
Oracle8

Application Developer’s Guide

Release 8.0

December, 1997

Part No. A58241-01

 Oracle8 Application Developer’s Guide

Part No. A58241-01

Release 8.0

Copyright © 1997, Oracle Corporation. All rights reserved.

Primary Author: Denis Raphaely

Contributing Authors: Paul Lane, Lefty Leverenz, Richard Mateosian

Contributors: Richard Allen, Neerja Bhatt, Steven Bobrowski, George Buzsaki, Sashi Chandrasekaran,
Atif Chaudry, Greg Doherty, Dieter Gawlick, Gary Hallmark, Michael Hartstein, Chin Hong, Kenneth
Jacobs, Hakan Jakobsson, Amit Jasuja, Robert Jenkins, Jr., Jonathan Klein, Robert Kooi, Susan Kotsovolos,
Vishu Krishnamurthy, Ramkumar Krishnan, Juan Loaiza, William Maimone, Andrew Mendelsohn, Mark
Moore, Ravi Narayaran, Goran Olsson, Edward Peeler, Thomas Portfolio, Maria Pratt, Tuomas Pystynen,
Mark Ramacher, Madhu Reddy, Hasan Rizvi, Premal Shah, Timothy Smith, Alvin To, Usha Sundaram,
Scott Urman, Peter Vasterd, Joyo Wijaya

Graphic Designer: Valarie Moore

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inher-
ently dangerous applications. It shall be licensee's responsibility to take all appropriate fail-safe, back
up, redundancy and other measures to ensure the safe use of such applications if the Programs are
used for such purposes, and Oracle disclaims liability for any damages caused by such use of the Pro-
grams.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright patent and
other intellectual property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free.

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is deliv-
ered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are 'commercial
computer software' and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are 'restricted computer software' and use, duplication and disclo-
sure of the Programs shall be subject to the restrictions in FAR 52..227-14, Rights in Data -- General,
including Alternate III (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle, Pro*Ada, Pro*COBOL, Pro*FORTRAN, SQL*Loader, SQL*Net and SQL*Plus are registered trade-
marks of Oracle Corporation, Redwood City, California.

Designer/2000, Developer/2000, Net8, Oracle Call Interface, Oracle7, Oracle8, Oracle Forms, Oracle
Parallel Server, PL/SQL, Pro*C, Pro*C/C++ and Trusted Oracle are trademarks of Oracle Corporation,
Redwood City, California.

All other products or company names are used for identification purposes only, and may be trademarks
of their respective owners.

Contents

Send Us Your Comments ... xxi

Preface .. xxiii

Information in This Guide... xxiv
Audience.. xxiv
Feature Coverage and Availability ... xxiv
Other Guides .. xxiv
How This Book Is Organized ... xxv
Conventions Used in this Guide ... xxvii
Your Comments Are Welcome... xxviii

1 Information Sources for Application Developers

Sources of Information .. 1-2
Specific Topics ... 1-2

Business Rules... 1-3
Client-Side Tools... 1-3
Communicating with 3GL Programs .. 1-3
Database Constraints ... 1-4
Database Design ... 1-4
Datatypes ... 1-4
Debugging ... 1-4
Error Handling.. 1-4
Gateways.. 1-4
Oracle-Supplied Packages ... 1-5
 iii

PL/SQL .. 1-5
Schema Objects.. 1-5
Security... 1-5
SQL Statements ... 1-5
Tools.. 1-6

2 The Application Developer

Assessing Needs.. 2-2
Designing the Database... 2-2
Designing the Application .. 2-4

Using Available Features... 2-4
Using the Oracle Call Interface ... 2-7

Writing SQL ... 2-7
Enforcing Security in Your Application ... 2-8
Tuning an Application ... 2-8
Maintaining and Updating an Application ... 2-9

3 Processing SQL Statements

SQL Statement Execution .. 3-2
FIPS Flagging... 3-2

Controlling Transactions ... 3-4
Improving Performance... 3-4
Committing a Transaction... 3-5
Rolling Back a Transaction .. 3-6
Defining a Transaction Savepoint .. 3-6
Privileges Required for Transaction Management .. 3-7

Read-Only Transactions... 3-8
The Use of Cursors.. 3-9

Declaring and Opening Cursors... 3-9
Using a Cursor to Re-Execute Statements... 3-9
Closing Cursors... 3-10
Cancelling Cursors ... 3-10

Explicit Data Locking ... 3-10
Explicitly Acquiring Table Locks ... 3-11
Privileges Required .. 3-14
 iv

Explicitly Acquiring Row Locks .. 3-15
SERIALIZABLE and ROW_LOCKING Parameters .. 3-16

Summary of Non-Default Locking Options ... 3-16
Creating User Locks ... 3-17

The DBMS_LOCK Package ... 3-18
Security... 3-18
Creating the DBMS_LOCK Package.. 3-19
ALLOCATE_UNIQUE Procedure ... 3-19
REQUEST Function .. 3-20
CONVERT Function... 3-23
RELEASE Function... 3-25

SLEEP Procedure... 3-26
Sample User Locks ... 3-26
Viewing and Monitoring Locks ... 3-27
Concurrency Control Using Serializable Transactions ... 3-28

Serializable Transaction Interaction... 3-31
Setting the Isolation Level ... 3-31
Referential Integrity and Serializable Transactions... 3-32
READ COMMITTED and SERIALIZABLE Isolation.. 3-34
Application Tips ... 3-37

4 Managing Schema Objects

Managing Tables ... 4-2
Designing Tables... 4-2
Creating Tables ... 4-3
Altering Tables.. 4-7
Dropping Tables ... 4-8

Managing Views ... 4-9
Creating Views.. 4-10
Replacing Views ... 4-12
Using Views... 4-13
Dropping Views.. 4-15

Modifying a Join View .. 4-15
Key-Preserved Tables... 4-17
Rule for DML Statements on Join Views... 4-18
 v

Using the UPDATABLE_COLUMNS Views.. 4-20
Outer Joins ... 4-20

Managing Sequences.. 4-23
Creating Sequences... 4-23
Altering Sequences ... 4-24
Using Sequences ... 4-24
Dropping Sequences... 4-28

Managing Synonyms ... 4-29
Creating Synonyms .. 4-29
Using Synonyms ... 4-29
Dropping Synonyms .. 4-30

Managing Indexes... 4-30
Creating Indexes ... 4-34
Dropping Indexes ... 4-35

Managing Clusters, Clustered Tables, and Cluster Indexes... 4-36
Guidelines for Creating Clusters .. 4-36
Performance Considerations... 4-37
Creating Clusters, Clustered Tables, and Cluster Indexes ... 4-37
Manually Allocating Storage for a Cluster ... 4-39
Dropping Clusters, Clustered Tables, and Cluster Indexes ... 4-39

Managing Hash Clusters and Clustered Tables.. 4-41
Creating Hash Clusters and Clustered Tables.. 4-41
Controlling Space Usage Within a Hash Cluster ... 4-41
Dropping Hash Clusters .. 4-42
When to Use Hashing .. 4-42

Miscellaneous Management Topics for Schema Objects.. 4-43
Creating Multiple Tables and Views in One Operation.. 4-44
Naming Schema Objects .. 4-45
Name Resolution in SQL Statements ... 4-45
Renaming Schema Objects... 4-46
Listing Information about Schema Objects ... 4-47

5 Selecting a Datatype

Oracle Built-In Datatypes.. 5-2
Using Character Datatypes.. 5-5
 vi

Using the NUMBER Datatype .. 5-7
Using the DATE Datatype... 5-8
Using the LONG Datatype.. 5-10
Using RAW and LONG RAW Datatypes ... 5-12
ROWIDs and the ROWID Datatype .. 5-13

Trusted Oracle MLSLABEL Datatype ... 5-16
ANSI/ISO, DB2, and SQL/DS Datatypes ... 5-16
Data Conversion.. 5-18

Rule 1: Assignments ... 5-18
Rule 2: Expression Evaluation .. 5-19
Data Conversion for Trusted Oracle.. 5-21

6 Large Objects (LOBs)

Introduction to LOBs ... 6-2
What Are LOBs? ... 6-4
Internal LOBs and External LOBs (BFILEs).. 6-5
LOBs in Comparison to LONG and LONG RAW Types ... 6-6
Packages for Working with LOBs .. 6-6
LOB Datatypes .. 6-6
Defining Internal and External LOBs for Tables.. 6-8
Stipulating Tablespace and Storage Characteristics for Internal Lobs 6-8
Initializing Internal LOBs (SQL DML) .. 6-14
Accessing External LOBs (SQL DML) ... 6-15
BFILE Security... 6-17
Catalog Views on Directories.. 6-19
Guidelines for DIRECTORY Usage ... 6-19
Maximum Number of Open BFILEs.. 6-20
BFILEs in MTS Mode ... 6-21
Closing BFILEs after Program Termination ... 6-21
LOB Value and Locators.. 6-21
LOB Locator Operations.. 6-22
 Efficient Reads and Writes of Large Amounts of LOB Data ... 6-37
Copying LOBs ... 6-38
Deleting LOBs ... 6-39
 LOBs in the Object Cache ... 6-46
 vii

LOB Buffering Subsystem ... 6-47
User Guidelines for Best Performance Practices .. 6-57
Working with Varying-Width Character Data... 6-57

 LOB Reference .. 6-59
Reference Overview ... 6-59
EMPTY_BLOB() and EMPTY_CLOB() Functions.. 6-59
BFILENAME() Function .. 6-60
Using the OCI to Manipulate LOBs ... 6-63
DBMS_LOB Package .. 6-66
Package Routines .. 6-66
Datatypes ... 6-67
Type Definitions.. 6-67
Constants.. 6-68
DBMS_LOB Exceptions.. 6-68
DBMS_LOB Security .. 6-69
DBMS_LOB General Usage Notes.. 6-69
BFILE-Specific Usage Notes .. 6-70
DBMS_LOB.APPEND() Procedure .. 6-72
DBMS_LOB.COMPARE() Function ... 6-74
DBMS_LOB.COPY() Procedure.. 6-77
DBMS_LOB.ERASE() Procedure .. 6-79
DBMS_LOB.FILECLOSE() Procedure.. 6-80
DBMS_LOB.FILECLOSEALL() Procedure.. 6-81
DBMS_LOB.FILEEXISTS() Function.. 6-82
DBMS_LOB.FILEGETNAME() Procedure.. 6-84
DBMS_LOB.FILEISOPEN() Function .. 6-85
DBMS_LOB.FILEOPEN() Procedure ... 6-86
DBMS_LOB.GETLENGTH() Function .. 6-87
DBMS_LOB.INSTR() Function.. 6-89
DBMS_LOB.LOADFROMFILE() Procedure... 6-91
DBMS_LOB.READ() Procedure.. 6-94
DBMS_LOB.SUBSTR() Function... 6-97
DBMS_LOB.TRIM() Procedure... 6-99
\DBMS_LOB.WRITE() Procedure.. 6-100
LOB Restrictions ... 6-103
 viii

7 User-Defined Datatypes — An Extended Example

Introduction ... 7-2
A Purchase Order Example ... 7-2

Entities and Relationships ... 7-3
Part 1: Relational Approach .. 7-4
Part 2: Object-Relational Approach with Object Tables.. 7-8

8 Object Views—An Extended Example

Introduction ... 8-2
Purchase Order Example ... 8-2

Defining Object Views ... 8-3
Updating the Object Views ... 8-6
Sample Updates .. 8-8
Selecting ... 8-9

9 Maintaining Data Integrity

Using Integrity Constraints .. 9-2
When to Use Integrity Constraints... 9-2
Taking Advantage of Integrity Constraints.. 9-3
Using NOT NULL Integrity Constraints... 9-3
Setting Default Column Values .. 9-4
Choosing a Table’s Primary Key .. 9-5
Using UNIQUE Key Integrity Constraints ... 9-6

Using Referential Integrity Constraints ... 9-7
Nulls and Foreign Keys ... 9-7
Relationships Between Parent and Child Tables ... 9-9
Multiple FOREIGN KEY Constraints .. 9-10
Concurrency Control, Indexes, and Foreign Keys... 9-10

Referential Integrity in a Distributed Database ... 9-13
Using CHECK Integrity Constraints... 9-13

Restrictions on CHECK Constraints .. 9-14
Designing CHECK Constraints .. 9-14
Multiple CHECK Constraints ... 9-15
CHECK and NOT NULL Integrity Constraints ... 9-15
 ix

Defining Integrity Constraints ... 9-15
The CREATE TABLE Command.. 9-16
The ALTER TABLE Command... 9-16
Required Privileges .. 9-17
Naming Integrity Constraints ... 9-18
Enabling and Disabling Constraints Upon Definition .. 9-18
UNIQUE Key, PRIMARY KEY, and FOREIGN KEY .. 9-18

Enabling and Disabling Integrity Constraints.. 9-19
Why Enable or Disable Constraints? ... 9-19
Integrity Constraint Violations ... 9-19
On Definition... 9-20
Enabling and Disabling Defined Integrity Constraints... 9-21
Enabling and Disabling Key Integrity Constraints.. 9-22
Enabling Constraints after a Parallel Direct Path Load... 9-22
Exception Reporting... 9-23

Altering Integrity Constraints .. 9-24
Dropping Integrity Constraints ... 9-25
Managing FOREIGN KEY Integrity Constraints ... 9-25

Defining FOREIGN KEY Integrity Constraints.. 9-25
Enabling FOREIGN KEY Integrity Constraints ... 9-27

Listing Integrity Constraint Definitions... 9-27
Examples .. 9-28

10 Using Procedures and Packages

PL/SQL Procedures and Packages ... 10-2
Anonymous Blocks... 10-2
Database Triggers ... 10-4
Stored Procedures and Functions... 10-4
Creating Stored Procedures and Functions .. 10-9
Altering Stored Procedures and Functions... 10-11
External Procedures.. 10-11

PL/SQL Packages... 10-11
Creating Packages... 10-13
Creating Packaged Objects .. 10-14
Naming Packages and Package Objects .. 10-14
 x

Dropping Packages and Procedures.. 10-14
Package Invalidations and Session State... 10-15

Remote Dependencies ... 10-16
Timestamps ... 10-16
Signatures .. 10-17
Controlling Remote Dependencies .. 10-23
Suggestions for Managing Dependencies... 10-25

Cursor Variables.. 10-25
Declaring and Opening Cursor Variables... 10-26
Examples of Cursor Variables .. 10-26

Hiding PL/SQL Code ... 10-29
Error Handling .. 10-29

Declaring Exceptions and Exception Handling Routines... 10-30
Unhandled Exceptions... 10-32
Handling Errors in Distributed Queries ... 10-32
Handling Errors in Remote Procedures .. 10-33
Compile Time Errors.. 10-34
Debugging ... 10-35

Invoking Stored Procedures ... 10-36
A Procedure or Trigger Calling Another Procedure ... 10-36
Interactively Invoking Procedures From Oracle Tools ... 10-36
Calling Procedures within 3GL Applications .. 10-37
Name Resolution When Invoking Procedures... 10-38
Privileges Required to Execute a Procedure... 10-38
Specifying Values for Procedure Arguments ... 10-39
Invoking Remote Procedures.. 10-39
Referencing Remote Objects ... 10-40
Synonyms for Procedures and Packages .. 10-41

Calling Stored Functions from SQL Expressions ... 10-42
Using PL/SQL Functions .. 10-42
Syntax ... 10-43
Naming Conventions ... 10-43
Meeting Basic Requirements... 10-45
Controlling Side Effects ... 10-46
Overloading... 10-51
 xi

Serially Reusable PL/SQL Packages.. 10-51
Privileges Required .. 10-59

Supplied Packages .. 10-59
Packages Supporting SQL Features ... 10-60
Packages Supporting Additional Functionality ... 10-65

Describing Stored Procedures .. 10-69
DBMS_DESCRIBE Package... 10-69
Security... 10-69
Types... 10-69
Errors .. 10-69
DESCRIBE_PROCEDURE Procedure.. 10-70

Listing Information about Procedures and Packages .. 10-77
The DBMS_ROWID Package ... 10-79

Summary.. 10-80
Exceptions .. 10-81
ROWID_CREATE Function .. 10-81
ROWID_INFO Procedure.. 10-82
ROWID_TYPE Function .. 10-83
ROWID_OBJECT Function.. 10-83
ROWID_RELATIVE_FNO Function.. 10-83
ROWID_BLOCK_NUMBER Function... 10-84
ROWID_ROW_NUMBER Function... 10-84
ROWID_TO_ABSOLUTE_FNO Function... 10-84
ROWID_TO_EXTENDED Function... 10-85
ROWID_TO_RESTRICTED Function .. 10-86
ROWID_VERIFY Function .. 10-87

The UTL_HTTP Package ... 10-87

11 Advanced Queuing

Introduction to Oracle Advanced Queuing ... 11-2
Introduction Overview .. 11-2
Complex Systems.. 11-3
Possible Solutions: Synchronous versus Disconnected/Deferred Communication......... 11-7
Oracle Advanced Queuing — Features... 11-8
Oracle Advanced Queuing — Primary Components.. 11-12
 xii

Modeling Queue Entities... 11-14
Basic Queuing ... 11-15
Illustrating Basic Queuing... 11-15
Illustrating Client-Server Communication Using AQ .. 11-17
Multiple-Consumer Dequeuing of the Same Message ... 11-18
Illustrating Multiple-Consumer Dequeuing of the Same Message................................... 11-19
Illustrating Dequeuing of Specified Messages by Specified Recipients 11-21
Illustrating the Implementation of Workflows using AQ .. 11-23
Message Propagation ... 11-24
llustration of Message Propagation ... 11-26

Oracle Advanced Queuing by Example ... 11-27
Overview Summary ... 11-27
Assign Roles and Privileges .. 11-28
Create Queue Tables and Queues .. 11-28
Enqueue and Dequeue of Object Type Messages .. 11-30
Enqueue and Dequeue of Object Type Messages Using Pro*C/C++............................... 11-31
Enqueue and Dequeue of Object Type Messages Using OCI .. 11-33
Enqueue and Dequeue of RAW Type Messages.. 11-35
Enqueue and Dequeue of RAW Type Messages using Pro*C/C++ 11-36
Enqueue and Dequeue of RAW Type Messages using OCI .. 11-38
Enqueue and Dequeue of Messages by Priority .. 11-40
Dequeue of Messages after Preview by Criterion.. 11-41
Enqueue and Dequeue of Messages with Time Delay and Expiration 11-45
Enqueue and Dequeue by Correlation and Message Id Using Pro*C/C++ 11-46
Enqueue and Dequeue of Messages by Correlation and Message ID using OCI 11-50
Enqueue and Dequeue of Messages to/from a Multiconsumer Queue using PL/SQL 11-52
Enqueue and Dequeue of Messages to/from a Multiconsumer Queue using OCI........ 11-55
Enqueue of Messages to a Multiconsumer Queue and Propagation Scheduling 11-59
 Unscheduling Propagation .. 11-61
Enqueue and Dequeue using Message Grouping ... 11-61
Drop AQ Objects... 11-63
Revoke Roles and Privileges ... 11-64

Oracle Advanced Queuing Reference .. 11-65
Reference Overview ... 11-65
INIT.ORA Parameter ... 11-65
 xiii

 Data Structures... 11-67
Agent .. 11-68
Message Properties ... 11-69
Queue Options .. 11-71
Operational Interface.. 11-74
Enumerated Constants in the Operational Interface ... 11-78
Administrative Interface.. 11-78
Enumerated Constants in the Administrative Interface ... 11-95
Database Objects ... 11-95
Error Messages ... 11-101

Administration Topics... 11-101
Performance.. 11-101
Availability ... 11-102
Scalability .. 11-102
Optimizing Propagation ... 11-102
Reliability and Recoverability.. 11-102
Enterprise Manager Support.. 11-103
Importing and Exporting Queue Data.. 11-103
Troubleshooting ... 11-104
Dynamic Statistics Views.. 11-106
Reference to Demos ... 11-107

Compatibility & Upgrade... 11-108

12 PL/SQL Input/Output

Database Pipes... 12-2
Summary.. 12-2
Creating the DBMS_PIPE Package... 12-3
Public Pipes.. 12-3
Private Pipes .. 12-4
Errors .. 12-4
CREATE_PIPE... 12-4
PACK_MESSAGE Procedures .. 12-6
SEND_MESSAGE ... 12-7
RECEIVE_MESSAGE ... 12-9
NEXT_ITEM_TYPE .. 12-11
 xiv

UNPACK_MESSAGE Procedures ... 12-11
REMOVE_PIPE ... 12-12
Managing Pipes .. 12-12
Purging the Contents of a Pipe... 12-12
Resetting the Message Buffer.. 12-13
Getting a Unique Session Name... 12-13
Example 1: Debugging... 12-13
Example 2: Execute System Commands ... 12-15

Output from Stored Procedures and Triggers ... 12-22
Summary.. 12-22
Creating the DBMS_OUTPUT Package... 12-23
Errors .. 12-23
ENABLE Procedure.. 12-23
DISABLE Procedure... 12-24
PUT and PUT_LINE Procedures.. 12-24
GET_LINE and GET_LINES Procedures .. 12-25
Examples Using the DBMS_OUTPUT Package ... 12-26

PL/SQL File I/O ... 12-29
Summary.. 12-29
Security... 12-30
Declared Types.. 12-32
Exceptions.. 12-32
FOPEN.. 12-33
IS_OPEN .. 12-34
FCLOSE.. 12-35
FCLOSE_ALL.. 12-36
GET_LINE.. 12-36
PUT ... 12-37
NEW_LINE.. 12-38
PUT_LINE.. 12-39
PUTF... 12-39
FFLUSH.. 12-41
 xv

13 Using Database Triggers

Designing Triggers.. 13-2
Creating Triggers ... 13-2

Prerequisites for Creating Triggers .. 13-3
Naming Triggers... 13-3
The BEFORE and AFTER Options ... 13-3
The INSTEAD OF Option.. 13-4
Triggering Statement.. 13-6
FOR EACH ROW Option .. 13-7
The WHEN Clause ... 13-8
The Trigger Body .. 13-8
Triggers and Handling Remote Exceptions.. 13-11
Restrictions on Creating Triggers... 13-12
Who Is the Trigger User? ... 13-16
Privileges Required to Create Triggers.. 13-17
Privileges for Referenced Schema Objects .. 13-17

When Triggers Are Compiled ... 13-17
Dependencies .. 13-18
Recompiling a Trigger.. 13-18
Migration Issues.. 13-18

Debugging a Trigger... 13-19
Modifying a Trigger.. 13-19
Enabling and Disabling Triggers ... 13-19

Disabling Triggers .. 13-19
Enabling Triggers.. 13-20
Privileges Required to Enable and Disable Triggers ... 13-20

Listing Information About Triggers .. 13-21
Examples of Trigger Applications.. 13-22

Auditing with Triggers .. 13-22
Integrity Constraints and Triggers... 13-26
Complex Security Authorizations and Triggers .. 13-34
Transparent Event Logging and Triggers ... 13-35
Derived Column Values and Triggers... 13-35
 xvi

14 Using Dynamic SQL

Overview of Dynamic SQL... 14-2
Creating the DBMS_SQL Package.. 14-2

Using DBMS_SQL.. 14-3
Execution Flow .. 14-4
Security for Dynamic SQL .. 14-7

For Oracle Server Users ... 14-7
For Trusted Oracle Server Users .. 14-7

Procedures and Functions ... 14-8
OPEN_CURSOR Function... 14-9
PARSE Procedure ... 14-10
BIND_VARIABLE and BIND_ARRAY Procedures .. 14-11
Processing Queries ... 14-15
DEFINE_COLUMN Procedure .. 14-16
DEFINE_ARRAY Procedure... 14-17
DEFINE_COLUMN_LONG Procedure .. 14-19
EXECUTE Function .. 14-20
EXECUTE_AND_FETCH Function ... 14-20
FETCH_ROWS Function ... 14-21
COLUMN_VALUE Procedure ... 14-21
COLUMN_VALUE_LONG Procedure ... 14-23
VARIABLE_VALUE Procedure ... 14-24
Processing Updates, Inserts and Deletes... 14-26
IS_OPEN Function.. 14-26
DESCRIBE_COLUMNS Procedure.. 14-26
CLOSE_CURSOR Procedure .. 14-28

Locating Errors .. 14-29
LAST_ERROR_POSITION Function ... 14-29
LAST_ROW_COUNT Function.. 14-29
LAST_ROW_ID Function .. 14-29
LAST_SQL_FUNCTION_CODE Function ... 14-29

Examples of Using DBMS_SQL .. 14-30
 xvii

15 Dependencies Among Schema Objects

Dependency Issues ... 15-2
Avoiding Runtime Recompilation ... 15-2
Remote Dependencies.. 15-4

Manually Recompiling .. 15-4
Manually Recompiling Views... 15-5
Manually Recompiling Procedures and Functions.. 15-5
Manually Recompiling Packages ... 15-5
Manually Recompiling Triggers... 15-6

Listing Dependency Management Information ... 15-6
The Dependency Tracking Utility .. 15-7

16 Signalling Database Events with Alerters

Overview... 16-2
Creating the DBMS_ALERT Package .. 16-3
Security... 16-3
Errors .. 16-3

Using Alerts.. 16-4
REGISTER Procedure... 16-5
REMOVE Procedure... 16-5
SIGNAL Procedure... 16-5
WAITANY Procedure .. 16-6
WAITONE Procedure .. 16-7

Checking for Alerts... 16-8
SET_DEFAULTS Procedure .. 16-8

Example of Using Alerts .. 16-9

17 Establishing a Security Policy

Application Security Policy .. 17-2
Application Administrators .. 17-2
Roles and Application Privilege Management... 17-2
Enabling Application Roles... 17-3
Restricting Application Roles from Tool Users .. 17-5
Schemas.. 17-7
 xviii

Managing Privileges and Roles ... 17-7
Creating a Role.. 17-9
Enabling and Disabling Roles... 17-10
Dropping Roles ... 17-13
Granting and Revoking Privileges and Roles .. 17-13
Granting to, and Revoking from, the User Group PUBLIC ... 17-18
When Do Grants and Revokes Take Effect? ... 17-19
How Do Grants Affect Dependent Objects?... 17-19

18 Oracle XA

XA Library-Related Information ... 18-2
General Information about the Oracle XA.. 18-2
README.doc .. 18-2

Changes from Release 7.3 to Release 8.0 .. 18-2
Session Caching Is No Longer Needed ... 18-2
Dynamic Registration Is Supported... 18-3
Loosely Coupled Transaction Branches Are Supported... 18-3
SQLLIB Is Not Needed for OCI Applications .. 18-3
No Installation Script Is Needed to Run XA... 18-3
The XA Library Can Be Used with the Oracle Parallel Server Option on All Platforms . 18-3
Transaction Recovery for Oracle Parallel Server Has Been Improved 18-4
Both Global and Local Transactions Are Possible ... 18-4
The xa_open String Has Been Modified.. 18-5

General Issues and Restrictions... 18-6
Database Links .. 18-6
Oracle Parallel Server Option ... 18-7
SQL-based Restrictions .. 18-7
Miscellaneous XA Issues ... 18-8
Basic Architecture .. 18-10
X/Open Distributed Transaction Processing(DTP)... 18-10
Transaction Recovery Management .. 18-12
Oracle XA Library Interface Subroutines.. 18-12
XA Library Subroutines... 18-13
Extensions to the XA Interface.. 18-13
Transaction Processing Monitors (TPMs) ... 18-14
 xix

Required Public Information... 18-14
Registration ... 18-15

Developing and Installing Applications That Use the XA Libraries 18-16
Responsibilities of the DBA or System Administrator.. 18-16
Responsibilities of the Application Developer ... 18-17

Defining the xa_open String ... 18-17
Syntax of the xa_open String... 18-17
Required Fields ... 18-18
Optional Fields .. 18-20

Interfacing to Precompilers and OCIs .. 18-22
Using Precompilers with the Oracle XA Library ... 18-23
Using OCI with the Oracle XA Library ... 18-25

Transaction Control .. 18-26
Examples of Precompiler Applications ... 18-27

Migrating Precompiler or OCI Applications to TPM Applications...................................... 18-28
XA Library Thread Safety ... 18-29

The Open String Specification... 18-30
Restrictions... 18-30

Troubleshooting .. 18-30
Trace Files .. 18-30
Trace File Examples.. 18-31
In-doubt or Pending Transactions.. 18-32
Oracle Server SYS Account Tables ... 18-32

Index
 xx

Send Us Your Comments

Oracle8 Application Developer’s Guide, Release 8.0

Part No. A58241-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

■ electronic mail - infodev@us.oracle.com
■ FAX - (650)506-7228
■ postal service:

Oracle Corporation
Oracle Server Documentation Manager
500 Oracle Parkway
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, and telephone number below.
 xxi

xxii

Preface

This Guide describes features of application development for the Oracle Server,
Release 8.0. Information in this Guide applies to versions of the Oracle Server that
run on all platforms, and does not include system-specific information.

The Preface includes the following sections:

■ Information in This Guide

■ How This Book Is Organized

■ Conventions Used in this Guide

■ Your Comments Are Welcome
 xxiii

Information in This Guide
As an application developer, you should learn about the many Oracle Server fea-
tures that can ease application development and improve performance. This Guide
describes Oracle Server features that relate to application development. It does not
cover the PL/SQL language, nor does it directly discuss application development
on the client side. See the table of contents and Chapter 1 in this Guide for more
information about the material covered. Chapter 1 also points you to other Oracle
documentation that contains related information.

Audience
The Oracle8 Application Developer’s Guide is intended for programmers developing
new applications or converting existing applications to run in the Oracle environ-
ment. This Guide will also be valuable to systems analysts, project managers, and
others interested in the development of database applications.

This guide assumes that you have a working knowledge of application program-
ming, and that you are familiar with the use of Structured Query Language (SQL)
to access information in relational database systems.

Certain sections of this Guide also assume a knowledge of the basic concepts of
object oriented programming.

Feature Coverage and Availability
The Oracle8 Application Developer’s Guide contains information that describes the
features and functionality of the Oracle8 and the Oracle8 Enterprise Edition
products. Oracle8 and Oracle8 Enterprise Edition have the same basic features.
However, several advanced features are available only with the Enterprise Edition,
and some of these are optional. For example, to use object functionality, you must
have the Enterprise Edition and the Objects Option.

For information about the differences between Oracle8 and the Oracle8 Enterprise
Edition and the features and options that are available to you, see Getting to Know
Oracle8 and the Oracle8 Enterprise Edition.

Other Guides
Use the PL/SQL User’s Guide and Reference to learn PL/SQL and to get a complete
description of this high-level programming language, which is Oracle Corpora-
tion’s procedural extension to SQL.

The Oracle Call Interface (OCI) is described ins:
xxiv

■ Oracle Call Interface Programmer’s Guide

You can use the OCI to build third-generation language (3GL) applications that
access the Oracle Server.

Oracle Corporation also provides the Pro* series of precompilers, which allow you
to embed SQL and PL/SQL in your application programs. If you write 3GL applica-
tion programs in Ada, C, C++, COBOL, or FORTRAN that incorporate embedded
SQL, refer to the corresponding precompiler manual. For example, if you program
in C or C++, refer to the Pro*C/C++ Precompiler Programmer’s Guide.

Oracle Developer/2000 is a cooperative development environment that provides
several tools including a form builder, reporting tools, and a debugging environ-
ment for PL/SQL. If you use Developer/2000, refer to the appropriate Oracle Tools
documentation.

For SQL information, see the Oracle8 SQL Reference and Oracle8 Administrator’s
Guide. For basic Oracle concepts, see Oracle8 Concepts.

How This Book Is Organized
The Oracle8 Application Developer’s Guide contains eighteen chapters. A brief sum-
mary of what you will find in each chapter follows:

Chapter 1: Information Sources for Application Developers

This chapter provides a road map that enables you to determine where to find infor-
mation about specific application development topics, both in this Guide and in
other Oracle technical publications.

Chapter 2: The Application Developer

This chapter provides an overview of the Oracle Server application development
process.

Chapter 3: Processing SQL Statements

This chapter explains the steps that the Oracle Server performs to process the vari-
ous types of SQL commands and PL/SQL statements.

Chapter 4: Managing Schema Objects

This chapter describes how to manage the objects that can be created in the data-
base domain of a specific user (schema), including tables, views, numeric
sequences, and synonyms. It also discusses performance enhancements to data
retrieval through the use of indexes and clusters.

Chapter 5: Selecting a Datatype
xxv

This chapter describes how to choose the correct Oracle datatype. The datatypes
described include fixed- and variable-length character strings, numeric data, dates,
raw binary data, and row identifiers (ROWIDs).

Chapter 6: Large Objects (LOBs)

This chapter describes the extended SQL commands and PL/SQL interface for the
LOB datatypes, which include BLOBs for unstructured binary data, CLOBs and
NCLOBs for character data, and BFILEs for data stored in an external file.

Chapter 7: User-Defined Datatypes — An Extended Example

This chapter explains how to define and use the composite datatypes and collection
datatypes (varying-length arrays and nested tables) that can be created for particu-
lar application requirements.

Chapter 8: Object Views—An Extended Example

This chapter explains how to define and use object views.

Chapter 9: Maintaining Data Integrity

This chapter describes how to use declarative integrity constraints to provide data
integrity within an Oracle database.

Chapter 10: Using Procedures and Packages

This chapter describes how to create procedures that can be stored in the database
for continued use. Grouping these procedures into packages is also described in
this chapter.

Chapter 11: Advanced Queuing

This chapter describes how to use advanced queuing to defer or regulate the execu-
tion of work in a client/server environment.

Chapter 12: PL/SQL Input/Output

This chapter describes how to use public and private pipes to allow sessions in the
same Oracle Server instance to communicate with one another or with a disk file.

Chapter 13: Using Database Triggers

This chapter describes how to create and debug database triggers. Numerous exam-
ples are included.

Chapter 14: Using Dynamic SQL

This chapter describes how you can write stored procedures and anonymous PL/
SQL blocks using dynamic SQL.
xxvi

Chapter 15: Dependencies Among Schema Objects

This chapter describes how to manage the dependencies among related views, pro-
cedures, packages, and triggers.

Chapter 16: Signalling Database Events with Alerters

This chapter describes how you can design your application to be notified when-
ever values that are of interest to the application change in the database.

Chapter 17: Establishing a Security Policy

This chapter describes how to design a security policy using the Oracle security fea-
tures.

Chapter 18: Oracle XA

This chapter describes how to use the Oracle XA library.

Conventions Used in this Guide
The following notational and text formatting conventions are used in this guide:

[]
Square brackets indicate that the enclosed item is optional. Do not type the brackets.

{ }
Braces enclose items of which only one is required.

|
A vertical bar separates items within braces, and may also be used to indicate that
multiple values are passed to a function parameter.

...
In code fragments, an ellipsis means that code not relevant to the discussion has
been omitted.

font change
SQL or C code examples are shown in monospaced font.

italics
Italics are used for OCI parameters, OCI routines names, file names, and data fields.

UPPERCASE
Uppercase is used for SQL keywords, like SELECT or UPDATE.
xxvii

This guide uses special text formatting to draw the reader’s attention to some
information. A paragraph that is indented and begins with a bold text label may
have special meaning. The following paragraphs describe the different types of
information that are flagged this way.

Note: The “Note” flag indicates that the reader should pay particular attention
to the information to avoid a common problem or increase understanding of a
concept.

Warning: An item marked as “Warning” indicates something that an OCI
programmer must be careful to do or not do in order for an application to work
correctly.

See Also: Text marked “See Also” points you to another section of this guide,
or to other documentation, for additional information about the topic being
discussed.

Your Comments Are Welcome
We value and appreciate your comment as an Oracle user and reader of our manu-
als. As we write, revise, and evaluate our documentation, your opinions are the
most important feedback we receive.

You can send comments and suggestions about this manual to the following e-mail
address:

infodev@us.oracle.com

If you prefer, you can send letters or faxes containing your comments to the follow-
ing address:

Server Technologies Documentation Manager

Oracle Corporation

500 Oracle Parkway

Redwood Shores, CA 94065

Fax: (650) 506-7200
xxviii

 Information Sources for Application Devel
1

Information Sources for Application

Developers

This chapter lists some of the topics discussed in this Guide, and tells you where
you can get information about each topic. The topics are arranged in alphabetic
order for quick reference.
opers 1-1

Sources of Information
Sources of Information
The Oracle Server is a large product. There are over 20 books that form the docu-
mentation for the Oracle Server and languages products. In addition to these, there
are several books in the Network documentation set that provide important infor-
mation on using Net8 to connect client applications to Oracle servers.

In this chapter, you can get some basic information about Oracle application devel-
opment products, and the documentation for these products. In addition to Oracle
documentation, there is an ever-increasing set of trade books about Oracle. Visit
your local technical or university bookstore to discover the titles available.

Specific Topics
This section tells you where to get information about the following topics:

■ Business Rules

■ Client-Side Tools

■ Communicating with 3GL Programs

■ Database Constraints

■ Database Design

■ Datatypes

■ Debugging

■ Error Handling

■ Gateways

■ Oracle-Supplied Packages

■ PL/SQL

■ Schema Objects

■ Security

■ SQL Statements
1-2 Oracle8 Application Developer’s Guide

Specific Topics
Business Rules
You can enforce business rules in your Oracle application using integrity con-
straints on columns of a table, or by using triggers. See

Client-Side Tools
Oracle provides a number of tools to help you develop your applications. Oracle’s
Developer/2000 tool set offers Procedure Builder, a PL/SQL development environ-
ment with a client-side debugger, as well as other tools that generate forms and
reports.

CASE tools to help you in database design are available as part of the Oracle
Designer/2000 product.

Communicating with 3GL Programs
Application developers frequently ask how they can access 3GL routines (such as C
or C++ functions) or operating system services from PL/SQL code that is running
on a server. One way to do this is to use the Oracle-supplied DBMS_PIPES package.

It was not possible to call a 3GL routine directly from PL/SQL in release 7.3 of the
Oracle Server. For information about how to do this in Oracle8, refer to the PL/SQL
User’s Guide and Reference.

See Also:

■ Chapter 9, “Maintaining Data Integrity” in this Guide for a
description of integrity constraints

■ Chapter 13, “Using Database Triggers” for a discussion of
database triggers

■ Oracle8 Concepts for a high-level discussion of business rules

See Also: Chapter 12, “PL/SQL Input/Output” for a detailed
discussion of this package.

WARNING: The DBMS_PIPES package is not transaction safe, so
it must be used with care.
 Information Sources for Application Developers 1-3

Specific Topics
Database Constraints
How to use database constraints such as NOT NULL, PRIMARY KEY, and FOR-
EIGN KEY is described in Chapter 9, “Maintaining Data Integrity” of this Guide.
See Oracle8 Concepts for a basic introduction to constraints.

Database Design
Database design is not discussed exhaustively in this Guide. See the Oracle8 Con-
cepts manual for a basic discussion, and refer to the Oracle8 Tuning manual for tips
on designing performance into your database. You can also refer to the Oracle
Designer/2000 product for tools for advanced database design.

Datatypes
Oracle internal datatypes are described in Chapter 5, “Selecting a Datatype” of this
Guide. For a more comprehensive treatment of datatypes, see the Oracle Call Inter-
face Programmer’s Guide.

Debugging
You can use the DBMS_OUTPUT and the DBMS_PIPES packages for first-level
debugging of your PL/SQL code. See Chapter 12, “PL/SQL Input/Output” in this
Guide for more information.

Error Handling
When errors or warnings occur as you compile or run an Oracle application, the
information is sent to you through an Oracle error code, usually accompanied by a
short error message. See the Oracle8 Error Messages manual for a complete listing or
Oracle server, precompiler, and PL/SQL error codes and messages.

PL/SQL can also generate exceptions at runtime. See the PL/SQL User’s Guide and
Reference for a list of predefined PL/SQL exceptions and their causes.

Gateways
You can use Oracle’s Open Gateway technology to access data on non-Oracle data-
bases, and even on non-relational data sources. See the Oracle Open Gateway Toolkit
Guide for information about developing gateway applications.
1-4 Oracle8 Application Developer’s Guide

Specific Topics
Oracle-Supplied Packages
Oracle supplies a set of PL/SQL packages to assist your application development.
Most of the packages’ names begin with the prefix DBMS_, for example
DBMS_OUTPUT or DBMS_SQL. A few have other prefixes, such as UTL_FILE (for
PL/SQL file I/O).

These supplied packages are documented in this Guide, mainly in Chapter 10,
“Using Procedures and Packages”, Chapter 12, “PL/SQL Input/Output”,
Chapter 13, “Using Database Triggers”, Chapter 14, “Using Dynamic SQL”, and
Chapter 16, “Signalling Database Events with Alerters”.
.

PL/SQL
The primary source for documentation of the PL/SQL language is the PL/SQL
User’s Guide and Reference. How you use PL/SQL in application development is doc-
umented both in that Guide as well as in this manual. There are also several trade
books available that cover the PL/SQL language.

Schema Objects
This Guide documents how to create, modify, and delete schema objects such as
tables, views, packages, procedures, and sequences. However, you should be famil-
iar with the material in the Oracle8 Concepts manual for introductory material. For
example, you might want to read the chapter in the Oracle8 Concepts manual called
“Procedures and Packages” before reading Chapter 10, “Using Procedures and
Packages” in this Guide.

Security
Your primary reference for security in this Guide is Chapter 17, “Establishing a
Security Policy”. Security issues are also discussed in the Oracle8 Concepts manual.

SQL Statements
Your primary reference for the SQL language is the Oracle8 SQL Reference. That
manual covers Oracle’s implementation of the SQL language in depth. It includes
syntax diagrams that summarize the form of all SQL commands.

See Also: “Supplied Packages” on page 10-59 for a complete list
of the Oracle-supplied packages, and references to where they are
documented.
 Information Sources for Application Developers 1-5

Specific Topics
Tools
See Also: “Client-Side Tools” on page 1-3.
1-6 Oracle8 Application Developer’s Guide

 The Application Deve
2

The Application Developer

This chapter briefly outlines the steps involved in designing and implementing an
Oracle database application. More detailed information needed to perform these
tasks is provided later in this Guide. Although the specific tasks vary depending
upon the type and complexity of the application being developed, in general the
responsibilities of the application developer include the following:

■ designing the database structure for the application

■ designing and developing the database application

■ writing SQL code

■ enforcing security in the application

■ tuning an application

■ maintaining and updating applications

This book is not meant to serve as a textbook on database or application design. If
you are not already familiar with these areas, you should consult a text for guid-
ance. Where appropriate, you are directed to other sections of this document for
additional information.
loper 2-1

Assessing Needs
Assessing Needs
The first step in designing a usable application is determining what problem you
are trying to solve. It is important that you do not focus entirely on the data, but
rather on how the data is being used. In designing your application you should try
to answer the following questions:

■ Who will be using this application?

■ What are they trying to accomplish by using this application?

■ How will they be accomplishing these tasks?

You should involve the end-user as much as possible early in the design phase.
This helps eliminate problems that can stem from misunderstandings about the
purpose of the application. After you gain a better understanding of the tasks that
the end-users of the application are trying to perform, you can then determine the
data that is necessary to complete these tasks. In this step, you need to look at each
task and decide:

■ What data must be available to perform this task?

■ How must this data be processed?

■ How can these results be meaningfully presented?

■ What are the potential future uses of this application?

It is important that your audience has a clear understanding of your proposed solu-
tion. It is also important that your application be designed to accommodate the
changing needs of your audience.

Designing the Database
At this point, you are ready to begin designing your data model. This model will
allow you to determine how your data can be most efficiently stored and used. The
Entity-Relationship model is often used to map a real-world system to a relational
database management system.

The Entity-Relationship model categorizes all elements of a system as either an
entity (a person, place, or thing) or a relationship between entities. Both constructs
are represented by the same structure, a table. For example, in an order entry sys-
tem, parts are entities, as are orders. Both part and order information is represented
in tables. The relationship of which parts are requested by which order is also repre-
sented by a third table. The application of the Entity-Relationship model requires
the following steps:
2-2 Oracle8 Application Developer’s Guide

Designing the Database
1. Identify the entities of your system and construct a table to represent each
entity.

2. Identify the relationships between the entities and either extend the current
tables or create new tables to represent these relationships.

3. Identify attributes of each entity and extend the tables to include these
attributes.

When modeling a system with the Entity-Relationship model, you will often
include a step called normalization. Textbooks on database design will tell you how
to achieve Third Normal Form. Each table must have exactly one primary key and,
in third normal form, all of the data in a table is dependent solely upon the table’s
primary key. You might find it necessary to violate normal form on occasion to
achieve a desired performance level.

Proper application of the Entity-Relationship model results in well designed tables.
The benefits of a set of well designed tables include the following:

■ reduced storage of redundant data, which eliminates the cost of updating
duplicates and avoids the risk of inconsistent results based on duplicates

■ increased ability to effectively enforce integrity constraints

■ increased ability to adapt to the growth and change of the system

■ increased productivity based on the inherent flexibility of well designed rela-
tional systems

Oracle Corporation’s products for database design can help improve, automate,
and document designs. The Oracle database design products are Designer/2000 and
Object Database Designer.

Designer/2000 is a business and application modeling toolset which generates both
servers and applications from graphical models. Designer/2000 release 2.0 supports
all the scalability features of Oracle8 such as partitioned tables, LOB datatypes,
index-organized tables, and deferred constraint checking as well as the object fea-
tures such as user-defined views, object tables, and referenced and embedded
object types.

Object Database Designer supports all aspects of the design and creation of an Object-
Relational Database Management System (ORDBMS). Type modeling forms the
core of an object-oriented development. Object Database Designer implements type
modeling using UML and then uses the type model to drive generation of Oracle8
database designs and C++ classes with transparent persistence—thus supporting
both the database designer and the application developer.
 The Application Developer 2-3

Designing the Application
See the Designer/2000 and Object Database Designer manuals for additional informa-
tion about these products.

After determining the overall structure of the tables in your database, you must
next design the structure of these tables. This process involves selecting the proper
datatype for each column and assigning each column a meaningful name. You can
find information about selecting the appropriate Oracle datatype in Chapter 5,
“Selecting a Datatype” of this Guide.

If you are creating an application that runs on a distributed database, you must
also determine where to locate this data and any links that are necessary to access
the data across the network.
 .

Designing the Application
After completing your database design, you are ready to begin designing the appli-
cation itself. This, too, is an iterative process, and might also cause you to rethink
your database design. As much as possible, you should involve your audience in
these design decisions. You should make your application available to the end-
users as early as possible in order for them to provide you with the feedback
needed to fine tune your design.

There are many tools available, from Oracle Corporation as well as other vendors,
to aid in the development and implementation of your application. Your first task
is to evaluate the available tools and select those that are most appropriate.

Using Available Features
You must next determine how to implement your requirements using the features
available in Oracle, as well as any other tools and utilities that you selected in the
previous step. The features and tools that you choose to use to implement your
application can significantly affect the performance of your application. The more
effort you put into designing an efficient application, the less time you will have to
spend tuning the application once it is complete.

Several of the more useful features available to Oracle application developers are
listed below. Each of these topics is discussed in detail later in this book.

Integrity Constraints
Integrity constraints allow you to define certain requirements for the data that can
be included in a table, and to ensure that these requirements are met regardless of

See Also: Oracle8 Distributed Database Systems.
2-4 Oracle8 Application Developer’s Guide

Designing the Application
how the data is entered. These constraints are included as part of the table defini-
tion, and require no programming to be enforced.

Stored Procedures and Packages
Commonly used procedures can be written once in PL/SQL and stored in the data-
base for repeated use by applications. This ensures consistent behavior among
applications, and can reduce your development and testing time.

Related procedures can be grouped into packages, which have a package specifica-
tion separate from the package body. The package body can be altered and recom-
piled without affecting the package specification. This allows you to make changes
to the package body that are not visible to end-users, and that do not require
objects referencing the specification to be recompiled.

Database Triggers
Complex business rules that cannot be enforced using declarative integrity con-
straints can be enforced using triggers. Triggers, which are similar to PL/SQL anon-
ymous blocks, are automatically executed when a triggering statement is issued,
regardless of the user or application.
,

Database triggers can have such diverse uses as performing value-based auditing,
maintaining derived data values, and enforcing complex security or integrity rules.
By moving this code from your application into database triggers, you can ensure
that all applications behave in a uniform manner.

Cost-Based Optimizer
The cost-based optimization method uses statistics about tables, along with infor-
mation about the available indexes, to select an execution plan for SQL statements.
This allows even inexperienced users to submit complex queries without having to
worry about performance.

As an application designer, there may be times when you have knowledge of the
data in your table that is not available to the optimizer, and that allows you to
select a better execution path. In these cases, you can provide hints to the optimizer

See Also: Chapter 9, “Maintaining Data Integrity”, for instruc-
tions on their use.

See Also: Chapter 10, “Using Procedures and Packages”.

See Also: Chapter 13, “Using Database Triggers”.
 The Application Developer 2-5

Designing the Application
to allow it to select the proper execution path. See Oracle8 Tuning for more informa-
tion.

Shared SQL
Shared SQL allows multiple users to share a single runtime copy of procedures and
SQL statements, significantly reducing memory requirements. If two identical SQL
statements are issued, the shared SQL area used to process the first instance of the
statement is reused for the processing of the subsequent instances of the same state-
ment.

You should coordinate with your database administrator (DBA), as well as other
application developers, to establish guidelines to ensure that statements and blocks
that perform similar tasks can use the same shared SQL areas as often as possible.
See Oracle8 Tuning for additional information.

National Language Support
Oracle supports both single and multi-byte character encoding schemes. Because
language-dependent data is stored separately from the code, you can easily add
new languages and language-specific features (such as date formats) without alter-
ing your application code. Refer to Oracle8 Reference for more information on
national language support.

Locking
By default, Oracle provides row-level locking, allowing multiple users to access dif-
ferent rows of the same table without lock contention. Although this greatly
reduces the chances of deadlocks occurring, you should still take care in designing
your application to ensure that deadlocks do not occur.

Online transaction processing applications—that is, applications with multiple
users concurrently modifying different rows of the same table—benefit the most
from row-level locking. You should design your application with this feature in
mind.

Oracle locks are also available to you for use within your applications. These locks
are provided as part of the DBMS_LOCK package, which is described in Chapter 3,
“Processing SQL Statements”.

Profiles
Profiles can be used to enforce per-query and per-session limits on resource use.
When designing your applications, you might want to consider if any users have
been denied access to the system due to limited resources. Profiles make it possible
2-6 Oracle8 Application Developer’s Guide

Writing SQL
to allow these infrequent users limited access to the database. If you choose to
allow access to these users, you must consider their requirements when formulat-
ing your design. Profiles are generally controlled by the database administrator.
Consult your database administrator to determine if access can be granted to addi-
tional users and to identify this audience.

Sequences
You can use sequence numbers to automatically generate unique keys for your
data, and to coordinate keys across multiple rows or tables. The sequence number
generator eliminates the serialization caused by programmatically generating
unique numbers by locking the most recently used value and then incrementing it.
Sequence numbers can also be read from a sequence number cache, instead of disk,
further increasing their speed.

Industry Standards Compliance
Oracle is designed to conform to industry standards. If your applications must con-
form to industry standards, you should consult Oracle8 SQL Reference for a detailed
explanation of Oracle’s conformance to SQL standards.

Using the Oracle Call Interface
If you are developing applications that use the Oracle Call Interface (OCI), you
should be aware that the OCI offers calls that provide:

■ connection functionality

■ the ability to insert and delete parts of a LONG or LONG RAW column, in
addition to the previous capability to select pieces of these columns

■ use arrays of C structs for bind and define operations

■ a thread-safe library for OCI applications

See Oracle Call Interface Programmer’s Guide for more information.

Writing SQL
All operations performed on the information in an Oracle database are executed
using SQL statements. After you have completed the design of your application,
you need to begin designing the SQL statements that you will use to implement
this design. You should have a thorough understanding of SQL before you begin to
write your application. A general description of how SQL statements are executed
is provided in Chapter 3 of this manual.
 The Application Developer 2-7

Enforcing Security in Your Application
 ,

You can significantly improve the performance of your application by tuning the
SQL statements it uses. Tuning SQL statements is explained in detail in the Oracle8
Tuning manual.

Enforcing Security in Your Application
Your application design is not complete until you have determined the security
requirements for the application. As part of your application design, you identified
what tasks each user or group of users needed to perform. Now you must deter-
mine what privileges are required to perform these tasks. It is important to the secu-
rity of the database that these users have no more access than is necessary to
complete their tasks.

By having your application enable the appropriate roles when a user runs the appli-
cation, you can ensure that the user can only access the database as you originally
planned. Because roles are typically granted to users by the database administrator,
you should coordinate with your database administrator to ensure that each user is
granted access to the roles required by your application for a designated task.

Tuning an Application
There are two important areas to think about when tuning your database applica-
tion:

■ tuning your SQL statements

■ tuning your application design

Information on tuning your SQL statements, including how to use the cost-based
optimization method, is included in the Oracle8 Tuning manual. Tuning your appli-
cation design ideally occurs before you begin to implement your application.
Before beginning your design, you should carefully read about each of the features
described in this document and consider which features best suit your require-
ments. Some design decisions that you should consider are outlined below.

■ Where possible, enforce business rules with integrity constraints rather than
programmatically.

See Also: Oracle8 SQL Reference manual for more detailed infor-
mation.

See Also: Chapter 17, “Establishing a Security Policy”.

See Also: “Using Integrity Constraints” on page 9-2 for a discus-
sion of when to use integrity constraints.
2-8 Oracle8 Application Developer’s Guide

Maintaining and Updating an Application
■ To improve performance, use PL/SQL. A description of how PL/SQL
improves performance is included in the Oracle8 Tuning manual.

■ Use packages to further improve performance and reduce runtime recompila-
tions. Packages are described in Chapter 10, “Using Procedures and Packages”.

■ Use cached sequence numbers to generate primary key values; see “Creating
Sequences” on page 4-23.

■ Use array processing to reduce the number of calls to Oracle; see Oracle8 Tuning.

■ Use VARCHAR2 to store character data instead of CHAR, which blank-pads
data; see “Using Character Datatypes” on page 5-5.

■ Use LOB datatypes instead of LONG or LONG RAW datatypes; see Chapter 6,
“Large Objects (LOBs)” for more information.

■ If you use LONG or LONG RAW datatypes, store the data in tables separate
from related data and use referential integrity to relate them. This allows you to
access the related data without having to read the LONG or LONG RAW data;
see “Using the LONG Datatype” on page 5-10 and “Using RAW and LONG
RAW Datatypes” on page 5-12.

■ Use the SET_MODULE and SET_ACTION procedures in the
DBMS_APPLICATION_INFO package to record the name of the executing
module or transaction in the database for use later when tracking the perfor-
mance of various modules. Registering the application allows system adminis-
trators and performance tuning specialists to track performance by module.
System administrators can also use this information to track resource usage by
module. When an application registers with the database, its name and actions
are recorded in the V$SESSION and V$SQLAREA views. Registering applica-
tions is described in Oracle8 Tuning.

You should also work with your database administrator to determine how the data-
base can be tuned to accommodate your application. More detailed information on
tuning your application, as well as information on database tuning, is included in
Oracle8 Tuning.

Maintaining and Updating an Application
If you are upgrading an existing application, or writing a new application to run on
an existing database, you must follow many of the same procedures described ear-
lier in this section. You must identify and understand the needs of your audience
and design your application to accommodate them.

You must also work closely with the database administrator to determine:
 The Application Developer 2-9

Maintaining and Updating an Application
■ what existing applications are available and how they are being used

■ what data is available, if any can be eliminated, or if any additional data must
be collected

■ if any modifications must be made to the database structure, and how to make
these changes in the least disruptive manner.
2-10 Oracle8 Application Developer’s Guide

 Processing SQL Statem
3

Processing SQL Statements

This chapter describes how Oracle processes Structured Query Language (SQL)
statements. Topics include the following:

■ SQL Statement Execution

■ Controlling Transactions

■ Read-Only Transactions

■ The Use of Cursors

■ Explicit Data Locking

■ Explicitly Acquiring Row Locks

■ SERIALIZABLE and ROW_LOCKING Parameters

■ Creating User Locks

■ Sample User Locks

■ Viewing and Monitoring Locks

■ Concurrency Control Using Serializable Transactions

Although some Oracle tools and applications simplify or mask the use of SQL, all
database operations are performed using SQL. Any other data access method
would circumvent the security built into Oracle and potentially compromise data
security and integrity.
ents 3-1

SQL Statement Execution
SQL Statement Execution
Figure 3–1 outlines the stages commonly used to process and execute a SQL state-
ment. In some cases, these steps might be executed in a slightly different order. For
example, the DEFINE stage could occur just before the FETCH stage, depending on
how your code is written.

For many Oracle tools, several of the stages are performed automatically. Most
users need not be concerned with or aware of this level of detail. However, you
might find this information useful when writing Oracle applications. Refer to
Oracle8 Concepts for a description of each stage of SQL statement processing for
each type of SQL statement.

FIPS Flagging
The Federal Information Processing Standard for SQL (FIPS 127-2) requires a way
to identify SQL statements that use vendor-supplied extensions. Oracle provides a
FIPS flagger to help you write portable applications.

When FIPS flagging is active, your SQL statements are checked to see whether they
include extensions that go beyond the ANSI/ISO SQL92 standard. If any non-stan-
dard constructs are found, the Oracle Server flags them as errors and displays the
violating syntax.

The FIPS flagging feature supports flagging through interactive SQL statements
submitted using Enterprise Manager or SQL*Plus. The Oracle Precompilers and
SQL*Module also support FIPS flagging of embedded and module language SQL.

When flagging is on and non-standard SQL is encountered, the message returned is

ORA-00097: Use of Oracle SQL feature not in SQL92 level Level

where level can be either ENTRY, INTERMEDIATE, or FULL.
3-2 Oracle8 Application Developer’s Guide

SQL Statement Execution
Figure 3–1 The Stages in Processing a SQL Statement

yes

yes

bind?reparse? no

OPEN

PARSE

query?

EXECUTE

PARALLELIZE

query?

execute
others?

CLOSE

yes

no

no

no

no

yes yes

no
no yes

describe?

DEFINE

more?

more?

BIND

more?

FETCH

more?no yes

no yes

yes

no

DESCRIBE
 Processing SQL Statements 3-3

Controlling Transactions
Controlling Transactions
In general, only application designers using the programming interfaces to Oracle
are concerned with which types of actions should be grouped together as one trans-
action. Transactions must be defined properly so work is accomplished in logical
units and data is kept consistent. A transaction should consist of all of the neces-
sary parts for one logical unit of work, no more and no less. Data in all referenced
tables should be in a consistent state before the transaction begins and after it ends.
Transactions should consist of only the SQL statements or PL/SQL blocks that com-
prise one consistent change to the data.

A transfer of funds between two accounts (the transaction or logical unit of work),
for example, should include the debit to one account (one SQL statement) and the
credit to another account (one SQL statement). Both actions should either fail or
succeed together as a unit of work; the credit should not be committed without the
debit. Other non-related actions, such as a new deposit to one account, should not
be included in the transfer of funds transaction.

Improving Performance
In addition to determining which types of actions form a transaction, when you
design an application you must also determine if you can take any additional mea-
sures to improve performance. You should consider the following performance
enhancements when designing and writing your application. Unless otherwise
noted, each of these features is described in Oracle8 Tuning.

■ Use the BEGIN_DISCRETE_TRANSACTION procedure to improve the perfor-
mance of short, non-distributed transactions.

■ Use the SET TRANSACTION command with the USE ROLLBACK SEGMENT
parameter to explicitly assign a transaction to an appropriate rollback segment.
This can eliminate the need to dynamically allocate additional extents, which
can reduce overall system performance.

■ Use the SET TRANSACTION command with the ISOLATION LEVEL set to
SERIALIZABLE to get ANSI/ISO serializable transactions.

See Also:

■ “Serializable Transaction Interaction” on page 3-31.

■ Oracle8 Concepts.
3-4 Oracle8 Application Developer’s Guide

Controlling Transactions
■ Establish standards for writing SQL statements so that you can take advantage
of shared SQL areas. Oracle recognizes identical SQL statements and allows
them to share memory areas. This reduces memory storage usage on the data-
base server, thereby increasing system throughput.

■ Use the ANALYZE command to collect statistics that can be used by Oracle to
implement a cost-based approach to SQL statement optimization. You can sup-
ply additional "hints" to the optimizer as needed.

■ Call the DBMS_APPLICATION_INFO.SET_ACTION procedure before begin-
ning a transaction to register and name a transaction for later use when measur-
ing performance across an application. You should specify what type of activity
a transaction performs so that the system tuners can later see which transac-
tions are taking up the most system resources.

■ Increase user productivity and query efficiency by including user-written PL/
SQL functions in SQL expressions as described on page 10-42.

■ Create explicit cursors when writing a PL/SQL application.

■ When writing precompiler programs, increasing the number of cursors using
MAX_OPEN_CURSORS can often reduce the frequency of parsing and improve
performance. The use of cursors is described on page 3-9 of this Guide.

Committing a Transaction
To commit a transaction, use the COMMIT command. The following two state-
ments are equivalent and commit the current transaction:

COMMIT WORK;
COMMIT;

The COMMIT command allows you to include the COMMENT parameter along with a
Comment (less than 50 characters) that provides information about the transaction
being committed. This option is useful for including information about the origin
of the transaction when you commit distributed transactions:

COMMIT COMMENT ’Dallas/Accts_pay/Trans_type 10B’;

For additional information about committing in-doubt distributed transactions, see
Oracle8 Distributed Database Systems.
 Processing SQL Statements 3-5

Controlling Transactions
Rolling Back a Transaction
To roll back an entire transaction or a part of a transaction (that is, to a savepoint),
use the ROLLBACK command. For example, either of the following statements rolls
back the entire current transaction:

ROLLBACK WORK;
ROLLBACK;

The WORK option of the ROLLBACK command has no function.

To roll back to a savepoint defined in the current transaction, the TO option of the
ROLLBACK command must be used. For example, either of the following state-
ments rolls back the current transaction to the savepoint named POINT1:

ROLLBACK TO SAVEPOINT point1;
ROLLBACK TO point1;

For additional information about rolling back in-doubt distributed transactions

Defining a Transaction Savepoint
To define a savepoint in a transaction, use the SAVEPOINT command. The following
statement creates the savepoint named ADD_EMP1 in the current transaction:

SAVEPOINT add_emp1;

If you create a second savepoint with the same identifier as an earlier savepoint, the
earlier savepoint is erased. After a savepoint has been created, you can roll back to
the savepoint.

There is no limit on the number of active savepoints per session. An active save-
point is one that has been specified since the last commit or rollback.

See Also: Oracle8 Distributed Database Systems.
3-6 Oracle8 Application Developer’s Guide

Controlling Transactions
An Example of COMMIT, SAVEPOINT, and ROLLBACK
The following series of SQL statements illustrates the use of COMMIT, SAVE-
POINT, and ROLLBACK statements within a transaction:

Privileges Required for Transaction Management
No privileges are required to control your own transactions; any user can issue a
COMMIT, ROLLBACK, or SAVEPOINT statement within a transaction.

SQL Statement Results

SAVEPOINT a; First savepoint of this transaction.

DELETE . . . ; First DML statement of this transaction.

SAVEPOINT b; Second savepoint of this transaction.

INSERT INTO . . . ; Second DML statement of this transaction.

SAVEPOINT c; Third savepoint of this transaction.

UPDATE . . . ; Third DML statement of this transaction.

ROLLBACK TO c; UPDATE statement is rolled back, savepoint C remains
defined.

ROLLBACK TO b; INSERT statement is rolled back, savepoint C is lost, save-
point B remains defined.

ROLLBACK TO c; ORA-01086 error; savepoint C no longer defined.

INSERT INTO . . . ; New DML statement in this transaction.

COMMIT; Commits all actions performed by the first DML statement
(the DELETE statement) and the last DML statement (the
second INSERT statement). All other statements (the second
and the third statements) of the transaction had been rolled
back before the COMMIT. The savepoint A is no longer
active.
 Processing SQL Statements 3-7

Read-Only Transactions
Read-Only Transactions
By default, the consistency model for Oracle guarantees statement-level read consis-
tency, but does not guarantee transaction-level read consistency (repeatable reads).
If you want transaction-level read consistency and your transaction does not
require updates, you can specify a read-only transaction. After indicating that your
transaction is read-only, you can execute as many queries as you like against any
database table, knowing that the results of each query in the read-only transaction
are consistent with respect to a single point in time.

A read-only transaction does not acquire any additional data locks to provide trans-
action-level read consistency. The multi-version consistency model used for state-
ment-level read consistency is used to provide transaction-level read consistency;
all queries return information with respect to the system control number (SCN)
determined when the read-only transaction begins. Because no data locks are
acquired, other transactions can query and update data being queried concurrently
by a read-only transaction.

Changed data blocks queried by a read-only transaction are reconstructed using
data from rollback segments. Therefore, long running read-only transactions some-
times receive a “snapshot too old” error (ORA-01555). Create more, or larger, roll-
back segments to avoid this. Alternatively, you could issue long-running queries
when online transaction processing is at a minimum, or you could obtain a shared
lock on the table you were querying, prohibiting any other modifications during
the transaction.

A read-only transaction is started with a SET TRANSACTION statement that
includes the READ ONLY option. For example:

SET TRANSACTION READ ONLY;

The SET TRANSACTION statement must be the first statement of a new transaction;
if any DML statements (including queries) or other non-DDL statements (such as
SET ROLE) precede a SET TRANSACTION READ ONLY statement, an error is
returned. Once a SET TRANSACTION READ ONLY statement successfully exe-
cutes, only SELECT (without a FOR UPDATE clause), COMMIT, ROLLBACK, or non-
DML statements (such as SET ROLE, ALTER SYSTEM, LOCK TABLE) are
allowed in the transaction. Otherwise, an error is returned. A COMMIT, ROLL-
BACK, or DDL statement terminates the read-only transaction (a DDL statement
causes an implicit commit of the read-only transaction and commits in its own
transaction).
3-8 Oracle8 Application Developer’s Guide

The Use of Cursors
The Use of Cursors
PL/SQL implicitly declares a cursor for all SQL data manipulation statements,
including queries that return only one row. For queries that return more than one
row, you can explicitly declare a cursor to process the rows individually.

A cursor is a handle to a specific private SQL area. In other words, a cursor can be
thought of as a name for a specific private SQL area. A PL/SQL cursor variable
enables the retrieval of multiple rows from a stored procedure. Cursor variables
allow you to pass cursors as parameters in your 3GL application. Cursor variables
are described in PL/SQL User’s Guide and Reference.

Although most Oracle users rely on the automatic cursor handling of the Oracle
utilities, the programmatic interfaces offer application designers more control over
cursors. In application development, a cursor is a named resource available to a
program, which can be specifically used for parsing SQL statements embedded
within the application.

Declaring and Opening Cursors
There is no absolute limit to the total number of cursors one session can have open
at one time, subject to two constraints:

■ Each cursor requires virtual memory, so a session’s total number of cursors is
limited by the memory available to that process.

■ A system-wide limit of cursors per session is set by the initialization parameter
named OPEN_CURSORS found in the parameter file (such as INIT.ORA). Param-
eters are described in Oracle8 Reference.

Explicitly creating cursors for precompiler programs can offer some advantages in
tuning those applications. For example, increasing the number of cursors can often
reduce the frequency of parsing and improve performance. If you know how many
cursors may be required at a given time, you can make sure you can open that
many simultaneously.

Using a Cursor to Re-Execute Statements
After each stage of execution, the cursor retains enough information about the SQL
statement to re-execute the statement without starting over, as long as no other SQL
statement has been associated with that cursor. This is illustrated in Figure 3–1 on
page 3-3. Notice that the statement can be re-executed without including the parse
stage.
 Processing SQL Statements 3-9

Explicit Data Locking
By opening several cursors, the parsed representation of several SQL statements
can be saved. Repeated execution of the same SQL statements can thus begin at the
describe, define, bind, or execute step, saving the repeated cost of opening cursors
and parsing.

Closing Cursors
Closing a cursor means that the information currently in the associated private area
is lost and its memory is deallocated. Once a cursor is opened, it is not closed until
one of the following events occurs:

■ The user program terminates its connection to the server.

■ If the user program is an OCI program or precompiler application, it explicitly
closes any open cursor during the execution of that program. (However, when
this program terminates, any cursors remaining open are implicitly closed.)

Cancelling Cursors
Cancelling a cursor frees resources from the current fetch.The information currently
in the associated private area is lost but the cursor remains open, parsed, and asso-
ciated with its bind variables.

Explicit Data Locking
Oracle always performs necessary locking to ensure data concurrency, integrity,
and statement-level read consistency. However, options are available to override
the default locking mechanisms. Situations where it would be advantageous to
override the default locking of Oracle include the following:

■ An application desires transaction-level read consistency or “repeatable
reads”—transactions must query a consistent set of data for the duration of the
transaction, knowing that the data has not been changed by any other transac-
tions of the system. Transaction-level read consistency can be achieved by
using explicit locking, read-only transactions, serializable transactions, or over-
riding default locking for the system.

Note: You cannot cancel cursors using Pro*C or PL/SQL.

See Also: For more information about cancelling cursors, see
Oracle Call Interface Programmer’s Guide.
3-10 Oracle8 Application Developer’s Guide

Explicit Data Locking
■ An application requires a transaction to have exclusive access to a resource. To
proceed with its statements, the transaction with exclusive access to a resource
does not have to wait for other transactions to complete.

The automatic locking mechanisms can be overridden at two different levels:

The following sections describe each option available for overriding the default
locking of Oracle. The initialization parameter DML_LOCKSdetermines the maxi-
mum number of DML locks allowed (see the Oracle8 Reference for a discussion of
parameters). The default value should be sufficient; however, if you are using addi-
tional manual locks, you may need to increase this value.

Explicitly Acquiring Table Locks
A transaction explicitly acquires the specified table locks when a LOCK TABLE
statement is executed. A LOCK TABLE statement manually overrides default lock-
ing. When a LOCK TABLE statement is issued on a view, the underlying base tables
are locked. The following statement acquires exclusive table locks for the EMP and
DEPT tables on behalf of the containing transaction:

LOCK TABLE emp, dept
 IN EXCLUSIVE MODE NOWAIT;

You can specify several tables or views to lock in the same mode; however, only a
single lock mode can be specified per LOCK TABLE statement.

transaction level Transactions including the following SQL statements override
Oracle’s default locking: the LOCK TABLE command, the
SELECT command including the FOR UPDATE clause, and
the SET TRANSACTION command with the READ ONLY or
ISOLATION LEVEL SERIALIZABLE options. Locks
acquired by these statements are released after the transaction
is committed or rolled back.

system level An instance can be started with non-default locking by adjust-
ing the initialization parameters SERIALIZABLE and
ROW_LOCKING.

WARNING: If you override the default locking of Oracle at any
level, be sure that the overriding locking procedures operate
correctly; that is, be sure that data integrity is guaranteed, data
concurrency is acceptable, and deadlocks are not possible or are
appropriately handled.
 Processing SQL Statements 3-11

Explicit Data Locking
You can also indicate if you do or do not want to wait to acquire the lock. If you
specify the NOWAIT option, you only acquire the table lock if it is immediately avail-
able. Otherwise an error is returned to notify that the lock is not available at this
time. In this case, you can attempt to lock the resource at a later time. If NOWAIT is
omitted, the transaction does not proceed until the requested table lock is acquired.
If the wait for a table lock is excessive, you might want to cancel the lock operation
and retry at a later time; you can code this logic into your applications.

The following paragraphs provide guidance on when it can be advantageous to
acquire each type of table lock using the LOCK TABLE command.

ROW SHARE and ROW EXCLUSIVE
LOCK TABLE table IN ROW SHARE MODE;
LOCK TABLE table IN ROW EXCLUSIVE MODE;

Row share and row exclusive table locks offer the highest degree of concurrency.
Conditions that possibly warrant the explicit acquisition of a row share or row
exclusive table lock include the following:

■ Your transaction needs to prevent another transaction from acquiring an inter-
vening share, share row, or exclusive table lock for a table before the table can
be updated in your transaction. If another transaction acquires an intervening
share, share row, or exclusive table lock, no other transactions can update the
table until the locking transaction commits or rolls back.

■ Your transaction needs to prevent a table from being altered or dropped before
the table can be modified later in your transaction.

Note: When a table is locked, all rows of the table are locked. No
other user can modify the table.

Note: A distributed transaction waiting for a table lock can
timeout waiting for the requested lock if the elapsed amount of
time reaches the interval set by the initialization parameter
DISTRIBUTED_LOCK_TIMEOUT. Because no data has been
modified, no actions are necessary as a result of the time-out. Your
application should proceed as if a deadlock has been encountered.
For more information on distributed transactions, refer to Oracle8
Distributed Database Systems.
3-12 Oracle8 Application Developer’s Guide

Explicit Data Locking
SHARE
LOCK TABLE table IN SHARE MODE;

Share table locks are rather restrictive data locks. The following conditions could
warrant the explicit acquisition of a share table lock:

■ Your transaction only queries the table and requires a consistent set of the
table’s data for the duration of the transaction (that is, requires transaction-
level read consistency for the locked table).

■ It is acceptable if other transactions attempting to update the locked table con-
currently must wait until all transactions with the share table locks commit or
roll back.

■ It is acceptable to allow other transactions to acquire concurrent share table
locks on the same table, also allowing them the option of transaction-level read
consistency.

For example, assume that two tables, EMP and BUDGET, require a consistent set of
data in a third table, DEPT. That is, for a given department number, you want to
update the information in both of these tables, and ensure that no new members
are added to the department between these two transactions.

Although this scenario is quite rare, it can be accommodated by locking the DEPT
table in SHARE MODE, as shown in the following example. Because the DEPT table
is not highly volatile, few, if any, users would need to update it while it was locked
for the updates to EMP and BUDGET.

LOCK TABLE dept IN SHARE MODE
UPDATE EMP
 SET sal = sal * 1.1
 WHERE deptno IN
 (SELECT deptno FROM dept WHERE loc = ’DALLAS’)
UPDATE budget

WARNING: Your transaction may or may not update the table
later in the same transaction. However, if multiple transactions
concurrently hold share table locks for the same table, no
transaction can update the table (even if row locks are held as the
result of a SELECT... FOR UPDATE statement). Therefore, if
concurrent share table locks on the same table are common,
updates cannot proceed and deadlocks will be common. In this
case, use share row exclusive or exclusive table locks instead.
 Processing SQL Statements 3-13

Explicit Data Locking
 SET totsal = totsal * 1.1
 WHERE deptno IN
 (SELECT deptno FROM dept WHERE loc = ’DALLAS’)

COMMIT /* This releases the lock */

SHARE ROW EXCLUSIVE
LOCK TABLE table IN SHARE ROW EXCLUSIVE MODE;

Conditions that warrant the explicit acquisition of a share row exclusive table lock
include the following:

■ Your transaction requires both transaction-level read consistency for the speci-
fied table and the ability to update the locked table.

■ You are not concerned about explicit row locks being obtained (that is, via
SELECT... FOR UPDATE) by other transactions, which may or may not make
UPDATE and INSERT statements in the locking transaction wait to update the
table (that is, deadlocks might be observed).

■ You only want a single transaction to have the above behavior.

EXCLUSIVE
LOCK TABLE table IN EXCLUSIVE MODE;

Conditions that warrant the explicit acquisition of an exclusive table lock include
the following:

■ Your transaction requires immediate update access to the locked table. There-
fore, if your transaction holds an exclusive table lock, other transactions cannot
lock specific rows in the locked table.

■ Your transaction also observes transaction-level read consistency for the locked
table until the transaction is committed or rolled back.

■ You are not concerned about low levels of data concurrency, making transac-
tions that request exclusive table locks wait in line to update the table sequen-
tially.

Privileges Required
You can automatically acquire any type of table lock on tables in your schema; how-
ever, to acquire a table lock on a table in another schema, you must have the LOCK
3-14 Oracle8 Application Developer’s Guide

Explicitly Acquiring Row Locks
ANY TABLE system privilege or any object privilege (for example, SELECT or
UPDATE) for the table.

Explicitly Acquiring Row Locks
You can override default locking with a SELECT statement that includes the FOR
UPDATE clause. SELECT... FOR UPDAT E is used to acquire exclusive row locks
for selected rows (as an UPDATE statement does) in anticipation of actually updat-
ing the selected rows.

You can use a SELECT... FOR UPDATE statement to lock a row without actually
changing it. For example, several triggers in Chapter 13, “Using Database Trig-
gers”, show how to implement referential integrity. In the EMP_DEPT_CHECK trig-
ger (see page 13-28), the row that contains the referenced parent key value is locked
to guarantee that it remains for the duration of the transaction; if the parent key is
updated or deleted, referential integrity would be violated.

SELECT... FOR UPDATE statements are often used by interactive programs that
allow a user to modify fields of one or more specific rows (which might take some
time); row locks on the rows are acquired so that only a single interactive program
user is updating the rows at any given time.

If a SELECT... FOR UPDATE statement is used when defining a cursor, the rows
in the return set are locked before the first fetch, when the cursor is opened; rows
are not individually locked as they are fetched from the cursor. Locks are only
released when the transaction that opened the cursor is committed or rolled back;
locks are not released when a cursor is closed.

Each row in the return set of a SELECT... FOR UPDATE statement is locked indi-
vidually; the SELECT... FOR UPDATE statement waits until the other transaction
releases the conflicting row lock. Therefore, if a SELECT... FOR UPDATE state-
ment locks many rows in a table and the table experiences reasonable update activ-
ity, it would most likely improve performance if you instead acquired an exclusive
table lock.

When acquiring row locks with SELECT... FOR UPDATE , you can indicate if you
do or do not want to wait to acquire the lock. If you specify the NOWAIT option,
you only acquire the row lock if it is immediately possible. Otherwise, an error is
returned to notify you that the lock is not possible at this time. In this case, you can
attempt to lock the row later. If NOWAIT is omitted, the transaction does not pro-
ceed until the requested row lock is acquired. If the wait for a row lock is excessive,
users might want to cancel the lock operation and retry later; you can code such
logic into your applications.
 Processing SQL Statements 3-15

SERIALIZABLE and ROW_LOCKING Parameters
As described on page 3-11, a distributed transaction waiting for a row lock can time-
out waiting for the requested lock if the elapsed amount of time reaches the inter-
val set by the initialization parameter DISTRIBUTED_LOCK_TIMEOUT.

SERIALIZABLE and ROW_LOCKING Parameters
Two factors determine how an instance handles locking: the SERIALIZABLE
option of the SET TRANSACTION or ALTER SESSION command and the
ROW_LOCKING initialization parameter. By default, SERIALIZABLE is set to FALSE
and ROW_LOCKING is set to ALWAYS.

In almost every case, these parameters should not be altered. They are provided for
sites that must run in ANSI/ISO compatible mode, or that want to use applications
written to run with earlier versions of Oracle. Only these sites should consider alter-
ing these parameters, as there is a significant performance degradation caused by
using other than the defaults.

The settings for these parameters should be changed only when an instance is shut
down. If multiple instances are accessing a single database, all instances should use
the same setting for these parameters.

Summary of Non-Default Locking Options
Three combinations of settings for SERIALIZABLE and ROW_LOCKING, other than
the default settings, are available to change the way locking occurs for transactions.
Table 3–1 summarizes the non-default settings and why you might choose to exe-
cute your transactions in a non-default way.

See Also: For detailed explanations of these parameters, see
Oracle8 Reference.

Table 3–1 Summary of Non-Default Locking Options

Case Description
SERIAL-
IZABLE ROW_LOCKING

 1 Equivalent to Version 5 and earlier Ora-
cle releases (no concurrent inserts,
updates, or deletes in a table).

Disabled
(default)

INTENT

 2 ANSI compatible. Enabled ALWAYS

 3 ANSI compatible, with table-level lock-
ing (no concurrent inserts, updates, or
deletes in a table).

Enabled INTENT
3-16 Oracle8 Application Developer’s Guide

Creating User Locks
Table 3–2 illustrates the difference in locking behavior resulting from the three pos-
sible settings of the SERIALIZABLE option and ROW_LOCKING initialization param-
eter, as shown in Table 3–1.

Creating User Locks
You can use Oracle Lock Management services for your applications. It is possible
to request a lock of a specific mode, give it a unique name recognizable in another
procedure in the same or another instance, change the lock mode, and release it.
Because a reserved user lock is the same as an Oracle lock, it has all the functional-
ity of an Oracle lock, such as deadlock detection. Be certain that any user locks
used in distributed transactions are released upon COMMIT, or an undetected
deadlock may occur.

Table 3–2 Non-default Locking Behavior

STATEMENT CASE 1 CASE 2 CASE 3

row table row table row table

SELECT - - - S - S

INSERT X SRX X RX X SRX

UPDATE X SRX X SRX X SRX

DELETE X SRX X SRX X SRX

SELECT...FOR UPDATE X RS X S X S

LOCK TABLE . . . IN . .

 ROW SHARE MODE RS RS RS RS RS RS

 ROW EXCLUSIVE MODE RX RX RX RX RX RX

 SHARE MODE S S S S S S

 SHARE ROW EXCLUSIVE

 MODE

SRX SRX SRX SRX SRX SRX

 EXCLUSIVE MODE X X X X X X

 DDL statements - X - X - X
 Processing SQL Statements 3-17

Creating User Locks
The DBMS_LOCK Package
The Oracle Lock Management services are available through procedures in the
DBMS_LOCK package. Table 3–3Summarizes the procedures available in the
DBMS_LOCK package.

User locks never conflict with Oracle locks because they are identified with the pre-
fix “UL”. You can view these locks using the Enterprise Manager lock monitor
screen or the appropriate fixed views.

User locks are automatically released when a session terminates.

Security
There might be operating system-specific limits on the maximum number of total
locks available. This must be considered when using locks or making this package
available to other users. Consider granting the EXECUTE privilege only to specific
users or roles.

Table 3–3 DBMS_LOCK Package Functions and Procedures

Function/Procedure Description Refer to

ALLOCATE_UNIQUE Allocate a unique lock ID to a named
lock.

page 3-19

REQUEST Request a lock of a specific mode. page 3-20

CONVERT Convert a lock from one mode to
another.

page 3-23

RELEASE Release a lock. page 3-25

SLEEP Put a procedure to sleep for a specified
time.

page 3-25

WARNING: This implementation does not efficiently support
more than a few hundred locks per session. Oracle strongly
recommends that you develop a standard convention be
developed for using these user locks. This avoids conflicts
among procedures trying to use the same locks. For example, you
might want to include your company name as part of the lock
name to ensure that your lock names do not conflict with lock
names used in any Oracle supplied applications.
3-18 Oracle8 Application Developer’s Guide

Creating User Locks
A better alternative would be to create a cover package limiting the number of
locks used and grant EXECUTE privilege to specific users. An example of a cover
package is documented in the DBMSLOCK.SQLpackage specification file.

Creating the DBMS_LOCK Package
To create the DBMS_LOCK package, submit the DBMSLOCK.SQL and PRVTLOCK.PLB
scripts when connected as the user SYS. These scripts are run automatically by the
CATPROC.SQL script.

ALLOCATE_UNIQUE Procedure
Lock identifiers are used to allow applications to coordinate their use of locks. User-
assigned lock identifiers can be a number in the range of 0 to 1073741823, or locks
can be identified by name. If you choose to identify locks by name, you can use
ALLOCATE_UNIQUE to generate a unique lock identification number for these
named locks.

The parameters for the ALLOCATE_UNIQUE procedure are described in Table 3–4.
The syntax for this procedure is shown below.

DBMS_LOCK.ALLOCATE_UNIQUE(lockname IN VARCHAR2,
 lockhandle OUT VARCHAR2,
 expiration_secs IN INTEGER
 DEFAULT 864000);

See Also: See the Commented-out package LOCK_100_TO_200.

See Also: See page 10-59 for information on granting the
necessary privileges to users who will be executing this package.

WARNING: Named user locks may be less efficient, as Oracle
uses SQL to determine the lock associated with a given name.
 Processing SQL Statements 3-19

Creating User Locks
REQUEST Function
To request a lock with a given mode, use the REQUEST function. REQUEST is an
overloaded function that accepts either a user-defined lock identifier, or the lock
handle returned by the ALLOCATE_UNIQUE procedure.

Table 3–4 DBMS_LOCK.ALLOCATE_UNIQUE Procedure Parameters

Parameter Description

LOCKNAME Specify the name of the lock for which you want to generate a
unique ID . The first session to call ALLOCATE_UNIQUE with a
new lock name causes a unique lock ID to be generated and
stored in the DBMS_LOCK_ALLOCATED table. The handle to
this ID is then returned for this call, and all subsequent calls
(usually by other sessions). Lock IDs assigned by
ALLOCATE_UNIQUE are in the range of 1073741824 to
1999999999.

Do not use lock names beginning with ORA$; these names are
reserved for products supplied by Oracle Corporation.

LOCKHANDLE Returns to the caller the handle to the lock ID generated by
ALLOCATE_UNIQUE. You can use this handle in subsequent
calls to REQUEST, CONVERT, and RELEASE. LOCKHANDLE
can be up to VARCHAR2(128).

A handle is returned instead of the actual lock ID to reduce
the chance that a programming error can accidentally create
an incorrect, but valid, lock ID . This provides better isolation
between different applications that are using this package.

All sessions using a lock handle returned by
ALLOCATE_UNIQUE using the same lock name are referring to
the same lock. Different sessions can have different lock han-
dles for the same lock, so do not pass lock handles from one
session to another.

EXPIRATION_SECS Specify the number of seconds to wait after the last
ALLOCATE_UNIQUE has been performed on a given lock,
before allowing that lock to be deleted from the
DBMS_LOCK_ALLOCATED table. The default waiting period is
10 days. You should not delete locks from this table. Subse-
quent calls to ALLOCATE_UNIQUE may delete expired locks to
recover space.
3-20 Oracle8 Application Developer’s Guide

Creating User Locks
The parameters for the REQUEST function are described in Table 3–5 and the possi-
ble return values and their meanings are described in Table 3–6. The syntax for this
function is shown below.

DBMS_LOCK.REQUEST(id IN INTEGER ||
 lockhandle IN VARCHAR2,
 lockmode IN INTEGER DEFAULT X_MODE,
 timeout IN INTEGER DEFAULT MAXWAIT,
 release_on_commit IN BOOLEAN DEFAULT FALSE,
RETURN INTEGER;

The default values, such as X_MODE and MAXWAIT, are defined in the
DBMS_LOCK package specification. See the package specification, available on-
line, for the current default values.
 Processing SQL Statements 3-21

Creating User Locks
Table 3–5 DBMS_LOCK.REQUEST Function Parameters

Parameter Description

ID
or
LOCKHANDLE

Specify the user assigned lock identifier, from 0 to
1073741823, or the lock handle, returned by
ALLOCATE_UNIQUE, of the lock whose mode you want to
change.

LOCKMODE Specify the mode that you are requesting for the lock. The
available modes and their associated integer identifiers are
listed below. The abbreviations for these locks, as they
appear in the V$ views and Enterprise Manager monitors
are shown in parentheses.

 1 - null mode

 2 - row share mode (ULRS)

 3 - row exclusive mode (ULRX)

 4 - share mode (ULS)

 5 - share row exclusive mode (ULRSX)

 6 - exclusive mode (ULX)

Each of these lock modes is explained in Oracle8 Concepts.

TIMEOUT Specify the number of seconds to continue trying to grant
the lock. If the lock cannot be granted within this time
period, the call returns a value of 1 (timeout).

RELEASE_ON_COMMIT Set this parameter to TRUE to release the lock on commit or
rollback. Otherwise, the lock is held until it is explicitly
released or until the end of the session.
3-22 Oracle8 Application Developer’s Guide

Creating User Locks
CONVERT Function
To convert a lock from one mode to another, use the CONVERT function. CONVERT is
an overloaded function that accepts either a user-defined lock identifier, or the lock
handle returned by the ALLOCATE_UNIQUE procedure.

The parameters for the CONVERT function are described in Table 3–7 and the pos-
sible return values and their meanings are described in Table 3–8. The syntax for
this function is shown below.

DBMS_LOCK.CONVERT(
 id IN INTEGER ||
 lockhandle IN VARCHAR2,
 lockmode IN INTEGER,
 timeout IN NUMBER DEFAULT MAXWAIT)
RETURN INTEGER;

Table 3–6 DBMS_LOCK.REQUEST Function Return Values

Return Value Description

 0 success

 1 timeout

 2 deadlock

 3 parameter error

 4 already own lock specified by ID or LOCKHANDLE

 5 illegal lock handle
 Processing SQL Statements 3-23

Creating User Locks
Table 3–7 DBMS_LOCK.CONVERT Function Parameters

Parameter Description

ID
or
LOCKHANDLE

Specify the user assigned lock identifier, from 0 to
1073741823, or the lock handle, returned by
ALLOCATE_UNIQUE, of the lock whose mode you want to
change.

LOCKMODE Specify the new mode that you want to assign to the given
lock. The available modes and their associated integer identi-
fiers are listed below. The abbreviations for these locks, as
they appear in the V$ views and Enterprise Manager moni-
tors are shown in parentheses.

 1 - null mode

 2 - row share mode (ULRS)

 3 - row exclusive mode (ULRX)

 4 - share mode (ULS)

 5 - share row exclusive mode (ULRSX)

 6 - exclusive mode (ULX)

Each of these lock modes is explained in Oracle8 Concepts.

TIMEOUT Specify the number of seconds to continue trying to change
the lock mode. If the lock cannot be converted within this
time period, the call returns a value of 1 (timeout).

Table 3–8 DBMS_LOCK.CONVERT Function Return Values

Return Value Description

 0 success

 1 timeout

 2 deadlock

 3 parameter error

 4 don’t own lock specified by ID or LOCKHANDLE

 5 illegal lock handle
3-24 Oracle8 Application Developer’s Guide

Creating User Locks
RELEASE Function
To explicitly release a lock previously acquired using the REQUEST function, use
the RELEASE function. Locks are automatically released at the end of a session.
RELEASE is an overloaded function that accepts either a user-defined lock identi-
fier, or the lock handle returned by the ALLOCATE_UNIQUE procedure.

The parameters for the RELEASE function are described in Table 3–9 and the possi-
ble return values and their meanings are described in Table 3–10. The syntax for
this function is shown below.

DBMS_LOCK.RELEASE(id IN INTEGER)
RETURN INTEGER;
DBMS_LOCK.RELEASE(lockhandle IN VARCHAR2)
RETURN INTEGER;

Table 3–9 DBMS_LOCK.RELEASE Function Parameter

Parameter Description

ID
or
LOCKHANDLE

Specify the user-assigned lock identifier, from 0 to
1073741823, or the lock handle, returned by
ALLOCATE_UNIQUE, of the lock that you want to release.

Table 3–10 DBMS_LOCK.RELEASE Function Return Values

Return Value Description

0 success

3 parameter error

4 do not own lock specified by ID or LOCKHANDLE

5 illegal lock handle
 Processing SQL Statements 3-25

SLEEP Procedure
SLEEP Procedure
To suspend the session for a given period of time, use the SLEEP procedure.

The parameters for the SLEEP procedure are described in Table 3–11. The syntax
for the SLEEP procedure is shown below.

DBMS_LOCK.SLEEP(seconds IN NUMBER);

Sample User Locks
Some uses of user locks are:

■ providing exclusive access to a device, such as a terminal

■ providing application-level enforcement of read locks

■ detect when a lock is released and cleanup after the application

■ synchronizing applications and enforce sequential processing

The following Pro*COBOL precompiler example shows how locks can be used to
ensure that there are no conflicts when multiple people need to access a single
device.

* Print Check *
* Any cashier may issue a refund to a customer returning goods. *
* Refunds under $50 are given in cash, above that by check. *
* This code prints the check. The one printer is opened by all *
* the cashiers to avoid the overhead of opening and closing it *
* for every check. This means that lines of output from multiple*
* cashiers could become interleaved if we don’t ensure exclusive*
* access to the printer. The DBMS_LOCK package is used to *
* ensure exclusive access. *

CHECK-PRINT
*
* Get the lock ”handle” for the printer lock.

Table 3–11 DBMS_LOCK.SLEEP Procedure Parameters

Parameter Description

SECONDS Specify the amount of time, in seconds, to suspend the
session. The smallest increment can be entered in hun-
dredths of a second; for example, 1.95 is a legal time
value.
3-26 Oracle8 Application Developer’s Guide

Viewing and Monitoring Locks
 MOVE ”CHECKPRINT” TO LOCKNAME-ARR.
 MOVE 10 TO LOCKNAME-LEN.
 EXEC SQL EXECUTE
 BEGIN DBMS_LOCK.ALLOCATE_UNIQUE (:LOCKNAME, :LOCKHANDLE);
 END; END-EXEC.
*
* Lock the printer in exclusive mode (default mode).
 EXEC SQL EXECUTE
 BEGIN DBMS_LOCK.REQUEST (:LOCKHANDLE);
 END; END-EXEC.
* We now have exclusive use of the printer, print the check.

 ...

*
* Unlock the printer so other people can use it
*
 EXEC SQL EXECUTE
 BEGIN DBMS_LOCK.RELEASE (:LOCKHANDLE);

 END; END-EXEC.

Viewing and Monitoring Locks
Oracle provides two facilities to display locking information for ongoing transac-
tions within an instance
:

Enterprise Manager
Monitors (Lock and
Latch Monitors)

The Monitor feature of Enterprise Manager provides two
monitors for displaying lock information of an instance. Refer
to Oracle Server Manager User’s Guide for complete information
about the Enterprise Manager monitors.

UTLLOCKT.SQL The UTLLOCKT.SQL script displays a simple character lock
wait-for graph in tree structured fashion. Using any ad hoc SQL
tool (such as SQL*Plus) to execute the script, it prints the ses-
sions in the system that are waiting for locks and the corre-
sponding blocking locks. The location of this script file is
operating system dependent. (You must have run the CAT-
BLOCK.SQL script before using UTLLOCKT.SQL.)
 Processing SQL Statements 3-27

Concurrency Control Using Serializable Transactions
Concurrency Control Using Serializable Transactions
By default, the Oracle Server permits concurrently executing transactions to mod-
ify, add, or delete rows in the same table, and in the same data block. Changes
made by one transaction are not seen by another concurrent transaction until the
transaction that made the changes commits.

If a transaction (A) attempts to update or delete a row that has been locked by
another transaction B (by way of a DML or SELECT... FOR UPDATE statement),
then A’s DML command blocks until B commits or rolls back. Once B commits,
transaction A can see changes that B has made to the database.

For most applications, this concurrency model is the appropriate one. In some
cases, however, it is advantageous to allow transactions to be serializable. Serializ-
able transactions must execute in such a way that they appear to be executing one
at a time (serially), rather than concurrently. In other words, concurrent transac-
tions executing in serialized mode are only permitted to make database changes
that they could have made if the transactions were scheduled to run one after the
other.

The ANSI/ISO SQL standard SQL92 defines three possible kinds of transaction
interaction, and four levels of isolation that provide increasing protection against
these interactions. These interactions and isolation levels are summarized in
Table 3–12.

Table 3–12 ANSI Isolation Levels

Isolation Level Dirty Read (1)
Non-Repeatable
Read (2)

Phantom Read
(3)

READ UNCOMMITTED Possible Possible Possible

READ COMMITTED Not possible Possible Possible

REPEATABLE READ Not possible Not possible Possible

SERIALIZABLE Not possible Not possible Not possible

Notes: (1) A transaction can read uncommitted data changed by another
transaction.

(2) A transaction re-read data committed by another transaction
and sees the new data

(3) A transaction can re-execute a query, and discover new rows
inserted by another committed transaction
3-28 Oracle8 Application Developer’s Guide

Concurrency Control Using Serializable Transactions
The behavior of Oracle with respect to these isolation levels is summarized below
.

READ UNCOMMITTED Oracle never permits “dirty reads.” This is not required
for high throughput with Oracle.

READ COMMITTED Oracle meets the READ COMMITTED isolation stan-
dard. This is the default mode for all Oracle applica-
tions. Note that since an Oracle query only sees data that
was committed at the beginning of the query (the snap-
shot time), Oracle offers more consistency than actually
required by the ANSI/ISO SQL92 standards for READ
COMMITTED isolation.

REPEATABLE READ Oracle does not support this isolation level, except as
provided by SERIALIZABLE.

SERIALIZABLE You can set this isolation level using the SET TRANSAC-
TION command or the ALTER SESSION command, as
described on page 3-31.
 Processing SQL Statements 3-29

Concurrency Control Using Serializable Transactions
Figure 3–2 Time Line for Two Transactions
TRANSACTION A
(arbitrary)

begin work
update row 2
in block 1

Issue update
"too recent" for B
to see

TIME

TRANSACTION B
(serializable)

SET TRANSACTION
ISOLATION LEVEL
SERIALIZABLE
read row 1 in block 1

Change other row in
same block, see own
changes

update row 1 in block 1
read updated row 1 in
block 1

insert row 4
Create possible
"phantom" row

Uncommitted changes
invisible

read old row 2 in block 1
search for row 4
(notfound)

commit
Make changes visible
to transactions that
begin later

Make changes
after A commits update row 3 in block 1

B can see its own
changes but not the
committed changes of
transaction A.

re-read updated row 1
in block 1
search for row 4 (not found)
read old row 2 in block 1

Failure on attempt to
update row updated
& committed since
transaction B began

update row 2 in block 1
FAILS; rollback and retry
3-30 Oracle8 Application Developer’s Guide

Concurrency Control Using Serializable Transactions
Serializable Transaction Interaction
Figure 3–2 shows how a serializable transaction (Transaction B) interacts with
another transaction (A, which can be either SERIALIZABLE or READ COMMIT-
TED).

When a serializable transaction fails with an ORA-08177 error (“cannot serialize
access”), the application can take any of several actions:

■ commit the work executed to that point

■ execute additional, different, statements, perhaps after rolling back to a prior
savepoint in the transaction

■ roll back the entire transaction and try it again

Oracle stores control information in each data block to manage access by
concurrent transactions. To use the SERIALIZABLE isolation level, you must use
the INITRANS clause of the CREATE TABLE or ALTER TABLE command to set
aside storage for this control information. To use serializable mode, INITRANS
must be set to at least 3.

Setting the Isolation Level
You can change the isolation level of a transaction using the ISOLATION LEVEL
clause of the SET TRANSACTION command. The SET TRANSACTION command
must be the first command issued in a transaction. If it is not, the following error is
issued:

ORA-01453: SET TRANSACTION must be first statement of transaction

Use the ALTER SESSION command to set the transaction isolation level on a ses-
sion-wide basis.

The INITRANS Parameter
Oracle stores control information in each data block to manage access by concur-
rent transactions. Therefore, if you set the transaction isolation level to serializable,
you must use the ALTER TABLE command to set INITRANS to at least 3. This
parameter will cause Oracle to allocate sufficient storage in each block to record the
history of recent transactions that accessed the block. Higher values should be used
for tables that will undergo many transactions updating the same blocks.

See Also: Oracle8 SQL Reference for the complete syntax of the
SET TRANSACTION and ALTER SESSION commands.
 Processing SQL Statements 3-31

Concurrency Control Using Serializable Transactions
Referential Integrity and Serializable Transactions
Because Oracle does not use read locks, even in SERIALIZABLE transactions, data
read by one transaction can be overwritten by another. Transactions that perform
database consistency checks at the application level should not assume that the
data they read will not change during the execution of the transaction (even though
such changes are not visible to the transaction). Database inconsistencies can result
unless such application-level consistency checks are coded carefully, even when
using SERIALIZABLE transactions. Note, however, that the examples shown in
this section are applicable for both READ COMMITTED and SERIALIZABLE transac-
tions.

Figure 3–3 two different transactions that perform application-level checks to main-
tain the referential integrity parent/child relationship between two tables. One
transaction reads the parent table to determine that a row with a specific primary
key value exists before inserting corresponding child rows. The other transaction
checks to see that no corresponding detail rows exist before proceeding to delete a
parent row. In this case, both transactions assume (but do not ensure) that data they
read will not change before the transaction completes.
3-32 Oracle8 Application Developer’s Guide

Concurrency Control Using Serializable Transactions
Figure 3–3 Referential Integrity Checks

Note that the read issued by transaction A does not prevent transaction B from
deleting the parent row. Likewise, transaction B’s query for child rows does not pre-
vent the insertion of child rows by transaction A. Therefore the above scenario
leaves in the database a child row with no corresponding parent row. This result
would occur even if both A and B are SERIALIZABLE transactions, because neither
transaction prevents the other from making changes in the data it reads to check
consistency.

As this example illustrates, for some transactions, application developers must spe-
cifically ensure that the data read by one transaction is not concurrently written by
another. This requires a greater degree of transaction isolation than defined by
SQL92 SERIALIZABLE mode.

Using SELECT FOR UPDATE
Fortunately, it is straightforward in Oracle to prevent the anomaly described above.
Transaction A can use SELECT FOR UPDATE to query and lock the parent row and

TRANSACTION A TRANSACTION B

read parent (it exists) read child rows (not found)

insert child row(s) delete parent

commit work commit work

A's query does
not prevent this
delete

B's query does
not prevent this
insert
 Processing SQL Statements 3-33

Concurrency Control Using Serializable Transactions
thereby prevent transaction B from deleting the row. Transaction B can prevent
Transaction A from gaining access to the parent row by reversing the order of its pro-
cessing steps. Transaction B first deletes the parent row, and then rolls back if its sub-
sequent query detects the presence of corresponding rows in the child table.

Referential integrity can also be enforced in Oracle using database triggers, instead
of a separate query as in Transaction A above. For example, an INSERT into the
child table can fire a PRE-INSERT row-level trigger to check for the corresponding
parent row. The trigger queries the parent table using SELECT FOR UPDATE,
ensuring that parent row (if it exists) will remain in the database for the duration of
the transaction inserting the child row. If the corresponding parent row does not
exist, the trigger rejects the insert of the child row.

SQL statements issued by a database trigger execute in the context of the SQL state-
ment that caused the trigger to fire. All SQL statements executed within a trigger
see the database in the same state as the triggering statement. Thus, in a READ
COMMITTED transaction, the SQL statements in a trigger see the database as of the
beginning of the triggering statement’s execution, and in a transaction executing in
SERIALIZABLE mode, the SQL statements see the database as of the beginning of
the transaction. In either case, the use of SELECT FOR UPDATE by the trigger will
correctly enforce referential integrity as explained above.

READ COMMITTED and SERIALIZABLE Isolation
Oracle gives the application developer a choice of two transaction isolation levels
with different characteristics. Both the READ COMMITTED and SERIALIZABLE iso-
lation levels provide a high degree of consistency and concurrency. Both levels pro-
vide the contention-reducing benefits of Oracle’s “read consistency” multi-version
concurrency control model and exclusive row-level locking implementation, and
are designed for real-world application deployment. The rest of this section com-
pares the two isolation modes and provides information helpful in choosing
between them.

Transaction Set Consistency
A useful way to describe the READ COMMITTEDand SERIALIZABLE isolation lev-
els in Oracle is to consider the following:

■ a collection of database tables (or any set of data)

■ a particular sequence of reads of rows in those tables

■ the set of transactions committed at any particular time
3-34 Oracle8 Application Developer’s Guide

Concurrency Control Using Serializable Transactions
An operation (a query or a transaction) is “transaction set consistent” if all its reads
return data written by the same set of committed transactions. In an operation
that is not transaction set consistent, some reads reflect the changes of one set of
transactions, and other reads reflect changes made by other transactions. An opera-
tion that is not transaction set consistent in effect sees the database in a state that
reflects no single set of committed transactions.

Oracle provides transactions executing in READ COMMITTED mode with transac-
tion set consistency on a per-statement basis (since all rows read by a query must
have been committed before the query began). Similarly, Oracle SERIALIZABLE
mode provides transaction set consistency on a per-transaction basis, since all state-
ments in a SERIALIZABLE transaction execute with respect to an image of the data-
base as of the beginning of the transaction.

In other database systems (unlike in Oracle), a single query run in READ COMMIT-
TED mode provides results that are not transaction set consistent. The query is not
transaction set consistent because it may see only a subset of the changes made by
another transaction. This means, for example, that a join of a master table with a
detail table could see a master record inserted by another transaction, but not the
corresponding details inserted by that transaction, or vice versa. Oracle’s READ
COMMITTED mode will not experience this effect, and so provides a greater degree
of consistency than read-locking systems.

In read-locking systems, at the cost of preventing concurrent updates, SQL92
REPEATABLE READ isolation provides transaction set consistency at the statement
level, but not at the transaction level. The absence of phantom protection means
two queries issued by the same transaction can see data committed by different sets
of other transactions. Only the throughput-limiting and deadlock-susceptible
SERIALIZABLE mode in these systems provides transaction set consistency at the
transaction level.

Functionality Comparison Summary
Table 3–13 summarizes key similarities and differences between READ COMMIT-
TED and SERIALIZABLE transactions.

Table 3–13 Read Committed vs. Serializable Transaction

Read Committed Serializable

Dirty write Not Possible Not Possible

Dirty read Not Possible Not Possible
 Processing SQL Statements 3-35

Concurrency Control Using Serializable Transactions
Choosing an Isolation Level
Application designers and developers should choose an isolation level that is
appropriate to the specific application and workload, and may choose different iso-
lation levels for different transactions. The choice should be based on performance
and consistency needs, and consideration of application coding requirements.

For environments with many concurrent users rapidly submitting transactions,
designers must assess transaction performance requirements in terms of the
expected transaction arrival rate and response time demands, and choose an isola-
tion level that provides the required degree of consistency while satisfying perfor-
mance expectations. Frequently, for high performance environments, the choice of
isolation levels involves making a trade-off between consistency and concurrency
(transaction throughput).

Both Oracle isolation modes provide high levels of consistency and concurrency
(and performance) through the combination of row-level locking and Oracle’s
multi-version concurrency control system. Because readers and writers don’t block
one another in Oracle, while queries still see consistent data, both READ COMMIT-

Non-repeatable read Possible Not Possible

Phantoms Possible Not Possible

Compliant with ANSI/ISO SQL 92 Yes Yes

Read snapshot time Statement Transaction

Transaction set consistency Statement level Transaction level

Row-level locking Yes Yes

Readers block writers No No

Writers block readers No No

Different-row writers block writers No No

Same-row writers block writers Yes Yes

Waits for blocking transaction Yes Yes

Subject to “can’t serialize access” error No Yes

Error after blocking transaction aborts No No

Error after blocking transaction com-
mits

No Yes

Table 3–13 (Cont.) Read Committed vs. Serializable Transaction

Read Committed Serializable
3-36 Oracle8 Application Developer’s Guide

Concurrency Control Using Serializable Transactions
TED and SERIALIZABLE isolation provide a high level of concurrency for high per-
formance, without the need for reading uncommitted (“dirty”) data.

READ COMMITTED isolation can provide considerably more concurrency with a
somewhat increased risk of inconsistent results (due to phantoms and non-repeat-
able reads) for some transactions. The SERIALIZABLE isolation level provides
somewhat more consistency by protecting against phantoms and non-repeatable
reads, and may be important where a read/write transaction executes a query more
than once. However, SERIALIZABLE mode requires applications to check for the
"can’t serialize access" error, and can significantly reduce throughput in an environ-
ment with many concurrent transactions accessing the same data for update. Appli-
cation logic that checks database consistency must take into account the fact reads
don’t block writes in either mode.

Application Tips
When a transaction runs in serializable mode, any attempt to change data that was
changed by another transaction since the beginning of the serializable transaction
results in the following error:

ORA-08177: Can’t serialize access for this transaction.

When you get an ORA-08177 error, the appropriate action is to roll back the cur-
rent transaction, and re-execute it. After a rollback, the transaction acquires a new
transaction snapshot, and the DML operation is likely to succeed.

Since a rollback and repeat of the transaction is required, it is good development
practice to put DML statements that might conflict with other concurrent transac-
tions towards the beginning of your transaction, whenever possible.
 Processing SQL Statements 3-37

Concurrency Control Using Serializable Transactions
3-38 Oracle8 Application Developer’s Guide

 Managing Schema O
4

Managing Schema Objects

This chapter discusses the procedures necessary to create and manage the different
types of objects contained in a user’s schema. The topics included are:

■ Managing Tables

■ Managing Views

■ Modifying a Join View

■ Managing Sequences

■ Managing Synonyms

■ Managing Indexes

■ Managing Clusters, Clustered Tables, and Cluster Indexes

■ Managing Hash Clusters and Clustered Tables

■ Miscellaneous Management Topics for Schema Objects

See Also: Specific information is described in the following
locations:

■ Procedures, functions, and packages — Chapter 10

■ Object types — Chapter 7

■ Dependency information — Chapter 15.

■ If you use symmetric replication, see Oracle8 Replication for
information on managing schema objects, such as snapshots.

■ If you use Trusted Oracle, there are additional privileges
required and issues to consider when managing schema
objects; see the Trusted Oracle documentation.
bjects 4-1

Managing Tables
Managing Tables
A table is the data structure that holds data in a relational database. A table is com-
posed of rows and columns.

A table can represent a single entity that you want to track within your system.
Such a table might represent a list of the employees within your organization or the
orders placed for your company’s products.

A table can also represent a relationship between two entities. Such a table could be
used to portray the association between employees and their job skills or the rela-
tionship of products to orders. Within the tables, foreign keys are used to represent
relationships.

Although some well designed tables might both represent an entity and describe
the relationship between that entity and another entity, most tables should repre-
sent either an entity or a relationship. For example, the EMP table describes the
employees in a firm, but this table also includes a foreign key column, DEPTNO,
which represents the relationships of employees to departments.

The following sections explain how to create, alter, and drop tables. Some simple
guidelines to follow when managing tables in your database are included; see the
Oracle8 Administrator’s Guide for more suggestions. You should also refer to a text
on relational database or table design.

Designing Tables
You should consider the following guidelines when designing your tables:

■ Use descriptive names for tables, columns, indexes, and clusters.

■ Be consistent in abbreviations and in the use of singular and plural forms of
table names and columns.

■ Document the meaning of each table and its columns with the COMMENT
command.

■ Normalize each table.

■ Select the appropriate datatype for each column.

■ Define columns that allow nulls last, to conserve storage space.

■ Cluster tables whenever appropriate, to conserve storage space and optimize
performance of SQL statements.

Before creating a table, you should also determine whether to use integrity con-
straints. Integrity constraints can be defined on the columns of a table to enforce the
4-2 Oracle8 Application Developer’s Guide

Managing Tables
business rules of your database automatically; see Chapter 9, “Maintaining Data
Integrity” for guidelines.

Creating Tables
To create a table, use the SQL command CREATE TABLE. For example, if the user
SCOTT issues the following statement, he creates a non-clustered table named EMP
in his schema that is physically stored in the USERS tablespace. Notice that integ-
rity constraints are defined on several columns of the table.

CREATE TABLE emp (
 empno NUMBER(5) PRIMARY KEY,
 ename VARCHAR2(15) NOT NULL,
 job VARCHAR2(10),
 mgr NUMBER(5),
 hiredate DATE DEFAULT (sysdate),
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(3) NOT NULL
 CONSTRAINT dept_fkey REFERENCES dept)
 PCTFREE 10
 PCTUSED 40
 TABLESPACE users
 STORAGE (INITIAL 50K
 NEXT 50K
 MAXEXTENTS 10
 PCTINCREASE 25);

Managing the Space Usage of Data Blocks
The following sections explain how to use the PCTFREE and PCTUSED parameters
to do the following:

■ increase the performance of writing and retrieving a data or index segment

■ decrease the amount of unused space in data blocks

■ decrease the amount of row chaining between data blocks

Specifying PCTFREE
The PCTFREE default is 10 percent; any integer from 0 to 99 is acceptable, as long as
the sum of PCTFREE and PCTUSED does not exceed 100. (If PCTFREE is set to 99,
Oracle puts at least one row in each block, regardless of row size. If the rows are
very small and blocks very large, even more than one row might fit.)
 Managing Schema Objects 4-3

Managing Tables
A lower PCTFREE:

■ reserves less room for updates to existing table rows

■ allows inserts to fill the block more completely

■ might save space, because the total data for a table or index is stored in fewer
blocks (more rows or entries per block)

■ increases processing costs because blocks frequently need to be reorganized as
their free space area becomes filled with new or updated data

■ potentially increases processing costs and space required if updates to rows or
index entries cause rows to grow and span blocks (because UPDATE, DELETE,
and SELECT statements might need to read more blocks for a given row and
because chained row pieces contain references to other pieces)

A higher PCTFREE:

■ reserves more room for future updates to existing table rows

■ might require more blocks for the same amount of inserted data (inserting
fewer rows per block)

■ lessens processing costs because blocks infrequently need reorganization of
their free space area

■ might improve update performance, because Oracle must chain row pieces less
frequently, if ever

In setting PCTFREE, you should understand the nature of the table or index data.
Updates can cause rows to grow. When using NUMBER, VARCHAR2, LONG, or LONG
RAW, new values might not be the same size as values they replace. If there are
many updates in which data values get longer, increase PCTFREE; if updates to
rows do not affect the total row width, then PCTFREE can be low.

Your goal is to find a satisfactory trade-off between densely packed data (low PCT-
FREE, full blocks) and good update performance (high PCTFREE, less-full blocks).

PCTFREE also affects the performance of a given user’s queries on tables with
uncommitted transactions belonging to other users. Assuring read consistency
might cause frequent reorganization of data in blocks that have little free space.

PCTFREE for Non-Clustered Tables If the data in the rows of a non-clustered table is
likely to increase in size over time, reserve space for these updates. If you do not
reserve room for updates, updated rows are likely to be chained between blocks,
reducing I/O performance associated with these rows.
4-4 Oracle8 Application Developer’s Guide

Managing Tables
PCTFREE for Clustered Tables The discussion for non-clustered tables also applies to
clustered tables. However, if PCTFREE is reached, new rows from any table con-
tained in the same cluster key go into a new data block chained to the existing clus-
ter key.

PCTFREE for Indexes Indexes infrequently require the use of free space for updates
to index data. Therefore, the PCTFREE value for index segment data blocks is nor-
mally very low (for example, 5 or less).

Specifying PCTUSED
Once the percentage of free space in a data block reaches PCTFREE, no new rows
are inserted in that block until the percentage of space used falls below PCTUSED.
Oracle tries to keep a data block at least PCTUSED full. The percent is of block space
available for data after overhead is subtracted from total space.

The default for PCTUSED is 40 percent; any integer between 0 and 99, inclusive, is
acceptable as long as the sum of PCTUSED and PCTFREE does not exceed 100.

A lower PCTUSED:

■ usually keeps blocks less full than a higher PCTUSED

■ reduces processing costs incurred during UPDATE and DELETE statements for
moving a block to the free list when the block has fallen below that percentage
of usage

■ increases the unused space in a database

 A higher PCTUSED:

■ usually keeps blocks fuller than a lower PCTUSED

■ improves space efficiency

■ increases processing cost during INSERTs and UPDATEs

Choosing Associated PCTUSED and PCTFREE Values
If you decide not to use the default values for PCTFREE and PCTUSED, use the fol-
lowing guidelines.

■ The sum of PCTFREE and PCTUSED must be equal to or less than 100.

■ If the sum is less than 100, the ideal compromise of space utilization and I/O
performance is a sum of PCTFREE and PCTUSED that differs from 100 by the
percentage of space in the available block that an average row occupies. For
example, assume that the data block size is 2048 bytes, minus 100 bytes of over-
 Managing Schema Objects 4-5

Managing Tables
head, leaving 1948 bytes available for data. If an average row requires 195
bytes, or 10% of 1948, then an appropriate combination of PCTUSED and PCT-
FREE that sums to 90% would make the best use of database space.

■ If the sum equals 100, Oracle attempts to keep no more than PCTFREE free
space, and the processing costs are highest.

■ Fixed block overhead is not included in the computation of PCTUSED or PCT-
FREE.

■ The smaller the difference between 100 and the sum of PCTFREE and
PCTUSED (as in PCTUSED of 75, PCTFREE of 20), the more efficient space
usage is at some performance cost.

Examples of Choosing PCTFREE and PCTUSED Values
The following examples illustrate correctly specifying values for PCTFREE and
PCTUSED in given scenarios.

Example1

Example2

Scenario: Common activity includes UPDATE statements that increase the size
of the rows. Performance is important.

Settings: PCTFREE = 20

PCTUSED = 40

Explanation: PCTFREE is set to 20 to allow enough room for rows that increase in
size as a result of updates. PCTUSED is set to 40 so that less process-
ing is done during high update activity, thus improving perfor-
mance.

Scenario: Most activity includes INSERT and DELETE statements, and
UPDATE statements that do not increase the size of affected rows.

Performance is important

Settings: PCTFREE = 5

PCTUSED = 60

Explanation: PCTFREE is set to 5 because most UPDATE statements do not
increase row sizes. PCTUSED is set to 60 so that space freed by
DELETE statements is used relatively soon, yet the amount of pro-
cessing is minimized.
4-6 Oracle8 Application Developer’s Guide

Managing Tables
Example3

Privileges Required to Create a Table
To create a new table in your schema, you must have the CREATE TABLE system
privilege. To create a table in another user’s schema, you must have the CREATE
ANY TABLE system privilege. Additionally, the owner of the table must have a
quota for the tablespace that contains the table, or the UNLIMITED TABLESPACE
system privilege.

Altering Tables
You might alter a table in an Oracle database for any of the following reasons:

■ to add one or more new columns to the table

■ to add one or more integrity constraints to a table

■ to modify an existing column’s definition (datatype, length, default value, and
NOT NULL integrity constraint)

■ to modify data block space usage parameters (PCTFREE, PCTUSED)

■ to modify transaction entry settings (INITRANS, MAXTRANS)

■ to modify storage parameters (NEXT, PCTINCREASE, etc.)

■ to enable or disable integrity constraints associated with the table

■ to drop integrity constraints associated with the table

When altering the column definitions of a table, you can only increase the length of
an existing column, unless the table has no records. You can also decrease the
length of a column in an empty table. For columns of datatype CHAR, increasing

Scenario: The table is very large; therefore, storage is a primary concern. Most
activity includes read-only transactions; therefore, query perfor-
mance is important.

Settings: PCTFREE = 5

PCTUSED = 90

Explanation: PCTFREE is set to 5 because UPDATE statements are rarely issued.
PCTUSED is set to 90 so that more space per block is used to store
table data. This setting for PCTUSED reduces the number of data
blocks required to store the table’s data and decreases the average
number of data blocks to scan for queries, thereby increasing the per-
formance of queries.
 Managing Schema Objects 4-7

Managing Tables
the length of a column might be a time consuming operation that requires substan-
tial additional storage, especially if the table contains many rows. This is because
the CHAR value in each row must be blank-padded to satisfy the new column
length.

If you change the datatype (for example, from VARCHAR2 to CHAR), the data in the
column does not change. However, the length of new CHAR columns might change,
due to blank-padding requirements.

Use the SQL command ALTER TABLE to alter a table, as in

ALTER TABLE emp
 PCTFREE 30
 PCTUSED 60;

Altering a table has the following implications:

■ If a new column is added to a table, the column is initially null. You can add a
column with a NOT NULL constraint to a table only if the table does not contain
any rows.

■ If a view or PL/SQL program unit depends on a base table, the alteration of the
base table might affect the dependent object, and always invalidates the depen-
dent object.

Privileges Required to Alter a Table
To alter a table, the table must be contained in your schema, or you must have
either the ALTER object privilege for the table or the ALTER ANY TABLE system
privilege.

Dropping Tables
Use the SQL command DROP TABLE to drop a table. For example, the following
statement drops the EMP table:

DROP TABLE emp;

If the table that you are dropping contains any primary or unique keys referenced
by foreign keys of other tables, and you intend to drop the FOREIGN KEY con-
straints of the child tables, include the CASCADE option in the DROP TABLE com-
mand, as in

DROP TABLE emp CASCADE CONSTRAINTS;

Dropping a table has the following effects:
4-8 Oracle8 Application Developer’s Guide

Managing Views
■ The table definition is removed from the data dictionary. All rows of the table
are then inaccessible.

■ All indexes and triggers associated with the table are dropped.

■ All views and PL/SQL program units that depend on a dropped table remain,
yet become invalid (not usable).

■ All synonyms for a dropped table remain, but return an error when used.

■ All extents allocated for a non-clustered table that is dropped are returned to
the free space of the tablespace and can be used by any other object requiring
new extents.

■ All rows corresponding to a clustered table are deleted from the blocks of the
cluster.

■ If the table is a master table for snapshots, Oracle does not drop the snapshots,
but does drop the snapshot log. The snapshots can still be used, but they can-
not be refreshed unless the table is re-created.

If you want to delete all of the rows of a table, but keep the table definition, you
should use the TRUNCATE TABLE command. This command is described in the
Oracle8 Administrator’s Guide.

Privileges Required to Drop a Table
To drop a table, the table must be contained in your schema or you must have the
DROP ANY TABLE system privilege.

Managing Views
A view is a logical representation of another table or combination of tables. A view
derives its data from the tables on which it is based. These tables are called base
tables. Base tables might in turn be actual tables or might be views themselves.

All operations performed on a view actually affect the base table of the view. You
can use views in almost the same way as tables. You can query, update, insert into,
and delete from views, just as you can standard tables.

Views can provide a different representation (such as subsets or supersets) of the
data that resides within other tables and views. Views are very powerful because
they allow you to tailor the presentation of data to different types of users.

The following sections explain how to create, replace, and drop views using SQL
commands.
 Managing Schema Objects 4-9

Managing Views
Creating Views
Use the SQL command CREATE VIEW to create a view. You can define views with
any query that references tables, snapshots, or other views; however, the query that
defines a view cannot contain the ORDER BY or FOR UPDATE clauses. For exam-
ple, the following statement creates a view on a subset of data in the EMP table:

CREATE VIEW sales_staff AS
 SELECT empno, ename, deptno
 FROM emp
 WHERE deptno = 10
 WITH CHECK OPTION CONSTRAINT sales_staff_cnst;

The query that defines the SALES_STAFF view references only rows in department
10. Furthermore, the WITH CHECK OPTION creates the view with the constraint
that INSERT and UPDATE statements issued against the view are not allowed to cre-
ate or result in rows that the view cannot select.

Considering the example above, the following INSERT statement successfully
inserts a row into the EMP table via the SALES_STAFF view:

INSERT INTO sales_staff VALUES (7584, ’OSTER’, 10);

However, the following INSERT statement is rolled back and returns an error
because it attempts to insert a row for department number 30, which could not be
selected using the SALES_STAFF view:

INSERT INTO sales_staff VALUES (7591, ’WILLIAMS’, 30);

The following statement creates a view that joins data from the EMP and DEPT
tables:

CREATE VIEW division1_staff AS
 SELECT ename, empno, job, dname
 FROM emp, dept
 WHERE emp.deptno IN (10, 30)
 AND emp.deptno = dept.deptno;

The DIVISION1_STAFF view is defined by a query that joins information from the
EMP and DEPT tables. The WITH CHECK OPTION is not specified in the CREATE
VIEW statement because rows cannot be inserted into or updated in a view defined
with a query that contains a join that uses the WITH CHECK OPTION; see page 4-13
and page 4-15 and following.
4-10 Oracle8 Application Developer’s Guide

Managing Views
Expansion of Defining Queries at View Creation Time
In accordance with the ANSI/ISO standard, Oracle expands any wildcard in a top-
level view query into a column list when a view is created and stores the resulting
query in the data dictionary; any subqueries are left intact. The column names in an
expanded column list are enclosed in quote marks to account for the possibility
that the columns of the base object were originally entered with quotes and require
them for the query to be syntactically correct.

As an example, assume that the DEPT view is created as follows:

CREATE VIEW dept AS SELECT * FROM scott.dept;

Oracle stores the defining query of the DEPT view as

SELECT ”DEPTNO”, ”DNAME”, ”LOC” FROM scott.dept

Views created with errors do not have wildcards expanded. However, if the view is
eventually compiled without errors, wildcards in the defining query are expanded.

Creating Views with Errors
Assuming no syntax errors, a view can be created (with errors) even if the defining
query of the view cannot be executed. For example, if a view is created that refers
to a non-existent table or an invalid column of an existing table, or if the owner of
the view does not have the required privileges, the view can still be created and
entered into the data dictionary.

You can only create a view with errors by using the FORCE option of the CREATE
VIEW command:

CREATE FORCE VIEW AS ...;

When a view is created with errors, Oracle returns a message that indicates the
view was created with errors. The status of such a view is left as INVALID . If condi-
tions later change so that the query of an invalid view can be executed, the view
can be recompiled and become valid. Oracle dynamically compiles the invalid view
if you attempt to use it.

Privileges Required to Create a View
To create a view, you must have been granted the following privileges:

■ You must have the CREATE VIEW system privilege to create a view in your
schema or the CREATE ANY VIEW system privilege to create a view in another
user’s schema. These privileges can be acquired explicitly or via a role.
 Managing Schema Objects 4-11

Managing Views
■ The owner of the view must have been explicitly granted the necessary privi-
leges to access all objects referenced within the definition of the view; the
owner cannot have obtained the required privileges through roles. Also, the
functionality of the view is dependent on the privileges of the view’s owner.
For example, if you (the view owner) are granted only the INSERT privilege for
Scott’s EMP table, you can create a view on his EMP table, but you can only use
this view to insert new rows into the EMP table.

■ If the view owner intends to grant access to the view to other users, the owner
must have received the object privileges to the base objects with the GRANT
OPTION or the system privileges with the ADMIN OPTION; if not, the view
owner has insufficient privileges to grant access to the view to other users.

Replacing Views
To alter the definition of a view, you must replace the view using one of the follow-
ing methods:

■ A view can be dropped and then re-created. When a view is dropped, all grants
of corresponding view privileges are revoked from roles and users. After the
view is re-created, necessary privileges must be regranted.

■ A view can be replaced by redefining it with a CREATE VIEW statement that
contains the OR REPLACE option. This option is used to replace the current defi-
nition of a view but preserve the present security authorizations. For example,
assume that you create the SALES_STAFF view, as given in a previous exam-
ple. You also grant several object privileges to roles and other users. However,
now you realize that you must redefine the SALES_STAFF view to correct the
department number specified in the WHERE clause of the defining query,
because it should have been 30. To preserve the grants of object privileges that
you have made, you can replace the current version of the SALES_STAFF view
with the following statement:

CREATE OR REPLACE VIEW sales_staff AS
 SELECT empno, ename, deptno
 FROM emp
 WHERE deptno = 30
 WITH CHECK OPTION CONSTRAINT sales_staff_cnst;

Replacing a view has the following effects:

■ Replacing a view replaces the view’s definition in the data dictionary. All
underlying objects referenced by the view are not affected.
4-12 Oracle8 Application Developer’s Guide

Managing Views
■ If previously defined but not included in the new view definition, the con-
straint associated with the WITH CHECK OPTION for a view’s definition is
dropped.

■ All views and PL/SQL program units dependent on a replaced view become
invalid.

Privileges Required to Replace a View
To replace a view, you must have all of the privileges needed to drop the view, as
well as all of those required to create the view.

Using Views
Views can be queried in the same manner as tables. For example, to query the
DIVISION1_STAFF view, enter a valid SELECT statement that references the view:

SELECT * FROM division1_staff;

ENAME EMPNO JOB DNAME
--
CLARK 7782 MANAGER ACCOUNTING
KING 7839 PRESIDENT ACCOUNTING
MILLER 7934 CLERK ACCOUNTING
ALLEN 7499 SALESMAN SALES
WARD 7521 SALESMAN SALES
JAMES 7900 CLERK SALES
TURNER 7844 SALESMAN SALES
MARTIN 7654 SALESMAN SALES
BLAKE 7698 MANAGER SALES

With some restrictions, rows can be inserted into, updated in, or deleted from a
base table using a view. The following statement inserts a new row into the EMP
table using the SALES_STAFF view:

INSERT INTO sales_staff
 VALUES (7954, ’OSTER’, 30);

Restrictions on DML operations for views use the following criteria in the order
listed:

1. If a view is defined by a query that contains SET or DISTINCT operators, a
GROUP BY clause, or a group function, rows cannot be inserted into, updated
in, or deleted from the base tables using the view.
 Managing Schema Objects 4-13

Managing Views
2. If a view is defined with the WITH CHECK OPTION, a row cannot be inserted
into, or updated in, the base table (using the view) if the view cannot select the
row from the base table.

3. If a NOT NULL column that does not have a DEFAULT clause is omitted from
the view, a row cannot be inserted into the base table using the view.

4. If the view was created by using an expression, such as DECODE(deptno, 10,
"SALES", ...), rows cannot be inserted into or updated in the base table using
the view.

The constraint created by the WITH CHECK OPTION of the SALES_STAFF view
only allows rows that have a department number of 10 to be inserted into, or
updated in, the EMP table. Alternatively, assume that the SALES_STAFF view is
defined by the following statement (that is, excluding the DEPTNO column):

CREATE VIEW sales_staff AS
 SELECT empno, ename
 FROM emp
 WHERE deptno = 10
 WITH CHECK OPTION CONSTRAINT sales_staff_cnst;

Considering this view definition, you can update the EMPNO or ENAME fields of
existing records, but you cannot insert rows into the EMP table via the
SALES_STAFF view because the view does not let you alter the DEPTNO field. If
you had defined a DEFAULT value of 10 on the DEPTNO field, you could perform
inserts.

Referencing Invalid Views When a user attempts to reference an invalid view, Oracle
returns an error message to the user:

ORA-04063: view ’ view_name ’ has errors

This error message is returned when a view exists but is unusable due to errors in
its query (whether it had errors when originally created or it was created success-
fully but became unusable later because underlying objects were altered or
dropped).

Privileges Required to Use a View
To issue a query or an INSERT, UPDATE , or DELETE statement against a view, you
must have the SELECT, INSERT, UPDATE, or DELETE object privilege for the
view, respectively, either explicitly or via a role.
4-14 Oracle8 Application Developer’s Guide

Modifying a Join View
Dropping Views
Use the SQL command DROP VIEW to drop a view, as in

DROP VIEW sales_staff;

Privileges Required to Drop a View
You can drop any view contained in your schema. To drop a view in another user’s
schema, you must have the DROP ANY VIEW system privilege.

Modifying a Join View
The Oracle Server allows you, with some restrictions, to modify views that involve
joins. Consider the following simple view:

CREATE VIEW emp_view AS
 SELECT ename, empno, deptno FROM emp;

This view does not involve a join operation. If you issue the SQL statement:

UPDATE emp_view SET ename = ’CAESAR’ WHERE empno = 7839;

then the EMP base table that underlies the view changes, and employee 7839’s name
changes from KING to CAESAR in the EMP table.

However, if you create a view that involves a join operation, such as:

CREATE VIEW emp_dept AS
 SELECT e.empno, e.ename, e.deptno, d.dname, d.loc
 FROM emp e, dept d /* JOIN operation */
 WHERE e.deptno = d.deptno
 AND d.loc IN (’DALLAS’, ’NEW YORK’, ’BOSTON’);

then there are restrictions on modifying either the EMP or the DEPT base table
through this view, for example, using a statement such as:

UPDATE emp_dept_view SET ename = ’JOHNSON’
 WHERE ename = ’SMITH’;

A modifiable join view is a view that contains more than one table in the top-level
FROM clause of the SELECT statement, and that does not contain any of the follow-
ing:

■ DISTINCT operator
 Managing Schema Objects 4-15

Modifying a Join View
■ aggregate functions: AVG, COUNT, GLB, MAX, MIN, STDDEV, SUM, or
VARIANCE

■ set operations: UNION, UNION ALL, INTERSECT, MINUS

■ GROUP BY or HAVING clauses

■ START WITH or CONNECT BY clauses

■ ROWNUM pseudocolumn

A further restriction on which join views are modifiable is that if a view is a join on
other nested views, then the other nested views must be mergeable into the top
level view. See Oracle8 Concepts for more information about mergeable views.

Example Tables
The examples in this section use the familiar EMP and DEPT tables. However, the
examples work only if you explicitly define the primary and foreign keys in these
tables, or define unique indexes. Here are the appropriately constrained table defi-
nitions for EMP and DEPT:

CREATE TABLE dept (
 deptno NUMBER(4) PRIMARY KEY,
 dname VARCHAR2(14),
 loc VARCHAR2(13));

CREATE TABLE emp (
 empno NUMBER(4) PRIMARY KEY,
 ename VARCHAR2(10),
 job varchar2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2),
FOREIGN KEY (DEPTNO) REFERENCES DEPT(DEPTNO));.

You could also omit the primary and foreign key constraints listed above, and cre-
ate a UNIQUE INDEX on DEPT (DEPTNO) to make the following examples work.
4-16 Oracle8 Application Developer’s Guide

Modifying a Join View
Key-Preserved Tables
The concept of a key-preserved table is fundamental to understanding the restrictions
on modifying join views. A table is key preserved if every key of the table can also
be a key of the result of the join. So, a key-preserved table has its keys preserved
through a join.

If you SELECT all rows from EMP_DEPT_VIEW defined in “Modifying a Join View”
on page 4-15, the results are

EMPNO ENAME DEPTNO DNAME LOC

7782 CLARK 10 ACCOUNTING NEW YORK
7839 KING 10 ACCOUNTING NEW YORK
7934 MILLER 10 ACCOUNTING NEW YORK
7369 SMITH 20 RESEARCH DALLAS
7876 ADAMS 20 RESEARCH DALLAS
7902 FORD 20 RESEARCH DALLAS
7788 SCOTT 20 RESEARCH DALLAS
7566 JONES 20 RESEARCH DALLAS
8 rows selected.

In this view, EMP is a key-preserved table, because EMPNO is a key of the EMP table,
and also a key of the result of the join. DEPT is not a key-preserved table, because
although DEPTNO is a key of the DEPT table, it is not a key of the join.

Note:

■ It is not necessary that the key or keys of a table be selected for
it to be key preserved. It is sufficient that if the key or keys
were selected, then they would also be key(s) of the result of
the join.

■ The key-preserving property of a table does not depend on the
actual data in the table. It is, rather, a property of its schema
and not of the data in the table. For example, if in the EMP table
there was at most one employee in each department, then
DEPT.DEPTNO would be unique in the result of a join of EMP
and DEPT, but DEPT would still not be a key-preserved table.
 Managing Schema Objects 4-17

Modifying a Join View
Rule for DML Statements on Join Views
Any UPDATE, INSERT, or DELETE statement on a join view can modify only one
underlying base table.

UPDATE Statements
The following example shows an UPDATE statement that successfully modifies the
EMP_DEPT view (shown on page 4-15):

UPDATE emp_dept
 SET sal = sal * 1.10
 WHERE deptno = 10;

The following UPDATE statement would be disallowed on the EMP_DEPT view:

UPDATE emp_dept
 SET loc = ’BOSTON’
 WHERE ename = ’SMITH’;

This statement fails with an ORA-01779 error (“cannot modify a column which
maps to a non key-preserved table”), because it attempts to modify the underlying
DEPT table, and the DEPT table is not key preserved in the EMP_DEPT view.

In general, all modifiable columns of a join view must map to columns of a key-pre-
served table. If the view is defined using the WITH CHECK OPTION clause, then all
join columns and all columns of repeated tables are not modifiable.

So, for example, if the EMP_DEPT view were defined using WITH CHECK OPTION,
the following UPDATE statement would fail:

UPDATE emp_dept
 SET deptno = 10
 WHERE ename = ’SMITH’;

The statement fails because it is trying to update a join column.

DELETE Statements
You can delete from a join view provided there is one and only one key-preserved
table in the join.

The following DELETE statement works on the EMP_DEPT view:

DELETE FROM emp_dept
 WHERE ename = ’SMITH’;
4-18 Oracle8 Application Developer’s Guide

Modifying a Join View
This DELETE statement on the EMP_DEPT view is legal because it can be translated
to a DELETE operation on the base EMP table, and because the EMP table is the only
key-preserved table in the join.

