represents, it represents a negative
number of the same absolute value.

It represents every positive number between 10-30 and (1 – 10-38) * 10126 to full
38-digit precision.
 19

Features of Specific Oracle JDBC Drivers
Features of Specific Oracle JDBC Drivers
While all Oracle JDBC drivers are similar, some features apply only to JDBC OCI
drivers and some apply only to the JDBC Thin driver.

JDBC OCI Features
The JDBC OCI drivers are Type 2 drivers that use Java native methods to call the C
entry points of the OCI library. The use of native methods makes JDBC OCI drivers
platform specific. They provide support for Solaris, Windows, and other platforms.
The Windows version works both with Windows 95 and with Windows NT,
versions 3.51 and 4.0.

JDBC OCI drivers, because they are platform specific, are not suitable for use in
applets intended to be downloaded into browsers running on unknown platforms.
They are, however, excellent choices for Java applications or Java middle tiers like
the Oracle Web Application Server 3.0 Java Cartridge.

The JDBC OCI drivers require installation of Net8, version 8.0 or above, on the
client side. Since they interface to Oracle databases through OCI, the JDBC OCI
drivers support all installed Net8 adapters—IPC, named pipes, TCP/IP, DECnet,
and others. They also support all features of the Advanced Networking Option,
including encrypted Net8.

JDBC OCI drivers convert CHAR data represented in multibyte character sets into
Java strings represented in Unicode. They do so on the client side using the
conversion routines that OCI provides.

JDBC Thin Features
The JDBC Thin driver is a 100% Java Type 4 driver. It connects directly to Oracle via
Java sockets without the need for a JDBC-specific middle tier. The JDBC Thin
driver can only connect to a database if a TNS Listener is up and listening on
TCP/IP sockets.

The JDBC Thin driver is only as platform-specific as Java is. It works on any system
that provides a correct implementation of Java.

The JDBC Thin driver can be downloaded into any browser as part of a Java
application. It is suitable for applets on an intranet, but firewall issues limit its use
in applets for general distribution via the World Wide Web. Discussion of applets,
firewalls, and browser security issues occur in section Applets.

The samples subdirectory of the driver distribution contains an applet that uses
the JDBC Thin driver.
20 Oracle8 JDBC Drivers

Extensions to JDBC
Extensions to JDBC
The extensions to JDBC fall into these categories:

■ Connection Properties

■ Type Extensions

■ Performance Extensions

Connection Properties
Another form of the getConnection method uses the Properties class. For example:

java.util.Properties info = new java.util.Properties();
info.addProperty ("user", "scott");
info.addProperty ("password","tiger");
getConnection ("jdbc:oracle:oci8:",info);

Oracle JDBC drivers support other properties as well. The following is a complete
list:

If you wish to use JDBC Thin in an applet in a browser that supports only JDK 1.0.2
(Netscape Navigator 3.0, for example), change the first statements in your program
to:

 import jdbc.sql.*;
 import jdbc.math.*;
 DriverManager.registerDriver (new oracle.jdbc.dnlddriver.OracleDriver());

Table 1–3 Properties Recognized by Oracle JDBC Drivers

Name
Short
Name Type Description Equivalent to

user N/A String The user name for logging into
the database

N/A

password N/A String The password for logging into
the database

N/A

database server String The connect string for the data-
base

N/A

defaultRowPrefetch prefetch Integer The default row prefetch setDefaultRowPrefetch

remarksReporting remarks Boolean True if getTables and getCol-
umns should report
TABLE_REMARKS

setRemarksReporting
 21

Extensions to JDBC
Use the JDBC Thin 1.0.2 URL this way:

Connection conn = DriverManager.getConnection
(“jdbc:oracle:dnlthin:@ database”,“ user”,“ password”);

Type Extensions
The JDBC drivers support the Oracle ROWID and REFCURSOR types.

Oracle ROWID Type
We do not support the getCursorName and setCursorName JDBC entry points.
Instead we provide access to ROWIDs, which provide similar functionality.

If you add the ROWID pseudocolumn to a query you can retrieve it in JDBC with
the ResultSet getString entry point. You can also bind a ROWID to a
preparedStatement parameter with the setString entry point.

This allows in-place updates, as in the following example:

Statement stmt = conn.createStatement ();

// Query the employee names with "FOR UPDATE" to lock the rows.
// Select the ROWID to identify the rows to be updated.

