Oracle8L] Time Series Cartridge
User’'s Guide

Release 8.0.4

November, 1997
Part No. A57501-01

ORACLE"

Enabling the Information Age™



Oracle8 Time Series Cartridge User’s Guide

Part No. A57501-01

Release 8.0.4

Copyright © 1997, Oracle Corporation. All rights reserved.

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inher-
ently dangerous applications. It shall be licensee’s responsibility to take all appropriate fail-safe, back
up, redundancy and other measures to ensure the safe use of such applications if the Programs are
used for such purposes, and Oracle disclaims liability for any damages caused by such use of the Pro-
grams.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright patent and
other intellectual property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free.

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is deliv-
ered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are ‘commercial
computer software' and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are ‘restricted computer software' and use, duplication and disclo-
sure of the Programs shall be subject to the restrictions in FAR 52..227-14, Rights in Data -- General,
including Alternate Il (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle, SQL*L oader, and SQL*Plus are registered trademarks, and Developer/2000, Net8, Network Computing
Architecture, Oracle Forms, Oracle8, and PL/SQL are trademarks, of Oracle Corporation, Redwood City, California.
All other company or product names are used for identification purposes only and may be trademarks of their respec-
tive owners.



Contents

SENA US YOUT COMMEBNTES oottt e e ee e e ee e eeres s seeeseseseseseseseseseseeeeeseseseseeeeenesans Xi

Preface....

1 Introduction

11
1.2
13
1.4
15
1.6
16.1
1.6.2
1.6.3

(D L= W O Uy d T [ 1= TSRO P PR 1-1
Object Relational TEChNOIOQY .....c..iviiiiiiieri e e 1-2
Storing and ACCESSING DATA ......c.cviiiiiiic e 1-2
INSTAIING TN KT ... e e e 1-3
Creating Public Synonyms for Time Series Packages..........cocccveiveinicnicinie s 1-4
Time Series Cartridge Demos (DemonStrations) ...........ccocovereiriiniciesinisiese e 1-4
RUNNING the USAgE DEMO ....c.coiiiiiie it s e 1-5
USAGE DEMO FIIES......oiiiiiieiiceie e s e 1-5
Tables and Views in the Usage DEMO ... 1-6

2 Time Series Concepts

2.1

211
212
2.2

221
222
223
224

Overview Of TimMe SErieS Data.......c.cocoiiiiiiiiieiiie ettt et et sr e sra e 2-1
Data Generation fOr @ TIME SEIIES.......ciiciiii ittt sttt 2-2
HISTOFICAl DAtA......cciie ettt st a e s b et e ere e 2-4

CAIEBNAAIS ... e ettt ettt e et e et bbb e et sbeebeeabe s re e be e e arae st 2-5
Frequency and PreCiSION ..........cooce ittt et et 2-6
Calendar DatatyPeS ......ccciviirieierieieie st ettt st en et ere b s 2-7
Overview of Calendar Definition .......cc.ccooeiiiic e 2-8
Deriving Calendar Exceptions from Time Series Data..........ccccocevrieeeiinieneseseeas 2-9



2.3 Time Series Cartridge ArChITECTUIE .......ccooeiiiiiie e 2-10

2.4 Storage Of TiMe SEriesS DALA .........c.cciriiriiiirieiiiet ettt 2-11
24.1 oL L@ I o] - To - TSP 2-12
25 Interfaces to Time Series and Time Scaling FUNCLIONS ... 2-12
251 INStance-Based INTEITACE. ..o e 2-13
252 Reference-Based INTEITACE ...........cciiiiiiiiici e 2-15
2.6 Consistency Of TiMe SErieS DAtA ........cccuveiriiiiiire e et 2-18
26.1 Rules for Time Series CONSISLENCY ....c..ocvieiieiie ittt nieeens 2-18
26.2 Enforcing Time Series Consistency with Security VIEWS..........ccoccoveniincinenns 2-18
2.6.3 Bulk Loading and CONSISTENCY .......cccoieiriiiiie ettt 2-20
2.7 Calendar FUNCLIONS .......coooci ittt e 2-20
271 ENA-USEI FUNCTIONS......ciitiiiiiitciiieet et e e 2-21
2.7.2 Product-Developer FUNCHIONS..........oiiiiieie ettt 2-21
2.8 TIME SEFIES FUNCTIONS .....cvveieiiceiiei et 2-23
28.1 TIMe SEries DAAtYPES .....oovvirrieririe ettt e e e s 2-23
2.8.2 Conventions and SEMANTICS........cccieiirie i 2-24
2.8.3 Extraction, Retrieval, and Trim FUNCLIONS........c.cooii i 2-26
28.4 SHIFE FUNCTIONS ....cvcec e e s 2-27
285 SQL FOrmatting FUNCLIONS ........cueiiiiiiieie et 2-27
2.8.6 AGIregate FUNCLIONS ......cooiiie ettt e 2-28
2.8.7 ATFTTNMETIC FUNCTIONS ...t 2-28
2.8.8 Cumulative SeqUeNCe FUNCLIONS.........ccooiiriereie et 2-29
2.8.9 Moving Average and SUM FUNCLIONS..........cooiiiiiiiiine e 2-29
2.8.10 CONVEISION FUNCLIONS .....o.viviiitiieieie et 2-30
2.9 TimMe SCAlING FUNCLIONS ...ttt e 2-31
29.1 Time Scaling 0N CollECtIONS.........ccviiiiiri e 2-32
29.2 Time Scaling in the GROUP BY ClaUSE .......ccoooiiiiiiiiie e 2-33

3 Time Series Usage

3.1 USING the Cartridge .......coouveieece et st ettt enea e ere e 3-1
3.1.1 Step 1: Create the Underlying Storage (Table) ... 3-1
3.1.2 Step 2: Define @ CAlENAN .......c.ooiiiii e s 3-2
3.13 Step 3: Load Time SErieS DAta .....cocooiirrierrie et e 3-4
3.14 Step 4: Create a Security View and INSTEAD OF Triggers......ccccooevrevneenenennenes 3-4
3.15 Step 5: Create a Reference-Based VIEW .........ccccoiiiiiiiiiiiiiieic e 3-6



3.1.6 Step 6: Validate Time SeriesS CONSISTENCY ......cccvvieiiiiieiieie e 3-7

3.1.7 Step 7: Formulate Time SerieS QUETTES .......cviiiriciiiiiecei et 3-7
3.2 Loading Time SErieS DAta ........cccouiiiiiririire et e s s 3-9
3.2.1 BUIK LOBAING. ... ettt ettt ettt ettt sn et see e 3-10
3.2.2 Incremental LOAING.......ccoovii it e 3-12
3.3 Deriving Calendar EXCEPLIONS. .......ccociiiiiiiieieieeiiece ettt st s 3-13
33.1 Deriving Exceptions Using a Calendar and Table of Dates (Approach 1) .......... 3-13
3.3.2 Deriving Exceptions Using Two Time Series Parameters (Approach 2) ............. 3-14
3.4 Using Product-Developer FUNCHIONS ..ottt 3-16

4 Calendar Functions: Reference

COMDBINECAIS ...ttt e e e 4-2
DEIETEEXCEPTIONS ......viveectie ettt e e et bbbt 4-7
DisplayValCal PrOCEAUIE........c.c.uiiiiee ettt e e 4-10
BQUAICAIS ...ttt et ettt et et e et en et eneenea 4-17
(€12 (O] 1 1] TSROV 4-20
T RTT el =T o £ o] o SRRSO 4-23
INTEISECLCAIS ... 4-27
INValidTimeStamPSBEIWEEN ........ccvi et e 4-31
ISVAITACAL ... e e e 4-34
ISVAITADALE ...t e e e e e 4-40
NumINvalid TimeStamPSBEIWEEN .........ccoiiriiie ettt ees 4-43
NUM O EXCEPTIONS. ...ttt ettt ettt aes e st e s b e eee 4-46
NTU @t (od=T o] 1 o] g ST 4-49
NUMTIMESIAMPSBEIWEEN ...ttt e 4-52
OFFSEEDALE ... ettt b b bt b eh e bbb bbbt e s 4-55
SEEPTECISION ..ottt bbbt eh e bt s bbb e e 4-58
TIMESTAMPSBEIWEEN ...ttt sttt et r ettt ae et s 4-61
UNTONCAIS ...ttt e et bbbt eb et eb et bbb 4-65
ValIALECAL ... e 4-69



5 Time Series and Time Scaling Functions: Reference

Vi

L0 Vo [PPSR 5-3
104 0 - b TP PR 5-5
L3 1 071 o PSR PRRSRSRPTIN 5-7
(@3 0] oo 1TSS 5-9
(OS] o TR 5-11
(B LT V=T ot o A To] o TSP 5-13
DIUSPIAY .ttt b 5-15
DiSPlayValTS PrOCEAUIE. ......cocci ittt ettt sttt s e en e e e 5-18
EXTFACTCAL. ...ttt st e e et ebe et ee e 5-26
EXTFACTDIALE ...ttt bt et et sbe et e s et e e e e et e bt e e ee et e 5-28
= Tox 1 1= o 1= TSP 5-30
EXTFACTVAIUER ...ttt st et ee et sbe e e et e 5-32
BTl bbb 5-34
1 £ RS T PRSP 5-40
5] X N RSO P 5-42
GetDAtEAEIBMENT ...ttt ettt s e st ereen et e e e 5-44
GEENTNEIBMENT ...ttt e ettt be bbb seeneens 5-46
LTy =T =TSP TRURTR 5-48
ISVAIIATS ..o bbb e bbb bbb 5-51
[ Vo TSP PPPRPURPRRIO 5-59
[ L] ST ST UP U PPURPTPRPORIO 5-62
[ L1 1 A T ST PPPR PSRRI 5-64
(1= To PP PP PR 5-66
Y= AV o T TP UTUPPORTURTPORIT 5-69
IMISUITI .. ettt et b ettt ettt bbb b e eb e eh st ekt e st e Rt e be st e e e b e b e sbeebbenbe e 5-72
SCAIBUP ..ttt et bbb s 5-74
STor= 1 LTE ] o) ANV o H TS U TP RR 5-76
SCAIEUPCOUNT ...t e eb e b et s s et 5-78
SCAIBUPFIIST ...ttt et 5-80
SCAIBUPLAST ...ttt ettt e eh et s 5-82



SCAIBUPIMAX ...ttt bbb bbb bbb e e 5-84

SCAIBUPIMIN ...ttt et bbb bbb e e s 5-86
SCAIBUPSUM ...ttt bbb bt bbb e e 5-88
LI T ST =TSRSS 5-90
B IS X o [ TP 5-93
BTNV o [ TSSO RUPTPRUPRPRN 5-97
15100 15 | 1 SRR 5-99
LIS 1/ Lo =SSP 5-101
B ISV O TP 5-105
B IES1 1Y DT T 5-107
LIS A =T LT U RSP 5-109
B ISV TR 5-111
TSIMIININ Lottt sttt s s es et s es s s bbbt bbb ne et e e 5-113
TSIMUIIPIY . b e e e 5-115
JLIES ] 2 0T TSP 5-119
LIS (0 | B LY OSSR 5-121
LIS IS0 o) 1 = e OSSP 5-123
B IS 1S1 6 L0 [TV 5-127
LIS NV Z: L= g o RS TRPRPT 5-129
V- LT UL IS TP 5-131

A Error Messages

vii



Examples

2-1 Overview of Calendar Definition..........cccoiiiii i e 2-8
3-1 Create a Stock Data Table..........coiiiiiii 3-1
3-2 Create a Calendar of BUSINESS DAYS ........ccevviiiiiiiieie e 3-3
3-3 Create 8 SECUNTTY VIBW ......ci ittt ettt et et eb et en e ben e 3-4
3-4 Create an INSTEAD OF THIQOE . .ouiiiieieieieeie ettt sttt e sttt ste st sneseneeseensanens 3-4
3-5 Create a Reference-Based VIBW .........ccooiuiieiiiiie ettt sttt 3-6
3-6 Formulate Time Series QUETIES .......ccoouiiiiiieie ettt sttt st et ee e eee e 3-7

viii



Tables and Views in the Time Series Usage DemoO..........cccooeireiiennennenenene e 1-7

Data Generation in EQUItIES MArkets .........cccocoiiiiieiinee s 2-3
Historical Data fOr STOCKS.......ccocii i 2-4
Time Series ArChITECTUIE ... e 2-11
Example of ORDTNUMTab ColleCtion TYPE.....ccooveiieieie et 2-14
Relationship of Input and Output Time Series in Moving Average/Sum ................. 2-30
Time Scaling from Daily to Monthly FreqUENCY ... 2-31



Tables

1-1 Time Series Cartridge DEIMOS ......cuvuiiii ittt ee e e 1-4
1-2 Time Series Cartridge Usage Demo Files ... 1-5
2-1 FrEOQUENCIES ...ttt et e b et e et e e et et e e e bbb e e e e e 2-6
2-2 o L1010 o TS U PP TUPPPUP 2-7
2-3 End-User Calendar FUNCLIONS. ........ooouiiiiiiiie e 2-21
2-4 Product-Developer Calendar FUNCLIONS ...........cooiiiiiiiiiiiice e 2-22
2-5 EXEraction FUNCHIONS .....c.iiiiiii ittt et 2-26
2-6 Retrieval and Trim FUNCHIONS .......cooiiiiiiiiiiiie e e 2-27
2—7 SHIFE FUNCTIONS ...ttt e e s b ee e senbe e e e e 2-27
2-8 SQL FOrmatting FUNCLIONS . .....ccoouiiiiiii ettt 2-27
2-9 AGOregate FUNCHIONS .......uuiie ittt ettt et b bbb e e e e e 2-28
2-10  AFIthMELIC FUNCTIONS .. ..viiiieciii ettt et 2-29
2-11 Cumulative SEqUENCE FUNCLIONS. .......uuiiiiiiie ettt 2-29
2-12  Moving Average and SUM FUNCLIONS .......oouiiiiiiiiiiiie e 2-30
2—13  CONVEISION FUNCLIONS ...ttt ettt ettt e et e b e e e e 2-31
2-14  Scaleup FUNCtioNs fOr COlECTIONS ........eeiiiiiiie e 2-33
4-1 SetPrecision and Timestamp of 19-Sep-1997 09:09:09 ........cvvveiiiiiiiiiniiiiieee e 4-58
4-2 Errors Repaired by ValidateCal ... 4-70
5-1 Lagging a Time SerieS DY TWO DAYS ....cccoiiiiiiieiiiiieie ettt e 5-60
5-2 Leading @ Time SerieS DY TWO DAYS ....ccoiiiiiiieeiiiiiiie ettt et 5-67



Send Us Your Comments

Oracle8 Time Series Cartridge User’'s Guide, Release 8.0.4
Part No. A57501-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available).

You can send comments to us in the following ways:

e-mail: nedc_doc@us.oracle.com

fax: 603.897.3269 Attn: Data Cartridge Documentation
postal service:

Oracle Corporation

Data Cartridge Documentation

One Oracle Drive

Nashua, NH 03062

USA

If you would like a reply, please include your name and contact information.

Xi



Xil



Preface

This manual describes how to use the Oracle8 Time Series Cartridge.

Intended Audience

Structure

Chapter 1

Chapter 2
Chapter 3
Chapter 4
Chapter 5
Appendix A

This manual is intended for anyone who is interested in storing, retrieving, and
manipulating time series data in an Oracle database, including developers of spe-
cialized cartridges.

This manual contains the following chapters and appendix:

Introduces data cartridges, object types, and the contents of the Time Series car-
tridge.

Explains time series concepts and operations.

Explains important procedures for using the cartridge.

Provides reference information on calendar functions.

Provides reference information on time series and time scaling functions.

Lists potential errors, their causes, and user actions to correct them.

Related Documents

For information added after the production of this manual, see the README file in

the following directory:
« ORACLE_HOME/ord/ts/admin (Solaris systems)

xiii



« ORACLE_HOME\ord80\ts\admin (Windows NT systems)
The location of the README file is platform-dependent.

For more information, see the following manuals in the Oracle8 documentation set:

« PL/SQL User’s Guide and Reference

«  Oracle Call Interface Programmer’s Guide

«  Oracle8 Application Developer’s Guide

Conventions

In this manual, the Oracle8 Time Series Cartridge is sometimes referred to as the
Time Series cartridge.

The following conventions are also used in this manual:

Convention

Meaning

boldface text
italicized text

<>

[]

A vertical ellipsis in an example means that lines not directly related
to the example have been omitted.

A horizontal ellipsis in an example means that part of the statement
or command not directly related to the example has been omitted

Boldface type in text indicates a term defined in the text.

Italic type in text indicates emphasis or a user-defined variable,
schema name, or object datatype.

Angle brackets enclose user-supplied names.

Brackets enclose optional clauses from which you can choose one or
none.

Xiv



1

Introduction

The Oracle8 Time Series Cartridge is an extension to Oracle8 that provides storage
and retrieval of timestamped data through object types. The cartridge is a building
block for applications rather than being an end-user application in itself. It consists
of datatypes along with related functions for managing and processing time series
data.

For example, applications can use this cartridge to process historical data derived
from financial market transactions, such as trades of stocks, bonds, and mutual
fund shares. In such applications, the functions included with the Time Series car-
tridge let you conveniently perform operations ranging from the simple to the com-
plex, such as:

« finding the opening, closing, low, and high prices for a stock on a specific date
« calculating monthly volumes for a stock for a specific year
« deriving the 30-day moving average for a stock over a year

Time series applications have certain distinct requirements and some degree of
commonality. The time series datatypes accommodate the commonality and sup-
port extensions that address application-specific requirements. With this cartridge,
time series data can be managed more conveniently and efficiently than is possible
using only traditional datatypes and user-defined functions.

With the Time Series cartridge, you can use or adapt existing tables for time series
applications, or you can create new tables. You can also extend the capabilities of
the cartridge to add or modify functions and to create customized calendars.

1.1 Data Cartridges

Within the Oracle Network Computing Architecture™ (NCA), data cartridges facil-
itate the storage and retrieval of complex datatypes required by nontraditional

Introduction 1-1



Object Relational Technology

database applications, such as geographic information systems, imaging, work-
flow, document management, and digital libraries. These applications are built
using components or modules that support the capture, input, processing, analysis,
storage, retrieval, and display of the complex datatypes.

A data cartridge is the mechanism by which clients, application-specific servers,
and database servers can be easily and reliably extended. The Oracle8 Time Series
Cartridge provides support for time series domain-specific types, functions, and
interfaces. The Time Series cartridge focuses on a set of time series data representa-
tion and access mechanisms sufficient to support many applications and the devel-
opment of more specialized cartridges.

1.2 Object Relational Technology

The objects option makes Oracle8 an object-relational database management sys-
tem, which means that users can define additional kinds of data -- specifying both
the structure of the data and the ways of operating on it -- and use these types
within the relational model. This approach adds value to the data stored in a data-
base.

Oracle8 with the objects option stores structured business data in its natural form
and allows applications to retrieve it that way. For that reason it works efficiently
with applications developed using object-oriented programming techniques.

1.3 Storing and Accessing Data

The Time Series cartridge can store time series data in the database under transac-
tional control.

Once stored in the database, this data can be queried and retrieved by finding a
row in a table that contains the primary key (which includes the timestamp) using
the various alphanumeric columns (attributes) of the table. Typical queries might
include the following:

= Select the closing price from a stock market data table where the ticker (stock
symbol) is XYZ and the date is 30-May-1997.

« Select the 30-day moving average of stock XYZ for the month of May 1997.

Applications access and manipulate time series data using SQL or PL/SQL™. See
the Oracle8 SQL Reference manual for information on SQL syntax.

1-2 Oracle8 Time Series Cartridge User’s Guide



Installing the Kit

1.4 Installing the Kit

The exact procedure for installing the Time Series cartridge is platform-dependent.
For more detailed information, see the README.txt file for your platform which
can be found either in SORACLE_HOME/ord/ts/admin (UNIX systems) or
$ORACLE_HOME\ord80\ts\admin (Windows NT systems). On many platforms,
automated default installation is available using Oracle Installer; however, on some
platforms manual installation of the database objects is required.

This section describes the steps required to manually install the Time Series car-
tridge. It is intended for users who want to customize the database installation or
who simply want a better understanding of the Time Series installation process.

To use the Time Series cartridge, at least the following software components must
be installed: Oracle8 Enterprise Edition (RDBMS), PL/SQL (on platforms on which
it is a separate installation option), and the Oracle8 Time Series Cartridge. These
components can be installed all at once, or the Oracle8 Time Series Cartridge can be
added to an existing Oracle8 Enterprise Edition release 8.0.4 installation that
includes PL/SQL.

Follow these steps to perform a manual installation of the Time Series cartridge:
1. Ifthe ORDSYS user does not already exist, decide on a password.

ORDSYS is the standard schema for Oracle-supplied cartridges, and it has spe-
cial privileges for data cartridges.

2. Create and start the database.

For detailed information about database creation and startup, see the Oracle8
Installation and Configuration Guide for your operating system, the Oracle8
Administrator’s Guide, and the Oracle8 Concepts manual.

3. Install the UTLREF package, which is needed by the Time Series cartridge:
SR> @CRACLE HOME rdbns/ admi n/ utl ref | d. sql

4. If the ORDSYS account does not already exist, create it:
SVRMER> CREATE USER CRDSYS | DENTI FI ED BY <passwor d=;

The <password> is the password you chose in step 1.
5. Set the privileges for ORDSYS user:
SVRMER> GRANT connect, resour ce, create |ibrary TO CROSYS,

6. Install the Time Series cartridge datatypes and stored procedures:

Introduction 1-3



Creating Public Synonyms for Time Series Packages

SVRMER> CONNECT CRDSYY <passwor d>
SVRMER> @CRACLE HOWE ord/ ts/ admin/ordti nst. sql

The user group PUBLIC is granted execute privilege on all Time Series car-
tridge datatypes and packages.

1.5 Creating Public Synonyms for Time Series Packages

All Time Series cartridge packages and datatypes are installed under the ORDSYS
schema, and all users must include the ORDSYS schema name when referring to
these packages and datatypes. However, to simplify references to packages, you
can define public synonyms for the Calendar and TimeSeries packages.

To create public synonyms, run the ordtsyn.sql file supplied with the Time Series
cartridge in the admin directory. The ordtsyn.sql file creates the following public
synonyms:

CREATE PUBLI C SYNONYM Ti neSeries for CROSYS. Ti neSeri es;
CREATE PUBLI C SYNONYM Cal endar for CRDSYS. Cal endar ;

1.6 Time Series Cartridge Demos (Demonstrations)

Table 1-1 shows the demos (SQL scripts and related files that demonstrate capabili-
ties) included with the Time Series cartridge. This table includes a description of
each demo and the default directory in which its files are installed. (The exact loca-
tion and directory syntax are platform-dependent.)

Table 1-1 Time Series Cartridge Demos

Description Directory

Usage demo for end users and product developers who want to demo/usage
use existing cartridge feature

Advanced-developer demo for those who want to extend the car- demo/extend
tridge features

OCI demo showing how to call cartridge functions using the Ora- demo/oci
cle Call Interface

PRO*C/C++ demo showing how to call cartridge functions in demo/proc
applications created using the Oracle Pro*C/C++ Precompiler

Developer/2000™ demo showing how to call cartridge functions demo/dev2k
in an Oracle Forms™ application

1-4 Oracle8 Time Series Cartridge User’s Guide



Time Series Cartridge Demos (Demonstrations)

Each demo is described in a README file in its directory.

The usage demo, described in this section, is a working example of the usage of the
cartridge. The example models a historical database of stock pricing and provides
sample queries over this stock database.

The usage demo is designed to guide you through the cartridge in a step-by-step
fashion. It includes example code for creating and populating tables and calendars,
constructing security views, constructing views to synthesize the interface to time
series functions, and running some example queries.

1.6.1 Running the Usage Demo

After the cartridge has been installed, you can run the usage demo by going to the
appropriate directory (see Table 1-1) and invoking the demo.sql procedure, as fol-
lows:

% svrnyrl
S\RVEF> @eno

1.6.2 Usage Demo Files

The usage demo files include examples of bulk and incremental loading, defining
tables, calendars, and views for the time series cartridge, and running example que-
ries. These files are listed in Table 1-2.

Table 1-2 Time Series Cartridge Usage Demo Files

File Description
demo.sql Main procedure file
stockdat.ctl SQL*Loader® control file

stockdat.dat

SQL*Loader data file for time series data

tables.sql DDL for tables

popcal.sql Defines calendars and populates calendar table
securevw.sql  Example security view

refvw.sql Example reference-based view

queries.sql Example time series queries (SQL)

queplsql.sqgl Example time series queries (PL/SQL)

calqueries.sql

Example calendar queries (PL/SQL)

Introduction 1-5



Time Series Cartridge Demos (Demonstrations)

Table 1-2 Time Series Cartridge Usage Demo Files (Cont.)

File Description
incload.sql Incremental load script
stockinc.ctl SQL*Loader control file for incremental load

stockinc.dat SQL*Loader data file for incremental time series data

cleanup.sql Deletes database objects created by the demo

1.6.3 Tables and Views in the Usage Demo
The stock database consists of three tables:

= stockdemo stores historical time series pricing data.
« stockdemo_calendars stores instances of calendars.

« stockdemo_metadata maintains mapping between time series (here, for tickers)
and calendars. This metadata table would not be needed if all tickers were asso-
ciated with a private calendar that is named by the ticker or if a single calendar
were shared by all tickers. The stockdemo_metadata table allows, for example,
five tickers to be associated with one calendar, two tickers with another calen-
dar, and so on.

To maintain time series consistency and provide a collection-based interface for
time series functions, two views are constructed using these tables.

= stockdemo_sv is a security view. A security view should be used for any insert,
update, and delete operations to time series data.

= stockdemo_ts is a reference-based view. A reference-based view provides an
object model of a time series, and it can be used for efficient read-only access
using Time Series cartridge functions.

The security view ensures that insert, update, and delete operations maintain a
time series that is consistent with the associated calendar. (Time series consistency
is explained in Section 2.6.) The security view and the reference-based view access
the three underlying tables. The reference-based view synthesizes references to col-
lections. (Reference-based views are explained in Section 2.5.2.)

Figure 1-1 shows the layering and interdependencies between underlying tables
and the security and reference-based views.

1-6 Oracle8 Time Series Cartridge User’'s Guide



Time Series Cartridge Demos (Demonstrations)

Figure 1-1 Tables and Views in the Time Series Usage Demo

Reference View Security View
(stockdemo _ts) (stockdemo_sv)

Index—-Organized Time Series
Time Series Data Table Calendar Table Metadata Table
stockdemo stockdemo_calendars stockdemo_metadata
NU-3689A-RA

Introduction 1-7



Time Series Cartridge Demos (Demonstrations)

1-8 Oracle8 Time Series Cartridge User’s Guide



2

Time Series Concepts

This chapter explains concepts related to the Oracle8 Time Series Cartridge, and it
provides information on using the cartridge. It covers the following topics:

overview of time series data

calendars

Time Series cartridge architecture

storage of time series data

the collection-based interface to functions

consistency of time series data

the reference-based interface

overviews of each major function type: calendar, time series, time scaling

using the Time Series cartridge

2.1 Overview of Time Series Data

A time series is a set of timestamped data entries. A time series allows a natural
association of data collected over intervals of time. For example, summaries of
stock market trading or banking transactions are typically collected daily, and are
naturally modeled with time series.

A time series can be regular or irregular, depending on how predictably data
points arrive or occur:

In a regular time series, the data arrives predictably at predefined intervals. For
example, daily summaries of stock market data form a regular time series, and
one such time series might be the set of trade volumes and opening, high, low,
and closing prices for stock XYZ for the year 1997.

Time Series Concepts  2-1



Overview of Time Series Data

« Inanirregular time series, unpredictable bursts of data arrive at unspecified
points in time, or most timestamps cannot be characterized by a repeating pat-
tern. For example, account deposits and withdrawals from a bank automated
teller machine (ATM) form an irregular time series. An irregular time series
may have long periods with no data or short periods with bursts of data.

2.1.1 Data Generation for a Time Series

Data generation for a time series begins with individual transactions, such as trades
on a stock exchange or purchases of products. Each transaction has a timestamp
and sufficient information to identify that transaction uniquely (such as a stock
ticker or a product ID), as well as other pertinent information (such as the price and
information to identify the party initiating the purchase or sale).

Individual transaction data is typically rolled up to produce summary data for a
meaningful time period, such as a daily summary indicating the trade volume and
the opening, high, low, and closing prices for each stock traded that day. This sum-
mary data is collected to produce historical data, such as a table of all daily vol-
umes and opening, high, low, and closing prices for all stocks traded for the year
1997. For example, Figure 2-1 shows how data related to securities on a stock
exchange is generated.

2-2 Oracle8 Time Series Cartridge User's Guide



Overview of Time Series Data

Figure 2-1 Data Generation in Equities Markets

Daily Snapshot

or
Summary Data Historical Data
i N0
StockExchange TR TR
LN LN
1] 1]
i i
il il
L N0
il il
TRini TRina
- Thin Thin
Tick Data i i
TRInn TRIn
TN TN
TN TN
L T

Applications that use the data:

Daily Newspapers Charting Tools
Quote Servers Technical Analysis Tools

NU-3691A-RA

In Figure 2-1, each trade on the stock exchange includes several items of informa-
tion, including a ticker and a price (for example, stock XYZ at 37.50). The daily sum-
mary data includes the opening, high, low, and closing prices for each ticker (for
example, for XYZ: 37.75, 38.25, 37.00, 37.625). The daily data for each ticker is
appended to the historical data for the ticker. The daily data is used for such pur-
poses as quote server applications and listing in the next day’s newspapers; the his-
torical data is used by such applications as price and volume charting and technical
analysis.

The data-collection model for historical data has the following characteristics:

At daily intervals, historical data is updated with daily summary data (main
update cycle).

At some period after the main update cycle, corrections of the daily summary
data may need to be applied.

Queries may be executed at any time, even during the update cycle.

Queries do not observe the current day's summary information until after the
main update cycle has completed.

Time Series Concepts 2-3



Overview of Time Series Data

This historical data is modeled using multiple regular time series.

The Time Series cartridge and the Oracle8 utilities, with their bulk-loading capabili-
ties and transactional semantics, are well suited for the requirements of time series
data generation.

2.1.2 Historical Data

The Time Series cartridge is especially useful in dealing with historical data. This
type of data typically has relatively simple metadata but massive data storage
requirements. That is, the data attributes (columns) are relatively few and easy to
understand (such as ticker, volume, and opening, high, low, and closing prices);
however, the number of rows is enormous (for example, data for all listed stocks
for all trading days for several years). Moreover, the number of functions that users
might want to perform on the data is large: for example, finding various sums,
counts, maximum and minimum values, averages, number of trading days
between two dates, moving average, and so on.

Figure 2-2 shows an example of historical data stored in a database.

Figure 2-2 Historical Data for Stocks

Ticker  Tstamp Open High Low Close  Volume

XYZ 01-02-1997 21.75 22.75 21.50 22.00 352,000
XYZ 01-03-1997 22.125 2250 21.00 21.75 530,000
XYZ 01-06-1997 21.625  22.00 21.625 21.875 490,000

YZA 01-02-1997 44.25 44.25 4350 43.875 125,000
YZA 01-03-1997 43.75 44.25 43.75  44.125 97,000
YZA 01-06-1997 44.25 4450 44,125 44125 107,000

Stock market historical databases have the following general characteristics:

«  Multiple stocks, each identified by the ticker symbol, can be stored in the data-
base.

« Each stock can have multiple attributes (ticker, tstamp, open, high, low, close, vol-
ume).

=« Each stock has one or more associated time series.

2-4 Oracle8 Time Series Cartridge User's Guide



Calendars

Each time series has an associated calendar (see Section 2.2).

This kind of financial historical data is used in examples in this manual and in the
usage demo (see Section 1.6) provided with the Time Series cartridge.

2.2 Calendars

A calendar maps human-meaningful time values to underlying machine represen-
tations of time. Typically, a calendar is associated with a time series.

For example, a business day calendar can define the days of the week on which
stocks are traded. The holidays when trading does not occur are also in the calen-
dar. The following are key components of a calendar:

Frequency

A frequency specifies the granularity of the calendar representation. Examples
of frequencies are second, minute, hour, day, month, and year.

Pattern

The pattern specifies the repeating pattern of frequencies and an anchor date
that identifies the date of an occurrence of the frequency. For example, if the fre-
guency is set to day, the pattern can define which days of the week are included
in the calendar. For example, a pattern of ‘0,1,1,1,1,1,0’ over a day frequency
defines a calendar over all weekdays. If an anchor date of 01-Jun-1997 (or any
Sunday) is specified, then the 7-day pattern begins each Sunday; and Sunday
and Saturday (0) are excluded from the calendar, while Monday through Fri-
day (1) are included in the calendar.

Exceptions

Exceptions are timestamps that do not conform to the calendar pattern but that
are significant for the calendar definition. There are two kinds of exceptions:
off-exceptions and on-exceptions:

— An off-exception is an exception to the 1-bits in the pattern, and thus is a
timestamp to be excluded from the calendar. For example, to ensure that
Wednesday, 25-Dec-1996, is excluded from the calendar when Wednesdays
normally are included, define that date as an off-exception.

— An on-exception is an exception to the 0-bits in the pattern, and thus is a
timestamp to be included in the calendar. For example, to ensure that Satur-
day, 28-Jun-1997, is included in the calendar when Saturdays are excluded,
define that date as an on-exception.

Time Series Concepts 2-5



Calendars

On-exceptions can also be used without a pattern, that is, when a zero pat-
tern is specified for the time series. An irregular time series can be con-
structed by defining a frequency, a zero (0) pattern, and an on-exceptions
list. In this case, the on-exceptions list defines the timestamps that consti-
tute the irregular time series. An example of such an irregular time series is
a calendar of dates for quarterly dividend payments or earnings announce-
ments.

2.2.1 Frequency and Precision

Each frequency has an associated integer code that is used in function calls.
Table 2-1 lists the supported frequencies and their integer codes.

Table 2-1 Frequencies

Frequency (Every:) Integer Code

second 1
minute
hour
day

month

o o B~ W N

year

Each frequency has an associated precision. Time Series cartridge functions require
that input timestamps be of the precision of the frequency associated with the calen-
dar. (The SetPrecision function is the exception: this function takes a frequency and
a timestamp and returns a timestamp that conforms to the associated calendar.)

A timestamp that is not consistent with the frequency is said to be imprecise. For
example, a timestamp of 09-Sep-1997 is imprecise if it is input to a function that is
dealing with a calendar whose frequency is 6 (month) or 8 (year). When you create a
calendar, all timestamps used in the calendar definition (the anchor date for the pat-
tern, the minDate and maxDate, and all off- and on-exceptions) must be precise with
respect to the frequency. For example, the calendar will not be valid if you specify a
frequency of month and an anchor date (patAnchor) of 02-Jan. (The calendar
datatypes and their attributes are presented in Section 2.2.2.)

2-6 Oracle8 Time Series Cartridge User's Guide



Calendars

Table 2-2 shows the frequencies, their precision conventions, and an example
timestamp of each precision.

Table 2-2 Precisions

Frequency (Every:)  Precision Convention Example Result

second MM-DD-YYYY HH24:MI:SS 09-09-1997 09:09:09
minute MM-DD-YYYY HH24:M1:00 09-09-1997 09:09:00
hour MM-DD-YYYY HH24:00:00 09-09-1997 09:00:00
day MM-DD-YYYY 00:00:00 (midnight) 09-09-1997 00:00:00
month MM-01-YYYY 00:00:00 (midnight of 09-01-1997 00:00:00

first day of month)
year 01-01-YYYY 00:00:00 (midnight of ~ 01-01-1997 00:00:00

first day of year)

2.2.2 Calendar Datatypes

The Time Series cartridge provides the following calendar datatypes. (Time series
datatypes are described in Section 2.8.1.)

« calendar (ORDTCalendar) (Sections 2.2.3 and 3.1.2 contain calendar definitions
with explanatory notes.)

CREATE TYPE CRDSYS. GRDTGal endar AS GBIECT (
cal type | NTECGER
nane VARCHAR2(256) ,
frequency | NTEGER
pattern CROSYS CRDTPatt ern,
m nDat e DATE,
maxDat e DATE,
of f Excepti ons CRDSYS. CROTEXcept i ons,
onBExcept i ons CROSYS. CGROTEXcept i ons) ;

« pattern (ORDTPatternBits and ORDTPattern)

CREATE TYPE CRDSYS. (GRDTPatternBits AS VARRAY(32500) CF | NTECER,
CREATE TYPE CRDSYS. GRDTPattern AS (BIECT (

patBits CROSYS CRDIPatternBits,

pat Anchor DATE);

« exception (ORDTEXxceptions)

Time Series Concepts 2-7



Calendars

CREATE TYPE CRDSYS. CRDTEXCepti ons AS VARRAY( 32500) CF DATE,

All Time Series cartridge datatypes are installed under the ORDSYS schema, and
all users must include the ORDSYS schema name when referring to these datatypes.

2.2.3 Overview of Calendar Definition

To define a calendar, you create a table in which to store calendar definitions and
then store a row for each calendar to be defined.

The following example creates a table named stockdemo_calendars and defines a cal-
endar named BusinessDays. The BusinessDays calendar includes Mondays through
Fridays, but excludes 28-Nov-1996 and 25-Dec-1996. Explanatory notes follow the
example.

Example 2-1 Overview of Calendar Definition

CREATE TABLE st ockdeno_cal endars of CROSYS. CROTCal endar (
nane GONSTRAI NT cal key PR MARY KEY);

I NSERT | NTO st ockdeno_cal endars VALUEY
CRDBYS. ROTGal endar ( @
00
' Busi nessbDays’, ©
4, @
CRDSYS. (RDTPattern( @
CROSYS. RDTPatternBits(0,1,1,1,1,1,0),
TO DATE(’ 01- JAN- 1995’ , ' DD MON YYYY' ) ),
TO DATE(’ 01- JAN-1990° , ' DD MN-YYYY' ), @
TO DATE(’ 01- JAN- 2001', ' DD MON YYYY' ),

QROSYS. GROTEXcept i ons( TO DATE(’ 28- NOV- 1996’ , ' DD- MON- YYYY' ),
TO DATE(’ 25- DEG 1996’ , ' [D MON-YYYY')), @

CRDSYS. GRDTExcept i ons() @

));

Notes on Example 2-1:

@ The stockdemo_calendars table has rows of type ORDTCalendar, which is
described in Section 2.2.2.

@ 0 indicates that this is an exception-based calendar (the only type of calendar
currently supported).

© BusinessDays is the name of this calendar.

2-8 Oracle8 Time Series Cartridge User's Guide



Calendars

4 is the frequency code for day.

The calendar’s pattern consists of an excluded occurrence followed by five
included occurrences followed by an excluded occurrence (0,1,1,1,1,1,0).
Because the frequency is daily and because the anchor date (01-Jan-1995) is a
Sunday, Sundays are excluded, Mondays through Fridays are included, and
Saturdays are excluded.

The calendar begins at the start of 01-Jan-1990 and ends at the start of 01-Jan-
2001.

28-Nov-1996 and 25-Dec-1996 are off-exceptions (that is, excluded from the cal-
endar).

Note: All exceptions (off- and on-) must be specified in ascending
sorted order.

© ORDSYS.ORDTEXxceptions() indicates that there are no on-exceptions (that is, no

Saturday or Sunday dates to be included in the calendar).

2.2.4 Deriving Calendar Exceptions from Time Series Data

When you want to create calendars that conform to time series data, you can use
the DeriveExceptions function to simplify the process. You can use one of two
approaches with DeriveExceptions, depending on your needs and the require-
ments for each approach:

The first approach uses a DeriveExceptions call with input parameters of a cal-
endar and an ORDTDateTab instance. (An ORDTDateTab instance is a collec-
tion of dates; these dates can be compared with the set of valid timestamps
implied by the calendar.) A calendar is returned with the appropriate exception
lists populated. This returned calendar is defined on the pattern and frequency
of the input calendar, and it is consistent with the timestamps of the ORDT-
DateTab instance.

The second approach uses a DeriveExceptions call with two time series as
input parameters. The first time series is essentially an expansion of a pattern-
only calendar. As in the first approach, a calendar is returned with the appro-
priate exception lists populated. The returned calendar is defined on the pat-
tern and frequency of the calendar of the first input time series, and it is
consistent with the timestamps of the second input time series.

Time Series Concepts 2-9



Time Series Cartridge Architecture

While the first approach can be performed in a single step, the second approach
requires an additional step (before DeriveExceptions is called) in order to construct
the first time series.

Although the first approach is simpler in practice, the second approach has signifi-
cant performance advantages when you need to define multiple calendars that
have the same frequency and pattern but different exception lists. The first
approach is less efficient than the second approach in this case, because the internal
implementation of the first approach generates a collection of dates based on the
input calendar parameter. If you need to derive exceptions for multiple calendars
defined on the same frequency and pattern, this date-generation operation is per-
formed multiple times. You can avoid these multiple date-generation operations by
using the second approach.

Section 3.3 contains more detailed information about using each approach to deriv-
ing calendar exceptions.

2.3 Time Series Cartridge Architecture

Figure 2-3 shows the Time Series cartridge architecture. At the lowest level, a stor-
age option is required, and for the initial release this must be a flat index-organized
table (10T). For future releases, nested 10T and VARRAY storage options are
planned. The actual cartridge consists of PL/SQL packages for calendar, time
series, and time scaling functions. In addition, a collection-based interface between
time series storage and the packaged functions is provided.

2-10 Oracle8 Time Series Cartridge User's Guide



Storage of Time Series Data

Figure 2-3 Time Series Architecture

PL/SQL Packages

|Time ScaJing| | Time Series | | Calendar

é @ %Storage is flat IOT

Time Series
Storage

NU-3690A-RA

The rest of this chapter describes this architecture, working from bottom to top in
Figure 2-3:

storage of time series data

interfaces (instance-based and reference-based) to time series and time scaling
functions

calendar functions
time series functions

time scaling functions

The chapter concludes with the steps for using the Time Series cartridge.

2.4 Storage of Time Series Data

The underlying storage model must satisfy the following requirements for time
series data:

The data must be stored in timestamp order, because many of the analytical
functions require access to the data in this order.

It must be possible to couple a time series with a calendar. In general, each time
series is associated with a distinct instance of a calendar. Time series and time

Time Series Concepts 2-11



Interfaces to Time Series and Time Scaling Functions

scaling functions generally require an input parameter that is typed to contain
both a time series and its associated calendar.

2.4.1 Flat IOT Storage

A time series is stored as multiple rows in a flat index-organized table (I0T).! Each
row stores a ticker, a timestamp, and composite data. This storage option is shown
in Figure 2-2.

The flat IOT storage model provides efficient utilization of disk storage (for exam-
ple, the timestamp data is stored once per composite entry) and allows flexibility in
queries; however, it does require that users perform certain manual actions:

= An object view must be defined to form the collection and to couple a time
series with a calendar (see Section 2.5.2).

= Asecurity view should be defined to ensure data integrity (see Section 2.6.2).

2.5 Interfaces to Time Series and Time Scaling Functions

The interfaces to the time series and time scaling functions rely on the following
aspects of the Time Series cartridge architecture:

« Time series data is stored as relational data (in a flat IOT), one timestamp per
row.

« Calendars are stored in object tables.

= Time series and time scaling functions expect time series data and calendars to
be formatted as objects. A time series object is typically the first parameter to a
function.

Two basic interfaces to time series and time scaling functions are defined:
« an instance-based object interface

In the instance-based interface, the first input parameter to a time series func-
tion is an instance of a time series (for example, ORDTNumSeries).

« areference-based object interface

In the reference-based interface, the first input parameter to a time series func-
tion is a reference to a time series (for example, ORDTNumSerieslOTRef). The
reference-based interface requires that you provide enough descriptive infor-

1A time series could be stored in a standard table; however, for performance reasons it is
highly recommended that you use an IOT rather than a standard table.

2-12 Oracle8 Time Series Cartridge User's Guide



Interfaces to Time Series and Time Scaling Functions

mation to enable the functions to execute dynamic SQL to obtain an instance of
a time series.

The datatypes related to the instance-based and reference-based interfaces (for
example, ORDTNumSeries and ORDTNumSerieslOTRef) are discussed in Sections
25.1and 2.5.2.

Note that both types of interfaces return only instances of time series (for example,
ORDTNumSeries). Also, because nesting of time series functions is allowed (for
example, SELECT (Lead(Mavg, ...) ...)), the instance-based interface is used inter-
nally for the second and subsequent levels of nesting.

When possible, you should use the reference-based interface. Although this inter-
face may be difficult to understand initially, it offers significant performance advan-
tages over the instance-based interface. The examples in this manual emphasize the
reference-based interface.

2.5.1 Instance-Based Interface

Time series functions operate on instances of time series objects (for example, an
ORDTNumSeries). An instance of a time series object includes a name field, an
instance of a calendar, and an instance of a time series. For example, as the follow-
ing type definitions for a numeric time series show, ORDTNumTab defines a collec-
tion and ORDTNumSeries bundles a calendar instance with a collection:

CREATE TYPE CRDSYS. GROTNuntel | AS GBIECT (tstanp DATE, val ue NUMBER);
CREATE TYPE CRDSYS. CGROTNunTab AS TABLE CF CROTNunCel | ;
CREATE TYPE CRDSYS. GRDTNUngeri es AS CBIECT (

nane VARCHAR2( 256) ,

cal CRDTCGal endar,

seri es GRDTN\unTab

)

For a numeric time series, the time series data is contained in the ORDTNumTab
structure. This structure is a table of a DATE column and a NUMBER column, and
is also known as a collection.

Figure 2—-4 shows an example of an ORDTNumTab collection type

Time Series Concepts 2-13



Interfaces to Time Series and Time Scaling Functions

Figure 2-4 Example of ORDTNumTab Collection Type

Tstamp Value
01-01-1996 22.00
01-02-1996 23.00
12-31-1996

Functions such as Mavg (Moving Average, described in Section 2.8.9) use the
ORDTNumTab structure as the source data for performing computations, and they
use the ORDTCalendar type to enable navigation through the time series data. The
calendar-based navigation is especially useful for functions such as Mavg, which
has as input parameters the starting date (startDate) and ending date (endDate) for
which to return moving averages and an integer (k) indicating the look-back win-
dow (k denoting the number of timestamps, including the current one, over which
to compute the moving average). Calendar-based navigation is used to determine
the date that is k-1 timestamps previous to startDate.

Although time series functions operate on time series instances, they are invoked
from SQL using a REF to a time series. For a numeric time series, this type is an
ORDTNumSerieslOTRef. (Section 2.5.2 explains the use of REFs in the reference-
based interface.) The REF contains enough information so that time series functions
can derive the instance (ORDTNumSeries) at runtime (using dynamic SQL).

The convention of defining an interface on a DATE column and a single NUMBER
column provides a uniform interface for time series functions. Because the underly-
ing IOT that stores time series data may have multiple NUMBER columns, the
view defining the REF also maps the underlying storage to conform to the two-col-
umn interface defined by the ORDTNumSeries type.

The following are the key aspects of the instance-based interface to time series func-
tions:

« The input parameter of a time series function is a REF to a time series object
(for example, ORDTNumSerieslOTRef).

« Time series functions operate on time series instances (for example, ORDT-
NumSeries).

2-14 Oracle8 Time Series Cartridge User's Guide



Interfaces to Time Series and Time Scaling Functions

Note: In addition to numeric series, a character time series is also
provided, with the types ORDTVarchar2Series and
ORDTVarchar2Seriesl OTRef.

= You should use a view to construct the reference descriptor.
« The REF couples the calendar with the time series.

« Instances of calendars are typically stored in a table separate from time series
data.

« Itisimportant to ensure and maintain consistency between time series data
and the corresponding calendar. Section 2.6 discusses consistency of time series
data, including ways of ensuring consistency.

2.5.2 Reference-Based Interface

The Time Series cartridge provides a reference-based interface for time series and
time scaling functions.

This interface provides efficient performance, especially when only a portion of the
time series is accessed. The performance benefit of this interface results from the
fact that at runtime the reference-based interface materializes only those rows
within the specified date range, as opposed to materializing the entire collection of
rows from the time series.

The reference-based interface uses the ORDTNumSerieslOTRef and
ORDTVarchar2SerieslOTRef types, which include a REF to a calendar, plus several
literal values. At runtime, reference-based time series functions use these literal val-
ues to form and execute a SQL statement (using dynamic SQL) that derives an
instance of a time series that contains only the timestamps needed for this instance.
The time series function determines which timestamps are needed based on the
minDate and maxDate parameters to the function.

The ORDTNumSerieslOTRef type is defined as follows:
CREATE TYPE CRDSYS. GROTNunseri esl OTRef AS BIECT

(

nane VARCHAR2( 256) ,

cal REF CRDSYS. CRDTCal endar,
tabl e_nane VARCHAR2( 256) ,

t st anp_col nane VARCHAR2( 30),

val ue_col nane VARCHAR2( 30),

qualifier_colname VARCHAR2(30),

Time Series Concepts 2-15



Interfaces to Time Series and Time Scaling Functions

qual i fier_val ue VARCHAR2( 4000)
);

The attributes of the ORDTNumSerieslOTRef type are as follows:
= name is the name of the time series.

« calis a REF to the calendar.

« table_name is the fully qualified name of the flat IOT.

« tstamp_colname is the name of tstamp column in the flat IOT.

« Value_colname is the name of the value column in the flat IOT (for example, close
for the closing price).

« qualifier_colname is the name of the column that identifies a time series instance
(for example, ticker).

« qualifier_value is the value of the column that identifies a time series instance
(for example, ACME, which is the ticker for Acme Corporation).

In the Time Series cartridge usage demo, the view stockdemo_ts uses the reference-
based interface to time series functions. The stockdemo_ts view determines which
calendar should be coupled with the time series by accessing the calendar
(stockdemo_calendars) and metadata (stockdemo_metadata) tables. The pricing data is
accessed through the underlying table containing historical time series pricing data
(stockdemo). For an illustration of the relationship between the reference-based view
and the underlying tables in the Time Series cartridge usage demo, see Figure 1-1
in Chapter 1.

