
Oracle8 ConText Cartridge

Application Developer’s Guide

Release 2.4

July 1998

Part No. A63821-01

Oracle8 ConText Cartridge Application Developer’s Guide, Release 2.4

Part No. A63821-01

Release 2.4

Copyright © 1996, 1998, Oracle Corporation. All rights reserved.

Primary Author: Colin McGregor

Contributing Author: D. Yitzik Brenman

Contributors: Peter Bell, Chandu Bhavsar, Anny Chan, Chung-Ho Chen, Yun Cheng, Roy Clarke, Paul
Dixon, Garret Kaminaga, Kim Kepchar, Jeff Krauss, Jackie Kud, Kavi Mahesh, Yasuhiro Matsuda,
Mohammad Faisal, Josh Powers, Gerda Shank, Dipti Sonak, and Steve Yang.

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be licensee’s responsibility to take all appropriate fail-safe,
back up, redundancy and other measures to ensure the safe use of such applications if the Programs
are used for such purposes, and Oracle disclaims liability for any damages caused by such use of the
Programs.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright, patent and
other intellectual property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose, without the express written permission of Oracle
Corporation

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is
delivered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are "restricted computer software" and use, duplication and
disclosure of the Programs shall be subject to the restrictions in FAR 52.227-14, Rights in Data -- General,
including Alternate III (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle, SQL*Net, SQL*Plus, and ConText are registered trademarks of Oracle Corporation. Oracle8, Net8,
Oracle Forms, Oracle Server, PL/SQL, and Gist are trademarks of Oracle Corporation.

All other company or product names mentioned are used for identification purposes only and may be
trademarks of their respective owners.

iii

Contents

Send Us Your Comments .. xiii

Preface... xv

1 Building a Query Application

Overview .. 1-2
Prerequisites .. 1-4

Loading Text.. 1-4
Creating an Index ... 1-4

Entering the Query ... 1-6
Text Queries... 1-6
Theme Queries .. 1-6
Using Operators.. 1-7
Case-Sensitive Searching ... 1-7
Document Section Searching .. 1-8
Structured Field Searching.. 1-9

Rewriting the Query Expression.. 1-10
Presenting Expression Feedback ... 1-11
Executing the Query ... 1-12

Two-step Queries.. 1-12
In-memory Queries .. 1-12
One-step Queries .. 1-13
Counting Query Hits.. 1-13

iv

Presenting the Hitlist ... 1-14
Presenting Structured Fields ... 1-14
Presenting Score.. 1-14
Presenting Document Hit Count .. 1-15
Presenting Expression Feedback in Hitlist.. 1-15
Presenting Gists (English only)... 1-15

Presenting the Document .. 1-16
Presenting Highlighted Documents... 1-16
Presenting CTX_LING Output (English Only) .. 1-18

2 Query Methods

Selecting a Query Method... 2-2
Using Two-Step Queries.. 2-3

Two-Step Query Example ... 2-3
Scoring.. 2-4
Hitlist Result Tables.. 2-4
SELECT from a Pre-defined View.. 2-6
Composite Textkey Queries .. 2-7
Structured Queries.. 2-8
Querying Columns in Remote Databases ... 2-9
Two-Step Queries in Parallel... 2-9

Using One-Step Queries .. 2-11
One-Step Query Processing... 2-11
One-Step Query Example .. 2-12
Multiple CONTAINS ... 2-12
Scoring.. 2-13
Restrictions .. 2-13
Multiple Policies .. 2-14
Composite Textkey Queries .. 2-14
Querying Columns in Remote Databases ... 2-14

Using In-Memory Queries ... 2-16
In-Memory Query Example .. 2-17
In-Memory Queries and Composite Textkeys ... 2-18
In-Memory Query Limitations ... 2-18
Querying Columns in Remote Databases ... 2-18

v

Counting Query Hits.. 2-19
Using COUNT_HITS Before the Query .. 2-19
Using COUNT_LAST After the Query.. 2-19

3 Understanding Query Expressions

About Query Expressions ... 3-2
Query Terms.. 3-2
Case-Sensitive Queries... 3-3
Composite Word Queries (German and Dutch only) .. 3-5
Base-Letter Queries .. 3-6
Query Expression Examples ... 3-6

Logical Operators.. 3-8
AND Operator .. 3-8
OR Operator .. 3-9
NOT Operator .. 3-9
Equivalence Operator .. 3-9

WITHIN Operator .. 3-11
WITHIN Syntax .. 3-11
Querying Within Sentence or Paragraphs .. 3-11
Querying Within User-defined Sections ... 3-12
Limitations... 3-13