In the following view, a DELETE operation cannot be performed on the view
because both E1 and E2 are key-preserved tables:

CREATE VIEW emp_emp AS
 SELECT e1.ename, e2.empno, deptno
 FROM emp e1, emp e2
 WHERE e1.empno = e2.empno;

If a view is defined using the WITH CHECK OPTION clause and the key-preserved
table is repeated, then rows cannot be deleted from such a view. For example:

CREATE VIEW emp_mgr AS
 SELECT e1.ename, e2.ename mname
 FROM emp e1, emp e2
 WHERE e1.mgr = e2.empno
 WITH CHECK OPTION;

No deletion can be performed on this view because the view involves a self-join of
the table that is key preserved.

INSERT Statements
The following INSERT statement on the EMP_DEPT view succeeds:

INSERT INTO emp_dept (ename, empno, deptno)
 VALUES (’KURODA’, 9010, 40);

because only one key-preserved base table is being modified (EMP), and 40 is a
valid DEPTNO in the DEPT table (thus satisfying the FOREIGN KEY integrity con-
straint on the EMP table).

An INSERT statement such as

INSERT INTO emp_dept (ename, empno, deptno)
 VALUES (’KURODA’, 9010, 77);

would fail for the same reason that such an UPDATE on the base EMP table would
fail: the FOREIGN KEY integrity constraint on the EMP table is violated.

An INSERT statement such as

INSERT INTO emp_dept (empno, ename, loc)
 VALUES (9010, ’KURODA’, ’BOSTON’);
 Managing Schema Objects 4-19

Modifying a Join View
would fail with an ORA-01776 error (“cannot modify more than one base table
through a view”).

An INSERT cannot, implicitly or explicitly, refer to columns of a non-key-preserved
table. If the join view is defined using the WITH CHECK OPTION clause, then you
cannot perform an INSERT to it.

Using the UPDATABLE_COLUMNS Views
Three views you can use for modifying join views are shown in Table 4–1.

Outer Joins
Views that involve outer joins are modifiable in some cases. For example:

CREATE VIEW emp_dept_oj1 AS
 SELECT empno, ename, e.deptno, dname, loc
 FROM emp e, dept d
 WHERE e.deptno = d.deptno (+);

The statement

SELECT * FROM emp_dept_oj1;
results in:

EMPNO ENAME DEPTNO DNAME LOC
------- ---------- ------- -------------- -------------
7369 SMITH 40 OPERATIONS BOSTON
7499 ALLEN 30 SALES CHICAGO
7566 JONES 20 RESEARCH DALLAS
7654 MARTIN 30 SALES CHICAGO
7698 BLAKE 30 SALES CHICAGO
7782 CLARK 10 ACCOUNTING NEW YORK

Table 4–1 UPDATABLE_COLUMNS Views

View Name Description

USER_UPDATABLE_COLUMNS Shows all columns in all tables and views in
the user’s schema that are modifiable.

DBA_UPDATABLE_COLUMNS Shows all columns in all tables and views in
the DBA schema that are modifiable.

ALL_UPDATABLE_VIEWS Shows all columns in all tables and views
that are modifiable.
4-20 Oracle8 Application Developer’s Guide

Modifying a Join View
7788 SCOTT 20 RESEARCH DALLAS
7839 KING 10 ACCOUNTING NEW YORK
7844 TURNER 30 SALES CHICAGO
7876 ADAMS 20 RESEARCH DALLAS
7900 JAMES 30 SALES CHICAGO
7902 FORD 20 RESEARCH DALLAS
7934 MILLER 10 ACCOUNTING NEW YORK
7521 WARD 30 SALES CHICAGO
14 rows selected.
Columns in the base EMP table of EMP_DEPT_OJ1 are modifiable through the view,
because EMP is a key-preserved table in the join.

The following view also contains an outer join:

CREATE VIEW emp_dept_oj2 AS
SELECT e.empno, e.ename, e.deptno, d.dname, d.loc
FROM emp e, dept d
WHERE e.deptno (+) = d.deptno;

The statement

SELECT * FROM emp_dept_oj2;
results in:

EMPNO ENAME DEPTNO DNAME LOC
---------- ---------- --------- -------------- ----
7782 CLARK 10 ACCOUNTING NEW YORK
7839 KING 10 ACCOUNTING NEW YORK
7934 MILLER 10 ACCOUNTING NEW YORK
7369 SMITH 20 RESEARCH DALLAS
7876 ADAMS 20 RESEARCH DALLAS
7902 FORD 20 RESEARCH DALLAS
7788 SCOTT 20 RESEARCH DALLAS
7566 JONES 20 RESEARCH DALLAS
7499 ALLEN 30 SALES CHICAGO
7698 BLAKE 30 SALES CHICAGO
7654 MARTIN 30 SALES CHICAGO
7900 JAMES 30 SALES CHICAGO
7844 TURNER 30 SALES CHICAGO
7521 WARD 30 SALES CHICAGO
 OPERATIONS BOSTON
15 rows selected.

In this view, EMP is no longer a key-preserved table, because the EMPNO column in
the result of the join can have nulls (the last row in the SELECT above). So,
UPDATE, DELETE, and INSERT operations cannot be performed on this view.
 Managing Schema Objects 4-21

Modifying a Join View
In the case of views containing an outer join on other nested views, a table is key
preserved if the view or views containing the table are merged into their outer
views, all the way to the top. A view which is being outer-joined is currently
merged only if it is “simple.” For example:

SELECT col1, col2, ... FROM T;

that is, the select list of the view has no expressions, and there is no WHERE clause.

Consider the following set of views:

CREATE emp_v AS
SELECT empno, ename, deptno

FROM emp;

CREATE VIEW emp_dept_oj1 AS
SELECT e.*, loc, d.dname

FROM emp_v e, dept d
WHERE e.deptno = d.deptno (+);

In these examples, EMP_V is merged into EMP_DEPT_OJ1 because EMP_V is a sim-
ple view, and so EMP is a key-preserved table. But if EMP_V is changed as follows:

CREATE emp_v_2 AS
SELECT empno, ename, deptno

FROM emp
WHERE sal > 1000;

then, because of the presence of the WHERE clause, EMP_V_2 cannot be merged into
EMP_DEPT_OJ1, and hence EMP is no longer a key-preserved table.

If you are in doubt whether a view is modifiable, you can SELECT from the view
USER_UPDATABLE_COLUMNS to see if it is. For example:

SELECT * FROM USER_UPDATABLE_COLUMNS WHERE TABLE_NAME = ’EMP_DEPT_VIEW’;

might return:

OWNER TABLE_NAME COLUMN_NAM UPD
---------- ---------- ---------- ---
SCOTT EMP_DEPT_V EMPNO NO
SCOTT EMP_DEPT_V ENAME NO
SCOTT EMP_DEPT_V DEPTNO NO
SCOTT EMP_DEPT_V DNAME NO
SCOTT EMP_DEPT_V LOC NO
5 rows selected.
4-22 Oracle8 Application Developer’s Guide

Managing Sequences
Managing Sequences
The sequence generator generates sequential numbers. Sequence number genera-
tion is useful to generate unique primary keys for your data automatically, and to
coordinate keys across multiple rows or tables.

Without sequences, sequential values can only be produced programmatically. A
new primary key value can be obtained by selecting the most recently produced
value and incrementing it. This method requires a lock during the transaction and
causes multiple users to wait for the next value of the primary key; this waiting is
known as serialization. If you have such constructs in your applications, you should
replace them with access to sequences. Sequences eliminate serialization and
improve the concurrency of your application.

The following sections explain how to create, alter, use, and drop sequences using
SQL commands.

Creating Sequences
Use the SQL command CREATE SEQUENCE to create a sequence. The following
statement creates a sequence used to generate employee numbers for the EMPNO col-
umn of the EMP table:

CREATE SEQUENCE emp_sequence
INCREMENT BY 1
START WITH 1
NOMAXVALUE
NOCYCLE
CACHE 10;

Notice that several parameters can be specified to control the function of sequences.
You can use these parameters to indicate whether the sequence is ascending or
descending, the starting point of the sequence, the minimum and maximum values,
and the interval between sequence values. The NOCYCLE option indicates that the
sequence cannot generate more values after reaching its maximum or minimum
value.

The CACHE option of the CREATE SEQUENCE command pre-allocates a set of
sequence numbers and keeps them in memory so that they can be accessed faster.
When the last of the sequence numbers in the cache have been used, another set of
numbers is read into the cache.

For additional implications for caching sequence numbers when using the Oracle
Parallel Server, see Oracle8 Parallel Server Concepts and Administration. General infor-
 Managing Schema Objects 4-23

Managing Sequences
mation about caching sequence numbers is included in “Caching Sequence Num-
bers” on page 4-27.

Privileges Required to Create a Sequence
To create a sequence in your schema, you must have the CREATE SEQUENCE sys-
tem privilege. To create a sequence in another user’s schema, you must have the
CREATE ANY SEQUENCE privilege.

Altering Sequences
You can change any of the parameters that define how corresponding sequence
numbers are generated; however, you cannot alter a sequence to change the start-
ing number of a sequence. To do this, the sequence must be dropped and re-created.

Use the SQL command ALTER SEQUENCE to alter a sequence, as in:

ALTER SEQUENCE emp_sequence
INCREMENT BY 10
MAXVALUE 10000
CYCLE
CACHE 20;

Privileges Required to Alter a Sequence
To alter a sequence, your schema must contain the sequence, or you must have the
ALTER ANY SEQUENCE system privilege.

Using Sequences
The following sections provide some information on how to use a sequence once it
has been defined. Once defined, a sequence can be made available to many users. A
sequence can be accessed and incremented by multiple users with no waiting. Ora-
cle does not wait for a transaction that has incremented a sequence to complete
before that sequence can be incremented again.

The examples outlined in the following sections show how sequences can be used
in master/detail table relationships. Assume an order entry system is partially com-
prised of two tables, ORDERS (master table) and LINE_ITEMS (detail table), that
hold information about customer orders. A sequence named ORDER_SEQ is
defined by the following statement:

CREATE SEQUENCE order_seq
START WITH 1
INCREMENT BY 1
NOMAXVALUE
4-24 Oracle8 Application Developer’s Guide

Managing Sequences
NOCYCLE
CACHE 20;

Referencing a Sequence
A sequence is referenced in SQL statements with the NEXTVAL and CURRVAL
pseudocolumns; each new sequence number is generated by a reference to the
sequence’s pseudocolumn NEXTVAL, while the current sequence number can be
repeatedly referenced using the pseudo-column CURRVAL.

NEXTVAL and CURRVAL are not reserved words or keywords and can be used as
pseudo-column names in SQL statements such as SELECTs, INSERTs, or UPDATEs.

Generating Sequence Numbers with NEXTVAL To generate and use a sequence number,
reference seq_name.NEXTVAL. For example, assume a customer places an order. The
sequence number can be referenced in a values list, as in:

INSERT INTO orders (orderno, custno)
VALUES (order_seq.NEXTVAL, 1032);

or in the SET clause of an UPDATE statement, as in:

UPDATE orders
SET orderno = order_seq.NEXTVAL
WHERE orderno = 10112;

or the outermost SELECT of a query or subquery, as in

SELECT order_seq.NEXTVAL FROM dual;

As defined, the first reference to ORDER_SEQ.NEXTVAL returns the value 1. Each
subsequent statement that references ORDER_SEQ.NEXTVAL generates the next
sequence number (2, 3, 4,. . .). The pseudo-column NEXTVAL can be used to gener-
ate as many new sequence numbers as necessary. However, only a single sequence
number can be generated per row; that is, if NEXTVAL is referenced more than once
in a single statement, the first reference generates the next number and all subse-
quent references in the statement return the same number.

Once a sequence number is generated, the sequence number is available only to the
session that generated the number. Independent of transactions committing or roll-
ing back, other users referencing ORDER_SEQ.NEXTVAL obtain unique values. If
two users are accessing the same sequence concurrently, the sequence numbers
each user receives might have gaps because sequence numbers are also being gener-
ated by the other user.
 Managing Schema Objects 4-25

Managing Sequences
Using Sequence Numbers with CURRVAL To use or refer to the current sequence value
of your session, reference seq_name.CURRVAL. CURRVAL can only be used if
seq_name.NEXTVAL has been referenced in the current user session (in the current or
a previous transaction). CURRVAL can be referenced as many times as necessary,
including multiple times within the same statement. The next sequence number is
not generated until NEXTVAL is referenced. Continuing with the previous example,
you would finish placing the customer’s order by inserting the line items for the
order:

INSERT INTO line_items (orderno, partno, quantity)
VALUES (order_seq.CURRVAL, 20321, 3);

INSERT INTO line_items (orderno, partno, quantity)
VALUES (order_seq.CURRVAL, 29374, 1);

Assuming the INSERT statement given in the previous section generated a new
sequence number of 347, both rows inserted by the statements in this section insert
rows with order numbers of 347.

Uses and Restrictions of NEXTVAL and CURRVAL CURRVAL and NEXTVAL can be
used in the following places:

■ VALUES clause of INSERT statements

■ the SELECT list of a SELECT statement

■ the SET clause of an UPDATE statement

CURRVAL and NEXTVAL cannot be used in these places:

■ a subquery

■ a view’s query or snapshot’s query

■ a SELECT statement with the DISTINCT operator

■ a SELECT statement with a GROUP BY or ORDER BY clause

■ a SELECT statement that is combined with another SELECT statement with the
UNION, INTERSECT , or MINUS set operator

■ the WHERE clause of a SELECT statement

■ DEFAULT value of a column in a CREATE TABLE or ALTER TABLE statement

■ the condition of a CHECK constraint
4-26 Oracle8 Application Developer’s Guide

Managing Sequences
Caching Sequence Numbers
Sequence numbers can be kept in the sequence cache in the System Global Area
(SGA). Sequence numbers can be accessed more quickly in the sequence cache than
they can be read from disk.

The sequence cache consists of entries. Each entry can hold many sequence num-
bers for a single sequence.

Follow these guidelines for fast access to all sequence numbers:

■ Be sure the sequence cache can hold all the sequences used concurrently by
your applications.

■ Increase the number of values for each sequence held in the sequence cache.

The Number of Entries in the Sequence Cache When an application accesses a sequence
in the sequence cache, the sequence numbers are read quickly. However, if an appli-
cation accesses a sequence that is not in the cache, the sequence must be read from
disk to the cache before the sequence numbers are used.

If your applications use many sequences concurrently, your sequence cache might
not be large enough to hold all the sequences. In this case, access to sequence num-
bers might often require disk reads. For fast access to all sequences, be sure your
cache has enough entries to hold all the sequences used concurrently by your appli-
cations.

The number of entries in the sequence cache is determined by the initialization
parameter SEQUENCE_CACHE_ENTRIES. The default value for this parameter is 10
entries. Oracle creates and uses sequences internally for auditing, grants of system
privileges, grants of object privileges, profiles, debugging stored procedures, and
labels. Be sure your sequence cache has enough entries to hold these sequences as
well as sequences used by your applications.

If the value for your SEQUENCE_CACHE_ENTRIES parameter is too low, it is possi-
ble to skip sequence values. For example, assume that this parameter is set to 4,
and that you currently have four cached sequences. If you create a fifth sequence, it
will replace the least recently used sequence in the cache. All of the remaining val-
ues in this displaced sequence are lost. That is, if the displaced sequence originally
held 10 cached sequence values, and only one had been used, nine would be lost
when the sequence was displaced.

The Number of Values in Each Sequence Cache Entry When a sequence is read into the
sequence cache, sequence values are generated and stored in a cache entry. These
values can then be accessed quickly. The number of sequence values stored in the
 Managing Schema Objects 4-27

Managing Sequences
cache is determined by the CACHE parameter in the CREATE SEQUENCE statement.
The default value for this parameter is 20.

This CREATE SEQUENCE statement creates the SEQ2 sequence so that 50 values of
the sequence are stored in the SEQUENCE cache:

CREATE SEQUENCE seq2
CACHE 50

The first 50 values of SEQ2 can then be read from the cache. When the 51st value is
accessed, the next 50 values will be read from disk.

Choosing a high value for CACHE allows you to access more successive sequence
numbers with fewer reads from disk to the sequence cache. However, if there is an
instance failure, all sequence values in the cache are lost. Cached sequence numbers
also could be skipped after an export and import if transactions continue to access
the sequence numbers while the export is running.

If you use the NOCACHE option in the CREATE SEQUENCE statement, the values
of the sequence are not stored in the sequence cache. In this case, every access to
the sequence requires a disk read. Such disk reads slow access to the sequence. This
CREATE SEQUENCE statement creates the SEQ3 sequence so that its values are
never stored in the cache:

CREATE SEQUENCE seq3
NOCACHE

Privileges Required to Use a Sequence
To use a sequence, your schema must contain the sequence or you must have been
granted the SELECT object privilege for another user’s sequence.

Dropping Sequences
To drop a sequence, use the SQL command DROP SEQUENCE. For example, the
following statement drops the ORDER_SEQ sequence:

DROP SEQUENCE order_seq;
When you drop a sequence, its definition is removed from the data dictionary. Any
synonyms for the sequence remain, but return an error when referenced.

Privileges Required to Drop a Sequence
You can drop any sequence in your schema. To drop a sequence in another schema,
you must have the DROP ANY SEQUENCE system privilege.
4-28 Oracle8 Application Developer’s Guide

Managing Synonyms
Managing Synonyms
A synonym is an alias for a table, view, snapshot, sequence, procedure, function, or
package. The following sections explain how to create, use, and drop synonyms
using SQL commands.

Creating Synonyms
Use the SQL command CREATE SYNONYMto create a synonym. The following
statement creates a public synonym named PUBLIC_EMP on the EMP table con-
tained in the schema of JWARD:

CREATE PUBLIC SYNONYM public_emp FOR jward.emp;

Privileges Required to Create a Synonym
You must have the CREATE SYNONYMsystem privilege to create a private syn-
onym in your schema, or the CREATE ANY SYNONYM system privilege to create a
private synonym in another user’s schema. To create a public synonym, you must
have the CREATE PUBLIC SYNONYM system privilege.

Using Synonyms
A synonym can be referenced in a SQL statement the same way that the underlying
object of the synonym can be referenced. For example, if a synonym named EMP
refers to a table or view, the following statement is valid:

INSERT INTO emp (empno, ename, job)
 VALUES (emp_sequence.NEXTVAL, ’SMITH’, ’CLERK’);

If the synonym named FIRE_EMP refers to a stand-alone procedure or package pro-
cedure, you could execute it in SQL*Plus or Enterprise Manager with the command

EXECUTE fire_emp(7344);

Privileges Required to Use a Synonym
You can successfully use any private synonym contained in your schema or any
public synonym, assuming that you have the necessary privileges to access the
underlying object, either explicitly, from an enabled role, or from PUBLIC. You can
also reference any private synonym contained in another schema if you have been
granted the necessary object privileges for the private synonym. You can only refer-
ence another user’s synonym using the object privileges that you have been
granted. For example, if you have the SELECT privilege for the JWARD.EMP syn-
 Managing Schema Objects 4-29

Managing Indexes
onym, you can query the JWARD.EMP synonym, but you cannot insert rows using
the synonym for JWARD.EMP.

Dropping Synonyms
To drop a synonym, use the SQL command DROP SYNONYM. To drop a private syn-
onym, omit the PUBLIC keyword; to drop a public synonym, include the PUBLIC
keyword. The following statement drops the private synonym named EMP:

DROP SYNONYM emp;

The following statement drops the public synonym named PUBLIC_EMP:

DROP PUBLIC SYNONYM public_emp;

When you drop a synonym, its definition is removed from the data dictionary. All
objects that reference a dropped synonym remain (for example, views and proce-
dures) but become invalid.

Privileges Required to Drop a Synonym
You can drop any private synonym in your own schema. To drop a private syn-
onym in another user’s schema, you must have the DROP ANY SYNONYM system
privilege. To drop a public synonym, you must have the DROP PUBLIC SYNONYM
system privilege.

Managing Indexes
Indexes are used in Oracle to provide quick access to rows in a table. Indexes pro-
vide faster access to data for operations that return a small portion of a table’s rows.

Oracle does not limit the number of indexes you can create on a table. However,
you should consider the performance benefits of indexes and the needs of your
database applications to determine which columns to index.

The following sections explain how to create, alter, and drop indexes using SQL
commands. Some simple guidelines to follow when managing indexes are
included. See Oracle8 Tuning for performance implications of index creation.

Create Indexes After Inserting Table Data
With one notable exception, you should usually create indexes after you have
inserted or loaded (using SQL*Loader or Import) data into a table. It is more effi-
cient to insert rows of data into a table that has no indexes and then to create the
indexes for subsequent queries, etc. If you create indexes before table data is
4-30 Oracle8 Application Developer’s Guide

Managing Indexes
loaded, every index must be updated every time you insert a row into the table.
The exception to this rule is that you must create an index for a cluster before you
insert any data into the cluster.

When you create an index on a table that already has data, Oracle must use sort
space to create the index. Oracle uses the sort space in memory allocated for the cre-
ator of the index (the amount per user is determined by the initialization parameter
SORT_AREA_SIZE), but must also swap sort information to and from temporary
segments allocated on behalf of the index creation. If the index is extremely large, it
might be beneficial to complete the following steps:

1. Create a new temporary tablespace using the CREATE TABLESPACE command.

2. Use the TEMPORARY TABLESPACEoption of the ALTER USER command to
make this your new temporary tablespace.

3. Create the index using the CREATE INDEX command.

4. Drop this tablespace using the DROP TABLESPACE command. Then use the
ALTER USER command to reset your temporary tablespace to your original
temporary tablespace.

Under certain conditions, you can load data into a table with the SQL*Loader
“direct path load”, and an index can be created as data is loaded; refer to Oracle8
Utilities for more information.

Index the Correct Tables and Columns Use the following guidelines for determining
when to create an index:

■ Create an index if you frequently want to retrieve less than 15% of the rows in a
large table. The percentage varies greatly according to the relative speed of a
table scan and how clustered the row data is about the index key. The faster the
table scan, the lower the percentage; the more clustered the row data, the
higher the percentage.

■ Index columns used for joins to improve performance on joins of multiple
tables.

Note: Primary and unique keys automatically have indexes, but
you might want to create an index on a foreign key; see “Concur-
rency Control, Indexes, and Foreign Keys” on page 9-10 for more
information.
 Managing Schema Objects 4-31

Managing Indexes
■ Small tables do not require indexes; if a query is taking too long, the table
might have grown from small to large.
4-32 Oracle8 Application Developer’s Guide

Managing Indexes
Some columns are strong candidates for indexing. Columns with one or more of
the following characteristics are candidates for indexing:

■ Values are relatively unique in the column.

■ There is a wide range of values.

■ The column contains many nulls, but queries often select all rows having a
value. In this case, the phrase

WHERE COL_X > -9.99 x 10̂ 125

is preferable to

WHERE COL_X IS NOT NULL

because the first uses an index on COL_X (assuming that COL_X is a numeric
column).

Columns with the following characteristics are less suitable for indexing:

■ The column has few distinct values (for example, a column for the sex of
employees).

■ There are many nulls in the column and you do not search on the non-null val-
ues.

LONG and LONG RAW columns cannot be indexed.

The size of a single index entry cannot exceed roughly one-half (minus some over-
head) of the available space in the data block. Consult with the database adminis-
trator for assistance in determining the space required by an index.

Limit the Number of Indexes per Table A table can have any number of indexes. How-
ever, the more indexes, the more overhead is incurred as the table is altered. When
rows are inserted or deleted, all indexes on the table must be updated. When a col-
umn is updated, all indexes on the column must be updated.

Thus, there is a trade-off between speed of retrieval for queries on a table and
speed of accomplishing updates on the table. For example, if a table is primarily
read-only, more indexes might be useful, but if a table is heavily updated, fewer
indexes might be preferable.

Order Index Columns for Performance The order in which columns are named in the
CREATE INDEX command need not correspond to the order in which they appear
in the table. However, the order of columns in the CREATE INDEX statement is sig-
 Managing Schema Objects 4-33

Managing Indexes
nificant because query performance can be affected by the order chosen. In general,
you should put the column expected to be used most often first in the index.

For example, assume the columns of the VENDOR_PARTS table are as shown in
Figure 4–1.

Figure 4–1 The VENDOR_PARTS Table

Assume that there are five vendors, and each vendor has about 1000 parts.

Suppose that the VENDOR_PARTS table is commonly queried by SQL statements
such as the following:

SELECT * FROM vendor_parts
WHERE part_no = 457 AND vendor_id = 1012;

To increase the performance of such queries, you might create a composite index
putting the most selective column first; that is, the column with the most values:

CREATE INDEX ind_vendor_id
ON vendor_parts (part_no, vendor_id);

Indexes speed retrieval on any query using the leading portion of the index. So in the
above example, queries with WHERE clauses using only the PART_NO column also
note a performance gain. Because there are only five distinct values, placing a sepa-
rate index on VENDOR_ID would serve no purpose.

Creating Indexes
You can create an index for a table to improve the performance of queries issued
against the corresponding table. You can also create an index for a cluster. You can
create a composite index on multiple columns up to a maximum of 16 columns. A
composite index key cannot exceed roughly one-half (minus some overhead) of the
available space in the data block.

VEND ID PART NO

Table VENDOR_PARTS

UNIT COST

1012
1012
1012
1010
1010
1220
1012
1292

10–440
10–441

457
10–440

457
08–300
08–300

457

.25

.39
4.95

.27
5.10
1.33
1.19
5.28
4-34 Oracle8 Application Developer’s Guide

Managing Indexes
Oracle automatically creates an index to enforce a UNIQUE or PRIMARY KEY integ-
rity constraint. In general, it is better to create such constraints to enforce unique-
ness and not explicitly use the obsolete CREATE UNIQUE INDEX syntax.

Use the SQL command CREATE INDEX to create an index. The following statement
creates an index named EMP_ENAME for the ENAME column of the EMP table:

CREATE INDEX emp_ename ON emp(ename)
TABLESPACE users
STORAGE (INITIAL 20K

NEXT 20k
PCTINCREASE 75)

PCTFREE 0;

Notice that several storage settings are explicitly specified for the index.

Privileges Required to Create an Index
To create a new index, you must own, or have the INDEX object privilege for, the
corresponding table. The schema that contains the index must also have a quota for
the tablespace intended to contain the index, or the UNLIMITED TABLESPACE
system privilege. To create an index in another user’s schema, you must have the
CREATE ANY INDEX system privilege.

Dropping Indexes
You might drop an index for the following reasons:

■ The index is not providing anticipated performance improvements for queries
issued against the associated table (the table is very small, or there are many
rows in the table but very few index entries, etc.).

■ Applications do not contain queries that use the index.

■ The index is no longer needed and must be dropped before being rebuilt.

When you drop an index, all extents of the index’s segment are returned to the con-
taining tablespace and become available for other objects in the tablespace.

Use the SQL command DROP INDEX to drop an index. For example, to drop the
EMP_ENAME index, enter the following statement:

DROP INDEX emp_ename;

If you drop a table, all associated indexes are dropped.
 Managing Schema Objects 4-35

Managing Clusters, Clustered Tables, and Cluster Indexes
Privileges Required to Drop an Index To drop an index, the index must be contained in
your schema or you must have the DROP ANY INDEX system privilege.

Managing Clusters, Clustered Tables, and Cluster Indexes
Because clusters store related rows of different tables together in the same data
blocks, two primary benefits are achieved when clusters are properly used:

■ Disk I/O is reduced and access time improves for joins of clustered tables.

■ In a cluster, a cluster key value (that is, the related value) is only stored once, no
matter how many rows of different tables contain the value. Therefore, less stor-
age may be required to store related table data in a cluster than is necessary in
non-clustered table format.

Guidelines for Creating Clusters
Some guidelines for creating clusters are outlined below. For performance charac-
teristics, see Oracle8 Tuning.

Choose Appropriate Tables to Cluster Use clusters to store one or more tables that are
primarily queried (not predominantly inserted into or updated), and for which que-
ries often join data of multiple tables in the cluster or retrieve related data from a
single table.

Choose Appropriate Columns for the Cluster Key Choose cluster key columns carefully.
If multiple columns are used in queries that join the tables, make the cluster key a
composite key. In general, the same column characteristics that make a good index
apply for cluster indexes; see “Index the Correct Tables and Columns” on page 4-31
for more information about these guidelines.

A good cluster key has enough unique values so that the group of rows correspond-
ing to each key value fills approximately one data block. Too few rows per cluster
key value can waste space and result in negligible performance gains. Cluster keys
that are so specific that only a few rows share a common value can cause wasted
space in blocks, unless a small SIZE was specified at cluster creation time.

Too many rows per cluster key value can cause extra searching to find rows for that
key. Cluster keys on values that are too general (for example, MALE and FEMALE)
result in excessive searching and can result in worse performance than with no clus-
tering.

A cluster index cannot be unique or include a column defined as LONG.
4-36 Oracle8 Application Developer’s Guide

Managing Clusters, Clustered Tables, and Cluster Indexes
Performance Considerations
Also note that clusters can reduce the performance of DML statements (INSERTs,
UPDATEs, and DELETEs) as compared to storing a table separately with its own
index. These disadvantages relate to the use of space and the number of blocks that
must be visited to scan a table. Because multiple tables share each block, more
blocks must be used to store a clustered table than if that same table were stored
non-clustered. You should decide about using clusters with these trade-offs in mind.

To identify data that would be better stored in clustered form than non-clustered,
look for tables that are related via referential integrity constraints and tables that
are frequently accessed together using SELECT statements that join data from two
or more tables. If you cluster tables on the columns used to join table data, you
reduce the number of data blocks that must be accessed to process the query; all the
rows needed for a join on a cluster key are in the same block. Therefore, query per-
formance for joins is improved. Similarly, it may be useful to cluster an individual
table. For example, the EMP table could be clustered on the DEPTNO column to clus-
ter the rows for employees in the same department. This would be advantageous if
applications commonly process rows, department by department.

Like indexes, clusters do not affect application design. The existence of a cluster is
transparent to users and to applications. Data stored in a clustered table is accessed
via SQL just like data stored in a non-clustered table.

Creating Clusters, Clustered Tables, and Cluster Indexes
Use a cluster to store one or more tables that are frequently joined in queries. Do
not use a cluster to cluster tables that are frequently accessed individually.

Once you create a cluster, tables can be created in the cluster. However, before you
can insert any rows into the clustered tables, you must create a cluster index. The
use of clusters does not affect the creation of additional indexes on the clustered
tables; you can create and drop them as usual.

Use the SQL command CREATE CLUSTER to create a cluster. The following state-
ment creates a cluster named EMP_DEPT, which stores the EMP and DEPT tables,
clustered by the DEPTNO column:

CREATE CLUSTER emp_dept (deptno NUMBER(3))
PCTUSED 80
PCTFREE 5;

Create a table in a cluster using the SQL command CREATE TABLE with the CLUS-
TER option. For example, the EMP and DEPT tables can be created in the EMP_DEPT
cluster using the following statements:
 Managing Schema Objects 4-37

Managing Clusters, Clustered Tables, and Cluster Indexes
CREATE TABLE dept (
deptno NUMBER(3) PRIMARY KEY,
. . .)
CLUSTER emp_dept (deptno);

CREATE TABLE emp (
empno NUMBER(5) PRIMARY KEY,
ename VARCHAR2(15) NOT NULL,
. . .
deptno NUMBER(3) REFERENCES dept)
CLUSTER emp_dept (deptno);

A table created in a cluster is contained in the schema specified in the CREATE
TABLE statement; a clustered table might not be in the same schema that contains
the cluster.

You must create a cluster index before any rows can be inserted into any clustered
table. For example, the following statement creates a cluster index for the
EMP_DEPT cluster:

CREATE INDEX emp_dept_index
ON CLUSTER emp_dept
INITRANS 2
MAXTRANS 5
PCTFREE 5;

The cluster key establishes the relationship of the tables in the cluster.

Privileges Required to Create a Cluster, Clustered Table, and Cluster Index
To create a cluster in your schema, you must have the CREATE CLUSTER system
privilege and a quota for the tablespace intended to contain the cluster or the
UNLIMITED TABLESPACE system privilege. To create a cluster in another user’s
schema, you must have the CREATE ANY CLUSTER system privilege, and the owner
must have a quota for the tablespace intended to contain the cluster or the UNLIM-
ITED TABLESPACE system privilege.

Note: A cluster index cannot be unique. Furthermore, Oracle is
not guaranteed to enforce uniqueness of columns in the cluster key
if they have UNIQUE or PRIMARY KEY constraints.
4-38 Oracle8 Application Developer’s Guide

Managing Clusters, Clustered Tables, and Cluster Indexes
To create a table in a cluster, you must have either the CREATE TABLE or CREATE
ANY TABLE system privilege. You do not need a tablespace quota or the UNLIM-
ITED TABLESPACE system privilege to create a table in a cluster.

To create a cluster index, your schema must contain the cluster, and you must have
the following privileges:

■ the CREATE ANY INDEX system privilege or, if you own the cluster, the
CREATE INDEX privilege

■ a quota for the tablespace intended to contain the cluster index, or the
UNLIMITED TABLESPACE system privilege

Manually Allocating Storage for a Cluster
Oracle dynamically allocates additional extents for the data segment of a cluster, as
required. In some circumstances, you might want to explicitly allocate an addi-
tional extent for a cluster. For example, when using the Oracle Parallel Server, an
extent of a cluster can be allocated explicitly for a specific instance.

You can allocate a new extent for a cluster using the SQL command ALTER
CLUSTER with the ALLOCATE EXTENT option; see the Oracle8 Parallel Server
Concepts and Administration manual for more information.

Dropping Clusters, Clustered Tables, and Cluster Indexes
Drop a cluster if the tables currently within the cluster are no longer necessary.
When you drop a cluster, the tables within the cluster and the corresponding clus-
ter index are dropped; all extents belonging to both the cluster’s data segment and
the index segment of the cluster index are returned to the containing tablespace
and become available for other segments within the tablespace.

You can individually drop clustered tables without affecting the table’s cluster,
other clustered tables, or the cluster index. Drop a clustered table in the same man-
ner as a non-clustered table—use the SQL command DROP TABLE. See “Dropping
Tables” on page 4-8 for more information about individually dropping tables
 Managing Schema Objects 4-39

Managing Clusters, Clustered Tables, and Cluster Indexes
.

You can drop a cluster index without affecting the cluster or its clustered tables.
However, you cannot use a clustered table if it does not have a cluster index. Clus-
ter indexes are sometimes dropped as part of the procedure to rebuild a frag-
mented cluster index. See “Dropping Indexes” on page 4-35 for more information.

To drop a cluster that contains no tables, as well as its cluster index, if present, use
the SQL command DROP CLUSTER. For example, the following statement drops the
empty cluster named EMP_DEPT:

DROP CLUSTER emp_dept;
If the cluster contains one or more clustered tables and you intend to drop the
tables as well, add the INCLUDING TABLES option of the DROP CLUSTER com-
mand, as in

DROP CLUSTER emp_dept INCLUDING TABLES;

If you do not include the INCLUDING TABLES option, and the cluster contains
tables, an error is returned.

If one or more tables in a cluster contain primary or unique keys that are referenced
by FOREIGN KEY constraints of tables outside the cluster, you cannot drop the
cluster unless you also drop the dependent FOREIGN KEY constraints. Use the
CASCADE CONSTRAINTS option of the DROP CLUSTER command, as in

DROP CLUSTER emp_dept INCLUDING TABLES CASCADE CONSTRAINTS;

An error is returned if the above option is not used in the appropriate situation.

Privileges Required to Drop a Cluster
To drop a cluster, your schema must contain the cluster, or you must have the DROP
ANY CLUSTER system privilege. You do not have to have any special privileges to
drop a cluster that contains tables, even if the clustered tables are not owned by the
owner of the cluster.

Note: When you drop a single clustered table from a cluster, each
row of the table must be deleted from the cluster. To maximize effi-
ciency, if you intend to drop the entire cluster including all tables,
use the DROP CLUSTER command with the INCLUDING TABLES
option. You should only use the DROP TABLE command to drop an
individual table from a cluster when the rest of the cluster is going
to remain.
4-40 Oracle8 Application Developer’s Guide

Managing Hash Clusters and Clustered Tables
Managing Hash Clusters and Clustered Tables
The following sections explain how to create, alter, and drop hash clusters and clus-
tered tables using SQL commands.

Creating Hash Clusters and Clustered Tables
A hash cluster is used to store individual tables or a group of clustered tables that
are static and often queried by equality queries. Once you create a hash cluster, you
can create tables. To create a hash cluster, use the SQL command CREATE CLUSTER.
The following statement creates a cluster named TRIAL_CLUSTER that is used to
store the TRIAL table, clustered by the TRIALNO column:

CREATE CLUSTER trial_cluster (trialno NUMBER(5,0))
PCTUSED 80 PCTFREE 5
SIZE 2K
HASH IS trialno HASHKEYS 100000;

CREATE TABLE trial (
trialno NUMBER(5) PRIMARY KEY,
...)
CLUSTER trial_cluster (trialno);

Controlling Space Usage Within a Hash Cluster
When you create a hash cluster, it is important that you correctly choose the cluster
key and set the HASH IS, SIZE , and HASHKEYS parameters to achieve the desired
performance and space usage for the cluster. The following sections provide guid-
ance, as well as examples of setting these parameters.

Choosing the Key
Choosing the correct cluster key is dependent on the most common types of que-
ries issued against the clustered tables. For example, consider the EMP table in a
hash cluster. If queries often select rows by employee number, the EMPNO column
should be the cluster key; if queries often select rows by department number, the
DEPTNO column should be the cluster key. For hash clusters that contain a single
table, the cluster key is typically the entire primary key of the contained table. A
hash cluster with a composite key must use Oracle’s internal hash function.

Setting HASH IS
Only specify the HASH IS parameter if the cluster key is a single column of the
NUMBER datatype, and contains uniformly distributed integers. If the above condi-
 Managing Schema Objects 4-41

Managing Hash Clusters and Clustered Tables
tions apply, you can distribute rows in the cluster such that each unique cluster key
value hashes to a unique hash value (with no collisions). If the above conditions do
not apply, you should use the internal hash function.

Dropping Hash Clusters
Drop a hash cluster using the SQL command DROP CLUSTER:

DROP CLUSTER emp_dept;

Drop a table in a hash cluster using the SQL command DROP TABLE. The implica-
tions of dropping hash clusters and tables in hash clusters are the same as for index
clusters. See page 4-39 for more information about dropping clusters and the
required privileges.

When to Use Hashing
Storing a table in a hash cluster is an alternative to storing the same table with an
index. Hashing is useful in the following situations:

■ Most queries are equality queries on the cluster key. For example:

SELECT . . . WHERE cluster_key = . . . ;

In such cases, the cluster key in the equality condition is hashed, and the corre-
sponding hash key is usually found with a single read. With an indexed table,
the key value must first be found in the index (usually several reads), and then
the row is read from the table (another read).

■ The table or tables in the hash cluster are primarily static in size such that you
can determine the number of rows and amount of space required for the tables
in the cluster. If tables in a hash cluster require more space than the initial allo-
cation for the cluster, performance degradation can be substantial because over-
flow blocks are required.

■ A hash cluster with the HASH IS col, HASHKEYSn, and SIZE m clauses is an
ideal representation for an array (table) of n items (rows) where each item con-
sists of m bytes of data. For example:

ARRAY X[100] OF NUMBER(8)

could be represented as

CREATE CLUSTER c(subscript INTEGER)
HASH IS subscript HASHKEYS 100 SIZE 10;

CREATE TABLE x(subscript NUMBER(2)), value NUMBER(8))
4-42 Oracle8 Application Developer’s Guide

Miscellaneous Management Topics for Schema Objects
CLUSTER c(subscript);

Alternatively, hashing is not advantageous in the following situations:

■ Most queries on the table retrieve rows over a range of cluster key values. For
example, in full table scans, or queries such as

SELECT . . . WHERE cluster_key < . . . ;

A hash function cannot be used to determine the location of specific hash keys;
instead, the equivalent of a full table scan must be done to fetch the rows for
the query. With an index, key values are ordered in the index, so cluster key
values that satisfy the WHERE clause of a query can be found with relatively few
I/Os.

■ A table is not static, but is continually growing. If a table grows without limit,
the space required over the life of the table (thus, of its cluster) cannot be prede-
termined.

■ Applications frequently perform full table scans on the table and the table is
sparsely populated. A full table scan in this situation takes longer under
hashing.

■ You cannot afford to preallocate the space the hash cluster will eventually need.

In most cases, you should decide (based on the above information) whether to use
hashing or indexing. If you use indexing, consider whether it is best to store a table
individually or as part of a cluster; see page 4-36 for guidance.

If you decide to use hashing, a table can still have separate indexes on any col-
umns, including the cluster key. For additional guidelines on the performance char-
acteristics of hash clusters, see Oracle8 Tuning.

Miscellaneous Management Topics for Schema Objects
The following sections explain miscellaneous topics regarding the management of
the various schema objects discussed in this chapter.

■ Creating Multiple Tables and Views in One Operation

■ Naming Schema Objects

■ Name Resolution in SQL Statements

■ Renaming Schema Objects

■ Listing Information about Schema Objects
 Managing Schema Objects 4-43

Miscellaneous Management Topics for Schema Objects
Creating Multiple Tables and Views in One Operation
You can create several tables and views and grant privileges in one operation using
the SQL command CREATE SCHEMA. The CREATE SCHEMA command is useful if
you want to guarantee the creation of several tables and views and grants in one
operation; if an individual table or view creation fails or a grant fails, the entire
statement is rolled back and none of the objects are created or the privileges
granted.

For example, the following statement creates two tables and a view that joins data
from the two tables:

CREATE SCHEMA AUTHORIZATION scott
CREATE VIEW sales_staff AS

SELECT empno, ename, sal, comm
FROM emp
WHERE deptno = 30 WITH CHECK OPTION CONSTRAINT

 sales_staff_cnst
CREATE TABLE emp (

empno NUMBER(5) PRIMARY KEY,
ename VARCHAR2(15) NOT NULL,
job VARCHAR2(10),
mgr NUMBER(5),
hiredate DATE DEFAULT (sysdate),
sal NUMBER(7,2),
comm NUMBER(7,2),
deptno NUMBER(3) NOT NULL

 CONSTRAINT dept_fkey REFERENCES dept)

CREATE TABLE dept (
deptno NUMBER(3) PRIMARY KEY,
dname VARCHAR2(15),
loc VARCHAR2(25))

GRANT SELECT ON sales_staff TO human_resources;

The CREATE SCHEMA command does not support Oracle extensions to the ANSI
CREATE TABLE and CREATE VIEW commands (for example, the STORAGE clause).

Privileges Required to Create Multiple Schema Objects
To create schema objects, such as multiple tables, using the CREATE SCHEMA com-
mand, you must have the required privileges for any included operation.
4-44 Oracle8 Application Developer’s Guide

Miscellaneous Management Topics for Schema Objects
Naming Schema Objects
You should decide when you want to use partial and complete global object names
in the definition of views, synonyms, and procedures. Keep in mind that database
names should be stable and databases should not be unnecessarily moved within a
network.

In a distributed database system, each database should have a unique global name.
The global name is composed of the database name and the network domain that
contains the database. Each schema object in the database then has a global object
name consisting of the schema object name and the global database name.

Because Oracle ensures that the schema object name is unique within a database,
you can ensure that it is unique across all databases by assigning unique global
database names. You should coordinate with your database administrator on this
task, as it is usually the DBA who is responsible for assigning database names.

Name Resolution in SQL Statements
An object name takes the form

[schema.] name[@database]

Some examples include the following:

emp
scott.emp
scott.emp@personnel

A session is established when a user logs onto a database. Object names are
resolved relative to the current user session. The username of the current user is the
default schema. The database to which the user has directly logged-on is the
default database.

Oracle has separate namespaces for different classes of objects. All objects in the
same namespace must have distinct names, but two objects in different namespaces
can have the same name. Tables, views, snapshots, sequences, synonyms, proce-
dures, functions, and packages are in a single namespace. Triggers, indexes, and
clusters each have their own individual namespace. For example, there can be a
table, trigger, and index all named SCOTT.EMP.

Based on the context of an object name, Oracle searches the appropriate namespace
when resolving the name to an object. For example, in the statement

DROP CLUSTER test
 Managing Schema Objects 4-45

Miscellaneous Management Topics for Schema Objects
Oracle looks up TEST in the cluster namespace.

Rather than supplying an object name directly, you can also refer to an object using
a synonym. A private synonym name has the same syntax as an ordinary object
name. A public synonym is implicitly in the PUBLIC schema, but users cannot
explicitly qualify a synonym with the schema PUBLIC.

Synonyms can only be used to reference objects in the same namespace as tables.
Due to the possibility of synonyms, the following rules are used to resolve a name
in a context that requires an object in the table namespace:

1. Look up the name in the table namespace.

2. If the name resolves to an object that is not a synonym, no further work is
needed.

3. If the name resolves to a private synonym, replace the name with the definition
of the synonym and return to step 1.

4. If the name was originally qualified with a schema, return an error; otherwise,
check if the name is a public synonym.

5. If the name is not a public synonym, return an error; otherwise, replace the
name with the definition of the public synonym and return to step 1.

When global object names are used in a distributed database (either explicitly or
indirectly within a synonym), the local Oracle session resolves the reference as is
locally required (for example, resolving a synonym to a remote table’s global object
name). After the partially resolved statement is shipped to the remote database, the
remote Oracle session completes the resolution of the object as above.

See Oracle8 Concepts for more information about name resolution in a distributed
database.

Renaming Schema Objects
If necessary, you can rename some schema objects using two different methods:
drop and re-create the object, or rename the object using the SQL command RENAME
.

Note: If you drop an object and re-create it, all privilege grants for
the object are lost when the object is dropped. Privileges must be
granted again when the object is re-created.
4-46 Oracle8 Application Developer’s Guide

Miscellaneous Management Topics for Schema Objects
If you use the RENAME command to rename a table, view, sequence, or a private
synonym of a table, view, or sequence, grants made for the object are carried for-
ward for the new name, ad the next statement renames the SALES_STAFF view:

RENAME sales_staff TO dept_30;

You cannot rename a stored PL/SQL program unit, public synonym, index, or clus-
ter. To rename such an object, you must drop and re-create it.

Renaming a schema object has the following effects:

■ All views and PL/SQL program units dependent on a renamed object become
invalid (must be recompiled before next use).

■ All synonyms for a renamed object return an error when used.

Privileges Required to Rename an Object
To rename an object, you must be the owner of the object.

Listing Information about Schema Objects
The data dictionary provides many views that provide information about schema
objects . The following is a summary of the views associated with schema objects:

■ ALL_OBJECTS, USER_OBJECTS

■ ALL_CATALOG, USER_CATALOG

■ ALL_TABLES, USER_TABLES

■ ALL_TAB_COLUMNS, USER_TAB_COLUMNS

■ ALL_TAB_COMMENTS, USER_TAB_COMMENTS

■ ALL_COL_COMMENTS, USER_COL_COMMENTS

■ ALL VIEWS, USER_VIEWS

■ ALL_INDEXES, USER_INDEXES

■ ALL_IND_COLUMNS, USER_IND_COLUMNS

■ USER_CLUSTERS

■ USER_CLU_COLUMNS

■ ALL_SEQUENCES, USER_SEQUENCES

■ ALL_SYNONYMS, USER_SYNONYMS
 Managing Schema Objects 4-47

Miscellaneous Management Topics for Schema Objects
■ ALL_DEPENDENCIES, USER_DEPENDENCIES

Example 1: Listing Different Schema Objects by Type The following query lists all of the
objects owned by the user issuing the query:

SELECT object_name, object_type FROM user_objects;

The query above might return results similar to the following:

OBJECT_NAME OBJECT_TYPE
------------------------- -------------------
EMP_DEPT CLUSTER
EMP TABLE
DEPT TABLE
EMP_DEPT_INDEX INDEX
PUBLIC_EMP SYNONYM
EMP_MGR VIEW

Example 2: Listing Column Information Column information, such as name, datatype,
length, precision, scale, and default data values, can be listed using one of the
views ending with the _COLUMNS suffix. For example, the following query lists all
of the default column values for the EMP and DEPT tables:

SELECT table_name, column_name, data_default
FROM user_tab_columns
WHERE table_name = ’DEPT’ OR table_name = ’EMP’;

Considering the example statements at the beginning of this section, a display simi-
lar to the one below is displayed:

TABLE_NAME COLUMN_NAME DATA_DEFAULT
---------- --------------- --------------------
DEPT DEPTNO
DEPT DNAME
DEPT LOC (’NEW YORK’)
EMP EMPNO
EMP ENAME
EMP JOB
EMP MGR
EMP HIREDATE (sysdate)
EMP SAL
EMP COMM
EMP DEPTNO
4-48 Oracle8 Application Developer’s Guide

Miscellaneous Management Topics for Schema Objects
Example 3: Listing Dependencies of Views and Synonyms When you create a view or a
synonym, the view or synonym is based on its underlying base object. The
_DEPENDENCIES data dictionary views can be used to reveal the dependencies for
a view and the _SYNONYMS data dictionary views can be used to list the base object
of a synonym. For example, the following query lists the base objects for the syn-
onyms created by the user JWARD:

SELECT table_owner, table_name
FROM all_synonyms
WHERE owner = ’JWARD’;

This query might return information similar to the following:

TABLE_OWNER TABLE_NAME
------------------------------ ------------
SCOTT DEPT
SCOTT EMP

Note: Not all columns have a user-specified default. These col-
umns assume NULL when rows that do not specify values for these
columns are inserted.
 Managing Schema Objects 4-49

Miscellaneous Management Topics for Schema Objects
4-50 Oracle8 Application Developer’s Guide

 Selecting a Dat
5

Selecting a Datatype

This chapter discusses how to use Oracle built-in datatypes in applications. Topics
include:

■ Oracle Built-In Datatypes

■ ROWIDs and the ROWID Datatype

■ Trusted Oracle MLSLABEL Datatype

■ ANSI/ISO, DB2, and SQL/DS Datatypes

■ Data Conversion

See Also: For information about user-defined datatypes, refer to
Oracle8 Concepts and to Chapter 7, “User-Defined Datatypes —
An Extended Example” in this manual.
atype 5-1

Oracle Built-In Datatypes
Oracle Built-In Datatypes
A datatype associates a fixed set of properties with the values that can be used in a
column of a table or in an argument of a procedure or function. These properties
cause Oracle to treat values of one datatype differently from values of another
datatype; for example, Oracle can add values of NUMBER datatype but not values of
RAW datatype.

Oracle supplies the following built-in datatypes:

■ character datatypes

– CHAR

– NCHAR

– VARCHAR2 and VARCHAR

– NVARCHAR2

– CLOB

– NCLOB

– LONG

■ NUMBER datatype

■ DATE datatype

■ binary datatypes

– BLOB

– BFILE

– RAW

– LONG RAW

Another datatype, ROWID, is used for values in the ROWID pseudocolumn, which
represents the unique address of each row in a table.

See Also: Figure 5–2 summarizes the information about each Ora-
cle built-in datatype. See Oracle8 Concepts for general descriptions
of these datatypes, and see Chapter 6, “Large Objects (LOBs)” in
this Guide for information about the LOB datatypes.
5-2 Oracle8 Application Developer’s Guide

Oracle Built-In Datatypes
Table 5–1 Summary of Oracle Built-In Datatypes

Datatype Description Column Length and Default

CHAR (size) Fixed-length char-
acter data of
length size bytes.

Fixed for every row in the table (with trail-
ing blanks); maximum size is 2000 bytes
per row, default size is 1 byte per row. Con-
sider the character set (one-byte or multi-
byte) before setting size.

VARCHAR2 (size) Variable-length
character data.

Variable for each row, up to 4000 bytes per
row. Consider the character set (one-byte
or multibyte) before setting size. A maxi-
mum size must be specified.

NCHAR(size) Fixed-length char-
acter data of
length size charac-
ters or bytes,
depending on the
national character
set.

Fixed for every row in the table (with trail-
ing blanks). Column size is the number of
characters for a fixed-width national char-
acter set or the number of bytes for a vary-
ing-width national character set.
Maximum size is determined by the num-
ber of bytes required to store one character,
with an upper limit of 2000 bytes per row.
Default is 1 character or 1 byte, depending
on the character set.

NVARCHAR2
(size)

Variable-length
character data of
length size charac-
ters or bytes,
depending on
national character
set. A maximum
size must be speci-
fied.

Variable for each row. Column size is the
number of characters for a fixed-width
national character set or the number of
bytes for a varying-width national charac-
ter set. Maximum size is determined by the
number of bytes required to store one char-
acter, with an upper limit of 4000 bytes per
row. Default is 1 character or 1 byte,
depending on the character set.

CLOB Single-byte charac-
ter data.

Up to 2^32 - 1 bytes, or 4 gigabytes.
 Selecting a Datatype 5-3

Oracle Built-In Datatypes
NCLOB Single-byte or
fixed-length multi-
byte national char-
acter set
(NCHAR) data.

Up to 2^32 - 1 bytes, or 4 gigabytes.

LONG Variable-length
character data.

Variable for each row in the table, up to
2^31 - 1 bytes, or 2 gigabytes, per row. Pro-
vided for backward compatibility.

NUMBER (p, s) Variable-length
numeric data.
Maximum preci-
sion p and/or
scale s is 38.

Variable for each row. The maximum space
required for a given column is 21 bytes per
row.

DATE Fixed-length date
and time data,
ranging from Jan.
1, 4712 B.C.E. to
Dec. 31, 4712 C.E.

Fixed at 7 bytes for each row in the table.
Default format is a string (such as DD-
MON-YY) specified by
NLS_DATE_FORMAT parameter.

BLOB Unstructured
binary data.

Up to 2^32 - 1 bytes, or 4 gigabytes.

BFILE Binary data stored
in an external file.

Up to 2^32 - 1 bytes, or 4 gigabytes.

RAW (size) Variable-length
raw binary data.

Variable for each row in the table, up to
2000 bytes per row. A maximum size must
be specified. Provided for backward com-
patibility.

LONG RAW Variable-length
raw binary data.

Variable for each row in the table, up to
2^31 - 1 bytes, or 2 gigabytes, per row. Pro-
vided for backward compatibility.

ROWID Binary data repre-
senting row
addresses.

Fixed at 10 bytes (extended ROWID) or 6
bytes (restricted ROWID) for each row in
the table.

MLSLABEL Trusted Oracle
datatype.

See the Trusted Oracle documentation.

Table 5–1 (Cont.) Summary of Oracle Built-In Datatypes
5-4 Oracle8 Application Developer’s Guide

Oracle Built-In Datatypes
Using Character Datatypes
Use the character datatypes to store alphanumeric data.

■ CHAR and NCHAR datatypes store fixed-length character strings.

■ VARCHAR2 and NVARCHAR2 datatypes store variable-length character strings.
(The VARCHAR datatype is synonymous with the VARCHAR2 datatype.)

■ CLOB and NCLOB datatypes store single-byte and multibyte character strings of
up to four gigabytes.

■ The LONG datatype stores variable-length character strings containing up to
two gigabytes, but with many restrictions..

This datatype is provided for backward compatibility with existing applica-
tions; in general, new applications should use CLOB and NCLOB datatypes to
store large amounts of character data.

When deciding which datatype to use for a column that will store alphanumeric
data in a table, consider the following points of distinction:

Space Usage
■ To store data more efficiently, use the VARCHAR2 datatype. The CHAR datatype

blank-pads and stores trailing blanks up to a fixed column length for all col-
umn values, while the VARCHAR2 datatype does not blank-pad or store trailing
blanks for column values.

Comparison Semantics
■ Use the CHAR datatype when you require ANSI compatibility in comparison

semantics, that is, when trailing blanks are not important in string compari-
sons. Use the VARCHAR2 when trailing blanks are important in string compar-
isons.

Future Compatibility
■ The CHAR and VARCHAR2 datatypes are and will always be fully supported. At

this time, the VARCHAR datatype automatically corresponds to the VARCHAR2
datatype and is reserved for future use.

See Also: Chapter 6, “Large Objects (LOBs)”)

See Also: “Restrictions on LONG and LONG RAW Data” on
page 5-10
 Selecting a Datatype 5-5

Oracle Built-In Datatypes
CHAR, VARCHAR2, and LONG data is automatically converted from the database
character set to the character set defined for the user session by the NLS_LANGUAGE
parameter, where these are different.

Column Lengths for Single-Byte and Multibyte Character Sets
The lengths of CHAR and VARCHAR2 columns are specified in bytes rather than char-
acters, and are constrained as such. The lengths of NCHAR and NVARCHAR2 columns
are specified either in bytes or in characters, depending on the national character
set being used.

When using a multibyte database character encoding scheme, consider carefully
the space required for tables with character columns. If the database character
encoding scheme is single-byte, the number of bytes and the number of characters
in a column is the same. If it is multibyte, there generally is no such correspon-
dence. A character might consist of one or more bytes depending upon the specific
multibyte encoding scheme, and whether shift-in/shift-out control codes are
present.

Comparison Semantics
Oracle compares CHAR and NCHAR values using blank-padded comparison semantics. If
two values have different lengths, Oracle adds blanks at the end of the shorter
value, until the two values are the same length. Oracle then compares the values
character-by-character up to the first character that differs. The value with the
greater character in the first differing position is considered greater. Two values
that differ only in the number of trailing blanks are considered equal.

Oracle compares VARCHAR2 and NVARCHAR2 values using non-padded comparison
semantics. Two values are considered equal only if they have the same characters
and are of equal length. Oracle compares the values character-by-character up to
the first character that differs. The value with the greater character in that position
is considered greater.

Because Oracle blank-pads values stored in CHAR columns but not in VARCHAR2
columns, a value stored in a VARCHAR2 column may take up less space than if it
were stored in a CHAR column. For this reason, a full table scan on a large table con-
taining VARCHAR2 columns may read fewer data blocks than a full table scan on a
table containing the same data stored in CHAR columns. If your application often
performs full table scans on large tables containing character data, you might be

See Also: Oracle8 Reference for information about National Lan-
guage Support features of Oracle and support for different charac-
ter encoding schemes.
5-6 Oracle8 Application Developer’s Guide

Oracle Built-In Datatypes
able to improve performance by storing this data in VARCHAR2 columns rather
than in CHAR columns.

However, performance is not the only factor to consider when deciding which of
these datatypes to use. Oracle uses different semantics to compare values of each
datatype. You might choose one datatype over the other if your application is sensi-
tive to the differences between these semantics. For example, if you want Oracle to
ignore trailing blanks when comparing character values, you must store these val-
ues in CHAR columns.

Using the NUMBER Datatype
Use the NUMBER datatype to store real numbers in a fixed-point or floating-point
format. Numbers using this datatype are guaranteed to be portable among differ-
ent Oracle platforms, and offer up to 38 decimal digits of precision. You can store
positive and negative numbers of magnitude 1 x 10^-130 to 9.99...x10^125, as well
as zero, in a NUMBER column.

For numeric columns you can specify the column as a floating-point number:

column_name NUMBER

or you can specify a precision (total number of digits) and scale (number of digits
to right of decimal point):

column_name NUMBER (precision, scale)

Although not required, specifying the precision and scale for numeric fields pro-
vides extra integrity checking on input. If a precision is not specified, the column
stores values as given. Table 5–2 shows examples of how data would be stored
using different scale factors.

See Also: For more information on comparison semantics for
these datatypes, see the Oracle8 SQL Reference.

Table 5–2 How Scale Factors Affect Numeric Data Storage

Input Data Stored As Specified As

7,456,123.89 NUMBER 7456123.89

7,456,123.89 NUMBER (9) 7456124

7,456,123.89 NUMBER (9,2) 7456123.89

7,456,123.89 NUMBER (9,1) 7456123.9
 Selecting a Datatype 5-7

Oracle Built-In Datatypes
Using the DATE Datatype
Use the DATE datatype to store point-in-time values (dates and times) in a table.
The DATE datatype stores the century, year, month, day, hours, minutes, and sec-
onds.

Oracle uses its own internal format to store dates. Date data is stored in fixed-
length fields of seven bytes each, corresponding to century, year, month, day, hour,
minute, and second. See the Oracle Call Interface Programmer’s Guide for a complete
description of the Oracle internal date format.

Date Format
For input and output of dates, the standard Oracle default date format is DD-MON-
YY, as in:

'13-NOV-92'
To change this default date format on an instance-wide basis, use the
NLS_DATE_FORMAT parameter. To change the format during a session, use the
ALTER SESSION statement. To enter dates that are not in the current default date
format, use the TO_DATE function with a format mask, as in:

TO_DATE ('November 13, 1992', 'MONTH DD, YYYY')

If the date format DD-MON-YY is used, YY indicates the year in the 20th century (for
example, 31-DEC-92 is December 31, 1992). If you want to indicate years in any cen-
tury other than the 20th century, use a different format mask, as shown above.

7,456,123.89 NUMBER (6) (not accepted, exceeds precision)

7,456,123.89 NUMBER (7, -2) 7456100

See Also: For information about the internal format for the
NUMBER datatype, see Oracle8 Concepts.

Note: Oracle Julian dates might not be compatible with Julian
dates generated by other date algorithms. For information about
Julian dates, see Oracle8 Concepts.

Table 5–2 How Scale Factors Affect Numeric Data Storage

Input Data Stored As Specified As
5-8 Oracle8 Application Developer’s Guide

Oracle Built-In Datatypes
Time Format
Time is stored in 24-hour format#HH:MM:SS. By default, the time in a date field is
12:00:00 A.M. (midnight) if no time portion is entered. In a time-only entry, the date
portion defaults to the first day of the current month. To enter the time portion of a
date, use the TO_DATE function with a format mask indicating the time portion, as
in:

INSERT INTO birthdays (bname, bday) VALUES
('ANNIE',TO_DATE('13-NOV-92 10:56 A.M.','DD-MON-YY HH:MI A.M.'));

To compare dates that have time data, use the SQL function TRUNC if you want to
ignore the time component. Use the SQL function SYSDATE to return the system
date and time. The FIXED_DATE initialization parameter allows you to set SYS-
DATE to a constant; this can be useful for testing.

Centuries and the Year 2000
Oracle stores year data with the century information. For example, the Oracle data-
base stores 1996 or 2001, and not just 96 or 01. The DATE datatype always stores a
four-digit year internally, and all other dates stored internally in the database have
four digit years. Oracle utilities such as import, export, and recovery also deal prop-
erly with four-digit years.

However, some applications might be written with an assumption about the year
(such as assuming that everything is 19xx). The application might hand over a two-
digit year to the database, and the procedures that Oracle uses for determining the
century could be different from what the programmer expects. Application pro-
grammers should therefore review and test their code with regard to the year 2000.

The RR date format element of the TO_DATE and TO_CHAR functions allows a data-
base site to default the century to different values depending on the two-digit year,
so that years 50 to 99 default to 19xx and years 00 to 49 default to 20xx. This can
help applications make the conversion to the new century easily.

The CC date format element of the TO_CHAR function sets the century value to one
greater than the first two digits of a four-digit year (for example, '20' from '1900').
For years that are a multiple of 100, this is not the true century. Strictly speaking,
the century of '1900' is not the twentieth century (which began in 1901) but rather
the nineteenth century.

The following workaround computes the correct century for any Common Era (CE,
formerly known as AD) date. If userdate is a CE date for which you want the true
century, use the expression:

DECODE (TO_CHAR (userdate, 'YY'),
 Selecting a Datatype 5-9

Oracle Built-In Datatypes
'00', TO_CHAR (userdate - 366, 'CC'),
TO_CHAR (userdate, 'CC'))

This expression works as follows: Get the last two digits of the year. If it is '00', then
it is a year in which the Oracle century is one year too large so compute a date in
the preceding year (whose Oracle century is the desired true century). Otherwise,
use the Oracle century.

Using the LONG Datatype

The LONG datatype can store variable-length character data containing up to two
gigabytes of information. The length of LONG values might be limited by the mem-
ory available on your computer.

You can use columns defined as LONG in SELECT lists, SET clauses of UPDATE state-
ments, and VALUES clauses of INSERT statements. LONG columns have many of
the characteristics of VARCHAR2 columns.

Restrictions on LONG and LONG RAW Data
Although LONG (and LONG RAW; see below) columns have many uses, their use
has some restrictions:

■ Only one LONG column is allowed per table.

■ LONG columns cannot be indexed.

■ LONG columns cannot appear in integrity constraints.

■ LONG columns cannot be used in WHERE, GROUP BY, ORDER BY, or
CONNECT BY clauses or with the DISTINCT operator in SELECT statements.

■ LONG columns cannot be referenced by SQL functions (such as SUBSTR or
INSTR).

See Also: For more information about date format codes, see
Oracle8 SQL Reference.

Note: The LONG datatype is provided for backward compatibility
with existing applications. For new applications, you should use
the CLOB and NCLOB datatypes for large amounts of character
data. See Chapter 6, “Large Objects (LOBs)” for information about
the CLOB and NCLOB datatypes.
5-10 Oracle8 Application Developer’s Guide

Oracle Built-In Datatypes
■ LONG columns cannot be used in the SELECT list of a subquery or queries com-
bined by set operators (UNION, UNION ALL, INTERSECT, or MINUS).

■ LONG columns cannot be used in SQL expressions.

■ LONG columns cannot be referenced when creating a table with a query (CRE-
ATE TABLE... AS SELECT...) or when inserting into a table or view with
a query (INSERT INTO... SELECT...).

■ A variable or argument of a PL/SQL program unit cannot be declared using
the LONG datatype.

■ Variables in database triggers cannot be declared using the LONG or LONG RAW
datatypes.

■ References to :NEW and :OLD in database triggers cannot be used with LONG or
LONG RAWcolumns.

■ LONG and LONG RAW columns cannot be used in distributed SQL statements.

■ LONG and LONG RAW columns cannot be replicated.

Example of LONG Datatype
To store information on magazine articles, including the texts of each article, create
two tables:

CREATE TABLE article_header
(id NUMBER
 PRIMARY KEY
title VARCHAR2(200),
first_author VARCHAR2(30),
journal VARCHAR2(50),
pub_date DATE)

Note: If you design tables containing LONG or LONG RAW data,
you should place each LONG or LONG RAW column in a table sepa-
rate from any other data associated with it, rather than storing the
LONG or LONG RAW column and its associated data together in the
same table. You can then relate the two tables with a referential
integrity constraint. This design allows SQL statements that access
only the associated data to avoid reading through LONG or LONG
RAW data.
 Selecting a Datatype 5-11

Oracle Built-In Datatypes
CREATE TABLE article_text
(id NUMBER
 REFERENCES
 article_header,
text LONG)

The ARTICLE_TEXT table stores only the text of each article. The
ARTICLE_HEADER table stores all other information about the article, including the
title, first author, and journal and date of publication. The two tables are related by
the referential integrity constraint on the ID column of each table.

This design allows SQL statements to query data other than the text of an article
without reading through the text. If you want to select all first authors published in
Nature magazine during July 1991, you can issue this statement that queries the
ARTICLE_HEADER table:

SELECT first_author
FROM article_header
WHERE journal = 'NATURE'

AND TO_CHAR(pub_date, 'MM YYYY') = '07 1991')

If the text of each article were stored in the same table with the first author, publica-
tion, and publication date, Oracle would have to read through the text to perform
this query.

Using RAW and LONG RAW Datatypes

The RAWand LONG RAW datatypes store data that is not to be interpreted by Oracle
(that is, not to be converted when moving data between different systems). These
datatypes are intended for binary data and byte strings. For example, LONG RAW
can be used to store graphics, sound, documents, and arrays of binary data; the
interpretation is dependent on the use.

Net8 and the Export and Import utilities do not perform character conversion
when transmitting RAW or LONG RAW data. When Oracle automatically converts
RAW or LONG RAW data to and from CHAR data (as is the case when entering RAW

Note: The RAW and LONG RAW datatypes are provided for back-
ward compatibility with existing applications. For new applica-
tions, you should use the BLOB and BFILE datatypes for large
amounts of binary data. See Chapter 6, “Large Objects (LOBs)” for
information about the BLOB and BFILE datatypes.
5-12 Oracle8 Application Developer’s Guide

Oracle Built-In Datatypes
data as a literal in an INSERT statement), the data is represented as one hexadeci-
mal character representing the bit pattern for every four bits of RAW data. For
example, one byte of RAW data with bits 11001011 is displayed and entered as 'CB'.

LONG RAW data cannot be indexed, but RAW data can be indexed. For more informa-
tion about restrictions on LONG RAW data, see “Restrictions on LONG and LONG
RAW Data” on page 5-10.

ROWIDs and the ROWID Datatype
Every row in a nonclustered table of an Oracle database is assigned a unique
ROWID that corresponds to the physical address of a row's row piece (initial row
piece if the row is chained among multiple row pieces). In the case of clustered
tables, rows in different tables that are in the same data block can have the same
ROWID.

Each table in an Oracle database internally has a pseudocolumn named ROWID.

Extended ROWID Format
The Oracle Server uses an extended ROWID format, which supports features such as
table partitions, index partitions, and clusters.

The extended ROWID includes the following information:

■ data object (segment) identifier

■ datafile identifier

■ block identifier

■ row identifier

The data object identifier is an identification number that Oracle assigns to schema
objects in the database, such as nonpartitioned tables or partitions. For example,
the query

SELECT DATA_OBJECT_ID FROM DBA_OBJECTS
WHERE OWNER = ’SCOTT’ AND OBJECT_NAME = ’EMP’;

returns the data object identifier for the EMP table in the SCOTT schema. “The
DBMS_ROWID Package” on page 10-79 describes other ways to get the data object
identifier, using the DBMS_ROWID package functions.

See Also: Oracle8 Concepts for general information about the
ROWID pseudocolumn and the ROWID datatype.
 Selecting a Datatype 5-13

Oracle Built-In Datatypes
Different Forms of the ROWID
Oracle documentation uses the term ROWID in different ways, depending on con-
text. These uses are explained in this section.

Internal ROWID The internal ROWID format is an internal structure which holds infor-
mation that the server code needs to access a row. The restricted internal ROWID is
6 bytes on most platforms; the extended ROWID is 10 bytes on these platforms.

ROWID Pseudocolumn Each table and nonjoined view has a pseudocolumn called
ROWID. Statements such as

CREATE TABLE T1 (col1 ROWID);

INSERT INTO T1 SELECT ROWID FROM EMP WHERE empno = 7499;

return the ROWID pseudocolumn of the row of the EMP table that satisfies the
query, and insert it into the T1 table.

External Character ROWID The extended ROWID pseudocolumn is returned to the cli-
ent in the form of an 18-character string (for example,
“AAAA8mAALAAAAQkAAA”), which represents a base 64 encoding of the com-
ponents of the extended ROWID in a four-piece format, OOOOOOFFFBBBBBBRRR:

■ OOOOOO: The data object number identifies the database segment
(AAAA8m in the example). Schema objects in the same segment, such as a clus-
ter of tables, have the same data object number.

■ FFF: The datafile that contains the row (file AAL in the example). File num-
bers are unique within a database.

■ BBBBBB: The data block that contains the row (block AAAAQk in the exam-
ple). Block numbers are relative to their datafile, not tablespace. Therefore, two
rows with identical block numbers could reside in two different datafiles of the
same tablespace.

■ RRR: The row in the block (row AAA in the example).

There is no need to decode the external ROWID; you can use the functions in the
DBMS_ROWID package to obtain the individual components of the extended
ROWID.
 .

See Also: “The DBMS_ROWID Package” on page 10-79.
5-14 Oracle8 Application Developer’s Guide

Oracle Built-In Datatypes
The restricted ROWID pseudocolumn is returned to the client in the form of an 18-
character string with a hexadecimal encoding of the datablock, row, and datafile
components of the ROWID.

External Binary ROWID Some client applications use a binary form of the ROWID. For
example, OCI and some precompiler applications can map the ROWID to a 3GL
structure on bind or define calls. The size of the binary ROWID is the same for
extended and restricted ROWIDs. The information for the extended ROWID is
included in an unused field of the restricted ROWID structure.

The format of the extended binary ROWID, expressed as a C struct, is:

struct riddef {
ub4 ridobjnum; /* data obj#--this field is
 unused in restricted ROWIDs */
ub2 ridfilenum;
ub1 filler;
ub4 ridblocknum;
ub2 ridslotnum;

}

ROWID Migration and Compatibility Issues
For backward compatibility, the restricted form of the ROWID is still supported.
These ROWIDs exist in massive amounts of Oracle7 data, and the extended form of
the ROWID is required only in global indexes on partitioned tables. New tables
always get extended ROWIDs. .

It is possible for an Oracle7 client to access an Oracle8 database. Similarly, an
Oracle8 client can access an Oracle7 Server. A client in this sense can include a
remote database accessing a server using database links, as well as a client 3GL or
4GL application accessing a server.

Accessing an Oracle7 Database from an Oracle8 Client The ROWID values that are
returned are always restricted ROWIDs. Also, Oracle8 uses restricted ROWIDs
when returning a ROWID value to an Oracle7 or earlier server.

The following ROWID functionality works when accessing an Oracle7 Server:

■ selecting a ROWID and using the obtained value in a WHERE clause

See Also: Oracle8 Administrator’s Guide.

See Also: FThe description of “ROWID_TO_EXTENDED Func-
tion” on page 10-85 has more information, as has Oracle8 Migration.
 Selecting a Datatype 5-15

Trusted Oracle MLSLABEL Datatype
■ WHERE CURRENT OF cursor operations

■ storing ROWIDs in user columns of ROWID or CHAR type

■ interpreting ROWIDs using the hexadecimal encoding (not recommended, use
the DBMS_ROWID functions)

Accessing an Oracle8 Database from an Oracle7 Client Oracle8 returns ROWIDs in the
extended format. This means that you can only:

■ select a ROWID and use it in a WHERE clause

■ use WHERE CURRENT OF cursor operations

■ store ROWIDs in user columns of CHAR(18) datatype

Import and Export It is not possible for an Oracle7 client to import an Oracle8 table
that has a ROWID column (not the ROWID pseudocolumn), if any row of the table
contains an extended ROWID value.

Trusted Oracle MLSLABEL Datatype
Trusted Oracle provides the MLSLABEL datatype, which stores Trusted Oracle’s
internal representation of labels generated by multilevel secure (MLS) operating
systems. Trusted Oracle uses labels to control database access.

You can define a column using the MLSLABEL datatype for compatibility with
Trusted Oracle applications, but the only valid value for the column in Oracle8 is
NULL.

When you create a table in Trusted Oracle, a column called ROWLABEL is automati-
cally appended to the table. This column contains a label of the MLSLABEL
datatype for every row in the table.

ANSI/ISO, DB2, and SQL/DS Datatypes
You can define columns of tables in an Oracle database using ANSI/ISO, DB2, and
SQL/DS datatypes. Oracle internally converts such datatypes to Oracle datatypes.

See Also: Trusted Oracle documentation for more information
about the MLSLABEL datatype, the ROWLABEL column, and Trusted
Oracle.
5-16 Oracle8 Application Developer’s Guide

ANSI/ISO, DB2, and SQL/DS Datatypes
The ANSI datatype conversions to Oracle datatypes are shown in Table 5–3. The
ANSI/ISO datatypes NUMERIC, DECIMAL, and DEC can specify only fixed-point
numbers. For these datatypes, s defaults to 0.

The IBM products SQL/DS, and DB2 datatypes TIME, TIMESTAMP, GRAPHIC, VAR-
GRAPHIC, and LONG VARGRAPHIC have no corresponding Oracle datatype and can-
not be used. The TIME and TIMESTAMP datatypes are subcomponents of the Oracle
datatype DATE.

Table 5–4 shows the DB2 and SQL/DS conversions.

Table 5–3 ANSI Datatype Conversions to Oracle Datatypes

ANSI SQL Datatype Oracle Datatype

CHARACTER (n), CHAR (n) CHAR (n)

NUMERIC (p,s), DECIMAL (p,s), DEC (p,s) NUMBER (p,s)

INTEGER, INT, SMALLINT NUMBER (38)

FLOAT (p) FLOAT (p)

REAL FLOAT (63)

DOUBLE PRECISION FLOAT (126)

CHARACTER VARYING(n), CHAR VARYING(n) VARCHAR2 (n)

Table 5–4 SQL/DS, DB2 Datatype Conversions to Oracle Datatypes

DB2 or SQL/DS Datatype Oracle Datatype

CHARACTER (n) CHAR (n)

VARCHAR (n) VARCHAR2 (n)

LONG VARCHAR LONG

DECIMAL (p,s) NUMBER (p,s)

INTEGER, SMALLINT NUMBER (38)

FLOAT (p) FLOAT (p)

DATE DATE
 Selecting a Datatype 5-17

Data Conversion
Data Conversion
In some cases, Oracle allows data of one datatype where it expects data of a differ-
ent datatype. Generally, an expression cannot contain values with different
datatypes. However, Oracle can use the following functions to automatically con-
vert data to the expected datatype:

■ TO_NUMBER()

■ TO_CHAR()

■ TO_DATE()

■ HEXTORAW()

■ RAWTOHEX()

■ ROWIDTOCHAR()

■ CHARTOROWID()

Implicit datatype conversions work according to the rules explained below.
I

Rule 1: Assignments
For assignments, Oracle can automatically convert the following:

■ VARCHAR2 or CHAR to NUMBER

■ NUMBER to VARCHAR2

■ VARCHAR2 or CHAR to DATE

■ DATE to VARCHAR2

■ VARCHAR2 or CHAR to ROWID

■ ROWID to VARCHAR2

■ VARCHAR2 or CHAR to MLSLABEL

■ MLSLABEL to VARCHAR2

■ VARCHAR2 or CHAR to HEX

■ HEX to VARCHAR2

See Also: If you are using Trusted Oracle, see “Data Conversion
for Trusted Oracle” on page 5-21 for information about data conver-
sions and the MLSLABEL datatype.
5-18 Oracle8 Application Developer’s Guide

Data Conversion
The assignment succeeds if Oracle can convert the datatype of the value used in the
assignment to that of the assignment’s target.

For the examples in the following list, assume a package with a public variable and
a table declared as in the following statements:

var1 CHAR(5);
CREATE TABLE table1 (col1 NUMBER);

■ variable := expression

The datatype of expression must be either the same as or convertible to the
datatype of variable. For example, Oracle automatically converts the data pro-
vided in the following assignment within the body of a stored procedure:

VAR1 := 0

■ INSERT INTO table VALUES (expression1, expression2, ...)

The datatypes of expression1, expression2, and so on, must be either the same as
or convertible to the datatypes of the corresponding columns in table. For exam-
ple, Oracle automatically converts the data provided in the following INSERT
statement for TABLE1 (see table definition above):

INSERT INTO table1 VALUES (’19’);

■ UPDATE table SET column = expression

The datatype of expression must be either the same as or convertible to the
datatype of column. For example, Oracle automatically converts the data pro-
vided in the following UPDATE statement issued against TABLE1:

UPDATE table1 SET col1 = ’30’;

■ SELECT column INTO variable FROMtable

The datatype of column must be either the same as or convertible to the
datatype of variable. For example, Oracle automatically converts data selected
from the table before assigning it to the variable in the following statement:

SELECT col1 INTO var1 FROM table1 WHERE col1 = 30;

Rule 2: Expression Evaluation
For expression evaluation, Oracle can automatically perform the same conversions
as for assignments. An expression is converted to a type based on its context. For
 Selecting a Datatype 5-19

Data Conversion
example, operands to arithmetic operators are converted to NUMBER and oper-
ands to string functions are converted to VARCHAR2.

Oracle can automatically convert the following:

■ VARCHAR2 or CHAR to NUMBER

■ VARCHAR2 or CHAR to DATE

Character to NUMBER conversions succeed only if the character string represents a
valid number. Character to DATE conversions succeed only if the character string
satisfies the session default format, which is specified by the initialization parame-
ter NLS_DATE_FORMAT.

Some common types of expressions follow:

■ Simple expressions, such as

comm + '500'

■ Boolean expressions, such as

bonus > sal / '10'

■ Function and procedure calls, such as

MOD (counter, '2')

■ WHERE clause conditions, such as

WHERE hiredate = TO_DATE('1997-01-01','yyyy-mm-dd')

■ WHERE clause conditions, such as

WHERE rowid = 'AAAAaoAATAAAADAAA'

In general, Oracle uses the rule for expression evaluation when a datatype conver-
sion is needed in places not covered by the rule for assignment conversions.

In assignments of the form:

variable := expression

Oracle first evaluates expression using the conversions covered by Rule 2; expression
can be as simple or complex as desired. If it succeeds, the evaluation of expression
results in a single value and datatype. Then, Oracle tries to assign this value to the
assignment's target using Rule 1.
5-20 Oracle8 Application Developer’s Guide

Data Conversion
Data Conversion for Trusted Oracle
In Trusted Oracle, labels are stored internally as compact binary structures. Trusted
Oracle provides the TO_LABEL function that enables you to convert a label from its
internal binary format to an external character format. To convert a label from char-
acter format to binary format in Trusted Oracle, you use the TO_CHAR function.

The TO_LABEL function is provided for compatibility with Trusted Oracle applica-
tions. It returns the NULL value in Oracle8.

See Also: The Trusted Oracle documentation has more informa-
tion about using the TO_LABEL and TO_CHAR functions to convert
label formats.
 Selecting a Datatype 5-21

Data Conversion
5-22 Oracle8 Application Developer’s Guide

 Large Objects (L
6

Large Objects (LOBs)

Oracle8 provides support for defining and manipulating large objects (LOBs).
Oracle8 extends SQL DDL and DML commands to create and update LOB columns
in a table or LOB attributes of an object type. Further, Oracle8 provides Oracle Call
Interface (OCI) and PL/SQL package APIs to perform random, piecewise opera-
tions on LOBs.

This chapter documents the extended SQL commands and the PL/SQL package
API for LOBs. It also briefly mentions the OCI API for LOB manipulation, which is
described in the Oracle Call Interface Programmer’s Guide.

This chapter has two sections:

■ Introduction to LOBs — introduces LOBs in Oracle8, and discusses the main
aspects of LOB handling

■ LOB Reference — contains the detailed list of all of the technical specifications
for the PL/SQL DBMS_LOB package
OBs) 6-1

Introduction to LOBs
Introduction to LOBs

Introduction Overview
This section introduces the treatment of LOBs in Oracle8 under the headings that
are also laid out below. Although it is not made explicit in the text, the various
issues can be grouped under a number of umbrella topics.

The first topic is one of general introduction:

■ What are LOBs?

■ Internal LOBs and External LOBs (BFILE s)

– Internal LOBs

– External LOBs (BFILE s)

■ LOB Datatypes

– Internal LOB datatypes

– External LOB datatypes

■ LOBs in comparison to LONG and LONG RAW types

■ Packages for Working with LOBs

The second topic discusses steps involved in beginning to work with LOBs:

■ Defining Internal and External LOBs for Tables (SQL DDL)

■ Stipulating Tablespace and Storage Characteristics for Internal LOBs

– Tablespace and LOB Index

– PCTVERSION

– CACHE / NO CACHE

– LOGGING / NO LOGGING

– CHUNK

■ Initializing Internal LOBs (SQL DML)

The third topic deals with issues specific to handling external LOBs (BFILE s):

■ Accessing External LOBs (SQL DML)
6-2 Oracle8 Application Developer’s Guide

Introduction to LOBs
– Initializing BFILES using BFILENAME() and OCIFileSetName ()

– The DIRECTORY object

– DIRECTORY Name Specification

■ BFILE Security

– Ownership and security

– SQL DDL for BFILE security

– SQL DML for BFILE security

■ Catalog Views on Directories

■ Guidelines for DIRECTORY Usage

■ Maximum number of open BFILES

■ BFILE s in MTS mode

■ Closing BFILE s after Program Termination

The fourth topic considers how LOBs are handled by way of locators:

■ LOB Values and Locators

– Inline storage of LOB values

– LOB locators

– Internal LOB locators

– BFILE locators

■ LOB Locator Operations

– Setting the LOB Column/Attribute to contain a Locator

– Accessing a LOB through a locator

– Read consistent locators

– Updated locators

– LOB bind variables

The fifth topic is concerned with basic manipulation of LOBs:

■ Efficient reads and writes of large amounts of LOB data
 Large Objects (LOBs) 6-3

Introduction to LOBs
■ Copying LOBs

– Copying internal LOBs

– Copying external LOBs

■ Deleting LOBs

– Deleting internal LOBs

– Deleting external LOBs

■ Copying Data from LONGs to LOBs

Finally, the last topic considers performance and optimization issues in a client/
server environment:

■ LOBs in the Object Cache

■ The LOB Buffering Subsystem

■ User Guidelines for Best Performance Practices

■ Working with Varying-Width Character Data

What Are LOBs?
Consider the following application scenarios:

1

2

Application Scenario 1: A law firm wishes to manage production of a signifi-
cant case by means of a database. The lawyers are aware that the information will
include x-rays (image data), expert analysis (character text), depositions (audio/
video), and drawings (graphics).During the course of the trial they also come to
utilize computer-simulated events (animation).

Application Scenario 2: A broadcast station wishes to manage production of its
feature programs by means of a database. The program managers are aware that
this information commonly includes photographs (image data), interviews
(audio/video), sound-effects (sound waveforms), music (sound waveforms), and
script (character text). With the advance of digitizing and storage technology, they
also find it possible to include legacy silent-film (video).
6-4 Oracle8 Application Developer’s Guide

Introduction to LOBs
 Although each of these scenarios is drawn from a different domain, it is easy to see
how management of multiple media is becoming commonplace in business applica-
tions. This is relevant to this chapter because Oracle8 supports LOBs — large objects
which can hold up to 4 gigabytes of RAW, binary data (e.g., graphic images, sound
waveforms, video clips, etc.) or character text data.

Oracle8 regards LOBs as being of two kinds depending on their location with
regard to the database — internal LOBs and external LOBs (BFILEs). When the term
LOB is used without an identifying prefix term, it refers to both internal and exter-
nal LOBs. Data stored in a LOB is termed the LOB’s value.

Internal LOBs and External LOBs (BFILEs)

Internal LOBs
Internal LOBs, as their name suggests, are stored in the database tablespaces in a
way that optimizes space and provides efficient access. Internal LOBs use copy
semantics and participate in the transactional model of the server. Internal LOBs are
also recoverable in the event of transaction or media failure. That is, all the ACID
properties that pertain to using database objects pertain to internal LOBs also. This
means that any changes to a internal LOB value can be committed or rolled back.

External LOBs (BFILEs)
External LOBs, also referred to as BFILES , are large binary data objects stored in
operating system files outside of the database tablespaces. These files use reference
semantics. They may be located on hard disks, CDROMs, PhotoCDs or any such
device, but a single LOB may not extend from one device to another. The SQL
datatype BFILE is supported in Oracle8 SQL and PL/SQL to enable read-only byte
stream I/O access to large files existing on the filesystem of the database server. The
Oracle Server can access them provided the underlying server operating system
supports a stream-mode access to these files.

Application Scenario 3: A geological survey team looking for oil under the sea
wishes to manage its projects by means of a database. The project managers are
aware that the information will include satellite pictures (image data) with com-
plex overlay drawings (image data), sonar recordings along with their graphic rep-
resentations (sound wave forms and image data), and chemical analysis (image
data and character text).During the course of the project they also come to employ
computer modeling of likely weather conditions (character text and image data).
 Large Objects (LOBs) 6-5

Introduction to LOBs
.

LOBs in Comparison to LONG and LONG RAW Types
LOBs are similar to LONG and LONG RAW types, but differ in the following ways:

■ Multiple LOBs are allowed in a single row.

■ LOBs can be attributes of a user-defined datatype (object).

■ Only the LOB locator is stored in the table column; BLOB and CLOB data can be
stored in separate tablespaces and BFILE data is stored as an external file.

■ When you access a LOB column, it is the locator which is returned.

■ A LOB can be up to 4 gigabytes in size. The BFILE maximum is operating
system dependent, but cannot exceed 4 gigabytes. The valid accessible range is
1 to (232-1).

■ LOBs let you access and manipulate data in a random, piece-wise manner.

Packages for Working with LOBs
You can make changes to the entire values of internal LOBs through direct SQL
DML. You can make to an entire internal LOB, or piecewise to the beginning,
middle or end of an internal LOB through the OCI, or through the PL/SQL
DBMS_LOB APIs. It is possible to access both internal and external LOBs for read
purposes and also write to internal LOBs.

■ The OCI LOB interface is described briefly in “Using the OCI to Manipulate
LOBs” on page 6-63, and more extensively in the Oracle Call Interface Program-
mer’s Guide.

■ The PL/SQL DBMS_LOB API is described in “DBMS_LOB Package” on page 6-
66.

LOB Datatypes

Internal LOB Datatypes
There are three SQL datatypes for defining instances of internal LOBs:

■ BLOB, a LOB whose value is composed of unstructured binary (“raw”) data.

WARNING: External LOBs do not participate in transactions.
Any support for integrity and durability must be provided by
the underlying file system as governed by the operating system.
6-6 Oracle8 Application Developer’s Guide

Introduction to LOBs
■ CLOB, a LOB whose value is composed of single-byte fixed-width character
data that corresponds to the database character set defined for the Oracle8 data-
base.

■ NCLOB, a LOB whose value is composed of fixed-width multi-byte character
data that corresponds to the national character set defined for the Oracle8 data-
base.

Varying width character data is not supported for BLOBs, CLOBs and NCLOBs.
.

See Also: “Working with Varying-Width Character Data” on
page 6-57
 Large Objects (LOBs) 6-7

Introduction to LOBs
External LOB Datatype
There is one external SQL LOB datatype:

■ BFILE , a LOB whose value is composed of binary (“raw”) data, and is stored
outside of the database tablespaces in a server-side operating system file.

Defining Internal and External LOBs for Tables
It is possible to incorporate LOBs into tables in two ways.

■ LOBs may be columns in a table — the case in which the large object is ’in rela-
tion’ with other data entities.

■ LOBs may be attributes of an object — the case in which a data entity (i.e. an
object type) has one or more LOBs as attributes.

In both cases SQL DDL is used — to define LOB columns in a table and LOB
attributes in an object type. Refer to the Oracle8 SQL Reference for information about
using LOBs in the following DDL commands:

■ CREATE TABLE and ALTER TABLE

– BLOB, CLOB, NCLOB and BFILE columns

– LOB storage clause for internal LOB columns/attributes

■ CREATE TYPE and ALTER TYPE

– BLOB, CLOB, and BFILE attributes (noting that NCLOBs cannot be attributes
in an object type).

The following code fragment describes creating the table, lob_table . We refer to
this example throughout the text.

 CREATE TABLE lob_table (
 key_value INTEGER,
 b_lob BLOB,
 c_lob CLOB,
 n_lob NCLOB,
 f_lob BFILE);

Stipulating Tablespace and Storage Characteristics for Internal Lobs
When defining LOBs in a table, you can explicitly indicate the tablespace and stor-
age characteristics for each internal LOB. There are no extra tablespace or storage
characteristics for external LOBs since they are not stored in the database.
6-8 Oracle8 Application Developer’s Guide

Introduction to LOBs
Specifying a name for the LOB data segment and the LOB index makes for a much
more intuitive working environment. When querying the LOB data dictionary
views USER_LOBS, ALL_LOBS, DBA_LOBS (see Oracle8 Reference), you see the LOB
data segment and LOB index names that you chose instead of system-generated
names that are non-intuitive.

The LOB storage characteristics that can be specified for a LOB column or a LOB
attribute include PCTVERSION, CACHE, NOCACHE, LOGGING, NOLOGGING, CHUNK
and ENABLE/DISABLE STORAGE IN ROW. For most users, defaults for these storage
characteristics will be sufficient. If you want to fine-tune LOB storage, you should
consider the following guidelines.

Tablespace and LOB Index
Best performance for LOBs can be achieved by specifying storage for LOBs in a
tablespace that is different from the one used for the table that contains the LOB. If
many different LOBs will be accessed frequently, it may also be useful to specify a
separate tablespace for each LOB column/attribute in order to reduce device conten-
tion.

The LOB index is an internal structure that is strongly associated with the LOB stor-
age. This implies that a user may not drop the LOB index and rebuild it. Note that
the LOB index cannot be altered through the ALTER INDEX statement although you
can alter it through the ALTER TABLE statement. However, you may not rename
the LOB index. The system determines which tablespace to use for the LOB data and
LOB index depending on the user specification in the LOB storage clause:

■ If you do not specify a tablespace for the LOB data nor for the LOB index, the
table's tablespace is used for both the LOB data and the LOB index.

■ If you specify a tablespace for the LOB data but not for the LOB index, both the
LOB data and index use the tablespace that was specified for the LOB data.

■ If you specify a tablespace for the LOB index but not the LOB data, the LOB
index uses the specified tablespace and the LOB data uses the table's tablespace.

■ If you specify a tablespace for the LOB data and the LOB index, the LOB data
and index use the specified tablespaces respectively.

Specifying a separate tablespace for the LOB storage segments will allow for a
decrease in contention on the table's tablespace. In some extreme cases, it may even
be beneficial to use three separate tablespaces — one for the table data, one for the
LOB data segments, and one for the LOB index segments. This would be useful if
certain LOB data is to be accessed very frequently. Normally, using two tablespaces
 Large Objects (LOBs) 6-9

Introduction to LOBs
— one for the table data, and one for the LOB data and LOB index — should be suffi-
cient.

PCTVERSION
When a LOB is modified, a new version of the LOB page is made in order to support
consistent read of prior versions of the LOB value.

PCTVERSION is the percent of all used LOB data space that can be occupied by old
versions of LOB data pages. As soon as old versions of LOB data pages start to
occupy more than the PCTVERSION amount of used LOB space Oracle will try to
reclaim the old versions and reuse them. In other words, PCTVERSION is the per-
cent of used LOB data blocks that is available for versioning of old LOB data.

 Default: 10 (%) Minimum: 0 (%) Maximum: 100 (%)

One way of approximating PCTVERSION is to set PCTVERSION =% of LOBs
updated at any given point in time * % of each LOB updated whenever a LOB is
updated * % of LOBs being read at any given point in time. Basically, the idea is to
allow for a percentage of LOB storage space to be used as old versions of LOB pages
so that readers will be able to get consistent reads of data that has been updated.

Example 1: Several LOB updates concurrent with heavy reads of LOBs.

 set PCTVERSION = 20%

Setting PCTVERSION to twice the default allows more free pages to be used for old
versions of data pages. Since large queries may require consistent reads of LOBs, it
is useful to keep more old versions of LOB pages around. Of course, LOB storage
may grow some because Oracle will not be reusing free pages aggressively.

Example 2: LOBs are created and written just once and are primarily read-only afterwards.
Updates are infrequent.

 set PCTVERSION = 5% or lower

The more infrequent and smaller the LOB updates are, the less space that needs to
be reserved for old copies of LOB data. If existing LOBs are known to be read-only,
we could safely set PCTVERSION to 0% since there would never be any pages
needed for old versions of data.

CACHE / NOCACHE
Use the CACHE option on LOBs if the same LOB data will be accessed frequently.
Use the NOCACHE option (the default) if LOB data will be read only once, or
infrequently.
6-10 Oracle8 Application Developer’s Guide

Introduction to LOBs
LOGGING / NOLOGGING
[NO] LOGGING has a similar application with regard to using LOBs as it does for
other table operations. In the normal case, if the [NO]LOGGING clause is omitted,
this means that neither NO LOGGING nor LOGGING is specified and the logging
attribute of the table or table partition defaults to the logging attribute of the
tablespace in which it resides.

For LOBs, there is a further alternative depending on how CACHE is stipulated.

■ If the [NO]LOGGING clause is omitted and CACHE is specified, LOGGING is auto-
matically implemented (because you cannot have CACHE NOLOGGING).

■ If the [NO]LOGGING clause is omitted and CACHE is not specified, the process
defaults in the same way as it does for tables and partitioned tables i.e.,the
[NO]LOGGING value is obtained from the tablespace in which the LOB value
resides.

The following issues should also be kept in mind.

■ LOBs will always generate undo for LOB index pages. Regardless of whether
LOGGING or NOLOGGING is set LOBs will never generate rollback information
(undo) for LOB data pages because old LOB data is stored in versions. Rollback
information that is created for LOBs tends to be small because it is only for the
LOB index page changes.

■ When LOGGING is set Oracle will generate full redo for LOB data pages. NOLOG-
GING is intended to be used when a customer does not care about media recov-
ery. Thus, if the disk/tape/storage media fails, you will not be able to recover
your changes from the log since the changes were never logged.

An example of when NOLOGGING is useful is bulk loads or inserts. For instance,
when loading data into the LOB, if you don't care about redo and can just start
the load over if it fails, set the LOB's data segment storage characteristics to
NOCACHE NOLOGGING. This will give good performance for the initial load of
data. Once you have completed loading the data, you can use ALTER TABLE to
modify the LOB storage characteristics for the LOB data segment to be what you
really want for normal LOB operations -- i.e. CACHE or NOCACHE LOGGING.

CHUNK
Set CHUNK to the number of blocks of LOB data that will be accessed at one time i.e.
the number of blocks that will be read/written via OCILobRead() , OCILob-

Note: CACHE implies that you also get LOGGING.
 Large Objects (LOBs) 6-11

Introduction to LOBs
Write() , DBMS_LOB.READ() , or DBMS_LOB.WRITE() during one access of the
LOB value. For example, if only 1 block of LOB data is accessed at a time, set
CHUNK to the size of one block. For example, if the database block size is 2K, then
set CHUNK to 2K.

If you explicitly specify the storage characteristics for the LOB, make sure that INI-
TIAL and NEXT for the LOB data segment storage are set to a size that is larger than
the CHUNK size. For example, if the database block size is 2K and you specify a
CHUNK of 8K, make sure that the INITIAL and NEXT are bigger than 8K and prefer-
ably considerably bigger (for example, at least 16K).

Put another way: If you specify a value for INITIAL, NEXT or the LOB CHUNK
size, make sure that:

■ CHUNK <= NEXT

and

■ CHUNK <= INITIAL

ENABLE | DISABLE STORAGE IN ROW
You use the ENABLE | DISABLE STORAGE IN ROW clause to indicate whether the
LOB should be stored inline (i.e. in the row) or out of line. You may not alter this
specification once you have made it: if you ENABLE STORAGE IN ROW, you cannot
alter it to DISABLE STORAGE IN ROW and vice versa. The default is ENABLE STOR-
AGE IN ROW.

The maximum amount of LOB data that will be stored in the row is the maximum
VARCHAR size (4000). Note that this includes the control information as well as the
LOB value. If the user indicates that the LOB should be stored in the row, once the
LOB value and control information is larger than 4000, the LOB value is automati-
cally moved out of the row.

This suggests the following guideline. If the LOB is small (i.e. < 4000 bytes), then
storing the LOB data out of line will decrease performance. However, storing the
LOB in the row increases the size of the row. This will impact performance if the
user is doing a lot of base table processing, such as full table scans, multi-row
accesses (range scans) or many UPDATE/SELECT to columns other than the LOB
columns. If the user doesn't expect the LOB data to be < 4000, i.e. if all LOBs are big,
then the default is the best choice since

(a) the LOB data is automatically moved out of line once it gets bigger than 4000
(which will be the case here since the LOB data is big to begin with), and
6-12 Oracle8 Application Developer’s Guide

Introduction to LOBs
(b) performance will be slightly better since we still store some control informa-
tion in the row even after we move the LOB data out of the row.
 Large Objects (LOBs) 6-13

Introduction to LOBs
Initializing Internal LOBs (SQL DML)
You can set an internal LOB — that is, a LOB column in a table, or a LOB attribute in
an object type defined by you— to be empty, or NULL. An empty LOB stored in a
table is a LOB of zero length that has a locator. If you SELECT from an empty LOB
column / attribute, you get back a locator which you can use to populate the LOB
with data via the OCI or DBMS_LOB routines. This is discussed in more detail below.

Alternatively, LOB columns, but not LOB attributes, may be initialized to a value.
Which is to say — internal LOB attributes differ from internal LOB columns in that
LOB attributes may not be initialized to a value other than NULL or empty. As dis-
cussed below, an external LOB (i.e. BFILE) can be initialized to NULL or to
a filename.

For example, let us say that you create the table, lob_table:

 CREATE TABLE lob_table (
 key_value INTEGER,
 b_lob BLOB,
 c_lob CLOB,
 n_lob NCLOB,
 f_lob BFILE);

You can initialize the LOBs by using the following SQL INSERT statement:

INSERT INTO lob_table VALUES (1001, EMPTY_BLOB(), NULL,
 EMPTY_CLOB(), NULL);

This sets the value of b_lob and n_lob to an empty value, and sets c_lob and f_lob to
NULL.

Setting the LOB to NULL
You may want to set the internal LOB value to NULL upon inserting the row in cases
where you do not have the LOB data at the time of the INSERT and/or if you want
to issue a SELECT statement thereafter such as:

 SELECT * FROM a_table WHERE a_lob_col != NULL;

 or

 SELECT * FROM a_table WHERE a_lob_col == NULL;

However, the drawback to this approach is that you must then issue a SQL UPDATE
statement to set the NULL LOB column to EMPTY_BLOB() /EMPTY_CLOB() or to a
value (e.g. 'abc') for internal LOBs or to a filename for external LOBs. You cannot call
6-14 Oracle8 Application Developer’s Guide

Introduction to LOBs
the OCI or the PL/SQL DBMS_LOB functions on a NULL LOB. These functions only
work with a locator and if the LOB column is NULL, there is no locator in the row.

Setting the internal LOB to empty
The other option is for you to set the LOB value to empty by using the function
EMPTY_BLOB () /EMPTY_CLOB() in the INSERT statement:

 INSERT INTO a_table values (empty_blob());

Even better is to use the RETURNING clause (thereby eliminating a round trip that is
necessary for the subsequent SELECT), and then immediately call OCI or the PL/
SQL DBMS_LOB functions to populate the LOB with data.

Accessing External LOBs (SQL DML)

Directory Object
The DIRECTORY object enables administering the access and usage of BFILE s in an
Oracle8 Server (see the CREATE DIRECTORY command in the Oracle8 Reference). A
DIRECTORY specifies a logical alias name for a physical directory on the server’s file-
system under which the file to be accessed is located. You can access a file in the
server’s filesystem only if granted the required access privilege on the DIRECTORY
object.

The DIRECTORY object also provides the flexibility to manage the locations of the
files, instead of forcing you to hardcode the absolute pathnames of the physical
files in your applications. A DIRECTORY alias is used in conjunction with the
BFILENAME() function (in SQL and PL/SQL), or the OCILobFileSetName () (in
OCI) for initializing a BFILE locator.

See Also: “EMPTY_BLOB() and EMPTY_CLOB() Functions” on
page 6-59

WARNING: Oracle does not verify that the directory and path-
name you specify actually exist. You should take care to specify a
valid directory in your operating system. If your operating sys-
tem uses case-sensitive pathnames, be sure you specify the direc-
tory in the correct format. There is no need to specify a
terminating slash (e.g., /tmp/ is not necessary, simply use /tmp).
 Large Objects (LOBs) 6-15

Introduction to LOBs
Initializing BFILES using BFILENAME()
In order to associate an operating system file to a BFILE , it is necessary to first cre-
ate a DIRECTORY object which is an alias for the full pathname to the operating sys-
tem file.

You use Oracle8 SQL DML to associate existing operating system files with the
relevant database records of a particular table. You can use the SQL INSERT
statement to initialize a BFILE column to point to an existing file in the server’s
filesystem, and you can use a SQL UPDATE statement to change the reference target
of the BFILE . You can also initialize a BFILE to NULL and then update it later to
refer to an operating system file via the BFILENAME() function. OCI users can also
use OCILobFIleSetName () to initialize a BFILE locator variable that is then used
in the VALUES clause of an INSERT statement.

For example, the following statements associate the files image1.gif and image2.gif
with records having key_value of 21 and 22 respectively. ’IMG’ is a DIRECTORY
object that represents the physical directory under which image1.dif and image2.dif
are stored.

INSERT INTO lob_table VALUES
 (21, NULL, NULL, NULL, BFILENAME(’IMG’, ’image1.gif’));
 INSERT INTO lob_table VALUES
 (22, NULL, NULL, NULL, BFILENAME(’IMG’, ’image2.gif’));

The UPDATE statement below changes the target file to image3.gif for the row with
key_value 22.

 UPDATE lob_table SET f_lob = BFILENAME(’IMG’, ’image3.gif’)
 WHERE key_value = 22;

BFILENAME() is a built-in function that is used to initialize the BFILE column to
point to the external file.

Once physical files are associated with records using SQL DML, subsequent read
operations on the BFILE can be performed using PL/SQL DBMS_LOB package and
OCI. However, these files are read-only when accessed through BFILES , and so
they cannot be updated or deleted through BFILES .

As a consequence of the reference-based semantics for BFILEs, it is possible to have
multiple BFILE columns in the same record or different records referring to the
same file. For example, the UPDATE statements below set the BFILE column of the

See Also: “Directory Object” on page 6-15.

See Also: “BFILENAME() Function” on page 6-60.
6-16 Oracle8 Application Developer’s Guide

Introduction to LOBs
row with key_value 21 in lob_table to point to the same file as the row with
key_value 22.

UPDATE lob_table
 SET f_lob = (SELECT f_lob FROM lob_table WHERE key_value = 22)
 WHERE key_value = 21;

DIRECTORY Name Specification
The naming convention followed by Oracle8 for DIRECTORY objects is the same as
that done for tables and indexes. That is, normal identifiers are interpreted in
uppercase, but delimited identifiers are interpreted as is. For example, the follow-
ing statement

CREATE DIRECTORY scott_dir AS '/usr/home/scott';

creates a directory object whose name is ’SCOTT_DIR’ (in uppercase). But if a delim-
ited identifier is used for the DIRECTORY name, as shown in the following state-
ment

CREATE DIRECTORY "Mary_Dir" AS '/usr/home/mary';

the directory object’s name is ’Mary_Dir ’. Use ’SCOTT_DIR’ and ’Mary_Dir ’
when calling BFILENAME(). For example:

BFILENAME(’SCOTT_DIR’, ’afile’)
BFILENAME(’Mary_Dir’, ’afile’)

BFILE Security
This section introduces the BFILE security model and the associated SQL DDL and
DML. The main features for BFILE security in Oracle 8.0 are:

■ SQL DDL to CREATE and REPLACE/ALTER a DIRECTORY object.

■ SQL DML to GRANT and REVOKE the READ system and object privileges on
DIRECTORY objects.

Ownership and Privileges
The DIRECTORY is a system owned object. For more information on system owned
objects, see Oracle8 SQL Reference. Oracle8 supports two new system privileges,
which are granted only to the DBA account:

■ CREATE ANY DIRECTORY — for creating or altering the directory object creation
 Large Objects (LOBs) 6-17

Introduction to LOBs
■ DROP ANY DIRECTORY — for deleting the directory object

The READ privilege on the DIRECTORY object allows you to read files located under
that directory. The creator of the DIRECTORY object automatically earns the READ
privilege. If you have been granted the READ privilege with GRANT option, you
may in turn grant this privilege to other users/roles and add them to your privi-
lege domains.

It is important to note that the READ privilege is defined only on the DIRECTORY
object. The physical directory that it represents may or may not have the corre-
sponding operating system privileges (read in this case) for the Oracle Server pro-
cess. It is the DBA’s responsibility to ensure that the physical directory exists, and
read permission for the Oracle Server process is enabled on the file, the directory,
and the path leading to it. It is also the DBA’s responsibility to make sure that the
directory remains available, and the read permission remains enabled, for the entire
duration of file access by database users.

The privilege just implies that as far as the Oracle8 Server is concerned, you may
read from files in the directory. These privileges are checked and enforced by the
PL/SQL DBMS_LOB package and OCI APIs at the time of the actual file operations.

SQL DDL for BFILE security
Refer to the Oracle8 SQL Reference for information about the following SQL DDL
commands that create, replace, and drop directory objects:

■ CREATE DIRECTORY

■ DROP DIRECTORY

SQL DML for BFILE security
Refer to the Oracle8 SQL Reference for information about the following SQL DML
commands that provide security for BFILE s:

■ GRANT (system privilege)

■ GRANT (object privilege)

WARNING: Since the CREATE ANY DIRECTORYand DROP
ANY DIRECTORY privileges potentially expose the server filesys-
tem to all database users, the DBA should be prudent in granting
these privileges to normal database users to prevent any acciden-
tal or malicious security breach.
6-18 Oracle8 Application Developer’s Guide

Introduction to LOBs
■ REVOKE (system privilege)

■ REVOKE (object privilege)

■ AUDIT (new statements)

■ AUDIT (schema objects)

Catalog Views on Directories
Catalog views are provided for directory objects to enable users to view object
names and their corresponding paths and privileges. The supported views are:

■ ALL_DIRECTORIES (OWNER, DIRECTORY_NAME, DIRECTORY_PATH)

This view describes all the directories accessible to the user.

■ DBA_DIRECTORIES(OWNER, DIRECTORY_NAME, DIRECTORY_PATH)

This view describes all the directories specified for the entire database.

Guidelines for DIRECTORY Usage
The main goal of the DIRECTORY feature in Oracle8 is to enable a simple, flexible,
non-intrusive, yet secure mechanism for the DBA to manage access to large files in
the server filesystem. But to realize this goal, it is very important that the DBA fol-
low these guidelines when using directory objects:

■ A DIRECTORY should not be mapped to physical directories which contain Ora-
cle datafiles, control files, log files, and other system files. Tampering with
these files (accidental or otherwise) could potentially corrupt the database or
the server operating system.

■ The system privileges such as CREATE ANY DIRECTORY (granted to the DBA
initially) should be used carefully and not granted to other users indiscrimi-
nately. In most cases, only the database administrator should have these privi-
leges.

■ Privileges on directory objects should be granted to different users carefully.
The same holds for the use of the WITH GRANT OPTION clause when granting
privileges to users.

■ DIRECTORY objects should not be arbitrarily dropped or replaced when the
database is in operation. If this were to happen, DBMS_LOB or OCI operations
 Large Objects (LOBs) 6-19

Introduction to LOBs
from all sessions on all files associated with this directory object will fail. Further,
if a DROP or REPLACE command is executed before these files could be success-
fully closed, the references to these files will be lost in the programs, and sys-
tem resources associated with these files will not be released until the session(s)
is shutdown.

The only recourse left to PL/SQL users, for example, will be to either execute a
program block that calls DBMS_LOB FILECLOSEALL() and restart their file
operations, or exit their sessions altogether. Hence, it is imperative that you use
these commands with prudence, and preferably during maintenance down-
times.

■ Similarly, revoking an user’s privilege on a directory using the REVOKE state-
ment causes all subsequent operations on dependent files from the user’s ses-
sion to fail. Either you must re-acquire the privileges to close the file, or execute
a FILECLOSEALL() in the session and restart the file operations.

In general, using DIRECTORY objects for managing file access is an extension of sys-
tem administration work at the operating system level. With some planning, files
can be logically organized into suitable directories that have read privileges for the
Oracle process, DIRECTORY objects can be created with READ privileges that map
to these physical directories, and specific database users granted access to these
directories.

Maximum Number of Open BFILEs
A limited number of BFILE s can be open simultaneously per session. The maxi-
mum number is specified by a new initialization parameter, the
SESSION_MAX_OPEN_FILES parameter.

SESSION_MAX_OPEN_FILES defines an upper limit on the number of simulta-
neously open files in a session. The default value for this parameter is 10. That is, a
maximum of 10 files can be opened simultaneously per session if the default value
is utilized. The database administrator can change the value of this parameter in
the init.ora file. For example:

SESSION_MAX_OPEN_FILES=20

See Also: “DBMS_LOB.FILECLOSEALL() Procedure” on page 6-
81
6-20 Oracle8 Application Developer’s Guide

Introduction to LOBs
BFILEs in MTS Mode
Oracle8 release 8.0 does not support session migration for BFILE s in MTS mode.
This implies that operations on open BFILE s can persist beyond the end of a call to
an MTS server. Sessions involving BFILE operations need to be bound to one
shared server, they cannot migrate from one server to another.

Closing BFILEs after Program Termination
It is the user’s responsibility to close any opened file(s) after normal or abnormal
termination of a PL/SQL program block or OCI program. So, for instance, for every
DBMS_LOB FILEOPEN call, there must be a matching DBMS_LOB FILECLOSE call.
You should close open files before the termination of a PL/SQL block or OCI pro-
gram, and also in situations which have raised errors. The exception handler
should make provision to close any files that were opened before the occurrence of
the exception or abnormal termination.

If this is not done, Oracle will consider these files unclosed, and if the number of
unclosed files exceeds the SESSION_MAX_OPEN_FILES value then you will not be
able to open any more files in the session. To close all open files, use the FILECLO-
SEALL call.

LOB Value and Locators

Inline storage of the LOB value
Data stored in a LOB is termed the LOB’s value. The value of an internal LOB may or
may not be stored inline with the other row data. If the internal LOB value is less
than approximately 4000 bytes, then the value is stored inline; otherwise it is stored
outside the row. Since LOBs are intended to be large objects, inline storage will only
be relevant if your application mixes ’small’ and ’large’ LOBs.

As mentioned above (“ENABLE | DISABLE STORAGE IN ROW” on page 6-12),
the LOB value is automatically moved out of the row once it extends beyond
approximately 4000 bytes.

LOB locators
Regardless of where the value of the internal LOB is stored, a locator is stored in the
row. You can think of a LOB locator as a pointer to the actual location of the LOB
value. A LOB locator is a locator to an internal LOB while a BFILE locator is a locator

See Also: “DBMS_LOB General Usage Notes” on page 6-69 for
more details on PL/SQL programming
 Large Objects (LOBs) 6-21

Introduction to LOBs
to an external LOB. When the term locator is used without an identifying prefix
term, it refers to both LOB locators and BFILE locators.

Internal LOB Locators
For internal LOBs, the LOB column stores a locator to the LOB’s value which is
stored in a database tablespace. Each LOB column/attribute for a given row has its
own distinct LOB locator and copy of the LOB value stored in the database
tablespace.

External LOB Locators (BFILE Locators)
For BFILE s, the value is stored in a server-side operating system file, i.e. external to
the database. The BFILE locator that refers to that file is stored in the row. If a
BFILE locator variable that is used in a DBMS_LOB FILEOPEN() (for example L1) is
assigned to another locator variable, (for example L2), both L1 and L2 point to the
same file. This means that two rows in a table with a BFILE column can refer to the
same file or to two distinct files — a fact that the canny developer might turn to
advantage, but which could well be a pitfall for the unwary.

A BFILE locator variable in a PL/SQL or OCI program behaves like any other auto-
matic variable. With respect to file operations, it behaves like a file descriptor avail-
able as part of the standard I/O library of most conventional programming
languages. This implies that once you define and initialize a BFILE locator, and
open the file pointed to by this locator, all subsequent operations until the closure
of this file must be done from within the same program block using this locator or
local copies of this locator.

The BFILE locator variable can be used, just as any scalar, as a parameter to other
procedures, member methods, or external function callouts. However, it is recom-
mended that you open and close a file from the same program block at the same
nesting level, in PL/SQL and OCI programs.

LOB Locator Operations

Setting the LOB Column/Attribute to contain a locator
Before you can start writing data to a internal LOB, the LOB column/attribute must
be made non-null, that is, it must contain a locator. Similarly, before you can start
accessing the BFILE value, the BFILE column/attribute must be made non-null.

■ For internal LOBs, you can accomplish this by initializing the internal LOB to
empty in an INSERT/UPDATE statement using the functions EMPTY_BLOB() for
BLOBs or EMPTY_CLOB() for CLOBs and NCLOBs.
6-22 Oracle8 Application Developer’s Guide

Introduction to LOBs
■ For external LOBs, you can initialize the BFILE column to point to an external
file by using the BFILENAME() function.

.

Invoking the EMPTY_BLOB() or EMPTY_CLOB() function in and of itself does not
raise an exception. However, using a LOB locator that was set to empty to access or
manipulate the LOB value in any PL/SQL DBMS_LOB or OCI routine will raise an
exception. Valid places where empty LOB locators may be used include the VALUES
clause of an INSERT statement and the SET clause of an UPDATE statement.

The following INSERT statement

– sets b_lob to NULL,

– populates c_lob with the character string ’abcde’,

– sets n_lob to NULL, and

– initializes f_lob to point to the file ’scott.dat’ located under the logical direc-
tory ’SCOTT_DIR’ (see the CREATE DIRECTORY command in the Oracle8
Reference). Character strings are inserted using the default character set for
the instance.

INSERT INTO lob_table VALUES (1002, NULL ’abcde’,
 NULL,BFILENAME(’SCOTT_DIR’, ’scott.dat’));

Similarly, given a table person_objcol_table one of whose columns is an object with
LOB attributes, the LOB attributes can be initialized to NULL or set to empty as
shown below:

INSERT INTO person_objcol_table VALUES (1001,person_type
 (’Scott’, EMPTY_CLOB(), EMPTY_BLOB(),
 BFILENAME(’SCOTT_DIR’, ’scott.dat’)));

Accessing a LOB through a locator

SELECTing a LOB Performing a SELECT on a LOB returns the locator instead of the
LOB value. In the following PL/SQL fragment you select the LOB locator for b_lob
and place it in the PL/SQL locator variable image1 defined in the program block.
When you use PL/SQL DBMS_LOB functions to manipulate the LOB value, you
refer to the LOB using the locator.

See Also: “EMPTY_BLOB() and EMPTY_CLOB() Functions” on
page 6-59.

See Also: “BFILENAME() Function” on page 6-60.
 Large Objects (LOBs) 6-23

Introduction to LOBs
DECLARE
 image1 BLOB;
 image_no INTEGER := 101;
BEGIN
 SELECT b_lob INTO image1 FROM lob_table
 WHERE key_value = image_no;
 DBMS_OUTPUT.PUT_LINE(’Size of the Image is: ’ ||
 DBMS_LOB.GETLENGTH(image1));
 -- more LOB routines
END;

In using OCI, locators are mapped to locator pointers which are used to manipulate
the LOB value. As mentioned before, the OCI LOB interface is described briefly in
“Using the OCI to Manipulate LOBs” on page 6-63, and more extensively in the
Oracle Call Interface Programmer’s Guide.

Locking an Internal LOB before Updating Prior to updating a LOB value via the PL/SQL
DBMS_LOB package or the OCI, you must lock the row containing the LOB. While the
SQL INSERT and UPDATE statements implicitly lock the row, locking is done explic-
itly by means of a SQL SELECT FOR UPDATE statement in SQL and PL/SQL pro-
grams, or by using an OCI pin or lock function in OCI programs.

Read consistent locators
Oracle provides the same read consistency mechanisms for LOBs as for all other
database reads and updates (refer to Oracle8 Concepts for general information about
read consistency). However, read consistency has some special applications to LOB
locators that need to be clearly understood.

A SELECTed locator, regardless of the existence of the FOR UPDATE clause, becomes
a read consistent locator, and remains a read consistent locator until the LOB value is
updated through that locator. A read consistent locator contains the snapshot envi-
ronment as of the point in time of the SELECT.

This has some complex implications. Let us say that you have created a read consis-
tent locator (L1) by way of a SELECT operation. In reading the value of the internal
LOB through L1, the LOB is read as of the point in time of the SELECT statement
even if the SELECT statement includes a FOR UPDATE. Further, if the LOB value is
updated through a different locator (L2) in the same transaction, L1 does not see
L2's updates. In addition, L1 will not see committed updates made to the LOB
through another transaction.
6-24 Oracle8 Application Developer’s Guide

Introduction to LOBs
Furthermore, if the read consistent locator L1 is copied to another locator L2 (for
example, by a PL/SQL assignment of two locator variables — L2:= L1), then L2
becomes a read consistent locator along with L1 and any data read is read as of the
point in time of the SELECT for L1.

Clearly you can utilize the existence of multiple locators to access different transfor-
mations of the LOB value. However, in taking this course, you must be careful to
keep track of the different values accessed by different locators. The following code
demonstrates the relationship between read-consistency and updating in a simple
example.

 Using lob_table as defined above and PL/SQL, three CLOBs are created as potential
locators: clob_selected , clob_updated and clob_copied .

■ At the time of the first SELECT INTO (at t1), the value in c_lob is associated with
the locator clob_selected.

■ In the second operation (at t2), the value in c_lob is associated with the locator
clob_updated. Since there has been no change in the value of c_lob between t1
and t2, both clob_selected and clob_updated are read consistent locators that effec-
tively have the same value even though they reflect snapshots taken at differ-
ent moments in time.

■ The third operation (at t3) copies the value in clob_selected to clob_copied. At this
juncture, all three locators see the same value. The example demonstrates this
with a series of dbms_lob.read calls.

■ At this juncture (at t4), the program utilizes dbms_lob.write to alter the
value in clob_updated, and a dbms_lob.read reveals a new value.

■ However, a dbms_lob.read of the value through clob_selected (at t5) reveals
that it is a read consistent locator, continuing to refer to the same value as of the
time of its SELECT.

■ Likewise, a dbms_lob.read of the value through clob_copied (at t6) reveals
that it is a read consistent locator, continuing to refer to the same value as
clob_selected.

Example of a Read Consistent Locator
INSERT INTO lob_table
 VALUES (1, NULL, 'abcd', NULL, NULL);

COMMIT;

DECLARE
 Large Objects (LOBs) 6-25

Introduction to LOBs
 num_var INTEGER;
 clob_selected CLOB;
 clob_updated CLOB;
 clob_copied CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);

BEGIN
 -- At time t1:
 SELECT c_lob INTO clob_selected
 FROM lob_table
 WHERE key_value = 1;

 -- At time t2:
 SELECT c_lob INTO clob_updated
 FROM lob_table
 WHERE key_value = 1
 FOR UPDATE;

 -- At time t3:
 clob_copied := clob_selected;
 -- After the assignment, both the clob_copied and the
 -- clob_selecte d have the same snapshot as of the point in time
 -- of the SELECT into clob_selected

 -- Reading from the clob_selected and the clob_copied will
 -- return the same LOB value . clob_updated also sees the same
 -- LOB value as of its select:
 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_selected, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
6-26 Oracle8 Application Developer’s Guide

Introduction to LOBs
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t4:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset,
 buffer);

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcdefg'

 -- At time t5:
 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t6:
 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'
END;
/

Updated locators
When you update the value of the internal LOB through the LOB locator (L1), L1
(that is, the locator itself) is updated to contain the current snapshot environment as
of the point in time after the operation was completed on the LOB value through the loca-
tor L1. L1 is then termed an updated locator. This operation allows you to see your
own changes to the LOB value on the next read through the same locator, L1.

Note: the snapshot environment in the locator is not updated if
the locator is used to merely read the LOB value. It is only updated
when you modify the LOB value through the locator via the PL/SQL
DBMS_LOB package or the OCI LOB APIs.
 Large Objects (LOBs) 6-27

Introduction to LOBs
Any committed updates made by a different transaction are seen by L1 only if your
transaction is a read-committed transaction and if you use L1 to update the LOB
value after the other transaction committed.

Updating the value of the internal LOB through the OCI LOB APIs or the PL/SQL
DBMS_LOB package can be thought of as updating the LOB value and then reselecting
the locator that refers to the new LOB value.

Note that updating the LOB value through SQL is merely an UPDATE statement. It
is up to you to do the reselect of the LOB locator or use the RETURNING clause in
the UPDATE statement (see the PL/SQL User’s Guide and Reference) so that the locator
can see the changes made by the UPDATE statement. Unless you reselect the LOB
locator or use the RETURNING clause, you may think you are reading the latest
value when this is not the case. For this reason you should avoid mixing SQL DML
with OCI and DBMS_LOB piecewise operations.

Using lob_table as defined above, a CLOB locator is created: clob_selected .

■ At the time of the first SELECT INTO (at t1), the value in c_lob is associated with
the locator clob_selected.

■ In the second operation (at t2), the value in c_lob is modified through the SQL
UPDATE command, bypassing the clob_selected locator. The locator still sees the
value of the LOB as of the point in time of the original SELECT. In other words,
the locator does not see the update made via the SQL UPDATE command. This
is illustrated by the subsequent dbms_lob.read call.

■ The third operation (at t3) re-selects the LOB value into the locator clob_selected.
The locator is thus updated with the latest snapshot environment which allows
the locator to see the change made by the previous SQL UPDATE command.
Therefore, in the next dbms_lob.read , an error is returned because the LOB
value is empty (i.e., it does not contain any data).

Example of Repercussions of Mixing SQL DML with DMBS_LOB
INSERT INTO lob_table VALUES (1, NULL, 'abcd', NULL, NULL);
COMMIT;

DECLARE
 num_var INTEGER;
 clob_selected CLOB;

Note: When you update an internal LOB’s value, the modification
is always made to the most current LOB value.
6-28 Oracle8 Application Developer’s Guide

Introduction to LOBs
 read_amount INTEGER;
 read_offset INTEGER;
 buffer VARCHAR2(20);

BEGIN

 -- At time t1:
 SELECT c_lob INTO clob_selected
 FROM lob_table
 WHERE key_value = 1;

 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_selected, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t2:
 UPDATE lob_table SET c_lob = empty_clob()
 WHERE key_value = 1;
 -- although the most current current LOB value is now empty,
 -- clob_selected still sees the LOB value as of the point
 -- in time of the SELECT

 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t3:
 SELECT c_lob INTO clob_selected FROM lob_table WHERE
 key_value = 1;
 -- the SELECT allows clob_selected to see the most current
 -- LOB value

 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset,
 buffer);
 -- ERROR: ORA-01403: no data found
END;
/

 Large Objects (LOBs) 6-29

Introduction to LOBs
Using lob_table as defined above, two CLOBs are created as potential locators:
clob_updated and clob_copied .

■ At the time of the first SELECT INTO (at t1), the value in c_lob is associated with
the locator clob_updated.

■ The second operation (at t2) copies the value in clob_updated to clob_copied. At
this juncture, both locators see the same value. The example demonstrates this
with a series of dbms_lob.read calls.

■ At this juncture (at t3), the program utilizes dbms_lob.write to alter the
value in clob_updated, and a dbms_lob.read reveals a new value.

■ However, a dbms_lob.read of the value through clob_copied (at t4) reveals
that it still sees the value of the LOB as of the point in time of the assignment
from clob_updated (at t2).

■ It is not until clob_updated is assigned to clob_copied (t5) that clob_copied sees the
modification made by clob_updated.

Example of an Updated LOB Locator
INSERT INTO lob_table
 VALUES (1, NULL, 'abcd', NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_updated CLOB;
 clob_copied CLOB;
 read_amount INTEGER; ;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);
BEGIN

-- At time t1:

WARNING: we advise that you avoid updating the same LOB
with different locators. You will avoid many pitfalls if you use
only one locator to update the same LOB value.
6-30 Oracle8 Application Developer’s Guide

Introduction to LOBs
 SELECT c_lob INTO clob_updated FROM lob_table
 WHERE key_value = 1
 FOR UPDATE;

 -- At time t2:
 clob_copied := clob_updated;
 -- after the assign, clob_copied and clob_updated see the same
 -- LOB value

 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcd'

 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t3:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset,
 buffer);

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcdefg'

 -- At time t4:
 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t5:
 clob_copied := clob_updated;

 read_amount := 10;
 Large Objects (LOBs) 6-31

Introduction to LOBs
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcdefg'
END;
/

 LOB bind variables
When a LOB locator is used as the source to update another internal LOB (as in a
SQL INSERT or UPDATE statement, the DBMS_LOB.COPY routine, and so on), the
snapshot environment in the source LOB locator determines the LOB value that is
used as the source. If the source locator (for example L1) is a read consistent locator,
then the LOB value as of the point in time of the SELECT of L1 is used. If the source
locator (for example L2) is an updated locator, then the LOB value associated with
L2’s snapshot environment at the time of the operation is used.

Using lob_table as defined above, three CLOBs are created as potential locators:
clob_selected , clob_updated and clob_copied .

■ At the time of the first SELECT INTO (at t1), the value in c_lob is associated with
the locator clob_updated.

■ The second operation (at t2) copies the value in clob_updated to clob_copied. At
this juncture, both locators see the same value.

■ Then (at t3), the program utilizes dbms_lob.write to alter the value in
clob_updated, and a dbms_lob.read reveals a new value.

■ However, a dbms_lob.read of the value through clob_copied (at t4) reveals
that clob_copied does not see the change made by clob_updated.

■ Therefore (at t5), when clob_copied is used as the source for the value of the
INSERT statement, we insert the value associated with clob_copied (i.e. without
the new changes made by clob_updated). This is demonstrated by the subse-
quent dbms_lob.read of the value just inserted.

Example of Updating a LOB with a PL/SQL Variable
INSERT INTO lob_table
 VALUES (1, NULL, 'abcd', NULL, NULL);

COMMIT;

DECLARE
 num_var INTEGER;
 clob_selected CLOB;
6-32 Oracle8 Application Developer’s Guide

Introduction to LOBs
 clob_updated CLOB;
 clob_copied CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);
BEGIN

 -- At time t1:
 SELECT c_lob INTO clob_updated FROM lob_table
 WHERE key_value = 1
 FOR UPDATE;

 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcd'

 -- At time t2:
 clob_copied := clob_updated;

 -- At time t3:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset,
 buffer);

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- Produces the output 'abcdefg'
 -- note that clob_copied doesn’t see the write made before
 -- clob_updated

 -- At time t4:
 read_amount := 10;
 dbms_lob.read(clob_copied, read_amount, read_offset, buffer);
 dbms_output.put_line('clob_copied value: ' || buffer);
 -- Produces the output 'abcd'
 Large Objects (LOBs) 6-33

Introduction to LOBs
 -- At time t5:
 -- the insert uses clob_copied view of the LOB value which does
 -- not include clob_updated changes
 INSERT INTO lob_table values (2, NULL, clob_copied, NULL,
 NULL) RETURNING c_lob INTO clob_selected;

 read_amount := 10;
 dbms_lob.read(clob_selected, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_selected value: ' || buffer);
 -- Produces the output 'abcd'
END;
/

LOB locators cannot span transactions
Modifying an internal LOB’s value through the LOB locator via DBMS_LOB, OCI, or
SQL INSERT or UPDATE statements changes the locator from a read consistent loca-
tor to an updated locator. Further, the INSERT or UPDATE statement automatically
starts a transaction and locks the row. Once this has occurred, the locator may not
be used outside the current transaction. In other words, LOB locators cannot span
transactions.

Using lob_table as defined above, a CLOB locator is created: clob_updated .

■ At the time of the first SELECT INTO (at t1), the value in c_lob is associated with
the locator clob_updated.

■ The second operation (at t2), utilizes the dbms_lob.write command to alter
the value in clob_updated, and a dbms_lob.read reveals a new value.

■ The commit statement (at t3) ends the current transaction.

■ Therefore (at t4), the subsequent dbms_lob.read operation fails because the
clob_updated locator refers to a different (already committed) transaction. This is
noted by the error returned. You must re-select the LOB locator before using it
in further dbms_lob (and OCI) operations.

Example of Locator Not Spanning a Transaction
INSERT INTO lob_table
 VALUES (1, NULL, 'abcd', NULL, NULL);
COMMIT;

DECLARE
6-34 Oracle8 Application Developer’s Guide

Introduction to LOBs
 num_var INTEGER;
 clob_updated CLOB;
 read_amount INTEGER;
 read_offset INTEGER;
 write_amount INTEGER;
 write_offset INTEGER;
 buffer VARCHAR2(20);

BEGIN

 -- At time t1:
 SELECT c_lob
 INTO clob_updated
 FROM lob_table
 WHERE key_value = 1
 FOR UPDATE;

 read_amount := 10;
 read_offset := 1;
 dbms_lob.read(clob_updated, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- This produces the output 'abcd'

 -- At time t2:
 write_amount := 3;
 write_offset := 5;
 buffer := 'efg';
 dbms_lob.write(clob_updated, write_amount, write_offset,
 buffer);

 read_amount := 10;
 dbms_lob.read(clob_updated, read_amount, read_offset,
 buffer);
 dbms_output.put_line('clob_updated value: ' || buffer);
 -- This produces the output 'abcdefg'

 -- At time t3:
 COMMIT;

 -- At time t4:
 read_amount := 10;
 dbms_lob.read(clob_updated , read_amount, read_offset,
 Large Objects (LOBs) 6-35

Introduction to LOBs
 buffer);
 -- ERROR: ORA-22990: LOB locators cannot span transactions
END;
/

Examples of a Locator Not Spanning a Transaction

Assume the following tables:

CREATE TABLE tdrslob01 (
 a CLOB,
 b BLOB,
 c NUMBER);

CREATE TABLE foo (
 key NUMBER);

CONNECT to the database
EXECUTE "SELECT C,'I',A FROM tdrslob01 ORDER BY 1"
[ARRAY FETCH GET 16 rows INTO OCILobLocator ARRAY]
for (i=0; i<16; i++)
{
 EXECUTE "INSERT INTO foo VALUES(5)"
 OCITransCommit(...);
 FETCH TEXT in CLOB USING locators fetched
}

The sequence runs successfully because the SELECT of the locators occurs outside
of a transaction. This means that the locators selected are not associated with a
transaction. Even though the INSERT in the 'for' loop implicitly starts a transaction,
the subsequent COMMIT in the 'for' loop ends the transaction. The FETCH of the LOB
data via the locator returned from the SELECT outside a transaction succeeds. Both
the SELECT of the locator and the FETCH of the locator data occur outside a transac-
tion.

However, the addition of one statement produces an error:

CONNECT to the database
EXECUTE "INSERT INTO foo VALUES(5)" <===
EXECUTE "SELECT C,'I',A FROM tdrslob01 ORDER BY 1"
[GET 16 rows]
for (i=0; i<16; i++)
{
 EXECUTE "INSERT INTO foo VALUES(5)"
 OCITransCommit(...);
6-36 Oracle8 Application Developer’s Guide

Introduction to LOBs
 FETCH text in CLOB USING locators fetched <== get ORA-22990
}

In the second example, the SELECT of the locators occurs inside a transaction (the
INSERT statement implicitly started a transaction). This means that the locators
selected are associated with a transaction. The COMMIT in the 'for' loop commits the
transaction in which the locators were selected. Therefore, the subsequent FETCH is
trying to fetch locator values from the previous transaction which was already com-
mitted. Consequently, the 22990 error is returned.

Executing a COMMIT right after the first INSERT will succeed:

CONNECT to the database
EXECUTE "INSERT INTO foo VALUES(5)" <===
OCITransCommit(...); <===
EXECUTE "SELECT C,'I',A FROM tdrslob01 ORDER BY 1"
[get 16 rows]
for (i=0; i<16; i++)
{
 EXECUTE "INSERT INTO foo VALUES(5)"
 OCITransCommit(...);
 FETCH text in CLOB using locators fetched
}

In this example, the INSERT implicitly starts a transaction and the COMMIT ends
the transaction. Therefore, the SELECT of the locators occurs outside of a transac-
tion. This means that the locators selected are not associated with a transaction.
Again, even though the INSERT in the 'for' loop implicitly starts a transaction, the
subsequent COMMIT in the 'for' loop ends the transaction. Therefore, the FETCH of
the LOB data via the locator returned from the SELECT which occurred outside a
transaction succeeds. Both the SELECT of the locator and the FETCH of the locator
data occur outside of a transaction.

 Efficient Reads and Writes of Large Amounts of LOB Data
The most efficient way to read or write large amounts of LOB data is to use OCILo-
bRead() or OCILobWrite () with the streaming mechanism enabled via polling or
a callback.

See Also: Oracle Call Interface Programmer’s Guide for more infor-
mation about these APIs and a sample program of how to use
them.
 Large Objects (LOBs) 6-37

Introduction to LOBs
Reading LOB Values
When reading the LOB value, it is not an error to try to read beyond the end of the
LOB. This means that you can always specify an input amount of 4 gigabytes
regardless of the starting offset and the amount of data in the LOB. You do need to
incur a round-trip to the server to call OCILobGetLength () to find out the length
of the LOB value in order to determine the amount to read.

For example, assume that the length of a LOB is 5,000 bytes and you want to read
the entire LOB value starting at offset 1,000. Also assume that you do not know the
current length of the LOB value. Here's the OCI read call, excluding the initializa-
tion all parameters:

#define MAX_LOB_SIZE 4294967295
ub4 amount = MAX_LOB_SIZE;
ub4 offset = 1000;
OCILobRead(svchp, errhp, locp, &amount, offset, bufp, bufl, 0, 0, 0, 0)

 Writing LOB Values
As noted previously, the best way to populate the LOB with data, or write large
amounts of data to the LOB, is to use the OCILobWrite () call with streaming. If
you know how much data will be written to the LOB, specify that amount when
calling OCILobWrite (). This will allow for the contiguity of the LOB data on disk.
Apart from being spatially efficient, contiguous structure of the LOB data will make
for faster reads and writes in subsequent operations.