The stockdemo_ts view is defined as follows:

CREATE (R REPLACE M EW'st ockdeno_t s(ti cker, open, hi gh, | ow, cl ose, vol une) AS
SH ECT net a. ti cker nane,
CROSYS. GROTN\unger i esl OTRef (
substr(neta.tickername, 1, 230) || ' open NunSeries’,
Ref (cal ), 'ordtdev. stockdeno’,
"tstanp’, 'open’, 'ticker’, neta.tickernane),
CROSYS. GROTN\unger i esl OTRef (
substr(neta.tickername, 1, 230) || ' high NunSeries’,
Ref (cal ), 'ordtdev. stockdeno’,
"tstanp’, 'high', 'ticker’, neta.tickernane),
CROSYS. GRDOTN\unger i esl OTRef (

substr(neta.tickername, 1, 230) || ' |ow Nungeries’,
Ref (cal ), 'ordtdev. stockdeno',
"tstanp’, 'low, 'ticker’, neta.tickernane),

CROSYS. GRDTN\unger i esl OTRef (

2-16 Oracle8 Time Series Cartridge User's Guide



Interfaces to Time Series and Time Scaling Functions

substr(neta.tickername, 1, 230) || ' close Nunferies’,
Ref (cal ), 'ordtdev. stockdeno',
"tstanp’, 'close’, ’'ticker’, neta.tickernane),
CROSYS. GRDTN\unger i esl OTRef (
substr(neta.tickername, 1, 230) || ' vol une NunSeries’,
Ref (cal ), 'ordtdev. stockdeno',
"tstanp’, 'volune’, 'ticker’, neta.tickernane)
FROM st ockdeno_net adat a neta, stockdenmo cal endars cal
WHERE net a. cal endar nane = cal . nang;

Depending on which column is selected, a different literal value is applied as an
attribute of the ORDTNumSeries|OTRef type. For example, for the following query:

SH ECT CRDSYS. Ti neSeri es. Mavg(cl ose,
to_date(’' 02-DEG 96’ ,’' OD-MIN-YY' ),
to date(’' 31-DEG 96’ ,’' OD-MIN-YY') ,
10)

FROM CRDTLEV. st ockdeno_ts

WHERE ticker =" AOVE ;

The literal value close is used as the value_colname column name. The other
attributes of the ORDTNumSerieslOTRef type include the timestamp column name
(tstamp), a qualifying column name (ticker), and the actual value of the qualifying
column (meta.tickername).

The implementation of time series functions uses the information stored in the
ORDTNumSerieslOTRef type to generate the appropriate dynamic SQL statement
at runtime. Using the preceding example, to instantiate a time series object (that is,
to convert an ORDTNumSerieslOTRef to an ORDTNumSeries), the Mavg function
generates a query that performs the following action (with the logic shown, not the
exact syntax):

SH ECT tstanp, close

FROM or dt dev. st ockdeno_ts

WHERE ticker= AOVE and tstanp BETWEN <a date range adj ust ed
to reflect the 10-day w ndow and the
cal endar, including any hol i days>;

The Mavg function computes the moving average and returns the result as a time

series instance (ORDTNumSeries). For more information about the Mavg function,
see Section 2.8.9.

Time Series Concepts 2-17



Consistency of Time Series Data

2.6 Consistency of Time Series Data

Most time series and time scaling functions rely on calendars that are consistent
with time series data.! By assuming a time series is consistent with its calendar,
time series and time scaling functions can use the calendar as a basis for navigation
of time series data.

Time series consistency must be maintained; otherwise, functions might raise
exceptions or return incorrect results.

2.6.1 Rules for Time Series Consistency
For a time series to be consistent, the following must be true:

« All timestamps are sorted in ascending sequence.

« There are no duplicate timestamps.

« All timestamps match the precision of the calendar.

= No timestamps are beyond the bounds of the calendar (minDate and maxDate).

« All timestamps conform to the pattern specification, except those listed in the
off-exceptions list or the on-exceptions list.

« The time series data is contiguous. That is, between the smallest (earliest) and
largest (latest) timestamps in the time series, the time series data contains
timestamps for all valid calendar timestamps.

If some mechanism is not used to enforce these consistency rules, accidental or
malicious actions could destroy the integrity of the time series data. For example, a
user might delete rows from the middle of the time series, rather than being
restricted to deleting rows at the beginning and the end of the date range for the
time series.

2.6.2 Enforcing Time Series Consistency with Security Views

Enforcing time series consistency can be accomplished with a security view. A secu-
rity view is a relational view of time series data that uses INSTEAD OF triggers to
maintain time series consistency. (For an explanation of INSTEAD OF triggers, see
the Oracle8 Server Concepts manual.) The security view is intended to be used for
limited or moderate insert, update, and delete operations; it is not intended for

bulk changes to time series data.

L An exception is the Fill function, which can be used to add pairs of timestamps and values to
make a time series consistent with the calendar.

2-18 Oracle8 Time Series Cartridge User's Guide



Consistency of Time Series Data

The cartridge demo (see Section 1.6) includes a security view defined in the file
demo/usage/securevw.sql. This security view:

= enables view updates to be propagated to the underlying table

= ensures that the underlying table can only be updated using a view mecha-
nism, provided that users are granted update access to the security view and
not granted update access to the underlying table

« ensures that update, delete, and insert operations affecting time series data are
constrained to conform to the calendar associated with the time series

« purifies timestamps to match the precision of the calendar

2.6.2.1 Precision

Timestamps are purified to match the precision of the calendar. For example, for a
calendar with a day frequency, any hour, minute, and second values in the input
timestamp are set to zero. Only purified timestamps are inserted into a time series,
and timestamps are purified if necessary before insert and delete operations.

2.6.2.2 INSTEAD OF Triggers

INSTEAD OF triggers enforce rules on insert, delete, and update operations. These
rules maintain time series data that conforms to the associated calendar.

For insert operations, the following rules apply:

« Foran empty time series, the new timestamp must be a valid date in the calen-
dar.

« Foranon-empty time series, an insertion is allowed immediately after the last
timestamp or immediately before the first timestamp, but nowhere else.

For delete operations, the following rules apply:

« Foran empty time series, an exception is raised.

« Foranon-empty time series, only the first or last timestamp can be deleted.
For update operations, the following rules apply:

« The timestamp must exist in the time series.

« Updates are not allowed to the timestamp and qualifier columns (for example,
tstamp and ticker in the usage demo security view).

INSTEAD OF triggers in a security view enable you to ensure that a time series
meets the consistency requirements described in Section 2.6.1.

Time Series Concepts 2-19



Calendar Functions

INSTEAD OF triggers allow for multiple timestamps to be inserted or deleted in a
single query, given that the group of timestamps inserted or deleted are in the
proper order. For example, a specified number of timestamps can be deleted from
the beginning of a time series by using a simple range restriction on the timestamp.
A specified number of timestamps can be inserted at the end of a time series by
using a subquery that references another table containing time series data.

2.6.3 Bulk Loading and Consistency

The SQL*Loader utility is useful for loading large amounts of data into a table. For
better performance, you should perform bulk loads on underlying tables instead of
on security views. However, after you load data into the tables, you must ensure
time series consistency by using one of the following approaches:

Adjust calendars to be consistent with the time series.

If you are sure that all timestamps are correct, it is safe to adjust the calendar to
be consistent with the time series. This strategy is normally appropriate when
there is a unique calendar per time series.

The DeriveExceptions function is useful for adjusting a calendar to be consis-
tent with the time series.

Validate that each time series is consistent with the calendar.

If you expect time series data to adhere to a predefined calendar, validating
each time series is the better approach. This approach is particularly useful if
the same calendar is used for all time series data being loaded.

The IsValidTimeSeries function can be used to check if the time series is consis-
tent with the calendar.

For better performance in the case of a shared calendar for all time series, you
may want to customize time series validation using PL/SQL. This involves
writing custom utility functions that call Time Series cartridge product-devel-
oper calendar functions (see Section 2.7.2) to test and maintain time series con-
sistency.

Section 3.2 contains additional information and examples of bulk and incremental
loading of time series data.

2.7 Calendar Functions

The Time Series cartridge provides calendar functions for querying and modifying
calendars. The calendar functions can be divided into the following categories:

2-20 Oracle8 Time Series Cartridge User's Guide



Calendar Functions

« End-user functions allow application developers to use the main calendar-
related features of the Time Series cartridge.

= Product-developer functions allow developers to modify or supplement the Time
Series cartridge capabilities by creating value-added enhancements.

Reference information for all calendar functions is in Chapter 4.

2.7.1 End-User Functions

End-user functions let you use the main calendar-related features of the Time
Series cartridge. If you do not need to modify or expand the Time Series cartridge
capabilities, you probably can limit your use of calendar functions to those listed in
Table 2-3.

Table 2-3 End-User Calendar Functions

Function Description

Calendar-Related Functions

EqualCals Returns 1 if the two calendars are equivalent. If a date range is
provided, tests only equivalence between the supplied dates.

IntersectCals Intersects two calendars.

UnionCals Returns the union of two calendars.

ValidateCal Validates a calendar; repairs errors where possible.

Exception-Related Functions

InsertExceptions Inserts a list of timestamps into the appropriate exceptions
list(s).

DeleteExceptions Deletes a list of timestamps from the appropriate exceptions
list(s).

2.7.2 Product-Developer Functions

Product-developer functions let you modify and expand the Time Series cartridge
capabilities. For example, you could use product-developer calendar functions in
creating a new function that modified the information returned for the moving
average or that returned a net present value for a portfolio of stocks at a specified
date.

Time Series Concepts 2-21



Calendar Functions

Note: Itis recommended that you not modify the functions pro-
vided with the Time Series cartridge. If you want a function with a
behavior different from an existing function, create a new function
with a different name or put the function in a different package, or
do both. For example, if you work for XYZ Corporation and create
a modified moving average function, you could name the function
MavgXYZ and put it in a package named XY ZPackage.

Table 2-4 lists the product-developer calendar functions.

Table 2-4 Product-Developer Calendar Functions

Function Description

Calendar-Related Functions

CombineCals Combines two calendars. Similar to IntersectCals, except
patterns must be identical.

Exception-Related Functions
NumOffExceptions Returns the number of off-exceptions between two dates.
NumOnExceptions Returns the number of on-exceptions between two dates.

Date and Index-Related Functions

IsValidDate Determines if a supplied date is valid.

OffsetDate Returns a date which is k dates in the future (or k in the
past if k is negative) of the supplied date.

NumlnvalidTstampsBetween Returns the number of invalid timestamps between two
dates.

NumTstampsBetween Returns the number of valid timestamps between two
dates.

TstampsBetween Returns the valid timestamps between two dates.

InvalidTstampsBetween Returns the invalid timestamps between two dates.

SetPrecision Sets the precision of the input timestamp to correspond to

the input frequency.

For an example of using product-developer functions, see Section 3.4.

2-22 Oracle8 Time Series Cartridge User's Guide



Time Series Functions

2.8 Time Series Functions

Time series functions operate on a time series. A time series type is always used as
the input parameter to a time series function.

Reference information for all time series functions is in Chapter 5.

2.8.1 Time Series Datatypes

Time series functions are defined over datatypes that contain a calendar and a col-
lection. The Time Series cartridge provides the following time series datatypes.
(Calendar datatypes are described in Section 2.2.2.)

CREATE TYPE CRDSYS CGROTNuntel | AS QRIECT
(tstanp DATE, val ue NOMBER);

CREATE TYPE CGRDSYS. GRDTNunTab AS TABLE CF
QRDSYS. CGROTNUntel |

CREATE TYPE CRDSYS. GRDTNun®eri es AS CBIECT

(

nane VARCHAR2( 256) ,

cal CRDSYS. CRDTCal endar ,
series CROSYS. GROTNUNnTab

)

CREATE TYPE CRDSYS. GRDTNunger i esl OTRef AS GBIECT

(

nane VARCHAR2( 256) ,

cal REF CRDSYS. CRDTCal endar,
tabl e_nane VARCHAR2( 256) ,

t st anp_col nane VARCHAR2( 30),

val ue_col nane VARCHAR2( 30),

qualifier_colname VARCHAR2(30),
qual i fier_val ue VARCHAR2( 4000)

)

CREATE TYPE CRDSYS CRDTVar char2Cel | AS CBIECT
(tstanp DATE, val ue VARCHAR2(4000));

CREATE TYPE CRDSYS. GRDTVar char 2Tab AS TABLE OF
CRDSYS. CRDIVar char 2Cel | ;

CREATE TYPE CRDSYS. GRDTVar char 2Seri es AS (BJECT
(

Time Series Concepts 2-23



Time Series Functions

nane VARCHAR2( 256) ,
cal CRDSYS. CRDTCal endar ,
series CRDSYS. ARDTVar char 2Tab

)

CREATE TYPE CRDSYS. RDTVar char 2Seri esl OTRef AS GBJECT

(

nane VARCHAR2( 256) ,

cal REF CRDSYS. CRDTCal endar,
tabl e_nane VARCHAR2( 256) ,

t st anp_col nane VARCHAR2( 30),

val ue_col nane VARCHAR2( 30),

qualifier_colname VARCHAR2(30),
qualifier_val ue VARCHAR2( 4000)

)
CREATE TYPE CRDSYS. CRDTDat eTab AS TABLE COF DATE:

The preceding statements show the definition of a numeric time series and a charac-
ter time series (instance-based and reference-based interfaces), each composed of a
calendar instance and a collection. The collection (ORDTxxxTab) is defined as a
table of ORDTxxxCell (except for ORDTDateTab, which is a table of DATE). Time
Series cartridge datatypes, such as ORDTNumSeries and ORDTVarchar2Series, are
input and output parameters of time series functions.

2.8.2 Conventions and Semantics

For time series functions that accept two time series, both time series must be
defined on calendars that have the same frequency and the same pattern. The calen-
dars may have different exceptions lists and different starting and ending dates.

2.8.2.1 Semantics of Null Operands

A number of time series functions perform arithmetic, comparison, and grouping
operations. When nulls are encountered in this context, the default behavior is to
mirror SQL:

«  Group functions ignore nulls. When all values encountered are null, a null is
returned.

For example, the sum of (1, NULL, NULL, 3) returns 4. The sum of (NULL,
NULL, NULL, NULL) returns null.

2-24 Oracle8 Time Series Cartridge User's Guide



Time Series Functions

Functions that operate on time series ignore nulls, but return a null if all values
encountered are null. Such functions include Mavg (Moving Average) and
Msum (Moving Sum)

For example, if there are 5 nulls in the last 30 timestamps for (and including) a
specific date, the 30-day moving average on that date is computed using only
25 values (that is, adding only the non-null values and dividing by 25). How-
ever, if all 30 dates (the date and the 29 previous dates) have nulls, the moving
average for that date is null.

Any arithmetic expression containing a null returns a null.

For example, 10 + NULL returns null.

A comparison operator that encounters a null returns a null.

For example, a GT comparison of 30-Jun-1997 and null returns null.

Note that because PL/SQL does not implement UNKNOWN, these semantics
are slightly different than the SQL treatment of comparisons with nulls. In
SQL, a comparison operator that encounters a null returns UNKNOWN, which
is like a null, except that operations on UNKNOWN return UNKNOWN.

Scaleup functions return a null if all timestamps for a scaling interval contain
nulls.

For example, if you are scaling up daily data from 01-Jan-1997 through 30-Jun-
1997 to monthly data, and if there are no values for the month of February, a
null is returned for February and scaled data is returned for the other months.
(Note that this behavior differs from the standard GROUP BY scaling in SQL,
in which February would be missing in the scaled results.)

Some functions allow alternate semantics in the form of an option. The reference
information for each function describes any alternate semantics options.

2.8.2.2 Semantics of Off-Exception Operands

In comparisons of two time series, it is possible that a timestamp valid for one time
series is not valid for the other time series. Operations on two time series having
similar calendars return a time series that is defined over a new calendar. This new
calendar is derived from the two input calendars, using all of the following:

the union of the off-exceptions
the intersection of the on-exceptions

bounded by [min(maxDatel, maxDate2), max(minDatel, minDate2)]

Time Series Concepts 2-25



Time Series Functions

For example, assume the following two calendars:

« Calendar 1: 01-Jan-1997 through 01-Dec-1997; daily pattern ’0,1,1,1,1,1,0’ (Mon-
day through Friday), off-exception 01-May; on-exceptions 29-Mar and 29-Jun.

« Calendar 2: 01-Feb-1997 through 01-Jan-1998; daily pattern ’0,1,1,1,1,1,0’ (Mon-
day through Friday), off-exceptions 01-May and 14-Jul; on-exceptions 29-Jun

and 28-Sep.

The new (derived) calendar is: 01-Feb-1997 through 01-Dec-1997; daily pattern
’0,1,1,1,1,1,0’ (Monday through Friday), off-exceptions 01-May and 14-Jul; on-excep-

tion 29-Jun.

2.8.3 Extraction, Retrieval, and Trim Functions

Time series extraction, retrieval, and trim functions operate on any time series type.
Extraction functions return one or more time series rows, while retrieval and trim
functions return a time series.

Table 2-5 lists the extraction functions.

Table 2-5 Extraction Functions

Function

Description

DeriveExceptions

ExtractCal

ExtractDate
ExtractTable

ExtractValue

First
GetDatedElement
GetNthElement
Last

Returns a calendar populated with exceptions derived from
either a calendar and a table of dates or two time series.

Returns a calendar that is the same as the calendar on which the
time series is based.

Gets the date from an element in a time series.

Returns the time series table (ORDTNumTab or
ORDTVarchar2Tab) associated with a time series.

Gets the value stored in an element in a time series.
Gets the first element in a time series.
Gets the element of a time series at a supplied date.
Gets the Nth element of a time series.

Gets the last element in a time series.

2-26 Oracle8 Time Series Cartridge User's Guide



Time Series Functions

Table 2-6 lists the retrieval and trim functions.

Table 2—6 Retrieval and Trim Functions

Function Description

FirstN Gets the first n elements in a time series.

GetSeries Returns the entire time series.

LastN Gets the last n elements in a time series.

TrimSeries Returns the time series data between the supplied dates.

2.8.4 Shift Functions

Shift functions lead or lag a time series by a specified number of units, where units
reflects the frequency of the calendar for the time series.

Table 2—7 Shift Functions

Function Description
Lead Leads a time series by the specified number of units.
Lag Lags a time series by the specified number of units.

2.8.5 SQL Formatting Functions

When called from a SQL SELECT expression, a time series function returns an
instance of a time series datatype, which is not displayable. The SQL formatting
functions facilitate format conversions that allow time series to be displayed.

Table 2-8 SQL Formatting Functions

Function Description

ExtractCal Given a time series, returns a calendar that is the same as the
calendar on which the time series is based.

ExtractDate Given an element in a time series, returns the date.

ExtractTable Given a time series, returns the time series table
(ORDTNumTab or ORDTVarchar2Tab) associated with the
time series.

ExtractValue Given an element in a time series, returns the value stored in it.

Time Series Concepts 2-27



Time Series Functions

2.8.6 Aggregate Functions

Aggregate functions return scalar or ORDTNumTab values. Each aggregate func-
tion can be used in either of the following ways:

= The function accepts a numeric time series, ORDTNumSeries, and operates on
all elements of the collection.

« The function accepts a numeric time series, ORDTNumSeries, and a date range,
bounded by datel and date2. The function is computed on the time series
defined by the date range.

Thus, each aggregate function is of the form:

f(ts CRTDNungeries, [datel DATE, date2 DATH))

Table 2-9

Aggregate Functions

Function

Returns

TSAvg
TSCount
TSMax
TSMaxN
TSMedian
TSMin
TSMinN
TSProd
TSStddev
TSSum

TSVariance

Average (mean) of a time series

Number of elements in a time series

Maximum value of a time series

Specified number of top (highest) values in a time series
Middle element of a time series

Minimum value of a times series

Specified number of bottom (lowest) values in a time series
Product of the elements of a time series

Standard deviation (square root of VAR)

Sum of the elements of a time series

Variance (analogous to the SQL group function VAR)

2.8.7 Arithmetic Functions

Arithmetic functions accept two time series (ORDTNumSeries1,ORDTNumSeries2)
or a time series and a constant (ORDTNumSeries1, Const), and perform a pairwise
arithmetic operation on each element of the time series. This operation determines
the value of each element of the returned time series:

2-28 Oracle8 Time Series Cartridge User's Guide



Time Series Functions

Agorithmfor f(tsl, ts2)
ForAll i, tsRet(i) =tsl(i) op ts2(i);

Table 2—-10 Arithmetic Functions

Function Description

TSAdd Time series addition
TSDivide Time series division
TSMultiply Time series multiplication
TSSubtract Time series subtraction

2.8.8 Cumulative Sequence Functions

Cumulative sequence functions operate on successive elements of a time series,
accumulating the result into the current element of the output time series. For
example, CSUM((1,2,3,4,5)) => (1,3,6,10,15). In this example, the result time series
(f(i)), is computed from the input time series (I(i)) as follows:

f(1) = 1(2)
ForAl i >1, f(i) =f(i - 1) +1(i)

Table 2-11 Cumulative Sequence Functions

Function Returns

Cavg Cumulative average
Cmax Cumulative maximum
Cmin Cumulative minimum
Cprod Cumulative product
Csum Cumulative sum

2.8.9 Moving Average and Sum Functions

The Moving Average (Mavg) function returns a time series that contains the aver-
ages of values from each successive timestamp for a specified interval over a range
of dates. For example, the 30-day moving average for a stock is the average of the
closing price for the specified date and the 29 trading days preceding it.

Time Series Concepts 2-29



Time Series Functions

The Moving Sum (Msum) function returns a sum of values from each successive
timestamp for a specified interval over a range of dates. For example, the 30-day
moving sum of trading volumes for a stock is the sum of the volume for the speci-
fied date and for 29 trading days preceding it.

Table 2-12 Moving Average and Sum Functions

Function Returns
Mavg Moving average
Msum Moving sum

The relationship between the input and output time series in the computation of a
moving average or sum is illustrated in Figure 2-5. The figure focuses on the com-
mon invocation of moving average or sum, where k is the number of timestamps in
the look-back window (for example, 30) and a date range (startDate and endDate) is
supplied. (For more information about the parameters, see the Mavg function
description in Chapter 5.)

Figure 2-5 Relationship of Input and Output Time Series in Moving Average/Sum

—— ——]

Input Time Series [ ['] R L[] ] L[]
startDate endDate
Output Time Series D I I I I

!

f(x,)
NU-3692A-RA

2.8.10 Conversion Functions

2-30

Conversion functions fill missing elements of a numeric time series (ORDTNum-
Series). Missing elements are those where their timestamps are defined by the cal-
endar and are in the range of the current time series, but they are not currently in
the time series.

Oracle8 Time Series Cartridge User’s Guide



Time Scaling Functions

Table 2—-13 Conversion Functions

Function Description

Fill Fills a time series based on the calendar and fill type.

2.9 Time Scaling Functions

The Time Series cartridge provides functions to scale up time series data. Scaleup
functions produce summary information from finer granularity information, for
example, monthly data based on daily data. Scaleup is also known as rollup.

The relationship between the input and output time series in a scaleup operation is
illustrated in Figure 2-6, which shows a mapping when scaling from a daily fre-
guency to a monthly frequency.

Figure 2—6 Time Scaling from Daily to Monthly Frequency

1-FEB-97 1-MAR-97
..... | ...
l<\ l
4 N
.._|__||||||||||||||||||||||||||||||||| _____
Frrrrrrrrrrrrrrrrrtrrr T rT T T TiTTT
123 28
NU-3693A-RA

Figure 2—-6 shows all days in February being mapped to the month of February.
This mapping also suggests the importance of the precision of timestamps of differ-
ent frequencies. In the example shown in this figure:

= The month timestamp for February 1997 is represented as 1-FEB-97 00:00:00.

« The day timestamps for February 1997 are represented as 1-FEB-97 00:00:00, 2-
FEB-97 00:00:00,... 28-FEB-97 00:00:00.

Time Series Concepts 2-31



Time Scaling Functions

Note: Scaledown functions are not included in the initial release,
but they are planned for a future release. Scaledown functions gen-
erate finer-granularity information from coarser-granularity infor-
mation. For example, quarterly data can be converted to a daily
time series.

Two interfaces to time scaling are supported: the collection-based interface (opera-
tions on collections) and the GROUP BY interface (SQL GROUP BY clause).
Section 2.9.1 discusses the collection-based interface for time scaling, and

Section 2.9.2 discusses the GROUP BY interface.

Note: You should use the collection-based interface for most time
scaling queries. Although the GROUP BY interface is useful for cer-
tain advanced queries (see Section 2.9.2), the collection-based inter-
face offers much better performance in most cases.

2.9.1 Time Scaling on Collections

The scaleup functions accept as input a numeric time series and a destination calen-
dar. A numeric time series is returned, which is scaled based on the destination cal-
endar.

For example, the following statement returns the last closing prices for stock
SAMCO for the months of October, November, and December of 1996:

sel ect * fromthe
(sel ect cast (GRDSYS. Ti neSeri es. Extract Tabl e(
CROSYS. Ti neSer i es. Scal euplast (
ts. cl ose,
sc. cal endar,
to_dat e(’ 01- OCT-1996' , ' D MON- YYYY' ),
to_date(’ 01- JAN-1997', ' D MON- YYYY')
)
) as CRDSYS. CROTNunTab)
fromordtdev.stocks ts ts, ordtdev.scal e sc
where ts.ticker= SAMDO and
sc.hame = MINTH.Y');

This example might produce the following output:

2-32 Oracle8 Time Series Cartridge User's Guide



Time Scaling Functions

01- OCT- 96 42. 375
01- NOV- 96 38.25
01- DEG 96 39.75
3 rows sel ect ed.

Note that each timestamp reflects the first date of the month in the calendar (follow-
ing the rules explained in Section 2.2.1), and each value in this case reflects the clos-
ing price on the last date for that month in the calendar.

Scaleup functions ignore nulls. For example, ScaleupAvg returns a time series
reflecting the average value of each scaled group of non-null values.

Table 2-14 Scaleup Functions for Collections

Function Description

ScaleupAvg Returns the average value of each group.
ScaleupCount Returns the count of timestamps in each group.
ScaleupSum Returns the sum of each group.

ScaleupMin Returns the minimum of each group.
ScaleupMax Returns the maximum of each group.
ScaleupFirst Returns the first value of each group.
ScaleupLast Returns the last value of each group.

2.9.2 Time Scaling in the GROUP BY Clause
Time scaling in the GROUP BY clause supports statements such as the following:

SHLECT sunfvol une), nax(high), mn(low
FROM St ockTab, Cal endar Tab cal

WHERE ticker ='XYZ' AND cal.name ="Monthly’
GROUP BY ORDSYS.TimeSeries.Scaleup(tstamp, cal)

This statement scans the daily data stored in StockTab, and sums the volume
attribute on a monthly basis. The calendar to be scaled up to is a parameter of the
Scaleup function, and is extracted from a table of calendars, CalendarTab, which is
of the form:

CREATE TABLE CalendarTab of ORDTCalendar;

Time Series Concepts 2-33



Time Scaling Functions

The Scaleup function accepts a timestamp and a calendar, and returns a timestamp.
If the input timestamp is a valid timestamp of the calendar, the input timestamp is
returned; otherwise, the closest timestamp in that calendar that precedes the input
timestamp is returned.

Only SQL aggregate functions are supported in the GROUP BY interface.

2-34 Oracle8 Time Series Cartridge User's Guide



3

Time Series Usage

This chapter explains important procedures related to using the Oracle8 Time
Series Cartridge. It covers the following topics:

= using the cartridge (major steps)
« loading time series data
« deriving calendar exceptions from time series data

« using product-developer functions

3.1 Using the Cartridge

This section provides a technical overview of using the Time Series cartridge. It pre-
sents the major steps, with examples.

For more detailed explanations of the concepts and terminology, see Chapter 2.

3.1.1 Step 1: Create the Underlying Storage (Table)

Create the table to hold the time series data. Example 3-1 shows the table definition
for a stock trading database.

Example 3-1 Create a Stock Data Table
/* Table Creation (user) */

CREATE TABLE st ockdeno @
(ticker VARCHARZ(5),
tstanp DATE,
open NUMBER
hi gh NUMBER
| ow NUMBER

Time Series Usage 3-1



Using the Cartridge

cl ose NUMBER

vol une | NTEEER

OONSTRAI NT pk_st ockdeno PRI MARY KEY (ticker, tstanp)) @
CRGAN ZATI ON | NDEX. ©

Notes on Example 3-1:

@ The table is named stockdemo and has the columns for the ticker (stock symbol),
the timestamp (date on which stocks are traded), that day’s opening, high, low,
and closing prices, and the trading volume.

@ The constraint named pk_stockdemo defines the primary key as the ticker plus
the timestamp.

© ORGANIZATION INDEX indicates that this is an index-organized table.

The CREATE TABLE statement can also include other keywords, such as
TABLESPACE and STORAGE.

3.1.2 Step 2: Define a Calendar

If the calendar does not already exist, create it by inserting its definition in a table
of calendars. If the table of calendars does not already exist, create it first.

Your calendar will be based on the system-defined datatype ORDTCalendar, which
is supplied with the cartridge. ORDTCalendar has the following definition:

/* SystemDefined Cal endar Datatype */

CREATE TYPE CGRDSYS. GRDTCGal endar AS GBIECT (

cal type | NTECGER
nane VARCHAR2(256) ,

frequency | NTEGER

pattern CROSYS CRDTPatt ern,

m nDat e DATE,

maxDat e DATE

of f Excepti ons CRDSYS. CROTEXcept i ons,
onExcept i ons CROSYS. CROTEXcept i ons) ;

The following example creates a table named stockdemo_calendars and defines a cal-
endar named BusinessDays. The BusinessDays calendar includes Mondays through
Fridays in 1997, but excludes 04-Jul-1997 and 25-Dec-1997. Explanatory notes fol-
low the example.

3-2 Oracle8 Time Series Cartridge User's Guide



Using the Cartridge

Example 3-2 Create a Calendar of Business Days
CREATE TABLE st ockdeno_cal endar s of CRDSYS. GRDTCal endar ;

I NSERT | NTO st ockdeno_cal endars @

VALUES(
CRDSYS. CROTCal endar (

0, @

‘BusinessDays, (3)
4 @
ORDSYS.ORDTPattem(ORDTPattemBits(0,1,1,1,1,1,0), (5
(to_date(01-05-97, MM-DD-YY?))),
to_date(01-01-97,MM-DD-YY),
t0_date(01-01-98,MM-DD-YY),
ORDSYS.  ORDTExceptons(to_date(07-04-97, MM-DD-YY), (7
to_date(‘12-25-97 MM-DD-YY?),
NULL);, @

Notes on Example 3-2:

stockdemo_calendars is a table of ORDSYS.ORDTCalendar objects. The ORDTCal-
endar datatype is described in Section 2.2.2.

0 (zero) for calendar type (caltype) indicates that this is an exception-based cal-
endar. (This is the only calendar type currently supported.)

BusinessDays is the name of this calendar.

4 is the frequency code for day.

606 © 6

The pattern is defined as an excluded occurrence followed by five included
occurrences followed by an excluded occurrence (0,1, 1, 1, 1, 1, 0). Because the
frequency is daily and because the anchor date (05-Jan-1997) is a Sunday, Sun-
days are excluded, Mondays through Fridays are included, and Saturdays are
excluded.

@ The calendar begins at the start of 01-Jan-1997 and ends at the start of 01-Jan-
1998.

@ 04-Jul-1997 and 25-Dec-1997 are off-exceptions (that is, excluded from the calen-
dar).

© NULL indicates that there are no on-exceptions (that is, no Saturday or Sunday
dates to be included in the calendar).

Time Series Usage 3-3



Using the Cartridge

3.1.3 Step 3: Load Time Series Data

Perform a bulk load of the time series data in order to populate the underlying data
storage tables. Follow the guidelines and instructions for bulk loading in
Section 3.2.

3.1.4 Step 4: Create a Security View and INSTEAD OF Triggers

Create a security view and INSTEAD OF triggers, to ensure the consistency and
integrity of time series data, as explained in Section 2.6.2.

Example 3-3 creates a security view (stockdemo_sv) to get all ticker values.

Example 3-3 Create a Security View
CREATE (R REPLACE M1 EWst ockdeno_sv AS SELECT * FROM st ockdeno;

After you create the view, create INSTEAD OF triggers using the definitions in the
securevw.sgl demo file as examples or templates. Example 3-4 creates an
INSTEAD OF trigger (stockdemo_sv_delete) that ensures the following:

= An exception is raised if a delete operation is attempted on an empty time
series.

« Foranon-empty time series, a delete operation is allowed on either the first or
last timestamp in an existing series.

If you grant users access to the security view and deny access to the underlying
tables, you can ensure that all delete operations are checked and performed by the
trigger. (Similar INSTEAD OF triggers can be written to allow safe insert and
update operations. For more information about using INSTEAD OF triggers with
security views, see Section 2.6.2.2.)

Example 3-4 Create an INSTEAD OF Trigger

CREATE (R REPLACE TR AR st ockdeno_sv_del et e

| NSTEAD (F DELETE on st ockdeno_sv

REFERENO NG ol d AS o

FCR EACH r ow

DECLARE
cal CROSYS. (RDTCGal endar : = NULL;
purifieddate DATE
startdate DATE;
enddat e DATE;

BEQ N

3-4 Oracle8 Time Series Cartridge User's Guide



Using the Cartridge

-- Retrieve the calendar that maps to the stock ticker.
BEA N
SELECT VALUH¢) | NTO cal

FROM st ockdeno_cal endars c, stockdeno net adata m

WHERE mtickernane = :o.ticker AND c.nane = m cal endar nang;
EXCEPTI ON

when NO DATA FOUND THEN

rai se_application_error(-20000,” Goul d not find cal endar’);

END,
IFcal ISnull THEN

rai se_application_error(-20000, 'NUL cal endar found');
END I F;
-- Set the precision of timestanp to correspond to the precision
-- of the cal endar.

purifieddate : = CROSYS Cal endar. Set Preci si on(: o.tstanp, cal . frequency);

-- Retrieve the current startdate AND enddate for the stock ticker;
SELECT nmax(tstanp), min(tstanp) | NTO enddate, startdate

FROM st ockdeno_sv

WHERE ticker = :o.ticker;

-- There are three cases of deletion to consider:

-- Gase 1: The table does not have any existing time series
-- entries for the given ticker. In this case the
-- trigger raises an exception.

-- CGase 22 The tstanp is equal to the current startdate.
-- This routine verifies this and then del etes
-- the row

-- Case 31 The tstanp is equal to the current enddate.
-- This routine verifies this and then del etes the row

-- If the tine series is not enpty and if the row bei ng
-- deleted is not the startdate or enddate, an exception
-- is raised.
IF startdate 1S null THEN

rai se_application_error(-20000,’ Tineseries is enpty’);
ELSE

Time Series Usage 3-5



Using the Cartridge

IF (NOT ((purifieddate = startdate) or (purifieddate = enddate))) THEN
rai se_appl ication_error(-20000, 'Ti nestanp date not startdate or
enddate’);
BE\D I F;
END I F;

-- Delete the rowin the tine series.

DELETE FROM st ockdeno
WERE ticker = :o0.ticker AND
tstanp = purifieddate;
END,

-- Next, create two other triggers: one update-specific (for

-- exanpl e, stockdeno_sv_update) and the other insert-specific
-- (for exanple, stockdemo sv_insert). See the Time Series

-- cartridge usage deno for an exanpl e.

-- After creating all appropriate triggers, grant SEHECT, DELETE,
-- WPDATE, and I NSERT privil eges on the security viewto the

-- appropriate users. For exanple:

GRANT SHLECT, DELETE, UPDATE, | NSERT on st ockdeno_sv TO or dt user;

3.1.5 Step 5: Create a Reference-Based View

Create a reference-based view for convenient and efficient access to time series
data, as explained in Section 2.5.2.

Example 3-5 creates a reference-based view for stock price data.

Example 3-5 Create a Reference-Based View

CREATE M BEW st ockdeno_t s(ticker, open, hi gh, | ow cl ose, vol une) AS
SH ECT net a. ti cker nane,
CROSYS. GRDTN\unger i esl OTRef (
substr(neta.tickername, 1, 230) || ' open NunSeries’,
Ref (cal ), ' GROTCEV. st ockdeno’ ,
"tstanp’, 'open’, 'ticker’, neta.tickernane),
CROSYS. GROTN\unger i esl OTRef (
substr(neta.tickername, 1, 230) || ' high NunSeries’,
Ref (cal ), ' GRDTCEV. st ockdeno’ ,
"tstanp’, 'high', 'ticker’, neta.tickernane),
CROSYS. GRDTN\unger i esl OTRef (
substr(neta.tickername, 1, 230) || ' |ow Nungeries’,
Ref (cal ), ' GRDTDEV. st ockdeno’ ,

3-6 Oracle8 Time Series Cartridge User's Guide



Using the Cartridge

"tstanp’, 'low, 'ticker’, neta.tickernane),
CROSYS. GRDTN\unger i esl OTRef (
substr(neta.tickername, 1, 230) || ' close Nunferies’,

Ref (cal ), ' GRDTDEV. st ockdeno’ ,
"tstanp’, 'close’, ’'ticker’, neta.tickernane),
CROSYS. GROTN\unger i esl OTRef (
substr(neta.tickername, 1, 230) || ' vol une NunSeries’,
Ref (cal ), ' GRDTDEV. st ockdeno’ ,
"tstanp’, 'volune’, 'ticker’, neta.tickernane)
FROM st ockdeno_net adat a neta, stockdenmo cal endars cal
WHERE net a. cal endar nane = cal . nang;

The refvw.sgl demo file creates a reference-based view.

3.1.6 Step 6: Validate Time Series Consistency

Choose one of the following approaches to ensuring the consistency of time series
data, using the guidelines in Section 2.6.3:

« Adjust calendars to be consistent with the time series.

Use the DeriveExceptions function in adjusting a calendar to be consistent with
the time series. See Section 2.2.4 for more information about this approach.

=« Validate that each time series is consistent with the calendar.

Use the IsValidTS function to check that the time series is consistent with the
calendar. See the IsValidTS function reference information in Chapter 5.

3.1.7 Step 7: Formulate Time Series Queries

Formulating time series queries involves invoking time series or time scaling func-
tions, or both. Example 3-6 uses the Mavg time series function to obtain 30-day
moving averages for stock ACME, and it uses the ScaleupSum time scaling func-
tion to obtain monthly volumes for stock ACME. (The results shown in the exam-
ple reflect sample data for the cartridge usage demo.)

The queries in this step use the reference-based view (stockdemo_ts) that was cre-
ated in step 6.

Example 3—-6 Formulate Time Series Queries
SHECT * FROM THY
SELECT CAST( GRDSYS. Ti neSer i es. Ext ract Tabl e(

CRDSYS. Ti neSer i es. Mavg(cl ose,
to date(’ 11-01-96', MDD YY),

Time Series Usage 3-7



Using the Cartridge

to date(’ 12-31-96',' MDD YY),
10))
as CROSYS. GRDMunt ab)
FROM st ockdeno_t s
WHERE ticker = 'AQWE);

01- NOv- 96

04- NOV- 96

05- NOV- 96

06- NOV- 96

07- NOV- 96

08- NOV- 96

11- NOv- 96

12- NOv- 96

13- NOv- 96

14- NOv- 96 63.5
15- NOv- 96 64.5
18- NOv- 96 65.5
19- NOv- 96 66. 5
20- NOV- 96 67.5
21- NOV- 96 68. 5
22- NOV- 96 69.5
25- NOV- 96 70.5
26- NOV- 96 71.5
27- NOV- 96 72.5
29- NOV- 96 73.5
02- DEG 96 74.5
03- DEG 96 75.5
04- DEG 96 76.5
05- DEG 96 77.5
06- DEG- 96 78.5
09- DEG 96 79.5
10- CEG 96 80.5
11- OEG 96 81.5
12- OEG 96 82.5
13- CEG 96 83.5
16- CEG 96 84.5
17- DEG 96 85.5
18- CECG 96 86.5
19- CEG 96 87.5
20- DEG 96 88.5
23- DEG 96 89.5
24- DEG 96 90.5

3-8 Oracle8 Time Series Cartridge User's Guide



Loading Time Series Data

26- DEG 96 91.5
27- DEG 96 92.5
30- DEG 96 93.5
31- DEG 96 94.5

41 rows sel ected.

SHLECT * FROM THY
SELECT CAST(ORDSYS. Ti neSer i es. Ext ract Tabl e(
CROSYS. Ti neSeri es. Scal eupSunfvol une, val ue(cal )))
as CROSYS. GRDIMunt ab)
FROM st ockdeno_t's, stockdeno cal endars cal
WHERE ticker = 'AQWE AND cal . nane = 'MINTH.Y');

01- NOV- 96 20000
01- DEG 96 21000
2 rows sel ected.

3.2 Loading Time Series Data

This section describes how to use the SQL*Loader utility to perform bulk loading
and incremental loading of time series data.

To ensure the consistency of time series data during loading, you must choose one
of the approaches described in Section 2.6.3:

« Adjust calendars to be consistent with the time series, if you are sure that all
timestamps are correct.

This strategy is normally appropriate when there is a unique calendar per time
series.

« Validate that each time series is consistent with the calendar, if you expect time
series data to adhere to a predefined calendar.

This approach is particularly useful if the same calendar is used for all time
series data being loaded.

This section describes how to perform bulk loading using these two approaches,
and it also describes how to perform incremental loading.

The loading of time series data is usually performed under controlled circum-
stances, so it is safe to perform these loads directly to an underlying table instead of
to a security view.

Time Series Usage 3-9



Loading Time Series Data

3.2.1 Bulk Loading

After you create an index-organized table (I0T) to hold time series data (such as for
the stockdemo demo database), you must populate the table with data. For a data-
base of stock information, you may need to load millions of rows of daily summary
information into the IOT.

SQL*Loader is recommended for loading large amounts of time series data. The fol-
lowing example shows a SQL*Loader script, with an excerpt from the sample data
(stockdat.dat) and the SQL*Loader control file (stockdat.ctl). For complete informa-
tion about SQL*Loader, see the Oracle8 Server Utilities manual.

The SQL*Loader script contains the following:

%sql | dr useri d=ordtdev/ordtdev control =stockdat. ctl
| og=st ockdat . | og bad=st ockdat . bad errors=1000

The stockdat.dat sample data file includes the following:

AOVE 01-NO-96 59.00 60.00 58.00 59.00 1000
AOVE 04-NO-96 60.00 61.00 59.00 60.00 1000
AOVE 05-NO-96 61.00 62.00 60.00 61.00 1000

The stockdat.ctl file contains the following

options (direct=true)

unr ecover abl e

| oad data

infile 'stockdat.dat’

repl ace

into tabl e stockdeno

sorted indexes (St ockTabx)

fields termnated by whitespace

(ticker, tstanp DATH13) "DD MON YY", open, high, low, close, volune)

SQL*Loader can handle many file formats and delimiters, as documented in the
Oracle8 Utilities manual.

After the load has completed, you may want to choose one of the following
approaches for ensuring calendar consistency:

« Adjust calendars to conform to time series data (see Section 3.2.1.1).
« Validate that the time series conforms to the calendar (see Section 3.2.1.2).

In either case, you may need to update the exception lists of your calendars.

3-10 Oracle8 Time Series Cartridge User's Guide



Loading Time Series Data

3.2.1.1 Adjusting Calendars to Conform to Time Series Data

Often you will want to create calendars that conform to the time series data that
you are receiving. In this case, you usually know the frequency and the pattern of a
calendar, but not the specific on- or off-exceptions. You can extract these exceptions
from the data by using the DeriveExceptions function.

3.2.1.2 Validating That the Time Series Conforms to the Calendar

Often you will want to ensure that the time series data extracted from the incoming
data conforms to a predefined calendar. To do this, insert the exceptions either
when you create the calendar or afterward with the InsertExceptions functions (or
do both, creating the calendar with some exceptions and then adding others); then
use the IsValidTimeSeries function to check that the time series is consistent with
the calendar.

You can insert exceptions when you define the calendar. For example, the follow-
ing statement specifies 28-Nov-1996 and 25-Dec-1996 as off-exceptions in the calen-
dar named BUSINESS-96:

I NSERT | NTO st ockdeno_cal endars VALUEY
CROSYS. GRDTCal endar (
0,
" BUSI NESS-96',
4,
CROSYS. CRDTPat t er n(
CROSYS. (RDTPatternBits(0,1,1,1,1,1,0),
TO DATE(’ 01- JAN- 1995’ , ' DD MON- YYYY')),

TO DATH(’ 01- JAN- 1990 , ' DD MON- YYYY') ,
TO DATH(’ 01- JAN- 2001 , ' DD MON- YYYY') ,
CROSYS. CRDTEXcept i ons(

TO DATH’ 28- NOV- 1996’ , ' DD MON YYYY' ),

TO DATH’ 25- DEG 1996’ , ' DD MON YYYY') ),
CROSYS. CRDTEXcept i ons()
));

You can also add exceptions after the calendar is defined by using the InsertExcep-
tions function. For example, the following statement adds 01-Jan-1997, 17-Feb-1997,
and 26-May-1997 as off-exceptions:

UPDATE st ockdeno_cal endar s cal
SET cal = (SELECT CROSYS. Gal endar . | nsert Excepti ons(
VALUK(cal ),
CROSYS. CRDTDat eTab(
to_date(’ 01-JAN-97' ,' DD-MON- YY),
to_date(’ 17-FEB- 97, DD-MON- YY),

Time Series Usage 3-11



Loading Time Series Data

to_date(’ 26-MVAY-97' ," DD MINYY')))
FRCM dual )
WHERE cal . name = ' BUSI NESS-96' ;

After you have defined the calendar and populated the exception lists, you can use
the IsValidTimeSeries function to check that the time series is consistent with the
calendar.

3.2.2 Incremental Loading

After you have performed the bulk load of time series data and have started using
the Time Series cartridge, you will probably want to add data periodically. For
example, every trading day after the stock exchange closes, that day’s data for each
ticker becomes available.

As with bulk loading, incremental loading is typically done in a controlled environ-
ment. You know which timestamps will become off-exceptions, and you can explic-
itly update the exception lists of the appropriate calendars. The following example
demonstrates such an update:

UPDATE st ockdeno_cal endar s cal
SET cal = (SELECT CRDSYS. Gal endar . | nsert Except i ons(
VALUK(cal ),
to_date(’ 01- JAN-97' ,’ DD MON- YY)
FRCM dual )
WHERE cal . nane = ' XOORP ;

The SQL*Loader utility is recommended for performing an incremental load of
such additional data. The following example shows a SQL*Loader script, with an
excerpt from the sample daily data (stockinc.dat) and the SQL*Loader control file
(stockinc.ctl).

The SQL*Loader script contains the following:

sql I dr useri d=or dt dev/ or dt dev cont rol =st ocki nc. ctl
| og=st ocki nc. | og bad=st ocki nc. bad error s=1000

The stockinc.dat sample data file includes the following:

AQVE  02- JAN-97 100.00 101.00 99.00 100.00 1000
FUNQO 02- JAN-97 25.00 25.00 25.00 25.00 2000
SAMDO 02- JAN-97 39.00 40.00 38.00 39.50 30000

The stockinc.ctl file contains the following:

3-12 Oracle8 Time Series Cartridge User's Guide



Deriving Calendar Exceptions

| oad dat a
infile ’stockinc.dat’

append
into tabl e stockdeno

fields termnated by whitespace
(ticker, tstanp DATH13) "DD MON YY", open, high, low, close, volune)

Note the following differences in the control file for incremental loading as
opposed to bulk loading:

= The conventional path is used instead of the direct path. That is, the control file
for incremental loading does not contain the line options (direct=true).

The conventional path is better for incremental loading because the amount of
new data (daily stock information) is small relative to the total amount of data.
For an explanation of conventional and direct paths, including situations in
which the conventional path is necessary or preferable, see the SQL*Loader
documentation in the Oracle8 Server Utilities manual.

« The APPEND keyword is specified, so that the new data is appended to the
existing tabular data.

3.3 Deriving Calendar Exceptions

This section explains in greater detail the two approaches to deriving calendar
exceptions from time series data. These two approaches were introduced in
Section 2.2.4; see that section for information on concepts related to exceptions and
the reasons for choosing a particular approach.

3.3.1 Deriving Exceptions Using a Calendar and Table of Dates (Approach 1)

The first approach to deriving exceptions takes a calendar and an ORDTDateTab
(that is, a table of dates) as input parameters, using the following form of the func-
tion:

DeriveExceptions(cal ORDTCalendar, DateTab ORDTDateTab)

The table of dates (DateTab parameter) includes all dates in the time series, for
example, all dates on which stock XYZ traded. A calendar is returned that is
defined on the same pattern and frequency as the input calendar, and the exception
lists of the returned calendar are populated to be consistent with the time series
data in DateTab. The exception lists are updated based on finding timestamps that
are in the calendar pattern or in the table of dates, but not in both. (A timestamp is
in the calendar pattern if it is within the date range of the calendar and maps to an
on (1) bit in the pattern.)

Time Series Usage 3-13



Deriving Calendar Exceptions

The returned calendar’s on- and off- exceptions are populated based on the calen-
dar pattern and the table of dates, as follows:

« All timestamps that are in the calendar pattern but not in the table of dates
become off-exceptions.

For example, 04-Jul-1997 (Friday) is in the pattern of a stock trading calendar,
but it is not a date on which U.S. stocks were traded.

« All timestamps that are in the table of dates but are not in the calendar pattern
become on-exceptions.

The following example derives the exceptions for all time series in the stockdemo
table and updates the corresponding calendars in the stockdemo_calendars table:

UPDATE st ockdeno_cal endar s cal
SET cal = (SELECT CRDSYS. Cal endar . Deri veExcepti ons(

VALUK(cal ),

CAST(nul ti set (
SH ECT s.tstanp
FRCM st ockdeno s
WHERE cal . name = s.ticker) AS CRDSYS CRDIDat eTab))

FROM dual ) ;

This approach (Approach 1) to deriving calendar exceptions has the following
requirements:

« The input table of dates must be sorted in ascending timestamp order before
the call to the DeriveExceptions function.

= The precision of the timestamps of the dates in the table must conform to the
frequency of the input calendar.

3.3.2 Deriving Exceptions Using Two Time Series Parameters (Approach 2)

The second approach to deriving exceptions takes two time series references as
input parameters, using the following form of the function:

DeriveExceptions(series1 ORDTNumSeriesIOTRef,
series2 ORDTNumSeries|OTRef)

or

DeriveExceptions(series1 ORDTVarchar2SeriesIOTRef,
series2 ORDTVarchar2Series|OTRef)

3-14 Oracle8 Time Series Cartridge User's Guide



Deriving Calendar Exceptions

This overloading of the DeriveExceptions function allows the input parameters to
be time series REFs (either two ORDTNumSerieslOTRef parameters or two
ORDTVarchar2SerieslOTRef parameters).

Before calling DeriveExceptions, you must construct a time series based on a refer-
ence calendar. This time series will contain all the timestamps within the date
range (minDate through maxDate) of the calendar.

The following example builds a reference time series based on a calendar named
PATTERN-ONLY. An INSERT statement populates the time series named PAT-
TERN-ONLY with the valid timestamps between the starting and ending dates of
the calendar.

I NSERT | NTO st ocks(ti cker,tstanp)
SHECT ' PATTERN QLY
tl.cl
FRQM
(SELECT col umn_val ue c1 FROMt he
(SELECT CAST(CRDSYS. Cal endar . Ti meSt anpsBet ween( VALUE(cal ),
cal . m ndat e,
cal . naxdat €)
AS CRDSYS. (RDTDat eTab)
FROM st ock_cal endars cal
WHERE cal . name = 'PATTERN QLY )) t1;

The insertion is made directly into the underlying table, not into the security view.
Using the underlying table is safe here because the time series is presumed to be
correct, so the mechanismes for ensuring consistency between the time series and
the calendar provided by the security view are not needed in this case.