ResultSet rset =
stmt.executeQuery ("select ENAME, ROWID from EMP for update");

// Prepare a statement to update the ENAME column at a given ROWID

PreparedStatement pstmt =
conn.prepareStatement ("update EMP set ENAME = ? where ROWID = ?");

// Loop through the results of the query
while (rset.next ())
{
 String ename = rset.getString (1);
 String rowid = rset.getString (2); // Get the ROWID as a String
 pstmt.setString (1, ename.toLowerCase ());
 pstmt.setString (2, rowid); // Pass ROWID to the update statement
 pstmt.executeUpdate (); // Do the update
}

In the ResultSetMetaData class, columns containing ROWIDs are reported with the
type oracle.jdbc.driver.OracleTypes.ROWID, whose value is -8.
22 Oracle8 JDBC Drivers

Extensions to JDBC
Oracle REFCURSOR Type
The Oracle JDBC driver supports bind variables of type REFCURSOR. A
REFCURSOR is represented by a JDBC ResultSet. Use the getCursor method of
the CallableStatement to convert a REFCURSOR value returned by a PL/SQL block
into a ResultSet. JDBC lets you call a stored procedure that executes a query and
returns a results set. Cast the corresponding CallableStatement to
oracle.jdbc.driver.OracleCallableStatement to use the getCursor
method.

Importing classes from the oracle.jdbc.driver package makes programs more
readable. Here is a simple example. The samples subdirectory of the distribution
has additional examples.

import oracle.jdbc.driver.*;
...
 CallableStatement cstmt;
 ResultSet cursor;

 // Use a PL/SQL block to open the cursor
 cstmt = conn.prepareCall
 ("begin open ? for select ename from emp; end;");

 cstmt.registerOutParameter (1, OracleTypes.CURSOR);
 cstmt.execute ();
 cursor = ((OracleCallableStatement)cstmt).getCursor (1);

 // Use the cursor like a normal ResultSet
 while (cursor.next ())
 {System.out.println (cursor.getString (1));}

Performance Extensions
Oracle JDBC drivers supports extensions that improve performance by reducing
round trips to the database.

Prefetching Rows uses client-side buffers to replace expensive round trips by
inexpensive local pointer manipulation for most rows returned by a query.

Batching Updates does for data headed toward the database what prefetching does
for data coming from it.

Specifying Column Types gets around an inefficiency in the usual JDBC protocol
for performing and returning the results of queries.
 23

Extensions to JDBC
Suppressing DatabaseMetaData TABLE_REMARKS Columns avoids an expensive
outer join operation.

Prefetching Rows
Standard JDBC receives the result sets of queries one row at a time. Each row costs
a round trip to the database. This feature associates with each statement object an
integer called its row prefetch setting. JDBC fetches that number of rows at a time
from result sets associated with the statement.

Use OracleStatement.setRowPrefetch to set a statement object’s row prefetch
setting or OracleConnection.setDefaultRowPrefetch to establish an initial value for
all statement objects created for a given connection object. If you use the form of
getConnection that takes a Properties object as an argument, you can set the
connection’s default row prefetch value that way. See the table Properties
Recognized by Oracle JDBC Drivers.

If you do not set a default row prefetch value for a connection,
DefaultRowPrefetch, its default row prefetch value is 10.

A statement object receives the default row prefetch setting from the associated
connection at the time of the statement’s creation. Subsequent changes to the
connection’s default row prefetch setting have no effect on the statement’s row
prefetch setting. Use setRowPrefetch to change the statement’s row prefetch setting.

If a column of a result set is of type long data or long raw data (that is, the
streaming types), JDBC changes the statement’s row prefetch setting to one, even if
JDBC never actually reads a value of either of those types.

The methods OracleConnection.getDefaultRowPrefetch and
OracleStatement.getRowPrefetch return current values of these two settings.

Notes:

1. To use the setDefaultRowPrefetch and getDefaultRowPrefetch methods, cast
the connection object returned by the getConnection method to type
oracle.jdbc.driver.OracleConnection.

2. To use the setRowPrefetch and getRowPrefetch methods, cast the statement
object returned by the connection’s createStatement method to type
oracle.jdbc.driver.OracleStatement.

Example
The following example illustrates the use of this feature. It assumes you have
imported the classes oracle.jdbc.driver.*
24 Oracle8 JDBC Drivers

Extensions to JDBC
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:","scott","tiger");

 //Set the default row prefetch setting for this connection
 ((OracleConnection)conn).setDefaultRowPrefetch (7);

 /* The following statement gets the default row prefetch value for
 the connection, that is, 7.
 */
 Statement stmt = conn.createStatement ();

 /* Subsequent statements look the same, regardless of the row
 prefetch value. Only execution time changes.
 */
 ResultSet rset = stmt.executeQuery ("select ename from emp");
 System.out.println (rset.next ());

 while(rset.next ())
 System.out.println (rset.getString (1));

 //Override the default row prefetch setting for this statement
 ((OracleStatement)stmt).setRowPrefetch (2);

 ResultSet rset = stmt.executeQuery ("select ename from emp");
 System.out.println (rset.next ());

 while(rset.next ())
 System.out.println (rset.getString (1));

 stmt.close ();

Batching Updates
Standard JDBC makes a round trip to the database to execute a prepared statement
whenever the statement’s executeUpdate method is executed. This feature
associates with each prepared statement object an integer called its batch size. JDBC
accumulates that many execution requests for the statement before passing the
requests to the database for execution.