Copying LOBs

Copying internal LOBs
The internal LOB types — BLOB, CLOB, and NCLOB — use copy semantics, as
opposed to the reference semantics which apply to BFILE s. When a BLOB, CLOB, or
NCLOB is copied from one row to another row in the same table or in a different
table, the actual LOB value is copied, not just the LOB locator. For example, assum-
ing lob_table1 and lob_table2 have schemas identical to lob_table
described above, the statement

INSERT INTO lob_table1 (key_value, b_lob)
 (SELECT key_value, b_lob FROM lob_table2 T2
 WHERE T2.key_value = 101);
creates a new LOB locator in the table lob_table1 , and copies the LOB data from
lob_table2 to the location pointed to by a new LOB locator which is inserted into
table lob_table1.
6-38 Oracle8 Application Developer’s Guide

Introduction to LOBs
Copying external LOBs
BFILE types use reference semantics instead of copy semantics. This means that only
the BFILE locator is copied from one row to another row. Put another way: it is not
possible to make a copy of an external LOB value without issuing an operating sys-
tem command to copy the operating system file.

3

Deleting LOBs

Deleting Internal LOBs
You delete a row that contains an internal LOB column / attribute by (a) using the
explicit SQL DML command DELETE, or (b) using a SQL DDL command that effec-
tively deletes it, such as DROP TABLE, TRUNCATE TABLE, or DROP TABLESPACE. In
either case you delete the LOB locator and the LOB value as well.

But note that due to the consistent read mechanism, the old LOB value remains
accessible with the value that it had at the time of execution of the statement (such
as SELECT) that returned the LOB locator.

Of course, two distinct rows of a table with a LOB column have their own distinct
LOB locators and distinct copies of the LOB values irrespective of whether the LOB
values are the same or different. This means that deleting one row has no effect on
the data or LOB locator in another row even if one LOB was originally copied from
another row.

Deleting External LOBs
The LOB value in a BFILE , however, does not get deleted by using SQL DDL or
SQL DML commands. Only the BFILE locator is deleted. Deletion of a record con-
taining a BFILE column amounts to de-linking that record from an existing file, not
deleting the physical operating system file itself. An SQL DELETE statement on a
particular row deletes the BFILE locator for the particular row, thereby removing
the reference to the operating system file.

The following DELETE, DROP TABLE, or TRUNCATE TABLE statements delete the
row, and hence the BFILE locator that refers to image1.gif , but leave the operat-
ing system file undeleted in the filesystem.

DELETE FROM lob_table
 WHERE key_value = 21;

See Also: “Read consistent locators” on page 6-24.
 Large Objects (LOBs) 6-39

Introduction to LOBs
DROP TABLE lob_table;

TRUNCATE TABLE lob_table;

Copying Data from LONGs to LOBs
One of the problems you may face is how to convert data from the LONG datatype
into LOB format. The loadlob.sql PL/SQL program demonstrates how to con-
vert a LONG to a LOB by using the DBMS_LOB.LOADFROMFILE method. The pro-
gram requires that you perform a sequence of steps:

1. Leave the LONG column in the old table and add a new LOB column using the
ALTER TABLE command.

2. Write the data in the LONG or LONG RAW to a flat file.

3. Use CREATE DIRECTORY to point to the directory where the BFILE (flat file)
was written.

4. Using either OCI or PL/SQL, there are three different ways you can copy the
data from the server-side flat file into the LOB:

a. The OCI command OCILobLoadFromFile or the PL/SQL command
DBMS_LOB.LOADFROMFILE(): This is the fastest ways to copy from a
server-side operating system flat file to a LOB.

b. The OCI command OCILobWrite () from a server-side external procedure:
The flat file will be on the server-side even if the program which calls the
server-side external procedure is run from the client. This is the second
fastest way to transfer from a server side operating system flat file to a LOB.

c. The OCI command OCILobWrite (): This method is used in the
bull_lob program listed below. This may not be the fastest way to con-
vert a LONG to a LOB, but it may be the only alternative in the circum-
stances. In such cases, when the program is run on a remote client machine,
the LONG data on the server must be written to a client machine flat file,
and then the client flat file written back to the server LOB column. Since

Note: The ALTER TABLE command is not able to change the type
of a LONG column to a LOB column. LONG and LOB columns are
two distinct datatypes so it is not possible to assign a LONG column
to a LOB column.
6-40 Oracle8 Application Developer’s Guide

Introduction to LOBs
this will involve two trips across the network, the load on performance
must be considered if this will be an operation that is frequently repeated.

 I

Example
The example that follows shows the PL/SQL version of method 4(a) listed above
for loading a LONG which has been written to a flat file named /tmp/sound_clip
into a LOB column.

Complete the following steps to execute the loadlob.sql PL/SQL script:

1. Create the file sound_clip with the following contents and copy it to the /tmp
directory:

sound_clip: abcdefghijklmnopqrstuvwxyz

2. Run the following SQL script:

% sqlplus scott/tiger @loadlob
loadlob.sql

set echo on;
connect sys/change_on_install;
grant all on dbms_lob to scott;
grant create any directory to scott;
connect scott/tiger;
drop directory some_dir_alias;

Note: The user will need to do their own character set conver-
sions for CLOBS and NCLOBS because the flat file or BFILE will
store the data as binary or raw data.

WARNING: The export/import utility is currently not capable of
converting from LONGS TO LOBs.

Note: There is a separate bulletin which addresses how to convert
a LONG to a LOB using the OCILobWrite command.
 Large Objects (LOBs) 6-41

Introduction to LOBs
create directory some_dir_alias as '/tmp';
drop table multimedia;

/* Create the table */

CREATE TABLE multimedia
(
 id NUMBER,
 video_clip CLOB DEFAULT empty_clob(),
 audio_clip CLOB DEFAULT NULL,
 some_file BFILE DEFAULT NULL
) ;

/* Load data into the table */
/* Insert 10 rows into the table which defaults to initializing */
/* the video_clip to empty and the audio_clip and some_file to null. */

/* The fastest way to do this is to use array inserts with OCI */
/* (see OCIBindArrayOfStruct) */
/* The less speedy method is to use a loop in PL/SQL as follows. */

declare
 loop_count integer;
begin
 loop_count := 1;
 while loop_count <= 10 loop
 insert into multimedia (id) values (loop_count);
 loop_count := loop_count + 1;
 end loop;
end;
/

/* Initialize the first audio clip to the actual value. */
/* Then copy this value to all rows in the table. */

declare
 ac clob;
 amount integer;
 a_file bfile := BFILENAME('SOME_DIR_ALIAS', 'sound_clip');
begin
 update multimedia set audio_clip = empty_clob() where id = 1 returning
 audio_clip into ac;

/* Open the server side file that contains the audio clip, load it into */
/* the CLOB and then close the file. Assume that the audio clip is */
6-42 Oracle8 Application Developer’s Guide

Introduction to LOBs
/* only 32,000 bytes long and that it starts at position 1 in the file. */

 dbms_lob.fileopen(a_file, dbms_lob.file_readonly);
 amount := 26;

/* Note that the destination and source offsets default to 1 */

 dbms_lob.loadfromfile(ac, a_file, amount);
 dbms_lob.fileclose(a_file);
 commit;

/* Update all rows in the table to the audio clip you just loaded. */
 update multimedia set audio_clip =
 (select audio_clip from multimedia where id = 1)
 where audio_clip is null;
end;
/

select id, audio_clip from multimedia;

3. The output should resemble:

SQL> @loadlob
SQL> set echo on;
SQL> connect sys/change_on_install;
Connected.
SQL> GRANT ALL on dbms_lob to scott;
Grant succeeded.
SQL> GRANT CREATE ANY DIRECTORY to scott;
Grant succeeded.
SQL> CONNECT scott/tiger;
Connected.
SQL> DROP DIRECTORY some_dir_alias;
Directory dropped.
SQL> CREATE DIRECTORY some_dir_alias as '/tmp';
Directory created.
SQL> DROP TABLE multimedia;
Table dropped.
SQL>
SQL> /* CREATE THE TABLE */
SQL>
SQL> create table multimedia
 2 (
 3 id number,
 4 video_clip clob default empty_clob(),
 Large Objects (LOBs) 6-43

Introduction to LOBs
 5 audio_clip clob default null,
 6 some_file bfile default null
 7) ;

Table created.

SQL>
SQL>
SQL> /* LOAD DATA INTO THE TABLE */
SQL> /* Insert 10 rows into the table which defaults to initializing */
DOC> / * the video_clip to empty and the audio_clip and some_file to null.*/
DOC>*/
SQL>
SQL> /* The fast way to do this is to use array inserts with OCI */
DOC> / * (see OCIBindArrayOfStruct) */
DOC> / * The not so fast way is to use a loop in plsql as follows. */

SQL>
SQL> declare
 2 loop_count integer;
 3 begin
 4 loop_count := 1;
 5 while loop_count <= 10 loop
 6 insert into multimedia (id) values (loop_count);
 7 loop_count := loop_count + 1;
 8 end loop;
 9 end;
 10 /

PL/SQL procedure successfully completed.

SQL> /* Initialize the first audio clip to the actual value. */
DOC>/* Then copy this value to all rows in the table. */

SQL> DECLARE
 2 ac CLOB;
 3 amount INTEGER;
 4 a_file BFILE := BFILENAME('SOME_DIR_ALIAS', 'sound_clip');
 5 BEGIN
 6 UPDATE multimedia SET audio_clip = empty_clob() WHERE id = 1
returning
 7 audio_clip into ac;
 8
 8 /* Open the server side file that contains the audio clip, load it */
 9 /* into the clob and then close the file. Note, assume that the */
6-44 Oracle8 Application Developer’s Guide

Introduction to LOBs
 10 /* audio clip is only 32,000 bytes long and that it starts at */
 11 /* position 1 in the file.*/
 12 dbms_lob.fileopen(a_file, dbms_lob.file_readonly);
 13 amount := 26;
 14 /* note that the destination and source offsets default to 1 */
 15 dbms_lob.loadfromfile(ac, a_file, amount);
 16 dbms_lob.fileclose(a_file);
 17 COMMIT;
 18
 18 /* Update all rows in the table to the audio clip we just loaded. * /
 19 UPDATE multimedia SET audio_clip =
 20 (SELECT audio_clip FROM multimedia WHERE id = 1)
 21 WHERE audio_clip is null;
 22 end;
 23 /

PL/SQL procedure successfully completed.

SQL>
SQL> select id, audio_clip from multimedia;

 ID

AUDIO_CLIP

 1
abcdefghijklmnopqrstuvwxyz
 2
abcdefghijklmnopqrstuvwxyz
 3
abcdefghijklmnopqrstuvwxyz

 ID

AUDIO_CLIP

 4
abcdefghijklmnopqrstuvwxyz
 5
abcdefghijklmnopqrstuvwxyz
 6
abcdefghijklmnopqrstuvwxyz

 ID

 Large Objects (LOBs) 6-45

Introduction to LOBs
AUDIO_CLIP

 7
abcdefghijklmnopqrstuvwxyz
 8
abcdefghijklmnopqrstuvwxyz
 9
abcdefghijklmnopqrstuvwxyz

 ID

AUDIO_CLIP

 10
abcdefghijklmnopqrstuvwxyz

10 rows selected.

SQL>
SQL> quit

 LOBs in the Object Cache
When you create an object in the object cache that contains an internal LOB
attribute, the LOB attribute is implicitly set to empty. You may not use this empty
LOB locator to write data to the LOB. You must first flush the object, thereby insert-
ing a row into the table and creating an empty LOB — that is, a LOB with 0 length.
Once the object is refreshed in the object cache (use OCI_PIN_LATEST), the real
LOB locator is read into the attribute, and you can then call the OCI LOB API to
write data to the LOB.

When creating an object with a BFILE attribute, the BFILE is set to NULL. It must
be updated with a valid directory alias and filename before reading from the file.

When you copy one object to another in the object cache with a LOB locator
attribute, only the LOB locator is copied. This means that the LOB attribute in these
two different objects contain exactly the same locator which refers to one and the
same LOB value. Only when the target object is flushed is a separate, physical copy
of the LOB value made, which is distinct from the source LOB value.

See Also: “Example of a Read Consistent Locator” on page 6-25
for a description of what version of the LOB value will be seen by
each object if a write is performed through one of the locators.
6-46 Oracle8 Application Developer’s Guide

Introduction to LOBs
Therefore, in cases where you want to modify the LOB that was the target of the
copy, you must flush the target object, refresh the target object, and then write to the LOB
through the locator attribute.

LOB Buffering Subsystem

LOB Buffering
Oracle8 provides a LOB buffering subsystem (LBS) for advanced OCI based applica-
tions such as DataCartridges, Web servers, and other client-based applications that
need to buffer the contents of one or more LOBs in the client’s address space. The
client-side memory requirement for the buffering subsystem during its maximum
usage is 512K bytes. It is also the maximum amount that you can specify for a sin-
gle read or write operation on a LOB that has been enabled for buffered access.

Advantages of LOB Buffering
The advantages of buffering, especially for applications that perform a series of
small reads and writes (often repeatedly) to specific regions of the LOB, are two fold:

■ Buffering enables deferred writes to the server. You can buffer up several
writes in the LOB’s buffer in the client’s address space and eventually flush the
buffer to the server. This reduces the number of network roundtrips from your
client application to the server, and hence, makes for better overall perfor-
mance for LOB updates.

■ Buffering reduces the overall number of LOB updates on the server, thereby
reducing the number of LOB versions and amount of logging. This results in
better overall LOB performance and disk space usage.

Considerations in the Use of LOB Buffering
The following caveats hold for buffered LOB operations:

■ Oracle8 provides a simple buffering subsystem, and not a cache. To be specific,
Oracle8 does not guarantee that the contents of a LOB’s buffer are always in
synch with the LOB value in the server. Unless you explicitly flush the contents
of a LOB’s buffer, you will not see the results of your buffered writes reflected
in the actual LOB on the server.

■ Error recovery for buffered LOB operations is your responsibility. Owing to the
deferred nature of the actual LOB update, error reporting for a particular buff-
ered read or write operation is deferred until the next access to the server based
LOB.
 Large Objects (LOBs) 6-47

Introduction to LOBs
■ Transactions involving buffered LOB operations cannot migrate across user ses-
sions — LBS is a single user, single threaded system.

■ Oracle8 does not guarantee transactional support for buffered LOB operations.
To ensure transactional semantics for buffered LOB updates, you must maintain
logical savepoints in your application to rollback all the changes made to the
buffered LOB in the event of an error. You should always wrap your buffered
LOB updates within a logical savepoint.

■ In any given transaction, once you have begun updating a LOB using buffered
writes, it is your responsibility to ensure that the same LOB is not updated
through any other operation within the scope of the same transaction that
bypasses the buffering subsystem.

You could potentially do this by using an SQL statement to update the server-
based LOB. Oracle8 cannot distinguish, and hence prevent, such an operation.
This will seriously affect the correctness and integrity of your application.

■ Buffered operations on a LOB are done through its locator, just as in the conven-
tional case. A locator that is enabled for buffering will provide a consistent read
version of the LOB, until you perform a write operation on the LOB through
that locator.

Once the locator becomes an updated locator by virtue of its being used for a
buffered write, it will always provide access to the most up-to-date version of
the LOBas seen through the buffering subsystem. Buffering also imposes an addi-
tional significance to this updated locator — all further buffered writes to the
LOB can be done only through this updated locator. Oracle8 will return an error if
you attempt to write to the LOB through other locators enabled for buffering.

■ You can pass an updated locator that was enabled for buffering as an IN param-
eter to a PL/SQL procedure. However, passing an IN OUT or an OUT parameter
will produce an error, as will an attempt to return an updated locator.

■ You cannot assign an updated locator that was enabled for buffering to another
locator. There are a number of different ways that assignment of locators may
occur — through OCILobAssign (), through assignment of PL/SQL variables,
through OCIObjectCopy () where the object contains the LOB attribute, and so
on. Assigning a consistent read locator that was enabled for buffering to a loca-
tor that did not have buffering enabled, turns buffering on for the target loca-
tor. By the same token, assigning a locator that was not enabled for buffering to

See Also: “Read consistent locators” on page 6-24.

See Also: “Updated locators” on page 6-27.
6-48 Oracle8 Application Developer’s Guide

Introduction to LOBs
a locator that did have buffering enabled, turns buffering off for the target loca-
tor.

Similarly, if you SELECT into a locator for which buffering was originally
enabled, the locator becomes overwritten with the new locator value, thereby
turning buffering off.

■ Appending to the LOB value using buffered write(s) is allowed, but only if the
starting offset of these write(s) is exactly one byte (or character) past the end of
the BLOB (or CLOB/NCLOB). In other words, the buffering subsystem does not
support appends that involve creation of zero-byte fillers or spaces in the
server based LOB.

■ For CLOBs, Oracle8 requires that the character set form for the locator bind vari-
able on the client side be the same as that of the LOB in the server. This is usu-
ally the case in most OCI LOB programs. The exception is when the locator is
SELECTed from a remote database, which may have a different character set
form from the database which is currently being accessed by the OCI program.
In such a case, an error is returned. If there is no character set form input by the
user, then we assume it is SQLCS_IMPLICIT .

LOB Buffering Operations

The Physical Structure of the LOB Buffer For Oracle 8.0, each user session has a fixed
page pool of 16 pages, which are to be shared by all LOBs accessed in buffering
mode from that session. Each page has a fixed size of up to 32K bytes (not charac-
ters). A LOB’s buffer consists of one or more of these pages, up to a maximum of 16
per session. The maximum amount that you ought to specify for any given buff-
ered read or write operation is 512K bytes, remembering that under different cir-
cumstances the maximum amount you may read/write could be smaller.

Consider that a LOB is divided into fixed-size, logical regions. Each page is mapped
to one of these fixed size regions, and is in essence, their in-memory copy. Depend-
ing on the input offset and amount specified for a read or write operation, Oracle8
allocates one or more of the free pages in the page pool to the LOB’s buffer. A free
page is one that has not been read or written by a buffered read or write operation.

Using the LOB Buffering System For example, assuming a page size of 32K, for an
input offset of 1000 and a specified read/write amount of 30000, Oracle8 reads the
first 32K byte region of the LOB into a page in the LOB’s buffer. For an input offset
of 33000 and a read/write amount of 30000, the second 32K region of the LOB is
read into a page. For an input offset of 1000, and a read/write amount of 35000, the
 Large Objects (LOBs) 6-49

Introduction to LOBs
LOB’s buffer will contain two pages — the first mapped to the region 1 — 32K, and
the second to the region 32K+1 — 64K of the LOB.

This mapping between a page and the LOB region is temporary until Oracle8 maps
another region to the page. When you attempt to access a region of the LOB that is
not already available in full in the LOB’s buffer, Oracle8 allocates any available free
page(s) from the page pool to the LOB’s buffer. If there are no free pages available in
the page pool, Oracle8 reallocates the pages as follows. It ages out the least recently
used page among the unmodified pages in the LOB’s buffer and reallocates it for the
current operation.

If no such page is available in the LOB’s buffer, it ages out the least recently used
page among the unmodified pages of other buffered LOBs in the same session. Again,
if no such page is available, then it implies that all the pages in the page pool are
dirty (i.e. they have been modified), and either the currently accessed LOB, or one of
the other LOBs, need to be flushed. Oracle8 notifies this condition to the user as an
error. Oracle8 never flushes and reallocates a dirty page implicitly — you can either
flush them explicitly, or discard them by disabling buffering on the LOB.

To illustrate the above discussion, consider two LOBs being accessed in buffered
mode — L1 and L2, each with buffers of size 8 pages. Assume that 6 of the 8 pages
in L1’s buffer are dirty, with the remaining 2 contain unmodified data read in from
the server. Assume similar conditions in L2’s buffer. Now, for the next buffered
operation on L1, Oracle8 will reallocate the least recently used page from the two
unmodified pages in L1’s buffer. Once all the 8 pages in L1’s buffer are used up for
LOB writes, Oracle8 can service two more operations on L1 by allocating the two
unmodified pages from L2’s buffer using the least recently used policy. But for any
further buffered operations on L1 or L2, Oracle8 returns an error.

If all the buffers are dirty and you attempt another read from or write to a buffered
LOB, you will raise the following error:

 Error 22280: no more buffers available for operation

There are two possible causes:

1. All buffers in the buffer pool have been used up by previous operations.

In this case, flush the LOB(s) through the locator that is being used to
update the LOB.

2. You are trying to flush a LOB without any previous buffered update opera-
tions.

In this case, write to the LOB through a locator enabled for buffering
before attempting to flush buffers.
6-50 Oracle8 Application Developer’s Guide

Introduction to LOBs
Flushing the LOB Buffer The term flush refers to a set of processes. Writing data to the
LOB in the buffer through the locator transforms the locator into an updated locator.
Once you have updated the LOB data in the buffer through the updated locator, a
flush call will

■ write the dirty pages in the LOB’s buffer to the server-based LOB, thereby updat-
ing the LOB value,

■ reset the updated locator to be a read consistent locator, and

■ either free the flushed buffers or turn the status of the buffer pages back from
dirty to unmodified.

After the flush, the locator becomes a read consistent locator and can be assigned to
another locator (L2 := L1).

For instance, suppose you have two locators, L1 and L2. Let us say that they are
both read consistent locators and consistent with the state of the LOB data in the
server. If you then update the LOB by writing to the buffer, L1 becomes an
updated locator. L1 and L2 now refer to different versions of the LOB value. If you
wish to update the LOB in the server, you must use L1 to retain the read consistent
state captured in L2. The flush operation writes a new snapshot environment into
the locator used for the flush. The important point to remember is that you must
use the updated locator (L1), when you flush the LOB buffer. Trying to flush a read
consistent locator will generate an error.

This raises the question: What happens to the data in the LOB buffer? There are two
possibilities. In the default mode, the flush operation retains the data in the pages
that were modified. In this case, when you read or write to the same range of bytes
no roundtrip to the server is necessary. Note that flush in this context does not clear
the data in the buffer. It also does not return the memory occupied by the flushed
buffer to the client address space.

In the second case, you set the flag parameter in OCILobFlushBuffer () to
OCI_LOB_BUFFER_FREE to free the buffer pages, and so return the memory to the
client address space. Note that flush in this context updates the LOB value on the
server, returns a read consistent locator, and frees the buffer pages.

Flushing the Updated LOB It is very important to note that you must flush a LOB that
has been updated through the LBS:

Note: Unmodified pages may now be aged out if necessary.
 Large Objects (LOBs) 6-51

Introduction to LOBs
■ before committing the transaction,

■ before migrating from the current transaction to another,

■ before disabling buffering operations on a LOB

■ before returning from an external callout execution into the calling function/
procedure/method in PL/SQL.

Using Locators Enabled for Buffering Note that there are several cases in which you
can use buffer-enabled locators and others in which you cannot.

■ A locator that is enabled for buffering can only be used with the following OCI
APIs:

OCILobRead (), OCILobWrite (), OCILobAssign (), OCILobIsEqual (),
OCILobLocatorIsInit (), OCILobLocatorSize (), OCILob-
CharSetId (), OCILobCharSetForm ().

■ The following OCI APIs will return errors if used with a locator enabled for
buffering:

OCILobCopy (), OCILobAppend (), OCILobErase (), OCILob-
GetLength (), OCILobTrim ().

Note: When the external callout is called from a PL/SQL block
and the locator is passed as a parameter, all buffering operations,
including the enable call, should be made within the callout itself.
In other words, we recommend that you adhere to the following
sequence:

■ call the external callout,

■ enable the locator for buffering,

■ read/write using the locator,

■ flush the LOB,

■ disable the locator for buffering, and

■ return to the calling function/procedure/method in PL/SQL.

Remember that Oracle8 never implicitly flushes the LOB.
6-52 Oracle8 Application Developer’s Guide

Introduction to LOBs
These APIs will also return errors when used with a locator which has not been
enabled for buffering, but the LOB that the locator represents is already being
accessed in buffered mode through some other locator.

■ An error is returned from DBMS_LOB APIs if the input lob locator has buffering
enabled.

■ As in the case of all other locators, locators enabled for LOB buffering cannot
span transactions.

Saving Locator State so as to Avoid a Reselect Suppose you want to save the current
state of the LOB before further writing to the LOB buffer. In performing updates
while using LOB buffering, writing to an existing buffer does not make a roundtrip
to the server, and so does not refresh the snapshot environment in the locator. This
would not be the case if you were updating the LOB directly without using LOB
buffering. In that case, every update would involve a roundtrip to the server, and
so would refresh the snapshot in the locator. In order to save the state of a LOB that
has been written through the LOB buffer, you therefore need to

1. Flush the LOB, thereby updating the LOB and the snapshot environment in the
locator (L1). At this point, the state of the locator (L1) and the LOB are the same.

2. Assign the locator (L1) used for flushing and updating to another locator (L2).
At this point, the states of the two locators (L1 and L2), as well as the LOB are
all identical.

L2 now becomes a read consistent locator with which you are able to access the
changes made through L1 up until the time of the flush, but not after! This assign-
ment avoids incurring a roundtrip to the server to reselect the locator into L2.
 Large Objects (LOBs) 6-53

Introduction to LOBs
Example of LOB Buffering
The following pseudocode for an OCI program based on the lob_table schema
briefly explains the concepts listed above.

OCI_BLOB_buffering_program ()
{
 int amount;
 int offset;
 OCILobLocator lbs_loc1, lbs_loc2, lbs_loc3;
 void *buffer;
 int bufl;

 -- Standard OCI initialization operations - logging on to
 -- server, creating and initializing bind variables etc.

 init_OCI ();

 -- Establish a savepoint before start of LBS operations
 exec_statement("savepoint lbs_savepoint");

 -- Initialize bind variable to BLOB columns from buffered
-- access:

 exec_statement("select b_lob into lbs_loc1 from lob_table
 where key_value = 12");
 exec_statement("select b_lob into lbs_loc2 from lob_table
 where key_value = 12 for update");
 exec_statement("select b_lob into lbs_loc2 from lob_table
 where key_value = 12 for update");

 -- Enable locators for buffered mode access to LOB:
 OCILobEnableBuffering(lbs_loc1);
 OCILobEnableBuffering(lbs_loc2);
 OCILobEnableBuffering(lbs_loc3);

 -- Read 4K bytes through lbs_loc1 starting from offset 1:
 amount = 4096; offset = 1; bufl = 4096;
 OCILobFileRead(.., lbs_loc1, offset, &amount, buffer, bufl,
 ..);
 if (exception)
 goto exception_handler;
 -- This will read the first 32K bytes of the LOB from
 -- the server into a page (call it page_A) in the LOB’s
 -- client-side buffer.
 -- lbs_loc1 is a read consistent locator.
6-54 Oracle8 Application Developer’s Guide

Introduction to LOBs
 -- W rite 4K of the LOB throgh lbs_loc2 starting from
 -- offset 1:
 amount = 4096; offset = 1; bufl = 4096;
 buffer = populate_buffer(4096);
 OCILobFileWrite(.., lbs_loc2, offset, amount, buffer,
 bufl, ..);

 if (exception)
 goto exception_handler;
 -- This will read the first 32K bytes of the LOB from
 -- the server into a new page (call it page_B) in the
 -- L OB’s buffer, and modify the contents of this page
 -- with input buffer contents.
 -- lbs_loc2 is an updated locator.

 -- Read 20K bytes through lbs_loc1 starting from
 -- offset 10K
 amount = 20480; offset = 10240;
 OCILobFileRead(.., lbs_loc1, offset, &amount, buffer,
 bufl, ..);

 if (exception)
 goto exception_handler;
 -- Read directly from page_A into the user buffer.
 -- There is no round-trip to the server because the
 -- data is already in the client-side buffer.

 -- Wri te 20K bytes through lbs_loc2 starting from offset
 -- 10K
 amount = 20480; offset = 10240; bufl = 20480;
 buffer = populate_buffer(20480);
 OCILobFileWrite(.., lbs_loc2, offset, amount, buffer,
 bufl, ..);

 if (exception)
 goto exception_handler;
 -- The contents of the user buffer will now be written
 -- into page_B without involving a round-trip to the
 -- server. This avoids making a new LOB version on the
 -- server and writing redo to the log.

 -- The following write through lbs_loc3 will also
 -- result in an error:
 amount = 20000; offset = 1000; bufl = 20000;
 buffer = populate_buffer(20000);
 Large Objects (LOBs) 6-55

Introduction to LOBs
 OCILobFileWrite(.., lbs_loc3, offset, amount, buffer,
 bufl, ..);

 if (exception)
 goto exception_handler;
 -- No two locators can be used to update a buffered LOB
 -- through the buffering subsystem

 -- The following update through lbs_loc3 will also
 -- result in an error
 OCILobFileCopy(.., lbs_loc3, lbs_loc2, ..);

 if (exception)
 goto exception_handler;

-- Locators enabled for buffering cannot be used with
 -- operations like Append, Copy, Trim etc.

 -- When done, flush LOB’s buffer to the server:
 OCILobFlushBuffer(.., lbs_loc2, OCI_LOB_BUFFER_NOFREE);

 if (exception)
 goto exception_handler;
 -- This flushes all the modified pages in the LOB’s buffer,
 -- and resets lbs_loc2 from updated to read consistent
 -- locator. The modified pages remain in the buffer
 -- without freeing memory. These pages can be aged
 -- out if necessary.

 -- Disable locators for buffered mode access to LOB */
 OCILobDisableBuffering(lbs_loc1);
 OCILobDisableBuffering(lbs_loc2);
 OCILobDisableBuffering(lbs_loc3);

 if (exception)
 goto exception_handler;
 -- This disables the three locators for buffered access,
 -- and frees up the LOB’s buffer resources.

 exception_handler:
 handle_exception_reporting ();
 exec_statement("rollback to savepoint lbs_savepoint");
}

6-56 Oracle8 Application Developer’s Guide

Introduction to LOBs
User Guidelines for Best Performance Practices
■ Since LOBs are big, you can obtain the best performance by reading and writing

large chunks of a LOB value at a time. This helps in several respects:

a. If accessing the LOB from the client side and the client is at a different node
than the server, large reads/writes reduce network overhead.

b. If using the 'NOCACHE' option, each small read/write incurs an I/O. Read-
ing/writing large quantities of data reduces the I/O.

c. Writing to the LOB creates a new version of the LOB CHUNK. Therefore, writ-
ing small amounts at a time will incur the cost of a new version for each
small write. If logging is on, the CHUNK is also stored in the redo log.

■ If you need to read/write small pieces of LOB data on the client, use LOB buffer-
ing — see OCILobEnableBuffering (), OCILobDisableBuffering (),
OCILobFlushBuffer (), OCILobWrite (), OCILobRead (). Basically, turn
on LOB buffering before reading/writing small pieces of LOB data.

■ Use OCILobWrite () and OCILobRead () with a callback so data is streamed to/
from the LOB. Make sure that the length of the entire write is set in the 'amount'
parameter on input.

■ Use a checkout/checkin model for LOBs. LOBs are optimized for the following:

a. SQL UPDATE which replaces the entire LOB value

b. Copy the entire LOB data to the client, modify the LOB data on the client
side, copy the entire LOB data back to the database. This can be done using
OCILobRead() and OCILobWrite() with streaming.

Working with Varying-Width Character Data
Varying width character data is not supported for BLOBs, CLOBs and NCLOBs. How-
ever, BLOBs can contain any data. Since CLOBs/NCLOBs cannot store varying width
character sets, you may be tempted to store varying width characters in a BLOB and
do the character set conversion yourself. The drawback is that you need to do these
conversions, and also that the offset and amount parameters are in terms of bytes
instead of characters. So, the danger is that you could retrieve text information
from the BLOB but cut a varying width character in half because the byte amount
you specified was not correct. Consequently, we caution against taking this course
of action.

See Also: “LOB Buffering Subsystem” on page 6-47 for more
information on LOB buffering.
 Large Objects (LOBs) 6-57

Introduction to LOBs
BFILE s likewise can contain any data including text. But, once again, in storing the
text, you will need to do your own character set conversions and offset and amount
parameters will be in bytes.

As stated above, CLOBs store fixed width single byte data, and NCLOBs store fixed
width multi byte data. Neither supports varying width data.

You might expect from this that if the database character set is varying width, and a
user tries to create a table with a CLOB column, the create will fail. This is almost
the case, but the reality is a little different.

■ If a user other than the system user tries to create a table with a CLOB column,
the create will fail.

■ If the system user tries to create a table with a CLOB column, the create will
succeed. However, subsequent inserts into the table will fail if the CLOB col-
umn has a value other than NULL.

The same holds true for NCLOBs and the database national character set.

The reason for allowing the SQL DDL to pass while making sure that the SQL DML
fails if the user tries to insert a non-null value into the LOB that has a varying width
character set is so that the same table can be created and exist in several different
databases regardless of the underlying CHAR (NCHAR) character set. The user can
write one application and modify it slightly for databases where the CHAR (NCHAR)
character set is varying width such that the insert sets the varying width LOB to
NULL.
6-58 Oracle8 Application Developer’s Guide

LOB Reference
 LOB Reference

Reference Overview
Although not explicitly marked, this section is organized on the following basis.

■ SQL DML functions EMPTY_BLOB(), EMPTY_CLOB() and BFILENAME() which
are used for initialization (immediately following this overview).

■ Summary of means provided by the OCI for manipulating LOBs (beginning
with “Using the OCI to Manipulate LOBs” on page 6-63).

■ The DBMS_LOB package, listing all functions and procedures (beginning with
“DBMS_LOB Package” on page 6-66). This section contains the main body of
technical specifications that underlie LOBs.

■ A brief list of constraints that apply to using LOBs at the time of the first pro-
duction release of Oracle8.

EMPTY_BLOB() and EMPTY_CLOB() Functions
You can use the special functions EMPTY_BLOB () and EMPTY_CLOB () in INSERT
or UPDATE statements of SQL DML to initialize a NULL or non-NULL internal LOB
to empty. These are available as special functions in Oracle8 SQL DML, and are not
part of the DBMS_LOB package.

Before you can start writing data to an internal LOB using OCI or the DBMS_LOB
package, the LOB column must be made non-null, that is, it must contain a locator
that points to an empty or populated LOB value. You can initialize a BLOB column’s
value to empty by using the function EMPTY_BLOB() in the VALUES clause of an
INSERT statement. Similarly, a CLOB or NCLOB column’s value can be initialized by
using the function EMPTY_CLOB().

Syntax

FUNCTION EMPTY_BLOB() RETURN BLOB;
FUNCTION EMPTY_CLOB() RETURN CLOB;
Parameters

None.

Return Values

EMPTY_BLOB() returns an empty locator of type BLOB and EMPTY_CLOB()
returns an empty locator of type CLOB, which can also be used for NCLOBs.
 Large Objects (LOBs) 6-59

LOB Reference
Pragmas

None.

Exceptions

An exception is raised if you use these functions anywhere but in the VALUES
clause of a SQL INSERT statement or as the source of the SET clause in a SQL
UPDATE statement.

Examples

The following example shows EMPTY_BLOB() usage with SQL DML:

INSERT INTO lob_table VALUES (1001, EMPTY_BLOB(), ’abcde’, NULL, NULL);
UPDATE lob_table SET c_lob = EMPTY_CLOB() WHERE key_value = 1001;
INSERT INTO lob_table VALUES (1002, NULL, NULL, NULL, NULL);

The following example shows the correct and erroneous usage of EMPTY_BLOB()
and EMPTY_CLOB () in PL/SQL programs:

DECLARE
 loba BLOB;
 lobb CLOB;
 read_offset INTEGER;
 read_amount INTEGER;
 rawbuf RAW(20);
 charbuf VARCHAR2(20);
BEGIN
 loba := EMPTY_BLOB();
 read_amount := 10; read_offset := 1;
 -- the following read will fail
 dbms_lob.read(loba, read_amount, read_offset, rawbuf);

 -- the following read will succeed;
 UPDATE lob_table SET c_lob = EMPTY_CLOB() WHERE key_value =
 1002 RETURNING c_lob INTO lobb;
dbms_lob.read(lobb, read_amount, read_offset, charbuf);
 dbms_output.put_line('lobb value: ' || charbuf);

BFILENAME() Function
The BFILENAME() function should be called as part of SQL INSERT to initialize a
BFILE column or attribute for a particular row by associating it with a physical file
in the server’s filesystem.
6-60 Oracle8 Application Developer’s Guide

LOB Reference
The DIRECTORY object represented by the directory_alias parameter to this
function must already be defined using SQL DDL before this function is called in SQL
DML or a PL/SQL program. You can call the CREATE DIRECTORY() command
after BFILENAME(). However, the target object must exist by the time you actually
use the BFILE locator (for example, as having been used as a parameter to an oper-
ation such as OCILobFileOpen() or DBMS_LOB.FILEOPEN()) .

Note that BFILENAME() does not validate privileges on this DIRECTORY object, or
check if the physical directory that the DIRECTORY object represents actually exists.
These checks are performed only during file access using the BFILE locator that
was initialized by the BFILENAME() function.

You can use BFILENAME() as part of a SQL INSERT and UPDATE statement to ini-
tialize a BFILE column. You can also use it to initialize a BFILE locator variable in
a PL/SQL program, and use that locator for file operations. However, if the corre-
sponding directory alias and/or filename does not exist, then PL/SQL DBMS_LOB
routines that use this variable will generate errors.

The ’directory_alias’ parameter in the BFILENAME() function must be specified tak-
ing case-sensitivity of the directory name into consideration. This is described in
the examples.

Syntax

FUNCTION BFILENAME(directory_alias IN VARCHAR2,
 filename IN VARCHAR2)
RETURN BFILE;

Parameters

See Also: “DIRECTORY Name Specification” on page 6-17.

See Also: “DIRECTORY Name Specification” on page 6-17 for
information about the use of uppercase letters in the directory
name, and OCILobFileSetName () in Oracle Call Interface Program-
mer’s Guide for an equivalent OCI based routine.

Table 6–1 FILENAME Parameters

Parameter Name Meaning

directory_alias The name of the DIRECTORY object that was created using
the CREATE DIRECTORY command.

filename The name of the operating system file on the server.
 Large Objects (LOBs) 6-61

LOB Reference
Return Values

BFILE locator upon success.

NULL if directory_alias has not been defined previously.

Pragmas

 None.

Exceptions

 None.

Example

To access a file ’scott.dat’ located in SCOTT_DIR, and file ’mary.dat’ located in
Mary_Dir , the BFILE locators must be initialized as shown below.

DECLARE
 fil_1, fil_2 BFILE;
 result INTEGER;
BEGIN
 fil_1 := BFILENAME(‘SCOTT_DIR’, ‘scott.dat’);
 fil_2 := BFILENAME(‘Mary_Dir’, ‘mary.dat’);
 DBMS_LOB.FILEOPEN(fil_1);
 DBMS_LOB.FILEOPEN(fil_2);
 result := DBMS_LOB.COMPARE(fil_1, fil_2);
 IF (result != 0)
 THEN
 DBMS_OUTPUT.PUT_LINE(‘The two files are different’);
 END IF;
 DBMS_LOB.FILECLOSE(fil_1);
 DBMS_LOB.FILECLOSE(fil_2);
 -- FILEOPEN will fail with the following initialization (in
 lowercase)
 fil_1 := BFILENAME(‘scott_dir’, ‘scott.dat’);
 DBMS_LOB.FILEOPEN(fil_1);

-- this is an error
END;

INSERT INTO lob_table VALUES (21, NULL, NULL, NULL,
 BFILENAME(‘SCOTT_DIR’,‘scott.dat’));
INSERT INTO lob_table VALUES (12, NULL, NULL, NULL,
 BFILENAME(‘Mary_Dir’,‘mary.dat’));

DECLARE
6-62 Oracle8 Application Developer’s Guide

LOB Reference
 fil_1, fil_2 BFILE;
 result INTEGER;

BEGIN
 SELECT f_lob INTO fil_1 FROM lob_table WHERE key_value = 21;
 SELECT f_lob INTO fil_2 FROM lob_table WHERE key_value = 12;
 DBMS_LOB.FILEOPEN(fil_1);
 DBMS_LOB.FILEOPEN(fil_2);
 result := DBMS_LOB.COMPARE(fil_1, fil_2);
 IF (result != 0)
 THEN
 DBMS_OUTPUT.PUT_LINE(‘The two files are different’);
 END IF;
 DBMS_LOB.FILECLOSE(fil_1);
 DBMS_LOB.FILECLOSE(fil_2);
END;

Using the OCI to Manipulate LOBs
The OCI includes functions that you can use to access data stored in BLOBs, CLOBs,
NCLOBs, and BFILE s. These functions are mentioned briefly below.

See Also: DMBS_LOB.FILEGETNAME().

See Also: Oracle Call Interface Programmer’s Guide for detailed doc-
umentation, including parameters, parameter types, return values,
and example code.

Table 6–2 OCI Functions for LOB Operations

OCI Function Description

OCILobAppend() Appends LOB value to another LOB.

OCILobAssign() Assigns one LOB locator to another.

OCILobCharSetForm() Returns the character set form of a LOB.

OCILobCharSetId() Returns the character set ID of a LOB.

OCILobCopy() Copies a portion of a LOB into another LOB.

OCILobDisableBuffer-
ing()

Disable the buffering subsystem use.
 Large Objects (LOBs) 6-63

LOB Reference
OCILobEnableBuffer-
ing()

Use the LOB buffering subsystem for subsequent reads and
writes of LOB data.

OCILobErase() Erases part of a LOB, starting at a specified offset.

OCILobFileClose() Closes an open BFILE.

OCILobFileCloseAll() Closes all open BFILEs.

OCILobFileExists() Checks whether a BFILE exists.

OCILobFileGetName() Returns the name of a BFILE.

OCILobFileIsOpen() Checks whether a BFILE is open.

OCILobFileOpen() Opens a BFILE.

OCILobFileSetName() Sets the name of a BFILE in a locator.

OCILobFlushBuffer() Flush changes made to the LOB buffering subsystem to the
database (sever)

OCILobGetLength() Returns the length of a LOB or a BFILE.

OCILobIsEqual() Checks whether two LOB locators refer to the same LOB.

OCILobLoadFromFile() Loads BFILE data into an internal LOB.

OCILobLoca-
torIsInit()

Checks whether a LOB locator is initialized.

OCILobLocatorSize() Returns the size of a LOB locator.

OCILobRead() Reads a specified portion of a non-null LOB or a BFILE into a
buffer.

OCILobTrim() Truncates a LOB.

OCILobWrite() Writes data from a buffer into a LOB, overwriting existing
data.

Table 6–2 (Cont.) OCI Functions for LOB Operations

OCI Function Description
6-64 Oracle8 Application Developer’s Guide

LOB Reference
The following chart compares the two interfaces in terms of LOB access:

Table 6–3 Comparison of DBMS_LOB and OCI Interfaces regarding LOB access

OCI (ociap.h) DBMS_LOB (dbmslob.sql)

N/A DBMS_LOB.COMPARE()

N/A DBMS_LOB.INSTR()

N/A DBMS_LOB.SUBSTR()

OCILobAppend DBMS_LOB.APPEND()

OCILobAssign N/A [use Pl/SQL assign operator]

OCILobCharSetForm N/A

OCILobCharSetId N/A

OCILobCopy DBMS_LOB.COPY()

OCILobDisableBuffering N/A

OCILobEnableBuffering N/A

OCILobErase DBMS_LOB.ERASE()

OCILobFileClose DBMS_LOB.FILECLOSE()

OCILobFileCloseAll DBMS_LOB.FILECLOSEALL()

OCILobFileExists DBMS_LOB.FILEEXISTS()

OCILobFileGetName DBMS_LOB.FILEGETNAME()

OCILobFileIsOpen DBMS_LOB.FILEISOPEN()

OCILobFileOpen DBMS_LOB.FILEOPEN()

OCILobFileSetName N/A (use BFILENAME operator)

OCILobFlushBuffer N/A

OCILobGetLength DBMS_LOB.GETLENGTH()

OCILobIsEqual N/A [use Pl/SQL equal operator]

OCILobLoadFromFile DBMS_LOB.LOADFROMFILE()

OCILobLocatorIsInit N/A [always initialize]

OCILobRead DBMS_LOB.READ()

OCILobTrim DBMS_LOB.TRIM()

OCILobWrite DBMS_LOB.WRITE()
 Large Objects (LOBs) 6-65

LOB Reference
DBMS_LOB Package
The DBMS_LOB package provides routines to access BLOBs, CLOBs, NCLOBs, and
BFILE s. You can use DBMS_LOB for access and manipulation of specific parts of a
LOB, as well as complete LOBs. DBMS_LOB can read as well as modify BLOBs,
CLOBs, and NCLOBs, and provides read-only operations on BFILE s.

All DBMS_LOB routines work based on LOB locators. For the successful completion
of DBMS_LOB routines, you must provide an input locator that represents a LOB
that already exists in the database tablespaces or external filesystem.

For internal LOBs, you must first use SQL DDL to define tables that contain LOB col-
umns, and subsequently SQL DML to initialize or populate the locators in these
LOB columns.
.

For external LOBs, you must ensure that a DIRECTORY object that represents a
valid, existing physical directory has been defined, and physical files exist with
read permission for Oracle. If your operating system uses case-sensitive path-
names, be sure you specify the directory in the correct format.
.

Once the LOBs are defined and created, you may then SELECT a LOB locator into a
local PL/SQL LOB variable and use this variable as an input parameter to
DBMS_LOB for access to the LOB value. Examples provided with each DBMS_LOB
routine will illustrate this in the following sections.

Package Routines
The routines that can modify BLOB, CLOB, and NCLOB values are:

■ APPEND() — append the contents of the source LOB to the destination LOB

■ COPY() — copy all or part of the source LOB to the destination LOB

■ ERASE() — erase all or part of a LOB

■ LOADFROMFILE() — load BFILE data into an internal LOB

■ TRIM() — trim the LOB value to the specified shorter length

■ WRITE()— write data to the LOB from a specified offset

The routines that read or examine LOB values are:

See Also: “LOB Locator Operations” on page 6-22

See Also: “BFILE Security” on page 6-17
6-66 Oracle8 Application Developer’s Guide

LOB Reference
■ GETLENGTH() — get the length of the LOB value

■ INSTR() — return the matching position of the nth occurrence of the pattern in
the LOB

■ READ() — read data from the LOB starting at the specified offset

■ SUBSTR() — return part of the LOB value starting at the specified offset

The read-only routines specific to BFILE s are:

■ FILECLOSE() — close the file

■ FILECLOSEALL()— close all previously opened files

■ FILEEXISTS () — check if the file exists on the server

■ FILEGETNAME() — get the directory alias and file name

■ FILEISOPEN () — check if the file was opened using the input BFILE

■ locators

■ FILEOPEN() — open a file

Datatypes
Parameters for the DBMS_LOB routines use the datatypes:

■ BLOB, for a source or destination binary LOB

■ RAW, for a source or destination raw buffer (used with BLOB)

■ CLOB, for a source or destination character LOB (including NCLOB)

■ VARCHAR2, for a source or destination character buffer (used with CLOB and
NCLOB)

■ INTEGER, to specify the size of a buffer or LOB, the offset into a LOB, or the
amount to access

Type Definitions
The DBMS_LOB package defines no special types. NCLOB is a special case of CLOBs
for fixed-width, multi-byte national character sets. The clause ’ANY_CS’ in the specifi-
cation of DBMS_LOB routines for CLOBs allows them to accept a CLOB or NCLOB
locator variable as input.

See Also: “LOB Datatypes” in the Oracle8 SQL Reference
 Large Objects (LOBs) 6-67

LOB Reference
Constants
The DBMS_LOB package defines the following constants.

LOBMAXSIZE 4294967295
FILE_READONLY 0
The maximum LOB size supported in Oracle 8.0 is 4 Gigabytes (232). However, the
amount and offset parameters of the package can have values in the range 1
through 4294967295 (232-1).

The PL/SQL 3.0 language specifies the maximum size of a RAW or VARCHAR2 vari-
able to be 32767 bytes.

DBMS_LOB Exceptions
A DBMS_LOB function or procedure can raise any of the named exceptions shown
in Table 6–4 .

access_error 22925 "operation would exceed maximum size allowed for a LOB"

noexist_directory 22285 "%s failed - directory does not exist"

nopriv_directory 22286 "%s failed - insufficient privileges on directory"

invalid_directory 22287 "%s failed - invalid or modified directory"

Note: The value 32767 bytes is represented by MAXBUFSIZE in
the following sections.

Table 6–4 DBMS_LOB Exceptions

Exception

Code in

error.msg Meaning

INVALID_ARGVAL 21560 "argument %s is null, invalid, or out of
range"

ACCESS_ERROR 22925 Attempt to read/write beyond maximum
LOB size on <n>.

NO_DATA_FOUND 1403 EndofLOB indicator for looping read oper-
ations

VALUE_ERROR 6502 Invalid value in parameter.
6-68 Oracle8 Application Developer’s Guide

LOB Reference
invalid_operation 22288 "%s operation failed"

unopened_file 22289 "cannot perform %s operation on an unopened file"

open_toomany 22290 "%s failed - max limit reached on number of open files"

DBMS_LOBfunctions return a NULL value if any of the input parameters to these rou-
tines are NULL or invalid, whereas DBMS_LOBprocedures will raise exceptions. This
behavior is consistent with Oracle8 SQL functions, and procedures in other built-in
PL/SQL packages in Oracle8.

DBMS_LOB Security
This section describes the security domain for DBMS_LOB routines operating on
internal LOBs (i.e. BLOB, CLOB and NCLOB) when you are using the Oracle server.
:

You can provide secure access to BFILE s using the DIRECTORY feature discussed
in “BFILENAME() Function” on page 6-60.

DBMS_LOB General Usage Notes
1. Length, amount and offset parameters are specified in terms of bytes for BLOBs

and BFILES , and characters for CLOBs and NCLOBs.

2. Note that PL/SQL 3.0 language specifies that constraints for both RAW and
VARCHAR2 buffers are specified in terms of bytes. For example, if you declare a
variable to be

 charbuf VARCHAR2(3000)

charbuf can hold 3000 single byte characters or a 1500 2-byte fixed width char-
acters. This has an important consequence for DBMS_LOB routines for CLOBs
and NCLOBs.

3. You must ensure that the character set of the VARCHAR2 buffer in a DBMS_LOB
routine for CLOBs exactly matches that of the CLOB. The package specification
partially ensures this with the %CHARSET clause, but in certain cases where the

Note: Any DBMS_LOB routine called from an anonymous PL/
SQL block is executed using the privileges of the current user. Any
DBMS_LOB routine called from a stored procedure is executed
using the privileges of the owner of the stored procedure.
 Large Objects (LOBs) 6-69

LOB Reference
fixed-width character set is actually a subset of a varying width character set, it
may not be possible to enforce this.

Hence, it is your responsibility to provide a buffer with the correct character set
and enough buffer size for holding all the characters. No translation on the
basis of session initialization parameters is performed.

4. Only positive, non-zero values (i.e. a value greater than or equal to 1) are
allowed for the AMOUNT and OFFSET parameters. This implies that: negative
offsets and ranges observed in Oracle SQL string functions and operators are
not allowed.

5. Unless otherwise stated, the default value for an offset parameter is 1, which
indicates the first byte in the BLOB or BFILE data, and the first character in the
CLOB or NCLOB value. No default values are specified for the AMOUNT parame-
ter — you have to input the values explicitly.

6. You are responsible for locking the row containing the destination internal LOB
before calling any routines that modify the LOB such as APPEND, COPY, ERASE,
TRIM, or WRITE. These routines do not implicitly lock the row containing the
LOB.

BFILE-Specific Usage Notes
1. Recalling that COMPARE(), INSTR() and SUBSTR() are DBMS_LOB specific, the

operations COMPARE(), INSTR(), READ(), SUBSTR(), FILECLOSE(), FILECLOSE-
ALL() and LOADFROMFILE() operate only on an opened BFILE locator, that is, a
successful FILEOPEN() call must precede a call to any of these routines.

2. For the functions FILEEXISTS (), FILEGETNAME() and GETLENGTH(), a file’s
open/close status is unimportant, however the file must exist physically and
you must have adequate privileges on the DIRECTORY object and the file.

3. The DBMS_LOB package does not support any concurrency control mechanism
for BFILE operations.

4. In the event of several open files in the session whose closure has not been han-
dled properly, you can use the FILECLOSEALL() routine to close all files
opened in the session, and resume file operations from the beginning.

5. If you are the creator of a DIRECTORY or have system privileges, use the CRE-
ATE OR REPLACE, DROP and REVOKE statements in SQL with extreme caution.

See Also: “Guidelines for DIRECTORY Usage” on page 6-19.
6-70 Oracle8 Application Developer’s Guide

LOB Reference
If you or other grantees of a particular directory object have several open files
in a session, any of the above commands can adversely affect file operations. In
the event of such abnormal termination, your only choice is to invoke a pro-
gram or anonymous block that calls FILECLOSEALL(), reopen your files, and
restart your file operations.

6. All files opened during a user session are implicitly closed at the end of the ses-
sion. However, Oracle strongly recommends that you close the files after both
normal and abnormal termination of operations on the BFILE.

In the event of normal program termination, proper file closure ensures that the
number of files that are open simultaneously in the session remains less than
SESSION_MAX_OPEN_FILES.

In the event of abnormal program termination from a PL/SQL program, it is
imperative that you provide an exception handler that ensures closure of all
files opened in that PL/SQL program. This is necessary because, once an excep-
tion occurs, only the exception handler will have access to the BFILE variable
in its most current state

Once the exception transfers program control outside the PL/SQL program
block, all references to the open BFILE s are lost. The result is a larger open file
count which may or may not exceed the SESSION_MAX_OPEN_FILES value.

For example, consider a READ operation past the end of the BFILE value,
which generates a NO_DATA_FOUND exception.

DECLARE
 fil bfile;
 pos INTEGER;
 amt binary_INTEGER;
 buf RAW(40);
BEGIN
 SELECT f_lob INTO fil FROM lob_table WHERE key_value = 21;
 dbms_lob.FILEOPEN(fil, dbms_lob.file_readonly);
 amt := 40; pos := 1 + dbms_lob.getlength(fil); buf := '';
 dbms_lob.read(fil, amt, pos, buf);
 dbms_output.put_line('Read F1 past EOF: '||
 utl_raw.cast_to_varchar2(buf));
 dbms_lob.fileclose(fil);

See Also: “Maximum Number of Open BFILEs” on page 6-20.

See Also: “Closing BFILEs after Program Termination” on page 6-
21.
 Large Objects (LOBs) 6-71

LOB Reference
END;

ORA-01403: no data found
ORA-06512: at "SYS.DBMS_LOB", line 373
ORA-06512: at line 10

Once the exception has occurred, the BFILE locator variable file goes out of
scope, and no further operations on the file can be done using that variable. So
the solution is to use an exception handler as shown below:

DECLARE
 fil bfile;
 pos INTEGER;
 amt binary_INTEGER;
 buf RAW(40);
BEGIN
 SELECT f_lob INTO fil FROM lob_table WHERE key_value = 21;
 dbms_lob.FILEOPEN(fil, dbms_lob.file_readonly);
 amt := 40; pos := 1 + dbms_lob.getlength(fil); buf := '';
 dbms_lob.read(fil, amt, pos, buf);
 dbms_output.put_line('Read F1 past EOF: '||
 utl_raw.cast_to_varchar2(buf));
 dbms_lob.fileclose(fil);
 exception
 WHEN no_data_found
 then
 BEGIN
 dbms_output.put_line('End of File reached. Closing file');
 dbms_lob.fileclose(fil);
 -- or dbms_lob.filecloseall if appropriate
 END;
END;
 /

Statement processed.
End of File reached. Closing file

In general, it is good coding practice to ensure that files opened in a PL/SQL
block using DBMS_LOB are closed before normal/abnormal termination of the
block.

DBMS_LOB.APPEND() Procedure
You can call the internal APPEND() procedure to append the contents of a source
internal LOB to a destination LOB. The procedure appends the complete source
6-72 Oracle8 Application Developer’s Guide

LOB Reference
LOB. There are two overloaded APPEND() procedures, as shown in the syntax sec-
tion below.

Syntax

PROCEDURE APPEND (dest_lob IN OUT BLOB,
 src_lob IN BLOB);
PROCEDURE APPEND (dest_lob IN OUT CLOB CHARACTER SET ANY_CS,
 src_lob IN CLOB CHARACTER SET dest_lob%CHARSET);
Parameters

Exceptions

VALUE_ERROR, if either the source or the destination LOB is null.

Example

PROCEDURE Example_1a IS
 dest_lob, src_lob BLOB;
BEGIN
 -- get the LOB locators
 -- note that the FOR UPDATE clause locks the row
 SELECT b_lob INTO dest_lob
 FROM lob_table
 WHERE key_value = 12 FOR UPDATE;
 SELECT b_lob INTO src_lob
 FROM lob_table
 WHERE key_value = 21;
 DBMS_LOB.APPEND(dest_lob, src_lob);
 COMMIT;
EXCEPTION
 WHEN some_exception
 THEN handle_exception;
END;

PROCEDURE Example_1b IS
 dest_lob, src_lob BLOB;

Table 6–5 APPEND Parameters

Parameter Name Meaning

dest_lob The locator for the internal LOB to which the data is to be
appended.

src_lob The locator for the internal LOB from which the data is to be
read.
 Large Objects (LOBs) 6-73

LOB Reference
BEGIN
 -- get the LOB locators
 -- note that the FOR UPDATE clause locks the row
 SELECT b_lob INTO dest_lob
 FROM lob_table
 WHERE key_value = 12 FOR UPDATE;
 SELECT b_lob INTO src_lob
 FROM lob_table
 WHERE key_value = 12;
 DBMS_LOB.APPEND(dest_lob, src_lob);
 COMMIT;
EXCEPTION
 WHEN some_exception
 THEN handle_exception;
END;

DBMS_LOB.COMPARE() Function
You can call the COMPARE() function to compare two entire LOBs, or parts of two
LOBs. You can only compare LOBs of the same datatype. That is, you compare LOBs
of BLOB type with other BLOBs, and CLOBs with CLOBs, and BFILE s with BFILE s.
For BFILE s, the file has to be already opened using a successful FILEOPEN() opera-
tion for this operation to succeed.

COMPARE() returns zero if the data exactly matches over the range specified by the
offset and amount parameters. Otherwise, a non-zero INTEGER is returned.

For fixed-width n-byte CLOBs, if the input amount for COMPARE is specified to be
greater than (4294967295/n), then COMPARE matches characters in a range of size
(4294967295/n), or Max(length(clob1), length(clob2)), whichever is lesser.

Syntax

FUNCTION COMPARE (
 lob_1 IN BLOB,
 lob_2 IN BLOB,
 amount IN INTEGER := 4294967295,
 offset_1 IN INTEGER := 1,
 offset_2 IN INTEGER := 1)
RETURN INTEGER;

FUNCTION COMPARE (
 lob_1 IN CLOB CHARACTER SET ANY_CS,
 lob_2 IN CLOB CHARACTER SET lob_1%CHARSET,
 amount IN INTEGER := 4294967295,
 offset_1 IN INTEGER := 1,
6-74 Oracle8 Application Developer’s Guide

LOB Reference
 offset_2 IN INTEGER := 1)
RETURN INTEGER;
FUNCTION COMPARE (
 lob_1 IN BFILE,
 lob_2 IN BFILE,
 amount IN INTEGER,
 offset_1 IN INTEGER := 1,
 offset_2 IN INTEGER := 1)
RETURN INTEGER;

Parameters

Return Values

■ INTEGER -- zero if the comparison succeeds, non-zero if not.

■ NULL, if

* amount < 1

* amount > LOBMAXSIZE

* offset_1 or offset_2 < 1

* offset_1 or offset_2 > LOBMAXSIZE

Pragmas

 PRAGMA RESTRICT_REFERENCES(compare, WNDS, WNPS, RNDS, RNPS);
Exceptions

For BFILE operations, UNOPENED_FILE if the file was not opened using the
input locator, NOEXIST_DIRECTORY if the directory does not exist,

Table 6–6 COMPARE Parameters

Parameter Name Meaning

lob_1 LOB locator of first target for comparison.

lob_2 LOB locator of second target for comparison

amount Number of bytes or characters to compare over.

offset_1 Offset in bytes or characters on the first LOB (origin: 1) for
the comparison.

offset_2 Offset in bytes or characters on the first LOB

 (origin: 1) for the comparison.
 Large Objects (LOBs) 6-75

LOB Reference
NOPRIV_DIRECTORY if you do not have privileges for the directory,
INVALID_DIRECTORY if the directory has been invalidated after the file was
opened, INVALID_OPERATION if the file does not exist, or if you do not have
access privileges on the file.

 Examples

PROCEDURE Example2a IS
 lob_1, lob_2 BLOB;
 retval INTEGER;
BEGIN
 SELECT b_col INTO lob_1 FROM lob_table
 WHERE key_value = 45;
 SELECT b_col INTO lob_2 FROM lob_table
 WHERE key_value = 54;
 retval := DBMS_LOB.COMPARE(lob_1, lob_2, 5600, 33482,
 128);
 IF retval = 0 THEN
 ; /* process compared code */
 ELSE
 ; /* process not compared code */
 END IF;
END;

PROCEDURE Example_2b IS
 fil_1, fil_2 BFILE;
 retval INTEGER;
BEGIN
 SELECT f_lob INTO fil_1 FROM lob_table WHERE key_value = 45;
 SELECT f_lob INTO fil_2 FROM lob_table WHERE key_value = 54;
 DBMS_LOB.FILEOPEN(fil_1, DBMS_LOB.FILE_READONLY);
 DBMS_LOB.FILEOPEN(fil_2, DBMS_LOB.FILE_READONLY);
 retval := DBMS_LOB.COMPARE(fil_1, fil_2, 5600,
 3348276, 2765612);
 IF (retval = 0)
 THEN
 ; /* process compared code */
 ELSE
 ; /* process not compared code */
 END IF;
 DBMS_LOB.FILECLOSE(fil_1);
 DBMS_LOB.FILECLOSE(fil_2);
END;
6-76 Oracle8 Application Developer’s Guide

LOB Reference
DBMS_LOB.COPY() Procedure
You can call the COPY() procedure to copy all, or a part of, a source internal LOB to
a destination internal LOB. You can specify the offsets for both the source and desti-
nation LOBs, and the number of bytes or characters to copy.

If the offset you specify in the destination LOB is beyond the end of the data cur-
rently in this LOB, zero-byte fillers or spaces are inserted in the destination BLOB or
CLOB respectively. If the offset is less than the current length of the destination LOB,
existing data is overwritten.

It is not an error to specify an amount that exceeds the length of the data in the
source LOB. Thus, you can specify a large amount to copy from the source LOB
which will copy data from the src_offset to the end of the source LOB.

Syntax

PROCEDURE COPY (
 dest_lob IN OUT BLOB,
 src_lob IN BLOB,
 amount IN INTEGER,
 dest_offset IN INTEGER := 1,
 src_offset IN INTEGER := 1);

PROCEDURE COPY (
 dest_lob IN OUT CLOB CHARACTER SET ANY_CS,
 src_lob IN CLOB CHARACTER SET dest_lob%CHARSET,
 amount IN INTEGER,
 dest_offset IN INTEGER := 1,
 src_offset IN INTEGER := 1);

Parameters

Table 6–7 COPY Parameters

Parameter Name Meaning

dest_lob LOB locator of the copy target.

src_lob LOB locator of source for the copy.

amount Number of bytes or characters to copy.

dest_offset Offset in bytes or characters in the destination LOB (origin: 1)
for the start of the copy.

src_offset Offset in bytes or characters in the source LOB

(origin: 1) for the start of the copy.
 Large Objects (LOBs) 6-77

LOB Reference
Return Value

 None.

Pragmas

 None.

Exceptions

VALUE_ERROR, if any of the input parameters are NULL or invalid.
INVALID_ARGVAL, if

■ src_offset or dest_offset < 1

■ src_offset or dest_offset > LOBMAXSIZE

■ amount < 1

■ amount > LOBMAXSIZE

Example

PROCEDURE Example_3a IS
 lobd, lobs BLOB;
 amt INTEGER := 3000;
BEGIN
 SELECT b_col INTO lobd
 FROM lob_table
 WHERE key_value = 12 FOR UPDATE;
 SELECT b_col INTO lobs
 FROM lob_table
 WHERE key_value = 21;
 DBMS_LOB.COPY(lobd, lobs, amt);
 COMMIT;
 EXCEPTION
 WHEN some_exception
 THEN handle_exception;
END;

PROCEDURE Example_3b IS
 lobd, lobs BLOB;
 amt INTEGER := 3000;
BEGIN
 SELECT b_col INTO lobd
 FROM lob_table
 WHERE key_value = 12 FOR UPDATE;
 SELECT b_col INTO lobs
 FROM lob_table
6-78 Oracle8 Application Developer’s Guide

LOB Reference
 WHERE key_value = 12;
 DBMS_LOB.COPY(lobd, lobs, amt);
 COMMIT;
 EXCEPTION
 WHEN some_exception
 THEN handle_exception;
END;

DBMS_LOB.ERASE() Procedure
You can call the ERASE() procedure to erase an entire internal LOB, or part of an
internal LOB. The offset parameter specifies the starting offset for the erasure, and
the amount parameter specifies the number of bytes or characters to erase.

When data is erased from the middle of a LOB, zero-byte fillers or spaces are writ-
ten for BLOBs or CLOBs respectively.

The actual number of bytes or characters erased can differ from the number you
specified in the amount parameter if the end of the LOB value is reached before eras-
ing the specified number. The actual number of characters or bytes erased is
returned in the amount parameter.

Syntax

PROCEDURE ERASE (
 lob_loc IN OUT BLOB,
 amount IN OUT INTEGER,
 offset IN INTEGER := 1);

PROCEDURE ERASE (
 lob_loc IN OUT CLOB,
 amount IN OUT INTEGER,
 offset IN INTEGER := 1);
Parameters

Table 6–8 ERASE Parameters

Parameter Name Meaning

lob_loc Locator for the LOB to be erased.

amount Number of bytes (for BLOBs) or characters (for CLOBs) to be
erased.

offset Absolute offset from the beginning of the LOB in bytes (for
BLOBs) or characters (CLOBs).
 Large Objects (LOBs) 6-79

LOB Reference
Return Values

None.

Pragmas

None.

Exceptions

VALUE_ERROR, if any input parameter is NULL.

INVALID_ARGVAL, if

■ AMOUNT < 1 or AMOUNT > LOBMAXSIZE

■ OFFSET < 1 or OFFSET > LOBMAXSIZE

Example

PROCEDURE Example_4 IS
 lobd BLOB;
 amt INTEGER := 3000;
BEGIN
 SELECT b_col INTO lobd
 FROM lob_table
 WHERE key_value = 12 FOR UPDATE;
 DBMS_LOB.ERASE(dest_lob, amt, 2000);
 COMMIT;
END;

DBMS_LOB.FILECLOSE() Procedure
You can call the FILECLOSE() procedure to close a BFILE that has already been
opened via the input locator. Note that Oracle has only read-only access to
BFILE s. This means that BFILE s cannot be written through Oracle.

Syntax

PROCEDURE FILECLOSE (
 file_loc IN OUT BFILE);

See Also: DBMS_LOB.TRIM()
6-80 Oracle8 Application Developer’s Guide

LOB Reference
Parameter

Return Values

None.

Pragmas

None.

Exceptions

VALUE_ERROR, if NULL input value for file_loc. UNOPENED_FILE if the file was
not opened with the input locator, NOEXIST_DIRECTORY if the directory does
not exist, NOPRIV_DIRECTORY if you do not have privileges for the directory,
INVALID_DIRECTORY if the directory has been invalidated after the file was
opened, INVALID_OPERATION if the file does not exist, or you do not have
access privileges on the file.

Example

PROCEDURE Example_5 IS
 fil BFILE;
BEGIN
 SELECT f_lob INTO fil FROM lob_table WHERE key_value = 99;
 DBMS_LOB.FILEOPEN(fil);
 -- file operations
 DBMS_LOB.FILECLOSE(fil);
 EXCEPTION
 WHEN some_exception
 THEN handle_exception;
END;

DBMS_LOB.FILECLOSEALL() Procedure
You can call the FILECLOSEALL() procedure to close all BFILE s opened in the ses-
sion.

Syntax

Table 6–9 FILECLOSE Parameter

Parameter Name Meaning

file_loc Locator for the BFILE to be closed.

See Also: DBMS_LOB.FILEOPEN(), DBMS_LOB.FILECLOSEALL()
 Large Objects (LOBs) 6-81

LOB Reference
PROCEDURE FILECLOSEALL;
Return Values

None.

Pragmas

None.

Exceptions

UNOPENED_FILE, if no file has been opened in the session.

4
Example

PROCEDURE Example_6 IS
 fil BFILE;
BEGIN
 SELECT f_lob INTO fil FROM lob_table WHERE key_value = 99;
 DBMS_LOB.FILEOPEN(fil);
 -- file operations
 DBMS_LOB.FILECLOSEALL;
 EXCEPTION
 WHEN some_exception
 THEN handle_exception;
END;

DBMS_LOB.FILEEXISTS() Function
You can call the FILEEXISTS () function to find out if a given BFILE locator points
to a file that actually exists on the server’s filesystem.

Syntax

FUNCTION FILEEXISTS (
 file_loc IN BFILE)
RETURN INTEGER;

See Also: DBMS_LOB.FILEOPEN(), DBMS_LOB.FILECLOSE()
6-82 Oracle8 Application Developer’s Guide

LOB Reference
Parameter

Return Values

INTEGER: 1 if the physical file exists, 0 if it does not exist.

NULL, if:

■ file_loc is NULL

■ file_loc does not have the necessary directory and OS privileges

■ file_loc cannot be read because of an OS error.

Pragmas

PRAGMA RESTRICT_REFERENCES(fileexists, WNDS, RNDS, WNPS, RNPS);
Exceptions

NOEXIST_DIRECTORY if the directory does not exist, NOPRIV_DIRECTORY if
you do not have privileges for the directory, INVALID_DIRECTORY if the direc-
tory has been invalidated after the file was opened.

Example

PROCEDURE Exsmple_7 IS
 fil BFILE;
BEGIN
 SELECT f_lob INTO fil FROM lob_table WHERE key_value = 12;
 IF (DBMS_LOB.FILEEXISTS(fil))
 THEN
 ; -- file exists code
 ELSE
 ; -- file does not exist code
 END IF;
 EXCEPTION
 WHEN some_exception
 THEN handle_exception;
END;

Table 6–10 FILEEXISTS Parameter

Parameter Name Meaning

file_loc Locator for the BFILE .

See Also: DBMS_LOB.FILEISOPEN
 Large Objects (LOBs) 6-83

LOB Reference
DBMS_LOB.FILEGETNAME() Procedure
You can call the FILEGETNAME() procedure to determine the dir_alias and filename,
given a BFILE locator. This function only indicates the directory alias name and
filename assigned to the locator, not if the physical file or directory actually exists.
Maximum constraint values for the dir_alias buffer is 30, and for the entire path-
name is 2000.

Syntax

PROCEDURE FILEGETNAME (
 file_loc IN BFILE,
 dir_alias OUT VARCHAR2
 filename OUT VARCHAR2);

Parameters

Return Values

None.

Pragmas

None.

Exceptions

VALUE_ERROR, if any of the input parameters are NULL or invalid.
INVALID_ARGVAL, if dir_alias or filename are NULL.

Example

PROCEDURE Example_8 IS
 fil BFILE;
 dir_alias VARCHAR2(30);
 name VARCHAR2(2000);
BEGIN

Table 6–11 FILEGETNAME Parameters

Parameter Name Meaning

file_loc Locator for the BFILE .

dir_alias Directory alias

filename Name of the BFILE
6-84 Oracle8 Application Developer’s Guide

LOB Reference
 IF (DBMS_LOB.FILEEXISTS(fil))
 THEN
 DBMS_LOB.FILEGETNAME(fil, dir_alias, name);
 DBMS_OUTPUT.PUT_LINE (“Opening ” || dir_alias || name);
 DBMS_LOB.FILEOPEN(fil, DBMS_LOB.FILE_READONLY);
 -- file operations
 DBMS_OUTPUT.FILECLOSE(fil);
 END IF;
END;

DBMS_LOB.FILEISOPEN() Function
You can call the FILEISOPEN () function to find out whether a BFILE was opened
with the give FILE locator. If the input FILE locator was never passed to the
DBMS_LOB.FILEOPEN procedure, the file is considered not to be opened by this
locator. However, a different locator may have this file open. In other words, open-
ness is associated with a specific locator.

Syntax

FUNCTION FILEISOPEN (
 file_loc IN BFILE)
RETURN INTEGER;

Parameter

Return Values

Integer.

Pragmas

PRAGMA RESTRICT_REFERENCES(fileisopen, WNDS, RNDS, WNPS, RNPS);
Exceptions

NOEXIST_DIRECTORY if the directory does not exist, NOPRIV_DIRECTORY if
you do not have privileges for the directory, INVALID_DIRECTORY if the direc-

See Also: BFILENAME() function

Table 6–12 FILEISOPEN Parameter

Parameter Name Meaning

file_loc Locator for the BFILE .
 Large Objects (LOBs) 6-85

LOB Reference
tory has been invalidated after the file was opened. INVALID_OPERATION if
the file does not exist, or you do not have access privileges on the file.

Example

PROCEDURE Example_9 IS
DECLARE
 fil BFILE;
 pos INTEGER;
 pattern VARCHAR2(20);
BEGIN
 SELECT f_lob INTO fil FROM lob_table
 WHERE key_value = 12;
 -- open the file
 IF (FILEISOPEN(fil))
 THEN
 pos := DBMS_LOB.INSTR(fil, pattern, 1025, 6);
 -- more file operations
 DBMS_LOB.FILECLOSE(fil);
 ELSE
 ; -- return error
 END IF;
END;

DBMS_LOB.FILEOPEN() Procedure
You can call the FILEOPEN procedure to open a BFILE for read-only access.
BFILE s may not be written through Oracle.

Syntax

PROCEDURE FILEOPEN (
 file_loc IN OUT BFILE,
 open_mode IN BINARY_INTEGER := file_readonly);
Parameters

See Also: DBMS_LOB.FILEEXISTS.

Table 6–13 FILEOPEN Parameters

Parameter Name Meaning

file_loc Locator for the BFILE.

open_mode Open mode.
6-86 Oracle8 Application Developer’s Guide

LOB Reference
Return Values

None.

Pragmas

None.

Exceptions

VALUE_ERROR exception is raised if file_loc or open_mode is NULL.
INVALID_ARGVAL exception is raised if open_mode is not equal to
FILE_READONLY. OPEN_TOOMANY if the number of open files in the session
exceeds SESSION_MAX_OPEN_FILES, NOEXIST_DIRECTORY if the directory
does not exist, INVALID_DIRECTORY if the directory has been invalidated
after the file was opened, INVALID_OPERATION if the file does not exist, or
you do not have access privileges on the file.

Example

PROCEDURE Example_10 IS
 fil BFILE;
BEGIN
 -- open BFILE
 SELECT f_lob INTO fil FROM lob_table WHERE key_value = 99;
 IF (DBMS_LOB.FILEEXISTS(fil))
 THEN
 DBMS_LOB.FILEOPEN(fil, DBMS_LOB.FILE_READONLY);
 -- file operation
 DBMS_LOB.FILECLOSE(fil);
 END IF;
 EXCEPTION
 WHEN some_exception
 THEN handle_exception;
END;

DBMS_LOB.GETLENGTH() Function
You can call the GETLENGTH() function to get the length of the specified LOB. The
length in bytes or characters is returned. The length returned for a BFILE includes
the EOF if it exists. Note that any 0-byte or space filler in the LOB caused by previ-
ous ERASE() or WRITE() operations is also included in the length count. The length
of an empty internal LOB is 0.

Syntax

See Also: DBMS_LOB.FILECLOSE(), DBMS_LOB.FILECLO-
SEALL().
 Large Objects (LOBs) 6-87

LOB Reference
FUNCTION GETLENGTH (
 lob_loc IN BLOB)
RETURN INTEGER;

FUNCTION GETLENGTH (
 lob_loc IN CLOB CHARACTER SET ANY_CS)
RETURN INTEGER;

FUNCTION GETLENGTH (
 lob_loc IN BFILE)
RETURN INTEGER;

Parameter

Return Values

The length of the LOB in bytes or characters as an INTEGER. NULL is returned if
the input LOB is null. NULL is returned in the following cases for BFILE s:

■ lob_loc is NULL

■ lob_loc does not have the necessary directory and OS privileges

■ lob_loc cannot be read because of an OS read error

Pragmas

PRAGMA RESTRICT_REFERENCES(getlength, WNDS, WNPS, RNDS, RNPS);
Exceptions

None.

Examples

PROCEDURE Example_11a IS
 lobd BLOB;
 length INTEGER;
BEGIN
 -- get the LOB locator
 SELECT b_lob INTO lobd FROM lob_table
 WHERE key_value = 42;
 length := DBMS_LOB.GETLENGTH(lob_loc);

Table 6–14 GETLENGTH Parameter

Parameter Name Meaning

lob_loc The locator for the LOB whose length is to be returned.
6-88 Oracle8 Application Developer’s Guide

LOB Reference
 IF length IS NULL THEN
 DBMS_OUTPUT.PUT_LINE(’LOB is null.’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’The length is ’
 || length);
 END IF;
END;
PROCEDURE Example_11b IS
DECLARE
 len INTEGER;
 fil BFILE;
BEGIN
 SELECT f_lob INTO fil FROM lob_table WHERE key_value = 12;
 len := DBMS_LOB.LENGTH(fil);
END;

DBMS_LOB.INSTR() Function
You can call the INSTR function to return the matching position of the Nth occur-
rence of the pattern in the LOB, starting from the offset you specify. For CLOBs, the
VARCHAR2 buffer (the PATTERN parameter) and the LOB value must be from the
same character set (single byte or fixed-width multibyte). For BFILE s, the file has
to be already opened using a successful FILEOPEN() operation for this operation to
succeed.

Operations that accept RAW or VARCHAR2 parameters for pattern matching, such as
INSTR, do not support regular expressions or special matching characters (as in the
case of SQL LIKE) in the pattern parameter or substrings.

Syntax

FUNCTION INSTR (
 lob_loc IN BLOB,
 pattern IN RAW,
 offset IN INTEGER := 1,
 nth IN INTEGER := 1)
RETURN INTEGER;

FUNCTION INSTR (
 lob_loc IN CLOB CHARACTER SET ANY_CS,
 pattern IN VARCHAR2 CHARACTER SET lob_loc%CHARSET,
 offset IN INTEGER := 1,
 nth IN INTEGER := 1)
RETURN INTEGER;
 Large Objects (LOBs) 6-89

LOB Reference
FUNCTION INSTR (
 lob_loc IN BFILE,
 pattern IN RAW,
 offset IN INTEGER := 1,
 nth IN INTEGER := 1)
RETURN INTEGER;

Parameters

Return Values

INTEGER, offset of the start of the matched pattern, in bytes or characters. It
returns 0 if the pattern is not found.

A NULL is returned if:

■ any one or more of the IN parameters was null or invalid.

■ OFFSET < 1 or OFFSET > LOBMAXSIZE

■ nth < 1

■ nth > LOBMAXSIZE

Pragmas

PRAGMA RESTRICT_REFERENCES(instr, WNDS, WNPS, RNDS, RNPS);
Exceptions

For BFILE s, UNOPENED_FILE if the file was not opened using the input loca-
tor, NOEXIST_DIRECTORY if the directory does not exist, NOPRIV_DIRECTORY
if you do not have privileges for the directory, INVALID_DIRECTORY if the
directory has been invalidated after the file was opened,

Table 6–15 INSTR Parameters

Parameter Name Meaning

lob_loc The locator for the LOB to be examined.

pattern The pattern to be tested for. The pattern is a group of RAW
bytes for BLOBS, and a character string (VARCHAR2) for
CLOBs.

offset The absolute offset in bytes (BLOBs) or characters (CLOBs) at
which the pattern matching is to start.

nth The occurrence number, starting at 1.
6-90 Oracle8 Application Developer’s Guide

LOB Reference
INVALID_OPERATION if the file does not exist, or if you do not have access
privileges on the file.

Examples

PROCEDURE Example_12a IS
 lobd CLOB;
 pattern VARCHAR2 := ’abcde’;
 position INTEGER := 10000;
BEGIN
-- get the LOB locator
 SELECT b_col INTO lobd
 FROM lob_table
 WHERE key_value = 21;
 position := DBMS_LOB.INSTR(lobd,
 pattern, 1025, 6);
 IF position = 0 THEN
 DBMS_OUTPUT.PUT_LINE(’Pattern not found’);
 ELSE
 DBMS_OUTPUT.PUT_LINE(’The pattern occurs at ’
 || position);
 END IF;
END;

PROCEDURE Example_12b IS
DECLAR E
 fil BFILE;
 pattern VARCHAR2;
 pos INTEGER;
BEGIN
 -- initialize pattern
 -- check for the 6th occurrence starting from 1025th byte
 SELECT f_lob INTO fil FROM lob_table WHERE key_value = 12;
 DBMS_LOB.FILEOPEN(fil, DBMS_LOB.FILE_READONLY);
 pos := DBMS_LOB.INSTR(fil, pattern, 1025, 6);
 DBMS_LOB.FILECLOSE(fil);
END;

DBMS_LOB.LOADFROMFILE() Procedure
You can call the LOADFROMFILE() procedure to copy all, or a part of, a source exter-
nal LOB (BFILE) to a destination internal LOB. You can specify the offsets for both
the source and destination LOBs, and the number of bytes to copy from the source
BFILE . Note that the amount and src_offset, since they refer to the BFILE , are in

See Also: DBMS_LOB.SUBSTR()
 Large Objects (LOBs) 6-91

LOB Reference
terms of bytes and the destination offset is either in bytes or characters for BLOBs
and CLOBs respectively.

 If the offset you specify in the destination LOB is beyond the end of the data cur-
rently in this LOB, zero-byte fillers or spaces are inserted in the destination BLOB or
CLOB respectively. If the offset is less than the current length of the destination LOB,
existing data is overwritten.

 It is not an error to specify an amount that exceeds the length of the data in the
source BFILE . Thus, you can specify a large amount to copy from the BFILE which
will copy data from the src_offset to the end of the BFILE .

Syntax

PROCEDURE loadfromfile (
 dest_lob IN OUT BLOB,
 src_file IN BFILE,
 amount IN INTEGER,
 dest_offset IN INTEGER := 1,
 src_offset IN INTEGER := 1);

PROCEDURE LOADFROMFILE(
 dest_lob IN OUT CLOB CHARACTER SET ANY_CS,
 src_file IN BFILE,
 amount IN INTEGER,
 dest_offset IN INTEGER := 1,
 src_offset IN INTEGER := 1);
Parameters

Note: The input BFILE must have already been opened prior to
using this procedure. Also, no character set conversions are per-
formed implicitly when binary BFILE data is loaded into a CLOB.
The BFILE data must already be in the same character set as the
CLOB in the database. No error checking is performed to verify this.

Table 6–16 INSTR Parameters

Parameter Name Meaning

dest_lob LOB locator of the target for the load.

src_file BFILE locator of the source for the load.

amount Number of bytes to load from the BFILE .
6-92 Oracle8 Application Developer’s Guide

LOB Reference
 Return Values

None

Pragmas

None.

Exceptions

VALUE_ERROR, if any of the input parameters are NULL or invalid.

INVALID_ARGVAL, if

■ src_offset or dest_offset < 1

■ src_offset or dest_offset > LOBMAXSIZE

■ amount < 1

■ amount > LOBMAXSIZE

Examples

PROCEDURE Example_l2f IS
 lobd BLOB;
 fils BFILE := BFILENAME('SOME_DIR_OBJ','some_file');
 amt INTEGER := 4000;
BEGIN
 DBMS_LOB.FILEOPEN(fils, dbms_lob.file_readonly);
 DBMS_LOB.LOADFROMFILE(lobd, fils, amt);
 COMMIT;
 DBMS_LOB.FILECLOSE(fils);
END;

dest_offset Offset in bytes or characters in the destination LOB (origin: 1)
for the start of the load.

src_offset Offset in bytes in the source BFILE (origin: 1) for the start

of the load.

Table 6–16 INSTR Parameters

Parameter Name Meaning
 Large Objects (LOBs) 6-93

LOB Reference
DBMS_LOB.READ() Procedure
You can call the READ() procedure to read a piece of a LOB, and return the specified
amount into the buffer parameter, starting from an absolute offset from the begin-
ning of the LOB.

The number of bytes or characters actually read is returned in the amount parame-
ter. If the end of LOB value is reached during a READ(), amount will be set to 0, and a
NO_DATA_FOUND exception will be raised.

Syntax

PROCEDURE READ (
 lob_loc IN BLOB,
 amount IN OUT BINARY_INTEGER,
 offset IN INTEGER,
 buffer OUT RAW);

PROCEDURE READ (
 lob_loc IN CLOB CHARACTER SET ANY_CS,
 amount IN OUT BINARY_INTEGER,
 offset IN INTEGER,
 buffer OUT VARCHAR2 CHARACTER SET lob_loc%CHARSET);

PROCEDURE READ (
 lob_loc IN BFILE,
 amount IN OUT BINARY_INTEGER,
 offset IN INTEGER,
 buffer OUT RAW);

Parameters

Return Values

None.

Table 6–17 READ Parameters

Parameter Name Meaning

lob_loc The locator for the LOB to be read.

amount The number of bytes or characters to be read.

offset The offset in bytes (for BLOBs) or characters (for CLOBs)
from the start of the LOB (origin: 1).

buffer The output buffer for the read operation.
6-94 Oracle8 Application Developer’s Guide

LOB Reference
Pragmas

None.

Exceptions

READ can raise any of the following exceptions:

■ VALUE_ERROR

* any of lob_loc, amount, or offset parameters are null

■ INVALID_ARGVAL

* AMOUNT < 1

* AMOUNT > MAXBUFSIZE

* OFFSET < 1

* OFFSET > LOBMAXSIZE

* AMOUNT is greater, in bytes or characters, than the capacity of BUFFER

■ NO_DATA_FOUND

* the end of the LOB is reached and there are no more bytes or characters
to read from the LOB. AMOUNT has a value of 0.

■ For BFILE s operations, UNOPENED_FILE if the file is not opened using the
input locator, NOEXIST_DIRECTORY if the directory does not exist,
NOPRIV_DIRECTORY if you do not have privileges for the directory,
INVALID_DIRECTORY if the directory has been invalidated after the file
was opened, INVALID_OPERATION if the file does not exist, or if you do
not have access privileges on the file

Examples

PROCEDURE Example_13a IS
 src_lob BLOB;
 buffer RAW;
 amt BINARY_INTEGER := 32767;
 pos INTEGER := 2147483647;
BEGIN
 SELECT b_col INTO src_lob
 FROM lob_table
 WHERE key_value = 21;
 LOOP
 DBMS_LOB.READ (src_lob, amt, pos, buffer);
 /* process the buffer */
 Large Objects (LOBs) 6-95

LOB Reference
 pos := pos + amt;
 END LOOP;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE(’End of data’);
END;

PROCEDURE Example_13b IS
 fil BFILE;
 buf RAW(32767);
 amt BINARY_INTEGER := 32767;
 pos INTEGER := 2147483647;
BEGIN
 SELECT f_lob INTO fil FROM lob_table WHERE key_value = 21;
 DBMS_LOB.FILEOPEN(fil, DBMS_LOB.FILE_READONLY);
 LOOP
 DBMS_LOB.READ(fil, amt, pos, buf);
 -- process contents of buf
 pos := pos + amt;
 END LOOP;
 EXCEPTION
 WHEN NO_DATA_FOUND
 THEN
 BEGIN
 DBMS_OUTPUT.PUTLINE (‘End of LOB value reached’);
 DBMS_LOB.FILECLOSE(fil);
 END;
END;

/* Example for efficient I/O on OS that performs */
/* better with block I/O rather than stream I/O */
PROCEDURE Example_13c IS
 fil BFILE;
 amt BINARY_INTEGER := 1024; -- or n x 1024 for reading n
 buf RAW(1024); -- blocks at a time
 tmpamt BINARY_INTEGER;
BEGIN
 SELECT f_lob INTO fil FROM lob_table WHERE key_value = 99;
 DBMS_LOB.FILEOPEN(fil, DBMS_LOB.FILE_READONLY);
 LOOP
 DBMS_LOB.READ(fil, amt, pos, buf);
 -- process contents of buf
 pos := pos + amt;
 END LOOP;
 EXCEPTION
6-96 Oracle8 Application Developer’s Guide

LOB Reference
 WHEN NO_DATA_FOUND
 THEN
 BEGIN
 DBMS_OUTPUT.PUTLINE (‘End of data reached’);
 DBMS_LOB.FILECLOSE(fil);
 END;
END;

DBMS_LOB.SUBSTR() Function
You can call the SUBSTR() function to return amount bytes or characters of a LOB,
starting from an absolute offset from the beginning of the LOB.

For fixed-width n-byte CLOBs, if the input amount for SUBSTR() is specified to be
greater than (32767/n), then SUBSTR() returns a character buffer of length (32767/
n), or the length of the CLOB, whichever is lesser.

Syntax

FUNCTION SUBSTR(
 lob_loc IN BLOB,
 amount IN INTEGER := 32767,
 offset IN INTEGER := 1)
RETURN RAW;

FUNCTION SUBSTR(
 lob_loc IN CLOB CHARACTER SET ANY_CS,
 amount IN INTEGER := 32767,
 offset IN INTEGER := 1)
RETURN VARCHAR2 CHARACTER SET lob_loc%CHARSET;

FUNCTION SUBSTR(
 lob_loc IN BFILE,
 amount IN INTEGER := 32767,
 offset IN INTEGER := 1)
RETURN RAW;
Parameters

Table 6–18 SUBSTR Parameters

Parameter Name Meaning

lob_loc The locator for the LOB to be read.

amount The number of bytes or characters to be read.
 Large Objects (LOBs) 6-97

LOB Reference
Return Values

RAW, for the function overloading that has a BLOB or BFILE in parameter.

VARCHAR2, for the CLOB version.

NULL, if:

■ any input parameter is null

■ AMOUNT < 1

■ AMOUNT > 32767

■ OFFSET < 1

■ OFFSET > LOBMAXSIZE

Pragmas

PRAGMA RESTRICT_REFERENCES(substr, WNDS, WNPS, RNDS, RNPS);
Exceptions

For BFILE operations, UNOPENED_FILE if the file is not opened using the
input locator, NOEXIST_DIRECTORY if the directory does not exist,
NOPRIV_DIRECTORY if you do not have privileges for the directory,
INVALID_DIRECTORY if the directory has been invalidated after the file was
opened, INVALID_OPERATION if the file does not exist, or if you do not have
access privileges on the file

Example

PROCEDURE Example_14a IS
 src_lob CLOB;
 pos INTEGER := 2147483647;
 buf VARCHAR2(32000);
BEGIN
 SELECT c_lob INTO src_lob FROM lob_table
 WHERE key_value = 21;
 buf := DBMS_LOB.SUBSTR(src_lob, 32767, pos);
 /* process the data */
END;

offset The offset in bytes (for BLOBs) or characters (for CLOBs)
from the start of the LOB (origin: 1).

Table 6–18 SUBSTR Parameters

Parameter Name Meaning
6-98 Oracle8 Application Developer’s Guide

LOB Reference
PROCEDURE Example_14b IS
 fil BFILE;
 pos INTEGER := 2147483647;
 pattern RAW;
BEGIN
 SELECT f_lob INTO fil FROM lob_table WHERE key_value = 21;
 DBMS_LOB.FILEOPEN(fil, DBMS_LOB.FILE_READONLY);
 pattern := DBMS_LOB.SUBSTR(fil, 255, pos);
 DBMS_LOB.FILECLOSE(fil);
END;

DBMS_LOB.TRIM() Procedure
You can call the TRIM() procedure to trim the value of the internal LOB to the length
you specify in the newlen parameter. Specify the length in bytes for BLOBs, and in
characters for CLOBs.

If you attempt to TRIM() an empty LOB, nothing occurs, and TRIM() returns no
error. If the new length that you specify in newlen is greater than the size of the LOB,
an exception is raised.

Syntax

FUNCTION TRIM (
 lob_loc IN BLOB,
 newlen IN INTEGER);

FUNCTION TRIM (
 lob_loc IN CLOB,
 newlen IN INTEGER):

See Also: DBMS_LOB.INSTR(), DBMS_LOB.READ()
 Large Objects (LOBs) 6-99

LOB Reference
Parameters

Return Values

None.

Pragmas

None.

Exceptions

VALUE_ERROR, if lob_loc is null.

INVALID_ARGVAL, if

■ NEW_LEN < 0

■ NEW_LEN > LOBMAXSIZE

Example

PROCEDURE Example_15 IS
 lob_loc BLOB;
BEGIN
-- get the LOB locator
 SELECT b_col INTO lob_loc
 FROM lob_table
 WHERE key_value = 42 FOR UPDATE;
 DBMS_LOB.TRIM(lob_loc, 4000);
 COMMIT;
END;

\DBMS_LOB.WRITE() Procedure
You can call the WRITE() procedure to write a specified amount of data into an inter-
nal LOB, starting from an absolute offset from the beginning of the LOB. The data is
written from the buffer parameter.

Table 6–19 TRIM Parameters

Parameter Name Meaning

lob_loc The locator for the internal LOB whose length is to be
trimmed.

newlen The new, trimmed length of the LOB value in bytes for
BLOBs or characters for CLOBs.

See Also: DBMS_LOB.ERASE()
6-100 Oracle8 Application Developer’s Guide

LOB Reference
WRITE() replaces (overwrites) any data that already exists in the LOB at the offset,
for the length you specify.

It is an error if the input amount is more than the data in the buffer. If the input
amount is less than the data in the buffer, only amount bytes/characters from the
buffer is written to the LOB. If the offset you specify is beyond the end of the data
currently in the LOB, zero-byte fillers or spaces are inserted in the BLOB or CLOB
respectively.

Syntax

PROCEDURE WRITE (
 lob_loc IN OUT BLOB,
 amount IN BINARY_INTEGER,
 offset IN INTEGER,
 buffer IN RAW);

PROCEDURE WRITE (
 lob_loc IN OUT CLOB CHARACTER SET ANY_CS,
 amount IN BINARY_INTEGER,
 offset IN INTEGER,
 buffer IN VARCHAR2 CHARACTER SET lob_loc%CHARSET);

Parameters

Return Values

None.

Pragmas

None.

Exceptions

Table 6–20 WRITE Parameters

Parameter Name Meaning

lob_loc The locator for the internal LOB to be written to.

amount The number of bytes or characters to write, or that were writ-
ten.

offset The offset in bytes (for BLOBs) or characters (for CLOBs)
from the start of the LOB (origin: 1) for the write operation.

buffer The input buffer for the write.
 Large Objects (LOBs) 6-101

LOB Reference
■ VALUE_ERROR

* if any of LOB_LOC, AMOUNT, or OFFSET parameters are null, out of
range, or invalid

■ INVALID_ARGVAL

* AMOUNT < 1

* AMOUNT > MAXBUFSIZE

* OFFSET < 1

* OFFSET > LOBMAXSIZE

Example

PROCEDURE Example_16 IS
 lob_loc BLOB;
 buffer RAW;
 amt BINARY_INTEGER := 32767;
 pos INTEGER := 2147483647;
 i INTEGER;
BEGIN
 SELECT b_col INTO lob_loc
 FROM lob_table
 WHERE key_value = 12;
 FOR i IN 1..3 LOOP
 DBMS_LOB.WRITE (lob_loc, amt, pos, buffer);
 /* fill in more data */
 pos := pos + amt;
 END LOOP;
 EXCEPTION4
 WHEN some_exception
 THEN handle_exception;
END;
.

See Also: DBMS_LOB.APPEND(), DBMS_LOB.COPY().
6-102 Oracle8 Application Developer’s Guide

LOB Reference
LOB Restrictions
The use of LOBs are subject to some restrictions:

■ LOBs must be stored in tables -- they cannot be transient/temporary.

■ A LONG datatype may not be converted nor migrated to a LOB datatype and
vice versa.

A workaround is to do the following:

1. Write the data in the long RAW to a server side file.

2. Use the Oracle8 command CREATE DIRECTORY to point to the directory
where the file was written.

3. Use the Oracle8 command OCILobLoadFromFile () or DBMS_LOB.LOAD-
FROMFILE() to populate the LOB with the data in the file.

If the LONG isn't too big, another way is to read the LONG into a buffer and call
OCILobWrite or DBMS_LOB.WRITE() to write the LONG data to the LOB.

In either case, you'll need to either add a LOB column to the original table or
create a new table that contains the LOB column. Oracle8 does not allow chang-
ing the datatype of a column to a LOB type.

■ Distributed LOBs are not supported. Specifically, this means that the user can-
not use a remote locator in the SELECT and WHERE clauses. This includes using
DBMS_LOB package functions. In addition, references to objects in remote tables
with or without LOB attributes is not allowed.

For example, the following operations are invalid:

– SELECT lobcol from table1@remote_site;

– INSERT INTO lobtable select type1.lobattr from table1@remote_site;

– SELECT dbms_lob.length(lobcol) from table1@remote_site;

Valid operations on LOB columns in remote tables include:

– CREATE TABLE as select * from table1@remote_site;

– INSERT INTO t select * from table1@remote_site;

– UPDATE t set lobcol = (select lobcol from table1@remote_site);

– INSERT INTO table1@remote...

– UPDATE table1@remote...

– DELETE table1@remote...
 Large Objects (LOBs) 6-103

LOB Reference
■ There is no loader (direct or conventional path) support for LOBs. Instead, use
OCILobLoadFromFile (), DBMS_LOB.LOADFROMFILE(), or OCILobWrite ()
with streaming.

■ When binding an internal LOB in order to use piece-wise INSERT/UPDATE,
the bind variable may be of type SQLT_CHR or SQLT_LBI but is limited to 4k.
You cannot bind a SQLT_LNG to a LOB or a SQLT_LBI that is longer than 4k.

Also, LOBs are not allowed in the following places:

■ LOBs are not allowed in partitioned tables nor are they allowed in clustered
tables and thus cannot be a cluster key.

■ LOBs are not allowed in GROUP BY, ORDER BY, SELECT DISTINCT, aggregates
and JOINS. However, UNION ALL is allowed on tables with LOBs. UNION,
MINUS, and SELECT DISTINCT are allowed on LOB attributes if the object type
has a MAP or ORDER function.

■ LOBS are not analyzed in ANALYZE... COMPUTE/ESTIMATE STATISTICS state-
ments.

■ LOBs are not allowed in index only tables.

■ LOBs are not allowed in VARRAYs.

■ NCLOBs are not allowed as attributes in object types but NCLOB parameters are
allowed in methods.

■ Triggers are not supported on LOBs. However, you can use a LOB in the body of
a trigger as follows:

– you cannot write to a LOB (:old or :new value) in any kind of trigger.

– in regular triggers you can read the :old value but you cannot read the
:newvalue.

– in INSTEAD OF triggers, you can read the :old and the :new values, which
is to say that the :old and :new values can be read but not written.

– you cannot specify LOB type columns in an OF clause, because BFILE
types can be updated without updating the underlying table on which the
trigger is defined.

– using OCI functions or the DBMS_LOB package to update LOB values or
LOB attributes of object columns will not fire triggers defined on the table
containing the columns or the attributes.
6-104 Oracle8 Application Developer’s Guide

LOB Reference
■ Client-side PL/SQL procedures may not call the DBMS_LOB package routines.
However, you can use server-side PL/SQL procedures or anonymous blocks in
PRO*C to call the DBMS_LOB package routines.
 Large Objects (LOBs) 6-105

LOB Reference
6-106 Oracle8 Application Developer’s Guide

 User-Defined Datatypes — An Extended Exa
7

User-Defined Datatypes

— An Extended Example

This chapter contains an extended example of how to use user-defined types. The
chapter has the following major sections:

■ Introduction

■ A Purchase Order Example
mple 7-1

Introduction
Introduction
User-defined types are schema objects in which users formalize the data structures
and operations that appear in their applications.

The example in this chapter illustrates the most important aspects of defining and
using user-defined types. The definitions of object type methods use the PL/SQL
language. The remainder of the example uses Oracle SQL.

PL/SQL provides additional capabilities beyond those illustrated here, especially
in the area of accessing and manipulating the elements of collections.

Client applications that use the Oracle call interface (OCI) can take advantage of its
extensive facilities for accessing objects and collections and manipulating them on
the client side.

A Purchase Order Example
This example is based on a simple business activity: managing the data in customer
orders. The example is presented in three parts. The first two are in this chapter.
The third is in Chapter 8, “Object Views—An Extended Example”.

Each part implements a schema to support the basic activity. The first part imple-
ments the schema using only Oracle’s built-in datatypes. This is called the relational
approach. Using this approach, you create tables to hold the application’s data and
use well-known techniques to implement the application’s entity relationships.

The second and third parts use user-defined types (UDTs) to translate the entities
and relationships directly into schema objects that can be manipulated by a DBMS.
This is called the object-relational approach. The second and third parts UDTs. They
differ only in the way they implement the underlying data storage:

See Also: Oracle8 Concepts for a discussion of user-defined types
and how to use them.

See Also: Oracle8 SQL Reference for a complete description of
SQL syntax and usage.

See Also: PL/SQL User’s Guide and Reference for a complete discus-
sion of PL/SQL capabilities.

See Also: Programmer’s Guide to the Oracle Call Interface for a com-
plete discussion of those facilities.
7-2 Oracle8 Application Developer’s Guide

A Purchase Order Example
■ The second part of the example creates object tables to hold the underlying
data instead of the relational tables created in the first part.

■ The third part uses the relational tables created in the first part. Rather than
building object tables, it uses object views to represent virtual object tables.

Entities and Relationships
The basic entities in this example are:

■ Customers

■ The stock of products for sale

■ Purchase orders

Customers have a one-to-many relationship with purchase orders because a cus-
tomer can place many orders, but a given purchase order is placed by a single cus-
tomer.

Purchase orders have many-to-many relationship with stock items because pur-
chase order can contain many stock items, and a stock item can appear on many
purchase orders.

The usual way to manage the many-to-many relationship between purchase orders
and stock is to introduce another entity called a line item list. A purchase order can
have an arbitrary number of line items, but each line item belongs to a single pur-
chase order. A stock item can appear on many line items, but each line item refers
to a single stock item.

Table 7–1 lists the required information about each of these entities for an applica-
tion that manages customer orders needs.

The problem is that the real-world attributes entities are complex, and so they each
require a complex set of attributes to map their data structure. An address contains

Table 7–1 Information Required about Entities in the Purchase Order Example

Entity Required Information

Customer Contact information

Stock Item identification, cost, and taxability code

Purchase Order Customer, order and ship dates, shipping address

Line Item List Stock item, quantity, price, discount for each line item
 User-Defined Datatypes — An Extended Example 7-3

A Purchase Order Example
attributes such as street, city, state, and zipcode. A customer may have several
phone numbers. The line item list is an entity in its own right and also an attribute
of a purchase order. Standard built-in types cannot represent them directly. The
object-relational approach makes it possible to handle this rich structure in differ-
ent ways.

Part 1: Relational Approach
The relational approach normalizes entities and their attributes, and structures the
customer, purchase order, and stock entities into tables. It breaks addresses into
their standard components. It sets an arbitrary limit on the number of telephone
numbers a customer can have and assigns a column to each.

The relational approach separates line items from their purchase orders and puts
them into a table of their own. The table has columns for foreign keys to the stock
and purchase order tables.

Tables
The relational approach results in the following tables:

CREATE TABLE customer_info (
 custno NUMBER,
 custname VARCHAR2(200),
 street VARCHAR2(200),
 city VARCHAR2(200),
 state CHAR(2),
 zip VARCHAR2(20),
 phone1 VARCHAR2(20),
 phone2 VARCHAR2(20),
 phone3 VARCHAR2(20),
 PRIMARY KEY (custno)
) ;

CREATE TABLE purchase_order (
 pono NUMBER,
 custno NUMBER REFERENCES customer_info,
 orderdate DATE,
 shiptodate DATE,
 shiptostreet VARCHAR2(200),
 shiptocity VARCHAR2(200),
 shiptostate CHAR(2),
 shiptozip VARCHAR2(20),
 PRIMARY KEY (pono)
) ;
7-4 Oracle8 Application Developer’s Guide

A Purchase Order Example
CREATE TABLE stock_info (
 stockno NUMBER PRIMARY KEY,
 cost NUMBER,
 tax_code NUMBER
) ;

CREATE TABLE line_items (
 lineitemno NUMBER,
 pono NUMBER REFERENCES purchase_order,
 stockno NUMBER REFERENCES stock_info,
 quantity NUMBER,
 discount NUMBER,
 PRIMARY KEY (pono, lineitemno)
) ;

The first table, CUSTOMER_INFO, stores information about customers. It does not
refer to the other tables, but the PURCHASE_ORDER table contains a CUSTNO col-
umn, which contains a foreign key to the CUSTOMER_INFO table.

The foreign key implements the many-to-one relationship of purchase orders to cus-
tomers. Many purchase orders might come from a single customer, but only one
customer issues a given purchase order.

The LINE_ITEMS table contains foreign keys PONO to the PURCHASE_ORDER table
and STOCKNO to the STOCK_INFO table.

Inserting Values

In an application based on the tables defined in the previous section, statements
such as the following insert data into the tables:

INSERT INTO customer_info
 VALUES (1, ’Jean Nance’, ’2 Avocet Drive’,
 ’Redwood Shores’, ’CA’, ’95054’,
 ‘415-555-1212’, NULL, NULL) ;

INSERT INTO customer_info
 VALUES (2, ’John Nike’, ’323 College Drive’,
 ’Edison’, ’NJ’, ’08820’,
 ‘609-555-1212’, ‘201-555-1212’, NULL) ;

INSERT INTO purchase_order
 VALUES (1001, 1, SYSDATE, ’10-MAY-1997’,
 NULL, NULL, NULL, NULL) ;
 User-Defined Datatypes — An Extended Example 7-5

A Purchase Order Example
INSERT INTO purchase_order
 VALUES (2001, 2, SYSDATE, ’20-MAY-1997’,
 ’55 Madison Ave’, ’Madison’, ’WI’, ‘53715’) ;

INSERT INTO stock_info VALUES(1004, 6750.00, 2) ;
INSERT INTO stock_info VALUES(1011, 4500.23, 2) ;
INSERT INTO stock_info VALUES(1534, 2234.00, 2) ;
INSERT INTO stock_info VALUES(1535, 3456.23, 2) ;

INSERT INTO line_items VALUES(01, 1001, 1534, 12, 0) ;
INSERT INTO line_items VALUES(02, 1001, 1535, 10, 10) ;
INSERT INTO line_items VALUES(10, 2001, 1004, 1, 0) ;
INSERT INTO line_items VALUES(11, 2001, 1011, 2, 1) ;

Selecting

Selecting
Assuming that values have been inserted into these tables in the usual way, your
application would execute queries of the following kind to retrieve the necessary
information from the stored data.

Customer and Line Item Data for Purchase Order 1001
SELECT C.custno, C.custname, C.street, C.city, C.state,
 C.zip, C.phone1, C.phone2, C.phone3,

 P.pono, P.orderdate,

 L.stockno, L.lineitemno, L.quantity, L.discount

 FROM customer_info C,
 purchase_order P,
 line_items L

 WHERE C.custno = P.custno
 AND P.pono = L.pono
 AND P.pono = 1001;

Total Value of Each Purchase Order
SELECT P.pono, SUM(S.cost * L.quantity)

 FROM purchase_order P,
 line_items L,
 stock_info S
7-6 Oracle8 Application Developer’s Guide

A Purchase Order Example
 WHERE P.pono = L.pono
 AND L.stockno = S.stockno

 GROUP BY P.pono;

Purchase Order and Line Item Data Involving Stock Item 1004
SELECT P.pono, P.custno,
 L.stockno, L.lineitemno, L.quantity, L.discount

 FROM purchase_order P,
 line_items L

 WHERE P.pono = L.pono
 AND L.stockno = 1004;

Updating
Given the schema objects described above, you would execute statements such as
the following to update the stored data:

Update the Quantity for Purchase Order 01 and Stock Item 1001
UPDATE line_items

 SET quantity = 20

 WHERE pono = 1
 AND stockno = 1001 ;

Deleting
In an application based on the tables defined earlier, statements such as the follow-
ing delete stored data:

Delete Purchase Order 1001
DELETE
 FROM line_items
 WHERE pono = 1001 ;

DELETE
 FROM purchase_order
 WHERE pono = 1001 ;
 User-Defined Datatypes — An Extended Example 7-7

A Purchase Order Example
Part 2: Object-Relational Approach with Object Tables

Why a Different Approach May Be Needed
Applications written in third generation languages (3GL) such as C++, are able to
implement highly complex user-defined types that encapsulate data with methods.
By contrast, SQL provides only basic, scalar types and no way of encapsulating
these with relevant operations.

So why not create applications using a 3GL? First, DBMSs provide a functionality
that would take millions of person-hours to replicate. Second, one of the problems
of information management using 3GLs is that they are not persistent — or, if they
are persistent, that they sacrifice security to obtain the necessary performance by
way of locating the application logic and the data logic in the same address space.
Neither trade-off is acceptable to users of DBMSs for whom both persistence and
security are basic requirements.

This leaves the application developer with the problem of simulating complex
types by some form of mapping into SQL. Apart from the many person-hours
required, this involves serious problems of implementation. You must

■ translate from application logic into data logic on ‘write’, and then

■ perform the reverse process on ‘read’ (and vica versa).

Obviously, there is heavy traffic back and forth between the client address space
and that of the server, with the accompanying decrement in performance. And if cli-
ent and server are on different machines, the toll may on performance from net-
work roundtrips may be considerable.

O-R technology resolves these problems. In the course of this and the following
chapter we will consider examples that implement this new functionality.

The Object-Relational (O-R) Way
The O-R approach to the example we have been considering begins with the same
entity relationships outlined in “Entities and Relationships” on page 7-3. But user-
defined types make it possible to carry more of that structure into the database
schema.

Rather than breaking up addresses or the customer’s contact phones into unrelated
columns in relational tables, the O-R approach defines types to represent them;
rather than breaking line items out into a separate table, the O-R approach allows
them to stay with their respective purchase orders as nested tables.
7-8 Oracle8 Application Developer’s Guide

A Purchase Order Example
In the O-R approach, the main entities — customers, stock, and purchase orders —
become objects. Object references express the n: 1 relationships between them. Col-
lection types model their multi-valued attributes.

Given an O-R strategy, there are two approaches to implementation:

■ create and populate object tables

■ use object views to represent virtual object tables from existing relational data.

The remainder of this chapter develops the O-R schema and shows how to imple-
ment it with object tables. Chapter 8, “Object Views—An Extended Example”
implements the same schema with object views.

Defining Types
The following statements set the stage:

CREATE TYPE line_item_t ;
CREATE TYPE purchase_order_t ;
CREATE TYPE stock_info_t ;

The preceding three statements define incomplete object types. The incomplete defi-
nitions notify Oracle that full definitions are coming later. Oracle allows types that
refer to these types to compile successfully. Incomplete type declarations are like
forward declarations in C and other programming languages.

The next statement defines an array type.

CREATE TYPE phone_list_t AS VARRAY(10) OF VARCHAR2(20) ;

The preceding statement defines the type PHONE_LIST_T. Any data unit of type
PHONE_LIST_T is a VARRAY of up to 10 telephone numbers, each represented by a
data item of type VARCHAR2.

A list of phone numbers could occupy a VARRAY or a nested table. In this case, the
list is the set of contact phone numbers for a single customer. A VARRAY is a better
choice than a nested table for the following reasons:

■ The order of the numbers might be important. VARRAYs are ordered. Nested
tables are unordered.

■ The number of phone numbers for a specific customer is small. VARRAYs force
you to specify a maximum number of elements (10 in this case) in advance.
They use storage more efficiently than nested tables which have no special size
limitations.
 User-Defined Datatypes — An Extended Example 7-9

A Purchase Order Example
■ There is no reason to query the phone number list, so the nested table format
offers no benefit.

In general, if ordering and bounds are not important design considerations, design-
ers can use the following rule of thumb for deciding between VARRAYs and nested
tables: If you need to query the collection, use nested tables; if you intend to
retrieve the collection as a whole, use VARRAYs.

CREATE TYPE address_t AS OBJECT (
 street VARCHAR2(200),
 city VARCHAR2(200),
 state CHAR(2),
 zip VARCHAR2(20)
) ;
The preceding statement defines the object type ADDRESS_T. Data units of this type
represent addresses. All of their attributes are character strings, representing the
usual parts of a slightly simplified mailing address.

The next statement defines an object type that uses other user-defined types as
building blocks. The object type also has a comparison method.

CREATE TYPE customer_info_t AS OBJECT (
 custno NUMBER,
 custname VARCHAR2(200),
 address address_t,
 phone_list phone_list_t,

 ORDER MEMBER FUNCTION
 cust_order(x IN customer_info_t) RETURN INTEGER,

 PRAGMA RESTRICT_REFERENCES (
 cust_order, WNDS, WNPS, RNPS, RNDS)
) ;

The preceding statement defines the object type CUSTOMER_INFO_T. Data units of
this type are objects that represent blocks of information about specific customers.
The attributes of a CUSTOMER_INFO_T object are a number, a character string, an
ADDRESS_T object, and a VARRAY of type PHONE_LIST_T.

Every CUSTOMER_INFO_T object also has an associated order method, one of the
two types of comparison methods. Whenever Oracle needs to compare two
CUSTOMER_INFO_T objects, it invokes the CUST_ORDER method to do so.

The two types of comparison methods are map methods and order methods. This
application uses one of each for purposes of illustration.
7-10 Oracle8 Application Developer’s Guide

A Purchase Order Example
The statement does not include the actual PL/SQL program implementing the
method CUST_ORDER. That appears in a later section.

The next statement completes the definition of the incomplete object type
LINE_ITEM_T declared at the beginning of this section.

CREATE TYPE line_item_t AS OBJECT (
 lineitemno NUMBER,
 STOCKREF REF stock_info_t,
 quantity NUMBER,
 discount NUMBER
) ;

Data units of type LINE_ITEM_T are objects that represent line items. They have
three numeric attributes and one REF attribute. The LINE_ITEM_T models the line
item entity and includes an object reference to the corresponding stock object.

CREATE TYPE line_item_list_t AS TABLE OF line_item_t ;

The preceding statement defines the table type LINE_ITEM_LIST_T . A data unit
of this type is a nested table, each row of which contains a LINE_ITEM_T object. A
nested table of line items is better choice to represent the multivalued line item list
of a purchase order than a VARRAY of LINE_ITEM_T objects would be, for the fol-
lowing reasons:

Note: An ORDER method must be called for every two objects
being compared, whereas a MAP method is called once per object.
In general, when sorting a set of objects, the number of times an
ORDER method would be called is more than the number of times a
MAP method would be called. Given that the system can perform
scalar value comparisons very efficiently, coupled with the fact that
calling a user-defined function is slower compared to calling a
kernel implemented function, sorting objects using the ORDER
method is relatively slow compared to sorting the mapped scalar
values (returned by the MAP function).

See Also:

■ Oracle8 Concepts for a discussion of ORDER and MAP methods.

■ PL/SQL User’s Guide and Reference for details of how to use
pragma declarations.
 User-Defined Datatypes — An Extended Example 7-11

A Purchase Order Example
■ Querying the contents of line items is likely to be a requirement for most appli-
cations. This is an inefficient operation for VARRAYs because it involves casting
the VARRAY to a nested table first.

■ Indexing on line item data may be a requirement in some applications. Nested
tables allow this, but it is not possible with VARRAYs.

■ The order of line items is usually unimportant, and the line item number can be
used to specify an order when necessary.

■ There is no practical upper bound on the number of line items on a purchase
order. Using a VARRAY requires specifying an upper bound on the number of
elements.

The following statement completes the definition of the incomplete object type
PURCHASE_ORDER_T declared at the beginning of this section.

CREATE TYPE purchase_order_t AS OBJECT (
 pono NUMBER,
 custref REF customer_info_t,
 orderdate DATE,
 shipdate DATE,
 line_item_list line_item_list_t,
 shiptoaddr address_t,

 MAP MEMBER FUNCTION
 ret_value RETURN NUMBER,
 PRAGMA RESTRICT_REFERENCES (
 ret_value, WNDS, WNPS, RNPS, RNDS),

 MEMBER FUNCTION
 total_value RETURN NUMBER,
 PRAGMA RESTRICT_REFERENCES (total_value, WNDS, WNPS)
) ;

The preceding statement defines the object type PURCHASE_ORDER_T. Data units
of this type are objects representing purchase orders. They have six attributes,
including a REF, a nested table of type LINE_ITEM_LIST_T , and an ADDRESS_T
object.

Objects of type PURCHASE_ORDER_T have two methods: RET_VALUE and
TOTAL_VALUE. One is a MAP method, one of the two kinds of comparison meth-
ods. A MAP method returns the relative position of a given record within the
order of records within the object. So, whenever Oracle needs to compare two
PURCHASE_ORDER_T objects, it implicitly calls the RET_VALUE method to do so.
7-12 Oracle8 Application Developer’s Guide

A Purchase Order Example
The two pragma declarations provide information to PL/SQL about what sort of
access the two methods need to the database.
.

The statement does not include the actual PL/SQL programs implementing the
methods RET_VALUE and TOTAL_VALUE. That appears in a later section.

The next statement completes the definition of STOCK_INFO_T, the last of the three
incomplete object types declared at the beginning of this section.

CREATE TYPE stock_info_t AS OBJECT (
 stockno NUMBER,
 cost NUMBER,
 tax_code NUMBER
) ;

Data units of type STOCK_INFO_T are objects representing the stock items that cus-
tomers order. They have three numeric attributes.

Method definitions
This section shows how to specify the methods of the CUSTOMER_INFO_T and
PURCHASE_ORDER_T object types.

CREATE OR REPLACE TYPE BODY purchase_order_t AS
 MEMBER FUNCTION total_value RETURN NUMBER IS
 i INTEGER;
 stock stock_info_t;
 line_item line_item_t;
 total NUMBER := 0;
 cost NUMBER;

 BEGIN
 FOR i IN 1..SELF.line_item_list.COUNT LOOP

 line_item := SELF.line_item_list(i);
 SELECT DEREF(line_item.stockref) INTO stock FROM DUAL ;

 total := total + line_item.quantity * stock.cost ;

 END LOOP;
 RETURN total;
 END;

See Also: PL/SQL User’s Guide and Reference for complete details
of how to use pragma declarations.
 User-Defined Datatypes — An Extended Example 7-13

A Purchase Order Example
 MAP MEMBER FUNCTION ret_value RETURN NUMBER IS
 BEGIN
 RETURN pono;
 END;
END;

The preceding statement defines the body of the PURCHASE_ORDER_T object type,
that is, the PL/SQL programs that implement its methods.

The RET_VALUE Method
The RET_VALUE method is simple: you use it to return the number of its associated
PURCHASE_ORDER_T object.

The TOTAL_VALUE Method
The TOTAL_VALUE method uses a number of O-R means to return the sum of the
values of the line items of its associated PURCHASE_ORDER_T object:

■ As already noted, the basic function of the TOTAL_VALUE method is to return
the sum of the values of the line items of its associated PURCHASE_ORDER_T
object. The keyword SELF, which is implicitly created as a parameter to every
function, lets you refer to that object.

■ The keyword COUNT gives the count of the number of elements in a PL/SQL
table or array. Here, in combination with LOOP, the application iterates
through all the elements in the collection — in this case, the items of the
purchase order. In this way SELF.LINE_ITEM_LIST .COUNT counts the number
of elements in the nested table that match the LINE_ITEM_LIST attribute of
the PURCHASE_ORDER_T object, here represented by SELF.

■ The DEREF operator takes a reference value as an argument, and returns a row
object. In this case, DEREF (LINE_ITEM .STOCKREF) takes the STOCKREF
attribute as an argument, and returns STOCK_INFO_T object. Looking back to
our data definition, you will see that STOCKREF is an attribute of the
LINE_ITEM_T object which is itself an element of the LINE_ITEM_LIST . This
list object, which we have structured as a nested table, is in turn an attribute of
the PURCHASE_ORDER_T object represented by SELF. This may seem rather
complicated until you take it up again from a real-world perspective in which a
purchase order (PURCHASE_ORDER_T) contains a list (LINE_ITEM_LIST) of
items (LINE_ITEM_T), each of which contains a reference (STOCKREF) to infor-
mation about the item (STOCK_INFO_T). The operation which we have been
considering simply fetches the required data by O-R means.
7-14 Oracle8 Application Developer’s Guide

A Purchase Order Example
■ All these entities are abstract datatypes, and as such can be viewed as tem-
plates for objects — as PURCHASE_ORDER_T is a template for all purchase
order objects. How then are to we retrieve the values of actual stock objects?
The SQL SELECT statement with the explicit DEREF call is required, because
Oracle does not support implicit dereferencing of REFs within PL/SQL pro-
grams. The PL/SQL variable STOCK is of type STOCK_INFO_T. The select state-
ment sets it to the object represented by DEREF (LINE_ITEM .STOCKREF). And
this object is the actual stock item referred to in the i-th line item

■ Having retrieved the stock item in question, the next step is to compute its cost.
The program refers to the stock item’s cost as STOCK.COST, the COST attribute
of the STOCK object. But to compute the cost of the item we also need to know
the quantity of items ordered. In our application, the term LINE_ITEM .QUAN-
TITY represents the QUANTITY attribute of each LINE_ITEM_T object.

The remainder of the method program is straightforward. The loop sums the
extended values of the line items, and the method returns the total as its value.

The CUST_ORDER Method
The following statement defines the CUST_ORDER method of the
CUSTOMER_INFO_T object type.

CREATE OR REPLACE TYPE BODY customer_info_t AS
 ORDER MEMBER FUNCTION
 cust_order (x IN customer_info_t) RETURN INTEGER IS
 BEGIN
 RETURN custno - x.custno;
 END;
END;

As mentioned earlier, the function of the CUST_ORDER operation is to compare
information about two customer orders. The mechanics of the operation are quite
simple. The order method CUST_ORDER takes another CUSTOMER_INFO_T object
as an input argument and returns the difference of the two CUSTNO numbers. Since
it subtracts the CUSTNO of the other CUSTOMER_INFO_T object from its own
object’s CUSTNO, the method returns (a) a negative number if its own object has a
smaller value of CUSTNO, or (b) a positive number if its own has a larger value of
CUSTNO, or (c) zero if the two objects have the same value of CUSTNO— in which
case it is referring to itself! If CUSTNO has some meaning in the real world (e.g.,
lower numbers are created earlier in time than higher numbers), the actual value
returned by this function could be useful.
 User-Defined Datatypes — An Extended Example 7-15

A Purchase Order Example
This completes the definition of the user-defined types used in the purchase order
application. Note that none of the declarations create tables or reserve data storage
space.

Creating Object Tables
To this point the example is the same, whether you plan to create and populate
object tables or implement the application with object views on top of the relational
tables that appear in the first part of the example. The remainder of this chapter
continues the example using object tables. Chapter 8, “Object Views—An Extended
Example” picks up from this point and continues the example with object views.

Generally, you can think of the relationship between the "objects" and "tables" in
the following way:

■ classes, which represent entities, map to tables,

■ attributes map to columns, and

■ objects map to rows.

Viewed in way, each table is an implicit type whose objects (specific rows) each
have the same attributes (the column values). The creation of explicit abstract
datatypes and of object tables introduce a new level of functionality.
7-16 Oracle8 Application Developer’s Guide

A Purchase Order Example
The Object Table CUSTOMER_TAB

Creating object tables: the basic syntax. The following statement defines an object table
CUSTOMER_TAB to hold objects of type CUSTOMER_INFO_T.

CREATE TABLE customer_tab OF customer_info_t
 (custno PRIMARY KEY);

As you can see, there is a syntactic difference in the definition of object tables,
namely the use of the term "OF". You may recall that we earlier defined the
attributes of CUSTOMER_INFO_T objects as:

custno NUMBER
custname VARCHAR2(200)
address address_t
phone_list phone_list_t
po_list po_reflist_t

This means that the table CUSTOMER_TAB has columns of CUSTNO, CUSTNAME,
ADDRESS, PHONE_LIST and PO_LIST, and that each row is an object of type
CUSTOMER_INFO_T. And, as you will see, this notion of row object offers a signifi-
cant advance in functionality.

Abstract datatypes as a template for object tables. Note first that the fact that there is a
type CUSTOMER_INFO_T means that you could create numerous tables of type
CUSTOMER_INFO_T. For instance, you could create a table CUSTOMER_TAB2 also of
type CUSTOMER_INFO_T. By contrast, without this ability, you would have to
define each table individually.

Being able to create tables of the same type does not mean that you cannot intro-
duce variations. Note that the statement by which we created CUSTOMER_TAB
defined a primary key constraint on the CUSTNO column. This constraint applies
only to this table. Another object table of CUSTOMER_INFO_T objects (e.g.,
CUSTOMER_TAB2) need not satisfy this constraint. This illustrates an important
point: constraints apply to tables, not to type definitions.

Object tables with embedded objects. Examining the definition of CUSTOMER_TAB,
you will see that the ADDRESS column contains ADDRESS_T objects. Put another
way: an abstract datatype may have attributes that are themselves abstract
datatypes. When these types are instantiated as objects, the included objects are
instantiated at the same time (unless they allow for NULL values, in which case
place-holders for their values are created). ADDRESS_T objects have attributes of
built-in types which means that they are leaf-level scalar attributes of
 User-Defined Datatypes — An Extended Example 7-17

A Purchase Order Example
CUSTOMER_INFO_T. Oracle creates columns for ADDRESS_T objects and their
attributes in the object table CUSTOMER_TAB. You can refer to these columns using
the dot notation. For example, if you wish to build an index on the ZIP column,
you can refer to it as ADDRESS.ZIP .

The PHONE_LIST column contains VARRAYs of type PHONE_LIST_T. You may
recall that we defined each object of type PHONE_LIST_T as a VARRAY of up to 10
telephone numbers, each represented by a data item of type VARCHAR2.

CREATE TYPE phone_list_t AS VARRAY(10) OF VARCHAR2(20) ;

Since each VARRAYs of type PHONE_LIST_T can contain no more than 200 charac-
ters (10 x 20), plus a small amount of overhead. Oracle stores the VARRAY as a sin-
gle data unit in the PHONE_LIST column. Oracle stores VARRAYs that exceed 4000
bytes in BLOBs which means that they are stored outside the table. This raises an
interesting question to which we will return: How does the DBMS reference these
external objects?

The Object Table STOCK_TAB
The next statement creates an object table for STOCK_INFO_T objects:

CREATE TABLE stock_tab OF stock_info_t
 (stockno PRIMARY KEY) ;

This does not introduce anything new. The statement creates the STOCK_TAB object
table. Since Each row of the table is a STOCK_INFO_T object having three numeric
attributes:

 stockno NUMBER,
 cost NUMBER,
 tax_code NUMBER

Oracle assigns a column for each attribute, and the CREATE TABLE statement
places a primary key constraint on the STOCKNO column.

The Object Table PURCHASE_TAB
The next statement defines an object table for PURCHASE_ORDER_T objects:

CREATE TABLE purchase_tab OF purchase_order_t (
 PRIMARY KEY (pono),
 SCOPE FOR (custref) IS customer_tab
)
 NESTED TABLE line_item_list STORE AS po_line_tab ;
7-18 Oracle8 Application Developer’s Guide

A Purchase Order Example
The preceding statement creates the PURCHASE_TAB object table. Each row of the
table is a PURCHASE_ORDER_T object. Attributes of PURCHASE_ORDER_T objects
are:

 pono NUMBER
 custref REF customer_info_t
 orderdate DATE
 shipdate DATE
 line_item_list line_item_list_t
 shiptoaddr address_t

The REF operator. The first new element introduced here has to do with the way the
statement places a scope on the REFs in the CUSTREF column. When there is no
restriction on scope (the default case), the REF operator allows you to reference any
row object. However, these CUSTREF REFs can refer only to row objects in the
CUSTOMER_TAB object table. The scope limitation applies only to CUSTREF
columns of the CUSTOMER_TAB object table. It does not apply to the CUSTREF
attributes of PURCHASE_ORDER_T objects that might be stored in any other object
table.

Nested tables. A second new element has to do with the fact that each row has a
nested table column LINE_ITEM_LIST . The last line of the statement creates the
table PO_LINE_TAB to hold the LINE_ITEM_LIST columns of all of the rows of
the PURCHASE_TAB table. Nested tables are particularly well-suited to coding
master-detail relationships, such as we are considering in this purchase order
example. As we will discuss, nested tables can also do much to remove the
complexity of relational joins from applications.

All the rows of a nested table are stored in a separate storage table. A hidden col-
umn in the storage table, called the NESTED_TABLE_ID matches the rows with
their corresponding parent row. All the elements in the nested table belonging to a
particular parent have the same NESTED_TABLE_ID value.

For example, all the elements of the nested table of a given row of PURCHASE_TAB
have the same value of NESTED_TABLE_ID. The nested table elements that belong
to a different row of PURCHASE_TAB have a different value of NESTED_TABLE_ID.

The top level attributes of the nested table type map to columns in the storage
table. A nested table whose elements are not of an object type has a single
unnamed column. Oracle recognizes the keyword COLUMN_VALUE as representing
the name of that column. For example, to place a scope on the REF column in a
nested table of REFs, we can use the COLUMN_VALUE column name to refer to it.
 User-Defined Datatypes — An Extended Example 7-19

A Purchase Order Example
Oracle creates columns in CUSTOMER_TAB for the remaining leaf level scalar
attributes of PURCHASE_ORDER_T objects, namely, ORDERDATE, SHIPDATE, and
the attributes of the ADDRESS_T object in SHIPTOADDR.

At this point all of the tables for the purchase order application are in place. The
next section shows how to add additional specifications to these tables.

Altering the Tables
The next statement alters the PO_LINE_TAB storage table, which holds the
LINE_ITEM_LIST nested table columns of the object table PURCHASE_TAB, to
place a scope on the REFs it contains.

ALTER TABLE po_line_tab
 ADD (SCOPE FOR (stockref) IS stock_tab) ;

The PO_LINE_TAB storage table holds nested table columns of type
LINE_ITEM_LIST_T . The definition of that type (from earlier in the chapter) is:

CREATE TYPE line_item_list_t AS TABLE OF line_item_t ;

An attribute of a LINE_ITEM_T object, and hence one column of the
PO_LINE_TAB storage table, is STOCKREF, which is of type REF STOCK_INFO_T.
The object table STOCK_TAB holds row objects of type STOCK_INFO_T. The alter
statement restricts the scope of the REFs in the STOCKREF column to the object
table STOCK_TAB.

The next statement further alters the PO_LINE_TAB storage table to specify its
index storage.

ALTER TABLE po_line_tab
 STORAGE (NEXT 5K PCTINCREASE 5 MINEXTENTS 1 MAXEXTENTS 20) ;

The next statement creates an index on the PO_LINE_TAB storage table:

CREATE INDEX po_nested_in
 ON po_line_tab (NESTED_TABLE_ID) ;

A storage table for a nested table column of an object table has a hidden column
called NESTED_TABLE_ID. The preceding statement creates an index on that col-
umn, making access to the contents of LINE_ITEM_LIST columns of the
PURCHASE_TAB object table more efficient.

The next statement shows how to use NESTED_TABLE_ID to enforce uniqueness of
a column of a nested table within each row of the enclosing table. It creates a
7-20 Oracle8 Application Developer’s Guide

A Purchase Order Example
unique index on the PO_LINE_TAB storage table. That table holds the
LINE_ITEM_LIST columns of all of the rows of the PURCHASE_TAB table.

CREATE UNIQUE INDEX po_nested
 ON po_line_tab (NESTED_TABLE_ID, lineitemno) ;

By including the LINEITEMNO column in the index key and specifying a unique
index, the statement ensures that the LINEITEMNO column contains distinct values
within each purchase order.

Inserting Values
The statements in this section show how to insert the same data into the object
tables just created as the statements on page 7-5 insert into the relational tables of
the first part of the example.

stock_tab
INSERT INTO stock_tab VALUES(1004, 6750.00, 2);
INSERT INTO stock_tab VALUES(1011, 4500.23, 2);
INSERT INTO stock_tab VALUES(1534, 2234.00, 2);
INSERT INTO stock_tab VALUES(1535, 3456.23, 2);

customer_tab
INSERT INTO customer_tab
 VALUES (
 1, ‘Jean Nance’,
 address_t(‘2 Avocet Drive’, ‘Redwood Shores’, ‘CA’, ‘95054’),
 phone_list_t(‘415-555-1212’)
) ;

INSERT INTO customer_tab
 VALUES (
 2, ‘John Nike’,
 address_t(‘323 College Drive’, ‘Edison’, ‘NJ’, ‘08820’),
 phone_list_t(‘609-555-1212’,‘201-555-1212’)
) ;

purchase_tab
INSERT INTO purchase_tab
 SELECT 1001, REF(C),
 SYSDATE,’10-MAY-1997’,
 line_item_list_t(),
 NULL
 User-Defined Datatypes — An Extended Example 7-21

A Purchase Order Example
 FROM customer_tab C
 WHERE C.custno = 1 ;

The preceding statement constructs a PURCHASE_ORDER_T object with the follow-
ing attributes:

 pono 1001
 custref REF to customer number 1
 orderdate SYSDATE
 shipdate 10-MAY-1997
 line_item_list an empty line_item_list_t
 shiptoaddr NULL

The statement uses a query to construct a REF to the row object in the
CUSTOMER_TAB object table that has a CUSTNO value of 1.

The next statement uses a flattened subquery, signaled by the keyword THE, to
identify the target of the insertion, namely the nested table in the
LINE_ITEM_LIST column of the row object in the PURCHASE_TAB object table
that has a PONO value of 1001.

INSERT INTO THE (
 SELECT P.line_item_list
 FROM purchase_tab P
 WHERE P.pono = 1001
)
 SELECT 01, REF(S), 12, 0
 FROM stock_tab S
 WHERE S.stockno = 1534;

The preceding statement inserts a line item into the nested table identified by the
flattened subquery. The line item that it inserts contains a REF to the row object in
the object table STOCK_TAB that has a STOCKNO value of 1534.

The following statements are similar to the preceding two.

INSERT INTO purchase_tab
 SELECT 2001, REF(C),
 SYSDATE,’20-MAY-1997’,
 line_item_list_t(),
 address_t(‘55 Madison Ave’,’Madison’,’WI’,’53715’)
 FROM customer_tab C
 WHERE C.custno = 2;

INSERT INTO THE (
 SELECT P.line_item_list
7-22 Oracle8 Application Developer’s Guide

A Purchase Order Example
 FROM purchase_tab P
 WHERE P.pono = 1001
)
 SELECT 02, REF(S), 10, 10
 FROM stock_tab S
 WHERE S.stockno = 1535;

INSERT INTO THE (
 SELECT P.line_item_list
 FROM purchase_tab P
 WHERE P.pono = 2001
)
 SELECT 10, REF(S), 1, 0
 FROM stock_tab S
 WHERE S.stockno = 1004;

INSERT INTO THE (
 SELECT P.line_item_list
 FROM purchase_tab P
 WHERE P.pono = 2001
)
 VALUES(line_item_t(11, NULL, 2, 1)) ;

The next statement uses a table alias to refer to the result of the flattened subquery

UPDATE THE (
 SELECT P.line_item_list
 FROM purchase_tab P
 WHERE P.pono = 2001
) plist

 SET plist.stockref =
 (SELECT REF(S)
 FROM stock_tab S
 WHERE S.stockno = 1011
)

 WHERE plist.lineitemno = 11 ;

Selecting
The following query statement implicitly invokes a comparison method. It shows
how Oracle uses the ordering of PURCHASE_ORDER_T object types that the compar-
ison method defines:
 User-Defined Datatypes — An Extended Example 7-23

A Purchase Order Example
SELECT p.pono
 FROM purchase_tab p
 ORDER BY VALUE(p);

The preceding instruction causes Oracle to invoke the map method RET_VALUE for
each PURCHASE_ORDER_T object in the selection. Since that method simply returns
the value of the object’s PONO attribute, the result of the selection is a list of pur-
chase order numbers in ascending numerical order.