The PATTERN-ONLY calendar should have no exceptions. If this calendar has any
exceptions, the resulting time series will have non-null exception lists, which will
cause the DeriveExceptions function to report an error.

After you create the reference time series, call the DeriveExceptions function with
the reference time series as the first parameter (seriesl). DeriveExceptions compares
the dates in seriesl with the dates in series2, and it returns the calendar of seriesl
with the exceptions created as follows:

« All timestamps that are in seriesl but not in series2 become off-exceptions.

For example, if series2 contains dates on which stock XYZ traded and 04-Jul-
1997 (Friday) is not in that time series, then 04-Jul-1997 is added to the calendar
as an off-exception.

« All timestamps that are in series2 but not in seriesl become on-exceptions.

Time Series Usage 3-15



Using Product-Developer Functions

The following example uses the reference time series created in the preceding state-
ment to update the exception lists of every other calendar in the stockdemo_calendars
table, with the exceptions for each calendar derived from the timestamps in the
associated time series. (This example assumes that each calendar maps to a time
series with the same name.)

UPDATE st ockdeno_cal endar s cal
SET cal = (SELECT CRDSYS. Ti neSeri es. Deri veExcepti ons(tsl. open, t s2. open)
FROM stocks ts tsl, stocks ts ts2
WHERE tsl.ticker = 'PATTERNQLY and ts2.ticker = cal.nane)
WHERE cal . nane <> ' PATTERN-O\LY ;

This approach (Approach 2) to deriving calendar exceptions has the following
requirements:

« The input parameters to the DeriveExceptions function must be either two
ORDTNumSerieslOTRef parameters or two ORDTVarchar2SerieslOTRef
parameters. ORDTNumSeries and ORDTVarchar2Series variants are not sup-
ported for this function.

« Calendars of the time series input parameters must have the same frequency
and pattern.

«  The first time series parameter (PATTERN-ONLY time series) must have no
exceptions.

« The starting date (minDate) of the calendar of the second time series must be
greater (later) than or equal to the starting date of the calendar of the first time
series.

= The ending date (maxDate) of the calendar of the second time series must be
less (earlier) than or equal to the ending date of the calendar of the first time
series.

3.4 Using Product-Developer Functions

Product-developer functions, described in Section 2.7.2, let you modify and expand
the Time Series cartridge capabilities. For example, an ISV could develop addi-
tional time series analysis functions by calling product-developer functions.

The following example shows the use of the IsValidDate, NumTstampsBetween,
and OffsetDate product-developer functions in a PL/SQL implementation of the
Lead function. The Lead function inputs a time series and a lead_date, and returns
a time series where the starting timestamp is the lead_date. (Note that to simplify
the presentation, some error checking has been omitted.)

3-16 Oracle8 Time Series Cartridge User's Guide



Using Product-Developer Functions

create function Lead (ts CRDSYS. C(RDINungeries, | ead date date)
return GROSYS GROTNUn®eries is
i integer;
outts CRDSYS. CROTNUngeries; /* Tenporary Storage for Result */
new tstanp date; /* Changeabl e version of |ead date */
last_| ead_date date; /* Last tinestanp of the output tine series*/
first_tstanp date; /* Frst timestanp of
the input tine series */
last_index integer; /* Last index of the input time series */
last_tstanp date; /* Last tinestanp of the input tine series */
units integer; /* Nunber of tinestanps between input and
output tine series */

ERR LEAD TSTAMP_BAUNDS const ant i nteger := 20540;
ERR LEAD TSTAWP_BAUNDS MG const ant var char2(100) : =
"Projected |l ead timestanp beyond cal endar bounds’;

begi n
first_tstanp : =ts.series(1).tstanp;
last _index :=ts.series.last;
last _tstanp :=ts.series(last_index).tstanp;

if CRDSYS Cal endar.|sValidbate(ts.cal, |ead date) = O then
Rai se_Appl i cation_Eror (ERR_LEAD TSTAMP_BOUNDS,
ERR LEAD TSTAWP_BOUNDS M5G ;
end if;

/* units is the nunber of tinestanps between the first tinmestanp of

the input tine series and | ead_date. */

units : = CROBYS. Cal endar. NunTi neSt anpsBet ween(ts. cal , first_tstanp,
| ead_date);

last _|ead_date : = CROSYS Cal endar. OfsetDate(ts. cal, |ast_tstanp,
units);
if last lead date is null then
Rai se_Appl i cation_Eror (ERR_LEAD TSTAMP_BOUNDS,
ERR_LEAD TSTAVP_ BONDS MSG ;
end if;

/* Instantiate output tine series. */
outts : = CROBYS CROTNungeries(’' Lead Result’, ts.cal, CROSYS CRDTNunab());
outts.series.extend(last_i ndex);

/* Assign the first timestanp of the output tine series to
first_|l ead_date. Gopy value frominput tine series to output

Time Series Usage 3-17



Using Product-Developer Functions

tine series. */
new tstanp := | ead date;
outts.series(1l) := CROBYS CGROTNuntel | (new tstanp, ts.series(1l).value);

/* Assign subsequent tinestanps by calling GfsetDate with the
previous date and an offset of 1. */
for i in 2. .outts.series.last |oop
new tstanp : = CROSYS Cal endar. O fset Date(ts. cal ,
outts.series(i-1).tstanp, 1);
outts.series(i) := CROSYS. GROTNUnGCel | (new t st anp,
ts.series(i).value);
end | oop;

return(outts);
end;

For other examples of using product-developer functions, see the files for the
advanced-developer demo (described briefly in Table 1-1 in Section 1.6).

3-18 Oracle8 Time Series Cartridge User's Guide



A

Calendar Functions: Reference

The Oracle8 Time Series Cartridge library consists of the following:
« datatypes (described in Section 2.2.2)

« calendar functions (described in this chapter)

« time series and time scaling functions (described in Chapter 5)

Two separate reference chapters are provided for the functions, because the func-
tions described in each are typically done at different times in the application devel-
opment cycle and by people performing different job roles:

« Calendar functions are mainly used by product developers, such as ISVs, to
develop new time series functions and to administer and modify calendars.

« Time Series and time scaling functions are used mainly by application develop-
ers and some end users after the associated calendar or calendars have been
defined.

Syntax notes:

« The ORDSYS schema name and the package name must be used with the func-
tion name, although public synonyms can be created to eliminate the need for
specifying the schema name (see Section 1.4). Each function is included in a PL/
SQL package, such as Calendar or TimeSeries. The ORDSYS schema name and
the package name are included in the Format and in any examples.

« Function calls are not case sensitive, except for any quoted literal values. For
example, the following code line excerpts are valid and semantically identical:

sel ect CAST(Ti neSeri es. Extract Tabl e(cl ose) AS CROTNunTab)
sel ect cast(TIMESER ES. extracttabl e(cl ose) as ordt nunt ab)
sel ect cast(Ti MSeR Es. eXt RaG TaB E A osE) As ordt NJM ab)

Calendar Functions: Reference 4-1



CombineCals

CombineCals

Format

Description

Parameters

ORDSYS.Calendar.CombineCals(
call ORDSYS.ORDTCalendar,
cal2 ORDSYS.ORDTCalendar,
[startDate DATE,
endDate DATE,]
equalFlag OUT INTEGER
) RETURN ORDSYS.ORDTCalendar;

Combines two calendars. The CombineCals function is provided primarily for use
in developing functions that operate on two time series (such as the TSAdd func-
tion).

call
The first calendar to be combined.

cal2
The second calendar to be combined.

startDate

Starting date for the resulting calendar. If startDate is not specified, the starting date
is the starting date for the calendars, or the higher (later) of the starting dates if
they are different.

endDate

Ending date for the resulting calendar. If endDate is not specified, the ending date is
the ending date for the calendars, or the lower (earlier) of the ending dates if they
are different.

4-2 Oracle8 Time Series Cartridge User's Guide



CombineCals

Usage

Example

equalFlag
Contains 1 if the input calendars are equal, and 0 if the input calendars are not
equal.

If the frequencies of the two calendars are not equal, the function returns NULL.

If the aligned patterns of the two calendars are not equal, the function returns
NULL.

If startDate is not specified, the starting date of the resulting calendar is the later of
the starting dates of the two calendars, that is, resulting minDate = max(minDatel,
minDate2).

If endDate is not specified, the ending date of the resulting calendar is the earlier of
the ending dates of the two calendars, that is, resulting maxDate = min(maxDatel,
maxDate2).

The function intersects the on-exception lists of the two calendars. For example, if
call has 30-Mar and 29-Jun as on-exceptions and cal2 has 29-Jun and 28-Sep as on-
exceptions, the resulting calendar has only 29-Jun as an on-exception.

The function performs a union of the off-exceptions of the two calendars. For exam-
ple, if call has 01-Jan and 04-Jul as off-exceptions and cal2 has 01-Jan and 14-Jul as
off-exceptions, the resulting calendar has 01-Jan, 04-Jul, and 14-Jul as off-exceptions.

CombineCals and IntersectCals differ as follows:

« CombineCals requires the frequencies and the aligned patterns of the two cal-
endars to be equal, whereas IntersectCals requires only that the frequencies be
equal. However, IntersectCals does require that the patterns be of the same
length.

« CombineCals lets you specify starting and ending dates for the resulting calen-
dar, whereas IntersectCals does not let you specify starting and ending dates.

Combine two calendars (GENERIC-CAL1 and GENERIC-CALZ2), then intersect the
two calendars:

CONNECT CRDOTUSER CROTUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

Calendar Functions: Reference 4-3



CombineCals

tstCal 1 CROSYS. CROTCAl endar ;
tst Cal 2 CROSYS. CROTCAl endar ;
resul t Cal CGRDSYS. CRDICal endar ;
equal Fl ag | NTEGER

dummyVal | NTEGER

BEG N

-- Select the calendars GENER GCALL into tstCal 1
-- and GENERGCAL2 into tstCal 2

-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal 1

FROM CRDTDEV. st ockdeno_cal endars cal
WHERE cal .nane =’ (ENER G CALT ;

SELECT val ue(cal) INTOtstCal 2

FROM CRDTDEV. st ockdeno_cal endars cal
WHERE cal .nane =’ (ENER G CAL?' ;

-- Dsplay the cal endars tstCal 1l and tstCal 2.
SELECT CGRDSYS. Ti neSeri es. O spl ay(tst Gal 1) | NTO durmyVal FROM dual ;
SELECT CGRDSYS. Ti neSeri es. O spl ay(tst Gal 2) | NTO durmyVal FROM dual ;

-- Gonbine tstCal 1 and tstCal 2

resul tGal := CROSYS Cal endar. Conbi neCal s(tstCal 1, tstCal 2, equal Fl ag);
SELECT CRDSYS. TimeSeries. D spl ay(resultCal, 'result of ConbineCal s’)

I NTO durmyVal

FROM dual ;

DBV QJTPUT. PUT_LINK"equal Hag ="' || equal H ag);

-- Intersect tstCall and tstCal 2

resultCal := CROSYS Calendar. IntersectCal s(tstCal 1, tstCal 2);

SELECT ORDSYS. Ti neSeries. D spl ay(resultCal, 'result of IntersectCals’)
I NTO durmyVal

FROM dual ;

BEND,
/

This example might produce the following output:

Cal endar Name = GENER G CAL1
Frequency = 4
M nDat e = 01/01/1996 00: 00: 00
MaxDat e = 12/ 31/1996 00: 00: 00
patBits:

4-4 Oracle8 Time Series Cartridge User's Guide



CombineCals

0111110
pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons

01/21/1996 00: 00: 00 02/ 03/ 1996

04/ 27/ 1996 00: 00: 00 05/ 19/ 1996

07/ 07/ 1996 00: 00: 00 08/ 04/ 1996
of f Excepti ons :

01/ 08/ 1996 00: 00: 00 02/ 02/ 1996

04/ 04/ 1996 00: 00: 00 05/ 08/ 1996

07/ 09/ 1996 00: 00: 00

Cal endar Name = GENER G CAL2

Frequency = 4

M nDate = 01/01/1996 00: 00: 00
MaxDat e = 12/31/1997 00: 00: 00
patBits:

1111100
pat Anchor = 01/08/ 1996 00: 00: 00
onExcept i ons

07/ 07/ 1996 00: 00: 00 08/ 04/ 1996
10/ 13/ 1996 00: 00: 00 11/10/ 1996
01/ 04/ 1997 00: 00: 00 02/ 09/ 1997
04/ 05/ 1997 00: 00: 00 05/ 11/ 1997
of f Excepti ons :
07/ 09/ 1996 00: 00: 00 08/ 05/ 1996
10/ 23/ 1996 00: 00: 00 11/19/ 1996
01/ 01/ 1997 00: 00: 00 02/ 12/ 1997
04/ 07/ 1997 00: 00: 00 05/ 05/ 1997

result of Conbi neCals :

Frequency = 4
M nDate = 01/01/1996 00: 00: 00
MaxDat e = 12/31/1996 00: 00: 00
patBits:

0111110
pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons

07/ 07/ 1996 00: 00: 00 08/ 04/ 1996
of f Excepti ons :

01/ 08/ 1996 00: 00: 00 02/ 02/ 1996

04/ 04/ 1996 00: 00: 00 05/ 08/ 1996

07/ 09/ 1996 00: 00: 00 08/ 05/ 1996

10/ 23/ 1996 00: 00: 00 11/19/ 1996

equal Flag = 0

00:
00:
00:

00:
00:

00:
00:
00:
00:

00:
00:
00:
00:

00:

00:
00:
00:
00:

00:
00:
00:

00:
00:

00:
00:
00:
00:

00:
00:
00:
00:

00:

00:
00:
00:
00:

00
00
00

00
00

00
00
00
00

00
00
00
00

00

00
00
00
00

03/ 24/ 1996
06/ 23/ 1996
09/ 15/ 1996

03/ 05/ 1996
06/ 25/ 1996

09/ 15/ 1996
12/ 14/ 1996
03/ 08/ 1997
06/ 08/ 1997

09/ 10/ 1996
12/ 12/ 1996
03/ 04/ 1997
06/ 09/ 1997

09/ 15/ 1996

03/ 05/ 1996
06/ 25/ 1996
09/ 10/ 1996
12/ 12/ 1996

00:
00:
00:

00:
00:

00:
00:
00:
00:

00:
00:
00:
00:

00:

00:
00:
00:
00:

00:
00:
00:

00:
00:

00:
00:
00:
00:

00:
00:
00:
00:

00:

00:
00:
00:
00:

00
00
00

00
00

00
00
00
00

00
00
00
00

00

00
00
00
00

Calendar Functions: Reference 4-5



CombineCals

result of IntersectCals :

Frequency = 4

M nDate = 01/01/1996 00: 00: 00

NaxDat e
patBits:
1111100

12/ 31/ 1996 00: 00: 00

pat Anchor = 01/08/ 1996 00: 00: 00

onExcept i ons
07/ 07/ 1996 00: 00: 00
of f Excepti ons :
01/ 08/ 1996 00: 00: 00
04/ 04/ 1996 00: 00: 00
07/ 09/ 1996 00: 00: 00
10/ 23/ 1996 00: 00: 00

4-6 Oracle8 Time Series Cartridge User's Guide

08/ 04/ 1996 00: 00: 00

02/ 02/ 1996 00: 00: 00
05/ 08/ 1996 00: 00: 00
08/ 05/ 1996 00: 00: 00
11/ 19/ 1996 00: 00: 00

09/ 15/ 1996 00: 00: 00

03/ 05/ 1996 00: 00: 00
06/ 25/ 1996 00: 00: 00
09/ 10/ 1996 00: 00: 00
12/ 12/ 1996 00: 00: 00



DeleteExceptions

DeleteExceptions

Format

Description

Parameters

Usage

ORDSYS.Calendar.DeleteExceptions(
inputCal IN ORDSYS.ORDTCalendar,
delExcDate IN DATE
) RETURN ORDSYS.ORDTCalendar;

or

ORDSYS.Calendar.DeleteExceptions(
inputCal IN ORDSYS.ORDTCalendar,
delExcTab IN ORDSYS.ORDTDateTah
) RETURN ORDSYS.ORDTCalendar;

Deletes from the specified calendar all exceptions that either match a specified date
(delExcDate) or are included in a table of dates (delExcTab), and returns the resulting
calendar.

inputCal
The calendar from which one or more exceptions are to be deleted.

delExcDate
The date to be deleted from the exceptions of the calendar.

delExcTab
A table of dates to be deleted from the exceptions of the calendar.

If a date to be deleted is in either the on-exception list or off-exception list of the cal-
endar, the function deletes the date from the appropriate list.

Calendar Functions: Reference 4-7



DeleteExceptions

Example

If delExcDate is not in either the on-exception list or off-exception list of the calen-
dar, the function returns the input calendar with no changes.

For any date in delExcTab that is not in either the on-exception list or off-exception
list of the calendar, the function ignores the date. If no date in delExcTab is in either
the on-exception list or off-exception list of the calendar, the function returns the
input calendar with no changes.

Delete some exceptions from a calendar:

CONNECT CROTUSER CROTUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

tstGal CRDSYS CRDICal endar ;

t st DTab CROSYS. or dt Dat eTab;
resul t Cal GRDSYS. CRDICal endar ;
dummyVal | NTEGER

rel OFfset | NTECGER

BEG N

-- Select a calendar (say, GENER GCALL) into tstGal
-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal

FROM CRDTDEV. st ockdeno_cal endars cal

WHERE cal .nane =’ (ENER G CALT ;

-- D splay the cal endar.
SELECT CRDSYS. Ti neSeri es. D spl ay(tstCal) | NTO dummyVal FROM dual ;
DBVB QUTPUT. NEWLI NE,

-- Delete sone exceptions in tstCal.
tstDrab : = GRDSYS. GRDTDat eTab(

'01/21/1996', -- ON Exception
' 05/ 08/ 1996’ , -- CFF Exception
' 08/ 04/1996', -- ON Exception

' 07/ 09/ 1996’ ) ; -- CFF Exception
SELECT CGRDSYS. Ti neSeri es. D spl ay(tst Dlab, ' | nput DateTab')
I NTO durmyVal
FROM dual ;
resul tGal : = CROSYS Cal endar . Del et eExceptions(tstCal, tstDrab);

4-8 Oracle8 Time Series Cartridge User's Guide



DeleteExceptions

SELECT CRDSYS. Ti meSeri es. D spl ay(result Gal ) | NTO dummyVal
FROM dual ;

BND,
/

This example might produce the following output. The second display of informa-
tion about GENERIC-CAL1 does not include the deleted on-exceptions and off-
exceptions.

Gl endar Nane = GENER G CAL1
Frequency = 4
M nDate = 01/01/1996 00: 00: 00
MuxDate = 12/31/1996 00: 00: 00
patBits:
0111110
pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons
01/ 21/ 1996 00: 00: 00 02/ 03/ 1996 00: 00: 00 03/ 24/ 1996 00: 00: 00
04/ 27/ 1996 00: 00: 00 05/ 19/ 1996 00: 00: 00 06/ 23/ 1996 00: 00: 00
07/ 07/ 1996 00: 00: 00 08/ 04/ 1996 00: 00: 00 09/ 15/ 1996 00: 00: 00
of f Excepti ons :
01/ 08/ 1996 00: 00: 00 02/ 02/ 1996 00: 00: 00 03/ 05/ 1996 00: 00: 00
04/ 04/ 1996 00: 00: 00 05/ 08/ 1996 00: 00: 00 06/ 25/ 1996 00: 00: 00
07/ 09/ 1996 00: 00: 00

I nput Dat eTab :

01/21/1996 00: 00: 00 05/ 08/ 1996 00: 00: 00 08/ 04/ 1996 00: 00: 00
07/ 09/ 1996 00: 00: 00

CGal endar Nane = GENER G CAL1

Frequency = 4

M nDate = 01/01/1996 00: 00: 00

MaxDat e = 12/31/1996 00: 00: 00

patBits:

0111110

pat Anchor = 01/07/ 1996 00: 00: 00

onExcept i ons
02/ 03/ 1996 00: 00: 00 03/ 24/ 1996 00: 00: 00 04/ 27/ 1996 00: 00: 00
05/ 19/ 1996 00: 00: 00 06/ 23/ 1996 00: 00: 00 07/ 07/ 1996 00: 00: 00
09/ 15/ 1996 00: 00: 00

of f Excepti ons :
01/ 08/ 1996 00: 00: 00 02/ 02/ 1996 00: 00: 00 03/ 05/ 1996 00: 00: 00
04/ 04/ 1996 00: 00: 00 06/ 25/ 1996 00: 00: 00

Calendar Functions: Reference 4-9



DisplayValCal Procedure

DisplayValCal Procedure

Format
ORDSYS.Calendar.DisplayValCal(

validFlag IN INTEGER,

outMessage IN VARCHAR?2,

invOnExc IN ORDSYS.ORDTDateTab,
invOffExc IN ORDSYS.ORDTDateTab,
impOnExc IN ORDSYS.ORDTDateTab,
impOffExc IN ORDSYS.ORDTDateTab,
inputCal IN ORDSYS.ORDTCalendar,
mesg IN VARCHAR2

);

Description
Displays the results returned by the ValidateCal function.

Note: DisplayValCal is a procedure, not a function. Procedures
do not return values.

Parameters

validFlag
The return value from the ValidateCal function call:

Value Meaning

0  The calendar is valid. No errors were found.
1  Correctable errors were found and corrected. The resulting calendar is valid.

-1 Uncorrectable errors were found. The calendar is not valid.

4-10 Oracle8 Time Series Cartridge User's Guide



DisplayValCal Procedure

Usage

Example

outMessage

Message output by ValidateCal describing how the calendar was repaired (if the
return value = 1) or why the calendar could not be repaired (if the return

value = -1).

invOnExc
Table of the invalid on-exceptions found in the calendar.

invOffExc
Table of the invalid off-exceptions found in the calendar.

impOnExc
Table of the imprecise on-exceptions found in the calendar.

impOffExc
Table of the imprecise off-exceptions found in the calendar.

inputCal
The calendar returned by ValidateCal (repaired if necessary).

mesg
Optional message.

This procedure is intended to be used with the ValidateCal function. See the infor-
mation on ValidateCal in this chapter.

Use the IsValidCal and ValidateCal functions and the DisplayValCal procedure
with an invalid calendar:

CONNECT CRDOTUSER CROTUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

CEQLARE

out Message var char 2(32750) ;

i nvOnExc CRDSYS. CRDTDat eTab;
invdfExc CRDSYS. CRDTDat eTab;
i npQnExc CRDSYS. CRDTDat eTab;
inpdfExc CRDSYS CRDTDat eTab;
dumyval i nt eger;

Calendar Functions: Reference 4-11



DisplayValCal Procedure

val i dFl ag i nt eger;
tstCl 1l QROSYS. RDTCGal endar @ =
CROSYS. CRDTCal endar (
0,
" CALENDAR FQOD
4,

CROSYS. (RDTPat t er n( GRDBYS. (RDTPatternBits(1, 1,1,1,1,0, 0),
TO DATE(’ 01-08-1996 01:01:01')),
TO DATE(’ 01-01-1975"),
TO DATH(’ 01- 01- 1999’ ),

CROSYS. GRDTEXcept i ons(

TO DATH(' 02-03-1969' ), -- Date < mnDate,

TO DATH(' 02-14-1969' ), -- Date < mnDate,

TO DATH(' 02-03-1999'), -- Date > nmaxDate,

TO DATE(® 02-17-1999'), -- Date > naxDate,

TO DATH(' 12-31-1995' ), -- Maps to O in pattern (Sunday)

TO DATH(' 01-13-1996' ), -- Maps to O in pattern (Saturday)

TO DATH(' 02-24-1996' ), -- Maps to O in pattern (Saturday)

TO DATH(' 03-30-1996' ), -- Maps to O in pattern (Saturday)

TO DATH(’ 02-02-1996 01:01:01'), -- |nprecise
TO DATH(’ 03-04-1996 01:01:01'), -- |nprecise
TO DATH’ 04-05-1996 02: 02: 02'), -- |nprecise

TO DATE(’ 03-25-1996' ), --
TO DATE(’ 01-22-1996' ), --
TO DATE(’ 02- 12- 1996’ ),
TO DATE(’ 04- 30- 1996’ ),

Valid of f-exception
Valid, but out of sequence

NULL, -- Null date

TO DATH(' 02-12-1996' ), -- Duplicate date within GFs
NULL, -- Null date

TO DATH(' 04-30-1996' ), -- Duplicate of f-exception
NULL, -- Null date

TO DATH’ 03-25-1996' ), --
TO DATH’ 01-22-1996' ), --
TO DATE(® 01-17-1996' ), --
TO DATH(’ 05-28-1996' ), --
TO DATH ' 06-18-1996' ), --
TO DATH(’ 04-23-1996' ), --
TO DATH(’ 02- 02- 1996’ ) ,

TO DATH(’ 03- 04- 1996’ ) ,

TO DATH ' 05- 06- 1997 )),

CRDSYS. CROTEXcept i ons(

TO DATH ' 02- 08-1969' ), --
TO DATH ' 02-15-1969' ), --
TO DATH ' 02-13-1999'), --
TO DATH ' 02-20-1999' ), --

Dupl i cate of f-exception
Dupl i cate of f-exception
Added to on- and of f-exceptions
Added to on- and of f-exceptions
Added to on- and of f-exceptions
Added to on- and of f-exceptions

Date < mnDat e,
Date < mnDat e,
Dat e > naxDat e,
Dat e > naxDat e,

4-12 Oracle8 Time Series Cartridge User's Guide



DisplayValCal Procedure

TO DATH(' 01-03-1996' ), -- Mps to 1 in pattern (Veédnesday)
TO DATH(' 02-19-1996' ), -- Myps to 1 in pattern (Mnday)
TO DATH(' 03-18-1996"), -- Myps to 1 in pattern (Mnday)
TO DATH(' 05-27-1996"), -- Myps to 1 in pattern (Mnday)
TO DATH(’ 03-23-1996 01:01:01'), -- |nprecise

TO DATH(' 02-18-1996 01:01:01'), -- |nprecise

TO DATH’ 05-26-1996 01:01:01'), -- |nprecise

TO DATH(' 01-13-1996' ), -- Valid on-exception

TO DATH' 01-14-1996' ), -- Valid on-exception

NULL, -- Nl date

NULL, -- Nl date

TO DATH(' 02-24-1996' ), -- Valid on-exception

TO DATH(' 03-23-1996' ), -- Valid on-exception

TO DATH(' 01-13-1996' ), -- Duplicate on-exception

TO DATH(' 01-14-1996' ), -- Duplicate on-exception

TO DATH(' 02-24-1996' ), -- Duplicate on-exception

TO DATH(' 03-23-1996' ), -- Duplicate on-exception

TO DATH(' 01-17-1996' ), -- Added to on- and of f-exceptions
TO DATH(' 05-28-1996' ), -- Added to on- and of f-exceptions
TO DATH(' 06-18-1996' ), -- Added to on- and of f-exceptions
TO DATH(' 04-23-1996' ), -- Added to on- and of f-exceptions
TO DATH(' 01-06-1996' ), -- Valid, but out of sequence

TO DATE(’ 02- 03- 1996’ ),
TO DATE(’ 05- 04- 1997’ ))

);
BEQ N
SH ECT CRDSYS. TI MESER ES. D spl ay(tstCal 1, "tstCal 1) | NTO dummyval
FROM dual ;
val idFl ag : = CRDSYS. CALENDAR | sVal i dCal (tstCal 1);
IKval idFlag = 0)
THEN
val i dFl ag : = CRDSYS. CALENDAR Val i dat eCal (
tstCal 1, out Message, invnExc, invdfExc, inpOnExc, inmpdfExc

E

CROSYS. TI MESER ES. D spl ayVal Gal (
val i dFl ag,
out Message,
i nvCnhExc,
i nva f Bxc,
i npnExc,
i npdf f Exc,
tstCal 1,
"Your Message’

)i

Calendar Functions: Reference 4-13



DisplayValCal Procedure

END | F;
BEND,
/

This example might produce the following output:
tstCGll:

Gl endar Nane = CALENDAR FQO

Frequency = 4

M nbate = 01/01/1975 00: 00: 00

MuxDate = 01/01/1999 00: 00: 00

patBits:

1111100

pat Anchor = 01/08/ 1996 01: 01: 01

onExcept i ons
02/ 08/ 1969 00: 00: 00 02/ 15/ 1969 00: 00: 00 02/ 13/ 1999 00: 00: 00
02/ 20/ 1999 00: 00: 00 01/ 03/ 1996 00: 00: 00 02/ 19/ 1996 00: 00: 00
03/ 18/ 1996 00: 00: 00 05/ 27/ 1996 00: 00: 00 03/ 23/ 1996 01:01: 01
02/ 18/ 1996 01: 01: 01 05/ 26/ 1996 01:01: 01 01/ 13/ 1996 00: 00: 00
01/ 14/ 1996 00: 00: 00
02/ 24/ 1996 00: 00: 00 03/ 23/ 1996 00: 00: 00 01/ 13/ 1996 00: 00: 00
01/ 14/ 1996 00: 00: 00 02/ 24/ 1996 00: 00: 00 03/ 23/ 1996 00: 00: 00
01/ 17/ 1996 00: 00: 00 05/ 28/ 1996 00: 00: 00 06/ 18/ 1996 00: 00: 00
04/ 23/ 1996 00: 00: 00 01/ 06/ 1996 00: 00: 00 02/ 03/ 1996 00: 00: 00
05/ 04/ 1997 00: 00: 00

of f Excepti ons :
02/ 03/ 1969 00: 00: 00 02/ 14/ 1969 00: 00: 00 02/ 03/ 1999 00: 00: 00
02/ 17/ 1999 00: 00: 00 12/ 31/ 1995 00: 00: 00 01/ 13/ 1996 00: 00: 00
02/ 24/ 1996 00: 00: 00 03/ 30/ 1996 00: 00: 00 02/ 02/ 1996 01:01: 01
03/ 04/1996 01: 01: 01 04/ 05/ 1996 02: 02: 02 03/ 25/ 1996 00: 00: 00
01/ 22/ 1996 00: 00: 00 02/ 12/ 1996 00: 00: 00 04/ 30/ 1996 00: 00: 00

02/ 12/ 1996 00: 00: 00

04/ 30/ 1996 00: 00: 00 03/ 25/ 1996 00: 00: 00
01/ 22/ 1996 00: 00: 00 01/ 17/ 1996 00: 00: 00 05/ 28/ 1996 00: 00: 00
06/ 18/ 1996 00: 00: 00 04/ 23/ 1996 00: 00: 00 02/ 02/ 1996 00: 00: 00
03/ 04/ 1996 00: 00: 00 05/ 06/ 1997 00: 00: 00

D spl ayVal Gal Your Message:
TS WA\ the input cal endar has rectifiable errors. See the nessage for details
nessage out put by val i dat eCal :

TS WR\ fixed precision of the pattern anchor date

4-14 Oracle8 Time Series Cartridge User's Guide



DisplayValCal Procedure

TS WR\ renoved superfluous dates in the on exception list (refer invalidnExc)
TS WR\ fixed inprecise dates in the on exception list (refer inpreci seOhExc)

TS WR\ renoved null dates in the on exception |ist

TS WR\ sorted the on exceptions |ist

TS WR\ renoved duplicate dates in the on exceptions |ist
TS WR\ renoved superfluous dates in off exceptions list (refer invalidCfExc)
TS WR\ fixed inprecise dates in the off exception list (refer inprecisedfExc)

TSWR\ renoved null dates in the off exception list

TS WR\ sorted the off exceptions |ist

TS WR\ renoved duplicate dates in the off exceptions Ilist
TS WR\ the on exceptions list was tri med between cal endar ninDate & naxDate
TS WR\ the off exceptions list was trinmed between cal endar mnDate & maxDate

list of invalid on exceptions :

01/ 03/ 1996 00: 00: 00
05/ 27/ 1996 00: 00: 00
06/ 18/ 1996 00: 00: 00

02/ 19/ 1996 00: 00: 00
01/ 17/ 1996 00: 00: 00
04/ 23/ 1996 00: 00: 00

list of invalid off exceptions :

12/ 31/ 1995 00: 00: 00
03/ 30/ 1996 00: 00: 00

01/ 13/ 1996 00: 00: 00

list of inprecise on exceptions :

03/23/1996 01: 01: 01 02/ 18/ 1996 01:01: 01
list of inprecise off exceptions :

02/ 02/ 1996 01:01: 01 03/ 04/ 1996 01:01: 01

the validated cal endar :

Gl endar Nane = CALENDAR FQO
Frequency = 4
M nbate = 01/01/1975 00: 00: 00
MaxDat e = 01/ 01/1999 00: 00: 00
patBits:
1111100
pat Anchor = 01/08/ 1996 00: 00: 00
onExcept i ons
01/ 06/ 1996 00: 00: 00
02/ 03/ 1996 00: 00: 00
03/ 23/ 1996 00: 00: 00
of f Excepti ons :

01/ 13/ 1996 00: 00: 00
02/ 18/ 1996 00: 00: 00
05/ 26/ 1996 00: 00: 00

03/ 18/ 1996 00: 00: 00
05/ 28/ 1996 00: 00: 00

02/ 24/ 1996 00: 00: 00

05/ 26/ 1996 01:01: 01

04/ 05/ 1996 02: 02: 02

01/ 14/ 1996 00: 00: 00
02/ 24/ 1996 00: 00: 00
05/ 04/ 1997 00: 00: 00

Calendar Functions: Reference 4-15



DisplayValCal Procedure

4-16 Oracle8 Time Series Cartridge User's Guide

01/17/ 1996 00: 00: 00
02/12/ 1996 00: 00: 00
04/ 05/ 1996 00: 00: 00
05/ 28/ 1996 00: 00: 00

01/ 22/ 1996 00: 00: 00
03/ 04/ 1996 00: 00: 00
04/ 23/ 1996 00: 00: 00
06/ 18/ 1996 00: 00: 00

02/ 02/ 1996 00: 00: 00
03/ 25/ 1996 00: 00: 00
04/ 30/ 1996 00: 00: 00
05/ 06/ 1997 00: 00: 00



EqualCals

EqualCals

Format

Description

Parameters

Usage

ORDSYS.Calendar.EqualCals(
call ORDSYS.ORDTCalendar,
cal2 ORDSYS.ORDTCalendar
[, startDate DATE
, endDate DATE]
) RETURN BINARY_INTEGER;

Checks if two calendars (completely or within a specified date range) are equal.

call
The first calendar to be checked.

cal2
The second calendar to be checked.

startDate

Starting date for the checking. If startDate is not specified, the starting date is the
starting date for the calendars, or the higher (later) of the starting dates if they are
different.

endDate

Ending date for the checking. If endDate is not specified, the ending date is the end-
ing date for the calendars, or the lower (earlier) of the ending dates if they are dif-
ferent.

The function checks if the frequencies, off-exceptions, on-exceptions, and aligned
patterns are the same for the two calendars. If they are all the same, the function
returns 1; if they are not all the same, the function returns 0.

Calendar Functions: Reference 4-17



EqualCals

The function does not require the calendars to have the same starting and ending
dates.

Example
Check if two calendars (GENERIC-CAL1 and GENERIC-CALZ2) are equal:

CONNECT CROTUSER CROTUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

tstCGal 1 CROSYS. CROTCAl endar ;
tst Cal 2 CROSYS. CROTCal endar ;
resul t Cal GRDSYS. CRDICal endar ;
equal Fl ag | NTEGER

dummyVal | NTEGER

BEG N

-- Select the calendars GENER G CALL into tstCal 1
-- and GENERGCAL2 into tstCal 2

-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal 1

FROM CRDTDEV. st ockdeno_cal endars cal
WHERE cal .nane =’ GENER G CALT ;

SELECT val ue(cal) INTOtstCal 2

FROM CRDTDEV. st ockdeno_cal endars cal
WHERE cal .nane =’ (BNER G CAL? ;

-- Dsplay the cal endars tstCal 1 and tstCal 2.
SELECT CGRDSYS. Ti neSeri es. O spl ay(tst Gal 1) | NTO dumrmyVal FROM dual ;
SELECT CGRDSYS. Ti neSeri es. O spl ay(tst Gal 2) | NTO durmyVal FROM dual ;

-- Qonpare tstGall and tstCal 2 for equality.

DBVB QUTPUT. NEWLI NE,

equal H ag : = CRDSYS. Cal endar . Equal Gal s(tstCal 1, tstCal 2);

DBVB QUJTPUT. PUT_LI NK(' Equal CGal s(CGENERG CALL, (ENERGCAL2) =’ || equal H ag);

BEND,
/

This example might display the following output. In this example, the returned
value of 0 indicates that the calendars are not equal.

Cal endar Name = GENER G CAL1

4-18 Oracle8 Time Series Cartridge User's Guide



EqualCals

Frequency = 4

M nDate = 01/01/1996 00: 00: 00
MuxDate = 12/ 31/1996 00: 00: 00
patBits:

0111110
pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons

01/ 21/ 1996 00: 00: 00 02/ 03/ 1996

04/ 27/ 1996 00: 00: 00 05/ 19/ 1996

07/ 07/ 1996 00: 00: 00 08/ 04/ 1996
of f Excepti ons :

01/ 08/ 1996 00: 00: 00 02/ 02/ 1996

04/ 04/ 1996 00: 00: 00 05/ 08/ 1996

07/ 09/ 1996 00: 00: 00

Cal endar Name = GENER G CAL2

Frequency = 4

M nDate = 01/01/1996 00: 00: 00
MaxDat e = 12/31/1997 00: 00: 00
patBits:

1111100
pat Anchor = 01/08/ 1996 00: 00: 00
onExcept i ons

07/ 07/ 1996 00: 00: 00 08/ 04/ 1996
10/ 13/ 1996 00: 00: 00 11/10/ 1996
01/ 04/ 1997 00: 00: 00 02/ 09/ 1997
04/ 05/ 1997 00: 00: 00 05/ 11/ 1997
of f Excepti ons :
07/ 09/ 1996 00: 00: 00 08/ 05/ 1996
10/ 23/ 1996 00: 00: 00 11/19/ 1996
01/ 01/ 1997 00: 00: 00 02/ 12/ 1997
04/ 07/ 1997 00: 00: 00 05/ 05/ 1997

Equal Cal s(GENER G CAL1, GENER G CAL2) =

00:
00:
00:

00:
00:

00:
00:
00:
00:

00:
00:
00:
00:

0

00:
00:
00:

00:
00:

00:
00:
00:
00:

00:
00:
00:
00:

00 03/ 24/ 1996 00: 00: 00
00 06/ 23/ 1996 00: 00: 00
00 09/ 15/ 1996 00: 00: 00
00 03/ 05/ 1996 00: 00: 00
00 06/ 25/ 1996 00: 00: 00
00 09/ 15/ 1996 00: 00: 00
00 12/ 14/ 1996 00: 00: 00
00 03/ 08/ 1997 00: 00: 00
00 06/ 08/ 1997 00: 00: 00
00 09/ 10/ 1996 00: 00: 00
00 12/ 12/ 1996 00: 00: 00
00 03/ 04/ 1997 00: 00: 00
00 06/ 09/ 1997 00: 00: 00

Calendar Functions: Reference 4-19



GetOffset

GetOffset

Format

Description

Parameters

Usage

ORDSYS.TimeSeries.GetOffset(
inputCal IN ORDSYS.ORDTCalendar,
origin_date IN DATE,
reference_date IN DATE
) RETURN INTEGER;

Given a calendar, one date (origin_date), and another date (reference_date), returns
the number of timestamps that the second date is offset from the first.

inputCal
The input calendar.

origin_date
Date from which the offset is to be computed.

reference_date
Date whose offset from origin_date is to be returned.

The function considers the frequency, pattern, and exceptions of the calendar.

The returned integer is positive if reference_date is one or more timestamps in the
future with respect to origin_date, and negative if it is in the past with respect to
origin_date. For example, assume that the calendar includes Mondays through Fri-
days, that 04-Jul-1997 (Friday) is an off-exception, and that 03-Jul-1997 (Thursday)
is the origin_date. If 10-Jul-1997 (Thursday) is the reference_date, the returned offset
is 4; if the reference_date is 01-Jul-1997 (Monday), the returned offset is -2.

If origin_date and reference_date are the same, the function returns 0 (zero).

An exception is returned if the calendar has an empty or null pattern.

4-20 Oracle8 Time Series Cartridge User's Guide



GetOffset

Example

Return the offset of 05-Jun-1996 from 04-Mar-1996 in the GENERIC-CAL1 calendar:

CONNECT CROTUSER CROTUSER
SET SERVERQUTPUT CN

ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

tstGal CRDSYS CRDICal endar;
tst Dat el DATE

t st Dat e2 DATE

result | NTECER

dummyVal | NTEGER

BEG N

-- Select a calendar (say, GENER GCALL) into tstCal

-- from st ockdeno_cal endars.
SELECT val ue(cal) INTOtstCal

FROM CRDTDEV. st ockdeno_cal endars cal

WHERE cal .nane =’ GENER G CALT ;

-- D splay the cal endar.

SELECT CRDSYS. Ti neSeri es. D spl ay(tstCal ) | NTO dummyVal FROM dual ;

DBVS_QUTPUT. NEWLI NE

-- Get offset of 05-JUN 1996 from 04- MAR 1996.
tstDatel : = TO DATH' 04/ 03/ 1996’ ) ;
tstDate2 : = TO DATH' 06/ 05/ 1996’ ) ;

result := CROSYS Gal endar. Get OFfset (tstCal , tstDatel, tstDate2);

DBV _QUTPUT. PUT LI NE(’ Get G f set (°

BEND,
/

|| tstDatel ||’ , ’ || tstDate2

[17) =" [I result);

This example might produce the following output. In this example, 05-Jun-1996 is

45 timestamps later than 04-Mar-1996.

CGal endar Nane = GENER G CAL1
Frequency = 4
M nDate = 01/01/1996 00: 00: 00
MuxDate = 12/ 31/1996 00: 00: 00
patBits:

0111110

pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons

Calendar Functions: Reference 4-21



GetOffset

01/21/1996 00: 00: 00

04/ 27/ 1996 00: 00: 00

07/ 07/ 1996 00: 00: 00
of f Excepti ons :

01/08/ 1996 00: 00: 00

04/ 04/ 1996 00: 00: 00

07/ 09/ 1996 00: 00: 00

02/ 03/ 1996 00: 00: 00
05/ 19/ 1996 00: 00: 00
08/ 04/ 1996 00: 00: 00

02/ 02/ 1996 00: 00: 00
05/ 08/ 1996 00: 00: 00

03/ 24/ 1996 00: 00: 00
06/ 23/ 1996 00: 00: 00
09/ 15/ 1996 00: 00: 00

03/ 05/ 1996 00: 00: 00
06/ 25/ 1996 00: 00: 00

Get O f set (04/ 03/ 1996 00: 00: 00 , 06/ 05/ 1996 00: 00: 00) = 45

4-22 Oracle8 Time Series Cartridge User's Guide



InsertExceptions

InsertExceptions

Format

Description

Parameters

Usage

ORDSYS.Calendar.InsertExceptions(
inputCal IN ORDSYS.ORDTCalendar,
newExcDate IN DATE
) RETURN ORDSYS.ORDTCalendar;

or

ORDSYS.Calendar.InsertExceptions(
inputCal IN ORDSYS.ORDTCalendar,
newExcTab IN ORDSYS.ORDTDateTab
) RETURN ORDSYS.ORDTCalendar;

Inserts into the specified calendar all exceptions that either match a specified date
(newExcDate) or are included in a table of dates (newExcTab), and returns the result-
ing calendar.

inputCal
The calendar into which one or more exceptions are to be inserted.

newExcDate
The date to be inserted as an exception in the calendar.

newExcTab
A table of dates to be inserted as exceptions in the calendar.

For each date to be inserted, the function inserts it in the appropriate list (off-excep-
tions or on-exceptions), according to the frequency and pattern of the calendar.

Calendar Functions: Reference 4-23



InsertExceptions

If a date to be inserted is already an exception in the calendar, the function ignores
the request to insert the date.

If newExcDate or newExcTab is empty or null, or if all dates to be inserted already
exist in the calendar as exceptions, the function returns the input calendar with no
changes.

Example
Insert some exceptions into a calendar.

CONNECT CROTUSER CROTUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

tstGal CRDSYS CRDICal endar ;

t st DTab CROSYS. or dt Dat eTab;
resul t Cal GRDSYS. CRDICal endar ;
dummyVal | NTEGER

rel OFfset | NTECGER

BEG N

-- Select a calendar (say, GENER GCALL) into tstGal
-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal

FROM CRDTDEV. st ockdeno_cal endars cal

WHERE cal .nane =’ (ENER G CALT ;

-- D splay the cal endar.
SELECT CRDSYS. Ti neSeri es. D spl ay(tstCal) | NTO dummyVal FROM dual ;
DBVB QUTPUT. NEWLI NE,

-- Popul ate tstDrab with sone on- and of f-excepti ons.
tstDrab : = GRDSYS. GRDTDat eTab(

' 02/ 10/ 1996’ , -- ON Exception
' 07/ 09/ 1996’ , -- CFF Exception
'03/17/1996', -- ON Exception

' 04/ 08/ 1996’ ) ; -- CFF Exception
SELECT CGRDSYS. Ti neSeri es. D spl ay(tst Dlab, ' | nput DateTab')
I NTO durmyVal
FROM dual ;

-- Insert sone exceptions in tstCal.

4-24 Oracle8 Time Series Cartridge User's Guide



InsertExceptions

resul t Gal

1= CROSYS. Cal endar . | nsert Exceptions(tst Gal, tstDTab);

SELECT CRDSYS. Ti meSeri es. D spl ay(result Gal ) | NTO dummyVal

FROM dual ;

BEND,
/

This example might produce the following output. The second display of informa-
tion about GENERIC-CAL1 includes the added on-exceptions and off-exceptions.

Gl endar Nane =
Frequency = 4
M nDate = 01/01/1996 00: 00: 00
MuxDate = 12/ 31/1996 00: 00: 00
patBits:

0111110
pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons

GENER G CALL

01/ 21/ 1996 00: 00: 00 02/ 03/ 1996
04/ 27/ 1996 00: 00: 00 05/ 19/ 1996
07/ 07/ 1996 00: 00: 00 08/ 04/ 1996
of f Excepti ons :
01/ 08/ 1996 00: 00: 00 02/ 02/ 1996
04/ 04/ 1996 00: 00: 00 05/ 08/ 1996
07/ 09/ 1996 00: 00: 00
Input Dat eTab :
02/ 10/ 1996 00: 00: 00 07/ 09/ 1996
04/ 08/ 1996 00: 00: 00
CGal endar Nane = GENER G CAL1
Frequency = 4
M nDate = 01/01/1996 00: 00: 00
MaxDat e = 12/31/1996 00: 00: 00
patBits:

0111110
pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons

01/ 21/ 1996 00: 00: 00 02/ 03/ 1996

03/ 17/ 1996 00: 00: 00 03/ 24/ 1996

05/ 19/ 1996 00: 00: 00 06/ 23/ 1996

08/ 04/ 1996 00: 00: 00 09/ 15/ 1996
of f Excepti ons :

01/ 08/ 1996 00: 00: 00 02/ 02/ 1996

00:
00:
00:

00:
00:

00:

00:
00:
00:
00:

00:

00:
00:
00:

00:
00:

00:

00:
00:
00:
00:

00:

00 03/ 24/ 1996 00: 00: 00
00 06/ 23/ 1996 00: 00: 00
00 09/ 15/ 1996 00: 00: 00
00 03/ 05/ 1996 00: 00: 00
00 06/ 25/ 1996 00: 00: 00
00 03/ 17/ 1996 00: 00: 00
00 02/ 10/ 1996 00: 00: 00
00 04/ 27/ 1996 00: 00: 00
00 07/ 07/ 1996 00: 00: 00
00

00 03/ 05/ 1996 00: 00: 00

Calendar Functions: Reference 4-25



InsertExceptions

04/ 04/ 1996 00: 00: 00 04/ 08/ 1996 00: 00: 00 05/ 08/ 1996 00: 00: 00
06/ 25/ 1996 00: 00: 00 07/ 09/ 1996 00: 00: 00

4-26 Oracle8 Time Series Cartridge User's Guide



IntersectCals

IntersectCals

Format

Description

Parameters

Usage

ORDSYS.Calendar.IntersectCals(

call ORDSYS.ORDTCalendar,
cal2 ORDSYS.ORDTCalendar
) RETURN ORDSYS.ORDTCalendar;

Returns the intersection of two calendars.

call

The first calendar to be intersected.

cal2
The second calendar to be intersected.

The function performs an intersection of the two input calendars, as follows:

The starting date of the resulting calendar is the later of the starting dates of the
two calendars, that is, resulting minDate = max(minDatel, minDate2).

The ending date of the resulting calendar is the earlier of the ending dates of
the two calendars, that is, resulting maxDate = min(maxDatel, maxDate2).

The intersection of the aligned patterns is computed. For example, if both calen-
dars have a day frequency with Sunday as the first day, and if call has a pattern
of ’0,1,1,1,1,1,0’ and cal2 has a pattern of ’0,0,1,1,1,1,1°, the resulting pattern is
’0,0,1,1,1,1,0’ (that is, the calendar includes only Tuesdays, Wednesdays, Thurs-
days, and Fridays).

The intersection of the on-exception lists of the two calendars is computed. For
example, if call has 30-Mar and 29-Jun as on-exceptions and cal2 has 29-Jun
and 28-Sep as on-exceptions, the resulting calendar has only 29-Jun as an on-
exception.

Calendar Functions: Reference 4-27



IntersectCals

« The union of the off-exceptions of the two calendars is computed. For example,
if call has 01-Jan and 04-Jul as off-exceptions and cal2 has 01-Jan and 14-Jul as
off-exceptions, the resulting calendar has 01-Jan, 04-Jul, and 14-jul as off-excep-
tions.

If the frequencies of the two calendars are not equal, the function returns NULL.
Contrast this function with UnionCals, which performs a union of two calendars.
IntersectCals and CombineCals differ as follows:

« CombineCals requires the frequencies and the aligned patterns of the two cal-
endars to be equal, whereas IntersectCals requires only that the frequencies be
equal. However, IntersectCals does require that the patterns be of the same
length.

« CombineCals lets you specify starting and ending dates for the resulting calen-
dar, whereas IntersectCals does not let you specify starting and ending dates.