Score-Changing Operators.. 3-14
Accumulate Operator... 3-14
MINUS Operator .. 3-15
Weight Operator ... 3-15

NEAR Operator ... 3-17
Near Scoring.. 3-18
Near with Other Operators ... 3-18
Backward Compatibility Near Syntax... 3-19
Highlighting with the Near Operator.. 3-19
Section Searching and Near .. 3-20

Result-Set Operators .. 3-21
Threshold Operator.. 3-21
Max Operator .. 3-22

vi

First/Next Operator ... 3-22
Combined First/Next and Max Queries ... 3-23

Expansion Operators .. 3-24
Stem Expansions ... 3-24
Soundex Expansions... 3-25
Fuzzy Expansions ... 3-25
Penetration in Expansion Operators .. 3-26
Examining Query Expansions .. 3-27
Base-letter Support ... 3-27

Thesaurus Operators .. 3-28
Thesaurus Arguments.. 3-29
Synonym Operator ... 3-30
Preferred Term Operator ... 3-31
Related Term Operator .. 3-31
Narrower Term Operators .. 3-31
Broader Term Operators .. 3-32
Broader and Narrower Term Operator on Homographs ... 3-32
Top Term Operator... 3-33
Thesaural Expansions and Case-Sensitivity ... 3-33
Base-letter Support for Thesaural Queries.. 3-34

Wildcard Characters ... 3-35
Grouping Characters .. 3-36
Stored Query Expressions ... 3-37

Using Stored Query Expressions.. 3-37
Session and System SQEs .. 3-38
Re-evaluation of Stored Query Expressions ... 3-38
Iterative Queries.. 3-39
SQE Tables ... 3-40
Using Operators in Stored Query Expressions .. 3-41

PL/SQL in Query Expressions .. 3-42
Example.. 3-42

Operator Precedence... 3-43
Group 1... 3-43
Group 2... 3-44
Procedural Operators ... 3-44

vii

Precedence Examples .. 3-44
Altering Precedence ... 3-45

Escaping Reserved Words and Characters ... 3-46
Example.. 3-46
Reserved Words.. 3-47
Querying Escape Characters ... 3-48

Querying with Stopwords... 3-49
Stopwords by Themselves... 3-49
Stopwords with Non-stopwords.. 3-49
Stopwords with Operators .. 3-50

Querying with Special Characters .. 3-51
Querying with Punctuation and Continuation Characters .. 3-52
Querying with Printjoins and Skipjoins.. 3-52
Querying with Numjoins and Numgroups.. 3-53
Querying with Startjoin and Endjoin Characters .. 3-55

4 Theme Queries

Understanding Theme Queries.. 4-2
Theme Indexing Concepts... 4-3
Theme Querying ... 4-5

Constructing Theme Queries ... 4-7
Using Operators.. 4-7
Phrasing Theme Queries ... 4-9

Refining Theme Queries ... 4-10
Restricting a Query... 4-10
Expanding a Query .. 4-11

Theme Query Examples... 4-13
Two-Step Query.. 4-13
One-Step Query ... 4-13

5 Query Expression Feedback

The Feedback Process .. 5-2
Understanding ConText Parse Trees ... 5-4

Operator Precedence .. 5-5
Query Expansions .. 5-6

viii

Theme Query Normalization .. 5-8
Query Optimization ... 5-9
Stopword Rewrite ... 5-10
Decompounding of Composite Word Tokens.. 5-11

Understanding the Feedback Table ... 5-12
Table Structure .. 5-12
Example.. 5-15

Obtaining Query Expression Feedback .. 5-16
Creating the Feedback Table ... 5-16
Executing CTX_QUERY.FEEDBACK .. 5-16
Retrieving Data from Feedback Table ... 5-16
Constructing the Parse Tree .. 5-17

6 Document Presentation: Highlighting

Overview of Document Presentation ... 6-2
Using CTX_QUERY.HIGHLIGHT... 6-3

Output ... 6-4
Highlighting Mark-up.. 6-5

Creating Highlighted Text ... 6-6
Allocating Result Tables ... 6-6
Issuing a Query ... 6-7
Calling CTX_QUERY.HIGHLIGHT... 6-7
Presenting HIGHLIGHT Output.. 6-8
Release Highlight Result Tables ... 6-10

7 ConText Linguistics

Overview of ConText Linguistics .. 7-2
What is a Theme? ... 7-4

Theme Weight ... 7-4
Text Input .. 7-5
Theme Extraction System .. 7-6

Knowledge Base.. 7-6
Parsing Engine .. 7-11

ix

Linguistic Settings .. 7-13
Case-Conversion Settings.. 7-13
Gist and Theme Summary Settings.. 7-13
Enabling Linguistic Settings.. 7-14