Use OraclePreparedStatement.setExecuteBatch to set a prepared statement object’s
batch size.

Whenever the executeUpdate method of a prepared statement object is invoked,
JDBC queues an execution request. When the number of queued requests reaches
 25

Extensions to JDBC
the batch size, JDBC sends them to the database for execution. Calling the method
OraclePreparedStatement.sendBatch also causes JDBC to send queued execution
requests for the given prepared statement to the database for execution.

Regardless of the batch size, if any of a prepared statement’s bind variables is (or
becomes) a streaming type, JDBC sets the statement’s batch size to one and sends
any queued requests to the database for execution.

JDBC automatically executes the statement’s sendBatch method whenever the
connection receives a commit request or either the statement or the connection
receives a close request.

The method OracleStatement.getExecuteBatch returns the current values of this
setting.

Notes:

1. To use the sendBatch, setExecuteBatch and getExecuteBatch methods, cast the
statement object returned by the connection’s createStatement method to type
oracle.jdbc.driver.OraclePreparedStatement.

2. Queued requests are invisible to the database. They are not available to queries.
Use a batch size of one, or call the sendBatch method whenever you need
immediate updates.

Example
The following example illustrates the use of this feature. It assumes you have
imported the classes oracle.jdbc.driver.*

Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:","scott","tiger");

PreparedStatement ps =
 conn.prepareStatement ("insert into dept values (?, ?, ?)");

//Change batch size for this statement to 3
((OraclePreparedStatement)ps).setExecuteBatch (3);

ps.setInt (1, 23);
ps.setString (2, "Sales");
ps.setString (3, "USA");
ps.executeUpdate (); //JDBC queues this for later execution

ps.setInt (1, 24);
ps.setString (2, "Blue Sky");
26 Oracle8 JDBC Drivers

Extensions to JDBC
ps.setString (3, "Montana");
ps.executeUpdate (); //JDBC queues this for later execution

ps.setInt (1, 25);
ps.setString (2, "Applications");
ps.setString (3, "India");
ps.executeUpdate (); //The queue size equals the batch value of 3
 //JDBC sends the requests to the database

ps.setInt (1, 26);
ps.setString (2, "HR");
ps.setString (3, "Mongolia");
ps.executeUpdate (); //JDBC queues this for later execution

((OraclePreparedStatement)ps).sendBatch ();
 //JDBC sends the queued request
ps.close();

Specifying Column Types
When standard JDBC performs a query, it first uses a round trip to the database to
determine the types of the columns of the result set. Then, when JDBC receives
data from the query, it converts the data, if necessary, to the requested return type.

When you specify column types for a query, JDBC makes one fewer round trip to
the database. The server, which is optimized to do so, performs any necessary type
conversions.

To use this feature you must specify a data type for each column of the expected
result set. If the number of columns for which you specify types does not match the
number of columns in the result set, the process fails.

Use the following procedure to specify column types for a query:

1. Use the method OracleStatement.clearDefines (if necessary) to clear any previ-
ous column definitions for this statement object.

2. Determine, for each column of the expected result set

■ The integer column index (position).

■ The integer code for the type of the expected return data.
(This can differ from the column type.)

3. For each column of the expected result set, invoke the method OracleState-
ment.defineColumnType, passing it
 27

Extensions to JDBC
■ Column index.

■ Type code.

■ (Optionally) maximum field size.

4. Use the statement’s executeQuery method to perform the query.

Example
The following example illustrates the use of this feature. It assumes you have
imported the classes oracle.jdbc.driver.*

 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:oci8:","scott","tiger");

 Statement stmt = conn.createStatement ();

 /*Ask for the column as a string:
 Avoid a round trip to get the column type.
 Convert from number to string on the server.
 */
 ((OracleStatement)stmt).defineColumnType (1, Types.VARCHAR);

 ResultSet rset = stmt.executeQuery ("select empno from emp");

 while (rset.next ())
 System.out.println (rset.getString (1));

 stmt.close ();

Notice the cast of stmt to type OracleStatement in the invocation of the
defineColumnType method. The connection’s createStatement method returns an
object of type Statement. The Statement type does not have the defineColumnType
and clearDefines methods.

The define extensions use JDBC types to specify the desired types. The allowed
define types for columns depends on the internal Oracle type of the column.

All columns can be defined to their "natural" JDBC types, in most cases, to
Types.CHAR or Types.VARCHAR.

Table 1–4, “Valid Define Types” is a list of valid define arguments to use in
DefineColumnType:
28 Oracle8 JDBC Drivers

Features Not Implemented
 Suppressing DatabaseMetaData TABLE_REMARKS Columns
The DatabaseMetaData calls getTables and getColumns are slow if they must report
TABLE_REMARKS columns, because this necessitates an expensive outer join. By
default the JDBC driver does not report TABLE_REMARKS columns.