Example

Combine two calendars (GENERIC-CAL1 and GENERIC-CALZ2), then intersect the
two calendars:

CONNECT CROTUSER CROTUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

tstCal 1 CROSYS. CROTCAl endar ;
tst Gal 2 CROSYS. CROTCAl endar ;
resul t Cal GRDSYS. CRDICal endar ;
equal Fl ag | NTEGER

dummyVal | NTEGER

BEG N

-- Select the calendars GENER G CALL into tstCal 1
-- and GENERGCAL2 into tstCal 2

-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal 1

FROM CRDTDEV. st ockdeno_cal endars cal
WHERE cal .nane =’ (ENER G CALT ;

SELECT val ue(cal) INTOtstCal 2

FROM CRDTDEV. st ockdeno_cal endars cal
WHERE cal .nane =’ (BNER G CAL? ;

4-28 Oracle8 Time Series Cartridge User's Guide



IntersectCals

-- Dsplay the cal endars tstCal 1l and tstCal 2.
SELECT CGRDSYS. Ti neSeri es. D spl ay(tst Gal 1) | NTO durmyVal FROM dual ;
SELECT CGRDSYS. Ti neSeri es. D spl ay(tst Gal 2) | NTO durmyVal FROM dual ;

-- onbine tstCGal 1 and tstCal 2.

resul tGal := CROSYS Cal endar. Conbi neCal s(tstCal 1, tstCal 2, equal Fl ag);
SELECT CRDSYS. TimeSeries. D spl ay(resultCal, 'result of ConbineCal s’)

I NTO durmyVal

FROM dual ;

DBV QJTPUT. PUT_LINE"equal Hag ="' || equal H ag);

-- Intersect tstCall and tstCal 2.

resultCal := CROSYS Calendar. IntersectCal s(tstCal 1, tstCal 2);

SELECT ORDSYS. Ti neSeries. D spl ay(resultCal, 'result of IntersectCals’)
I NTO durmyVal

FROM dual ;

BEND,
/

This example might produce the following output:

Gl endar Nane = GENER G CAL1
Frequency = 4
M nDate = 01/01/1996 00: 00: 00
MuxDate = 12/31/1996 00: 00: 00
patBits:
0111110
pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons
01/21/1996 00: 00: 00 02/ 03/ 1996 00: 00: 00 03/ 24/ 1996 00: 00: 00
04/ 27/ 1996 00: 00: 00 05/ 19/ 1996 00: 00: 00 06/ 23/ 1996 00: 00: 00
07/ 07/ 1996 00: 00: 00 08/ 04/ 1996 00: 00: 00 09/ 15/ 1996 00: 00: 00
of f Excepti ons :
01/ 08/ 1996 00: 00: 00 02/ 02/ 1996 00: 00: 00 03/ 05/ 1996 00: 00: 00
04/ 04/ 1996 00: 00: 00 05/ 08/ 1996 00: 00: 00 06/ 25/ 1996 00: 00: 00
07/ 09/ 1996 00: 00: 00

CGal endar Nane = CGENER G CAL2
Frequency = 4
M nDate = 01/01/1996 00: 00: 00
MaxDat e = 12/31/1997 00: 00: 00
patBits:

1111100
pat Anchor = 01/08/ 1996 00: 00: 00

Calendar Functions: Reference 4-29



IntersectCals

onExcept i ons

07/ 07/ 1996 00: 00: 00 08/ 04/ 1996
10/ 13/ 1996 00: 00: 00 11/ 10/ 1996
01/04/ 1997 00: 00: 00 02/ 09/ 1997
04/ 05/ 1997 00: 00: 00 05/ 11/ 1997
of f Excepti ons :
07/ 09/ 1996 00: 00: 00 08/ 05/ 1996
10/ 23/ 1996 00: 00: 00 11/19/ 1996
01/ 01/ 1997 00: 00: 00 02/ 12/ 1997
04/ 07/ 1997 00: 00: 00 05/ 05/ 1997

result of Conbi neCals :

Frequency = 4
M nDate = 01/01/1996 00: 00: 00
MaxDat e = 12/31/1996 00: 00: 00
patBits:

0111110
pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons

07/ 07/ 1996 00: 00: 00 08/ 04/ 1996
of f Excepti ons :

01/ 08/ 1996 00: 00: 00 02/ 02/ 1996

04/ 04/ 1996 00: 00: 00 05/ 08/ 1996

07/ 09/ 1996 00: 00: 00 08/ 05/ 1996

10/ 23/ 1996 00: 00: 00 11/19/ 1996

equal Flag = 0

result of IntersectCals :

Frequency = 4

M nDate = 01/01/1996 00: 00: 00
MaxDat e = 12/31/1996 00: 00: 00
patBits:

1111100
pat Anchor = 01/08/ 1996 00: 00: 00
onExcept i ons

07/ 07/ 1996 00: 00: 00 08/ 04/ 1996
of f Excepti ons :

01/ 08/ 1996 00: 00: 00 02/ 02/ 1996

04/ 04/ 1996 00: 00: 00 05/ 08/ 1996

07/ 09/ 1996 00: 00: 00 08/ 05/ 1996

10/ 23/ 1996 00: 00: 00 11/19/ 1996

4-30 Oracle8 Time Series Cartridge User's Guide

00:
00:
00:
00:

00:
00:
00:
00:

00:

00:
00:
00:
00:

00:

00:
00:
00:
00:

00:
00:
00:
00:

00:
00:
00:
00:

00:

00:
00:
00:
00:

00:

00:
00:
00:
00:

00
00
00
00

00
00
00
00

00

00
00
00
00

00

00
00
00
00

09/ 15/ 1996
12/ 14/ 1996
03/ 08/ 1997
06/ 08/ 1997

09/ 10/ 1996
12/ 12/ 1996
03/ 04/ 1997
06/ 09/ 1997

09/ 15/ 1996

03/ 05/ 1996
06/ 25/ 1996
09/ 10/ 1996
12/ 12/ 1996

09/ 15/ 1996

03/ 05/ 1996
06/ 25/ 1996
09/ 10/ 1996
12/ 12/ 1996

00:
00:
00:
00:

00:
00:
00:
00:

00:

00:
00:
00:
00:

00:

00:
00:
00:
00:

00:
00:
00:
00:

00:
00:
00:
00:

00:

00:
00:
00:
00:

00:

00:
00:
00:
00:

00
00
00
00

00
00
00
00

00

00
00
00
00

00

00
00
00
00



InvalidTimeStampsBetween

InvalidTimeStampsBetween

Format

Description

Parameters

Usage

ORDSYS.Calendar.InvalidTimeStampsBetween(
inputCal IN ORDSYS.ORDTCalendar,
startDate IN DATE,
endDate IN DATE
) RETURN ORDSYS.ORDTDateTab;

Given starting and ending input timestamps, returns a table (ORDTDateTab) con-
taining the invalid timestamps within that range according to the specified calen-

dar.

inputCal
The calendar to be used to determine whether a timestamp is valid or invalid.

startDate
Starting date in the range to be checked for invalid timestamps.

endDate
Ending date in the range to be checked for invalid timestamps.

A timestamp is invalid if any of the following conditions is true:
« Itis outside the date range of the calendar.
« Itis an off-exception in the calendar.

« Itisimprecise (for example, a timestamp of 02-Jul-1997 if the calendar fre-
qguency is month).

« Itisnull.

startDate and endDate are included in the check for invalid timestamps.

Calendar Functions: Reference

4-31



InvalidTimeStampsBetween

If there are no invalid timestamps in the date range, the function returns an empty
ORDTDateTab.

If startDate is greater (later) than endDate, an exception is raised.

Contrast this function with TimeStampsBetween, which returns a table containing
the valid timestamps in a date range.

Example

Return a table of invalid timestamps between 03-Mar-1996 and 03-Jun-1996 in the
GENERIC-CALL1 calendar:

CONNECT CROTUSER CROTUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

tstGal CRDSYS CRDICal endar ;
tst Dat el DATE

t st Dat e2 DATE

resul t DTab CROSYS. or dt Dat eTab;
dummyVal | NTEGER

rel Ffset | NTECGER

BEG N

-- Select a calendar (say, GENER GCALL) into tstCal
-- from st ockdeno_cal endars.

SELECT val ue(cal ) INTOtstCal

FROM CRDTDEV. st ockdeno_cal endars cal

WHERE cal .nane =’ (ENER G CALT ;

-- D splay the cal endar.
SELECT CRDSYS. Ti meSeri es. D spl ay(tstCal) | NTO dummyVal FROM dual ;
DBVB QUTPUT. NEWLI NE,

-- Get all the invalid tinestanps between 03- VAR 1996 and 03- JUN- 1996.
tstDatel : = TO DATH' 03/ 03/ 1996’ ) ;
tstDate2 : = TO DATH' 06/ 03/ 1996’ ) ;
resul t DTab : = CROSYS. Gal endar. | nval i dTi meSt anpsBet ween
(tstCal, tstDatel, tstDate2);
SELECT CGRDSYS. Ti neSeri es. D spl ay(resul tDTab, 'InValid tinestanps’)
I NTO durmyVal
FROM dual ;

4-32 Oracle8 Time Series Cartridge User's Guide



InvalidTimeStampsBetween

BEND,
/

This example might produce the following output:

CGal endar Nane = GENER G CAL1
Frequency = 4
M nDate = 01/01/1996 00: 00: 00
MuxDate = 12/31/1996 00: 00: 00
patBits:
0111110
pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons
01/ 21/ 1996 00: 00: 00 02/ 03/ 1996 00: 00: 00 03/ 24/ 1996 00: 00: 00
04/ 27/ 1996 00: 00: 00 05/ 19/ 1996 00: 00: 00 06/ 23/ 1996 00: 00: 00
07/ 07/ 1996 00: 00: 00 08/ 04/ 1996 00: 00: 00 09/ 15/ 1996 00: 00: 00
of f Excepti ons :
01/ 08/ 1996 00: 00: 00 02/ 02/ 1996 00: 00: 00 03/ 05/ 1996 00: 00: 00
04/ 04/ 1996 00: 00: 00 05/ 08/ 1996 00: 00: 00 06/ 25/ 1996 00: 00: 00
07/ 09/ 1996 00: 00: 00

InValid tinestanps :

03/ 03/ 1996 00: 00: 00 03/ 05/ 1996 00: 00: 00 03/ 09/ 1996 00: 00: 00
03/10/ 1996 00: 00: 00 03/ 16/ 1996 00: 00: 00 03/ 17/ 1996 00: 00: 00
03/ 23/ 1996 00: 00: 00 03/30/ 1996 00: 00: 00 03/ 31/ 1996 00: 00: 00
04/ 04/ 1996 00: 00: 00 04/ 06/ 1996 00: 00: 00 04/ 07/ 1996 00: 00: 00
04/13/ 1996 00: 00: 00 04/ 14/ 1996 00: 00: 00 04/ 20/ 1996 00: 00: 00
04/ 21/ 1996 00: 00: 00 04/ 28/ 1996 00: 00: 00 05/ 04/ 1996 00: 00: 00
05/ 05/ 1996 00: 00: 00 05/ 08/ 1996 00: 00: 00 05/ 11/ 1996 00: 00: 00
05/12/ 1996 00: 00: 00 05/ 18/ 1996 00: 00: 00 05/ 25/ 1996 00: 00: 00
05/ 26/ 1996 00: 00: 00 06/ 01/ 1996 00: 00: 00 06/ 02/ 1996 00: 00: 00

Calendar Functions: Reference 4-33



IsValidCal

IsValidCal

Format

Description

Parameters

Usage

Example

ORDSYS.Calendar.IsValidCal(
inputCal IN ORDSYS.ORDTCalendar
) RETURN BINARY_INTEGER

Returns 1 if the calendar is valid and 0 if the calendar is not valid.

inputCal
The calendar to be checked for validity.

A calendar is invalid (not valid) if it contains any errors. This function does not cor-
rect any errors or perform any repair operations on the calendar.

Contrast this function with the ValidateCal function, which checks the validity of
the calendar and repairs any correctable errors. For detailed information on calen-
dar errors, see the information on ValidateCal in this chapter.

If the IsValidCal function returns 0, you should do the following before you
attempt to use the calendar:

1. Use the ValidateCal function to repair any correctable errors.

2. Ifthere are any errors that ValidateCal cannot correct, correct these errors your-
self.

3. Repeat steps 1 and 2 as often as necessary until the resulting calendar is valid.

Use the IsValidCal and ValidateCal functions and the DisplayValCal procedure
with an invalid calendar:

CONNECT CROTUSER CROTUSER
SET SERVERQUTPUT CN

4-34 Oracle8 Time Series Cartridge User's Guide



IsValidCal

ALTER SESSI ON SET NLS DATE FCRVAT =’

CEQLARE

out Message var char 2(32750) ;

i nvOnExc CRDSYS. CRDTDat eTab;

invdfExc CRDSYS. RDTDat eTab;

i npOnExc CRDSYS. CRDTDat eTab;

inpdfExc CRDSYS CRDTDat eTab;

dumyval i nt eger;

val i dFl ag i nt eger;

tstGl 1 QRDSYS. RDTCGal endar : =

CROSYS. CRDTCal endar (

0,
" CALENDAR FQOD
4,

MM OO YYYY H24: M: SS ;

CROSYS. (RDTPat t er n( GRDSYS. C(RDTPatternBits(1, 1,1,1,1,0, 0),
TO DATE(’ 01-08-1996 01: 01:01')),

TO DATE(’ 01- 01- 1975 ),

TO DATE(’ 01-01-1999' ),

CROSYS. GRDTEXcept i ons(

TO DATE(’ 02-03-1969' ), --
TO DATE(’ 02-14-1969' ), --
TO DATE(’ 02-03-1999' ), --
TO DATE(’ 02-17-1999' ), --
TO DATE(’ 12-31-1995' ), --
TO DATE(’ 01-13-1996' ), --
TO DATE(’ 02-24-1996' ), --
TO DATE(’ 03-30-1996' ), --
TO DATE(’ 02- 02- 1996 01: 01:
TO DATE(’ 03- 04- 1996 01: O1:
TO DATE(’ 04- 05- 1996 02: 02:
TO DATE(’ 03-25-1996' ), --
TO DATE(’ 01-22-1996' ), --
TO DATE(’ 02- 12- 1996’ ),

TO DATE(’ 04- 30- 1996’ ),

NULL, --
TO DATE(’ 02-12-1996' ), --
NULL, --
TO DATE(’ 04-30-1996' ), --
NULL, --
TO DATE(’ 03-25-1996' ), --
TO DATE(’ 01-22-1996' ), --
TO DATE(’ 01-17-1996' ), --
TO DATE(’ 05-28-1996' ), --
TO DATE(’ 06- 18-1996' ), --

Dat e < mnDat e,

Dat e < mnDat e,

Dat e > naxDat e,

Dat e > naxDat e,

Maps to O in pattern (Sunday)
Maps to O in pattern (Saturday)
Maps to O in pattern (Saturday)
Maps to O in pattern (Saturday)

01'), -- Inprecise
01'), -- Inprecise
02'), -- Inprecise

Val id of f-exception
Valid, but out of sequence

Nl | date

Duplicate date within GFFs
Nl | date

Dupl i cate of f-exception
Nl | date

Dupl i cate of f-exception
Dupl i cate of f-exception
Added to on- and of f-exceptions
Added to on- and of f-exceptions
Added to on- and of f-exceptions

Calendar Functions: Reference

4-35



IsValidCal

TO DATH(' 04-23-1996' ), -- Added to on- and of f-exceptions
TO DATH(’ 02- 02- 1996’ ),
TO DATH(’ 03- 04- 1996" ),
TO DATH ' 05- 06- 1997 )),
CRDSYS. CROTEXcept i ons(

TO DATH(' 02-08-1969' ), -- Date < mnDate,

TO DATH(' 02-15-1969' ), -- Date < minDate,

TO DATH' 02-13-1999'), -- Date > nmaxDate,

TO DATH(' 02-20-1999'), -- Date > nmaxDate,

TO DATH(' 01-03-1996' ), -- Maps to 1 in pattern (Védnesday)
TO DATH(' 02-19-1996' ), -- Maps to 1 in pattern (Mnday)
TO DATH(' 03-18-1996' ), -- Maps to 1 in pattern (Mnday)
TO DATH(' 05-27-1996' ), -- Maps to 1 in pattern (Mnday)
TO DATH(’ 03-23-1996 01:01:01'), -- |nprecise

TO DATH(’ 02-18-1996 01:01:01'), -- |nprecise

TO DATH(’ 05-26-1996 01:01:01'), -- |nprecise

TO DATH(' 01-13-1996' ), -- Valid on-exception

TO DATH(' 01-14-1996' ), -- Valid on-exception

NULL, -- Null date

NULL, -- Null date

TO DATH(' 02-24-1996' ), -- Valid on-exception

TO DATH(' 03-23-1996' ), -- Valid on-exception

TO DATH(' 01-13-1996' ), -- Duplicate on-exception

TO DATH(' 01-14-1996' ), -- Duplicate on-exception

TO DATH(' 02-24-1996' ), -- Duplicate on-exception

TO DATH(' 03-23-1996' ), -- Duplicate on-exception

TO DATH(' 01-17-1996' ), -- Added to on- and of f-exceptions
TO DATH(’ 05-28-1996' ), -- Added to on- and of f-exceptions
TO DATH(' 06-18-1996' ), -- Added to on- and of f-exceptions
TO DATH(' 04-23-1996' ), -- Added to on- and of f-exceptions
TO DATH' 01-06-1996' ), -- Valid, but out of sequence

TO DATE(’ 02- 03- 1996’ ),
TO DATE(’ 05- 04- 1997’ ))

);
BEQ N
SH ECT CRDSYS. TI MESER ES. D spl ay(tstCall, "tstCal 1) | NTO dummyval
FROM dual ;
val i dFl ag : = CRDSYS. CALENDAR | sVal i dGal (tstCal 1);
IKval idFlag = 0)
THEN
val i dFl ag : = CRDSYS. CALENDAR Val i dat eCal (
tstCal 1, out Message, invnExc, invGfExc, inpOnExc, inmpdfExc

E

CROSYS. TI MESER ES. D spl ayVal Gal (

4-36 Oracle8 Time Series Cartridge User's Guide



IsValidCal

val i dFl ag,
out Message,

i nvenhExc,

i nva f Bxc,

i npnExc,

i npdf f Exc,
tstCGal 1,

)
BE\D IF;
END,
/

" Your Message’

This example might produce the following output:

tstGal 1 :

Cal endar Nare =
Frequency = 4

CALENDAR FQD

M nDate = 01/ 01/ 1975 00: 00: 00

NaxDat e
patBits:

1111100
pat Anchor = 01/08/ 1996 01: 01: 01

onExcept i ons
02/ 08/ 1969
02/ 20/ 1999
03/ 18/ 1996
02/ 18/ 1996
01/ 14/ 1996
02/ 24/ 1996
01/ 14/ 1996
01/ 17/ 1996
04/ 23/ 1996
05/ 04/ 1997

of f Excepti ons :

02/ 03/ 1969
02/17/ 1999
02/ 24/ 1996
03/ 04/ 1996
01/ 22/ 1996

00:
00:
00:
01:
00:
00:
00:
00:
00:
00:

00:
00:
00:
01:
00:

00:
00:
00:
01:
00:
00:
00:
00:
00:
00:

00:
00:
00:
01:
00:

00
00
00
01
00
00
00
00
00
00

00
00
00
01
00

01/ 01/ 1999 00: 00: 00

02/ 15/ 1969
01/ 03/ 1996
05/ 27/ 1996
05/ 26/ 1996

03/ 23/ 1996
02/ 24/ 1996
05/ 28/ 1996
01/ 06/ 1996

02/ 14/ 1969
12/ 31/ 1995
03/ 30/ 1996
04/ 05/ 1996
02/ 12/ 1996

02/ 12/ 1996 00: 00: 00
04/30/ 1996 00: 00: 00
01/22/1996 00: 00: 00
06/ 18/ 1996 00: 00: 00

03/ 25/ 1996 00: 00: 00

00:
00:
00:
01:

00:
00:
00:
00:

00:
00:
00:
02:
00:

00:
00:
00:
01:

00:
00:
00:
00:

00:
00:
00:
02:
00:

00
00
00
01

00
00
00
00

00
00
00
02
00

01/ 17/ 1996 00: 00: 00
04/ 23/ 1996 00: 00: 00

02/ 13/ 1999
02/ 19/ 1996
03/ 23/ 1996
01/ 13/ 1996

01/ 13/ 1996
03/ 23/ 1996
06/ 18/ 1996
02/ 03/ 1996

02/ 03/ 1999
01/ 13/ 1996
02/ 02/ 1996
03/ 25/ 1996
04/ 30/ 1996

05/ 28/ 1996
02/ 02/ 1996

00:
00:
01:
00:

00:
00:
00:
00:

00:
00:
01:
00:
00:

00:
00:

00:
00:
01:
00:

00:
00:
00:
00:

00:
00:
01:
00:
00:

00:
00:

00
00
01
00

00
00
00
00

00
00
01
00
00

00
00

Calendar Functions: Reference 4-37



IsValidCal

03/ 04/ 1996

00: 00: 00 05/ 06/ 1997 00: 00: 00

D spl ayVal Gal Your Message:

TS WA\ the input cal endar has rectifiable errors. See the nessage for details

nessage out put by val i dat eCal :

TS WR\ fixed precision of the pattern anchor date

TS WA\ r enoved

superfluous dates in the on exception list (refer invalidOExc)

TS WR\ fixed inprecise dates in the on exception list (refer inpreci seOhExc)

TS WA\ renoved

nul | dates in the on exception |ist

TS WR\ sorted the on exceptions |ist

TS WA\ r enoved
TS WA\ r enoved

duplicate dates in the on exceptions |ist
superfluous dates in off exceptions list (refer invalidfExc)

TS WR\ fixed inprecise dates in the off exception list (refer inprecisedfExc)

TS WA\ renoved

nul | dates in the off exception list

TS WR\ sorted the off exceptions |ist

TS WA\ r enoved

duplicate dates in the off exceptions |ist

TS WR\ the on exceptions list was tri med between cal endar ninDate & naxDate

TS WA\ the off
list of invalid
01/ 03/ 1996
05/ 27/ 1996
06/ 18/ 1996

list of invalid

12/ 31/ 1995
03/ 30/ 1996

exceptions list was trimred between cal endar ninDate & naxDate
on exceptions :

00: 00: 00 02/ 19/ 1996 00: 00: 00 03/ 18/ 1996 00: 00: 00

00: 00: 00 01/ 17/ 1996 00: 00: 00 05/ 28/ 1996 00: 00: 00

00: 00: 00 04/ 23/ 1996 00: 00: 00

of f exceptions :

00: 00: 00 01/ 13/ 1996 00: 00: 00 02/ 24/ 1996 00: 00: 00
00: 00: 00

list of inprecise on exceptions :

03/ 23/ 1996

01: 01: 01 02/ 18/ 1996 01: 01: 01 05/ 26/ 1996 01:01: 01

list of inprecise off exceptions :

02/ 02/ 1996

01: 01: 01 03/ 04/ 1996 01: 01: 01 04/ 05/ 1996 02: 02: 02

the validated cal endar :

Cal endar Narre =
Frequency = 4

CALENDAR FQD

M nDate = 01/ 01/ 1975 00: 00: 00

4-38 Oracle8 Time Series Cartridge User's Guide



IsValidCal

MuxDate = 01/01/1999 00: 00: 00
patBits:
1111100

pat Anchor = 01/08/ 1996 00: 00: 00

onExcept i ons
01/ 06/ 1996 00: 00: 00 01/ 13/ 1996 00: 00: 00 01/ 14/ 1996 00: 00: 00
02/ 03/ 1996 00: 00: 00 02/ 18/ 1996 00: 00: 00 02/ 24/ 1996 00: 00: 00
03/ 23/ 1996 00: 00: 00 05/ 26/ 1996 00: 00: 00 05/ 04/ 1997 00: 00: 00

of f Excepti ons :
01/ 17/ 1996 00: 00: 00 01/ 22/ 1996 00: 00: 00 02/ 02/ 1996 00: 00: 00
02/ 12/ 1996 00: 00: 00 03/ 04/ 1996 00: 00: 00 03/ 25/ 1996 00: 00: 00
04/ 05/ 1996 00: 00: 00 04/ 23/ 1996 00: 00: 00 04/ 30/ 1996 00: 00: 00
05/ 28/ 1996 00: 00: 00 06/ 18/ 1996 00: 00: 00 05/ 06/ 1997 00: 00: 00

Calendar Functions: Reference 4-39



IsValidDate

IsValidDate

Format

Description

Parameters

Usage

Example

ORDSYS.Calendar.IsValidDate(
inputCal IN ORDSYS.ORDTCalendar,
checkDate IN DATE
) RETURN BINARY_INTEGER;

Checks whether an input date is valid or invalid according to the specified calendar.

inputCal
The calendar to be used to determine whether the input timestamp is valid or
invalid.

checkDate
The timestamp to be checked for validity according to the calendar.

If checkDate is valid, the function returns 1; if checkDate is invalid, the function
returns 0.

A timestamp is invalid if any of the following conditions is true:
« Itis outside the date range of the calendar.
« Itis an off-exception in the calendar.

« Itis not sufficiently precise (for example, a timestamp of 01-Jul-1997 if the calen-
dar has a frequency of year).

« Itisnull.

Check if 02-Jan-1996 is a valid timestamp for a calendar (GENERIC-CAL1):
QONNECT CROTUSER CROTUSER

4-40 Oracle8 Time Series Cartridge User's Guide



IsValidDate

SET SERVERQUTPUT ON

ALTER SESS ON SET NLS DATE FCRVAT = ' MM DD YYYY HR24: M: SS ;
DECLARE

tstGal CRDSYS CRDICal endar ;

tst Dat el DATE

result | NTECER

dummyVal | NTEGER

BEG N

-- Select a calendar (say, GENER GCALL) into tstGal
-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal

FROM CRDTDEV. st ockdeno_cal endars cal

WHERE cal .nane =’ GENER G CALT ;

-- D splay the cal endar.
SELECT CRDSYS. Ti meSeri es. D spl ay(tstCal ) | NTO dummyVal FROM dual ;
DBVB QUTPUT. NEWLI NE

-- Verify if 02-JAN 1996 (a Mbnday) is a valid date and display the result.
tstDatel : = TO DATH' 01/ 02/ 1996’ ) ;

result := CRDSYS Cal endar.|sValidDate(tstCal,tstDatel);
DBV QJTPUT. PUT_LINK' IsVal idDate(’ || tstDatel || ') =" || result);
END,

/

This example might produce the following output. In this example, the returned
value of 1 indicates that 02-Jan-1996 is a valid timestamp for the BUSINESS-96 cal-
endar.

Gl endar Nane = GENER G CAL1
Frequency = 4
M nDate = 01/01/1996 00: 00: 00
MuxDate = 12/31/1996 00: 00: 00
patBits:
0111110
pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons
01/ 21/ 1996 00: 00: 00 02/ 03/ 1996 00: 00: 00 03/ 24/ 1996 00: 00: 00
04/ 27/ 1996 00: 00: 00 05/ 19/ 1996 00: 00: 00 06/ 23/ 1996 00: 00: 00
07/ 07/ 1996 00: 00: 00 08/ 04/ 1996 00: 00: 00 09/ 15/ 1996 00: 00: 00
of f Excepti ons :
01/ 08/ 1996 00: 00: 00 02/ 02/ 1996 00: 00: 00 03/ 05/ 1996 00: 00: 00

Calendar Functions: Reference 4-41



IsValidDate

04/ 04/ 1996 00: 00: 00 05/ 08/ 1996 00: 00: 00 06/ 25/ 1996 00: 00: 00
07/ 09/ 1996 00: 00: 00

I'sVal i dDat e( 01/ 02/ 1996 00: 00: 00) = 1

4-42 Oracle8 Time Series Cartridge User's Guide



NumlnvalidTimeStampsBetween

NumlInvalidTimeStampsBetween

Format

Description

Parameters

Usage

ORDSYS.Calendar.NuminvalidTimeStampsBetween(
inputCal IN ORDSYS.ORDTCalendar,
startDate IN DATE,
endDate IN DATE
) RETURN INTEGER;

Given starting and ending input timestamps, returns the number of invalid
timestamps within that range according to the specified calendar.

inputCal
The calendar to be used to determine whether a timestamp is valid or invalid.

startDate
Starting date in the range to be checked for invalid timestamps.

endDate
Ending date in the range to be checked for invalid timestamps.

A timestamp is invalid if any of the following conditions is true:
« Itis outside the date range of the calendar.
« Itis an off-exception in the calendar.

« Itis not sufficiently precise (for example, a timestamp of 01-Jul-1997 if the calen-
dar has a frequency of year).

« Itisnull.
startDate and endDate are included in the check for invalid timestamps.

If there are no invalid timestamps in the date range, the function returns 0 (zero).

Calendar Functions: Reference 4-43



NuminvalidTimeStampsBetween

If startDate is greater (later) than endDate, an exception is raised.

Contrast this function with NumTimeStampsBetween, which returns the number
of valid timestamps in a date range.

Example

Return the number of invalid timestamps between 03-Feb-1996 and 16-May-1996 in
the GENERIC-CAL1 calendar:

CONNECT CROTUSER CROTUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

tstGal CRDSYS CRDICal endar ;
tst Dat el DATE

t st Dat e2 DATE

result | NTECER

dummyVal | NTEGER

BEG N

-- Select a calendar (say, GENER GCALL) into tstCal
-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal

FROM CRDTDEV. st ockdeno_cal endars cal

WHERE cal .nane = ' (ENER G CALT ;

-- D splay the cal endar.
SELECT CRDSYS. Ti neSeri es. D spl ay(tstCal) | NTO dummyVal FROM dual ;
DBVB QUTPUT. NEWLI NE,

-- Get the nunber of invalid tinmestanps between 03- FEB- 1996 and 16- MAY- 1996.
tstDatel : = TO DATH' 02/ 03/ 1996’ ) ;
tstDate2 : = TO DATH' 05/ 16/ 1996’ ) ;
result := GROSYS Gl endar. Num nval i dTi meSt anpsBet ween(
tstCal,tstDatel, tstDate2);
DBVB QUTPUT. PUT_LI NE(' Num nval i dTi neStanpsBetween(’ || tstDatel ||' , ' ||
tstDate2|| ') ="' || result);
END,
/

This example might produce the following output. In this example, there are 30
invalid timestamps in the specified date range.

4-44 Oracle8 Time Series Cartridge User's Guide



NuminvalidTimeStampsBetween

Gl endar Nane = GENER G CAL1
Frequency = 4
M nDate = 01/01/1996 00: 00: 00
MuxDate = 12/ 31/1996 00: 00: 00
patBits:
0111110
pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons
01/ 21/ 1996 00: 00: 00 02/ 03/ 1996 00: 00: 00 03/ 24/ 1996 00: 00: 00
04/ 27/ 1996 00: 00: 00 05/ 19/ 1996 00: 00: 00 06/ 23/ 1996 00: 00: 00
07/ 07/ 1996 00: 00: 00 08/ 04/ 1996 00: 00: 00 09/ 15/ 1996 00: 00: 00
of f Excepti ons :
01/ 08/ 1996 00: 00: 00 02/ 02/ 1996 00: 00: 00 03/ 05/ 1996 00: 00: 00
04/ 04/ 1996 00: 00: 00 05/ 08/ 1996 00: 00: 00 06/ 25/ 1996 00: 00: 00
07/ 09/ 1996 00: 00: 00

Num nval i dTi neSt anpsBet ween( 02/ 03/ 1996 00: 00: 00 , 05/ 16/ 1996 00: 00: 00) = 30

Calendar Functions: Reference 4-45



NumOffExceptions

NumOffExceptions

Format

Description

Parameters

Usage

Example

ORDSYS.Calendar.NumOffExceptions(
inputCal IN ORDSYS.ORDTCalendar,
startDate IN DATE,
endDate IN DATE
) RETURN INTEGER;

Given starting and ending input timestamps, returns the number of off-exceptions
within that range according to the specified calendar.

inputCal
The calendar to be used in computing the number of off-exceptions.

startDate
Starting date in the range to be checked for off-exceptions.

endDate
Ending date in the range to be checked for off-exceptions.

startDate and endDate are included in the check for off-exceptions. (For an explana-
tion of off-exceptions and on-exceptions, see Section 2.2.)

If startDate is greater (later) than endDate, an exception is raised.

Return the number of off-exceptions between 02-Feb-1996 and 07-Jul-1996 in the
GENERIC-CALL1 calendar:

CONNECT CROTUSER CROTUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24:M: SS ;

4-46 Oracle8 Time Series Cartridge User's Guide



NumOffExceptions

DECLARE

tst Gal CRDSYS CRDICal endar ;
tst Dat el DATE

t st Dat e2 DATE

result | NTECER

dummyVal | NTEGER

BEG N

-- Select a calendar (say, GENER GCALL) into tstGal
-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal

FROM CRDTDEV. st ockdeno_cal endars cal

WHERE cal .nane =’ GENER G CALT ;

-- D splay the cal endar.
SELECT CRDSYS. Ti meSeri es. D spl ay(tstCal ) | NTO dummyVal FROM dual ;
DBVB QUTPUT. NEWLI NE

-- Get the nunber of off-exceptions between 02- FEB-1996 and 07- JUL- 1996.
tstDatel : = TO DATH' 02/ 02/ 1996’ ) ;
tstDate2 : = TO DATH' 07/ 07/ 1996’ ) ;

result := CGROSYS Cal endar. NunTf f Exceptions(tstCal ,tstDatel, tstDate2);
DBMVB QUTPUT. PUT_LI NE(' Nun@¥ f Exceptions(’ || tstDatel ||’ , ' || tstDate2

[l ') =" || result);
END,

/

This example might produce the following output. As the last line of the output
indicates, there are five off-exceptions in the specified date range (02-Feb-1996
through 07-Jul-1996).

Cal endar Name = GENER G CAL1

Frequency = 4

M nDate = 01/01/1996 00: 00: 00
MixDate = 12/31/1996 00: 00: 00
patBits:

0111110
pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons
01/ 21/ 1996 00: 00: 00 02/ 03/ 1996 00: 00: 00 03/ 24/ 1996 00: 00: 00
04/ 27/ 1996 00: 00: 00 05/ 19/ 1996 00: 00: 00 06/ 23/ 1996 00: 00: 00
07/ 07/ 1996 00: 00: 00 08/ 04/ 1996 00: 00: 00 09/ 15/ 1996 00: 00: 00
of f Excepti ons :

Calendar Functions: Reference 4-47



NumOffExceptions

01/08/ 1996 00: 00: 00 02/ 02/ 1996 00: 00: 00 03/ 05/ 1996 00: 00: 00
04/ 04/ 1996 00: 00: 00 05/ 08/ 1996 00: 00: 00 06/ 25/ 1996 00: 00: 00
07/ 09/ 1996 00: 00: 00

NunF f Except i ons(02/ 02/ 1996 00: 00: 00 , 07/07/1996 00: 00: 00) = 5

4-48 Oracle8 Time Series Cartridge User's Guide



NumOnExceptions

NumOnExceptions

Format
ORDSYS.Calendar.NumOnExceptions(

inputCal IN ORDSYS.ORDTCalendar,
startDate IN DATE,

endDate IN DATE

) RETURN INTEGER,;

Description

Given starting and ending input timestamps, returns the number of on-exceptions
within that range according to the specified calendar.

Parameters

inputCal
The calendar to be used in computing the number of on-exceptions.

startDate
Starting date in the range to be checked for on-exceptions.

endDate
Ending date in the range to be checked for on-exceptions.

Usage

startDate and endDate are included in the check for on-exceptions. (For an explana-
tion of off-exceptions and on-exceptions, see Section 2.2.)

If startDate is greater (later) than endDate, an exception is raised.

Example

Return the number of on-exceptions between 02-Feb-1996 and 07-Jul-1996 in the
GENERIC-CALL1 calendar:

CONNECT CRDOTUSER CROTUSER
SET SERVERQUTPUT CN

Calendar Functions: Reference 4-49



NumOnExceptions

ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

tstGal CRDSYS CRDICal endar ;
tst Dat el DATE

t st Dat e2 DATE

result | NTECER

dummyVal | NTEGER

BEG N

-- Select a calendar (say, GENER GCALL) into tstCal
-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal

FROM CRDTDEV. st ockdeno_cal endars cal

WHERE cal .nane =’ (ENER G CALT ;

-- D splay the cal endar.
SELECT CRDSYS. Ti neSeri es. D spl ay(tstCal) | NTO dummyVal FROM dual ;
DBVB QUTPUT. NEWLI NE,

-- Get the nunber of ON Exceptions between 02- FEB-1996 and 07- JU.- 1996.
tstDatel : = TO DATH' 02/ 02/ 1996’ ) ;
tstDate2 : = TO DATH' 07/ 07/ 1996’ ) ;

result := CGROSYS Cal endar. NunnExceptions(tstCal ,tstDatel, tstDate?);
DBMVB QUTPUT. PUT_LI NE(' NumtnExceptions(’ || tstDatel ||’ , ' || tstDate2

[l ') =" || result);
END,

/

This example might produce the following output. As the last line of the output
indicates, there are six on-exceptions in the specified date range (02-Feb-1996
through 07-Jul-1996).

CGal endar Nane = GENER G CAL1
Frequency = 4
M nDate = 01/01/1996 00: 00: 00
MuxDate = 12/ 31/1996 00: 00: 00
patBits:
0111110
pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons
01/ 21/ 1996 00: 00: 00 02/ 03/ 1996 00: 00: 00 03/ 24/ 1996 00: 00: 00
04/ 27/ 1996 00: 00: 00 05/ 19/ 1996 00: 00: 00 06/ 23/ 1996 00: 00: 00
07/ 07/ 1996 00: 00: 00 08/ 04/ 1996 00: 00: 00 09/ 15/ 1996 00: 00: 00

4-50 Oracle8 Time Series Cartridge User's Guide



NumOnExceptions

of f Excepti ons :
01/08/ 1996 00: 00: 00 02/ 02/ 1996 00: 00: 00 03/ 05/ 1996 00: 00: 00
04/ 04/ 1996 00: 00: 00 05/ 08/ 1996 00: 00: 00 06/ 25/ 1996 00: 00: 00
07/ 09/ 1996 00: 00: 00

NumnExcept i ons(02/ 02/ 1996 00: 00: 00 , 07/07/1996 00: 00: 00) = 6

Calendar Functions: Reference 4-51



NumTimeStampsBetween

NumTimeStampsBetween

Format

Description

Parameters

Usage

ORDSYS.Calendar.NumTimeStampsBetween(
inputCal IN ORDSYS.ORDTCalendar,
startDate IN DATE,
endDate IN DATE
) RETURN INTEGER;

Given starting and ending input timestamps, returns the number of valid
timestamps within that range according to the specified calendar.

inputCal
The calendar to be used to determine whether a timestamp is valid or invalid.

startDate
Starting date in the range to be checked for invalid timestamps.

endDate
Ending date in the range to be checked for invalid timestamps.

A timestamp is invalid (not valid) if any of the following conditions is true:
« lItis outside the date range of the calendar.
« Itis an off-exception in the calendar.

« Itis not sufficiently precise (for example, a timestamp of 01-Jul-1997 if the calen-
dar has a frequency of year).

« Itisnull.
startDate and endDate are included in the check for valid timestamps.

If there are no valid timestamps in the date range, the function returns 0 (zero).

4-52 Oracle8 Time Series Cartridge User's Guide



NumTimeStampsBetween

If startDate is greater (later) than endDate, an exception is raised.

Contrast this function with NumlInvalidTimeStampsBetween, which returns the
number of invalid timestamps in a date range.

Example

Return the number of valid timestamps between 03-Feb-1996 and 16-May-1996 in
the GENERIC-CAL1 calendar:

CONNECT CROTUSER CROTUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

tstGal CRDSYS CRDICal endar ;
tst Dat el DATE

t st Dat e2 DATE

result | NTECER

dummyVal | NTEGER

BEG N

-- Select a calendar (say, GENER GCALL) into tstGal
-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal

FROM CRDTDEV. st ockdeno_cal endars cal

WHERE cal .nane =’ (ENER G CALT ;

-- D splay the cal endar.
SELECT CRDSYS. Ti meSeri es. D spl ay(tstCal ) | NTO dummyVal FROM dual ;
DBVB QUTPUT. NEWLI NE,

-- Get the nunber of Valid timestanps between 03- FEB-1996 and 16- MAY- 1996.
tstDatel : = TO DATH' 02/ 03/ 1996’ ) ;
tstDate2 : = TO DATH' 05/ 16/ 1996’ ) ;

result := CGROSYS Cal endar. Nunli neSt anpsBet ween(tst Cal , tst Dat el, tstDate2);

DBMVB QUJTPUT. PUT_LI NE(" NunTi neSt anpsBetween(’ || tstDatel ||’ , ’ || tstDate2
[1 ') =" || result);

END,

/

This example might produce the following output. In this example, there are 74
valid timestamps in the specified date range.

Cal endar Name = GENER G CAL1

Calendar Functions: Reference 4-53



NumTimeStampsBetween

Frequency = 4

M nDate = 01/01/1996 00: 00: 00
MuxDate = 12/ 31/1996 00: 00: 00
patBits:

0111110

pat Anchor = 01/07/ 1996 00: 00: 00

onExcept i ons
01/ 21/ 1996 00: 00: 00
04/ 27/ 1996 00: 00: 00
07/ 07/ 1996 00: 00: 00
of f Excepti ons :
01/ 08/ 1996 00: 00: 00
04/ 04/ 1996 00: 00: 00
07/ 09/ 1996 00: 00: 00

02/ 03/ 1996 00: 00: 00
05/ 19/ 1996 00: 00: 00
08/ 04/ 1996 00: 00: 00

02/ 02/ 1996 00: 00: 00
05/ 08/ 1996 00: 00: 00

03/ 24/ 1996 00: 00: 00
06/ 23/ 1996 00: 00: 00
09/ 15/ 1996 00: 00: 00

03/ 05/ 1996 00: 00: 00
06/ 25/ 1996 00: 00: 00

NuMT meSt anpsBet ween( 02/ 03/ 1996 00: 00: 00 , 05/16/1996 00: 00: 00) = 74

4-54 Oracle8 Time Series Cartridge User's Guide



OffsetDate

OffsetDate

Format

Description

Parameters

Usage

ORDSYS.Calendar.OffsetDate(
inputCal IN ORDSYS.ORDTCalendar,
origin IN DATE,
relOffset IN INTEGER
) RETURN DATE;

Given a reference date (origin) and an offset with respect to the origin (relOffset),
returns the timestamp corresponding to the offset input.

inputCal
Calendar from which the date is to be returned.

origin
The date to which the offset value (relOffset) is to be applied in computing the
returned date.

relOffset
The relative offset of the returned date with respect to the origin.

The function returns the date of the timestamp at the relOffset number of
timestamps from the origin date. If relOffset is positive, the returned date is later
than origin; if relOffset is negative, the returned date is earlier than origin. If relOffset
is zero (0), the returned date is origin if origin is a valid date; however, if relOffset is
zero (0) and origin is not a valid date, the function returns NULL.

For example, assume a Monday through Friday business day calendar for 1997
with 04-Jul-1997 (Friday) defined as an off-exception, and assume that origin is 02-
Jul-1997 (Wednesday):

« IfrelOffset = 2, the returned date is 07-Jul-1997 (Monday).

Calendar Functions: Reference 4-55



OffsetDate

« IfrelOffset = -2, the returned date is 30-Jun-1997 (Monday).
« IfrelOffset = 0, the returned date is 02-Jul-1997 (Wednesday).

If the origin date is not in the calendar (inputCal), the next later date is used if relOff-
set is positive or zero, and the next earlier date is used if relOffset is negative. Using
the calendar in the preceding example, if origin is specified as 04-Jul-1997 and if
relOffset = 2, then 07-Jul-1997 (Monday, the next business day) is used as origin, and
the returned date is 09-Jul-1997 (Wednesday).

If the calendar pattern is empty or null, an exception is raised.

Example

Get the dates 20 timestamps later and 20 timestamps earlier than 03-Mar-1996 in
the GENERIC-CAL1 calendar:

CONNECT CROTUSER CROTUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24:M: SS ;

DECLARE

tstGal CRDSYS CRDICal endar ;
tst Dat el DATE

resul t Dat e date;

dummyVal | NTEGER

rel Ffset | NTECGER

BEG N

-- Select a calendar (say, GENER GCALL) into tstCal
-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal

FROM CRDTDEV. st ockdeno_cal endars cal

WHERE cal .nane =’ GENER G CALT ;

-- D splay the cal endar.
SELECT CRDSYS. Ti meSeri es. D spl ay(tstCal) | NTO dummyVal FROM dual ;
DBVB QUTPUT. NEWLI NE,

-- Ofset 03-MAR 1996 by 20.

tstDatel : = TO DATH' 03/ 03/ 1996’ ) ;

rel Jfset := 20;

resultDate := CROSYS Cal endar. OFfset Date(tstCal, tstDatel, rel Gfset);
DBV QJTPUT. PUT_LINK' GFfsetDate(’ || tstDatel || ' , || rel Ofset

|| ") =" || resultDate);

4-56 Oracle8 Time Series Cartridge User's Guide



OffsetDate

DBVS_QUTPUT. NEWLI NE;

-- Ofset 03-MAR 1996 by -20.

tstDatel : = TO DATE(’ 03/ 03/ 1996' );

relJfset : = -20;

resultDate := CROSYS Cal endar. Offset Date(tstCal, tstDatel, rel Gfset);
DBV QUTPUT. PUT_LINE' CffsetDate(’ || tstDatel || * , ' || rel(Gfset

|| ") =" || resultDate);
DBVE QUTPUT. NEWLI NE;

BEND,
/

This example might produce the following output. In this example, 29-Mar-1996 is
20 timestamps later than 03-Mar-1996, and 05-Feb-1996 is 20 timestamps earlier
than 03-Mar-1996.

CGal endar Nane = GENER G CAL1
Frequency = 4
M nDate = 01/01/1996 00: 00: 00
MuxDate = 12/31/1996 00: 00: 00
patBits:

0111110

pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons

01/21/1996 00: 00:
04/ 27/ 1996 00: 00:
07/ 07/ 1996 00: 00:

of f Excepti ons :

01/08/ 1996 00: 00:
04/ 04/ 1996 00: 00:
07/ 09/ 1996 00: 00:

 f set Dat e( 03/ 03/ 1996

d f set Dat e( 03/ 03/ 1996

00
00
00

00
00
00

02/ 03/ 1996 00: 00: 00
05/ 19/ 1996 00: 00: 00
08/ 04/ 1996 00: 00: 00

02/ 02/ 1996 00: 00: 00
05/ 08/ 1996 00: 00: 00

03/ 24/ 1996 00: 00: 00
06/ 23/ 1996 00: 00: 00
09/ 15/ 1996 00: 00: 00

03/ 05/ 1996 00: 00: 00
06/ 25/ 1996 00: 00: 00

00: 00: 00 , 20) = 03/29/1996 00: 00: 00

00: 00: 00 , -20) = 02/05/1996 00: 00: 00

Calendar Functions: Reference 4-57



SetPrecision

SetPrecision

Format
ORDSYS.Calendar.SetPrecision(
timestamp IN DATE,
frequency IN INTEGER
) RETURN DATE;
Description
Given a timestamp and a frequency, returns a timestamp that reflects the level of
precision implied by the frequency.
Parameters
timestamp
Timestamp whose precision is to be set.
frequency
Frequency to be applied in setting the precision.
Usage

The returned timestamp reflects the precision implied by the frequency, as
explained in Section 2.2.1. For example, if the input timestamp is 29-Dec-1997
12:45:00 and frequency is 6 (month), the returned timestamp is 01-Dec-1997 00:00:00.
Table 4-1 shows the frequencies, their precision conventions, and the resulting pre-
cision if an input timestamp of 19-Sep-1997 09:09:09 is supplied.

Table 4-1 SetPrecision and Timestamp of 19-Sep-1997 09:09:09

Frequency (Every:)  Precision Convention Result
second MM-DD-YYYY HH24:MI:SS 09-19-1997 09:09:09
minute MM-DD-YYYY HH24:MI:00 09-19-1997 09:09:00

4-58 Oracle8 Time Series Cartridge User's Guide



SetPrecision

Example

Table 4-1 SetPrecision and Timestamp of 19-Sep-1997 09:09:09 (Cont.)

Frequency (Every:)  Precision Convention Result

hour MM-DD-YYYY HH24:00:00 09-19-1997 09:00:00

day MM-DD-YYYY 00:00:00 09-19-1997 00:00:00
(midnight)

month MM-01-YYYY 00:00:00 09-01-1997 00:00:00
(midnight of first day of month)

year 01-01-YYYY 00:00:00 (midnight  01-01-1997 00:00:00

of first day of year)

If the frequency value is not valid, an exception is raised.

Set the precision of an imprecise timestamp (here, a timestamp containing hour,
minute, and second values where the calendar has a day frequency):

CONNECT CRDOTUSER CROTUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

tstGal CRDSYS CRDICal endar ;
tst Dat el DATE

resul t Dat e date;

dummyVal | NTEGER

rel Ffset | NTECGER

BEG N

-- Select a calendar (say, GENER GCALL) into tstCal
-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal

FROM CRDTDEV. st ockdeno_cal endars cal

WHERE cal .nane =’ GENER G CALT ;

-- D splay the cal endar.
SELECT CRDSYS. Ti neSeri es. D spl ay(tstCal ) | NTO dummyVal FROM dual ;
DBVB QUTPUT. NEWLI NE

-- Set the precision of an inprecise date.

Calendar Functions: Reference 4-59



SetPrecision

tstDatel : = TO DATE(' 03/ 03/ 1996 01:01:01");
resul tDate : = CRDSYS Cal endar. Set Preci si on(tstDatel, tstCal.frequency);
DBMB QUTPUT. PUT_LI NE(" SetPreci sion(’ ||
TO HAR(tst Datel) ||
", || tst@al.frequency || ) =" ||
TOHAR(resul tDate) );
BEND,
/

This example might produce the following output. In this example, the hour,
minute, and second components of the timestamp are set to zeroes because the cal-
endar frequency is 4 (day).

CGal endar Nane = GENER G CAL1
Frequency = 4
M nDate = 01/01/1996 00: 00: 00
MwxDate = 12/31/1996 00: 00: 00
patBits:
0111110
pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons
01/ 21/ 1996 00: 00: 00 02/ 03/ 1996 00: 00: 00 03/ 24/ 1996 00: 00: 00
04/ 27/ 1996 00: 00: 00 05/ 19/ 1996 00: 00: 00 06/ 23/ 1996 00: 00: 00
07/ 07/ 1996 00: 00: 00 08/ 04/ 1996 00: 00: 00 09/ 15/ 1996 00: 00: 00
of f Excepti ons :
01/ 08/ 1996 00: 00: 00 02/ 02/ 1996 00: 00: 00 03/ 05/ 1996 00: 00: 00
04/ 04/ 1996 00: 00: 00 05/ 08/ 1996 00: 00: 00 06/ 25/ 1996 00: 00: 00
07/ 09/ 1996 00: 00: 00

Set Preci si on(03/03/1996 01:01:01 , 4) = 03/03/1996 00: 00: 00

4-60 Oracle8 Time Series Cartridge User's Guide



TimeStampsBetween

TimeStampsBetween

Format

Description

Parameters

Usage

ORDSYS.Calendar.TimeStampsBetween(
inputCal IN ORDSYS.ORDTCalendar,
startDate IN DATE,
endDate IN DATE
) RETURN ORDSYS.ORDTDateTab;

Given starting and ending input timestamps, returns a table (ORDTDateTab) con-
taining the valid timestamps within that range according to the specified calendar.

inputCal
The calendar to be used to determine whether a timestamp is valid or invalid.

startDate
Starting date in the range to be checked for valid timestamps.

endDate
Ending date in the range to be checked for valid timestamps.