The following queries correspond to the queries in “Selecting” on page 7-6.

Customer and Line Item Data for Purchase Order 1001
SELECT DEREF(p.custref), p.shiptoaddr, p.pono,
 p.orderdate, line_item_list

 FROM purchase_tab p

 WHERE p.pono = 1001 ;

Total Value of Each Purchase Order
SELECT p.pono, p.total_value()

 FROM purchase_tab p ;

Purchase Order and Line Item Data Involving Stock Item 1004
SELECT po.pono, po.custref.custno,

 CURSOR (
 SELECT *
 FROM TABLE (po.line_item_list) L
 WHERE L.stockref.stockno = 1004
)

 FROM purchase_tab po ;

Deleting
The following example has the same effect as the two deletions needed in the rela-
tional case (see “Deleting” on page 7-7). In this case Oracle automatically deletes all
line items belonging to the deleted purchase order. The relational case requires a
separate step.
7-24 Oracle8 Application Developer’s Guide

A Purchase Order Example
Delete Purchase Order 1001
DELETE
 FROM purchase_order
 WHERE pono = 1001 ;

This concludes the object table version of the purchase order example. The next
chapter develops an alternative version of the example using relational tables and
object views.
 User-Defined Datatypes — An Extended Example 7-25

A Purchase Order Example
7-26 Oracle8 Application Developer’s Guide

 Object Views—An Extended Exa
8

Object Views—An Extended Example

This chapter contains an extended example of how to use object views. The chapter
has the following major sections:

■ Introduction

■ Purchase Order Example
mple 8-1

Introduction
Introduction
Object views are virtual object tables, materialized out of data from tables or views.

The example in this chapter illustrates the most important aspects of defining and
using object views. The definitions of triggers use the PL/SQL language. The
remainder of the example uses Oracle SQL.

PL/SQL provides additional capabilities beyond those illustrated here, especially
in the area of accessing and manipulating the elements of collections.

Client applications that use the Oracle call interface (OCI) can take advantage of its
extensive facilities for accessing the objects and collections defined by object views
and manipulating them on the client side.

Purchase Order Example
Chapter 7, “User-Defined Datatypes — An Extended Example” develops a pur-
chase order example by following these steps:

1. Establish the entities and relationships.

2. Implement the entity-relationship structure by creating and populating rela-
tional tables.

3. Define an object-relational schema of user-defined types to model the entity-
relationship structure.

4. Implement the entity-relationship structure using the object-relational schema
to create and populate object tables.

The approach in this chapter uses the same initial steps but a different final step.
Rather than creating and populating object tables, this approach uses object views
to materialize virtual object tables out of data in the relational tables.

See Also: For a discussion of object views and how to use them,
see Oracle8 Concepts.

See Also: Oracle8 SQL Reference for a complete description of
SQL syntax and usage.

See Also: PL/SQL User’s Guide and Reference for a complete discus-
sion of PL/SQL capabilities.

See Also: Programmer’s Guide to the Oracle Call Interface for a com-
plete discussion of those facilities.
8-2 Oracle8 Application Developer’s Guide

Purchase Order Example
Defining Object Views
The example developed in Chapter 7 contains three object tables: CUSTOMER_TAB,
STOCK_TAB, and PURCHASE_TAB. this chapter contains three corresponding object
views: CUSTOMER_VIEW, STOCK_VIEW, and PURCHASE_VIEW.

The statement that creates an object view has four parts:

■ The name of the view.

■ The name of the object type it is based on.

■ The source of the primary-key-based object identifier.

■ A selection that populates the virtual object table corresponding to the object
type.

The customer_view View
The definition of the CUSTOMER_INFO_T object type appears on page 10. This
object view is based on that object type.

CREATE OR REPLACE VIEW
customer_view OF customer_info_t WITH OBJECT OID(custno) AS
 SELECT C.custno, C.custname,
 address_t(C.street, C.city, C.state, C.zip),
 phone_list_t (C.phone1, C.phone2, C.phone3)
 FROM customer_info C ;

This object view selects its data from the CUSTOMER_INFO table. The definition of
this table appears on page 4.

The CUSTOMER_INFO_T object type has the following attributes:

custno NUMBER
custname VARCHAR2(200)
address address_t
phone_list phone_list_t

The object view definition takes the CUSTNO and CUSTNAME attributes from corre-
spondingly named columns of the CUSTOMER_INFO table. It uses the STREET,
CITY, STATE, and ZIP columns of the CUSTOMER_INFO table as arguments to the
constructor function for the ADDRESS_T object type, which is defined on page 10.

The stock_view View
The definition of the STOCK_INFO_T object type appears on page 13. This object
view is based on that object type.
 Object Views—An Extended Example 8-3

Purchase Order Example
CREATE OR REPLACE VIEW
stock_view OF stock_info_t WITH OBJECT OID(stockno) AS
 SELECT *
 FROM stock_info ;
This object view selects its data from the STOCK_INFO table. The definition of this
table appears on page 5.

The selection used to materialize the object view is extremely simple, because the
object type definition and the table definition correspond exactly.

The purchase_view View
The definition of the PURCHASE_ORDER_T object type appears on page 12. This
object view is based on that object type.

CREATE OR REPLACE VIEW
purchase_view OF purchase_order_t WITH OBJECT OID (pono) AS
 SELECT P.pono,
 MAKE_REF (customer_view, P.custno),
 P.orderdate, P.shiptodate,
 CAST (
 MULTISET (
 SELECT line_item_t (
 L.lineitemno,
 MAKE_REF(stock_view, L.stockno),
 L.quantity, L.discount
)
 FROM line_items L
 WHERE L.pono= P.pono
)
 AS line_item_list_t
),
 address_t (P.shiptostreet, P.shiptocity,
 P.shiptostate, P.shiptozip)
 FROM purchase_order P ;

This object view is based on the LINE_ITEMS table, which is defined on page 5, the
PURCHASE_ORDER table, which is defined on page 4, and the CUSTOMER_VIEW
and STOCK_VIEW object views defined in the two previous sections.

The PURCHASE_ORDER_T object type has the following attributes:

 pono NUMBER
 custref REF customer_info_t
 orderdate DATE
 shipdate DATE
8-4 Oracle8 Application Developer’s Guide

Purchase Order Example
 line_item_list line_item_list_t
 shiptoaddr address_t

The object view definition takes its PONO column from the PONO column of the
PURCHASE_ORDER table. It uses the expression MAKE_REF (CUSTOMER_VIEW,
CUSTNO) to create a REF to the row object in the customer_view object view identi-
fied by CUSTNO. That REF becomes the CUSTREF column.

The object view definition takes its ORDERDATE and SHIPDATE columns from the
ORDERDATE and SHIPTODATE columns of the PURCHASE_ORDER table.

The object view definition uses the term

 CAST (
 MULTISET (
 SELECT line_item_t (
 L.lineitemno,
 MAKE_REF(stock_view, L.stockno),
 L.quantity, L.discount
)
 FROM line_items L
 WHERE L.pono= P.pono
)
 AS line_item_list_t
),
to materialize the LINE_ITEM_LIST column of the object view. At the innermost
level of this expression, the operator MAKE_REF(STOCK_VIEW, STOCKNO) builds a
REF to the row object in the STOCK_VIEW object view identified by STOCKNO. That
REF becomes one of the input arguments to the constructor function for the
LINE_ITEM_T object type. The other arguments come from the LINEITEMNO,
QUANTITY, and DISCOUNT columns of the LINE_ITEMS table.

The selection results in a set of LINE_ITEM_T objects, one for each row of the
LINE_ITEMS table whose PONO column matches the PONO column of the row of
the PURCHASE_ORDER table that is currently being examined in the outer selection.
The MULTISET operator tells Oracle to regard the set of LINE_ITEM_T objects as a
multiset, making it an appropriate argument for the CAST operator, which turns it
into a nested table of type LINE_ITEM_LIST_T , as specified by the AS clause.

The resulting nested table becomes the LINE_ITEM_LIST column of the object
view.

Finally, the definition uses the SHIPTOSTREET, SHIPTOCITY, SHIPTOSTATE, and
SHIPTOZIP columns of the PURCHASE_ORDER table as arguments to the construc-
 Object Views—An Extended Example 8-5

Purchase Order Example
tor function for the ADDRESS_T object type to materialize the SHIPTOADDR column
of the object view.

Updating the Object Views
Oracle provides INSTEAD OF triggers as a way to update complex object views.
This section presents the INSTEAD OF triggers necessary to update the object views
just defined.

Oracle invokes an object view’s INSTEAD OF trigger whenever a command directs
it to change the value of any attribute of a row object in the view. Oracle makes
both the current value and the requested new value of the row object available to
the trigger program. It recognizes the keywords :OLD and :NEW as representing the
current and new values.

INSTEAD OF Trigger for purchase_view

CREATE OR REPLACE TRIGGER
poview_insert_tr INSTEAD OF INSERT ON purchase_view

DECLARE
 line_itms line_item_list_t ;
 i INTEGER ;
 custvar customer_info_t ;
 stockvar stock_info_t ;
 stockvartemp REF stock_info_t ;

BEGIN
 line_itms := :NEW.line_item_list ;

 SELECT DEREF(:NEW.custref) INTO custvar FROM DUAL ;

 INSERT INTO purchase_order VALUES (
 :NEW.pono, custvar.custno, :NEW.orderdate, :NEW.shipdate,
 :NEW.shiptoaddr.street, :NEW.shiptoaddr.city,
 :NEW.shiptoaddr.state, :NEW.shiptoaddr.zip) ;

 FOR i IN 1..line_itms.COUNT LOOP
 stockvartemp := line_itms(i).stockref ;
 SELECT DEREF(stockvartemp) INTO stockvar FROM DUAL ;

 INSERT INTO line_items VALUES (
 line_itms(i).lineitemno, :NEW.pono, stockvar.stockno,
 line_itms(i).quantity, line_itms(i).discount) ;
8-6 Oracle8 Application Developer’s Guide

Purchase Order Example
 END LOOP ;

END ;

This trigger program inserts new values into the PURCHASE_ORDER table. Then, in
a loop, it inserts new values into the LINE_ITEMS table for each LINE_ITEM_T
object in the nested table in the new LINE_ITEM_LIST column.

The use of the STOCKVARTEMP variable is an alternative to implicitly dereferencing
the REF represented by LINE_ITMS (i).STOCKREF.

INSTEAD OF Trigger for customer_view
CREATE OR REPLACE TRIGGER
custview_insert_tr INSTEAD OF INSERT ON customer_view

DECLARE
 phones phone_list_t;
 tphone1 customer_info.phone1%TYPE := NULL;
 tphone2 customer_info.phone2%TYPE := NULL;
 tphone3 customer_info.phone3%TYPE := NULL;
BEGIN
 phones := :NEW.phone_list;

 IF phones.COUNT > 2 THEN
 tphone3 := phones(3);
 END IF;

 IF phones.COUNT > 1 THEN
 tphone2 := phones(2);
 END IF;

 IF phones.COUNT > 0 THEN
 tphone1 := phones(1);
 END IF;

 INSERT INTO customer_info VALUES (
 :NEW.custno, :NEW.custname, :NEW.address.street,
 :NEW.address.city, :NEW.address.state, :NEW.address.zip,
 tphone1, tphone2, tphone3);
END ;

This trigger function updates the CUSTOMER_INFO table with the new information.
Most of the program deals with updating the three phone number columns of the
customer table from the :NEW.PHONE_LIST VARRAY of phone numbers. The IF
 Object Views—An Extended Example 8-7

Purchase Order Example
statements assure that the program does not attempt to access :NEW.PHONE_LIST
elements with indexes greater than :NEW.PHONE_LIST.COUNT.

There is a slight mismatch between these two representations, because the VARRAY
is defined hold up to 10 numbers, while the customer table has only three phone
number columns. The trigger program discards :NEW.PHONE_LIST elements with
indexes greater than 3.

INSTEAD OF Trigger for stock_view
CREATE OR REPLACE TRIGGER
stockview_insert_tr INSTEAD OF INSERT ON stock_view

BEGIN
 INSERT INTO stock_info VALUES (
 :NEW.stockno, :NEW.cost, :NEW.tax_code);
END ;

This trigger function updates the STOCK_INFO table with the new information.

Sample Updates
The following statement fires the CUSTOMER_VIEW trigger.

INSERT INTO customer_view VALUES (
 13, ‘Ellan White’,
 address_t(‘25 I Street’, ‘Memphis’, ‘TN’, ‘05456’),
 phone_list_t(‘615-555-1212’));

The preceding statement inserts a new customer into the database via the
CUSTOMER_VIEW object view.

The following statement fires the PURCHASE_VIEW trigger.

INSERT INTO purchase_view
 SELECT 3001, REF(c), SYSDATE, SYSDATE,
 CAST(
 MULTISET(
 SELECT line_item_t(41, REF(S), 20, 1)
 FROM stock_view S
 WHERE S.stockno = 1535
)
 AS line_item_list_t
),
 address_t(‘22 Nothingame Ave’,’Cockstown’,’AZ’,’44045’)
8-8 Oracle8 Application Developer’s Guide

Purchase Order Example
 FROM customer_view c
 WHERE c.custno = 1
The preceding statement inserts a new purchase order into the database via the
PURCHASE_VIEW object view. Customer number 1 has ordered 20 of stock item
1535. The statement assigns number 3001 to the purchase order and number 41 to
the line item.

Selecting
The three queries in “Selecting” on page 7-23 work exactly as written, but with the
object table name PURCHASE_TAB replaced by the object view name
PURCHASE_VIEW. Queries involving other object tables work with the analogous
name replacement.
 Object Views—An Extended Example 8-9

Purchase Order Example
8-10 Oracle8 Application Developer’s Guide

 Maintaining Data Int
9

Maintaining Data Integrity

This chapter explains how to enforce the business rules associated with your data-
base and prevent the entry of invalid information into tables by using integrity con-
straints. Topics include the following:

■ Using Integrity Constraints

■ Referential Integrity in a Distributed Database

■ Using CHECK Integrity Constraints

■ Defining Integrity Constraints

■ Enabling and Disabling Integrity Constraints

■ Altering Integrity Constraints

■ Dropping Integrity Constraints

■ Managing FOREIGN KEY Integrity Constraints

■ Listing Integrity Constraint Definitions

See Also: Trusted Oracle documentation for additional informa-
tion about defining, enabling, disabling, and dropping integrity
constraints in Trusted Oracle.
egrity 9-1

Using Integrity Constraints
Using Integrity Constraints
You can define integrity constraints to enforce business rules on data in your tables.
Once an integrity constraint is enabled, all data in the table must conform to the
rule that it specifies. If you subsequently issue a SQL statement that modifies data
in the table, Oracle ensures that the resulting data satisfies the integrity constraint.
Without integrity constraints, such business rules must be enforced programmati-
cally by your application.

When to Use Integrity Constraints
Enforcing rules with integrity constraints is less costly than enforcing the equiva-
lent rules by issuing SQL statements in your application. The semantics of integrity
constraints are very clearly defined, so the internal operations that Oracle performs
to enforce them are optimized beneath the level of SQL statements in Oracle. Since
your applications use SQL, they cannot achieve this level of optimization.

Enforcing business rules with SQL statements can be even more costly in a net-
worked environment because the SQL statements must be transmitted over a net-
work. In such cases, using integrity constraints eliminates the performance
overhead incurred by this transmission.

Example To ensure that each employee in the EMP table works for a department that
is listed in the DEPT table, first create a PRIMARY KEY constraint on the DEPTNO col-
umn of the DEPT table with this statement:

ALTER TABLE dept
ADD PRIMARY KEY (deptno)

Then create a referential integrity constraint on the DEPTNO column of the EMP
table that references the primary key of the DEPT table:

ALTER TABLE emp
ADD FOREIGN KEY (deptno) REFERENCES dept(deptno)

If you subsequently add a new employee record to the table, Oracle automatically
ensures that its department number appears in the department table.

To enforce this rule without integrity constraints, your application must test each
new employee record to ensure that its department number belongs to an existing
department. This testing involves issuing a SELECT statement to query the DEPT
table.
9-2 Oracle8 Application Developer’s Guide

Using Integrity Constraints
Taking Advantage of Integrity Constraints
For best performance, define and enable integrity constraints and develop your
applications to rely on them, rather than on SQL statements in your applications, to
enforce business rules.

However, in some cases, you might want to enforce business rules through your
application as well as through integrity constraints. Enforcing a business rule in
your application might provide faster feedback to the user than an integrity con-
straint. For example, if your application accepts 20 values from the user and then
issues an INSERT statement containing these values, you might want your user to
be notified immediately after entering a value that violates a business rule.

Since integrity constraints are enforced only when a SQL statement is issued, an
integrity constraint can only notify the user of a bad value after the user has
entered all 20 values and the application has issued the INSERT statement. How-
ever, you can design your application to verify the integrity of each value as it is
entered and notify the user immediately in the event of a bad value.

Using NOT NULL Integrity Constraints
By default, all columns can contain nulls. Only define NOT NULL constraints for col-
umns of a table that absolutely require values at all times.

For example, in the EMP table, it might not be detrimental if an employee’s man-
ager or hire date were temporarily omitted. Also, some employees might not have
a commission. Therefore, these three columns would not be good candidates for
NOT NULL integrity constraints. However, it might not be permitted to have a row
that does not have an employee name. Therefore, this column is a good candidate
for the use of a NOT NULL integrity constraint.

NOT NULL constraints are often combined with other types of integrity constraints
to further restrict the values that can exist in specific columns of a table. Use the
combination of NOT NULL and UNIQUE key integrity constraints to force the input
of values in the UNIQUE key; this combination of data integrity rules eliminates the
possibility that any new row’s data will ever attempt to conflict with an existing
row’s data. For more information about such combinations.
.

See Also: “Relationships Between Parent and Child Tables” on
page 9-9.
 Maintaining Data Integrity 9-3

Using Integrity Constraints
Figure 9–1 NOT NULL Integrity Constraints

Setting Default Column Values
Legal default values include any literal, or any expression that does not refer to a
column, LEVEL, ROWNUM, or PRIOR. Default values can include the expressions
SYSDATE, USER, USERENV, and UID . The datatype of the default literal or expres-
sion must match or be convertible to the column datatype.

If you do not explicitly define a default value for a column, the default for the col-
umn is implicitly set to NULL.

When to Use Default Values
Only assign default values to columns that contain a typical value. For example, in
the DEPT table, if most departments are located at one site, the default value for the
LOC column can be set to this value (such as NEW YORK).

Defaults are also useful when you use a view to make a subset of a table’s columns
visible. For example, you might allow users to insert rows into a table through a
view. The view is defined to show all columns pertinent to end-user operations;
however, the base table might also have a column named INSERTER, not included
in the definition of the view, which logs the user that originally inserts each row of
the table. The column named INSERTER can record the name of the user that
inserts a row by defining the column with the USER function:

. . ., inserter VARCHAR2(30) DEFAULT USER, . . .

For another example of assigning a default column value, refer to the section “Cre-
ating Tables” on page 4-3.

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

Table EMP

NOT NULL Constraint
(no row may contain a null
value for this column)

Absence of NOT NULL Constraint
(any row can contain a null
for this column)

7329
7499
7521
7566

SMITH
ALLEN
WARD
JONES

CEO
VP–SALES
MANAGER
SALESMAN

7329
7499
7521

17–DEC–85
20–FEB–90
22–FEB–90
02–APR–90

9,000.00
7,500.00
5,000.00
2,975.00

100.00
200.00
400.00

20
30
30
30
9-4 Oracle8 Application Developer’s Guide

Using Integrity Constraints
Figure 9–2 A UNIQUE Key Constraint

Choosing a Table’s Primary Key
Each table can have one primary key. A primary key allows each row in a table to
be uniquely identified and ensures that no duplicate rows exist. Use the following
guidelines when selecting a primary key:

■ Choose a column whose data values are unique.

The purpose of a table’s primary key is to uniquely identify each row of the
table. Therefore, the column or set of columns in the primary key must contain
unique values for each row.

■ Choose a column whose data values are never changed.

A primary key value is only used to identify a row in the table; primary key val-
ues should never contain any data that is used for any other purpose. There-
fore, primary key values should rarely need to be changed.

■ Choose a column that does not contain any nulls.

INSERT
INTO

Table DEPT
DEPNO DNAME LOC

UNIQUE Key Constraint
(no row may duplicate a
value in the constraint's column)

This row violates the UNIQUE key constraint,
because "SALES" is already present in another
row; therefore, it is not allowed in the table.

This row is allowed because a null value is
 entered for the DNAME column; however, if a
NOT NULL constraint is also defined on the
DNAME column, this row is not allowed.

20
30
40

RESEARCH
SALES
MARKETING

DALLAS
NEW
BOSTON

50

60

SALES NEW YORK

BOSTON
 Maintaining Data Integrity 9-5

Using Integrity Constraints
A PRIMARY KEY constraint, by definition, does not allow the input of any row
with a null in any column that is part of the primary key.

■ Choose a column that is short and numeric.

Short primary keys are easy to type. You can use sequence numbers to easily
generate numeric primary keys.

■ Avoid choosing composite primary keys.

Although composite primary keys are allowed, they do not satisfy the previous
recommendations. For example, composite primary key values are long and
cannot be assigned by sequence numbers.

Using UNIQUE Key Integrity Constraints
Choose unique keys carefully. In many situations, unique keys are incorrectly com-
prised of columns that should be part of the table’s primary key (see the previous
section for more information about primary keys). When deciding whether to use a
UNIQUE key constraint, use the rule that a UNIQUE key constraint is only
required to prevent the duplication of the key values within the rows of the table.
The data in a unique key is such that it cannot be duplicated in the table.

Do not confuse the concept of a unique key with that of a primary key. Primary
keys are used to identify each row of the table uniquely. Therefore, unique keys
should not have the purpose of identifying rows in the table.

Some examples of good unique keys include

■ an employee’s social security number (the primary key is the employee num-
ber)

■ a truck’s license plate number (the primary key is the truck number)

■ a customer’s phone number, consisting of the two columns AREA and PHONE
(the primary key is the customer number)

■ a department’s name and location (the primary key is the department number)

Note: Although UNIQUE key constraints allow the input of nulls,
because of the search mechanism for UNIQUE constraints on more
than one column, you cannot have identical values in the non-null
columns of a partially null composite UNIQUE key constraint.
9-6 Oracle8 Application Developer’s Guide

Using Referential Integrity Constraints
Using Referential Integrity Constraints

Whenever two tables are related by a common column (or set of columns), define a
PRIMARY or UNIQUE key constraint on the column in the parent table, and define a
FOREIGN KEY constraint on the column in the child table, to maintain the relationship
between the two tables. Depending on this relationship, you may want to define addi-
tional integrity constraints including the foreign key, as listed in the section “Relationships
Between Parent and Child Tables” on page 9-9.

Figure 9–3 shows a foreign key defined on the DEPTNO column of the EMP table.
It guarantees that every value in this column must match a value in the primary
key of the DEPT table (the DEPTNO column); therefore, no erroneous department
numbers can exist in the DEPTNO column of the EMP table.

Foreign keys can be comprised of multiple columns. However, a composite foreign
key must reference a composite primary or unique key of the exact same structure;
that is, the same number of columns and datatypes. Because composite primary
and unique keys are limited to 16 columns, a composite foreign key is also limited
to 16 columns.

Nulls and Foreign Keys
By default (that is, without any NOT NULL or CHECK clauses), and in accordance
with the ANSI/ISO standard, the FOREIGN KEY constraint enforces the “match
none” rule for composite foreign keys. The “full” and “partial” rules can also be
enforced by using CHECK and NOT NULL constraints, as follows:

■ To enforce the “match full” rule for nulls in composite foreign keys, which
requires that all components of the key be null or all be non-null, define a
CHECK constraint that allows only all nulls or all non-nulls in the composite for-
eign key as follows, assuming a composite key comprised of columns A, B, and
C:

CHECK ((A IS NULL AND B IS NULL AND C IS NULL) OR
 (A IS NOT NULL AND B IS NOT NULL AND C IS NOT NULL))

■ In general, it is not possible to use declarative referential integrity to enforce
the “match partial” rule for nulls in composite foreign keys, which requires the
non-null portions of the key to appear in the corresponding portions in the pri-
mary or unique key of a single row in the referenced table. You can often use
triggers to handle this case, as described in Chapter 13, “Using Database Trig-
gers”.
 Maintaining Data Integrity 9-7

Using Referential Integrity Constraints
Figure 9–3 Referential Integrity Constraints

INSERT
INTO

Table DEPT
DEPNO DNAME LOC

Parent Key
Primary key of
referenced table

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO

Table EMP

Referenced or

Dependent or Child Table

Parent Table

Foreign Key
(values in dependent
table must match a value
in unique key or primary
key of referenced table)

This row violates
the referential
constraint
because "50"
is not present
in the referenced
table's primary
key; therefore,
the row is not
allowed in
the table.

This row is
allowed in the
table because a
null value is
entered in the
DEPTNO column;
however, if a not
null constraint is
also defined for
this column, this
row is not allowed.

20

40

RESEARCH

MARKETING

DALLAS
30 SALES NEW YORK

BOSTON

7329
7499
7521
7566

SMITH
ALLEN
WARD
JONES

CEO
VP–SALES
MANAGER
SALESMAN

7329
7499
7521

17–DEC–85
20–FEB–90
22–FEB–90
02–APR–90

9,000.00
7,500.00
5,000.00
2,975.00

100.00
200.00
400.00

20
30
30
20

7571

7571

FORD

FORD

MANAGER

MANAGER

7499

7499

23–FEB–90

23–FEB–90

5,000.00

5,000.00

200.00

200.00

50
9-8 Oracle8 Application Developer’s Guide

Using Referential Integrity Constraints
Relationships Between Parent and Child Tables
Several relationships between parent and child tables can be determined by the
other types of integrity constraints defined on the foreign key in the child table.

No Constraints on the Foreign Key When no other constraints are defined on the for-
eign key, any number of rows in the child table can reference the same parent key
value. This model allows nulls in the foreign key.

This model establishes a “one-to-many” relationship between the parent and for-
eign keys that allows undetermined values (nulls) in the foreign key. An example
of such a relationship is shown in Figure 9–3 between EMP and DEPT; each depart-
ment (parent key) has many employees (foreign key), and some employees might
not be in a department (nulls in the foreign key).

NOT NULL Constraint on the Foreign Key When nulls are not allowed in a foreign key,
each row in the child table must explicitly reference a value in the parent key
because nulls are not allowed in the foreign key. However, any number of rows in
the child table can reference the same parent key value.

This model establishes a “one-to-many” relationship between the parent and for-
eign keys. However, each row in the child table must have a reference to a parent
key value; the absence of a value (a null) in the foreign key is not allowed. The
same example in the previous section can be used to illustrate such a relationship.
However, in this case, employees must have a reference to a specific department.

UNIQUE Constraint on the Foreign Key When a UNIQUE constraint is defined on the
foreign key, one row in the child table can reference a parent key value. This model
allows nulls in the foreign key.

This model establishes a “one-to-one” relationship between the parent and foreign
keys that allows undetermined values (nulls) in the foreign key. For example,
assume that the EMP table had a column named MEMBERNO, referring to an
employee’s membership number in the company’s insurance plan. Also, a table
named INSURANCE has a primary key named MEMBERNO, and other columns of the
table keep respective information relating to an employee’s insurance policy. The
MEMBERNO in the EMP table should be both a foreign key and a unique key:

■ to enforce referential integrity rules between the EMP and INSURANCE tables
(the FOREIGN KEY constraint)

■ to guarantee that each employee has a unique membership number (the
UNIQUE key constraint)
 Maintaining Data Integrity 9-9

Using Referential Integrity Constraints
UNIQUE and NOT NULL Constraints on the Foreign Key When both UNIQUE and NOT
NULL constraints are defined on the foreign key, only one row in the child table can
reference a parent key value. Because nulls are not allowed in the foreign key, each
row in the child table must explicitly reference a value in the parent key.

This model establishes a “one-to-one” relationship between the parent and foreign
keys that does not allow undetermined values (nulls) in the foreign key. If you
expand the previous example by adding a NOT NULL constraint on the MEMBERNO
column of the EMP table, in addition to guaranteeing that each employee has a
unique membership number, you also ensure that no undetermined values (nulls)
are allowed in the MEMBERNO column of the EMP table.

Multiple FOREIGN KEY Constraints
Oracle allows a column to be referenced by multiple FOREIGN KEY constraints;
effectively, there is no limit on the number of dependent keys. This situation might
be present if a single column is part of two different composite foreign keys.

Concurrency Control, Indexes, and Foreign Keys
Oracle maximizes the concurrency control of parent keys in relation to dependent
foreign key values. You can control what concurrency mechanisms are used to
maintain these relationships and, depending on the situation, this can be highly
beneficial. The following sections explain the possible situations and give recom-
mendations for each.

No Index on the Foreign Key Figure 9–4 illustrates the locking mechanisms used by
Oracle when no index is defined on the foreign key and when rows are being
updated or deleted in the parent table. Inserts into the parent table do not require
any locks on the child table.

Notice that a share lock of the entire child table is required until the transaction con-
taining the DELETE statement for the parent table is committed. If the foreign key
specifies ON DELETE CASCADE, the DELETE statement results in a table-level
share-subexclusive lock on the child table. A share lock of the entire child table is
also required for an UPDATE statement on the parent table that affects any columns
referenced by the child table. Share locks allow reading only; therefore, no INSERT,
UPDATE, or DELETE statements can be issued on the child table until the transac-
tion containing the UPDATE or DELETE is committed. Queries are allowed on the
child table.

This situation is tolerable if updates and deletes can be avoided on the parent.
9-10 Oracle8 Application Developer’s Guide

Using Referential Integrity Constraints
INSERT, UPDATE, and DELETE statements on the child table do not acquire any
locks on the parent table; although INSERT and UPDATE statements will wait for a
row-lock on the index of the parent table to clear.

Figure 9–4 Locking Mechanisms When No Index Is Defined on the Foreign Key

Index on the Foreign Key Figure 9–5 illustrates the locking mechanisms used by Ora-
cle when an index is defined on the foreign key, and new rows are inserted,
updated or deleted in the child table.

Row 1 Key 1

Table Parent

Row 2 Key 2

Row 4 Key 4

Row 1 Key 1

Table Child

Row 2 Key 1

Row 3 Key 3

Row 4 Key 2

Key 1

Index

Key 2

Key 4

Exclusive row lock acquired

Newly updated row

Row 5 Key 2

Key 3Row 3 Key 3

Share lock acquired
 Maintaining Data Integrity 9-11

Using Referential Integrity Constraints
Notice that no table locks of any kind are acquired on the parent table or any of its
indexes as a result of the insert, update or delete. Therefore, any type of DML state-
ment can be issued on the parent table, including inserts, updates, deletes, and que-
ries.

This situation is preferable if there is any update or delete activity on the parent
table while update activity is taking place on the child table. Inserts, updates, and
deletes on the parent table do not require any locks on the child table; although
updates and deletes will wait for row-level locks on the indexes of the child table to
clear.

Figure 9–5 Locking Mechanisms When Index Is Defined on the Foreign Key

If the child table specifies ON DELETE CASCADE, deletes from the parent table may
result in deletes from the child table. In this case, waiting and locking rules are the

Row 1 Key 1

Table Parent

Row 2 Key 2

Row 3 Key 3

Row 4 Key 4

Row 1 Key 1

Table Child

Row 2 Key 1

Row 3 Key 3

Row 4 Key 2

Key 1

Index

Key 2

Key 3

Key 4

Key 1

Index

Key 1

Key 2

Key 3Row 5 Key 2

Key 2

Exclusive row lock acquired

Newly updated row
9-12 Oracle8 Application Developer’s Guide

Using CHECK Integrity Constraints
same as if you deleted from the child table yourself after performing the delete
from the parent table.

Referential Integrity in a Distributed Database
Oracle does not permit declarative referential integrity constraints to be defined
across nodes of a distributed database (that is, a declarative referential integrity con-
straint on one table cannot specify a foreign key that references a primary or
unique key of a remote table). However, parent/child table relationships across
nodes can be maintained using triggers. For more information about triggers that
enforce referential integrity, refer to Chapter 13, “Using Database Triggers”. Using
triggers to maintain referential integrity requires the distributed option; for more
information refer to Oracle8 Distributed Database Systems
.

5

Using CHECK Integrity Constraints
Use CHECK constraints when you need to enforce integrity rules that can be evalu-
ated based on logical expressions. Never use CHECK constraints when any of the
other types of integrity constraints can provide the necessary checking.

Examples of appropriate CHECK constraints include the following:

■ a CHECK constraint on the SAL column of the EMP table so that no salary value
is greater than 10000

Note: If you decide to define referential integrity across the
nodes of a distributed database using triggers, be aware that net-
work failures can limit the accessibility of not only the parent table,
but also the child table. For example, assume that the child table is
in the SALES database and the parent table is in the HQ database. If
the network connection between the two databases fails, some
DML statements against the child table (those that insert rows into
the child table or update a foreign key value in the child table) can-
not proceed because the referential integrity triggers must have
access to the parent table in the HQ database.

See Also: “CHECK and NOT NULL Integrity Constraints” on
page 9-15.
 Maintaining Data Integrity 9-13

Using CHECK Integrity Constraints
■ a CHECK constraint on the LOC column of the DEPT table so that only the loca-
tions “BOSTON”, “NEW YORK”, and “DALLAS” are allowed

■ a CHECK constraint on the SAL and COMM columns to compare the SAL and
COMM values of a row and prevent the COMM value from being greater than the
SAL value

Restrictions on CHECK Constraints
A CHECK integrity constraint requires that a condition be true or unknown for
every row of the table. If a statement causes the condition to evaluate to false, the
statement is rolled back. The condition of a CHECK constraint has the following
limitations:

■ The condition must be a Boolean expression that can be evaluated using the
values in the row being inserted or updated.

■ The condition cannot contain subqueries or sequences.

■ The condition cannot include the SYSDATE, UID , USER, or USERENV SQL
functions.

■ The condition cannot contain the pseudocolumns LEVEL, PRIOR, or ROWNUM;

■ The condition cannot contain a user-defined SQL function.

Designing CHECK Constraints
When using CHECK constraints, consider the ANSI/ISO standard, which states
that a CHECK constraint is violated only if the condition evaluates to false; true
and unknown values do not violate a check condition. Therefore, make sure that a
CHECK constraint that you define actually enforces the rule you need enforced.

For example, consider the following CHECK constraint:

CHECK (sal > 0 OR comm >= 0)

At first glance, this rule may be interpreted as “do not allow a row in the EMP table
unless the employee’s salary is greater than zero or the employee’s commission is
greater than or equal to zero.” However, note that if a row is inserted with a null
salary and a negative commission, the row does not violate the CHECK constraint

See Also: Oracle8 SQL Reference for an explanation of these
pseudocolumns.
9-14 Oracle8 Application Developer’s Guide

Defining Integrity Constraints
because the entire check condition is evaluated as unknown. In this particular case,
you can account for such violations by placing NOT NULL integrity constraints on
both the SAL and COMM columns.

Multiple CHECK Constraints
A single column can have multiple CHECK constraints that reference the column in
its definition. There is no limit to the number of CHECK constraints that can be
defined that reference a column.

CHECK and NOT NULL Integrity Constraints
According to the ANSI/ISO standard, a NOT NULL integrity constraint is an exam-
ple of a CHECK integrity constraint, where the condition is

CHECK (column_name IS NOT NULL)

Therefore, NOT NULL integrity constraints for a single column can, in practice, be
written in two forms: using the NOT NULL constraint or a CHECK constraint. For
ease of use, you should always choose to define NOT NULL integrity constraints
instead of CHECK constraints with the “IS NOT NULL ” condition.

In the case where a composite key can allow only all nulls or all values, you must
use a CHECK integrity constraint. For example, the following expression of a CHECK
integrity constraint allows a key value in the composite key made up of columns
C1 and C2 to contain either all nulls or all values:

CHECK ((c1 IS NULL AND c2 IS NULL) OR
(c1 IS NOT NULL AND c2 IS NOT NULL))

Defining Integrity Constraints
Define an integrity constraint using the constraint clause of the SQL commands
CREATE TABLE or ALTER TABLE. The next two sections describe how to use these
commands to define integrity constraints.

Note: If you are not sure when unknown values result in NULL
conditions, review the truth tables for the logical operators AND
and OR in Oracle8 SQL Reference.
 Maintaining Data Integrity 9-15

Defining Integrity Constraints
The CREATE TABLE Command
The following examples of CREATE TABLE statements show the definition of sev-
eral integrity constraints:

CREATE TABLE dept (
deptno NUMBER(3) PRIMARY KEY,
dname VARCHAR2(15),
loc VARCHAR2(15),
 CONSTRAINT dname_ukey UNIQUE (dname, loc),
 CONSTRAINT loc_check1
 CHECK (loc IN (’NEW YORK’, ’BOSTON’, ’CHICAGO’)));

CREATE TABLE emp (
empno NUMBER(5) PRIMARY KEY,
ename VARCHAR2(15) NOT NULL,
job VARCHAR2(10),
mgr NUMBER(5) CONSTRAINT mgr_fkey
 REFERENCES emp,
hiredate DATE,
sal NUMBER(7,2),
comm NUMBER(5,2),
deptno NUMBER(3) NOT NULL

 CONSTRAINT dept_fkey
 REFERENCES dept ON DELETE CASCADE);

The ALTER TABLE Command
You can also define integrity constraints using the constraint clause of the ALTER
TABLE command. For example, the following examples of ALTER TABLE state-
ments show the definition of several integrity constraints:

ALTER TABLE dept
ADD PRIMARY KEY (deptno);

ALTER TABLE emp
ADD CONSTRAINT dept_fkey FOREIGN KEY (deptno) REFERENCES dept
MODIFY (ename VARCHAR2(15) NOT NULL);

Note: There are additional considerations if you are using Trusted
Oracle; see the Trusted Oracle for more information.
9-16 Oracle8 Application Developer’s Guide

Defining Integrity Constraints
Restrictions with the ALTER TABLE Command
Because data is likely to be in the table at the time an ALTER TABLE statement is
issued, there are several restrictions to be aware of. Table 9–1 lists each type of con-
straint and the associated restrictions with the ALTER TABLE command.

* Assumes DISABLE clause not included in statement.

If you attempt to define a constraint with an ALTER TABLE statement and violate
one of these restrictions, the statement is rolled back and an informative error is
returned explaining the violation.

Required Privileges
The creator of a constraint must have the ability to create tables (that is, the CREATE
TABLE or CREATE ANY TABLE system privilege) or the ability to alter the table
(that is, the ALTER object privilege for the table or the ALTER ANY TABLE system
privilege) with the constraint. Additionally, UNIQUE key and PRIMARY KEY integ-
rity constraints require that the owner of the table have either a quota for the
tablespace that contains the associated index or the UNLIMITED TABLESPACE sys-

Table 9–1 Restrictions for Defining Integrity Constraints with the ALTER TABLE Com-
mand

Type of

Constraint

Added to Existing

Columns of the Table

Added with New

Columns to the Table

NOT NULL Cannot be defined if any row contains a
null value for this column*

Cannot be defined if the
table contains any rows

UNIQUE Cannot be defined if duplicate values
exist in the key*

Always OK

PRIMARY
KEY

Cannot be defined if duplicate or null
values exist in the key*

Cannot be defined if the
table contains any rows

FOREIGN
KEY

Cannot be defined if the foreign key has
values that do not reference a parent
key value*

Always OK

CHECK Cannot be defined if the volume has val-
ues that do not comply with the check
condition*

Always OK
 Maintaining Data Integrity 9-17

Defining Integrity Constraints
tem privilege. FOREIGN KEY integrity constraints also require some additional
privileges.

Naming Integrity Constraints
Assign names to NOT NULL, UNIQUE KEY, PRIMARY KEY, FOREIGN KEY, and
CHECK constraints using the CONSTRAINT option of the constraint clause. This
name must be unique with respect to other constraints that you own. If you do not
specify a constraint name, one is assigned by Oracle.

See the previous examples of the CREATE TABLE and ALTER TABLE statements for
examples of the CONSTRAINT option of the Constraint clause. Note that the name
of each constraint is included with other information about the constraint in the
data dictionary.

Enabling and Disabling Constraints Upon Definition
By default, whenever an integrity constraint is defined in a CREATE or ALTER
TABLE statement, the constraint is automatically enabled (enforced) by Oracle
unless it is specifically created in a disabled state using the DISABLE clause.

UNIQUE Key, PRIMARY KEY, and FOREIGN KEY
When defining UNIQUE key, PRIMARY KEY, and FOREIGN KEY integrity constraints,
you should be aware of several important issues and prerequisites. For information
about defining and managing FOREIGN KEY constraints

See Also: “Privileges Required for FOREIGN KEY Integrity Con-
straints” on page 9-26 for specific information.

See Also: “Listing Integrity Constraint Definitions” on page 9-27
for examples of data dictionary views.

See Also: “Enabling and Disabling Key Integrity Constraints” on
page 9-22 for more information about important issues for
enabling and disabling constraints.

See Also: “Managing FOREIGN KEY Integrity Constraints” on
page 9-25. UNIQUE key and PRIMARY KEY constraints are usu-
ally enabled by the database administrator, and the Oracle8 Admin-
istrator’s Guide .
9-18 Oracle8 Application Developer’s Guide

Enabling and Disabling Integrity Constraints
Enabling and Disabling Integrity Constraints
This section explains the mechanisms and procedures for manually enabling and
disabling integrity constraints.

In summary, an integrity constraint can be thought of as a statement about the data
in a database. This statement is always true when the constraint is enabled; how-
ever, the statement may or may not be true when the constraint is disabled because
data in violation of the integrity constraint can be in the database.

Why Enable or Disable Constraints?
To enforce the rules defined by integrity constraints, the constraints should always
be enabled; however, in certain situations, it is desirable to disable the integrity con-
straints of a table temporarily for performance reasons. For example:

■ when loading large amounts of data into a table using SQL*Loader

■ when performing batch operations that make massive changes to a table (such
as changing everyone’s employee number by adding 1000 to the existing num-
ber)

■ when importing or exporting one table at a time

In cases such as these, integrity constraints may be temporarily turned off to
improve the performance of the operation.

Integrity Constraint Violations
If a row of a table does not adhere to an integrity constraint, this row is said to be in
violation of the constraint and is known as an exception to the constraint. If any
exceptions exist, the constraint cannot be enabled. The rows that violate the con-
straint must be either updated or deleted in order for the constraint to be enabled.

enabled constraint When a constraint is enabled, the rule defined by the con-
straint is enforced on the data values in the columns that
define the constraint. The definition of the constraint is stored
in the data dictionary.

disabled constraint When a constraint is disabled, the rule defined by the con-
straint is not enforced on the data values in the columns
included in the constraint; however, the definition of the con-
straint is retained in the data dictionary.
 Maintaining Data Integrity 9-19

Enabling and Disabling Integrity Constraints
Exceptions for a specific integrity constraint can be identified while attempting to
enable the constraint. This procedure is discussed in the section “Exception
Reporting” on page 9-23.

On Definition
When you define an integrity constraint in a CREATE TABLE or ALTER TABLE state-
ment, you can enable the constraint by including the ENABLE clause in its defini-
tion or disable it by including the DISABLE clause in its definition. If neither the
ENABLE nor the DISABLE clause is included in a constraint’s definition, Oracle
automatically enables the constraint.

Enabling Constraints
The following CREATE TABLE and ALTER TABLE statements both define and
enable integrity constraints:

CREATE TABLE emp (
 empno NUMBER(5) PRIMARY KEY, . . .);
 ALTER TABLE emp
 ADD PRIMARY KEY (empno);

An ALTER TABLE statement that defines and attempts to enable an integrity con-
straint may fail because rows of the table may violate the integrity constraint. In
this case, the statement is rolled back and the constraint definition is not stored and
not enabled. Refer to the section “Exception Reporting” on page 9-23 for more infor-
mation about rows that violate integrity constraints.

Disabling Constraints
The following CREATE TABLE and ALTER TABLE statements both define and dis-
able integrity constraints:

CREATE TABLE emp (
empno NUMBER(5) PRIMARY KEY DISABLE, . . .);

ALTER TABLE emp
ADD PRIMARY KEY (empno) DISABLE;

An ALTER TABLE statement that defines and disables an integrity constraints never
fails. The definition of the constraint is always allowed because its rule is not
enforced.
9-20 Oracle8 Application Developer’s Guide

Enabling and Disabling Integrity Constraints
Enabling and Disabling Defined Integrity Constraints
Use the ALTER TABLE command to

■ enable a disabled constraint, using the ENABLE clause

■ disable an enabled constraint, using the DISABLE clause

Enabling Disabled Constraints
The following statements are examples of statements that enable disabled integrity
constraints:

ALTER TABLE dept
ENABLE CONSTRAINT dname_ukey;

ALTER TABLE dept
ENABLE PRIMARY KEY,
ENABLE UNIQUE (dname, loc);

An ALTER TABLE statement that attempts to enable an integrity constraint fails
when the rows of the table violate the integrity constraint. In this case, the state-
ment is rolled back and the constraint is not enabled. Refer to the section “Excep-
tion Reporting” on page 9-23 for more information about rows that violate integrity
constraints.

Disabling Enabled Constraints
The following statements are examples of statements that disable enabled integrity
constraints:

ALTER TABLE dept
DISABLE CONSTRAINT dname_ukey;

ALTER TABLE dept
DISABLE PRIMARY KEY,
DISABLE UNIQUE (dname, loc);
 Maintaining Data Integrity 9-21

Enabling and Disabling Integrity Constraints
Enabling and Disabling Key Integrity Constraints
When enabling or disabling UNIQUE key, PRIMARY KEY, and FOREIGN KEY integ-
rity constraints, you should be aware of several important issues and prerequisites.
For more information about enabling, disabling, and managing FOREIGN KEY con-
straints. UNIQUE key and PRIMARY KEY constraints are usually managed by the
database administrator.
 .

Enabling Constraints after a Parallel Direct Path Load
SQL*Loader permits multiple concurrent sessions to perform a direct path load
into the same table. Because each SQL*Loader session can attempt to re-enable con-
straints on a table after a direct path load, there is a danger that one session may
attempt to re-enable a constraint before another session is finished loading data. In
this case, the first session to complete the load will be unable to enable the con-
straint because the remaining sessions possess share locks on the table.

Because there is a danger that some constraints might not be re-enabled after a
direct path load, you should check the status of the constraint after completing the
load to ensure that it was enabled properly.

PRIMARY and UNIQUE KEY constraints
PRIMARY KEY and UNIQUE key constraints create indexes on a table when they are
enabled, and subsequently can take a significantly long time to enable after a direct
path loading session if the table is very large.

Tip — Using the Data Dictionary for Reference: The example
statements in the previous sections require that you have some
information about a constraint to enable or disable it. For example,
the first statement of each section requires that you know the
constraint’s name, while the second statement of each section
requires that you know the unique key’s column list. If you do not
have such information, you can query one of the data dictionary
views defined for constraints; for more information about these
views, see “Listing Integrity Constraint Definitions” on page 9-27
and Oracle8 Reference.

See Also: “Managing FOREIGN KEY Integrity Constraints” on
page 9-25., and the Oracle8 Administrator’s Guide.
9-22 Oracle8 Application Developer’s Guide

Enabling and Disabling Integrity Constraints
You should consider enabling these constraints manually after a load (and not spec-
ify the automatic enable feature). This allows you to manually create the required
indexes in parallel to save time before enabling the constraint.
.

Exception Reporting
If no exceptions are present when you issue a CREATE TABLE... ENABLE... or ALTER
TABLE... ENABLE... statement, the integrity constraint is enabled and all subsequent
DML statements are subject to the enabled integrity constraints.

If exceptions exist when you enable a constraint, an error is returned and the integ-
rity constraint remains disabled. When a statement is not successfully executed
because integrity constraint exceptions exist, the statement is rolled back. If excep-
tions exist, you cannot enable the constraint until all exceptions to the constraint
are either updated or deleted.

To determine which rows violate the integrity constraint, include the EXCEPTIONS
option in the ENABLE clause of a CREATE TABLE or ALTER TABLE statement. The
EXCEPTIONS option places the ROWID, table owner, table name, and constraint
name of all exception rows into a specified table. For example, the following state-
ment attempts to enable the primary key of the DEPT table; if exceptions exist, infor-
mation is inserted into a table named EXCEPTIONS:

ALTER TABLE dept ENABLE PRIMARY KEY EXCEPTIONS INTO exceptions;
Create an appropriate exceptions report table to accept information from the
EXCEPTIONS option of the ENABLE clause. Create an exception table by submitting
the script UTLEXCPT.SQL. The script creates a tabled named EXCEPTIONS. You
can create additional exceptions tables with different names by modifying and
resubmitting the script.

If duplicate primary key values exist in the DEPT table and the name of the PRI-
MARY KEY constraint on DEPT is SYS_C00301, the following rows might be placed
in the table EXCEPTIONS by the previous statement:

SELECT * FROM exceptions;

ROWID OWNER TABLE_NAME CONSTRAINT
------------------ ------ ------------ -----------
AAAA5bAADAAAAEQAAA SCOTT DEPT SYS_C00301
AAAA5bAADAAAAEQAAB SCOTT DEPT SYS_C00301

See Also: Oracle8 Tuning for more information about creating
indexes in parallel.
 Maintaining Data Integrity 9-23

Altering Integrity Constraints
A more informative query would be to join the rows in an exception report table
and the master table to list the actual rows that violate a specific constraint. For
example:

SELECT deptno, dname, loc FROM dept, exceptions
WHERE exceptions.constraint = ’SYS_C00301’
AND dept.rowid = exceptions.row_id;

DEPTNO DNAME LOC
---------- -------------- -------------
10 ACCOUNTING NEW YORK
10 RESEARCH DALLAS

Rows that violate a constraint must be either updated or deleted from the table that
contains the constraint. If updating exceptions, you must change the value that vio-
lates the constraint to a value consistent with the constraint or a null (if allowed).
After updating or deleting a row in the master table, delete the corresponding rows
for the exception in the exception report table to avoid confusion with later excep-
tion reports. The statements that update the master table and the exception report
table should be in the same transaction to ensure transaction consistency.

For example, to correct the exceptions in the previous examples, the following
transaction might be issued:

UPDATE dept SET deptno = 20 WHERE dname = ’RESEARCH’;
DELETE FROM exceptions WHERE constraint = ’SYS_C00301’;
COMMIT;

When you manage exceptions, your goal should be to eliminate all exceptions in
your exception report table. After eliminating all exceptions, you must re-enable
the constraint; the constraint is not automatically enabled after the exceptions are
handled.

While you are correcting current exceptions for a table with the constraint disabled,
other users can issue statements creating new exceptions.

Altering Integrity Constraints
You cannot alter integrity constraints. If you must alter the action defined by a
given integrity constraint, drop the existing constraint and create a replacement.
9-24 Oracle8 Application Developer’s Guide

Managing FOREIGN KEY Integrity Constraints
Dropping Integrity Constraints
Drop an integrity constraint if the rule that it enforces is no longer true or if the con-
straint is no longer needed. Drop an integrity constraint using the ALTER TABLE
command and the DROP clause. For example, the following statements drop integ-
rity constraints:

ALTER TABLE dept
DROP UNIQUE (dname, loc);

ALTER TABLE emp
DROP PRIMARY KEY,
DROP CONSTRAINT dept_fkey;

DROP TABLE emp CASCADE CONSTRAINTS;

When dropping UNIQUE key, PRIMARY KEY, and FOREIGN KEY integrity con-
straints, you should be aware of several important issues and prerequisites. For
more information about dropping FOREIGN KEY constraints. UNIQUE key and PRI-
MARY KEY constraints are usually managed by the database administrator.

Managing FOREIGN KEY Integrity Constraints
General information about defining, enabling, disabling, and dropping all types of
integrity constraints is given in the previous sections. The following section supple-
ments this information, focusing specifically on issues regarding FOREIGN KEY
integrity constraints.

Defining FOREIGN KEY Integrity Constraints
The following topics are of interest when defining FOREIGN KEY integrity con-
straints.

Matching of Datatypes
When defining referential integrity constraints, the corresponding column names of
the dependent and referenced tables do not need to match. However, they must be
of the same datatype.

See Also: “Managing FOREIGN KEY Integrity Constraints” on
page 9-25., and the Oracle8 Administrator’s Guide.
 Maintaining Data Integrity 9-25

Managing FOREIGN KEY Integrity Constraints
Composite Foreign Keys
Because foreign keys reference primary and unique keys of the parent table, and
PRIMARY KEY and UNIQUE key constraints are enforced using indexes, composite
foreign keys are limited to 16 columns.

Implied Referencing of a Primary Key
If the column list is not included in the REFERENCES option when defining a
FOREIGN KEY constraint (single column or composite), Oracle assumes that you
intend to reference the primary key of the specified table. Alternatively, you can
explicitly specify the column(s) to reference in the parent table within parentheses.
Oracle automatically checks to verify that this column list references a primary or
unique key of the parent table. If it does not, an informative error is returned.

Privileges Required for FOREIGN KEY Integrity Constraints
To create a FOREIGN KEY constraint, the creator of the constraint must have privi-
leged access to both the parent and the child table.

■ The Parent Table The creator of the referential integrity constraint must own
the parent table or have REFERENCES object privileges on the columns that con-
stitute the parent key of the parent table.

■ The Child Table The creator of the referential integrity constraint must have
the ability to create tables (that is, the CREATE TABLE or CREATE ANY TABLE
system privilege) or the ability to alter the child table (that is, the ALTER object
privilege for the child table or the ALTER ANY TABLE system privilege).

In both cases, necessary privileges cannot be obtained via a role; they must be
explicitly granted to the creator of the constraint.

These restrictions allow

■ the owner of the child table to explicitly decide what constraints are enforced
on her or his tables and the other users that can create constraints on her or his
tables

■ the owner of the parent table to explicitly decide if foreign keys can depend on
the primary and unique keys in her tables

Specifying Referential Actions for Foreign Keys
Oracle allows two different types of referential integrity actions to be enforced, as
specified with the definition of a FOREIGN KEY constraint:
9-26 Oracle8 Application Developer’s Guide

Listing Integrity Constraint Definitions
■ The UPDATE/DELETE No Action Restriction This action prevents the update
or deletion of a parent key if there is a row in the child table that references the
key. By default, all FOREIGN KEY constraints enforce the no action restriction;
no option needs to be specified when defining the constraint to enforce the no
action restriction. For example:

CREATE TABLE emp (
. . .,
FOREIGN KEY (deptno) REFERENCES dept);

■ The ON DELETE CASCADE Action This action allows referenced data in the
parent key to be deleted (but not updated). If referenced data in the parent key
is deleted, all rows in the child table that depend on the deleted parent key val-
ues are also deleted. To specify this referential action, include the ON DELETE
CASCADE option in the definition of the FOREIGN KEY constraint. For example:

CREATE TABLE emp (. . .,
 FOREIGN KEY (deptno) REFERENCES dept
 ON DELETE CASCADE);

Enabling FOREIGN KEY Integrity Constraints
FOREIGN KEY integrity constraints cannot be enabled if the referenced primary or
unique key’s constraint is not present or not enabled.

Listing Integrity Constraint Definitions
The data dictionary contains the following views that relate to integrity constraints:

■ ALL_CONSTRAINTS

■ ALL_CONS_COLUMNS

■ CONSTRAINT_COLUMNS

■ CONSTRAINT_DEFS

■ USER_CONSTRAINTS

■ USER_CONS_COLUMNS

■ USER_CROSS_REFS

■ DBA_CONSTRAINTS

■ DBA_CONS_COLUMNS

■ DBA_CROSS_REFS
 Maintaining Data Integrity 9-27

Listing Integrity Constraint Definitions
Refer to Oracle8 Reference for detailed information about each view.

Examples
Consider the following CREATE TABLE statements that define a number of integ-
rity constraints, and the following examples:

CREATE TABLE dept (
deptno NUMBER(3) PRIMARY KEY,
dname VARCHAR2(15),
loc VARCHAR2(15),
CONSTRAINT dname_ukey UNIQUE (dname, loc),
CONSTRAINT loc_check1

CHECK (loc IN (’NEW YORK’, ’BOSTON’, ’CHICAGO’)));

CREATE TABLE emp (
empno NUMBER(5) PRIMARY KEY,
ename VARCHAR2(15) NOT NULL,
job VARCHAR2(10),
mgr NUMBER(5) CONSTRAINT mgr_fkey

 REFERENCES emp ON DELETE CASCADE,
hiredate DATE,
sal NUMBER(7,2),
comm NUMBER(5,2),
deptno NUMBER(3) NOT NULL
CONSTRAINT dept_fkey REFERENCES dept);

Example 1: Listing All of Your Accessible Constraints The following query lists all con-
straints defined on all tables accessible to you, the user:

SELECT constraint_name, constraint_type, table_name,
r_constraint_name

FROM user_constraints;
Considering the example statements at the beginning of this section, a list similar to
the one below is returned:

CONSTRAINT_NAME C TABLE_NAME R_CONSTRAINT_NAME
--------------- - ----------- ------------------
SYS_C00275 P DEPT
DNAME_UKEY U DEPT
LOC_CHECK1 C DEPT
SYS_C00278 C EMP
SYS_C00279 C EMP
SYS_C00280 P EMP
MGR_FKEY R EMP SYS_C00280
DEPT_FKEY R EMP SYS_C00275
9-28 Oracle8 Application Developer’s Guide

Listing Integrity Constraint Definitions
Notice the following:

■ Some constraint names are user specified (such as DNAME_UKEY), while others
are system specified (such as SYS_C00275).

■ Each constraint type is denoted with a different character in the
CONSTRAINT_TYPE column. The table below summarizes the characters used
for each constraint type.

:

Example 2: Distinguishing NOT NULL Constraints from CHECK Constraints In the previous
example, several constraints are listed with a constraint type of “C”. To distinguish
which constraints are NOT NULL constraints and which are CHECK constraints in the
EMP and DEPT tables, issue the following query:

SELECT constraint_name, search_condition
FROM user_constraints
WHERE (table_name = ’DEPT’ OR table_name = ’EMP’) AND

constraint_type = ’C’;

Considering the example CREATE TABLE statements at the beginning of this sec-
tion, a list similar to the one below is returned:

CONSTRAINT_NAME SEARCH_CONDITION
--------------- --
LOC_CHECK1 loc IN (’NEW YORK’, ’BOSTON’, ’CHICAGO’)
SYS_C00278 ENAME IS NOT NULL
SYS_C00279 DEPTNO IS NOT NULL

Constraint Type Character

PRIMARY KEY P

UNIQUE KEY U

FOREIGN KEY R

CHECK, NOT NULL C

Note: An additional constraint type is indicated by the character
“V” in the CONSTRAINT_TYPE column. This constraint type corre-
sponds to constraints created by the WITH CHECK OPTION for
views. See Chapter 4, “Managing Schema Objects” for more infor-
mation about views and the WITH CHECK OPTION.
 Maintaining Data Integrity 9-29

Listing Integrity Constraint Definitions
Notice the following:

■ NOT NULL constraints are clearly identified in the SEARCH_CONDITION column.

■ The conditions for user-defined CHECK constraints are explicitly listed in the
SEARCH_CONDITION column.

Example 3: Listing Column Names that Constitute an Integrity Constraint The following
query lists all columns that constitute the constraints defined on all tables accessi-
ble to you, the user:

SELECT constraint_name, table_name, column_name
 FROM user_cons_columns;

Considering the example statements at the beginning of this section, a list similar to
the one below is returned:

CONSTRAINT_NAME TABLE_NAME COLUMN_NAME
--------------- ----------- ---------------
DEPT_FKEY EMP DEPTNO
DNAME_UKEY DEPT DNAME
DNAME_UKEY DEPT LOC
LOC_CHECK1 DEPT LOC
MGR_FKEY EMP MGR
SYS_C00275 DEPT DEPTNO
SYS_C00278 EMP ENAME
SYS_C00279 EMP DEPTNO
SYS_C00280 EMP EMPNO
9-30 Oracle8 Application Developer’s Guide

 Using Procedures and Pack
10

Using Procedures and Packages

This chapter discusses the procedural capabilities of Oracle, including:

■ PL/SQL Procedures and Packages

■ PL/SQL Packages

■ Remote Dependencies

■ Cursor Variables

■ Hiding PL/SQL Code

■ Error Handling

■ Invoking Stored Procedures

■ Calling Stored Functions from SQL Expressions

■ Supplied Packages

■ Describing Stored Procedures

■ Listing Information about Procedures and Packages

■ The DBMS_ROWID Package

■ The UTL_HTTP Package

Note: If you are using Trusted Oracle, also see the Trusted Oracle
documentation for additional information.
ages 10-1

PL/SQL Procedures and Packages
PL/SQL Procedures and Packages
PL/SQL is a modern, block-structured programming language. It provides you
with a number of features that make developing powerful database applications
very convenient. For example, PL/SQL provides procedural constructs, such as
loops and conditional statements, that you do not find in standard SQL.

You can directly issue SQL data manipulation language (DML) statements inside
PL/SQL blocks, and you can use procedures, supplied by Oracle, to perform data
definition language (DDL) statements.

PL/SQL code executes on the server, so using PL/SQL allows you to centralize sig-
nificant parts of your database applications for increased maintainability and secu-
rity. It also enables you to achieve a significant reduction of network overhead in
client/server applications.

You can even use PL/SQL for some database applications in place of 3GL pro-
grams that use embedded SQL or the Oracle Call Interface (OCI).

There are several kinds of PL/SQL program units:

■ anonymous PL/SQL blocks

■ triggers

■ stand-alone stored procedures and functions

■ packages, that can contain stored procedures and functions

Anonymous Blocks
An anonymous PL/SQL block consists of an optional declarative part, an executable
part, and one or more optional exception handlers.

You use the declarative part to declare PL/SQL variables, exceptions, and cursors.
The executable part contains PL/SQL code and SQL statements, and can contain
nested blocks. Exception handlers contain code that is called when the exception is
raised, either as a predefined PL/SQL exception (such as NO_DATA_FOUND or
ZERO_DIVIDE), or as an exception that you define.

Note: Some Oracle tools, such as Oracle Forms, contain a PL/
SQL engine, and can execute PL/SQL locally.

See Also: For complete information about the PL/SQL language,
see the PL/SQL User’s Guide and Reference.
10-2 Oracle8 Application Developer’s Guide

PL/SQL Procedures and Packages
The following short example of a PL/SQL anonymous block prints the names of all
employees in department 20 in the EMP table, using the DBMS_OUTPUT package
(described on page 12-22):

DECLARE
 emp_name VARCHAR2(10);
 CURSOR c1 IS SELECT ename FROM emp
 WHERE deptno = 20;
BEGIN
 LOOP
 FETCH c1 INTO emp_name;
 EXIT WHEN c1%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(emp_name);
 END LOOP;
END;

:

Exceptions allow you to handle Oracle error conditions within PL/SQL program
logic. This allows your application to prevent the server from issuing an error that
could cause the client application to abort. The following anonymous block handles
the predefined Oracle exception NO_DATA_FOUND (which would result in an ORA-
01403 error if not handled):

DECLARE
 emp_number INTEGER := 9999;
 emp_name VARCHAR2(10);
BEGIN
 SELECT ename INTO emp_name FROM emp
 WHERE empno = emp_number; -- no such number
 DBMS_OUTPUT.PUT_LINE(’Employee name is ’ || emp_name);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE(’No such employee: ’ || emp_number);
END;

You can also define your own exceptions, declare them in the declaration part of a
block, and define them in the exception part of the block. An example follows:

DECLARE

Note: If you try this block out using SQL*Plus make sure to issue
the command SET SERVEROUTPUT ON so that output using the
DBMS_OUTPUT procedures such as PUT_LINE is activated. Also,
terminate the example with a slash (/) to activate it.
 Using Procedures and Packages 10-3

PL/SQL Procedures and Packages
 emp_name VARCHAR2(10);
 emp_number INTEGER;
 empno_out_of_range EXCEPTION;
BEGIN
 emp_number := 10001;
 IF emp_number > 9999 OR emp_number < 1000 THEN
 RAISE empno_out_of_range;
 ELSE
 SELECT ename INTO emp_name FROM emp
 WHERE empno = emp_number;
 DBMS_OUTPUT.PUT_LINE(’Employee name is ’ || emp_name);
END IF;
EXCEPTION
 WHEN empno_out_of_range THEN
 DBMS_OUTPUT.PUT_LINE(’Employee number ’ || emp_number ||
 ’ is out of range.’);
END;

Anonymous blocks are most often used either interactively, from a tool such as
SQL*Plus, or in a precompiler, OCI, or SQL*Module application. They are normally
used to call stored procedures, or to open cursor variables.

Database Triggers
A database trigger is a special kind of PL/SQL anonymous block. You can define
triggers to fire before or after SQL statements, either on a statement level or for
each row that is affected. See Chapter 13, “Using Database Triggers” in this Guide
for more information.

Stored Procedures and Functions
A stored procedure or function is a PL/SQL program unit that

■ has a name

■ can take parameters, and return values

■ is stored in the data dictionary

■ can be invoked by many users

See Also: PL/SQL User’s Guide and Reference for a complete treat-
ment of exceptions.

See Also: A description of cursor variables on page 10-25.
10-4 Oracle8 Application Developer’s Guide

PL/SQL Procedures and Packages
Procedure Names
Since a procedure is stored in the database, it must be named, to distinguish it from
other stored procedures, and to make it possible for applications to call it. Each pub-
licly-visible procedure in a schema must have a unique name. The name must be a
legal PL/SQL identifier.
:

Procedure and function names that are part of packages can be overloaded. That is,
you can use the same name for different subprograms as long as their formal
parameters differ in number, order, or datatype family. See PL/SQL User’s Guide and
Reference for more information about subprogram name overloading.

Procedure Parameters
Stored procedures and functions can take parameters. The following example
shows a stored procedure that is similar to the anonymous block on page 10-3:

PROCEDURE get_emp_names (dept_num IN NUMBER) IS
 emp_name VARCHAR2(10);
 CURSOR c1 (depno NUMBER) IS
 SELECT ename FROM emp
 WHERE deptno = depno;

BEGIN
 OPEN c1(dept_num);
 LOOP
 FETCH c1 INTO emp_name;
 EXIT WHEN c1%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(emp_name);
 END LOOP;
 CLOSE c1;
END;

Note: The term stored procedure is sometimes used generically in
this Guide to cover both stored procedures and stored functions.

Note: If you plan to call a stored procedure using a stub gener-
ated by SQL*Module, the stored procedure name must also be a
legal identifier in the calling host 3GL language such as Ada or C.
 Using Procedures and Packages 10-5

PL/SQL Procedures and Packages
In the stored procedure example, the department number is an input parameter,
which is used when the parameterized cursor C1 is opened.

The formal parameters of a procedure have three major parts:

Parameter Modes
You use parameter modes to define the behavior of formal parameters. The three
parameter modes, IN (the default), OUT, and IN OUT , can be used with any sub-
program. However, avoid using the OUT and IN OUT modes with functions. The
purpose of a function is to take zero or more arguments and return a single value.
It is poor programming practice to have a function return multiple values. Also,
functions should be free from side effects, which change the values of variables not
local to the subprogram.

name The name of the parameter, which must be a legal PL/SQL identi-
fier.

mode The parameter mode, which indicates whether the parameter is
an input-only parameter (IN), an output-only parameter (OUT),
or is both an input and an output parameter (IN OUT). If the
mode is not specified, IN is assumed.

datatype The parameter datatype is a standard PL/SQL datatype.
10-6 Oracle8 Application Developer’s Guide

PL/SQL Procedures and Packages
Table 10–1 summarizes the information about parameter modes. Parameter modes
are explained in detail in the PL/SQL User’s Guide and Reference.

Parameter Datatypes
The datatype of a formal parameter consists of one of the following:

■ an unconstrained type name, such as NUMBER or VARCHAR2

■ a type that is constrained using the %TYPE or %ROWTYPE attributes
:

%TYPE and %ROWTYPE Attributes However, you can use the type attributes %TYPE
and %ROWTYPE to constrain the parameter. For example, the GET_EMP_NAMES
procedure specification in “Procedure Parameters” on page 10-5 could be written as

PROCEDURE get_emp_names(dept_num IN emp.deptno%TYPE)

to have the DEPT_NUM parameter take the same datatype as the DEPTNO column in
the EMP table. The column and table must be available when a declaration using
%TYPE (or %ROWTYPE) is elaborated.

Table 10–1 Parameter Modes

IN OUT IN OUT

the default must be specified must be specified

passes values to a subpro-
gram

returns values to the
caller

passes initial values to a
subprogram; returns
updated values to the
caller

formal parameter acts like a
constant

formal parameter acts
like an uninitialized vari-
able

formal parameter acts
like an initialized variable

formal parameter cannot be
assigned a value

formal parameter cannot
be used in an expression;
must be assigned a value

formal parameter should
be assigned a value

actual parameter can be a
constant, initialized vari-
able, literal, or expression

actual parameter must be
a variable

actual parameter must be
a variable

Note: Numerically constrained types such as NUMBER(2) or
VARCHAR2(20) are not allowed in a parameter list.
 Using Procedures and Packages 10-7

PL/SQL Procedures and Packages
Using %TYPE is recommended, since if the type of the column in the table changes,
it is not necessary to change the application code.

If the GET_EMP_NAMES procedure is part of a package, then you can use previously-
declared public (package) variables to constrain a parameter datatype. For example:

dept_number number(2);
...
PROCEDURE get_emp_names(dept_num IN dept_number%TYPE);

You use the %ROWTYPE attribute to create a record that contains all the columns of
the specified table. The following example defines the GET_EMP_REC procedure,
which returns all the columns of the EMP table in a PL/SQL record, for the given
EMPNO:

PROCEDURE get_emp_rec (emp_number IN emp.empno%TYPE,
 emp_ret OUT emp%ROWTYPE) IS
BEGIN
 SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno
 INTO emp_ret
 FROM emp
 WHERE empno = emp_number;
END;

You could call this procedure from a PL/SQL block as follows:

DECLARE
 emp_row emp%ROWTYPE; -- declare a record matching a
 -- row in the EMP table
BEGIN
 get_emp_rec(7499, emp_row); -- call for emp# 7499
 DBMS_OUTPUT.PUT(emp_row.ename || ’ ’ || emp_row.empno);
 DBMS_OUTPUT.PUT(’ ’ || emp_row.job || ’ ’ || emp_row.mgr);
 DBMS_OUTPUT.PUT(’ ’ || emp_row.hiredate || ’ ’ || emp_row.sal);
 DBMS_OUTPUT.PUT(’ ’ || emp_row.comm || ’ ’ || emp_row.deptno);
 DBMS_OUTPUT.NEW_LINE;
END;

Stored functions can also return values that are declared using %ROWTYPE. For
example:

FUNCTION get_emp_rec (dept_num IN emp.deptno%TYPE)
 RETURN emp%ROWTYPE IS ...
10-8 Oracle8 Application Developer’s Guide

PL/SQL Procedures and Packages
Tables and Records
You can pass PL/SQL tables as parameters to stored procedures and functions. You
can also pass tables of records as parameters.

Default Parameter Values
Parameters can take default values. You use the DEFAULT keyword or the assign-
ment operator to give a parameter a default value. For example, the specification
for the GET_EMP_NAMES procedure on page 10-5 could be written as

PROCEDURE get_emp_names (dept_num IN NUMBER DEFAULT 20) IS ...
or as

PROCEDURE get_emp_names (dept_num IN NUMBER := 20) IS ...

When a parameter takes a default value, it can be omitted from the actual parame-
ter list when you call the procedure. When you do specify the parameter value on
the call, it overrides the default value.

DECLARE Keyword
Unlike in an anonymous PL/SQL block, you do not use the keyword DECLARE
before the declarations of variables, cursors, and exceptions in a stored procedure.
In fact, it is an error to use it.

Creating Stored Procedures and Functions
Use your normal text editor to write the procedure. At the beginning of the proce-
dure, place the command

CREATE PROCEDURE procedure_name AS ...
For example, to use the example on page 10-8, you can create a text (source) file
called get_emp.sql containing the following code:

CREATE PROCEDURE get_emp_rec (emp_number IN emp.empno%TYPE,
 emp_ret OUT emp%ROWTYPE) AS
BEGIN
 SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno
 INTO emp_ret
 FROM emp
 WHERE empno = emp_number;
END;
/
Then, using an interactive tool such as SQL*Plus, load the text file containing the
procedure by entering the command
 Using Procedures and Packages 10-9

PL/SQL Procedures and Packages
SQLPLUS> @get_emp

to load the procedure into the current schema from the get_emp.sql file (.sql is the
default file extension). Note the slash (/) at the end of the code. This is not part of
the code; it just activates the loading of the procedure.
:

You can use either the keyword IS or AS after the procedure parameter list.

Use the CREATE [OR REPLACE] FUNCTION... command to store functions. See the
Oracle8 SQL Reference for the complete syntax of the CREATE PROCEDURE and CRE-
ATE FUNCTION commands.

Privileges Required to Create Procedures and Functions
To create a stand-alone procedure or function, or package specification or body, you
must meet the following prerequisites:

■ You must have the CREATE PROCEDURE system privilege to create a procedure
or package in your schema, or the CREATE ANY PROCEDURE system privilege
to create a procedure or package in another user’s schema.

:

If the privileges of a procedure’s or package’s owner change, the procedure must
be reauthenticated before it is executed. If a necessary privilege to a referenced
object is revoked from the owner of the procedure (or package), the procedure can-
not be executed.

The EXECUTE privilege on a procedure gives a user the right to execute a procedure
owned by another user. Privileged users execute the procedure under the security

WARNING: When developing a new procedure, it is usually
much more convenient to use the CREATE OR REPLACE...
PROCEDURE command. This replaces any previous version of
that procedure in the same schema with the newer version, but
note that this is done without warning.

Note: To create without errors, that is, to compile the procedure
or package successfully, requires the following additional privi-
leges: The owner of the procedure or package must have been
explicitly granted the necessary object privileges for all objects ref-
erenced within the body of the code; the owner cannot have
obtained required privileges through roles.
10-10 Oracle8 Application Developer’s Guide

PL/SQL Packages
domain of the procedure’s owner. Therefore, users never have to be granted the
privileges to the objects referenced by a procedure. This allows for more disciplined
and efficient security strategies with database applications and their users. Further-
more, all procedures and packages are stored in the data dictionary (in the SYSTEM
tablespace). No quota controls the amount of space available to a user who creates
procedures and packages.

Altering Stored Procedures and Functions
To alter a stored procedure or stored function, you must first DROP it, using the
DROP PROCEDURE or DROP FUNCTION command, then recreate it using the CREATE
PROCEDURE or CREATE FUNCTION command. Alternatively, use the CREATE OR
REPLACE PROCEDURE or CREATE OR REPLACE FUNCTION command, which first
drops the procedure or function if it exists, then recreates it as specified.

External Procedures
A PL/SQL procedure executing on an Oracle Server can call an external procedure,
written in a 3GL. The 3GL procedure executes in a separate address space from that
of the Oracle Server.

PL/SQL Packages
A package is a group of PL/SQL types, objects, and stored procedures and func-
tions. The specification part of a package declares the public types, variables, con-
stants, and subprograms that are visible outside the immediate scope of the
package. The body of a package defines the objects declared in the specification, as
well as private objects that are not visible to applications outside the package.

The following example shows a package specification for a package named
EMPLOYEE_MANAGEMENT. The package contains one stored function and two
stored procedures.

CREATE PACKAGE employee_management AS
 FUNCTION hire_emp (name VARCHAR2, job VARCHAR2,
 mgr NUMBER, hiredate DATE, sal NUMBER, comm NUMBER,

WARNING: The procedure or function is dropped without any
warning.

See Also: For information about external procedures, see the PL/
SQL User’s Guide and Reference.
 Using Procedures and Packages 10-11

PL/SQL Packages
 deptno NUMBER) RETURN NUMBER;
 PROCEDURE fire_emp (emp_id NUMBER);
 PROCEDURE sal_raise (emp_id NUMBER, sal_incr NUMBER);
END employee_management;
The body for this package defines the function and the procedures:

CREATE PACKAGE BODY employee_management AS
 FUNCTION hire_emp (name VARCHAR2, job VARCHAR2,
 mgr NUMBER, hiredate DATE, sal NUMBER, comm NUMBER,
 deptno NUMBER) RETURN NUMBER IS

-- The function accepts all arguments for the fields in
-- the employee table except for the employee number.
-- A value for this field is supplied by a sequence.
-- The function returns the sequence number generated
-- by the call to this function.

 new_empno NUMBER(10);

 BEGIN
 SELECT emp_sequence.NEXTVAL INTO new_empno FROM dual;
 INSERT INTO emp VALUES (new_empno, name, job, mgr,
 hiredate, sal, comm, deptno);
 RETURN (new_empno);
 END hire_emp;

 PROCEDURE fire_emp(emp_id IN NUMBER) AS

-- The procedure deletes the employee with an employee
-- number that corresponds to the argument EMP_ID. If
-- no employee is found, an exception is raised.

 BEGIN
 DELETE FROM emp WHERE empno = emp_id;
 IF SQL%NOTFOUND THEN
 raise_application_error(-20011, ’Invalid Employee
 Number: ’ || TO_CHAR(emp_id));
 END IF;
END fire_emp;

PROCEDURE sal_raise (emp_id IN NUMBER, sal_incr IN NUMBER) AS

-- The procedure accepts two arguments. EMP_ID is a
-- number that corresponds to an employee number.
-- SAL_INCR is the amount by which to increase the
10-12 Oracle8 Application Developer’s Guide

PL/SQL Packages
-- employee’s salary.
 BEGIN

-- If employee exists, update salary with increase.
 UPDATE emp
 SET sal = sal + sal_incr
 WHERE empno = emp_id;
 IF SQL%NOTFOUND THEN
 raise_application_error(-20011, ’Invalid Employee
 Number: ’ || TO_CHAR(emp_id));
 END IF;
 END sal_raise;
END employee_management;

:

Creating Packages
Each part of a package is created with a different command. Create the package
specification using the CREATE PACKAGE command. The CREATE PACKAGE com-
mand declares public package objects.

To create a package body, use the CREATE PACKAGE BODY command. The CREATE
PACKAGE BODY command defines the procedural code of the public procedures
and functions declared in the package specification. (You can also define private (or
local) package procedures, functions, and variables within the package body. See
“Local Objects” on page 10-14.

The OR REPLACE Clause
It is often more convenient to add the OR REPLACE clause in the CREATE PACKAGE
or CREATE PACKAGE BODY commands when you are first developing your applica-
tion. The effect of this option is to drop the package or the package body without
warning. The CREATE commands would then be

CREATE OR REPLACE PACKAGE package_name AS ...
and

CREATE OR REPLACE PACKAGE BODY package_name AS ...

Note: If you want to try this example, first create the sequence
number EMP_SEQUENCE. You can do this using the following
SQL*Plus statement:

SQL> EXECUTE CREATE SEQUENCE emp_sequence
 > START WITH 8000 INCREMENT BY 10;
 Using Procedures and Packages 10-13

PL/SQL Packages
Privileges Required to Create Packages
The privileges required to create a package specification or package body are the
same as those required to create a stand-alone procedure or function; see page
10-10.

Creating Packaged Objects
The body of a package can contain

■ procedures declared in the package specification

■ functions declared in the package specification

■ definitions of cursors declared in the package specification

■ local procedures and functions, not declared in the package specification

■ local variables

Procedures, functions, cursors, and variables that are declared in the package speci-
fication are global. They can be called, or used, by external users that have execute
permission for the package, or that have EXECUTE ANY PROCEDURE privileges.

When you create the package body, make sure that each procedure that you define
in the body has the same parameters, by name, datatype, and mode, as the declaration
in the package specification. For functions in the package body, the parameters as
well as the return type must agree in name and type.

Local Objects
You can define local variables, procedures, and functions in a package body. These
objects can only be accessed by other procedures and functions in the body of the
same package. They are not visible to external users, regardless of the privileges
they hold.

Naming Packages and Package Objects
The names of a package and all public objects in the package must be unique
within a given schema. The package specification and its body must have the same
name. All package constructs must have unique names within the scope of the
package, unless overloading of procedure names is desired.

Dropping Packages and Procedures
A stand-alone procedure, a stand-alone function, a package body, or an entire pack-
age can be dropped using the SQL commands DROP PROCEDURE, DROP FUNCTION,
10-14 Oracle8 Application Developer’s Guide

PL/SQL Packages
DROP PACKAGE BODY, and DROP PACKAGE, respectively. A DROP PACKAGE state-
ment drops both a package’s specification and body.

The following statement drops the OLD_SAL_RAISE procedure in your schema:

DROP PROCEDURE old_sal_raise;

Privileges Required to Drop Procedures and Packages
To drop a procedure or package, the procedure or package must be in your schema
or you must have the DROP ANY PROCEDURE privilege. An individual procedure
within a package cannot be dropped; the containing package specification and
body must be re-created without the procedures to be dropped.

Package Invalidations and Session State
Each session that references a package object has its own instance of the corre-
sponding package, including persistent state for any public and private variables,
cursors, and constants. If any of the session’s instantiated packages (specification or
body) are subsequently invalidated and recompiled, all other dependent package
instantiations (including state) for the session are lost.

For example, assume that session S instantiates packages P1 and P2, and that a pro-
cedure in package P1 calls a procedure in package P2. If P1 is invalidated and
recompiled (for example, as the result of a DDL operation), the session S instantia-
tions of both P1 and P2 are lost. In such situations, a session receives the following
error the first time it attempts to use any object of an invalidated package instantia-
tion:

ORA-04068: existing state of packages has been discarded

The second time a session makes such a package call, the package is reinstantiated
for the session without error.

In most production environments, DDL operations that can cause invalidations are
usually performed during inactive working hours; therefore, this situation might
not be a problem for end-user applications. However, if package specification or
body invalidations are common in your system during working hours, you might

Note: Oracle has been optimized to not return this message to the
session calling the package that it invalidated. Thus, in the exam-
ple above, session S would receive this message the first time it
called package P2, but would not receive it when calling P1.
 Using Procedures and Packages 10-15

Remote Dependencies
want to code your applications to detect for this error when package calls are
made. For example, the user-side application might reinitialize any user-side state
that depends on any session’s package state (that was lost) and reissue the package
call.

Remote Dependencies
Dependencies among PL/SQL library units (packages, stored procedures, and
stored functions) can be handled in two ways:

■ timestamps

■ signatures

Timestamps
If timestamps are used to handle dependencies among PL/SQL library units, when-
ever you alter a library unit or a relevant schema object all of its dependent units
are marked as invalid and must be recompiled before they can be executed.

Each library unit carries a timestamp that is set by the server when the unit is cre-
ated or recompiled. Figure 10–1 demonstrates this graphically. Procedures P1 and
P2 call stored procedure P3. Stored procedure P3 references table T1. In this exam-
ple, each of the procedures is dependent on table T1. P3 depends upon T1 directly,
while P1 and P2 depend upon T1 indirectly.

Figure 10–1 Dependency Relationships

If P3 is altered, P1 and P2 are marked as invalid immediately if they are on the
same server as P3. The compiled states of P1 and P2 contain records of the times-
tamp of P3. So if the procedure P3 is altered and recompiled, the timestamp on P3
no longer matches the value that was recorded for P3 during the compilation of P1
and P2.

P1 P3 T1

P2
10-16 Oracle8 Application Developer’s Guide

Remote Dependencies
If P1 and P2 are on a client system, or on another Oracle Server in a distributed
environment, the timestamp information is used to mark them as invalid at runt-
ime.

Disadvantages of the Timestamp Model
The disadvantage of this dependency model is that is unnecessarily restrictive.
Recompilation of dependent objects across the network are often performed when
not strictly necessary, leading to performance degradation.

Furthermore, on the client side, the timestamp model can lead to situations that
block an application from running at all, if the client-side application is built using
PL/SQL version 2. (Earlier releases of tools such as Oracle Forms that used PL/
SQL version 1 on the client side did not use this dependency model, since PL/SQL
version 1 had no support for stored procedures.)

For releases of Oracle Forms that are integrated with PL/SQL version 2 on the cli-
ent side, the timestamp model can present problems. First of all, during the installa-
tion of the application, the application is rendered invalid unless the client-side PL/
SQL procedures that it uses are recompiled at the client site. Also, if a client-side
procedure depends on a server procedure, and the server procedure is changed or
automatically recompiled, the client-side PL/SQL procedure must then be recom-
piled. Yet in many application environments (such as Forms runtime applications),
there is no PL/SQL compiler available on the client. This blocks the application
from running at all. The client application developer must then redistribute new
versions of the application to all customers.

Signatures
To alleviate some of the problems with the timestamp-only dependency model,
Oracle provides the additional capability of remote dependencies using signatures.
The signature capability affects only remote dependencies. Local (same server)
dependencies are not affected, as recompilation is always possible in this environ-
ment.

The signature of a subprogram contains information about the

■ name of the subprogram

■ base types of the parameters of the subprogram

■ modes of the parameters (IN , OUT, IN OUT)
 Using Procedures and Packages 10-17

Remote Dependencies
The user has control over whether signatures or timestamps govern remote depen-
dencies. See “Controlling Remote Dependencies” on page 10-23 for more informa-
tion. If the signature dependency model is in effect, a dependency on a remote
library unit causes an invalidation of the dependent unit if the dependent unit con-
tains a call to a subprogram in the parent unit, and the signature of this subpro-
gram has been changed in an incompatible manner.

For example, consider a procedure GET_EMP_NAME stored on a server
BOSTON_SERVER. The procedure is defined as

CREATE OR REPLACE PROCEDURE get_emp_name (
 emp_number IN NUMBER,
 hire_date OUT VARCHAR2,
 emp_name OUT VARCHAR2) AS
BEGIN
 SELECT ename, to_char(hiredate, ’DD-MON-YY’)
 INTO emp_name, hire_date
 FROM emp
 WHERE empno = emp_number;
END;

When GET_EMP_NAME is compiled on the BOSTON_SERVER, its signature as well as
its timestamp is recorded.

Now assume that on another server, in California, some PL/SQL code calls
GET_EMP_NAME identifying it using a DBlink called BOSTON_SERVER, as follows:

CREATE OR REPLACE PROCEDURE print_ename (
 emp_number IN NUMBER) AS
 hire_date VARCHAR2(12);
 ename VARCHAR2(10);
BEGIN
 get_emp_name@BOSTON_SERVER(
 emp_number, hire_date, ename);
 dbms_output.put_line(ename);
 dbms_output.put_line(hiredate);
END;

When this California server code is compiled, the following actions take place:

■ a connection is made to the Boston server

Note: Only the types and modes of parameters are significant.
The name of the parameter does not affect the signature.
10-18 Oracle8 Application Developer’s Guide

Remote Dependencies
■ the signature of GET_EMP_NAME is transferred to the California server

■ the signature is recorded in the compiled state of PRINT_ENAME

At runtime, during the remote procedure call from the California server to the Bos-
ton server, the recorded signature of GET_EMP_NAME that was saved in the com-
piled state of PRINT_ENAME gets sent across to the Boston server., regardless of
whether there were any changes or not.

If the timestamp dependency mode is in effect, a mismatch in timestamps causes
an error status to be returned to the calling procedure.

However, if the signature mode is in effect, any mismatch in timestamps is ignored,
and the recorded signature of GET_EMP_NAME in the compiled state of
PRINT_ENAME on the California server is compared with the current signature of
GET_EMP_NAME on the Boston server. If they match, the call succeeds. If they do
not match, an error status is returned to the PRINT_NAME procedure.

Note that the GET_EMP_NAME procedure on the Boston server could have been
changed. Or, its timestamp could be different from that recorded in the
PRINT_NAME procedure on the California server, due to, for example, the installa-
tion of a new release of the server. As long as the signature remote dependency
mode is in effect on the California server, a timestamp mismatch does not cause an
error when GET_EMP_NAME is called.

What Is a Signature?
A signature is associated with each compiled stored library unit. It identifies the
unit using the following criteria:

■ the name of the unit, that is, the package, procedure, or function name

■ the types of each of the parameters of the subprogram

■ the modes of the parameters

■ the number of parameters

■ the type of the return value for a function

When Does a Signature Change?

Datatypes A signature changes when you change from one class of datatype to
another. Within each datatype class, there can be several types. Changing a parame-
ter datatype from one type to another within a class does not cause the signature to
change.
 Using Procedures and Packages 10-19

Remote Dependencies
Table 10–2 shows the classes of types.

Table 10–2 Datatype Classes

Varchar Types: Number Types:

VARCHAR2 NUMBER

VARCHAR INTEGER

STRING INT

LONG SMALLINT

ROWID DECIMAL

DEC

Character Types: REAL

CHARACTER FLOAT

CHAR NUMERIC

DOUBLE PRECISION

Raw Types: NUMERIC

RAW

LONG RAW

Integer Types: Date Type:

BINARY_INTEGER DATE

PLS_INTEGER

BOOLEAN MLS Label Type:

NATURAL MLSLABEL

POSITIVE

POSITIVEN

NATURALN
10-20 Oracle8 Application Developer’s Guide

Remote Dependencies
Modes Changing to or from an explicit specification of the default parameter mode
IN does not change the signature of a subprogram. For example, changing

PROCEDURE P1 (param1 NUMBER);

to

PROCEDURE P1 (param1 IN NUMBER);

does not change the signature. Any other change of parameter mode does change
the signature.

Default Parameter Values Changing the specification of a default parameter value
does not change the signature. For example, procedure P1 has the same signature
in the following two examples:

PROCEDURE P1 (param1 IN NUMBER := 100);
PROCEDURE P1 (param1 IN NUMBER := 200);

An application developer who requires that callers get the new default value must
recompile the called procedure, but no signature-based invalidation occurs when a
default parameter value assignment is changed.

Examples of Signatures
In the GET_EMP_NAME procedure defined on page 10-5, if the procedure body is
changed to

BEGIN
-- date format model changes
 SELECT ename, to_char(hiredate, ’DD/MON/YYYY’)
 INTO emp_name, hire_date
 FROM emp
 WHERE empno = emp_number;
END;

then the specification of the procedure has not changed, and so its signature has not
changed.

But if the procedure specification is changed to

CREATE OR REPLACE PROCEDURE get_emp_name (
 emp_number IN NUMBER,
 hire_date OUT DATE,
 emp_name OUT VARCHAR2) AS
 Using Procedures and Packages 10-21

Remote Dependencies
and the body is changed accordingly, then the signature changes, because the
parameter HIRE_DATE has a different datatype.

However, if the name of that parameter changes to WHEN_HIRED, and the datatype
remains VARCHAR2, and the mode remains OUT, then the signature does not
change. Changing the name of a formal parameter does not change the signature of
the unit.

Consider the following example:

CREATE OR REPLACE PACKAGE emp_package AS
 TYPE emp_data_type IS RECORD (
 emp_number NUMBER,
 hire_date VARCHAR2(12),
 emp_name VARCHAR2(10));
 PROCEDURE get_emp_data
 (emp_data IN OUT emp_data_type);
END;

CREATE OR REPLACE PACKAGE BODY emp_package AS
 PROCEDURE get_emp_data
 (emp_data IN OUT emp_data_type) IS
BEGIN
 SELECT empno, ename, to_char(hiredate, ’DD/MON/YY’)
 INTO emp_data
 FROM emp
 WHERE empno = emp_data.emp_number;
END;

If the package specification is changed so that the record’s field names are changed,
but the types remain the same, this does not affect the signature. For example, the
following package specification has the same signature as the previous package
specification example:

CREATE OR REPLACE PACKAGE emp_package AS
 TYPE emp_data_type IS RECORD (
 emp_num NUMBER, -- was emp_number
 hire_dat VARCHAR2(12), --was hire_date
 empname VARCHAR2(10)); -- was emp_name
 PROCEDURE get_emp_data
 (emp_data IN OUT emp_data_type);
END;

Changing the name of the type of a parameter does not cause a change in the signa-
ture if the type remains the same as before. For example, the following package
specification for EMP_PACKAGE is the same as the first one on page 10-22:
10-22 Oracle8 Application Developer’s Guide

Remote Dependencies
CREATE OR REPLACE PACKAGE emp_package AS
 TYPE emp_data_ record _type IS RECORD (
 emp_number NUMBER,
 hire_date VARCHAR2(12),
 emp_name VARCHAR2(10));
 PROCEDURE get_emp_data
 (emp_data IN OUT emp_data_ record_ type);
END;

Controlling Remote Dependencies
Whether the timestamp or the signature dependency model is in effect is controlled
by the dynamic initialization parameter REMOTE_DEPENDENCIES_MODE.

■ If the initialization parameter file contains the specification

REMOTE_DEPENDENCIES_MODE = TIMESTAMP

and this is not explicitly overridden dynamically, then only timestamps are
used to resolve dependencies.

■ If the initialization parameter file contains the parameter specification

REMOTE_DEPENDENCIES_MODE = SIGNATURE

and this not explicitly overridden dynamically, then signatures are used to
resolve dependencies.

■ You can alter the mode dynamically by using the DDL commands

ALTER SESSION SET REMOTE_DEPENDENCIES_MODE =
 {SIGNATURE | TIMESTAMP}

to alter the dependency model for the current session, or

ALTER SYSTEM SET REMOTE_DEPENDENCIES_MODE =
 {SIGNATURE | TIMESTAMP}

to alter the dependency model on a system-wide basis after startup.

If the REMOTE_DEPENDENCIES_MODE parameter is not specified, either in the
INIT .ORA parameter file, or using the ALTER SESSION or ALTER SYSTEM DDL
commands, TIMESTAMP is the default value. So, unless you explicitly use the
REMOTE_DEPENDENCIES_MODE parameter, or the appropriate DDL command,
your server is operating using the timestamp dependency model.
 Using Procedures and Packages 10-23

Remote Dependencies
When you use REMOTE_DEPENDENCIES_MODE=SIGNATURE you should be aware
of the following:

■ If you change the default value of a parameter of a remote procedure, the local
procedure calling the remote procedure is not invalidated. If the call to the
remote procedure does not supply the parameter, the default value is used. In
this case, because invalidation/recompilation does not automatically occur, the
old default value is used. If you wish to see the new default values, you must
recompile the calling procedure manually.

■ If you add a new overloaded procedure in a package (a new procedure with
the same name as an existing one), local procedures that call the remote proce-
dure are not invalidated. If it turns out that this overloading ought to result in a
rebinding of existing calls from the local procedure under the TIMESTAMP
mode, this rebinding does not happen under the SIGNATURE mode, because
the local procedure does not get invalidated. You must recompile the local pro-
cedure manually to achieve the new rebinding.

■ If the types of parameters of an existing packaged procedure are changed so
that the new types have the same shape as the old ones, the local calling proce-
dure is not invalidated/recompiled automatically. You must recompile the call-
ing procedure manually to get the semantics of the new type.

Dependency Resolution
When REMOTE_DEPENDENCIES_MODE = TIMESTAMP (the default value), depen-
dencies among library units are handled by comparing timestamps at runtime. If
the timestamp of a called remote procedure does not match the timestamp of the
called procedure, the calling (dependent) unit is invalidated, and must be recom-
piled. In this case, if there is no local PL/SQL compiler, the calling application can-
not proceed.

In the timestamp dependency mode, signatures are not compared. If there is a local
PL/SQL compiler, recompilation happens automatically when the calling proce-
dure is executed.

When REMOTE_DEPENDENCIES_MODE = SIGNATURE, the recorded timestamp in
the calling unit is first compared to the current timestamp in the called remote unit.
If they match, then the call proceeds normally. If the timestamps do not match, then
the signature of the called remote subprogram, as recorded in the calling subpro-
gram, is compared with the current signature of the called subprogram. If they do
not match, using the criteria described in the section “What Is a Signature?” on
page 10-19, then an error is returned to the calling session.
10-24 Oracle8 Application Developer’s Guide

Cursor Variables
Suggestions for Managing Dependencies
Oracle recommends that you follow these guidelines for setting the
REMOTE_DEPENDENCIES_MODE parameter:

■ Server-side PL/SQL users can set the parameter to TIMESTAMP (or let it default
to that) to get the timestamp dependency mode.

■ Server-side PL/SQL users can choose to use the signature dependency mode if
they have a distributed system and wish to avoid possible unnecessary recom-
pilations.

■ Client-side PL/SQL users should set the parameter to SIGNATURE. This allows

– installation of new applications at client sites, without the need to recom-
pile procedures

– ability to upgrade the server, without encountering timestamp mismatches.

■ When using SIGNATURE mode on the server side, make sure to add new proce-
dures to the end of the procedure (or function) declarations in a package spec.
Adding a new procedure in the middle of the list of declarations can cause
unnecessary invalidation and recompilation of dependent procedures.

Cursor Variables
Cursor variables are references to cursors. A cursor is a static object; a cursor vari-
able is a pointer to a cursor. Since cursor variables are pointers, they can be passed
and returned as parameters to procedures and functions. A cursor variable can also
refer to (“point to”) different cursors in its lifetime.

Some additional advantages of cursor variables are

■ Encapsulation: queries are centralized in the stored procedure that opens the cur-
sor variable.

■ Ease of maintenance: if you need to change the cursor, you only need to make the
change in one place: the stored procedure. There is no need to change each
application.

■ Convenient security: the user of the application is the username used when the
application connects to the server. The user must have execute permission on
the stored procedure that opens the cursor. But the user does not need to have
read permission on the tables used in the query. This capability can be used to
limit access to the columns in the table, as well as access to other stored proce-
dures.
 Using Procedures and Packages 10-25

Cursor Variables
See the PL/SQL User’s Guide and Reference for a complete discussion of cursor vari-
ables.

Declaring and Opening Cursor Variables
You normally allocate memory for a cursor variable in the client application, using
the appropriate ALLOCATE command. In Pro*C, you use the EXEC SQL ALLOCATE
<cursor_name> command. In the OCI, you use the Cursor Data Area.

You can also use cursor variables in applications that run entirely in a single server
session. You can declare cursor variables in PL/SQL subprograms, open them, and
use them as parameters for other PL/SQL subprograms.

Examples of Cursor Variables
This section includes several examples of cursor variable usage in PL/SQL. For
additional cursor variable examples that use the programmatic interfaces, see the
following manuals:

■ Pro*C/C++ Precompiler Programmer’s Guide

■ Programmer’s Guide to the Oracle Precompilers

■ Programmer’s Guide to the Oracle Call Interface

■ SQL*Module User’s Guide and Reference

Fetching Data
The following package defines a PL/SQL cursor variable type EMP_VAL_CV_TYPE,
and two procedures. The first procedure opens the cursor variable, using a bind
variable in the WHERE clause. The second procedure (FETCH_EMP_DATA) fetches
rows from the EMP table using the cursor variable.

CREATE OR REPLACE PACKAGE emp_data AS

 TYPE emp_val_cv_type IS REF CURSOR RETURN emp%ROWTYPE;

 PROCEDURE open_emp_cv (emp_cv IN OUT emp_val_cv_type,
 dept_number IN INTEGER);
 PROCEDURE fetch_emp_data (emp_cv IN emp_val_cv_type,
 emp_row OUT emp%ROWTYPE);

END emp_data;

CREATE OR REPLACE PACKAGE BODY emp_data AS
10-26 Oracle8 Application Developer’s Guide

Cursor Variables
 PROCEDURE open_emp_cv (emp_cv IN OUT emp_val_cv_type,
 dept_number IN INTEGER) IS
 BEGIN
 OPEN emp_cv FOR SELECT * FROM emp WHERE deptno = dept_number;
 END open_emp_cv;

 PROCEDURE fetch_emp_data (emp_cv IN emp_val_cv_type,
 emp_row OUT emp%ROWTYPE) IS
 BEGIN
 FETCH emp_cv INTO emp_row;
 END fetch_emp_data;
END emp_data;

The following example shows how you can call the EMP_DATA package procedures
from a PL/SQL block:

DECLARE
-- declare a cursor variable
 emp_curs emp_data.emp_val_cv_type;

 dept_number dept.deptno%TYPE;
 emp_row emp%ROWTYPE;

BEGIN
 dept_number := 20;

-- open the cursor using a variable
 emp_data.open_emp_cv(emp_curs, dept_number);

-- fetch the data and display it
 LOOP
 emp_data.fetch_emp_data(emp_curs, emp_row);
 EXIT WHEN emp_curs%NOTFOUND;
 DBMS_OUTPUT.PUT(emp_row.ename || ’ ’);
 DBMS_OUTPUT.PUT_LINE(emp_row.sal);
 END LOOP;
END;

Implementing Variant Records
The power of cursor variables comes from their ability to point to different cursors.
In the following package example, a discriminant is used to open a cursor variable
to point to one of two different cursors:

CREATE OR REPLACE PACKAGE emp_dept_data AS
 Using Procedures and Packages 10-27

Cursor Variables
 TYPE cv_type IS REF CURSOR;

 PROCEDURE open_cv (cv IN OUT cv_type,
 discrim IN POSITIVE);

END emp_dept_data;
/

CREATE OR REPLACE PACKAGE BODY emp_dept_data AS

 PROCEDURE open_cv (cv IN OUT cv_type,
 discrim IN POSITIVE) IS

 BEGIN
 IF discrim = 1 THEN
 OPEN cv FOR SELECT * FROM emp WHERE sal > 2000;
 ELSIF discrim = 2 THEN
 OPEN cv FOR SELECT * FROM dept;
 END IF;
 END open_cv;

END emp_dept_data;

You can call the OPEN_CV procedure to open the cursor variable and point it to
either a query on the EMP table or on the DEPT table. How would you use this? The
following PL/SQL block shows that you can fetch using the cursor variable, then
use the ROWTYPE_MISMATCH predefined exception to handle either fetch:

DECLARE
 emp_rec emp%ROWTYPE;
 dept_rec dept%ROWTYPE;
 cv emp_dept_data.cv_type;

BEGIN
 emp_dept_data.open_cv(cv, 1); -- open CV for EMP fetch
 FETCH cv INTO dept_rec; -- but fetch into DEPT record
 -- which raises ROWTYPE_MISMATCH
 DBMS_OUTPUT.PUT(dept_rec.deptno);
 DBMS_OUTPUT.PUT_LINE(’ ’ || dept_rec.loc);

EXCEPTION
 WHEN ROWTYPE_MISMATCH THEN
 BEGIN
 DBMS_OUTPUT.PUT_LINE
 (’Row type mismatch, fetching EMP data...’);
10-28 Oracle8 Application Developer’s Guide

Error Handling
 FETCH cv into emp_rec;
 DBMS_OUTPUT.PUT(emp_rec.deptno);
 DBMS_OUTPUT.PUT_LINE(’ ’ || emp_rec.ename);
 END;
END;

Hiding PL/SQL Code
You can deliver your stored procedures in object code format using the PL/SQL
Wrapper. Wrapping your PL/SQL code hides your application internals. To run the
PL/SQL Wrapper, enter the WRAP command at your system prompt using the fol-
lowing syntax:

WRAP INAME=input_file [ONAME=ouput_file]

Error Handling
Oracle allows user-defined errors in PL/SQL code to be handled so that user-speci-
fied error numbers and messages are returned to the client application. Once
received, the client application can handle the error based on the user-specified
error number and message returned by Oracle.

User-specified error messages are returned using the
RAISE_APPLICATION_ERROR procedure:

RAISE_APPLICATION_ERROR(error_number , ’ text ’, keep_error_stack)

This procedure terminates procedure execution, rolls back any effects of the proce-
dure, and returns a user-specified error number and message (unless the error is
trapped by an exception handler). ERROR_NUMBER must be in the range of -20000
to -20999. Error number -20000 should be used as a generic number for messages
where it is important to relay information to the user, but having a unique error
number is not required. TEXT must be a character expression, 2 Kbytes or less
(longer messages are ignored). KEEP_ERROR_STACK can be TRUE, if you want to
add the error to any already on the stack, or FALSE, if you want to replace the exist-
ing errors. By default, this option is FALSE.

See Also: For complete instructions on using the PL/SQL Wrap-
per, see the PL/SQL User’s Guide and Reference.
 Using Procedures and Packages 10-29

Error Handling
The RAISE_APPLICATION_ERROR procedure is often used in exception handlers
or in the logic of PL/SQL code. For example, the following exception handler
selects the string for the associated user-defined error message and calls the
RAISE_APPLICATION_ERROR procedure:

...
WHEN NO_DATA_FOUND THEN
 SELECT error_string INTO message
 FROM error_table,
 V$NLS_PARAMETERS V
 WHERE error_number = -20101 AND LANG = v.value AND
 v.name = ”NLS_LANGUAGE”;
 raise_application_error(-20101, message);
...

Several examples earlier in this chapter also demonstrate the use of the
RAISE_APPLICATION_ERROR procedure. The next section has an example of pass-
ing a user-specified error number from a trigger to a procedure. For information on
exception handling when calling remote procedures, see “Handling Errors in
Remote Procedures” on page 10-33.

Declaring Exceptions and Exception Handling Routines
User-defined exceptions are explicitly defined and signaled within the PL/SQL
block to control processing of errors specific to the application. When an exception
is raised (signaled), the normal execution of the PL/SQL block stops and a routine
called an exception handler is invoked. Specific exception handlers can be written
to handle any internal or user-defined exception.

Application code can check for a condition that requires special attention using an
IF statement. If there is an error condition, two options are available:

■ Issue a RAISE statement that names the appropriate exception. A RAISE state-
ment stops the execution of the procedure and control passes to an exception
handler (if any).

■ Call the RAISE_APPLICATION_ERROR procedure to return a user-specified
error number and message.

Note: Some of the Oracle-supplied packages, such as
DBMS_OUTPUT, DBMS_DESCRIBE, and DBMS_ALERT, use
application error numbers in the range -20000 to -20005. See the
descriptions of these packages for more information.
10-30 Oracle8 Application Developer’s Guide

Error Handling
You can also define an exception handler to handle user-specified error messages.
For example, Figure 10–2 illustrates

■ an exception and associated exception handler in a procedure

■ a conditional statement that checks for an error (such as transferring funds not
available) and issues a user-specified error number and message within a trig-
ger

■ how user-specified error numbers are returned to the calling environment (in
this case, a procedure) and how that application can define an exception that
corresponds to the user-specified error number

Declare a user-defined exception in a procedure or package body (private excep-
tions) or in the specification of a package (public exceptions). Define an exception
handler in the body of a procedure (stand-alone or package).

Figure 10–2 Exceptions and User-Defined Errors

Procedure fire_emp(empid NUMBER) IS

Table EMP

 invalid_empid EXCEPTION;
 PRAGMA EXCEPTION_INIT(invalid_empid, –20101);
BEGIN
 DELETE FROM emp WHERE empno = empid;
EXCEPTION
 WHEN invlid_empid THEN
 INSERT INTO emp_audit
 VALUES (empid, ’Fired before probation ended’);
END;

TRIGGER emp_probation
BEFORE DELETE ON emp
FOR EACH ROW
BEGIN
 IF (sysdate–:old.hiredate)<30 THEN
 raise_application_error(20101,
 ’Employee’||old.ename||’ on probation’)
 END IF;
END;

Error number
returned to
calling
environment
 Using Procedures and Packages 10-31

Error Handling
Unhandled Exceptions
In database PL/SQL program units, an unhandled user-error condition or internal
error condition that is not trapped by an appropriate exception handler causes the
implicit rollback of the program unit. If the program unit includes a COMMIT state-
ment before the point at which the unhandled exception is observed, the implicit
rollback of the program unit can only be completed back to the previous commit.

Additionally, unhandled exceptions in database-stored PL/SQL program units
propagate back to client-side applications that call the containing program unit. In
such an application, only the application program unit call is rolled back (not the
entire application program unit) because it is submitted to the database as a SQL
statement.

If unhandled exceptions in database PL/SQL program units are propagated back to
database applications, the database PL/SQL code should be modified to handle the
exceptions. Your application can also trap for unhandled exceptions when calling
database program units and handle such errors appropriately. For more informa-
tion, see “Handling Errors in Remote Procedures” on page 10-33.

Handling Errors in Distributed Queries
You can use a trigger or stored procedure to create a distributed query. This distrib-
uted query is decomposed by the local Oracle into a corresponding number of
remote queries, which are sent to the remote nodes for execution. The remote nodes
execute the queries and send the results back to the local node. The local node then
performs any necessary post-processing and returns the results to the user or appli-
cation.

If a portion of a distributed statement fails, for example, due to an integrity con-
straint violation, Oracle returns error number ORA-02055 . Subsequent statements
or procedure calls return error number ORA-02067 until a rollback or rollback to
savepoint is issued.

You should design your application to check for any returned error messages that
indicate that a portion of the distributed update has failed. If you detect a failure,
you should rollback the entire transaction (or rollback to a savepoint) before allow-
ing the application to proceed.
10-32 Oracle8 Application Developer’s Guide

Error Handling
Handling Errors in Remote Procedures
When a procedure is executed locally or at a remote location, four types of excep-
tions can occur:

■ PL/SQL user-defined exceptions, which must be declared using the keyword
EXCEPTION

■ PL/SQL predefined exceptions, such as NO_DATA_FOUND

■ SQL errors, such as ORA-00900 and ORA-02015

■ Application exceptions, which are generated using the
RAISE_APPLICATION_ERROR() procedure

When using local procedures, all of these messages can be trapped by writing an
exception handler, such as shown in the following example:

EXCEPTION
 WHEN ZERO_DIVIDE THEN
 /* ...handle the exception */

Notice that the WHEN clause requires an exception name. If the exception that is
raised does not have a name, such as those generated with
RAISE_APPLICATION_ERROR, one can be assigned using
PRAGMA_EXCEPTION_INIT, as shown in the following example:

DECLARE
 ...
 null_salary EXCEPTION;
 PRAGMA EXCEPTION_INIT(null_salary, -20101);
BEGIN
 ...
 RAISE_APPLICATION_ERROR(-20101, ’salary is missing’);
 ...
EXCEPTION
 WHEN null_salary THEN
 ...

When calling a remote procedure, exceptions are also handled by creating a local
exception handler. The remote procedure must return an error number to the local,
calling procedure, which then handles the exception as shown in the previous
example. Because PL/SQL user-defined exceptions always return ORA-06510 to
the local procedure, these exceptions cannot be handled. All other remote excep-
tions can be handled in the same manner as local exceptions.
 Using Procedures and Packages 10-33

Error Handling
Compile Time Errors
When you use SQL*Plus to submit PL/SQL code, and the code contains errors, you
receive notification that compilation errors have occurred, but no immediate indica-
tion of what the errors are. For example, if you submit a stand-alone (or stored) pro-
cedure PROC1 in the file proc1.sql as follows:

SVRMGR> @proc1

and there are one or more errors in the code, you receive a notice such as

MGR-00072: Warning: Procedure PROC1 created with compilation errors

In this case, use the SHOW ERRORS command in SQL*Plus to get a list of the errors
that were found. SHOW ERRORS with no argument lists the errors from the most
recent compilation. You can qualify SHOW ERRORS using the name of a procedure,
function, package, or package body:

SQL> SHOW ERRORS PROC1
SQL> SHOW ERRORS PROCEDURE PROC1

See the SQL*Plus User’s Guide and Reference for complete information about the
SHOW ERRORS command.

For example, assume you want to create a simple procedure that deletes records
from the employee table using SQL*Plus:

CREATE PROCEDURE fire_emp(emp_id NUMBER) AS
 BEGIN
 DELETE FROM emp WHER empno = emp_id;
 END
/

Notice that the CREATE PROCEDURE statement has two errors: the DELETE state-
ment has an error (the ’E’ is absent from WHERE) and the semicolon is missing after
END.

After the CREATE PROCEDURE statement is issued and an error is returned, a SHOW
ERRORS statement would return the following lines:

Note: Before issuing the SHOW ERRORS command, use the SET
CHARWIDTH command to get long lines on output. The value 132 is
usually a good choice:

SET CHARWIDTH 132
10-34 Oracle8 Application Developer’s Guide

Error Handling
SHOW ERRORS;

ERRORS FOR PROCEDURE FIRE_EMP:
LINE/COL ERROR
-------------- --
3/27 PL/SQL-00103: Encountered the symbol ”EMPNO” wh. . .
5/0 PL/SQL-00103: Encountered the symbol ”END” when . . .
2 rows selected.

Notice that each line and column number where errors were found is listed by the
SHOW ERRORS command.

Alternatively, you can query the following data dictionary views to list errors when
using any tool or application:

■ USER_ERRORS

■ ALL_ERRORS

■ DBA_ERRORS

The error text associated with the compilation of a procedure is updated when the
procedure is replaced, and deleted when the procedure is dropped.

Original source code can be retrieved from the data dictionary using the following
views: ALL_SOURCE, USER_SOURCE, and DBA_SOURCE.

Debugging
You can debug stored procedures and triggers using the DBMS_OUTPUT supplied
package. You put PUT and PUT_LINE statements in your code to output the value
of variables and expressions to your terminal. See “Output from Stored Procedures
and Triggers” on page 12-22 for more information about the DBMS_OUTPUT pack-
age.

A more convenient way to debug, if your platform supports it, is to use the Oracle
Procedure Builder, which is part of the Oracle Developer/2000 tool set. Procedure
Builder lets you execute PL/SQL procedures and triggers in a controlled debug-
ging environment, and you can set breakpoints, list the values of variables, and per-
form other debugging tasks. See the Oracle Procedure Builder Developer’s Guide for
more information.

See Also: Oracle8 Reference for more information about these data
dictionary views.
 Using Procedures and Packages 10-35

Invoking Stored Procedures
Invoking Stored Procedures
Procedures can be invoked from many different environments. For example:

■ A procedure can be called within the body of another procedure or a trigger.

■ A procedure can be interactively called by a user using an Oracle tool (such as
SQL*Plus)

■ A procedure can be explicitly called within an application (such as a
SQL*Forms or precompiler application).

■ A stored function can be called from a SQL statement in a manner similar to
calling a built-in SQL function, such as LENGTH or ROUND.

Some common examples of invoking procedures from within these environments
follow. For more information, see “Calling Stored Functions from SQL Expres-
sions” on page 10-42.

A Procedure or Trigger Calling Another Procedure
A procedure or trigger can call another stored procedure. For example, included in
the body of one procedure might be the line

. . .
sal_raise(emp_id, 200);
. . .

This line calls the SAL_RAISE procedure. EMP_ID is a variable within the context
of the procedure. Note that recursive procedure calls are allowed within PL/SQL;
that is, a procedure can call itself.

Interactively Invoking Procedures From Oracle Tools
A procedure can be invoked interactively from an Oracle tool such as SQL*Plus.
For example, to invoke a procedure named SAL_RAISE, owned by you, you can
use an anonymous PL/SQL block, as follows:

BEGIN
 sal_raise(1043, 200);
END;

:

Note: Interactive tools such as SQL*Plus require that you follow
these lines with a slash (/) to execute the PL/SQL block.
10-36 Oracle8 Application Developer’s Guide

Invoking Stored Procedures
An easier way to execute a block is to use the SQL*Plus command EXECUTE, which
effectively wraps BEGIN and END statements around the code you enter. For exam-
ple:

EXECUTE sal_raise(1043, 200);

Some interactive tools allow session variables to be created. For example, when
using SQL*Plus, the following statement creates a session variable:

VARIABLE assigned_empno NUMBER

Once defined, any session variable can be used for the duration of the session. For
example, you might execute a function and capture the return value using a session
variable:

EXECUTE :assigned_empno := hire_emp(’JSMITH’, ’President’, \
 1032, SYSDATE, 5000, NULL, 10);
PRINT assigned_empno;
ASSIGNED_EMPNO

 2893

See the SQL*Plus User’s Guide and Reference for SQL*Plus information. See your
tools manual for information about performing similar operations using your
development tool.

Calling Procedures within 3GL Applications
A 3GL database application such as a precompiler or OCI application can include a
call to a procedure within the code of the application.

To execute a procedure within a PL/SQL block in an application, simply call the
procedure. The following line within a PL/SQL block calls the FIRE_EMP proce-
dure:

fire_emp(:empno);

In this case, :EMPNO is a host (bind) variable within the context of the application.

To execute a procedure within the code of a precompiler application, you must use
the EXEC call interface. For example, the following statement calls the FIRE_EMP
procedure in the code of a precompiler application:

EXEC SQL EXECUTE
 BEGIN
 Using Procedures and Packages 10-37

Invoking Stored Procedures
 fire_emp(:empno);
 END;
END-EXEC;

:EMPNO is a host (bind) variable.

For more information about calling PL/SQL procedures from within 3GL applica-
tions, see the following manuals:

■ Oracle Call Interface Programmer’s Guide

■ Pro*C/C++ Precompiler Programmer’s Guide,

■ SQL*Module for Ada Programmer’s Guide

Name Resolution When Invoking Procedures
References to procedures and packages are resolved according to the algorithm
described in “Name Resolution in SQL Statements” on page 4-45.

Privileges Required to Execute a Procedure
If you are the owner of a stand-alone procedure or package, you can execute the
stand-alone procedure or packaged procedure, or any public procedure or pack-
aged procedure at any time, as described in the previous sections. If you want to
execute a stand-alone or packaged procedure owned by another user, the following
conditions apply:

■ You must have the EXECUTE privilege for the stand-alone procedure or pack-
age containing the procedure, or have the EXECUTE ANY PROCEDURE system
privilege. If you are executing a remote procedure, you must have been
granted the EXECUTE privilege or EXECUTE ANY PROCEDURE system privilege
directly, not via a role.

■ You must include the owner’s name in the call, as in:

EXECUTE jward.fire_emp (1043);

EXECUTE jward.hire_fire.fire_emp (1043);

Note: A stored subprogram or package executes in the privilege
domain of the owner of the procedure. The owner must have been
explicitly granted the necessary object privileges to all objects refer-
enced within the body of the code.
10-38 Oracle8 Application Developer’s Guide

Invoking Stored Procedures
Specifying Values for Procedure Arguments
When you invoke a procedure, specify a value or parameter for each of the proce-
dure’s arguments. Identify the argument values using either of the following meth-
ods, or a combination of both:

■ List the values in the order the arguments appear in the procedure declaration.

■ Specify the argument names and corresponding values, in any order.

For example, these statements each call the procedure UPDATE_SAL to increase the
salary of employee number 7369 by 500:

sal_raise(7369, 500);

sal_raise(sal_incr=>500, emp_id=>7369);

sal_raise(7369, sal_incr=>500);

The first statement identifies the argument values by listing them in the order in
which they appear in the procedure specification.

The second statement identifies the argument values by name and in an order dif-
ferent from that of the procedure specification. If you use argument names, you can
list the arguments in any order.

The third statement identifies the argument values using a combination of these
methods. If you use a combination of order and argument names, values identified
in order must precede values identified by name.

If you have used the DEFAULT option to define default values for IN parameters to
a subprogram (see the PL/SQL User’s Guide and Reference), you can pass different
numbers of actual parameters to the 1subprogram, accepting or overriding the
default values as you please. If an actual value is not passed, the corresponding
default value is used. If you want to assign a value to an argument that occurs after
an omitted argument (for which the corresponding default is used), you must
explicitly designate the name of the argument, as well as its value.

Invoking Remote Procedures
Invoke remote procedures using an appropriate database link and the procedure’s
name. The following SQL*Plus statement executes the procedure FIRE_EMP
located in the database pointed to by the local database link named NY:

EXECUTE fire_emp@NY(1043);
 Using Procedures and Packages 10-39

Invoking Stored Procedures
Remote Procedure Calls and Parameter Values
You must explicitly pass values to all remote procedure parameters even if there
are defaults. You cannot access remote package variables and constants.

Referencing Remote Objects
Remote objects can be referenced within the body of a locally defined procedure.
The following procedure deletes a row from the remote employee table:

CREATE PROCEDURE fire_emp(emp_id NUMBER) IS
BEGIN
 DELETE FROM emp@sales WHERE empno = emp_id;
END;

The list below explains how to properly call remote procedures, depending on the
calling environment.

■ Remote procedures (stand-alone and packaged) can be called from within a
procedure, OCI application, or precompiler application by specifying the
remote procedure name, a database link, and the arguments for the remote pro-
cedure.

CREATE PROCEDURE local_procedure(arg1, arg2) AS
BEGIN
 ...
 remote_procedure@dblink(arg1, arg2);
 ...
END;

■ In the previous example, you could create a synonym for
REMOTE_PROCEDURE@DBLINK. This would enable you to call the remote pro-
cedure from an Oracle tool application, such as a SQL*Forms application, as
well from within a procedure, OCI application, or precompiler application.

CREATE PROCEDURE local_procedure(arg1, arg2) AS
BEGIN
 ...
 synonym(arg1, arg2);
 ...
END;

See Also: For information on exception handling when calling
remote procedures, see page 10-33.
10-40 Oracle8 Application Developer’s Guide

Invoking Stored Procedures
■ If you did not want to use a synonym, you could write a local cover procedure
to call the remote procedure.

BEGIN local_procedure(arg1, arg2);
END;

Here, LOCAL_PROCEDURE is defined as in the first item of this list.
:

:

All calls to remotely stored procedures are assumed to perform updates; therefore,
this type of referencing always requires two-phase commit of that transaction (even
if the remote procedure is read-only). Furthermore, if a transaction that includes a
remote procedure call is rolled back, the work done by the remote procedure is also
rolled back. A procedure called remotely cannot execute a COMMIT, ROLLBACK, or
SAVEPOINT statement.

A distributed update modifies data on two or more nodes. A distributed update is
possible using a procedure that includes two or more remote updates that access
data on different nodes. Statements in the construct are sent to the remote nodes
and the execution of the construct succeeds or fails as a unit. If part of a distributed
update fails and part succeeds, a rollback (of the entire transaction or to a save-
point) is required to proceed. Consider this when creating procedures that perform
distributed updates.

Pay special attention when using a local procedure that calls a remote procedure. If
a timestamp mismatch is found during execution of the local procedure, the remote
procedure is not executed and the local procedure is invalidated.

Synonyms for Procedures and Packages
Synonyms can be created for stand-alone procedures and packages to

■ hide the identity of the name and owner of a procedure or package

Note: Synonyms can be used to create location transparency for
the associated remote procedures.

WARNING: Unlike stored procedures, which use compile-time
binding, runtime binding is used when referencing remote proce-
dures. The user account to which you connect depends on the
database link.
 Using Procedures and Packages 10-41

Calling Stored Functions from SQL Expressions
■ provide location transparency for remotely stored procedures (stand-alone or
within a package)

When a privileged user needs to invoke a procedure, an associated synonym can be
used. Because the procedures defined within a package are not individual objects
(that is, the package is the object), synonyms cannot be created for individual proce-
dures within a package.

Calling Stored Functions from SQL Expressions
You can include user-written PL/SQL functions in SQL expressions. (You must be
using PL/SQL release 2.1 or greater.) By using PL/SQL functions in SQL state-
ments, you can do the following:

■ Increase user productivity by extending SQL. Expressiveness of the SQL state-
ment increases where activities are too complex, too awkward, or unavailable
with SQL.

■ Increase query efficiency. Functions used in the WHERE clause of a query can fil-
ter data using criteria that would otherwise have to be evaluated by the applica-
tion.

■ Manipulate character strings to represent special datatypes (for example, lati-
tude, longitude, or temperature).

■ Provide parallel query execution. If the query is parallelized, SQL statements in
your PL/SQL function may be executed in parallel also (using the parallel
query option).

Using PL/SQL Functions
PL/SQL functions must be created as top-level functions or declared within a
package specification before they can be named within a SQL statement. Stored PL/
SQL functions are used in the same manner as built-in Oracle functions (such as
SUBSTR or ABS).

PL/SQL functions can be placed wherever an Oracle function can be placed within
a SQL statement; that is, wherever expressions can occur in SQL. For example, they
can be called from the following:

■ the select list of the SELECT command

■ the condition of the WHERE and HAVING clause

■ the CONNECT BY, START WITH, ORDER BY, and GROUP BY clauses

■ the VALUES clause of the INSERT command
10-42 Oracle8 Application Developer’s Guide

Calling Stored Functions from SQL Expressions
■ the SET clause of the UPDATE command

You cannot call stored PL/SQL functions from a CHECK constraint clause of a
CREATE or ALTER TABLE command or use them to specify a default value for a
column. These situations require an unchanging definition.

Syntax
Use the following syntax to reference a PL/SQL function from SQL:

[[schema.]package.]function_name[@dblink][(param_1...param_n)]

For example, to reference a function that you have created that is called MY_FUNC,
in the MY_FUNCS_PKG package, in the SCOTT schema, and that takes two numeric
parameters, you could call it as:

SELECT scott.my_funcs_pkg.my_func(10,20) from dual

Naming Conventions
If only one of the optional schema or package names is given, the first identifier can
be either a schema name or a package name. For example, to determine whether
PAYROLL in the reference PAYROLL.TAX_RATE is a schema or package name, Ora-
cle proceeds as follows:

■ Oracle first checks for the PAYROLL package in the current schema.

■ If a PAYROLL package is not found, Oracle looks for a schema named PAYROLL
that contains a top-level TAX_RATE function. If the TAX_RATE function is not
found in the PAYROLL schema, an error message is returned.

■ If the PAYROLL package is found in the current schema, Oracle looks for a
TAX_RATE function in the PAYROLL package. If a TAX_RATE function is not
found in the PAYROLL package, an error message is returned.

You can also refer to a stored top-level function using any synonym that you have
defined for it.

Note: Unlike functions, which are called as part of an expression,
procedures are called as statements. Therefore, PL/SQL proce-
dures are not directly callable from SQL statements. However, func-
tions called from a PL/SQL statement or referenced in a SQL
expression can call a PL/SQL procedure.
 Using Procedures and Packages 10-43

Calling Stored Functions from SQL Expressions
Name Precedence
In SQL statements, the names of database columns take precedence over the names
of functions with no parameters. For example, if schema SCOTT creates the follow-
ing two objects:

CREATE TABLE emp(new_sal NUMBER ...);
CREATE FUNCTION new_sal RETURN NUMBER IS ...;

Then in the following two statements, the reference to NEW_SAL refers to the col-
umn EMP.NEW_SAL:

SELECT new_sal FROM emp;
SELECT emp.new_sal FROM emp;

To access the function NEW_SAL, you would enter the following:

SELECT scott.new_sal FROM emp;

Example For example, to call the TAX_RATE PL/SQL function from schema SCOTT,
execute it against the SS_NO and SAL columns in TAX_TABLE, and place the results
in the variable INCOME_TAX, specify the following:

SELECT scott.tax_rate (ss_no, sal)
 INTO income_tax
 FROM tax_table
 WHERE ss_no = tax_id;

These sample calls to PL/SQL functions are allowed in SQL expressions:

circle_area(radius)
payroll.tax_rate(empno)
scott.payroll.tax_rate(dependents, empno)@ny

Arguments
To pass any number of arguments to a function, supply the arguments within the
parentheses. You must use positional notation; named notation is not currently sup-
ported. For functions that do not accept arguments, omit the parentheses.

The argument’s datatypes and the function’s return type are limited to those types
that are supported by SQL. For example, you cannot call a PL/SQL function that
returns a PL/SQL BINARY_INTEGER from a SQL statement.
10-44 Oracle8 Application Developer’s Guide

Calling Stored Functions from SQL Expressions
Using Default Values
The stored function gross_pay initializes two of its formal parameters to default
values using the DEFAULT clause, as follows:

CREATE FUNCTION gross_pay
 (emp_id IN NUMBER,
 st_hrs IN NUMBER DEFAULT 40,
 ot_hrs IN NUMBER DEFAULT 0) RETURN NUMBER AS
 ...

When calling gross_pay from a procedural statement, you can always accept the
default value of st_hrs . That is because you can use named notation, which lets
you skip parameters, as in:

IF gross_pay(eenum,ot_hrs => otime) > pay_limit THEN ...

However, when calling gross_pay from a SQL expression, you cannot accept the
default value of st_hrs unless you accept the default value of ot_hrs . That is
because you cannot use named notation.

Meeting Basic Requirements
To be callable from SQL expressions, a user-defined PL/SQL function must meet
the following basic requirements:

■ It must be a stored function, not a function defined within a PL/SQL block or
subprogram.

■ It must be a row function, not a column (group) function; that is, it cannot take
an entire column of data as its argument.

■ All its formal parameters must be IN parameters; none can be an OUT or IN
OUT parameter.

■ The datatypes of its formal parameters must be Oracle Server internal types
such as CHAR, DATE, or NUMBER, not PL/SQL types such as BOOLEAN, RECORD,
or TABLE.

■ Its return type (the datatype of its result value) must be an Oracle Server inter-
nal type.

For example, the following stored function meets the basic requirements:

CREATE FUNCTION gross_pay
 (emp_id IN NUMBER,
 st_hrs IN NUMBER DEFAULT 40,
 ot_hrs IN NUMBER DEFAULT 0) RETURN NUMBER AS
 Using Procedures and Packages 10-45

Calling Stored Functions from SQL Expressions
 st_rate NUMBER;
 ot_rate NUMBER;

BEGIN
 SELECT srate, orate INTO st_rate, ot_rate FROM payroll
 WHERE acctno = emp_id;
 RETURN st_hrs * st_rate + ot_hrs * ot_rate;
END gross_pay;

Controlling Side Effects
To execute a SQL statement that calls a stored function, the Oracle Server must
know the purity level of the function, that is, the extent to which the function is free
of side effects. In this context, side effects are references to database tables or pack-
aged variables.

Side effects can prevent the parallelization of a query, yield order-dependent (and
therefore indeterminate) results, or require that package state be maintained across
user sessions (which is not allowed). Therefore, the following rules apply to stored
functions called from SQL expressions:

■ The function cannot modify database tables; therefore, it cannot execute an
INSERT, UPDATE, or DELETE statement.

■ Functions that read or write the values of packaged variables cannot be exe-
cuted remotely or in parallel.

■ Only functions called from a SELECT, VALUES, or SET clause can write the val-
ues of packaged variables.

■ The function cannot call another subprogram that breaks one of the foregoing
rules. Also, the function cannot reference a view that breaks one of the forego-
ing rules. (Oracle replaces references to a view with a stored SELECT operation,
which can include function calls.)

For stand-alone functions, Oracle can enforce these rules by checking the function
body. However, the body of a packaged function is hidden; only its specification is
visible. So, for packaged functions, you must use the pragma (compiler directive)
RESTRICT_REFERENCES to enforce the rules.

The pragma tells the PL/SQL compiler to deny the packaged function read/write
access to database tables, packaged variables, or both. If you try to compile a func-
tion body that violates the pragma, you get a compilation error.
10-46 Oracle8 Application Developer’s Guide

Calling Stored Functions from SQL Expressions
Calling Packaged Functions
To call a packaged function from SQL expressions, you must assert its purity level
by coding the pragma RESTRICT_REFERENCES in the package specification (not in
the package body). The pragma must follow the function declaration but need not
follow it immediately. Only one pragma can reference a given function declaration.

To code the pragma RESTRICT_REFERENCES, you use the syntax

PRAGMA RESTRICT_REFERENCES (
 function_name, WNDS [, WNPS] [, RNDS] [, RNPS]);

where:

You can pass the arguments in any order, but you must pass the argument WNDS.
No argument implies another; for example, RNPS does not imply WNPS.

In the example below, the function compound neither reads nor writes database or
package state, so you can assert the maximum purity level. Always assert the high-
est purity level that a function allows. That way, the PL/SQL compiler will never
reject the function unnecessarily.

CREATE PACKAGE finance AS -- package specification
 ...
 FUNCTION compound
 (years IN NUMBER,
 amount IN NUMBER,
 rate IN NUMBER) RETURN NUMBER;
 PRAGMA RESTRICT_REFERENCES (compound, WNDS, WNPS, RNDS, RNPS);
END finance;

CREATE PACKAGE BODY finance AS --package body
 ...
 FUNCTION compound
 (years IN NUMBER,
 amount IN NUMBER,
 rate IN NUMBER) RETURN NUMBER IS

WNDS means “writes no database state” (does not modify database
tables)

RNDS means “reads no database state” (does not query database tables)

WNPS means “writes no package state” (does not change the values of
packaged variables)

RNPS means “reads no package state” (does not reference the values of
packaged variables)
 Using Procedures and Packages 10-47

Calling Stored Functions from SQL Expressions
 BEGIN
 RETURN amount * POWER((rate / 100) + 1, years);
 END compound;
 -- no pragma in package body
END finance;

Later, you might call compound from a PL/SQL block, as follows:

BEGIN
 ...
 SELECT finance.compound(yrs,amt,rte) -- function call INTO
interest FROM accounts WHERE acctno = acct_id;

Referencing Packages with an Initialization Part
Packages can have an initialization part, which is hidden in the package body. Typi-
cally, the initialization part holds statements that initialize public variables.

In the following example, the SELECT statement initializes the public variable
prime_rate :

CREATE PACKAGE loans AS
 prime_rate REAL; -- public packaged variable
 ...
END loans;

CREATE PACKAGE BODY loans AS
 ...
BEGIN -- initialization part
 SELECT prime INTO prime_rate FROM rates;
END loans;

The initialization code is run only once—the first time the package is referenced. If
the code reads or writes database state or package state other than its own, it can
cause side effects. Moreover, a stored function that references the package (and
thereby runs the initialization code) can cause side effects indirectly. So, to call the
function from SQL expressions, you must use the pragma
RESTRICT_REFERENCES to assert or imply the purity level of the initialization
code.

To assert the purity level of the initialization code, you use a variant of the pragma
RESTRICT_REFERENCES, in which the function name is replaced by a package
name. You code the pragma in the package specification, where it is visible to other
users. That way, anyone referencing the package can see the restrictions and con-
form to them.
10-48 Oracle8 Application Developer’s Guide

Calling Stored Functions from SQL Expressions
To code the variant pragma RESTRICT_REFERENCES, you use the syntax

PRAGMA RESTRICT_REFERENCES (
 package_name, WNDS [, WNPS] [, RNDS] [, RNPS]);

where the arguments WNDS, WNPS, RNDS, and RNPS have the usual meaning.

In the example below, the initialization code reads database state and writes pack-
age state. However, you can assert WNPS because the code is writing the state of its
own package, which is permitted. So, you assert WNDS, WNPS, RNPS—the highest
purity level the function allows. (If the public variable prime_rate were in
another package, you could not assert WNPS.)

CREATE PACKAGE loans AS
 PRAGMA RESTRICT_REFERENCES (loans, WNDS, WNPS, RNPS);
 prime_rate REAL;
 ...
END loans;

CREATE PACKAGE BODY loans AS
...
BEGIN
 SELECT prime INTO prime_rate FROM rates;
END loans;

You can place the pragma anywhere in the package specification, but placing it at
the top (where it stands out) is a good idea.

To imply the purity level of the initialization code, your package must have a
RESTRICT_REFERENCES pragma for one of the functions it declares. From the
pragma, Oracle can infer the purity level of the initialization code (because the code
cannot break any rule enforced by a pragma). In the next example, the pragma for
the function discount implies that the purity level of the initialization code is at least
WNDS:

CREATE PACKAGE loans AS
 ...
 FUNCTION discount (...) RETURN NUMBER;
 PRAGMA RESTRICT_REFERENCES (discount, WNDS);
END loans;
...

To draw an inference, Oracle can combine the assertions of all
RESTRICT_REFERENCES pragmas. For example, the following pragmas (com-
bined) imply that the purity level of the initialization code is at least WNDS, RNDS:
 Using Procedures and Packages 10-49

Calling Stored Functions from SQL Expressions
CREATE PACKAGE loans AS
 ...
 FUNCTION discount (...) RETURN NUMBER;
 FUNCTION credit_ok (...) RETURN CHAR;
 PRAGMA RESTRICT_REFERENCES (discount, WNDS);
 PRAGMA RESTRICT_REFERENCES (credit_ok, RNDS);
END loans;
...