The OracleConnection class provides two entry points for controlling the reporting
of TABLE_REMARKS columns:

■ OracleConnection.setRemarksReporting (boolean)

■ OracleConnectiongetRemarksReporting ()

You can turn on TABLE_REMARKS reporting by passing a true argument to the
Connection.setRemarksReporting method. You turn it back off by passing a false
argument. First, cast your Connection object to the class
oracle.jdbc.driver.OracleConnection.

The following code turns TABLE_REMARKS reporting on:

((oracle.jdbc.driver.OracleConnection)conn).setRemarksReporting (true);

Features Not Implemented
■ setCursorName and getCursorName are not implemented. Use the ROWID

type (see Features of All Oracle JDBC Drivers) rather than the
setCursorName and getCursorName calls.

■ We do not support ODBC escapes for outer joins. Use the usual Oracle SQL syn-
tax for outer joins instead of the ODBC escapes syntax.

Table 1–4 Valid Define Types

Oracle Type Valid JDBC Define Type

NUMBER, VARNUM BIGINT, TINYINT, SMALLINT, INTEGER, FLOAT, REAL,
DOUBLE, NUMERIC, DECIMAL, CHAR, VARCHAR

CHAR, VARCHAR CHAR, VARCHAR

LONG LONGVARCHAR

LONGRAW LONGVARBINARY

RAW VARBINARY, BINARY

DATE DATE, TIME, TIMESTAMP, CHAR, VARCHAR
 29

Features Not Implemented
■ We do not support arguments of type BOOLEAN to PL/SQL stored proce-
dures. This is a restriction of the OCI.

Workaround: define a second PL/SQL stored procedure that accepts the BOOL-
EAN argument as a CHAR or NUMBER and passes it as a BOOLEAN to the
first stored procedure.
30 Oracle8 JDBC Drivers

Applets
Applets

Browser Security Considerations
The communication between an applet that uses the JDBC Thin driver and the
Oracle database happens on top of Java TCP/IP sockets. The connection can only
be made if the web browser where the applet is executing allows a sockets
connection to be made.

In a JDK 1.0.2 based Web Browser, such as Netscape 3.0, an applet can only open
sockets to the host from which it was downloaded. For Oracle8 this means that the
applet can only connect to a database running on the same host as the web server.

In a JDK 1.1.1 based web browser, such as Netscape 4.0, an applet can request
socket connection privileges and, if the user grants them, the applet can connect to
a database running on a different host from the web server host.

In Netscape 4.0 this involves signing your applet, then opening your connection as
follows. Please refer to your browser documentation for the many details you have
to take care of.

netscape.security.PrivilegeManager.enablePrivilege
 ("UniversalConnect");
connection = DriverManager.getConnection
 ("jdbc:oracle:thin:scott/tiger@dlsun511:1721:orcl");

Firewall Considerations
The JDBC Thin driver cannot connect to a database from behind a firewall. The
firewall prevents the browser from opening a TCP/IP socket to the database.

This problem can be solved by using a Net8 compliant firewall and using connect
strings in the applet that are compliant with the firewall configuration. This
solution really only works for an intranet, because the connect string is dependent
on the firewall behind which the client browser is running.

Writing the Applet Code
Write a JDBC applet like any other Java applet. You must import the JDBC
interfaces to be able to access the JDBC entry points.

If you’re targeting a JDK 1.1.1 browser, import the JDBC interfaces from the java.sql
package. You load the Oracle JDBC Thin driver as usual. We recommend that your
applet have a Connection local variable to contain the JDBC connection to the
 31

Applets
database. (Note: you might prefer to connect to the database just when needed and
keep the connection closed at other times).

import java.sql.*;
public class JdbcApplet extends java.applet.Applet
{
 Connection conn; // Holds the connection to the database
 public void init()
 {
 // Load the driver
DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());
 // Connects to the database
 conn = DriverManager.getConnection
 ("jdbc:oracle:thin:scott/tiger@www-aurora.us.oracle.com:1521:orcl");
 ...
 }
}
In this example the connect string contains the username and password, but you
can also pass them as arguments to getConnection after obtaining them from the
user. See the standard JDBC documentation for more information.

For a JDK 1.0.2 browser, import the JDBC interfaces from the jdbc.sql package, load
the driver from the oracle.jdbc.dnlddriver.OracleDriver class and use the dnldthin
sub-protocol in your connect string:

import jdbc.sql.*;
public class JdbcApplet extends java.applet.Applet
{
 Connection conn; // Holds the connection to the database
 public void init ()
 {
 // Load the driver
DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());
 // Connects to the database
 conn = DriverManager.getConnection
("jdbc:oracle:dnldthin:scott/tiger@www-aurora.us.oracle.com:1521:orcl");
 ...
 }
}

Packaging the Applet Code
The HTML page that runs the applet must have an APPLET tag with an initial
width and height. For example, if JdbcApplet.htm contains the lines:

<applet code="JdbcApplet" archive="JdbcApplet.zip" width=500 height=200>
32 Oracle8 JDBC Drivers

Applets
</applet>

If you use that form, the classes for the applet and the classes for the JDBC Thin
driver must be in the same directory as the HTML page.