A timestamp is invalid if any of the following conditions is true:
« Itis outside the date range of the calendar.
« Itis an off-exception in the calendar.

« Itis not sufficiently precise (for example, a timestamp of 01-Jul-1997 if the calen-
dar has a frequency of year).

« Itisnull.

startDate and endDate are included in the check for valid timestamps.

Calendar Functions: Reference 4-61



TimeStampsBetween

If there are no valid timestamps in the date range, the function returns an empty
ORDTDateTab.

If startDate is greater (later) than endDate, an exception is raised.

Contrast this function with InvalidTimeStampsBetween, which returns a table con-
taining the invalid timestamps in a date range.

Example

Return a table of valid timestamps between 03-Mar-1996 and 03-Jun-1996 in the
GENERIC-CALL1 calendar:

CONNECT CROTUSER CROTUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

tstGal CRDSYS CRDICal endar ;
tst Dat el DATE

t st Dat e2 DATE

resul t DTab CROSYS. or dt Dat eTab;
dummyVal | NTEGER

rel Ffset | NTECGER

BEG N

-- Select a calendar (say, GENER GCALL) into tstCal
-- from st ockdeno_cal endars.

SELECT val ue(cal ) INTOtstCal

FROM CRDTDEV. st ockdeno_cal endars cal

WHERE cal .nane =’ (ENER G CALT ;

-- D splay the cal endar.
SELECT CRDSYS. Ti meSeri es. D spl ay(tstCal) | NTO dummyVal FROM dual ;
DBVB QUTPUT. NEWLI NE,

-- Get all the valid timestanps between 03- MAR 1996 and 03- JUN- 1996.
tstDatel : = TO DATH' 03/ 03/ 1996’ ) ;

tstDate2 : = TO DATH' 06/ 03/ 1996’ ) ;

resul t DTab : = CRDSYS. Cal endar. Ti neSt anpsBet ween(tstCal, tstDatel, tstDate2);
SELECT CORDSYS. Ti neSeri es. D spl ay(resul t DTab, 'Valid timestanps’)

I NTO durmyVal

FROM dual ;

BEND,

4-62 Oracle8 Time Series Cartridge User's Guide



TimeStampsBetween

/

This example might produce the following output:

Gl endar Nane = GENER G CAL1
Frequency = 4
M nDate = 01/01/1996 00: 00: 00
MuxDate = 12/31/1996 00: 00: 00
patBits:
0111110
pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons
01/ 21/ 1996 00: 00: 00 02/ 03/ 1996 00: 00: 00 03/ 24/ 1996 00: 00: 00
04/ 27/ 1996 00: 00: 00 05/ 19/ 1996 00: 00: 00 06/ 23/ 1996 00: 00: 00
07/ 07/ 1996 00: 00: 00 08/ 04/ 1996 00: 00: 00 09/ 15/ 1996 00: 00: 00
of f Excepti ons :
01/ 08/ 1996 00: 00: 00 02/ 02/ 1996 00: 00: 00 03/ 05/ 1996 00: 00: 00
04/ 04/ 1996 00: 00: 00 05/ 08/ 1996 00: 00: 00 06/ 25/ 1996 00: 00: 00
07/ 09/ 1996 00: 00: 00

Valid tinestanps :

03/ 04/ 1996 00: 00: 00 03/ 06/ 1996 00: 00: 00 03/ 07/ 1996 00: 00: 00
03/ 08/ 1996 00: 00: 00 03/ 11/ 1996 00: 00: 00 03/ 12/ 1996 00: 00: 00
03/ 13/ 1996 00: 00: 00 03/ 14/ 1996 00: 00: 00 03/ 15/ 1996 00: 00: 00
03/18/ 1996 00: 00: 00 03/ 19/ 1996 00: 00: 00 03/ 20/ 1996 00: 00: 00
03/21/1996 00: 00: 00 03/ 22/ 1996 00: 00: 00 03/ 24/ 1996 00: 00: 00
03/ 25/ 1996 00: 00: 00 03/ 26/ 1996 00: 00: 00 03/ 27/ 1996 00: 00: 00
03/ 28/ 1996 00: 00: 00 03/ 29/ 1996 00: 00: 00 04/ 01/ 1996 00: 00: 00
04/ 02/ 1996 00: 00: 00 04/ 03/ 1996 00: 00: 00 04/ 05/ 1996 00: 00: 00
04/ 08/ 1996 00: 00: 00 04/ 09/ 1996 00: 00: 00 04/ 10/ 1996 00: 00: 00
04/11/ 1996 00: 00: 00 04/ 12/ 1996 00: 00: 00 04/ 15/ 1996 00: 00: 00
04/ 16/ 1996 00: 00: 00 04/ 17/ 1996 00: 00: 00 04/ 18/ 1996 00: 00: 00
04/19/ 1996 00: 00: 00 04/ 22/ 1996 00: 00: 00 04/ 23/ 1996 00: 00: 00
04/ 24/ 1996 00: 00: 00 04/ 25/ 1996 00: 00: 00 04/ 26/ 1996 00: 00: 00
04/ 27/ 1996 00: 00: 00 04/ 29/ 1996 00: 00: 00 04/ 30/ 1996 00: 00: 00
05/ 01/ 1996 00: 00: 00 05/ 02/ 1996 00: 00: 00 05/ 03/ 1996 00: 00: 00
05/ 06/ 1996 00: 00: 00 05/ 07/ 1996 00: 00: 00 05/ 09/ 1996 00: 00: 00
05/10/ 1996 00: 00: 00 05/ 13/ 1996 00: 00: 00 05/ 14/ 1996 00: 00: 00
05/ 15/ 1996 00: 00: 00 05/ 16/ 1996 00: 00: 00 05/ 17/ 1996 00: 00: 00
05/19/ 1996 00: 00: 00 05/ 20/ 1996 00: 00: 00 05/ 21/ 1996 00: 00: 00
05/ 22/ 1996 00: 00: 00 05/ 23/ 1996 00: 00: 00 05/ 24/ 1996 00: 00: 00
05/ 27/ 1996 00: 00: 00 05/ 28/ 1996 00: 00: 00 05/ 29/ 1996 00: 00: 00
05/ 30/ 1996 00: 00: 00 05/ 31/ 1996 00: 00: 00 06/ 03/ 1996 00: 00: 00

Calendar Functions: Reference 4-63



TimeStampsBetween

Section 3.3.2 contains an example showing the use of TimeStampsBetween to create
a time series for use with the DeriveExceptions function.

4-64 Oracle8 Time Series Cartridge User's Guide



UnionCals

UnionCals

Format

Description

Parameters

Usage

ORDSYS.Calendar.UnionCals(

call ORDSYS.ORDTCalendar,
cal2 ORDSYS.ORDTCalendar
) RETURN ORDSYS.ORDTCalendar;

Returns a calendar that is the union of two input calendars.

call
The first calendar on which the union operation is to be performed.

cal2
The second calendar on which the union operation is to be performed.

The function performs a union of the two input calendars, as follows:

The starting date of the resulting calendar is the later of the starting dates of the
two calendars, that is, resulting minDate = max(minDatel, minDate2).

The ending date of the resulting calendar is the earlier of the ending dates of
the two calendars, that is, resulting maxDate = min(maxDatel, maxDate2).

The union of the aligned patterns is computed. For example, if both calendars
have a day frequency with Sunday as the first day, and if call has a pattern of
’0,1,1,1,1,1,0’ and cal2 has a pattern of ’0,0,1,1,1,1,1°, the resulting pattern is
’0,1,1,1,1,1,1° (that is, the calendar includes Mondays through Saturdays).

The union of the on-exception lists is computed. For example, if call has 30-Mar
and 29-Jun as on-exceptions and cal2 has 29-Jun and 28-Sep as on-exceptions,
the resulting calendar has 30-Mar, 29-Jun, and 28-Sep on-exceptions.

Calendar Functions: Reference 4-65



UnionCals

« The intersection of the off-exception lists is computed. For example, if call has
01-Jan and 04-Jul as off-exceptions and cal2 has 01-Jan and 14-Jul as off-excep-
tions, the resulting calendar has only 01-Jan as an off-exception.

If the frequencies of the two calendars are not equal, the function returns NULL.

Contrast this function with IntersectCals, which intersects two calendars.

Example
Perform a union of two calendars:

CONNECT CROTUSER CROTUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

tstCal 1 CROSYS. CROTCAl endar ;
tst Gal 2 CROSYS. CROTCAl endar ;
resul t Cal GRDSYS. CRDICal endar ;
equal Fl ag | NTEGER

dummyVal | NTEGER

BEG N

-- Select the calendars GENER G CALL into tstCal 1
-- and GENERGCAL2 into tstCal 2

-- from st ockdeno_cal endars.

SELECT val ue(cal) INTOtstCal 1

FROM CRDTDEV. st ockdeno_cal endars cal
WHERE cal .nane =’ (ENER G CALT ;

SELECT val ue(cal) INTOtstCal 2

FROM CRDTDEV. st ockdeno_cal endars cal
WHERE cal .nane =’ (BNER G CAL? ;

-- Dsplay the cal endars tstCal 1 and tstCal 2.
SELECT CGRDSYS. Ti neSeri es. O spl ay(tst Gal 1) | NTO durmyVal FROM dual ;
SELECT CGRDSYS. Ti neSeri es. D spl ay(tst Gal 2) | NTO durmyVal FROM dual ;

-- Lhion tstGl 1 and tstCal 2.

resul tCal := CROSYS Cal endar. Uni oncal s(tstCal 1, tstCal 2);

SELECT GRDSYS. Ti neSeries. D spl ay(resultCal, 'result of UhionCals’)
I NTO durmyVal

FROM dual ;

BEND,

4-66 Oracle8 Time Series Cartridge User's Guide



UnionCals

/

This example might produce the following output:

Gl endar Nane =
Frequency = 4
M nDate = 01/01/1996 00: 00: 00
MuxDate = 12/31/1996 00: 00: 00
patBits:

0111110
pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons

GENER G CALL

01/ 21/ 1996 00: 00: 00 02/ 03/ 1996
04/ 27/ 1996 00: 00: 00 05/ 19/ 1996
07/ 07/ 1996 00: 00: 00 08/ 04/ 1996

of f Excepti ons :
01/ 08/ 1996 00: 00: 00 02/ 02/ 1996
04/ 04/ 1996 00: 00: 00 05/ 08/ 1996
07/ 09/ 1996 00: 00: 00

CGal endar Nane = CENER G CAL2

Frequency = 4

M nDate = 01/01/1996 00: 00: 00

MaxDat e = 12/31/1997 00: 00: 00

patBits:

1111100
pat Anchor = 01/08/ 1996 00: 00: 00
onExcept i ons

07/ 07/ 1996 00: 00: 00 08/ 04/ 1996
10/ 13/ 1996 00: 00: 00 11/10/ 1996
01/ 04/ 1997 00: 00: 00 02/ 09/ 1997
04/ 05/ 1997 00: 00: 00 05/ 11/ 1997

of f Excepti ons :
07/ 09/ 1996 00: 00: 00 08/ 05/ 1996
10/ 23/ 1996 00: 00: 00 11/19/ 1996
01/ 01/ 1997 00: 00: 00 02/ 12/ 1997
04/ 07/ 1997 00: 00: 00 05/ 05/ 1997

result of UhionCals :

Frequency = 4

M nDate = 01/01/1996 00: 00: 00

MaxDat e = 12/31/1996 00: 00: 00

patBits:

1111100

00:
00:
00:

00:
00:

00:
00:
00:
00:

00:
00:
00:
00:

00:
00:
00:

00:
00:

00:
00:
00:
00:

00:
00:
00:
00:

00 03/ 24/ 1996 00: 00: 00
00 06/ 23/ 1996 00: 00: 00
00 09/ 15/ 1996 00: 00: 00
00 03/ 05/ 1996 00: 00: 00
00 06/ 25/ 1996 00: 00: 00
00 09/ 15/ 1996 00: 00: 00
00 12/ 14/ 1996 00: 00: 00
00 03/ 08/ 1997 00: 00: 00
00 06/ 08/ 1997 00: 00: 00
00 09/ 10/ 1996 00: 00: 00
00 12/ 12/ 1996 00: 00: 00
00 03/ 04/ 1997 00: 00: 00
00 06/ 09/ 1997 00: 00: 00

Calendar Functions: Reference 4-67



UnionCals

pat Anchor = 01/08/ 1996 00: 00: 00

onExcept i ons
01/21/1996 00: 00: 00
04/ 27/ 1996 00: 00: 00
07/ 07/ 1996 00: 00: 00
10/ 13/ 1996 00: 00: 00
of f Excepti ons :
07/ 09/ 1996 00: 00: 00

4-68 Oracle8 Time Series Cartridge User's Guide

02/ 03/ 1996 00: 00: 00
05/ 19/ 1996 00: 00: 00
08/ 04/ 1996 00: 00: 00
11/ 10/ 1996 00: 00: 00

03/ 24/ 1996 00: 00: 00
06/ 23/ 1996 00: 00: 00
09/ 15/ 1996 00: 00: 00
12/ 14/ 1996 00: 00: 00



ValidateCal

ValidateCal

Format

Description

Parameters

ORDSYS.Calendar.ValidateCal(
cal INOUT ORDSYS.ORDTCalendar,
outMessage OUT VARCHAR?2,
invOnExc OUT ORDTDateTab,
invOffExc OUT ORDTDateTab,
impOnExc OUT ORDTDateTab,
impOffExc OUT ORDTDateTab
) RETURN BINARY_INTEGER;

Validates a calendar and, if necessary, repairs the calendar and outputs information
related to the problems and repairs.

cal
The calendar to be validated and (if necessary) repaired.

outMessage
Message describing how the calendar was repaired (if the return value = 1) or why
the calendar could not be repaired (if the return value = -1).

invOnExc
Table of the invalid on-exceptions found in the calendar.

invOffExc
Table of the invalid off-exceptions found in the calendar.

impOnExc
Table of the imprecise on-exceptions found in the calendar.

Calendar Functions: Reference 4-69



ValidateCal

Usage

impOffExc
Table of the imprecise off-exceptions found in the calendar.

This function returns one of the following values:

Value Meaning

0  The calendar is valid. No errors were found.
1  Correctable errors were found and corrected. The resulting calendar is valid.

-1  Uncorrectable errors were found. The calendar is not valid.

Errors in the input calendar make it invalid. Depending on the error, it may be cor-
rectable or uncorrectable. Correctable errors are repaired by the ValidateCal func-
tion. If all errors are correctable, the resulting calendar is valid.

For a calendar to be valid, all timestamps in the off-exception and on-exception lists
must be consistent with the defined pattern for the calendar. If one or more excep-
tion timestamps are not consistent with the pattern, the calendar is invalid. For
example, if 04-Jan-1997 (Saturday) is in the off-exception list of a calendar whose
pattern includes only Mondays through Fridays as normal business days, 04-Jan-
1997 is an invalid off-exception (because as a Saturday is would normally be an
"off" day).

Imprecise exception timestamps are repaired. For an explanation of precision, see
Section 2.2.1.

Table 4-2 lists correctable errors and the repair actions taken by the ValidateCal
function:

Table 4-2 Errors Repaired by ValidateCal

Error Repair Action

Imprecise anchor date The precision is adjusted.

Character other than 1 or 0 in the pat- All pattern characters other than 0 or 1 are set to
tern 1.

Imprecise date The precision is adjusted.

Superfluous date (for example, aregu-  The date is removed from the exceptions list.
lar valid date in the on-exceptions list)

Null date The date is removed from the calendar.

4-70 Oracle8 Time Series Cartridge User's Guide



ValidateCal

Example

Table 4-2 Errors Repaired by ValidateCal (Cont.)

Error Repair Action

Unsorted dates The dates are sorted.

Duplicate dates in the on-exceptions or  Duplicates are removed; the date appears only

off-exceptions list once in the list.
Date appearing in both the on-excep- The date is removed from the inappropriate list,
tions and off-exceptions lists depending on the pattern and the anchor date.

Date outside the date range of the calen- The date is removed from the exceptions list.
dar

The following errors are not correctable. The function returns -1 if one or more of
these errors are found:

« The frequency is not valid.

= The starting date is later than the ending date.
= The pattern is null or empty

« All pattern bits are empty.

«  One or more pattern bits are null.

« The anchor date is null and the pattern is not "all ones" or "all zeroes" (for exam-
ple, a pattern of ’0,1,1,1,1,1,0’ but no anchor date specified).

If the function returns -1, you should not use the calendar until you have fixed the
errors that ValidateCal could not fix. Then use ValidateCal again, and use the calen-
dar only if the function returns 0 or 1.

You can use the DisplayValCal procedure to display the information returned by
the ValidateCal function. See the information on DisplayValCal in this chapter.

The IsValidCal function (described in this chapter) checks the validity of the calen-
dar but does not perform any repair operations.

Use the IsValidCal and ValidateCal functions and the DisplayValCal procedure
with an invalid calendar:

CONNECT CRDOTUSER CROTUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

Calendar Functions: Reference 4-71



ValidateCal

CEQLARE
out Message
i nvQnExc
invd f Exc

i npOnExc

i npd f Exc
dumyval
val i dFl ag
tstGl 1

TO DATE(’

var char 2(32750) ;

CRDSYS. CRDTDat eTab;

CRDSYS. CRDTDat eTab;

CRDSYS. CRDTDat eTab;

CRDSYS. CRDTDat eTab;

i nt eger;
i nt eger;
CROSYS. RDTCGal endar =
CROSYS. CRDTCal endar (

0,
" CALENDAR FQO ,
4,

CROSYS. (RDTPat t er n( GRDBYS. CRDTPatternBits(1, 1, 1,1, 1,0, 0),
TO DATE(’ 01-08-1996 01: 01:01')),

TO DATE(’ 01-01- 1975 ),

01-01-1999' ),

CROSYS. GRDTEXcept i ons(

TO DATE(’ 02-03-1969' ), --
TO DATE(’ 02-14-1969' ), --
TO DATE(’ 02-03-1999' ), --
TO DATE(’ 02-17-1999' ), --
TO DATE(’ 12-31-1995' ), --
TO DATE(’ 01-13-1996' ), --
TO DATE(’ 02-24-1996' ), --
TO DATE(’ 03-30-1996' ), --
TO DATE(’ 02- 02- 1996 01: O1:
TO DATE(’ 03- 04- 1996 01: O1:
TO DATE(’ 04- 05- 1996 02: 02:
TO DATE(’ 03-25-1996' ), --
TO DATE(’ 01-22-1996' ), --
TO DATE(’ 02- 12- 1996’ ),

TO DATE(’ 04- 30- 1996’ ),

NULL, --
TO DATE(’ 02-12-1996' ), --
NULL, --
TO DATE(’ 04-30-1996' ), --
NULL, --
TO DATE(’ 03-25-1996' ), --
TO DATE(’ 01-22-1996' ), --
TO DATE(’ 01-17-1996' ), --
TO DATE(’ 05-28-1996' ), --
TO DATE(’ 06- 18-1996' ), --
TO DATE(’ 04-23-1996' ), --
TO DATE(’ 02- 02- 1996’ ),

4-72 Oracle8 Time Series Cartridge User's Guide

Date < mnDat e,

Date < mnDat e,

Dat e > naxDat e,

Dat e > naxDat e,

Maps to O in pattern (Sunday)
Maps to O in pattern (Saturday)
Maps to O in pattern (Saturday)
Maps to O in pattern (Saturday)

01'), -- Inprecise
01'), -- Inprecise
02'), -- Inprecise

Valid of f-exception
Valid, but out of sequence

Nl | date

Dupl i cate date within GFFs

Nl | date

Dupl i cate of f-exception

Nl | date

Dupl i cate of f-exception

Dupl i cate of f-exception

Added to on- and of f-exceptions
Added to on- and of f-exceptions
Added to on- and of f-exceptions
Added to on- and of f-exceptions



ValidateCal

TO DATH(’ 03- 04- 1996" ) ,
TO DATH ' 05- 06- 1997 )),
CRDSYS. CROTEXcept i ons(

TO DATH(' 02-08-1969' ), -- Date < mnDate,

TO DATH(' 02-15-1969' ), -- Date < mnDate,

TO DATH(' 02-13-1999'), -- Date > nmaxDate,

TO DATH(' 02-20-1999'), -- Date > nmaxDate,

TO DATH(' 01-03-1996' ), -- Maps to 1 in pattern (Védnesday)
TO DATH(' 02-19-1996' ), -- Maps to 1 in pattern (Mnday)
TO DATH(' 03-18-1996' ), -- Maps to 1 in pattern (Mnday)
TO DATH(' 05-27-1996' ), -- Maps to 1 in pattern (Mnday)
TO DATH(’ 03-23-1996 01:01:01'), -- |nprecise

TO DATH(’ 02-18-1996 01:01:01'), -- |nprecise

TO DATH(’ 05-26-1996 01:01:01'), -- |nprecise

TO DATH(' 01-13-1996' ), -- Valid on-exception

TO DATH(' 01-14-1996' ), -- Valid on-exception

NULL, -- Null date

NULL, -- Null date

TO DATH(' 02-24-1996' ), -- Valid on-exception

TO DATH(' 03-23-1996' ), -- Valid on-exception

TO DATH(' 01-13-1996' ), -- Duplicate on-exception

TO DATH(' 01-14-1996' ), -- Duplicate on-exception

TO DATH(' 02-24-1996' ), -- Duplicate on-exception

TO DATH(' 03-23-1996' ), -- Duplicate on-exception

TO DATH(' 01-17-1996' ), -- Added to on- and of f-exceptions
TO DATH(’ 05-28-1996' ), -- Added to on- and of f-exceptions
TO DATH(' 06-18-1996' ), -- Added to on- and of f-exceptions
TO DATH(' 04-23-1996' ), -- Added to on- and of f-exceptions
TO DATH(' 01-06-1996' ), -- Valid, but out of sequence

TO DATE(’ 02- 03- 1996’ ),
TO DATE(’ 05- 04- 1997’ ))

);
BEQ N
SH ECT CRDSYS. TI MESER ES. D spl ay(tstCal 1, "tstCal 1) | NTO dummyval
FROM dual ;
val idFl ag : = CRDSYS. CALENDAR | sVal i dCal (tstCal 1);
IK(val idFlag = 0)
THEN
val i dFl ag : = CROSYS. CALENDAR Val i dat eCal (
tstCal 1, out Message, invnExc, invdfExc, inpOExc, inmpdfExc

);
CROSYS. TI MESER ES. D spl ayVal Gal (

val i dFl ag,
out Message,

Calendar Functions: Reference 4-73



ValidateCal

i nvOnhExc,

i nva f Bxc,

i npnExc,

i npdf f Exc,
tstCal 1,

);
BE\D IF;
END,
/

" Your Message’

This example might produce the following output:

tstGal 1 :

Cal endar Narre =
Frequency = 4

CALENDAR FQD

M nDate = 01/ 01/ 1975 00: 00: 00

NaxDat e
patBits:

1111100
pat Anchor = 01/08/ 1996 01: 01: 01

onExcept i ons
02/ 08/ 1969
02/ 20/ 1999
03/ 18/ 1996
02/ 18/ 1996
01/ 14/ 1996
02/ 24/ 1996
01/ 14/ 1996
01/ 17/ 1996
04/ 23/ 1996
05/ 04/ 1997

of f Excepti ons :

02/ 03/ 1969
02/17/ 1999
02/ 24/ 1996
03/ 04/ 1996
01/ 22/ 1996

00:
00:
00:
01:
00:
00:
00:
00:
00:
00:

00:
00:
00:
01:
00:

00:
00:
00:
01:
00:
00:
00:
00:
00:
00:

00:
00:
00:
01:
00:

00
00
00
01
00
00
00
00
00
00

00
00
00
01
00

01/ 01/ 1999 00: 00: 00

02/ 15/ 1969
01/ 03/ 1996
05/ 27/ 1996
05/ 26/ 1996

03/ 23/ 1996
02/ 24/ 1996
05/ 28/ 1996
01/ 06/ 1996

02/ 14/ 1969
12/ 31/ 1995
03/ 30/ 1996
04/ 05/ 1996
02/ 12/ 1996

02/ 12/ 1996 00: 00: 00
04/30/ 1996 00: 00: 00
01/22/1996 00: 00: 00
06/18/ 1996 00: 00: 00
03/ 04/ 1996 00: 00: 00

4-74 Oracle8 Time Series Cartridge User's Guide

03/ 25/ 1996 00: 00: 00

00:
00:
00:
01:

00:
00:
00:
00:

00:
00:
00:
02:
00:

00:
00:
00:
01:

00:
00:
00:
00:

00:
00:
00:
02:
00:

00
00
00
01

00
00
00
00

00
00
00
02
00

01/ 17/ 1996 00: 00: 00
04/ 23/ 1996 00: 00: 00
05/ 06/ 1997 00: 00: 00

02/ 13/ 1999
02/ 19/ 1996
03/ 23/ 1996
01/ 13/ 1996

01/ 13/ 1996
03/ 23/ 1996
06/ 18/ 1996
02/ 03/ 1996

02/ 03/ 1999
01/ 13/ 1996
02/ 02/ 1996
03/ 25/ 1996
04/ 30/ 1996

05/ 28/ 1996
02/ 02/ 1996

00:
00:
01:
00:

00:
00:
00:
00:

00:
00:
01:
00:
00:

00:
00:

00:
00:
01:
00:

00:
00:
00:
00:

00:
00:
01:
00:
00:

00:
00:

00
00
01
00

00
00
00
00

00
00
01
00
00

00
00



ValidateCal

D spl ayVal Gal Your Message:
TSWR\ the input cal endar has rectifiable errors. See the nessage for details
nessage out put by val i dat eCal :

TS WR\ fixed precision of the pattern anchor date

TS WR\ renoved superfluous dates in the on exception list (refer invalidnExc)
TS WR\ fixed inprecise dates in the on exception list (refer inpreci seOhExc)
TS WR\ renoved null dates in the on exception |ist

TS WR\ sorted the on exceptions |ist

TS WR\ renoved duplicate dates in the on exceptions |ist

TS WR\ renoved superfluous dates in off exceptions list (refer invalidCfExc)
TS WR\ fixed inprecise dates in the off exception list (refer inprecisedfExc)
TS WA\ renoved null dates in the off exception list

TS WR\ sorted the off exceptions |ist

TS WR\ renoved duplicate dates in the off exceptions I|ist

TS WR\ the on exceptions list was tri med between cal endar ninDate & naxDate
TS WR\ the off exceptions list was trinmed between cal endar mnDate & maxDate

list of invalid on exceptions :
01/ 03/ 1996 00: 00: 00 02/ 19/ 1996 00: 00: 00 03/ 18/ 1996 00: 00: 00
05/ 27/ 1996 00: 00: 00 01/ 17/ 1996 00: 00: 00 05/ 28/ 1996 00: 00: 00
06/ 18/ 1996 00: 00: 00 04/ 23/ 1996 00: 00: 00

list of invalid off exceptions :

12/ 31/ 1995 00: 00: 00 01/ 13/ 1996 00: 00: 00 02/ 24/ 1996 00: 00: 00
03/ 30/ 1996 00: 00: 00

list of inprecise on exceptions :

03/ 23/ 1996 01: 01: 01 02/ 18/ 1996 01:01: 01 05/ 26/ 1996 01: 01: 01
list of inprecise off exceptions :

02/ 02/ 1996 01: 01: 01 03/ 04/ 1996 01:01: 01 04/ 05/ 1996 02: 02: 02
the validated cal endar :

Cal endar Nare = CALENDAR FQD
Frequency = 4
M nDate = 01/ 01/ 1975 00: 00: 00
MaxDat e = 01/01/1999 00: 00: 00
patBits:

Calendar Functions: Reference 4-75



ValidateCal

1111100
pat Anchor = 01/08/ 1996 00: 00: 00

onExcept i ons
01/ 06/ 1996
02/ 03/ 1996
03/ 23/ 1996

of f Excepti ons :

01/17/ 1996
02/ 12/ 1996
04/ 05/ 1996
05/ 28/ 1996

4-76 Oracle8 Time Series Cartridge User's Guide

00:
00:
00:

00:
00:
00:
00:

00: 00
00: 00
00: 00

00: 00
00: 00
00: 00
00: 00

01/ 13/ 1996 00: 00: 00
02/ 18/ 1996 00: 00: 00
05/ 26/ 1996 00: 00: 00

01/ 22/ 1996 00: 00: 00
03/ 04/ 1996 00: 00: 00
04/ 23/ 1996 00: 00: 00
06/ 18/ 1996 00: 00: 00

01/ 14/ 1996 00:
02/ 24/ 1996 00:
05/ 04/ 1997 00:

02/ 02/ 1996 00:
03/ 25/ 1996 00:
04/ 30/ 1996 00:
05/ 06/ 1997 00:

00:
00:
00:

00:
00:
00:
00:

00
00
00

00
00
00
00



D

Time Series and Time Scaling Functions:
Reference

The Oracle8 Time Series Cartridge library consists of:

« datatypes (described in Section 2.2.2)

« calendar functions (described in Chapter 4)

« time series and time scaling functions (described in this chapter)

Two separate reference chapters are provided for the functions because the func-
tions described in each are typically done at different times in the application devel-
opment cycle and by people performing different job roles:

« Calendar functions are mainly used by product developers, such as ISVs, to
develop new time series functions and to administer and modify calendars.

« Time series and time scaling functions are used mainly by application develop-
ers and some end users after the associated calendar or calendars have been
defined.

Syntax notes:

« The ORDSYS schema name and the package name must be used with the func-
tion name, although public synonyms can be created to eliminate the need for
specifying the schema name (see Section 1.4). Each function is included in a PL/
SQL package, such as Calendar or TimeSeries. The ORDSYS schema name and
the package name are included in the Format and in any examples.

« Function calls are not case sensitive, except for any quoted literal values. For
example, the following code line excerpts are valid and semantically identical:

sel ect CAST(Ti neSeri es. Extract Tabl e(cl ose) AS CROTNunTab)
sel ect cast(TIMESER ES. extracttabl e(cl ose) as ordt nunt ab)

Time Series and Time Scaling Functions: Reference 5-1



sel ect cast(Ti MSeR Es. eXt RaG TaB E A osE) As ordt NJM ab)

= The syntax and examples show the reference-based interface (types ORDT-
NumSerieslOTRef and ORDTVarchar2SerieslOTRef).

Usage note:

All time series functions accept both references and instances as parameters. (For
example, an ORDTNumSerieslOTRef parameter could also be ORDTNumSeries.)
All time series functions return instances. Thus, if you nest functions, such as
Cmax(Cmax(...), ...), the innermost nesting accepts a reference and outputs an
instance, and any other functions in the nesting accept an instance and output an
instance.

For an explanation of the reference-based interface, see Section 2.5.2.

5-2 Oracle8 Time Series Cartridge User's Guide



Cavg

Cavg
Format
ORDSYS.TimeSeries.Cavg(
ts ORDSYS.ORDTNumSeries|OTRef
[, startDate DATE
, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;
Description
Given a time series, returns an ORDTNumSeries with each element containing the
cumulative average up to and including the corresponding element in the input
ORDTNumSeries.
Parameters
ts
The input time series.
startDate
Starting date within the time series for which the cumulative average is to be com-
puted. If startDate is specified, endDate must also be specified.
endDate
Ending date within the time series for which the cumulative average is to be com-
puted. If endDate is specified, startDate must also be specified.
Usage

Only non-null values are considered in computing the cumulative average.
An exception is returned if any of the following conditions is true:

= The time series (ts) is null.

«  The time series (ts) does not have an associated calendar.

= endDate is earlier than startDate.

Time Series and Time Scaling Functions: Reference 5-3



Cavg

Example

If startDate and endDate are specified, the time series is trimmed to the date range
before the cumulative average is computed.

Return the cumulative average of the closing price of stock ACME for November
1996:

SHECT * FROMthe
(SELECT CAST( GRDSYS. Ti neSeri es. Extract Tabl e(
CROSYS. Ti neSeri es. Cavg(ts. cl ose,to_date(’ 01-NOV-96',’ DD MIN-YY' ),
to_date(’ 30-NO-96"," DD MON YY'))
) AS CROSYS. CROTNUnirab)
FROM CRDTDEV. st ockdeno ts ts
WHERE ts.ticker= AOME);

This example might produce the following output:

01- NOv- 96 59
04- NOV- 96 59.5
05- NOV- 96 60
06- NOV- 96 60. 5
07- NOV- 96 61
08- NOv- 96 61.5
11- NOv- 96 62
12- NOv- 96 62.5
13- NOv- 96 63
14- NOv- 96 63.5
15- NOv- 96 64
18- NOv- 96 64.5
19- NOv- 96 65
20- NOV- 96 65.5
21- NOV- 96 66
22- NOV- 96 66. 5
25- NOV- 96 67
26- NOV- 96 67.5
27- NOV- 96 68
29- NOV- 96 68. 5

20 rows sel ect ed.

5-4 Oracle8 Time Series Cartridge User's Guide



Cmax

Cmax

Format
ORDSYS.TimeSeries.Cmax(

ts ORDSYS.ORDTNumSeries|OTRef

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description

Given a time series, returns an ORDTNumSeries with each element containing the
cumulative maximum up to and including the corresponding element in the input
ORDTNumSeries.

Parameters

ts
The input time series.

startDate
Starting date within the time series for which the cumulative maximum is to be
returned. If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the cumulative maximum is to be
returned. If endDate is specified, startDate must also be specified.

Usage
Only non-null values are considered in determining the cumulative maximum.
An exception is returned if any of the following conditions is true:
= The time series (ts) is null.
= The time series (ts) does not have an associated calendar.

= endDate is earlier than startDate.

Time Series and Time Scaling Functions: Reference 5-5



Cmax

Example

If startDate and endDate are specified, the time series is trimmed to the date range
before the cumulative maximum is computed.

Return the cumulative maximum of the closing price of stock ACME for November
1996:

SH ECT * FROMt he
(SELECT CAST( GRDSYS. Ti neSeri es. Extract Tabl e(
CROSYS. Ti neSeri es. Qrax(ts. cl ose,to_date(’ 01-NOV-96',’ DD MIN-YY' ),
to_date(’ 30-NO-96"," DD MON YY'))
) AS CROSYS. CROTNUnirab)
FROM CRDTDEV. st ockdeno ts ts
WHERE ts.ticker= AOME);

This example might produce the following output. (Note that this output reflects

the simplified artificial data in the usage demo database, where the closing price
rises one point each day.)

01- NOv- 96 59
04- NOV- 96 60
05- NOV- 96 61
06- NOV- 96 62
07- NOV- 96 63
08- NOv- 96 64
11- NOv- 96 65
12- NOv- 96 66
13- NOv- 96 67
14- NOv- 96 68
15- NOv- 96 69
18- NOv- 96 70
19- NOv- 96 71
20- NOV- 96 72
21- NOV- 96 73
22- NOV- 96 74
25- NOV- 96 75
26- NOV- 96 76
27- NOV- 96 77
29- NOV- 96 78

20 rows sel ect ed.

5-6 Oracle8 Time Series Cartridge User's Guide



Cmin

Cmin

Format
ORDSYS.TimeSeries.Cmin(

ts ORDSYS.ORDTNumSeries|OTRef

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description

Given a time series, returns an ORDTNumSeries with each element containing the
cumulative minimum up to and including the corresponding element in the input
ORDTNumSeries.

Parameters

ts
The input time series.

startDate
Starting date within the time series for which the cumulative minimum is to be
returned. If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the cumulative minimum is to be
returned. If endDate is specified, startDate must also be specified.

Usage
Only non-null values are considered in determining the cumulative minimum.
An exception is returned if any of the following conditions is true:
= The time series (ts) is null.
= The time series (ts) does not have an associated calendar.

= endDate is earlier than startDate.

Time Series and Time Scaling Functions: Reference 5-7



Cmin

Example

If startDate and endDate are specified, the time series is trimmed to the date range
before the cumulative minimum is computed.

Return the cumulative minimum of the closing price of stock ACME for November
1996:

SH ECT * FROMt he
(SELECT CAST( GRDSYS. Ti neSeri es. Extract Tabl e(
CROSYS. Ti neSeri es. Gnin(ts. cl ose,to_date(’ 01-NOV-96',’ DD MIN-YY' ),
to_date(’ 30-NO-96"," DD MON YY'))
) AS CROSYS. CROTNUnirab)
FROM CRDTDEV. st ockdeno ts ts
WHERE ts.ticker= AOME);

This example might produce the following output. (Note that this output reflects

the simplified artificial data in the usage demo database, where the closing price
rises one point each day.)

01- NOv- 96 59
04- NOV- 96 59
05- NOV- 96 59
06- NOV- 96 59
07- NOV- 96 59
08- NOv- 96 59
11- NOv- 96 59
12- NOv- 96 59
13- NOv- 96 59
14- NOv- 96 59
15- NOv- 96 59
18- NOv- 96 59
19- NOv- 96 59
20- NOV- 96 59
21- NOV- 96 59
22- NOV- 96 59
25- NOV- 96 59
26- NOV- 96 59
27- NOV- 96 59
29- NOV- 96 59

20 rows sel ect ed.

5-8 Oracle8 Time Series Cartridge User's Guide



Cprod

Cprod
Format
ORDSYS.TimeSeries.Cprod(
ts ORDSYS.ORDTNumSeries|OTRef
[, startDate DATE
, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;
Description
Given a time series, returns an ORDTNumSeries with each element containing the
cumulative product of multiplication up to and including the corresponding ele-
ment in the input ORDTNumSeries.
Parameters
ts
The input time series.
startDate
Starting date within the time series for which the cumulative product is to be com-
puted. If startDate is specified, endDate must also be specified.
endDate
Ending date within the time series for which the cumulative product is to be com-
puted. If endDate is specified, startDate must also be specified.
Usage

Only non-null values are considered in computing the cumulative product.
An exception is returned if any of the following conditions is true:

= The time series (ts) is null.

«  The time series (ts) does not have an associated calendar.

= endDate is earlier than startDate.

Time Series and Time Scaling Functions: Reference 5-9



Cprod

Example

If startDate and endDate are specified, the time series is trimmed to the date range
before the cumulative product is computed.

Return the cumulative product of the daily volume of stock ACME for the first four
trading days of November 1996. (This example is presented merely to illustrate the
function; the results of this query have no practical value for financial analysis.)

SHECT * FROMthe
(SELECT CAST( GRDSYS. Ti neSeri es. Extract Tabl e(
CROSYS. Ti neSeri es. Gor od(ts. vol une, to_dat e(’ 01- NO-96' , ' DD MON YY),
to_date(’ 06-NO-96",” DD MON YY'))
) AS CROSYS. CROTNUnirab)
FROM CRDTDEV. st ockdeno ts ts
WHERE ts.ticker= AOME);

This example might produce the following output:

01- NOV- 96 1000
04- NO/- 96 1000000
05- NOV-96 1000000000
06- NOV-96 1. 0000E+12
4 rows sel ect ed.

5-10 Oracle8 Time Series Cartridge User's Guide



Csum

Csum

Format

Description

Parameters

Usage

ORDSYS.TimeSeries.Csum(
ts ORDSYS.ORDTNumSeries|OTRef
[, startDate DATE
, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;

Given a time series, returns an ORDTNumSeries with each element containing the
cumulative sum up to and including the corresponding element in the input ORDT-
NumSeries.

ts
The input time series.

startDate
Starting date within the time series for which the cumulative sum is to be com-
puted. If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the cumulative sum is to be com-
puted. If endDate is specified, startDate must also be specified.

Only non-null values are considered in computing the cumulative sum.
An exception is returned if any of the following conditions is true:

= The time series (ts) is null.

«  The time series (ts) does not have an associated calendar.

= endDate is earlier than startDate.

Time Series and Time Scaling Functions: Reference 5-11



Csum

Example

If startDate and endDate are specified, the time series is trimmed to the date range
before the cumulative sum is computed.

Return the cumulative sum of the daily volume of stock ACME for November 1996:

SH ECT * FROMt he
(SELECT CAST( GRDSYS. Ti neSeri es. Extract Tabl e(
CROSYS. Ti neSeri es. Gsun{ts. vol une, to_date(’ 01-NO- 96", ' DD MON-YY' ),
to_date(’ 30-NO-96",” DD MON YY'))
) AS CROSYS. CROTNUnirab)
FROM CRDTDEV. st ockdeno ts ts
WHERE ts.ticker= AOME);

This example might produce the following output:

01- NOv- 96 1000
04- NOV- 96 2000
05- NOV- 96 3000
06- NOV- 96 4000
07- NOV- 96 5000
08- NOv- 96 6000
11- NOv- 96 7000
12- NOv- 96 8000
13- NOv- 96 9000
14- NOv- 96 10000
15- NOv- 96 11000
18- NOv- 96 12000
19- NOv- 96 13000
20- NOV- 96 14000
21- NOV- 96 15000
22- NOV- 96 16000
25- NOV- 96 17000
26- NOV- 96 18000
27- NOV- 96 19000
29- NOV- 96 20000

20 rows sel ect ed.

5-12 Oracle8 Time Series Cartridge User's Guide



DeriveExceptions

DeriveExceptions

Format

Description

Parameters

Approach 1:
ORDSYS.TimeSeries.DeriveExceptions(
inputCal IN ORDSYS.ORDTCalendar,
DateTab IN ORDSYS.ORDTDateTab
) RETURN ORDSYS.ORDTCalendar;
Approach 2:
ORDSYS.TimeSeries.DeriveExceptions(
series1 ORDTNumSerieslOTRef,
series2 ORDTNumSeries|OTRef
) RETURN ORDSYS.ORDTCalendar;
or
ORDSYS.TimeSeries.DeriveExceptions(
series1 ORDTVarchar2SeriesIOTRef,
series2 ORDTVarchar2Series|OTRef
) RETURN ORDSYS.ORDTCalendar;

Derives calendar exceptions from a calendar and a table of dates (Approach 1) or

from two time series (Approach 2).

inputCal

The calendar that contains no exceptions and for which exceptions are to be

derived.

Time Series and Time Scaling Functions: Reference 5-13



DeriveExceptions

Usage

Example

DateTab
The table of dates that includes all dates in the time series (for example, all dates on
which stock XYZ traded).

seriesl

The "reference” time series that contains no exceptions and all valid timestamps
from the calendar (for example, all Monday through Friday dates within the date
range of the calendar).

series2
The time series that contains the timestamps to be used in deriving the exceptions
for the resulting calendar (for example, all dates on which stock XYZ traded).

See Section 2.2.4 for a detailed explanation of the two approaches to using this func-
tion.

See Sections 3.3.1 and 3.3.2 for examples of the two approaches to using this func-
tion.

5-14 Oracle8 Time Series Cartridge User's Guide



Display

Display

Format

Description

Parameters

ORDSYS.TimeSeries.Display(
ts ORDSYS.[see parameter description]
[, mesg VARCHAR?]
) RETURN INTEGER;

Displays various information (see the description of the ts parameter) using
DBMS_OUTPUT routines.

ts
The object to be displayed. Because the function is overloaded, this parameter can
be any of the following datatypes:

« ORDTNumSerieslOTRef or ORDTNumSeries

« ORDTVarchar2SerieslOTRef or ORDTVarcharSeries
« ORDTNumTab

« ORDTVarchar2Tab

« ORDTNumCell

« ORDTVarchar2Cell

« ORDTDateTab

=« ORDTCalendar

« ORDTExceptions

« ORDTPattern

mesg
Optional message text to be included in the display heading ("Timeseries dump for
<mesg>").

Time Series and Time Scaling Functions: Reference 5-15



Display

Usage

Example

Use the SET SERVEROUTPUT ON statement to view the output of the Display
function. However, the default display buffer of 2000 bytes is often too small to dis-
play a large time series. In such cases you must use the ENABLE procedure of the
DBMS_OUTPUT package to specify a larger display buffer size. For example:

DBVS_CUTPUT. ENABLE( 1000000) ;

You should use Display only for development and debugging. Specify a display
buffer larger than 2000 only when necessary, because the display buffer uses
shared system resources, and a large value might affect the performance of other
users.

Because the Display function uses DBMS_OUTPUT routines, it is subject to the limi-
tations of these routines. These limitations include the following:

« Output cannot exceed 1 megabyte.
= The Display function cannot be used with the OCI.

«  SQL*Plus does not support DBMS_OUTPUT in the context of a SELECT state-
ment, but it does support DBMS_OUTPUT for anonymous PL/SQL blocks.

Display the output for a query that returns the 10 highest closing prices for stock
AONE for the month of January 1996:

SET SERVEROQUTPUT ON
CECLARE
tnp | NTEGER
BEA N
SH ECT CRDSYS. Ti neSeri es. O spl ay(

CRDSYS. Ti meSeri es. TSVaxN cl ose, 10,
to_dat e(’ 01011996’ , ' MMCDYYYY' ),
to_date(’ 01311996’ , ' MVCDYYYY')))

INTO t np

FROM CRDTDEV. st ocks t's
WHERE ticker = AONE ;
END,

/

This example might produce the following output:

5-16 Oracle8 Time Series Cartridge User's Guide



Display

Dat e Val ue

01/ 24/ 1996 00: 00: 00 43.9138
01/ 25/ 1996 00: 00: 00 42.9925
01/ 31/ 1996 00: 00: 00 42.9925
01/ 26/ 1996 00: 00: 00 42.7413
01/ 30/ 1996 00: 00: 00 42.7413
01/ 29/ 1996 00: 00: 00 42.5738
01/ 23/ 1996 00: 00: 00 41. 9875
01/ 22/ 1996 00: 00: 00 41. 82

01/ 19/ 1996 00: 00: 00 41. 485
01/ 18/ 1996 00: 00: 00 40. 815

The preceding example works from both SQL*Plus and the Server Manager
(svrmgrl) prompt. The following version of the example works from the Server
Manager prompt but not from SQL*Plus:

SET SERVERQUTPUT (N
SH ECT CRDSYS. Ti neSeri es. O spl ay(

CRDSYS. Ti meSeri es. TSVaxN cl ose, 10,
to_date(’ 01011996 , ' MODYYYY' ),
to_date(’ 01311996, ' MIDYYYY' )))

FROM CRDTDEV. st ocks t's
WHERE ticker =" AONE ;

See the TSMaxN function for an example that returns the same information, but
that uses a subquery instead of the Display function.

Time Series and Time Scaling Functions: Reference 5-17



DisplayValTS Procedure

DisplayValTS Procedure

Format
ORDSYS.TimeSeries.DisplayValTS(

validFlag IN INTEGER,

outMessage IN VARCHAR?2,

loDateTab IN ORDSYS.ORDTDateTab,
hiDateTab IN ORDSYS.ORDTDateTab,
impreciseDateTab IN ORDSYS.ORDTDateTab,
duplicateDateTab IN ORDSYS.ORDTDateTab,
extraDateTab IN ORDSYS.ORDTDateTab,
missingDateTab IN ORDSYS.ORDTDateTab,
mesg IN VARCHAR2

);

Description
Displays the results returned by the ValidateTS function.

Note: DisplayValTS is a procedure, not a function. Procedures do
not return values.

Parameters

validFlag
The return value from the ValidateTS function.

outMessage
The diagnostic returned by the ValidateTS function.

loDateTab
A table of dates before the starting date of the calendar associated with the time
series.

5-18 Oracle8 Time Series Cartridge User's Guide



DisplayValTS Procedure

Usage

Example

hiDateTab
A table of dates after the starting date of the calendar associated with the time
series.

impreciseDateTab
A table of the imprecise dates found in the time series.

duplicateDateTab
A table of the duplicate dates (dates that appear more than once in the time series).

extraDateTab

A table of dates that are included in the time series but that should be excluded
based on the calendar definition (for example, a Saturday timestamp that is in a
Monday-Friday calendar and that is not an on-exception).

missingDateTab

A table of dates that are excluded from the time series but that should be included
based on the calendar definition (for example, a Wednesday date that is not a holi-
day in a Monday-Friday calendar and for which there is no data). Such dates can be
considered as "holes" in the time series.

mesg
Optional message.

This procedure is intended to be used with the ValidateTS function. See the infor-
mation on ValidateTS in this chapter.

The DisplayValTS procedure uses the DBMS_OUTPUT package. See the Usage
information for the Display function for limitations relating to the use of
DBMS_OUTPUT.

Use the IsValidTS and ValidateTS functions and the DisplayValTS procedure with
an invalid time series:

SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

CEQLARE
nunTS CRDSYS. CGROTNunter i es;
tenpVal integer;

Time Series and Time Scaling Functions: Reference 5-19



DisplayValTS Procedure

retlsvalid integer;
retVal TS i nt eger;
| oDat eTab CORDSYS. CRDTDat eTab : = NULL;

hi

Dat eTab CORDSYS. CRDTDat eTab : = NULL;

i mpDat eTab GRDSYS. GRDTDat eTab : = NULL;
dupDat eTab CRDSYS. GRDTDat eTab : = NULL;

ext rabat eTab CROSYS. CROTDat eTab : = NULL;

m ssi ngDat eTab CRDSYS. CRDTDat eTab : = NULL;
out Mesg var char 2(2000) ;

BEAG N

-- Set the buffer size
DBVE QUTPUT. ENABLE( 100000) ;

-- NOTE Here an instance of the tine series is naterialized
-- so that it could be nodified to generate an invalid tine series.

SH ECT CRDSYS. Tl MESER ES. Get Seri es(ts. open) | NTO nunTS
FROM or dt dev. st ockdeno_ts ts
WERE ts.ticker ="' AQVE ;

-- Exanple of validating a valid tine series.
SH ECT ordsys. timeseries. di spl ay(nunTS, 'A VALID TIME SERES) INIOtenpVal
FROM dual ;
retlsvalid := GROSYS TIMESER ES. | sVal i dTS(nunTS) ;
retVal TS : = GROSYS. TI MESER ES. Val i dat eTS( nunTS, out Mesg, | oDat eTab,
hi Dat eTab, i npDat eTab, dupDat eTab,
extraDat eTab, ni ssi ngDat eTab) ;
DBVS QUTPUT. PUT_LINE(' Val ue returned by IsValid =" || retlsValid);
DBVS QUTPUT. PUT_LINE(' Val ue returned by ValidateTS ="' || retVal T9);
CRDSYS. Tl MESER ES. D spl ayVal TS(ret Val TS, out Mesg, | oDat eTab, hi Dat eTab,
i npDat eTab, dupDat eTab, extraDateTab, nissi ngDat eTab,
"Testing D splayVal TS );
DBVE _CQUTPUT. NEW LI NE,

-- For illustration let us first create an invalid tineseries.