8 Using CTX_LING

Overview .. 8-2
Linguistic Personality .. 8-4
Services Queue.. 8-4

List of Themes .. 8-5
Single Themes ... 8-5
Theme Hierarchies .. 8-5

Theme Summaries ... 8-6
Gists... 8-7
Generating CTX_LING Output ... 8-8

Creating Output Tables ... 8-8
Generating Lists of Themes, Theme Summaries, and Gists ... 8-10

Combining Queries with CTX_LING Output .. 8-14
Implementation... 8-14

Enabling Linguistic Settings .. 8-16
Monitoring the Services Queue ... 8-17

Monitoring the Status of Requests ... 8-17
Removing Pending Requests .. 8-18
Clearing Requests with Errors.. 8-19

Specifying Completion and Error Procedures .. 8-20
Logging Parse Information ... 8-22

9 SQL Functions

Query Functions.. 9-2
Prerequisites .. 9-2
CONTAINS ... 9-3
SCORE.. 9-5

SELECT Statement.. 9-6

x

10 PL/SQL Packages

Developing with ConText PL/SQL Packages .. 10-2
CTX_QUERY: Query and Highlighting .. 10-3

CLOSE_CON ... 10-4
CONTAINS.. 10-5
COUNT_HITS ... 10-8
COUNT_LAST .. 10-10
FEEDBACK.. 10-12
FETCH_HIT... 10-14
GETTAB ... 10-16
HIGHLIGHT.. 10-18
OPEN_CON ... 10-22
PKDECODE... 10-24
PKENCODE... 10-25
PURGE_SQE.. 10-26
REFRESH_SQE.. 10-27
RELTAB.. 10-28
REMOVE_SQE .. 10-29
STORE_SQE... 10-30

CTX_LING: Linguistics ... 10-32
CANCEL .. 10-33
GET_COMPLETION_CALLBACK.. 10-34
GET_ERROR_CALLBACK.. 10-35
GET_FULL_THEMES... 10-36
GET_LOG_PARSE .. 10-37
GET_SETTINGS_LABEL ... 10-38
REQUEST_GIST .. 10-39
REQUEST_THEMES .. 10-42
SET_COMPLETION_CALLBACK... 10-44
SET_ERROR_CALLBACK... 10-45
SET_FULL_THEMES ... 10-46
SET_LOG_PARSE... 10-47
SET_SETTINGS_LABEL .. 10-48
SUBMIT .. 10-50

xi

CTX_SVC: Services Queue Administration .. 10-52
CANCEL .. 10-53
CANCEL_ALL .. 10-54
CANCEL_USER.. 10-55
CLEAR_ALL_ERRORS.. 10-56
CLEAR_ERROR .. 10-57
CLEAR_INDEX_ERRORS ... 10-58
CLEAR_LING_ERRORS.. 10-59
REQUEST_STATUS ... 10-60

A Result Tables

Hitlist Table Structure.. A-2
Composite Textkey Hitlist Tables .. A-2

Highlight Table Structures ... A-3
HIGHTAB Highlight Table ... A-3
MUTAB Highlight Table ... A-3
ICFTAB Highlight Table.. A-4

Display Table Structures ... A-5
NOFILTAB Display Table ... A-5
PLAINTAB Display Table ... A-5

CTX_LING Output Table Structures .. A-6
Theme Table .. A-6
Gist Table ... A-7

B Scoring Algorithm

Scoring Algorithm for Text Queries ... B-2
Example.. B-2
DML and Scoring.. B-3

C SQL*Plus Sample Code

Setting Up the ConText Sample Applications .. C-2
Overview of CTXPLUS .. C-3

Concepts... C-3
Using CTXPLUS.. C-4

xii

CTXPLUS Examples ... C-5
Overview of CTXLING .. C-7

Concepts ... C-7
Using CTXLING.. C-7
CTXLING Examples ... C-9

D Stopword Transformations

Understanding Stopword Transformations .. D-2
Word Transformations... D-3
AND Transformations .. D-3
OR Transformations .. D-4
Accumulate Transformations ... D-4
MINUS Transformations .. D-5
NOT Transformations .. D-5
Equivalence Transformations ... D-6
NEAR Transformations .. D-6
Weight Transformations ... D-7
Threshold Transformations .. D-7
Max Transformations ... D-7
First/Next Transformations ... D-7
WITHIN Transformations .. D-7