You can use the CODEBASE or ARCHIVE tags in the applet tag to place the
applet and JDBC driver classes in a different directory on the server, or in a zip or
jar file. Oracle recommends the use of a zip file. This saves many extra
round-trips to the server. CODEBASE gives the directory name that your class files
are in. It is a directory below the directory where the current page is. ARCHIVE
gives the name of the zip or jar file.

Version 3.0 browsers do not support ARCHIVE.

What JDBC Files to Put in a zip or jar for an Applet
For a browser running the JDK 1.1.1, put the JDK 1.1.1 driver classes in the zip or
jar for your applet. This is done by copying classes111.zip to a file, such as
myclasses.zip, and then adding the application classes to myclass.zip. If you’re not
using the DatabaseMetaData entry points you can omit the
oracle/jdbc/driver/OracleDatabaseMetaData.class file, which is large.

For a browser running the JDK 1.0.2, put the JDK 1.0.2 driver classes and the jdbc
interface files from the jdbc.sql package (in the classes/jdbc/sql directory of
the JDBC distribution) in the zip file. (JDK 1.0.2 browsers support zip files but not
jar files). Because the classes of the JDBC Thin driver are delivered in a zip file,
you have to extract the driver files from that zip before putting them in the zip or
jar for your applet.
 33

Streams Tutorial
Streams Tutorial

Streams and LONG or LONG RAW Columns
When a query selects one or more LONG or LONG RAW columns the JDBC driver
transfers these columns to the client in streaming mode: after a call to
executeQuery or next, the data of the LONG column is waiting to be read on the
connection to the database. To access the data you can get the column as a Java
InputStream and use the read method of the InputStream object.

You can also get the data as a String or byte array, in which case the driver will do
the streaming for you.

Example
The next Java example dumps the contents of a LONG RAW column to a file on
the local file system. To create the table:

 -- SQL code:
 create table streamexample (NAME varchar2 (256), GIFDATA long raw);
 insert into streamexample values (’LESLIE’, ’00010203040506070809’)

Java code to dump the LESLIE LONG RAW column’s data into a file called
leslie.dat:

// Do a query to get the images named ’LESLIE’
ResultSet rset = stmt.executeQuery
 ("select GIFDATA from streamexample where NAME=’LESLIE’");

// Get the first row
if (rset.next ())
{
 // Get the Gif data as a Stream from Oracle to the client
 InputStream gif_data = rset.getBinaryStream (1);
 // Open a file to store the gif data
 FileOutputStream file = new FileOutputStream ("leslie.gif");

 // Loop, reading from the gif stream and writing to the file
 int c;
 while ((c = gif_data.read ()) != -1)
 file.write (c);
 // Close the file
 file.close ();
}

34 Oracle8 JDBC Drivers

Streams Tutorial
In the example the contents of the GIFDATA column are transferred incrementally
between the database and the client: The InputStream object returned by the call to
getBinaryStream reads the data directly from the database connection.

Instead of getting the column with getBinaryStream you can get it with getBytes. In
that case the driver fetches all data in one call into a byte array.

The previous example can be rewritten as:

// Do a query to get the images named ’LESLIE’
ResultSet rset = stmt.executeQuery
 ("select GIFDATA from streamexample where NAME=’LESLIE’");

// Get the first row
if (rset.next ())
{
 // Get the Gif data as a Stream from Oracle to the client
 byte [] bytes = rset.getBytes (1);
 // Open a file to store the gif data
 FileOutputStream file = new FileOutputStream ("leslie.gif");

 // Write all the bytes in a single call
 file.write (bytes);
 // Close the file
 file.close ();
}
Because a LONG RAW column can contain up to 2 Gigabytes of data, the second
example will likely use much more memory than the first example. You should use
streams if you do not know the maximum size of the data in your LONG or LONG
RAW columns.

Avoiding Streaming
The JDBC driver automatically streams any LONG and LONG RAW column. This
is because streaming has to be decided when the query is executed: at this point the
driver does not know yet if you will fetch LONG and LONG RAW columns as
streams or not. So the driver assumes that you will stream. The opposite
assumption uses much more memory if one of your LONG column is extremely
large.

You can use the Define extension (see Prefetching Rows) to prevent the driver from
streaming long columns. If you tell the driver that a LONG or LONG RAW
column is actually of type VARCHAR or VARBINARY then the driver will not
stream the data.