-- Here we are adjusting the calendar’s ninDate and maxDate to avoid
-- getting a huge list of nissing dates.

nunTS. cal . mnDat e : = TO DATE(’ 10/ 28/ 1996 ) ;

nunTS, cal . raxDat e : = TO DATE(’ 01/ 05/ 1997");

5-20 Oracle8 Time Series Cartridge User's Guide



DisplayValTS Procedure

-- Add Dates Before nunTS. cal.nmnDate
nunTS. series(10).tstanp : = nuniS cal . mnDate - 1;
nunTS. series(11).tstanp : = nuniS. cal . mnDate - 2;

-- Add Dates Beyond nunTS. cal . maxDat e
nuntrS. series(12).tstanp : = nunTS cal . raxDate + 1;
nuntrsS. series(13).tstanp : = nunTS cal . naxDate + 2;

-- Add sone nul |l tinestanps
nunTS. series(14).tstanp :
nunTS. series(15).tstanp :

NULL;
NULL;

-- Add sone inpreci se dates (sone are duplicated)
nunTS. series(17).tstanp : = nunTS seri es(16).tstanp + 1/24;
nunTS, series(18).tstanp : = nuniTS seri es(16).tstanp + 15/ 24;

-- Add sone duplicate tinestanps
nunTS. series(19).tstanp : = nunTS seri es(18).tstanp;
nunTS. series(21).tstanp : = nunTS seri es(20).tstanp;

-- Add sone extra dates in the niddl e
nunTS. series(37).tstanp : = TO DATE(’ 12/ 28/ 1996’ ) ;
nunTS. series(36).tstanp : = TO DATE(’ 12/ 29/ 1996’ ) ;

-- Add sone holes at the end
nunTS. series(nunTS. series. count).tstanp : = TO DATE(’ 01/ 04/ 1997" );

-- Exanpl e of validating an invalid tine series.
SH ECT ordsys. ti meseri es. di spl ay(nunTS, ' AN INVALID TIME SERES))
INTO t enpVal FRCM dual ;
retlsvalid := GROSYS TIMESER ES. | sVal i dTS(nunTS) ;
retVal TS : = GROSYS. TI MESER ES. Val i dat eTS(nunTS, out Mesg,
| oDat eTab, hi Dat eTab, i npDat eTab,
dupDet eTab, extralateTab, mi ssi hgDat eTab);
DBVS QUTPUT. PUT_LINE(' Val ue returned by IsValid =" || retlsValid);
DBVS QUTPUT. PUT_LINK(' Val ue returned by ValidateTS ="' || retVal T9);
CRDSYS. Tl MESER ES. D spl ayVal TS(ret Val TS, out Mesg, | oDat eTab, hi Dat eTab,
i npDat eTab, dupDat eTab, extraDat eTab, nissi ngDat eTab,
"Testing DisplayVal TS );
END,
/

This example might produce the following output:
A VALID TIME SER ES :

Time Series and Time Scaling Functions: Reference 5-21



DisplayValTS Procedure

Narre = AQME open Nungeries
CGal endar Dat a:
CGal endar Nane = BUSI NESS- 96
Frequency = 4

M nDate = 01/01/1990 00: 00: 00
MaxDat e = 01/ 01/ 2001 00: 00: 00
patBits:

0111110

pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons

of f Excepti ons

11/28/ 1996 00: 00: 00 12/ 25/ 1996 00: 00: 00

Series [ata
Dat e Val ue
11/ 01/ 1996 00: 00: 00 59
11/ 04/ 1996 00: 00: 00 60
11/ 05/ 1996 00: 00: 00 61
11/ 06/ 1996 00: 00: 00 62
11/ 07/ 1996 00: 00: 00 63
11/ 08/ 1996 00: 00: 00 64
11/11/1996 00: 00: 00 65
11/ 12/ 1996 00: 00: 00 66
11/ 13/ 1996 00: 00: 00 67
11/ 14/ 1996 00: 00: 00 68
11/ 15/ 1996 00: 00: 00 69
11/ 18/ 1996 00: 00: 00 70
11/19/ 1996 00: 00: 00 71
11/ 20/ 1996 00: 00: 00 72
11/21/ 1996 00: 00: 00 73
11/ 22/ 1996 00: 00: 00 74
11/ 25/ 1996 00: 00: 00 75
11/ 26/ 1996 00: 00: 00 76
11/ 27/ 1996 00: 00: 00 77
11/ 29/ 1996 00: 00: 00 78
12/ 02/ 1996 00: 00: 00 79
12/ 03/ 1996 00: 00: 00 80
12/ 04/ 1996 00: 00: 00 81
12/ 05/ 1996 00: 00: 00 82
12/ 06/ 1996 00: 00: 00 83
12/ 09/ 1996 00: 00: 00 84
12/ 10/ 1996 00: 00: 00 85
12/11/1996 00: 00: 00 86
12/ 12/ 1996 00: 00: 00 87

5-22 Oracle8 Time Series Cartridge User's Guide



DisplayValTS Procedure

12/ 13/ 1996 00: 00: 00 88
12/ 16/ 1996 00: 00: 00 89
12/ 17/ 1996 00: 00: 00 90
12/ 18/ 1996 00: 00: 00 91
12/ 19/ 1996 00: 00: 00 92
12/ 20/ 1996 00: 00: 00 93
12/ 23/ 1996 00: 00: 00 94
12/ 24/ 1996 00: 00: 00 95
12/ 26/ 1996 00: 00: 00 96
12/ 27/ 1996 00: 00: 00 97
12/ 30/ 1996 00: 00: 00 98
12/ 31/ 1996 00: 00: 00 99

Value returned by IsvValid =1
Value returned by ValidateTS =1

D spl ayVal TS: Testing D spl ayVal TS:

TS SUC the input tine series is avalid time series

AN ITNVALID TTME SERES :

Nare = AOME open Nungeries
Gl endar Dat a:
CGal endar Nane = BUSI NESS- 96
Frequency = 4

M nDate = 10/ 28/ 1996 00: 00: 00
MaxDat e = 01/ 05/ 1997 00: 00: 00
patBits:

0111110

pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons

of f Excepti ons :

11/28/ 1996 00: 00: 00 12/ 25/ 1996 00: 00: 00

Series Data:
Dat e Val ue
11/ 01/ 1996 00: 00: 00 59
11/ 04/ 1996 00: 00: 00 60
11/ 05/ 1996 00: 00: 00 61
11/ 06/ 1996 00: 00: 00 62
11/ 07/ 1996 00: 00: 00 63
11/ 08/ 1996 00: 00: 00 64

Time Series and Time Scaling Functions: Reference 5-23



DisplayValTS Procedure

11/11/1996 00: 00: 00 65
11/ 12/ 1996 00: 00: 00 66
11/ 13/ 1996 00: 00: 00 67
10/ 27/ 1996 00: 00: 00 68
10/ 26/ 1996 00: 00: 00 69
01/ 06/ 1997 00: 00: 00 70
01/ 07/ 1997 00: 00: 00 71
72
73
11/ 22/ 1996 00: 00: 00 74
11/ 22/ 1996 01: 00: 00 75
11/ 22/ 1996 15: 00: 00 76
11/ 22/ 1996 15: 00: 00 77
11/29/ 1996 00: 00: 00 78
11/29/ 1996 00: 00: 00 79
12/ 03/ 1996 00: 00: 00 80
12/ 04/ 1996 00: 00: 00 81
12/ 05/ 1996 00: 00: 00 82
12/ 06/ 1996 00: 00: 00 83
12/ 09/ 1996 00: 00: 00 84
12/ 10/ 1996 00: 00: 00 85
12/ 11/ 1996 00: 00: 00 86
12/ 12/ 1996 00: 00: 00 87
12/ 13/ 1996 00: 00: 00 88
12/ 16/ 1996 00: 00: 00 89
12/ 17/ 1996 00: 00: 00 90
12/ 18/ 1996 00: 00: 00 91
12/ 19/ 1996 00: 00: 00 92
12/ 20/ 1996 00: 00: 00 93
12/ 29/ 1996 00: 00: 00 94
12/ 28/ 1996 00: 00: 00 95
12/ 26/ 1996 00: 00: 00 96
12/ 27/ 1996 00: 00: 00 97
12/ 30/ 1996 00: 00: 00 98
01/ 04/ 1997 00: 00: 00 99

Value returned by IsvValid =0
Val ue returned by ValidateTS =0

D spl ayVal TS: Testing D spl ayVal TS:
TSWR\ the input tine series has errors. See the nessage for details

nessage out put by val i dat eTS:

5-24 Oracle8 Time Series Cartridge User's Guide



DisplayValTS Procedure

TS ERR the input tine series is unsorted

TS BERR the tine series has null tinestanps

TS ERR the tine series has tinestanps < cal endar nminDate (refer LoDateTab)
TS BRR the tine series has tinestanps > cal endar naxDate (refer H DateTab)
TS BERR the tine series has inprecise tinestanps (refer inpreciseDateTab)
TS BERR the tine series has duplicate tinestanps (refer DuplicateDateTab)
list of dates < cal endar minDate - | owDateTab :

10/ 26/ 1996 00: 00: 00 10/ 27/ 1996 00: 00: 00
list of dates > cal endar naxDate - hi DateTab :
01/ 06/ 1997 00: 00: 00 01/07/ 1997 00: 00: 00
list of inprecise dates - inpreciselateTab :
11/ 22/ 1996 01: 00: 00 11/ 22/ 1996 15: 00: 00
list of duplicate dates - dupli catelateTab :
11/ 22/ 1996 15: 00: 00 11/ 29/ 1996 00: 00: 00
Ext raDat eTab :
12/ 28/ 1996 00: 00: 00 12/ 29/ 1996 00: 00: 00 01/ 04/ 1997 00: 00: 00
M ssi ngDat eTab :
10/ 28/ 1996 00: 00: 00 10/ 29/ 1996 00: 00: 00 10/ 30/ 1996 00: 00: 00
10/ 31/ 1996 00: 00: 00 11/ 14/ 1996 00: 00: 00 11/ 15/ 1996 00: 00: 00
11/ 18/ 1996 00: 00: 00 11/ 19/ 1996 00: 00: 00 11/ 20/ 1996 00: 00: 00
11/21/1996 00: 00: 00 11/ 25/ 1996 00: 00: 00 11/ 26/ 1996 00: 00: 00
11/ 27/ 1996 00: 00: 00 12/ 02/ 1996 00: 00: 00 12/ 23/ 1996 00: 00: 00

12/ 24/ 1996 00: 00: 00 12/ 31/ 1996 00: 00: 00 01/ 01/ 1997 00: 00: 00
01/ 02/ 1997 00: 00: 00 01/ 03/ 1997 00: 00: 00

Time Series and Time Scaling Functions: Reference 5-25



ExtractCal

ExtractCal

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries.ExtractCal(
ts ORDSYS.ORDTNumSeries|OTRef
) RETURN ORDSYS.ORDTCalendar;
or
ORDSYS.TimeSeries.ExtractCal(
ts ORDSYS.ORDTVarchar2Series|OTRef
) RETURN ORDSYS.ORDTCalendar;

Given a time series, returns a calendar that is the same as the calendar on which the
time series is based.

ts
The input time series.

The function returns a calendar that has the same starting and ending timestamps,
pattern, frequency, and exceptions (on- and off-) as the calendar on which the speci-
fied time series is based.

An exception is returned if the time series (ts) is null.

Return a calendar that matches the one on which the time series for the ACME
ticker is based:

SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

5-26 Oracle8 Time Series Cartridge User's Guide



ExtractCal

dummyval | NTEGER

BEG N

SELECT CORDSYS. Ti neSeri es. O spl ay(

CROSYS. TineSeries. Extract Cal (ts. open), 'ExtractCal Results’) |NIO dummyval
FROM CRDTDEV. st ockdeno ts ts
WHERE ts.ticker= AQOME ;

BEND,
/

This example might produce the following output:

ExtractCal Results :

CGal endar Nane = BUS|I NESS- 96
Frequency = 4
M nDate = 01/01/1990 00: 00: 00
MuxDate = 01/01/2001 00: 00: 00
patBits:
0111110
pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons
of f Excepti ons :
11/28/ 1996 00: 00: 00 12/ 25/ 1996 00: 00: 00

Time Series and Time Scaling Functions: Reference 5-27



ExtractDate

ExtractDate

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries.ExtractDate(
cell ORDSYS.ORDTNumCell
) RETURN DATE;

or

ORDSYS.TimeSeries.ExtractDate(
cell ORDSYS.ORDTVarchar2Cell
) RETURN DATE;

Given an element in a time series, returns the date.

cell
The time series element for which you want the date.

The time series element must first be identified, such as by using the GetNthEle-
ment function.

An exception is returned if the time series element (cell) is null.

Return the date associated with the tenth element in a specified time series:

SH ECT to_char( CRDSYS. Ti neSeri es. Ext ract Dat e(
CROSYS. Ti neSeri es. Get N hE enent (open, 10)),
" MM DD YYYY HR4:M:SS)
FROM CRDTLEV. st ocks_t's
WHERE ticker = ' AON\E ;

This example might produce the following output:

5-28 Oracle8 Time Series Cartridge User's Guide



ExtractDate

TO GHAR( CROSYS. TI ME

01/ 15/ 1990 00: 00: 00
1 row sel ect ed.

Time Series and Time Scaling Functions: Reference 5-29



ExtractTable

ExtractTable

Format
ORDSYS.TimeSeries.ExtractTable(

ts ORDSYS.ORDTNumSeries|OTRef
) RETURN ORDSYS.ORDTNumTab;
or
ORDSYS.TimeSeries.ExtractTable(
ts ORDSYS.ORDTVarchar2Series|OTRef
) RETURN ORDSYS.ORDTVarchar2Tab;

Description

Given a time series, returns the time series table (ORDTNumTab or
ORDTVarchar2Tab) associated with the time series.

Parameters

ts
The input time series.

Usage

The function returns the time series table (ORDTNumTab or ORDTVarchar2Tab)
associated with the time series.

An exception is returned if the time series (ts) is null.

Example

Return the closing prices for stock ACME:
SH ECT * FROMt he
(SELECT CAST( GRDSYS. Ti neSeri es. Extract Tabl e(t s. cl ose)
as CROSYS. GRDTNunTab)

FROM CRDTDEV. st ockdeno ts ts
WHERE ts.ticker= AOME );

This example might produce the following output:

5-30 Oracle8 Time Series Cartridge User's Guide



ExtractTable

01- NOv- 96 59
04- NOV- 96 60
05- NOV- 96 61
31- DEG 96 99

41 rows sel ected.

Time Series and Time Scaling Functions: Reference 5-31



ExtractValue

ExtractValue

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries.ExtractValue(
cell ORDSYS.ORDTNumCell
) RETURN NUMBER;

or

ORDSYS.TimeSeries.ExtractValue(
cell ORDSYS.ORDTVarchar2Celf
) RETURN VARCHARZ;

Given an element in a time series, returns the value stored in it.

cell
The time series element for which you want the value.

The time series element must first be identified, such as by using the GetNthEle-
ment function.

An exception is returned if the time series element (cell) is null.

Return the value of the tenth opening price in the stocks_ts table:

SH ECT CRDSYS. Ti meSeri es. Ext ract Val ue(
CRDSYS. Ti meSeri es. Get N hE enent (open, 10))
FROM CRDTDEV. st ocks_t's
WHERE ticker ='AONE ;

This example might produce the following output:
CROSYS. TIM

5-32 Oracle8 Time Series Cartridge User's Guide



ExtractValue

15. 1875
1 row sel ect ed.

Time Series and Time Scaling Functions: Reference 5-33



Fill

Fill

Format

Description

Parameters

Usage

ORDSYS.TimeSeries.Fill(
ts ORDSYS.ORDTNumSeries|OTRef
[, fil_type INTEGER]
) RETURN ORDSYS.ORDTNumSeries;

Given a time series and optionally a fill type, returns a time series in which values
for missing dates are inserted. A missing date is a date that is defined by the calen-
dar and within the time series bounds, but that is not in the current time series.

ts
The input time series.

fill_type

One of the following integers indicating how missing values are to be filled:

«  0=null: Insert nulls.

« 1=forward repeat: Use the values from the preceding (most recent) timestamp.

« 2 =backward repeat: Use the values from the following (next in the future)
timestamp.

If fill_type is omitted, O is assumed.

The function inserts timestamps and associated values for timestamps that are
included in a calendar but for which no entries exist in the time series.

The fill_type parameter lets you choose the manner in which missing values will be
defaulted. For example, assume that data for 30-Jan-1997 (Thursday) is missing
from a time series and that it should be included because this date is within the cal-
endar definition. Assume the following closing prices for stock XYZ:

5-34 Oracle8 Time Series Cartridge User's Guide



Fill

Example

« 49 0n29-Jan-1997
« 500n31-Jan-1997

The following table shows the closing price that would be inserted for 30-Jan-1997
with each of the fill_type parameter values:

fill_type Closing Price for 30-Jan-1997

0 null
1 49
2 50

Some potential uses for this function include:
« deriving the price of a stock for a nontrading day

For example, you may want to compare prices for a stock that trades on several
stock exchanges, where the exchanges have different trading days.

= converting a quarterly time series to a daily time series

For example, earnings per share (EPS) is computed quarterly, and stocks trade
daily. To compute a price-earnings (PE) ratio, earnings per share is first con-
verted to a daily time series using forward repeat. Then, the daily PE ratio is
calculated by dividing the daily price time series value by the corresponding
daily EPS time series value.

An exception is returned if the specified fill_type value is not 0, 1, or 2.

Return a time series illustrating each fill_type value:

SET SERVERQUTPUT ON
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;
-- For illustrating Fill we need a tineseries with nssing dates.
-- In the follow ng exanpl e, the tineseries 'FOO has sone nissing dates
-- (07-DEG 1996 and 08-DEG 1996). Al so, note that the cal endar associ ated
-- wth "FOO has an 'all one’ pattern.
CEQLARE
tstGal CRDSYS CRDICal endar;
ts CRDSYS. ordt nunseries : =

CRDSYS. or dt nunseri es(

"FQO,

Time Series and Time Scaling Functions: Reference 5-35



Fill

CROSYS. GRDTCGal endar (
0,
" FOD CALENDAR
4,
CROSYS. CRDTPat t er n(
CROSYS. RDTPatternBits(1,1,1,1,1,1, 1),
TO DATE(’ 01/ 07/ 1996 ) ) ,
TO DATH’ 01/ 01/ 1996’ ) ,
TO DATE(’ 01/ 01/ 1997" ),
CRDSYS. CRDTEXcept i ons(),
CRDSYS. CRDTEXcept i ons()
),
CROSYS. or dt nurt ab(
CROSYS. or dt nuncel | (TO DATH’ 12/ 02/ 1996’ ), 1),
CROSYS. or dt nuncel | (TO DATH’ 12/ 03/ 1996’ ), 2),
CROSYS. or dt nuncel | (TO DATH’ 12/ 04/ 1996’ ), 3),
CROSYS. or dt nuncel | (TO DATH’ 12/ 05/ 1996’ ), 4),
CROSYS. or dt nuntel | (TO DATH’ 12/ 06/ 1996’ ), 5),
CROSYS. or dt nuncel | (TO DATH’ 12/ 09/ 1996’ ), 6),
CROSYS. or dt nuncel | (TO DATH’ 12/ 10/ 1996’ ), 7),
CROSYS. or dt nuncel | (TO DATH’ 12/11/ 1996’ ), 8),
CROSYS. or dt nuneel | (TO DATH' 12/ 12/ 1996’ ), 9),
CROSYS. or dt nuneel | (TO DATH ' 12/ 13/ 1996' ), 10))

E
dummyval | NTEGER

BEG N

-- Generate a tinmeseries by fromX3OORP s high (repeat forward).
SELECT CGRDSYS. Ti neSeri es. O spl ay(

CROSYS. TineSeries. Fill (ts, 1),

"F 1l Forward ) | NrO dumyval
FROM dual ;

-- Generate a timeseries by fromX3QORP s high (repeat backward).
SELECT CGRDSYS. Ti neSeri es. O spl ay(

CROSYS. TineSeries.Fill(ts, 2),

"F 1l Backward') |NIO dummyval
FROM dual ;

-- Generate a tinmeseries by fromXAORP s high (null fill).
SELECT CGRDSYS. Ti neSeri es. O spl ay(

CROSYS. TineSeries.Fill(ts, 0),

"Nl FTET) 1 NTO durmyval

5-36 Oracle8 Time Series Cartridge User's Guide



Fill

FROM dual ;

BEND,
/

This example might produce the following output:
Fll Forward :

Cal endar Dat a:
CGal endar Name = FOD CALENDAR
Frequency = 4
M nDate = 01/01/1996 00: 00: 00
MuxDate = 01/01/ 1997 00: 00: 00
patBits:
1111111
pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons
of f Excepti ons :
Series Data:
Dat e Val ue
12/ 02/ 1996 00: 00: 00 1
12/ 03/ 1996 00: 00: 00 2
12/ 04/ 1996 00: 00: 00 3
12/ 05/ 1996 00: 00: 00 4
12/ 06/ 1996 00: 00: 00 5
12/ 07/ 1996 00: 00: 00 5
5
6
7
8
9

12/ 08/ 1996 00: 00: 00
12/ 09/ 1996 00: 00: 00
12/ 10/ 1996 00: 00: 00
12/ 11/ 1996 00: 00: 00
12/ 12/ 1996 00: 00: 00
12/ 13/ 1996 00: 00: 00 10

F 1l Backward :

Cal endar Dat a:
CGal endar Nare = FOD CALENDAR
Frequency = 4
M nDat e = 01/01/1996 00: 00: 00
MaxDat e = 01/ 01/ 1997 00: 00: 00
patBits:

1111111

Time Series and Time Scaling Functions: Reference 5-37



Fill

pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons
of f Excepti ons
Series Data
Date Val ue
12/ 02/ 1996 00: 00: 00 1
12/ 03/ 1996 00: 00: 00 2
12/ 04/ 1996 00: 00: 00 3
12/ 05/ 1996 00: 00: 00 4
12/ 06/ 1996 00: 00: 00 5
12/ 07/ 1996 00: 00: 00 6
12/ 08/ 1996 00: 00: 00 6
12/ 09/ 1996 00: 00: 00 6
12/ 10/ 1996 00: 00: 00 7
12/11/ 1996 00: 00: 00 8
12/12/ 1996 00: 00: 00 9
12/13/ 1996 00: 00: 00 10

Nl Fill

Cal endar Dat a:
CGal endar Name = FOD CALENDAR
Frequency = 4

M nDate = 01/01/1996 00: 00: 00
MaxDat e = 01/ 01/ 1997 00: 00: 00
patBits:

1111111

pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons

of f Excepti ons
Series Data

Date Val ue
12/ 02/ 1996 00: 00: 00 1
12/ 03/ 1996 00: 00: 00 2
12/ 04/ 1996 00: 00: 00 3
12/ 05/ 1996 00: 00: 00 4
12/ 06/ 1996 00: 00: 00 5
12/ 07/ 1996 00: 00: 00

12/ 08/ 1996 00: 00: 00

12/ 09/ 1996 00: 00: 00 6
12/ 10/ 1996 00: 00: 00 7
12/ 11/ 1996 00: 00: 00 8

5-38 Oracle8 Time Series Cartridge User's Guide



Fill

12/ 12/ 1996 00: 00: 00 9
12/ 13/ 1996 00: 00: 00 10

Time Series and Time Scaling Functions: Reference 5-39



First

First
Format
ORDSYS.TimeSeries.First(
ts ORDSYS.ORDTNumSeries|OTRef
) RETURN ORDSYS.ORDTNumCell;
Description
Given a time series, returns the first element in it.
Parameters
ts
The input time series.
Usage
A null is returned if the time series (ts) is empty.
An exception is returned if the time series (ts) is null.
Example

Return the first timestamp and opening price for stock ACME in the stockdemo_ts
time series:

SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24:M: SS ;

DECLARE
dummyval | NTEGER

BEA N
SELECT CGRDBYS. Ti neSeri es. O spl ay(
CRDSYS. Ti neSeries. First(ts.open), 'Frst Results’) |NTO dummyval
FROM CRDTDEV. st ockdeno ts ts
WHERE ts.ticker= AQMVE ;

BND,

5-40 Oracle8 Time Series Cartridge User's Guide



First

/

This example might produce the following output:
First Results :

Tinmestanp : 11/01/1996 00: 00: 00
Val ue : 59

Time Series and Time Scaling Functions: Reference 5-41



FirstN

FirstN

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries.FirstN(
ts ORDSYS.ORDTNumSeriesIOTRef,
NumValues NUMBER
) RETURN ORDSYS.ORDTNumSeries;

Given a time series and a number of elements (NumValues) to return, returns the
first NumValues elements in the time series.

ts
The input time series.

NumValues
Number of elements from the beginning of the time series to be returned.

The function returns a time series populated with the first NumValues cells from the
input time series (ts). The calendar of the output time series is the same as that of
the input time series.

An exception is returned if the time series (ts) is null or if NumValues is zero (0) or
negative.

Return the first 10 timestamps and opening prices in the time series for stock
ACME.:

SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE
dummyval | NTECER

5-42 Oracle8 Time Series Cartridge User's Guide



FirstN

BEG N

SELECT CORDBYS. Ti neSeri es. O spl ay(

CRDSYS. Ti neSeries. FirstNts. open, 10), 'FirstN Results’) | NIO dumyval
FROM CRDTDEV. st ockdeno ts ts
WHERE ts.ticker= AQMVE ;

BEND,
/

This example might produce the following output:
FirstN Results :

CGal endar Data:
CGal endar Nane = BUS|I NESS- 96
Frequency = 4

M nDate = 01/01/1990 00: 00: 00
MuxDate = 01/01/2001 00: 00: 00
patBits:

0111110

pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons

of f Excepti ons :

11/28/ 1996 00: 00: 00 12/ 25/ 1996 00: 00: 00

Series [ata
Date Val ue
11/ 01/ 1996 00: 00: 00 59
11/ 04/ 1996 00: 00: 00 60
11/ 05/ 1996 00: 00: 00 61
11/ 06/ 1996 00: 00: 00 62
11/ 07/ 1996 00: 00: 00 63
11/ 08/ 1996 00: 00: 00 64
11/11/1996 00: 00: 00 65
11/ 12/ 1996 00: 00: 00 66
11/ 13/ 1996 00: 00: 00 67
11/ 14/ 1996 00: 00: 00 68

Time Series and Time Scaling Functions: Reference 5-43



GetDatedElement

GetDatedElement

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries.GetDatedElement (
ts ORDSYS.ORDTNumSeriesIOTRef,
target_date date
) RETURN ORDSYS.ORDTNumCell;

Given a time series and a date, returns the time series element for that date.

ts
The input time series.

target_date
Positive integer specifying the date of the element to be returned.

The function returns the cell from the input time series (ts) at the specified date
(target_date). If there is no data in ts at target_date, the function returns a null.

An exception is returned if the time series (ts) is null.

Return the timestamp and opening price for 26-Nov-1996 for stock ACME:

SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24:M: SS ;

DECLARE

dummyval | NTECER
tstDate date;
BEA N

-- Get the cell for 26-NO- 1996 from AQVE s open and display it

5-44 Oracle8 Time Series Cartridge User's Guide



GetDatedElement

tstDate := TO DATE(’ 11/ 26/ 1996 );

SELECT CGRDBYS. Ti neSeri es. O spl ay(
CROSYS. Ti neSeri es. Get Dat edH errent (ts. open, tstDate),
' Get Dat edH enent Resul ts’) | NTO dumyval
FROM CRDTDEV. st ockdeno ts ts
WHERE ts.ticker= AQOME ;

BEND,
/

This example might produce the following output:
Get Dat edH enent Results

Tinmestanp : 11/26/1996 00: 00: 00
Value : 76

Time Series and Time Scaling Functions: Reference 5-45



GetNthElement

GetNthElement

Format

Description

Parameters

Usage

ORDSYS.TimeSeries.GetNthElement
(ts ORDSYS.ORDTNumSeries|OTRef,
target_index INTEGER
[,startDate DATE, endDate DATE]
) RETURN ORDSYS.ORDTNumCell;

Given a time series, a number (target_index), and optionally a date range, returns
the Nth element (element whose position corresponds to target_index) in the speci-
fied time series, or within the date range if one is specified.

ts
The input time series.

target_index
Positive integer specifying the position of the element to be returned.

startDate

Starting date within the time series to which target_index is to be applied. If
target_index = 1, the function returns the element for startDate. If startDate is speci-
fied, endDate must also be specified.

endDate
Ending date within the time series to which target_index is to be applied. If endDate
is specified, startDate must also be specified.

An exception is returned if any of the following conditions is true:
= The time series (ts) is null.

= The time series (ts) does not have an associated calendar.

5-46 Oracle8 Time Series Cartridge User's Guide



GetNthElement

« target_index is not an integer, or is zero (0) or a negative number.

= endDate is earlier than startDate.

Example
Return the tenth opening price for stock AONE:

SH ECT CRDSYS. Ti meSeri es. Ext ract Val ue(
CRDSYS. Ti meSeri es. Get N hE enent (open, 10))
FROM CRDTDEV. st ocks_t's
WHERE ticker ='AONE ;

This example might produce the following output:

15. 1875
1 row sel ect ed.

Time Series and Time Scaling Functions: Reference 5-47



GetSeries

GetSeries

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries.GetSeries(
ts ORDSYS.ORDTNumSeries|OTRef
) RETURN ORDSYS.ORDTNumSeries;
or
ORDSYS.TimeSeries.GetSeries(
ts ORDSYS.ORDTVarchar2Series|OTRef
) RETURN ORDSYS.ORDTVarchar2Series;

Given a reference to a time series of references (ORDTNumSerieslOTRef or
ORDTVarchar2SerieslOTRef), returns a time series instance (ORDTNumSeries or
ORDTVarchar2Series).

ts
The input time series.

The function materializes the input time series.

An exception is returned if the time series (ts) is null.

Return an instance of a specified time series (opening prices for stock ACME):

SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE
dummyval | NTEGER

BEG N

5-48 Oracle8 Time Series Cartridge User's Guide



GetSeries

SELECT CORDSYS. Ti neSeri es. O spl ay(
CROSYS. Ti neSeri es. Get Series(ts.open), 'GtSeries Results’) | NTO dumyval

FROM CRDTDEV. st ockdeno ts ts
WHERE ts.ticker= AQOMVE ;

BND,
/

This example might produce the following output:

Get Series Results :

Nare = AOME open Nungeries
Cal endar Dat a:
Cal endar Narre
Frequency = 4
M nDate = 01/ 01/ 1990 00: 00: 00

MaxDat e
patBits:

BUSI NESS- 96

0111110
pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons
of f Excepti ons :

11/ 28/ 1996 00: 00: 00

Series Data:

01/ 01/ 2001 00: 00: 00

12/ 25/ 1996 00: 00: 00

Date

11/ 01/ 1996
11/ 04/ 1996
11/ 05/ 1996
11/ 06/ 1996
11/ 07/ 1996
11/ 08/ 1996
11/ 11/ 1996
11/ 12/ 1996
11/ 13/ 1996
11/ 14/ 1996
11/ 15/ 1996
11/ 18/ 1996
11/ 19/ 1996
11/ 20/ 1996
11/ 21/ 1996
11/ 22/ 1996
11/ 25/ 1996

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

Time Series and Time Scaling Functions: Reference 5-49



GetSeries

11/ 26/ 1996 00: 00: 00 76
11/ 27/ 1996 00: 00: 00 77
11/ 29/ 1996 00: 00: 00 78
12/ 02/ 1996 00: 00: 00 79
12/ 03/ 1996 00: 00: 00 80
12/ 04/ 1996 00: 00: 00 81
12/ 05/ 1996 00: 00: 00 82
12/ 06/ 1996 00: 00: 00 83
12/ 09/ 1996 00: 00: 00 84
12/ 10/ 1996 00: 00: 00 85
12/ 11/ 1996 00: 00: 00 86
12/ 12/ 1996 00: 00: 00 87
12/ 13/ 1996 00: 00: 00 88
12/ 16/ 1996 00: 00: 00 89
12/ 17/ 1996 00: 00: 00 90
12/ 18/ 1996 00: 00: 00 91
12/ 19/ 1996 00: 00: 00 92
12/ 20/ 1996 00: 00: 00 93
12/ 23/ 1996 00: 00: 00 94
12/ 24/ 1996 00: 00: 00 95
12/ 26/ 1996 00: 00: 00 96
12/ 27/ 1996 00: 00: 00 97
12/ 30/ 1996 00: 00: 00 98
12/ 31/ 1996 00: 00: 00 99

5-50 Oracle8 Time Series Cartridge User's Guide



IsValidTS

IsValidTS

Format

Description

Parameters

Usage

ORDSYS.TimeSeries.IsValidTS(

or

ts IN ORDSYS.ORDTNumSeriesIOTRef
) RETURN INTEGER

ORDSYS.TimeSeries.IsValidTS(

ts IN ORDSYS.ORDTVarchar2SeriesIlOTRef
) RETURN INTEGER

Returns 1 if the time series is valid and 0 if the time series is invalid.

ts

The input time series.

A time series is invalid if one or more of the following conditions are true:

The time series (ts) is null.

The time series (ts) does not have an associated calendar.
The calendar associated with the time series is invalid.
The timestamps are not sorted.

One or more timestamps are null, imprecise, or outside the date range of the
calendar.

One or more timestamps are included in the time series but should be excluded
based on the calendar definition (for example, a Saturday timestamp that is in a
Monday-Friday calendar and that is not an on-exception).

Time Series and Time Scaling Functions: Reference 5-51



IsValidTS

Example

One or more timestamps are excluded from the time series but should be
included based on the calendar definition (for example, a Wednesday date that
is not a holiday in a Monday-Friday calendar and for which there is no data).
Such dates can be considered as "holes" in the time series.

Contrast this function with ValidateTS, which checks whether a time series is valid,
and if the time series is not valid, outputs a diagnostic message and tables with
timestamps that are causing the time series to be invalid.

Use the IsValidTS and ValidateTS functions and the DisplayValTS procedure with
an invalid time series:

SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24:M: SS ;

DEQLARE

nunTS CRDSYS. CROTNunter i es;
tenpVal integer;

retlsvValid integer;

retVal TS i nt eger;

| oDat eTab CORDSYS. CRDTDat eTab : = NULL;
hi Dat eTab CORDSYS. CRDTDat eTab : = NULL;
i mpDat eTab GROSYS. CRDTDat eTab : = NULL;

dupDat eTab CRDSYS. GRDTDat eTab : = NULL;

ext rabat eTab CROSYS. CROTDat eTab : = NULL;

m ssi ngDat eTab CRDSYS. CRDTDat eTab : = NULL;
out Mesg var char 2(2000) ;

BEG N

-- Set the buffer size
DBVE QUTPUT. ENABLE( 100000) ;

-- NOTE Here an instance of the tine series is naterialized
-- so that it could be nodified to generate an invalid tine series.

SH ECT CRDSYS. Tl MESER ES. Get Seri es(ts. open) | NTO nunTS
FROM or dt dev. st ockdeno_ts ts
WERE ts.ticker ="' AQVE ;

-- Exanple of validating a valid tine series.
SH ECT ordsys. timeseries. di spl ay(nunTS, 'A VALID TIME SERES) INIOtenpVal

5-52 Oracle8 Time Series Cartridge User's Guide



IsValidTS

FROM dual ;
retlsvalid := GROSYS TIMESER ES. | sVal i dTS(nunTS) ;
retVal TS : = GRDSYS. TI MESER ES. Val i dat eTS( nunTS, out Mesg, | oDat eTab,

hi Dat eTab, i npDat eTab, dupDat eTab,

extraDat eTab, ni ssi ngDat eTab) ;
DBVS QUTPUT. PUT_LINE(' Val ue returned by IsValid =" || retlsValid);
DBVS QUTPUT. PUT_LINE(' Val ue returned by ValidateTS ="' || retVal T9);
CRDSYS. Tl MESER ES. D spl ayVal TS(ret Val TS, out Mesg, | oDat eTab, hi Dat eTab,

i npDat eTab, dupDat eTab, extraDateTab, nissi ngDat eTab,

"Testing D splayVal TS');
DBVE _CQUTPUT. NEW LI NE,

-- For illustration let us first create an invalid tineseries.

-- Here we are adjusting the calendar’s ninDate and maxDate to avoid
-- getting a huge list of nissing dates.

nunTS. cal . mnDat e :
nunTS. cal . naxDat e :

TO DATE(’ 10/ 28/ 1996’ ) ;
TO DATE(’ 01/ 05/ 1997’ ) ;

-- Add Dates Before nunTS. cal . nnDate
nunTS. series(10).tstanp : = nuniS. cal . mnDate - 1;
nunTS. series(11).tstanp : = nuniS. cal . mnDate - 2;

-- Add Dates Beyond nunTS. cal . naxDat e
nunTS. series(12).tstanp : = nunTS cal . naxDate + 1;
nunTS. series(13).tstanp : = nunTS cal . naxDate + 2;

-- Add sone nul |l tinestanps
nunTS. series(14).tstanp : = NULL;
nunTS. series(15).tstanp : = NULL;

-- Add sone inpreci se dates (sone are duplicated)
nunTS. series(17).tstanp : = nunTS seri es(16).tstanp + 1/24;
nunTS, series(18).tstanp : = nunTS seri es(16).tstanp + 15/ 24;

-- Add sone duplicate tinestanps
nunTS. series(19).tstanp : = nunTS seri es(18).tstanp;
nunTS. series(21).tstanp : = nunTS seri es(20).tstanp;

-- Add sone extra dates in the niddl e
nunTS. series(37).tstanp : = TO DATE(’ 12/ 28/ 1996’ ) ;
nunTS. series(36).tstanp : = TO DATE(’ 12/ 29/ 1996’ ) ;

-- Add sone holes at the end

Time Series and Time Scaling Functions: Reference

5-53



IsValidTS

nunrS. seri es(nunTS. series.count).tstanp : = TO DATE(’ 01/ 04/ 1997" );

-- Exanple of validating an invalid tine series.
SH ECT ordsys. timeseri es. di spl ay(nunTS, ' AN INVALID TIME SERES))
INTO t enpVal FRCM dual ;
retlsvalid := GROSYS TIMESER ES. I sVal i dTS(nunTS);
retVal TS : = GROSYS. TI MESER ES. Val i dat eTS( nunTS, out Mesg,
| oDat eTab, hi Dat eTab, i npDat eTab,
dupDet eTab, extralateTab, mi ssi ngDateTab);
DBVS QUTPUT. PUT_LINK(' Val ue returned by IsValid =" || retlsValid);
DBVS OQUTPUT. PUT_LINK(' Val ue returned by ValidateTS ="' || retVal T9);
CRDSYS. Tl MESER ES. D spl ayVal TS(ret Val TS, out Mesg, | oDat eTab, hi Dat eTab,
i npDat eTab, dupDat eTab, extraDat eTab, nissi ngDat eTab,
"Testing DisplayVal TS );
END,
/

This example might produce the following output:
A VALID TIME SER ES :

Nare = AOME open Nungeries
CGal endar Dat a:
CGal endar Nane = BUS|I NESS- 96
Frequency = 4

M nDate = 01/01/1990 00: 00: 00
MwxDat e = 01/01/2001 00: 00: 00
patBits:

0111110

pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons

of f Excepti ons :

11/28/ 1996 00: 00: 00 12/ 25/ 1996 00: 00: 00

Series [ata
Dat e Val ue
11/ 01/ 1996 00: 00: 00 59
11/ 04/ 1996 00: 00: 00 60
11/ 05/ 1996 00: 00: 00 61
11/ 06/ 1996 00: 00: 00 62
11/ 07/ 1996 00: 00: 00 63
11/ 08/ 1996 00: 00: 00 64
11/11/1996 00: 00: 00 65
11/ 12/ 1996 00: 00: 00 66
11/ 13/ 1996 00: 00: 00 67

5-54 Oracle8 Time Series Cartridge User's Guide



IsValidTS

11/ 14/ 1996 00: 00: 00 68
11/ 15/ 1996 00: 00: 00 69
11/ 18/ 1996 00: 00: 00 70
11/ 19/ 1996 00: 00: 00 71
11/ 20/ 1996 00: 00: 00 72
11/21/1996 00: 00: 00 73
11/ 22/ 1996 00: 00: 00 74
11/ 25/ 1996 00: 00: 00 75
11/ 26/ 1996 00: 00: 00 76
11/ 27/ 1996 00: 00: 00 7
11/29/ 1996 00: 00: 00 78
12/ 02/ 1996 00: 00: 00 79
12/ 03/ 1996 00: 00: 00 80
12/ 04/ 1996 00: 00: 00 81
12/ 05/ 1996 00: 00: 00 82
12/ 06/ 1996 00: 00: 00 83
12/ 09/ 1996 00: 00: 00 84
12/ 10/ 1996 00: 00: 00 85
12/ 11/ 1996 00: 00: 00 86
12/ 12/ 1996 00: 00: 00 87
12/ 13/ 1996 00: 00: 00 88
12/ 16/ 1996 00: 00: 00 89
12/ 17/ 1996 00: 00: 00 90
12/ 18/ 1996 00: 00: 00 91
12/ 19/ 1996 00: 00: 00 92
12/ 20/ 1996 00: 00: 00 93
12/ 23/ 1996 00: 00: 00 94
12/ 24/ 1996 00: 00: 00 95
12/ 26/ 1996 00: 00: 00 96
12/ 27/ 1996 00: 00: 00 97
12/ 30/ 1996 00: 00: 00 98
12/ 31/ 1996 00: 00: 00 99

Value returned by IsvValid =1
Value returned by ValidateTS =1

D spl ayVal TS: Testing D spl ayVal TS:

TS SUC the input tine series is avalid time series

AN ITNVALID TTME SERES :

Nare = AOME open Nungeries

Time Series and Time Scaling Functions: Reference 5-55



IsValidTS

Gl endar Data:
CGal endar Nane = BUS|I NESS- 96
Frequency = 4

M nDate = 10/ 28/ 1996 00: 00: 00
MxDat e = 01/ 05/ 1997 00: 00: 00
patBits:

0111110

pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons

of f Excepti ons

11/28/ 1996 00: 00: 00 12/ 25/ 1996 00: 00: 00

Series [ata

Date Val ue
11/ 01/ 1996 00: 00: 00 59
11/ 04/ 1996 00: 00: 00 60
11/ 05/ 1996 00: 00: 00 61
11/ 06/ 1996 00: 00: 00 62
11/ 07/ 1996 00: 00: 00 63
11/ 08/ 1996 00: 00: 00 64
11/11/1996 00: 00: 00 65
11/ 12/ 1996 00: 00: 00 66
11/ 13/ 1996 00: 00: 00 67
10/ 27/ 1996 00: 00: 00 68
10/ 26/ 1996 00: 00: 00 69
01/ 06/ 1997 00: 00: 00 70
01/ 07/ 1997 00: 00: 00 71

72
73

11/ 22/ 1996 00: 00: 00 74
11/ 22/ 1996 01: 00: 00 75
11/ 22/ 1996 15: 00: 00 76
11/ 22/ 1996 15: 00: 00 77
11/ 29/ 1996 00: 00: 00 78
11/ 29/ 1996 00: 00: 00 79
12/ 03/ 1996 00: 00: 00 80
12/ 04/ 1996 00: 00: 00 81
12/ 05/ 1996 00: 00: 00 82
12/ 06/ 1996 00: 00: 00 83
12/ 09/ 1996 00: 00: 00 84
12/ 10/ 1996 00: 00: 00 85
12/11/ 1996 00: 00: 00 86
12/ 12/ 1996 00: 00: 00 87
12/ 13/ 1996 00: 00: 00 88
12/ 16/ 1996 00: 00: 00 89

5-56 Oracle8 Time Series Cartridge User's Guide



IsValidTS

12/ 17/ 1996 00: 00: 00 90
12/ 18/ 1996 00: 00: 00 91
12/ 19/ 1996 00: 00: 00 92
12/ 20/ 1996 00: 00: 00 93
12/ 29/ 1996 00: 00: 00 94
12/ 28/ 1996 00: 00: 00 95
12/ 26/ 1996 00: 00: 00 96
12/ 27/ 1996 00: 00: 00 97
12/ 30/ 1996 00: 00: 00 98
01/ 04/ 1997 00: 00: 00 99

Value returned by Isvalid =0
Val ue returned by ValidateTS =0

D spl ayVal TS: Testing D spl ayVal TS:

TSWR\ the input tine series has errors. See the nessage for details

nessage out put by val i dat eTS:

TS ERR the input tine series is unsorted
TS BERR the tine series has null tinestanps

TS ERR the tine series has tinestanps < cal endar nminDate (refer LoDateTab)
TS ERR the tine series has tinestanps > cal endar naxDate (refer H DateTab)

TS BERR the tine series has inprecise tinestanps (refer inpreciseDateTab)
TS BERR the tine series has duplicate tinestanps (refer DuplicateDateTab)

list of dates < cal endar minDate - | owDateTab :
10/ 26/ 1996 00: 00: 00 10/ 27/ 1996 00: 00: 00
list of dates > cal endar naxDate - hi DateTab :
01/ 06/ 1997 00: 00: 00 01/ 07/ 1997 00: 00: 00
list of inprecise dates - inpreciselateTab :
11/22/1996 01: 00: 00 11/ 22/ 1996 15: 00: 00
list of duplicate dates - dupli catelateTab :
11/ 22/ 1996 15: 00: 00 11/29/ 1996 00: 00: 00

Ext raDat eTab :

Time Series and Time Scaling Functions: Reference 5-57



IsValidTS

12/ 28/ 1996

M ssi nghat eTab :

10/ 28/ 1996
10/ 31/ 1996
11/ 18/ 1996
11/ 21/ 1996
11/ 27/ 1996
12/ 24/ 1996
01/ 02/ 1997

5-58 Oracle8 Time Series Cartridge User's Guide

00:

00:
00:
00:
00:
00:
00:
00:

00:

00:
00:
00:
00:
00:
00:
00:

00

00
00
00
00
00
00
00

12/ 29/ 1996 00: 00: 00

10/ 29/ 1996 00: 00: 00
11/ 14/ 1996 00: 00: 00
11/ 19/ 1996 00: 00: 00
11/ 25/ 1996 00: 00: 00
12/ 02/ 1996 00: 00: 00
12/ 31/ 1996 00: 00: 00
01/ 03/ 1997 00: 00: 00

01/ 04/ 1997 00:

10/ 30/ 1996 00:
11/ 15/ 1996 00:
11/ 20/ 1996 00:
11/ 26/ 1996 00:
12/ 23/ 1996 00:
01/ 01/ 1997 00:

00:

00:
00:
00:
00:
00:
00:

00

00
00
00
00
00
00



Lag

Lag

Format
ORDSYS.TimeSeries.Lag (

ts ORDSYS.ORDTNumSeriesIOTRef,
units INTEGER
[, startDate DATE
, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;
or
ORDSYS.TimeSeries.Lag (
ts ORDSYS.ORDTNumSeriesIOTRef,
lead_date DATE
[, startDate DATE
, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;

Description

Given a time series, a positive or negative number (units) or a date (lead_date), and
optionally a starting and ending timestamp within the time series, returns a time
series that lags or (for negative numeric values) leads the input time series by the
appropriate number of timestamps.

Parameters

ts
The input time series.

units

Integer specifying the number of timestamps by which the output time series is to
be adjusted. If units is positive, each element in the output time series is the same as
the element in the input time series for that relative position minus the units. If

Time Series and Time Scaling Functions: Reference 5-59



Lag

Usage

units is negative, each element in the output time series is the same as the element
in the input time series for that relative position plus the units.

lead_date

The date relative to the starting date reflecting the number of timestamps by which
the output time series is to be adjusted. The function calculates the number of
timestamps between lead_date and startDate, and then uses that number as if it were
a units parameter value. (If lead_date is later than startDate, the effective units value
is positive; if lead_date is before the starting date, the effective units value is nega-
tive.)

startDate

Starting date to be used in calculating the lead or lag value; also the starting date in
the input time series for which the output time series is to be created. If startDate is
specified, endDate must also be specified.

endDate
Ending date in the input time series for which the output time series is to be cre-
ated. If endDate is specified, startDate must also be specified.

The function creates a time series whose elements reflect an input time series
adjusted by a number of timestamps. For example, using the United States stock
trading calendar for 1997, if the first timestamp in the input time series is 06-Jan-
1997 (Monday) and the units value is 2, the first timestamp in the output time
series is 02-Jan-1997 (Thursday) and its associated value (such as closing price) is
the same as that for 06-Jan-1997 in the input time series. Subsequent elements of the
output time series reflect the timestamp adjustment.

For example, assuming the United States stock trading calendar for 1997, Table 5-1
shows some time series data with a two-day lag period.

Table 5-1 Lagging a Time Series by Two Days

Input Time Series: Output Time Series:

Timestamp Closing Price Timestamp Closing Price

06-Jan-1997 49.50 02-Jan-1997 49.50
07-Jan-1997 49.25 03-Jan-1997 49.25
08-Jan-1997 50.00 06-Jan-1997 50.00

5-60 Oracle8 Time Series Cartridge User's Guide



Lag

Example

For convenience, both the Lead and Lag functions are provided.The functions oper-
ate identically, except that they interpret the sign of the units value in opposite
ways. For example, Lead with -10 for units is equivalent to Lag with 10 for units.
Moreover, because of the way the lead_date parameter is interpreted, Lead and Lag
with a lead_date operate identically.

Return a time series starting with 03-Mar-1997 using closing prices from the time
series from 01-Nov-1996 through 30-Nov-1996 for stock ACME. The returned time
series has the same number of timestamps as are in the specified date range (start-
Date through endDate).

SHECT * FROMthe
(SELECT CAST( GRDSYS. Ti neSeri es. Extract Tabl e(
CROSYS. Ti neSeri es. Lag(ts. cl ose,
to_date(’ 03-MAR 97", DD MIN YY),
to_date(’ 01-NO- 96", DD MIN YY),
to_date(’ 30-NO-96" ," DD MON-YY'))
) AS GRDSYS. GRDTN\unTab)
FROM CRDTDEV. st ockdeno ts ts
WHERE ts.ticker= AOME );

This example might produce the following output:

03- MAR- 97 59
04- MAR- 97 60
05- MAR- 97 61
06- MAR- 97 62
07- MAR- 97 63
10- MAR- 97 64
27- VAR 97 a4
28- MAR 97 78

20 rows sel ect ed.

Time Series and Time Scaling Functions: Reference 5-61



Last

Last
Format
ORDSYS.TimeSeries.Last(
ts ORDSYS.ORDTNumSeries|OTRef
) RETURN ORDSYS.ORDTNumCell;
Description
Given a time series, returns the last element in it.
Parameters
ts
The input time series.
Usage
A null is returned if the time series (ts) is empty.
An exception is returned if the time series (ts) is null.
Example

Return the last timestamp and opening price for stock ACME in the stockdemo_ts
time series:

SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24:M: SS ;

DECLARE
dummyval | NTEGER

BEA N
SELECT CGRDBYS. Ti neSeri es. O spl ay(
CRDSYS. Ti neSeri es. Last (ts. open), 'Last Results’) | NTO dummyval
FROM CRDTDEV. st ockdeno ts ts
WHERE ts.ticker= AQMVE ;

BND,

5-62 Oracle8 Time Series Cartridge User's Guide



Last

/

This example might produce the following output:
Last Results :

Tinmestanp : 12/31/1996 00: 00: 00
Val ue : 99

Time Series and Time Scaling Functions: Reference 5-63



LastN

LastN

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries.LastN(
ts ORDSYS.ORDTNumSeriesIOTRef,
NumValues NUMBER
) RETURN ORDSYS.ORDTNumSeries;

Given a time series and a number of elements (NumValues) to return, returns the
last NumValues elements in the time series.

ts
The input time series.