E Knowledge Catalog - Category Hierarchy

Branch 1: science and technology ... E-2
Branch 2: business and economics.. E-8
Branch 3: government and military .. E-9
Branch 4: social environment... E-10
Branch 5: geography .. E-13
Branch 6: abstract ideas and concepts .. E-16

Index

xiii

Send Us Your Comments

Oracle8 ConText Cartridge Application Developer’s Guide, Release 2.4

Part No. A63821-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

■ FAX - (650) 506-7200. Attn: Oracle8 ConText Cartridge Documentation
■ Postal service:

Oracle Corporation
Oracle8 ConText Cartridge Documentation
500 Oracle Parkway
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle World Wide Support Center.

xiv

xv

Preface

This manual explains the SQL*Plus and PL/SQL tools you use to issue text and
theme queries with Oracle8 ConText Cartridge and how to enable users to view
queried documents. It also explains how to generate document summaries using
the linguistic capabilities of Oracle8 ConText Cartridge.

xvi

Audience
This document is intended for an application designer, application programmer, or
systems analyst responsible for designing and developing text query applications
using the facilities provided by ConText.

It is also applicable to the user responsible for managing text in a ConText
application. Such users could also include DBAs or system administrators.

Prerequisites
This document assumes that you have experience with the Oracle relational
database management system, SQL, SQL*Plus, and PL/SQL. See the documentation
provided with your hardware and software for additional information.

If you are unfamiliar with the Oracle RDBMS and related tools, read Chapter 1, "A
Technical Introduction to the Oracle Server", in the Oracle8 Concepts Manual. The
chapter is a comprehensive introduction to the concepts and terminology used
throughout Oracle documentation.

Related Publications
For more information about ConText, see:

■ Oracle8 ConText Cartridge QuickStart

■ Oracle8 ConText Cartridge Administrator’s Guide.

■ Oracle8 Error Messages.

■ Oracle8 ConText Cartridge Workbench User’s Guide.

For more information about Oracle8, see:

■ Oracle8 Concepts.

■ Oracle8 Administrator’s Guide.

■ Oracle8 Utilities

■ Oracle8 Tuning

■ Oracle8 SQL Reference.

■ Oracle8 Application Developer’s Guide.

xvii

For more information about PL/SQL, see:

■ PL/SQL User’s Guide and Reference.

How To Use This Manual
This manual is designed to be used by application developers to produce text
retrieval applications for end users.

Specific tasks in the application design process depend on the type and complexity
of the application being developed, but in general, the development process
consists of six tasks:

■ Analyzing user requirements

■ Designing the application

■ Developing a ConText application

■ Estimating data storage requirements for the application

■ Creating the ConText system environment with the database administrator

■ Tuning the application’s performance

This book only deals with developing a ConText application and tuning the
application’s performance. All the information necessary to develop and maintain
ConText applications is covered in the following chapters.

The Oracle8 ConText Cartridge Administrator’s Guide contains information about
creating and maintaining the system environment to support ConText applications.
The administrator’s guide and the application developer’s guide are designed to be
used together.

How This Manual Is Organized

Chapter 1: Building a Query Application
This chapter describes a typical ConText query application and the ConText features
you can use to build the application.

Chapter 2: Query Methods
This chapter describes and compares the different query methods.

xviii

Chapter 3: Understanding Query Expressions
This chapter describes the various operators you can use to build query expressions.

Chapter 4: Theme Queries
This chapter describes how to issue theme queries.

Chapter 5: Query Expression Feedback
This chapter describes query expression feedback.

Chapter 6: Document Presentation: Highlighting
This chapter describes how to create highlighted output from a text or theme query
and how to present highlighted documents to users.

Chapter 7: ConText Linguistics
This chapter describes ConText’s theme extraction system.

Chapter 8: Using CTX_LING
This chapter describes how to create linguistic output, including managing the
service queue and combining theme/text queries with linguistic output.

Chapter 9: SQL Functions
This reference chapter describes the SQL functions you can use with ConText.

Chapter 10: PL/SQL Packages
This reference chapter describes the procedures and functions included in the
PL/SQL packages shipped with ConText.

Appendix A, "Result Tables"
This appendix describes the schema for the result tables used for issuing text and
theme queries, highlighting text, and creating linguistic output.

Appendix B, "Scoring Algorithm"
This appendix describes ConText’s scoring algorithm for text queries.

Appendix C, "SQL*Plus Sample Code"
This appendix contains explanations of the demonstration applications distributed
with ConText.

xix

Appendix D, "Stopword Transformations"
This appendix lists all ConText stopword transformations.