In the following example the data is not streaming:
 35

Streams Tutorial
oracle.jdbc.driver.OracleStatement ostmt =
 (oracle.jdbc.driver.OracleStatement)stmt;
ostmt.defineColumnType (1, Types.VARBINARY);
// Do a query to get the images named ’LESLIE’
ResultSet rset = stmt.executeQuery
 ("select GIFDATA from streamexample where NAME=’LESLIE’");
// The data is not streaming here
rset.next ();
byte [] bytes = rset.getBytes (1);

Streaming and Multiple Columns
If your query selects multiple columns and one of them is streaming, the contents
of the columns coming after the stream are normally not available until the stream
has been read. This is because the database sends each row as a set of bytes
representing the columns in the SELECT order: the data after a streaming column
can only be read after the stream has been read.

For example, consider the following query:

ResultSet rset = stmt.executeQuery
 ("select DATECOL, LONGCOL, NUMBERCOL from TABLE");

The incoming data for each row has the following shape:

 <a date><the characters of the long column><a number>

When you call rset.next() the JDBC driver stops reading the row data just before the
first character of the LONG column. The data for the NUMBER has not yet been
read. The Java Stream you get with rset.getAsciiStream reads the characters of the
LONG column directly out of the database connection. The driver reads the data
for the NUMBER from the third column only after it reads the last byte of the data
from the stream.

If you do not want to read the data for the streaming column you can just call the
close method of the stream object. This discards the stream data and reads the data
for all the non-streaming columns that follow the stream.

If you try to access the data for the NUMBER column before reading the data from
the streaming column the JDBC driver discards the streaming data automatically.
You cannot access that data any more. If you try to get a stream for the LONG
column the driver raises a "Stream Closed" error.

For example:

ResultSet rset = stmt.executeQuery
 ("select DATECOL, LONGCOL, NUMBERCOL from TABLE");
36 Oracle8 JDBC Drivers

Streams Tutorial
int n = rset.getInt (3); // This discards the streaming data
InputStream is = rset.getAsciiStream (2);
 // Raises an error: stream closed.

If you get the stream before getting the NUMBER column the stream still gets
closed automatically:

ResultSet rset = stmt.executeQuery
 ("select DATECOL, LONGCOL, NUMBERCOL from TABLE");
InputStream is = rset.getAsciiStream (2); // Get the stream
int n = rset.getInt (3);
 // Discards streaming data and closes the stream
int c = is.read (); // c is -1: no more characters to read

Closing a Stream
You can discard the data from a stream at any time by calling the stream’s close
method. Data from a stream is automatically discarded if you do any JDBC
operation that talks to the database, other than reading the current stream. For
example:

■ Fetching the next row.

■ Executing a different statement.

■ Closing the result set or the connection.

Streaming non-LONG or LONG RAW Data
If you get a CHAR, VARCHAR or RAW column with one of the ResultSetgetStream
methods you get a Java InputStream but no real streaming occurs. The data is fully
fetched during the call to executeQuery or next and the getXXXStream entry points
returns a stream that reads data from an in-memory buffer.

Streaming and Row Prefetching
In the presence of a streaming column row prefetching is set back to 1.

Streaming and the Define Extension
You can use the define extension to define a CHAR, VARCHAR or RAW column as
a stream by passing the type codes LONGVARCHAR or LONGVARBINARY. The
program behaves as if that column was actually of the type LONG or LONG RAW.
Note that there is not much point to this, because these columns are usually short.
 37

Streams Tutorial
Stream Types and Column Types
JDBC provides 3 types of streams:

■ BinaryStream: returns the RAW bytes of the data.

■ AsciiStream: returns ASCII bytes. Actually returns ISO-Latin-1 bytes.

■ UnicodeStream: returns Unicode bytes with the UCS-2 encoding in
big-endian format. You first get the high byte (character / 256) and then the
low byte (character % 256)

You can get LONG and LONG RAW data with any of the 3 stream types. The
driver does conversions for you depending on the character set of your database
and on the type of driver.

LONG RAW Data Conversions
RAW data is returned as-is by a BinaryStream but converted to a hexadecimal
representation by an ASCII or Unicode stream. The ASCII streams return the ASCII
bytes of the hexadecimal representation and the Unicode streams returns the
Unicode bytes.

If your LONG RAW column contains the bytes 20 21 22 you receive the following
bytes:

LONG Data Conversions
When you get LONG data as an ASCII stream you get a stream of ISO-Latin-1
characters.

When you get LONG data as a Unicode stream you get a stream of Unicode
characters in the UCS2 encoding. The bytes are returned in big-endian ordering.

When getting LONG data as a Binary stream you get a stream of bytes
representing the characters encoded in Unicode UTF8 format.

LONG RAW BinaryStream ASCIIStream UnicodeStream

20 21 22 20 21 22 49 52 49 53 49 54

which is also

’1’ ’4’ ’1’ ’5’ ’1’ ’6’

 0 49 0 52 0 49 0 53 0 49 0 54

which is also

0 ’1’ 0 ’4’ 0 ’1’ 0 ’5’ 0 ’1’ 0 ’6’
38 Oracle8 JDBC Drivers

Common Problems and Frequently Asked Questions
Common Problems and Frequently Asked Questions
This section lists questions you may have when using the Oracle JDBC drivers.
Installation problems are listed first, then applet questions, and finally general
questions.