NumValues
Number of elements from the end of the time series to be returned.

The function returns a time series populated with the last NumValues cells from the
input time series (ts). The calendar of the output time series is the same as that of
the input time series.

An exception is returned if the time series (ts) is null or if NumValues is zero (0) or
negative.

Return the last 10 timestamps and opening prices in the time series for stock
ACME.:

SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE
dummyval | NTECER

5-64 Oracle8 Time Series Cartridge User's Guide



LastN

BEG N

SELECT CORDBYS. Ti neSeri es. O spl ay(

CGRDSYS. Ti neSeri es. Last Nt s. open, 10), 'LastN Results’) | NTO dumyval
FROM CRDTDEV. st ockdeno ts ts
WHERE ts.ticker= AQMVE ;

BEND,
/

This example might produce the following output:
LastN Resul ts :

CGal endar Data:
CGal endar Nane = BUS|I NESS- 96
Frequency = 4

M nDate = 01/01/1990 00: 00: 00
MuxDate = 01/01/2001 00: 00: 00
patBits:

0111110

pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons

of f Excepti ons :

11/28/ 1996 00: 00: 00 12/ 25/ 1996 00: 00: 00

Series [ata
Date Val ue
12/ 17/ 1996 00: 00: 00 20
12/ 18/ 1996 00: 00: 00 91
12/ 19/ 1996 00: 00: 00 92
12/ 20/ 1996 00: 00: 00 93
12/ 23/ 1996 00: 00: 00 94
12/ 24/ 1996 00: 00: 00 95
12/ 26/ 1996 00: 00: 00 96
12/ 27/ 1996 00: 00: 00 97
12/ 30/ 1996 00: 00: 00 98
12/ 31/ 1996 00: 00: 00 99

Time Series and Time Scaling Functions: Reference 5-65



Lead

Lead
Format
ORDSYS.TimeSeries.Lead (
ts ORDSYS.ORDTNumSeriesIOTRef,
units INTEGER
[, startDate DATE
, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;
or
ORDSYS.TimeSeries.Lead (
ts ORDSYS.ORDTNumSeriesIOTRef,
lead_date DATE
[, startDate DATE
, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;
Description
Given a time series, a positive or negative number (units) or a date (lead_date), and
optionally a starting and ending timestamp within the time series, returns a time
series that leads or (for negative numeric values) lags the input time series by the
appropriate number of timestamps.
Parameters

ts
The input time series.

units

Integer specifying the number of timestamps by which the output time series is to
be adjusted. If units is positive, each element in the output time series is the same as
the element in the input time series for that relative position plus the units. If units

5-66 Oracle8 Time Series Cartridge User's Guide



Lead

Usage

is negative, each element in the output time series is the same as the element in the
input time series for that relative position minus the units.

lead_date

The date relative to the starting date reflecting the number of timestamps by which
the output time series is to be adjusted. The function calculates the number of
timestamps between lead_date and startDate, and then uses that number as if it were
a units parameter value. (If lead_date is later than startDate, the effective units value
is positive; if lead_date is before startDate, the effective units value is negative.)

startDate

Starting date to be used in calculating the lead or lag value; also the starting date in
the input time series for which the output time series is to be created. If startDate is
specified, endDate must also be specified.

endDate
Ending date in the input time series for which the output time series is to be cre-
ated. If endDate is specified, startDate must also be specified.

The function creates a time series whose elements reflect an input time series
adjusted by a number of timestamps. For example, using the United States stock
trading calendar for 1997, if the first timestamp in the input time series is 02-Jan-
1997 (Thursday) and the units value is 2, the first timestamp in the output time
series is 06-Jan-1997 (Monday) and its associated value (such as closing price) is the
same as that for 02-Jan-1997 in the input time series. Subsequent elements of the
output time series reflect the timestamp adjustment.

For example, assuming the United States stock trading calendar for 1997, Table 5-2
shows some time series data with a two-day lead period:

Table 5-2 Leading a Time Series by Two Days

Input Time Series: Output Time Series:

Timestamp Closing Price Timestamp Closing Price

02-Jan-1997 49.00 06-Jan-1997 49.00
03-Jan-1997 50.00 07-Jan-1997 50.00
06-Jan-1997 49.50 08-Jan-1997 49.50

Time Series and Time Scaling Functions: Reference 5-67



Lead

For convenience, both the Lead and Lag functions are provided. The functions oper-
ate identically, except that they interpret the sign of the units value in opposite
ways. For example, Lead with -10 for units is equivalent to Lag with 10 for units.
Moreover, because of the way the lead_date parameter is interpreted, Lead and Lag
with a lead_date operate identically.

Example

Return a time series starting with 03-Mar-1997 using closing prices from the time
series from 01-Nov-1996 through 30-Nov-1996 for stock ACME. The returned time
series has the same number of timestamps as are in the specified date range (start-
Date through endDate).

SEHLECT * FROMt he
(SELECT CAST( GRDSYS. Ti neSeri es. Extract Tabl e(
CROSYS. Ti neSeri es. Lead(ts. cl ose,
to_date(’ 03-MAR 97", DD MON YY),
to_date(’ 01-NO- 96", DD MON YY),
to_date(’ 30-NO-96",’ DD MONYY'))
) AS CRDSYS. CRDTNunTab)
FROM CRDTDEV. st ockdeno ts ts
WHERE ts.ticker= AOME );

This example might produce the following output:

03- MR- 97 59
04- MR- 97 60
05- MR- 97 61
06- MR- 97 62
07- MR- 97 63
10- MR 97 64
27- MR 97 77
28- MR 97 78

20 rows sel ect ed.

5-68 Oracle8 Time Series Cartridge User's Guide



Mavg

Mavg
Format
ORDSYS.TimeSeries.Mavg(
ts ORDSYS.ORDTNumSeriesIOTRef,
[startDate DATE, endDate DATE,]
k INTEGER
) RETURN ORDSYS.ORDTNumSeries;
Description
Given an input ORDTNumSeries, returns a moving average for the time series, or
for the date range if one is specified. Each value in the returned time series is the
average of the value for the current timestamp plus the value for each of the previ-
ous specified number of timestamps minus one.
For example, a 30-day moving average of closing prices for a stock on any given
date is the average of that day’s closing price and the 29 preceding closing prices.
Parameters

ts
The input time series.

startDate
Starting date within the time series for which to return moving averages. If start-
Date is specified, endDate must also be specified.

endDate
Ending date within the time series for which to return moving averages. If endDate
is specified, startDate must also be specified.

k
Positive integer specifying the look-back window (number of timestamps, includ-
ing the current one, over which to compute the moving average).

Time Series and Time Scaling Functions: Reference 5-69



Mavg

Usage

The returned time series has nulls for any entry where there are not k-1 timestamps
preceding it in the calendar. For example, if a stock trading calendar for 1997 starts
on 02-Jan-1997, the series of 5-day moving averages of the closing price for a stock
for the year has nulls for the closing price for the first four timestamps (02-Jan, 03-
Jan, 06-Jan, and 07-Jan), because there are insufficient timestamps for computing
the average.

Any nulls in the entries for the k timestamps are ignored, as explained in
Section 2.8.2.1.

An exception is returned if any of the following conditions is true:
= The time series (ts) is null.
= The time series (ts) does not have an associated calendar.

= endDate is earlier than startDate.

Example

Return a table of 10-day moving average values of the closing price for stock
ACME for the month of December 1996:

SHECT * FROMthe
(SELECT CAST( GRDSYS. Ti neSeri es. Extract Tabl e(
CROSYS. Ti neSeri es. Mavg(ts. cl ose, to_date(’ 02-CEG 96’ ,’ DD MNYY' ),
to_date(’ 31-DEG 96’ ,’ DD MON YY), 10)
) AS GRDSYS. GRDOTNunTab)
FROM CRDTDEV. st ockdeno ts ts
WHERE ts.ticker= AOME );

This example might produce the following output:

02- DEG 96 74.5
03- DEG 96 75.5
04- DEG 96 76.5
05- DEG 96 77.5
06- DEG- 96 78.5
09- DEG 96 79.5
10- CEG 96 80.5
11- DEG 96 81.5
12- DEG 96 82.5
13- DEG 96 83.5

5-70 Oracle8 Time Series Cartridge User's Guide



Mavg

16- OEG 96
17- DEG 96
18- CEG 96
19- OEG 96
20- DEG 96
23- DEG 96
24- DEG 96
26- DEG 96
27- DEG 96
30- DEG 96
31- DEG 96

84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.

21 rows sel ect ed.

SVRUR>

o1 o101 o1 OO OO o1 oral

Time Series and Time Scaling Functions: Reference 5-71



Msum

Msum

Format

Description

Parameters

ORDSYS.TimeSeries.Msum(
ts ORDSYS.ORDTNumSeriesIOTRef,
[startDate DATE, endDate DATE,]
k INTEGER
) RETURN ORDSYS.ORDTNumSeries;

Given an input ORDTNumSeries, returns a moving sum for the time series, or for
the date range if one is specified. Each value in the returned time series is the sum
of the value for the current timestamp plus the value for each of the previous speci-
fied number of timestamps minus one.

For example, a 30-day moving sum for a stock’s daily trading volume on any given
date is the sum of that day’s volume and the 29 preceding daily volumes.

ts
The input time series.

startDate
Starting date within the time series for which to return moving sums. If startDate is
specified, endDate must also be specified.

endDate
Ending date within the time series for which to return moving sums. If endDate is
specified, startDate must also be specified.

k
Positive integer specifying the look-back window (number of timestamps, includ-
ing the current one, over which to compute the moving sum).

5-72 Oracle8 Time Series Cartridge User's Guide



Msum

Usage

Example

The returned time series has nulls for any entry where there are not k-1 timestamps
preceding it in the calendar. For example, if a stock trading calendar for 1997 starts
on 02-Jan-1997, the series of 5-day moving sums of the trading volume for a stock
for the year has nulls for the volume for the first four timestamps (02-Jan, 03-Jan, 06-
Jan, and 07-Jan), because there are insufficient timestamps for computing the sum.

Any nulls in the entries for the k timestamps are ignored, as explained in
Section 2.8.2.1.

An exception is returned if any of the following conditions is true:
= The time series (ts) is null.
= The time series (ts) does not have an associated calendar.

= endDate is earlier than startDate.

Return a table of 30-day moving sum values of trading volume for stock AONE for
1996:

SHECT * FROM THY
SELECT CAST( GRDTS. Ext r act (GROTS. MBUM vol une,
to_date(01-01-96' MM-DD-YY’),
to_date(12-31-96''MM-DD-YY’),
30)) AS ORDTNumTab)
FROM StockTabView
WHERE ticker = ‘AONE);

Time Series and Time Scaling Functions: Reference 5-73



Scaleup

Scaleup

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries.Scaleup(
inDate DATE,
calendar ORDSYS.ORDTCalendar
) RETURN DATE;

Given an input ORDTCalendar and a date, returns a scaled date.

inDate
The date to be used for scaling.

calendar
The calendar to be used for scaling the date.

For an explanation of concepts related to time scaling, see Section 2.9.
This function is used in a SQL GROUP BY clause for scaling of dates.

An exception is returned if inDate or calendar is null.

For all tickers accessible through the stockdemo_sv view (ACME, FUNCO, SAMCO,
and XCORP), scale daily data to monthly summary data for the summed volume
and average closing price.

-- Scaleup - Goup By interface
-- For all tickers in stockdemo, scale daily data to nonthly
-- summary data, reporting sumred vol umes and aver age cl oses.

SH ECT ticker, CGRDSYS TimeSeries. Scal eup(sv.tstanp,
val ue(cal )), sun{vol une), avg( cl ose)

5-74 Oracle8 Time Series Cartridge User's Guide



Scaleup

FRCOM CRDIDEV. st ockdeno_sv sv, ordtdev. st ockdeno_cal endars cal
WHERE cal . nane = ' MONTHLY
GROP BY ticker, CROSYS TineSeri es. Scal eup(sv.tstanp, val ue(cal));

This example might produce the following output:
TI OKE CRDSYS. CR SUM VCLUME AV OLCBE)

AQVE  01- NOV- 96 20000 68.5
AQVE  01- DEG 96 21000 89
FUNQO 01- NOV- 96 20000 23.823
FUNQO 01- DEG 96 21000 23. 8257143

SAMXO 01- NO-96 10207000  39. 83125
SAMXO 01- DEG 96 3719450 38. 2738095
XQCRP 01-QCT-96 10270250 79. 1458333
XOQCRP 01- NOV-96 100243350 84. 6973684
XOQCRP 01-DEG-96 141838350 91. 9572368
9 rows sel ected.

Time Series and Time Scaling Functions: Reference 5-75



ScaleupAvg

ScaleupAvg

Format
ORDSYS.TimeSeries.ScaleupAvg(

ts ORDSYS.ORDTNumSeriesIOTRef,
calendar ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the average value of each scaled group
of non-null values.
Parameters
ts
The input time series.
calendar
The calendar to be used for the scaling.
startDate
The starting date to be used. If startDate is specified, endDate must also be specified.
endDate
The ending date to be used. If endDate is specified, startDate must also be specified.
Usage

An exception is returned for any of the following conditions:

= The input time series, the calendar on which the input time series in based, or
the specified calendar is null.

5-76 Oracle8 Time Series Cartridge User's Guide



ScaleupAvg

Example

= The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

Nulls are ignored in computing the average for each group of values.

For an explanation of concepts related to time scaling, see Section 2.9.

Return the average closing prices for stock SAMCO for each month for the entire
time series:

SHECT * FROM THE
(SELECT CAST( GRDSYS. Ti neSeri es. Extract Tabl e(
CROSYS. Ti neSer i es. Scal eupAvg(
ts. cl ose,
sc. cal endar

)
) AS CRDSYS. CRDTNuUnTab)
FROM CRDTDEV. stocks ts ts, ordtdev. scal e sc
WHERE ts.ticker= SAMDO and
sc.hame = MINTH.Y');

This example might produce the following output:

01- JAN-90 29. 7074045
01- FEB-90 29. 0477211
01- MAR-90 30. 7003091

01- QCT-96 42. 7717391
01-NO-96  39. 83125
01- DEG 96 38. 2738095
84 rows sel ect ed.

Time Series and Time Scaling Functions: Reference 5-77



ScaleupCount

ScaleupCount

Format
ORDSYS.TimeSeries.ScaleupCount(

ts ORDSYS.ORDTNumSeriesIOTRef,
calendar ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the count of non-null timestamps in
each scaled group.
Parameters
ts
The input time series.
calendar
The calendar to be used for the scaling.
startDate
The starting date to be used. If startDate is specified, endDate must also be specified.
endDate
The ending date to be used. If endDate is specified, startDate must also be specified.
Usage

An exception is returned for any of the following conditions:

= The input time series, the calendar on which the input time series in based, or
the specified calendar is null.

5-78 Oracle8 Time Series Cartridge User's Guide



ScaleupCount

Example

= The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

Nulls are ignored in computing the count for each group of values.

For an explanation of concepts related to time scaling, see Section 2.9.

Return the quarterly count of daily closing prices for stock SAMCO for the period
01-June-1996 through 31-December 1996:

SEHLECT * FROMTHE
(SELECT CAST( GRDSYS. Ti neSeri es. Extract Tabl e(
CRDSYS. Ti meSer i es. Scal eupGount (
ts. cl ose,
sc. cal endar,
to_date(’ 01-JU.-1996' , ' DD- MON- YYYY' ),
to_dat e(’ 31- DEG 1996’ , ' DD- MON- YYYY')
)
) AS CRDSYS. CRDTNunTab)
FROM CRDTDEV. stocks ts ts, ordtdev. scal e sc
WHERE ts.ticker= SAMDO and

sc.hame = QUARTERLY );

This example might produce the following output:

01- JUL- 96 64
01- OCT- 96 64
2 rows sel ected.

Time Series and Time Scaling Functions: Reference 5-79



ScaleupFirst

ScaleupFirst

Format
ORDSYS.TimeSeries.ScaleupFirst(

ts ORDSYS.ORDTNumSeriesIOTRef,
calendar ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description

Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the first non-null value of each scaled
group of values.

Parameters

ts
The input time series.

calendar
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.

Usage
An exception is returned for any of the following conditions:

= The input time series, the calendar on which the input time series in based, or
the specified calendar is null.

5-80 Oracle8 Time Series Cartridge User's Guide



ScaleupFirst

Example

= The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

For an explanation of concepts related to time scaling, see Section 2.9.

Return the first closing prices for stock SAMCO for the months of October, Novem-
ber, and December of 1996:

SEHLECT * FROMTHE
(SELECT CAST( GRDSYS. Ti neSeri es. Extract Tabl e(
CROSYS. Ti neSer i es. Scal eupH rst (
ts. cl ose,
sc. cal endar,
to_dat e(’ 01- OCT- 1996’ , ' D MON- YYYY' ),
to_date(’ 01- JAN- 1997’ , ' D MON- YYYY')
)
) AS CRDSYS. CRDTNuUnTab)
FROM CRDTDEV. stocks ts ts, ordtdev. scal e sc
WHERE ts.ticker= SAMDO and
sc.hame = MINTHY');

This example might produce the following output:

01- OCT- 96 42.75
01- NOV- 96 41. 875
01- DEG 96 38. 125
3 rows sel ect ed.

Time Series and Time Scaling Functions: Reference 5-81



ScaleupLast

ScaleupLast

Format
ORDSYS.TimeSeries.ScaleupLast(

ts ORDSYS.ORDTNumSeriesIOTRef,
calendar ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the last non-null value of each scaled
group of values.
Parameters
ts
The input time series.
calendar
The calendar to be used for the scaling.
startDate
The starting date to be used. If startDate is specified, endDate must also be specified.
endDate
The ending date to be used. If endDate is specified, startDate must also be specified.
Usage

An exception is returned for any of the following conditions:

= The input time series, the calendar on which the input time series in based, or
the specified calendar is null.

5-82 Oracle8 Time Series Cartridge User's Guide



ScaleupLast

Example

= The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

For an explanation of concepts related to time scaling, see Section 2.9.

Return the last closing prices for stock SAMCO for the months of October, Novem-
ber, and December of 1996:

SEHLECT * FROMTHE
(SELECT CAST( GRDSYS. Ti neSeri es. Extract Tabl e(
CROSYS. Ti neSer i es. Scal euplast (
ts. cl ose,
sc. cal endar,
to_dat e(’ 01- OCT- 1996’ , ' D MON- YYYY' ),
to_date(’ 01- JAN- 1997’ , ' D MON- YYYY')
)
) AS CRDSYS. CRDTNuUnTab)
FROM CRDTDEV. stocks ts ts, ordtdev. scal e sc
WHERE ts.ticker= SAMDO and
sc.hame = MINTHY');

This example might produce the following output:

01- OCT- 96 42. 375
01- NOV- 96 38.25
01- DEG 96 39.75
3 rows sel ect ed.

Note that each timestamp reflects the first date of the month in the calendar (follow-

ing the rules explained in Section 2.2.1), and each value in this case reflects the clos-
ing price on the last date for that month in the calendar.

Time Series and Time Scaling Functions: Reference 5-83



ScaleupMax

ScaleupMax

Format
ORDSYS.TimeSeries.ScaleupMax(

ts ORDSYS.ORDTNumSeriesIOTRef,
calendar ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description
Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the maximum value of each scaled
group of values.
Parameters
ts
The input time series.
calendar
The calendar to be used for the scaling.
startDate
The starting date to be used. If startDate is specified, endDate must also be specified.
endDate
The ending date to be used. If endDate is specified, startDate must also be specified.
Usage

An exception is returned for any of the following conditions:

= The input time series, the calendar on which the input time series in based, or
the specified calendar is null.

5-84 Oracle8 Time Series Cartridge User's Guide



ScaleupMax

= The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

For an explanation of concepts related to time scaling, see Section 2.9.

Example

Return the highest (maximum) closing prices for stock SAMCO for each month in
the entire time series:

SHECT * FROM THE
(SELECT CAST( GRDSYS. Ti neSeri es. Extract Tabl e(
CROSYS. Ti neSer i es. Scal eupvax(
ts. cl ose,
sc. cal endar

)
) AS CRDSYS. CRDTNuUnTab)
FROM CRDTDEV. stocks ts ts, ordtdev. scal e sc
WHERE ts.ticker= SAMDO and
sc.hame = MINTH.Y');

This example might produce the following output:

01- JAN-90 31.2813
01- FEB- 90 29. 7813
01- MAR- 90 31. 1875
01- APR- 90 31. 5938
01- MAY- 90 32.875
01- JUN-90 33.7813
01- JUL-90 34. 6875
01- AUG 90 31. 875
01- OCT- 96 43. 375
01- NO/- 96 43.75
01- DEG 96 39.75
84 rows sel ect ed.

Time Series and Time Scaling Functions: Reference 5-85



ScaleupMin

ScaleupMin

Format
ORDSYS.TimeSeries.ScaleupMin(

ts ORDSYS.ORDTNumSeriesIOTRef,
calendar ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description

Given a time series, a calendar to be used for scaling, and optionally starting and
ending dates, returns a time series reflecting the minimum value of each scaled
group of values.

Parameters

ts
The input time series.

calendar
The calendar to be used for the scaling.

startDate
The starting date to be used. If startDate is specified, endDate must also be specified.

endDate
The ending date to be used. If endDate is specified, startDate must also be specified.

Usage
An exception is returned for any of the following conditions:

= The input time series, the calendar on which the input time series in based, or
the specified calendar is null.

5-86 Oracle8 Time Series Cartridge User's Guide



ScaleupMin

= The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

For an explanation of concepts related to time scaling, see Section 2.9.

Example

Return the lowest (minimum) closing prices for stock SAMCO for each month in
the entire time series:

SHECT * FROM THE
(SELECT CAST( GRDSYS. Ti neSeri es. Extract Tabl e(
CROSYS. Ti neSer i es. Scal eupM n(
ts. cl ose,
sc. cal endar

)
) AS CRDSYS. CRDTNuUnTab)
FROM CRDTDEV. stocks ts ts, ordtdev. scal e sc
WHERE ts.ticker= SAMDO and
sc.hame = MINTH.Y');

This example might produce the following output:

01- JAN-90 27.6875
01- FEB- 90 28.2813
01- MAR- 90 30. 0938
01- APR-90 30. 1875
01- MAY-90 30. 7813
01- JUN-90 32. 0938
01-JU.-90 32.2813
01- AUG 90 28.5938

01- OCT- 96 42
01- NO/- 96 37.375
01- DEG 96 37.875
84 rows sel ect ed.

Time Series and Time Scaling Functions: Reference 5-87



ScaleupSum

ScaleupSum

Format
ORDSYS.TimeSeries.ScaleupSum(

ts ORDSYS.ORDTNumSeriesIOTRef,
calendar ORDSYS.ORDTCalendar

[, startDate DATE

, endDate DATE]

) RETURN ORDSYS.ORDTNumSeries;

Description

Given a time series, a calendar to be used for scaling, and optionally starting and

ending dates, returns a time series reflecting the sum of each scaled group of values.
Parameters

ts

The input time series.

calendar

The calendar to be used for the scaling.

startDate

The starting date to be used. If startDate is specified, endDate must also be specified.

endDate

The ending date to be used. If endDate is specified, startDate must also be specified.
Usage

An exception is returned for any of the following conditions:

= The input time series, the calendar on which the input time series in based, or
the specified calendar is null.

= The frequency of the calendar on which the time series is based is greater than
the frequency of the specified calendar (for example, the time series calendar’s
frequency is month and the specified calendar’s frequency is day).

5-88 Oracle8 Time Series Cartridge User's Guide



ScaleupSum

Example

For an explanation of concepts related to time scaling, see Section 2.9.

Return the sum of the daily trade volume for stock SAMCO for each month in the
entire time series:

SHECT * FROM THE
(SELECT CAST( GRDSYS. Ti neSeri es. Extract Tabl e(
CROSYS. Ti neSer i es. Scal eupSung
ts. vol urre,
sc. cal endar

)
) AS CRDSYS. CRDTNunTab)
FROM CRDTDEV. stocks ts ts, ordtdev. scal e sc
WHERE ts.ticker= SAMDO and
sc.hame = MINTH.Y');

This example might produce the following output:

01- JAN-90 3117750
01- FEB- 90 2036500
01- MAR- 90 1424375
01- APR-90 981500
01- MAY-90 1348875
01- JUN-90 1395875
01-JU.-90 1088125
01- AUG 90 1503000

01- CT-96 1615350
01-NOVv-96 10207000

01- DEG 96 3719450
84 rows sel ect ed.

Time Series and Time Scaling Functions: Reference 5-89



TrimSeries

TrimSeries

Format

Description

Parameters

Usage

ORDSYS.TimeSeries.TrimSeries(ts ORDSYS.ORDTNumSeries|OTRef
[,startDate DATE, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;

or

ORDSYS.TimeSeries.TrimSeries(ts ORDSYS.ORDTVarchar2SeriesIOTRef
[startDate DATE, endDate DATE]
) RETURN ORDSYS.ORDTVarchar2Series;

Given an input ORDT series, returns an ORDT series of the same type with all data
outside of the given date range removed. The calendar of the returned series will
be the same as that of the original series.

ts
The input time series.

startDate
Starting date within the time series. If startDate is specified, endDate must also be
specified.

endDate
Ending date within the time series. If endDate is specified, startDate must also be
specified.

An exception is returned if any of the following conditions is true:
= The time series (ts) is null.

= The time series (ts) does not have an associated calendar.

5-90 Oracle8 Time Series Cartridge User's Guide



TrimSeries

Example

= endDate is earlier than startDate.

Return the opening prices for stock AONE for dates in the calendar from 01-Dec-
1996 through 31-Dec-1996:

SET SERVEROQUTPUT ON
CECLARE
tnp |INTECER
tstDatel DATE
tstDate2 DATE
BEA N
-- Set tstDate val ues
tstDatel : = TO DATH' 12/ 01/ 1996 00:00: 00" ,’ MM DO YYYY HR4:M: SS);
tstDate2 : = TO DATH' 12/ 31/1996 00: 00: 00’ ,” MM DO YYYY HR4: M: SS)
SELECT CGRDSYS. Ti neSeri es. O spl ay(
CRDSYS. Ti neSeri es. Tri nBeri es(open, tstDatel, tstDate2))
INTO t np
FROM CRDTLEV. st ocks_t's
WHERE ticker = ' AON\E ;

END,
/
This statement might produce the following output:

Cal endar Dat a:
Cal endar Nare = AONE

Frequency = 4
M nDate = 01- JAN 80
MaxDate = 01- JAN 01
patBits:

0111110

pat Anchor = 06- APR- 97

onExcept i ons

of f Excepti ons :
19- FEB- 90 13- APR 90 28- MAY- 90
04-JU.- 90 03- SEP- 90 22- NOV- 90
25- DEG 90 01- JAN 91 18- FEB- 91
29- VAR 91 27- MAY-91 04-JU-91
02- SEP-91 28- NOv-91 25- DEG 91
01- JAN 92 17- FEB- 92 17- APR 92
25- MAY- 92 03- JUL-92 07- SEP- 92
26- NOV- 92 25- DEG 92 01- JAN 93
15- FEB- 93 09- APR- 93 31- MAY-93
05-JU.-93 06- SEP- 93 25- NOv- 93

Time Series and Time Scaling Functions: Reference 5-91



TrimSeries

24- DEG 93
27- APR 94
05- SEP- 94
02- JAN- 95
29- NAY- 95
23-NOV- 95
19- FEB- 96
04-JU.- 96
28- NOV- 96
Series Data:

21- FEB-94
30- MAY- 94
24- NOV-94
20- FEB- 95
04- JU- 95
25- DEG 95
05- APR- 96
02- SEP- 96
25- DEG 96

Date

02- DEG 96
03- DEG 96
04- DEG 96
05- DEG 96
06- DEG 96
09- DEG 96
10- CEG 96
11-CEG 96
12-CEG 96
13- CEG 96
16- CEG 96
17-CEG 96
18- CEG 96
19- CEG 96
20- DEG 96
23-DEG 96
24-DEG 96
26- DEG 96
30- DEG 96
31- DEG 96

. 875
. 875
. 625

5-92 Oracle8 Time Series Cartridge User's Guide

01- APR 94
04-JU_-94
26-DEG 94
14- APR 95
04- SEP- 95
01- JAN- 96
27- NAY- 96
17- CCT- 96
27- DEG 96



TSAdd

TSAdd

Format

Description

Parameters

ORDSYS.TimeSeries. TSAdd (
ts1 ORDSYS.ORDTNumSerieslIOTRef,
ts2 ORDSYS.ORDTNumSeries|OTRef
[startDate DATE, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;
or
ORDSYS.TimeSeries. TSAdd (
ts1 ORDSYS.ORDTNumSerieslOTRef,
k NUMBER
[startDate DATE, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;

Given two input time series or a time series and a constant, and optionally starting
and ending dates, returns a time series that reflects the addition of the first two
parameters.

tsl
The time series (or first time series) whose elements are to be added either to corre-
sponding elements in the second time series or to a constant.

ts2
The time series whose elements are to be added to corresponding elements in the
first time series.

k
A constant to be added to corresponding elements in the first time series.

Time Series and Time Scaling Functions: Reference 5-93



TSAdd

Usage

Example

startDate
Starting date within the time series for which the addition is to be performed. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the addition is to be performed. If end-
Date is specified, startDate must also be specified.

The function performs a pairwise addition operation on each element of the time
series. This operation determines the value of each element of the returned time
series. For example:

« Iftwo time series contain daily trade volumes for two stocks, each element of
the returned time series contains the sum of the trade volumes for the two
stocks for that day.

« Ifatime series (tsl) contains closing prices for a stock and if a constant (k) of 1
is specified, each element of the returned time series contains the closing price
of ts1 incremented by 1.

If ts1 and ts2 are specified, the function returns a time series whose calendar is the
result of using the CombineCals function on the calendars associated with these
two time series.

An exception is returned if any of the following conditions is true:
= Aninput time series is null.
= Aninput time series does not have an associated calendar.

» The calendars associated with ts1 and ts2 do not have the same frequency and
aligned pattern.

= endDate is earlier than startDate.

Add the high price for stock ACME and the low price for stock FUNCO for each
trading day from 14-Nov-1996 through 14-Dec-1996:

CONNECT CRDOTUSER CROTUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

5-94 Oracle8 Time Series Cartridge User's Guide



TSAdd

tstGal CRDSYS CRDICal endar;
startDate date;
endDate date;
dummyval | NTEGER

BEG N

startDate :
endDat e

BND,
/

TO DATE(® 11/ 14/ 1996’ ) ;

TO DATE(® 12/ 14/ 1996’ ) ;

SELECT CORDSYS. Ti neSeri es. O spl ay(
CROSYS. Ti neSeri es. TSAdd(ts1. high, ts2.low startDate, endDate),
" TSAdd Results’) | NTO dunmyval

FROM CRDTDEV. st ockdeno _ts tsl, CRDIDEV. stockdeno ts ts2

WHERE tsl.ticker=" AOME and ts2.ticker=" FUNXO ;

This example might produce the following output:

TSAdd Results :

Cal endar Dat a:
Frequency = 4
M nDate = 01/ 01/ 1990 00: 00: 00

NaxDat e
patBits:

0111110
pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons
of f Excepti ons :

11/ 28/ 1996 00: 00: 00

Series Data:

01/ 01/ 2001 00: 00: 00

12/ 25/ 1996 00: 00: 00

Date

11/ 14/ 1996
11/ 15/ 1996
11/ 18/ 1996
11/ 19/ 1996
11/ 20/ 1996
11/ 21/ 1996
11/ 22/ 1996
11/ 25/ 1996
11/ 26/ 1996
11/ 27/ 1996

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00
00
00
00
00
00
00
00
00
00

100. 78
101. 71

Time Series and Time Scaling Functions: Reference

5-95



TSAdd

11/29/ 1996 00: 00: 00 102. 75
12/ 02/ 1996 00: 00: 00 103. 88
12/ 03/ 1996 00: 00: 00 105. 03
12/ 04/ 1996 00: 00: 00 106. 02
12/ 05/ 1996 00: 00: 00 107.13
12/ 06/ 1996 00: 00: 00 107.75
12/ 09/ 1996 00: 00: 00 108. 77
12/ 10/ 1996 00: 00: 00 109. 8

12/ 11/ 1996 00: 00: 00 110.5

12/ 12/ 1996 00: 00: 00 111. 41
12/ 13/ 1996 00: 00: 00 112. 4

5-96 Oracle8 Time Series Cartridge User's Guide



TSAvg

TSAvg

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries. TSAvg (
ts ORDSYS.ORDTNumSeries|OTRef
[startDate DATE, endDate DATE]
) RETURN NUMBER;

Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the average of all non-null time series entries.

ts
The input time series.

startDate
Starting date within the time series for which the average is to be calculated. If start-
Date is specified, endDate must also be specified.

endDate
Ending date within the time series for which the average is to be calculated. If end-
Date is specified, startDate must also be specified.

An exception is returned if any of the following conditions is true:
= The time series (ts) is null.
= The time series (ts) does not have an associated calendar.

= endDate is earlier than startDate.

Return the average, variance, and standard deviation of the closing price of stock
ACME:

Time Series and Time Scaling Functions: Reference 5-97



TSAvg

-- Qonpute various aggregate statistics.

SH ECT CRDSYS. Ti neSeri es. TSAvg(cl ose), CRDSYS. Ti neSeri es. TSVari ance(cl ose),
CRDSYS. Ti neSeri es. TSt dDev( cl ose)

FROM CRDIDEV. st ockdeno _ts

WHERE ti cker =" AQVE ;

This example might produce the following output:

79 143.5 11. 9791486
1 row selected.

5-98 Oracle8 Time Series Cartridge User's Guide



TSCount

TSCount

Format

Description

Parameters

Usage

ORDSYS.TimeSeries.TSCount (
ts ORDSYS.ORDTNumSeries|OTRef
[startDate DATE, endDate DATE]
) RETURN NUMBER;

Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the count of all non-null time series entries.

ts
The input time series.

startDate
Starting date within the time series for which the count is to be calculated. If start-
Date is specified, endDate must also be specified.

endDate
Ending date within the time series for which the count is to be calculated. If end-
Date is specified, startDate must also be specified.

Nulls are ignored in computing the count.

An exception is returned if any of the following conditions is true:
= The time series (ts) is null.

= The time series (ts) does not have an associated calendar.

= endDate is earlier than startDate.

Time Series and Time Scaling Functions: Reference 5-99



TSCount

Example

Return the total number of daily closing prices for stock AONE for the month of
January 1990:

SH ECT CRDSYS. Ti neSeri es. TSCount ( cl ose,
to_date(’ 01/01/ 1990 00: 00: 00",
MM DD YYYY HR4:M:SS),
to_date(’ 01/31/1990 23: 59: 59",
"MM DD YYYY HR4:M:SS)) TSOount
FROM CRDIDEV. S ocks_TS
WHERE ti cker=" AONE ;

This example might produce the following output:

22
1 row sel ect ed.

5-100 Oracle8 Time Series Cartridge User's Guide



TSDivide

TSDivide

Format

Description

Parameters

ORDSYS.TimeSeries. TSDivide (
ts1 ORDSYS.ORDTNumSerieslIOTRef,
ts2 ORDSYS.ORDTNumSeries|OTRef
[startDate DATE, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;
or
ORDSYS.TimeSeries. TSDivide (
ts1 ORDSYS.ORDTNumSerieslOTRef,
k NUMBER
[startDate DATE, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;

Given two input time series or a time series and a constant, and optionally starting
and ending dates, returns a time series that reflects the division of the first parame-
ter by the second parameter.

tsl
The time series (or first time series) whose elements are to be divided by either the
corresponding elements in the second time series or a constant.

ts2
The time series whose elements are to be divided into corresponding elements in
the first time series.

k
A constant to be divided into corresponding elements in the first time series.

Time Series and Time Scaling Functions: Reference 5-101



TSDivide

Usage

Example

startDate
Starting date within the time series for which the division is to be performed. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the division is to be performed. If end-
Date is specified, startDate must also be specified.

The function performs a pairwise division operation on each element of the time
series (or first time series) by the corresponding element in the second time series
or by a constant. This operation determines the value of each element of the
returned time series. For example:

« Iftwo time series contain daily trade volumes for two stocks, each element of
the returned time series contains the result of dividing the volume in the first
time series by the volume in the second time series for that day.

« Ifatime series (tsl) contains closing prices for a stock and if a constant (k) of 2
is specified, each element of the returned time series contains the closing price
of ts1 divided by 2.

If ts1 and ts2 are specified, the function returns a time series whose calendar is the
result of using the CombineCals function on the calendars associated with these
two time series.

An exception is returned if any of the following conditions is true:
= Aninput time series is null.
= Aninput time series does not have an associated calendar.

« The calendars associated with ts1 and ts2 do not have the same frequency and
aligned pattern.

= endDate is earlier than startDate.

Divide the high price for stock ACME by the low price for stock FUNCO for each
trading day from 14-Nov-1996 through 14-Dec-1996:

CONNECT CRDOTUSER CROTUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

5-102 Oracle8 Time Series Cartridge User's Guide



TSDivide

DECLARE

tstGal CRDSYS CRDICal endar ;

startDate date;
endDate date;

dummyval | NTEGER

BEA N
startDate : = TO DATE(’ 11/14/1996' );
endDate = TO DATE(' 12/14/1996');

SELECT CORDSYS. Ti neSeri es. O spl ay(
CRDSYS. Ti neSeri es. TSO vi de(tsl. high, ts2.1ow startDate, endDate),
" TSDivide Results’) | NTO dunmyval
FROM CRDTDEV. st ockdeno _ts tsl, CRDIDEV. stockdeno ts ts2
WHERE tsl.ticker=" AOME and ts2.ticker=" FUNXO ;

BEND,
/

This example might produce the following output:

TSD vide Results :

Cal endar Dat a:
Frequency = 4
M nDate = 01/ 01/ 1990 00: 00: 00

NaxDat e
patBits:

0111110
pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons
of f Excepti ons :

11/ 28/ 1996 00: 00: 00

Series Data:

01/ 01/ 2001 00: 00: 00

12/ 25/ 1996 00: 00: 00

Val ue

Date

11/ 14/ 1996
11/ 15/ 1996
11/ 18/ 1996
11/ 19/ 1996
11/ 20/ 1996
11/ 21/ 1996
11/ 22/ 1996
11/ 25/ 1996
11/ 26/ 1996

00:
00:
00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:

00
00
00
00
00
00
00
00
00

WWWWWWwMNDPNDN

. 89065772936740678676162547130289065773
. 93624161073825503355704697986577181208
. 97444490992878089652283200670297444491
. 01886792452830188679245283018867924528
. 0646515533165407220822837951301427372

. 10402684563758389261744966442953020134
. 1446540880503144654088050314465408805

. 19193616127677446451070978580428391432
. 23801513877207737594617325483599663583

Time Series and Time Scaling Functions: Reference 5-103



TSDivide

11/ 27/ 1996 00: 00: 00
11/29/ 1996 00: 00: 00
12/ 02/ 1996 00: 00: 00
12/ 03/ 1996 00: 00: 00
12/ 04/ 1996 00: 00: 00
12/ 05/ 1996 00: 00: 00
12/ 06/ 1996 00: 00: 00
12/ 09/ 1996 00: 00: 00
12/ 10/ 1996 00: 00: 00
12/ 11/ 1996 00: 00: 00
12/ 12/ 1996 00: 00: 00
12/ 13/ 1996 00: 00: 00

WWWWwwWwwwowwwww

5-104 Oracle8 Time Series Cartridge User's Guide

. 28975115984816533108393083087304934627
. 32631578947368421052631578947368421053
. 35008375209380234505862646566164154104
. 37078651685393258426966292134831460674
. 41382181515403830141548709408825978351
. 43970161624533775383340240364691255698
. 53684210526315789473684210526315789474
. 57593605384938998737904922170803533866
. 61344537815126050420168067226890756303
. 70212765957446808510638297872340425532
. 75907731738573259290901324220418624519
. 8034188034188034188034188034188034188



TSMax

TSMax

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries. TSMax (
ts ORDSYS.ORDTNumSeries|OTRef
[startDate DATE, endDate DATE]
) RETURN NUMBER;

Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the highest (maximum) of all non-null time series
entries.

ts
The input time series.

startDate
Starting date within the time series for which the maximum is to be calculated. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the maximum is to be calculated. If
endDate is specified, startDate must also be specified.

An exception is returned if any of the following conditions is true:
= The time series (ts) is null.
= The time series (ts) does not have an associated calendar.

= endDate is earlier than startDate.

Return the highest closing price for stock AONE for the month of January 1990:

Time Series and Time Scaling Functions: Reference 5-105



TSMax

SH ECT CRDSYS. Ti neSer i es. TSvax( cl ose,
to_date(’ 01/01/ 1990 00: 00: 00",
MM DD YYYY HR4:M:SS),
to_date(’ 01/31/1990 23: 59: 59",
MM DD YYYY HR4:M:SS)) TSvax
FROM CRDIDEV. S ocks_TS
WHERE ti cker =" AONE ;

This example might produce the following output:

16. 3914
1 row sel ect ed.

5-106 Oracle8 Time Series Cartridge User's Guide



TSMaxN

TSMaxN

Format

Description

Parameters

Usage

ORDSYS.TimeSeries. TSMaxN (
ts ORDSYS.ORDTNumSeriesIOTRef,
NumValues INTEGER,
[startDate DATE, endDate DATE]
) RETURN ORDSYS.ORDTNumTab;

Given an input ORDTNumSeries, a number of values to return, and optionally
starting and ending dates, returns an ORDTNumTab with the specified number
(NumValues) of the top (highest) values.

ts
The input time series.

NumValues
Number of values to return.

startDate
Starting date within the time series for which the top values are to be calculated. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the top values are to be calculated. If
endDate is specified, startDate must also be specified.

An exception is returned if any of the following conditions is true:
= The time series (ts) is null.

= The time series (ts) does not have an associated calendar.

Time Series and Time Scaling Functions: Reference 5-107



TSMaxN

= endDate is earlier than startDate.

«  NumValues is zero (0) or negative.

Example
Return the 10 highest closing prices for stock AONE for the month of January 1996:

SH ECT * FROM THE SELECT CASIT(

CROSYS. Ti neSeri es. TSVaxN cl ose, 10,
to_dat e(’ 01011996’ , ' MODYYYY' ),
to_dat e(’ 01311996 , ' MODYYYY' ))

as CROSYS. CROTNUnTab)

FROM CRDTDEV. st ocks _ts
WHERE ticker = AONE);

This example might produce the following output:

24- JAN- 96 43. 9138
25- JAN- 96 42. 9925
31- JAN- 96 42. 9925
26- JAN- 96 42.7413
30- JAN- 96 42.7413
29- JAN- 96 42.5738
23- JAN- 96 41. 9875
22- JAN- 96 41. 82
19- JAN- 96 41. 485
18- JAN- 96 40. 815
10 rows sel ect ed.

5-108 Oracle8 Time Series Cartridge User's Guide



TSMedian

TSMedian

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries. TSMedian (
ts ORDSYS.ORDTNumSeries|OTRef
[startDate DATE, endDate DATE]
) RETURN NUMBER;

Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the median of all non-null time series entries.

ts
The input time series.

startDate
Starting date within the time series for which the median is to be calculated. If start-
Date is specified, endDate must also be specified.

endDate
Ending date within the time series for which the median is to be calculated. If end-
Date is specified, startDate must also be specified.

An exception is returned if any of the following conditions is true:
= The time series (ts) is null.
= The time series (ts) does not have an associated calendar.

= endDate is earlier than startDate.

Return the median closing price for stock AONE for the month of January 1990:
SH ECT CRDSYS. Ti neSeri es. TSvedi an( cl ose,

Time Series and Time Scaling Functions: Reference 5-109



TSMedian

to_date(’ 01/01/1990 00: 00: 00",
MM DD YYYY HR4:M:SS),
to_date(’ 01/31/1990 23: 59: 59",
"MM DD YYYY HR4: M :SS)) TSvedi an
FROM CRDIDEV. S ocks_TS
WHERE ti cker =" AONE ;

This example might produce the following output:

15. 4649
1 row sel ect ed.

5-110 Oracle8 Time Series Cartridge User's Guide



TSMin

TSMin

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries. TSMin (
ts ORDSYS.ORDTNumSeries|OTRef
[startDate DATE, endDate DATE]
) RETURN NUMBER;

Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the lowest (minimum) of all non-null time series entries.

ts
The input time series.

startDate
Starting date within the time series for which the minimum is to be calculated. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the minimum is to be calculated. If
endDate is specified, startDate must also be specified.

An exception is returned if any of the following conditions is true:
= The time series (ts) is null.
= The time series (ts) does not have an associated calendar.

= endDate is earlier than startDate.

Return the lowest closing price for stock AONE for the month of January 1990:
SH ECT CRDSYS. Ti neSeri es. TSM n( cl ose,

Time Series and Time Scaling Functions: Reference 5-111



TSMin

to_date(’ 01/01/1990 00: 00: 00",
MM DD YYYY HR4:M:SS),
to_date(’ 01/31/1990 23: 59: 59",
"MM DD YYYY HR4:M:SS)) TSMn
FROM CRDIDEV. S ocks_TS
WHERE ti cker =" AONE ;

This example might produce the following output:

15. 1038
1 row sel ect ed.

5-112 Oracle8 Time Series Cartridge User's Guide



TSMinN

TSMinN

Format

Description

Parameters

Usage

ORDSYS.TimeSeries. TSMinN (
ts ORDSYS.ORDTNumSeriesIOTRef,
NumValues INTEGER,
[startDate DATE, endDate DATE]
) RETURN ORDSYS.ORDTNumTab;

Given an input ORDTNumSeries, a number of values to return, and optionally
starting and ending dates, returns an ORDTNumTab with the specified number
(NumValues) of the bottom (lowest) values.

ts
The input time series.

NumValues
Number of values to return.

startDate
Starting date within the time series for which the bottom values are to be calcu-
lated. If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the bottom values are to be calculated.
If endDate is specified, startDate must also be specified.

An exception is returned if any of the following conditions is true:
= The time series (ts) is null.

= The time series (ts) does not have an associated calendar.

Time Series and Time Scaling Functions: Reference 5-113



TSMinN

= endDate is earlier than startDate.

«  NumValues is zero (0) or negative.

Example
Return the 10 lowest closing prices for stock AONE for the month of January 1996:

SH ECT * FROM THE SELECT CASIT(

CROSYS. Ti neSeri es. TSM nN cl ose, 10,
to_dat e(’ 01011996’ , ' MODYYYY' ),
to_dat e(’ 01311996 , ' MODYYYY' ))

as CROSYS. CROTNUnTab)

FROM CRDTDEV. st ocks _ts
WHERE ticker = AONE);

This example might produce the following output:

15- JAN- 96 37.8
09- JAN- 96 37.9675
04- JAN- 96 38. 3025
10- JAN- 96 38. 47
03- JAN- 96 38. 6375
16- JAN- 96 38. 9725
11- JAN- 96 39. 0563
08- JAN- 96 39. 3075
12- JAN- 96 39. 5588
17- JAN- 96 39. 6425
10 rows sel ect ed.

5-114 Oracle8 Time Series Cartridge User's Guide



TSMultiply

TSMultiply

Format

Description

Parameters

ORDSYS.TimeSeries. TSMultiply (
ts1 ORDSYS.ORDTNumSerieslIOTRef,
ts2 ORDSYS.ORDTNumSeries|OTRef
[startDate DATE, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;
or
ORDSYS.TimeSeries. TSMultiply (
ts1 ORDSYS.ORDTNumSerieslOTRef,
k NUMBER
[startDate DATE, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;

Given two input time series or a time series and a constant, and optionally starting
and ending dates, returns a time series that reflects the multiplication of the first
parameter by the second parameter.

tsl
The time series (or first time series) whose elements are to be multiplied by either
the corresponding elements in the second time series or a constant.

ts2
The time series whose elements are to be multiplied by corresponding elements in
the first time series.

k
A constant to be multiplied by corresponding elements in the first time series.

Time Series and Time Scaling Functions: Reference 5-115



TSMultiply

Usage

Example

startDate
Starting date within the time series for which the multiplication is to be performed.
If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the multiplication is to be performed.
If endDate is specified, startDate must also be specified.

The function performs a pairwise multiplication operation on each element of the
time series (or first time series) by the corresponding element in the second time
series or by a constant. This operation determines the value of each element of the
returned time series. For example:

« Iftwo time series contain daily trade volumes for two stocks, each element of
the returned time series contains the result of multiplying the volume in the
first time series by the volume in the second time series for that day.

« Ifatime series (tsl) contains closing prices for a stock and if a constant (k) of 2
is specified, each element of the returned time series contains the closing price
of ts1 multiplied by 2.

If ts1 and ts2 are specified, the function returns a time series whose calendar is the
result of using the CombineCals function on the calendars associated with these
two time series.

An exception is returned if any of the following conditions is true:
= Aninput time series is null.
= Aninput time series does not have an associated calendar.

« The calendars associated with ts1 and ts2 do not have the same frequency and
aligned pattern.

= endDate is earlier than startDate.

Multiply the high price for stock ACME by the low price for stock FUNCO for each
trading day from 14-Nov-1996 through 14-Dec-1996:

CONNECT CRDOTUSER CROTUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

5-116 Oracle8 Time Series Cartridge User's Guide



TSMultiply

DECLARE

tstGal CRDSYS CRDICal endar ;

startDate date;
endDate date;

dummyval | NTEGER

BEA N
startDate : = TO DATE(’ 11/14/1996' );
endDate = TO DATE(' 12/14/1996');

SELECT CORDSYS. Ti neSeri es. O spl ay(

CRDSYS. Ti neSeries. TSMul ti pl y(tsl. high, ts2.low startDate, endDate),

"TSMiltiply Results’) | NTO dunmyval
FROM CRDTDEV. st ockdeno _ts tsl, CRDIDEV. stockdeno ts ts2
WHERE tsl.ticker=" AOME and ts2.ticker=" FUNXO ;

BEND,
/

This example might produce the following output:

TSMIltiply Results :

Cal endar Dat a:
Frequency = 4
M nDate = 01/ 01/ 1990 00: 00: 00

NaxDat e
patBits:

0111110
pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons
of f Excepti ons :

11/ 28/ 1996 00: 00: 00

Series Data:

01/ 01/ 2001 00: 00: 00

12/ 25/ 1996 00: 00: 00

Date

11/ 14/ 1996
11/ 15/ 1996
11/ 18/ 1996
11/ 19/ 1996
11/ 20/ 1996
11/ 21/ 1996
11/ 22/ 1996
11/ 25/ 1996
11/ 26/ 1996

00:
00:
00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:

00
00
00
00
00
00
00
00
00

1647. 03
1694. 77

1738. 86
1764. 16
1788. 75
1809. 56
1831. 06

Time Series and Time Scaling Functions: Reference

5-117



TSMultiply

11/ 27/ 1996 00: 00: 00 1849.
11/29/ 1996 00: 00: 00 1876.
12/ 02/ 1996 00: 00: 00 1910.
12/ 03/ 1996 00: 00: 00 1946.
12/ 04/ 1996 00: 00: 00 1969.
12/ 05/ 1996 00: 00: 00 2002.
12/ 06/ 1996 00: 00: 00 1995
12/ 09/ 1996 00: 00: 00 2020.
12/ 10/ 1996 00: 00: 00 2046.
12/ 11/ 1996 00: 00: 00 2044.
12/ 12/ 1996 00: 00: 00 2060.
12/ 13/ 1996 00: 00: 00 2082.