Avoiding Problems
To call a packaged function from SQL expressions, you must assert its purity level
using the pragma RESTRICT_REFERENCES. However, if the package has an initial-
ization part, the PL/SQL compiler might not let you assert the highest purity level
the function allows. As a result, you might be unable to call the function remotely,
in parallel, or from certain SQL clauses.

This happens when a packaged function is purer than the package initialization
code. Remember, the first time a package is referenced,

its initialization code is run. If that reference is a function call, any additional side
effects caused by the initialization code occur during the call. So, in effect, the ini-
tialization code lowers the purity level of the function.

To avoid this problem, move the package initialization code into a subprogram.
That way, your application can run the code explicitly (rather than implicitly dur-
ing package instantiation) without affecting your packaged functions.

A similar problem arises when a packaged function is purer than a subprogram it
calls. This lowers the purity level of the function. Therefore, the
RESTRICT_REFERENCES pragma for the function must specify the lower purity
level. Otherwise, the PL/SQL compiler will reject the function. In the following
example, the compiler rejects the function because its pragma asserts RNDS but the
function calls a procedure that reads database state:

CREATE PACKAGE finance AS
 ...
 FUNCTION compound (years IN NUMBER,
 amount IN NUMBER) RETURN NUMBER;
 PRAGMA RESTRICT_REFERENCES (compound, WNDS, WNPS, RNDS, RNPS);
END finance;

CREATE PACKAGE BODY finance AS
 ...
 FUNCTION compound (years IN NUMBER,
 amount IN NUMBER) RETURN NUMBER IS
10-50 Oracle8 Application Developer’s Guide

Calling Stored Functions from SQL Expressions
 rate NUMBER;
 PROCEDURE calc_loan_rate (loan_rate OUT NUMBER) IS
 prime_rate REAL;
 BEGIN
 SELECT p_rate INTO prime_rate FROM rates;
 ...
 END;
 BEGIN
 calc_loan_rate(rate);
 RETURN amount * POWER((rate / 100) + 1, years);
 END compound;
END finance;

Overloading
PL/SQL lets you overload packaged (but not stand-alone) functions. That is, you
can use the same name for different functions if their formal parameters differ in
number, order, or datatype family.

However, a RESTRICT_REFERENCES pragma can apply to only one function decla-
ration. So, a pragma that references the name of overloaded functions always
applies to the nearest foregoing function declaration.

In the following example, the pragma applies to the second declaration of valid:

CREATE PACKAGE tests AS
 FUNCTION valid (x NUMBER) RETURN CHAR;
 FUNCTION valid (x DATE) RETURN CHAR;
 PRAGMA RESTRICT_REFERENCES (valid, WNDS);
 ...

Serially Reusable PL/SQL Packages
PL/SQL packages normally consume user global area (UGA) memory correspond-
ing to the number of package variables and cursors in the package. This limits scal-
ability because the memory increases linearly with the number of users. The
solution is to allow some packages to be marked as SERIALLY_REUSABLE (using
pragma syntax).

For serially reusable packages, the package global memory is not kept in the UGA
per user, but instead it is kept in a small pool and reused for different users. This
means that the global memory for such a package is only used within a unit of
work. At the end of that unit of work, the memory can therefore be released to the
pool to be reused by another user (after running the initialization code for all the
global variables).
 Using Procedures and Packages 10-51

Calling Stored Functions from SQL Expressions
The unit of work for serially reusable packages is implicitly a CALL to the server,
for example, an OCI call to the server, or a PL/SQL client-to-server RPC call or
server-to-server RPC call.

Package States
The state of a nonreusable package (one not marked SERIALLY_REUSABLE) per-
sists for the lifetime of a session. A package’s state includes global variables, cur-
sors, and so on.

The state of a serially reusable package persists only for the lifetime of a CALL to
the server. On a subsequent call to the server, if a reference is made to the serially
reusable package, Oracle creates a new instantiation (described below) of the seri-
ally reusable package and initializes all the global variables to NULL or to the
default values provided. Any changes made to the serially reusable package state
in the previous CALLs to the server are not visible.

Why Serially Reusable Packages?
Since the state of a non-reusable package persists for the lifetime of the session, this
locks up UGA memory for the whole session. In applications such as Oracle Office
a log-on session can typically exist for days together. Applications often need to use
certain packages only for certain localized periods in the session and would ideally
like to de-instantiate the package state in the middle of the session once they are
done using the package.

With SERIALLY_REUSABLE packages the application developers have a way of
modelling their applications to manage their memory better for scalability. Package
state that they care about only for the duration of a CALL to the server should be
captured in SERIALLY_REUSABLE packages.

Note: Creating a new instantiation of a serially reusable package
on a CALL to the server does not necessarily imply that Oracle allo-
cates memory or configures the instantiation object. Oracle simply
looks for an available instantiation work area (which is allocated
and configured) for this package in a least-recently used (LRU)
pool in SGA. At the end of the CALL to the server this work area is
returned back to the LRU pool. The reason for keeping the pool in
the SGA is that the work area can be reused across users who have
requests for the same package.
10-52 Oracle8 Application Developer’s Guide

Calling Stored Functions from SQL Expressions
Syntax
A package can be marked serially reusable by a pragma. The syntax of the pragma
is:

PRAGMA SERIALLY_REUSABLE;

A package specification can be marked serially reusable whether or not it has a cor-
responding package body. If the package has a body, the body must have the seri-
ally reusable pragma if its corresponding specification has the pragma; and it
cannot have the serially reusable pragma unless the specification also has the
pragma.

Semantics
A package that is marked SERIALLY_REUSABLE has the following properties:

■ Its package variables are meant for use only within the WORK boundaries,
which correspond to CALLs to the server (either OCI call boundaries or PL/
SQL RPC calls to the server).

■ A pool of package instantiations is kept and whenever a “unit of work” needs
this package, one of the instantiations is “reused” as follows:

– The package variables are reinitialized (for example, if the package vari-
ables have default values, then those values are reinitialized).

– The initialization code in the package body is executed again.

■ At the “end work” boundary, cleanup is done.

– If any cursors were left open, they are silently closed.

– Some non-reusable secondary memory is freed (such as memory for collec-
tion variables or long VARCHAR2s).

– This package instantiation is returned back to the pool of reusable instantia-
tions kept for this package.

■ Serially reusable packages cannot be accessed from within triggers. If you
attempt to access a serially reusable package from a trigger, Oracle issues the

Note: If the application programmer makes a mistake and
depends on a package variable that is set in a previous unit of
work, the application program can fail. PL/SQL cannot check for
such cases.
 Using Procedures and Packages 10-53

Calling Stored Functions from SQL Expressions
error message “cannot access Serially Reusable package <string> in the context
of a trigger.”

Example 1
This example has a serially reusable package specification (there is no body). It
demonstrates how package variables behave across CALL boundaries.

connect scott/tiger;

create or replace package SR_PKG is
 pragma SERIALLY_REUSABLE;
 n number := 5; -- default initialization
end SR_PKG;
/

Suppose your Enterprise Manager (or SQL*Plus) application issues the following:

connect scott/tiger

first CALL to server
begin
 SR_PKG.n := 10;
end;
/

second CALL to server
begin
 dbms_output.put_line(SR_PKG.n);
end;
/
The above program will print:

5

Example 2
This example has both a package specification and body which are serially reus-
able. Like Example 1, this example demonstrates how the package variables behave
across CALL boundaries.

SQL> connect scott/tiger;

Note: If the package had not had the pragma
SERIALLY_REUSABLE, the program would have printed '10'.
10-54 Oracle8 Application Developer’s Guide

Calling Stored Functions from SQL Expressions
Connected.
SQL>
SQL> drop package SR_PKG;
Statement processed.
SQL>
SQL> create or replace package SR_PKG is
 2>
 3> pragma SERIALLY_REUSABLE;
 4>
 5> type str_table_type is table of varchar2(200) index by binary_integer;
 6>
 7> num number := 10;
 8> str varchar2(200) := 'default-init-str';
 9> str_tab str_table_type;
 10>
 11> procedure print_pkg;
 12> procedure init_and_print_pkg(n number, v varchar2);
 13>
 14> end SR_PKG;
 15> /
Statement processed.
SQL>
SQL>
SQL> create or replace package body SR_PKG is
 2>
 3> -- the body is required to have the pragma since the
 4> -- specification of this package has the pragma
 5> pragma SERIALLY_REUSABLE;
 6>
 7> procedure print_pkg is
 8> begin
 9> dbms_output.put_line('num: ' || SR_PKG.num);
 10> dbms_output.put_line('str: ' || SR_PKG.str);
 11>
 12> dbms_output.put_line('number of table elems: ' ||
SR_PKG.str_tab.count);
 13> for i in 1..SR_PKG.str_tab.count loop
 14> dbms_output.put_line(SR_PKG.str_tab(i));
 15> end loop;
 16> end;
 17>
 18> procedure init_and_print_pkg(n number, v varchar2) is
 19> begin
 20>
 21> -- init the package globals
 Using Procedures and Packages 10-55

Calling Stored Functions from SQL Expressions
 22> SR_PKG.num := n;
 23> SR_PKG.str := v;
 24> for i in 1..n loop
 25> SR_PKG.str_tab(i) := v || ' ' || i;
 26> end loop;
 27>
 28> -- now print the package
 29> print_pkg;
 30> end;
 31>
 32> end SR_PKG;
 33> /
Statement processed.
SQL> show errors;
No errors for PACKAGE BODY SR_PKG
SQL>
SQL> set serveroutput on;
Server Output ON
SQL>
SQL> Rem SR package access in a CALL
SQL> begin
 2>
 3> -- initialize and print the package
 4> dbms_output.put_line('Initing and printing pkg state..');
 5> SR_PKG.init_and_print_pkg(4, 'abracadabra');
 6>
 7> -- print it in the same call to the server.
 8> -- we should see the initialized values.
 9> dbms_output.put_line('Printing package state in the same CALL...');
 10> SR_PKG.print_pkg;
 11>
 12> end;
 13> /
Statement processed.
Initing and printing pkg state..
num: 4
str: abracadabra
number of table elems: 4
abracadabra 1
abracadabra 2
abracadabra 3
abracadabra 4
Printing package state in the same CALL...
num: 4
str: abracadabra
10-56 Oracle8 Application Developer’s Guide

Calling Stored Functions from SQL Expressions
number of table elems: 4
abracadabra 1
abracadabra 2
abracadabra 3
abracadabra 4
SQL>
SQL> Rem SR package access in subsequent CALL
SQL> begin
 2>
 3> -- print the package in the next call to the server.
 4> -- We should that the package state is reset to the initial (default)
values.
 5> dbms_output.put_line('Printing package state in the next CALL...');
 6> SR_PKG.print_pkg;
 7>
 8> end;
 9> /
Statement processed.
Printing package state in the next CALL...
num: 10
str: default-init-str
number of table elems: 0
SQL>

Example 3
This example demonstrates that any open cursors in serially reusable packages get
closed automatically at the end of a WORK boundary (which is a CALL), and that in a
new CALL these cursors need to be opened again.

Rem For serially reusable pkg: At the end work boundaries
Rem (which is currently the OCI call boundary) all open
Rem cursors will be closed.
Rem
Rem Since the cursor is closed - every time we fetch we
Rem will start at the first row again.

SQL> connect scott/tiger;
Connected.
SQL>
SQL> drop package SR_PKG;
Statement processed.
SQL> drop table people;
Statement processed.
SQL>
 Using Procedures and Packages 10-57

Calling Stored Functions from SQL Expressions
SQL>
SQL> create table people (name varchar2(20));
Statement processed.
SQL>
SQL> insert into people values ('ET');
1 row processed.
SQL> insert into people values ('RAMBO');
1 row processed.
SQL>
SQL> create or replace package SR_PKG is
 2>
 3> pragma SERIALLY_REUSABLE;
 4> cursor c is select name from people;
 5>
 6> end SR_PKG;
 7> /
Statement processed.
SQL> show errors;
No errors for PACKAGE SR_PKG
SQL>
SQL> set serveroutput on;
Server Output ON
SQL>
SQL> create or replace procedure fetch_from_cursor is
 2> name varchar2(200);
 3> begin
 4>
 5> if (SR_PKG.c%ISOPEN) then
 6> dbms_output.put_line('cursor is already open.');
 7> else
 8> dbms_output.put_line('cursor is closed; opening now.');
 9> open SR_PKG.c;
 10> end if;
 11>
 12> -- fetching from cursor.
 13> fetch SR_PKG.c into name;
 14> dbms_output.put_line('fetched: ' || name);
 15>
 16> fetch SR_PKG.c into name;
 17> dbms_output.put_line('fetched: ' || name);
 18>
 19> -- Oops forgot to close the cursor (SR_PKG.c).
 20> -- But, since it is a Serially Reusable pkg's cursor,
 21> -- it will be closed at the end of this CALL to the server.
 22>
10-58 Oracle8 Application Developer’s Guide

Supplied Packages
 23> end;
 24> /
Statement processed.
SQL> show errors;
No errors for PROCEDURE FETCH_FROM_CURSOR
SQL>
SQL> set serveroutput on;
Server Output ON
SQL>
SQL> execute fetch_from_cursor;
Statement processed.
cursor is closed; opening now.
fetched: ET
fetched: RAMBO
SQL>
SQL> execute fetch_from_cursor;
Statement processed.
cursor is closed; opening now.
fetched: ET
fetched: RAMBO
SQL>
SQL> execute fetch_from_cursor;
Statement processed.
cursor is closed; opening now.
fetched: ET
fetched: RAMBO
SQL>

Privileges Required
To call a PL/SQL function from SQL, you must either own or have EXECUTE privi-
leges on the function. To select from a view defined with a PL/SQL function, you
are required to have SELECT privileges on the view. No separate EXECUTE privi-
leges are needed to select from the view.

Supplied Packages
Several packaged procedures are provided with the Oracle Server, either to extend
the functionality of the database or to give PL/SQL access to some SQL features.
You may take advantage of the functionality provided by these packages when cre-
ating your application, or you may simply want to use these packages for ideas in
creating your own stored procedures.
 Using Procedures and Packages 10-59

Supplied Packages
This section lists each of the supplied packages and indicates where they are
described in more detail. These packages run as the invoking user rather than the
package owner. The packaged procedures are callable through public synonyms of
the same name.

Packages Supporting SQL Features
Oracle supplies the following packaged procedures to give PL/SQL access to some
features of SQL:

■ DBMS_DDL

■ DBMS_SESSION

■ DBMS_TRANSACTION

■ DBMS_UTILITY

Table 10–6 describes each of these packages. The footnotes at the end of Table 10–6
explain any restrictions on the use of each procedure. You should consult the pack-
age specifications for the most up-to-date information on these packages.

Table 10–3 DBMS_DDL

Package Procedure(Arguments) SQL Command Equivalent

DBMS_DDL

 alter_compile(type varchar2,
 schema varchar2,
 name varchar2)
 (notes 1, 2, 3, 4)

ALTER PROCEDURE Pro*C COMPILE

ALTER FUNCTION func COMPILE

ALTER PACKAGE pack COMPILE

 analyze_object(type varchar2,
 schema varchar2,
 name varchar2,
 method varchar2,
 estimate_rows number
 default null,
 estimate_percent number
 default null)

ANALYZE INDEX

ANALYZE TABLE

ANALYZE CLUSTER

Note 1: not allowed in triggers

Note 2: not allowed in procedures called from SQL*Forms
10-60 Oracle8 Application Developer’s Guide

Supplied Packages
Note 3: not allowed in read-only transactions

Note 4: not allowed in remote (coordinated) sessions

Note 5: not allowed in recursive sessions

Note 6: not allowed in stored procedures

Table 10–4 DBMS_SESSION

Package Procedure(Arguments) SQL Command Equivalent

 DBMS_

 SESSION

 close_database_link(
 dblink varchar2)

 ALTER SESSION CLOSE DATABASE dblink

 reset_package (see note 5) This procedure reinitializes the state of all packages;

 there is no SQL equivalent

 set_nls(param varchar2,
 value varchar2)
 (notes 1,4)

 ALTER SESSION SET

 nls_param =

 nls_param_values

 set_role(role_cmd varchar2)
 (notes 1, 6)

 SET ROLE ...

 set_sql_trace(sql_trace
 boolean)

 ALTER SESSION SET

SQL_TRACE = [TRUE | FALSE]

 unique_session_id
 return varchar2

 This function returns a unique session ID ;

 there is no SQL equivalent.

 is_role_enabled
 return boolean

 This function is used to determine if a role is enabled;

 there is no SQL equivalent.

 et_close_cached_open_cursors(
 close_cursors
 boolean)

 ALTER SESSION SET

CLOSE_CACHED_OPEN_

CURSORS

 free_unused_user_memory This procedure lets you reclaim unused memory;

 there is no SQL equivalent.

Note 1: not allowed in triggers

Note 2: not allowed in procedures called from SQL*Forms

Note 3: not allowed in read-only transactions
 Using Procedures and Packages 10-61

Supplied Packages
Note 4: not allowed in remote (coordinated) sessions

Note 5: not allowed in recursive sessions

Note 6: not allowed in stored procedures
10-62 Oracle8 Application Developer’s Guide

Supplied Packages
Table 10–5 DBMS_TRANSACTION

Package Procedure(Arguments) SQL Command Equivalent

DBMS_

TRANSACTION

 advise_commit ALTER SESSION ADVISE COMMIT

 dvise_rollback ALTER SESSION ADVISE ROLLBACK

 advise_nothing ALTER SESSION ADVISE NOTHING

 commit (notes 1,2,4) COMMIT

 commit_Comment(cmnt varchar2)
 (notes 1,2,4)

 COMMIT COMMENT text

 commit_force(xid
varchar2,
 scn varchar2
 default null)
 (notes 1,2,3,4)

 COMMIT FORCE text ...

 read_only (notes 1,3,4) SET TRANSACTION READ ONLY

 read_write (notes 1,3,4) SET TRANSACTION READ WRITE

 rollback (notes 1,2,4) ROLLBACK

 rollback_force(xid varchar2)
 (notes 1,2,3,4)

 ROLLBACK ... FORCE text ...

 rollback_savepoint(
 svpt varchar2)
 (notes 1,2,4)

 ROLLBACK ... TO SAVEPOINT ...

 savepoint(savept varchar2)
 (notes 1,2,4)

 SAVEPOINT savepoint

 use_rollback_segment(
 rb_name varchar2)
 (notes 1,2,4)

 SET TRANSACTION USE ROLLBACK SEGMENT segment

 purge_mixed(xid in number) See Also: Oracle8 Distributed Database Systems

 begin_discrete_transaction
 (notes 1,3,4,5)

 See Also: Oracle8 Tuning

 local_transaction_id(
 create_transaction BOOLEAN
 default FALSE)
 return VARCHAR2

 See Also: Oracle8 Distributed Database Systems

 step_id return number See Also: Oracle8 Distributed Database Systems
 Using Procedures and Packages 10-63

Supplied Packages
Table 10–6 DBMS_UTILITYs

Package Procedure(Arguments) SQL Command Equivalent

DBMS_UTILITY

compile_schema(schema
 varchar2)
(notes 1,2,3,4)

This procedure is equivalent to calling alter_compile
on all procedures, functions, and packages accessible by
you. Compilation is completed in dependency order.

analyze_schema(
 schema varchar2,
 method varchar2,
 estimate_rows number
default null,
 estimate_percent number
 default null)

This procedure is equivalent to calling analyze_object
on all objects in the given schema.

analyze_part_object(
 schema in varchar2 default
null,
 object_name in varchar2
 default null,
 object_type in char default
'T',
 command_type in char
 default 'E',
 command_opt in varchar2
 default null,
 sample_clause in varchar2
 default
'sample 5 percent')

ANALYZE TABLE | INDEX [<schema>.]<object_name>

PARTITION <pname>

[<command_type>]

[<command_opt>]

[<sample_clause>]"

for each partition of the object, run in parallel using job
queues. This procedure submits a job for each partition;
you can control the number of concurrent jobs with the
initialization parameter JOB_QUEUE_PROCESSES.

Object_type must be T (table) or I (index).
Command_type can be:

 - C (compute statistics)

 - E (estimate statistics)

 - D (delete statistics)

 - V (validate structure).

For V, command_opt can be 'CASCADE' when
object_type is T. For C or E, command_opt can be FOR
table, FOR all LOCAL indexes, FOR all columns or a com-
bination of some of the 'for' options of analyze statistics
(table).

Sample_clause specifies the sample clause to use when
command_type is E.

format_error_stack
 return varchar2

This function formats the error stack into a variable.
10-64 Oracle8 Application Developer’s Guide

Supplied Packages
For more details on each SQL command equivalent, see the Oracle8 SQL Reference.

The COMMIT, ROLLBACK, ROLLBACK... TO SAVEPOINT, and SAVEPOINT procedures
are directly supported by PL/SQL; they are included in the DBMS_TRANSACTION
package for completeness.

Packages Supporting Additional Functionality
Several packages are supplied with Oracle to extend the functionality of the data-
base (DBMS_* and UTL_* packages). The cross-reference column in Table 10–7 tells
you where to look for more information on each of these packages.

DBMS_UTILITY

(continued)

format_error_stack
 return varchar2

 This function formats the error stack into a variable.

format_call_stack
 return varchar2

 This function formats the current call stack into a variable.

name_resolve(name in
varchar2,
 context in number,
 schema out varchar2,
 part1 out varchar2,
 part2 out varchar2,
 dblink out varchar2,
 part1_type out number,
 object_number out number)

 See Also: Oracle8 Distributed Database Systems.

Note 1: not allowed in triggers

Note 2: not allowed in procedures called from SQL*Forms

Note 3: not allowed in read-only transactions

Note 4: not allowed in remote (coordinated) sessions

Note 5: not allowed in recursive sessions

Note 6: not allowed in stored procedures

Table 10–6 (Cont.) DBMS_UTILITYs

Package Procedure(Arguments) SQL Command Equivalent
 Using Procedures and Packages 10-65

Supplied Packages
Table 10–7 Supplied Packages: Additional Functionality

Package Name Description Cross-reference

DBMS_ALERT Supports asynchronous notifica-
tion of database events.

Chapter 16, “Signal-
ling Database Events
with Alerters”

DBMS_DESCRIBE Lets you describe the arguments
of a stored procedure.

“DBMS_DESCRIBE
Package” on page 10-69

DBMS_JOB Lets you schedule administrative
procedures that you want per-
formed at periodic intervals.

Oracle8 Administrator’s
Guide

DBMS_LOCK Lets you use the Oracle Lock
Management services for your
applications.

“The DBMS_LOCK
Package” on page 3-18

DBMS_OUTPUT Lets you output messages from
triggers, procedures, and pack-
ages.

“Output from Stored
Procedures and Trig-
gers” on page 12-22

DBMS_PIPE Allows sessions in the same
instance to communicate with
each other.

Chapter 12, “PL/SQL
Input/Output”

DBMS_SHARED_POOLLets you keep objects in shared
memory, so that they will not be
aged out with the normal LRU
mechanism.

Oracle8 Tuning

DBMS_APPLICATION
_

INFO

Lets you register an application
name with the database for
auditing or performance track-
ing purposes.

Oracle8 Tuning

DBMS_SYSTEM Provides system-level utilities,
such as letting you enable SQL
trace for a session.

Oracle8 Tuning

DBMS_SPACE Provides segment space informa-
tion not available through stan-
dard views.

Oracle8 Administrator’s
Guide

DBMS_SQL Lets you write stored procedures
and anonymous PL/SQL blocks
using dynamic SQL; lets you
parse any DML or DDL statement.

Chapter 14, “Using
Dynamic SQL”
10-66 Oracle8 Application Developer’s Guide

Supplied Packages
DBMS_ROWID Lets you get information about
ROWIDs, including the data
block number, the object num-
ber, and other components.

“The DBMS_ROWID
Package” on page 10-79

DBMS_LOB Lets you manipulate large
objects using PL/SQL programs
running on the Oracle Server.

“DBMS_LOB Package”
on page 6-66

DBMS_AQ Lets you add a message (of a pre-
defined object type) onto a
queue or dequeue a message.

Chapter 11,
“Advanced Queuing”

DBMS_AQADM Lets you perform administrative
functions on a queue or queue
table for messages of a pre-
defined object type.

Chapter 11,
“Advanced Queuing”

DBMS_DISTRIBUTED
_

TRUST_ADMIN

Lets you maintain the Trusted
Servers List, which is used in
conjunction with the list at the
Central Authority to determine
if a privileged database link
from a particular server can be
accepted.

Oracle8 Distributed
Database Systems

DMBS_HS Lets you administer Heteroge-
neous Services by registering or
dropping distributed external
procedures, remote libraries, and
non-Oracle systems. Also lets
you create or drop some initial-
ization variables for non-Oracle
systems.

Oracle8 Distributed
Database Systems

DMBS_HS_EXTPROC Lets you use Heterogeneous Ser-
vices to establish security for dis-
tributed external procedures.

Oracle8 Distributed
Database Systems

DMBS_HS_

PASSTHROUGH

Lets you use Heterogeneous Ser-
vices to send pass-through SQL
statements to non-Oracle sys-
tems.

Oracle8 Distributed
Database Systems

Table 10–7 (Cont.) Supplied Packages: Additional Functionality

Package Name Description Cross-reference
 Using Procedures and Packages 10-67

Supplied Packages
DBMS_REFRESH Lets you create groups of snap-
shots that can be refreshed
together to a transactionally con-
sistent point in time. Use of this
feature requires the distributed
option.

Oracle8 Replication

DBMS_SNAPSHOT Lets you refresh one or more
snapshots that are not part of the
same refresh group, purge snap-
shot log. Use of this feature
requires the distributed option.

Oracle8 Replication

DBMS_DEFER,
DMBS_DEFER_SYS,

DBMS_DEFER_QUERY

Lets you build and administer
deferred remote procedure calls.
Use of this feature requires the
replication option.

Oracle8 Replication

DBMS_REPCAT Lets you use Oracle’s symmetric
replication facility. Use of this
feature requires the replication
option.

Oracle8 Replication

DBMS_REPCAT_AUTH,

DBMS_REPCAT_ADMI
N

Lets you create users with the
privileges needed by the sym-
metric replication facility. Use of
this feature requires the replica-
tion option.

Oracle8 Replication

UTL_HTTP Lets you make HTTP callouts
from PL/SQL and SQL to access
data on the Internet or to call
Oracle Web Server Cartridges.

“The UTL_HTTP Pack-
age” on page 10-87

Table 10–7 (Cont.) Supplied Packages: Additional Functionality

Package Name Description Cross-reference
10-68 Oracle8 Application Developer’s Guide

Describing Stored Procedures
Describing Stored Procedures
You can use the DBMS_DESCRIBE package to get information about a stored proce-
dure or function.

This package provides the same functionality as the Oracle Call Interface OCIDe-
scribeA ny() call. The procedure DESCRIBE_PROCEDURE in this package accepts
the name of a stored procedure, and a description of the procedure and each of its
parameters. For more information on the OCIDescribeA ny() call, see the Oracle
Call Interface Programmer’s Guide.

DBMS_DESCRIBE Package
To create the DBMS_DESCRIBE package, submit the DBMSDESC.SQL and PRVT-
DESC.PLB scripts when connected as the user SYS. These scripts are run automati-
cally by the CATPROC.SQL script. See “Privileges Required to Execute a Procedure”
on page 10-38 for information on the necessary privileges for users who will be exe-
cuting this package.

Security
This package is available to PUBLIC and performs its own security checking based
on the schema object being described.

Types
The DBMS_DESCRIBE package declares two PL/SQL table types, which are used to
hold data returned by DESCRIBE_PROCEDURE in its OUT parameters. The types are

TYPE VARCHAR2_TABLE IS TABLE OF VARCHAR2(30)
 INDEX BY BINARY_INTEGER;

TYPE NUMBER_TABLE IS TABLE OF NUMBER
 INDEX BY BINARY_INTEGER;

Errors
DBMS_DESCRIBE can raise application errors in the range -20000 to -20004. The
errors are

-20000: ORU 10035: cannot describe a package (’X’) only a
 procedure within a package
-20001: ORU-10032: procedure ’X’ within package ’Y’ does not
 exist
-20002: ORU-10033 object ’X’ is remote, cannot describe; expanded
 Using Procedures and Packages 10-69

Describing Stored Procedures
 name ’Y’
-20003: ORU-10036: object ’X’ is invalid and cannot be described
-20004: syntax error attempting to parse ’X’

DESCRIBE_PROCEDURE Procedure

Syntax
The parameters for DESCRIBE_PROCEDURE are shown in Table 10–8. The syntax is:

PROCEDURE DESCRIBE_PROCEDURE(
 object_name IN VARCHAR2,
 reserved1 IN VARCHAR2,
 reserved2 IN VARCHAR2,
 overload OUT NUMBER_TABLE,
 position OUT NUMBER_TABLE,
 level OUT NUMBER_TABLE,
 argument_name OUT VARCHAR2_TABLE,
 datatype OUT NUMBER_TABLE,
 default_value OUT NUMBER_TABLE,
 in_out OUT NUMBER_TABLE,
 length OUT NUMBER_TABLE,
 precision OUT NUMBER_TABLE,
 scale OUT NUMBER_TABLE,
 radix OUT NUMBER_TABLE
 spare OUT NUMBER_TABLE);
10-70 Oracle8 Application Developer’s Guide

Describing Stored Procedures
Table 10–8 DBMS_DESCRIBE.DESCRIBE_PROCEDURE Parameters

Parameter Mode Description

object_name IN The name of the procedure being described. The
syntax for this parameter follows the rules used for
identifiers in SQL. The name can be a synonym.
This parameter is required and may not be null. The
total length of the name cannot exceed 197 bytes.
An incorrectly specified OBJECT_NAME can result
in one of the following exceptions:

ORA-20000 - A package was specified. You can only
specify a stored procedure, stored function, pack-
aged procedure, or packaged function.

ORA-20001 - The procedure or function that you
specified does not exist within the given package.

ORA-20002 - The object that you specified is a
remote object. This procedure cannot currently
describe remote objects.

ORA-20003 - The object that you specified is invalid
and cannot be described.

ORA-20004 - The object was specified with a syntax
error.

reserved1
reserved2

IN Reserved for future use. Must be set to null or the
empty string.

overload OUT A unique number assigned to the procedure’s signa-
ture. If a procedure is overloaded, this field holds a
different value for each version of the procedure.

position OUT Position of the argument in the parameter list. Posi-
tion 0 returns the values for the return type of a
function.

level OUT If the argument is a composite type, such as record,
this parameter returns the level of the datatype. See
the Programmer’s Guide to the Oracle Call Inter-
face write-up of the ODESSP call for an example of
its use.
 Using Procedures and Packages 10-71

Describing Stored Procedures
argument_name OUT The name of the argument associated with the pro-
cedure that you are describing.

datatype OUT The Oracle datatype of the argument being
described. The datatypes and their numeric type
codes are:

0 placeholder for procedures with no arguments

1 VARCHAR, VARCHAR, STRING

2 NUMBER, INTEGER, SMALLINT, REAL,

 FLOAT, DECIMAL

3 BINARY_INTEGER, PLS_INTEGER,

 POSITIVE, NATURAL

8 LONG

11 ROWID

12 DATE

23 RAW

24 LONG RAW

96 CHAR (ANSI FIXED CHAR), CHARACTER

106 MLSLABEL

250 PL/SQL RECORD

251 PL/SQL TABLE

252 PL/SQL BOOLEAN

default_value OUT 1 if the argument being described has a default
value; otherwise, the value is 0.

in_out OUT Describes the mode of the parameter:

0 IN

1 OUT

2 IN OUT

length OUT The data length, in bytes, of the argument being
described.

Table 10–8 (Cont.) DBMS_DESCRIBE.DESCRIBE_PROCEDURE Parameters

Parameter Mode Description
10-72 Oracle8 Application Developer’s Guide

Describing Stored Procedures
Return Values
All values from DESCRIBE_PROCEDURE are returned in its OUT parameters. The
datatypes for these are PL/SQL tables, to accommodate a variable number of
parameters.

Examples
One use of the DESCRIBE_PROCEDURE procedure would be as an external service
interface.

For example, consider a client that provides an OBJECT _NAME of
SCOTT.ACCOUNT_UPDATE where ACCOUNT_UPDATE is an overloaded function
with specification:

table account (account_no number, person_id number,
 balance number(7,2))
table person (person_id number(4), person_nm varchar2(10))

function ACCOUNT_UPDATE (account_no number,
 person person%rowtype,
 amounts dbms_describe.number_table,
 trans_date date)
 return accounts.balance%type;

function ACCOUNT_UPDATE (account_no number,
 person person%rowtype,
 amounts dbms_describe.number_table,
 trans_no number)
 return accounts.balance%type;

precision OUT If the argument being described is of datatype 2
(NUMBER), this parameter is the precision of that
number.

scale OUT If the argument being described is of datatype 2
(NUMBER, etc.), this parameter is the scale of that
number.

radix OUT If the argument being described is of datatype 2
(NUMBER, etc.), this parameter is the radix of that
number.

spare OUT Reserved for future functionality.

Table 10–8 (Cont.) DBMS_DESCRIBE.DESCRIBE_PROCEDURE Parameters

Parameter Mode Description
 Using Procedures and Packages 10-73

Describing Stored Procedures
The describe of this procedure might look similar to the output shown below.

overload position argument level datatype length prec scale rad
-------- --------- -------- ------ -------- ------ ---- ----- ---
 1 0 0 2 22 7 2 10
 1 1 ACCOUNT 0 2 0 0 0 0
 1 2 PERSON 0 250 0 0 0 0
 1 1 PERSON_ID 1 2 22 4 0 10
 1 2 PERSON_NM 1 1 10 0 0 0
 1 3 AMOUNTS 0 251 0 0 0 0
 1 1 1 2 22 0 0 0
 1 4 TRANS_DATE 0 12 0 0 0 0
 2 0 0 2 22 7 2 10
 2 1 ACCOUNT_NO 0 2 22 0 0 0
 2 2 PERSON 0 2 22 4 0 10
 2 3 AMOUNTS 0 251 22 4 0 10
 2 1 1 2 0 0 0 0
 2 4 TRANS_NO 0 2 0 0 0 0

The following PL/SQL procedure has as its parameters all of the PL/SQL
datatypes:

CREATE OR REPLACE PROCEDURE p1 (
 pvc2 IN VARCHAR2,
 pvc OUT VARCHAR,
 pstr IN OUT STRING,
 plong IN LONG,
 prowid IN ROWID,
 pchara IN CHARACTER,
 pchar IN CHAR,
 praw IN RAW,
 plraw IN LONG RAW,
 pbinint IN BINARY_INTEGER,
 pplsint IN PLS_INTEGER,
 pbool IN BOOLEAN,
 pnat IN NATURAL,
 ppos IN POSITIVE,
 pposn IN POSITIVEN,
 pnatn IN NATURALN,
 pnum IN NUMBER,
 pintgr IN INTEGER,
 pint IN INT,
 psmall IN SMALLINT,
 pdec IN DECIMAL,
10-74 Oracle8 Application Developer’s Guide

Describing Stored Procedures
 preal IN REAL,
 pfloat IN FLOAT,
 pnumer IN NUMERIC,
 pdp IN DOUBLE PRECISION,
 pdate IN DATE,
 pmls IN MLSLABEL) AS

BEGIN
 NULL;
END;

If you describe this procedure using the package below:

CREATE OR REPLACE PACKAGE describe_it AS

 PROCEDURE desc_proc (name VARCHAR2);

END describe_it;

CREATE OR REPLACE PACKAGE BODY describe_it AS

 PROCEDURE prt_value(val VARCHAR2, isize INTEGER) IS
 n INTEGER;
 BEGIN
 n := isize - LENGTHB(val);
 IF n < 0 THEN
 n := 0;
 END IF;
 DBMS_OUTPUT.PUT(val);
 FOR i in 1..n LOOP
 DBMS_OUTPUT.PUT(’ ’);
 END LOOP;
 END prt_value;

 PROCEDURE desc_proc (name VARCHAR2) IS

 overload DBMS_DESCRIBE.NUMBER_TABLE;
 position DBMS_DESCRIBE.NUMBER_TABLE;
 c_level DBMS_DESCRIBE.NUMBER_TABLE;
 arg_name DBMS_DESCRIBE.VARCHAR2_TABLE;
 dty DBMS_DESCRIBE.NUMBER_TABLE;
 def_val DBMS_DESCRIBE.NUMBER_TABLE;
 p_mode DBMS_DESCRIBE.NUMBER_TABLE;
 length DBMS_DESCRIBE.NUMBER_TABLE;
 precision DBMS_DESCRIBE.NUMBER_TABLE;
 Using Procedures and Packages 10-75

Describing Stored Procedures
 scale DBMS_DESCRIBE.NUMBER_TABLE;
 radix DBMS_DESCRIBE.NUMBER_TABLE;
 spare DBMS_DESCRIBE.NUMBER_TABLE;
 idx INTEGER := 0;

 BEGIN
 DBMS_DESCRIBE.DESCRIBE_PROCEDURE(
 name,
 null,
 null,
 overload,
 position,
 c_level,
 arg_name,
 dty,
 def_val,
 p_mode,
 length,
 precision,
 scale,
 radix,
 spare);

 DBMS_OUTPUT.PUT_LINE(’Position Name DTY Mode’);
 LOOP
 idx := idx + 1;
 prt_value(TO_CHAR(position(idx)), 12);
 prt_value(arg_name(idx), 12);
 prt_value(TO_CHAR(dty(idx)), 5);
 prt_value(TO_CHAR(p_mode(idx)), 5);
 DBMS_OUTPUT.NEW_LINE;
 END LOOP;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.NEW_LINE;
 DBMS_OUTPUT.NEW_LINE;

 END desc_proc;
END describe_it;

Then the results, as shown below, list all the numeric codes for the PL/SQL
datatypes:

Position Name Datatype_Code Mode
1 PVC2 1 0
10-76 Oracle8 Application Developer’s Guide

Listing Information about Procedures and Packages
2 PVC 1 1
3 PSTR 1 2
4 PLONG 8 0
5 PROWID 11 0
6 PCHARA 96 0
7 PCHAR 96 0
8 PRAW 23 0
9 PLRAW 24 0
10 PBININT 3 0
11 PPLSINT 3 0
12 PBOOL 252 0
13 PNAT 3 0
14 PPOS 3 0
15 PPOSN 3 0
16 PNATN 3 0
17 PNUM 2 0
18 PINTGR 2 0
19 PINT 2 0
20 PSMALL 2 0
21 PDEC 2 0
22 PREAL 2 0
23 PFLOAT 2 0
24 PNUMER 2 0
25 PDP 2 0
26 PDATE 12 0
27 PMLS 106 0

Listing Information about Procedures and Packages
The following data dictionary views provide information about procedures and
packages:

■ ALL_ERRORS, USER_ERRORS, DBA_ERRORS

■ ALL_SOURCE, USER_SOURCE, DBA_SOURCE

■ USER_OBJECT_SIZE, DBA_OBJECT_SIZE

The OBJECT_SIZE views show the sizes of the PL/SQL objects. For a complete
description of these data dictionary views, see your Oracle8 Reference.

The following statements are used in Examples 1 through 3:

CREATE PROCEDURE fire_emp(emp_id NUMBER) AS
BEGIN
 DELETE FROM em WHERE empno = emp_id;
END;
 Using Procedures and Packages 10-77

Listing Information about Procedures and Packages
/
CREATE PROCEDURE hire_emp (name VARCHAR2, job VARCHAR2,
 mgr NUMBER, hiredate DATE, sal NUMBER,
 comm NUMBER, deptno NUMBER)

IS
BEGIN
 INSERT INTO emp VALUES (emp_sequence.NEXTVAL, name,
 job, mgr, hiredate, sal, comm, deptno);
END;
/
The first CREATE PROCEDURE statement has an error in the DELETE statement.
(The ’p’ is absent from ’emp’.)

Example 1: Listing Compilation Errors for Objects The following query returns all the
errors for the objects in the associated schema:

SELECT name, type, line, position, text
 FROM user_errors;
The following results are returned:

NAME TYPE LIN POS TEXT
-------- ---- --- --- -------------------------------------
FIRE_EMP PROC 3 15 PL/SQL-00201: identifier ’EM’ must be
 declared
FIRE_EMP PROC 3 3 PL/SQL: SQL Statement ignored

Example 2: Listing Source Code for a Procedure The following query returns the source
code for the HIRE_EMP procedure created in the example statement at the begin-
ning of this section:

SELECT line, text FROM user_source
 WHERE name = ’HIRE_EMP’;

The following results are returned:

LINE TEXT
------ ---
 1 PROCEDURE hire_emp (name VARCHAR2, job VARCHAR2,
 2 mgr NUMBER, hiredate DATE, sal NUMBER,
 3 comm NUMBER, deptno NUMBER)
 4 IS
 5 BEGIN
 6 INSERT INTO emp VALUES (emp_seq.NEXTVAL, name,
 7 job, mgr, hiredate, sal, comm, deptno);
 8 END;
10-78 Oracle8 Application Developer’s Guide

The DBMS_ROWID Package
Example 3: Listing Size Information for a Procedure The following query returns informa-
tion about the amount of space in the SYSTEM tablespace that is required to store
the HIRE_EMP procedure:

SELECT name, source_size + parsed_size + code_size +
 error_size ”TOTAL SIZE”
 FROM user_object_size
 WHERE name = ’HIRE_EMP’;

The following results are returned:

NAME TOTAL SIZE
------------------------------ ----------
HIRE_EMP 3897

The DBMS_ROWID Package
The functions in this package let you get the information that you need about ROW-
ID s. You can find out the data block number, the object number, and other compo-
nents of the ROWID without having to write code to interpret the base-64 character
external ROWID.

The specification for the DBMS_ROWID package is in the file dbmsutil.sql. This pack-
age is loaded when you create a database, and run catproc.sql.

Some of the functions in this package take a single parameter: a ROWID. This can be
a character or a binary ROWID, either restricted or extended, as required. For each
function described in this section, both the parameter types and the return type are
described.

You can call the DBMS_ROWID functions and procedures from PL/SQL code, and
you can also use the functions in SQL statements.

SQL Example You can use functions from the DBMS_ROWID package just like any
built-in SQL function. That is, you can use them wherever an expression can be
used. In this example, the ROWID_BLOCK_NUMBER function is used to return just
the block number of a single row in the EMP table:

SELECT dbms_rowid.rowid_block_number(rowid)
 FROM emp

Note: ROWID_INFO is a procedure. It can only be used in PL/
SQL code.
 Using Procedures and Packages 10-79

The DBMS_ROWID Package
 WHERE ename = ’KING’;

PL/SQL Example This example returns the ROWID for a row in the EMP table, extracts
the data object number from the ROWID, using the ROWID_OBJECT function in the
DBMS_ROWID package, then displays the object number:

DECLARE
 object_no INTEGER;
 row_id ROWID;
 ...
BEGIN
 SELECT ROWID INTO row_id FROM emp
 WHERE empno = 7499;
 object_no := dbms_rowid.rowid_object(row_id);
 dbms_output.put_line(’The obj. # is ’|| object_no);
 ...

Summary
Table 10–9 lists the functions and procedures in the DBMS_ROWID package.

Table 10–9 DBMS_ROWID Functions

Function Name Description
See
Page

ROWID_CREATE Create a ROWID, for testing only. 81

ROWID_INFO Procedure that returns the type and
components of a ROWID

82

ROWID_TYPE Returns the ROWID type: 0 is
restricted, 1 is extended.

83

ROWID_OBJECT Returns the object number of the
extended ROWID.

83

ROWID_RELATIVE_FNO Returns the file number of a ROWID. 84

ROWID_BLOCK_NUMBER Returns the block number of a ROWID. 84

ROWID_ROW_NUMBER Returns the row number. 84

ROWID_TO_ABSOLUTE_FNO Returns the absolute file number asso-
ciated with the ROWID for a row in a
specific table.

84

ROWID_TO_EXTENDED Converts a ROWID from restricted for-
mat to extended.

85
10-80 Oracle8 Application Developer’s Guide

The DBMS_ROWID Package
Exceptions
The DBMS_ROWID package functions and procedures can raise the
ROWID_INVALID exception. The exception is defined in the DBMS_ROWID package
as:

PRAGMA EXCEPTION_INIT(ROWID_INVALID, -1410);

ROWID_CREATE Function
The ROWID_CREATE function lets you create a ROWID, given the component parts
as parameters. This function is mostly useful for testing ROWID operations, since
only the Oracle Server can create a valid ROWID that points to data in a database.

Syntax
FUNCTION DBMS_ROWID.ROWID_CREATE(
 rowid_type IN NUMBER,
 object_number IN NUMBER,
 relative_fno IN NUMBER,
 block_number IN NUMBER,
 row_number IN NUMBER)
 RETURN ROWID;

Set the ROWID_TYPE parameter to 0 for a restricted ROWID, and to 1 to create an
extended ROWID.

If you specify ROWID_TYPE as 0, the required OBJECT_NUMBER parameter is
ignored, and ROWID_CREATE returns a restricted ROWID.

Example
Create a dummy extended ROWID:

my_rowid := DBMS_ROWID.ROWID_CREATE(1, 9999, 12, 1000, 13);

ROWID_TO_RESTRICTED Converts an extended ROWID to
restricted format.

86

ROWID_VERIFY Checks if a ROWID can be correctly
extended by the
ROWID_TO_EXTENDED function.

87

Table 10–9 (Cont.) DBMS_ROWID Functions

Function Name Description
See
Page
 Using Procedures and Packages 10-81

The DBMS_ROWID Package
Find out what the ROWID_OBJECT function returns:

obj_number := DBMS_ROWID.ROWID_OBJECT(my_rowid);

The variable OBJ_NUMBER now contains 9999.

ROWID_INFO Procedure
This procedure returns information about a ROWID, including its type (restricted or
extended), and the components of the ROWID. This is a procedure, and cannot be
used in a SQL statement.

Syntax
DBMS_ROWID.ROWID_INFO(
 rowid_in IN ROWID,
 rowid_type OUT NUMBER,
 object_number OUT NUMBER,
 relative_fno OUT NUMBER,
 block_number OUT NUMBER,
 row_number OUT NUMBER);

The IN parameter ROWID_IN determines if the ROWID is a restricted (0) or
extended (1) ROWID.

The OUT parameters return the information about the ROWID, as indicated by their
names.

For information about the ROWID_TYPE parameter, see the ROWID_TYPE function
on page 10-83.

Example
To read back the values for the ROWID that you created in the ROWID_CREATE
example:

DBMS_ROWID.ROWID_INFO(my_rowid, rid_type, obj_num,
 file_num, block_num, row_num);

DBMS_OUTPUT.PUT_LINE(’The type is ’ || rid_type);
DBMS_OUTPUT.PUT_LINE(’Data object number is ’ || obj_num);
-- and so on...
10-82 Oracle8 Application Developer’s Guide

The DBMS_ROWID Package
ROWID_TYPE Function
This function returns 0 if the ROWID is a restricted ROWID, and 1 if it is extended.

Syntax
FUNCTION DBMS_ROWID.ROWID_TYPE(rowid_val IN ROWID)
 RETURN NUMBER;

Example
IF DBMS_ROWID.ROWID_TYPE(my_rowid) = 1 THEN
 my_obj_num := DBMS_ROWID.ROWID_OBJECT(my_rowid);

ROWID_OBJECT Function
This function returns the data object number for an extended ROWID. The function
returns zero if the input ROWID is a restricted ROWID.

Syntax
DBMS_ROWID.ROWID_OBJECT(rowid_val IN ROWID)
 RETURN NUMBER;

Example
SELECT dbms_rowid.rowid_object(ROWID)
 FROM emp
 WHERE empno = 7499;

ROWID_RELATIVE_FNO Function
This function returns the relative file number of the ROWID specified as the IN
parameter. (The file number is relative to the tablespace.)

Syntax
DBMS_ROWID.ROWID_RELATIVE_FNO(rowid_val IN ROWID)
 RETURN NUMBER;

Example
The example PL/SQL code fragment returns the relative file number:

DECLARE
 file_number INTEGER;
 rowid_val ROWID;
 Using Procedures and Packages 10-83

The DBMS_ROWID Package
BEGIN
 SELECT ROWID INTO rowid_val
 FROM dept
 WHERE loc = ’Boston’;
 file_number :=
 dbms_rowid.rowid_relative_fno(rowid_val);
 ...

ROWID_BLOCK_NUMBER Function
This function returns the database block number for the input ROWID.

Syntax
DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid_val IN ROWID)
 RETURN NUMBER;

Example
The example SQL statement selects the block number from a ROWID and inserts it
into another table:

INSERT INTO T2 (SELECT dbms_rowid.rowid_block_number(ROWID)
 FROM some_table
 WHERE key_value = 42);

ROWID_ROW_NUMBER Function
This function extracts the row number from the ROWID IN parameter.

Syntax
DBMS_ROWID.ROWID_ROW_NUMBER(rowid_val IN ROWID)
 RETURN NUMBER;

Example
Select a row number:

SELECT dbms_rowid.rowid_row_number(ROWID)
 FROM emp
 WHERE ename = ’ALLEN’;

ROWID_TO_ABSOLUTE_FNO Function
This function extracts the absolute file number from a ROWID, where the file num-
ber is absolute for a row in a given schema and table. The schema name and the
10-84 Oracle8 Application Developer’s Guide

The DBMS_ROWID Package
name of the schema object (such as a table name) are provided as IN parameters for
this function.

Syntax
DBMS_ROWID.ROWID_TO_ABSOLUTE_FNO(
 rowid_val IN ROWID,
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2)
 RETURN NUMBER;

Example
DECLARE
 rel_fno INTEGER;
 rowid_val CHAR(18);
 object_name VARCHAR2(20) := ’EMP’;
BEGIN
 SELECT ROWID INTO rowid_val
 FROM emp
 WHERE empno = 9999;
 rel_fno := dbms_rowid.rowid_to_absolute_fno(
 rowid_val, ’SCOTT’, object_name);

ROWID_TO_EXTENDED Function
This function translates a restricted ROWID that addresses a row in a schema and
table that you specify to the extended ROWID format.

Syntax
DBMS_ROWID.ROWID_TO_EXTENDED(
 restr_rowid IN ROWID,
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2)
 RETURN ROWID;

Example
Assume that there is a table called RIDS in the schema SCOTT, and that the table
contains a column ROWID_COL that holds ROWIDs (restricted), and a column
TABLE_COL that point to other tables in the SCOTT schema. You can convert the
ROWIDs to extended format with the statement:

UPDATE SCOTT.RIDS
 SET rowid_col =
 Using Procedures and Packages 10-85

The DBMS_ROWID Package
 dbms_rowid.rowid_to_extended(rowid_col,
 ’SCOTT”, TABLE_COL);

Usage
ROWID_TO_EXTENDED returns the ROWID in the extended character format. If the
input ROWID is NULL, the function returns NULL. If a zero-valued ROWID is sup-
plied (00000000.0000.0000), a zero-valued restricted ROWID is returned.

If the schema and object names are provided as IN parameters, this function veri-
fies SELECT authority on the table named, and converts the restricted ROWID pro-
vided to an extended ROWID, using the data object number of the table. That
ROWID_TO_EXTENDED returns a value, however, does not guarantee that the con-
verted ROWID actually references a valid row in the table, either at the time that the
function is called, or when the extended ROWID is actually used.

If the schema and object name are not provided (are passed as NULL), then this
function attempts to fetch the page specified by the restricted ROWID provided. It
treats the file number stored in this ROWID as the absolute file number. This can
cause problems if the file has been dropped, and its number has been reused prior
to the migration. If the fetched page belongs to a valid table, the data object number
of this table is used in converting to an extended ROWID value. This is very ineffi-
cient, and Oracle recommends doing this only as a last resort, when the target table
is not known. The user must still know the correct table name at the time of using
the converted value.

If an extended ROWID value is supplied, the data object number in the input
extended ROWID is verified against the data object number computed from the
table name parameter. If the two numbers do not match, the INVALID_ROWID
exception is raised. If they do match, the input ROWID is returned.

See the ROWID_VERIFY function on page 10-87 for a method to determine if a
given ROWID can be converted to the extended format.

ROWID_TO_RESTRICTED Function
This function converts an extended ROWID into restricted ROWID format.

Syntax
DBMS_ROWID.ROWID_TO_RESTRICTED(ext_rowid IN ROWID)
 RETURN ROWID;

Example
INSERT INTO RID_T2@V7db1
10-86 Oracle8 Application Developer’s Guide

The UTL_HTTP Package
 SELECT dbms_rowid.rowid_to_restricted(ROWID)
 FROM scott.emp@O8db1
 WHERE ename = ’SMITH’;

ROWID_VERIFY Function
This function returns 0 if the input restricted ROWID can be converted to extended
format, given the input schema name and table name, and it returns 1 if the conver-
sion is not possible. Note that you can use this function in a BOOLEAN context in a
SQL statement, as shown in the example.

Syntax
DBMS_ROWID.ROWID_VERIFY(
 restr_rowid IN ROWID,
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2)
 RETURN ROWID;

Example
Considering the schema in the example for the ROWID_TO_EXTENDED function on
page 10-85, you can use the following statement to find bad ROWIDs prior to conver-
sion:

SELECT ROWID, rowid_col
 FROM SCOTT.RIDS
 WHERE dbms_rowid.rowid_verify(rowid_col, NULL, NULL);

The UTL_HTTP Package
The stored package UTL_HTTP makes HTTP (hyper-text transfer protocol) callouts
from PL/SQL and SQL. You can use it to access data on the internet, or to call Ora-
cle Web Server Cartridges. The package contains two similar entrypoints, each of
which takes a string URL (universal resource locator), contacts that site, and returns
the data (typically HTML — hyper-text markup language) obtained from that site.

This is the specification of packaged function UTL_HTTP.REQUEST:

function request (url in varchar2) return varchar2;

UTL_HTTP.REQUEST returns up to the first 2000 bytes of the data retrieved from the
given URL. For example:

SVRMGR> select utl_http.request('http://www.oracle.com/') from dual;
UTL_HTTP.REQUEST('HTTP://WWW.ORACLE.COM/')
 Using Procedures and Packages 10-87

The UTL_HTTP Package

<html>
<head><title>Oracle Corporation Home Page</title>
<!--changed Jan. 16, 19
1 row selected.

This is the specification of packaged function UTL_HTTP.REQUEST_PIECES, which
uses type UTL_HTTP.HTML_PIECES:

type html_pieces is table of varchar2(2000) index by binary_integer;
function request_pieces (url in varchar2,
 max_pieces natural default 32767)
 return html_pieces;

UTL_HTTP.REQUEST_PIECES returns a PL/SQL-table of 2000-byte pieces of the
data retrieved from the given URL. The optional second argument places a bound
on the number of pieces retrieved. For example, the following block retrieves up to
100 pieces of data (each 2000 bytes, except perhaps the last) from the URL. It prints
the number of pieces retrieved and the total length, in bytes, of the data retrieved.

 set serveroutput on
 /
 declare
 x utl_http.html_pieces;
 begin
 x := utl_http.request_pieces('http://www.oracle.com/', 100);
 dbms_output.put_line(x.count || ' pieces were retrieved.');
 dbms_output.put_line('with total length ');
 if x.count < 1
 then dbms_output.put_line('0');
 else dbms_output.put_line
 ((2000 * (x.count - 1)) + length(x(x.count)));
 end if;
 end;
 /
Here is the output:

 Statement processed.
 4 pieces were retrieved.
 with total length
 7687

Below is the specification for package UTL_HTTP. It describes the exceptions that
can be raised by functions REQUEST and REQUEST_PIECES:

create or replace package utl_http is
10-88 Oracle8 Application Developer’s Guide

The UTL_HTTP Package
-- Package UTL_HTTP contains functions REQUEST and REQUEST_PIECES for
-- making HTTP callouts from PLSQL programs.

-- Function REQUEST takes a URL as its argument. Its return-type is a
-- string of length 2000 or less, which contains up to the first 2000 bytes
-- of the html result returned from the HTTP request to the argument URL.

function request (url in varchar2) return varchar2;
pragma restrict_references (request, wnds, rnds, wnps, rnps);

-- Function REQUEST_PIECES also takes a URL as its argument. Its
-- return-type is a PLSQL-table of type UTL_HTTP.HTML_PIECES. Each
-- element of that PLSQL-table is a string of length 2000. The
-- final element may be shorter than 2000 characters.

type html_pieces is table of varchar2(2000) index by binary_integer;

function request_pieces (url in varchar2,
 max_pieces natural default 32767)
 return html_pieces;
pragma restrict_references (request_pieces, wnds, rnds, wnps, rnps);

-- The elements of the PLSQL-table returned by REQUEST_PIECES are
-- successive pieces of the data obtained from the HTTP request to that
-- URL. Here is a typical URL:
-- http://www.oracle.com
-- So a call to REQUEST_PIECES could look like the example below. Note the
-- use of the plsql-table method COUNT to discover the number of pieces
-- returned, which may be zero or more:
--
-- declare pieces utl_http.html_pieces;
-- begin
-- pieces := utl_http.request_pieces('http://www.oracle.com/');
-- for i in 1 .. pieces.count loop
-- -- process each piece
-- end loop;
-- end;
--

-- The second argument to REQUEST_PIECES, "MAX_PIECES", is optional. It is
-- the maximum number of pieces (each 2000 characters in length, except for
-- the last, which may be shorter), that REQUEST_PIECES should return. If
-- provided, that argument should be a positive integer.

-- Exceptional conditions:
 Using Procedures and Packages 10-89

The UTL_HTTP Package
-- If initialization of the http-callout subsystem fails (for
-- environmental reasons, for example, lack of available memory)
-- then exception UTL_HTTP.INIT_FAILED is raised:

init_failed exception;

-- When the HTTP call fails (e.g., because of failure of the HTTP daemon;
-- or because of the argument to REQUEST or REQUEST_PIECES cannot be
-- interpreted as a URL because it is NULL or has non-HTTP syntax) then
-- exception UTL_HTTP.REQUEST_FAILED is raised.

request_failed exception;

-- Note that the above two exceptions, unless explicitly caught by an
-- exception handler, will be reported by this generic message:
-- ORA-06510: PL/SQL: unhandled user-defined exception
-- which reports them as "user-defined" exceptions, although
-- they are defined in this system package.

-- If any other exception is raised during the processing of the http
-- request (for example, an out-of-memory error), then function REQUEST
-- or REQUEST_PIECES reraises that exception.

-- When no response is received from a request to the given URL
-- (for example, because no site corresponding to that URL is contacted)
-- then a formatted html error message may be returned. For example:
--
-- <HTML>
-- <HEAD>
-- <TITLE>Error Message</TITLE>
-- </HEAD>
-- <BODY>
-- <H1>Fatal Error 500</H1>
-- Can't Access Document: http://home.nothing.comm.
-- <P>
-- Reason: Can't locate remote host: home.nothing.comm.
-- <P>
--
-- <P><HR>
-- <ADDRESS>
-- CERN-HTTPD3.0A</ADDRESS>
-- </BODY>
-- </HTML>
--
10-90 Oracle8 Application Developer’s Guide

The UTL_HTTP Package
-- You should not expect for UTL_HTTP.REQUEST or UTL_HTTP.REQUEST_PIECES
-- to succeed in contacting a URL unless you can contact that URL by using
-- a browser on the same machine (and with the same privileges, environment
-- variables, etc.) If REQUEST or REQUEST_PIECES fails (i.e., if it raises
-- an exception, or returns a HTML-formatted error message, yet you believe
-- that the URL argument is correct), please try contacting that same URL
-- with a browser, to verify network availability from your machine.

end utl_http;
 Using Procedures and Packages 10-91

The UTL_HTTP Package
10-92 Oracle8 Application Developer’s Guide

 Advanced Q
11

Advanced Queuing

This chapter has four sections:

■ Introduction to Oracle Advanced Queuing —

– describes the relationship between queuing and the requirements for com-
plex information handling in distributed environments

– lists the features of Oracle AQ

– details the primary components of Oracle AQ

■ Oracle Advanced Queuing by Example — takes a step-by-step approach to using
Oracle AQ

■ Oracle Advanced Queuing Reference — contains a detailed description of the tech-
nical specifications for Oracle AQ

■ Compatibility and Upgrade — describes the compatibility of Oracle AQ 8.0.4 with
Oracle AQ 8.0.3, and the steps necessary to upgrade to the latest version

WARNING:

■ If you purchase the product, Oracle8, you will not be able to
use Oracle AQ.

■ If you purchase the product, Oracle8 Enterprise Edition, with-
out the Objects Option, you will be able to use Oracle AQ
with queues of RAW type only.

■ If you purchase the product, Oracle8 Enterprise Edition, with
the Objects Option, you will be able to use the full function-
ality of Oracle AQ.
ueuing 11-1

Introduction to Oracle Advanced Queuing
Introduction to Oracle Advanced Queuing

Introduction Overview
This introductory section:

■ Introduces the requirements for complex information handling in a distributed
environment in terms of three sample scenarios

■ Considers two solutions to the problems common to the scenarios:

– A synchronous communication model

– The deferred messaging system made possible by Oracle AQ

■ Describes the features of Oracle AQ

– General features

– Enqueue features

– Dequeue features

– Propagation: Enqueuing & Dequeueing

■ Details Primary Components of Oracle AQ

– Queue entities

– Basic Queuing

– Multiple-Consumer Dequeuing of the Same Message
11-2 Oracle8 Application Developer’s Guide

Introduction to Oracle Advanced Queuing
Complex Systems
Consider the following application scenarios.

6

7

Application Scenario 1: A brokerage firm, Makers & Breakers, advertises to the
public that its new service will let clients stipulate time as well as price as a param-
eter i.e. a request to buy or sell is not executed unless it takes place within a spe-
cific time period (e.g., within 15 minutes). The campaign is extremely successful
and a mutual fund house, America’s Standard Guarantee, takes advantage of the
technology to offer its clients an opportunity to buy and sell units during course
of the day rather than at the close of trading. However, M&B are informed by the
Securities and Exchange Commission that they have received two complaints:

■ That in executing the buy/sell orders M&B are giving an unfair advantage to
large customers, such as the mutual fund house.

■ That in managing the time parameter M&B are taking advantage of their cus-
tomers e.g., in a falling market selling earlier in the time period than they
inform their clients, and then pocketing the difference.

The problem facing Makers & Breakers is not only to answer these unfounded
charges but to do so quickly and in such a way as to leave no doubt in the minds
of the public regarding the fairness of their practices.

Application Scenario 2: A large state university(35,000 students) decides to
automate its class enrollment process. Students will be able to register for classes
using web templates from home or at terminals on both the main and satellite
campuses for any of the more than a thousand classes offered by Big U. The
administration announces that the following parameters will apply:

■ Priority: registration is on a ‘first come’ basis except that

 - seniors receive priority for upper level courses, followed by juniors,
sophomores and first-year students (frosh);

 - frosh receive priority for entry level courses, followed by a senior who needs
the course to graduate.

■ Registration phases: the above priority criteria hold only for specific defined
time phases e.g., in the second phase, seniors and juniors are treated as being
on an equal ‘first come’ basis with regard to upper-level classes, but continue
to receive priority over juniors and frosh.
 Advanced Queuing 11-3

Introduction to Oracle Advanced Queuing
Queuing and the Intricacy of Message Passing
Although not every application developer will have worked with each of these
types of scenario, the basic elements of these problem domains will be familiar.
Each of these scenarios describes a situation in which messages come from and are
disbursed to multiple clients (nodes) in a distributed computing environment. Mes-
sages are not only passed back and forth between client and server but also are
intricately interleaved between processes on the server.

If we focus on these scenarios in terms of messages, the applications can be viewed
as consisting of multi-step processes in which each step is triggered by one or more
messages, and gives rises to one or more messages. Another way of saying this is
that messages are events that trigger other message-events.

■ Full-time undergraduates must register for a minimum of three classes and
may register for a maximum of four classes without special permission. Stu-
dents may register for as many as ten classes (ranking their preferences 1-10)
in case they are not admitted to their preferred classes, but only the first three
choices are regarded as ‘live’. In the event that a class becomes full, the stu-
dent’s next choice becomes ‘live’. However, should a full class develop a
vacancy, the student with the highest priority will be admitted, at that time
being removed from the roll of a class of her/his lower preference.

Application Scenario 3: A power utility, Most Power, develops a sophisticated
model in order to decide how to deploy its resources. The way the system works
is that the utility gets ongoing reports from

■ numerous weather centers regarding current conditions, and

■ power stations regarding ongoing utilization.

It then compares this information to historical data in order to predict demand for
power in specific geographic areas for given time periods. A crucial part of this
modeling has to do with noting the rapidity and degree of change in the incoming
reports as weather changes and power is deployed.

During a prolonged blizzard, matters are complicated by failure of a power sta-
tion which also forwards weather data. The question facing Most Power is whether
to purchase power from a neighboring utility, since there is a lead time of five
days for making such arrangements.
11-4 Oracle8 Application Developer’s Guide

Introduction to Oracle Advanced Queuing
Business Process Management, or Workflow, which is based on this notion of the
interrelation of messages and events, is becoming recognized as a fundamental
technology. Queuing is one of the key technologies for this class of application
because it implements deferred execution of messages. This decoupling of ‘requests
for service’ from ‘supply of services’ increases efficiency, and provides the infra-
structure for complex scheduling.

Securing Messages in a Vulnerable Environment
Handling the intricacy message-passing is not the only problem. Unfortunately, net-
works, computing hardware, and software applications will all fail from time to
time, as is the case in power utility scenario. Nevertheless, the ACID properties of
the information must be preserved. Chaos would quickly follow if buy orders and
the order in which they issued were ‘lost’, or if the changing status of students
could not be matched to class availability, or if power could not routed to where the
combination of incoming reports an historical patterns of changes in demand indi-
cated it would be most required. In other words, messaging must be persistent. By
integrating transaction processing with queuing technology, persistent messaging
in the form of queuing is made possible. The importance of queuing has been
proven by TP-monitors that typically include such a facility.

Message Persistence as Extension in Time and Space
The persistence of messages that is required goes beyond the ability to recover
information in the event of system failure. Applications may have to deal with mul-
tiple unprocessed messages arriving simultaneously from external clients or from
programs internal to the application. The communication links between databases
may not be available all the time or may be reserved for some other purpose. If the
system falls short in its capacity to deal with these messages immediately, the appli-
cation must be able to store the messages until they can be processed. By the same
token, external clients or internal programs may not be ready to receive messages
that have been processed.

Even more important, applications must be able to deal with priorities: messages
arriving later may be of higher priority than messages arriving earlier; messages
arriving earlier may have to wait for messages arriving later before actions are
executed; the same message may have to be accessed by different processes; and so
on. All these cases become more pressing in situations in which messages are
communicated between remote locations.

Moreover, priorities are not fixed. One crucial dimension of handling the dynamic
aspect of message persistence has to do with windows of opportunity that grow and
shrink.It may be that messages in a specific queue become more important than
 Advanced Queuing 11-5

Introduction to Oracle Advanced Queuing
messages in other queues, and so need to be processed with less delay or interfer-
ence from messages in other queues. Similarly, it may be more pressing to send
messages to some destinations than to others. In the case of the share brokerage
application, the window for completing the sale shrinks to nothing (i.e. an offer to
sell expires) from the time the offer to sell message is received. In the case of the stu-
dent registration application, different priorities apply during different temporal
phases, and data must be re-evaluated with the transition from one phase to
another. And in the case of the power utility, the entire decision-making process
depends on whether conditions are stable (the persistence of a large window) or
dynamic (the rapid appearance and disappearance of windows).

Control Data as Essential Information
What is true for all the scenarios is the time that messages are received or dis-
patched is a crucial part of the message. This means that the control component of
the message — in this case, time markers — is as important as the payload data.
Put another way: the message retains importance as a business asset after it has been exe-
cuted.

Persistent messaging thus implies accurate documentation of messages for analysis
of historical patterns and future trends. For instance:

■ The ability to retrieve the sequence of messages is absolutely critical for the bro-
kerage firm in the first scenario to refute the charges made to the SEC. They
must be able to show that the offer to sell made by client_A was matched by
the first available offer to buy by client_B.

■ With regard to student registration, the withdrawal of a student from a class
which is full, requires (1) tracking-down the next student in line based on prior-
ity, time-period and specified preference, (2) moving him/her from a class in
which he/she is registered into the available spot, and (3) dealing with the
resultant repercussions i.e. keeping track of the relationships between messages
and navigating from one message to another based on queries

■ In the case of the power utility, messages about weather and power utilization
need to be preserved over time so as to be able to analyze patterns by querying
message warehouses. The utility is specifically concerned with time lapses
between events e.g.,

– between distinguishing where power is needed and distributing the power

– between sending the message to distribute power and the actual distribu-
tion.
11-6 Oracle8 Application Developer’s Guide

Introduction to Oracle Advanced Queuing
Specific Requirements of a Messaging System
What are the key requirements of a persistent messaging system given the above
issues?

■ In order to deal with increasingly complex applications, developers need mech-
anisms that provide the ability to receive, hold and disburse messages while
preserving ACID properties. These messages must be communicable between
programs on clients and servers over networks, or between programs on the
server.

■ Queuing systems must provide an integrated solution so that messages com-
bine both control information and content. The ideal solution should be able to
queue messages, and treat those queued messages as events that may trigger
other messages.

■ Program optimization requires that the queuing system and the database share
the same resource manager, and thereby avoid incurring the overhead of two
phase commit.

■ The message system should exhibit high performance characteristics as mea-
sured by the following metrics:

– Number of messages enqueued/dequeued per second.

– Time to evaluate a complex query on a message warehouse.

– Time to recover/restart the messaging process after a failure.

■ The message system should exhibit high scalability. That is, the system should
continue to exhibit high performance as the number of programs using the
application increase, as the number of messages increase, and as the size of the
message warehouse increases.

■ Both content (data payload) and control dimension of messages should be
available. For instance, the application should be able to implement content-
based routing, content-based subscription, and content-based querying.

■ Tracking and documentation should be the responsibility of the messaging sys-
tem, not the developer.

Possible Solutions: Synchronous versus Disconnected/Deferred Communication
Generally, attempts to provide communication between programs can be classified
into one of two types: Synchronous and Disconnected/Deferred Communication.
 Advanced Queuing 11-7

Introduction to Oracle Advanced Queuing
Synchronous Communication
This model of communication, also called on-line or connected, is based on the
request/reply paradigm. In this model a program sends a request to another pro-
gram and waits (blocks) until the reply arrives. This model of communication, in
which the sender and receiver of the message are tightly coupled, is suitable for
programs that need to get a reply before they can proceed with any task. Tradi-
tional client/server architectures are based on this model.

The major drawback of the synchronous model of communication is that the pro-
grams must be available and running for the application to work. In the event of
network or machine failure, or even if the program needed being busy, the entire
application grinds to a halt.

Disconnected/Deferred Messaging
In this model programs in the role of producers place requests in a queue and then
proceed with their work. Programs in the role of consumers retrieve requests from
the queue and acts on them. This model is well suited for applications that can con-
tinue with their work after placing a request in the queue because they are not
blocked waiting for a reply. It is also suited to applications that can continue with
their work until there is a message to retrieve.

For deferred execution to work correctly even in the presence of network, machine
and application failures, the requests must be stored persistently, and processed
exactly once. This can be achieved by combining persistent queuing with transac-
tion protection. Oracle8 provides a queuing technology that does not depend on
the use of TP-monitors or any other evolving Message-Oriented Middleware (MOM)
infrastructure.

Oracle Advanced Queuing — Features
Oracle AQ (Oracle Advanced Queueing) provides message queuing as an
integrated part of the Oracle server. Oracle AQ provides this functionality by
integrating the queuing system with the database, thereby creating a message-
enabled database. By providing an integrated solution Oracle AQ frees application
developers to devote their efforts to their specific business logic rather than having
to construct a messaging infrastructure.

General Features
■ SQL access: Messages are placed in normal rows in a database table. They can

be queried using standard SQL. Thus, users can use SQL to access the message
11-8 Oracle8 Application Developer’s Guide

Introduction to Oracle Advanced Queuing
properties, the message history and the payload. All available SQL technology,
such as indexes, can be used to optimize the access to messages.

■ Integrated database level operational support: All standard database features
such as recovery, restart and enterprise manager are supported. Oracle AQ
queues are implemented in database tables, hence all the operational benefits
of high availability, scalability and reliability are applicable to queue data. In
addition, database development and management tools can be used with
queues. For instance, queue tables can be imported and exported.

■ Structured Payload: Users can use object types to structure and manage the
payload. RDBMSs in general have had a far richer typing system than messag-
ing systems. Since Oracle8 is an object-relational DBMS, it supports both tradi-
tional relational types as well as user-defined types. Many powerful features
are enabled as a result of having strongly typed content i.e. content whose for-
mat is defined by an external type system. These include:

– Content-based routing: an external agent can examine the content and
route the message to another queue based on the content.

– Content-based subscription: a publish and subscribe system built on top of
a messaging system which can offer content based on subscription.

– Querying: the ability to execute queries on the content of the message
enables message warehousing.

■ Retention and message history: Users can specify that messages be retained
after consumption. The systems administrator can specify the duration for
which messages will be retained. Oracle AQ stores information about the his-
tory of each message, preserving the queue and message properties of delay,
expiration, and retention for messages destined for local or remote recipients.
The information contains the ENQUEUE/DEQUEUE time and the identification of
the transaction that executed each request. This allows users to keep a history
of relevant messages. The history can be used for tracking, data warehouse and
data mining operations.

■ Tracking and event journals: If messages are retained they can be related to
each other. For example: if a message m2 is produced as a result of the con-
sumption of message m1, m1 is related to m2. This allows users to track
sequences of related messages. These sequences represent ‘event journals’
which are often constructed by applications. Oracle AQ is designed to let appli-
cations create event journals automatically.

■ Integrated transactions: The integration of control information with content
(data payload) simplifies application development and management.
 Advanced Queuing 11-9

Introduction to Oracle Advanced Queuing
ENQUEUE Features
■ Correlation identifier: Users can assign an identifier to each message, thus pro-

viding a means to retrieve specific messages at a later time.

■ Subscription & Recipient lists: A single message can be designed to be con-
sumed by multiple consumers. A queue administrator can specify the list of
subscribers who can retrieve messages from a queue. Different queues can
have different subscribers, and a consumer program can be a subscriber to
more than one queue. Further, specific messages in a queue can be directed
toward specific recipients who may or may not be subscribers to the queue,
thereby overriding the subscriber list.

■ Priority and ordering of messages in enqueuing: It is possible to specify the
priority of the enqueued message. An enqueued message can also have its
exact position in the queue specified. This means that users have three options
to specify the order in which messages are consumed: (a) a sort order specifies
which properties are used to order all message in a queue; (b) a priority can be
assigned to each message; (c) a sequence deviation allows you to position a
message in relation to other messages. Further, if several consumers act on the
same queue, a consumer will get the first message that is available for immedi-
ate consumption. A message that is in the process of being consumed by
another consumer will be skipped.

■ Message grouping: Messages belonging to one queue can be grouped to form a
set that can only be consumed by one user at a time. This requires the queue be
created in a queue table that is enabled for message grouping. All messages
belonging to a group have to be created in the same transaction and all mes-
sages created in one transaction belong to the same group. This feature allows
users to segment complex messages into simple messages, e.g., messages
directed to a queue containing invoices could be constructed as a group of mes-
sages starting with the header message, followed by messages representing
details, followed by the trailer message.

■ Propagation: This feature enables applications to communicate with each other
without having to be connected to the same database or to the same Queue.
Messages can be propagated from one Oracle AQ to another, irrespective of
whether these are local or remote. The propagation is done using the familiar
database links, and Net8.

■ Time specification and Scheduling: Delay interval and/or expiration intervals
can be specified for an enqueued message, thereby providing windows of exe-
cution. A message can be marked as available for processing only after a speci-
fied time elapses (a delay time) and has to be consumed before a specified time
11-10 Oracle8 Application Developer’s Guide

Introduction to Oracle Advanced Queuing
limit expires. Messages can be scheduled to propagate from a queue to local or
remote destinations. Administrators can specify the start time, the propagation
window and a function to determine the next propagation window (for peri-
odic schedules).

DEQUEUE Features
■ Multiple recipients: A message in queue can be retrieved by multiple recipi-

ents without there being multiple copies of the same message.

■ Local and remote recipients: Designated recipients can be located locally and/
or at remote sites.

■ Navigation of messages in dequeuing: Users have several options to select a
message from a queue. They can select the first message or once they have
selected a message and established a position, they can retrieve the next. The
selection is influenced by the ordering or can be limited by specifying a correla-
tion identifier. Users can also retrieve a specific message using the message
identifier.

■ Modes of dequeuing: a DEQUEUE request can either browse or remove a mes-
sage. If a message is browsed it remains available for further processing, if a
message is removed, it is not available any more for DEQUEUE requests.
Depending on the queue properties a removed message may be retained in the
queue table.

■ Optimization of waiting for the arrival of messages: A DEQUEUE could be
issued against an empty queue. To avoid polling for the arrival of a new mes-
sage a user can specify if and for how long the request is allowed to wait for
the arrival of a message.

■ Retries with delays: A message has to be consumed exactly once. If an attempt
to dequeue a message fails and the transaction is rolled back, the message will
be made available for reprocessing after some user specified delay elapses.
Reprocessing will be attempted up to the user-specified limit.

■ Optional transaction protection: ENQUEUE/DEQUEUE requests are normally
part of a transaction that contains the requests, thereby providing the desired
transactional behavior. Users can, however, specify that a specific request is a
transaction by itself making the result of that request immediately visible to
other transactions. This means that messages can be made visible to the exter-
nal world either as soon as soon as the ENQUEUE or DEQUEUE statement is
issued, or only after the transaction is committed.
 Advanced Queuing 11-11

Introduction to Oracle Advanced Queuing
■ Exception handling: A message may not be consumed within given con-
straints, i.e. within the window of execution or within the limits of the retries. If
such a condition arises, the message will be moved to a user-specified excep-
tion queue.

Propagation Features
■ Automated coordination of enqueuing and dequeuing: As already noted,

recipients can be local or remote. Oracle 8.0.4 does not support distributed
object types, hence remote enqueuing or dequeuing using a standard database
link does not work. However, in Oracle 8.0.4 customers can use AQ's message
propagation to enqueue to a remote queue.

For example, you can connect to database X and enqueue the message in a
queue, say "DROPBOX" located in database X. You can configure AQ so that all
messages enqueued in queue "DROPBOX" will be automatically propagated to
another queue in a database Y, regardless whether database Y is local or
remote. AQ will automatically check if the type of the remote queue in data-
base Y is structurally equivalent to the type of the local queue in database X,
and propagate the message.

Recipients of propagated messages can be either applications or queues. If the
recipient is a queue, the actual recipients will be determined by the subscrip-
tion list associated with the recipient queue.If the queues are remote, messages
will be propagated using the specified database link. Only AQ to AQ message
propagation is supported.

8

Oracle Advanced Queuing — Primary Components

Queuing Entities

Message A message is the smallest unit of information inserted into and retrieved
from a queue. A message consists of control information (metadata) and payload
(data). The control information represents message properties used by AQ to man-
age messages. The payload data is the information stored in the queue and is trans-
parent to Oracle AQ. A message can reside in only one queue. A message is created
by the enqueue call and consumed by the dequeue call.
11-12 Oracle8 Application Developer’s Guide

Introduction to Oracle Advanced Queuing
Queue A queue is a repository for messages. There are two types of queues: user
queues, also known as normal queues, and exception queues. The user queue is for
normal message processing. Messages are transferred to an exception queue if they
can not be retrieved and processed for some reason. Queues can be created, altered,
started, stopped, and dropped by using the Oracle AQ administrative interfaces.

Queue Table Queues are stored in queue tables. Each queue table is a database table
and contains one or more queues. Each queue table contains a default exception
queue.

The following figure shows the relationship between messages, queues, and queue
tables. The columns represent message queues, with rows representing individual
messages.

Agents An agent is a queue user. There are two types of agents: producers who
place messages in a queue (enqueuing) and consumers who retrieve messages
(dequeuing). Any number of producers and consumers may be accessing the queue
at a given time. Agents insert messages into a queue and retrieve messages from
the queue by using the Oracle AQ operational interfaces

An agent is identified by its name, address and protocol. The address field is a
character field of up to 1024 bytes that is interpreted in the context of the protocol.
For instance, the default value for the protocol is 0, signifying a database link
addressing. In this case, the address for this protocol is of the form

 queue_name@dblink

where queue_name is of the form [schema.]queue and dblink may either be
a fully qualified database link name or the database link name without the domain
name. The only supported protocol value is 0 at this time.

Queue Monitor The queue monitor is a background process that monitors the mes-
sages in the queue. It provides the mechanism for message expiration, retry and
delay.
 Advanced Queuing 11-13

Introduction to Oracle Advanced Queuing
Figure 11–1 Modeling Queue Entities

Modeling Queue Entities
Figure 11-1 (above) portrays a queue table that contains two queues, and one excep-
tion queue:

■ Queue1 — contains 10 messages.

■ Queue2 — contains 7 messages.

■ ExceptionQueue1 — contains 3 messages.

Queue 2 Exception Queue 1Queue 1

Queue Table

Que 1 Msg 1

Que 1 Msg 2

Que 1 Msg 3

Que 1 Msg 4

Que 1 Msg 5

Que 1 Msg 6

Que 1 Msg 7

Que 2 Msg 1

Que 2 Msg 2

Que 2 Msg 3

ExQue 1 Msg 1

ExQue 1 Msg 2

ExQue 1 Msg 3

Que 2 Msg 4

Que 2 Msg 5

Que 2 Msg 6

Que 2 Msg 7

Que 1 Msg 8

Que 1 Msg 9

Que 1 Msg 10
11-14 Oracle8 Application Developer’s Guide

Introduction to Oracle Advanced Queuing
Basic Queuing

Basic Queuing — One Producer, One Consumer
At its most basic, one producer may enqueues different messages into one queue.
Each message will be dequeued and processed once by one of the consumers. A
message will stay in the queue until a consumer dequeues it or the message
expires. A producer may stipulate a delay before the message is available to be con-
sumed, and a time after which the message expires. Likewise, a consumer may wait
when trying to dequeue a message if no message is available. Note that an agent
program, or application, can act as both a producer and a consumer.

Basic Queueing — Many Producers, One Consumer
At a slightly higher level of complexity, many producers may enqueue messages
into a queue, all of which are processed by one consumer.

Basic Queueing — Many Producers, Many Consumers of Discrete Messages
In this next stage, many producers may enqueue messages, each message being pro-
cessed by a different consumer depending on type and correlation identifier. The
figure below shows this scenario.

Illustrating Basic Queuing
Figure 11-2 (below) portrays a queue table that contains one queue into which
messages are being enqueued and from which messages are being dequeued.

Producers
The figure indicates that there are 6 producers of messages, although only four are
shown. This assumes that two other producers (P4 and P5) have the right to
enqueue messages even though there are no messages enqueued by them at the
moment portrayed by the figure. The figure shows:

■ that a single producer may enqueue one or more messages.

■ that producers may enqueue messages in any sequence.
 Advanced Queuing 11-15

Introduction to Oracle Advanced Queuing
Consumers
According to the figure, there are 3 consumers of messages, representing the total
population of consumers. The figure shows:

■ messages are not necessarily dequeued in the order in which they are
enqueued.

■ messages may be enqueued without being dequeued.

Figure 11–2 Modeling Basic Queuing

Producers Queue

Queue Table

Consumers
enqueue dequeue

P1

P2

P3

P3

P2

P6

C1

C2

C3

Msg 1

Msg 2

Msg 3

Msg 4

Msg 5

Msg 6
11-16 Oracle8 Application Developer’s Guide

Introduction to Oracle Advanced Queuing
Illustrating Client-Server Communication Using AQ
The previous figure portrayed the enqueuing of multiple messages by a set of pro-
ducers, and the dequeuing of messages by a set of consumers. What may not be
readily evident in that sketch is the notion of time, and the advantages offered by
Oracle AQ.

Client-Server applications normally execute in a synchronous manner, with all the
disadvantages of that tight coupling described above. Figure 11–3 demonstrates the
asynchronous alternative using AQ. In this example Application B (a server) pro-
vides service to Application A (a client) using a request/response queue.

Figure 11–3 Client-Server Communication Using AQ

1. Application A enqueues a request into the request queue.

2. Application B dequeues the request.

3. Application B processes the request.

4. Application B enqueues the result in the response queue.

5. Application A dequeues the result from the response queue.

Application B

Enqueue
Dequeue

Application A

Server

Client

Request
Queue

Response
Queue

Dequeue
Enqueue
 Advanced Queuing 11-17

Introduction to Oracle Advanced Queuing
In this way the client does not have to wait to establish a connection with the
server, and the server dequeues the message at its own pace. When the server is fin-
ished processing the message, there is no need for the client to be waiting to receive
the result. In this way a process of double-deferral frees both client and server.

Multiple-Consumer Dequeuing of the Same Message
A message can only be enqueued into one queue at a time. If a producer had to
insert the same message into several queues in order to reach different consumers,
this would require management of a very large number of queues. Oracle AQ pro-
vides two mechanisms to allow for multiple consumers to dequeue the same mes-
sage: queue subscribers and message recipients. The queue must reside in a queue
table that is created with multiple consumer option to allow for subscriber and
recipient lists. Each message remains in the queue until it is consumed by all its
intended consumers.

Queue Subscribers Using this approach, multiple consumer-subscribers are associ-
ated with a queue. This will cause all messages enqueued in the queue to be made
available to be consumed by each of the queue subscribers. The subscribers to the
queue can be changed dynamically without any change to the messages or message
producers. Subscribers to the queue are added and removed by using the Oracle
AQ administrative package. The diagram below shows multiple producers enqueu-
ing messages into queue, each of which is consumed by multiple consumer-sub-
scribers.

Message Recipients A message producer can submit a list of recipients at the time a
message is enqueued. This allows for a unique set of recipients for each message in
the queue. The recipient list associated with the message overrides the subscriber
list associated with the queue, if there is one. The recipients need not be in the sub-
scriber list. However, recipients may be selected from among the subscribers.

Note: The various enqueue and dequeue operations are part of
different transactions.
11-18 Oracle8 Application Developer’s Guide

Introduction to Oracle Advanced Queuing
Figure 11–4 Multiple-Consumer Dequeuing of the Same Message

Illustrating Multiple-Consumer Dequeuing of the Same Message
Figure 11–4 describes the case in which three consumers are all listed as subscribers
of a queue. This is the same as saying that they all subscribe to all the messages that
might ever be enqueued into that queue. The drawing illustrates a number of
important points:

■ The figure portrays the situation in which the 3 consumers are subscribers to 7
messages that have already been enqueued, and that they might become sub-
scribers to messages that have not yet been enqueued.

Queue Subscribers

S1

S2

S3

Queue Table
Subscriber list: s1, s2, s3, s4

Msg 1

Msg 2

Msg 3

Msg 4

Msg 5

Msg 6

Msg 7
 Advanced Queuing 11-19

Introduction to Oracle Advanced Queuing
■ Every message will eventually be dequeued by every subscriber.

■ There is no priority among subscribers. This means that there is no way of
saying which subscriber will dequeue which message first, second, and so on.
Or, put more formally: the order of dequeuing by subscribers is undetermined.

■ We have no way of knowing from the figure about messages they might
already have been dequeued, and which were then removed from the queue.

Figure 11–5 Communication Using a Multi-Consumer Queue

Figure 11–5 illustrates the same technology from a dynamic perspective. This exam-
ples concerns a scenario in which more than one application needs the result pro-
duced by an application. Every message enqueued by Application A is dequeued by
Application B and Application C. To make this possible, the multiple consumer queue
is specially configured with Application B and Application C as queue subscribers.
Consequently, they are implicit recipients of every message placed in the queue.

Note: Queue subscribers can be applications or other queues.

Application B

Dequeue

Application C

Dequeue

Application A

Multiple
Consumer

Queue

Enqueue
11-20 Oracle8 Application Developer’s Guide

Introduction to Oracle Advanced Queuing
Figure 11–6 Dequeuing of Specified Messages by Specified Recipients

Illustrating Dequeuing of Specified Messages by Specified Recipients
Figure 11–6 shows how a message can be specified for one or more recipients. In
this case, Message 5 is specified to be dequeued by Recipient-1 and Recipient-2. As
described by the drawing, neither of the recipients is one of the 3 subscribers to the
queue.

Queue Subscribers

Queue Table
Subscriber list: s1, s2, s3
Recipient list: r1, r2

S1

S2

S3

R1

R2

Msg 1

Msg 2

Msg 3

Msg 4

Msg 5

Msg 6

Msg 7
 Advanced Queuing 11-21

Introduction to Oracle Advanced Queuing
Figure 11–7 Explicit and Implicit Recipients of Messages

We earlier referred to subscribers as “implicit recipients” in that they are able to
dequeue all the messages placed into a specific queue. This is like subscribing to a
magazine and thereby implicitly gaining access to all its articles. The category of
consumers that we have referred to as recipients may also be viewed as “explicit
recipients” in that they are designated targets of particular messages.

Figure 11–7 shows how Oracle AQ can adjust dynamically to accommodate both
kinds of consumers. In this scenario Application B and Application C are implicit
recipients (subscribers). But messages can also be explicitly directed toward specific

Application B

Dequeue

Application C

Dequeue

Application A

Enqueue

Application D

Implicit RecipientImplicit Recipient

Explicit Recipient
11-22 Oracle8 Application Developer’s Guide

Introduction to Oracle Advanced Queuing
consumers (recipients) who may or may not be subscribers to the queue. The list of
such recipients is specified in the enqueue call for that message and overrides the
list of subscribers for that queue. In the figure, Application D is specified as the sole
recipient of a message enqueued by Application A.

Illustrating the Implementation of Workflows using AQ
Figure 11–8 illustrates the use of AQ for implementing workflows, also knows as
chained application transactions. It shows a workflow consisting of 4 steps per-
formed by Applications A, B, C and D. The queues are used to buffer the flow of
information between different processing stages of the business process. By specify-
ing delay interval and expiration time for a message, a window of execution can be
provided for each of the applications.

Figure 11–8 Implementing Workflows using AQ

Note: Multiple producers may simultaneously enqueue messages
aimed at different targeted recipients.

Application A

Enqueue
(Message 1)

Enqueue
(Message 3)

Application B

Enqueue
(Message 2)

Dequeue
(Message 1)

Application C

Dequeue
(Message 2)

Application D

Dequeue
(Message 3)
 Advanced Queuing 11-23

Introduction to Oracle Advanced Queuing
From a workflow perspective, the passing of messages is a business asset above
and beyond the value of the payload data. Hence, AQ supports the optional reten-
tion of messages for analysis of historical patterns and prediction of future trends.
For instance, two of the three application scenarios at the head of the chapter are
founded in an implementation of workflow analysis.

Message Propagation

Fanning-out of messages
In AQ, message recipients can be either consumers or other queues. If the message
recipient is a queue, the actual recipients are determined by the subscribers to the
queue (which may in turn be other queues). Thus it is possible to fan-out messages
to a large number of recipients without requiring them all to dequeue messages
from a single queue.

For example: A queue, Source, may have as its as its subscribers queues
dispatch1@dest1 and dispatch2@dest2. Queue dispatch1@dest1 may in turn have as its
subscribers the queues outerreach1@dest3 and outerreach2@dest4, while queue
dispatch2@dest2 has as subscribers the queue outerreach3@dest21 and
outerreach4@dest4. In this way, messages enqueued in Source will be propagated to
all the subscribers of four different queues.

Funneling-in of messages
Another use of queues as a message recipient is the ability to combine messages
from different queues into a single queue. This process is sometimes described as
“compositing”

For example, if queue composite@endpoint is a subscriber to both queues
funnel1@source1 and funnel2@source2 then the subscribers to queue composite@end-
point can get all messages enqueued in those queues as well as messages enqueued
directly into itself.

Note: The contents of the messages 1, 2 and 3 can be the same or
different. Even when they are different, messages may contain
parts of the of the contents of previous messages.
11-24 Oracle8 Application Developer’s Guide

Introduction to Oracle Advanced Queuing
Figure 11–9 IMessage Propagation

Application B

Inbox

Enqueue
Dequeue

Application A

Inbox

Dequeue
Enqueue

Database 1

Outbox

Application C

Inbox

Enqueue
Dequeue

Outbox

Database 2

Outbox

AQ's Message
Propogation Infrastructure
 Advanced Queuing 11-25

Introduction to Oracle Advanced Queuing
llustration of Message Propagation
Figure 11–9 illustrates applications on different databases communicating via AQ.
Each application has an inbox and an outbox for handling incoming and outgoing
messages. An application enqueues a message into its outbox irrespective of
whether the message has to be sent to an application that is local (on the same
node) or remote (on a different node).

Likewise, an application is not concerned as to whether a message originates
locally or remotely. In all cases, an application dequeues messages from its inbox.

Oracle AQ facilitates all this interchange, treating messages on the same basis.
11-26 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing by Example
Oracle Advanced Queuing by Example

Overview Summary
Oracle AQ by Example guides users by means of a step-by-step approach.

■ Assign roles and privileges

■ Create tables and queues

– of object type

– of RAW type

– of object type for prioritized messages

– of object type for multiple consumers

■ Enqueue and dequeue of object type messages

■ Enqueue and dequeue of object type messages using Pro*C/C++

■ Enqueue and dequeue of object type messages using OCI

■ Enqueue and dequeue of RAW type messages

■ Enqueue and dequeue of RAW type messages using Pro*C/C++

■ Enqueue and dequeue of RAW type messages using OCI

■ Enqueue and dequeue by priority

■ Dequeue messages after preview by criterion

■ Enqueue and dequeue messages with time delay and expiration

■ Enqueue and dequeue messages by correlation and message id using Pro*C/
C++

■ Enqueue and dequeue messages by correlation and message id using OCI

■ Enqueue and dequeue of messages to/from a multiconsumer queue

– stipulating subscribers and specific message recipients using PL/SQL

– stipulating subscribers and specific message recipients using OCI

■ Enqueue of messages for remote subscribers/recipients to a multiconsumer
queue and propagation scheduling

■ Unscheduling propagation
 Advanced Queuing 11-27

Oracle Advanced Queuing by Example
■ Enqueue and Dequeue using Message Grouping

■ Drop AQ Objects

– by stopping and dropping queues and queue tables of object type

– by stopping and dropping queues and queue tables of RAW type

■ Revoke roles and privileges

Assign Roles and Privileges
/* Create user and grant privileges: */
CONNECT sys/change_on_install as sysdba;
CREATE user aq identified by AQ;
GRANT AQ_ADMINISTRATOR_ROLE TO aq;
GRANT CONNECT TO aq;
GRANT RESOURCE TO aq;
EXECUTE dbms_aqadm.grant_type_access(‘aq’);
CONNECT aq/AQ;

SET ECHO ON;
SET SERVEROUTPUT ON;

Create Queue Tables and Queues

Create a queue table and queue of object type
/* Create a message type: */
CREATE type aq.message_type as object (
subject VARCHAR2(30),
text VARCHAR2(80));

/ * Create a object type queue table and queue: */
EXECUTE dbms_aqadm.create_queue_table (
queue_table => ’aq.msg’,
queue_payload_type => ’aq.message_type’);

EXECUTE dbms_aqadm.create_queue (
queue_name => ’msg_queue’,
queue_table => ’aq.msg’);

EXECUTE dbms_aqadm.start_queue (
queue_name => ’msg_queue’);
11-28 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing by Example
Create a queue table and queue of raw type
/* Create a RAW type queue table and queue: */
EXECUTE dbms_aqadm.create_queue_table (
queue_table => 'aq.raw_msg',
queue_payload_type => 'RAW');

EXECUTE dbms_aqadm.create_queue (
queue_name => 'raw_msg_queue',
queue_table => 'aq.raw_msg');

EXECUTE dbms_aqadm.start_queue (
queue_name => 'raw_msg_queue');

Create a prioritized message queue table and queue

EXECUTE dbms_aqadm.create_queue_table (
queue_table => ’aq.priority_msg’,
sort_list => ’PRIORITY,ENQ_TIME’,
queue_payload_type => ’aq.message_type’);

EXECUTE dbms_aqadm.create_queue (
queue_name => ’priority_msg_queue’,
queue_table => ’aq.priority_msg’);

EXECUTE dbms_aqadm.start_queue (
queue_name => ’priority_msg_queue’);

Create a multiple consumer queue table and queue
EXECUTE dbms_aqadm.create_queue_table (
queue_table => ’aq.msg_multiple’,
multiple_consumers => TRUE,
queue_payload_type => ’aq.message_type’);

EXECUTE dbms_aqadm.create_queue (
queue_name => ’msg_queue_multiple’,
queue_table => ’aq.msg_multiple’);

EXECUTE dbms_aqadm.start_queue (
queue_name => ’msg_queue_multiple’);
 Advanced Queuing 11-29

Oracle Advanced Queuing by Example
Create a queue to demonstrate propagation
EXECUTE dbms_aqadm.create_queue (
queue_name => ’another_msg_queue’,
queue_table => ’aq.msg_multiple’);

EXECUTE dbms_aqadm.start_queue (
queue_name => ’another_msg_queue’);

Enqueue and Dequeue of Object Type Messages
To enqueue a single message without any other parameters specify the queue name
and the payload.

9
/* Enqueue to msg_queue: */
DECLARE
enqueue_options dbms_aq.enqueue_options_t;
message_properties dbms_aq.message_properties_t;
message_handle RAW(16);
message aq.message_type;

BEGIN
message := message_type(’NORMAL MESSAGE’,
’enqueued to msg_queue first.’);

dbms_aq.enqueue(queue_name => ’msg_queue’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

COMMIT;
END;
/

/* Dequeue from msg_queue: */
DECLARE
dequeue_options dbms_aq.dequeue_options_t;
message_properties dbms_aq.message_properties_t;
message_handle RAW(16);
message aq.message_type;

BEGIN
dbms_aq.dequeue(queue_name => ’msg_queue’,
 dequeue_options => dequeue_options,
11-30 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing by Example
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);

dbms_output.put_line (’Message: ’ || message.subject ||
 ’ ... ’ || message.text);
COMMIT;
END;
/

Enqueue and Dequeue of Object Type Messages Using Pro*C/C++

#include <stdio.h>
#include <string.h>
#include <sqlca.h>
#include <sql2oci.h>
/* The header file generated by processing
object type 'aq.message_type': */
#include "pceg.h"

void sql_error(msg)
char *msg;
{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf("%s\n", msg);
printf("\n% .800s \n", sqlca.sqlerrm.sqlerrmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);
}

main()
{
message_type *message = (message_type*)0; /* payload */
char user[60]="aq/AQ"; /* user logon password */
char subject[30]; /* components of the */
char txt[80]; /* payload type */

/ * ENQUEUE and DEQUEUE to an OBJECT QUEUE */

/ * Connect to database: */
EXEC SQL CONNECT :user;

/* On an oracle error print the error number :*/
EXEC SQL WHENEVER SQLERROR DO sql_error("Oracle Error :");
 Advanced Queuing 11-31

Oracle Advanced Queuing by Example
/* Allocate memory for the host variable from the object cache : */
EXEC SQL ALLOCATE :message;

/* ENQUEUE */

strcpy(subject, "NORMAL ENQUEUE");
strcpy(txt, "The Enqueue was done through PLSQL embedded in PROC");

/ * Initialize the components of message : */
EXEC SQL OBJECT SET SUBJECT, TEXT OF :message TO :subject, :txt;

/* Embedded PLSQL call to the AQ enqueue procedure : */
EXEC SQL EXECUTE
DECLARE
message_properties dbms_aq.message_properties_t;
enqueue_options dbms_aq.enqueue_options_t;
msgid RAW(16);
BEGIN
/* Bind the host variable 'message' to the payload: */

dbms_aq.enqueue(queue_name => 'msg_queue',
message_properties => message_properties,
enqueue_options => enqueue_options,
payload => :message,
msgid => msgid);
END;
END-EXEC;
/* Commit work */
EXEC SQL COMMIT;

printf("Enqueued Message \n");
printf("Subject :%s\n",subject);
printf("Text :%s\n",txt);

/ * Dequeue */

/ * Embedded PLSQL call to the AQ dequeue procedure : */
EXEC SQL EXECUTE
DECLARE
message_properties dbms_aq.message_properties_t;
dequeue_options dbms_aq.dequeue_options_t;
msgid RAW(16);
BEGIN
/* Return the payload into the host variable 'message': */
dbms_aq.dequeue(queue_name => 'msg_queue',
11-32 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing by Example
message_properties => message_properties,
dequeue_options => dequeue_options,
payload => :message,
msgid => msgid);
END;
END-EXEC;
/* Commit work :*/

EXEC SQL COMMIT;

/ * Extract the components of message: */
EXEC SQL OBJECT GET SUBJECT,TEXT FROM :message INTO :subject,:txt;

printf("Dequeued Message \n");
printf("Subject :%s\n",subject);
printf("Text :%s\n",txt);
}

Enqueue and Dequeue of Object Type Messages Using OCI
#ifndef SL_ORACLE
#include <sl.h>
#endif

#ifndef OCI_ORACLE
#include <oci.h>
#endif

struct message
{
 OCIString *subject;
 OCIString *data;
};
typedef struct message message;

struct null_message
{
 OCIInd null_adt;
 OCIInd null_subject;
 OCIInd null_data;
};
typedef struct null_message null_message;

int main()
{

 Advanced Queuing 11-33

Oracle Advanced Queuing by Example
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 dvoid *tmp;
 OCIType *mesg_tdo = (OCIType *) 0;
 message msg;
 null_message nmsg;
 message *mesg = &msg;
 null_message *nmesg = &nmsg;
 message *deqmesg = (message *)0;
 null_message *ndeqmesg = (null_message *)0;

 OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
(dvoid * (*)()) 0, (void (*)()) 0);

 OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
 52, (dvoid **) &tmp);

 OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
 52, (dvoid **) &tmp);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);

 OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,
 (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

 OCILogon(envhp, errhp, &svchp, "AQ", strlen("AQ"), "AQ", strlen("AQ"), 0, 0);

/* obtain TDO of message_type */
 OCITypeByName(envhp, errhp, svchp, (CONST text *)"AQ", strlen("AQ"),
 (CONST text *)"MESSAGE_TYPE", strlen("MESSAGE_TYPE"),
 (text *)0, 0, OCI_DURATION_SESSION, OCI_TYPEGET_ALL, &mesg_tdo);

 /* prepare the message payload */
 mesg->subject = (OCIString *)0;
 mesg->data = (OCIString *)0;
 OCIStringAssignText(envhp, errhp,
11-34 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing by Example
 (CONST text *)"NORMAL MESSAGE", strlen("NORMAL MESSAGE"),
 &mesg->subject);
 OCIStringAssignText(envhp, errhp,
 (CONST text *)"OCI ENQUEUE", strlen("OCI ENQUEUE"),
 &mesg->data);
 nmesg->null_adt = nmesg->null_subject = nmesg->null_data = OCI_IND_NOTNULL;

/* enqueue into the msg_queue */
 OCIAQEnq(svchp, errhp, (CONST text *)"msg_queue", 0, 0,
 mesg_tdo, (dvoid **)&mesg, (dvoid **)&nmesg, 0, 0);
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* dequeue from the msg_queue */
 OCIAQDeq(svchp, errhp, (CONST text *)"msg_queue", 0, 0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, 0, 0);
 printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
 printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));
 OCITransCommit(svchp, errhp, (ub4) 0);

}

Enqueue and Dequeue of RAW Type Messages
/* Enqueue a message containing a RAW: */
DECLARE
 enqueue_options dbms_aq.enqueue_options_t;
 message_properties dbms_aq.message_properties_t;
 message_handle RAW(16);
 message RAW(4096);

BEGIN
 message := hextoraw(rpad('FF',4095,'FF'));
 dbms_aq.enqueue(queue_name => 'raw_msg_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);

 COMMIT;
END;
/* Dequeue from raw_msg_queue: */
DECLARE
 dequeue_options dbms_aq.dequeue_options_t;
 message_properties dbms_aq.message_properties_t;
 Advanced Queuing 11-35

Oracle Advanced Queuing by Example
 message_handle RAW(16);
 message RAW(4096);

BEGIN
 dbms_aq.dequeue(queue_name => 'raw_msg_queue',
dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

COMMIT;
END;

Enqueue and Dequeue of RAW Type Messages using Pro*C/C++
#include <stdio.h>
#include <string.h>
#include <sqlca.h>
#include <sql2oci.h>

void sql_error(msg)
char *msg;
{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf("%s\n", msg);
printf("\n% .800s \n", sqlca.sqlerrm.sqlerrmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);
}

main()
{
OCIEnv *oeh; /* OCI Env handle */
OCIError *err; /* OCI Err handle */
OCIRaw *message= (OCIRaw*)0; /* payload */
ub1 message_txt[100]; /* data for payload */
char user[60]="aq/AQ"; /* user logon password */
int status; /* returns status of the OCI call */

/* Enqueue and dequeue to a RAW queue */

/* Connect to database: */
EXEC SQL CONNECT :user;
11-36 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing by Example
/* On an oracle error print the error number: */
EXEC SQL WHENEVER SQLERROR DO sql_error("Oracle Error :");

/* Get the OCI Env handle: */
if (SQLEnvGet(SQL_SINGLE_RCTX, &oeh) != OCI_SUCCESS)
{
printf(" error in SQLEnvGet \n");
exit(1);
}
/* Get the OCI Error handle: */
if (status = OCIHandleAlloc((dvoid *)oeh, (dvoid **)&err,
(ub4)OCI_HTYPE_ERROR, (ub4)0, (dvoid **)0))
{
printf(" error in OCIHandleAlloc %d \n", status);
exit(1);
}

/ * Enqueue */
/* The bytes to be put into the raw payload:*/
strcpy(message_txt, "Enqueue to a Raw payload queue ");

/* Assign bytes to the OCIRaw pointer :
Memory needs to be allocated explicitly to OCIRaw*: */
if (status=OCIRawAssignBytes(oeh, err, message_txt, 100,
 &message))
{
printf(" error in OCIRawAssignBytes %d \n", status);
exit(1);
}

/ * Embedded PLSQL call to the AQ enqueue procedure : */
EXEC SQL EXECUTE
DECLARE
message_properties dbms_aq.message_properties_t;
enqueue_options dbms_aq.enqueue_options_t;
msgid RAW(16);
BEGIN
/* Bind the host variable message to the raw payload: */
dbms_aq.enqueue(queue_name => 'raw_msg_queue',
message_properties => message_properties,
enqueue_options => enqueue_options,
payload => :message,
msgid => msgid);
END;
END-EXEC;
 Advanced Queuing 11-37

Oracle Advanced Queuing by Example
/* Commit work: */
EXEC SQL COMMIT;

/ * Dequeue */
/* Embedded PLSQL call to the AQ dequeue procedure :*/
EXEC SQL EXECUTE
DECLARE
message_properties dbms_aq.message_properties_t;
dequeue_options dbms_aq.dequeue_options_t;
msgid RAW(16);
BEGIN
/ * Return the raw payload into the host variable 'message':*/
dbms_aq.dequeue(queue_name => 'raw_msg_queue',
message_properties => message_properties,
dequeue_options => dequeue_options,
payload => :message,
msgid => msgid);
END;
END-EXEC;
/* Commit work: */
EXEC SQL COMMIT;
}

Enqueue and Dequeue of RAW Type Messages using OCI
#ifndef SL_ORACLE
#include <sl.h>
#endif

#ifndef OCI_ORACLE
#include <oci.h>
#endif

int main()
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 dvoid *tmp;
 OCIType *mesg_tdo = (OCIType *) 0;
 char msg_text[100];
 OCIRaw *mesg = (OCIRaw *)0;
 OCIRaw*deqmesg = (OCIRaw *)0;
11-38 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing by Example
 OCIInd ind = 0;
 dvoid *indptr = (dvoid *)&ind;
 inti;

 OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
(dvoid * (*)()) 0, (void (*)()) 0);

 OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
 52, (dvoid **) &tmp);

 OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
 52, (dvoid **) &tmp);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);

 OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,
 (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

 OCILogon(envhp, errhp, &svchp, "AQ", strlen("AQ"), "AQ", strlen("AQ"), 0, 0);

/* obtain the TDO of the RAW data type */
 OCITypeByName(envhp, errhp, svchp, (CONST text *)"SYS", strlen("SYS"),
 (CONST text *)"RAW", strlen("RAW"),
 (text *)0, 0, OCI_DURATION_SESSION, OCI_TYPEGET_ALL, &mesg_tdo);

/* prepare the message payload */
 strcpy(msg_text, "Enqueue to a RAW queue");
 OCIRawAssignBytes(envhp, errhp, msg_text, strlen(msg_text), &mesg);

 /* enqueue the message into raw_msg_queue */
 OCIAQEnq(svchp, errhp, (CONST text *)"raw_msg_queue", 0, 0,
 mesg_tdo, (dvoid **)&mesg, (dvoid **)&indptr, 0, 0);
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* dequeue the same message into C variable deqmesg */
 OCIAQDeq(svchp, errhp, (CONST text *)"raw_msg_queue", 0, 0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&indptr, 0, 0);
 for (i = 0; i < OCIRawSize(envhp, deqmesg); i++)
 Advanced Queuing 11-39

Oracle Advanced Queuing by Example
 printf("%c", *(OCIRawPtr(envhp, deqmesg) + i));
 OCITransCommit(svchp, errhp, (ub4) 0);
}

Enqueue and Dequeue of Messages by Priority
When two messages are enqued with the same priority, the message which was
enqued earlier will be dequeued first. However, if two messages are of different pri-
orities, the message with the lower value (higher priority) will be dequeued first.

/* Enqueue two messages with priority 30 and 5: */
DECLARE
enqueue_options dbms_aq.enqueue_options_t;
message_properties dbms_aq.message_properties_t;
message_handle RAW(16);
 message aq.message_type;

BEGIN
message := message_type(’PRIORITY MESSAGE’,
enqued at priority 30.’);

message_properties.priority := 30;

dbms_aq.enqueue(queue_name => ’priority_msg_queue’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

message := message_type(’PRIORITY MESSAGE’,
’Enqueued at priority 5.’);

message_properties.priority := 5;

 dbms_aq.enqueue(queue_name => ’priority_msg_queue’,
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
END;
/

11-40 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing by Example
/* Dequeue from priority queue: */
DECLARE
dequeue_options dbms_aq.dequeue_options_t;
message_properties dbms_aq.message_properties_t;
message_handle RAW(16);
message aq.message_type;

BEGIN
dbms_aq.dequeue(queue_name => ’priority_msg_queue’,
dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

dbms_output.put_line (’Message: ’ || message.subject ||
’ ... ’ || message.text);

COMMIT;

dbms_aq.dequeue(queue_name => ’priority_msg_queue’,
dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

dbms_output.put_line (’Message: ’ || message.subject ||
’ ... ’ || message.text);
COMMIT;
END;
/
On return, the second message with priority set to 5 will be retrieved before
the message with priority set to 30 since priority takes precedence over
enqueue time.

Dequeue of Messages after Preview by Criterion
An application can preview messages in browse mode or locked mode without
deleting the message. The message of interest can then be removed from the queue.

/* Enqueue 6 messages to msg_queue
— GREEN, GREEN, YELLOW, VIOLET, BLUE, RED */
 Advanced Queuing 11-41

Oracle Advanced Queuing by Example
DECLARE
enqueue_options dbms_aq.enqueue_options_t;
message_properties dbms_aq.message_properties_t;
message_handle RAW(16);
message aq.message_type;

BEGIN
message := message_type(’GREEN’,
’GREEN enqueued to msg_queue first.’);

dbms_aq.enqueue(queue_name => ’msg_queue’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

message := message_type(’GREEN’,
’GREEN also enqueued to msg_queue second.’);

dbms_aq.enqueue(queue_name => ’msg_queue’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

message := message_type(’YELLOW’,
’YELLOW enqueued to msg_queue third.’);

dbms_aq.enqueue(queue_name => ’msg_queue’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

dbms_output.put_line (’Message handle: ’ || message_handle);

message := message_type(’VIOLET’,
’VIOLET enqueued to msg_queue fourth.’);

dbms_aq.enqueue(queue_name => ’msg_queue’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);
11-42 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing by Example
message := message_type(’BLUE’,
’BLUE enqueued to msg_queue fifth.’);

dbms_aq.enqueue(queue_name => ’msg_queue’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

message := message_type(’RED’,
’RED enqueued to msg_queue sixth.’);

dbms_aq.enqueue(queue_name => ’msg_queue’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

 COMMIT;
END;
/

/* Dequeue in BROWSE mode until RED is found,
and remove RED from queue: */
DECLARE
dequeue_options dbms_aq.dequeue_options_t;
message_properties dbms_aq.message_properties_t;
message_handle RAW(16);
message aq.message_type;

BEGIN
dequeue_options.dequeue_mode := dbms_aq.BROWSE;

 LOOP
dbms_aq.dequeue(queue_name => ’msg_queue’,
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);

dbms_output.put_line (’Message: ’ || message.subject ||
 ’ ... ’ || message.text);

EXIT WHEN message.subject = ’RED’;
 Advanced Queuing 11-43

Oracle Advanced Queuing by Example
END LOOP;

dequeue_options.dequeue_mode := dbms_aq.REMOVE;
dequeue_options.msgid := message_handle;

dbms_aq.dequeue(queue_name => ’msg_queue’,
dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

dbms_output.put_line (’Message: ’ || message.subject ||
’ ... ’ || message.text);

 COMMIT;
END;
/

/* Dequeue in LOCKED mode until BLUE is found,
and remove BLUE from queue: */
DECLARE
dequeue_options dbms_aq.dequeue_options_t;
message_properties dbms_aq.message_properties_t;
message_handle RAW(16);
message aq.message_type;

BEGIN
dequeue_options.dequeue_mode := dbms_aq.LOCKED;

 LOOP

dbms_aq.dequeue(queue_name => ’msg_queue’,
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);

dbms_output.put_line (’Message: ’ || message.subject ||
 ’ ... ’ || message.text);

EXIT WHEN message.subject = ’BLUE’;
 END LOOP;

dequeue_options.dequeue_mode := dbms_aq.REMOVE;
dequeue_options.msgid := message_handle;
11-44 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing by Example
dbms_aq.dequeue(queue_name => ’msg_queue’,
dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

dbms_output.put_line (’Message: ’ || message.subject ||
’ ... ’ || message.text);

 COMMIT;
END;
/

Enqueue and Dequeue of Messages with Time Delay and Expiration
An enqueue can specify the time before which a message cannot be retrieved by a
dequeue call. To do this, the producer (i.e the agent enqueuing the message) can
also specify the time when a message expires, at which time the message is can use
the parameter “delay” when enqueuing the message. The producer can also specify
the time when a message expires, at which time the message is moved to an excep-
tion queue.

/* Enqueue message for delayed availability: */
DECLARE
enqueue_options dbms_aq.enqueue_options_t;
message_properties dbms_aq.message_properties_t;
message_handle RAW(16);
message aq.message_type;

BEGIN
message := message_type(’DELAYED’,
’This message is delayed one week.’);
message_properties.delay := 7*24*60*60;
message_properties.expiration := 2*7*24*60*60;

Note: Expiration is calculated from the earliest dequeue time. So,
if an application wants a message to be dequeued no earlier than a
week from now, but no later than 3 weeks from now, this requires
setting the expiration time for 2 weeks. This scenario is described
in the following code segment.
 Advanced Queuing 11-45

Oracle Advanced Queuing by Example
dbms_aq.enqueue(queue_name => ’msg_queue’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

 COMMIT;
END;

Enqueue and Dequeue of Messages by Correlation and Message Id Using Pro*C/C++
#include <stdio.h>
#include <string.h>
#include <sqlca.h>
#include <sql2oci.h>
/* The header file generated by processing
object type 'aq.message_type': */
#include "pceg.h"

void sql_error(msg)
char *msg;
{
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf("%s\n", msg);
printf("\n% .800s \n", sqlca.sqlerrm.sqlerrmc);
EXEC SQL ROLLBACK WORK RELEASE;
exit(1);
}

main()
{
OCIEnv *oeh; /* OCI Env Handle */
OCIError *err; /* OCI Error Handle */
message_type *message = (message_type*)0; /* queue payload */
OCIRaw *msgid = (OCIRaw*)0; /* message id */
ub1 msgmem[16]=""; /* memory for msgid */
char user[60]="aq/AQ"; /* user login password */
char subject[30]; /* components of */
char txt[80]; /* message_type */
char correlation1[30]; /* message correlation */
char correlation2[30];
int status; /* code returned by the OCI calls */
11-46 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing by Example
/ * Dequeue by correlation and msgid */

/* Connect to the database: * /
EXEC SQL CONNECT :user;
EXEC SQL WHENEVER SQLERROR DO sql_error("Oracle Error :");

/ * Allocate space in the object cache for the host variable: */
EXEC SQL ALLOCATE :message;

/* Get the OCI Env handle: */
if (SQLEnvGet(SQL_SINGLE_RCTX, &oeh) != OCI_SUCCESS)
{
 printf(" error in SQLEnvGet \n");
 exit(1);
}
/ * Get the OCI Error handle: */
if (status = OCIHandleAlloc((dvoid *)oeh, (dvoid **)&err,
(ub4)OCI_HTYPE_ERROR, (ub4)0, (dvoid **)0))
{
printf(" error in OCIHandleAlloc %d \n", status);
exit(1);
}

/* Assign memory for msgid:
Memory needs to be allocated explicitly to OCIRaw*: */
if (status=OCIRawAssignBytes(oeh, err, msgmem, 16, &msgid))
{
printf(" error in OCIRawAssignBytes %d \n", status);
exit(1);
}

/ * First enqueue * /

strcpy(correlation1, "1st message");
strcpy(subject, "NORMAL ENQUEUE1");
strcpy(txt, "The Enqueue was done through PLSQL embedded in PROC");

/ * Initialize the components of message: */
EXEC SQL OJECT SET SUBJECT, TEXT OF :message TO :subject, :txt;

/* Embedded PLSQL call to the AQ enqueue procedure: */
EXEC SQL EXECUTE
DECLARE
message_properties dbms_aq.message_properties_t;
 Advanced Queuing 11-47

Oracle Advanced Queuing by Example
enqueue_options dbms_aq.enqueue_options_t;
BEGIN
/ * Bind the host variable 'correlation1': to message correlation*/
message_properties.correlation := :correlation1;

/ * Bind the host variable 'message' to payload and
 return message id into host variable 'msgid': */
dbms_aq.enqueue(queue_name => 'msg_queue',
message_properties => message_properties,
enqueue_options => enqueue_options,
payload => :message,
msgid => :msgid);
END;
END-EXEC;
/* Commit work: */
EXEC SQL COMMIT;

printf("Enqueued Message \n");
printf("Subject :%s\n",subject);
printf("Text :%s\n",txt);

/* Second enqueue */

strcpy(correlation2, "2nd message");
strcpy(subject, "NORMAL ENQUEUE2");
strcpy(txt, "The Enqueue was done through PLSQL embedded in PROC");

/* Initialize the components of message: */
EXEC SQL OBJECT SET SUBJECT, TEXT OF :messsage TO :subject,:txt;

/* Embedded PLSQL call to the AQ enqueue procedure: */
EXEC SQL EXECUTE
DECLARE
message_properties dbms_aq.message_properties_t;
enqueue_options dbms_aq.enqueue_options_t;
msgid RAW(16);
BEGIN
/ * Bind the host variable 'correlation2': to message correlaiton */
message_properties.correlation := :correlation2;

/ * Bind the host variable 'message': to payload */
dbms_aq.enqueue(queue_name => 'msg_queue',
message_properties => message_properties,
enqueue_options => enqueue_options,
payload => :message,
11-48 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing by Example
msgid => msgid);
END;
END-EXEC;
/* Commit work: * /
EXEC SQL COMMIT;
printf("Enqueued Message \n");
printf("Subject :%s\n",subject);
printf("Text :%s\n",txt);

/* First dequeue - by correlation * /

EXEC SQL EXECUTE
DECLARE
message_properties dbms_aq.message_properties_t;
dequeue_options dbms_aq.dequeue_options_t;
msgid RAW(16);
BEGIN
/* Dequeue by correlation in host variable 'correlation2': */
dequeue_options.correlation := :correlation2;

/ * Return the payload into host variable 'message': */
dbms_aq.dequeue(queue_name => 'msg_queue',
message_properties => message_properties,
dequeue_options => dequeue_options,
payload => :message,
msgid => msgid);
END;
END-EXEC;
/* Commit work : */
EXEC SQL COMMIT;

/ * Extract the values of the components of message: */
EXEC SQL OBJECT GET SUBJECT, TEXT FROM :message INTO :subject,:txt;

printf("Dequeued Message \n");
printf("Subject :%s\n",subject);
printf("Text :%s\n",txt);

/* SECOND DEQUEUE - by MSGID * /

EXEC SQL EXECUTE
DECLARE
message_properties dbms_aq.message_properties_t;
dequeue_options dbms_aq.dequeue_options_t;
msgid RAW(16);
 Advanced Queuing 11-49

Oracle Advanced Queuing by Example
BEGIN
/ * Dequeue by msgid in host variable 'msgid': * /
dequeue_options.msgid := :msgid;

/* Return the payload into host variable 'message': */
dbms_aq.dequeue(queue_name => 'msg_queue',
message_properties => message_properties,
dequeue_options => dequeue_options,
payload => :message,
msgid => msgid);
END;
END-EXEC;
/* Commit work: */
EXEC SQL COMMIT;
}

Enqueue and Dequeue of Messages by Correlation and Message ID using OCI
#ifndef SL_ORACLE
#include <sl.h>
#endif

#ifndef OCI_ORACLE
#include <oci.h>
#endif

struct message
{
 OCIString *subject;
 OCIString *data;
};
typedef struct message message;

struct null_message
{
 OCIInd null_adt;
 OCIInd null_subject;
 OCIInd null_data;
};
typedef struct null_message null_message;

int main()
{
 OCIEnv *envhp;
11-50 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing by Example
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 dvoid *tmp;
 OCIType *mesg_tdo = (OCIType *) 0;
 message msg;
 null_message nmsg;
 message *mesg = &msg;
 null_message *nmesg = &nmsg;
 message *deqmesg = (message *)0;
 null_message *ndeqmesg = (null_message *)0;

 OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
(dvoid * (*)()) 0, (void (*)()) 0);

 OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
 52, (dvoid **) &tmp);

 OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
 52, (dvoid **) &tmp);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);

 OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,
 (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

 OCILogon(envhp, errhp, &svchp, "AQ", strlen("AQ"), "AQ", strlen("AQ"), 0, 0);

 /* obtain TDO of message_type */
 OCITypeByName(envhp, errhp, svchp, (CONST text *)"AQ", strlen("AQ"),
 (CONST text *)"MESSAGE_TYPE", strlen("MESSAGE_TYPE"),
 (text *)0, 0, OCI_DURATION_SESSION, OCI_TYPEGET_ALL, &mesg_tdo);

 /* prepare the message payload */
 mesg->subject = (OCIString *)0;
 mesg->data = (OCIString *)0;
 OCIStringAssignText(envhp, errhp,
 (CONST text *)"NORMAL MESSAGE", strlen("NORMAL MESSAGE"),
 Advanced Queuing 11-51

Oracle Advanced Queuing by Example
 &mesg->subject);
 OCIStringAssignText(envhp, errhp,
 (CONST text *)"OCI ENQUEUE", strlen("OCI ENQUEUE"),
 &mesg->data);
 nmesg->null_adt = nmesg->null_subject = nmesg->null_data = OCI_IND_NOTNULL;

 /* enqueue into the msg_queue */
 OCIAQEnq(svchp, errhp, (CONST text *)"msg_queue", 0, 0,
 mesg_tdo, (dvoid **)&mesg, (dvoid **)&nmesg, 0, 0);
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* dequeue from the msg_queue */
 OCIAQDeq(svchp, errhp, (CONST text *)"msg_queue", 0, 0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, 0, 0);
 printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
 printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));
 OCITransCommit(svchp, errhp, (ub4) 0);

}

Enqueue and Dequeue of Messages to/from a Multiconsumer Queue using PL/SQL
/* Create subscriber list: */
DECLARE
subscriber sys.aq$_agent;

/* Add subscribers RED and GREEN to the suscriber list: */
BEGIN
subscriber := sys.aq$_agent(’RED’, NULL, NULL);
dbms_aqadm.add_subscriber(queue_name => ’msg_queue_multiple’,
subscriber => subscriber);

subscriber := sys.aq$_agent(’GREEN’, NULL, NULL);
dbms_aqadm.add_subscriber(queue_name => ’msg_queue_multiple’,
subscriber => subscriber);
END;
/
DECLARE
enqueue_options dbms_aq.enqueue_options_t;
message_properties dbms_aq.message_properties_t;
recipients dbms_aq.aq$_recipient_list_t;
message_handle RAW(16);
message aq.message_type;
11-52 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing by Example
/* Enqueue MESSAGE 1 for subscribers to the queue
i.e. for RED and GREEN: */
BEGIN
message := message_type(’MESSAGE 1’,
’This message is queued for queue subscribers.’);

dbms_aq.enqueue(queue_name => ’msg_queue_multiple’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

/* Enqueue MESSAGE 2 for specified recipients i.e. for RED and BLUE. */
message := message_type(’MESSAGE 2’,
’This message is queued for two recipients.’);
recipients(1) := sys.aq$_agent(’RED’, NULL, NULL);
recipients(2) := sys.aq$_agent(’BLUE’, NULL, NULL);
message_properties.recipient_list := recipients;

dbms_aq.enqueue(queue_name => ’msg_queue_multiple’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

COMMIT;
END;
/

Note that RED is both a subscriber to the queue, as well as being a specified
recipient of MESSAGE 2. By contrast, GREEN is only a subscriber to those
messages in the queue (in this case, MESSAGE) for which no recipients have been
specified. BLUE, while not a subscriber to the queue, is nevertheless specified to
receive MESSAGE 2.

/* Dequeue messages from msg_queue_multiple: */
DECLARE
dequeue_options dbms_aq.dequeue_options_t;
message_properties dbms_aq.message_properties_t;
message_handle RAW(16);
message aq.message_type;
no_messages exception;
pragma exception_init (no_messages, -25228);
 Advanced Queuing 11-53

Oracle Advanced Queuing by Example
BEGIN

dequeue_options.wait := dbms_aq.NO_WAIT;

/* Consumer BLUE will get MESSAGE 2: */
dequeue_options.consumer_name := ’BLUE’;

LOOP

dbms_aq.dequeue(queue_name => ’msg_queue_multiple’,
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);

dbms_output.put_line (’Message: ’ || message.subject ||
 ’ ... ’ || message.text);

END LOOP;
EXCEPTION
WHEN no_messages THEN
dbms_output.put_line (’No more messages for BLUE’);
COMMIT;
END;

BEGIN
/* Consumer RED will get MESSAGE 1 and MESSAGE 2: */
dequeue_options.consumer_name := ’RED’;

LOOP
dbms_aq.dequeue(queue_name => ’msg_queue_multiple’,
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);

dbms_output.put_line (’Message: ’ || message.subject ||
 ’ ... ’ || message.text);
END LOOP;
EXCEPTION
WHEN no_messages THEN
dbms_output.put_line (’No more messages for RED’);
COMMIT;
END;
11-54 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing by Example
BEGIN
/* Consumer GREEN will get MESSAGE 1: */
dequeue_options.consumer_name := ’GREEN’;

LOOP
dbms_aq.dequeue(queue_name => ’msg_queue_multiple’,
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);

dbms_output.put_line (’Message: ’ || message.subject ||
 ’ ... ’ || message.text);
END LOOP;
EXCEPTION
WHEN no_messages THEN
dbms_output.put_line (’No more messages for GREEN’);
COMMIT;
END;
/

Enqueue and Dequeue of Messages to/from a Multiconsumer Queue using OCI
#ifndef SL_ORACLE
#include <sl.h>
#endif

#ifndef OCI_ORACLE
#include <oci.h>
#endif

struct message
{
 OCIString *subject;
 OCIString *data;
};
typedef struct message message;

struct null_message
{
 OCIInd null_adt;
 OCIInd null_subject;
 OCIInd null_data;
};
 Advanced Queuing 11-55

Oracle Advanced Queuing by Example
typedef struct null_message null_message;

int main()
{
 OCIEnv *envhp;
 OCIServer *srvhp;
 OCIError *errhp;
 OCISvcCtx *svchp;
 dvoid *tmp;
 OCIType *mesg_tdo = (OCIType *) 0;
 message msg;
 null_message nmsg;
 message *mesg = &msg;
 null_message *nmesg = &nmsg;
 message *deqmesg = (message *)0;
 null_message *ndeqmesg = (null_message *)0;
 OCIAQMsgProperties *msgprop = (OCIAQMsgProperties *)0;
 OCIAQAgent *agents[2];
 OCIAQDeqOptions *deqopt = (OCIAQDeqOptions *)0;
 ub4wait = OCI_DEQ_NO_WAIT;
 ub4 navigation = OCI_DEQ_FIRST_MSG;

 OCIInitialize((ub4) OCI_OBJECT, (dvoid *)0, (dvoid * (*)()) 0,
(dvoid * (*)()) 0, (void (*)()) 0);

 OCIHandleAlloc((dvoid *) NULL, (dvoid **) &envhp, (ub4) OCI_HTYPE_ENV,
 52, (dvoid **) &tmp);

 OCIEnvInit(&envhp, (ub4) OCI_DEFAULT, 21, (dvoid **) &tmp);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &errhp, (ub4) OCI_HTYPE_ERROR,
 52, (dvoid **) &tmp);
 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &srvhp, (ub4) OCI_HTYPE_SERVER,
 52, (dvoid **) &tmp);

 OCIServerAttach(srvhp, errhp, (text *) 0, (sb4) 0, (ub4) OCI_DEFAULT);

 OCIHandleAlloc((dvoid *) envhp, (dvoid **) &svchp, (ub4) OCI_HTYPE_SVCCTX,
 52, (dvoid **) &tmp);

 OCIAttrSet((dvoid *) svchp, (ub4) OCI_HTYPE_SVCCTX, (dvoid *)srvhp, (ub4) 0,
 (ub4) OCI_ATTR_SERVER, (OCIError *) errhp);

 OCILogon(envhp, errhp, &svchp, "AQ", strlen("AQ"), "AQ", strlen("AQ"), 0, 0);
11-56 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing by Example
 /* obtain TDO of message_type */
 OCITypeByName(envhp, errhp, svchp, (CONST text *)"AQ", strlen("AQ"),
 (CONST text *)"MESSAGE_TYPE", strlen("MESSAGE_TYPE"),
 (text *)0, 0, OCI_DURATION_SESSION, OCI_TYPEGET_ALL, &mesg_tdo);

 /* prepare the message payload */
 mesg->subject = (OCIString *)0;
 mesg->data = (OCIString *)0;
 OCIStringAssignText(envhp, errhp,
 (CONST text *)"MESSAGE 1", strlen("MESSAGE 1"),
 &mesg->subject);
 OCIStringAssignText(envhp, errhp,
 (CONST text *)"mesg for queue subscribers",
 strlen("mesg for queue subscribers"), &mesg->data);
 nmesg->null_adt = nmesg->null_subject = nmesg->null_data = OCI_IND_NOTNULL;

/* enqueue MESSAGE 1 for subscribers to the queue i.e. for RED and GREEN */
 OCIAQEnq(svchp, errhp, (CONST text *)"msg_queue_multiple", 0, 0,
 mesg_tdo, (dvoid **)&mesg, (dvoid **)&nmesg, 0, 0);

 /* enqueue MESSAGE 2 for specified recipients i.e. for RED and BLUE */
 /* prepare message payload */
 OCIStringAssignText(envhp, errhp,
 (CONST text *)"MESSAGE 2", strlen("MESSAGE 2"),
 &mesg->subject);
 OCIStringAssignText(envhp, errhp,
 (CONST text *)"mesg for two recipients",
 strlen("mesg for two recipients"), &mesg->data);

 /* allocate AQ message properties and agent descriptors */
 OCIDescriptorAlloc(envhp, (dvoid **)&msgprop,
OCI_DTYPE_AQMSG_PROPERTIES, 0, (dvoid **)0);
 OCIDescriptorAlloc(envhp, (dvoid **)&agents[0],
 OCI_DTYPE_AQAGENT, 0, (dvoid **)0);
 OCIDescriptorAlloc(envhp, (dvoid **)&agents[1],
 OCI_DTYPE_AQAGENT, 0, (dvoid **)0);

 /* prepare the recipient list, RED and BLUE */
 OCIAttrSet(agents[0], OCI_DTYPE_AQAGENT, "RED", strlen("RED"),
 OCI_ATTR_AGENT_NAME, errhp);
 OCIAttrSet(agents[1], OCI_DTYPE_AQAGENT, "BLUE", strlen("BLUE"),
 OCI_ATTR_AGENT_NAME, errhp);
 OCIAttrSet(msgprop, OCI_DTYPE_AQMSG_PROPERTIES, (dvoid *)agents, 2,
 OCI_ATTR_RECIPIENT_LIST, errhp);
 Advanced Queuing 11-57

Oracle Advanced Queuing by Example
 OCIAQEnq(svchp, errhp, (CONST text *)"msg_queue_multiple", 0, msgprop,
 mesg_tdo, (dvoid **)&mesg, (dvoid **)&nmesg, 0, 0);

 OCITransCommit(svchp, errhp, (ub4) 0);

 /* now dequeue the messages using different consumer names */
 /* allocate dequeue options descriptor to set the dequeue options */
 OCIDescriptorAlloc(envhp, (dvoid **)&deqopt, OCI_DTYPE_AQDEQ_OPTIONS, 0,
 (dvoid **)0);

 /* set wait parameter to NO_WAIT so that the dequeue returns immediately */
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)&wait, 0,
 OCI_ATTR_WAIT, errhp);

 /* set navigation to FIRST_MESSAGE so that the dequeue resets the position */
 /* after a new consumer_name is set in the dequeue options */
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)&navigation, 0,
 OCI_ATTR_NAVIGATION, errhp);

 /* dequeue from the msg_queue_multiple as consumer BLUE */
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)"BLUE", strlen("BLUE"),
 OCI_ATTR_CONSUMER_NAME, errhp);
 while (OCIAQDeq(svchp, errhp, (CONST text *)"msg_queue_multiple", deqopt, 0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, 0, 0)
 == OCI_SUCCESS)
 {
 printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
 printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));
 }
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* dequeue from the msg_queue_multiple as consumer RED */
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS, (dvoid *)"RED", strlen("RED"),
 OCI_ATTR_CONSUMER_NAME, errhp);
 while (OCIAQDeq(svchp, errhp, (CONST text *)"msg_queue_multiple", deqopt, 0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, 0, 0)
 == OCI_SUCCESS)
 {
 printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
 printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));
 }
 OCITransCommit(svchp, errhp, (ub4) 0);

 /* dequeue from the msg_queue_multiple as consumer GREEN */
 OCIAttrSet(deqopt, OCI_DTYPE_AQDEQ_OPTIONS,(dvoid *)"GREEN",strlen("GREEN"),
11-58 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing by Example
 OCI_ATTR_CONSUMER_NAME, errhp);
 while (OCIAQDeq(svchp, errhp, (CONST text *)"msg_queue_multiple", deqopt, 0,
 mesg_tdo, (dvoid **)&deqmesg, (dvoid **)&ndeqmesg, 0, 0)
 == OCI_SUCCESS)
 {
 printf("Subject: %s\n", OCIStringPtr(envhp, deqmesg->subject));
 printf("Text: %s\n", OCIStringPtr(envhp, deqmesg->data));
 }
 OCITransCommit(svchp, errhp, (ub4) 0);
}

Enqueue of Messages for remote subscribers/recipients to a Multiconsumer Queue and
Propagation Scheduling

/* Create subscriber list: */
DECLARE
subscriber sys.aq$_agent;

/* Add subscribers RED and GREEN with different addresses to the suscriber
list: */
BEGIN
/* Add subscriber RED that will dequeue messages from another_msg_queue queue
in the same datatbase */
subscriber := sys.aq$_agent(’RED’, ’another_msg_queue’, NULL);
dbms_aqadm.add_subscriber(queue_name => ’msg_queue_multiple’,
subscriber => subscriber);

/* Schedule propagation from msg_queue_multiple to other queues in the same
database: */
dbms_aqadm.schedule_propagation(queue_name => 'msg_queue_multiple');

/* Add subscriber GREEN that will dequeue messages from the msg_queue queue in
another database reached by the database link another_db.world */
subscriber := sys.aq$_agent(’GREEN’, ’msg_queue@another_db.world’, NULL);
dbms_aqadm.add_subscriber(queue_name => ’msg_queue_multiple’,
subscriber => subscriber);

/* Schedule propagation from msg_queue_multiple to other queues in the
database "another_database": */
BEGIN
dbms_aqadm.schedule_propagation(queue_name => 'msg_queue_multiple’,
destination => ’another_db.world’);
 Advanced Queuing 11-59

Oracle Advanced Queuing by Example
END;
/

DECLARE
enqueue_options dbms_aq.enqueue_options_t;
message_properties dbms_aq.message_properties_t;
recipients dbms_aq.aq$_recipient_list_t;
message_handle RAW(16);
message aq.message_type;

/* Enqueue MESSAGE 1 for subscribers to the queue
i.e. for RED at address another_msg_queue and GREEN at address
msg_queue@another_db.world: */
BEGIN
message := message_type(’MESSAGE 1’,
’This message is queued for queue subscribers.’);

dbms_aq.enqueue(queue_name => ’msg_queue_multiple’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

/* Enqueue MESSAGE 2 for specified recipients i.e. for RED at address
another_msg_queue and BLUE. */
message := message_type(’MESSAGE 2’,
’This message is queued for two recipients.’);
recipients(1) := sys.aq$_agent(’RED’, ’another_msg_queue’, NULL);
recipients(2) := sys.aq$_agent(’BLUE’, NULL, NULL);
message_properties.recipient_list := recipients;

dbms_aq.enqueue(queue_name => ’msg_queue_multiple’,
enqueue_options => enqueue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);

COMMIT;
END;
/

11-60 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing by Example
10

 Unscheduling Propagation
/* unschedule propagation from msg_queue_multiple to the destination
another_db.world */
execute dbms_aqadm.unschedule_propagation(queue_name => 'msg_queue_multiple',
destination => 'another_db.world');

Enqueue and Dequeue using Message Grouping
CONNECT aq/aq

EXECUTE dbms_aqadm.create_queue_table (
queue_table => 'aq.msggroup',
queue_payload_type => 'aq.message_type',
message_grouping => dbms_aqadm.TRANSACTIONAL);

EXECUTE dbms_aqadm.create_queue(
queue_name => 'msggroup_queue',
queue_table => 'aq.msggroup');

EXECUTE dbms_aqadm.start_queue(queue_name => 'msggroup_queue');

/* Enqueue three messages in each transaction */
DECLARE
enqueue_options dbms_aq.enqueue_options_t;
message_properties dbms_aq.message_properties_t;
message_handle RAW(16);
message aq.message_type;

BEGIN

Note: RED at address another_msg_queue is both a subscriber to
the queue, as well as being a specified recipient of MESSAGE 2. By
contrast, GREEN at address msg_queue@another_db.world is only
a subscriber to those messages in the queue (in this case,
MESSAGE 1) for which no recipients have been specified. BLUE,
while not a subscriber to the queue, is nevertheless specified to
receive MESSAGE 2.
 Advanced Queuing 11-61

Oracle Advanced Queuing by Example
 /* loop through three times, committing after every iteration */
 FOR txnno in 1..3 LOOP

 /* loop through three times, enqueuing each iteration */
 FOR mesgno in 1..3 LOOP
 message := message_type('GROUP#' || txnno,
 'Message#' || mesgno || ' in group' || txnno);

 dbms_aq.enqueue(queue_name => 'msggroup_queue',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => message,
 msgid => message_handle);
 END LOOP;

 /* commit the transaction */
 COMMIT;
 END LOOP;
END;
/

/* Now dequeue the messages as groups */
DECLARE
dequeue_options dbms_aq.dequeue_options_t;
message_properties dbms_aq.message_properties_t;
message_handle RAW(16);
message aq.message_type;

no_messages exception;
end_of_group exception;

pragma exception_init (no_messages, -25228);
pragma exception_init (end_of_group, -25235);

BEGIN
dequeue_options.wait := DBMS_AQ.NO_WAIT;
dequeue_options.navigation := DBMS_AQ.FIRST_MESSAGE;

LOOP
 BEGIN
 dbms_aq.dequeue(queue_name => 'msggroup_queue',

dequeue_options => dequeue_options,
message_properties => message_properties,
payload => message,
msgid => message_handle);
11-62 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing by Example
 dbms_output.put_line ('Message: ' || message.subject ||
' ... ' || message.text);

 dequeue_options.navigation := DBMS_AQ.NEXT_MESSAGE;

 EXCEPTION
 WHEN end_of_group THEN
 dbms_output.put_line ('Finished processing a group of messages');
 COMMIT;
 dequeue_options.navigation := DBMS_AQ.NEXT_TRANSACTION;
 END;
END LOOP;
EXCEPTION
 WHEN no_messages THEN
 dbms_output.put_line ('No more messages');
END;
/

Drop AQ Objects
/* Cleans up all objects related to the object type: */
CONNECT aq/AQ;

EXECUTE dbms_aqadm.stop_queue (
queue_name => ’msg_queue’);

EXECUTE dbms_aqadm.drop_queue (
queue_name => ’msg_queue’);

EXECUTE dbms_aqadm.drop_queue_table (
queue_table => ’aq.msg’);

/* Cleans up all objects related to the RAW type: */
EXECUTE dbms_aqadm.stop_queue (
 queue_name => 'raw_msg_queue');

EXECUTE dbms_aqadm.drop_queue (
 queue_name => 'raw_msg_queue');

EXECUTE dbms_aqadm.drop_queue_table (
 queue_table => 'aq.raw_msg');

/* Cleans up all objects related to the priority queue: */
EXECUTE dbms_aqadm.stop_queue (
 Advanced Queuing 11-63

Oracle Advanced Queuing by Example
 queue_name => ’priority_msg_queue’);

EXECUTE dbms_aqadm.drop_queue (
 queue_name => ’priority_msg_queue’);

EXECUTE dbms_aqadm.drop_queue_table (
queue_table => ’aq.priority_msg’);

/* Cleans up all objects related to the multiple-consumer queue: */
EXECUTE dbms_aqadm.stop_queue (
queue_name => ’msg_queue_multiple’);

EXECUTE dbms_aqadm.drop_queue (
queue_name => ’msg_queue_multiple’);

EXECUTE dbms_aqadm.drop_queue_table (
queue_table => ’aq.msg_multiple’);

drop type aq.message_type;

Revoke Roles and Privileges
CONNECT sys/change_on_install;
drop user aq;
11-64 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing Reference
Oracle Advanced Queuing Reference

Reference Overview
This section contains a detailed description of the technical specifications:

- Init ora Parameter

- Data Structures

- Agent

- Message Properties

- Queue Options

- Operational Interface

- Administrative Interface

- Administration Topics

- Data Objects

INIT.ORA Parameter

AQ_TM_PROCESSES
A parameter called AQ_TM_PROCESSES should be specified in the init .ora
PARAMETER file if you want to perform time monitoring on queue messages. This
will be used for messages which have delay and expiration properties specified.
This parameter can be set in a range from 0 to 10. Setting it to any other number
will result in an error. If this parameter is set to 1, one queue monitor process will
be created as a background process to monitor the messages. If the parameter is not
specified, or is set to 0, the queue monitor process is not created. The administrative
interfaces to start and stop the queue monitor are only valid if the queue monitor
process is started as part of instance startup by specifying this parameter.