Installation

DriverManager.getConnection Gives the Error: “No suitable driver”
Make sure that the driver is registered and that you use a connection URL
consistent with your JDBC driver. See Using Oracle’s JDBC Drivers for the correct
values.

“Unimplemented Method Interface”
You are using a a JDK 1.0.2 driver with JDK 1.1.1. Use classes102.zip for JDK 1.0.2
and classes111.zip for JDK 1.1.1.

“UnsatisfiedLinkError with OCI driver”
When using Win NT or Win95, the Java Virtual Machine complains that it cannot
load OCI804JDBC.DLL, when one of the DLLs called by OCI804JDBC.DLL cannot
be loaded.

The JDBC OCI drivers use shared libraries that contain the C code portions of the
driver. The library is OCI804JDBC.DLL for the Oracle8 client program.

The shared library is normally installed in [ORACLE_HOME]\BIN when you install
the JDBC driver from the distribution. Make sure that directory is in your PATH.
See Installation for more details.

The shared library also depends on other libraries. If any of those DLLs are
missing, you will end up with an error saying OCI804JDBC.DLL is missing.

You can find the list of dependent DLLs by going to the Windows Explorer
program, right-clicking on the DLL, and choosing Quick View. The Quick View
screen shows, among other things, the Import Table which lists the dependent
DLLs.

You can reinstall missing required support files from the Oracle8.0.4 installation CD.
 39

Common Problems and Frequently Asked Questions
“ORA-12705: invalid or unknown NLS parameter value specified”
Try explicitly setting NLS_LANG. If NLS_LANG is not set or is correctly set, then
you may have a client other than Oracle8.0.4. Install Oracle8.0.4 on the client.

“ORA-1019: unable to allocate memory”
You are using the OCI8 driver in an Oracle7 client installation. Use the OCI7 driver.

“Invalid driver designator”
You are using an older version of Net8. The version of Oracle on the client may be
older than Oracle8.0.4. Install Oracle8.0.4 on the client.

The JDBC Drivers do not Work with Oracle Webserver 2.1 on Windows/Windows NT
You need the patch release 2.1.0.3.2 of the Oracle Webserver on Windows/NT to be
able to use the JDBC drivers in the Java cartridge.

Error While Trying to Retrieve Text for Error ORA-12705.
There is no Oracle installation on the client. Install Oracle8.0.4 on the client.

Applets

FileNotFound Exception
“I am using the Thin JDBC driver. When I run my applet using Appletviewer on
the local machine where the classes111.zip file is present in the CLASSPATH, my
applet runs correctly. However, when I run it from a remote machine, I get a
FileNotFoundException:

oracle.jdbc.driver.OracleDriver not found

The best solution is to create your own zip file, which must be un-compressed, that
contains all the JDBC classes plus the classes of your application. Then in your
applet you set your ARCHIVE value to point to that zip file.

How do I Use JDBC OCI in an Applet?
You can’t use JDBC OCI in an applet because it uses native methods. You must use
the JDBC Thin driver for applets.
40 Oracle8 JDBC Drivers

Common Problems and Frequently Asked Questions
Getting Security Exceptions from Netscape 3.0 when Connecting to Oracle
With Netscape 3.0 an applet using the JDBC Thin driver can only connect to an
Oracle database on the same host as the web server it was downloaded from. You
can solve this problem by upgrading to Netscape 4.0. See Applets for more
information.

General Questions

How Do I Distinguish the Arguments to Overloaded Stored Procedures?
The ResultSet returned by the getProceduresColumns calls contain an additional
VARCHAR column named OVERLOAD to distinguish overloaded procedures.
Arguments belonging to the same overloaded procedure all have the same value in
the OVERLOAD column.

For example if you have the following package declaration:

create or replace package pack is
 procedure proc (x date, y number);
 procedure proc (z number);
end p;
The ResultSet returned by getProceduresColumns has the following contents:

It shows that X and Y are the first and second parameters of the first procedure
(OVERLOAD is 1) and that Z is the first parameter of the second procedure
(OVERLOAD is 2).

How Do I Call Stored Procedures?
See Stored Procedures and the PL/SQL samples in the samples directory.

How Can I Stream Data to and from the Database?
See Streams Tutorial and the stream samples in the samples directory.

Table 1–5 Using the OVERLOAD column to distinguish between overloaded proce-
dures

PROCEDURE_NAME COLUMN_NAME PACKAGE_NAME SEQUENCE OVERLOAD

PROC X PACK 1 1

PROC Y PACK 2 1

PROC Z PACK 1 2
 41

Common Problems and Frequently Asked Questions
“Stream has already been closed”
If you fetch LONG or LONG RAW data in the wrong order you can get the SQL
Exception "Stream has already been closed". See Streams Tutorial for more
information.