5-118 Oracle8 Time Series Cartridge User's Guide

38
25

43
64
79



TSProd

TSProd

Format

Description

Parameters

Usage

ORDSYS.TimeSeries. TSProd (
ts ORDSYS.ORDTNumSeries|OTRef
[startDate DATE, endDate DATE]
) RETURN NUMBER;

Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the product (result of multiplication) of all non-null
time series entries.

ts
The input time series.

startDate
Starting date within the time series for which the product is to be calculated. If start-
Date is specified, endDate must also be specified.

endDate
Ending date within the time series for which the product is to be calculated. If end-
Date is specified, startDate must also be specified.

An exception is returned if any of the following conditions is true:
= The time series (ts) is null.
= The time series (ts) does not have an associated calendar.

= endDate is earlier than startDate.

Time Series and Time Scaling Functions: Reference 5-119



TSProd

Example

Return the product resulting from multiplying the daily closing prices for stock
AONE for the month of January 1990. (This example is not very plausible, but is
presented merely to illustrate the syntax.)

SH ECT CRDSYS. Ti neSeri es. TSProd( cl ose,
to_date(’ 01/01/ 1990 00: 00: 00",
MM DD YYYY HR4:M:SS),
to_date(’ 01/31/1990 23: 59: 59",
"MM DD YYYY HR4:M:SS)) TSProd
FROM CRDIDEV. S ocks_ TS
WHERE ti cker=" AONE ;

This example might produce the following output:

1. 7126E+26
1 row sel ect ed.

5-120 Oracle8 Time Series Cartridge User's Guide



TSStdDev

TSStdDev

Format

Description

Parameters

Usage

ORDSYS.TimeSeries. TSStdDev (
ts ORDSYS.ORDTNumSeries|OTRef
[startDate DATE, endDate DATE]
) RETURN NUMBER;

Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the standard deviation of all non-null time series
entries. (This function returns a value that is the square root of the value returned
by the TSVar function.)

ts
The input time series.

startDate
Starting date within the time series for which the standard deviation is to be calcu-
lated. If startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the standard deviation is to be calcu-
lated. If endDate is specified, startDate must also be specified.

If the date range refers to a time series with fewer than two timestamps, a null is
returned.

An exception is returned if any of the following conditions is true:
= The time series (ts) is null.
= The time series (ts) does not have an associated calendar.

= endDate is earlier than startDate.

Time Series and Time Scaling Functions: Reference 5-121



TSStdDev

Example

Return the average, variance, and standard deviation of the closing price of stock
ACME:

-- Conpute various aggregate statistics.

SH ECT CRDSYS. Ti neSeri es. TSAvg(cl ose), CRDSYS. Ti neSeri es. TSVar i ance(cl ose),
CRDSYS. Ti neSeri es. TSt dDev( cl ose)

FROM CRDIDEV. st ockdeno _ts

WHERE ti cker =" AQMVE ;

This example might produce the following output:

79 143.5 11. 9791486
1 row selected.

5-122 Oracle8 Time Series Cartridge User's Guide



TSSubtract

TSSubtract

Format

Description

Parameters

ORDSYS.TimeSeries. TSSubtract (
ts1 ORDSYS.ORDTNumSerieslIOTRef,
ts2 ORDSYS.ORDTNumSeries|OTRef
[startDate DATE, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;
or
ORDSYS.TimeSeries. TSSubtract (
ts1 ORDSYS.ORDTNumSerieslOTRef,
k NUMBER
[startDate DATE, endDate DATE]
) RETURN ORDSYS.ORDTNumSeries;

Given two input time series or a time series and a constant, and optionally starting
and ending dates, returns a time series that reflects the subtraction of the second
parameter from the first parameter.

tsl
The time series (or first time series) whose elements are to be decreased either by
corresponding elements in the second time series or by a constant.

ts2
The time series whose elements are to be subtracted from corresponding elements
in the first time series.

k
A constant to be subtracted from corresponding elements in the first time series.

Time Series and Time Scaling Functions: Reference 5-123



TSSubtract

startDate
Starting date within the time series for which the subtraction is to be performed. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the subtraction is to be performed. If
endDate is specified, startDate must also be specified.

Usage

The function performs a pairwise subtraction operation on each element of ts1,

decreasing it by either the corresponding element in ts2 or by k. This operation

determines the value of each element of the returned time series. For example:

« Iftwo time series contain daily trade volumes for two stocks, each element of
the returned time series contains the result of subtracting the ts2 volume from
the ts1 volume for that day.

« Ifatime series (tsl) contains closing prices for a stock and if a constant (k) of 1
is specified, each element of the returned time series contains the closing price
of ts1 decreased by 1.

If ts1 and ts2 are specified, the function returns a time series whose calendar is the

result of using the CombineCals function on the calendars associated with these

two time series.

An exception is returned if any of the following conditions is true:

= Aninput time series is null.

= Aninput time series does not have an associated calendar.

» The calendars associated with ts1 and ts2 do not have the same frequency and
aligned pattern.

= endDate is earlier than startDate.

Example

Subtract the low price for stock FUNCO from the high price for stock ACME for
each trading day from 14-Nov-1996 through 14-Dec-1996:

CONNECT CRDOTUSER CROTUSER
SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

DECLARE

5-124 Oracle8 Time Series Cartridge User's Guide



TSSubtract

tstGal CRDSYS CRDICal endar ;
startDate date;
endDate date;
dummyval | NTEGER

BEG N

startDate :
endDat e

BEND,
/

TO DATE(® 11/ 14/ 1996’ ) ;
TO DATE(® 12/ 14/ 1996’ ) ;
SELECT CGRDBYS. Ti neSeri es. O spl ay(
CRDSYS. Ti neSeri es. TSSubtract (ts1. high, ts2.1ow startDate, endDate),
" TSSubt ract Results’) | NTO dunmyval
FROM CRDTDEV. st ockdeno_ts tsl, CRDIDEV. stockdeno ts ts2
WHERE tsl.ticker=" AOME and ts2.ticker="FUNXO ;

This example might produce the following output:

TSSubtract Results :

Cal endar Dat a:
Frequency = 4
M nDate = 01/ 01/ 1990 00: 00: 00

NaxDat e
patBits:

0111110
pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons
of f Excepti ons :

11/ 28/ 1996 00: 00: 00

Series Data:

01/ 01/ 2001 00: 00: 00

12/ 25/ 1996 00: 00: 00

Date

11/ 14/ 1996
11/ 15/ 1996
11/ 18/ 1996
11/ 19/ 1996
11/ 20/ 1996
11/ 21/ 1996
11/ 22/ 1996
11/ 25/ 1996
11/ 26/ 1996
11/ 27/ 1996

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00
00
00
00
00
00
00
00
00
00

Time Series and Time Scaling Functions: Reference 5-125



TSSubtract

11/ 29/ 1996 00: 00: 00 55.25
12/ 02/ 1996 00: 00: 00 56. 12
12/ 03/ 1996 00: 00: 00 56. 97
12/ 04/ 1996 00: 00: 00 57.98
12/ 05/ 1996 00: 00: 00 58. 87
12/ 06/ 1996 00: 00: 00 60. 25
12/ 09/ 1996 00: 00: 00 61.23
12/ 10/ 1996 00: 00: 00 62.2

12/ 11/ 1996 00: 00: 00 63.5

12/ 12/ 1996 00: 00: 00 64.59
12/ 13/ 1996 00: 00: 00 65.6

5-126 Oracle8 Time Series Cartridge User's Guide



TSSum

TSSum

Format

Description

Parameters

Usage

Example

ORDSYS.TimeSeries. TSSum (
ts ORDSYS.ORDTNumSeries|OTRef
[startDate DATE, endDate DATE]
) RETURN NUMBER;

Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the sum of all non-null time series entries.

ts
The input time series.

startDate
Starting date within the time series for which the sum is to be calculated. If start-
Date is specified, endDate must also be specified.

endDate
Ending date within the time series for which the sum is to be calculated. If endDate
is specified, startDate must also be specified.

An exception is returned if any of the following conditions is true:
= The time series (ts) is null.
= The time series (ts) does not have an associated calendar.

= endDate is earlier than startDate.

Return the sum of the daily trading volumes for stock AONE for the month of Janu-
ary 1990 (that is, the total AONE volume for the month):

Time Series and Time Scaling Functions: Reference 5-127



TSSum

SH ECT CRDSYS. Ti neSeri es. TSSunf vol une,
to_date(’ 01/01/ 1990 00: 00: 00",
MM DD YYYY HR4:M:SS),
to_date(’ 01/31/1990 23: 59: 59",
"MM DD YYYY HR4:M:SS)) TSSum
FROM CRDIDEV. S ocks_TS
WHERE ti cker =" AONE ;

This example might produce the following output:

104434900
1 row sel ect ed.

5-128 Oracle8 Time Series Cartridge User's Guide



TSVariance

TSVariance

Format

Description

Parameters

Usage

ORDSYS.TimeSeries. TSVariance (
ts ORDSYS.ORDTNumSeries|OTRef
[startDate DATE, endDate DATE]
) RETURN NUMBER;

Given an input ORDTNumSeries and optionally starting and ending dates, returns
a number corresponding to the variance of all non-null time series entries. (This
function is analogous to the SQL group function VAR.)

ts
The input time series.

startDate
Starting date within the time series for which the variance is to be calculated. If
startDate is specified, endDate must also be specified.

endDate
Ending date within the time series for which the variance is to be calculated. If end-
Date is specified, startDate must also be specified.

If the date range refers to a time series with fewer than two timestamps, a null is
returned.

An exception is returned if any of the following conditions is true:
= The time series (ts) is null.
= The time series (ts) does not have an associated calendar.

= endDate is earlier than startDate.

Time Series and Time Scaling Functions: Reference 5-129



TSVariance

Example

Return the average, variance, and standard deviation of the closing price of stock
ACME:

-- Conpute various aggregate statistics.

SH ECT CRDSYS. Ti neSeri es. TSAvg(cl ose), CRDSYS. Ti neSeri es. TSVar i ance(cl ose),
CRDSYS. Ti neSeri es. TSt dDev( cl ose)

FROM CRDIDEV. st ockdeno _ts

WHERE ti cker =" AQMVE ;

This example might produce the following output:

79 143.5 11. 9791486
1 row selected.

5-130 Oracle8 Time Series Cartridge User's Guide



ValidateTS

ValidateTS

Format

ORDSYS.TimeSeries.Validate TS(

or

ts IN ORDSYS.ORDTNumSerieslOTRef,
outMesg OUT VARCHAR?2,

loDateTab OUT ORDSYS.ORDTDateTab,
hiDateTab OUT ORDSYS.ORDTDateTab,
impreciseDateTab OUT ORDSYS.ORDTDateTab,
duplicateDateTab OUT ORDSYS.ORDTDateTab,
extraDateTab OUT ORDSYS.ORDTDateTab,
missingDateTab OUT ORDSYS.ORDTDateTab

) RETURN INTEGER;

ORDSYS.TimeSeries.Validate TS(

ts IN ORDSYS.ORDTVarchar2SeriesIOTRef,
outMesg OUT VARCHAR?2,

loDateTab OUT ORDSYS.ORDTDateTab,
hiDateTab OUT ORDSYS.ORDTDateTab,
impreciseDateTab OUT ORDSYS.ORDTDateTab,
duplicateDateTab OUT ORDSYS.ORDTDateTab,
extraDateTab OUT ORDSYS.ORDTDateTab,
missingDateTab OUT ORDSYS.ORDTDateTab

) RETURN INTEGER;

Time Series and Time Scaling Functions: Reference 5-131



ValidateTS

Description
Checks whether a time series is valid, and if the time series is not valid, outputs a
diagnostic message and tables with timestamps that are causing the time series to
be invalid.

Parameters
ts

The time series to be checked for validity.

outMesg
If the time series is invalid (if the return value = 0), contains a diagnostic message
describing any problems.

loDateTab
A table of dates before the starting date of the calendar associated with the time
series.

hiDateTab
A table of dates after the ending date of the calendar associated with the calendar.

impreciseDateTab
A table of the imprecise timestamps found in the time series.

duplicateDateTab
A table of the duplicate timestamps found in the time series.

extraDateTab

A table of dates that are included in the time series but that should be excluded
based on the calendar definition (for example, a Saturday timestamp that is in a
Monday-Friday calendar and that is not an on-exception).

missingDateTab

A table of dates that are excluded from the time series but that should be included
based on the calendar definition (for example, a Wednesday date that is not a holi-
day in a Monday-Friday calendar and for which there is no data). Such dates can be
considered as "holes" in the time series.

5-132 Oracle8 Time Series Cartridge User's Guide



ValidateTS

Usage

Example

The function returns one of the following values:

Value Meaning

1 The time series is valid. No errors were found.

0 The time series in invalid.

A time series is invalid if one or more of the following conditions are true:
= The time series (ts) is null.

= The time series (ts) does not have an associated calendar.

« The calendar associated with the time series is invalid.

« The timestamps are not sorted.

= One or more timestamps are null, imprecise, or outside the date range of the
calendar.

= One or more timestamps are included in the time series but should be excluded
based on the calendar definition (for example, a Saturday timestamp that is in a
Monday-Friday calendar and that is not an on-exception).

= One or more timestamps are excluded from the time series but should be
included based on the calendar definition (for example, a Wednesday date that
is not a holiday in a Monday-Friday calendar and for which there is no data).
Such dates can be considered as "holes" in the time series.

Contrast this function with I1sValidTS, which simply checks whether a time series is
valid.

You can use the DisplayValTS procedure (documented in this chapter) to display
the information returned by the ValidateTS function.

The ValidateTS function cannot be called from SQL. It must be called from PL/SQL
because of the OUT parameters.

Use the IsValidTS and ValidateTS functions and the DisplayValTS procedure with
an invalid time series:

SET SERVERQUTPUT CN
ALTER SESSI ON SET NLS DATE FCRVAT = ' MM DD YYYY H24: M: SS ;

Time Series and Time Scaling Functions: Reference 5-133



ValidateTS

DEQLARE

nunTS CRDSYS. CROTNunter i es;

tenpVal integer;

retlsvalid integer;

retVal TS i nt eger;

| oDat eTab CORDSYS. CRDTDat eTab : = NULL;
hi Dat eTab CORDSYS. CROTDat eTab : = NULL;

i mpDat eTab GROSYS. GRDTDat eTab : = NULL;
dupDat eTab CRDSYS. GRDTDat eTab : = NULL;
ext ralat eTab CROSYS. CROTDat eTab : = NULL;
m ssi ngDat eTab CRDSYS. CRDIDat eTab : = NULL;
out Mesg var char 2(2000) ;

BEAG N

-- Set the buffer size
DBVE QUTPUT. ENABLE( 100000) ;

-- NOTE Here an instance of the tine series is naterialized

-- sothat it could be nodified to generate an invalid tine series.
SH ECT CRDSYS. Tl MESER ES. Get Seri es(ts. open) | NTO nunTS

FROM or dt dev. st ockdeno_ts ts

WERE ts.ticker ="' AQE ;

-- Exanple of validating a valid tine series.
SH ECT ordsys. timeseries. di spl ay(nunTS, 'A VALID TIME SERES) INIOtenpVal
FROM dual ;
retlsvalid := GROSYS TIMESER ES. | sVal i dTS(nunTS) ;
retVal TS : = GROSYS. TI MESER ES. Val i dat eTS( nunTS, out Mesg, | oDat eTab,
hi Dat eTab, i npDat eTab, dupDat eTab,
extraDat eTab, ni ssi ngDat eTab) ;
DBVS QUTPUT. PUT_LINE(' Val ue returned by IsValid =" || retlsValid);
DBVS QUTPUT. PUT_LINK(' Val ue returned by ValidateTS ="' || retVal T9);
CRDSYS. Tl MESER ES. D spl ayVal TS(ret Val TS, out Mesg, | oDat eTab, hi Dat eTab,
i npDat eTab, dupDat eTab, extraDateTab, nissi ngDat eTab,
"Testing D splayVal TS');
DBVE _CQUTPUT. NEW LI NE,

-- For illustration let us first create aninvalid tineseries.

-- Here we are adjusting the calendar’s ninDate and maxDate to avoid
-- getting a huge list of nissing dates.

5-134 Oracle8 Time Series Cartridge User's Guide



ValidateTS

nunlsS. cal .mnDate :
nunTsS. cal . naxDat e :

TO DATE(’ 10/ 28/ 1996’ ) ;
TO DATE(’ 01/ 05/ 1997' ) ;

-- Add Dates Before nunTS. cal .nmnDate
nunTS. series(10).tstanp : = nuniS. cal . mnDate - 1;
nunTS. series(11).tstanp : = nuniS. cal . mnDate - 2;

-- Add Dates Beyond nunTS. cal . maxDat e
nuntrS. series(12).tstanp : = nunTS cal . raxDate + 1;
nuntrS. series(13).tstanp : = nunTS cal . raxDate + 2;

-- Add sone nul |l tinestanps
nunTS. series(14).tstanp : = NULL;
nunTS. series(15).tstanp : = NULL;

-- Add sone inpreci se dates (sone are duplicated)
nunTS. series(17).tstanp : = nunTS seri es(16).tstanp + 1/24;
nunTS. series(18).tstanp : = nuniTS seri es(16).tstanp + 15/ 24;

-- Add sone duplicate tinestanps
nunTS. series(19).tstanp : = nunTS seri es(18).tstanp;
nunTS, series(21).tstanp : = nuniS seri es(20).tstanp;

-- Add sone extra dates in the niddl e
nunTS. series(37).tstanp : = TO DATE(’ 12/ 28/ 1996’ ) ;
nunTS. series(36).tstanp : = TO DATE(’ 12/ 29/ 1996’ ) ;

-- Add sone holes at the end
nunTS, series(nunTS. series. count).tstanp : = TO DATE(’ 01/ 04/ 1997" );

-- Exanpl e of validating an invalid tine series.
SH ECT ordsys. timeseries. di spl ay(nunTS, ' AN INVALID TIME SERES))
INTO t enpVal FRCM dual ;
retlsvalid := GROSYS TIMESER ES. | sVal i dTS(nunTS) ;
retVal TS : = GROSYS. TI MESER ES. Val i dat eTS( nunTS, out Mesg,
| oDat eTab, hi Dat eTab, i npDat eTab,
dupDet eTab, extralateTab, mi ssi hgDat eTab);
DBVS QUTPUT. PUT_LINE(' Val ue returned by IsValid =" || retlsValid);
DBVS QUTPUT. PUT_LINK(' Val ue returned by ValidateTS ="' || retVal T9);
CRDSYS. Tl MESER ES. D spl ayVal TS(ret Val TS, out Mesg, | oDat eTab, hi Dat eTab,
i npDat eTab, dupDat eTab, extrabDat eTab, nissi ngDat eTab,
"Testing DisplayVal TS );
END,

Time Series and Time Scaling Functions: Reference 5-135



ValidateTS

This example might produce the following output:
A VALID TIME SER ES :

Nare = AQME open Nungeries
Gl endar Data:
Gl endar Nane = BUS|I NESS- 96
Frequency = 4

M nDate = 01/01/1990 00: 00: 00
MxDat e = 01/01/2001 00: 00: 00
patBits:

0111110

pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons

of f Excepti ons

11/28/ 1996 00: 00: 00 12/ 25/ 1996 00: 00: 00

Series [ata
Dat e Val ue
11/ 01/ 1996 00: 00: 00 59
11/ 04/ 1996 00: 00: 00 60
11/ 05/ 1996 00: 00: 00 61
11/ 06/ 1996 00: 00: 00 62
11/ 07/ 1996 00: 00: 00 63
11/ 08/ 1996 00: 00: 00 64
11/11/1996 00: 00: 00 65
11/ 12/ 1996 00: 00: 00 66
11/ 13/ 1996 00: 00: 00 67
11/ 14/ 1996 00: 00: 00 68
11/ 15/ 1996 00: 00: 00 69
11/ 18/ 1996 00: 00: 00 70
11/ 19/ 1996 00: 00: 00 71
11/ 20/ 1996 00: 00: 00 72
11/ 21/ 1996 00: 00: 00 73
11/ 22/ 1996 00: 00: 00 74
11/ 25/ 1996 00: 00: 00 75
11/ 26/ 1996 00: 00: 00 76
11/ 27/ 1996 00: 00: 00 77
11/ 29/ 1996 00: 00: 00 78
12/ 02/ 1996 00: 00: 00 79
12/ 03/ 1996 00: 00: 00 80
12/ 04/ 1996 00: 00: 00 81
12/ 05/ 1996 00: 00: 00 82
12/ 06/ 1996 00: 00: 00 83
12/ 09/ 1996 00: 00: 00 84

5-136 Oracle8 Time Series Cartridge User's Guide



ValidateTS

12/ 10/ 1996 00: 00: 00 85
12/ 11/ 1996 00: 00: 00 86
12/ 12/ 1996 00: 00: 00 87
12/ 13/ 1996 00: 00: 00 88
12/ 16/ 1996 00: 00: 00 89
12/ 17/ 1996 00: 00: 00 90
12/ 18/ 1996 00: 00: 00 91
12/ 19/ 1996 00: 00: 00 92
12/ 20/ 1996 00: 00: 00 93
12/ 23/ 1996 00: 00: 00 94
12/ 24/ 1996 00: 00: 00 95
12/ 26/ 1996 00: 00: 00 96
12/ 27/ 1996 00: 00: 00 97
12/ 30/ 1996 00: 00: 00 98
12/ 31/ 1996 00: 00: 00 99

Value returned by Isvalid =1
Value returned by ValidateTS =1

D spl ayVal TS: Testing D spl ayVal TS:

TS SUC the input tine series is avalid time series

AN ITNVALID TTME SERES :

Nare = AOME open Nungeries
Cal endar Dat a:
Cal endar Narre = BUSI NESS- 96

Frequency = 4

M nDate = 10/ 28/ 1996 00: 00: 00
MaxDat e = 01/ 05/ 1997 00: 00: 00
patBits:

0111110
pat Anchor = 01/07/ 1996 00: 00: 00
onExcept i ons
of f Excepti ons :
11/28/ 1996 00: 00: 00 12/ 25/ 1996 00: 00: 00

Series Data:
Dat e Val ue
11/ 01/ 1996 00: 00: 00 59
11/ 04/ 1996 00: 00: 00 60
11/ 05/ 1996 00: 00: 00 61

Time Series and Time Scaling Functions: Reference 5-137



ValidateTS

11/ 06/ 1996 00: 00: 00 62
11/ 07/ 1996 00: 00: 00 63
11/ 08/ 1996 00: 00: 00 64
11/ 11/ 1996 00: 00: 00 65
11/ 12/ 1996 00: 00: 00 66
11/ 13/ 1996 00: 00: 00 67
10/ 27/ 1996 00: 00: 00 68
10/ 26/ 1996 00: 00: 00 69
01/ 06/ 1997 00: 00: 00 70
01/ 07/ 1997 00: 00: 00 71
72
73
11/ 22/ 1996 00: 00: 00 74
11/ 22/ 1996 01: 00: 00 75
11/ 22/ 1996 15: 00: 00 76
11/ 22/ 1996 15: 00: 00 77
11/29/ 1996 00: 00: 00 78
11/29/ 1996 00: 00: 00 79
12/ 03/ 1996 00: 00: 00 80
12/ 04/ 1996 00: 00: 00 81
12/ 05/ 1996 00: 00: 00 82
12/ 06/ 1996 00: 00: 00 83
12/ 09/ 1996 00: 00: 00 84
12/ 10/ 1996 00: 00: 00 85
12/ 11/ 1996 00: 00: 00 86
12/ 12/ 1996 00: 00: 00 87
12/ 13/ 1996 00: 00: 00 88
12/ 16/ 1996 00: 00: 00 89
12/ 17/ 1996 00: 00: 00 90
12/ 18/ 1996 00: 00: 00 91
12/ 19/ 1996 00: 00: 00 92
12/ 20/ 1996 00: 00: 00 93
12/ 29/ 1996 00: 00: 00 94
12/ 28/ 1996 00: 00: 00 95
12/ 26/ 1996 00: 00: 00 96
12/ 27/ 1996 00: 00: 00 97
12/ 30/ 1996 00: 00: 00 98
01/ 04/ 1997 00: 00: 00 99

Value returned by Isvalid =0
Val ue returned by ValidateTS =0

D spl ayVal TS: Testing D spl ayVal TS:

5-138 Oracle8 Time Series Cartridge User's Guide



ValidateTS

TSWR\ the input tine series has errors. See the nessage for details
nessage out put by validat eTS:
TS ER the input tine series is unsorted
TS BERR the tine series has null tinestanps
TS ERR the tine series has tinestanps < cal endar nminDate (refer LoDateTab)
TS BRR the tine series has tinestanps > cal endar naxDate (refer H DateTab)
TS BERR the tine series has inprecise tinestanps (refer inpreciseDateTab)
TS BERR the tine series has duplicate tinestanps (refer DuplicateDateTab)
list of dates < cal endar minDate - | owDateTab :
10/ 26/ 1996 00: 00: 00 10/ 27/ 1996 00: 00: 00
list of dates > cal endar naxDate - hi DateTab :
01/ 06/ 1997 00: 00: 00 01/07/ 1997 00: 00: 00
list of inprecise dates - inpreciseDateTab :
11/ 22/ 1996 01: 00: 00 11/ 22/ 1996 15: 00: 00
list of duplicate dates - dupli catelateTab :
11/ 22/ 1996 15: 00: 00 11/ 29/ 1996 00: 00: 00
Ext raDat eTab :
12/ 28/ 1996 00: 00: 00 12/ 29/ 1996 00: 00: 00 01/ 04/ 1997 00: 00: 00
M ssi nghat eTab :
10/ 28/ 1996 00: 00: 00 10/ 29/ 1996 00: 00: 00 10/ 30/ 1996 00: 00: 00
10/ 31/ 1996 00: 00: 00 11/ 14/ 1996 00: 00: 00 11/ 15/ 1996 00: 00: 00
11/ 18/ 1996 00: 00: 00 11/ 19/ 1996 00: 00: 00 11/ 20/ 1996 00: 00: 00
11/21/1996 00: 00: 00 11/ 25/ 1996 00: 00: 00 11/ 26/ 1996 00: 00: 00
11/ 27/ 1996 00: 00: 00 12/ 02/ 1996 00: 00: 00 12/ 23/ 1996 00: 00: 00

12/ 24/ 1996 00: 00: 00 12/ 31/ 1996 00: 00: 00 01/ 01/ 1997 00: 00: 00
01/02/1997 00: 00: 00  01/03/1997 00: 00: 00

Time Series and Time Scaling Functions: Reference 5-139



ValidateTS

5-140 Oracle8 Time Series Cartridge User's Guide



A

Error Messages

This appendix lists the Time Series cartridge error messages, including the cause
and recommended user action for each.

TS-00500, "internal error"

Cause: This is the generic internal error number for Time Series exceptions.
This indicates that a process has encountered an exceptional condition.

Action: Report as a bug.

TS-00501, "the input patterns are not of the same length"

Cause: The input calendars have patterns of different lengths. For example,
’0,1,1,1,1,1,0' and ’0,1,1,1,1,0" were specified.

Action: Use calendars with patterns of the same length.

TS-00503, "patanchor can be null only if patbits.count=1 or all patbits are the

same"

Cause: Pattern anchor was null, and pattern was not acceptable for a null pat-
anchor. The anchor can be null only when using all-zero or all-one pattern bits.

Action: Supply a pattern anchor date, or adjust the pattern bits.

TS-00504, "illegal validflag parameter was passed to DisplayValCal/Display-

ValTs"
Cause: DisplayValCal or DisplayValTS was called with invalid parameters.

Action: Only call DisplayValCal and DisplayValTS with the output of Vali-
dateCal or ValidateTs, respectively.

TS-00505, "illegal outmessage parameter was passed to DisplayValCal/Display-

ValTs"
Cause: DisplayValCal or DisplayValTS was called with invalid parameters.

Action: Only call DisplayValCal and DisplayValTS with the output of Vali-
dateCal or ValidateTs, respectively.

Error Messages A-1



Error Messages

TS-00506, "the calendar pattern is null”

Cause: The Time Series Cartridge encountered a calendar having a null pat-
tern.

Action: Ensure that all calendars have a non-null pattern.

TS-00507, "the calendar has an imprecise mindate or maxdate"

Cause: The Time Series Cartridge encountered a calendar having an imprecise
mindate or maxdate.

Action: Ensure that all calendar mindates and maxdates are precise.

TS-00510, "datetab has dates outside the bounds of the calendar”

Cause: DeriveExceptions encountered dates outside of the input calendar’s
mindate/maxdate.

Action: Adjust mindate/maxdate or remove extraneous dates from the input
DateTab.

TS-00511, "calendar pattern bits array is either empty or null"

Cause: The Time Series Cartridge encountered a calendar with an empty or
null array of pattern bits.

Action: Update the calendar to include a valid array of pattern bits.

TS-00512, "invalid frequency value - valid frequencies are: 1,2,3,4,6,8"

Cause: The Time Series Cartridge has encountered a calendar with an unsup-
ported frequency.

Action: Restrict all calendars to frequencies: 1,2,3,4,6,8.

TS-00513, "the input dates are in the wrong order"
Cause: The date range provided was in reverse order.

Action: When specifying a date range, always list the earlier date first.

TS-00514, "calendar pattern has an imprecise anchor date"

Cause: The Time Series Cartridge has encountered a calendar with an anchor
having the wrong precision.

Action: Adjust the precision of the anchor to match the calendars frequency.

TS-00515, "input date is less than calendar mindate"
Cause: The Time Series Cartridge has encountered a date less than mindate.

A-2 Oracle8 Time Series Cartridge User’s Guide



Error Messages

Action: Ensure that all input dates are within the mindate-maxdate range of
the calendar.

TS-00516, "input date is greater than calendar maxdate"

Cause: The Time Series Cartridge has encountered a date greater than max-
date.

Action: Ensure that all input dates are within the mindate-maxdate range of
the calendar.

TS-00519, "the series attribute of the time series type is null"

Cause: The Time Series Cartridge has encountered a null series within a time
series.

Action: Ensure that all time series have a non-null series component.

TS-00520, "the input calendar is null"
Cause: The Time Series Cartridge has encountered a null calendar.

Action: Ensure that all calendars are non-null.

TS-00522, "error scaling date to calendar"
Cause: Input date cannot be scaled to given calendar.

Action: Ensure that the given calendar is valid and that the calendar’s mindate
and maxdate encompass all potential timestamp values.

TS-00523, "the input date is null"

Cause: Scaleup has encountered a null date. No scaling semantics are defined
for a null date.

Action: Ensure that all input to Scaleup is non-null.

TS-00525, "the input time series is null"
Cause: The Time Series Cartridge has encountered a null time series.

Action: Ensure that all time series are not atomically null.

TS-00526, "the input time series has a null calendar"

Cause: The Time Series Cartridge has encountered a null calendar within a
time series.

Action: Ensure that all time series include valid (non-null) calendars.

TS-00527, "error scaling up to the target calendar frequency"

Error Messages A-3



Error Messages

Cause: Scaleup encountered a target calendar of finer frequency than that of
the input time series’ calendar.

Action: Scaleup requires a target calendar of equal or coarser frequency.

TS-00528, "calendar has a null mindate or a null maxdate"

Cause: The Time Series Cartridge has encountered a calendar with a null mind-
ate or maxdate.

Action: Ensure that all calendars have a valid mindate and maxdate.

TS-00529, "calendar mindate is greater than its maxdate"

Cause: The Time Series Cartridge has encountered a calendar with mindate >
maxdate.

Action: Ensure that all calendars have a valid mindate <= maxdate.

TS-00530, "series indexes must be greater than 0"
Cause: GetNthElement encountered an index less than 1.

Action: Use indexes greater than 0.

TS-00531, "the input time series has a null calendar reference”
Cause: The Time Series Cartridge has encountered a time series with a null cal-
endar reference.

Action: Ensure that all calendar references are valid.

TS-00532, "unable to DEREF calendar referenced by time series"
Cause: The Time Series Cartridge was unable to dereference a calendar refer-
ence.

Action: Verify that the user executing the query has select privileges for the
calendar table storing the object, and that the correct calendar has been refer-
enced by the time series ref.

TS-00533, "the time series has data beyond its calendar mindate/maxdate”

Cause: The Time Series Cartridge has encountered a time series with data
beyond mindate/maxdate.

Action: Ensure that all timestamps in a time series are within the calendar’s
mindate/maxdate.

TS-00534, "the number of rows requested must be a positive integer"
Cause: The requested number of rows was less than 0.

Action: Use a positive number to specify the number of rows requested.

A-4 Oracle8 Time Series Cartridge User’s Guide



Error Messages

TS-00535, "the time series ref has a null table_name parameter"
Cause: The Time Series Cartridge has encountered a time series ref having a
null table_name.

Action: Ensure that all time series refs include a valid table name.

TS-00536, "the time series ref has a null tstamp_colname parameter™
Cause: The Time Series Cartridge has encountered a time series ref having a
null tstamp_colname.

Action: Ensure that all time series refs include a valid timestamp column
name.

TS-00537, "the time series ref has a null value_colname parameter"
Cause: The Time Series Cartridge has encountered a time series ref having a
null value_colname.

Action: Ensure that all time series refs include a valid value column name.

TS-00538, "the time series ref has a null qualifier_colname parameter"
Cause: The Time Series Cartridge has encountered a time series ref having a
null qualifier_colname.

Action: Ensure that all time series refs include a valid qualifier column name.

TS-00539, "the time series ref has a null qualifier_value parameter"
Cause: The Time Series Cartridge has encountered a time series ref having a
null qualifier_value.

Action: Ensure that all time series refs include a valid qualifier value.

TS-00540, "the projected lead timestamp is beyond the calendar mindate/max-
date"
Cause: The given parameters result in timestamps outside of mindate/max-
date.

Action: Adjust the lead timestamp or lead units to remain within calendar min-
date/maxdate, or extend the mindate/maxdate.

TS-00541, "the projected lag timestamp is beyond the calendar mindate/maxdate”

Cause: The given parameters result in timestamps outside of mindate/max-
date.

Action: Adjust the lag timestamp or lag units to remain within calendar mind-
ate/maxdate, or extend the mindate/maxdate.

Error Messages A-5



Error Messages

TS-00542, "the window size for mavg/msum must be >= 1"

Cause: Window size parameter passed to moving average/sum was not
greater than 0.

Action: Use a window size parameter greater than or equal to 1.

TS-00547, "the input fill type is invalid"
Cause: Fill has been called with a filltype less than 0 or greater than 2.

Action: Use a valid filltype: 0, 1, or 2.

TS-00551, "error parsing the SQL statement with the time series ref"
Cause: The SQL statement constructed from the time series ref was invalid.

Action: Verify the validity of the time series ref:

= Verify the validity of all components of the time series ref.

= No spaces or invalid punctuation may appear in table or column names.
= The user must have select privileges on the table referenced.

= The table name must be qualified with its schema name.

TS-00552, "error executing the SQL statement with the time series ref"
Cause: The SQL statement constructed from the time series ref was invalid.

Action: Verify the validity of the time series ref:

= Verify the validity of all components of the time series ref.

= No spaces or invalid punctuation may appear in table or column names.
= The user must have select privileges on the table referenced.

= The table name must be qualified with its schema name.

TS-00553, "divide by zero error"
Cause: An attempt was made to divide by zero with TSDivide.

Action: When dividing by a constant, ensure that the constant is non-zero.

TS-00554, "the input calendar patterns are not equal”

Cause: DeriveExceptions requires the reference time series' calendar to have
the same pattern as the time series being processed.

Action: Ensure that DeriveExceptions is called only with time series having
the same pattern.

A-6 Oracle8 Time Series Cartridge User’s Guide



Error Messages

TS-00555, "the input calendar frequencies are not equal”
Cause: DeriveExceptions requires the reference time series’ calendar to have
the same frequency as the time series being processed.

Action: Ensure that DeriveExceptions is called only with time series having
the same frequency.

TS-00556, "mindate of the ref calendar exceeds the mindate of the target calendar”
Cause: DeriveExceptions encountered a reference time series’ calendar having
a mindate greater than that of the target time series’ calendar.

Action: Ensure that DeriveExceptions is called only with appropriate time
series.

TS-00557, "maxdate of the target calendar exceeds the maxdate of the ref calendar"
Cause: DeriveExceptions encountered a reference time series’ calendar having
a maxdate less than that of the target time series’ calendar.

Action: Ensure that DeriveExceptions is called only with appropriate time
series.

TS-00558, "the target calendar should have empty on/off exception lists"
Cause: DeriveExceptions encountered a target time series’ calendar having
non-empty exception lists.

Action: Ensure that DeriveExceptions is called only with target time series
having empty exception lists.

TS-00559, "the caltype field in the calendar has an illegal value"

Cause: The Time Series Cartridge encountered a calendar with an invalid cal-
endar type.

Action: Ensure that all calendars have valid calendar type value. Valid calen-
dar types are: (Exception-driven calendars = 0)

Error Messages A-7



Error Messages

A-8 Oracle8 Time Series Cartridge User’s Guide



A

addition

TSAdd function, 5-93

TSSum function, 5-127
advanced-developer demo, 1-4
aggregate functions, 2-28
architecture

Time Series cartridge, 2-10
arithmetic functions, 2-28
average

TSAvg function, 5-97
average, moving

Mavg function, 2-29, 5-69

B

bottom values
TSMinN function, 5-113

bulk loading of time series data, 3-10
consistency, 2-20, 3-10

C

calendar, 2-5
datatypes, 2-7
defining, 2-8
exceptions, 2-5
frequency, 2-6
pattern, 2-5
precision, 2-7
validating, 4-34, 4-69
calendar functions, 2-20, 4-1
Cavg function, 5-3

Index

Cmax function, 5-5
Cmin function, 5-7
collection-based interface, 2-13
CombineCals function, 4-2
consistency of time series data
approaches, 2-20, 3-10
conventional path (SQL*Loader), 3-13
conversion functions, 2-30
count
TSCount function, 5-99
Cprod function, 5-9
cumulative sequence functions, 2-29

D

data cartridge

definition, 1-1
datatypes

calendar, 2-7

time series, 2-23
defining

calendar, 2-8
DeleteExceptions function, 4-7
demos of Time Series cartridge

advanced-developer, 1-4

Developer/2000, 1-4

OCl, 14

PRO*C/C++, 1-4

usage, 1-4
DeriveExceptions function, 2-9, 5-13
Developer/2000 demo, 1-4
direct path (SQL*Loader), 3-13
Display function, 5-15
DisplayValCal procedure, 4-10

Index-1



DisplayValTS procedure, 5-18
division
TSDivide function, 5-101

E

EqualCals function, 4-17
error messages, A-1
exceptions, 2-5

deriving, 2-9
ExtractCal function, 5-26
ExtractDate function, 5-28
extraction functions, 2-26
ExtractTable function, 5-30
ExtractValue function, 5-32

F

Fill function, 5-34
First function, 5-40
FirstN function, 5-42
frequency, 2-6
functions
calendar, 2-20,4-1
Cavg, 5-3
Cmax, 5-5
Cmin, 5-7
CombineCals, 4-2
Cprod, 5-9
DeleteExceptions, 4-7
DeriveExceptions, 2-9, 5-13
Display, 5-15

DisplayValCal procedure, 4-10

DisplayValTS procedure, 5-18
EqualCals, 4-17

ExtractCal, 5-26

ExtractDate, 5-28
ExtractTable, 5-30
ExtractValue, 5-32

Fill, 5-34
First, 5-40
FirstN, 5-42

GetDatedElement, 5-44
GetNthElement, 5-46
GetOffset, 4-20

Index-2

GetSeries, 5-48
InsertExceptions, 4-23
IntersectCals, 4-27
InvalidTimeStampsBetween, 4-31
IsValidCal, 4-34

IsValidDate, 4-40

IsValidTS, 5-51

Lag, 5-59
Last, 5-62
LastN, 5-64
Lead, 5-66
Mavg, 5-69
Msum, 5-72

NumlinvalidTimeStampsBetween,
NumOffExceptions, 4-46
NumOnExceptions, 4-49
NumTimeStampsBetween, 4-52
OffsetDate, 4-55
Scaleup, 5-74
ScaleupAvg, 5-76
ScaleupCount, 5-78
ScaleupFirst, 5-80
ScaleuplLast, 5-82
ScaleupMax, 5-84
ScaleupMin, 5-86
ScaleupSum, 5-88
SetPrecision, 4-58

time scaling, 2-31, 5-1
time series, 2-23,5-1
TimeStampsBetween, 4-61
TrimSeries, 5-90
TSAdd, 5-93

TSAvg, 5-97

TSCount, 5-99
TSDivide, 5-101
TSMax, 5-105
TSMaxN, 5-107
TSMedian, 5-109
TSMin, 5-111
TSMinN, 5-113
TSMultiply, 5-115
TSProd, 5-119
TSStdDev, 5-121
TSSubtract, 5-123
TSSum, 5-127

4-43



TSVariance, 5-129
UnionCals, 4-65

VallidateCal, 4-69
VallidateTS, 5-131

G

GetDatedElement function, 5-44
GetNthElement function, 5-46
GetOffset function, 4-20
GetSeries function, 5-48

H

highest values
TSMaxN, 5-107

incremental loading of time series data, 3-12
InsertExceptions function, 4-23
installation of the cartridge, 1-3
instance-based interface, 2-13

INSTEAD OF triggers, 3-4

IntersectCals function, 4-27
InvalidTimeStampsBetween function, 4-31
irregular time series, 2-2, 2-6

IsValidCal function, 4-34

IsValidDate function, 4-40

IsValidTS function, 5-51

K

kit installation, 1-3

L

Lag function, 5-59
Last function, 5-62
LastN function, 5-64
Lead function, 5-66
loading

time series data, 3-9
lowest values

TSMinN, 5-113

M

Mavg function, 2-29, 5-69
maximum

TSMax function, 5-105
median

TSMedian function, 5-109
messages

error, A-1
metadata for usage demo, 1-6, 2-16
minimum

TSMin function, 5-111
moving average

Mavg function, 2-29, 5-69
moving sum

Msum function, 2-29, 5-72
Msum function, 2-29, 5-72
multiplication

TSMultiply function, 5-115

TSProd function, 5-119

N

null operand semantics, 2-24
NumlinvalidTimeStampsBetween function, 4-43
NumOffExceptions function, 4-46
NumOnExceptions function, 4-49
NumTimeStampsBetween function, 4-52

O

object relational technology, 1-2
OCl demo, 1-4
off-exception, 2-5

semantics, 2-25
OffsetDate function, 4-55
on-exception, 2-5
Oracle Forms demo (Developer/2000), 1-4
ORDSYS schema, 1-4
ORDTCalendar datatype, 2-7
ORDTDateTab datatype, 2-24
ORDTEXxceptions datatype, 2-7
ORDTNumCell datatype, 2-23
ORDTNumSeries datatype, 2-23
ORDTNumSerieslOTRef datatype, 2-23
ORDTNumSeries|OTRef type, 2-15

Index-3



ORDTNumTab datatype, 2-23
ORDTPattern datatype, 2-7
ORDTPatternBits datatype, 2-7
ordtsyn.sqgl (public synonyms), 1-4
ORDTVarchar2Cell datatype, 2-23
ORDTVarchar2Series datatype, 2-23
ORDTVarchar2SerieslOTRef datatype, 2-24
ORDTVarchar2Tab datatype, 2-23

P

package names

public synonyms for, 1-4
pattern, 2-5
precision, 2-7

purified timestamps, 2-19
PRO*C/C++ demo, 1-4
procedures

DisplayValCal, 4-10

DisplayVvalTS, 5-18
product

TSAvg function, 5-119
public synonyms for package names, 1-4
purified timestamps, 2-19

R

reference-based interface, 2-15
reference-based view, 1-6, 2-16
regular time series, 2-1

S

Scaleup function, 5-74
ScaleupAvg function, 5-76
ScaleupCount function, 5-78
ScaleupFirst function, 5-80
ScaleupLast function, 5-82
ScaleupMax function, 5-84
ScaleupMin function, 5-86
ScaleupSum function, 5-88
security view, 1-6, 2-16, 3-4
semantics

null operands, 2-24

off-exception operands, 2-25

Index-4

server output, setting, 5-16
SET SERVEROUTPUT ON statement,
SetPrecision function, 4-58
shift functions, 2-27
SQL formatting functions, 2-27
SQL*Loader utility, 3-9

bulk loading, 3-10

5-16

conventional and direct paths, 3-13

incremental loading, 3-12
standard deviation

TSStdDev function, 5-121
stockdemo_metadata table, 1-6, 2-16

stockdemo_sv security view, 1-6, 2-16

stockdemo _ts reference-based view,
subtraction

TSSubtract function, 5-123
sum

TSSum function, 5-127
sum, moving

Msum function, 2-29, 5-72
synonyms

public (package names), 1-4

T

1-6, 2-16

time scaling functions, 2-31, 5-1
time series

cartridge architecture, 2-10

data storage, 2-11

datatypes, 2-23

irregular, 2-2,2-6

regular, 2-1

validating, 3-11, 5-51, 5-131
time series functions, 2-23, 5-1
TimeStampsBetween function, 4-61
top values

TSMax function, 5-107
trim functions, 2-26
TrimSeries function, 5-90
TSAdd function, 5-93
TSAvg function, 5-97
TSCount function, 5-99
TSDivide function, 5-101
TSMax function, 5-105
TSMaxN function, 5-107



TSMedian function, 5-109
TSMin function, 5-111
TSMinN function, 5-113
TSMultiply function, 5-115
TSProd function, 5-119
TSStdDev function, 5-121
TSSubtract function, 5-123
TSSum function, 5-127
TSVariance function, 5-129

U

UnionCals function, 4-65
usage demo, 1-4

files, 1-5

tables and views, 1-6, 2-16

\%

ValidateCal function, 4-69
ValidateTS function, 5-131
validating

calendar, 4-34,4-69

time series, 3-11, 5-51, 5-131
variance

TSVariance function, 5-129

Index-5



Index-6



	Up
	Contents
	Send Us Your Comments
	Preface
	1 Introduction
	1.1� Data Cartridges
	1.2� Object Relational Technology
	1.3� Storing and Accessing Data
	1.4� Installing the Kit
	1.5� Creating Public Synonyms for Time Series Pack...
	1.6� Time Series Cartridge Demos (Demonstrations)
	1.6.1� Running the Usage Demo
	1.6.2� Usage Demo Files
	1.6.3� Tables and Views in the Usage Demo


	2 Time Series Concepts
	2.1� Overview of Time Series Data
	2.1.1� Data Generation for a Time Series
	2.1.2� Historical Data

	2.2� Calendars
	2.2.1� Frequency and Precision
	2.2.2� Calendar Datatypes
	2.2.3� Overview of Calendar Definition
	2.2.4� Deriving Calendar Exceptions from Time Seri...

	2.3� Time Series Cartridge Architecture
	2.4� Storage of Time Series Data
	2.4.1� Flat IOT Storage

	2.5� Interfaces to Time Series and Time Scaling Fu...
	2.5.1� Instance-Based Interface
	2.5.2� Reference-Based Interface

	2.6� Consistency of Time Series Data
	2.6.1� Rules for Time Series Consistency
	2.6.2� Enforcing Time Series Consistency with Secu...
	2.6.3� Bulk Loading and Consistency

	2.7� Calendar Functions
	2.7.1� End-User Functions
	2.7.2� Product-Developer Functions

	2.8� Time Series Functions
	2.8.1� Time Series Datatypes
	2.8.2� Conventions and Semantics
	2.8.3� Extraction, Retrieval, and Trim Functions
	2.8.4� Shift Functions
	2.8.5� SQL Formatting Functions
	2.8.6� Aggregate Functions
	2.8.7� Arithmetic Functions
	2.8.8� Cumulative Sequence Functions
	2.8.9� Moving Average and Sum Functions
	2.8.10� Conversion Functions

	2.9� Time Scaling Functions
	2.9.1� Time Scaling on Collections
	2.9.2� Time Scaling in the GROUP BY Clause


	3 Time Series Usage
	3.1� Using the Cartridge
	3.1.1� Step 1: Create the Underlying Storage (Tabl...
	3.1.2� Step 2: Define a Calendar
	3.1.3� Step 3: Load Time Series Data
	3.1.4� Step 4: Create a Security View and INSTEAD ...
	3.1.5� Step 5: Create a Reference-Based View
	3.1.6� Step 6: Validate Time Series Consistency
	3.1.7� Step 7: Formulate Time Series Queries

	3.2� Loading Time Series Data
	3.2.1� Bulk Loading
	3.2.2� Incremental Loading

	3.3� Deriving Calendar Exceptions
	3.3.1� Deriving Exceptions Using a Calendar and Ta...
	3.3.2� Deriving Exceptions Using Two Time Series P...

	3.4� Using Product-Developer Functions

	4 Calendar Functions: Reference
	CombineCals
	DeleteExceptions
	DisplayValCal Procedure
	EqualCals
	GetOffset
	InsertExceptions
	IntersectCals
	InvalidTimeStampsBetween
	IsValidCal
	IsValidDate
	NumInvalidTimeStampsBetween
	NumOffExceptions
	NumOnExceptions
	NumTimeStampsBetween
	OffsetDate
	SetPrecision
	TimeStampsBetween
	UnionCals
	ValidateCal

	5 Time Series and Time Scaling Functions: Referenc...
	Cavg
	Cmax
	Cmin
	Cprod
	Csum
	DeriveExceptions
	Display
	DisplayValTS Procedure
	ExtractCal
	ExtractDate
	ExtractTable
	ExtractValue
	Fill
	First
	FirstN
	GetDatedElement
	GetNthElement
	GetSeries
	IsValidTS
	Lag
	Last
	LastN
	Lead
	Mavg
	Msum
	Scaleup
	ScaleupAvg
	ScaleupCount
	ScaleupFirst
	ScaleupLast
	ScaleupMax
	ScaleupMin
	ScaleupSum
	TrimSeries
	TSAdd
	TSAvg
	TSCount
	TSDivide
	TSMax
	TSMaxN
	TSMedian
	TSMin
	TSMinN
	TSMultiply
	TSProd
	TSStdDev
	TSSubtract
	TSSum
	TSVariance
	ValidateTS

	A Error Messages
	Index