Parameter Name: aq_tm_processes

Parameter Type: integer

Parameter Class: Dynamic

Allowable Values: 0 to 10

Syntax: aq_tm_processes = <0 to 10>

Name of process: ora_qmon_<oracle sid>
 Advanced Queuing 11-65

Oracle Advanced Queuing Reference
JOB_QUEUE_PROCESSES
 Propagation is handled by job queue (SNP) processes. The number of job queue
processes started in an instance is controlled by the init.ora parameter
JOB_QUEUE_PROCESSES. The default value of this parameter is 0. In order for mes-
sage propagation to take place, this parameter must be set to at least 1. The DBA
can set it to higher values if there are many queues from which the messages have
to be propagated, or if there are many destinations to which the messages have to
be propagated, or if there are other jobs in the job queue.

COMPATIBLE
The COMPATIBLE init.ora parameter must be set to 8.0.4 in order to use the AQ
propagation feature. Specifically, the COMPATIBLE parameter will be checked
under the following three conditions:

1. An AQ agent's (see sys.aq$_agent) address field is specified in the
DBMS_AQADM.ADD_SUBSCRIBER command.

2. An AQ agent's (see sys.aq$_agent) address field is specified in the
recipient_list of dbms_aq.message_properties_t .

3. The DBMS_AQADM.SCHEDULE_PROPAGATION command is used.

Users can downgrade to 8.0.3 after using the 8.0.4 features by using

 ALTER DATABASE RESET COMPATIBILITY

Users will not be allowed to restart the database in 8.0.3 compatible mode under
the following conditions:

1. There are messages in queues that have not yet been propagated to their
destinations.

2. There are propagation schedules that are still pending, in which case you may
use the DBMS_AQADM.UNSCHEDULE_PROPAGATION command to remove the
schedules.

3. There are queues that have remote subscribers (i.e. a non NULL address field in
sys.aq$_agent), in which case you may remove remote subscribers by
means of the DBMS_AQADM.REMOVE_SUBSCRIBER command.

Example: aq_tm_processes = 1

See Also: Oracle8 Reference for complete details about
JOB_QUEUE_PROCESSES.
11-66 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing Reference
 Data Structures
The following data structures are used in the operational and administrative inter-
faces.

Object name

Purpose:

Naming of database objects. This naming convention applies to queues, queue
tables and object types.

Syntax:
object_name := VARCHAR2
object_name := [<schema_name>.]<name>

Usage:

Names for objects are specified by an optional schema name and a name. If the
schema name is not specified then the current schema is assumed. The schema
name and the name can each be up to 30 bytes long. However, queue names
and queue table names can be a maximum of 24 bytes.

11

Type name

Purpose:

Defining queue types.

Syntax:
type_name := VARCHAR2
type_name := <object_type> | “RAW”

See Also: For more details on compatibility, refer to the upgrade/
downgrade section of the migration guide.
 Advanced Queuing 11-67

Oracle Advanced Queuing Reference

s

ur-
Usage:

Agent

Purpose:

To identify a producer or a consumer of a message.

Syntax:
TYPE sys.aq$_agent IS OBJECT (

name VARCHAR2(30),
address VARCHAR2(1024),
protocol NUMBER)

Usage:

Table 11–1 Type Name

Parameter Description

<object_types> For details on creating object types please refer to Server concepts manual. The max-
imum number of attributes in the object type is limited to 900.

“RAW” To store payload of type RAW, AQ will create a queue table with a LOB column as
the payload repository. The size of the payload is limited to 32K bytes of data.
Because LOB columns are used for storing RAW payload, the AQ administrator can
choose the LOB tablespace and configure the LOB storage by constructing a LOB stor-
age string in the storage_clause parameter during queue table creation time.

Table 11–2 Agent

Parameter Description

name Name of a producer or consumer of a message.

address Protocol specific address of the recipient. If the protocol is 0 (default) the addres
is of the form [schema.]queue[@dblink]

protocol Protocol to interpret the address and propagate the message. The default (and c
rently the only supported) value is 0.
11-68 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing Reference
Message Properties

Purpose:

The Message Properties describe the information that is used by AQ to manage
individual messages. These are set at enqueue time and their values are
returned at dequeue time.

Syntax:
TYPE message_properties_t IS RECORD (

priority BINARY_INTEGER default 1,
delay BINARY_INTEGER default NO_DELAY,
expiration BINARY_INTEGER default NEVER,
correlation VARCHAR2(128) default NULL,
attempts BINARY_INTEGER,
recipient_list aq$_recipient_list_t,
exception_queue VARCHAR2(51) default NULL,
enqueue_time DATE,
state BINARY_INTEGER)

TYPE aq$_recipient_list_t IS TABLE OF sys.aq$_agent
INDEX BY BINARY_INTEGER

Usage :

Table 11–3 Message properties

Parameter Description

priority Specifies the priority of the message. A smaller number indicates higher priority.
The priority can be any number, including negative numbers.

delay Specifies the delay of the enqueued message. The delay represents the number of
seconds after which a message is available for dequeuing. Dequeuing by msgid
overrides the delay specification. A message enqueued with delay set will be in the
WAITING state, when the delay expires the messages goes to the READY state.
DELAY processing requires the queue monitor to be started. Note that delay is set
by the producer who enqueues the message.

NO_DELAY: the message is available for immediate dequeuing.

number: the number of seconds to delay the message.
 Advanced Queuing 11-69

Oracle Advanced Queuing Reference
expiration Specifies the expiration of the message. It determines, in seconds, the duration the
message is available for dequeuing. This parameter is an offset from the delay. Expi-
ration processing requires the queue monitor to be running.

NEVER: message will not expire.

number: number of seconds message will remain in READY state. If the message is
not dequeued before it expires, it will be moved to the exception queue in the
EXPIRED state.

correlation Specifies the identification supplied by the producer for a message at enqueuing.

attempts Specifies the number of attempts that have been made to dequeue this message.
This parameter can not be set at enqueue time.

recipient_list For type definition please refer to section titled “Agent”.

This parameter is only valid for queues which allow multiple consumers. The
default recipients are the queue subscribers. This parameter is not returned to a con-
sumer at dequeue time.

exception_queue Specifies the name of the queue to which the message is moved if it cannot be pro-
cessed successfully. Messages are moved in two cases: The number of unsuccessful
dequeue attempts has exceeded max_retries or the message has expired. All mes-
sages in the exception queue are in the EXPIRED state.

The default is the exception queue associated with the queue table. If the exception
queue specified does not exist at the time of the move the message will be moved to
the default exception queue associated with the queue table and a warning will be
logged in the alert file. If the default exception queue is used the parameter will
return a NULL value at dequeue time.

enqueue_time Specifies the time the message was enqueued. This value is determined by the sys-
tem and cannot be set by the user. This parameter can not be set at enqueue time.

state Specifies the state of the message at the time of the dequeue. This parameter can not
be set at enqueue time.

0: The message is ready to be processed.

1: The message delay has not yet been reached.

3: The message has been processed and is retained.

4: The message has been moved to the exception queue.

Table 11–3 Message properties

Parameter Description
11-70 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing Reference
Queue Options

Enqueue options

Purpose:

To specify the options available for the enqueue operation.

Syntax:
TYPE enqueue_options_t IS RECORD (

visibility BINARY_INTEGER default ON_COMMIT,
relative_msgid RAW(16) default NULL,
sequence_deviation BINARY_INTEGER default NULL)

Usage:

Table 11–4

Parameter Description

visibility Specifies the transactional behavior of the enqueue request.

ON_COMMIT: The enqueue is part of the current transaction. The operation is com-
plete when the transaction commits. This is the default case.

IMMEDIATE: The enqueue is not part of the current transaction. The operation
constitutes a transaction on its own.

relative_msgid Specifies the message identifier of the message which is referenced in the
sequence deviation operation. This field is valid if and only if BEFORE is specified
in sequence_deviation. This parameter will be ignored if sequence deviation is not
specified.

sequence_deviation Specifies if the message being enqueued should be dequeued before other mes-
sage(s) already in the queue.

BEFORE: The message is enqueued ahead of the message specified by
relative_msgid.

TOP: The message is enqueued ahead of any other messages.

NULL: Default
 Advanced Queuing 11-71

Oracle Advanced Queuing Reference
Dequeue options

Purpose:

To specify the options available for the dequeue operation.

Syntax:
TYPE dequeue_options_t IS RECORD (

consumer_name VARCHAR2(30) default NULL,
dequeue_mode BINARY_INTEGER default REMOVE,
navigation BINARY_INTEGER default NEXT_MESSAGE,
visibility BINARY_INTEGER default ON_COMMIT,
wait BINARY_INTEGER default FOREVER
msgid RAW(16) default NULL,
correlation VARCHAR2(128) default NULL)

Usage

Table 11–5 DEQUEUE options

Parameter Description

consumer_name Name of the consumer. Only those messages matching the consumer name are
accessed. If a queue is not set up for multiple consumers, this field should be set to
NULL.

dequeue_mode Specifies the locking behavior associated with the dequeue.

BROWSE: Read the message without acquiring any lock on the message. This is
equivalent to a select statement.

LOCKED: Read and obtain a write lock on the message. The lock lasts for the dura-
tion of the transaction. This is equivalent to a select for update statement.

REMOVE: Read the message and update or delete it. This is the default. The message
can be retained in the queue table based on the retention properties.
11-72 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing Reference
navigation Specifies the position of the message that will be retrieved. First, the position is
determined. Second, the search criterion is applied. Finally, the message is retrieved.

NEXT_MESSAGE: Retrieve the next message which is available and matches the
search criteria. If the previous message belongs to a message group, AQ will
retrieve the next available message which matches the search criteria and belongs to
the message group. This is the default.

NEXT_TRANSACTION: Skip the remainder of the current transaction group (if any)
and retrieve the first message of the next transaction group. This option can only be
used if message grouping is enabled for the current queue.

FIRST_MESSAGE: Retrieves the first message which is available and matches the
search criteria. This will reset the position to the beginning of the queue.

visibility Specifies whether the new message is dequeued as part of the current transac-
tion.The visibility parameter is ignored when using the BROWSE mode.

ON_COMMIT: The dequeue will be part of the current transaction. This is the default
case.

IMMEDIATE: The dequeued message is not part of the current transaction. It consti-
tutes a transaction on its own.

wait Specifies the wait time if there is currently no message available which matches the
search criteria.

FOREVER: wait forever. This is the default.

NO_WAIT: do not wait

number: wait time in seconds

msgid Specifies the message identifier of the message to be dequeued.

correlation Specifies the correlation identifier of the message to be dequeued. Special pattern
matching characters, such as the percent sign (%) and the underscore (_) can be
used. If more than one message satisfies the pattern, the order of dequeuing is
undetermined.

Table 11–5 DEQUEUE options

Parameter Description
 Advanced Queuing 11-73

Oracle Advanced Queuing Reference
Operational Interface
The following interface calls are available to enqueue and dequeue messages from
queues.

DBMS_AQ.ENQUEUE

Purpose:

Adds a message to the specified queue. In the simplest case, if the user wants to
enqueue a message, without any other parameters, only the queue name and the
payload have to be specified.

Syntax:
DBMS_AQ.ENQUEUE (

queue_name IN VARCHAR2,
enqueue_options IN enqueue_options_t,
message_properties IN message_properties_t,
payload IN “<type_name>”,
msgid OUT RAW)

Usage:

Table 11–6 DBMS_AQ.ENQUEUE

Parameter Description

queue_name

(IN VARCHAR2)

Specifies the name of the queue to which this message should be enqueued. The
queue cannot be an exception queue.

enqueue_options

(IN enqueue_option_t)

For the definition please refer to the section titled “ENQUEUE Options.”

message_properties

(IN message_properties_t)

For the definition please refer to the section titled “Message Properties.”

payload

(IN “<type_name>”)

Not interpreted by Oracle AQ.

The payload must be specified according to the specification in the associated
queue table. NULL is an acceptable parameter. For the definition of <type_name>
please refer to section titled “Type name”

msgid

(OUT RAW)

The system generated identification of the message. This is a globally unique identi-
fier that can be used to identify the message at dequeue time.
11-74 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing Reference
Using sequence deviation:

The sequence_deviation parameter in enqueue_options can be used to change the
order of processing between two messages. The identity of the other message, if
any, is specified by the enqueue_options parameter relative_msgid. The relation-
ship is identified by the sequence_deviation parameter.

Specifying sequence_deviation for a message introduces some restrictions for the
delay and priority values that can be specified for this message. The delay of this
message has to be less than or equal to the delay of the message before which this
message is to be enqueued. The priority of this message has to be greater than or
equal to the priority of the message before which this message is to be enqueued.

DBMS_AQ.DEQUEUE

Purpose:

Dequeues a message from the specified queue.

Syntax:

DBMS_AQ.DEQUEUE (
queue_name IN VARCHAR2,
dequeue_options IN dequeue_options_t,
message_properties OUT message_properties_t,
payload OUT “<type_name>”,
msgid OUT raw)
 Advanced Queuing 11-75

Oracle Advanced Queuing Reference
Usage:

Search criteria and dequeue order for messages:

The search criteria for messages to be dequeued is determined by the
consumer_name, msgid and correlation parameters in the dequeue_options. Msgid
uniquely identifies the message to be dequeued. Correlation identifiers are applica-
tion-defined identifiers that are not interpreted by AQ.

Only messages in the READY state are dequeued unless a msgid is specified.

The dequeue order is determined by the values specified at the time the queue
table is created unless overridden by the msgid and correlation id in
dequeue_options.

The database consistent read mechanism is applicable for queue operations. For
example, a BROWSE call may not see a message that is enqueued after the beginning
of the browsing transaction.

Table 11–7 DBMS_AQ.DEQUEUE

Parameter Description

queue_name

(IN VARCHAR2)

Specifies the name of the queue.

dequeue_options

(IN dequeue_option_t)

For the definition please refer to the section titled “DEQUEUE Options.”

message_properties

(OUT message_properties_t)

For the definition please refer to the section titled “Message Properties.”

payload

(OUT “<type_name>”)

Not interpreted by Oracle AQ.

The payload must be specified according to the specification in the associated
queue table. For the definition of <type_name> please refer to section titled
“Type name”

msgid

(OUT RAW)

The system generated identification of the message.
11-76 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing Reference
Navigating through a queue:

The default NAVIGATION parameter during dequeue is NEXT_MESSAGE. This
means that subsequent dequeues will retrieve the messages from the queue based
on the snapshot obtained in the first dequeue. In particular, a message that is
enqueued after the first dequeue command will be processed only after processing
all the remaining messages in the queue. This is usually sufficient when all the
messages have already been enqueued into the queue, or when the queue does not
have a priority-based ordering. However, applications must use the
FIRST_MESSAGE navigation option when the first message in the queue needs to
be processed by every dequeue command. This usually becomes necessary when a
higher priority message arrives in the queue while messages already-enqueued are
being processed.

Dequeue by Message Grouping:

Messages enqueued in the same transaction into a queue that has been enabled for
message grouping will form a group. If only one message is enqueued in the trans-
action, this will effectively form a group of one message. There is no upper limit to
the number of messages that can be grouped in a single transaction.

In queues that have not been enabled for message grouping, a dequeue in LOCKED
or REMOVE mode locks only a single message. By contrast, a dequeue operation that
seeks to dequeue a message that is part of a group will lock the entire group. This is
useful when all the messages in a group need to be processed as an atomic unit.

When all the messages in a group have been dequeued, the dequeue returns an
error indicating that all messages in the group have been processed. The applica-
tion can then use the NEXT_TRANSACTION to start dequeuing messages from the
next available group. In the event that no groups are available, the dequeue will
time-out after the specified WAIT period.

Note: It may also be more efficient to use the FIRST_MESSAGE
navigation option when there are messages being concurrently
enqueued. If the FIRST_MESSAGE option is not specified, AQ will
have to continually generate the snapshot as of the first dequeue
command, leading to poor performance. If the FIRST_MESSAGE
option is specified, AQ will use a new snapshot for every dequeue
command.
 Advanced Queuing 11-77

Oracle Advanced Queuing Reference
Enumerated Constants in the Operational Interface
When using enumerated constants such as BROWSE, LOCKED, REMOVE, the PL/SQL
constants need to be specified with the scope of the packages defining it. All types
associated with the operational interfaces have to be prepended with dbms_aq . For
example:

dbms_aq.BROWSE

12

Administrative Interface
Configuration information can be managed through procedures in the
DBMS_AQADM package. Because incorrect usage of the administration interface can
have substantial performance impact on the database system, the administration
interface should be treated as privileged commands, and only the designated
queue administrator or privileged users should be granted access to the administra-
tion package. Initially, only SYS has the execution privilege for the procedures in
DBMS_AQADM and DBMS_AQ.

Privileges and access control
Access to AQ operations are granted to users through roles. These roles provide
execution privileges on the AQ procedures. Currently, we do not support fine
grained access control at the database object level. This implies that a user with the
AQ_USER_ROLE can enqueue and dequeue to any queue in the system.

Table 11–8 Enumerated types in the operational interface

Parameter Options

visibility IMMEDIATE , ON_COMMIT

mode BROWSE, LOCKED, REMOVE

navigation FIRST_MESSAGE , NEXT_MESSAGE, NEXT_TRANSACTION

state WAITING , READY, PROCESSED, EXPIRED

sequence_deviati
on

BEFORE, TOP

wait FOREVER, NO_WAIT

delay NO_DELAY

expiration NEVER
11-78 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing Reference
Administrator role AQ_ADMINISTRATOR_ROLE grants execute privileges to proce-
dures in the DBMS_AQADM and DBMS_AQ packages. These include all the administra-
tive and operational interfaces. The user ’SYS’ must grant the
AQ_ADMINISTRATOR_ROLE to the AQ administrator.

User role AQ_USER_ROLE grants execute privileges to procedures in the DBMS_AQ
packages. These include all the operational interfaces. The AQ administrator must
grant the AQ_USER_ROLETO AQ users.

Access to AQ object types The procedure grant_type_access must first be executed by
the user ’SYS’ to grant access for AQ object types to the AQ administrator. The AQ
administrator can then execute this procedure to grant access for AQ object types to
other AQ users. The procedure needs to be executed if the user wishes to perform
any administrative operation involving a multiple consumer queue. These include
CREATE_QUEUE_TABLE, CREATE_QUEUE, ADD_SUBSCRIBER and
REMOVE_SUBSCRIBER.

Syntax:
PROCEDURE grant_type_access (user_name IN VARCHAR2);

Calling DBMS_AQ from a PL/SQL function or procedure If you wish to call DBMS_AQ from
a PL/SQL function or procedure, you will need to have been explicitly granted the
EXECUTE privilege. You cannot inherit this right from either the AQ_USER_ROLE or
the AQ_ADMINISTRATOR_ROLE.

Syntax:
GRANT EXECUTE ON DBMS_AQ TO <user>;

Example

1. Scott is appointed as the AQ administrator.

CONNECT sys/change_on_install
GRANT AQ_ADMINISTRATOR_ROLE to scott with admin option;
execute dbms_aqadm.grant_type_access(’scott’);

2. Scott lets Jones use AQ.

CONNECT scott/tiger
GRANT AQ_USER_ROLE to jones;

3. Jones wishes to create queue tables that are enabled for multiple dequeues.
 Advanced Queuing 11-79

Oracle Advanced Queuing Reference
CONNECT scott/tiger
execute dbms_aqadm.grant_type_access(’jones’);

DBMS_AQADM.CREATE_QUEUE_TABLE

Purpose: Create a queue table for messages of a pre-defined type. The sort keys for
dequeue ordering, if any, need to be defined at table creation time. The following
objects are created at this time:

1. The default exception queue associated with the queue table called
aq$_<queue_table_name>_e.

2. A read-only view which is used by AQ applications for querying queue data
called aq$<queue_table_name>.

3. An index for the queue monitor operations called
aq$_<queue_table_name>_t .

4. An index or an index organized table (IOT) in the case of multiple consumer
queues for dequeue operations called aq$_<queue_table_name>_i.

Syntax:
DBMS_AQADM.CREATE_QUEUE_TABLE (

queue_table IN VARCHAR2,
queue_payload_type IN VARCHAR2,
storage_clause IN VARCHAR2 default NULL,
sort_list IN VARCHAR2 default NULL,
multiple_consumers IN BOOLEAN default FALSE,
message_grouping IN BINARY_INTEGER default NONE,
comment IN VARCHAR2 default NULL,
auto_commit IN BOOLEAN default TRUE)

Usage

Table 11–9 DBMS_AQADM.CREATE_QUEUE_TABLE

Parameter Description

queue_table

(IN VARCHAR2)

Specifies the name of a queue table to be created.

queue_payload_type

(IN VARCHAR2)

Specifies the type of the user data stored. Please see section entitled “Type name”
for valid values for this parameter.
11-80 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing Reference
storage_clause

(IN VARCHAR2)

Specifies the storage parameter. The storage parameter will be

included in the ‘CREATE TABLE’ statement when the queue table is created. The
storage parameter can be made up of any combinations of the following parameters:

PCTFREE, PCTUSED, INITRANS , MAXTRANS, TABLEPSACE, LOB and a table storage
clause.

Please refer to the SQL reference guide for the usage of these parameters.

sort_list

(IN VARCHAR2)

Specifies the columns to be used as the sort key in ascending order.

Sort_list has the following format: ‘<sort_column_1>,<sort_column_2>’.

The allowed column names are priority and enq_time. If both columns are specified
then <sort_column_1> defines the most significant order.

Once a queue table is created with a specific ordering mechanism, all queues in the
queue table inherit the same defaults. The order of a queue table cannot be altered
once the queue table has been created.

If no sort list is specified all the queues in this queue table will be sorted by the
enqueue time in ascending order. This order is equivalent to FIFO order.

Even with the default ordering defined, a dequeuer is allowed to choose a message
to dequeue by specifying its msgid or correlation. Msgid, correlation and
sequence_deviation take precedence over the default dequeueing order if they are
specified.

multiple_consumers

(IN BOOLEAN)

FALSE: Queues created in the table can only have one consumer per message. This
is the default.

TRUE: Queues created in the table can have multiple consumers per message. The
user must have been granted type access by executing the grant_type_access proce-
dure.

message_grouping

(IN
BINARY_INTEGER)

Specifies the message grouping behavior for queues created in the table.

NONE: Each message is treated individually.

TRANSACTIONAL: Messages enqueued as part of one transaction are considered
part of the same group and can be dequeued as a group of related messages.

comment

(IN VARCHAR2)

Specifies the user-specified description of the queue table. This user comment will
be added to the queue catalog.

Table 11–9 (Cont.) DBMS_AQADM.CREATE_QUEUE_TABLE

Parameter Description
 Advanced Queuing 11-81

Oracle Advanced Queuing Reference
13

DBMS_AQADM.CREATE_QUEUE

Purpose: Create a queue in the specified queue table. All queue names must be
unique within a schema. Once a queue is created with CREATE_QUEUE, it can be
enabled by calling START_QUEUE. By default, the queue is created with both
enqueue and dequeue disabled.

Syntax:
DBMS_AQADM.CREATE_QUEUE (

queue_name IN VARCHAR2,
queue_table IN VARCHAR2,
queue_type IN BINARY_INTEGER default
 NORMAL_QUEUE,
max_retries IN NUMBER default 0,
retry_delay IN NUMBER default 0,
retention_time IN NUMBER default 0,
dependency_tracking IN BOOLEAN default FALSE,
comment IN VARCHAR2 default NULL,
auto_commit IN BOOLEAN default TRUE)

Usage:

auto_commit

(IN BOOLEAN)

TRUE: causes the current transaction, if any, to commit before the
CREATE_QUEUE_TABLE operation is carried out. The CREATE_QUEUE_TABLE oper-
ation becomes persistent when the call returns. This is the default.

FALSE: The operation is part of the current transaction and will become persistent
only when the caller issues a commit.

Table 11–10 DBMS_AQADM.CREATE_QUEUE

Parameter Description

queue_name

(IN VARCHAR2)

Specifies the name of the queue that is to be created.

queue_table

(IN VARCHAR2)

Specifies the name of the queue table that will contain the queue.

Table 11–9 (Cont.) DBMS_AQADM.CREATE_QUEUE_TABLE

Parameter Description
11-82 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing Reference
14

queue_type

(IN
BINARY_INTEGER)

Specifies whether the queue being created is an exception queue or a normal queue.

NORMAL_QUEUE: The queue is a normal queue. This is the default.

EXCEPTION_QUEUE: It is an exception queue. Only the dequeue operation is
allowed on the exception queue.

max_retries

(IN NUMBER)

Limits the number of times a dequeue with the REMOVE mode can be attempted on
a message. The count is incremented when the application issues a rollback after
executing the dequeue. The message is moved to the exception queue when it is
reaches its max_retries. Default is 0, which means no retry is allowed.

retry_delay

(IN NUMBER)

Specifies the delay time, in seconds before this message is scheduled for processing
again after an application rollback. The default is 0, which means the message can
be retried as soon as possible. This parameter will have no effect if max_retries is set
to 0. Retry_delay cannot be specified with multiple consumer queues.

retention_time

(IN NUMBER)

Specifies the number of seconds for which a message will be retained in the queue
table after being dequeued from the queue.

INFINITE : Message will be retained forever.

number: Number of seconds for which to retain the messages. The default is 0, i.e.
no retention.

dependency_trackin
g

(IN BOOLEAN)

Reserved for future use.

FALSE: This is the default.

TRUE: Not permitted in this release.

comment

(IN VARCHAR2)

User-specified description of the queue. This user comment will be added to the
queue catalog.

auto_commit

(IN BOOLEAN)

TRUE: Causes the current transaction, if any, to commit before the CREATE_QUEUE
operation is carried out. The CREATE_QUEUE operation becomes persistent when
the call returns. This is the default.

FALSE: The operation is part of the current transaction and will become persistent
only when the caller issues a commit.

Table 11–10 (Cont.) DBMS_AQADM.CREATE_QUEUE

Parameter Description
 Advanced Queuing 11-83

Oracle Advanced Queuing Reference
DBMS_AQADM.DROP_QUEUE_TABLE

Purpose:

Drop an existing queue table. All the queues in a queue table have to be stopped
and dropped before the queue table can be dropped.

Syntax:
DBMS_AQADM.DROP_QUEUE_TABLE (

queue_table IN VARCHAR2,
force IN BOOLEAN default FALSE,
auto_commit IN BOOLEAN default TRUE)

Usage:

15

Table 11–11 DBMS_AQADM.DROP_QUEUE_TABLE

Parameter Description

queue_table

(IN VARCHAR2)

Specifies the name of a queue table to be dropped.

force

(IN BOOLEAN)

FALSE: The operation will not succeed if there are any queues in the table.This
is the default.

TRUE: All queues in the table are stopped and dropped automatically.

auto_commit

(IN BOOLEAN)

TRUE: Causes the current transaction, if any, to commit before the
DROP_QUEUE_TABLE operation is carried out. The DROP_QUEUE_TABLE opera-
tion becomes persistent when the call returns. This is the default.

FALSE: The operation is part of the current transaction and will become persis-
tent only when the caller issues a commit.
11-84 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing Reference
DBMS_AQADM.DROP_QUEUE

Purpose:

Drops an existing queue. DROP_QUEUE is not allowed unless STOP_QUEUE has
been called to disable the queue for both enqueuing and dequeuing. All the queue
data is deleted as part of the drop operation.

Syntax:
DBMS_AQADM.DROP_QUEUE (

queue_name IN VARCHAR2,
auto_commit IN BOOLEAN default TRUE)

Usage:

16

Table 11–12 DBMS_AQADM.DROP_QUEUE

Parameter Description

queue_name

(IN VARCHAR2)

Specifies the name of the queue that is to be dropped.

auto_commit

(IN BOOLEAN)

TRUE: Causes the current transaction, if any, to commit before the
DROP_QUEUE operation is carried out. The DROP_QUEUE operation becomes
persistent when the call returns. This is the default.

FALSE: The operation is part of the current transaction and will become per-
sistent only when the caller issues a commit.
 Advanced Queuing 11-85

Oracle Advanced Queuing Reference
DBMS_AQADM.ALTER_QUEUE

Purpose:

 Alter existing properties of a queue. Only max_retries, retry_delay, and
retention_time can be altered.

Syntax:
DBMS_AQADM.ALTER_QUEUE (

queue_name IN VARCHAR2,
max_retries IN NUMBER default NULL,
retry_delay IN NUMBER default NULL,
retention_time IN NUMBER default NULL,
auto_commit IN BOOLEAN default TRUE)

Usage:

17

Table 11–13 DBMS_AQADM.ALTER_QUEUE

Parameter Description

queue_name

(IN VARCHAR2)

Specifies the name of the queue that is to be altered.

max_retries

(IN NUMBER)

Limits the number of times a dequeue with REMOVE mode can be attempted on
a message. The count is incremented when the application issues a rollback
after executing the dequeue. If the time at which one of the retries has passed
the expiration time, no further retries will be attempted. Default is NULL which
means that the value will not be altered.

retry_delay

(IN NUMBER)

Specifies the delay time in seconds before this message is scheduled for process-
ing again after an application rollback. The default is NULL which means that
the value will not be altered.

retention_time

(IN NUMBER)

Specifies the retention time in seconds for which a message will be retained in
the queue table after being dequeued. The default is NULL which means that
the value will not be altered.

auto_commit

(IN BOOLEAN)

TRUE: Causes the current transaction, if any, to commit before the
ALTER_QUEUEoperation is carried out. The ALTER_QUEUEoperation become
persistent when the call returns. This is the default.

FALSE: The operation is part of the current transaction and will become persis-
tent only when the caller issues a commit.
11-86 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing Reference
DBMS_AQADM.START_QUEUE

Purpose:

Enables the specified queue for enqueuing and/or dequeueing. After creating a
queue the administrator must use START_QUEUE to enable the queue. The default
is to enable it for both ENQUEUE and DEQUEUE. Only dequeue operations are
allowed on an exception queue. This operation takes effect when the call completes
and does not have any transactional characteristics.

Syntax:
DBMS_AQADM.START_QUEUE (

queue_name IN VARCHAR2,
enqueue IN BOOLEAN default TRUE,
dequeue IN BOOLEAN default TRUE)

Usage 18

Table 11–14 DBMS_AQADM.START_QUEUE

Parameter Description

queue_name

(IN VARCHAR2)

Specifies the name of the queue to be enabled.

enqueue

(IN BOOLEAN)

Specifies whether ENQUEUE should be enabled on this queue.

TRUE: Enable ENQUEUE. This is the default.

FALSE: Do not alter the current setting.

dequeue

(IN BOOLEAN)

Specifies whether DEQUEUE should be enabled on this queue.

TRUE: Enable DEQUEUE. This is the default.

FALSE: Do not alter the current setting.
 Advanced Queuing 11-87

Oracle Advanced Queuing Reference
DBMS_AQADM.STOP_QUEUE

Purpose:

Disables enqueuing and/or dequeuing on the specified queue. By default, it dis-
ables both ENQUEUEs or DEQUEUEs. A queue cannot be stopped if there are out-
standing transactions against the queue. This operation takes effect when the call
completes and does not have any transactional characteristics.

Syntax:

DBMS_AQADM.STOP_QUEUE (
queue_name IN VARCHAR2,
enqueue IN BOOLEAN default TRUE,
dequeue IN BOOLEAN default TRUE,
wait IN BOOLEAN default TRUE)

Usage:

Table 11–15 DBMS_AQADM.STOP_QUEUE

Parameter Description

queue_name

(IN VARCHAR2)

Specifies the name of the queue to be disabled.

enqueue

(IN BOOLEAN)

Specifies whether ENQUEUE should be disabled on this queue.

TRUE: Disable ENQUEUE. This is the default.

FALSE: Do not alter the current setting.

dequeue

(IN BOOLEAN)

Specifies whether DEQUEUE should be disabled on this queue.

TRUE: Disable DEQUEUE. This is the default.

FALSE: Do not alter the current setting.

wait

(IN BOOLEAN)

The wait parameter allows you to specify whether to wait for the completion of
outstanding transactions.

TRUE: Wait if there are any outstanding transactions. In this state no new transac-
tions are allowed to enqueue to or dequeue from this queue.

FALSE: Return immediately either with a success or an error.
11-88 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing Reference
DBMS_AQADM.ADD_SUBSCRIBER

Purpose:

Add a default subscriber to a queue. A program can enqueue messages to a specific
list of recipients or to the default list of subscribers. This operation will only suc-
ceed on queues that allow multiple consumers. This operation takes effect immedi-
ately and the containing transaction is committed. Enqueue requests that are
executed after the completion of this call will reflect the new behavior. The user
must have been granted type access by executing the grant_type_access procedure.

Syntax:

DBMS_AQADM.ADD_SUBSCRIBER(
queue_name IN VARCHAR2,
subscriber IN sys.aq$_agent)

Usage:

Table 11–16 DBMS_AQADM.ADD_SUBSCRIBER

Parameter Description

queue_name

(IN VARCHAR2)

Specifies the name of the queue.

subscriber

(IN aq$_agent)

See definition in section titled ‘Agent’.
 Advanced Queuing 11-89

Oracle Advanced Queuing Reference
DBMS_AQADM.REMOVE_SUBSCRIBER

Purpose:

Remove a default subscriber from a queue. This operation takes effect immediately
and the containing transaction is committed. All references to the subscriber in
existing messages are removed as part of the operation. The user must have been
granted type access by executing the grant_type_access procedure.

Syntax:
DBMS_AQADM.REMOVE_SUBSCRIBER(
 queue_name IN VARCHAR2,
 subscriber IN sys.aq$_agent)

Usage:

Table 1:

Table 11–17

Parameter Description

queue_name

(IN VARCHAR2)

Specifies the name of the queue.

subscriber

(IN aq$_agent)

See definition in section titled ‘Agent’.
11-90 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing Reference
 DBMS_AQADM.SCHEDULE_PROPAGATION

Purpose:

Schedule propagation of messages from a queue to a destination identified by a spe-
cific dblink. Messages may also be propagated to other queues in the same data-
base by specifying a NULL destination. If a message has multiple recipients at the
same destination in either the same or different queues the message will be propa-
gated to all of them at the same time.

Syntax:

DBMS_AQADM.SCHEDULE_PROPAGATION(
src_queue_name IN VARCHAR2,
destination IN VARCHAR2 default NULL
start_time IN DATE default SYSDATE,
duration IN NUMBER default NULL,
next_time IN VARCHAR2 default NULL,
latency IN NUMBER default 60)

Usage:

Table 11–18 DBMS_AQADM.SCHEDULE_PROPAGATION

Parameter Description

src_queue_name

(IN VARCHAR2)

Specifies the name of the source queue whose messages are to be propagated,
including the schema name. If the schema name is not specified, it defaults to
the schema name of the administrative user.

destination

(IN VARCHAR2)

Specifies the destination dblink. Messages in the source queue for recipients at
this destination will be propagated. If it is NULL, the destination is the local
database and messages will be propagated to other queues in the local data-
base. The length of this field is currently limited to 128 bytes and if the name is
not fully qualified the default domain name is used.

start_time

(IN DATE)

Specifies the initial start time for the propagation window for messages from
the source queue to the destination.

duration

(IN NUMBER)

Specifies the duration of the propagation window in seconds. A NULL value
means the propagation window is forever or until the propagation is
unscheduled.
 Advanced Queuing 11-91

Oracle Advanced Queuing Reference
19

next_time

(IN VARCHAR2)

date function to compute the start of the next propagation window from the
end of the current window. If this value is NULL, propagation will be stopped
at the end of the current window. For example, to start the window at the same
time every day, next_time should be specified as ‘SYSDATE + 1 - duration/
86400’.

latency

(IN NUMBER)

maximum wait, in seconds, in the propagation window for a message to be
propagated after it is enqueued. For example, if the latency is 60 seconds, then
during the propagation window, if there are no messages to be propagated,
messages from that queue for the destination will not be propagated for at least
60 more seconds. It will be at least 60 seconds before the queue will be checked
again for messages to be propagated for the specified destination. If the latency
is 600, then the queue will not be checked for 10 minutes and if the latency is 0,
then a job queue process will be waiting for messages to be enqueued for the
destination and as soon as a message is enqueued it will be propagated.

Table 11–18 DBMS_AQADM.SCHEDULE_PROPAGATION

Parameter Description
11-92 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing Reference
DBMS_AQADM.UNSCHEDULE_PROPAGATION

Purpose:

Unscheduled previously scheduled propagation of messages from a queue to a des-
tination identified by a specific dblink .

Syntax:

DBMS_AQADM.UNSCHEDULE_PROPAGATION(
src_queue_name IN VARCHAR2,
destination IN VARCHAR2 default NULL)

Usage:

20

Table 11–19 DBMS_AQADM.UNSCHEDULE_PROPAGATION

Parameter Description

src_queue_name

(IN VARCHAR2)

Specifies the name of the source queue whose messages are to be propagated,
including the schema name. If the schema name is not specified, it defaults to
the schema name of the administrative user.

destination

(IN VARCHAR2)

Specifies the destination dblink. Messages in the source queue for recipients
at this destination will be propagated. If it is NULL, the destination is the local
database and messages will be propagated to other queues in the local data-
base. The length of this field is currently limited to 128 bytes and if the name
is not fully qualified the default domain name is used.
 Advanced Queuing 11-93

Oracle Advanced Queuing Reference
DBMS_AQADM.VERIFY_QUEUE_TYPES

Purpose:

Verify that the source and destination queues have identical types. The result of the
verification is stored in sys.aq$_message_types tables , overwriting all
previous output of this command.

Syntax:
DBMS_AQADM.SCHEDULE_PROPAGATION(

src_queue_name IN VARCHAR2,
dest_queue_name IN VARCHAR2,
destination IN VARCHAR2 default NULL
rc OUT BINARY_INTEGER)

Usage:

21

Table 11–20 DBMS_AQADM.SCHEDULE_PROPAGATION

Parameter Description

src_queue_name

(IN VARCHAR2)

Specifies the name of the source queue whose messages are to be propagated, including
the schema name. If the schema name is not specified, it defaults to the schema name of
the user.

dest_queue_name

(IN VARCHAR2)

Specifies the name of the destination queue where messages are to be propagated,
including the schema name. If the schema name is not specified, it defaults to the
schema name of the user.

destination

(IN VARCHAR2)

Specifies the destination dblink. the destination queue name is in the database that is
specified by the dblink. If the destination is NULL, the destination queue is the same
database as the source queue. The length of this field is currently limited to 128 bytes
and if the name is not fully qualified the default domain name is used.

rc

(OUT
BINARY_INTEGER)

Return code for the result of the procedure. If there is no error and if the source and des-
tination queue types match the result is 1, if they do not match the result is 0. If an Ora-
cle error is encountered it is returned in rc.
11-94 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing Reference
Enumerated Constants in the Administrative Interface
When using enumerated constants such as BROWSE, LOCKED, REMOVE, the symbol
needs to be specified with the scope of the packages defining it. All types associ-
ated with the administrative interfaces have to be prepended with dbms_aqadm. For
example:

dbms_aqadm.NORMAL_QUEUE

Database Objects

Queue table view
This is a view of the queue table in which message data is stored. This view is auto-
matically created with each queue table and is called aq$<queue_table_name>.
This view should be used for querying the queue data. The dequeue history data
(time, user identification and transaction identification) is only valid for single con-
sumer queues. For dequeue history of messages in a multiple consumer queue
please refer to a following section.

The administrator can use any SQL statement or SQL tool to analyze and review
the content of a queue or queue table. SQL provides full access to the message meta-
data and/or payload. Use ENQ_TXN_ID and DEQ_TXN_ID to correlate transac-
tions. If the ENQ_TXN_ID of message m2 is the same as the DEQ_TXN_ID of m1, m2
is created in the transaction that consumed m1. (You may use CONNECT BY in your
SQL statements to identify related messages). Remove retained messages that are
not automatically removed by AQ. Do not update or modify messages since this
may destroy the consistency of the queue metadata. Before you use SQL to correct
any error in AQ, please contact the Oracle service representative.

Table 11–21 Enumerated types in the administrative interface

Parameter Options

retention INFINITE

message_grouping TRANSACTIONAL , NONE

queue_type NORMAL_QUEUE, EXCEPTION_QUEUE
 Advanced Queuing 11-95

Oracle Advanced Queuing Reference
Table 11–22 Queue Table View

Column Name & Description Null? Type

QUEUE — queue name VARCHAR2(30)

MSG_ID — unique identifier of the message RAW(16)

CORR_ID — user-provided correlation iden-
tifier

VARCHAR2(128)

MSG_PRIORITY — message priority NUMBER

MSG_STATE — state of this message VARCHAR2(9)

DELAY — number of seconds the message is
delayed

DATE

EXPIRATION — number of seconds in
which the message will expire after being
READY

NUMBER

ENQ_TIME — enqueue time DATE

ENQ_USER_ID — enqueue user id NUMBER

ENQ_TXN_ID — enqueue transaction id NOT NULL VARCHAR2(30)

DEQ_TIME — dequeue time DATE

DEQ_USER_ID — dequeue user id NUMBER

DEQ_TXN_ID — dequeue transaction id VARCHAR2(30)

RETRY_COUNT — number of retries NUMBER

EXCEPTION_QUEUE_OWNER — exception
queue schema

VARCHAR2(30)

EXCEPTION_QUEUE — exception queue name VARCHAR2(30)

USER_DATA — user data BLOB
11-96 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing Reference
DBA_QUEUE_TABLES
This view describes the names and types of all queue tables created in the database.

USER_QUEUE_TABLES
This view is the same as DBA_QUEUES_TABLES with the exception that it only
shows queue tables in the user’s schema. It does not contain a column for OWNER.

Table 11–23 DBA_QUEUE_TABLES

Column Name & Description Null? Type

OWNER — queue table schema VARCHAR2(30)

QUEUE_TABLE - queue table name VARCHAR2(30)

TYPE — payload type VARCHAR2(7)

OBJECT_TYPE — name of object type, if any VARCHAR2(61)

SORT_ORDER — user specified sort order VARCHAR2(22)

RECIPIENTS — SINGLE or MULTIPLE VARCHAR2(8)

MESSAGE_GROUPING — NONE or TRANSAC-
TIONAL

VARCHAR2(13)

USER_COMMENT — user comment for the
queue table

VARCHAR2(50)
 Advanced Queuing 11-97

Oracle Advanced Queuing Reference
DBA_QUEUES
Users can specify operational characteristics for individual queues. DBA_QUEUES
contains the view which contains relevant information for every queue in a data-
base.

USER_QUEUES
This view is the same as DBA_QUEUES with the exception that it only shows queues
in the user’s schema. It does not contain a column for OWNER.

Table 11–24 DBA_QUEUES

Column Name & Description Null? Type

OWNER — queue schema name NOT NULL VARCHAR2(30)

NAME — queue name NOT NULL VARCHAR2(30)

QUEUE_TABLE — queue table where this queue
resides

NOT NULL VARCHAR2(30)

QID — unique queue identifier NOT NULL NUMBER

QUEUE_TYPE — queue type VARCHAR2(15)

MAX_RETRIES — number of dequeue attempts
allowed

NUMBER

RETRY_DELAY — number of seconds before
retry can be attempted

NUMBER

ENQUEUE_ENABLED — YES/NO VARCHAR2(7)

DEQUEUE_ENABLED — YES/NO VARCHAR2(7)

RETENTION — number of seconds message is
retained after dequeue

VARCHAR2(40)

USER_COMMENT — user comment for the queue VARCHAR2(50)
11-98 Oracle8 Application Developer’s Guide

Oracle Advanced Queuing Reference
DBMS_AQADM.QUEUE_SUBSCRIBERS

Purpose: To get a list of subscribers for a queue.

Syntax:
DBMS_AQADM.QUEUE_SUBSCRIBERS(

queue_name IN VARCHAR2)
RETURN aq$_subscriber_list_t

Usage: The function returns a PL/SQL table of aq$_agent. This can be used to get
the list of all subscribers for a queue.

Example:

DECLARE
subs dbms_aqadm.aq$_subscriber_list_t;
nsubs BINARY_INTEGER;
i BINARY_INTEGER;

BEGIN
subs := dbms_aqadm.queue_subscribers('Q1DEF');
nsubs := subs.COUNT;
FOR i IN 0..nsubs-1 LOOP

dbms_output.put_line(subs(i).name);
END LOOP;

END;
/

 Advanced Queuing 11-99

Oracle Advanced Queuing Reference
DBA_QUEUE_SCHEDULES

Purpose: This view describes the current schedules for propagating messages.

Table 11–25 DBA_QUEUE_SCHEDULES

Column Name & Description Null? Type

SCHEMA

schema name for the source queue

NOT NULL VARCHAR2(30)

QNAME

source queue name

NOT NULL VARCHAR2(30)

DESTINATION

destination name, currently lim-
ited to be a DBLINK name

NOT NULL VARCHAR2(128)

START_DATE

date to start propagation in the
default date format

DATE

START_TIME

time of day at which to start prop-
agation in HH:MI:SS format

VARCHAR2(8)

PROPAGATION_WINDOW

duration in seconds for the
propagation window

NUMBER

NEXT_TIME

function to compute the start of
the next propagation window

VARCHAR2(128)

LATENCY

maximum wait time to propagate a
message during the propagation win-
dow.

NUMBER
11-100 Oracle8 Application Developer’s Guide

Administration Topics
Recipients and dequeue history of multiple consumer messages
The queue table view provides the dequeue history for single consumer queue mes-
sages. To query the list of recipients or the dequeue history of a message in a multi-
ple-consumer queue you need to execute a SQL query on the queue table for the
message of interest.

For example, to view the dequeue history of the message with msgid

‘105E7A2EBFF11348E03400400B40F149’ in queue table sys.queue_tab the following
query must be executed. The query will return one row per consumer of the mes-
sage.

SELECT consumer, transaction_id, deq_time, deq_user
FROM THE(select cast(history as sys.aq$_dequeue_history_t)

FROM sys.queue_tab
WHERE msgid='105E7A2EBFF11348E03400400B40F149');

Error Messages
The error messages for AQ are reported in two ranges:

24000 — 24099

25200 — 25299

Administration Topics

Performance
Queues are stored in database tables. The performance characteristics of queue
operations are very similar to the underlying database operations.

Table and index structures
To understand the performance characteristics of queues it is important to under-
stand the tables and index layout for AQ objects.

Creating a queue table creates a database table with approximately 25 columns.
These columns store the AQ meta data and the user defined payload. The payload
can be of an object type or RAW. The AQ meta data contains object types and scaler
types. A view and two indexes are created on the queue table. The view allows
users to query the message data. The indexes are used to accelerate access to mes-
 Advanced Queuing 11-101

Administration Topics
sage data. Please refer to the create queue table command for a detailed description
of the objects created.

Throughput
The code path of an enqueue operation is comparable to an insert into a multi-col-
umn table with two indexes. The code path of a dequeue operation is comparable
to a select and delete operation on a similar table. These operations are performed
using PL/SQL functions.

Availability
Oracle Parallel Server (OPS) can be used to ensure highly available access to queue
data. Queues are implemented using database tables. The tail and the head of a
queue can be extreme hot spots. Since OPS does not scale well in the presence of
hot spots it is recommended to limit normal access to a queue from one instance
only. In case of an instance failure messages managed by the failed instance can be
processed immediately by one of the surviving instances.

Scalability
Queue operation scalability is similar to the underlying database operation scalabil-
ity. If a dequeue operation with wait option is issued in a Multi-Threaded Server
(MTS) environment the shared server process will be dedicated to the dequeue
operation for the duration of the call including the wait time. The presence of many
such processes could cause severe performance and availability problems and
could result in deadlocking the shared server processes. For this reason it is recom-
mended that dequeue requests with wait option be only issued via dedicated
server processes. This restriction is not enforced.

Optimizing Propagation
In setting the number of JOB_QUEUE_PROCESSES, the DBA should aware that
this need is determined by the number of queues from which the messages have to
be propagated and the number of destinations (rather than queues) to which
messages have to be propagated.

Reliability and Recoverability
The standard database reliability and recoverability characteristics apply to queue
data.
11-102 Oracle8 Application Developer’s Guide

Administration Topics
Enterprise Manager Support
Enterprise manager supports GUIs for some of the administrative functions listed
in the administrative interfaces section.

These include:

1. Queues as part of schema manager to view properties.

2. Start and stop queue.

3. Schedule and unschedule propagation.

4. Add and remove subscriber.

5. View the current propagation schedule.

22

Importing and Exporting Queue Data
Queues are implemented on tables. The import/export of queues constitutes the
import/export of the underlying queue tables and related dictionary tables. Import
and export of queues can only be done at queue table granularity.

When a queue table is exported, both the table definition information and the
queue data are exported. When a queue table is imported, export action procedures
will maintain the queue dictionary. Because the queue table data is also exported,
the user is responsible for maintaining application-level data integrity when queue
table data are being transported.

Importing queue data into a queue table with existing data is not recommended.
During a table mode import, if the queue table already exists at the import site the
old queue table definition, and the old queue definition will be dropped and recre-
ated. Hence, queue table and queue definitions prior to the import will be lost.

Performing EXPORTS and IMPORTS of queue tables with multiple recipients
 For every queue table that supports multiple recipients, there is a index-organized
table (IOT) that contains important queue metadata. This metadata is essential to
the operations of the queue, so the user must export and import this IOT as well as
the queue table for the queues in this table to work after import. When the schema
containing the queue table is exported, the IOT is also automatically exported. The
behavior is similar at import time. Because the metadata table contains rowids of
some rows in the queue table, import will issue a note about the rowids being obso-
lete when importing the metadata table. This message can be ignored, as the queue-
ing system will automatically correct the obsolete rowids as a part of the import
 Advanced Queuing 11-103

Administration Topics
process. However, if another problem is encountered while doing the import (such
as running out of rollback segment space), the problem should be corrected and the
import should be rerun.

Troubleshooting
This section describes some troubleshooting tips to diagnose problems with mes-
sage propagation.

Message history
AQ updates the message history when a message has been successfully propagated
to a destination. The message history is stored as a collection in the queue table. An
administrator can execute a SQL query to determine if a message has been propa-
gated. For example, to check if a message with msgid

105E7A2EBFF11348E03400400B40F149 '

in queue table aqadmn.queue_tab has been propagated to destination 'boston ',
the following query can be executed:

SELECT consumer, transaction_id, deq_time, deq_user, propagated_msgid
 FROM THE(select cast(history as sys.aq$_dequeue_history_t)
 FROM adadmn.queue_tab
 WHERE msgid='105E7A2EBFF11348E03400400B40F149')
 WHERE consumer LIKE '%BOSTON%';

A non-NULL transaction_id indicates that the message was successfully
propagated. Further, the deq_time indicates the time of propagation, the
deq_user indicates the userid used for propagation, and the propagated_msgid
indicates the msgid of the message that was enqueued at the destination. If the
message with the msgid cannot be found in the queue table, an administrator can
check the exception queue (if the exception queue is in a different queue table) for
the message history.

Propagation Schedules
The administrator can check the DBA_QUEUE_SCHEDULES view to check if propaga-
tion has been scheduled for a particular combination of source queue and destina-
tion. If propagation has been scheduled, the jobno of the job used to propagate
messages can be determined from the sys.aq$_schedules table. The jobno
can then be used to query the DBA_JOBS view to determine the last time that the
propagation was scheduled for the combination of source queue and destination.
The DBA_JOBS view also indicates the next time the propagation will be scheduled,
11-104 Oracle8 Application Developer’s Guide

Administration Topics
and if the job has been marked as broken. If the job has been marked as broken, check
for errors in trace file(s) generated by the job_queue processes in the
$ORACLE_HOME/log directory.

Database link
There are a number of points at which the propagation may break down:

■ You may want to determine if the destination is reachable with regard to
whether the network connection to the destination is available. You do this by
executing a simple distributed query, or by creating a connection descriptor
that has the same connect string, and then by trying to connect to the remote
database.

■ You need to ensure that the userid that scheduled the propagation (using
dbms_aqadm.schedule_propagation) has access to the database link for
the destination.

■ Verify that the userid used to login to the destination through the database link
has been granted privileges to use the AQ.

■ Check if the queue name specified in the address attribute of the aq$_agent
type (in the subscriber list for the source queue or in the recipient list of the
enqueuer) both (a) exists at the specified destination, and (b) has been enabled
for enqueuing. All these and other errors that the propagator encounters are
logged into trace file(s) generated by the job_queue processes in
$ORACLE_HOME/log directory.

Type checking
AQ will not propagate messages from one queue to another if the payload-types of
the two queues are not equivalent. An administrator can verify if the source and
destination's payload types match by executing the
DBMS_AQADM.VERIFY_QUEUE_TYPES procedure. The results of the type checking
will be stored in the sys.aq$_message_types table. This table can be accessed using
the OID of the source queue and the address of the destination queue (i.e.
[schema.]queue_name[@destination]).
 Advanced Queuing 11-105

Administration Topics
Dynamic Statistics Views
As you can see, the GV$ view and V$ view are exactly the same:

Table 11–26 GV$AQ

Column Name Type

QID NUMBER

WAITING NUMBER

READY NUMBER

EXPIRED NUMBER

TOTAL_WAIT NUMBER

AVERAGE_WAIT NUMBER

Table 11–27 V$AQ

Column Name Type

QID NUMBER

WAITING NUMBER

READY NUMBER

EXPIRED NUMBER

TOTAL_WAIT NUMBER

AVERAGE_WAIT NUMBER

Column Name Explanation

QID the identity of the queue. This is the same as the qid in
user_queues and dba_queues.

WAITING the number of messages in the state 'WAITING'.

READY the number of messages in state 'READY'.

EXPIRED the number of messages in state 'EXPIRED'.

TOTAL_WAIT the number of seconds for which messages in the queue have
been waiting in state 'READY'

AVERAGE_WAIT the average number of seconds a message in state 'READY' has
been waiting to be dequeued.
11-106 Oracle8 Application Developer’s Guide

Administration Topics
The difference between these two views is that the GV$ view gives information
about the number of messages in different states for the whole database while the
V$ view gives information regarding specific instances. The way this works is that
each instance keeps its own AQ statistics information in its own SGA, and does not
have knowledge of the statistics gathered by other instances. Then, when a GV$AQ
view is queried by an instance, all other instances funnel their AQ statistics
information to the instance issuing the query.
I

Reference to Demos
The following demos may be found in the related directories:

$ORACLE_HOME/demo/aqdemo00.sql Main driver of demo
$ORACLE_HOME/demo/aqdemo01.sql Create queue tables and queues using
 AQ administration interface
$ORACLE_HOME/demo/aqdemo02.sql Load the demo package
$ORACLE_HOME/demo/aqdemo03.sql Submit the event handler as a job to Job
 Queue
$ORACLE_HOME/demo/aqdemo04.sql Enqueue messages

Note: If you need to associate a specific queue or queues with a
specific instance, you will have to enforce this at the application
level.
 Advanced Queuing 11-107

Compatibility & Upgrade
Compatibility & Upgrade
The operational interface in Orcacle AQ 8.0.4 is backward compatible with the 8.0.3
Oracle AQ interface.

New Fields Enabled for the AQ$_AGENT Data Type
In the latest release, the address field is now enabled for the aq$_agent datatype.
Consequently, it is now possible for this field to be specified wherever an interface
takes an Agent as an argument — such as in the recipient list of the message
properties, and the DBMS_AQADM.ADD_SUBSCRIBER administrative interface.

The Extended Address Field
The address field in the aq$_agent datatype has been extended to 1024 bytes. To
use the extended address field, you will have to complete the following steps:

1. Save the contents of the all existing queues using the Export Utility.

2. Run CATNOQUEUE.SQL to drop the existing dictionary and queue tables:

SVRMGRL> @CATNOQUEUE.SQL

3. Run CATQUEUE.SQL to redefine the new types and dictionary tables:

SVRMGRL> @CATQUEUE.SQL

4. Import the queues you exported using the Import Utility.

New Dictionary Tables
■ The upgrade script for 8.0.4 (CAT8004.SQL) creates the additional dictionary

tables: SYS.AQ$_MESSAGE_TYPES

■ SYSTEM.AQ$_SCHEDULES

■ SYS.AQ$_QUEUE_STATISTICS

Note: If your application does not require you to extend the
address field, you need not complete these steps. In that case there
will be no need to run the scripts and to perform export and
import operations.
11-108 Oracle8 Application Developer’s Guide

 PL/SQL Inpu
12

PL/SQL Input/Output

This chapter describes how to use Oracle-supplied packages that allow PL/SQL to
communicate with external processes, sessions, and files.

The packages are:

■ DBMS_PIPE, to send and receive information between sessions, asynchro-
nously.

■ DBMS_OUTPUT, to send messages from a PL/SQL program to other PL/SQL
programs in the same session, or to a display window running SQL*Plus.

■ UTL_FILE , which allows a PL/SQL program to read information from a disk
file, and write information to a file.
t/Output 12-1

Database Pipes
Database Pipes
The DBMS_PIPE package allows two or more sessions in the same instance to com-
municate. Oracle pipes are similar in concept to the pipes used in UNIX, but Oracle
pipes are not implemented using the operating system pipe mechanisms. Informa-
tion sent through Oracle pipes is buffered in the system global area (SGA). All infor-
mation in pipes is lost when the instance is shut down.

Depending upon your security requirements, you may choose to use either a public
pipe or a private pipe.
.

Summary
Table 12–1 summarizes the procedures you can call in the DBMS_PIPE package.

WARNING: Pipes are independent of transactions. Be careful
using pipes when transaction control can be affected.

Table 12–1 DBMS_PIPE Package Functions and Procedures

Function/Procedure Description Refer to

CREATE_PIPE Explicitly create a pipe (necessary for pri-
vate pipes).

page 12-4

PACK_MESSAGE Build message in local buffer. page 12-6

SEND_MESSAGE Send message on named pipe. Implicitly cre-
ate a public pipe if named pipe does not
exist.

page 12-7

RECEIVE_MESSAGE Copy message from named pipe into local
buffer.

page 12-9

NEXT_ITEM_TYPE Return datatype of next item in buffer. page 12-11

UNPACK_MESSAGE Access next item in buffer. page 12-11

REMOVE_PIPE Remove the named pipe. page 12-12

PURGE Purge contents of named pipe. page 12-12

RESET_BUFFER Purge contents of local buffer. page 12-13

UNIQUE_

SESSION_NAME

Return unique session name. page 12-13
12-2 Your Product Name/BookTitle as a Variable

Database Pipes
Creating the DBMS_PIPE Package
To create the DBMS_PIPE package, submit the DBMSPIPE.SQL and PRVTPIPE.PLB
scripts when connected as the user SYS. These scripts are run automatically by the
CATPROC.SQL script. See “Privileges Required to Execute a Procedure” on page 10-
38 for information on granting the necessary privileges to users who will be execut-
ing this package.

Public Pipes
You can create a public pipe either implicitly or explicitly. For implicit public pipes,
the pipe is automatically created when referenced for the first time, and it disap-
pears when it no longer contains data. Because the pipe descriptor is stored in the
SGA, there is some space usage overhead until the empty pipe is aged out of the
cache.

You can create an explicit public pipe by calling the CREATE_PIPE function with
the PRIVATE flag set to FALSE. You must deallocate explicitly-created pipes by call-
ing the REMOVE_PIPE function.

The domain of a public pipe is the schema in which it was created, either explicitly
or implicitly.

Writing and Reading
Each public pipe works asynchronously. Any number of schema users can write to
a public pipe, as long as they have EXECUTE permission on the DBMS_PIPE pack-
age, and know the name of the public pipe.

Any schema user with the appropriate privileges and knowledge can read informa-
tion from a public pipe. However, once buffered information is read by one user, it
is emptied from the buffer, and is not available for other readers of the same pipe.

The sending session builds a message using one or more calls to the
PACK_MESSAGE procedure. This procedure adds the message to the session’s local
message buffer. The information in this buffer is sent by calling the SEND_MESSAGE
procedure, designating the pipe name to be used to send the message. When
SEND_MESSAGE is called, all messages that have been stacked in the local buffer are
sent.

A process that wants to receive a message calls the RECEIVE_MESSAGE procedure,
designating the pipe name from which to receive the message. The process then
calls the UNPACK_MESSAGE procedure to access each of the items in the message.
 PL/SQL Input/Output 12-3

Database Pipes
Private Pipes
You must explicitly create a private pipe by calling the CREATE_PIPE function.
Once created, the private pipe persists in shared memory until you explicitly deallo-
cate it by calling the REMOVE_PIPE function. A private pipe is also deallocated
when the database instance is shut down.

You cannot create a private pipe if an implicit pipe exists in memory and has the
same name as the private pipe you are trying to create. In this case CREATE_PIPE
returns an error.

Access to a private pipe is restricted to the following:

■ sessions running under the same userid as the creator of the pipe.

■ stored subprograms executing in the same userid privilege domain as the pipe
creator.

■ users connected as SYSDBA or INTERNAL.

An attempt by any other user to send or receive messages on the pipe, or to remove
the pipe, results in an immediate error. Any attempt by another user to create a
pipe with the same name also causes an error.

As with public pipes, you must first build your message using calls to
PACK_MESSAGE before calling SEND_MESSAGE. Similarly you must call
RECEIVE_MESSAGE to retrieve the message before accessing the items in the mes-
sage by calling UNPACK_MESSAGE.

Errors
DBMS_PIPE package routines can return the following errors:

ORA-23321: Pipename may not be null
ORA-23322: Insufficient privilege to access pipe

ORA-23321 can be returned by CREATE_PIPE, or any subprogram that takes a
pipe name as a parameter. ORA-23322 can be returned by any subprogram that ref-
erences a private pipe in its parameter list.

CREATE_PIPE
Call CREATE_PIPE to explicitly create a public or private pipe. If the PRIVATE flag
is TRUE, the pipe creator is assigned as the owner of the private pipe. Explicitly cre-
ated pipes can only be removed by calling REMOVE_PIPE, or by shutting down the
instance.
12-4 Your Product Name/BookTitle as a Variable

Database Pipes
Syntax
The parameters for the CREATE_PIPE function are shown in Table 12–2 and the
possible return values and their meanings are described in Table 12–3. The syntax
for this function is

DBMS_PIPE.CREATE_PIPE(pipename IN VARCHAR2,
 maxpipesize IN INTEGER DEFAULT 8192,
 private IN BOOLEAN DEFAULT TRUE)
RETURN INTEGER;

WARNING: Do not use a pipe name beginning with ORA$;
these names are reserved for use by Oracle Corporation.

Table 12–2 DBMS_PIPE.CREATE_PIPE Function Parameters

Parameter Description

pipename Specify a name for the pipe that you are creating. You will
need to use this name when you call SEND_MESSAGE and
RECEIVE_MESSAGE. This name must be unique across the
instance.

maxpipesize Specify the maximum size allowed for the pipe, in bytes.
The total size of all of the messages on the pipe cannot
exceed this amount. The message is blocked if it exceeds this
maximum. The default MAXPIPESIZE is 8192 bytes.

The MAXPIPESIZE for a pipe becomes a part of the charac-
teristics of the pipe and persists for the life of the pipe. Call-
ers of SEND_MESSAGE with larger values cause the
MAXPIPESIZE to be increased. Callers with a smaller value
simply use the existing, larger value.

private Use the default, TRUE, to create a private pipe. Public pipes
can be implicitly created when you call SEND_MESSAGE.
 PL/SQL Input/Output 12-5

Database Pipes
PACK_MESSAGE Procedures
To send a message, first make one or more calls to PACK_MESSAGE to build your
message in the local message buffer. Then call SEND_MESSAGE to send the message
in the local buffer on the named pipe.

The PACK_MESSAGE procedure is overloaded to accept items of type VARCHAR2,
NUMBER, or DATE. In addition to the data bytes, each item in the buffer requires one
byte to indicate its type, and two bytes to store its length. One additional byte is
needed to terminate the message. If the message buffer exceeds 4096 bytes, Oracle
raises exception ORA-6558 .

When you call SEND_MESSAGE to send this message, you must indicate the name
of the pipe on which you want to send the message. If this pipe already exists, you
must have sufficient privileges to access this pipe. If the pipe does not already exist,
it is created automatically.

Syntax
The syntax for the PACK_MESSAGE procedures is shown below. Note that the
PACK_MESSAGE procedure itself is overloaded to accept items of type VARCHAR2,

Table 12–3 DBMS_PIPE.CREATE_PIPE Function Return Values

Return Value or Error Description

0 Indicates the pipe was successfully created.

If the pipe already exists and the user attempting to cre-
ate it is authorized to use it, Oracle returns 0, indicating
success, and any data already in the pipe remains.

If a user connected as SYSDBA/SYSOPER re-creates a
pipe, Oracle returns status 0, but the ownership of the
pipe remains unchanged.

ORA-23322 Indicates a failure due to naming conflict.

If a pipe with the same name exists and was created by a
different user, Oracle signals error ORA-23322, indicat-
ing the naming conflict.

WARNING: Do not use a pipe name beginning with ORA$; these
names are reserved for use by Oracle Corporation.
12-6 Your Product Name/BookTitle as a Variable

Database Pipes
NCHAR, NUMBER, or DATE. There are two additional procedures to pack RAW and
ROWID items.

DBMS_PIPE.PACK_MESSAGE (item IN VARCHAR2);
DBMS_PIPE.PACK_MESSAGE (item IN NCHAR);
DBMS_PIPE.PACK_MESSAGE (item IN NUMBER);
DBMS_PIPE.PACK_MESSAGE (item IN DATE);
DBMS_PIPE.PACK_MESSAGE_RAW (item IN RAW);
DBMS_PIPE.PACK_MESSAGE_ROWID (item IN ROWID);

SEND_MESSAGE
The parameters for the SEND_MESSAGE function are shown in Table 12–4 and the
possible return values and their meanings are described in Table 12–5. The syntax
for this function is shown below.

DBMS_PIPE.SEND_MESSAGE(pipename IN VARCHAR2,
 timeout IN INTEGER DEFAULT MAXWAIT
 maxpipesize IN INTEGER DEFAULT 8192)
RETURN INTEGER;
 PL/SQL Input/Output 12-7

Database Pipes
Table 12–4 DBMS_PIPE.SEND_MESSAGE Function Parameters

Parameter Description

pipename Specify the name of the pipe on which you want to place
the message. If you are using an explicit pipe, this is the
name that you specified when you called CREATE_PIPE.

timeout Specify the timeout period in seconds. This is the time to
wait while attempting to place a message on the pipe;
the return values are explained below. The default value
is the constant MAXWAIT, which is defined as 86400000
(1000 days).

maxpipesize Specify the maximum size allowed for the pipe, in bytes.
The total size of all of the messages on the pipe cannot
exceed this amount. The message is blocked if it exceeds
this maximum. The default

MAXPIPESIZE is 8192 bytes.

The MAXPIPESIZE for a pipe becomes a part of the char-
acteristics of the pipe and persists for the life of the pipe.
Callers of SEND_MESSAGE with larger values cause the
MAXPIPESIZE to be increased. Callers with a smaller
value simply use the existing, larger value. Specifying
MAXPIPESIZE as part of the SEND_MESSAGE procedure
eliminates the need for a separate call to open the pipe.
If you created the pipe explicitly, you can use the
optional MAXPIPESIZE parameter to override the cre-
ation pipe size specification.
12-8 Your Product Name/BookTitle as a Variable

Database Pipes
RECEIVE_MESSAGE
To receive a message from a pipe, first call RECEIVE_MESSAGE to copy the mes-
sage into the local message buffer. When you receive a message, it is removed from
the pipe; that is, a message can only be received once. For implicitly created pipes,
the pipe is removed after the last record is removed from the pipe.

If the pipe that you specify when you call RECEIVE_MESSAGE does not already
exist, Oracle implicitly creates the pipe and then waits to receive the message. If the
message does not arrive within a designated timeout interval, the call returns and
the pipe is removed.

After receiving the message, you must make one or more calls to
UNPACK_MESSAGE to access the individual items in the message. The
UNPACK_MESSAGE procedure is overloaded to unpack items of type DATE, NUM-
BER, VARCHAR2, and there are two additional procedures to unpack RAW and
ROWID items. If you do not know the type of data that you are attempting to
unpack, you can call NEXT_ITEM_TYPE to determine the type of the next item in
the buffer.

Table 12–5 DBMS_PIPE.SEND_MESSAGE Function Return Values

Return Value or Error Description

0 Indicates the pipe was successfully created.

If the pipe already exists and the user attempting to cre-
ate it is authorized to use it, Oracle returns 0, indicating
success, and any data already in the pipe remains.

If a user connected as SYSDBA/SYSOPER re-creates a
pipe, Oracle returns status 0, but the ownership of the
pipe remains unchanged.

1 Indicates the pipe has timed out. This procedure can tim-
eout either because it cannot get a lock on the pipe, or
because the pipe remains too full to be used. If the pipe
was implicitly created and is empty, it is removed.

3 Indicates an interrupt has occurred. If the pipe was
implicitly created and is empty, it is removed.

ORA-23322 Indicates insufficient privileges to write to the pipe.

If a pipe with the same name exists and was created by a
different user, Oracle signals error ORA-23322 , indicat-
ing the naming conflict.
 PL/SQL Input/Output 12-9

Database Pipes
Syntax
The parameters for the RECEIVE_MESSAGE function are shown in Table 12–6 and
the possible return values and their meanings are described in Table 12–7. The syn-
tax for this function is shown below.

DBMS_PIPE.RECEIVE_MESSAGE(pipename IN VARCHAR2,
 timeout IN INTEGER
 DEFAULT maxwait)
RETURN INTEGER;

Table 12–6 DBMS_PIPE.RECEIVE_MESSAGE Function Parameters

Parameter Description

pipename Specify the name of the pipe on which you want to
receive a message. Names beginning with ORA$ are
reserved for use by Oracle.

timeout Specify the timeout period in seconds. This is the time to
wait to receive a message on the pipe. The default value
is the constant MAXWAIT, which is defined as 86400000
(1000 days). A timeout of 0 allows you to read without
blocking.

Table 12–7 DBMS_PIPE.RECEIVE_MESSAGE Function Return Values

Return Value or Error Description

0 Indicates the message was received successfully.

1 Indicates the pipe has timed out. If the pipe was implic-
itly created and is empty, it is removed.

2 Indicates the record in the pipe is too large for the buffer.
(This should not happen.)

3 Indicates an interrupt has occurred.

ORA-23322 Indicates the user has insufficient privileges to read from
the pipe.
12-10 Your Product Name/BookTitle as a Variable

Database Pipes
NEXT_ITEM_TYPE
After you have called RECEIVE_MESSAGE to place pipe information in a local
buffer, you can call NEXT_ITEM_TYPE to determine the datatype of the next item in
the local message buffer. When NEXT_ITEM_TYPE returns 0, the local buffer is
empty.

Syntax
The possible return values and their meanings for the NEXT_ITEM_TYPE function
are described in Table 12–8. The syntax for this function is shown below.

DBMS_PIPE.NEXT_ITEM_TYPE RETURN INTEGER;

UNPACK_MESSAGE Procedures
After you have called RECEIVE_MESSAGE to place pipe information in a local
buffer, you call UNPACK_MESSAGE to retrieve items from the buffer.

Syntax
The syntax for the UNPACK_MESSAGE procedures is shown below. Note that the
UNPACK_MESSAGE procedure is overloaded to return items of type VARCHAR2,
NCHAR, NUMBER, or DATE. There are two additional procedures to unpack RAW and
ROWID items.

DBMS_PIPE.UNPACK_MESSAGE (item OUT VARCHAR2);
DBMS_PIPE.UNPACK_MESSAGE (item OUT NCHAR);
DBMS_PIPE.UNPACK_MESSAGE (item OUT NUMBER);
DBMS_PIPE.UNPACK_MESSAGE (item OUT DATE);
DBMS_PIPE.UNPACK_MESSAGE_RAW (item OUT RAW);
DBMS_PIPE.UNPACK_MESSAGE_ROWID (item OUT ROWID);

If the message buffer contains no more items, or if the item received is not of the
same type as that requested, the ORA-2000 exception is raised.

Table 12–8 DBMS_PIPE.NEXT_ITEM_TYPE Function Return Values

Return Value Description

0 no more items

6 NUMBER

9 VARCHAR2

12 DATE
 PL/SQL Input/Output 12-11

Database Pipes
REMOVE_PIPE
Pipes created implicitly by SEND_MESSAGE are automatically removed when
empty.

Pipes created explicitly by CREATE_PIPE are removed only by calling
REMOVE_PIPE or when the instance is shut down. All unconsumed records in the
pipe are removed before the pipe is deleted. This is similar to calling PURGE on an
implicitly created pipe.

Syntax
The REMOVE_PIPE function accepts only one parameter—the name of the pipe that
you want to remove. The possible return values and their meanings are described
in Table 12–9. The syntax for this function is

DBMS_PIPE.REMOVE_PIPE(pipename IN VARCHAR2)
RETURN INTEGER;

Managing Pipes
The DBMS_PIPE package contains additional procedures and functions that you
might find useful.

Purging the Contents of a Pipe
Call PURGE to empty the contents of a pipe. An empty implicitly created pipe is
aged out of the shared global area according to the least-recently-used algorithm.
Thus, calling PURGE lets you free the memory associated with an implicitly created
pipe.

Table 12–9 DBMS_PIPE.REMOVE_PIPE Function Return Values

Return Value or Error Description

0 Indicates the pipe was successfully removed.

If the pipe does not exist, or if the pipe already exists and
the user attempting to remove it is authorized to do so,
Oracle returns 0, indicating success, and any data
remaining in the pipe is removed.

ORA-23322 Indicates a failure due to insufficient privileges.

If the pipe exists, but the user is not authorized to access
the pipe, Oracle signals error ORA-23322 , indicating
insufficient privileges.
12-12 Your Product Name/BookTitle as a Variable

Database Pipes
Because PURGE calls RECEIVE_MESSAGE, the local buffer might be overwritten
with messages as they are purged from the pipe. Also, you can receive an ORA-
23322 , insufficient privileges, error if you attempt to purge a pipe to which you
have insufficient access rights.

DBMS_PIPE.PURGE(pipename IN VARCHAR2);

Resetting the Message Buffer
Call RESET_BUFFER to reset the PACK_MESSAGE and UNPACK_MESSAGE position-
ing indicators to 0. Because all pipes share a single buffer, you may find it useful to
reset the buffer before using a new pipe. This ensures that the first time you
attempt to send a message to your pipe, you do not inadvertently send an expired
message remaining in the buffer.

Syntax
The syntax for the RESET_BUFFER procedure is shown below.

DBMS_PIPE.RESET_BUFFER;

Getting a Unique Session Name
Call UNIQUE_SESSION_NAME to receive a name that is unique among all of the ses-
sions that are currently connected to a database. Multiple calls to this function from
the same session always return the same value. The return value can be up to 30
bytes. You might find it useful to use this function to supply the PIPENAME parame-
ter for your SEND_MESSAGE and RECEIVE_MESSAGE calls.

DBMS_PIPE.UNIQUE_SESSION_NAME RETURN VARCHAR2;

Example 1: Debugging
The following example shows a procedure a PL/SQL program can call to place
debugging information in a pipe:

CREATE OR REPLACE PROCEDURE debug (msg VARCHAR2) AS
 status NUMBER;
BEGIN
 dbms_pipe.pack_message(LENGTH(msg));
 dbms_pipe.pack_message(msg);
 status := dbms_pipe.send_message(’plsql_debug’);
 IF status != 0 THEN
 raise_application_error(-20099, ’Debug error’);
 END IF;
END debug;
 PL/SQL Input/Output 12-13

Database Pipes
This example shows the Pro*C code that receives messages from the PLSQL_DEBUG
pipe in the PL/SQL example above, and displays the messages. If the Pro*C session
is run in a separate window, it can be used to display any messages that are sent to
the debug procedure from a PL/SQL program executing in a separate session.

#include <stdio.h>
#include <string.h>

EXEC SQL BEGIN DECLARE SECTION;
 VARCHAR username[20];
 int status;
 int msg_length;
 char retval[2000];
EXEC SQL END DECLARE SECTION;

EXEC SQL INCLUDE SQLCA;

void sql_error();

main()
{
/* prepare username */
 strcpy(username.arr, ”SCOTT/TIGER”);
 username.len = strlen(username.arr);

 EXEC SQL WHENEVER SQLERROR DO sql_error();
 EXEC SQL CONNECT :username;

 printf(”connected\n”);

/* start an endless loop to look for and print
 messages on the pipe */
 for (;;)
 {
 EXEC SQL EXECUTE
 DECLARE
 len INTEGER;
 typ INTEGER;
 sta INTEGER;
 chr VARCHAR2(2000);
 BEGIN
 chr := ’’;
 sta := dbms_pipe.receive_message(’plsql_debug’);
 IF sta = 0 THEN
 dbms_pipe.unpack_message(len);
12-14 Your Product Name/BookTitle as a Variable

Database Pipes
 dbms_pipe.unpack_message(chr);
 END IF;
 :status := sta;
 :retval := chr;
 IF len IS NOT NULL THEN
 :msg_length := len;
 ELSE
 :msg_length := 2000;
 END IF;
 END;
 END-EXEC;
 if (status == 0)
 printf(”\n%.*s\n”, msg_length, retval);
 else
 printf(”abnormal status, value is %d\n”, status);
 }
}

void sql_error()
{
 char msg[1024];
 int rlen, len;
 len = sizeof(msg);
 sqlglm(msg, &len, &rlen);
 printf(”ORACLE ERROR\n”);
 printf(”%.*s\n”, rlen, msg);
 exit(1);
}

Example 2: Execute System Commands
The following example shows PL/SQL and Pro*C code that can let a PL/SQL
stored procedure (or anonymous block) call PL/SQL procedures to send com-
mands over a pipe to a Pro*C program that is listening for them.

The Pro*C program just sleeps, waiting for a message to arrive on the named pipe.
When a message arrives, the C program processes it, carrying out the required
action, such as executing a UNIX command through the system() call, or executing a
SQL command using embedded SQL.

DAEMON.SQL is the source code for the PL/SQL package. This package contains pro-
cedures that use the DBMS_PIPE package to send and receive message to and from
the Pro*C daemon. Note that full handshaking is used. The daemon will always
send a message back to the package (except in the case of the ’STOP’ command).
 PL/SQL Input/Output 12-15

Database Pipes
This is valuable, since it allows the PL/SQL procedures to be sure that the Pro*C
daemon is running.

You can call the DAEMON packaged procedures from an anonymous PL/SQL block
using SQL*Plus or Enterprise Manager. For example:

SVRMGR> variable rv number
SVRMGR> execute :rv := DAEMON.EXECUTE_SYSTEM(’ls -la’);

would, on a UNIX system, cause the Pro*C daemon to execute the command sys-
tem(”ls -la”).

Remember that the daemon needs to be running first. So you might want to run it
in the background, or in another window beside the SQL*Plus or Enterprise Man-
ager session from which you call it.

The DAEMON.SQL also uses the DBMS_OUTPUT package to display the results. For
this example to work, you must have execute privileges on this package.

DAEMON.SQL
This is the code for the PL/SQL DAEMON package:

CREATE OR REPLACE PACKAGE daemon AS
 FUNCTION execute_sql(command VARCHAR2,
 timeout NUMBER DEFAULT 10)
 RETURN NUMBER;

 FUNCTION execute_system(command VARCHAR2,
 timeout NUMBER DEFAULT 10)
 RETURN NUMBER;

 PROCEDURE stop(timeout NUMBER DEFAULT 10);
END daemon;
/
CREATE OR REPLACE PACKAGE BODY daemon AS

 FUNCTION execute_system(command VARCHAR2,
 timeout NUMBER DEFAULT 10)
 RETURN NUMBER IS

 status NUMBER;
 result VARCHAR2(20);
 command_code NUMBER;

See Also: “Output from Stored Procedures and Triggers” on
page 12-22.
12-16 Your Product Name/BookTitle as a Variable

Database Pipes
 pipe_name VARCHAR2(30);
 BEGIN
 pipe_name := DBMS_PIPE.UNIQUE_SESSION_NAME;

 DBMS_PIPE.PACK_MESSAGE(’SYSTEM’);
 DBMS_PIPE.PACK_MESSAGE(pipe_name);
 DBMS_PIPE.PACK_MESSAGE(command);
 status := DBMS_PIPE.SEND_MESSAGE(’daemon’, timeout);
 IF status <> 0 THEN
 RAISE_APPLICATION_ERROR(-20010,
 ’Execute_system: Error while sending. Status = ’ ||
 status);
 END IF;

 status := DBMS_PIPE.RECEIVE_MESSAGE(pipe_name, timeout);
 IF status <> 0 THEN
 RAISE_APPLICATION_ERROR(-20011,
 ’Execute_system: Error while receiving.
 Status = ’ || status);
 END IF;

 DBMS_PIPE.UNPACK_MESSAGE(result);
 IF result <> ’done’ THEN
 RAISE_APPLICATION_ERROR(-20012,
 ’Execute_system: Done not received.’);
 END IF;

 DBMS_PIPE.UNPACK_MESSAGE(command_code);
 DBMS_OUTPUT.PUT_LINE(’System command executed. result = ’ ||
 command_code);
 RETURN command_code;
 END execute_system;

 FUNCTION execute_sql(command VARCHAR2,
 timeout NUMBER DEFAULT 10)
 RETURN NUMBER IS

 status NUMBER;
 result VARCHAR2(20);
 command_code NUMBER;
 pipe_name VARCHAR2(30);

 BEGIN
 pipe_name := DBMS_PIPE.UNIQUE_SESSION_NAME;
 PL/SQL Input/Output 12-17

Database Pipes
 DBMS_PIPE.PACK_MESSAGE(’SQL’);
 DBMS_PIPE.PACK_MESSAGE(pipe_name);
 DBMS_PIPE.PACK_MESSAGE(command);
 status := DBMS_PIPE.SEND_MESSAGE(’daemon’, timeout);
 IF status <> 0 THEN
 RAISE_APPLICATION_ERROR(-20020,
 ’Execute_sql: Error while sending. Status = ’ || status);
 END IF;

 status := DBMS_PIPE.RECEIVE_MESSAGE(pipe_name, timeout);

 IF status <> 0 THEN
 RAISE_APPLICATION_ERROR(-20021,
 ’execute_sql: Error while receiving.
 Status = ’ || status);
 END IF;

 DBMS_PIPE.UNPACK_MESSAGE(result);
 IF result <> ’done’ THEN
 RAISE_APPLICATION_ERROR(-20022,
 ’execute_sql: done not received.’);
 END IF;

 DBMS_PIPE.UNPACK_MESSAGE(command_code);
 DBMS_OUTPUT.PUT_LINE
 (’SQL command executed. sqlcode = ’ || command_code);
 RETURN command_code;
 END execute_sql;

 PROCEDURE stop(timeout NUMBER DEFAULT 10) IS
 status NUMBER;
 BEGIN
 DBMS_PIPE.PACK_MESSAGE(’STOP’);
 status := DBMS_PIPE.SEND_MESSAGE(’daemon’, timeout);
 IF status <> 0 THEN
 RAISE_APPLICATION_ERROR(-20030,
 ’stop: error while sending. status = ’ || status);
 END IF;
 END stop;
END daemon;
12-18 Your Product Name/BookTitle as a Variable

Database Pipes
daemon.pc
This is the code for the Pro*C daemon. You must precompile this using the Pro*C
Precompiler, Version 1.5.x or later. You must also specify the USERID and
SQLCHECK options, as the example contains embedded PL/SQL code. For example:

proc iname=daemon userid=scott/tiger sqlcheck=semantics

Then C-compile and link in the normal way.

#include <stdio.h>
#include <string.h>

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;
 char *uid = ”scott/tiger”;
 int status;
 VARCHAR command[20];
 VARCHAR value[2000];
 VARCHAR return_name[30];
EXEC SQL END DECLARE SECTION;

void
connect_error()
{
 char msg_buffer[512];
 int msg_length;
 int buffer_size = 512;

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 sqlglm(msg_buffer, &buffer_size, &msg_length);
 printf(”Daemon error while connecting:\n”);
 printf(”%.*s\n”, msg_length, msg_buffer);
 printf(”Daemon quitting.\n”);
 exit(1);
}

void
sql_error()
{
 char msg_buffer[512];
 int msg_length;
 int buffer_size = 512;

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 PL/SQL Input/Output 12-19

Database Pipes
 sqlglm(msg_buffer, &buffer_size, &msg_length);
 printf(”Daemon error while executing:\n”);
 printf(”%.*s\n”, msg_length, msg_buffer);
 printf(”Daemon continuing.\n”);
}
main()
{
 EXEC SQL WHENEVER SQLERROR DO connect_error();
 EXEC SQL CONNECT :uid;
 printf(”Daemon connected.\n”);

 EXEC SQL WHENEVER SQLERROR DO sql_error();
 printf(”Daemon waiting...\n”);
 while (1) {
 EXEC SQL EXECUTE
 BEGIN
 :status := DBMS_PIPE.RECEIVE_MESSAGE(’daemon’);
 IF :status = 0 THEN
 DBMS_PIPE.UNPACK_MESSAGE(:command);
 END IF;
 END;
 END-EXEC;
 if (status == 0)
 {
 command.arr[command.len] = ’\0’;
 if (!strcmp((char *) command.arr, ”STOP”))
 {
 printf(”Daemon exiting.\n”);
 break;
 }

 else if (!strcmp((char *) command.arr, ”SYSTEM”))
 {
 EXEC SQL EXECUTE
 BEGIN
 DBMS_PIPE.UNPACK_MESSAGE(:return_name);
 DBMS_PIPE.UNPACK_MESSAGE(:value);
 END;
 END-EXEC;
 value.arr[value.len] = ’\0’;
 printf(”Will execute system command ’%s’\n”, value.arr);

 status = system(value.arr);
 EXEC SQL EXECUTE
 BEGIN
12-20 Your Product Name/BookTitle as a Variable

Database Pipes
 DBMS_PIPE.PACK_MESSAGE(’done’);
 DBMS_PIPE.PACK_MESSAGE(:status);
 :status := DBMS_PIPE.SEND_MESSAGE(:return_name);
 END;
 END-EXEC;

 if (status)
 {
 printf
 (”Daemon error while responding to system command.”);
 printf(” status: %d\n”, status);
 }
 }
 else if (!strcmp((char *) command.arr, ”SQL”)) {
 EXEC SQL EXECUTE
 BEGIN
 DBMS_PIPE.UNPACK_MESSAGE(:return_name);
 DBMS_PIPE.UNPACK_MESSAGE(:value);
 END;
 END-EXEC;
 value.arr[value.len] = ’\0’;
 printf(”Will execute sql command ’%s’\n”, value.arr);

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL EXECUTE IMMEDIATE :value;
 status = sqlca.sqlcode;

 EXEC SQL WHENEVER SQLERROR DO sql_error();
 EXEC SQL EXECUTE
 BEGIN
 DBMS_PIPE.PACK_MESSAGE(’done’);
 DBMS_PIPE.PACK_MESSAGE(:status);
 :status := DBMS_PIPE.SEND_MESSAGE(:return_name);
 END;
 END-EXEC;

 if (status)
 {
 printf(”Daemon error while responding to sql command.”);
 printf(” status: %d\n”, status);
 }
 }
 else
 {
 printf
 PL/SQL Input/Output 12-21

Output from Stored Procedures and Triggers
 (”Daemon error: invalid command ’%s’ received.\n”,
 command.arr);
 }
 }
 else
 {
 printf(”Daemon error while waiting for signal.”);
 printf(” status = %d\n”, status);
 }
 }
 EXEC SQL COMMIT WORK RELEASE;
 exit(0);
}

Output from Stored Procedures and Triggers
Oracle provides a public package, DBMS_OUTPUT, which you can use to send mes-
sages from stored procedures, packages, and triggers. The PUT and PUT_LINE pro-
cedures in this package allow you to place information in a buffer that can be read
by another trigger, procedure, or package.

Enterprise Manager or SQL*Plus can also display messages buffered by the
DBMS_OUTPUT procedures. To do this, you must issue the command SET SERVER-
OUTPUT ON in Enterprise Manager or SQL*Plus.

In a separate PL/SQL procedure or anonymous block, you can display the buffered
information by calling the GET_LINE procedure. If you do not call GET_LINE, or
do not display the messages on your screen in SQL*Plus or Enterprise Manager, the
buffered messages are ignored. The DBMS_OUTPUT package is especially useful for
displaying PL/SQL debugging information.

Summary
Table 12–10 shows the procedures that are callable from the DBMS_OUTPUT pack-
age:

Note: Messages sent using the DBMS_OUTPUT are not actually
sent until the sending subprogram or trigger completes. There is
no mechanism to flush output during the execution of a procedure.
12-22 Your Product Name/BookTitle as a Variable

Output from Stored Procedures and Triggers
Creating the DBMS_OUTPUT Package
To create the DBMS_OUTPUT package, submit the DBMSOTPT.SQL and PRV-
TOTPT.PLB scripts when connected as the user SYS. These scripts are run automati-
cally by the CATPROC.SQL script.
.

Errors
The DBMS_OUTPUT package routines raise the application error -20000, and the out-
put procedures can return the following errors:

ORU-10027: buffer overflow
ORU-10028: line length overflow

ENABLE Procedure
This procedure enables calls to PUT, PUT_LINE, NEW_LINE, GET_LINE, and
GET_LINES. Calls to these procedures are ignored if the DBMS_OUTPUT package is
not enabled. It is not necessary to call this procedure when you use the SERVER-
OUTPUT option of Enterprise Manager or SQL*Plus.

You must specify the amount of information, in bytes, to buffer. Items are stored in
the DBMS_OUTPUT package. If the buffer size is exceeded, you receive the following
error message:

Table 12–10 DBMS_OUTPUT Package Functions and Procedures

Function/Procedure Description Refer to

ENABLE enable message output page 12-23

DISABLE disable message output page 12-24

PUT_LINE place a line in the buffer page 12-24

PUT place partial line in buffer page 12-24

NEW_LINE terminate a line created with PUT page 12-38

GET_LINE retrieve one line of information from
buffer

page 12-25

GET_LINES retrieve array of lines from buffer page 12-25

See Also: “Privileges Required to Execute a Procedure” on page
10-38 for information on the necessary privileges for users who
will be executing this package.
 PL/SQL Input/Output 12-23

Output from Stored Procedures and Triggers
ORA-20000, ORU-10027: buffer overflow, limit of <buffer_limit> bytes.
Multiple calls to ENABLE are allowed. If there are multiple calls to ENABLE,
BUFFER_SIZE is the largest of the values specified. The maximum size is 1000000
and the minimum is 2000.

Syntax
The syntax for the ENABLE procedure is

DBMS_OUTPUT.ENABLE(buffer_size IN INTEGER DEFAULT 2000);

DISABLE Procedure
The DISABLE procedure disables calls to PUT, PUT_LINE, NEW_LINE, GET_LINE,
and GET_LINES, and purges the buffer of any remaining information. As with
ENABLE, you do not need to call this procedure if you are using the SERVEROUT-
PUT option of Enterprise Manager or SQL*Plus.

Syntax
The syntax for the DISABLE procedure is shown below.

DBMS_OUTPUT.DISABLE;

PUT and PUT_LINE Procedures
You can either place an entire line of information into the buffer by calling
PUT_LINE, or you can build a line of information piece by piece by making multi-
ple calls to PUT. Both of these procedures are overloaded to accept items of type
VARCHAR2, NUMBER, or DATE to place in the buffer.

All items are converted to VARCHAR2 as they are retrieved. If you pass an item of
type NUMBER or DATE, when that item is retrieved, it is formatted with TO_CHAR
using the default format. If you want to use a different format, you should pass in
the item as VARCHAR2 and format it explicitly.

When you call PUT_LINE, the item that you specify is automatically followed by
an end-of-line marker. If you make calls to PUT to build a line, you must add your
own end-of-line marker by calling NEW_LINE. GET_LINE and GET_LINES do not
return lines that have not been terminated with a newline character.

If your line exceeds the buffer limit, you receive an error message.
12-24 Your Product Name/BookTitle as a Variable

Output from Stored Procedures and Triggers
Syntax
The PUT and PUT_LINE procedure are overloaded; they can take an IN parameter
of either NUMBER, VARCHAR2, or DATE. The syntax for the PUT and PUT_LINE, and
the NEW_LINE procedures is

DBMS_OUTPUT.PUT (item IN NUMBER);
DBMS_OUTPUT.PUT (item IN VARCHAR2);
DBMS_OUTPUT.PUT (item IN DATE);
DBMS_OUTPUT.PUT_LINE(item IN NUMBER);
DBMS_OUTPUT.PUT_LINE(item IN VARCHAR2);
DBMS_OUTPUT.PUT_LINE(item IN DATE);
DBMS_OUTPUT.NEW_LINE;

GET_LINE and GET_LINES Procedures
You can choose to retrieve a single line from the buffer, or an array of lines. Call the
GET_LINE procedure to retrieve a single line of buffered information. To reduce the
number of calls to the server, call the GET_LINES procedure to retrieve an array of
lines from the buffer. You can choose to automatically display this information if
you are using Enterprise Manager or SQL*Plus by using the special SET SERVER-
OUTPUT ON command.

After calling GET_LINE or GET_LINES, any lines not retrieved before the next call
to PUT, PUT_LINE, or NEW_LINE are discarded to avoid confusing them with the
next message.

Syntax
The parameters for the GET_LINE procedure are described in Table 12–11. The syn-
tax for this procedure is shown below.

DBMS_OUTPUT.GET_LINE(line OUT VARCHAR2,
 status OUT INTEGER);

Note: Output that you create using PUT or PUT_LINE is buffered
in the SGA. The output cannot be retrieved until the PL/SQL pro-
gram unit from which it was buffered returns to its caller. So, for
example, Enterprise Manager or SQL*Plus do not display
DBMS_OUTPUT messages until the PL/SQL program completes. In
this release, there is no mechanism for flushing the DBMS_OUTPUT
buffers within the PL/SQL program.
 PL/SQL Input/Output 12-25

Output from Stored Procedures and Triggers
The parameters for the GET_LINES procedure are described in Table 12–12. The
syntax for this procedure is

DBMS_OUTPUT.GET_LINES(lines OUT CHARARR,
 numlines IN OUT INTEGER);

where CHARARR is a table of VARCHAR2(255), defined as a type in the
DBMS_OUTPUT package specification.

Examples Using the DBMS_OUTPUT Package
The DBMS_OUTPUT package is commonly used to debug stored procedures and trig-
gers, as shown in example 1. This package can also be used to allow a user to
retrieve information about an object and format this output, as shown in example 2.

Example 1 An example of a function that queries the employee table and returns
the total salary for a specified department follows. The function includes several
calls to the PUT_LINE procedure:

Table 12–11 DBMS_OUTPUT.GET_LINE Procedure Parameters

Parameter Description

line Returns a single line of buffered information, excluding a final
newline character. The maximum length of this parameter is
255 bytes.

status If the call completes successfully, the status returns as 0. If there
are no more lines in the buffer, the status is 1.

Table 12–12 DBMS_OUTPUT.GET_LINE Procedure Parameters

Parameter Description

lines Returns an array of lines of buffered information. The maxi-
mum length of each line in the array is 255 bytes.

numlines Specify the number of lines you want to retrieve from the
buffer. After retrieving the specified number of lines, the proce-
dure returns the number of lines actually retrieved. If this num-
ber is less than the number of lines requested, there are no
more lines in the buffer.
12-26 Your Product Name/BookTitle as a Variable

Output from Stored Procedures and Triggers
CREATE FUNCTION dept_salary (dnum NUMBER) RETURN NUMBER IS
 CURSOR emp_cursor IS
 SELECT sal, comm FROM emp WHERE deptno = dnum;
 total_wages NUMBER(11, 2) := 0;
 counter NUMBER(10) := 1;
BEGIN
 FOR emp_record IN emp_cursor LOOP
 emp_record.comm := NVL(emp_record.comm, 0);
 total_wages := total_wages + emp_record.sal
 + emp_record.comm;
 DBMS_OUTPUT.PUT_LINE(’Loop number = ’ || counter ||
 ’; Wages = ’|| TO_CHAR(total_wages)); /* Debug line */
 counter := counter + 1; /* Increment debug counter */
 END LOOP;
 /* Debug line */
 DBMS_OUTPUT.PUT_LINE(’Total wages = ’ ||
 TO_CHAR(total_wages));
 RETURN total_wages;
END dept_salary;
Assume the EMP table contains the following rows:

EMPNO SAL COMM DEPT
----- ------- -------- -------
1002 1500 500 20
1203 1000 30
1289 1000 10
1347 1000 250 20

Assume you execute the following statements in the Enterprise Manager SQL
Worksheet input pane:

SET SERVEROUTPUT ON
VARIABLE salary NUMBER;
EXECUTE :salary := dept_salary(20);

You would then see the following information displayed in the output pane:

Loop number = 1; Wages = 2000
Loop number = 2; Wages = 3250
Total wages = 3250

PL/SQL procedure successfully executed.

Example 2 This example assumes that the user has used the EXPLAIN PLAN com-
mand to retrieve information about the execution plan for a statement and store it
 PL/SQL Input/Output 12-27

Output from Stored Procedures and Triggers
in PLAN_TABLE, and that the user has assigned a statement ID to this statement.
The example EXPLAIN_OUT procedure retrieves the information from this table
and formats the output in a nested manner that more closely depicts the order of
steps undergone in processing the SQL statement.

 /**/
/* Create EXPLAIN_OUT procedure. User must pass STATEMENT_ID to */
/* to procedure, to uniquely identify statement. */
/**/
CREATE OR REPLACE PROCEDURE explain_out
 (statement_id IN VARCHAR2) AS

 -- Retrieve information from PLAN_TABLE into cursor
 -- EXPLAIN_ROWS.
 CURSOR explain_rows IS
 SELECT level, id, position, operation, options,
 object_name
 FROM plan_table
 WHERE statement_id = explain_out.statement_id
 CONNECT BY PRIOR id = parent_id
 AND statement_id = explain_out.statement_id
 START WITH id = 0
 ORDER BY id;

BEGIN
 -- Loop through information retrieved from PLAN_TABLE
 FOR line IN explain_rows LOOP

 -- At start of output, include heading with estimated cost.
 IF line.id = 0 THEN
 DBMS_OUTPUT.PUT_LINE (’Plan for statement ’
 || statement_id
 || ’, estimated cost = ’ || line.position);
 END IF;

 -- Output formatted information. LEVEL is used to
 -- determine indention level.
 DBMS_OUTPUT.PUT_LINE (lpad(’ ’,2*(line.level-1)) ||
 line.operation || ’ ’ || line.options || ’ ’ ||
 line.object_name);
 END LOOP;
END;
12-28 Your Product Name/BookTitle as a Variable

PL/SQL File I/O
PL/SQL File I/O
The release 7.3 Oracle Server adds file input/output capabilities to PL/SQL. This is
done through the supplied package UTL_FILE .

The file I/O capabilities are similar to those of the standard operating system
stream file I/O (OPEN, GET, PUT, CLOSE), with some limitations. For example, you
call the FOPEN function to return a file handle, which you then use in subsequent
calls to GET_LINE or PUT to perform stream I/O to a file. When you are done per-
forming I/O on the file, you call FCLOSE to complete any output and to free any
resources associated with the file.

Summary
Table 12–13 summarizes the procedures you can call in the UTL_FILE package.

Table 12–13 UTL_FILE Procedures

Function/Procedure Description Refer to

FOPEN Open a file for input or output. Create an
output file if it does not exist.

page 12-33

IS_OPEN Determine if a file handle refers to an
open file.

page 12-34

FCLOSE Close a file. page 12-35

FCLOSE_ALL Close all open file handles. page 12-36

GET_LINE Read a line of text from an open file. page 12-36

PUT Write a line to a file. Do not append a line
terminator.

page 12-37

PUT_LINE Write a line to a file. Append an OS-spe-
cific line terminator.

page 12-39

PUTF A PUT procedure with formatting. page 12-39

NEW_LINE Write one or more OS-specific line termi-
nators to a file.

page 12-38

FFLUSH Physically write all pending output to a
file.

page 12-41
 PL/SQL Input/Output 12-29

PL/SQL File I/O
Security
The PL/SQL file I/O feature is available for both client side and server side PL/
SQL. The client implementation is subject to normal operating system file permis-
sion checking, and so does not need any additional security constraints. But the
server implementation might be running in a privileged mode, and so will need
additional security restrictions that limit the power of this feature.

Server Security
Server security for PL/SQL file I/O consists of a restriction on the directories that
can be accessed. Accessible directories must be specified in the instance parameter
initialization file (INIT .ORA).

You specify the accessible directories for the UTL_FILE functions in the initializa-
tion file using the UTL_FILE_DIR parameter, as follows:

UTL_FILE_DIR = <directory name>

For example, if the initialization file for the instance contains the line

UTL_FILE_DIR = /usr/jsmith/my_app

then the directory /usr/jsmith/my_app is accessible to the FOPEN function. Note that
a directory named /usr/jsmith/My_App would not be accessible on case-sensitive
operating systems.

The parameter specification

UTL_FILE_DIR = *

has a special meaning. This entry in effect turns off directory access checking, and
makes any directory accessible to the UTL_FILE functions.

Note: The UTL_FILE package is similar to the client-side
TEXT_IO package currently provided by Oracle Procedure Builder.
Restrictions for a server implementation require some API differ-
ences between UTL_FILE and TEXT_IO. In PL/SQL file I/O,
errors are returned to the caller using PL/SQL exceptions.
12-30 Your Product Name/BookTitle as a Variable

PL/SQL File I/O
File Ownership and Protections
On UNIX systems, a file created by the FOPEN function has as its owner the owner
of the shadow process running the instance. In the normal case, this owner is oracle.
Files created using FOPEN are always writable and readable using the UTL_FILE
routines, but non-privileged users who need to read these files outside of PL/SQL
might have to get their system administrator to give them access.

Examples (UNIX-Specific)
If the parameter initialization file contains only

UTL_FILE_DIR=/appl/gl/log
UTL_FILE_DIR=/appl/gl/out

then the following file locations and filenames are valid:

FILE LOCATION FILENAME
/appl/gl/log L10324.log
/appl/gl/out O10324.out

but the following file locations and filename are invalid:

FILE LOCATION FILENAME
/appl/gl/log/backup L10324.log # subdirectory
/APPL/gl/log L10324.log # uppercase
/appl/gl/log backup/L10324.log #dir in name
/usr/tmp T10324.tmp # not in INIT.ORA

WARNING:

■ The ’*’ option should be used with great caution. For obvious
security reasons, Oracle does not recommend that you use
this option in production systems. Also, do not include ’.’
(the current directory for UNIX) in the accessible directories
list.

■ To ensure security on file systems that allow symbolic links,
users must not be allowed WRITE permission to directories
accessible by PL/SQL file I./O functions. The symbolic links
and PL/SQL file I/O could be used to circumvent normal
operating system permission checking, and allow users read/
write access to directories to which they would not otherwise
have access.
 PL/SQL Input/Output 12-31

PL/SQL File I/O
Declared Types
The specification for the UTL_FILE package declares one PL/SQL type:
FILE_TYPE . The declaration is

TYPE file_type IS RECORD (id BINARY_INTEGER);

The contents of FILE_TYPE are private to the UTL_FILE package. Users of the
package should not reference or change components of this record.

Exceptions
The specification for the UTL_FILE package declares seven exceptions. These
exceptions are raised to indicate error conditions. The exceptions are shown in
Table 12–14.

In addition to these package exceptions, procedures in the UTL_FILE package can
also raise predefined PL/SQL exceptions such as NO_DATA_FOUND or
VALUE_ERROR.

WARNING: ’There are no user-level file permissions. All file
locations specified by the UTL_FILE_DIR parameters are valid,
for both reading and writing, for all users of the file I/O proce-
dures. This can override operating system file permissions.

Table 12–14 UTL_FILE Package Exceptions

Exception Name Description

INVALID_PATH File location or filename was invalid.

INVALID_MODE The open_mode parameter in FOPEN was invalid.

INVALID_FILEHANDLE The file handle was invalid.

INVALID_OPERATION The file could not be opened or operated on as requested.

READ_ERROR An operating system error occurred during the read
operation.

WRITE_ERROR An operating system error occurred during the write
operation.

INTERNAL_ERROR An unspecified error in PL/SQL.
12-32 Your Product Name/BookTitle as a Variable

PL/SQL File I/O
Functions and Procedures
The remainder of this section describes the individual functions and procedures
that make up the UTL_FILE package.

FOPEN
FOPEN opens a file for input or output. The file location must be an accessible direc-
tory, as defined in the instance’s initialization parameter UTL_FILE_DIR . The com-
plete directory path must already exist; it is not created by FOPEN. FOPEN returns a
file handle, which must be used in all subsequent I/O operations on the file.

The parameters for this procedure are described in Table 12–15, and the syntax is
shown below.

Syntax
FUNCTION FOPEN(location IN VARCHAR2,
 filename IN VARCHAR2,
 open_mode IN VARCHAR2)
 RETURN UTL_FILE.FILE_TYPE;

Table 12–15 FOPEN Function Parameters

Parameters Description

location The operating system-specific string that specifies the direc-
tory or area in which to open the file.

filename The name of the file, including extension (file type), without
any directory path information. (Under the UNIX operating
system, the filename cannot be terminated with a ’/’.)

open_mode A string that specifies how the file is to be opened (either
upper- or lowercase letters can be used). The supported val-
ues, and the UTL_FILE package procedures that can be used
with them are:

’r’ read text

 (GET_LINE)

’w’ write text

 (PUT, PUT_LINE, NEW_LINE, PUTF, FFLUSH)

’a’ append text

 (PUT, PUT_LINE, NEW_LINE, PUTF, FFLUSH)
 PL/SQL Input/Output 12-33

PL/SQL File I/O
Return Value
FOPEN returns a file handle, which must be passed to all subsequent procedures
that operate on that file. The specific contents of the file handle are private to the
UTL_FILE package, and individual components should not be referenced or
changed by the UTL_FILE user.

Exceptions
FOPEN can raise any of the following exceptions:

■ UTL_FILE .INVALID_PATH

■ UTL_FILE .INVALID_MODE

■ UTL_FILE .INVALID_OPERATION

IS_OPEN
IS_OPEN tests a file handle to see if it identifies an open file. IS_OPEN reports only
whether a file handle represents a file that has been opened, but not yet closed. It
does not guarantee that there will be no operating system errors when you attempt
to use the file handle.

Note: If you open a file that does not exist using the ’a’ value for
OPEN_MODE, the file is created in write (’w’) mode.

Note:

■ The file location and file name parameters are supplied to the
FOPEN function as separate strings, so that the file location can
be checked against the list of accessible directories as specified
in the initialization file. Together, the file location and name
must represent a legal filename on the system, and the direc-
tory must be accessible. A subdirectory of an accessible direc-
tory is not necessarily also accessible; it too must be specified
using a complete path name in the initialization file.

■ Operating system-specific parameters, such as C-shell environ-
ment variables under UNIX, cannot be used in the file location
or file name parameters.
12-34 Your Product Name/BookTitle as a Variable

PL/SQL File I/O
The parameter for this function is described in Table 12–16, and the syntax is
shown below.

Syntax
FUNCTION IS_OPEN(file_handle IN FILE_TYPE)
 RETURN BOOLEAN;

Return Value
TRUE or FALSE.

Exceptions
IS_OPEN does not raise any exceptions.

FCLOSE
FCLOSE closes an open file identified by a file handle. You could receive a
WRITE_ERROR exception when closing a file, as there might be buffered data yet to
be written when FCLOSE executes.

The parameters for this procedure are described in Table 12–17, and the syntax is
shown below.

Syntax
PROCEDURE FCLOSE (file_handle IN OUT FILE_TYPE);

Exceptions
FCLOSE can raise the following exceptions:

■ UTL_FILE .WRITE_ERROR

■ UTL_FILE .INVALID_FILEHANDLE

Table 12–16 IS_OPEN Function Parameters

Parameter Description

file_handle An active file handle returned by an FOPEN call.

Table 12–17 FCLOSE Procedure Parameters

Parameter Description

file_handle An active file handle returned by an FOPEN call.
 PL/SQL Input/Output 12-35

PL/SQL File I/O
FCLOSE_ALL
FCLOSE_ALL closes all open file handles for the session. This can be used as an
emergency cleanup procedure, for example when a PL/SQL program exits on an
exception.

Syntax
PROCEDURE FCLOSE_ALL;

Exception
FCLOSE_ALL can raise the exception:

■ UTL_FILE .WRITE_ERROR

GET_LINE
GET_LINE reads a line of text from the open file identified by the file handle, and
places the text in the output buffer parameter. Text is read up to but not including
the line terminator, or up to the end of the file.

If the line does not fit in the buffer, a VALUE_ERROR exception is raised. If no text
was read due to "end of file," the NO_DATA_FOUND exception is raised.

Because the line terminator character is not read into the buffer, reading blank lines
returns empty strings.

The maximum size of an input record is 1022 bytes.

The parameters for this procedure are described in Table 12–18, and the syntax is
shown below.

Syntax
PROCEDURE GET_LINE(file_handle IN FILE_TYPE,
 buffer OUT VARCHAR2);

Note: FCLOSE_ALL does not alter the state of the open file han-
dles held by the user. This means that an IS_OPEN test on a file
handle after an FCLOSE_ALL call still returns TRUE, even though
the file has been closed. No further read or write operations can be
performed on a file that was open before an FCLOSE_ALL.
12-36 Your Product Name/BookTitle as a Variable

PL/SQL File I/O
Exceptions
GET_LINE can raise any of the following exceptions:

■ UTL_FILE .INVALID_FILEHANDLE

■ UTL_FILE .INVALID_OPERATION

■ UTL_FILE .READ_ERROR

■ NO_DATA_FOUND

■ VALUE_ERROR

PUT
PUT writes the text string stored in the buffer parameter to the open file identified
by the file handle. The file must be open for write operations. No line terminator is
appended by PUT; use NEW_LINE to terminate the line or use PUT_LINE to write a
complete line with a line terminator.

The parameters for this procedure are described in Table 12–19, and the syntax is
shown below.

Syntax
PROCEDURE PUT(file_handle IN FILE_TYPE,
 buffer IN VARCHAR2);

Table 12–18 GET_LINE Procedure Parameters

Parameters Description

file_handle An active file handle returned by an FOPEN call. The file must
be open for reading (mode ’r’), otherwise an

INVALID_OPERATION exception is raised.

buffer The data buffer to receive the line read from the file.
 PL/SQL Input/Output 12-37

PL/SQL File I/O
Exceptions
PUT can raise any of the following exceptions:

■ UTL_FILE .INVALID_FILEHANDLE

■ UTL_FILE .INVALID_OPERATION

■ UTL_FILE .WRITE_ERROR

NEW_LINE
NEW_LINE writes one or more line terminators to the file identified by the input file
handle. This procedure is separate from PUT because the line terminator is a plat-
form-specific character or sequence of characters.

The parameters for this procedure are described in Table 12–20, and the syntax is
shown below.

Syntax
PROCEDURE NEW_LINE (file_handle IN FILE_TYPE,
 lines IN NATURAL := 1);

Exceptions
NEW_LINE can raise any of the following exceptions:

■ UTL_FILE .INVALID_FILEHANDLE

Table 12–19 PUT Procedure Parameters

Parameters Description

file_handle An active file handle returned by an FOPEN call.

buffer The buffer that contains the text to be written to the file. You
must have opened the file using mode ’w’ or mode ’a’, other-
wise an INVALID_OPERATION exception is raised.

Table 12–20 NEW_LINE Procedure Parameters

Parameters Description

file_handle An active file handle returned by an FOPEN call.

lines The number of line terminators to be written to the file.
12-38 Your Product Name/BookTitle as a Variable

PL/SQL File I/O
■ UTL_FILE .INVALID_OPERATION

■ UTL_FILE .WRITE_ERROR

PUT_LINE
PUT_LINE writes the text string stored in the buffer parameter to the open file iden-
tified by the file handle. The file must be open for write operations. PUT_LINE ter-
minates the line with the platform-specific line terminator character or characters.

The maximum size for an output record is 1023 bytes.

The parameters for this procedure are described in Table 12–21, and the syntax is
shown below.

Syntax
PROCEDURE PUT_LINE(file_handle IN FILE_TYPE,
 buffer IN VARCHAR2);

Exceptions
PUT_LINE can raise any of the following exceptions:

■ UTL_FILE .INVALID_FILEHANDLE

■ UTL_FILE .INVALID_OPERATION

■ UTL_FILE .WRITE_ERROR

PUTF
PUTF is a formatted PUT procedure. It works like a limited printf(). The format
string can contain any text, but the character sequences ’%s’ and ’\n’ have special
meaning.
:

Table 12–21 PUT_LINE Procedure Parameters

Parameters Description

file_handle An active file handle returned by an FOPEN call.

buffer The text buffer that contains the lines to be written to the file.

%s Substitute this sequence with the string value of the next argument in
the argument list (see the “Syntax” section below).

\n Substitute with the appropriate platform-specific line terminator.
 PL/SQL Input/Output 12-39

PL/SQL File I/O
The parameters for this procedure are described in Table 12–22, and the syntax is
shown below.

Syntax
PROCEDURE PUTF(file_handle IN FILE_TYPE,
 format IN VARCHAR2,
 [arg1 IN VARCHAR2,
 . . .
 arg5 IN VARCHAR2]);

Example
The following example writes the lines

Hello, world!
I come from Zork with greetings for all earthlings.

my_world varchar2(4) := ’Zork’;
...
PUTF(my_handle, ’Hello, world!\nI come from %s with %s.\n’,
 my_world,
 ’greetings for all earthlings’);
If there are more %s formatters in the format parameter than there are arguments,
an empty string is substituted for each %s for which there is no matching argument.

Exceptions
PUTF can raise any of the following exceptions:

■ UTL_FILE .INVALID_FILEHANDLE

Table 12–22 PUTF Procedure Parameters

Parameters Description

file_handle An active file handle returned by an FOPEN call.

format The format string that can contain text as well as the format-
ting characters ’\n’ and ’%s’.

arg1..arg5 From one to five optional argument strings. Argument strings
are substituted, in order, for the ’%s’ formatters in the format
string.

If there are more formatters in the format parameter string
than there are arguments, an empty string is substituted for
each ’%s’ for which there is no argument.
12-40 Your Product Name/BookTitle as a Variable

PL/SQL File I/O
■ UTL_FILE .INVALID_OPERATION

■ UTL_FILE .WRITE_ERROR

FFLUSH
FFLUSH physically writes all pending data to the file identified by the file handle.
Normally, data being written to a file is buffered. The FFLUSH procedure forces any
buffered data to be written to the file.

Flushing is useful when the file must be read while still open. For example, debug-
ging messages can be flushed to the file so that they can be read immediately.

The parameter for this procedure is described in Table 12–23, and the syntax is
shown below.

Syntax
PROCEDURE FFLUSH (file_handle IN FILE_TYPE);

Exceptions
FFLUSH can raise any of the following exceptions:

■ UTL_FILE .INVALID_FILEHANDLE

■ UTL_FILE .INVALID_OPERATION

■ UTL_FILE .WRITE_ERROR

Table 12–23 FFLUSH Procedure Parameters

Parameters Description

file_handle An active file handle returned by an FOPEN call.
 PL/SQL Input/Output 12-41

PL/SQL File I/O
12-42 Your Product Name/BookTitle as a Variable

 Using Database T
13

Using Database Triggers

This chapter discusses database triggers—procedures that are stored in the data-
base and implicitly executed (“fired”) when a table is modified. Topics include:

■ Designing Triggers

■ Creating Triggers

■ When Triggers Are Compiled

■ Debugging a Trigger

■ Modifying a Trigger

■ Enabling and Disabling Triggers

■ Listing Information About Triggers

■ Examples of Trigger Applications

Note: If you are using Trusted Oracle, see the Trusted Oracle
documentation for more information about defining and using
database triggers.
riggers 13-1

Designing Triggers
Designing Triggers
Use the following guidelines when designing triggers:

■ Use triggers to guarantee that when a specific operation is performed, related
actions are performed.

■ Use database triggers only for centralized, global operations that should be
fired for the triggering statement, regardless of which user or database applica-
tion issues the statement.

■ Do not define triggers that duplicate the functionality already built into Oracle.
For example, do not define triggers to enforce data integrity rules that can be
easily enforced using declarative integrity constraints.

■ Limit the size of triggers (60 lines or fewer is a good guideline). If the logic for
your trigger requires much more than 60 lines of PL/SQL code, it is better to
include most of the code in a stored procedure, and call the procedure from the
trigger.

■ Be careful not to create recursive triggers. For example, creating an AFTER
UPDATE statement trigger on the EMP table that itself issues an UPDATE state-
ment on EMP causes the trigger to fire recursively until it has run out of mem-
ory.

Creating Triggers
Triggers are created using the CREATE TRIGGER command. This command can be
used with any interactive tool, such as SQL*Plus or Enterprise Manager. When
using an interactive tool, a solitary slash (/) on the last line is used to activate the
CREATE TRIGGER statement.

The following statement creates a trigger for the EMP table:

CREATE TRIGGER print_salary_changes
BEFORE DELETE OR INSERT OR UPDATE ON emp
FOR EACH ROW
WHEN (new.empno > 0)
DECLARE
 sal_diff number;
BEGIN
 sal_diff := new.sal - old.sal;
 dbms_output.put(’Old salary: ’ || :old.sal);
 dbms_output.put(’ New salary: ’ || :new.sal);
 dbms_output.put_line(’ Difference ’ || sal_diff);
END;
13-2 Your Product Name/BookTitle as a Variable

Creating Triggers
/
If you enter a SQL statement such as

UPDATE emp SET sal = sal + 500.00 WHERE deptno = 10

the trigger will fire once for each row that is updated, and it prints the new and old
salaries, and the difference.

The CREATE (or CREATE OR REPLACE) statement fails if any errors exist in the
PL/SQL block.

The following sections use this example to illustrate the way that parts of a trigger
are specified. For more realistic examples of CREATE TRIGGER statements, see
“Examples of Trigger Applications” on page 13-22.

Prerequisites for Creating Triggers
Before creating any triggers, while connected as SYS, submit the CATPROC.SQL
script. This script automatically runs all of the scripts required for, or used within,
the procedural extensions to the Oracle Server.

Naming Triggers
Trigger names must be unique with respect to other triggers in the same schema.
Trigger names do not have to be unique with respect to other schema objects such
as tables, views, and procedures. For example, a table and a trigger can have the
same name (although, to avoid confusion, this is not recommended).

The BEFORE and AFTER Options
The BEFORE or AFTER option in the CREATE TRIGGER statement specifies
exactly when to file the trigger body in relation to the triggering statement that is
being executed. In a CREATE TRIGGER statement, the BEFORE or AFTER option
is specified just before the triggering statement. For example, the
PRINT_SALARY_CHANGES trigger in the previous example is a BEFORE trigger.

Note: The location of this file is operating system dependent; see
your platform-specific Oracle documentation.
 Using Database Triggers 13-3

Creating Triggers
The INSTEAD OF Option
The INSTEAD OF option in the CREATE TRIGGER statement is an alternative to
the BEFORE and AFTER options. INSTEAD OF triggers provide a transparent way
of modifying views that cannot be modified directly through UPDATE, INSERT,
and DELETE statements. These triggers are called INSTEAD OF triggers because,
unlike other types of triggers, Oracle fires the trigger instead of executing the trig-
gering statement. The trigger performs update, insert, or delete operations directly
on the underlying tables.

Users write normal UPDATE, INSERT, and DELETE statements against the view,
and the INSTEAD OF trigger works invisibly in the background to make the right
actions take place.

By default, INSTEAD OF triggers are activated for each row (see “FOR EACH
ROW Option” on page 13-7).

Views That Are Not Modifiable
A view cannot be modified by UPDATE, INSERT, or DELETE statements if the
view query contains any of the following constructs:

■ set operators

■ group functions

■ GROUP BY, CONNECT BY, or START WITH clauses

■ the DISTINCT operator

■ joins (a subset of join views are updatable)

If a view contains pseudocolumns or expressions, you can only update the view
with an UPDATE statement that does not refer to any of the pseudocolumns or
expressions.

Note: AFTER row triggers are slightly more efficient than
BEFORE row triggers. With BEFORE row triggers, affected data
blocks must be read (logical read, not physical read) once for the
trigger and then again for the triggering statement. Alternatively,
with AFTER row triggers, the data blocks need only be read once
for both the triggering statement and the trigger.
13-4 Your Product Name/BookTitle as a Variable

Creating Triggers
Example of an INSTEAD OF Trigger
The following example shows an INSTEAD OF trigger for inserting rows into the
MANAGER_INFO view.

CREATE VIEW manager_info AS
 SELECT e.name, e.empno, d.dept_type, d.deptno, p.level,
 p.projno
 FROM emp e, dept d, project p
 WHERE e.empno = d.mgr_no
 AND d.deptno = p.resp_dept;

CREATE TRIGGER manager_info_insert
INSTEAD OF INSERT ON manager_info
REFERENCING NEW AS n -- new manager information

FOR EACH ROW
BEGIN
 IF NOT EXISTS SELECT * FROM emp
 WHERE emp.empno = :n.empno
 THEN
 INSERT INTO emp
 VALUES(:n.empno, :n.name);
 ELSE
 UPDATE emp SET emp.name = :n.name

WHERE emp.empno = :n.empno;
END IF;

IF NOT EXISTS SELECT * FROM dept
WHERE dept.deptno = :n.deptno

THEN
INSERT INTO dept

VALUES(:n.deptno, :n.dept_type);
ELSE

UPDATE dept SET dept.dept_type = :n.dept_type
WHERE dept.deptno = :n.deptno;

END IF;

IF NOT EXISTS SELECT * FROM project
WHERE project.projno = :n.projno

THEN
INSERT INTO project

VALUES(:n.projno, :n.project_level);
 ELSE
 UPDATE project SET project.level = :n.level
 WHERE project.projno = :n.projno;
 Using Database Triggers 13-5

Creating Triggers
 END IF;
END;

The actions shown for rows being inserted into the MANAGER_INFO view first
test to see if appropriate rows already exist in the base tables from which
MANAGER_INFO is derived. The actions then insert new rows or update existing
rows, as appropriate. Similar triggers can specify appropriate actions for UPDATE
and DELETE.

Object Views and INSTEAD OF Triggers
INSTEAD OF triggers provide the means to modify object view instances on the cli-
ent-side through OCI calls. (See Oracle Call Interface Programmer’s Guide for more
information.) To modify an object materialized by an object view in the client-side
object cache and flush it back to the persistent store, the user must specify
INSTEAD OF triggers, unless the object view is modifiable. If the object is read
only, however, it is not necessary to define triggers to pin it.

Triggering Statement
The triggering statement specifies:

■ the type of SQL statement that fires the trigger body.

The possible options include DELETE, INSERT, and UPDATE. One, two, or all
three of these options can be included in the triggering statement specification.

■ the table associated with the trigger.

For example, the PRINT_SALARY_CHANGES trigger on page 13-2 fires after any
DELETE, INSERT, or UPDATE on the EMP table. Any of the following statements
would trigger the PRINT_SALARY_CHANGES trigger given in the previous exam-
ple:

DELETE FROM emp;
INSERT INTO emp VALUES (. . .);
INSERT INTO emp SELECT . . . FROM . . . ;
UPDATE emp SET . . . ;

Note Also: For more examples of INSTEAD OF triggers, see
“Updating the Object Views” on page 8-6.

Note: Exactly one table (but not a view) can be specified in the
triggering statement.
13-6 Your Product Name/BookTitle as a Variable

Creating Triggers
Column List for UPDATE
If a triggering statement specifies UPDATE, an optional list of columns can be
included in the triggering statement. If you include a column list, the trigger is
fired on an UPDATE statement only when one of the specified columns is updated.
If you omit a column list, the trigger is fired when any column of the associated
table is updated. A column list cannot be specified for INSERT or DELETE trigger-
ing statements.

The previous example of the PRINT_SALARY_CHANGES trigger might have
included a column list in the triggering statement, as in

. . . BEFORE DELETE OR INSERT OR UPDATE OF ename ON emp . . .

FOR EACH ROW Option
The FOR EACH ROW option determines whether the trigger is a row trigger or a
statement trigger. If you specify FOR EACH ROW, the trigger fires once for each row
of the table that is affected by the triggering statement. The absence of the FOR
EACH ROW option means that the trigger fires only once for each applicable state-
ment, but not separately for each row affected by the statement.

For example, you define the following trigger:

CREATE TRIGGER log_salary_increase
AFTER UPDATE ON emp
FOR EACH ROW
WHEN (new.sal > 1000)
BEGIN
 INSERT INTO emp_log (emp_id, log_date, new_salary, action)
 VALUES (:new.empno, SYSDATE, :new.sal, ’NEW SAL’);
END;

and then issue the SQL statement:

UPDATE emp SET sal = sal + 1000.0
 WHERE deptno = 20;

If there are five employees in department 20, the trigger will fire five times when
this statement is issued, since five rows are affected.

The following trigger fires only once for each UPDATE of the EMP table:

CREATE TRIGGER log_emp_update
AFTER UPDATE ON emp
BEGIN
 INSERT INTO emp_log (log_date, action)
 Using Database Triggers 13-7

Creating Triggers
 VALUES (SYSDATE, ’EMP COMMISSIONS CHANGED’);
END;

The WHEN Clause
Optionally, a trigger restriction can be included in the definition of a row trigger by
specifying a Boolean SQL expression in a WHEN clause (a WHEN clause cannot be
included in the definition of a statement trigger). If included, the expression in the
WHEN clause is evaluated for each row that the trigger affects. If the expression
evaluates to TRUE for a row, the trigger body is fired on behalf of that row. How-
ever, if the expression evaluates to FALSE or NOT TRUE (that is, unknown, as with
nulls) for a row, the trigger body is not fired for that row. The evaluation of the
WHEN clause does not have an effect on the execution of the triggering SQL state-
ment (that is, the triggering statement is not rolled back if the expression in a
WHEN clause evaluates to FALSE).

For example, in the PRINT_SALARY_CHANGES trigger, the trigger body would
not be executed if the new value of EMPNO is zero, NULL, or negative. In more
realistic examples, you might test if one column value is less than another.

The expression in a WHEN clause of a row trigger can include correlation names,
which are explained below. The expression in a WHEN clause must be a SQL
expression and cannot include a subquery. You cannot use a PL/SQL expression
(including user-defined functions) in the WHEN clause.

The Trigger Body
The trigger body is a PL/SQL block that can include SQL and PL/SQL statements.
These statements are executed if the triggering statement is issued and the trigger
restriction (if included) evaluates to TRUE. The trigger body for row triggers has
some special constructs that can be included in the code of the PL/SQL block: corre-
lation names and the REFERENCEING option, and the conditional predicates
INSERTING, DELETING, and UPDATING.

Accessing Column Values in Row Triggers
Within a trigger body of a row trigger, the PL/SQL code and SQL statements have
access to the old and new column values of the current row affected by the trigger-
ing statement. Two correlation names exist for every column of the table being modi-
fied: one for the old column value and one for the new column value. Depending

See Also: For the order of trigger firing, see Oracle8 Concepts
manual.
13-8 Your Product Name/BookTitle as a Variable

Creating Triggers
on the type of triggering statement, certain correlation names might not have any
meaning.

■ A trigger fired by an INSERT statement has meaningful access to new column
values only. Because the row is being created by the INSERT, the old values are
null.

■ A trigger fired by an UPDATE statement has access to both old and new col-
umn values for both BEFORE and AFTER row triggers.

■ A trigger fired by a DELETE statement has meaningful access to old column
values only. Because the row will no longer exist after the row is deleted, the
new values are null.

The new column values are referenced using the NEW qualifier before the column
name, while the old column values are referenced using the OLD qualifier before
the column name. For example, if the triggering statement is associated with the
EMP table (with the columns SAL, COMM, etc.), you can include statements in the
trigger body similar to

IF :new.sal > 10000 . . .
IF :new.sal < :old.sal . . .

Old and new values are available in both BEFORE and AFTER row triggers. A
NEW column value can be assigned in a BEFORE row trigger, but not in an AFTER
row trigger (because the triggering statement takes effect before an AFTER row trig-
ger is fired). If a BEFORE row trigger changes the value of NEW.COLUMN, an
AFTER row trigger fired by the same statement sees the change assigned by the
BEFORE row trigger.

Correlation names can also be used in the Boolean expression of a WHEN clause. A
colon must precede the OLD and NEW qualifiers when they are used in a trigger’s
body, but a colon is not allowed when using the qualifiers in the WHEN clause or
the REFERENCING option.

The REFERENCING Option
The REFERENCING option can be specified in a trigger body of a row trigger to
avoid name conflicts among the correlation names and tables that might be named
“OLD” or “NEW”. Since this is rare, this option is infrequently used.