How can I Debug with Symantec Visual Cafe?
It is not possible to debug JDBC OCI programs with Symantec Visual Cafe. You can
debug programs that use the JDBC Thin driver.

“ORA-01000: maximum open cursors exceeded”
The number of cursors one client can open at a time on a connection is limited (50
is the default value). Close the cursors explicitly by using method stmt.close().

The JDBC Thin Driver Gives Me "invalid character" Errors for Unicode Literals
The JDBC Thin driver requires double quotes around literals that contain Unicode
characters.

For example:

ResultSet rset = stmt.executeQuery ("select * from
\"\u6d82\u6d85\u6886\u5384\"");

Slow INSERT or UPDATE
By default the driver commits all INSERTs and UPDATEs as soon as you execute
the statement. This is known as autoCommit mode in JDBC. You can get better
performance by turning autoCommit off and using explicit COMMIT statements.

Use the setAutoCommit entry point of the Connection class to turn off autoCommit:

connection.setAutoCommit(false);

See Batching Updates for information about the Oracle extensions for batching calls
to INSERT and UPDATE. Batching these commands can achieve even more speed
than turning off autoCommit.

How do I Set the Database Wait and Rollback Options
The waitOption and autoRollback parameters control rollback options for
non-fatal errors when executing statements that affect multiple rows. This is only
relevant if you are batching calls to INSERT and UPDATE as described in Batching
Updates.
42 Oracle8 JDBC Drivers

Common Problems and Frequently Asked Questions
You can set the Wait and Rollback options on a per-statement basis with the
Statement setAutoRollback and setWaitOption methods.

First cast the statement to the class oracle.jdbc.driver.OracleStatement. We recommend
you import classes from the package oracle.jdbc.driver to make your code more
readable.

The OracleStatement class provides the following entry points:

■ public void setAutoRollback (int autoRollback);

 Set the Rollback option. See table below for valid values.

■ public int getAutoRollback();

 Return the current Rollback option for the statement.

■ public void setWaitOption(int waitOption);

 Set the Wait option. See table below for valid values.

■ public int getWaitOption();

 Return the current Wait option for the statement.

For example:

import oracle.jdbc.driver.*;
 ...
 OracleStatement s = (OracleStatement)conn.createStatement ();
 s.setWaitOption (4);
 s.setAutoRollback (2);

Table 1–6 Valid values for the Wait and Rollback options

Parameter Value Effect

waitOption 0 The program waits until the requested resource is
available. This is the default setting.

waitOption 4 The driver returns an error code if a requested
resource is not available.

autoRollback 0 Any error (even non-fatal) causes the current transac-
tion to be rolled back.

autoRollback 2 A non-fatal row-level error causes only the failing
row to be rolled back.
 43

Common Problems and Frequently Asked Questions
44 Oracle8 JDBC Drivers

	Up
	Contents
	Copyright Information
	Introduction
	JDBC Thin
	JDBC OCI
	JDK Versions
	Configuration
	Changes From the Beta Release

	Getting Started
	Distribution Files
	Environment Variables
	Testing the Installation

	Using Oracle’s JDBC Drivers
	Using JDBC OCI
	Using JDBC Thin Driver With JDK 1.1.1
	Using JDBC Thin with JDK 1.0.2

	Features of All Oracle JDBC Drivers
	Datatypes
	LOB datatypes
	Multibyte Character Sets
	Streaming
	Stored Procedures
	Database Metadata
	SQL92 Syntax
	Extensions to JDBC 1.22
	Limitations

	Features of Specific Oracle JDBC Drivers
	JDBC OCI Features
	JDBC Thin Features

	Extensions to JDBC
	Connection Properties
	Type Extensions
	Performance Extensions

	Features Not Implemented
	Applets
	Browser Security Considerations
	Firewall Considerations
	Writing the Applet Code
	Packaging the Applet Code

	Streams Tutorial
	Streams and LONG or LONG RAW Columns

	Common Problems and Frequently Asked Questions
	Installation
	DriverManager.getConnection Gives the Error: “No s...
	“Unimplemented Method Interface”
	“UnsatisfiedLinkError with OCI driver”
	“ORA-12705: invalid or unknown NLS parameter value...
	“ORA-1019: unable to allocate memory”
	“Invalid driver designator”
	The JDBC Drivers do not Work with Oracle Webserver...
	Error While Trying to Retrieve Text for Error ORA-...
	Applets
	FileNotFound Exception
	How do I Use JDBC OCI in an Applet?
	Getting Security Exceptions from Netscape 3.0 when...
	General Questions
	How Do I Distinguish the Arguments to Overloaded S...
	How Do I Call Stored Procedures?
	How Can I Stream Data to and from the Database?
	“Stream has already been closed”
	How can I Debug with Symantec Visual Cafe?
	“ORA-01000: maximum open cursors exceeded”
	The JDBC Thin Driver Gives Me "invalid character" ...
	Slow INSERT or UPDATE
	How do I Set the Database Wait and Rollback Option...