For example, assume you have a table named NEW with columns FIELD1 (num-
ber) and FIELD2 (character). The following CREATE TRIGGER example shows a
trigger associated with the NEW table that can use correlation names and avoid
naming conflicts between the correlation names and the table name:
 Using Database Triggers 13-9

Creating Triggers
CREATE TRIGGER PRINT_SALARY_CHANGES
BEFORE UPDATE ON new
REFERENCING new AS newest
FOR EACH ROW
BEGIN
 :newest.field2 := TO_CHAR (:newest.field1);
END;

Notice that the NEW qualifier is renamed to NEWEST using the REFERENCING
option, and is then used in the trigger body.

Conditional Predicates
If more than one type of DML operation can fire a trigger (for example, “ON
INSERT OR DELETE OR UPDATE OF emp”), the trigger body can use the condi-
tional predicates INSERTING, DELETING, and UPDATING to execute specific
blocks of code, depending on the type of statement that fires the trigger. Assume
this is the triggering statement:

INSERT OR UPDATE ON emp

Within the code of the trigger body, you can include the following conditions:

IF INSERTING THEN . . . END IF;
IF UPDATING THEN . . . END IF;

The first condition evaluates to TRUE only if the statement that fired the trigger is
an INSERT statement; the second condition evaluates to TRUE only if the statement
that fired the trigger is an UPDATE statement.

In an UPDATE trigger, a column name can be specified with an UPDATING condi-
tional predicate to determine if the named column is being updated. For example,
assume a trigger is defined as

CREATE TRIGGER . . .
. . . UPDATE OF sal, comm ON emp . . .
BEGIN
. . . IF UPDATING (’SAL’) THEN . . . END IF;
END;

The code in the THEN clause executes only if the triggering UPDATE statement
updates the SAL column. The following statement would fire the above trigger and
cause the UPDATING (sal) conditional predicate to evaluate to TRUE:

UPDATE emp SET sal = sal + 100;
13-10 Your Product Name/BookTitle as a Variable

Creating Triggers
Error Conditions and Exceptions in the Trigger Body
If a predefined or user-defined error condition or exception is raised during the exe-
cution of a trigger body, all effects of the trigger body, as well as the triggering state-
ment, are rolled back (unless the error is trapped by an exception handler).
Therefore, a trigger body can prevent the execution of the triggering statement by
raising an exception. User-defined exceptions are commonly used in triggers that
enforce complex security authorizations or integrity constraints.

Triggers and Handling Remote Exceptions
A trigger that accesses a remote site cannot do remote exception handling if the net-
work link is unavailable. For example:

CREATE TRIGGER example
AFTER INSERT ON emp
FOR EACH ROW
BEGIN
 INSERT INTO emp@remote -- <- compilation fails here
 VALUES (’x’); -- when dblink is inaccessible
EXCEPTION
 WHEN OTHERS THEN
 INSERT INTO emp_log
 VALUES (’x’);
END;

A trigger is compiled when it is created. Thus, if a remote site is unavailable when
the trigger must compile, Oracle cannot validate the statement accessing the remote
database, and the compilation fails. The previous example exception statement can-
not execute because the trigger does not complete compilation.

Because stored procedures are stored in a compiled form, the work-around for the
above example is as follows:

CREATE TRIGGER example
AFTER INSERT ON emp
FOR EACH ROW
BEGIN
 insert_row_proc;
END;

See Also: For more information about error processing in PL/
SQL program units, see “Error Handling” on page 10-29 and
“Declaring Exceptions and Exception Handling Routines” on page
10-30.
 Using Database Triggers 13-11

Creating Triggers
CREATE PROCEDURE insert_row_proc
BEGIN
 INSERT INTO emp@remote
 VALUES (’x’);
EXCEPTION
 WHEN OTHERS THEN
 INSERT INTO emp_log
 VALUES (’x’);
END;

The trigger in this example compiles successfully and calls the stored procedure,
which already has a validated statement for accessing the remote database; thus,
when the remote INSERT statement fails because the link is down, the exception is
caught.

Restrictions on Creating Triggers
Coding a trigger requires some restrictions that are not required for standard PL/
SQL blocks. The following sections discuss these restrictions.

Valid SQL Statements in Trigger Bodies
The body of a trigger can contain DML SQL statements. It can also contain SELECT
statements, but they must be SELECT... INTO... statements or the SELECT state-
ment in the definition of a cursor).

DDL statements are not allowed in the body of a trigger. Also, no transaction con-
trol statements are allowed in a trigger. The commands ROLLBACK, COMMIT,
and SAVEPOINT cannot be used.

Statements inside a trigger can reference remote schema objects. However, pay spe-
cial attention when calling remote procedures from within a local trigger; since if a
timestamp or signature mismatch is found during execution of the trigger, the
remote procedure is not executed and the trigger is invalidated.

LONG and LONG RAW Datatypes
LONG and LONG RAW datatypes in triggers are subject to the following restrictions:

Note: A procedure called by a trigger cannot execute the above
transaction control statements because the procedure executes
within the context of the trigger body.
13-12 Your Product Name/BookTitle as a Variable

Creating Triggers
■ A SQL statement within a trigger can insert data into a column of LONG or
LONG RAW datatype.

■ If data from a LONG or LONG RAW column can be converted to a constrained
datatype (such as CHAR and VARCHAR2), a LONG or LONG RAW column can be
referenced in a SQL statement within a trigger. Note that the maximum length
for these datatypes is 32000 bytes.

■ Variables cannot be declared using the LONG or LONG RAW datatypes.

■ :NEW and :OLD cannot be used with LONG or LONG RAW columns.

References to Package Variables
If an UPDATE or DELETE statement detects a conflict with a concurrent UPDATE,
Oracle performs a transparent rollback to savepoint and restarts the update. This
can occur many times before the statement completes successfully. Each time the
statement is restarted, the BEFORE STATEMENT trigger is fired again. The rollback
to savepoint does not undo changes to any package variables referenced in the trig-
ger. The package should include a counter variable to detect this situation.

Row Evaluation Order
A relational database does not guarantee the order of rows processed by a SQL
statement. Therefore, do not create triggers that depend on the order in which rows
will be processed. For example, do not assign a value to a global package variable
in a row trigger if the current value of the global variable is dependent on the row
being processed by the row trigger. Also, if global package variables are updated
within a trigger, it is best to initialize those variables in a BEFORE statement trigger.

When a statement in a trigger body causes another trigger to be fired, the triggers
are said to be cascading. Oracle allows up to 32 triggers to cascade at any one time.
However, you can effectively limit the number of trigger cascades using the initial-
ization parameter OPEN_CURSORS, because a cursor must be opened for every exe-
cution of a trigger.

Trigger Evaluation Order
Although any trigger can execute a sequence of operations either in-line or by call-
ing procedures, using multiple triggers of the same type enhances database admin-
istration by permitting the modular installation of applications that have triggers
on the same tables.
 Using Database Triggers 13-13

Creating Triggers
Oracle executes all triggers of the same type before executing triggers of a different
type. If you have multiple triggers of the same type on a single table, Oracle
chooses an arbitrary order to execute these triggers.

Each subsequent trigger sees the changes made by the previously fired triggers.
Each trigger can see the old and new values. The old values are the original values
and the new values are the current values as set by the most recently fired UPDATE
or INSERT trigger.

To ensure that multiple triggered actions occur in a specific order, you must consoli-
date these actions into a single trigger (for example, by having the trigger call a
series of procedures).

You cannot open a database that contains multiple triggers of the same type if you
are using any version of Oracle before release 7.1, nor can you open such a data-
base if your COMPATIBLE initialization parameter is set to a version earlier than
7.1.0.

Mutating and Constraining Tables
A mutating table is a table that is currently being modified by an UPDATE, DELETE,
or INSERT statement, or a table that might need to be updated by the effects of a
declarative DELETE CASCADE referential integrity constraint. A constraining table is
a table that a triggering statement might need to read either directly, for a SQL state-
ment, or indirectly, for a declarative referential integrity constraint. A table is mutat-
ing or constraining only to the session that issued the statement in progress.

Tables are never considered mutating or constraining for statement triggers unless
the trigger is fired as the result of a DELETE CASCADE.

For all row triggers, or for statement triggers that were fired as the result of a
DELETE CASCADE, there are two important restrictions regarding mutating and con-
straining tables. These restrictions prevent a trigger from seeing an inconsistent set
of data.

■ The SQL statements of a trigger cannot read from (query) or modify a mutating
table of the triggering statement.

■ The statements of a trigger cannot change the PRIMARY, FOREIGN, or UNIQUE
KEY columns of a constraining table of the triggering statement.

There is an exception to this restriction; BEFORE ROW and AFTER ROW triggers
fired by a single row INSERT to a table do not treat that table as mutating or

See Also: Oracle8 Concepts manual for more information on the
firing order of triggers.
13-14 Your Product Name/BookTitle as a Variable

Creating Triggers
constraining. Note that INSERT statements that may involve more than one
row, such as INSERT INTO emp SELECT. . ., are not considered single row
inserts, even if they only result in one row being inserted.

Figure 13–1 illustrates the restriction placed on mutating tables.

Figure 13–1 Mutating Tables

Notice that the SQL statement is executed for the first row of the table and then an
AFTER ROW trigger is fired. In turn, a statement in the AFTER ROW trigger body
attempts to query the original table. However, because the EMP table is mutating,
this query is not allowed by Oracle. If attempted, a runtime error occurs, the effects
of the trigger body and triggering statement are rolled back, and control is returned
to the user or application.

Consider the following trigger:

CREATE OR REPLACE TRIGGER emp_count
AFTER DELETE ON EMP
FOR EACH ROW
DECLARE
 n INTEGER;
BEGIN
 SELECT COUNT(*) INTO n FROM emp;
 DBMS_OUTPUT.PUT_LINE(’ There are now ’ || n ||
 ’ employees.’);

ENAME SAL

EMP Table

SMITH 1000

JONES 1000

WARD 1000

ENAME SAL

EMP Table

SMITH 1100

JONES 1000

WARD 1000

AFTER Row
Trigger Fired,
Contains:

SELECT sal
FROM emp
WHERE...

Not allowed because EMP
table is a mutating table

UPDATE emp
SET sal=sal *1.1;

Original
EMP Table

SQL Statement That
Fires an AFTER
Row Trigger

Mutating
EMP Table
 Using Database Triggers 13-15

Creating Triggers
END;

If the SQL statement

DELETE FROM emp WHERE empno = 7499;

is issued, the following error is returned:

ORA-04091: table SCOTT.EMP is mutating, trigger/function may not see it

Oracle returns this error when the trigger fires since the table is mutating when the
first row is deleted. (Only one row is deleted by the statement, since EMPNO is a pri-
mary key, but Oracle has no way of knowing that.)

If you delete the line “FOR EACH ROW” from the trigger above, the trigger becomes a
statement trigger, the table is not mutating when the trigger fires, and the trigger
does output the correct data.

If you need to update a mutating or constraining table, you could use a temporary
table, a PL/SQL table, or a package variable to bypass these restrictions. For exam-
ple, in place of a single AFTER row trigger that updates the original table, resulting
in a mutating table error, you may be able to use two triggers—an AFTER row trig-
ger that updates a temporary table, and an AFTER statement trigger that updates
the original table with the values from the temporary table.

Declarative integrity constraints are checked at various times with respect to row
triggers.

Because declarative referential integrity constraints are currently not supported
between tables on different nodes of a distributed database, the constraining table
restrictions do not apply to triggers that access remote nodes. These restrictions are
also not enforced among tables in the same database that are connected by loop-
back database links. A loop-back database link makes a local table appear remote
by defining a Net8 path back to the database that contains the link.

You should not use loop-back database links to circumvent the trigger restrictions.
Such applications might behave unpredictably.

Who Is the Trigger User?
If you issue the statement

SELECT username FROM USER_USERS

See Also: Oracle8 Concepts for information about the interaction
of triggers and integrity constraints.
13-16 Your Product Name/BookTitle as a Variable

When Triggers Are Compiled
in a trigger, the name of the owner of the trigger is returned, not the name of user
who is updating the table.

Privileges Required to Create Triggers
To create a trigger in your schema, you must have the CREATE TRIGGER system
privilege, and either

■ own the table specified in the triggering statement, or

■ have the ALTER privilege for the table in the triggering statement, or

■ have the ALTER ANY TABLE system privilege

To create a trigger in another user’s schema, you must have the CREATE ANY TRIG-
GER system privilege. With this privilege, the trigger can be created in any schema
and can be associated with any user’s table.

Privileges for Referenced Schema Objects
The object privileges to the schema objects referenced in the trigger body must be
granted to the trigger’s owner explicitly (not via a role). The statements in the trig-
ger body operate under the privilege domain of the trigger’s owner, not the privi-
lege domain of the user issuing the triggering statement. This is similar to stored
procedures.

When Triggers Are Compiled
Triggers are similar to PL/SQL anonymous blocks with the addition of the :NEW
and :OLD capabilities, but their compilation is different. A PL/SQL anonymous
block is compiled each time it is loaded into memory. Compilation involves three
stages:

1. syntax checking: PL/SQL syntax is checked and a parse tree is generated

2. semantic checking: type checking and further processing on the parse tree

3. code generation: the pcode is generated

Triggers, in contrast, are fully compiled when the CREATE TRIGGER command is
issued, and the pcode is stored in the data dictionary. Hence, firing the trigger no

See Also: “Privileges Required to Execute a Procedure” on page
10-38.
 Using Database Triggers 13-17

When Triggers Are Compiled
longer requires the opening of a shared cursor to run the trigger action. Instead, the
trigger is executed directly.

If errors occur during the compilation of a trigger, the trigger is still created. If a
DML statement fires this trigger, the DML statement will fail. (Runtime trigger
errors always cause the DML statement to fail.) You can use the SHOW ERRORS com-
mand in SQL*Plus or Enterprise Manager to see any compilation errors when you
create a trigger, or you can SELECT the errors from the USER_ERRORS view.

Dependencies
Compiled triggers have dependencies. They become invalid if a depended-on
object, such as a stored procedure or a function called from the trigger body, is mod-
ified. Triggers that are invalidated for dependency reasons are recompiled when
next invoked.

You can examine the ALL_DEPENDENCIES view to see the dependencies for a trig-
ger. For example, the statement

SELECT NAME, REFERENCED_OWNER, REFERENCED_NAME, REFERENCED_TYPE
 FROM ALL_DEPENDENCIES
 WHERE OWNER = ’SCOTT’ and TYPE = ’TRIGGER’;

shows the dependencies for the triggers in the SCOTT schema.

Recompiling a Trigger
Use the ALTER TRIGGER command to recompile a trigger manually. For example,
the command

ALTER TRIGGER print_salary_changes COMPILE;

recompiles the PRINT_SALARY_CHANGES trigger.

To recompile a trigger, you must own the trigger or have the ALTER ANY TRIGGER
system privilege.

Migration Issues
Non-compiled triggers cannot be fired under compiled trigger releases (such as
Oracle 7.3 and Oracle8). If upgrading from a non-compiled trigger release to a com-
piled trigger release, all existing triggers must be compiled. The upgrade script
cat73xx.sql invalidates all triggers so that they are automatically recompiled when
first executed. (The xx stands for a variable minor release number.)
13-18 Your Product Name/BookTitle as a Variable

Enabling and Disabling Triggers
Downgrading from Oracle 7.3 or later to a release prior to 7.3 requires that you exe-
cute the cat73xxd.sql downgrade script. This handles portability issues between
stored and non-stored trigger releases.

Debugging a Trigger
You can debug a trigger using the same facilities available for stored procedures.

Modifying a Trigger
Like a stored procedure, a trigger cannot be explicitly altered; it must be replaced
with a new definition. (The ALTER TRIGGER command is used only to recompile,
enable or disable a trigger.).

When replacing a trigger, you must include the OR REPLACE option in the CREATE
TRIGGER statement. The OR REPLACE option is provided to allow a new version of
an existing trigger to replace the older version without affecting any grants made
for the original version of the trigger.

Alternatively, the trigger can be dropped using the DROP TRIGGER command, and
you can rerun the CREATE TRIGGER command.

To drop a trigger, the trigger must be in your schema or you must have the DROP
ANY TRIGGER system privilege.

Enabling and Disabling Triggers
A trigger can be in one of two distinct modes:

Disabling Triggers
You might temporarily disable a trigger if

■ an object it references is not available

Note Also: “Debugging” on page 10-35

enabled An enabled trigger executes its trigger body if a triggering state-
ment is issued and the trigger restriction (if any) evaluates to
TRUE.

disabled A disabled trigger does not execute its trigger body, even if a
triggering statement is issued and the trigger restriction (if any)
evaluates to TRUE.
 Using Database Triggers 13-19

Enabling and Disabling Triggers
■ you have to perform a large data load and want it to proceed quickly without
firing triggers

■ you are reloading data

By default, triggers are enabled when first created. Disable a trigger using the
ALTER TRIGGER command with the DISABLE option. For example, to disable the
trigger named REORDER of the INVENTORY table, enter the following statement:

ALTER TRIGGER reorder DISABLE;

All triggers associated with a table can be disabled with one statement using the
ALTER TABLE command with the DISABLE clause and the ALL TRIGGERS option.
For example, to disable all triggers defined for the INVENTORY table, enter the fol-
lowing statement:

ALTER TABLE inventory
 DISABLE ALL TRIGGERS;

Enabling Triggers
By default, a trigger is automatically enabled when it is created; however, it can
later be disabled. Once you have completed the task that required the trigger to be
disabled, re-enable the trigger so that it fires when appropriate.

Enable a disabled trigger using the ALTER TRIGGER command with the ENABLE
option. To enable the disabled trigger named REORDER of the INVENTORY table,
enter the following statement:

ALTER TRIGGER reorder ENABLE;

All triggers defined for a specific table can be enabled with one statement using the
ALTER TABLE command with the ENABLE clause with the ALL TRIGGERS option.
For example, to enable all triggers defined for the INVENTORY table, enter the fol-
lowing statement:

ALTER TABLE inventory
 ENABLE ALL TRIGGERS;

Privileges Required to Enable and Disable Triggers
To enable or disable triggers using the ALTER TABLE command, you must either
own the table, have the ALTER schema object privilege for the table, or have the
ALTER ANY TABLE system privilege.

To enable or disable triggers using the ALTER TRIGGER command, you must own
the trigger or have the ALTER ANY TRIGGER system privilege.
13-20 Your Product Name/BookTitle as a Variable

Listing Information About Triggers
Listing Information About Triggers
The following data dictionary views reveal information about triggers:

■ USER_TRIGGERS

■ ALL_TRIGGERS

■ DBA_TRIGGERS

The Oracle8 Reference gives a complete description of these data dictionary views.
For example, assume the following statement was used to create the REORDER trig-
ger:

CREATE TRIGGER reorder
AFTER UPDATE OF parts_on_hand ON inventory
FOR EACH ROW
WHEN(new.parts_on_hand < new.reorder_point)
DECLARE
 x NUMBER;
BEGIN
 SELECT COUNT(*) INTO x
 FROM pending_orders
 WHERE part_no = :new.part_no;
 IF x = 0 THEN
 INSERT INTO pending_orders
 VALUES (:new.part_no, :new.reorder_quantity,
 sysdate);
 END IF;
END;

The following two queries return information about the REORDER trigger:

SELECT trigger_type, triggering_event, table_name
 FROM user_triggers
 WHERE name = ’REORDER’;

TYPE TRIGGERING_STATEMENT TABLE_NAME
---------------- -------------------------- ------------
AFTER EACH ROW UPDATE INVENTORY

SELECT trigger_body
 FROM user_triggers
 WHERE name = ’REORDER’;

TRIGGER_BODY
--
 Using Database Triggers 13-21

Examples of Trigger Applications
DECLARE
 x NUMBER;
BEGIN
 SELECT COUNT(*) INTO x
 FROM pending_orders
 WHERE part_no = :new.part_no;
 IF x = 0
 THEN INSERT INTO pending_orders
 VALUES (:new.part_no, :new.reorder_quantity,
 sysdate);
 END IF;
END;

Examples of Trigger Applications
You can use triggers in a number of ways to customize information management in
an Oracle database. For example, triggers are commonly used to

■ provide sophisticated auditing

■ prevent invalid transactions

■ enforce referential integrity (either those actions not supported by declarative
integrity constraints or across nodes in a distributed database)

■ enforce complex business rules

■ enforce complex security authorizations

■ provide transparent event logging

■ automatically generate derived column values

This section provides an example of each of the above trigger applications. These
examples are not meant to be used as is, but are provided to assist you in designing
your own triggers.

Auditing with Triggers
Triggers are commonly used to supplement the built-in auditing features of Oracle.
Although triggers can be written to record information similar to that recorded by
the AUDIT command, triggers should be used only when more detailed audit infor-
mation is required. For example, use triggers to provide value-based auditing on a
per-row basis tables.

Sometimes, the Oracle AUDIT command is considered a security audit facility, while
triggers can provide financial audit facility.
13-22 Your Product Name/BookTitle as a Variable

Examples of Trigger Applications
When deciding whether to create a trigger to audit database activity, consider what
Oracle’s auditing features provide, compared to auditing defined by triggers.

When using triggers to provide sophisticated auditing, AFTER triggers are nor-
mally used. By using AFTER triggers, auditing information is recorded after the trig-
gering statement is subjected to any applicable integrity constraints, preventing
cases where the audit processing is carried out unnecessarily for statements that
generate exceptions to integrity constraints.

When to use AFTER row vs. AFTER statement triggers depends on the information
being audited. For example, row triggers provide value-based auditing on a per-
row basis for tables. Triggers can also require the user to supply a “reason code” for
issuing the audited SQL statement, which can be useful in both row and statement-
level auditing situations.

The following example demonstrates a trigger that audits modifications to the EMP
table on a per-row basis. It requires that a “reason code” be stored in a global pack-
age variable before the update.

DML as well as
DDL auditing

Standard auditing options permit auditing of DML and DDL
statements regarding all types of schema objects and struc-
tures. Comparatively, triggers only permit auditing of DML
statements issued against tables.

Centralized audit
trail

All database audit information is recorded centrally and auto-
matically using the auditing features of Oracle.

Declarative
method

Auditing features enabled using the standard Oracle features
are easier to declare and maintain, and less prone to errors
when compared to auditing functions defined by triggers.

Auditing options
can be audited

Any changes to existing auditing options can also be audited
to guard against malicious database activity.

Session and execu-
tion time auditing

Using the database auditing features, records can be generated
once every time an audited statement is issued (BY ACCESS) or
once for every session that issues an audited statement (BY
SESSION). Triggers cannot audit by session; an audit record is
generated each time a trigger-audited table is referenced.

Auditing of unsuc-
cessful data access

Database auditing can be set to audit when unsuccessful data
access occurs. However, any audit information generated by a
trigger is rolled back if the triggering statement is rolled back.

Sessions can be
audited

Connections and disconnections, as well as session activity
(physical I/Os, logical I/Os, deadlocks, etc.), can be recorded
using standard database auditing.
 Using Database Triggers 13-23

Examples of Trigger Applications
Example This trigger demonstrates

■ how triggers can be used to provide value-based auditing

■ how to use public package variables

Comments within the code explain the functionality of the trigger.

CREATE TRIGGER audit_employee
AFTER INSERT OR DELETE OR UPDATE ON emp
FOR EACH ROW
BEGIN
/* AUDITPACKAGE is a package with a public package
 variable REASON. REASON could be set by the
 application by a command such as EXECUTE
 AUDITPACKAGE.SET_REASON(reason_string). Note that a
 package variable has state for the duration of a
 session and that each session has a separate copy of
 all package variables. */

IF auditpackage.reason IS NULL THEN
 raise_application_error(-20201, ’Must specify reason’
 || ’ with AUDITPACKAGE.SET_REASON(reason_string)’);
END IF;

/* If the above conditional evaluates to TRUE, the
 user-specified error number and message is raised,
 the trigger stops execution, and the effects of the
 triggering statement are rolled back. Otherwise, a
 new row is inserted into the predefined auditing
 table named AUDIT_EMPLOYEE containing the existing
 and new values of the EMP table and the reason code
 defined by the REASON variable of AUDITPACKAGE. Note
 that the ”old” values are NULL if triggering
 statement is an INSERT and the ”new” values are NULL
 if the triggering statement is a DELETE. */

INSERT INTO audit_employee VALUES
 (:old.ssn, :old.name, :old.job_classification, :old.sal,
 :new.ssn, :new.name, :new.job_classification, :new.sal,
 auditpackage.reason, user, sysdate);
END;
13-24 Your Product Name/BookTitle as a Variable

Examples of Trigger Applications
Optionally, you can also set the reason code back to NULL if you wanted to force the
reason code to be set for every update. The following simple AFTER statement trig-
ger sets the reason code back to NULL after the triggering statement is executed:

CREATE TRIGGER audit_employee_reset
AFTER INSERT OR DELETE OR UPDATE ON emp
BEGIN
 auditpackage.set_reason(NULL);
END;

Notice that the previous two triggers are both fired by the same type of SQL state-
ment. However, the AFTER row trigger is fired once for each row of the table
affected by the triggering statement, while the AFTER statement trigger is fired only
once after the triggering statement execution is completed.

Another example of using triggers to do auditing is shown below. This trigger
tracks changes being made to the EMP table, and stores this information in
AUDIT_TABLE and AUDIT_TABLE_VALUES.

CREATE OR REPLACE TRIGGER audit_emp
 AFTER INSERT OR UPDATE OR DELETE ON emp
 FOR EACH ROW
 DECLARE
 time_now DATE;
 terminal CHAR(10);
 BEGIN

 -- get current time, and the terminal of the user
 time_now := SYSDATE;
 terminal := USERENV(’TERMINAL’);

 -- record new employee primary key
 IF INSERTING THEN
 INSERT INTO audit_table
 VALUES (audit_seq.NEXTVAL, user, time_now,
 terminal, ’EMP’, ’INSERT’, :new.empno);

 -- record primary key of the deleted row
 ELSIF DELETING THEN
 INSERT INTO audit_table
 VALUES (audit_seq.NEXTVAL, user, time_now,
 terminal, ’EMP’, ’DELETE’, :old.empno);

 -- for updates, record the primary key
 -- of the row being updated
 Using Database Triggers 13-25

Examples of Trigger Applications
 ELSE
 INSERT INTO audit_table
 VALUES (audit_seq.NEXTVAL, user, time_now,
 terminal, ’EMP’, ’UPDATE’, :old.empno);

 -- and for SAL and DEPTNO, record old and new values
 IF UPDATING (’SAL’) THEN
 INSERT INTO audit_table_values
 VALUES (audit_seq.CURRVAL, ’SAL’,
 :old.sal, :new.sal);

 ELSIF UPDATING (’DEPTNO’) THEN
 INSERT INTO audit_table_values
 VALUES (audit_seq.CURRVAL, ’DEPTNO’,
 :old.deptno, :new.deptno);
 END IF;
 END IF;
 END;
/

Integrity Constraints and Triggers
Triggers and declarative integrity constraints can both be used to constrain data
input. However, triggers and integrity constraints have significant differences.

Declarative integrity constraints are statements about the database that are always
true. A constraint applies to existing data in the table and any statement that manip-
ulates the table.

Triggers constrain what a transaction can do. A trigger does not apply to data
loaded before the definition of the trigger; therefore, it is not known if all data in a
table conforms to the rules established by an associated trigger.

See Also: Chapter 9, “Maintaining Data Integrity”
13-26 Your Product Name/BookTitle as a Variable

Examples of Trigger Applications
Although triggers can be written to enforce many of the same rules supported by
Oracle’s declarative integrity constraint features, triggers should only be used to
enforce complex business rules that cannot be defined using standard integrity con-
straints. The declarative integrity constraint features provided with Oracle offer the
following advantages when compared to constraints defined by triggers:

While most aspects of data integrity can be defined and enforced using declarative
integrity constraints, triggers can be used to enforce complex business constraints
not definable using declarative integrity constraints. For example, triggers can be
used to enforce

■ UPDATE and DELETE SET NULL, and UPDATE and DELETE SET DEFAULT refer-
ential actions

■ referential integrity when the parent and child tables are on different nodes of a
distributed database

■ complex check constraints not definable using the expressions allowed in a
CHECK constraint

Enforcing Referential Integrity Using Triggers
Many cases of referential integrity can be enforced using triggers. However, only
use triggers when you want to enforce the UPDATE and DELETE SET NULL (when
referenced data is updated or deleted, all associated dependent data is site to
NULL), and UPDATE and DELETE SET DEFAULT (when referenced data is updated
or deleted, all associated dependent data is set to a default value) referential
actions, or when you want to enforce referential integrity between parent and child
tables on different nodes of a distributed database.

When using triggers to maintain referential integrity, declare the PRIMARY (or
UNIQUE) KEY constraint in the parent table. If referential integrity is being main-
tained between a parent and child table in the same database, you can also declare
the foreign key in the child table, but disable it; this prevents the corresponding
PRIMARY KEY constraint from being dropped (unless the PRIMARY KEY constraint
is explicitly dropped with the CASCADE option).

Centralized integ-
rity checks

All points of data access must adhere to the global set of rules
defined by the integrity constraints corresponding to each
schema object.

Declarative
method

Constraints defined using the standard integrity constraint fea-
tures are much easier to write and are less prone to errors
when compared with comparable constraints defined by trig-
gers.
 Using Database Triggers 13-27

Examples of Trigger Applications
To maintain referential integrity using triggers:

■ A trigger must be defined for the child table that guarantees values inserted or
updated in the foreign key correspond to values in the parent key.

■ One or more triggers must be defined for the parent table. These triggers guar-
antee the desired referential action (RESTRICT, CASCADE, or SET NULL) for val-
ues in the foreign key when values are updated or deleted in the parent key. No
action is required for inserts into the parent table (no dependent foreign keys
exist).

The following sections provide examples of the triggers necessary to enforce refer-
ential integrity. The EMP and DEPT table relationship is used in these examples.

Several of the triggers include statements that lock rows (SELECT... FOR UPDATE).
This operation is necessary to maintain concurrency as the rows are being pro-
cessed.

Foreign Key Trigger for Child Table The following trigger guarantees that before an
INSERT or UPDATE statement affects a foreign key value, the corresponding value
exists in the parent key. The mutating table exception included in the example
below allows this trigger to be used with the UPDATE_SET_DEFAULT and
UPDATE_CASCADE triggers. This exception can be removed if this trigger is used
alone.

CREATE TRIGGER emp_dept_check
BEFORE INSERT OR UPDATE OF deptno ON emp
FOR EACH ROW WHEN (new.deptno IS NOT NULL)

-- Before a row is inserted, or DEPTNO is updated in the EMP
-- table, fire this trigger to verify that the new foreign
-- key value (DEPTNO) is present in the DEPT table.
DECLARE
 dummy INTEGER; -- used for cursor fetch below
 invalid_department EXCEPTION;
 valid_department EXCEPTION;
 mutating_table EXCEPTION;
 PRAGMA EXCEPTION_INIT (mutating_table, -4091);
-- Cursor used to verify parent key value exists. If
-- present, lock parent key’s row so it can’t be
-- deleted by another transaction until this
-- transaction is committed or rolled back.
CURSOR PRINT_SALARY_CHANGES_cursor (dn NUMBER) IS
 SELECT deptno
 FROM dept
13-28 Your Product Name/BookTitle as a Variable

Examples of Trigger Applications
 WHERE deptno = dn
 FOR UPDATE OF deptno;
BEGIN
 OPEN dummy_cursor (:new.deptno);
 FETCH dummy_cursor INTO dummy;

 -- Verify parent key. If not found, raise user-specified
 -- error number and message. If found, close cursor
 -- before allowing triggering statement to complete.
 IF dummy_cursor%NOTFOUND THEN
 RAISE invalid_department;

ELSE
 RAISE valid_department;
 END IF;
 CLOSE dummy_cursor;
EXCEPTION
 WHEN invalid_department THEN
 CLOSE dummy_cursor;
 raise_application_error(-20000, ’Invalid Department’
 || ’ Number’ || TO_CHAR(:new.deptno));
 WHEN valid_department THEN
 CLOSE dummy_cursor;
 WHEN mutating_table THEN
 NULL;
END;

UPDATE and DELETE RESTRICT Trigger for the Parent Table The following trigger is
defined on the DEPT table to enforce the UPDATE and DELETE RESTRICT referen-
tial action on the primary key of the DEPT table:

CREATE TRIGGER dept_restrict
BEFORE DELETE OR UPDATE OF deptno ON dept
FOR EACH ROW

-- Before a row is deleted from DEPT or the primary key
-- (DEPTNO) of DEPT is updated, check for dependent
-- foreign key values in EMP; rollback if any are found.
DECLARE
 dummy INTEGER; -- used for cursor fetch below
 employees_present EXCEPTION;
 employees_not_present EXCEPTION;

 -- Cursor used to check for dependent foreign key values.
 CURSOR dummy_cursor (dn NUMBER) IS
 Using Database Triggers 13-29

Examples of Trigger Applications
 SELECT deptno FROM emp WHERE deptno = dn;

BEGIN
 OPEN dummy_cursor (:old.deptno);
 FETCH dummy_cursor INTO dummy;

 -- If dependent foreign key is found, raise user-specified
 -- error number and message. If not found, close cursor
 -- before allowing triggering statement to complete.
 IF dummy_cursor%FOUND THEN
 RAISE employees_present; /* dependent rows exist */
 ELSE
 RAISE employees_not_present; /* no dependent rows */
 END IF;
 CLOSE dummy_cursor;

EXCEPTION
 WHEN employees_present THEN
 CLOSE dummy_cursor;
 raise_application_error(-20001, ’Employees Present in’
 || ’ Department ’ || TO_CHAR(:old.deptno));
 WHEN employees_not_present THEN
 CLOSE dummy_cursor;
END;

UPDATE and DELETE SET NULL Triggers for Parent Table The following trigger is
defined on the DEPT table to enforce the UPDATE and DELETE SET NULL referential
action on the primary key of the DEPT table:

CREATE TRIGGER dept_set_null
AFTER DELETE OR UPDATE OF deptno ON dept
FOR EACH ROW

-- Before a row is deleted from DEPT or the primary key
-- (DEPTNO) of DEPT is updated, set all corresponding
-- dependent foreign key values in EMP to NULL.
BEGIN

WARNING: This trigger will not work with self-referential
tables (that is, tables with both the primary/unique key and the
foreign key). Also, this trigger does not allow triggers to cycle
(such as, A fires B fires A).
13-30 Your Product Name/BookTitle as a Variable

Examples of Trigger Applications
 IF UPDATING AND :OLD.deptno != :NEW.deptno OR DELETING THEN
 UPDATE emp SET emp.deptno = NULL
 WHERE emp.deptno = :old.deptno;
 END IF;
END;

DELETE Cascade Trigger for Parent Table The following trigger on the DEPT table
enforces the DELETE CASCADE referential action on the primary key of the DEPT
table:

CREATE TRIGGER dept_del_cascade
AFTER DELETE ON dept
FOR EACH ROW

-- Before a row is deleted from DEPT, delete all
-- rows from the EMP table whose DEPTNO is the same as
-- the DEPTNO being deleted from the DEPT table.
BEGIN
 DELETE FROM emp
 WHERE emp.deptno = :old.deptno;
END;

UPDATE Cascade Trigger for Parent Table The following trigger ensures that if a depart-
ment number is updated in the DEPT table, this change is propagated to dependent
foreign keys in the EMP table:

-- Generate a sequence number to be used as a flag for
-- determining if an update has occurred on a column.
CREATE SEQUENCE update_sequence
 INCREMENT BY 1 MAXVALUE 5000
 CYCLE;

CREATE PACKAGE integritypackage AS
 updateseq NUMBER;
END integritypackage;

CREATE or replace PACKAGE BODY integritypackage AS
END integritypackage;
ALTER TABLE emp ADD update_id NUMBER; -- create flag col.

Note: Typically, the code for DELETE cascade is combined with
the code for UPDATE SET NULL or UPDATE SET DEFAULT to
account for both updates and deletes.
 Using Database Triggers 13-31

Examples of Trigger Applications
CREATE TRIGGER dept_cascade1 BEFORE UPDATE OF deptno ON dept
DECLARE
 dummy NUMBER;

-- Before updating the DEPT table (this is a statement
-- trigger), generate a new sequence number and assign
-- it to the public variable UPDATESEQ of a user-defined
-- package named INTEGRITYPACKAGE.
BEGIN
 SELECT update_sequence.NEXTVAL
 INTO dummy
 FROM dual;
 integritypackage.updateseq := dummy;
END;

CREATE TRIGGER dept_cascade2 AFTER DELETE OR UPDATE
 OF deptno ON dept FOR EACH ROW

-- For each department number in DEPT that is updated,
-- cascade the update to dependent foreign keys in the
-- EMP table. Only cascade the update if the child row
-- has not already been updated by this trigger.
BEGIN
 IF UPDATING THEN
 UPDATE emp
 SET deptno = :new.deptno,
 update_id = integritypackage.updateseq /*from 1st*/
 WHERE emp.deptno = :old.deptno
 AND update_id IS NULL;
 /* only NULL if not updated by the 3rd trigger
 fired by this same triggering statement */
 END IF;
 IF DELETING THEN

 -- Before a row is deleted from DEPT, delete all
 -- rows from the EMP table whose DEPTNO is the same as
 -- the DEPTNO being deleted from the DEPT table.
 DELETE FROM emp
 WHERE emp.deptno = :old.deptno;
 END IF;
END;
CREATE TRIGGER dept_cascade3 AFTER UPDATE OF deptno ON dept
BEGIN UPDATE emp
 SET update_id = NULL
13-32 Your Product Name/BookTitle as a Variable

Examples of Trigger Applications
 WHERE update_id = integritypackage.updateseq;
END;

Enforcing Complex Check Constraints
Triggers can enforce integrity rules other than referential integrity. For example,
this trigger performs a complex check before allowing the triggering statement to
execute. Comments within the code explain the functionality of the trigger.

CREATE TRIGGER salary_check
BEFORE INSERT OR UPDATE OF sal, job ON emp
FOR EACH ROW
DECLARE
 minsal NUMBER;
 maxsal NUMBER;
 salary_out_of_range EXCEPTION;
BEGIN

/* Retrieve the minimum and maximum salary for the
 employee’s new job classification from the SALGRADE
 table into MINSAL and MAXSAL. */

SELECT minsal, maxsal INTO minsal, maxsal FROM salgrade
 WHERE job_classification = :new.job;

/* If the employee’s new salary is less than or greater
 than the job classification’s limits, the exception is
 raised. The exception message is returned and the
 pending INSERT or UPDATE statement that fired the
 trigger is rolled back. */

 IF (:new.sal < minsal OR :new.sal > maxsal) THEN
 RAISE salary_out_of_range;
 END IF;
EXCEPTION

Note: Because this trigger updates the EMP table, the
EMP_DEPT_CHECK trigger, if enabled, is also fired. The resulting
mutating table error is trapped by the EMP_DEPT_CHECK trigger.
You should carefully test any triggers that require error trapping to
succeed to ensure that they will always work properly in your envi-
ronment.
 Using Database Triggers 13-33

Examples of Trigger Applications
 WHEN salary_out_of_range THEN
 raise_application_error (-20300,
 ’Salary ’||TO_CHAR(:new.sal)||’ out of range for ’
 ||’job classification ’||:new.job
 ||’ for employee ’||:new.name);
 WHEN NO_DATA_FOUND THEN
 raise_application_error(-20322,
 ’Invalid Job Classification ’
 ||:new.job_classification);
END;

Complex Security Authorizations and Triggers
Triggers are commonly used to enforce complex security authorizations for table
data. Only use triggers to enforce complex security authorizations that cannot be
defined using the database security features provided with Oracle. For, example, a
trigger can prohibit updates to salary data of the EMP table during weekends, holi-
days, and non-working hours.

When using a trigger to enforce a complex security authorization, it is best to use a
BEFORE statement trigger. Using a BEFORE statement trigger has these benefits:

■ The security check is done before the triggering statement is allowed to execute
so that no wasted work is done by an unauthorized statement.

■ The security check is performed only once for the triggering statement, not for
each row affected by the triggering statement.

Example This example shows a trigger used to enforce security. The Comments
within the code explain the functionality of the trigger.

CREATE TRIGGER emp_permit_changes
BEFORE INSERT OR DELETE OR UPDATE ON emp
DECLARE
 dummy INTEGER;
 not_on_weekends EXCEPTION;
 not_on_holidays EXCEPTION;
 non_working_hours EXCEPTION;
BEGIN
 /* check for weekends */
 IF (TO_CHAR(sysdate, ’DY’) = ’SAT’ OR
 TO_CHAR(sysdate, ’DY’) = ’SUN’) THEN
 RAISE not_on_weekends;
 END IF;
 /* check for company holidays */
 SELECT COUNT(*) INTO dummy FROM company_holidays
13-34 Your Product Name/BookTitle as a Variable

Examples of Trigger Applications
 WHERE TRUNC(day) = TRUNC(sysdate);
 /* TRUNC gets rid of time parts of dates */
 IF dummy > 0 THEN
 RAISE not_on_holidays;
 END IF;
 /* Check for work hours (8am to 6pm) */
 IF (TO_CHAR(sysdate, ’HH24’) < 8 OR
 TO_CHAR(sysdate, ’HH24’) > 18) THEN
 RAISE non_working_hours;
 END IF;
EXCEPTION
 WHEN not_on_weekends THEN
 raise_application_error(-20324,’May not change ’
 ||’employee table during the weekend’);
 WHEN not_on_holidays THEN
 raise_application_error(-20325,’May not change ’
 ||’employee table during a holiday’);
 WHEN non_working_hours THEN
 raise_application_error(-20326,’May not change ’
 ||’emp table during non-working hours’);
END;

Transparent Event Logging and Triggers
Triggers are very useful when you want to transparently perform a related change
in the database following certain events.

Example The REORDER trigger example on page 13-21 shows a trigger that reorders
parts as necessary when certain conditions are met (that is, a triggering statement is
issued and the PARTS_ON_HAND value is less than the REORDER_POINT value).

Derived Column Values and Triggers
Triggers can derive column values automatically based upon a value provided by
an INSERT or UPDATE statement. This type of trigger is useful to force values in
specific columns that depend on the values of other columns in the same row.
BEFORE row triggers are necessary to complete this type of operation because

■ the dependent values must be derived before the insert or update occurs so
that the triggering statement can use the derived values.

■ the trigger must fire for each row affected by the triggering INSERT or UPDATE
statement.
 Using Database Triggers 13-35

Examples of Trigger Applications
Example The following example illustrates how a trigger can be used to derive new
column values for a table whenever a row is inserted or updated. Comments
within the code explain its functionality.

BEFORE INSERT OR UPDATE OF ename ON emp

/* Before updating the ENAME field, derive the values for
 the UPPERNAME and SOUNDEXNAME fields. Users should be
 restricted from updating these fields directly. */
FOR EACH ROW

BEGIN
 :new.uppername := UPPER(:new.ename);
 :new.soundexname := SOUNDEX(:new.ename);
END;
13-36 Your Product Name/BookTitle as a Variable

 Using Dynam
14

Using Dynamic SQL

This chapter describes the dynamic SQL package, DBMS_SQL. The following topics
are described in this chapter:

■ the differences between the DBMS_SQL package and the Oracle Call Interfaces

■ using the DBMS_SQL package to execute DDL

■ procedures and functions provided in the DBMS_SQL package
ic SQL 14-1

Overview of Dynamic SQL
Overview of Dynamic SQL
You can write stored procedures and anonymous PL/SQL blocks that use dynamic
SQL. Dynamic SQL statements are not embedded in your source program; rather,
they are stored in character strings that are input to, or built by, the program at runt-
ime. This permits you to create procedures that are more general purpose. For
example, using dynamic SQL allows you to create a procedure that operates on a
table whose name is not known until runtime.

Additionally, you can parse any data manipulation language (DML) or data defini-
tion language (DDL) statement using the DBMS_SQL package. This helps solve the
problem of not being able to parse data definition language statements directly
using PL/SQL. For example, you might now choose to issue a DROP TABLE state-
ment from within a stored procedure by using the PARSE procedure supplied with
the DBMS_SQL package.

Creating the DBMS_SQL Package
To create the DBMS_SQL package, submit the DBMSSQL.SQL and PRVTSQL.PLB
scripts when connected as the user SYS. These scripts are run automatically by the
CATPROC.SQL script.

See Also: “Privileges Required to Execute a Procedure” on page
10-38 for information on granting the necessary privileges to users
who will be executing this package.
14-2 Oracle8 Application Developer’s Guide

Using DBMS_SQL
Using DBMS_SQL
The ability to use dynamic SQL from within stored procedures generally follows
the model of the Oracle Call Interface (OCI). You should refer to the Oracle Call
Interface Programmer’s Guide for additional information on the concepts presented in
this chapter.

PL/SQL differs somewhat from other common programming languages, such as C.
For example, addresses (also called pointers) are not user visible in PL/SQL. As a
result, there are some differences between the Oracle Call Interface and the
DBMS_SQL package. These differences include the following:

■ The OCI uses bind by address, while the DBMS_SQL package uses bind by
value.

■ With DBMS_SQL you must call VARIABLE_VALUE to retrieve the value of an
OUT parameter for an anonymous block, and you must call COLUMN_VALUE
after fetching rows to actually retrieve the values of the columns in the rows
into your program.

■ The current release of the DBMS_SQL package does not provide CANCEL cursor
procedures.

■ Indicator variables are not required because nulls are fully supported as values
of a PL/SQL variable.

A sample usage of the DBMS_SQL package is shown below. For users of the Oracle
Call Interfaces, this code should seem fairly straightforward. Each of the functions
and procedures used in this example is described later in this chapter.

A more detailed example, which shows how you can use the DBMS_SQL package to
build a query statement dynamically, begins on page 14-30. This example does not
actually require the use of dynamic SQL, because the text of the statement is known
at compile time. However, it illustrates the concepts of this package.

/* The DEMO procedure deletes all of the employees from the EMP
 * table whose salaries are greater than the salary that you
 * specify when you run DEMO. */

CREATE OR REPLACE PROCEDURE demo(salary IN NUMBER) AS
 cursor_name INTEGER;
 rows_processed INTEGER;
BEGIN
 cursor_name := dbms_sql.open_cursor;
 dbms_sql.parse(cursor_name, ’DELETE FROM emp WHERE sal > :x’,
 dbms_sql);
 Using Dynamic SQL 14-3

Execution Flow
 dbms_sql.bind_variable(cursor_name, ’:x’, salary);
 rows_processed := dbms_sql.execute(cursor_name);
 dbms_sql.close_cursor(cursor_name);
EXCEPTION
WHEN OTHERS THEN
 dbms_sql.close_cursor(cursor_name);
END;

Execution Flow
The typical flow of procedure calls is shown in Figure 14–1. A general explanation
of these procedures follows.

Each of these procedures is described in greater detail starting on page 14-8.

OPEN_CURSOR
To process a SQL statement, you must have an open cursor. When you call
the OPEN_CURSOR function, you receive a cursor ID number for the data structure
representing a valid cursor maintained by Oracle. These cursors are distinct from
cursors defined at the precompiler, OCI, or PL/SQL level, and are used only by the
DBMS_SQL package.

PARSE
Every SQL statement must be parsed by calling the PARSE procedure. Parsing the
statement checks the statement’s syntax and associates it with the cursor in your
program.

You can parse any data manipulation language or data definition language state-
ments. Data definition language statements are executed on the parse, which per-
forms the implied commit.

See Also: Oracle8 Concepts for an explanation of how SQL state-
ments are parsed.

Note: When parsing a data definition language statement to drop
a package or a procedure, a deadlock can occur if a procedure in
the package is still in use by you. After a call to a procedure, that
procedure is considered to be in use until execution has returned to
the user side. Any such deadlock will timeout after five minutes.
14-4 Oracle8 Application Developer’s Guide

Execution Flow
Figure 14–1 DBMS_SQL Execution Flow

open_cursor

PARSE

Use bind
variables?

bind_variable

query?

EXECUTE

PL/SQL
block?

variable_value

close_cursor

no

yes

yes

no

yes

no

define_column

EXECUTE

fetch_rows

column_value

variable_value
 Using Dynamic SQL 14-5

Execution Flow
BIND_VARIABLE or BIND_ARRAY
Many data manipulation language statements require that data in your program be
input to Oracle. When you define a SQL statement that contains input data to be
supplied at runtime, you must use placeholders in the SQL statement to mark
where data must be supplied.

For each placeholder in the SQL statement, you must call one of the bind proce-
dures, BIND_VARIABLE or BIND_ARRAY, to supply the value of a variable in your
program (or the values of an array) to the placeholder. When the SQL statement is
subsequently executed, Oracle uses the data that your program has placed in the
output and input, or bind, variables.

DBMS_SQL can execute a DML statement multiple times — each time with a differ-
ent bind variable. The BIND_ARRAY procedure allows you to bind an array of sca-
lars, each value of which will be used as an input variable once per EXECUTE. This
is similar to the array interface supported by the OCI.

DEFINE_COLUMN, DEFINE_COLUMN_LONG, or DEFINE_ARRAY
The columns of the row being selected in a SELECT statement are identified by
their relative positions as they appear in the select list, from left to right. For a
query, you must call one of the define procedures (DEFINE_COLUMN,
DEFINE_COLUMN_LONG, or DEFINE_ARRAY) to specify the variables that are to
receive the SELECT values, much the way an INTO clause does for a static query.

You use the DEFINE_COLUMN_LONG procedure to define LONG columns, in the
same way that DEFINE_COLUMN is used to define non-LONG columns. You must
call DEFINE_COLUMN_LONG before using the COLUMN_VALUE_LONG procedure to
fetch from the LONG column.

You use the DEFINE_ARRAY procedure to define a PL/SQL array into which you
want to fetch rows in a single SELECT statement. You must call DEFINE_ARRAY
before using the COLUMN_VALUE procedure to fetch the rows.

EXECUTE
Call the EXECUTE function to execute your SQL statement.

FETCH_ROWS or EXECUTE_AND_FETCH
Call the FETCH_ROWS function to retrieve the rows that satisfy the query. Each suc-
cessive fetch retrieves another row, until the fetch is unable to retrieve anymore
rows. Instead of calling EXECUTE and then FETCH_ROWS, you may find it more effi-
cient to call EXECUTE_AND_FETCH if you are calling EXECUTE for a single iteration.
14-6 Oracle8 Application Developer’s Guide

Security for Dynamic SQL
VARIABLE_VALUE, COLUMN_VALUE, or COLUMN_VALUE_LONG
For queries, call COLUMN_VALUE to determine the value of a column retrieved by
the FETCH_ROWS call. For anonymous blocks containing calls to PL/SQL proce-
dures, call VARIABLE_VALUE to retrieve the values assigned to the output vari-
ables of the PL/SQL procedures when they were executed.

To fetch just part of a LONG database column (which can be up to two gigabytes in
size), you use the COLUMN_VALUE_LONG procedure. You can specify the offset (in
bytes) into the column value, and the number of bytes to fetch.

CLOSE_CURSOR
When you no longer need a cursor for a session, close the cursor by calling
CLOSE_CURSOR. If you are using an Oracle Open Gateway, you may need to close
cursors at other times as well. Consult your Oracle Open Gateway documentation for
additional information.

If you neglect to close a cursor, the memory used by that cursor remains allocated
even though it is no longer needed.

Security for Dynamic SQL
This section describes the security domain for DBMS_SQL procedures when you are
using the Oracle Server or Trusted Oracle Server.

For Oracle Server Users
Any DBMS_SQL procedures called from an anonymous PL/SQL block are executed
using the privileges of the current user. Any DBMS_SQL procedures called from a
stored procedure are executed using the privileges of the owner of the stored proce-
dure.

Therefore, if a user creates a procedure and grants EXECUTE privilege on it to a sec-
ond user, the second user must also be granted privileges explicitly for any DML
operations performed in the body of the stored procedure. (These privileges cannot
be granted through a role, because roles are disabled inside stored procedures.) Not
granting privileges for the DML operations may result in the error message ORA-
01031 : "insufficient privileges" at runtime.

For Trusted Oracle Server Users
Any DBMS_SQL procedures called from an anonymous PL/SQL block are executed
using the privileges of the current user. Any DBMS_SQL procedures called from a
stored procedure are executed using the discretionary access control (DAC) and sys-
 Using Dynamic SQL 14-7

Procedures and Functions
tem privileges of the owner of the stored procedure and the union of the manda-
tory access control (MAC) privileges granted to the stored procedure and the
current user.

Procedures and Functions
Table 14–1 provides a brief description of each of the procedures and functions asso-
ciated with the DBMS_SQL package, which are described in detail later in this chap-
ter.

See Also: “Examples of Using DBMS_SQL” on page 14-30 for
examples of how these functions can be used.

Table 14–1 DBMS_SQL Package Functions and Procedures

Function/Procedure Description Refer to

OPEN_CURSOR Return cursor ID number of new

cursor.

page 14-9

PARSE Parse given statement. page 14-10

BIND_VARIABLE Bind a given value to a given

variable.

page 14-11

BIND_ARRAY Bind a given value to a given array. page 14-11

DEFINE_COLUMN Define a column to be selected from
the given cursor, used only with

SELECT statements.

page 14-16

DEFINE_ARRAY Define an array to be selected from
the given cursor, used only with
SELECT statements.

page 14-17

DEFINE_COLUMN_LONG Define a LONG column to be
selected from the given cursor, used
only with SELECT statements.

page 14-19

EXECUTE Execute a given cursor. page 14-20

EXECUTE_AND_FETCH Execute a given cursor and fetch
rows.

page 14-20

FETCH_ROWS Fetch a row from a given cursor. page 14-21
14-8 Oracle8 Application Developer’s Guide

Procedures and Functions
OPEN_CURSOR Function
Call OPEN_CURSOR to open a new cursor. When you no longer need this cursor,
you must close it explicitly by calling CLOSE_CURSOR.

You can use cursors to execute the same SQL statement repeatedly or to execute a
new SQL statement. When a cursor is reused, the contents of the corresponding cur-
sor data area are reset when the new SQL statement is parsed. It is never necessary
to close and reopen a cursor before reusing it.

COLUMN_VALUE Returns value of the cursor element
for a given position in a cursor.

page 14-21

COLUMN_VALUE_LONG Returns a selected part of a LONG
column, that has been defined

using DEFINE_COLUMN_LONG.

page 14-23

VARIABLE_VALUE Returns value of named variable for
given cursor.

page 14-24

IS_OPEN Returns TRUE if given cursor is open. page 14-26

DESCRIBE_COLUMNS Describes the columns for a cursor
opened and parsed through
DBMS_SQL.

page 14-26

CLOSE_CURSOR Closes given cursor and frees mem-
ory.

page 14-28

LAST_ERROR_POSITION Returns byte offset in the SQL

statement text where the error

occurred.

page 14-29

LAST_ROW_COUNT Returns cumulative count of the num-
ber of rows fetched.

page 14-29

LAST_ROW_ID Returns ROWID of last row

processed.

page 14-29

LAST_SQL_
FUNCTION_CODE

Returns SQL function code for

statement.

page 14-29

Table 14–1 (Cont.) DBMS_SQL Package Functions and Procedures

Function/Procedure Description Refer to
 Using Dynamic SQL 14-9

Procedures and Functions
Syntax of OPEN_CURSOR
The OPEN_CURSOR function returns the cursor ID number of the new cursor. The
syntax for this function is:

DBMS_SQL. OPEN_CURSOR RETURN INTEGER;

PARSE Procedure
Call PARSE to parse the given statement in the given cursor. All statements are
parsed immediately. This may change in future versions; you should not rely on
this behavior.

Syntax of PARSE
The parameters for the PARSE procedure are described in Table 14–2. The syntax
for this procedure is:

DBMS_SQL.PARSE(
 c IN INTEGER,
 statement IN VARCHAR2,
 language_flag IN INTEGER);

The size limit for parsing SQL statements with the syntax above is size_t, which is
the largest possible contiguous allocation on the machine being used. The PARSE
procedure also supports the following syntax for large SQL statements:

DBMS_SQL.PARSE(
 c IN INTEGER,
 statement IN VARCHAR2S,
 lb IN INTEGER,
 ub IN INTEGER,
 lfflg IN BOOLEAN,
 language_flag IN INTEGER);

The procedure concatenates elements of a PL/SQL table statement and parses the
resulting string. You can use this procedure to parse a statement that is longer than
the limit for a single VARCHAR2 variable by splitting up the statement.
14-10 Oracle8 Application Developer’s Guide

Procedures and Functions
The VARCHAR2S Datatype for Parsing Large SQL Strings
To parse SQL statements larger than 32 KB, the DBMS_SQL package makes use of
PL/SQL tables to pass a table of strings to the PARSE procedure. These strings are
concatenated and then passed on to the Oracle Server.

You can declare a local variable as the VARCHAR2S table-item type, and then use
the PARSE procedure to parse a large SQL statement as VARCHAR2S.

The definition of the VARCHAR2S datatype is:

type varchar2s is table of varchar2(256) index by binary_integer;

Call DBMS_SQL.PARSE to parse a large SQL statement in the given cursor. All state-
ments are parsed immediately.

BIND_VARIABLE and BIND_ARRAY Procedures
Call BIND_VARIABLE or BIND_ARRAY to bind a given value or set of values to a
given variable in a cursor, based on the name of the variable in the statement. If the
variable is an IN or IN /OUT variable or an IN array, the given bind value must be
valid for the variable or array type. Bind values for OUT variables are ignored.

Table 14–2 DBMS_SQL.PARSE Procedure Parameters

Parameter Description

c Specify the ID number of the cursor in which to parse the
statement.

statement Provide the SQL statement to be parsed. Your SQL statement
should not include a final semicolon.

lb Provide the lower bound for elements in the statement.

ub Provide the upper bound for elements in the statement.

lfflg If TRUE, insert a linefeed after each element on concatenation.

language_
flag

This parameter determines how Oracle handles the SQL
statement. The following options are recognized for this
parameter:

V6 - specified Version 6 behavior

V7 - specifies Oracle7 behavior

NATIVE - specifies normal behavior for the database to
which the program is connected.
 Using Dynamic SQL 14-11

Procedures and Functions
The bind variables or arrays of a SQL statement are identified by their names.
When binding a value to a bind variable or bind array, the string identifying it in
the statement must contain a leading colon, as shown in the following example:

SELECT emp_name FROM emp WHERE SAL > :X;

For this example, the corresponding bind call would look similar to

BIND_VARIABLE(cursor_name, ’:X’, 3500);

Syntax of BIND_VARIABLE
The parameters for the BIND_VARIABLE procedures and functions are described in
Table 14–3. The syntax for these procedures and functions is shown below. Notice
that BIND_VARIABLE is overloaded to accept different datatypes.

DBMS_SQL.BIND_VARIABLE(
 c IN INTEGER,
 name IN VARCHAR2,
 value IN <datatype>);

where <datatype> can be any one of the following types:

NUMBER
DATE
MLSLABEL
VARCHAR2 CHARACTER SET ANY_CS
BLOB
CLOB CHARACTER SET ANY_CS
BFILE

The following syntax is also supported for BIND_VARIABLE. The square brackets []
indicate an optional parameter for the BIND_VARIABLE function.

DBMS_SQL.BIND_VARIABLE(
 c IN INTEGER,
 name IN VARCHAR2,
 value IN VARCHAR2 CHARACTER SET ANY_CS
 [,out_value_size IN INTEGER]);

To bind CHAR, RAW, and ROWID data, you can use the following variations on the
syntax:

DBMS_SQL.BIND_VARIABLE_CHAR(

See Also: Chapter 6, “Large Objects (LOBs)” describes the BLOB,
CLOB, and BFILE datatypes.
14-12 Oracle8 Application Developer’s Guide

Procedures and Functions
 c IN INTEGER,
 name IN VARCHAR2,
 value IN CHAR CHARACTER SET ANY_CS
 [,out_value_size IN INTEGER]);
DBMS_SQL.BIND_VARIABLE_RAW(
 c IN INTEGER,
 name IN VARCHAR2,
 value IN RAW
 [,out_value_size IN INTEGER]);
DBMS_SQL.BIND_VARIABLE_ROWID(
 c IN INTEGER,
 name IN VARCHAR2,
 value IN ROWID);

Bulk Array Binds
Bulk selects, inserts, updates, and deletes can enhance the performance of applica-
tions by bundling many calls into one. The DBMS_SQL package allows you to work
on arrays of data using the PL/SQL table type.

Table items are unbounded homogeneous collections. In persistent storage, they are
like other relational tables and have no intrinsic ordering. But when a table item is
brought into the workspace (either by querying or by navigational access of persis-
tent data), or when it is created as the value of a PL/SQL variable or parameter, its
elements are given subscripts that can be used with array-style syntax to get and
set the values of elements.

Table 14–3 DBMS_SQL.BIND_VARIABLE Procedure Parameters

Parameter Description

c Specify the ID number of the cursor to which you want to
bind a value.

name Provide the name of the variable in the statement.

value Provide the value that you want to bind to the variable in the
cursor. For IN and IN/OUT variables, the value has the same
type as the type of the value being passed in for this parame-
ter.

out_value_size The maximum expected OUT value size, in bytes, for the
VARCHAR2, RAW, CHAR OUT or IN/OUT variable. If no
size is given, the length of the current value is used.
 Using Dynamic SQL 14-13

Procedures and Functions
The subscripts of these elements need not be dense, and can be any number includ-
ing negative numbers. For example, a table item can contain elements at locations -
10, 2, and 7 only.

When a table item is moved from transient workspace to persistent storage, the sub-
scripts are not stored; the table item is unordered in persistent storage.

At bind time the table is copied out from the PL/SQL buffers into local DBMS_SQL
buffers (the same as for all scalar types) and then the table is manipulated from the
local DBMS_SQL buffers. Therefore, if you change the table after the bind call, that
change will not affect the way the execute behaves.

Types for Scalar and LOB Arrays
You can declare a local variable as one of the following table-item types, which are
defined as public types in DBMS_SQL.

type Number_Table is table of Number index by binary_integer;
type Varchar2_Table is table of varchar2(2000) index by binary_integer;
type Date_Table is table of Date index by binary_integer;
type Blob_Table is table of Blob index by binary_integer;
type Clob_Table is table of Clob index by binary_integer;
type Bfile_Table is table of Bfile index by binary_integer;

Syntax of BIND_ARRAY
The parameters for the BIND_ARRAY procedure to bind an entire array or a range
of an array are described in Table 14–4. The syntax for this procedure is shown
below. Notice that the BIND_ARRAY procedure is overloaded to accept different
datatypes.

DBMS_SQL.BIND_ARRAY(
 c IN INTEGER,
 name IN VARCHAR2,
 <table_variable> IN <datatype>
 [,index1 IN INTEGER,
 index2 IN INTEGER)]);

where the <table_variable> and its corresponding <datatype> can be any one of the
following matching pairs:

<num_tab> Number_Table
<vchr2_tab> Varchar2_Table
<date_tab> Date_Table
<blob_tab> Blob_Table
<clob_tab> Clob_Table
14-14 Oracle8 Application Developer’s Guide

Procedures and Functions
<bfile_tab> Bfile_Table

For binding a range, the table must contain the elements that specify the range —
tab(index1) and tab(index2) — but the range does not have to be dense. Index1
must be less than or equal to index2. All elements between tab(index1) and
tab(index2) will be used in the bind.

If you do not specify indexes in the bind call and two different binds in a statement
specify tables that contain a different number of elements, the number of elements
actually used is the minimum number between all tables. This is also the case if
you specify indexes — the minimum range is selected between the two indexes for
all tables.

Not all bind variables in a query have to be array binds. Some can be regular binds
and the same value will be used for each element of the arrays in expression evalua-
tions (and so forth).

Processing Queries
If you are using dynamic SQL to process a query, you must perform the following
steps:

1. Specify the variables that are to receive the values returned by the SELECT
statement by calling DEFINE_COLUMN, DEFINE_COLUMN_LONG, or
DEFINE_ARRAY.

Table 14–4 DBMS_SQL.BIND_ARRAY Procedure Parameters

Parameter Description

c Specify the ID number of the cursor to which you want to
bind a value.

name Provide the name of the array in the statement.

table_variable Specify the local variable that has been declared as
<datatype>.

index1 Provide the index for the table element that marks the lower
bound of the range.

index2 Provide the index for the table element that marks the upper
bound of the range.

See Also: “Examples 3, 4, and 5: Bulk DML” on page 14-32 for
examples of how to bind arrays.
 Using Dynamic SQL 14-15

Procedures and Functions
2. Execute your SELECT statement by calling EXECUTE.

3. Call FETCH_ROWS (or EXECUTE_AND_FETCH) to retrieve the rows that satisfied
your query.

4. Call COLUMN_VALUE or COLUMN_VALUE_LONG to determine the value of a col-
umn retrieved by the FETCH_ROWS call for your query. If you used anonymous
blocks containing calls to PL/SQL procedures, you must call
VARIABLE_VALUE to retrieve the values assigned to the output variables of
these procedures.

DEFINE_COLUMN Procedure
This procedure is only used with SELECT cursors. Call DEFINE_COLUMN to define
a column to be selected from the given cursor. The column being defined is identi-
fied by its relative position in the SELECT list of the statement in the given cursor.
The type of the COLUMN value determines the type of the column being defined.

Syntax of DEFINE_COLUMN
The parameters for the DEFINE_COLUMN procedure are described in Table 14–5.
The syntax for this procedure is shown below. Notice that DEFINE_COLUMN is over-
loaded to accept different datatypes.

DBMS_SQL.DEFINE_COLUMN(
 c IN INTEGER,
 position IN INTEGER
 column IN <datatype>);

where <datatype> can be any one of the following types:

NUMBER
DATE
MLSLABEL
BLOB
CLOB CHARACTER SET ANY_CS
BFILE

The following syntax is also supported for the DEFINE_COLUMN procedure:

DBMS_SQL.DEFINE_COLUMN(
 c IN INTEGER,
 position IN INTEGER,

See Also: Chapter 6, “Large Objects (LOBs)” describes BLOB,
CLOB, and BFILE datatypes.
14-16 Oracle8 Application Developer’s Guide

Procedures and Functions
 column IN VARCHAR2 CHARACTER SET ANY_CS,
 column_size IN INTEGER);

To define columns with CHAR, RAW, and ROWID data, you can use the following
variations on the procedure syntax:

DBMS_SQL.DEFINE_COLUMN_CHAR(
 c IN INTEGER,
 position IN INTEGER,
 column IN CHAR CHARACTER SET ANY_CS,
 column_size IN INTEGER);
DBMS_SQL.DEFINE_COLUMN_RAW(
 c IN INTEGER,
 position IN INTEGER,
 column IN RAW,
 column_size IN INTEGER);
DBMS_SQL.DEFINE_COLUMN_ROWID(
 c IN INTEGER,
 position IN INTEGER,
 column IN ROWID);

DEFINE_ARRAY Procedure
Call DEFINE_ARRAY to define the appropriate table variable into which you want
to fetch rows (with a FETCH_ROWS call). This procedure allows you to do batch
fetching of rows from a single SELECT statement. A single fetch call brings over a
number of rows into the PL/SQL aggregate object.

When you fetch the rows, they are copied into DBMS_SQL buffers until you execute
a COLUMN_VALUE call, at which time the rows are copied into the table that was
passed as an argument to the COLUMN_VALUE call.

Table 14–5 DBMS_SQL.DEFINE_COLUMN Procedure Parameters

Parameter Description

c The ID number of the cursor for the row being defined to be
selected.

position The relative position of the column in the row being defined.
The first column in a statement has position 1.

column The value of the column being defined. The type of this value
determines the type for the column being defined.

column_size The maximum expected size of the column value, in bytes,
for columns of type VARCHAR2, CHAR, and RAW.
 Using Dynamic SQL 14-17

Procedures and Functions
Scalar and LOB Types for Arrays
You can declare a local variable as one of the following table-item types, and then
fetch any number of rows into it using DBMS_SQL. (These are the same types as you
can specify for the BIND_ARRAY procedure.)

type Number_Table is table of Number index by binary_integer;
type Varchar2_Table is table of varchar2(2000) index by binary_integer;
type Date_Table is table of Date index by binary_integer;
type Blob_Table is table of Blob index by binary_integer;
type Clob_Table is table of Clob index by binary_integer;
type Bfile_Table is table of Bfile index by binary_integer;

Syntax of DEFINE_ARRAY
The parameters for the DEFINE_ARRAY procedure are described in Table 14–6. The
syntax for this procedure is shown below. Notice that the DEFINE_ARRAY proce-
dure is overloaded to accept different datatypes.

DBMS_SQL.DEFINE_ARRAY(
 c IN INTEGER,
 position IN INTEGER,
 <table_variable> IN <datatype>,
 count IN INTEGER,
 indx IN INTEGER);

where the <table_variable> and its corresponding <datatype> can be any one of the
following matching pairs:

<num_tab> Number_Table
<vchr2_tab> Varchar2_Table
<date_tab> Date_Table
<blob_tab> Blob_Table
<clob_tab> Clob_Table
<bfile_tab> Bfile_Table

This procedure defines an appropriate “table” for the column at position “position”
for cursor “c”. The subsequent FETCH_ROWS call will fetch “count” rows. When the
COLUMN_VALUE call is made, these rows will be placed in positions indx, indx+1,
indx+2, and so on. While there are still rows coming, the user keeps issuing
FETCH_ROWS/COLUMN_VALUE calls. The rows keep accumulating in the table spec-
ified as an argument in the COLUMN_VALUE call.
14-18 Oracle8 Application Developer’s Guide

Procedures and Functions
The “count” has to be an integer greater than zero, otherwise an exception is raised.
The “indx” can be positive, negative, or zero. A query on which a DEFINE_ARRAY
call was issued cannot contain array binds.

DEFINE_COLUMN_LONG Procedure
Call this procedure to define a LONG column for a SELECT cursor. The column
being defined is identified by its relative position in the SELECT list of the state-
ment for the given cursor. The type of the COLUMN value determines the type of the
column being defined.

Syntax of DEFINE_COLUMN_LONG
The parameters of DEFINE_COLUMN_LONG are described in Table 14–7. The syntax
is:

DBMS_SQL.DEFINE_COLUMN_LONG(
 c IN INTEGER,
 position IN INTEGER);

Table 14–6 DBMS_SQL.DEFINE_ARRAY Procedure Parameters

Parameter Description

c Specify the ID number of the cursor to which you want to
bind an array.

name Provide the name of the define variable in the statement.

table_variable Specify the local variable that was declared as <datatype>.

position The relative position of the column in the array being
defined. The first column in a statement has position 1.

indx Provide the starting position for where the rows should be
placed.

See Also: “Examples 6 and 7: Defining an Array” on page 14-34
for examples of how to define arrays.
 Using Dynamic SQL 14-19

Procedures and Functions
EXECUTE Function
Call EXECUTE to execute a given cursor. This function accepts the ID number of the
cursor and returns the number of rows processed. The return value is only valid for
INSERT, UPDATE, and DELETE statements; for other types of statements, including
DDL, the return value is undefined and should be ignored.

Syntax of EXECUTE
The syntax for the EXECUTE function is:

DBMS_SQL.EXECUTE (
 c IN INTEGER)
RETURN INTEGER;

EXECUTE_AND_FETCH Function
Call EXECUTE_AND_FETCH to execute the given cursor and fetch rows. This func-
tion provides the same functionality as calling EXECUTE and then calling
FETCH_ROWS. Calling EXECUTE_AND_FETCH instead, however, may cut down on
the number of network round-trips when used against a remote database.

Syntax of EXECUTE_AND_FETCH
The EXECUTE_AND_FETCH function returns the number of rows actually fetched.
The parameters for this procedure are described in Table 14–8, and the syntax is
shown below.

DBMS_SQL.EXECUTE_AND_FETCH(
 c IN INTEGER,
 exact IN BOOLEAN DEFAULT FALSE)
RETURN INTEGER;

Table 14–7 DBMS_SQL.DEFINE_COLUMN_LONG Procedure Parameters

Parameter Description

c The ID number of the cursor for the row being defined to be
selected.

position The relative position of the column in the row being defined.
The first column in a statement has position 1.
14-20 Oracle8 Application Developer’s Guide

Procedures and Functions
FETCH_ROWS Function
Call FETCH_ROWS to fetch a row from a given cursor. You can call FETCH_ROWS
repeatedly as long as there are rows remaining to be fetched. These rows are
retrieved into a buffer, and must be read by calling COLUMN_VALUE, for each col-
umn, after each call to FETCH_ROWS.

Syntax of FETCH_ROWS
The FETCH_ROWS function accepts the ID number of the cursor to fetch, and
returns the number of rows actually fetched. The syntax for this function is shown
below.

DBMS_SQL.FETCH_ROWS(
 c IN INTEGER)
RETURN INTEGER;

COLUMN_VALUE Procedure
This procedure returns the value of the cursor element for a given position in a
given cursor. This procedure is used to access the data fetched by calling
FETCH_ROWS.

Syntax of COLUMN_VALUE
The parameters for the COLUMN_VALUE procedure are described in Table 14–9. The
syntax for this procedure is shown below. The square brackets [] indicate optional
parameters.

DBMS_SQL.COLUMN_VALUE(
 c IN INTEGER,
 position IN INTEGER,
 value OUT <datatype>
 [,column_error OUT NUMBER]
 [,actual_length OUT INTEGER]);

Table 14–8 DBMS_SQL.EXECUTE_AND_FETCH Function Parameters

Parameter Description

c Specify the ID number of the cursor to execute and fetch.

exact Set to TRUE to raise an exception if the number of rows actu-
ally matching the query differs from one. Even if an excep-
tion is raised, the rows are still fetched and available.
 Using Dynamic SQL 14-21

Procedures and Functions
where <datatype> can be any one of the following types:

NUMBER
DATE
MLSLABEL
VARCHAR2 CHARACTER SET ANY_CS
BLOB
CLOB CHARACTER SET ANY_CS
BFILE

The following syntax is also supported for the COLUMN_VALUE procedure:

DBMS_SQL.COLUMN_VALUE(
 c IN INTEGER,
 position IN INTEGER,
 <table_variable> IN <datatype>);

where the <table_variable> and its corresponding <datatype> can be any one of
these matching pairs:

<num_tab> Number_Table
<vchr2_tab> Varchar2_Table
<date_tab> Date_Table
<blob_tab> Blob_Table
<clob_tab> Clob_Table
<bfile_tab> Bfile_Table

For columns containing CHAR, RAW, and ROWID data, you can use the following vari-
ations on the syntax:

DBMS_SQL.COLUMN_VALUE_CHAR(
 c IN INTEGER,
 position IN INTEGER,
 value OUT CHAR CHARACTER SET ANY_CS
 [,column_error OUT NUMBER]
 [,actual_length OUT INTEGER]);
DBMS_SQL.COLUMN_VALUE_RAW(
 c IN INTEGER,
 position IN INTEGER,
 value OUT RAW
 [,column_error OUT NUMBER]
 [,actual_length OUT INTEGER]);

See Also: Chapter 6, “Large Objects (LOBs)” describes the BLOB,
CLOB, and BFILE datatypes.
14-22 Oracle8 Application Developer’s Guide

Procedures and Functions
DBMS_SQL.COLUMN_VALUE_ROWID(
 c IN INTEGER,
 position IN INTEGER,
 value OUT ROWID
 [,column_error OUT NUMBER]
 [,actual_length OUT INTEGER]);

COLUMN_VALUE_LONG Procedure
This procedure returns the value of the cursor element for a given position, offset,
and size in a given cursor. This procedure is used to access the data fetched by call-
ing FETCH_ROWS.

Table 14–9 DBMS_SQL.COLUMN_VALUE Procedure Parameters

Parameter Mode Description

c IN Specify the ID number of the cursor from which
you are fetching the values.

position IN Specify the relative position of the column in the
cursor. The first column in a statement has posi-
tion 1.

value OUT Returns the value at the specified column and
row.

If the row number specified is greater than the
total number of rows fetched, you receive an
error message.

Oracle raises exception ORA-06562 ,
inconsistent_type, if the type of this output
parameter differs from the actual type of the
value, as defined by the call to DEFINE_COLUMN.

table_variable IN Specify the local variable that has been declared
as <datatype>.

column_
error

OUT Returns any error code for the specified column

value.

actual_
length

OUT Returns the actual length, before any truncation,

of the value in the specified column.
 Using Dynamic SQL 14-23

Procedures and Functions
Syntax of COLUMN_VALUE_LONG
The parameters of the COLUMN_VALUE_LONG procedure are described in
Table 14–10. The syntax of the procedure is:

DBMS_SQL.COLUMN_VALUE_LONG(
 c IN INTEGER,
 position IN INTEGER,
 length IN INTEGER,
 offset IN INTEGER,
 value OUT VARCHAR2,
 value_length OUT INTEGER);

VARIABLE_VALUE Procedure
This procedure returns the value of the named variable for a given cursor. It is also
used to return the values of bind variables inside PL/SQL blocks.

Syntax of VARIABLE_VALUE
The parameters for the VARIABLE_VALUE procedure are described in Table 14–11.
The syntax for this procedure is:

DBMS_SQL.VARIABLE_VALUE(
 c IN INTEGER,
 name IN VARCHAR2,
 value OUT <datatype>);

Table 14–10 DBMS_SQL.COLUMN_VALUE_LONG Procedure Parameters

Parameter Description

c The ID number of the cursor for the row being defined to be
selected.

position The relative position of the column in the row being defined.
The first column in a statement has position 1.

length The length in bytes of the segment of the column value that
is to be selected.

offset The byte position in the LONG column at which the SELECT
is to start.

value The value of the column segment to be SELECTed.

value_length The (returned) length of the value that was SELECTed.
14-24 Oracle8 Application Developer’s Guide

Procedures and Functions
where <datatype> can be any one of the following types:

NUMBER
DATE
MLSLABEL
VARCHAR2 CHARACTER SET ANY_CS
BLOB
CLOB CHARACTER SET ANY_CS
BFILE

For variables containing CHAR, RAW, and ROWID data, you can use the following
variations on the syntax:

DBMS_SQL.VARIABLE_VALUE_CHAR(
 c IN INTEGER,
 name IN VARCHAR2,
 value OUT CHAR CHARACTER SET ANY_CS);
DBMS_SQL.VARIABLE_VALUE_RAW(
 c IN INTEGER,
 name IN VARCHAR2,
 value OUT RAW);
DBMS_SQL.VARIABLE_VALUE_ROWID(
 c IN INTEGER,
 name IN VARCHAR2,
 value OUT ROWID);

Table 14–11 DBMS_SQL.VARIABLE_VALUE Procedure Parameters

Parameter Mode Description

c IN Specify the ID number of the cursor from which to
get the values.

name IN Specify the name of the variable for which you are
retrieving the value.

value OUT Returns the value of the variable for the specified
position.

Oracle raises exception ORA-06562 ,
inconsistent_type, if the type of this output parame-
ter differs from the actual type of the value, as
defined by the call to BIND_VARIABLE.

position IN Specify the relative position of the column in the
cursor. The first column in a statement has position
1.
 Using Dynamic SQL 14-25

Procedures and Functions
Processing Updates, Inserts and Deletes
If you are using dynamic SQL to process an INSERT, UPDATE, or DELETE, you
must perform the following steps:

1. You must first execute your INSERT, UPDATE, or DELETE statement by calling
EXECUTE. The EXECUTE procedure is described on page 14-20.

2. If you used anonymous blocks containing calls to PL/SQL procedures, you
must call VARIABLE_VALUE to retrieve the values assigned to the output vari-
ables of these procedures. The VARIABLE_VALUE procedure is described on
page 14-24.

IS_OPEN Function
The IS_OPEN function returns TRUE if the given cursor is currently open.

Syntax of IS_OPEN
The IS_OPEN function accepts the ID number of a cursor, and returns TRUE if the
cursor is currently open, or FALSE if it is not. The syntax for this function is:

DBMS_SQL.IS_OPEN(
 c IN INTEGER)
RETURN BOOLEAN;

DESCRIBE_COLUMNS Procedure
Call this procedure to describe the columns for a cursor opened and parsed
through DBMS_SQL.

The DESC_REC Type
The DBMS_SQL package declares the DESC_REC record type as follows:

type desc_rec is record (
 col_type binary_integer := 0,
 col_max_len binary_integer := 0,
 col_name varchar2(32) := '',
 col_name_len binary_integer := 0,
 col_schema_name varchar2(32) := '',
 col_schema_name_len binary_integer := 0,
 col_precision binary_integer := 0,
 col_scale binary_integer := 0,
 col_charsetid binary_integer := 0,
 col_charsetform binary_integer := 0,
 col_null_ok boolean := TRUE);
14-26 Oracle8 Application Developer’s Guide

Procedures and Functions
The parameters of DESC_REC are described in Table 14–12.

The DESC_TAB Type
The DESC_TAB type is a PL/SQL table of DESC_REC records:

type desc_tab is table of desc_rec index by binary_integer;

You can declare a local variable as the PL/SQL table type DESC_TAB, and then call
the DESCRIBE_COLUMNS procedure to fill in the table with the description of each
column. All columns are described; you cannot describe a single column.

Syntax of DESCRIBE_COLUMNS
The parameters of DESCRIBE_COLUMNS are described in Table 14–13. The syntax
is:

DBMS_SQL.DESCRIBE_COLUMNS(
 c IN INTEGER,
 col_cnt OUT INTEGER,
 desc_t OUT DESC_TAB);

Table 14–12 DESC_REC Type Parameters

Parameter Description

col_type The type of the column being described.

col_max_len The maximum length of the column.

col_name The name of the column.

col_name_len The length of the column name.

col_schema_name The name of the schema the column type was
defined in (if an object type).

col_schema_name_len The length of the schema.

col_precision The column precision if a number.

col_scale The column scale if a number.

col_charsetid The column character set identifier.

col_charsetform The column character set form.

col_null_ok True if column can be null.
 Using Dynamic SQL 14-27

Procedures and Functions
CLOSE_CURSOR Procedure
Call CLOSE_CURSOR to close a given cursor.

Syntax of CLOSE_CURSOR
The parameter for the CLOSE_CURSOR procedure is described in Table 14–14. The
syntax for this procedure is:

DBMS_SQL.CLOSE_CURSOR(
 c IN OUT INTEGER);

Table 14–13 DBMS_SQL.DESCRIBE_COLUMNS Procedure Parameters

Parameter Mode Description

c IN The ID number of the cursor for the columns being
described.

col_cnt OUT

desc_t OUT

See Also: “Example 8: Describe Columns” on page 14-37 for an
example of how to use DESCRIBE_COLUMNS.

Table 14–14 DBMS_SQL.CLOSE_CURSOR Procedure Parameters

Parameter Mode Description

c IN Specify the ID number of the cursor that you want
to close.

OUT The cursor is set to null. After you call

CLOSE_CURSOR, the memory allocated to the

cursor is released and you can no longer fetch from
that cursor.
14-28 Oracle8 Application Developer’s Guide

Locating Errors
Locating Errors
There are additional functions in the DBMS_SQL package for obtaining information
about the last referenced cursor in the session. The values returned by these func-
tions are only meaningful immediately after a SQL statement is executed. In addi-
tion, some error-locating functions are only meaningful after certain DBMS_SQL
calls. For example, you call LAST_ERROR_POSITION immediately after a PARSE.

LAST_ERROR_POSITION Function
Returns the byte offset in the SQL statement text where the error occurred. The first
character in the SQL statement is at position 0.

DBMS_SQL.LAST_ERROR_POSITION RETURN INTEGER;

Call this function after a PARSE call, before any other DBMS_SQL procedures or
functions are called.

LAST_ROW_COUNT Function
Returns the cumulative count of the number of rows fetched.

DBMS_SQL.LAST_ROW_COUNT RETURN INTEGER;

Call this function after a FETCH_ROWS or an EXECUTE_AND_FETCH call. If called
after an EXECUTE call, the value returned will be zero.

LAST_ROW_ID Function
Returns the ROWID of the last row processed.

DBMS_SQL.LAST_ROW_ID RETURN ROWID;

Call this function after a FETCH_ROWS or an EXECUTE_AND_FETCH call.

LAST_SQL_FUNCTION_CODE Function
Returns the SQL function code for the statement. These codes are listed in the Ora-
cle Call Interface Programmer’s Guide.

DBMS_SQL.LAST_SQL_FUNCTION_CODE RETURN INTEGER;

You should call this function immediately after the SQL statement is executed; oth-
erwise, the return value is undefined.
 Using Dynamic SQL 14-29

Examples of Using DBMS_SQL
Examples of Using DBMS_SQL
This section provides example procedures that make use of the DBMS_SQL package.

Example 1 The following sample procedure is passed a SQL statement, which it
then parses and executes:

CREATE OR REPLACE PROCEDURE exec(STRING IN varchar2) AS
 cursor_name INTEGER;
 ret INTEGER;
BEGIN
 cursor_name := DBMS_SQL.OPEN_CURSOR;

 --DDL statements are executed by the parse call, which
 --performs the implied commit
 DBMS_SQL.PARSE(cursor_name, string, DBMS_SQL);
 ret := DBMS_SQL.EXECUTE(cursor_name);
 DBMS_SQL.CLOSE_CURSOR(cursor_name);
END;

Creating such a procedure allows you to perform the following operations:

■ The SQL statement can be dynamically generated at runtime by the calling pro-
gram.

■ The SQL statement can be a DDL statement.

For example, after creating this procedure, you could make the following call:

exec(’create table acct(c1 integer)’);

You could even call this procedure remotely, as shown in the following example.
This allows you to perform remote DDL.

exec@hq.com(’CREATE TABLE acct(c1 INTEGER)’);

Example 2 The following sample procedure is passed the names of a source and a
destination table, and copies the rows from the source table to the destination table.
This sample procedure assumes that both the source and destination tables have
the following columns:

ID of type NUMBER
NAME of type VARCHAR2(30)
BIRTHDATE of type DATE

This procedure does not specifically require the use of dynamic SQL; however, it
illustrates the concepts of this package.
14-30 Oracle8 Application Developer’s Guide

Examples of Using DBMS_SQL
CREATE OR REPLACE PROCEDURE copy(source IN VARCHAR2,
 destination IN VARCHAR2) is

-- This procedure copies rows from a given source table to a
-- given destination table assuming that both source and
-- destination tables have the following columns:
-- - ID of type NUMBER,
-- - NAME of type VARCHAR2(30),
-- - BIRTHDATE of type DATE.
 id NUMBER;
 name VARCHAR2(30);
 birthdate DATE;
 source_cursor INTEGER;
 destination_cursor INTEGER;
 ignore INTEGER;
BEGIN

 -- prepare a cursor to select from the source table
 source_cursor := dbms_sql.open_cursor;
 DBMS_SQL.PARSE(source_cursor,
 ’SELECT id, name, birthdate FROM ’ || source,
 DBMS_SQL);
 DBMS_SQL.DEFINE_COLUMN(source_cursor, 1, id);
 DBMS_SQL.DEFINE_COLUMN(source_cursor, 2, name, 30);
 DBMS_SQL.DEFINE_COLUMN(source_cursor, 3, birthdate);
 ignore := DBMS_SQL.EXECUTE(source_cursor);

 -- prepare a cursor to insert into the destination table
 destination_cursor := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(destination_cursor,
 ’INSERT INTO ’ || destination ||
 ’ VALUES (:id, :name, :birthdate)’,
 DBMS_SQL);

 -- fetch a row from the source table and
 -- insert it into the destination table
 LOOP
 IF DBMS_SQL.FETCH_ROWS(source_cursor)>0 THEN
 -- get column values of the row
 DBMS_SQL.COLUMN_VALUE(source_cursor, 1, id);
 DBMS_SQL.COLUMN_VALUE(source_cursor, 2, name);
 DBMS_SQL.COLUMN_VALUE(source_cursor, 3, birthdate);

 -- bind the row into the cursor that inserts into the
 -- destination table
 Using Dynamic SQL 14-31

Examples of Using DBMS_SQL
 -- You could alter this example to require the use of
 -- dynamic SQL by inserting an if condition before the
 -- bind.
 DBMS_SQL.BIND_VARIABLE(destination_cursor, ’id’, id);
 DBMS_SQL.BIND_VARIABLE(destination_cursor, ’name’, name);
 DBMS_SQL.BIND_VARIABLE(destination_cursor, ’birthdate’,
 birthdate);
 ignore := DBMS_SQL.EXECUTE(destination_cursor);
 ELSE

 -- no more row to copy
 EXIT;
 END IF;
 END LOOP;

 -- commit and close all cursors
 COMMIT;
 DBMS_SQL.CLOSE_CURSOR(source_cursor);
 DBMS_SQL.CLOSE_CURSOR(destination_cursor);

EXCEPTION
 WHEN OTHERS THEN
 IF DBMS_SQL.IS_OPEN(source_cursor) THEN
 DBMS_SQL.CLOSE_CURSOR(source_cursor);
 END IF;
 IF DBMS_SQL.IS_OPEN(destination_cursor) THEN
 DBMS_SQL.CLOSE_CURSOR(destination_cursor);
 END IF;
 RAISE;
END;

Examples 3, 4, and 5: Bulk DML This series of examples shows how to use bulk array
binds (table items) in the SQL DML statements DELETE, INSERT, and UPDATE.

In a DELETE statement, for example, you could bind in an array in the WHERE
clause and have the statement be executed for each element in the array:

declare
 stmt varchar2(200);
 dept_no_array dbms_sql.Number_Table;
 c number;
 dummy number;
begin
 dept_no_array(1) := 10; dept_no_array(2) := 20;
 dept_no_array(3) := 30; dept_no_array(4) := 40;
14-32 Oracle8 Application Developer’s Guide

Examples of Using DBMS_SQL
 dept_no_array(5) := 30; dept_no_array(6) := 40;
 stmt := 'delete from emp where deptno = :dept_array';
 c := dbms_sql.open_cursor;
 dbms_sql.parse(c, stmt, dbms_sql.native);
 dbms_sql.bind_array(c, ':dept_array', dept_no_array, 1, 4);
 dummy := dbms_sql.execute(c);
 dbms_sql.close_cursor(c);

 exception when others then
 if dbms_sql.is_open(c) then
 dbms_sql.close_cursor(c);
 end if;
 raise;
end;
/

In the example above, only elements 1 through 4 will be used as specified by the
bind_array call. Each element of the array will potentially delete a large number of
employees from the database.

Here is an example of a bulk INSERT statement:

declare
 stmt varchar2(200);
 empno_array dbms_sql.Number_Table;
 empname_array dbms_sql.Varchar2_Table;
 c number;
 dummy number;
begin
 for i in 0..9 loop
 empno_array(i) := 1000 + i;
 empname_array(I) := get_name(i);
 end loop;
 stmt := 'insert into emp values(:num_array, :name_array)';
 c := dbms_sql.open_cursor;
 dbms_sql.parse(c, stmt, dbms_sql.native);
 dbms_sql.bind_array(c, ':num_array', empno_array);
 dbms_sql.bind_array(c, ':name_array', empname_array);
 dummy := dbms_sql.execute(c);
 dbms_sql.close_cursor(c);

 exception when others then
 if dbms_sql.is_open(c) then
 dbms_sql.close_cursor(c);
 end if;
 Using Dynamic SQL 14-33

Examples of Using DBMS_SQL
 raise;
end;
/

When the execute takes place, all 10 of the employees are inserted into the table.

Finally, here is an example of an bulk UPDATE statement.

declare
 stmt varchar2(200);
 emp_no_array dbms_sql.Number_Table;
 emp_addr_array dbms_sql.Varchar2_Table;
 c number;
 dummy number;
begin
 for i in 0..9 loop
 emp_no_array(i) := 1000 + i;
 emp_addr_array(I) := get_new_addr(i);
 end loop;
 stmt := 'update emp set ename = :name_array
 where empno = :num_array';
 c := dbms_sql.open_cursor;
 dbms_sql.parse(c, stmt, dbms_sql.native);
 dbms_sql.bind_array(c, ':num_array', empno_array);
 dbms_sql.bind_array(c, ':name_array', empname_array);
 dummy := dbms_sql.execute(c);
 dbms_sql.close_cursor(c);

 exception when others then
 if dbms_sql.is_open(c) then
 dbms_sql.close_cursor(c);
 end if;
 raise;
end;
/

Here when the execute call happens, the addresses of all employees are updated in
one shot. The two arrays are always stepped in unison. If the WHERE clause returns
more than one row, all those employees will get the address the “addr_array” hap-
pens to be pointing to at the time.

Examples 6 and 7: Defining an Array The following examples show how to use the
DEFINE_ARRAY procedure:

declare
 c number;
14-34 Oracle8 Application Developer’s Guide

Examples of Using DBMS_SQL
 d number;
 n_tab dbms_sql.Number_Table;
 indx number := -10;
begin
 c := dbms_sql.open_cursor;
 dbms_sql.parse(c, 'select n from t order by 1', dbms_sql);

 dbms_sql.define_array(c, 1, n_tab, 10, indx);

 d := dbms_sql.execute(c);
 loop
 d := dbms_sql.fetch_rows(c);

 dbms_sql.column_value(c, 1, n_tab);

 exit when d != 10;
 end loop;

 dbms_sql.close_cursor(c);

 exception when others then
 if dbms_sql.is_open(c) then
 dbms_sql.close_cursor(c);
 end if;
 raise;
end;
/

Each time the example above does a FETCH_ROWS call, it fetches 10 rows that are
kept in DBMS_SQL buffers. When the COLUMN_VALUE call is executed, those rows
move into the PL/SQL table specified (in this case n_tab), at positions -10 to -1, as
specified in the DEFINE statements. When the second batch is fetched in the loop,
the rows go to positions 0 to 9; and so on.

A current index into each array is maintained automatically. This index is initial-
ized to “indx” at EXECUTE and keeps getting updated every time a
COLUMN_VALUE call is made. If you re-execute at any point, the current index for
each DEFINE is re-initialized to “indx”.

In this way the entire result of the query is fetched into the table. When
FETCH_ROWS cannot fetch 10 rows, it returns the number of rows actually fetched
(if no rows could be fetched it returns zero) and exits the loop.

Here is another example of using the DEFINE_ARRAY procedure:
 Using Dynamic SQL 14-35

Examples of Using DBMS_SQL
Consider a table MULTI_TAB defined as:

create table multi_tab (num number,
 dat1 date,
 var varchar2(24),
 dat2 date)

To select everything from this table and move it into four PL/SQL tables, you could
use the following simple program:

declare
 c number;
 d number;
 n_tab dbms_sql.Number_Table;
 d_tab1 dbms_sql.Date_Table;
 v_tab dbms_sql.Varchar2_Table;
 d_tab2 dbms_sql.Date_Table;
 indx number := 10;
begin

 c := dbms_sql.open_cursor;
 dbms_sql.parse(c, 'select * from multi_tab order by 1', dbms_sql);

 dbms_sql.define_array(c, 1, n_tab, 5, indx);
 dbms_sql.define_array(c, 2, d_tab1, 5, indx);
 dbms_sql.define_array(c, 3, v_tab, 5, indx);
 dbms_sql.define_array(c, 4, d_tab2, 5, indx);

 d := dbms_sql.execute(c);

 loop
 d := dbms_sql.fetch_rows(c);

 dbms_sql.column_value(c, 1, n_tab);
 dbms_sql.column_value(c, 2, d_tab1);
 dbms_sql.column_value(c, 3, v_tab);
 dbms_sql.column_value(c, 4, d_tab2);

 exit when d != 5;
 end loop;

 dbms_sql.close_cursor(c);

/*
14-36 Oracle8 Application Developer’s Guide

Examples of Using DBMS_SQL
Here the four tables can be used for anything at all. One usage might be to use
BIND_ARRAY to move the rows to another table by using a query such as 'INSERT
into SOME_T values(:a, :b, :c, :d);

*/

exception when others then
 if dbms_sql.is_open(c) then
 dbms_sql.close_cursor(c);
 end if;
 raise;
end;
/

Example 8: Describe Columns This can be used as a substitute to the SQL*Plus
DESCRIBE call by using a SELECT * query on the table that you want to describe.

declare
 c number;
 d number;
 col_cnt integer;
 f boolean;
 rec_tab dbms_sql.desc_tab;
 col_num number;
 procedure print_rec(rec in dbms_sql.desc_rec) is
 begin
 dbms_output.new_line;
 dbms_output.put_line('col_type = '
 || rec.col_type);
 dbms_output.put_line('col_maxlen = '
 || rec.col_max_len);
 dbms_output.put_line('col_name = '
 || rec.col_name);
 dbms_output.put_line('col_name_len = '
 || rec.col_name_len);
 dbms_output.put_line('col_schema_name = '
 || rec.col_schema_name);
 dbms_output.put_line('col_schema_name_len = '
 || rec.col_schema_name_len);
 dbms_output.put_line('col_precision = '
 || rec.col_precision);
 dbms_output.put_line('col_scale = '
 || rec.col_scale);
 dbms_output.put('col_null_ok = ');
 if (rec.col_null_ok) then
 Using Dynamic SQL 14-37

Examples of Using DBMS_SQL
 dbms_output.put_line('true');
 else
 dbms_output.put_line('false');
 end if;
 end;
begin
 c := dbms_sql.open_cursor;

 dbms_sql.parse(c, 'select * from scott.bonus', dbms_sql);

 d := dbms_sql.execute(c);

 dbms_sql.describe_columns(c, col_cnt, rec_tab);

/*
 * Following loop could simply be for j in 1..col_cnt loop.
 * Here we are simply illustrating some of the PL/SQL table
 * features.
 */
 col_num := rec_tab.first;
 if (col_num is not null) then
 loop
 print_rec(rec_tab(col_num));
 col_num := rec_tab.next(col_num);
 exit when (col_num is null);
 end loop;
 end if;

 dbms_sql.close_cursor(c);
end;
/

14-38 Oracle8 Application Developer’s Guide

 Dependencies Among Schema O
15

Dependencies Among Schema Objects

The definitions of certain schema objects, such as views and procedures, reference
other schema objects, such as tables. Therefore, some schema objects are dependent
upon the objects referenced in their definitions. This chapter discusses how to man-
age the dependencies among schema objects. Topics include the following:

■ Dependency Issues

■ Manually Recompiling

■ Listing Dependency Management Information
I

See Also: f you are using Trusted Oracle, also see the volume
Trusted Oracle for information about handling dependencies among
schema objects in Trusted Oracle.
bjects 15-1

Dependency Issues
Dependency Issues
When you create a stored procedure or function, Oracle verifies that the operations
it performs are possible based on the schema objects accessed. For example, if a
stored procedure contains a SELECT statement that selects columns from a table,
Oracle verifies that the table exists and contains the specified columns. If the table
is subsequently redefined so that one of its columns does not exist, the stored proce-
dure may not work properly. For this reason, the stored procedure is said to depend
on the table.

In cases such as this, Oracle automatically manages dependencies among schema
objects. After a schema object is redefined, Oracle automatically recompiles all
stored procedures and functions in your database that depend on the redefined
object the next time they are called. This recompilation allows Oracle to verify that
the procedures and functions can still execute properly based on the newly defined
object.

Avoiding Runtime Recompilation
Runtime recompilation reduces runtime performance and the possible resulting
runtime compilation errors can halt your applications. Follow these measures to
avoid runtime recompilation:

■ Do not redefine schema objects (such as tables, views, and stored procedures
and functions) while your production applications are running. Redefining
objects causes Oracle to recompile stored procedures and functions that
depend on them.

■ After redefining a schema object, manually recompile dependent procedures,
functions, and packages. This measure not only eliminates the performance
impact of runtime recompilation, but it also notifies you immediately of compi-
lation errors, allowing you to fix them before production use.

You can manually recompile a procedure, stored function, or package with the
COMPILE option of the ALTER PROCEDURE, ALTER FUNCTION, or ALTER
PACKAGE command.

.

You can determine the dependencies among the schema objects in your data-
base by running the SQL script UTLDTREE.SQL.

See Also: For more information on these commands, see Oracle8
SQL Reference.
15-2 Oracle8 Application Developer’s Guide

Dependency Issues
■ Store procedures and functions in packages whenever possible. If a procedure
or function is stored in a package, you can modify its definition without caus-
ing Oracle to recompile other procedures and functions that call it.

There are several dependency issues to consider before dropping a procedure or
package. Additional information about dependency issues is included in Oracle8
Concepts. Some guidelines for managing dependencies follow.

Use Packages Whenever Possible Packages are the most effective way of preventing
unnecessary dependency checks from being performed. The following example
illustrates this benefit.

Assume this situation:

■ The stand-alone procedure PROC depends on a packaged procedure
PACK_PROC.

■ The PACK_PROC procedure’s definition is altered by recompilation of the pack-
age body.

■ The PACK_PROC procedure’s specification is not altered in the package specifi-
cation.

Even though the package’s body is recompiled, the stand-alone procedure PROC
that depends on the packaged procedure PACK_PROC is not invalidated, because
the package’s specification is not altered.

This technique is especially useful in distributed environments. If procedures are
always part of a package, remote procedures that depend on packaged procedures
are never invalidated unless a package specification is replaced or invalidated.

Whenever you recompile a procedure, you should consult with any other database
administrators and application developers to identify any remote, dependent proce-
dures and ensure that they are also recompiled. This eliminates recompilations at
runtime and allows you to detect any compile-time errors that would otherwise be
seen by the application user.
See

The %TYPE and %ROWTYPE Attributes The %TYPE attribute provides the datatype of
a variable, constant, or column. This attribute is particularly useful when declaring

See Also: The exact name and location of the UTLDTREE.SQL
script may vary depending on your operating system. See this
script for more information on how to use it.

See Also: “Manually Recompiling” on page 15-4 for more
information.
 Dependencies Among Schema Objects 15-3

Manually Recompiling
a variable or procedure argument that refers to a column in a database table. The
%ROWTYPE attribute is useful if you want to declare a variable to be a record that
has the same structure as a row in a table or view, or a row that is returned by a
fetch from a cursor.

When you declare a construct using %TYPE and %ROWTYPE, you do not need to
know the datatype of a column or structure of a table. For example, the argument
list of a procedure that inserts a row into the EMP table could be declared as

CREATE PROCEDURE hire_fire(emp_record emp%ROWTYPE) AS ... END;

If you change the column or table structure, the constructs defined on their
datatypes or structure automatically change accordingly.

However, while one type of dependency is eliminated using %TYPE or %ROWTYPE,
another is created. If you define a construct using object %TYPE or object %ROW-
TYPE, the construct depends on object . If object is altered, the constructs that
depend on object are invalidated.

Remote Dependencies
Dependencies among PL/SQL library units (packages, stored procedures, and
stored functions) can be handled either with timestamps or with signatures.

■ In the timestamp method, the server sets a timestamp when each library unit is
created or recompiled, and the compiled states of its dependent library units
contain records of its timestamp. If the parent unit or a relevant schema object
is altered, all of its dependent units are marked as invalid and must be recom-
piled before they can be executed.

■ In the signature method, each compiled stored library unit is associated with a
signature that identifies its name, the types and modes of its parameters, the
number of parameters, and (for a function) the type of the return value. A
dependent unit is marked as invalid if it calls a parent unit whose signature has
been changed in an incompatible manner.

Manually Recompiling
Oracle dynamically recompiles an invalid view or PL/SQL program unit the next
time it is used. Alternatively, you can force the compilation of an invalid view or
program unit using the appropriate SQL command with the COMPILE parameter.

See Also: For more information, see “Remote Dependencies” on
page 10-16.
15-4 Oracle8 Application Developer’s Guide

Manually Recompiling
Forced compilations are most often used to test for errors when it is known that a
dependent view or program unit is invalid, but is not currently being used; there-
fore, automatic recompilation would not otherwise occur until the view or program
unit is executed.

Invalid dependent objects can be identified by querying the data dictionary views
USER_OBJECTS, ALL_OBJECTS, and DBA_OBJECTS — see “Listing Dependency
Management Information” on page 15-6 for examples.

Manually Recompiling Views
To recompile a view, use the ALTER VIEW command with the COMPILE parameter.
The following statement recompiles the view EMP_DEPT contained in your schema:

ALTER VIEW emp_dept COMPILE;

Privileges Required to Recompile a View
To manually recompile a view, the view must be contained in your schema or you
must have the ALTER ANY TABLE system privilege.

Manually Recompiling Procedures and Functions
To recompile a procedure or function (stand-alone), use the ALTER PROCEDURE or
ALTER FUNCTION command with the COMPILE clause. For example, the following
statement recompiles the stored procedure UPDATE_SALARY contained in your
schema:

ALTER PROCEDURE update_salary COMPILE;

Manually Recompiling Packages
To recompile either a package body or both a package specification and body, use
the ALTER PACKAGE command with the COMPILE parameter. For example, the fol-
lowing SQL*Plus statements recompile just the body and the body and specifica-
tion of the package ACCT_MGMT_PACKAGE, respectively:

SQLPLUS> ALTER PACKAGE acct_mgmt_package COMPILE BODY;
SQLPLUS> ALTER PACKAGE acct_mgmt_package COMPILE PACKAGE;

All packages, procedures, and functions can be recompiled using the following syn-
tax. The objects are compiled in dependency order, enabling each to be compiled
only once.

SQLPLUS> EXECUTE DBMS_UTILITY.COMPILE_ALL;
 Dependencies Among Schema Objects 15-5

Listing Dependency Management Information
Privileges Required to Recompile a Procedure or Package
You can manually recompile a procedure or package only if it is contained in your
schema and you have the ALTER ANY PROCEDURE system privilege.

Manually Recompiling Triggers
An existing trigger, enabled or disabled, can be manually recompiled using the
ALTER TRIGGER command. For example, to force the compilation of the trigger
named REORDER, enter the following statement:

ALTER TRIGGER reorder COMPILE;

Privileges Required to Recompile a Trigger
To recompile a trigger, you must own the trigger or have the ALTER ANY TRIGGER
system privilege.

Listing Dependency Management Information
The following data dictionary views list information about direct dependencies and
dependency management:

■ USER_DEPENDENCIES, ALL_DEPENDENCIES, DBA_DEPENDENCIES

■ USER_OBJECTS, ALL_OBJECTS, DBA_OBJECTS

Consider the following statements for Examples 1 and 2:

CREATE TABLE emp . . .;

CREATE PROCEDURE hire_emp BEGIN . . . END;

ALTER TABLE emp . . . ;

Example 1: Listing the Status of an Object The ALL_OBJECTS data dictionary view lists
information about all the objects available to the current user and the current status
(that is, valid or invalid) of each object. For example, the following query lists the
names, types, and current status of all objects available to the current user:

SELECT object_name, object_type, status
 FROM all_objects;
The following results might be returned:

See Also: For a complete description of these data dictionary
views, see Oracle8 Reference.
15-6 Oracle8 Application Developer’s Guide

Listing Dependency Management Information
OBJECT_NAME OBJECT_TYPE STATUS
--------------- --------------- ------------
EMP TABLE VALID
HIRE_EMP PROCEDURE INVALID

Example 2: Listing Dependencies The DBA_DEPENDENCIES data dictionary view lists
all dependent objects in the database and the objects on which they directly
depend. For example, the following query lists all the dependent objects in JWARD’s
schema:

SELECT name, type, referenced_name, referenced_type
 FROM sys.dba_dependencies
 WHERE owner = ’JWARD’;

If JWARD issued the example statements at the beginning of this section, the follow-
ing results might be returned:

NAME TYPE REFERENCED_NAME REFERENCED_TYPE
----------- ------------ ------------------- ---------------
HIRE_EMP PROCEDURE EMP TABLE

The Dependency Tracking Utility
The *_DEPENDENCIES data dictionary views provide information about only the
direct dependencies of objects. As a supplement, you can use a special dependency
tracking utility to list both direct and indirect dependents of an object.

To create the dependency tracking utility, you must run the SQL script
UTLDTREE.SQL. The location of this file is operating system dependent. The
UTLDTREE.SQL script creates the following schema objects:

Table DEPTREE_TEMPTAB A temporary table used to store dependency information
returned by the DEPTREE_FILL procedure.

Structure: object_id NUMBER

referenced_object_id NUMBER

nest_level NUMBER

seq# NUMBER
 Dependencies Among Schema Objects 15-7

Listing Dependency Management Information
View DEPTREE A view that lists dependency information in the DEPTREE_TEMPTAB
table. The parent object is listed with a NESTED_LEVEL of 0, and dependent objects
are listed with a nested level greater than 0.

View IDEPTREE A view that lists dependency information in the
DEPTREE_TEMPTAB table. Output is in a graphical format, with dependent objects
indented from the objects on which they depend.

Sequence DEPTREE_SEQ A sequence used to uniquely identify sets of dependency
information stored in the DEPTREE_TEMPTAB.

Procedure DEPTREE_FILL A procedure that first clears the DEPTREE_TEMPTAB table
in the executor’s schema, then fills the same table to indicate the objects that
directly or indirectly depend on (that is, reference) the specified object. All objects
that recursively reference the specified object are listed, assuming the user has per-
mission to know of their existence.

Using UTLDTREE While Connected as INTERNAL
If you run the UTLDTREE.SQL script and use the utility while connected as INTER-
NAL, dependency information is gathered and displayed not only for dependent
objects, but also for dependent cursors (shared SQL areas).

Example These SQL statements show how the UTLDTREE utility can be used to
track dependencies of an object. Assume the following SQL statements:

CONNECT scott/tiger;
CREATE TABLE scott.emp (....);
CREATE SEQUENCE scott.emp_sequence;
CREATE VIEW scott.sales_employees AS
 SELECT * FROM scott.emp WHERE deptno = 10;
CREATE PROCEDURE scott.hire_salesperson (name VARCHAR2,
 job VARCHAR2, mgr NUMBER, hiredate DATE, sal NUMBER,
 comm NUMBER)
IS

Column names: nested_level, object_type, owner,
object_name, seq#

Column name: dependencies

Syntax: DEPTREE_FILL(object_type CHAR, object_owner
CHAR, object_name CHAR)
15-8 Oracle8 Application Developer’s Guide

Listing Dependency Management Information
BEGIN
 INSERT INTO scott.sales_employees
 VALUES (scott.emp_sequence.NEXTVAL, name, job, mgr,
 hiredate, sal, comm, 10;
END;
CREATE PROCEDURE scott.fire_salesperson (emp_id NUMBER) IS
BEGIN
 DELETE FROM scott.sales_employees WHERE empno = emp_id;
END;
SELECT * FROM scott.emp;
SELECT * FROM scott.sales_employees;
EXECUTE scott.hire_salesperson (’ARNALL’, ’MANAGER’, 7839, /
 SYSDATE, 1000, 500);
EXECUTE scott.fire_salesperson (7934);

Assume that before SCOTT alters the EMP table, he would like to know all the
dependent objects that will be invalidated as a result of altering the EMP table. The
following procedure execution fills the DEPTREE_TEMPTAB table with dependency
information regarding the EMP table (executed using Enterprise Manager):

EXECUTE deptree_fill(’TABLE’, ’SCOTT’, ’EMP’);

The following two queries show the previously collected dependency information
for the EMP table:

SELECT * FROM deptree;
NESTED_LEV TYPE OWNER NAME SEQ#
---------- ---------- -------------- ------------------ ----
 0 TABLE SCOTT EMP 0
 1 VIEW SCOTT SALES_EMPLOYEES 1
 2 PROCEDURE SCOTT FIRE_SALESPERSON 2
 2 PROCEDURE SCOTT HIRE_SALESPERSON 3
SELECT * FROM ideptree;
DEPENDENCIES
--
TABLE SCOTT.EMP
VIEW SCOTT.SALES_EMPLOYEES
PROCEDURE SCOTT.FIRE_SALESPERSON
PROCEDURE SCOTT.HIRE_SALESPERSON

Alternatively, you can reveal all of the cursors that depend on the EMP table (depen-
dent shared SQL areas currently in the shared pool) using the UTLDTREE utility.
After connecting as INTERNAL and collecting dependency information for the table
SCOTT.EMP, issue the following two queries:
 Dependencies Among Schema Objects 15-9

Listing Dependency Management Information
SELECT * FROM deptree;
NESTED_LEV TYPE OWNER NAME SEQ#
---------- ------ -------- ---------------------------- ----
 0 TABLE SCOTT EMP 0
 1 CURSOR <shared> ”select * from scott.emp 0.5
 2 CURSOR <shared> ”select * from scott.sa. . . 7.5
 3 CURSOR <shared> ”BEGIN hire_salesperson. . . 9.5
 3 CURSOR <shared> ”BEGIN fire_salesperson. . . 8.5
SELECT * FROM ideptree;
DEPENDENCIES
--
TABLE STEVE.EMP
 CURSOR <shared>.”select * from scott.emp”
 CURSOR <shared>.”select * from scott.sales_employee”
 CURSOR <shared>.”BEGIN hire_salesperson (’ARN. . .
 CURSOR <shared>.”BEGIN fire_salesperson (7934) END”
15-10 Oracle8 Application Developer’s Guide

 Signalling Database Events with A
16

Signalling Database Events with Alerters

This chapter describes how to use the DBMS_ALERT package to provide notifica-
tion, or “alerts”, of database events. Topics include the following:

■ Overview

■ Using Alerts

■ Checking for Alerts

■ Example of Using Alerts
lerters 16-1

Overview
Overview
The DBMS_ALERT package provides support for the asynchronous (as opposed to
polling) notification of database events. By appropriate use of this package and
database triggers, an application can cause itself to be notified whenever values of
interest in the database are changed.

For example, suppose a graphics tool is displaying a graph of some data from a
database table. The graphics tool can, after reading and graphing the data, wait on
a database alert (DBMS_ALERT.WAITONE) covering the data just read. The tool auto-
matically wakes up when the data is changed by any other user. All that is required
is that a trigger be placed on the database table, which then performs a signal
(DBMS_ALERT.SIGNAL) whenever the trigger is fired.

Alerts are transaction based. This means that the waiting session does not get
alerted until the transaction signalling the alert commits.

There can be any number of concurrent signallers of a given alert, and there can be
any number of concurrent waiters on a given alert.

A waiting application is blocked in the database and cannot do any other work.

The following procedures are callable from the DBMS_ALERT package:

Note: Because database alerters issue COMMITS, they cannot be
used with Oracle Forms. For more information on restrictions on
calling stored procedures while Oracle Forms (Romford) is active,
refer to your Oracle Forms documentation.
16-2 Oracle8 Application Developer’s Guide

Overview
Creating the DBMS_ALERT Package
To create the DBMS_ALERT package, submit the DBMSALRT.SQL and PRVTALRT.PLB
scripts when connected as the user SYS. These scripts are run automatically by the
CATPROC.SQL script.

Security
Security on this package can be controlled by granting EXECUTE on this package to
selected users or roles. You might want to write a cover package on top of this one
that restricts the alert names used. EXECUTE privilege on this cover package can
then be granted rather than on this package.

Errors
DBMS_ALERT raises the application error -20000 on error conditions. Table 16–2
shows the messages, and the procedures that can raise them.

Table 16–1 DBMS_ALERT Package Functions and Procedures

Function/Procedure Description Refer to

REGISTER Receive messages from an alert. page 16-5

REMOVE Disable notification from an alert. page 16-5

SIGNAL Signal an alert (send message to regis-
tered sessions).

page 16-5

WAITANY Wait TIMEOUT seconds to receive alert
message from an alert registered for ses-
sion.

page 16-6

WAITONE Wait TIMEOUT seconds to receive mes-
sage from named alert.

page 16-7

SET_DEFAULTS Set the polling interval. page 16-8

See Also: “Privileges Required” on page 10-59 for information on
granting the necessary privileges to users who will be executing
this package.
 Signalling Database Events with Alerters 16-3

Using Alerts
Using Alerts
The application can register for multiple events and can then wait for any of them
to occur using the WAITANY call.

An application can also supply an optional TIMEOUT parameter to the WAITONE or
WAITANY calls. A TIMEOUT of 0 returns immediately if there is no pending alert.

The signalling session can optionally pass a message that will be received by the
waiting session.

Alerts can be signalled more often than the corresponding application WAIT calls.
In such cases, the older alerts are discarded. The application always gets the latest
alert (based on transaction commit times).

If the application does not require transaction-based alerts, then the DBMS_PIPE
package may provide a useful alternative.

Table 16–2 DBMS_ALERT Error Messages

Error Message Procedure

ORU-10001 lock request error, status: N SIGNAL

ORU-10015 error: N waiting for pipe status WAITANY

ORU-10016 error: N sending on pipe ’X’ SIGNAL

ORU-10017 error: N receiving on pipe ’X’ SIGNAL

ORU-10019 error: N on lock request WAIT

ORU-10020 error: N on lock request WAITANY

ORU-10021 lock request error; status: N REGISTER

ORU-10022 lock request error, status: N SIGNAL

ORU-10023 lock request error; status N WAITONE

ORU-10024 there are no alerts registered WAITANY

ORU-10025 lock request error; status N REGISTER

ORU-10037 attempting to wait on uncommit-
ted signal from same session

WAITONE

See Also: “Database Pipes” on page 12-2.
16-4 Oracle8 Application Developer’s Guide

Using Alerts
If the transaction is rolled back after the call to DBMS_ALERT.SIGNAL, no alert
occurs.

It is possible to receive an alert, read the data, and find that no data has changed.
This is because the data changed after the prior alert, but before the data was read
for that prior alert.

REGISTER Procedure
The REGISTER procedure allows a session to register interest in an alert. The name
of the alert is the IN parameter. A session can register interest in an unlimited num-
ber of alerts. Alerts should be deregistered when the session no longer has any
interest, by calling REMOVE.

Syntax
The syntax for the REGISTER procedure is

DBMS_ALERT.REGISTER(name IN VARCHAR2);

REMOVE Procedure
The REMOVE procedure allows a session that is no longer interested in an alert to
remove that alert from its registration list. Removing an alert reduces the amount of
work done by signalers of the alert.

If a session dies without removing the alert, that alert is eventually (but not imme-
diately) cleaned up.

Syntax
The syntax for the REMOVE procedure is

DBMS_ALERT.REMOVE(name IN VARCHAR2);

SIGNAL Procedure
Call SIGNAL to signal an alert. The effect of the SIGNAL call only occurs when the
transaction in which it is made commits. If the transaction rolls back, the SIGNAL
call has no effect.

WARNING: Alert names beginning with "ORA$" are reserved for
use for products provided by Oracle Corporation.
 Signalling Database Events with Alerters 16-5

Using Alerts
All sessions that have registered interest in this alert are notified. If the interested
sessions are currently waiting, they are awakened. If the interested sessions are not
currently waiting, then they are notified the next time they do a wait call. Multiple
sessions can concurrently perform signals on the same alert. Each session, as it sig-
nals the alert, blocks all other concurrent sessions until it commits. This has the
effect of serializing the transactions.

Syntax
The parameters for the SIGNAL procedure are described in Table 16–3 . The syn-
tax for this procedure is

DBMS_ALERT.SIGNAL(name IN VARCHAR2,
 message IN VARCHAR2);

WAITANY Procedure
Call WAITANY to wait for an alert to occur for any of the alerts for which the current
session is registered. The same session that waits for the alert may also first signal
the alert. In this case remember to commit after the signal and before the wait; oth-
erwise, DBMS_LOCK.REQUEST (which is called by DBMS_ALERT) returns status 4.

Syntax
The parameters for the WAITANY procedure are described in Table 16–4 . The syn-
tax for this procedure is

DBMS_ALERT.WAITANY(name OUT VARCHAR2,
 message OUT VARCHAR2,
 status OUT INTEGER,
 timeout IN NUMBER DEFAULT MAXWAIT);

Table 16–3 DBMS_ALERT.SIGNAL Procedure Parameters

Parameter Description

name Specify the name of the alert to signal.

message Specify the message, of 1800 bytes or less, to associate with
this alert. This message is passed to the waiting session.
The waiting session might be able to avoid reading the data-
base after the alert occurs by using the information in the
message.
16-6 Oracle8 Application Developer’s Guide

Using Alerts
WAITONE Procedure
You call WAITONE to wait for a specific alert to occur. A session that is the first to
signal an alert can also wait for the alert in a subsequent transaction. In this case,
remember to commit after the signal and before the wait; otherwise,
DBMS_LOCK.REQUEST (which is called by DBMS_ALERT) returns status 4.

Syntax
The parameters for the WAITONE procedure are described in Table 16–5 . The syn-
tax for this procedure is

DBMS_ALERT.WAITONE(name IN VARCHAR2,
 message OUT VARCHAR2,
 status OUT INTEGER,
 timeout IN NUMBER DEFAULT MAXWAIT);

Table 16–4 DBMS_ALERT.WAITANY Procedure Parameters

Parameter Description

name Returns the name of the alert that occurred.

message Returns the message associated with the alert. This is the
message provided by the SIGNAL call. Note that if multiple
signals on this alert occurred before the WAITANY call, then
the message corresponds to the most recent signal call. Mes-
sages from prior SIGNAL calls are discarded.

status The values returned and their associated meanings are as fol-
lows:

0 - alert occurred

1 - time-out occurred

timeout Specify the maximum time to wait for an alert. If no alert
occurs before TIMEOUT seconds, this call returns with a sta-
tus of 1.
 Signalling Database Events with Alerters 16-7

Checking for Alerts
Checking for Alerts
Usually, Oracle is event-driven; that is, there are no polling loops. There are two
cases where polling loops can occur:

■ Shared mode. If your database is running in shared mode, a polling loop is
required to check for alerts from another instance. The polling loop defaults to
one second and can be set by the SET_DEFAULTS call.

■ WAITANY call. If you use the WAITANY call, and a signalling session does a sig-
nal but does not commit within one second of the signal, then a polling loop is
required so that this uncommitted alert does not camouflage other alerts. The
polling loop begins at a one second interval and exponentially backs off to 30-
second intervals.

SET_DEFAULTS Procedure
In case a polling loop is required, use the SET_DEFAULTS procedure to set the
POLLING_INTERVAL. The POLLING_INTERVAL is the time, in seconds, to sleep
between polls. The default interval is five seconds.

Syntax
The syntax for the SET_DEFAULTS procedure is

Table 16–5 DBMS_ALERT.WAITONE Procedure Parameters

Parameter Description

name Specify the name of the alert to wait for.

message Returns the message associated with the alert. This is the
message provided by the SIGNAL call. Note that if multi-
ple signals on this alert occurred before the WAITONE call,
then the message corresponds to the most recent signal
call. Messages from prior SIGNAL calls are discarded.

status The values returned and their associated meanings are as
follows:

0 - alert occurred

1 - time-out occurred

timeout Specify the maximum time to wait for an alert. If the
named alert does not occurs before TIMEOUT seconds, this
call returns with a status of 1.
16-8 Oracle8 Application Developer’s Guide

Example of Using Alerts
DBMS_ALERT.SET_DEFAULTS(polling_interval IN NUMBER);

Example of Using Alerts
Suppose you want to graph average salaries by department, for all employees.
Your application needs to know whenever EMP is changed. Your application would
look similar to the code below.

dbms_alert.register(’emp_table_alert’);
 readagain:
 /* ... read the emp table and graph it */
 dbms_alert.waitone(’emp_table_alert’, :message, :status);
 if status = 0 then goto readagain; else
 /* ... error condition */
The EMP table would have a trigger similar to the following example:

CREATE TRIGGER emptrig AFTER INSERT OR UPDATE OR DELETE ON emp
 BEGIN
 dbms_alert.signal(’emp_table_alert’, ’message_text’);
 END;

When the application is no longer interested in the alert, it makes the following
request:

dbms_alert.remove(’emp_table_alert’);
This reduces the amount of work required by the alert signaller. If a session exits
(or dies) while registered alerts exist, they are eventually cleaned up by future users
of this package.

The above example guarantees that the application always sees the latest data,
although it may not see every intermediate value.
 Signalling Database Events with Alerters 16-9

Example of Using Alerts
16-10 Oracle8 Application Developer’s Guide

 Establishing a Security
17

Establishing a Security Policy

Given the many types of mechanisms available to maintain the security of an Ora-
cle database, a discretionary security policy should be designed and implemented
to determine

■ the level of security at the application level

■ system and object privileges

■ database roles

■ how to grant and revoke privileges and roles

■ how to create, alter, and drop roles

■ how role use can be controlled

These topics and guidance on developing security policies are discussed in this
chapter. If you are using Trusted Oracle, see the Trusted Oracle documentation for
additional information about establishing an overall system security policy.
 Policy 17-1

Application Security Policy
Application Security Policy
Draft a security policy for each database application. For example, each developed
database application (such as a precompiler program or Oracle Forms form) should
have one or more application roles that provide different levels of security when
executing the application. The application roles can be granted to user roles or
directly to specific usernames.

Applications that potentially allow unrestricted SQL statement execution (such as
SQL*Plus or SQL*ReportWriter) also need tight control to prevent malicious access
to confidential or important schema objects.

Application Administrators
In large database systems with many database applications (such as precompiler
applications or Oracle Forms applications), it may be desirable to have application
administrators. An application administrator is responsible for

■ creating roles for an application and managing the privileges of each applica-
tion role

■ creating and managing the objects used by a database application

■ maintaining and updating the application code and Oracle procedures and
packages, as necessary

As the application developer, you might also assume the responsibilities of the
application administrator. However, these jobs might be designated to another indi-
vidual familiar with the database applications.

Roles and Application Privilege Management
Because most database applications involve many different privileges on many dif-
ferent schema objects, keeping track of which privileges are required for each appli-
cation can be complex. In addition, authorizing users to run an application can
involve many GRANT operations. To simplify application privilege management, a
role should be created and granted all the privileges required to run each applica-
tion. In fact, an application might have a number of roles, each granted a specific
subset of privileges that allow fewer or more capabilities while running the applica-
tion.

Example Assume that every administrative assistant uses the Vacation application
to record vacation taken by members of the department. You should

1. Create a VACATION role.
17-2 Oracle8 Application Developer’s Guide

Application Security Policy
2. Grant all privileges required by the Vacation application to the VACATION role.

3. Grant the VACATION role to all administrative assistants or to a role named
ADMIN_ASSITS (if previously defined).

Grouping application privileges in a role aids privilege management. Consider the
following administrative options:

■ You can grant the role, rather than many individual privileges, to those users
who run the application. Then, as employees change jobs, only one role grant
or revoke (rather than many privilege grants and revokes) is necessary.

■ You can change the privileges associated with an application by modifying
only the privileges granted to the role, rather than the privileges held by all
users of the application.

■ You can determine which privileges are necessary to run a particular applica-
tion by querying the ROLE_TAB_PRIVS and ROLE_SYS_PRIVS data dictionary
views.

■ You can determine which users have privileges on which applications by query-
ing the DBA_ROLE_PRIVS data dictionary view.

Enabling Application Roles
A single user can use many applications and associated roles. However, you should
only allow a user to have the privileges associated with the currently running appli-
cation role. For example, consider the following scenario:

■ The ORDER role (for the ORDER application) contains the UPDATE privilege
for the INVENTORY table.

■ The INVENTORY role (for the INVENTORY application) contains the SELECT
privilege for the INVENTORY table.

■ Several order entry clerks have been granted both the ORDER and INVEN-
TORY roles.

Therefore, an order entry clerk who has been granted both roles can presumably
use the privileges of the ORDER role when running the INVENTORY application
to update the INVENTORY table. However, update modification to the INVEN-
TORY table is not an authorized action when using the INVENTORY application,
but only when using the ORDER application.

To avoid such problems, issue a SET ROLE statement at the beginning of each appli-
cation to automatically enable its associated role and, consequently, disable all oth-
ers. By using the SET ROLE command, each application dynamically enables
 Establishing a Security Policy 17-3

Application Security Policy
particular privileges for a user only when required. A user can make use of an
application’s privileges only when running a given application, and is prevented
from intentionally or unintentionally using them outside the context of an applica-
tion.

The SET ROLE statement facilitates privilege management in that, in addition to let-
ting you control what information a user can access, it allows you to control when a
user can access it. In addition, the SET ROLE statement keeps users operating in a
well defined privilege domain. If a user gets all privileges from roles, the user can-
not combine them to perform unauthorized operations; see “Enabling and Dis-
abling Roles” on page 17-10 for more information.

SET_ROLE Procedure
The DBMS_SESSIONS.SET_ROLE procedure behaves similarly to the SET ROLE
statement and can be accessed from PL/SQL. You cannot call SET_ROLE from a
stored procedure. This restriction prevents a stored procedure from changing its
security domain during its execution. A stored procedure executes under the secu-
rity domain of the creator of the procedure.

DBMS_SESSION.SET_ROLE is only callable from anonymous PL/SQL blocks.
Because PL/SQL does the security check on SQL when an anonymous block is com-
piled, SET_ROLE will not affect the security role (that is, will not affect the roles
enabled) for embedded SQL statements or procedure calls.

For example, if you have a role named ACCT that has been granted privileges that
allow you to select from table FINANCE in the JOE schema, the following block
will fail:

DECLARE
 n NUMBER
BEGIN
 SYS.DBMS_SESSION.SET_ROLE(’acct’)
 SELECT empno INTO n FROM JOE.FINANCE
END;

This block fails because the security check that verifies that you have the SELECT
privilege on table JOE.FINANCE happens at compile time. At compile time, you do
not have the ACCT role enabled yet. The role is not enabled until the block is exe-
cuted.

The DBMS_SQL package, however, is not subject to this restriction. When you use
this package, the security checks are performed at runtime. Thus, a call to
SET_ROLE would affect the SQL executed using calls to the DBMS_SQL package.
The following block would therefore be successful:
17-4 Oracle8 Application Developer’s Guide

Application Security Policy
DECLARE
 n NUMBER
BEGIN
 SYS.DBMS_SESSION.SET_ROLE(’acct’);
 SYS.DBMS_SQL.PARSE
 (’SELECT empno FROM JOE.FINANCE’);
 . . .
 --other calls to SYS.DBMS_SQL
 . . .
END;

Restricting Application Roles from Tool Users
Prebuilt database applications explicitly control the potential actions of a user,
including the enabling and disabling of the user’s roles while using the application.
Alternatively, ad hoc query tools such as SQL*Plus allow a user to submit any SQL
statement (which may or may not succeed), including the enabling and disabling of
any granted role. This can pose a serious security problem. If you do not take pre-
cautions, an application user could have the ability to intentionally or unintention-
ally issue destructive SQL statements against database tables while using an ad hoc
tool, using the privileges obtained through an application role.

For example, consider the following scenario:

■ The Vacation application has a corresponding VACATION role.

■ The VACATION role includes the privileges to issue SELECT, INSERT,
UPDATE, and DELETE statements against the EMP table.

■ The Vacation application controls the use of the privileges obtained via the
VACATION role; that is, the application controls when statements are issued.

Now consider a user who has been granted the VACATION role. However, instead
of using the Vacation application, the user executes SQL*Plus. At this point, the
user is restricted only by the privileges granted to him explicitly or via roles, includ-
ing the VACATION role. Because SQL*Plus is an ad hoc query tool, the user is not
restricted to a set of predefined actions, as with designed database applications.
The user can query or modify data in the EMP table as he or she chooses.

To avoid potential problems like the one above, consider the following policy for
application roles:

1. Each application should have distinct roles:

■ One role should contain all privileges necessary to use the application suc-
cessfully. Depending on the situation, there might be several roles that con-
 Establishing a Security Policy 17-5

Application Security Policy
tain more or fewer privileges to provide tighter or less restrictive security
while executing the application. Each application role should be protected
by a password (or by operating system authentication) to prevent unautho-
rized use.

■ Another role should contain only non-destructive privileges associated
with the application (that is, SELECT privileges for specific tables or views
associated with the application). The read-only role allows the application
user to generate custom reports using ad hoc tools such as SQL*Plus,
SQL*ReportWriter, SQL*Graph, etc. However, this role does not allow the
application user to modify table data outside the application itself. A role
designed for an ad hoc query tool may or may not be protected by a pass-
word (or operating system authentication).

2. At startup, each application should use the SET ROLE command to enable one
of the application roles associated with that application. If a password is used
to authorize the role, the password must be included in the SET ROLE state-
ment within the application (encrypted by the application, if possible); if the
role is authorized by the operating system, the system administrator must have
set up user accounts and applications so that application users get the appropri-
ate operating system privileges when using the application.

3. At termination, each application should disable the previously enabled applica-
tion role.

4. Application users should be granted application roles, as required. The admin-
istrator can prohibit a user from using application data with ad hoc tools by not
granting the non-destructive role to the user.

Using this configuration, each application enables the proper role when the applica-
tion is started, and disables the role when the application terminates. If an applica-
tion user decides to use an ad hoc tool, the user can only enable the non-destructive
role intended for that tool.

Additionally, you can

■ Specify the roles to enable when a user starts SQL*Plus, using the
PRODUCT_USER_PROFILE table. This functionality is similar to that of a pre-
compiler or OCI application that issues a SET ROLE statement to enable spe-
cific roles upon application startup.

■ Disable the use of the SET ROLE command for SQL*Plus users with the
PRODUCT_USER_PROFILE table. This allows a SQL*Plus user only the privi-
leges associated with the roles enabled when the user started SQL*Plus.
17-6 Oracle8 Application Developer’s Guide

Managing Privileges and Roles
Other ad hoc query and reporting tools, such as SQL*ReportWriter, SQL*Graph,
etc., can also make use of the PRODUCT_USER_PROFILE table to restrict the roles
and commands that each user can use while running that product. For more infor-
mation about these features, see the appropriate tool manual.

Schemas
Each database username is said to be a schema—a security domain that can contain
schema objects. The access to the database and its objects is controlled by the privi-
leges granted to each schema.

Most schemas can be thought of as usernames—the accounts set up to allow users
to connect to a database and access the database’s objects. However, unique schemas
do not allow connections to the database, but are used to contain a related set of
objects. Schemas of this sort are created as normal users, yet not granted the CRE-
ATE SESSION system privilege (either explicitly or via a role). However, you must
temporarily grant the CREATE SESSION privilege to such schemas if you want to
use the CREATE SCHEMA command to create multiple tables and views in a sin-
gle transaction.

For example, the schema objects for a specific application might be owned by a
schema. Application users can connect to the database using typical database user-
names and use the application and the corresponding objects if they have the privi-
leges to do so. However, no user can connect to the database using the schema set
up for the application, thereby preventing access to the associated objects via this
schema. This security configuration provides another layer of protection for
schema objects.

Managing Privileges and Roles
As part of designing your application, you need to determine the types of users
who will be working with the application and the level of access that they must be
granted to accomplish their designated tasks. You must categorize these users into
role groups and then determine the privileges that must be granted to each role.

Typically, end users are granted object privileges. An object privilege allows a user
to perform a particular action on a specific table, view, sequence, procedure, func-
tion, or package. Depending on the type of object, there are different types of object
 Establishing a Security Policy 17-7

Managing Privileges and Roles
privileges. Table 17–1 summarizes the object privileges available for each type of
object.

■ “Procedure” — refers to stand-alone stored procedures, functions, and public
package constructs.

■ "2" — privilege cannot be granted to a role.

■ "3" — can also be granted for snapshots.

■ Table 17–2lists the SQL statements permitted by the object privileges listed in
Table 17–1.

As you implement and test your application, you should create each of these roles
and test the usage scenario for each role to be certain that the users of your applica-
tion will have proper access to the database. After completing your tests, you

Table 17–1 Object Privileges

Object Privilege Table View Sequence Procedure (1))

ALTER 3 3

DELETE 3 3

EXECUTE 3

INDEX 3 (2)

INSERT 3 3

REFERENCES 3 (2)

SELECT 3 3 (3) 3

UPDATE 3 3
17-8 Oracle8 Application Developer’s Guide

Managing Privileges and Roles
should coordinate with the administrator of the application to ensure that each user
is assigned the proper roles.

Creating a Role
The use of a role can be protected by an associated password, as in the example
below.

CREATE ROLE clerk IDENTIFIED BY bicentennial;

If you are granted a role protected by a password, you can enable or disable the
role only by supplying the proper password for the role using a SET
ROLEcommand (see “Explicitly Enabling Roles” on page 17-11 for more informa-
tion). Alternatively, roles can be created so that role use is authorized using infor-
mation from the operating system. For more information about use of the operating
system for role authorization, see Oracle8 Administrator’s Guide.

If a role is created without any protection, the role can be enabled or disabled by
any grantee.

Database applications usually use the role authorization feature to specifically
enable an application role and disable all other roles of a user. This way, the user
cannot use privileges (from a role) intended for another application. With ad hoc
query tools (such as SQL*Plus or Enterprise Manager), users can explicitly enable

Table 17–2 SQL Statements Permitted by Database Object Privileges

Object Privilege SQL Statements Permitted

ALTER ALTER object (table or sequence)

CREATE TRIGGER ON object (tables only)

DELETE DELETE FROM object (table or view

EXECUTE EXECUTE object (procedure or function)

References to public package variables

INDEX CREATE INDEX ON object (table or view)

INSERT INSERT INTO object (table or view)

REFERENCES CREATE or ALTER TABLE statement defining a

FOREIGN KEY integrity constraint on object (tables only)

SELECT SELECT...FROM object (table, view, or snapshot)

SQL statements using a sequence
 Establishing a Security Policy 17-9

Managing Privileges and Roles
only the roles for which they are authorized (that is, they know the password or are
authorized by the operating system). See “Restricting Application Roles from Tool
Users” on page 17-5 for more information.

When you create a new role, the name that you use must be unique among existing
usernames and role names of the database. Roles are not contained in the schema of
any user.

Immediately after creation, a role has no privileges associated with it. To associate
privileges with a new role, you must grant privileges or other roles to the newly cre-
ated role.

Privileges Required to Create Roles
To create a role, you must have the CREATE ROLE system privilege.

Enabling and Disabling Roles
Although a user can be granted a role, the role must be enabled before the privi-
leges associated with it become available in the user’s current session. Some, all, or
none of the user’s roles can be enabled or disabled. The following sections discuss
when roles should be enabled and disabled and the different ways that a user can
have roles enabled or disabled.

When to Enable Roles
In general, a user’s security domain should always permit the user to perform the
current task at hand, yet limit the user from having unnecessary privileges for the
current job. For example, a user should have all the privileges to work with the
database application currently in use, but not have any privileges required for any
other database applications. Having too many privileges might allow users to
access information through unintended methods.

Privileges granted directly to a user are always available to the user; therefore,
directly granted privileges cannot be selectively enabled and disabled depending
on a user’s current task. Alternatively, privileges granted to a role can be selectively
made available for any user granted the role. The enabling of roles never affects
privileges explicitly granted to a user. The following sections explain how a user’s
roles can be selectively enabled (and disabled).

Default Roles
A default role is one that is automatically enabled for a user when the user creates a
session. A user’s list of default roles should include those roles that correspond to
his or her typical job function.
17-10 Oracle8 Application Developer’s Guide

Managing Privileges and Roles
Each user has a list of zero, or one or more default roles. Any role directly granted
to a user can potentially be a default role of the user; an indirectly granted role (a
role that is granted to a role) cannot be a default role; only directly granted roles
can be default roles of a user.

The number of default roles for a user should not exceed the maximum number of
enabled roles that are allowed per user (as specified by the initialization parameter
MAX_ENABLED_ROLES); if the number of default roles for a user exceeds this maxi-
mum, errors are returned when the user attempts a connection, and the user’s con-
nection is not allowed.

A user’s list of default roles can be set and altered using the SQL command ALTER
USER. If the user’s list of default roles is specified as ALL, every role granted to a
user is automatically added to the user’s list of default roles. Only subsequent mod-
ification of a user’s default role list can remove newly granted roles from a user’s
list of default roles.

Modifications to a user’s default role list only apply to sessions created after the
alteration or role grant; neither method applies to a session in progress at the time
of the user alteration or role grant.

Explicitly Enabling Roles
A user (or application) can explicitly enable a role using the SQL command SET
ROLE. A SET ROLE statement enables all specified roles, provided that they have
been granted to the user. All roles granted to the user that are not explicitly speci-
fied in a SET ROLE statement are disabled, including any roles previously enabled.

When you enable a role that contains other roles, all the indirectly granted roles are
specifically enabled. Each indirectly granted role can be explicitly enabled or dis-
abled for a user.

If a role is protected by a password, the role can only be enabled by indicating the
role’s password in the SET ROLE statement. If the role is not protected by a pass-
word, the role can be enabled with a simple SET ROLE statement. For example,
assume that Morris’ security domain is as follows:

Note: A default role is automatically enabled for a user when the
user creates a session. Placing a role in a user’s list of default roles
bypasses authentication for the role, whether it is authorized using
a password or the operating system.
 Establishing a Security Policy 17-11

Managing Privileges and Roles
■ He is granted three roles: PAYROLL_CLERK (password BICENTENNIAL),
ACCTS_PAY (password GARFIELD), and ACCTS_REC (identified externally).
The PAYROLL_CLERK role includes the indirectly granted role
PAYROLL_REPORT (identified externally).

■ His only default role is PAYROLL_CLERK.

Morris’ currently enabled roles can be changed from his default role,
PAYROLL_CLERK, to ACCTS_PAY and ACCTS_REC, by the following statements:

SET ROLE accts_pay IDENTIFIED BY garfield, accts_rec;

Notice in the first statement that multiple roles can be enabled in a single SET ROLE
statement. The ALL and ALL EXCEPT options of the SET ROLE command also allow
several roles granted directly to the user to be enabled in one statement:

SET ROLE ALL EXCEPT payroll_clerk;

This statement shows the use of the ALL EXCEPT option of the SET ROLE com-
mand. Use this option when you want to enable most of a user’s roles and only dis-
able one or more. Similarly, all of Morris’ roles can be enabled by the following
statement:

SET ROLE ALL;

When using the ALL or ALL EXCEPT options of the SET ROLE command, all roles to
be enabled either must not require a password, or must be authenticated using the
operating system. If a role requires a password, the SET ROLE ALL or ALL EXCEPT
statement is rolled back and an error is returned.

A user can also explicitly enable any indirectly granted roles granted to him or her
via an explicit grant of another role. For example, Morris can issue the following
statement:

SET ROLE payroll_report;

Privileges Required to Explicitly Enable Roles Any user can use the SET ROLE com-
mand to enable any granted roles, provided the grantee supplies role passwords,
when necessary.

Enabling and Disabling Roles When OS_ROLES=TRUE
If OS_ROLES is set to TRUE, any role granted by the operating system can be
dynamically enabled using the SET ROLE command. However, any role not identi-
fied in a user’s operating system account cannot be specified in a SET ROLE state-
ment (it is ignored), even if a role has been granted using a GRANT statement.
17-12 Oracle8 Application Developer’s Guide

Managing Privileges and Roles
When OS_ROLES is set to TRUE, a user can enable as many roles as specified by the
initialization parameter MAX_ENABLED_ROLES. For more information about use of
the operating system for role authorization, see Oracle8 Administrator’s Guide.

Dropping Roles
When you drop a role, the security domains of all users and roles granted that role
are immediately changed to reflect the absence of the dropped role’s privileges. All
indirectly granted roles of the dropped role are also removed from affected security
domains. Dropping a role automatically removes the role from all users’ default
role lists.

Because the creation of objects is not dependent upon the privileges received via a
role, no cascading effects regarding objects need to be considered when dropping a
role (for example, tables or other objects are not dropped when a role is dropped).

Drop a role using the SQL command DROP ROLE, as shown in the following exam-
ple.

DROP ROLE clerk;

Privileges Required to Drop Roles
To drop a role, you must have the DROP ANY ROLE system privilege or have been
granted the role with the ADMIN OPTION.

Granting and Revoking Privileges and Roles
The following sections explain how to grant and revoke system privileges, roles,
and schema object privileges.

Granting System Privileges and Roles
System privileges and roles can be granted to other roles or users using the SQL
command GRANT, as shown in the following example:

GRANT create session, accts_pay
 TO jward, finance;

Schema object privileges cannot be granted along with system privileges and roles
in the same GRANT statement.

The ADMIN OPTION A system privilege or role can be granted with the ADMIN
OPTION. (This option is not valid when granting a role to another role.) A grantee
with this option has several expanded capabilities:
 Establishing a Security Policy 17-13

Managing Privileges and Roles
■ The grantee can grant or revoke the system privilege or role to or from any user
or other role in the database. (A user cannot revoke a role from himself.)

■ The grantee can further grant the system privilege or role with the ADMIN
OPTION.

■ The grantee of a role can alter or drop the role.

A grantee without the ADMIN OPTION cannot perform the above operations.

When a user creates a role, the role is automatically granted to the creator with the
ADMIN OPTION.

Assume that you grant the NEW_DBA role to MICHAEL with the following statement:

GRANT new_dba TO michael WITH ADMIN OPTION;

The user MICHAEL cannot only use all of the privileges implicit in the NEW_DBA
role, but can grant, revoke, or drop the NEW_DBA role as necessary.

Privileges Required to Grant System Privileges or Roles To grant a system privilege or
role, the grantor requires the ADMIN OPTION for all system privileges and roles
being granted. Additionally, any user with the GRANT ANY ROLE system privilege
can grant any role in a database.

Granting Schema Object Privileges
Grant schema object privileges to roles or users using the SQL command GRANT.
The following statement grants the SELECT, INSERT, and DELETE object privileges
for all columns of the EMP table to the users JWARD and TSMITH:

GRANT select, insert, delete ON emp TO jward, tsmith;

To grant the INSERT object privilege for only the ENAME and JOB columns of the
EMP table to the users JWARD and TSMITH, enter the following statement:

GRANT insert(ename, job) ON emp TO jward, tsmith;

To grant all schema object privileges on the SALARY view to the user WALLEN, use
the ALL short cut, as in

GRANT ALL ON salary TO wallen;

System privileges and roles cannot be granted along with schema object privileges
in the same GRANT statement.
17-14 Oracle8 Application Developer’s Guide

Managing Privileges and Roles
The GRANT OPTION A schema object privilege can be granted to a user with the
GRANT OPTION. This special privilege allows the grantee several expanded privi-
leges:

■ The grantee can grant the schema object privilege to any user or any role in the
database.

■ The grantee can also grant the schema object privilege to other users, with or
without the GRANT OPTION.

■ If the grantee receives schema object privileges for a table with the GRANT
OPTION and the grantee has the CREATE VIEW or the CREATE ANY VIEW sys-
tem privilege, the grantee can create views on the table and grant the corre-
sponding privileges on the view to any user or role in the database.

The user whose schema contains an object is automatically granted all associated
schema object privileges with the GRANT OPTION.

Privileges Required to Grant Schema Object Privileges To grant a schema object privi-
lege, the grantor must either

■ be the owner of the schema object being specified, or

■ have been granted the schema object privileges being granted with the GRANT
OPTION

Revoking System Privileges and Roles
System privileges and roles can be revoked using the SQL command REVOKE, as
shown in the following example:

REVOKE create table, accts_rec FROM tsmith, finance;

The ADMIN OPTION for a system privilege or role cannot be selectively revoked; the
privilege or role must be revoked and then the privilege or role regranted without
the ADMIN OPTION.

Privileges Required to Revoke System Privileges and Roles Any user with the ADMIN
OPTION for a system privilege or role can revoke the privilege or role from any

Note: The GRANT OPTION is not valid when granting a schema
object privilege to a role. Oracle prevents the propagation of
schema object privileges via roles so that grantees of a role cannot
propagate object privileges received via roles.
 Establishing a Security Policy 17-15

Managing Privileges and Roles
other database user or role (the user does not have to be the user that originally
granted the privilege or role). Additionally, any user with the GRANT ANY ROLE can
revoke any role.

Revoking Schema Object Privileges
Schema object privileges can be revoked using the SQL command REVOKE. For
example, assuming you are the original grantor, to revoke the SELECT and INSERT
privileges on the EMP table from the users JWARD and TSMITH, enter the following
statement:

REVOKE select, insert ON emp
 FROM jward, tsmith;

A grantor could also revoke all privileges on the table DEPT (even if only
one privilege was granted) that he or she granted to the role HUMAN_RESOURCES
by entering the following statement:

REVOKE ALL ON dept FROM human_resources;

This statement would only revoke the privileges that the grantor authorized, not
the grants made by other users. The GRANT OPTION for a schema object privilege
cannot be selectively revoked; the schema object privilege must be revoked and
then regranted without the GRANT OPTION. A user cannot revoke schema object
privileges from him or herself.

Revoking Column-Selective Schema Object Privileges Recall that column-specific
INSERT, UPDATE, and REFERENCES privileges can be granted for tables or views;
however, it is not possible to revoke column-specific privileges selectively with a
similar REVOKE statement. Instead, the grantor must first revoke the schema object
privilege for all columns of a table or view, and then selectively grant the new col-
umn-specific privileges again.

For example, assume the role HUMAN_RESOURCES has been granted the UPDATE
privilege on the DEPTNO and DNAME columns of the table DEPT. To revoke the
UPDATE privilege on just the DEPTNO column, enter the following two statements:

REVOKE UPDATE ON dept FROM human_resources;
GRANT UPDATE (dname) ON dept TO human_resources;

The REVOKE statement revokes the UPDATE privilege on all columns of the DEPT
table from the role HUMAN_RESOURCES. The GRANT statement regrants the UPDATE
privilege on the DNAME column to the role HUMAN_RESOURCES.
17-16 Oracle8 Application Developer’s Guide

Managing Privileges and Roles
Revoking the REFERENCES Schema Object Privilege If the grantee of the REFERENCES
object privilege has used the privilege to create a foreign key constraint (that cur-
rently exists), the grantor can only revoke the privilege by specifying the CASCADE
CONSTRAINTS option in the REVOKE statement:

REVOKE REFERENCES ON dept FROM jward CASCADE CONSTRAINTS;

Any foreign key constraints currently defined that use the revoked REFERENCES
privilege are dropped when the CASCADE CONSTRAINTS option is specified.

Privileges Required to Revoke Schema Object Privileges To revoke a schema object privi-
lege, the revoker must be the original grantor of the object privilege being revoked.

Cascading Effects of Revoking Privileges
Depending on the type of privilege, there may or may not be cascading effects if a
privilege is revoked. The following sections explain several cascading effects.

System Privileges There are no cascading effects when revoking a system privilege
related to DDL operations, regardless of whether the privilege was granted with or
without the ADMIN OPTION. For example, assume the following:

1. You grant the CREATE TABLE system privilege to JWARD with the WITH
OPTION.

2. JWARD creates a table.

3. JWARD grants the CREATE TABLE system privilege to TSMITH.

4. TSMITH creates a table.

5. You revoke the CREATE TABLE system privilege from JWARD.

6. JWARD’s table continues to exist. TSMITH continues to have the CREATE TABLE
system privilege and his table still exists.

Cascading effects can be observed when revoking a system privilege related to a
DML operation. For example, if SELECT ANY TABLE is granted to a user, and that
user has created any procedures, all procedures contained in the user’s schema
must be reauthorized before they can be used again (after the revoke).

Schema Object Privileges Revoking a schema object privilege can have several types
of cascading effects that should be investigated before a REVOKE statement is
issued:
 Establishing a Security Policy 17-17

Managing Privileges and Roles
■ Schema object definitions that depend on a DML object privilege can be
affected if the DML object privilege is revoked. For example, assume the proce-
dure body of the TEST procedure includes a SQL statement that queries data
from the EMP table. If the SELECT privilege on the EMP table is revoked from
the owner of the TEST procedure, the procedure can no longer be executed suc-
cessfully.

■ Schema object definitions that require the ALTER and INDEX DDL object privi-
leges are not affected if the ALTER or INDEX object privilege is revoked. For
example, if the INDEX privilege is revoked from a user that created an index on
someone else’s table, the index continues to exist after the privilege is revoked.

■ When a REFERENCES privilege for a table is revoked from a user, any foreign
key integrity constraints defined by the user that require the dropped REFER-
ENCES privilege are automatically dropped. For example, assume that the user
JWARD is granted the REFERENCES privilege for the DEPTNO column of the
DEPT table and creates a foreign key on the DEPTNO column in the EMP table
that references the DEPTNO column. If the REFERENCES privilege on the
DEPTNO column of the DEPT table is revoked, the foreign key constraint on the
DEPTNO column of the EMP table is dropped in the same operation.

■ The schema object privilege grants propagated using the GRANT OPTION are
revoked if a grantor’s object privilege is revoked. For example, assume that
USER1 is granted the SELECT object privilege with the GRANT OPTION, and
grants the SELECT privilege on EMP to USER2. Subsequently, the SELECT privi-
lege is revoked from USER1. This revoke is cascaded to USER2 as well. Any
schema objects that depended on USER1’s and USER2’s revoked SELECT privi-
lege can also be affected.

Granting to, and Revoking from, the User Group PUBLIC
Privileges and roles can also be granted to and revoked from the user group PUB-
LIC . Because PUBLIC is accessible to every database user, all privileges and roles
granted to PUBLIC are accessible to every database user.

You should only grant a privilege or role to PUBLIC if every database user requires
the privilege or role. This recommendation restates the general rule that at any
given time, each database user should only have the privileges required to success-
fully accomplish the current task.

Revokes from PUBLIC can cause significant cascading effects, depending on the
privilege that is revoked. If any privilege related to a DML operation is revoked
from PUBLIC (for example, SELECT ANY TABLE, UPDATE ON emp), all procedures
in the database (including functions and packages) must be reauthorized before
17-18 Oracle8 Application Developer’s Guide

Managing Privileges and Roles
they can be used again. Therefore, use caution when granting DML-related privi-
leges to PUBLIC.

When Do Grants and Revokes Take Effect?
Depending upon what is granted or revoked, a grant or revoke takes effect at differ-
ent times:

■ All grants/revokes of privileges (system and schema object) to anything (users,
roles, and PUBLIC) are immediately observed.

■ All grants/revokes of roles to anything (users, other roles, PUBLIC) are only
observed when a current user session issues a SET ROLE statement to re-enable
the role after the grant/revoke, or when a new user session is created after the
grant/revoke.

How Do Grants Affect Dependent Objects?
Issuing a GRANT statement against a schema object causes the “last DDL time”
attribute of the object to change. This can invalidate any dependent schema objects,
in particular PL/SQL package bodies that refer to the schema object. These then
must be recompiled.
 Establishing a Security Policy 17-19

Managing Privileges and Roles
17-20 Oracle8 Application Developer’s Guide

 O
18

Oracle XA

This chapter describes how to use the Oracle XA library. The chapter includes the
following topics:

■ XA Library-Related Information

■ Changes from Release 7.3 to Release 8.0

■ General Issues and Restrictions

■ Developing and Installing Applications That Use the XA Libraries

■ Defining the xa_open String

■ Interfacing to Precompilers and OCIs

■ Transaction Control

■ Migrating Precompiler or OCI Applications to TPM Applications

■ XA Library Thread Safety

■ Troubleshooting
racle XA 18-1

XA Library-Related Information
XA Library-Related Information

General Information about the Oracle XA
For preliminary reading and additional reference information regarding the Oracle
XA library, see the following documents:

■ Oracle Call Interface Programmer’s Guide

README.doc
A README.doc file is located in a directory specified in the Oracle operating sys-
tem-specific documentation and describes changes, bugs, or restrictions in the Ora-
cle XA library for your platform since the last version.

Changes from Release 7.3 to Release 8.0
The following changes have been made:

■ Session Caching Is No Longer Needed

■ Dynamic Registration Is Supported

■ Loosely Coupled Transaction Branches Are Supported

■ SQLLIB Is Not Needed for OCI Applications

■ No Installation Script Is Needed to Run XA

■ The XA Library Can Be Used with the Oracle Parallel Server Option on All Plat-
forms

■ Transaction Recovery for Oracle Parallel Server Has Been Improved

■ Both Global and Local Transactions Are Possible

■ The xa_open String Has Been Modified

Session Caching Is No Longer Needed
Session caching is unnecessary with the new OCI. Therefore, the old xa_open
string parameter, SesCacheSz , has been eliminated. Consequently, you can also
reduce the sessions init.ora parameter. Instead, set the transactions init.ora
parameter to the expected number of concurrent global transactions. Because ses-

See Also: For information on library linking filenames, see the
Oracle operating system-specific documentation.
18-2 Oracle8 Application Developer’s Guide

Changes from Release 7.3 to Release 8.0
sions are not migrated when global transactions are resumed, applications must
not refer to any session state beyond the scope of a service. For information on how
to organize your application into services, refer to the documentation provided
with the transaction processing monitor. In particular, savepoints and cursor fetch
state will be cancelled when a transaction is suspended. This means that a save-
point taken by the application in a service will be invalid in another service, even
though the two services may belong to the same global transaction.

Dynamic Registration Is Supported
Dynamic registration can be used if, and only if, both the XA application and the
Oracle Server are Version 8.

Loosely Coupled Transaction Branches Are Supported
The Oracle8 Server supports both loosely and tightly coupled transaction branches
in a single Oracle instance. The Oracle7 Server supported only tightly coupled
transaction branches in a single instance, and loosely coupled transaction branches
in different instances.

SQLLIB Is Not Needed for OCI Applications
OCI applications used to require the use of SQLLIB . This meant OCI programmers
had to buy SQLLIB , even if they had no desire to develop Pro* applications. This is
no longer the case.

No Installation Script Is Needed to Run XA
The SQL script XAVIEW.SQL is not needed to run XA applications in Oracle Version
8. It is, however, still necessary for Version 7.3 applications.

The XA Library Can Be Used with the Oracle Parallel Server Option on All Platforms
It was not possible with Version 7 to use the Oracle XA library together with the
Oracle Parallel Server option on certain platforms. Only if the platform’s implemen-
tation of the distributed lock manager supported transaction-based rather than pro-
cess-based locking would the two work together. This limitation is no longer the
case; if you can run the Oracle Parallel Server option, then you can run the Oracle
XA library.

See Also: “Extensions to the XA Interface” on page 18-13

See Also: “Responsibilities of the DBA or System Administrator”
on page 18-16.
 Oracle XA 18-3

Changes from Release 7.3 to Release 8.0
Transaction Recovery for Oracle Parallel Server Has Been Improved
All transactions can be recovered from any instance of Oracle Parallel Server. Use
the xa_recover call to provide a snapshot of the pending transactions.

Both Global and Local Transactions Are Possible
It is now possible to have both global and local transactions within the same XA
connection. Local transactions are transactions that are completely coordinated by
the Oracle Server. For example, the update below belongs to a local transaction.

CONNECT SCOTT/TIGER;
UPDATE EMP set sal = sal + 1; /* begin local transaction*/
COMMIT; /* commit local transaction*/

Global transactions, on the other hand, are coordinated by an external transaction
manager such as a transaction processing monitor. In these transactions, the Oracle
Server acts as a subordinate and processes the XA commands issued by the transac-
tion manager. The update shown below belongs to a global transaction.

xa_open(oracle_xa+acc=p/SCOTT/TIGER+sestm=10”, 1, TMNOFLAGS);
 /*Transaction manager opens */
 /* connection to the Oracle server*/
tpbegin(); /* begin global transaction, the transaction*/
 /*manager issues XA commands to the oracle*/
 /*server to start a global transaction */
UPDATE EMP set sal = sal + 1;
 /* Update is performed in the */
 /* global transaction*/
tpcommit(); /* commit global transaction, */
 /* the transaction manager issues XA commands*/
 /* to the Oracle server to commit */
 /* the global transaction */

The Oracle7 Server forbids a local transaction from being started in an XA connec-
tion. The update shown below would return an ORA-2041 error code.

xa_open(“oracle_xa+acc=p/SCOTT/TIGER+sestm=10” , 1, TMNOFLAGS);
 /* Transaction manager opens */
 /*connection to the Oracle server */
UPDATE EMP set sal = sal + 1;/* Oracle 7 returns an error */

The Oracle8 Server, on the other hand, allows local transactions to be started in an
XA connection. The only restriction is that the local transaction must be ended
(committed or rolled back) before starting a global transaction in the connection.
18-4 Oracle8 Application Developer’s Guide

Changes from Release 7.3 to Release 8.0
The xa_open String Has Been Modified
Two new parameters have been added. They are:

■ Loose_Coupling

This parameter has a boolean value and should not be set to true when con-
nected to an Oracle7 Server. If set to true, it indicates that global transaction
branches will be loosely coupled, that is, locks will not be shared between
branches.

■ SesWt

This parameter’s value indicates the time-out limit when waiting for a transac-
tion branch that is being used by another session. If Oracle cannot switch to the
transaction branch within SesWt seconds, XA_RETRY will be returned.

Two parameters have been made obsolete and should only be used when con-
nected to an Oracle Server Release 7.3.

■ GPWD

The group password is not used by Oracle8. A session that is logged in with
the same user name as the session that created a transaction branch will be
allowed to switch to the transaction branch.

■ SesCacheSz

This parameter is not used by Oracle8 because session caching has been elimi-
nated.

See Also: Oracle Call Interface Programmer’s Guide for more infor-
mation on global transactions.
 Oracle XA 18-5

General Issues and Restrictions
General Issues and Restrictions

Database Links
Oracle XA applications can access other Oracle Server databases through database
links, with the following restrictions:

■ Use the Multi-Threaded Server configuration.

This means the transaction processing monitors (TPMs) will use shared servers
to open the connection to Oracle. The O/S network connection required for the
database link will be opened by the dispatcher instead of the Oracle server pro-
cess. Thus, when a particular service or RPC completes, the transaction can be
detached from the server so that it can be used by other services or RPCs.

■ Access to the other database must use SQL*Net Version 2 or Net8.

■ The other database being accessed should be another Oracle Server database.

Assuming that these restrictions are satisfied, Oracle Server will allow such links
and will propagate the transaction protocol (prepare, rollback, and commit) to the
other Oracle Server databases.

If using the Multi-Threaded Server configuration is not possible then, access the
remote database through the Pro*C/C++ application using EXEC SQL AT syntax.

The parameter open_links_per_instance specifies the number of migratable
open database link connections. These dblink connections are used by XA transac-
tions so that the connections are cached after a transaction is committed. Another
transaction is free to use the dblink connection provided the user that created the
connection is the same as the user who created the transaction. This parameter is
different from the open_links parameter, which is the number of dblink connec-
tions from a session. The open_links parameter is not applicable to XA applica-
tions.

WARNING: If these restrictions are not satisfied, when you use
database links within an XA transaction, it creates an O/S net-
work connection in the Oracle Server that is connected to the
TPM server process. Since this O/S network connection cannot
be moved from one process to another, you cannot detach from
this server. When you access a database through a database link,
you will receive an ORA#24777 error.
18-6 Oracle8 Application Developer’s Guide

General Issues and Restrictions
Oracle Parallel Server Option
You can recover failed transactions from any instance of Oracle Parallel Server. You
can also heuristically commit in-doubt transactions from any instance. An XA
recover call will give a list of all prepared transactions for all instances.

SQL-based Restrictions
SQL-based restrictions are listed in this section.

Rollbacks and Commits
Because the transaction manager is responsible for coordinating and monitoring
the progress of the global transaction, the application should not contain any Ora-
cle Server-specific statement that independently rolls back or commits a global
transaction. However, you can use rollbacks and commits in a local transaction.

Do not use EXEC SQL ROLLBACK WORK for precompiler applications when you are
in the middle of a global transaction. Similarly, an OCI application should not exe-
cute OCITransRollback (), or the Version 7 equivalent orol (). You can roll back a
global transaction by calling tx_rollback ().

Similarly, a precompiler application should not have the EXEC SQL COMMIT WORK
statement in the middle of a global transaction. An OCI application should not exe-
cute OCITransCommit () or the Version 7 equivalent ocom(). Instead, use
tx_commit () or tx_rollback () to end a global transaction.

DDL Statements
Because a DDL SQL statement such as CREATE TABLE implies an implicit commit,
the Oracle XA application cannot execute any DDL SQL statements.

Session State
Oracle does not guarantee that session state will be valid between services. For
example, if a service updates a session variable (such as a global package variable),
another service that executes as part of the same global transaction may not see the
change. Use savepoints only within a service. The application must not refer to a
savepoint that was created in another service. Similarly, an application must not
attempt to fetch from a cursor that was executed in another service.

SET TRANSACTION
Do not use the SET TRANSACTION READ ONLY | READ WRITE | USE ROLLBACK
SEGMENT SQL statement.
 Oracle XA 18-7

General Issues and Restrictions
Connecting or Disconnecting with EXEC SQL
Do not use the EXEC SQL command to connect or disconnect. That is, do not use
EXEC SQL COMMIT WORK RELEASE or EXEC SQL ROLLBACK WORK RELEASE.

Miscellaneous XA Issues
Note the following additional information about Oracle XA:

Transaction Branches
Oracle Server transaction branches within the same global transaction can share
locks in either a tightly or loosely coupled manner. However, if the branches are on
different instances when running Oracle Parallel Server, then they will be loosely
coupled.

In tightly coupled transaction branches, the locks are shared between the transac-
tion branches. This means that updates performed in one transaction branch can be
seen in other branches that belong to the same global transaction before the update
is committed. The Oracle Server obtains the DX lock before executing any state-
ment in a tightly coupled branch. Hence, the advantage of using loosely coupled
transaction branches is that there will be more concurrency (because a lock is not
obtained before the statement is executed). The disadvantage is that all the transac-
tion branches must go through the two phases of commit, that is, XA one phase
optimization cannot be used. These trade-offs between tightly coupled branches
and loosely coupled branches are illustrated in Table 18–1.

Table 18–1 Tightly and Loosely Coupled Tranaction Branches

Attribute Tightly Coupled Branches
Loosely Coupled
Branches

Two Phase Commit Read-only Optimization

[prepare for all branches,
commit for last branch]

Two phases

 [prepare and commit for
all branches]

Serialization Database Call None
18-8 Oracle8 Application Developer’s Guide

General Issues and Restrictions
Association Migration
The Oracle Server does not support association migration (a means whereby a
transaction manager may resume a suspended branch association in another
branch).

Asynchronous Calls
The optional XA feature asynchronous XA calls is not supported.

Initialization Parameters
Set the transactions init.ora parameter to the expected number of concur-
rent global transactions.

The parameter open_links_per_instance specifies the number of migratable
open database link connections. These dblink connections are used by XA transac-
tions so that the connections are cached after a transaction is committed.

Maximum Connections per Thread
The maximum number of xa_opens per thread is now 32. Previously, it had been 8.

Installation
No scripts need be executed to use XA. It is necessary, however, to run the
xaview.sql script to run Release 7.3 applications with the Oracle8 Server. Grant the
SELECT privilege on SYS.DBA_PENDING_TRANSACTIONS to all users that connect
to Oracle through the XA interface.

Compatibility
The XA library supplied with Release 7.3 can be used with a Release 8.0 Oracle
Server. You must use the Release 7.2 XA library with a Release 7.2 Oracle Server.
You can use the 8.0 library with a Release 7.3 Oracle Server. There is only one case
of backward compatibility: an XA application that uses Release 8.0 OCI will work
with a Release 7.3 Oracle Server, but only if you use sqlld2 and obtain an
lda_def before executing SQL statements. Client applications must remember to
convert the Version 7 LDA to a service handle using OCILdaToSvcCtx () after com-
pleting the OCI calls.

See Also: “Database Links” on page 18-6 for further information.
 Oracle XA 18-9

General Issues and Restrictions
Basic Architecture
The Oracle XA library is an external interface that allows global transactions to be
coordinated by a transaction manager other than the Oracle8 Server. This allows
inclusion of non-Oracle8 Server entities called resource managers (RM) in distrib-
uted transactions.

The Oracle XA library conforms to the X/Open Distributed Transaction Processing
(DTP) software architecture’s XA interface specification.

X/Open Distributed Transaction Processing(DTP)
The X/Open DTP architecture defines a standard architecture or interface that
allows multiple application programs to share resources, provided by multiple, and
possibly different, resource managers. It coordinates the work between application
programs and resource managers into global transactions.

Figure 18–1 illustrates a possible X/Open DTP model.

A resource manager (RM) controls a shared, recoverable resource that can be
returned to a consistent state after a failure. For example, Oracle8 Server is an RM
and uses its redo log and undo segments to return to a consistent state after a fail-
ure. An RM provides access to shared resources such as a database, file systems,
printer servers, and so forth.

A transaction manager (TM) provides an application program interface (API) for
specifying the boundaries of the transaction and manages the commit and recovery
procedures.

Normally, Oracle8 Server acts as its own TM and manages its own commit and
recovery. However, using a standards-based TM allows Oracle8 Server to cooperate
with other heterogeneous RMs in a single transaction.

A TM is usually a component provided by a transaction processing monitor (TPM)
vendor. The TM assigns identifiers to transactions, and monitors and coordinates
their progress. It uses Oracle XA library subroutines to tell Oracle8 Server how to

See Also: For a general overview of XA, including basic architec-
ture, see X/Open CAE Specification - Distributed Transaction Process-
ing: The XA Specification. You can obtain a copy of this document by
requesting X/Open Document No. XO/CAE/91/300 or ISBN 1
872630 24 3 from:

■ X/Open Company, Ltd., 1010 El Camino Real, Suite 380, Menlo
Park, CA 94025, U.S.A.
18-10 Oracle8 Application Developer’s Guide

General Issues and Restrictions
process the transaction, based on its knowledge of all RMs in the transaction. You
can find a list of the XA subroutines and their descriptions later in this section.

An application program (AP) defines transaction boundaries and specifies actions
that constitute a transaction. For example, an AP can be a precompiler or OCI pro-
gram. The AP operates on the RM’s resource through the RM’s native interface, for
example SQL. However, it starts and completes all transaction operations via the
transaction manager through an interface called TX. The AP itself does not directly
use the XA interface

Figure 18–1 One Possible DTP Model

Transaction
Manager

Manager
Resource

Oracle
Other

Resources

Application Program

Manager
Resource

XA Interface

TX Interface

XA Interface

Native
Interface
 Oracle XA 18-11

General Issues and Restrictions
.

Transaction Recovery Management
The Oracle XA library interface follows the two-phase commit protocol, consisting
of a prepare phase and a commit phase, to commit transactions.

In phase one, the prepare phase, the TM asks each RM to guarantee the ability to
commit any part of the transaction. If this is possible, then the RM records its pre-
pared state and replies affirmatively to the TM. If it is not possible, the RM may roll
back any work, reply negatively to the TM, and forget any knowledge about the
transaction. The protocol allows the application, or any RM, to roll back the transac-
tion unilaterally until the prepare phase is complete.

In phase two, the commit phase, the TM records the commit decision. Then the TM
issues a commit or rollback to all RMs which are participating in the transaction.

Oracle XA Library Interface Subroutines
The Oracle XA library subroutines allow a TM to instruct an Oracle8 Server what to
do about transactions. Generally, the TM must “open” the resource (using
xa_open). Typically, this will result from the AP’s call to tx_open . Some TMs may
call xa_open implicitly, when the application begins. Similarly, there is a close
(using xa_close) that occurs when the application is finished with the resource.
This may be when the AP calls tx_close or when the application terminates.

There are several other tasks the TM instructs the RMs to do. These include among
others:

■ starting a new transaction and associating it with an ID

■ rolling back a transaction

■ preparing and committing a transaction

Note: The naming conventions for the TX interface and
associated subroutines are vendor-specific, and may differ from
those used here. For example, you may find that the tx_open call
is referred to as tp_open on your system. To check terminology,
see the documentation supplied with the transaction processing
monitor.

Note: a TM can issue a commit for an RM only if all RMs have
replied affirmatively to phase one.
18-12 Oracle8 Application Developer’s Guide

General Issues and Restrictions
XA Library Subroutines
The following XA Library subroutines are available:

In general, the AP does not need to worry about these subroutines except to under-
stand the role played by the xa_open string.

Extensions to the XA Interface
Two functions have been added to the XA interface, one for returning the OCI ser-
vice handle associated with an XA connection, and one for returning an XA error
code.

1. OCISvcCtx *xaoSvcCtx(text *dbname) :

This function returns the OCI service handle for a given XA connection. The
dbname parameter must be the same as the dbname parameter passed in the
xa_open string. OCI applications can use this routing instead of the sqlld2
calls to obtain the connection handle. Hence, OCI applications need not link
with the SQLLIB library. The service handle can be converted to the Version 7
OCI logon data area(LDA) using OCISvcCtxToLda () [Version 8 OCI]. Client
applications must remember to convert the Version 7 LDA to a service handle
using OCILdaToSvcCtx () after completing the OCI calls.

2. OCIEnv *xaoEnv(text *dbname) :

xa_open Connects to the resource manager.

xa_close Disconnects from the resource manager.

xa_start Starts a new transaction and associate it with the given trans-
action ID (XID), or associates the process with an existing
transaction.

xa_end Disassociates the process from the given XID.

xa_rollback Rolls back the transaction associated with the given XID.

xa_prepare Prepares the transaction associated with the given XID. This
is the first phase of the two-phase commit protocol.

xa_commit Commits the transaction associated with the given XID. This
is the second phase of the two-phase commit protocol.

xa_recover Retrieves a list of prepared, heuristically committed or heu-
ristically rolled back transaction.

xa_forget Forgets the heuristic transaction associated with the given
XID.
 Oracle XA 18-13

General Issues and Restrictions
This function returns the OCI environment handle for a given XA connection.
The dbname parameter must be the same as the dbname parameter passed in
the xa_open string.

3. int xaosterr(OCISvcCtx *SvcCtx, sb4 error) :

This function, only applicable to dynamic registration, converts an Oracle error
code to an XA error code. The first parameter is the service handle used to exe-
cute the work in the database. The second parameter is the error code that was
returned from Oracle. Use this function to determine if the error returned from
an OCI command was caused because the xa_start failed. The function
returns XA_OK if the error was not generated by the XA module and a valid XA
error if the error was generated by the XA module.

Transaction Processing Monitors (TPMs)
A transaction processing monitor (TPM) coordinates the flow of transaction
requests between the client processes that issue requests and the back-end servers
that process them. Basically, it coordinates transactions that require the services of
several different types of back-end processes, such as application servers and
resource managers that are distributed over a network.

The TPM synchronizes any commits and rollbacks required to complete a distrib-
uted transaction. The transaction manager (TM) portion of the TPM is responsible
for controlling when distributed commits and rollbacks take place. Thus, if a distrib-
uted application program is written to take advantage of a TPM, the TM portion of
the TPM is responsible for controlling the two-phase commit protocol. The RMs
enable the TMs to do this.

Because the TM controls distributed commits or rollbacks, it must communicate
directly with Oracle (or any other resource manager) through the Oracle XA library
interface.

Required Public Information
As a resource manager, Oracle is required to publish the following information.

xa_switch_t structures The Oracle Server xa_switch_t structure name for static
registration is xaosw. The Oracle Server xa_switch_t struc-
ture name for dynamic registration is xaoswd . These struc-
tures contain entry points and other information for the
resource manager.

xa_switch_t resource mgr The Oracle Server resource manager name within the
xa_switch_t structure is Oracle_XA .
18-14 Oracle8 Application Developer’s Guide

General Issues and Restrictions
Registration
Dynamic and static registration are supported by the Oracle8 Server. The basic pos-
sibilities are shown in Table 18–2.

close string The close string used by xa_close () is ignored and is
allowed to be null.

open string The format of the open string used by xa_open () is
described in detail in “Developing and Installing Applica-
tions That Use the XA Libraries” on page 18-16.

libraries Libraries needed to link applications using Oracle XA have
operating system-specific names. It is similar to linking an
ordinary precompiler or OCI program except you may have
to link any TPM-specific libraries. If you are not using
sqllib , make sure to link with $ORACLE_HOME/lib/
xaonsl.o .

requirements A purchased and installed distributed database option.

Table 18–2 XA Registration

Client Server XA Registration

8.0 XA application 8.0 Dynamic

8.0 XA application 7.3 Static

7.3 XA application 8.0 Static
 Oracle XA 18-15

Developing and Installing Applications That Use the XA Libraries
Developing and Installing Applications That Use the XA Libraries
This section discusses developing and installing Oracle8 Server applications. It
describes the responsibilities of both the DBA, or system administrator, and the
application developer. It also defines how to construct the open string.

Responsibilities of the DBA or System Administrator
The responsibilities of the DBA or system administrator are

1. Define the open string with the application developer’s help.

This is described in “Defining the xa_open String” on page 18-17.

2. Make sure the DBA_PENDING_TRANSACTIONS view exists on the database.

For Oracle Server Release 7.3:
Make sure V$XATRANS$ exists.

This view should have been created during the XA library installation. You
can manually create the view if needed by running the SQL script
XAVIEW.SQL. This SQL script should be executed as the Oracle user SYS.
Grant the SELECT privilege to the V$XATRANS$ view for all Oracle Server
accounts which will be used by Oracle XA library applications.

For Oracle Server Release 8.0:
Grant the select privilege to the DBA_PENDING_TRANSACTIONS view for
all Oracle Server user(s) specified in the xa_open string.

3. Install the resource manager, using the open string information, into the TPM
configuration, following the TPM vendor instructions.

The DBA or system administrator should be aware that a TPM system will start
the process that connects to an Oracle8 Server. See your TPM documentation to
determine what environment exists for the process and what user ID it will
have.

Be sure that correct values are set for ORACLE_HOME and ORACLE_SID.

Next, grant the user ID write permission to the directory in which the XA trace
file will be written. See “Defining the xa_open String” on page 18-17 for infor-
mation on how to specify a sid or a trace directory that is different from the
defaults.

See Also: Your Oracle operating system-specific documentation
contains the location of the XAVIEW.SQL script.
18-16 Oracle8 Application Developer’s Guide

Defining the xa_open String
Also be sure to grant the user the SELECT privilege on
DBA_PENDING_TRANSACTIONS.

4. Start up the relevant databases to bring Oracle XA applications on-line.

This should be done before starting any TPM servers.

Responsibilities of the Application Developer
The application developer’s responsibilities are

1. Define the open string with the DBA or system administrator’s help.

Defining the open string is described later in this section.

2. Develop the applications.

Observe special restrictions on transaction-oriented SQL statements for precom-
pilers. See “Interfacing to Precompilers and OCIs” on page 18-22.

3. Link the application according to TPM vendor instructions.

Defining the xa_open String
The open string is used by the transaction monitor to open the database. The maxi-
mum number of characters in an open string is 256.

This section covers:

■ Syntax of the xa_open String

■ Required Fields

■ Optional Fields

Syntax of the xa_open String
Oracle_XA{+ required_fields ...} [+ optional_fields.. .]
where required_fields are:

Acc=P//

or

Acc=P/user/password

SesTm=session_time_limit

and where optional_fields are:
 Oracle XA 18-17

Defining the xa_open String
DB=db_name

LogDir =log_dir

MaxCur=maximum_#_of_open_cursors

SqlNet =connect_string

Loose_Coupling =true/false

SesWt=session_wait_limit

Threads =true/false

Required Fields
Required fields for the open string are described in this section.

 Acc=P //

or

 Acc=P/user/password

Note:

■ You can enter the required fields and optional fields in any
order when constructing the open string.

■ All field names are case insensitive. Their values may or may
not be case-sensitive depending on the platform.

■ There is no way to use the “+” character as part of the actual
information string.

Acc Specifies user access information

P Indicates that explicit user and password information is pro-
vided.

P// Indicates that no explicit user or password information is pro-
vided and that the operating system authentication form will
be used.

For more information see Oracle8 Administrator’s Guide.

user A valid Oracle Server account.

password The corresponding current password.
18-18 Oracle8 Application Developer’s Guide

Defining the xa_open String
For example, Acc=P/scott/tiger indicates that user and password information
is provided. In this case, the user is scott and the password is tiger .

As previously mentioned, make sure that scott has the SELECTprivilege on the
DBA_PENDING_TRANSACTIONS table.

Acc=P// indicates that no user or password information is provided, thus default-
ing to operating system authentication.

SesTm=session_time_limit

SesTm Specifies the maximum length of time a transaction can be
inactive before it is automatically aborted by the system.

session_time_limit This value should be the maximum time allowed in a transac-
tion between one service and the next, or a service and the
commit or rollback of the transaction.

For example, if the TPM uses remote procedure calls
between the client and the servers, then SesTM applies to the
time between the completion of one RPC and the initiation of
the next RPC, or the tx_commit , or the tx_rollback .

The unit for this time limit is in seconds. The value of 0 indi-
cates no limit, but entering a value of 0 is strongly discour-
aged. For example, SesTM=15 indicates that the session idle
time limit is 15 seconds.
 Oracle XA 18-19

Defining the xa_open String
Optional Fields
Optional fields are described below.

DB=db_name

For example, DB=payroll indicates that the database name is “payroll”, and that the
application server program will use that name in AT clauses.

DB Specifies the database name.

db_name Indicates the name used by Oracle precompilers to identify
the database.

Application programs that use only the default database for
the Oracle precompiler (that is, they do not use the AT clause
in their SQL statements) should omit the DB=db_name clause in
the open string.

Applications that use explicitly named databases should indi-
cate that database name in their DB=db_name field.

Version 7 OCI programs need to call the sqlld2 () function to
obtain the correct lda_def , which is the equivalent of a service
context. Version 8 OCI programs need to call the xaoSvcCtx
function to get the OCISvcCtx service context.

The db_name is not the sid and is not used to locate the database to
be opened. Rather, it correlates the database opened by this open
string with the name used in the application program to execute
SQL statements. The sid is set from either the environment vari-
able ORACLE_SID of the TPM application server or the sid given
in the Net8 (formerly, SQL*Net) clause in the open string. The
Net8 clause is described later in this section.

Some TPM vendors provide a way to name a group of serv-
ers that use the same open string. The DBA may find it con-
venient to choose the same name both for that purpose and
for db_name.
18-20 Oracle8 Application Developer’s Guide

Defining the xa_open String
LogDir =log_dir

For example, LogDir=/xa_trace indicates that the error and tracing information is
located under the /xa_trace directory.

MaxCur=maximum_#_of_open_cursors

For example, MaxCur=5 indicates that the precompiler should try to keep five open cur-
sors cached.

SqlNet=db_link

LogDir Specifies the directory on a local machine where the Oracle
XA library error and tracing information may be logged.

log_dir Indicates the pathname of the directory where the tracing
information should be stored. The default is
$ORACLE_HOME/rdbms/log if ORACLE_HOME is set, other-
wise it is the current directory.

Note: Ensure that the directory you specify for logging exists and
the application server can write to it.

MaxCur Specifies the number of cursors to be allocated when
the database is opened. It serves the same purpose as
the precompiler option maxopencursors .

maximum_#_of_

open_cursors

Indicates the number of open cursors to be cached.

Note: This parameter overrides the precompiler option
maxopencursors that you might have specified in your source code
or at compile time.

See Also: Chapter 8 in Pro*C/C++ Precompiler Programmer’s Guide.
for more information on maxopencursors.

SqlNet Specifies the Net8 (formerly, SQL*Net) database link.

db_link Indicates the string to use to log on to the system. The syntax
for this string is the same as that used to set the TWO-TASK
environment variable.
 Oracle XA 18-21

Interfacing to Precompilers and OCIs
For example, SqlNet=hqfin@NEWDB indicates the database with sid=NEWDB
accessed at host hqfin by TCP/IP.

The SqlNet parameter can be used to specify the ORACLE_SID in cases where you
cannot control the server environment variable. It must also be used when the
server needs to access more than one Oracle Server database. To use the Net8 string
without actually accessing a remote database, use the Pipe driver.

For example:

 SqlNet=localsid1

where:

Make sure that all databases to be accessed with a Net8 database link have an entry
in /etc/oratab .

Loose_Coupling =true/false

SesWt=session_wait_limit

Threads =true/false

Interfacing to Precompilers and OCIs
This section describes how to use the Oracle XA library with precompilers and Ora-
cle Call Interfaces (OCIs).

localsid1 is an alias defined in the Net8 tnsnames.ora file.

Loose_Coupling Specifies whether locks will be shared between branches.
This parameter should not be set to true when connected to
an Oracle7 Server. The default value is False.

true/false If locks are shared between branches, the setting is false.

SesWt Specifies the time-out limit when waiting for a transaction
branch that is being used by another session. The default
value is 60 seconds.

session_wait_limit The number of seconds Oracle will wait before XA_RETRY is
returned.

Threads Specifies whether the application is multi-threaded. The
default value is False.

true/false If the application is multi-threaded, the setting is true.
18-22 Oracle8 Application Developer’s Guide

Interfacing to Precompilers and OCIs
Using Precompilers with the Oracle XA Library
When used in an Oracle XA application, cursors are valid only for the duration of
the transaction. Explicit cursors should be opened after the transaction begins, and
closed before the commit or rollback.

There are two options to choose from when interfacing with precompilers:

■ using precompilers with the default database

■ using precompilers with a named database

The following examples use the precompiler Pro*C/C++.

Using Precompilers with the Default Database
To interface to a precompiler with the default database, make certain that the
DB=db_name field, used in the open string, is not present. The absence of this field
indicates the default connection, and only one default connection is allowed per
process.

The following is an example of an open string identifying a default Pro*C/C++ con-
nection.

ORACLE_XA+SqlNet=host@MAIL+ACC=P/scott/tiger
 +SesTM=10+LogDir=/usr/local/logs

Note that the DB=db_name is absent, indicating an empty database ID string.

The syntax of a SQL statement would be:

EXEC SQL UPDATE EMP SET SAL = sal*1.5;

Using Precompilers with a Named Database
To interface to a precompiler with a named database, include the DB=db_name field
in the open string. Any database you refer to must reference the same db_name you
specified in the corresponding open string.

An application may include the default database, as well as one or more named
databases, as shown in the following examples.

For example, suppose you want to update an employee’s salary in one database,
his department number (DEPTNO) in another, and his manager in a third database.
You would configure the following open strings in the transaction manager:

ORACLE_XA+DB=MANAGERS+SqlNet=hqfin@SID1+ACC=P/scott/tiger
 +SesTM=10+LogDir=/usr/local/xalog
ORACLE_XA+DB=PAYROLL+SqlNet=SID2+ACC=P/scott/tiger
 Oracle XA 18-23

Interfacing to Precompilers and OCIs
 +SesTM=10+LogDir=/usr/local/xalog
ORACLE_XA+SqlNet=hqemp@SID3+ACC=P/scott/tiger
 +SesTM=10+LogDir=/usr/local/xalog

Note that there is no DB=db_name field in the last open string.

In the application server program, you would enter declarations such as:

EXEC SQL DECLARE PAYROLL DATABASE;
EXEC SQL DECLARE MANAGERS DATABASE;

Again, the default connection (corresponding to the third open string that does not
contain the db_name field) needs no declaration.

When doing the update, you would enter statements similar to the following:

EXEC SQL AT PAYROLL UPDATE EMP SET SAL=4500 WHERE EMPNO=7788;
EXEC SQL AT MANAGERS UPDATE EMP SET MGR=7566 WHERE EMPNO=7788;
EXEC SQL UPDATE EMP SET DEPTNO=30 WHERE EMPNO=7788;

There is no AT clause in the last statement because it is referring to the default data-
base.

In Oracle precompilers Release 1.5.3 or later, you can use a character host variable
in the AT clause, as the following example shows:

EXEC SQL BEGIN DECLARE SECTION;
 DB_NAME1 CHARACTER(10);
 DB_NAME2 CHARACTER(10);
EXEC SQL END DECLARE SECTION;
 .
 .
SET DB_NAME1 = ’PAYROLL’
SET DB_NAME2 = ’MANAGERS’
 .
 .
EXEC SQL AT :DB_NAME1 UPDATE...
EXEC SQL AT :DB_NAME2 UPDATE...

WARNING: Oracle recommends against using XA applications
to create connections. Any work performed would be outside the
global transaction, and would have to be committed separately.
18-24 Oracle8 Application Developer’s Guide

Interfacing to Precompilers and OCIs
Using OCI with the Oracle XA Library
OCI applications that use the Oracle XA library should not call
OCISessionBegin () (olon () or orlon () in Version 7) to log on to the resource
manager. Rather, the logon should be done through the TPM. The applications can
execute the function xaoSvcCtx () (sqlld2 () in Version 7) to obtain the service
context (lda in Version 7) structure they need to access the resource manager.

Because an application server can have multiple concurrent open Oracle Server
resource managers, it should call the function xaoSvcCtx () with the correct argu-
ments to obtain the correct service context.

For Release 7.3
If DB=db_name is not present in the open string, then execute:

sqlld2(lda, NULL, 0);

to obtain the lda for this resource manager.

Alternatively, if DB=db_name is present in the open string, then execute:

sqlld2(lda, db_name, strlen(db_name));

to obtain the lda for this resource manager.

For Release 8.0
If DB=db_name is not present in the open string, then execute:

xaoSvcCtx(NULL);

to obtain the xaoSvcCtx for this resource manager.

Alternatively, if DB=db_name is present in the open string, then execute:

xaoSvcCtx(db_name);

to obtain the OCISvcCtx for this resource manager.

Note Also: Oracle Call Interface Programmer’s Guide. for more
information about using the OCISvcCtx
 Oracle XA 18-25

Transaction Control
Transaction Control
This section explains how to use transaction control within the Oracle XA library
environment.

When the XA library is used, transactions are not controlled by the SQL statements
which commit or roll back transactions. Rather, they are controlled by an API
accepted by the TM which starts and stops transactions. Most of the TMs use the
TX interface for this. It includes the following functions:

Most TPM applications are written using a client-server architecture where an
application client requests services and an application server provides services. The
examples that follow use such a client-server model. A service is a logical unit of
work, which in the case of the Oracle Server as the resource manager, comprises a
set of SQL statements that perform a related unit of work.

For example, when a service named “credit” receives an account number and the
amount to be credited, it will execute SQL statements to update information in cer-
tain tables in the database. In addition, a service might request other services. For
example, a “transfer fund” service might request services from a “credit” and
“debit” service.

Usually application clients request services from the application servers to perform
tasks within a transaction. However, for some TPM systems, the application client
itself can offer its own local services.

You can encode transaction control statements within either the client or the server;
as shown in the examples.

To have more than one process participating in the same transaction, the TPM pro-
vides a communication API that allows transaction information to flow between
the participating processes. Examples of communications APIs include RPC,
pseudo-RPC functions, and send/receive functions.

Because the leading vendors support different communication functions, the exam-
ples that follow use the communication pseudo-function tpm_service to general-
ize the communications API.

tx_open logs into the resource manager(s)

tx_close logs out of the resource manager(s)

tx_begin starts a new transaction

tx_commit commits a transaction

tx_rollback rolls back the transaction
18-26 Oracle8 Application Developer’s Guide

Transaction Control
X/Open has included several alternative methods for providing communication
functions in their preliminary specification. At least one of these alternatives is sup-
ported by each of the leading TPM vendors.

Examples of Precompiler Applications
The following examples illustrate precompiler applications. Assume that the appli-
cation servers have already logged onto the TPM system, in a TPM-specific manner.

The first example shows a transaction started by an application server, and the sec-
ond example shows a transaction started by an application client.

Example 1: Transaction started by an application server
Client:

tpm_service(“ServiceName“); /*Request Service*/

Server:

ServiceName()
{
<get service specific data>
tx_begin(); /* Begin transaction boundary*/
EXEC SQL UPDATE;

/*This application server temporarily becomes*/
/*a client and requests another service.*/

tpm_service(“AnotherService“);
tx_commit(); /*Commit the transaction*/
<return service status back to the client>
}

Example 2: Transaction started by an application client.
Client:

tx_begin(); /* Begin transaction boundary */
tpm_service(“Service1“);
tpm_service(“Service2”);
tx_commit(); /* Commit the transaction */

Server:

Service1()
 Oracle XA 18-27

Migrating Precompiler or OCI Applications to TPM Applications
{
<get service specific data>
EXEC SQL UPDATE;
<return service status back to the client>
}
Service2()
{
<get service specific data>
EXEC SQL UPDATE;
...
<return service status back to client>
}

Migrating Precompiler or OCI Applications to TPM Applications
To migrate existing precompiler or OCI applications to a TPM application using the
Oracle XA library, you must do the following:

1. Reorganize the application into a framework of “services”.

This means that application clients request services from application servers.

Some TPMs require the application to use the tx_open and tx_close func-
tions, whereas other TPMs do the logon and logoff implicitly.

If you do not specify the sqlnet parameter in your open string, the applica-
tion will use the default Net8 driver. Thus, you need to be sure that the applica-
tion server is brought up with the ORACLE_HOME and ORACLE_SID
environment variables properly defined. This is accomplished in a TPM-spe-
cific fashion. See your TPM vendor documentation for instructions on how to
accomplish this.

2. Ensure that the application replaces the regular connect and disconnect state-
ments.

For example, replace the connect statements EXEC SQL CONNECT (for precom-
pilers) or OCISessionBegin () (for OCIs) by tx_open (). Replace the discon-
nect statements EXEC SQL COMMIT/ROLLBACK RELEASE WORK (for
precompilers), or OCISessionEnd () (for OCIs) by tx_close() . The V7 equiv-
alent for OCISessionBegin () was olon() and for OCISessionEnd (),
ologof ().

3. Ensure that the application replaces the regular commit/rollback statements
and begins the transaction explicitly.
18-28 Oracle8 Application Developer’s Guide

XA Library Thread Safety
For example, replace the commit/rollback statements EXEC SQL COMMIT/
ROLLBACK WORK (for precompilers), or ocom()/oro l() (for OCIs) by
tx_commit ()/tx_rollback () and start the transaction by calling tx_begin ().

4. Ensure that the application resets the fetch state prior to ending a transaction.
In general, release_cursor=no should be used. Use
release_cursor=yes only when certain that a statement will be executed
only once.

Table 18–3 lists the TPM functions that replace regular Oracle commands when
migrating precompiler or OCI applications to TPM applications.

XA Library Thread Safety
If you use a transaction monitor that supports threads, the Oracle XA library allows
you to write applications that are thread safe. Certain issues must be kept in mind,
however.

A thread of control (or thread) refers to the set of connections to resource managers.
In an unthreaded system, each process could be considered a thread of control,
since each process has its own set of connections to resource managers and each
process maintains its own independent resource manager table.

In a threaded system, each thread has an autonomous set of connections to resource
managers and each thread maintains a private resource manager table. This private
resource manager table must be allocated for each new thread and de-allocated
when the thread terminates, even if the termination is abnormal.

Table 18–3 TPM Replacement Commands

Regular Oracle Commands TPM Functions

CONNECTuser/password tx_open (possibly implicit)

implicit start of transaction tx_begin

SQL service that executes the SQL

COMMIT tx_commit

ROLLBACK tx_rollback

disconnect tx_close (possibly implicit)

SET TRANSACTION READ ONLY illegal
 Oracle XA 18-29

Troubleshooting
The Open String Specification
The xa_open string parameter, xa_info , provides the clause, Threads=, which
must be specified as true to enable the use of threads by the transaction monitor.
The default is false. Note that, in most cases, threads will be created by the transac-
tion monitor and that the application will not know when a new thread is created.
Therefore, it is advisable to allocate a service context (lda in Version 7) on the stack
within each service that is written for a transaction monitor application. Before
doing any Oracle-related calls in that service, the xaoSvcCtx (sqlld2 for Version
7 OCI) function must be called and the service context initialized. This LDA can
then be used for all OCI calls within that service.

Restrictions
The following restrictions apply when using threads:

■ Any Pro* or OCI code that executes as part of the application server process on
the transaction monitor cannot be threaded unless the transaction monitor is
explicitly told when each new application thread is started. This is typically
accomplished by using a special C compiler provided by the transaction moni-
tor vendor.

■ The Pro* statements, EXEC SQL ALLOCATE and EXEC SQL USE are not sup-
ported. Therefore, when threading is enabled, embedded SQL statements can-
not be used across non-XA connections.

Troubleshooting
This section discusses how to find information in case of problems or system fail-
ure. It also discusses trace files and recovery of pending transactions.

Trace Files
The Oracle XA library logs any error and tracing information to its trace file. This
information is useful in supplementing the XA error codes. For example, it can indi-
cate whether an xa_open failure is caused by an incorrect open string, failure to
find the Oracle Server instance, or a logon authorization failure.

Note: In an Oracle system, once a thread has been started and
establishes a connection, only that thread can use that connection.
No other thread can make a call on that connection.
18-30 Oracle8 Application Developer’s Guide

Troubleshooting
The name of the trace file is:

xa _db_namedate.trc

where db_name is the database name you specified in the open string field
DB=db_name, and date is the date when the information is logged to the trace file.

If you do not specify DB=db_name in the open string, it automatically defaults to the
name “NULL”.

The xa_open string DbgFl
Normally, the XA trace file is opened only if an error is detected. The xa_open
string DbgFl provides a tracing facility to record additional detail about the XA
library. By default, its value is zero. It can be set to any combination of the follow-
ing values. Note that they are independent, so to get printout from two or more
flags, each must be set.

■ 0x1 Trace the entry and exit to each procedure in the XA interface. This can
be useful in seeing exactly what XA calls the TP Monitor is making and what
transaction identifier it is generating.

■ 0x2 Trace the entry to and exit from other non-public XA library routines.
This is generally of use only to Oracle developers.

■ 0x4 Trace various other “interesting” calls made by the XA library, such as
specific calls to the Oracle Call Interface. This is generally of use only to Oracle
developers.

Trace File Locations
The trace file can be placed in one of the following locations:

■ The trace file can be created in the LogDir directory as specified in the open
string.

■ If you do not specify LogDir in the open string, then the Oracle XA application
attempts to create the trace file in the $ORACLE_HOME/rdbms/log directory, if
it can determine where $ORACLE_HOMEis located.

■ If the Oracle XA application cannot determine where $ORACLE_HOMEis
located, then the trace file is created in the current working directory.

Trace File Examples
Examples of two types of trace files are discussed below:
 Oracle XA 18-31

Troubleshooting
The example, xa_NULL040292.trc, shows a trace file that was created on April 2,
1992. Its DB field was not specified in the open string when the resource manager
was opened.

The example, xa_Finance121591.trc, shows a trace file was created on December 15,
1991. Its DB field was specified as “Finance” in the open string when the resource
manager was opened.

Each entry in the trace file contains information that looks like this:

1032.12345.2: ORA-01017: invalid username/password; logon denied
1032.12345.2: xaolgn: XAER_INVAL; logon denied

where “1032” is the time when the information is logged, “12345” is the process ID
(PID), “2” is the resource manager ID, xaolgn is the module name, XAER_INVAL
was the error returned as specified in the XA standard, and ORA-1017 is the Oracle
Server information that was returned.

In-doubt or Pending Transactions
In-doubt or pending transactions are transactions that have been prepared, but not
yet committed to the database.

Generally, the transaction manager provided by the TPM system should resolve
any failure and recovery of in-doubt or pending transactions. However, the DBA
may have to override an in-doubt transaction in certain circumstances, such as
when the in-doubt transaction is:

■ locking data that is required by other transactions

■ not resolved in a reasonable amount of time

For more information about overriding in-doubt transactions in the circumstances
described above, or about how to decide whether the in-doubt transaction should
be committed or rolled back, see the TPM documentation.

Oracle Server SYS Account Tables
There are four tables under the Oracle Server SYS account that contain transactions
generated by regular Oracle Server applications and Oracle XA applications. They

Note: multiple Oracle XA library resource managers with the
same DB field and LogDir field in their open strings log all trace
information that occurs on the same day to the same trace file.
18-32 Oracle8 Application Developer’s Guide

Troubleshooting
are DBA_PENDING_TRANSACTIONS, V$GLOBAL_TRANSACTIONS,
DBA_2PC_PENDING and DBA_2PC_NEIGHBORS

For transactions generated by Oracle XA applications, the following column infor-
mation applies specifically to the DBA_2PC_NEIGHBORS table.

■ the DBID column is always xa_orcl

■ the DBUSER_OWNER column is always db_namexa.oracle.com

Remember that the db_name is always specified as DB=db_name in the open string. If
you do not specify this field in the open string, then the value of this column is
NULLxa.oracle.com for transactions generated by Oracle XA applications.

For example, you could use the SQL statement below to obtain more information
about in-doubt transactions generated by Oracle XA applications.

SELECT * FROM DBA_2PC_PENDING p, DBA_2PC_NEIGHBORS n
 WHERE p.LOCAL_TRAN_ID = n.LOCAL_TRAN_ID
 AND
 n.DBID = ’xa_orcl’;

Alternatively, if you know the format ID used by the transaction processing moni-
tor, you can use DBA_PENDING_TRANSACTIONS or V$GLOBAL_TRANSACTIONS.
While DBA_PENDING_TRANSACTIONS gives a list of both active and failed pre-
pared transactions, V$GLOBAL_TRANSACTIONS gives a list of all active global
transactions.
 Oracle XA 18-33

Troubleshooting
18-34 Oracle8 Application Developer’s Guide

Index

Symbols
%ROWTYPE attribute, 10-7, 15-3

used in stored functions, 10-8
%TYPE attribute, 10-7, 15-3

A
access

database
granting privileges, 17-13
revoking privileges, 17-15

objects
sequences, 4-24

schema objects
granting privileges, 17-14
remote integrity constraints, 9-13
revoking privileges, 17-16
triggers, 13-2, 13-34

ADMIN option, 17-13
Advanced Queuing, 11-1

administration topics, 11-95
administrative interface, 11-78

enumerated constants, 11-95
privileges and access control, 11-78

creation of queue tables and queues, 11-28
data structures

object name, 11-67
database objects, 11-95
DBMS_AQADM package, 11-78
deferred execution of messages, 11-5
error messages, 11-101
features, 11-8

correlation identifier, 11-10

exception handling, 11-12
integrated database level support, 11-9
integrated transactions, 11-9
message grouping, 11-10
modes of dequeuing, 11-11
multiple recipients, 11-11
navigation of messages in dequeuing, 11-11
optimization of waiting for messages, 11-11
optional transaction protection, 11-11
priority and ordering of messages in

enqueuing, 11-10
retention and message history, 11-9
retries with delays, 11-11
SQL access, 11-8
structured payload, 11-9
subscription & recipient list, 11-10
time specification, 11-10
tracking and event journals, 11-9

message properties, 11-68
messaging system requirements, 11-7
operational interface, 11-74

search criteria and dequeue order for
messages, 11-76

queue options
dequeue options, 11-72
enqueue options, 11-71

reference to demos, 11-107
revoking roles and privelieges, 11-64
securing messages, 11-5
sequence of messages, 11-6
typical applications, 11-3
windows of opportunity, 11-5

Advanced Queuing, basics, 11-15
Advanced Queuing, multiple-consumer dequeuing
 Index-1

of one message, 11-18
ADVISE_COMMIT procedure, 10-63
ADVISE_NOTHING procedure, 10-63
ADVISE_ROLLBACK procedure, 10-63
AFTER triggers

auditing and, 13-23, 13-25
correlation names and, 13-9
specifying, 13-3

agents, definition, 11-13
alerters, 16-2
ALL_ERRORS view

debugging stored procedures, 10-35
ALL_SOURCE view, 10-35
allocation

extents, 4-39
ALTER CLUSTER command, 4-5

ALLOCATE EXTENT option, 4-39
ALTER FUNCTION command, 15-5
ALTER INDEX command, 4-5
ALTER PACKAGE command, 15-5
ALTER PROCEDURE command, 15-5
ALTER SEQUENCE command, 4-24
ALTER SESSION command

SERIALIZABLE, 3-16, 3-31
ALTER TABLE command, 4-5, 4-8

defining integrity constraints, 9-16
DISABLE ALL TRIGGERS option, 13-20
DISABLE integrity constraint option, 9-21
DROP integrity constraint option, 9-25
ENABLE ALL TRIGGERS option, 13-20
ENABLE integrity constraint option, 9-21
INITRANS parameter, 3-31

ALTER TRIGGER command, 15-6
DISABLE option, 13-20
ENABLE option, 13-20

ALTER VIEW command, 15-5
ALTER_COMPILE procedure, 10-60
altering

storage parameters, 4-8
tables, 4-7, 4-8

American National Standards Institute (ANSI)
ANSI-compatible locking, 3-16

ANALYZE_OBJECT procedure, 10-60
ANALYZE_PART_OBJECT procedure, 10-64
ANALYZE_SCHEMA procedure, 10-64

anonymous PL/SQL blocks
about, 10-2
compared to triggers, 10-4
dynamic SQL and, 14-2, 14-3

ANSI SQL92
FIPS flagger, 3-2

applications
calling stored procedures and packages, 10-37
designing, 2-2, 2-4
designing database, 2-2
maintaining, 2-9
roles, 17-3
security, 17-2, 17-5
tuning, 2-8
unhandled exceptions in, 10-32

arrays, 7-18
BIND_ARRAY procedure, 14-6, 14-11
bulk DML using DBMS_SQL, 14-13
DEFINE_ARRAY procedure, 14-17
See also VARRAYs

arrays of C structs, 2-7
attributes, 7-20
auditing

triggers and, 13-22

B
BEFORE triggers

complex security authorizations, 13-34
correlation names and, 13-9
derived column values, 13-35
specifying, 13-3

BEGIN_DISCRETE_TRANSACTION
procedure, 10-63

BFILE datatype, 6-8
BFILENAME(), 6-16, 6-59, 6-60
BFILEs, 6-5

copying, 6-39
initializing, 6-16
maximum number of open, 6-20
multi-threaded server (MTS), 6-21

binary data
RAW and LONG RAW, 5-12

BIND_ARRAY procedure, 14-6, 14-11
BIND_VARIABLE procedure, 14-6, 14-11
Index-2

blank padding data
performance considerations, 5-6

BLOB datatype, 6-6
body

triggers, 13-8, 13-10, 13-11, 13-12
Boolean expressions, 5-20
buffers

LOBs, 6-47
Business Process Management, 11-5
business rules, 1-3

C
CACHE / NOCACHE, 6-10
CACHE option

CREATE SEQUENCE command, 4-28
caches

object cache, 6-46
sequence cache, 4-27
sequence numbers, 4-23

cancelling a cursor, 3-10
cartridges, 10-68, 10-87
CASCADE option

integrity constraints, 4-40
CASE tools, 1-3
CAST operator, 8-5
CATPROC.SQL file, 3-19, 12-23, 13-3
CC date format, 5-9
century, 5-9

date format masks, 5-8
CHAR datatype, 5-2, 5-5

column length, 5-6
increasing column length, 4-7
when to use, 5-5

character sets
ANY_CS, 6-67

CHARARR datatype
in DBMS_OUTPUT, 12-26

CHARTOROWID function, 5-18
CHECK constraint

data integrity, 9-20
designing, 9-14
NOT NULL constraint and, 9-15
number of, 9-15
restricting nulls using, 9-15

restrictions on, 9-14
triggers and, 13-27, 13-33
when to use, 9-13

CHUNK, 6-11
client-side development tools, 1-3
CLOB datatype, 6-7

NCLOBs, 6-7, 6-67
CLOSE_CURSOR procedure, 14-7, 14-28
CLOSE_DATABASE_LINK procedure, 10-61
clusters

allocating extents, 4-39
choosing data, 4-36, 4-37
creating, 4-37
dropped tables and, 4-9
dropping, 4-39
index creation, 4-38
integrity constraints and, 4-38
keys, 4-36
performance considerations, 4-37
privileges for creating, 4-38

collections
table items, 14-13

COLUMN_VALUE procedure, 14-7, 14-21
COLUMN_VALUE, representing unnamed nested

table by, 7-19
COLUMN_VALUE_LONG procedure, 14-7, 14-23
columns

accessing in triggers, 13-8
default values, 9-4
generating derived values with triggers, 13-35
granting privileges for selected, 17-14
increasing length, 4-7
listing in an UPDATE trigger, 13-7, 13-10
multiple FOREIGN KEY constraints, 9-10
number of CHECK constraints limit, 9-15
revoking privileges from, 17-16

COMMIT command, 3-5
COMMIT procedure, 10-63
COMMIT_COMMENT procedure, 10-63
COMMIT_FORCE procedure, 10-63
communication

between sessions, 12-2
comparison methods, 7-12
comparison operators

blank padding data, 5-6
 Index-3

comparing dates, 5-9
COMPILE option

of ALTER PROCEDURE command, 15-5
compile time errors, 10-34
COMPILE_SCHEMA procedure, 10-64
compliance with industry standards, 2-7
composite keys

restricting nulls in, 9-15
concurrency, 3-28
conditional predicates

trigger bodies, 13-8, 13-10
consistency

read-only transactions, 3-8
constraining tables, 13-14
constraints, 7-17

composite UNIQUE keys, 9-6
restriction on stored functions, 10-43

conversion functions, 5-18
TO_CHAR function, 5-9, 5-21
TO_DATE function, 5-9
TO_LABEL function, 5-21
Trusted Oracle Server, 5-21

converting data, 5-18
ANSI datatypes, 5-17
assignments, 5-18
expression evaluation, 5-19
SQL/DS and DB2 datatypes, 5-17
Trusted Oracle Server, 5-21

copy semantics for internal LOBs, 6-38
copying LOBs, 6-38

external, 6-39
internal LOBs, 6-38

correlation identifier, 11-10
correlation names, 13-8, 13-9

NEW, 13-9
OLD, 13-9
REFERENCING option and, 13-9
when preceded by a colon, 13-9

COUNT attribute of collection types, 7-14, 8-8
CREATE CLUSTER command, 4-5, 4-37

hash clusters, 4-41
HASH IS option, 4-41
HASHKEYS option, 4-42

CREATE INDEX command, 4-5, 4-35
ON CLUSTER option, 4-38

CREATE PACKAGE BODY command, 10-13
CREATE PACKAGE command, 10-13
CREATE ROLE command, 17-9
CREATE SCHEMA command, 4-44

privileges required, 4-44
CREATE SEQUENCE command

CACHE option, 4-23, 4-28
examples, 4-28
NOCACHE option, 4-28

CREATE TABLE command, 4-2, 4-3, 4-5
CLUSTER option, 4-37
defining integrity constraints, 9-16
INITRANS parameter in, 3-31

CREATE TRIGGER command, 13-2
REFERENCING option, 13-9

CREATE TYPE statement, 7-9
CREATE VIEW command, 4-10

OR REPLACE option, 4-12
WITH CHECK OPTION, 4-10, 4-14

CREATE_PIPE procedure, 12-4
creating

clusters, 4-37
hash clusters, 4-41
indexes, 4-34
integrity constraints, 9-2
multiple objects, 4-44
packages, 10-13
sequences, 4-28
synonyms, 4-29
tables, 4-2, 4-3
triggers, 13-2, 13-12
views, 4-10

creation of prioritized message queue table and
queue, 11-29

creation of queue table and queue of object
type, 11-28

creation of queue table and queue of RAW
type, 11-29

creation of queue tables and queues, 11-28
CURRVAL pseudo-column, 4-25

restrictions, 4-26
cursor variables, 10-25

declaring and opening, 10-26
cursors, 3-9

cancelling, 3-10
Index-4

closing, 3-10, 14-7
DBMS_SQL package, 14-4
maximum number of, 3-9
pointers to, 10-25
private SQL areas and, 3-9

D
daemon, Pro*C, 12-19
data blocks

factors affecting size of, 4-5
shown in ROWIDs, 5-14

data conversion, 5-18
ANSI datatypes, 5-17
assignments, 5-18
expression evalutation, 5-19
SQL/DS and DB2 datatypes, 5-17
Trusted Oracle labels, 5-21

data dictionary
compile time errors, 10-35
dropped tables and, 4-9
information about procedures and

packages, 10-77
integrity constraints in, 9-27
procedure source code, 10-35
schema object views, 4-47

data object number
extended ROWID, 5-13, 5-14

database
administrator

application administrator vs., 17-2
designing, 2-2
global name in a distributed system, 4-45
normalizing, 2-3
security

applications and, 17-2
schemas and, 17-7

triggers
using in applications, 2-5

database links
Trusted Database List, 10-67

datafiles
shown in ROWIDs, 5-14

datatypes, 5-2
ANSI/ISO, 5-16

CHAR, 5-2, 5-5
choosing a character datatype, 5-5
column lengths for character types, 5-6
data conversion, 5-18
DATE, 5-8, 5-9
DB2, 5-16
DBMS_DESCRIBE, 10-72
DESC_TAB, 14-27
LONG, 5-10
LONG RAW, 5-10, 5-12
MLSLABEL, 5-16
NCHAR, 5-2, 5-5
NCLOB, 6-67
NUMBER, 5-7
NVARCHAR2, 5-2, 5-5
PL/SQL

numeric codes for, 10-76
RAW, 5-12
ROWID, 5-13, 10-79
SQL/DS, 5-16
summary of datatypes, 5-2
VARCHAR, 5-5
VARCHAR2, 5-2, 5-5
VARCHAR2S, 14-11

date arithmetic, 5-19
DATE datatype, 5-8

centuries, 5-9
data conversion, 5-18

DBA_ERRORS view
debugging stored procedures, 10-35

DBA_QUEUE_TABLES, 11-97
DBA_QUEUES, 11-98
DBA_ROLE_PRIVS view, 17-3
DBA_SOURCE view, 10-35
DBMS_ALERT package, 10-66

about, 16-2
creating, 16-3

DBMS_APPLICATION_INFO package, 10-66
DBMS_AQ package, 10-67
DBMS_AQADM package, 10-67
DBMS_AQADM.ADD_SUBSCRIBER, 11-89
DBMS_AQADM.CREATE_QUEUE, 11-82
DBMS_AQADM.CREATE_QUEUE_TABL, 11-80
DBMS_AQADM.DROP_QUEUE, 11-84
DBMS_AQADM.DROP_QUEUE_TABLE, 11-83
 Index-5

DBMS_AQADM.QUEUE_SUBSCRIBER, 11-99
DBMS_AQADM.START_QUEUE, 11-86
DBMS_AQADM.STOP_QUEUE, 11-88
DBMS_AQ.DEQUEUE, 11-75
DBMS_AQ.ENQUEUE, 11-74
DBMS_DDL package, 10-60
DBMS_DEFER package, 10-68
DBMS_DEFER_QUERY package, 10-68
DBMS_DEFER_SYS package, 10-68
DBMS_DESCRIBE package, 10-66, 10-69

creating, 10-69
DBMS_DISTRIBUTED_TRUST_ADMIN

package, 10-67
DBMS_HS package, 10-67
DBMS_HS_EXTPROC package, 10-67
DBMS_HS_PASSTHROUGH package, 10-67
DBMS_JOB package, 10-66
DBMS_LOB package, 6-66, 10-67

constants, 6-68
exceptions, 6-68
multi-threaded server (MTS), 6-21
routines, 6-66

datatypes, 6-66
security, 6-69
usage for BFILES, 6-69
usage, general, 6-69

DBMS_LOB.APPEND(), 6-72
DBMS_LOB.COMPARE(), 6-74
DBMS_LOB.COPY(), 6-77
DBMS_LOB.ERASE(), 6-79
DBMS_LOB.FILECLOSE(), 6-80
DBMS_LOB.FILECLOSEALL(), 6-81
DBMS_LOB.FILEEXISTS(), 6-82
DBMS_LOB.FILEGETNAME(), 6-84
DBMS_LOB.FILEISOPEN(), 6-85
DBMS_LOB.FILEOPEN(), 6-86
DBMS_LOB.GETLENGTH(), 6-87
DBMS_LOB.LOADFROMFILE(), 6-91
DBMS_LOB.READ(), 6-94
DBMS_LOB.SUBSTR(), 6-97
DBMS_LOB.TRIM(), 6-99
DBMS_LOB.WRITE(), 6-100
DBMS_LOCK package, 3-17, 3-18, 10-66

creating, 3-19
security, 3-18

SLEEP procedure, 3-26
DBMS_OUTPUT package, 10-66, 12-22

creating, 12-23
examples, 12-26
GET_LINE procedure, 12-22
NEW_LINE procedure, 12-22
PUT procedure, 12-22
PUT_LINE procedure, 12-22

DBMS_PIPE package, 10-66, 12-2
creating, 12-3

DBMS_REFRESH package, 10-68
DBMS_REPCAT package, 10-68
DBMS_REPCAT_ADMIN package, 10-68
DBMS_REPCAT_AUTH package, 10-68
DBMS_ROWID package, 10-67
DBMS_SESSION package, 10-60, 10-61
DBMS_SHARED_POOL package, 10-66
DBMS_SNAPSHOT package, 10-68
DBMS_SPACE package, 10-66
DBMS_SQL package, 10-66, 14-2

creating, 14-2
functions, 14-4, 14-8

DBMS_SYSTEM package, 10-66
DBMS_TRANSACTION package, 10-60, 10-63
DBMS_UTILITY package, 10-60, 10-64
DBMSALRT.SQL file, 16-3
DBMSDESC.SQL file, 10-69
DBMSLOCK.SQL file, 3-19
DBMSOTPT.SQL file, 12-23
DBMSPIPE.SQL file, 12-3
DBMSSQL.SQL file, 14-2
DDL statements

dynamic SQL, 14-2
package state and, 10-15

debugging
stored procedures, 10-35
triggers, 13-19

DECLARE
not used in stored procedures, 10-9

default
column values, 9-4, 10-43
maximum savepoints, 3-6
parameters in stored functions, 10-45
PCTFREE option, 4-3
PCTUSED option, 4-5
Index-6

role, 17-10
deferred messaging, 11-7
DEFINE_ARRAY function, 14-17
DEFINE_ARRAY procedure, 14-6
DEFINE_COLUMN procedure, 14-6, 14-16
DEFINE_COLUMN_LONG procedure, 14-6, 14-19
DELETE command

column values and triggers, 13-9
data consistency, 3-10
triggers for referential integrity, 13-29, 13-30

deleting external LOBs, 6-39
deleting internal LOBs, 6-39
deleting LOBs, 6-39
dependencies

among PL/SQL library objects, 10-16
in stored triggers, 13-18
listing information about, 15-6
schema objects

trigger management, 13-12
UTLDTREE.SQL, 15-7

the timestamp model, 10-17
dequeue of messages after preview, 11-41
DEREF operator, 7-14
dereferencing, 7-15
dereferencing, implicit, 7-15, 8-7
DESC_TAB datatype, 14-27
DESCRIBE_COLUMNS procedure, 14-26
DESCRIBE_PROCEDURE procedure, 10-70
Designer/2000, 1-3, 2-3
designing applications, 2-4

assessing needs, 2-2
Developer/2000, 1-3
dictionary

See data dictionary
directories

catalog views, 6-19
guidelines for usage, 6-19
ownership and privileges, 6-17

DIRECTORY name specification, 6-17
directory objects, 6-15
DISABLE procedure, 12-22, 12-24
disabling

integrity constraints, 9-20
triggers, 13-19

distributed databases

referential integrity and, 9-13
remote stored procedures, 10-39, 10-40
triggers and, 13-12

distributed queries
handling errors, 10-32

DMBS_ROWID package, 10-79
DMBS_SQL package

locating errors, 14-29
DML_LOCKS parameter, 3-11
DROP CLUSTER command, 4-40, 4-42
DROP INDEX command, 4-35

privileges required, 4-36
DROP ROLE command, 17-13
DROP TABLE command, 4-8
DROP TRIGGER command, 13-19
dropping

clusters, 4-39
hash clusters, 4-42
indexes, 4-35
integrity constraints, 9-25
packages, 10-14
procedures, 10-11
roles, 17-13
sequences, 4-28
synonyms, 4-30
tables, 4-8
triggers, 13-19
views, 4-15

dropping AQ objects, 11-63
dynamic SQL

anonymous blocks and, 14-3
DBMS_SQL functions, using, 14-3
DBMS_SQL package, 14-2, 14-8
errors, locating, 14-29
examples, 14-30
execution flow in, 14-4
LAST_ERROR_POSITION function, 14-29
LAST_ROW_COUNT function, 14-29
LAST_ROW_ID function, 14-29
LAST_SQL_FUNCTION_CODE function, 14-29
security, 14-7

E
embedded SQL, 10-2
 Index-7

EMPTY_BLOB() function, 6-59
EMPTY_CLOB() function, 6-59
ENABLE procedure, 12-22, 12-23
enabling

integrity constrains
at creation, 9-20

integrity constraints, 9-20
at creation, 9-18
reporting exceptions, 9-23
when violations exist, 9-19

roles, 17-11
triggers, 13-19, 13-20

enqueue and dequeue of messages
by Correlation and Message Id Using Pro*C/

C++, 11-46
by priority, 11-33
of object type, 11-30
of RAW type, 11-33
of RAW type using Pro*C/C++, 11-36, 11-38
to/from multiconsumer queues, 11-52, 11-55
with time delay and expiration, 11-45

Entity-Relationship model, 2-2
errors

application errors raised by Oracle
packages, 10-30

creating views with errors, 4-11
data dictionary views, 10-77
locating in dynamic SQL, 14-29
remote procedures, 10-33
returned by DBMS_ALERT package, 16-3
returned by DBMS_DESCRIBE package, 10-69
returned by DBMS_OUTPUT, 12-23
returned by DBMS_PIPES package, 12-4
user-defined, 10-29, 10-31

events
signalling with alerters, 16-2

example, purchase order, 7-2
examples

LOB buffering, 6-54
read consistent locators, 6-25
repercussions of mixing SQL DML with

DBMS_LOB, 6-28
updated LOB locators, 6-30
updating a LOB with a PL/SQL variable, 6-32

exception handlers

in PL/SQL, 10-2
exceptions

anonymous blocks, 10-3
during trigger execution, 13-11
effects on applications, 10-32
remote procedures, 10-33
ROWID_INVALID, 10-81
unhandled, 10-32
UTL_FILE package, 12-32

exclusive locks
LOCK TABLE command, 3-14

EXECUTE function, 14-6, 14-20
EXECUTE_AND_FETCH function, 14-6, 14-20
execution flow

in dynamic SQL, 14-4
explicit locking

manual locking, 3-10
extended ROWID format, 5-13
extents

allocating, 4-39
dropped tabled and, 4-9

external callout, 6-52
external LOBs (BFILEs), 6-5

F
FCLOSE procedure, 12-35
FCLOSE_ALL procedure, 12-36
features, 2-4
features of Advanced Queuing, 11-8
FETCH_ROWS function, 14-6, 14-21
FFLUSH procedure, 12-41
file I/O

in PL/SQL, 12-29
file ownership

with the UTL_FILE package, 12-31
FIPS flagger

interactive SQL statements and, 3-2
FIXED_DATE initialization parameter, 5-9
flushing the LOB’s buffer, 6-47
FOPEN function, 12-33
FOR EACH ROW clause, 13-7
FOR UPDATE clause

LOBs, 6-23, 6-24
FOREIGN KEY constraint
Index-8

defining, 9-25, 9-26
enabling, 9-20, 9-27
NOT NULL constraint and, 9-9
number of rows referencing parent table, 9-9
one-to-many relationship, 9-9
one-to-one relationship, 9-9
UNIQUE key constraint and, 9-9
updating tables, 9-10, 9-11

foreign key, representing many-to-one entity
relationship with, 7-5

format masks
TO_DATE function, 5-8

FORMAT_CALL_STACK function, 10-65
FORMAT_ERROR_STACK function, 10-64, 10-65
FREE_UNUSED_MEMORY procedure, 10-61
functions

See PL/SQL

G
GET_LINE procedure, 12-22, 12-25, 12-36
GET_LINES procedure, 12-22, 12-25
GRANT command, 17-13

ADMIN option, 17-13
object privileges, 17-14
system privileges, 17-13
when in effect, 17-19
WITH GRANT option, 17-15

granting privileges and roles, 17-13

H
hash clusters

choosing key, 4-41
creating, 4-41
dropping, 4-42
root block, 4-41
when to use, 4-41

Heterogeneous Services, 10-67
pass-through SQL, 10-67
security for distributed external procedures, 10-

67
HEXTORAW function, 5-18
hiding PL/SQL code, 10-29
HTTP callouts, 10-68, 10-87

I
ICX

UTL_HTTP package, 10-87
implicit dereferencing, 7-15, 8-7
IN OUT parameter mode, 10-6
IN parameter mode, 10-6
incomplete object types, 7-9
indexes

creating, 4-34
dropped tables and, 4-9
dropping, 4-35
guidelines, 4-31
order of columns, 4-33
privileges, 4-35
specifying PCTFREE for, 4-5
SQL*Loader and, 4-31
temporary segments and, 4-31
when to create, 4-30

industry standards compliance, 2-7
initialization parameters

DML_LOCKS, 3-11
OPEN_CURSORS, 3-9
REMOTE_DEPENDENCIES_MODE, 10-23
ROW_LOCKING, 3-11, 3-16
SERIALIZABLE, 3-11

initialization part of package
avoiding problems with, 10-50

INIT.ORA parameter, 11-65
INITRANS parameter, 3-31
INSERT command

column values and triggers, 13-9
read consistency, 3-10

INSTEAD OF triggers, 8-6, 13-4
integrity constraints

altering, 9-24
application uses, 9-2
clusters and, 4-38
defining, 9-15
disabling, 9-18, 9-19, 9-20, 9-21
dropping, 9-25
enabling, 9-19
enabling at creation, 9-18
enabling when violations exist, 9-19
examples, 9-2
 Index-9

exceptions to, 9-23
listing definitions of, 9-27
naming, 9-18
performance considerations, 9-3
privileges required for creating, 9-17
restrictions for adding or dropping, 9-17
triggers vs., 13-2, 13-26
using in applications, 2-4
violations, 9-19
when to disable, 9-19
when to use, 9-2

interactive block execution, 10-36
interface

operational, for Advanced Queuing, 11-74
internal LOBs, 6-5
Internet data, 10-68, 10-87
invalid views, 4-14
IS_OPEN function, 12-34, 14-26
IS_ROLE_ENABLED function, 10-61
ISOLATION LEVEL

changing, 3-31
SERIALIZABLE, 3-31

J
join view, 4-15

DELETE statements, 4-18
key-preserved tables in, 4-17
mergeable, 4-16
modifying

rule for, 4-18
UPDATE statements, 4-18
when modifiable, 4-15

K
key, foreign, 7-5
key-preserved tables

in join views, 4-17
in outer joins, 4-21

keys
foreign keys, 9-25
unique

composite, 9-6

L
labels

data conversion, 5-21
MLSLABEL datatype, 5-16

LAST_ERROR_POSITION function, 14-29
LAST_ROW_COUNT function, 14-29
LAST_ROW_ID function, 14-29
LAST_SQL_FUNCTION_CODE function, 14-29
LBS

SeeLOB Buffering Subsystem
leaf level scalar attributes, 7-20
library units

remote dependencies, 10-16
listing information about procedures and

packages, 10-77
LOB Buffering System (LBS)
LOB locators cannot span transactions, 6-34
LOBS

external (BFILEs), 6-5
LOBs, 6-1

accessing through a locator, 6-23
bind variables, 6-32
buffering

caveats, 6-47
pages can be aged out, 6-51

buffering operations, 6-49
buffering subsystem, 6-47
DBMS_LOB package, 6-66
definition, 6-5
deleting, 6-39
EMPTY_BLOB(), 6-59
EMPTY_CLOB(), 6-59
external LOBs

copying, 6-39
deleting, 6-39

flushing, 6-47
in the object cache, 6-46
inline storage, 6-21
internal LOBs, 6-5

CACHE / NOCACHE, 6-10
CHUNK, 6-11
copying, 6-38
deleting, 6-39
ENABLE | DISABLE STORAGE IN
Index-10

ROW, 6-12
initializing, 6-14
locators, 6-22
locking before updating, 6-24
LOGGING / NOLOGGING, 6-11
PCTVERSION, 6-10
setting to empty, 6-15
tablespace and LOB index, 6-9
tablespace and storage characteristics, 6-8

LOB locators, 6-24
locators, 6-21
object cache, 6-46
performance, best practices, 6-57
performing SELECT on, 6-23
piecewise operations, 6-6, 6-28
read consistent locators, 6-24
setting to contain a locator, 6-22
setting to NULL, 6-14
typical uses, 6-4
updated LOB locators, 6-27
value, 6-21
varying-width character data, 6-7, 6-57

local procedures
in a package body, 10-14

LOCAL_TRANSACTION_ID function, 10-63
locators, 6-21

accessing a LOB through, 6-23
cannot span transactions, 6-34
multiple, 6-25
read consistent, 6-24, 6-25, 6-32, 6-34, 6-51, 6-53,

6-54, 6-56
read consistent locators, 6-24
selecting, 6-23
setting column / attribute to contain, 6-22
updated, 6-24, 6-27, 6-32, 6-34, 6-51

LOCK TABLE command, 3-11, 3-12
locking

application design and, 2-6
indexed foreign keys and, 9-11
manual (explicit), 3-10
row locking mode, 3-16
serializable mode, 3-16
unindexed foreign keys and, 9-10

locks
distributed, 3-10

LOCK TABLE command, 3-11, 3-13
privileges for manual acquirement, 3-14
user locks, 3-17
UTLLOCKT.SQL script, 3-27

LOGGING / NOLOGGING, 6-11
LONG datatype, 5-10

restrictions on, 5-10
use in triggers, 13-12

LONG RAW datatype, 5-10, 5-12
restrictions on, 5-10
use in triggers, 13-12

M
maintaining applications, 2-9
MAKE_REF operator, 8-5
manual locking, 3-10

LOCK TABLE command, 3-11
map methods, 7-10
MAX_ENABLED_ROLES parameter

default roles and, 17-11
MAXTRANS option, 4-5
memory

scalability, 10-51
message grouping, 11-10
message properties, specification, 11-68
message recipients, definition, 11-18
messages

between sessions, 12-2
producers and consumers, 11-13

messages as events, 11-4
messages, definition, 11-12
messaging system

metrics, 11-7
requirements, 11-7

methods of object types, 7-13
methods, comparison, 7-12
methods, map, 7-10
methods, order, 7-10, 7-15
migration

ROWID format, 5-15
MLSLABEL datatype, 5-16
modes

of parameters, 10-6
modifiable join view
 Index-11

definition of, 4-15
MULTISET operator, 8-5
multi-threaded server (MTS)

BFILEs, 6-21
mutating tables, 13-14

N
name resolution, 4-45
NAME_RESOLVE procedure, 10-65
national language support, 2-6

NCLOBs, 6-7, 6-67
NCHAR datatype, 5-2, 5-5
NCLOB datatype, 6-7
nested tables, 7-19
nested tables vs VARRAYs, 7-9, 7-11
nested tables, querying, 7-12
nested tables, uniqueness in, 7-20
NESTED_TABLE_ID hidden column, 7-20
NEW

correlation name, 13-9
NEW_LINE procedure, 12-22, 12-38
NEXT_ITEM_TYPE function, 12-11
NEXTVAL pseudo-column, 4-25

restrictions, 4-26
NLS_DATE_FORMAT parameter, 5-8
NOCACHE option

CREATE SEQUENCE statement, 4-28
normalization, 2-3
NOT NULL constraint

CHECK constraint and, 9-15
data integrity, 9-20
when to use, 9-3

NOWAIT option, 3-12
NUMBER datatype, 5-7
NVARCHAR2 datatype, 5-2, 5-5

O
object cache, 6-46

LOBs, 6-46
Object Database Designer, 2-3
object tables, 7-16
object types, comparison methods for, 7-12
object types, incomplete, 7-9

object types, methods of, 7-13
object views, 8-2
object views, creating, 8-3
object views, updating, 8-6
object-relational approach, implementing with

object tables, 7-9
object-relational database management systems

(ORDBMSs), 7-2
objects, schema

granting privileges, 17-14
listing information, 4-47
name resolution, 4-45
renaming, 4-47
revoking privileges, 17-16
when revoking object privileges, 17-17

OCI
See Oracle Call Interface

OLD
correlation name, 13-9

one-to-many relationship
with foreign keys, 9-9

one-to-one relationship
with foreign keys, 9-9

OPEN_CURSOR function, 14-4, 14-9
OPEN_CURSORS parameter, 3-9
operating system

roles and, 17-12
optimizer

using hints in applications, 2-5
OR REPLACE clause

for creating packages, 10-13
Oracle Advanced Queuing (Oracle AQ), 11-1

DBMS_AQADM package, 11-78
Oracle Call Interface, 10-2

applications, 10-4
cancelling cursors, 3-10
closing cursors, 3-10
functionality in, 2-7

Oracle errors, 10-3
Oracle Precompilers

calling stored procedures and packages, 10-37
Oracle Procedure Builder, 1-3
Oracle Web Server Cartridges, 10-87
Oracle-supplied packages, 10-59, 10-65

where documented, 1-5
Index-12

ORDBMS
Object Database Designer, 2-3

ORDBMSs, 7-2
order methods, 7-10, 7-15
OUT parameter mode, 10-6
outer joins, 4-20

key-preserved tables in, 4-21
overloading

of packaged functions, 10-51
stored procedure names, 10-5
using RESTRICT_REFERENCES, 10-51

P
PACK_MESSAGE procedure, 12-6
package body, 10-11
package specification, 10-11
packages

avoiding runtime compilation, 15-2, 15-3
creating, 10-13
data dictionary views, 10-77
DBMS_DESCRIBE, 10-69
DBMS_OUTPUT

example of use, 10-3
DBMS_PIPE, 12-2
DBMS_ROWID, 10-79
DMBS_OUTPUT, 12-22
dropping, 10-14
in PL/SQL, 10-11
listing information about, 10-77
minimizing object dependencies, 15-3
naming of, 10-14
privileges, 15-6
privileges for execution, 10-38
privileges required to create, 10-14
privileges required to create procedures in, 10-

10
recompiling, 15-2, 15-4, 15-5
serially reusable packages, 10-51
session state and, 10-15
supplied by Oracle, 10-60, 10-65
synonyms, 10-41
using in applications, 2-5
UTL_FILE, 12-29
UTL_HTTP, 10-87

where documented, 1-5, 10-59
parallel server

distributed locks, 3-10
sequence numbers and, 4-24

parameter
default values, 10-9

with stored functions, 10-45
file

INIT.ORA, 12-30, 12-31
modes, 10-6

PARSE procedure, 14-4, 14-10
parsing large SQL statements, 14-11

parse tree, 13-17
pass-through SQL, 10-67
pcode

when generated for triggers, 13-17
PCTFREE storage parameter

altering, 4-8
block overhead and, 4-6
default, 4-3
guidelines for setting, 4-4, 4-5
indexes for, 4-5
non-clustered tables, 4-4

PCTUSED storage parameter
altering, 4-8
block overhead and, 4-6
default, 4-5
guidelines for setting, 4-5
non-clustered tables, 4-5

PCTVERSION, 6-10
performance

clusters, 4-37
index column order, 4-33
ROW_LOCKING parameter, 3-16
SERIALIZABLE option, 3-16

pipes, 12-2
communication between sessions, 12-2
domain of, 12-3
examples, 12-13
managing, 12-12
public or private, 12-2

PL/SQL, 10-2
anonymous blocks, 10-2
calling remote stored procedures, 10-41
cursor variables, 10-25
 Index-13

data dictionary views, 10-77
datatypes, 10-74

numeric codes for, 10-76
DBMS_LOB package, 6-66
dependencies among library units, 10-16
dynamic SQL, 14-2
exception handlers, 10-2
file I/O, 12-29

security, 12-31
functions

arguments, 10-44
overloading, 10-51
parameter default values, 10-45
purity level, 10-46
RESTRICT_REFERENCES pragma, 10-47
using, 10-42

hiding source code, 10-29
packages, 10-11
program units, 10-2

dropped tables and, 4-9
replaced views and, 4-13

RAISE statement, 10-30
serially reusable packages, 10-51
tables, 10-9

of records, 10-9
trigger bodies, 13-8
user-defined errors, 10-30
wrapper to hide code, 10-29

pragma, 10-46
EXCEPTION_INIT pragma, 10-81
RESTRICT_REFERENCES pragma, 10-47, 10-49
SERIALLY_REUSABLE pragma, 10-51, 10-53

pragmas, 7-13
precompiler

applications, 10-4
precompilers, 10-37
preface

Send Us Your Comments, xxi
PRIMARY KEY constraint

altering, 9-24
choosing a primary key, 9-5
disabling, 9-20
enabling, 9-20
multiple columns in, 9-6
UNIQUE key constraint vs., 9-6

private SQL areas
cursors and, 3-9

privileges
altering sequences, 4-24
altering tables, 4-8
cluster creation, 4-38
creating integrity constraints, 9-17
creating tables, 4-7
creating triggers, 13-17
disabling triggers, 13-20
dropping a view, 4-15
dropping sequences, 4-28
dropping tables, 4-9
dropping triggers, 13-19
enabling roles and, 17-10
enabling triggers, 13-20
granting, 17-13, 17-14
index creation, 4-35
managing, 17-7, 17-13
manually acquiring locks, 3-14
on selected columns, 17-16
recompiling packages or procedures, 15-6
recompiling triggers, 13-18, 15-6
recompiling views, 15-5
renaming objects, 4-47
replacing views, 4-13
revoking, 17-13, 17-15, 17-16
sequence creation, 4-24
stored procedure execution, 10-38
synonym creation, 4-29
triggers, 13-17
using a view, 4-14
using sequences, 4-28
view creation, 4-11
when revoking object privileges, 17-17

Pro*C daemon, 12-19
procedures

avoiding runtime compilation, 15-2
called by triggers, 13-12
data dictionary views, 10-77
listing compilation errors, 10-78
listing information about, 10-77
listing source code, 10-78
local, 10-14
size information, 10-79
Index-14

SLEEP, 3-26
supplied, 10-60
using in applications, 2-5

profiles
application design and, 2-6

program units in PL/SQL, 10-2
pseudocolumns

modifying views, 13-4
PUBLIC user group

granting and revoking privileges to, 17-18
procedures and, 17-19

purchase order example, 7-2
PURGE_MIXED procedure, 10-63
purity level, 10-46
PUT procedure, 12-22, 12-24, 12-37

maximum output size for, 12-39
PUT_LINE procedure, 12-22, 12-24, 12-39

maximum output size for, 12-39
PUTF procedure, 12-39

Q
queries

errors in distributed queries, 10-32
queue subscribers, definition, 11-18
queue tables, definition, 11-13
queues, definition, 11-13
queuing, 11-1, 11-5

DBMS_AQADM package, 11-78

R
RAISE statement, 10-30
RAISE_APPLICATION_ERROR procedure, 10-29

remote procedures, 10-33
raising exceptions

triggers, 13-11
RAW datatype, 5-12
RAWTOHEX function, 5-18
read consistency

LOBs, 6-24
read consistent locators, 6-24, 6-25, 6-32, 6-34, 6-51,

6-53, 6-54, 6-56
READ_ONLY procedure, 10-63
READ_WRITE procedure, 10-63

read-only transactions, 3-8
RECEIVE_MESSAGE function, 12-9
recompilation

avoiding runtime, 15-2
reference semantics for BFILEs, 6-16
REFERENCING option, 13-9
referential integrity

distributed databases and, 9-13
one-to-many relationship, 9-9
one-to-one relationship, 9-9
privileges required to create foreign keys, 9-26
self-referential constraints, 13-30
triggers and, 13-27, 13-28, 13-29, 13-30, 13-31

REFs, constructing from object identifiers, 8-5
REFs, dereferencing of, 7-15
REFs, implicit dereferencing of, 7-15, 8-7
REFs, scoped, 7-19
REGISTER procedure, 16-5
remote dependencies, 10-16, 15-4

signatures, 10-17
specifying timestamps or signatures, 10-23

remote exception handling, 10-33, 13-11
REMOTE_DEPENDENCIES_MODE

parameter, 10-23
REMOVE procedure, 16-5
REMOVE_PIPE procedure, 12-12
RENAME command, 4-46
renaming objects, 4-46
repeatable reads, 3-8, 3-10
RESET_PACKAGE procedure, 10-61
RESTRICT_REFERENCES pragma

syntax for, 10-47
using to control side effects, 10-47, 10-49
variant, 10-49

retention and message history, 11-9
reusable packages, 10-51
REVOKE command, 17-15

when in effect, 17-19
revoking privileges and roles

on selected columns, 17-16
REVOKE command, 17-15

revoking roles and privelieges (AQ), 11-64
RNDS argument, 10-47
RNPS argument, 10-47
ROLE_SYS_PRIVS view, 17-3
 Index-15

ROLE_TAB_PRIVS view, 17-3
roles

ADMIN OPTION and, 17-14
advantages, 17-3
application, 17-2, 17-3, 17-5, 17-7
application security policy, 17-2, 17-5
creating, 17-9
default, 17-10
dropping, 17-13
enabling, 17-3, 17-11
GRANT and REVOKE commands, 17-12
granting, 17-13
managing, 17-7
operating system granting of, 17-12
privileges for creating, 17-10
SET ROLE command, 17-12
user, 17-3, 17-5, 17-7
user privileges and enabling, 17-10
when to enable, 17-10
WITH GRANT OPTION and, 17-15

ROLLBACK command, 3-6
ROLLBACK procedure, 10-63
ROLLBACK_FORCE procedure, 10-63
ROLLBACK_SAVEPOINT procedure, 10-63
rolling back transactions

to savepoints, 3-6
roundtrips to the server, avoiding, 6-47, 6-53
row locking

manually locking, 3-15
row triggers

defining, 13-7
REFERENCING option, 13-9
timing, 13-3
UPDATE statements and, 13-7, 13-10

ROW_LOCKING parameter, 3-11, 3-16
ROWID datatype, 5-13

DBMS_ROWID package, 10-79
extended format, 10-85
extended ROWID format, 5-13
migration, 5-15

ROWIDTOCHAR function, 5-18
ROWLABEL column, 5-16
rows

chaining across blocks, 4-4
format, 4-2

header, 4-2
shown in ROWIDs, 5-14
size, 4-2
violating integrity constraints, 9-19

ROWTYPE_MISMATCH exception, 10-28
RR date format, 5-9
RS locks

LOCK TABLE command, 3-12
RX locks

LOCK TABLE command, 3-12

S
S locks

LOCK TABLE command, 3-13
sample programs

daemon.pc, 12-19
daemon.sql, 12-16

SAVEPOINT command, 3-6
SAVEPOINT procedure, 10-63
savepoints

maximum number of, 3-6
rolling back to, 3-6

scalability
serially reusable packages, 10-51

schemas, 17-7
scoped REFs, 7-19
security

dynamic SQL, 14-7
enforcing in applications, 2-8
in PL/SQL file I/O, 12-31
policy for applications, 17-2, 17-5
roles, advantages, 17-3
when using the UTL_FILE package, 12-30

SELECT command
FOR UPDATE, 6-23
read consistency, 3-10, 6-24
SELECT ... FOR UPDATE, 3-15

SELF keyword, 7-14
semantics

copy-based for internal LOBs, 6-38
reference based for BFILEs, 6-16

Send Us Your Comments
boilerplate, xxi

SEND_MESSAGE function, 12-7
Index-16

sequence of messages
retrieving, 11-6

SEQUENCE_CACHE_ENTRIES parameter, 4-27
sequences

accessing, 4-24
altering, 4-24
caching numbers, 4-23
caching sequence numbers, 4-27
creating, 4-23, 4-28
CURRVAL, 4-24, 4-26
dropping, 4-28
initialization parameters, 4-23
NEXTVAL, 4-25
parallel server, 4-24
privileges for creating, 4-24
privileges to alter, 4-24
privileges to drop, 4-28
privileges to use, 4-28
reducing serialization, 4-25
using in applications, 2-7

SERIALIZABLE option, 3-16
for ISOLATION LEVEL, 3-31

SERIALIZABLE parameter, 3-11
serializable transactions, 3-28
serially reusable PL/SQL packages, 10-51
SERIALLY_REUSABLE pragma, 10-53
Server Manager

DMBS_OUTPUT messages, 12-25
ENABLE procedure for output, 12-23

SESSION_MAX_OPEN_FILES parameter, 6-20
sessions

communicating between, 12-2
package state and, 10-15
SLEEP procedure, 3-26

SET ROLE command, 17-3, 17-11
when using operating system roles, 17-12

SET TRANSACTION command, 3-8
ISOLATION LEVEL clause, 3-31
SERIALIZABLE, 3-16, 3-31

SET_CLOSE_CACHED_OPEN_CURSORS
procedure, 10-61

SET_DEFAULTS procedure, 16-8
SET_NLS procedure, 10-61
SET_ROLE procedure, 10-61
SET_SQL_TRACE procedure, 10-61

setting internal LOBs to empty, 6-15
setting LOBs to NULL, 6-14
SGA

See system global area
share locks (S)

LOCK TABLE command, 3-13
share row exclusive locks (SRX)

LOCK TABLE command, 3-14
shared SQL areas

using in applications, 2-6
side effects, 10-6, 10-46
SIGNAL procedure, 16-5
signatures

PL/SQL library unit dependencies, 10-16
to manage remote dependencies, 10-17

SLEEP procedure, 3-26
SORT_AREA_SIZE parameter

index creation and, 4-31
SQL DDL

BFILE security, 6-18
SQL DML

BFILE security, 6-18
SQL statements

access in PL/SQL, 10-60
application design and, 2-7
dynamic SQL, 14-2
execution, 3-2
in trigger bodies, 13-8, 13-12
larger than 32 KB, 14-11
not allowed in triggers, 13-12
pass-through SQL, 10-67
privileges required for, 17-8
when constraint checking occurs, 9-15

SQL*Loader
indexes and, 4-31

SQL*Module
applications, 10-4
calling stored procedures from, 10-5

SQL*Plus
anonymous blocks, 10-4
compile time errors, 10-34
creating a sequence, 10-13
DMBS_OUTPUT messages, 12-25
ENABLE procedure for output, 12-23
invoking stored procedures, 10-36
 Index-17

loading a procedure, 10-9
SET SERVEROUTPUT ON command, 10-3
SHOW ERRORS command, 10-34

SRX locks
LOCK Table command, 3-14

standards
ANSI, 3-16
compliance, 2-7

state
session, of package objects, 10-15

statement triggers
conditional code for statements, 13-10
row evaluation order, 13-13
specifying SQL statement, 13-6
timing, 13-3
trigger evaluation order, 13-13
UPDATE statements and, 13-7, 13-10
valid SQL statements, 13-12

STEP_ID function, 10-63
storage

object tables, 7-20
storage parameters

PCTFREE, 4-8
PCTUSED, 4-8

stored functions, 10-4
creating, 10-9

stored procedures, 10-4
argument values, 10-39
avoiding runtime compilation, 15-2
creating, 10-9
distributed query creation, 10-32
dynamic SQL, 14-2
exceptions, 10-31
exceptions in, 10-29
invoking, 10-36
listing information about, 10-77
names of, 10-5
overloading names of, 10-5
parameter

default values, 10-9
privileges, 10-38, 15-6
recompiling, 15-2, 15-4, 15-5
remote, 10-39
remote objects and, 10-40
storing, 10-9

supplied, 10-60
synonyms, 10-41
using in applications, 2-5
using privileges granted to PUBLIC, 17-19

structs
arrays of in C, 2-7

structured payload, 11-9
subscription & recipient lists, 11-10
supplied procedures, 10-60
synchronous communication, 11-7
synonyms

creating, 4-29
dropped tables and, 4-9
dropping, 4-30
privileges, 4-29
stored procedures and packages, 10-41
using, 4-29

SYSDATE function, 5-9
system global area

buffers DBMS_OUTPUT data, 12-25
buffers pipes information, 12-2
holds sequence number cache, 4-27

system-specific Oracle documentation, 3-18, 3-19,
10-69, 12-3, 12-23, 13-3, 14-2, 15-7, 16-3

PL/SQL wrapper, 10-29
UTLDTREE.SQL script, 15-3

T
tables

altering, 4-7, 4-8
constraining, 13-14
creating, 4-2, 4-3
designing, 4-2
dropping, 4-8
guidelines, 4-2, 4-3
in PL/SQL, 10-9
increasing column length, 4-7
key-preserved, 4-17
location, 4-3
mutating, 13-14
privileges for creation, 4-7
privileges for dropping, 4-9
privileges to alter, 4-8
schema of clustered, 4-38
Index-18

specifying PCTFREE for, 4-4
specifying PCTUSED for, 4-5
specifying tablespace, 4-3
table items as arrays, 14-13
truncating, 4-9

tables, nested, 7-19
tables, object, See object tables
temporary segments

index creation and, 4-31
third generation language, 10-2
thread safety

in OCI applications, 2-7
timestamps

PL/SQL library unit dependencies, 10-16
TO_CHAR function, 5-18

CC date format, 5-9
converting Trusted Oracle labels, 5-21
RR date format, 5-9

TO_DATE function, 5-8, 5-18
RR date format, 5-9

TO_LABEL function
converting Trusted Oracle labels, 5-21

TO_NUMBER function, 5-18
transactions

external LOBs do not participate, 6-6
internal LOBs participate fully, 6-5, 6-6
LOB locators cannot span, 6-34
manual locking, 3-11
migrating from, 6-52
read-only, 3-8
serializable, 3-28
SET TRANSACTION command, 3-8

triggers
about, 10-4
accessing column values, 13-8
AFTER, 13-3, 13-9, 13-23, 13-25
auditing with, 13-22, 13-23
BEFORE, 13-3, 13-9, 13-34, 13-35
body, 13-8, 13-10, 13-11, 13-12
check constraints, 13-33, 13-34
column list in UPDATE, 13-7, 13-10
compiled, 13-17
conditional predicates, 13-8, 13-10
creating, 13-2, 13-12, 13-17
data access restrictions, 13-34

debugging, 13-19
designing, 13-2
disabling, 13-19
distributed query creation, 10-32
dropped tables and, 4-9
enabling, 13-19, 13-20
error conditions and exceptions, 13-11
events, 13-6
examples, 13-22, 13-24, 13-25, 13-28, 13-33,

13-34, 13-36
FOR EACH ROW clause, 13-7
generating derived column values, 13-35
illegal SQL statements, 13-12
INSTEAD OF triggers, 13-4
integrity constraints vs., 13-2, 13-26
listing information about, 13-21
migration issues, 13-18
modifying, 13-19
multiple same type, 13-13
mutating tables and, 13-14
naming, 13-3
package variables and, 13-13
prerequisites before creation, 13-3
privileges, 13-17
privileges to disable, 13-20
privileges to drop, 13-19
privileges to recompile, 15-6
procedures and, 13-12
recompiling, 13-18, 15-6
REFERENCING option, 13-9
referential integrity and, 13-27, 13-29, 13-30,

13-31
remote dependencies and, 13-12
remote exceptions, 13-11
restrictions, 13-8, 13-12
row, 13-7
row evaluation order, 13-13
scan order, 13-13
stored, 13-17
trigger evaluation order, 13-13
use of LONG and LONG RAW datatypes, 13-12
username reported in, 13-17
using in applications, 2-5
WHEN clause, 13-8

TRUNC function, 5-9
 Index-19

TRUNCATE TABLE command, 4-9
Trusted Oracle Server

converting labels, 5-21
dynamic SQL, 14-7
maintaining the Trusted Database List, 10-67
MLSLABEL datatype, 5-16

tuning
overview, 2-8
using LONGs, 5-11

U
unhandled exceptions, 10-32
UNIQUE key constraints

altering, 9-24
combining with NOT NULL constraint, 9-4
composite keys and nulls, 9-6
data integrity, 9-24
disabling, 9-20
enabling, 9-20
PRIMARY KEY constraint vs., 9-6
when to use, 9-6

UNIQUE_SESSION_ID function, 10-61
UNPACK_MESSAGE procedures, 12-11
UPDATE command

column values and triggers, 13-9
data consistency, 3-10
triggers and, 13-7, 13-10
triggers for referential integrity, 13-29, 13-30

updated locators, 6-24, 6-27, 6-32, 6-34, 6-51
updating applications, 2-9
updating tables

with parent keys, 9-10, 9-11
USE_ROLLBACK_SEGMENT procedure, 10-63
USER function, 9-4
user locks

requesting, 3-17
USER_ERRORS view

debugging stored procedures, 10-35
USER_QUEUE_TABLES, 11-97
USER_QUEUES, 11-98
USER_SOURCE view, 10-35
user-defined errors, 10-29, 10-31
usernames

as reported in a trigger, 13-17

schemas and, 17-7
users

dropped roles and, 17-13
enabling roles for, 17-3
PUBLIC group, 17-18
restricting application roles, 17-5

UTL_FILE package, 12-29
security issues, 12-30

UTL_HTTP package, 10-68, 10-87
UTLDTREE.SQL file, 15-2, 15-7
UTLEXCPT.SQL file, 9-23
UTLLOCKT.SQL script, 3-27

V
value of LOBs, 6-21
VARCHAR datatype, 5-5
VARCHAR2 datatype, 5-2, 5-5

column length, 5-6
when to use, 5-5

VARCHAR2S datatype, 14-11
VARIABLE_VALUE procedure, 14-7, 14-24
VARRAYs vs nested tables, 7-9, 7-11
VARRAYs, See arrays
views

containing expressions, 13-4
creating, 4-10
creating with errors, 4-11
dropped tables and, 4-9
dropping, 4-15
FOR UPDATE clause and, 4-10
inherently modifiable, 13-4
invalid, 4-14
join views, 4-15
modifiable, 13-4
ORDER BY clause and, 4-10
privileges, 4-11, 15-5
pseudocolumns, 13-4
recompiling, 15-4, 15-5
replacing, 4-12
restrictions, 4-13
using, 4-13
when to use, 4-9
WITH CHECK OPTION, 4-10
See also data dictionary
Index-20

violating integrity constraints, 9-19

W
WAITANY procedure, 16-6
WAITONE procedure, 16-7
WHEN clause, 13-8

cannot contain PL/SQL expressions, 13-8
correlation names, 13-9
examples, 13-2, 13-7, 13-21, 13-28
EXCEPTION examples, 13-11, 13-28, 13-33,

13-34
WITH GRANT OPTION, 17-15
WNDS argument, 10-47
WNPS argument, 10-47
Workflow, 11-5
World Wide Web callouts, 10-68, 10-87
wrapper to hide PL/SQL code, 10-29

X
X locks

LOCK TABLE command, 3-14

Y
year 2000, 5-9
 Index-21

Index-22

	Up
	Contents
	Send Us Your Comments
	Preface
	1 Information Sources for Application Developers
	Sources of Information
	Specific Topics
	Business Rules
	Client-Side Tools
	Communicating with 3GL Programs
	Database Constraints
	Database Design
	Datatypes
	Debugging
	Error Handling
	Gateways
	Oracle-Supplied Packages
	PL/SQL
	Schema Objects
	Security
	SQL Statements
	Tools

	2 The Application Developer
	Assessing Needs
	Designing the Database
	Designing the Application
	Using Available Features
	Using the Oracle Call Interface

	Writing SQL
	Enforcing Security in Your Application
	Tuning an Application
	Maintaining and Updating an Application

	3 Processing SQL Statements
	SQL Statement Execution
	FIPS Flagging

	Controlling Transactions
	Improving Performance
	Committing a Transaction
	Rolling Back a Transaction
	Defining a Transaction Savepoint
	Privileges Required for Transaction Management

	Read-Only Transactions
	The Use of Cursors
	Declaring and Opening Cursors
	Using a Cursor to Re-Execute Statements
	Closing Cursors
	Cancelling Cursors

	Explicit Data Locking
	Explicitly Acquiring Table Locks
	Privileges Required

	Explicitly Acquiring Row Locks
	SERIALIZABLE and ROW_LOCKING Parameters
	Summary of Non-Default Locking Options

	Creating User Locks
	The DBMS_LOCK Package
	Security
	Creating the DBMS_LOCK Package
	ALLOCATE_UNIQUE Procedure
	REQUEST Function
	CONVERT Function
	RELEASE Function

	SLEEP Procedure
	Sample User Locks
	Viewing and Monitoring Locks
	Concurrency Control Using Serializable Transaction...
	Serializable Transaction Interaction
	Setting the Isolation Level
	Referential Integrity and Serializable Transaction...
	READ COMMITTED and SERIALIZABLE Isolation
	Application Tips

	4 Managing Schema Objects
	Managing Tables
	Designing Tables
	Creating Tables
	Altering Tables
	Dropping Tables

	Managing Views
	Creating Views
	Replacing Views
	Using Views
	Dropping Views

	Modifying a Join View
	Key-Preserved Tables
	Rule for DML Statements on Join Views
	Using the UPDATABLE_COLUMNS Views
	Outer Joins

	Managing Sequences
	Creating Sequences
	Altering Sequences
	Using Sequences
	Dropping Sequences

	Managing Synonyms
	Creating Synonyms
	Using Synonyms
	Dropping Synonyms

	Managing Indexes
	Creating Indexes
	Dropping Indexes

	Managing Clusters, Clustered Tables, and Cluster I...
	Guidelines for Creating Clusters
	Performance Considerations
	Creating Clusters, Clustered Tables, and Cluster I...
	Manually Allocating Storage for a Cluster
	Dropping Clusters, Clustered Tables, and Cluster I...

	Managing Hash Clusters and Clustered Tables
	Creating Hash Clusters and Clustered Tables
	Controlling Space Usage Within a Hash Cluster
	Dropping Hash Clusters
	When to Use Hashing

	Miscellaneous Management Topics for Schema Objects...
	Creating Multiple Tables and Views in One Operatio...
	Naming Schema Objects
	Name Resolution in SQL Statements
	Renaming Schema Objects
	Listing Information about Schema Objects

	5 Selecting a Datatype
	Oracle Built-In Datatypes
	Using Character Datatypes
	Using the NUMBER Datatype
	Using the DATE Datatype
	Using the LONG Datatype
	Using RAW and LONG RAW Datatypes
	ROWIDs and the ROWID Datatype

	Trusted Oracle MLSLABEL Datatype
	ANSI/ISO, DB2, and SQL/DS Datatypes
	Data Conversion
	Rule 1: Assignments
	Rule 2: Expression Evaluation
	Data Conversion for Trusted Oracle

	6 Large Objects (LOBs)
	Introduction to LOBs
	What Are LOBs?
	Internal LOBs and External LOBs (BFILEs)
	LOBs in Comparison to LONG and LONG RAW Types
	Packages for Working with LOBs
	LOB Datatypes
	Defining Internal and External LOBs for Tables
	Stipulating Tablespace and Storage Characteristics...
	Initializing Internal LOBs (SQL DML)
	Accessing External LOBs (SQL DML)
	BFILE Security
	Catalog Views on Directories
	Guidelines for DIRECTORY Usage
	Maximum Number of Open BFILEs
	BFILEs in MTS Mode
	Closing BFILEs after Program Termination
	LOB Value and Locators
	LOB Locator Operations
	Efficient Reads and Writes of Large Amounts of LOB...
	Copying LOBs
	Deleting LOBs
	LOBs in the Object Cache
	LOB Buffering Subsystem
	User Guidelines for Best Performance Practices
	Working with Varying-Width Character Data

	LOB Reference
	Reference Overview
	EMPTY_BLOB() and EMPTY_CLOB() Functions
	BFILENAME() Function
	Using the OCI to Manipulate LOBs
	DBMS_LOB Package
	Package Routines
	Datatypes
	Type Definitions
	Constants
	DBMS_LOB Exceptions
	DBMS_LOB Security
	DBMS_LOB General Usage Notes
	BFILE-Specific Usage Notes
	DBMS_LOB.APPEND() Procedure
	DBMS_LOB.COMPARE() Function
	DBMS_LOB.COPY() Procedure
	DBMS_LOB.ERASE() Procedure
	DBMS_LOB.FILECLOSE() Procedure
	DBMS_LOB.FILECLOSEALL() Procedure
	DBMS_LOB.FILEEXISTS() Function
	DBMS_LOB.FILEGETNAME() Procedure
	DBMS_LOB.FILEISOPEN() Function
	DBMS_LOB.FILEOPEN() Procedure
	DBMS_LOB.GETLENGTH() Function
	DBMS_LOB.INSTR() Function
	DBMS_LOB.LOADFROMFILE() Procedure
	DBMS_LOB.READ() Procedure
	DBMS_LOB.SUBSTR() Function
	DBMS_LOB.TRIM() Procedure
	\DBMS_LOB.WRITE() Procedure
	LOB Restrictions

	7 User-Defined Datatypes — An Extended Example
	Introduction
	A Purchase Order Example
	Entities and Relationships
	Part 1: Relational Approach
	Part 2: Object-Relational Approach with Object Tab...

	8 Object Views—An Extended Example
	Introduction
	Purchase Order Example
	Defining Object Views
	Updating the Object Views
	Sample Updates
	Selecting

	9 Maintaining Data Integrity
	Using Integrity Constraints
	When to Use Integrity Constraints
	Taking Advantage of Integrity Constraints
	Using NOT NULL Integrity Constraints
	Setting Default Column Values
	Choosing a Table’s Primary Key
	Using UNIQUE Key Integrity Constraints

	Using Referential Integrity Constraints
	Nulls and Foreign Keys
	Relationships Between Parent and Child Tables
	Multiple FOREIGN KEY Constraints
	Concurrency Control, Indexes, and Foreign Keys

	Referential Integrity in a Distributed Database
	Using CHECK Integrity Constraints
	Restrictions on CHECK Constraints
	Designing CHECK Constraints
	Multiple CHECK Constraints
	CHECK and NOT NULL Integrity Constraints

	Defining Integrity Constraints
	The CREATE TABLE Command
	The ALTER TABLE Command
	Required Privileges
	Naming Integrity Constraints
	Enabling and Disabling Constraints Upon Definition...
	UNIQUE Key, PRIMARY KEY, and FOREIGN KEY

	Enabling and Disabling Integrity Constraints
	Why Enable or Disable Constraints?
	Integrity Constraint Violations
	On Definition
	Enabling and Disabling Defined Integrity Constrain...
	Enabling and Disabling Key Integrity Constraints
	Enabling Constraints after a Parallel Direct Path ...
	Exception Reporting

	Altering Integrity Constraints
	Dropping Integrity Constraints
	Managing FOREIGN KEY Integrity Constraints
	Defining FOREIGN KEY Integrity Constraints
	Enabling FOREIGN KEY Integrity Constraints

	Listing Integrity Constraint Definitions
	Examples

	10 Using Procedures and Packages
	PL/SQL Procedures and Packages
	Anonymous Blocks
	Database Triggers
	Stored Procedures and Functions
	Creating Stored Procedures and Functions
	Altering Stored Procedures and Functions
	External Procedures

	PL/SQL Packages
	Creating Packages
	Creating Packaged Objects
	Naming Packages and Package Objects
	Dropping Packages and Procedures
	Package Invalidations and Session State

	Remote Dependencies
	Timestamps
	Signatures
	Controlling Remote Dependencies
	Suggestions for Managing Dependencies

	Cursor Variables
	Declaring and Opening Cursor Variables
	Examples of Cursor Variables

	Hiding PL/SQL Code
	Error Handling
	Declaring Exceptions and Exception Handling Routin...
	Unhandled Exceptions
	Handling Errors in Distributed Queries
	Handling Errors in Remote Procedures
	Compile Time Errors
	Debugging

	Invoking Stored Procedures
	A Procedure or Trigger Calling Another Procedure
	Interactively Invoking Procedures From Oracle Tool...
	Calling Procedures within 3GL Applications
	Name Resolution When Invoking Procedures
	Privileges Required to Execute a Procedure
	Specifying Values for Procedure Arguments
	Invoking Remote Procedures
	Referencing Remote Objects
	Synonyms for Procedures and Packages

	Calling Stored Functions from SQL Expressions
	Using PL/SQL Functions
	Syntax
	Naming Conventions
	Meeting Basic Requirements
	Controlling Side Effects
	Overloading
	Serially Reusable PL/SQL Packages
	Privileges Required

	Supplied Packages
	Packages Supporting SQL Features
	Packages Supporting Additional Functionality

	Describing Stored Procedures
	DBMS_DESCRIBE Package
	Security
	Types
	Errors
	DESCRIBE_PROCEDURE Procedure

	Listing Information about Procedures and Packages
	The DBMS_ROWID Package
	Summary
	Exceptions
	ROWID_CREATE Function
	ROWID_INFO Procedure
	ROWID_TYPE Function
	ROWID_OBJECT Function
	ROWID_RELATIVE_FNO Function
	ROWID_BLOCK_NUMBER Function
	ROWID_ROW_NUMBER Function
	ROWID_TO_ABSOLUTE_FNO Function
	ROWID_TO_EXTENDED Function
	ROWID_TO_RESTRICTED Function
	ROWID_VERIFY Function

	The UTL_HTTP Package

	11 Advanced Queuing
	Introduction to Oracle Advanced Queuing
	Introduction Overview
	Complex Systems
	Possible Solutions: Synchronous versus Disconnecte...
	Oracle Advanced Queuing — Features
	Oracle Advanced Queuing — Primary Components
	Modeling Queue Entities
	Basic Queuing
	Illustrating Basic Queuing
	Illustrating Client-Server Communication Using AQ
	Multiple-Consumer Dequeuing of the Same Message
	Illustrating Multiple-Consumer Dequeuing of the Sa...
	Illustrating Dequeuing of Specified Messages by Sp...
	Illustrating the Implementation of Workflows using...
	Message Propagation
	llustration of Message Propagation

	Oracle Advanced Queuing by Example
	Overview Summary
	Assign Roles and Privileges
	Create Queue Tables and Queues
	Enqueue and Dequeue of Object Type Messages
	Enqueue and Dequeue of Object Type Messages Using ...
	Enqueue and Dequeue of Object Type Messages Using ...
	Enqueue and Dequeue of RAW Type Messages
	Enqueue and Dequeue of RAW Type Messages using Pro...
	Enqueue and Dequeue of RAW Type Messages using OCI...
	Enqueue and Dequeue of Messages by Priority
	Dequeue of Messages after Preview by Criterion
	Enqueue and Dequeue of Messages with Time Delay an...
	Enqueue and Dequeue of Messages by Correlation and...
	Enqueue and Dequeue of Messages by Correlation and...
	Enqueue and Dequeue of Messages to/from a Multicon...
	Enqueue and Dequeue of Messages to/from a Multicon...
	Enqueue of Messages for remote subscribers/recipie...
	Unscheduling Propagation
	Enqueue and Dequeue using Message Grouping
	Drop AQ Objects
	Revoke Roles and Privileges

	Oracle Advanced Queuing Reference
	Reference Overview
	INIT.ORA Parameter
	Data Structures
	Agent
	Message Properties
	Queue Options
	Operational Interface
	Enumerated Constants in the Operational Interface
	Administrative Interface
	Enumerated Constants in the Administrative Interfa...
	Database Objects
	Error Messages

	Administration Topics
	Performance
	Availability
	Scalability
	Optimizing Propagation
	Reliability and Recoverability
	Enterprise Manager Support
	Importing and Exporting Queue Data
	Troubleshooting
	Dynamic Statistics Views
	Reference to Demos

	Compatibility & Upgrade

	12 PL/SQL Input/Output
	Database Pipes
	Summary
	Creating the DBMS_PIPE Package
	Public Pipes
	Private Pipes
	Errors
	CREATE_PIPE
	PACK_MESSAGE Procedures
	SEND_MESSAGE
	RECEIVE_MESSAGE
	NEXT_ITEM_TYPE
	UNPACK_MESSAGE Procedures
	REMOVE_PIPE
	Managing Pipes
	Purging the Contents of a Pipe
	Resetting the Message Buffer
	Getting a Unique Session Name
	Example 1: Debugging
	Example 2: Execute System Commands

	Output from Stored Procedures and Triggers
	Summary
	Creating the DBMS_OUTPUT Package
	Errors
	ENABLE Procedure
	DISABLE Procedure
	PUT and PUT_LINE Procedures
	GET_LINE and GET_LINES Procedures
	Examples Using the DBMS_OUTPUT Package

	PL/SQL File I/O
	Summary
	Security
	Declared Types
	Exceptions
	FOPEN
	IS_OPEN
	FCLOSE
	FCLOSE_ALL
	GET_LINE
	PUT
	NEW_LINE
	PUT_LINE
	PUTF
	FFLUSH

	13 Using Database Triggers
	Designing Triggers
	Creating Triggers
	Prerequisites for Creating Triggers
	Naming Triggers
	The BEFORE and AFTER Options
	The INSTEAD OF Option
	Triggering Statement
	FOR EACH ROW Option
	The WHEN Clause
	The Trigger Body
	Triggers and Handling Remote Exceptions
	Restrictions on Creating Triggers
	Who Is the Trigger User?
	Privileges Required to Create Triggers
	Privileges for Referenced Schema Objects

	When Triggers Are Compiled
	Dependencies
	Recompiling a Trigger
	Migration Issues

	Debugging a Trigger
	Modifying a Trigger
	Enabling and Disabling Triggers
	Disabling Triggers
	Enabling Triggers
	Privileges Required to Enable and Disable Triggers...

	Listing Information About Triggers
	Examples of Trigger Applications
	Auditing with Triggers
	Integrity Constraints and Triggers
	Complex Security Authorizations and Triggers
	Transparent Event Logging and Triggers
	Derived Column Values and Triggers

	14 Using Dynamic SQL
	Overview of Dynamic SQL
	Creating the DBMS_SQL Package

	Using DBMS_SQL
	Execution Flow
	Security for Dynamic SQL
	For Oracle Server Users
	For Trusted Oracle Server Users

	Procedures and Functions
	OPEN_CURSOR Function
	PARSE Procedure
	BIND_VARIABLE and BIND_ARRAY Procedures
	Processing Queries
	DEFINE_COLUMN Procedure
	DEFINE_ARRAY Procedure
	DEFINE_COLUMN_LONG Procedure
	EXECUTE Function
	EXECUTE_AND_FETCH Function
	FETCH_ROWS Function
	COLUMN_VALUE Procedure
	COLUMN_VALUE_LONG Procedure
	VARIABLE_VALUE Procedure
	Processing Updates, Inserts and Deletes
	IS_OPEN Function
	DESCRIBE_COLUMNS Procedure
	CLOSE_CURSOR Procedure

	Locating Errors
	LAST_ERROR_POSITION Function
	LAST_ROW_COUNT Function
	LAST_ROW_ID Function
	LAST_SQL_FUNCTION_CODE Function

	Examples of Using DBMS_SQL

	15 Dependencies Among Schema Objects
	Dependency Issues
	Avoiding Runtime Recompilation
	Remote Dependencies

	Manually Recompiling
	Manually Recompiling Views
	Manually Recompiling Procedures and Functions
	Manually Recompiling Packages
	Manually Recompiling Triggers

	Listing Dependency Management Information
	The Dependency Tracking Utility

	16 Signalling Database Events with Alerters
	Overview
	Creating the DBMS_ALERT Package
	Security
	Errors

	Using Alerts
	REGISTER Procedure
	REMOVE Procedure
	SIGNAL Procedure
	WAITANY Procedure
	WAITONE Procedure

	Checking for Alerts
	SET_DEFAULTS Procedure

	Example of Using Alerts

	17 Establishing a Security Policy
	Application Security Policy
	Application Administrators
	Roles and Application Privilege Management
	Enabling Application Roles
	Restricting Application Roles from Tool Users
	Schemas

	Managing Privileges and Roles
	Creating a Role
	Enabling and Disabling Roles
	Dropping Roles
	Granting and Revoking Privileges and Roles
	Granting to, and Revoking from, the User Group PUB...
	When Do Grants and Revokes Take Effect?
	How Do Grants Affect Dependent Objects?

	18 Oracle XA
	XA Library-Related Information
	General Information about the Oracle XA
	README.doc

	Changes from Release 7.3 to Release 8.0
	Session Caching Is No Longer Needed
	Dynamic Registration Is Supported
	Loosely Coupled Transaction Branches Are Supported...
	SQLLIB Is Not Needed for OCI Applications
	No Installation Script Is Needed to Run XA
	The XA Library Can Be Used with the Oracle Paralle...
	Transaction Recovery for Oracle Parallel Server Ha...
	Both Global and Local Transactions Are Possible
	The xa_open String Has Been Modified

	General Issues and Restrictions
	Database Links
	Oracle Parallel Server Option
	SQL-based Restrictions
	Miscellaneous XA Issues
	Basic Architecture
	X/Open Distributed Transaction Processing(DTP)
	Transaction Recovery Management
	Oracle XA Library Interface Subroutines
	XA Library Subroutines
	Extensions to the XA Interface
	Transaction Processing Monitors (TPMs)
	Required Public Information
	Registration

	Developing and Installing Applications That Use th...
	Responsibilities of the DBA or System Administrato...
	Responsibilities of the Application Developer

	Defining the xa_open String
	Syntax of the xa_open String
	Required Fields
	Optional Fields

	Interfacing to Precompilers and OCIs
	Using Precompilers with the Oracle XA Library
	Using OCI with the Oracle XA Library

	Transaction Control
	Examples of Precompiler Applications

	Migrating Precompiler or OCI Applications to TPM A...
	XA Library Thread Safety
	The Open String Specification
	Restrictions

	Troubleshooting
	Trace Files
	Trace File Examples
	In-doubt or Pending Transactions
	Oracle Server SYS Account Tables

	Index