Appendix E, "Knowledge Catalog - Category Hierarchy"
This appendix provides a list of the concepts in the knowledge catalog that serve as
grouping categories.

Type Conventions
This book adheres to the following type conventions:

Customer Support
You can reach Oracle Worldwide Customer Support 24 hours a day.

In the USA: 1.415.506.1500

In Europe: + 44.344.860.160

Please be prepared to supply the following information:

■ your CSI number

This helps Oracle Corporation track problems for each customer.

■ the release numbers of the Oracle Server and associated products

■ the operating system name and version number

■ details of error numbers and descriptions

Write down the exact errors.

■ a description of the problem

Type Meaning

UPPERCASE Uppercase letters indicate Oracle commands, standard database
objects and constants, and standard Oracle PL/SQL procedures.

lowercase italics Italics indicate variable names, PL/SQL parameter names, table
names, view names and the names of example PL/SQL
procedures.

monospace Monospace type indicate example SQL*Plus commands and
example PL/SQL code. Type in the command or code exactly as
it appears.

xx

■ a description of the changes made to the system

Your Comments Are Welcome
Please use the "Send Us Your Comments" form at the front of this document to
convey your comments to us. You can also contact us at:

Documentation Manager
Oracle8 ConText Cartridge
Oracle Corporation
500 Oracle Parkway
Redwood Shores, California 94065

Building a Query Application 1-1

1
Building a Query Application

This chapter introduces the ConText features you can use to build a query
application. It describes a typical query application then discusses the options
ConText provides at each step:

■ Overview

■ Prerequisites

■ Entering the Query

■ Rewriting the Query Expression

■ Presenting Expression Feedback

■ Executing the Query

■ Presenting the Hitlist

■ Presenting the Document

Overview

1-2 Oracle8 ConText Cartridge Application Developer’s Guide

Overview

Figure 1–1

Figure 1–1 illustrates a basic design of a ConText query application. It shows the
different modules required to let the user enter the query and hence view the

Enter Query

Re-write Query
Expression

Present Expression
Feedback

Present Expression
Feedback

Execute Query

Present Hitlist

Select from Hitlist

Refine Query
Expression

Present Document Typical Step

Optional Step

Application
Action

User Action

Overview

Building a Query Application 1-3

results. Each module represents a step in the querying process, where rectangular
boxes indicate application tasks and round boxes indicate user-tasks.

As shown, the process of issuing a query can be modeled according to the following
steps:

■ user enters query

■ application re-writes query (optional)

■ application presents expression feedback (optional)

■ user refines query expression (optional)

■ application executes query

■ application presents hitlist

■ user selects from hitlist

■ application presents document

Prerequisites

1-4 Oracle8 ConText Cartridge Application Developer’s Guide

Prerequisites
Generally, query applications assume the following tasks have been performed:

■ text is loaded in the database

■ text is indexed

Loading Text
Documents must be loaded in a text column before you can index the document set
and issue queries. You can store documents directly in the text column or you can
store a pointer to an external file or URL.

Creating an Index
How you index your document set affects how the user of an application can issue
queries. With ConText, you can create the following basic types of indexes for
documents stored in a text column:

■ text index

■ theme index

Having a text index allows you to issue text queries against the document set,
which is a search on words or phrases.

Having a theme index allows you to issue theme queries against a document set,
which is a search on the main ideas in a document.

You can create either type of index by specifying either a text or theme lexer when
you create the index preference.

Text Indexing Options
The options you can give the user for issuing text queries are determined by how
you create the text index. Table 1–1 describes the more frequently used options and
which index preference to set to enable each option. The Reference column in

See Also: For more information about loading and storing text,
see Oracle8 Context Cartridge Administrator’s Guide.

See Also: For more information about creating preferences and
text and theme indexes, see Oracle8 Context Cartridge Administrator’s
Guide.

Prerequisites

Building a Query Application 1-5

Table 1–1 gives the name of the section in this book that describes the query feature
in detail.

Once an index is created with these options, the options cannot be changed unless a
new index is created.

Theme Indexing Options
The options discussed in the previous section entitled "Text Indexing Options" are
not supported for theme indexes. ConText has no options for creating theme
indexes.

Table 1–1

Text Query Option Description Index Preference Reference

Stemming Enables searches for words with
same root as specified term.

Wordlist "Stem Expansions" in
Chapter 3.

Soundex Enables searches for words that
sound like specified term.

Wordlist "Soundex Expansions" in
Chapter 3

Fuzzy Matching Enables searches for words that
have similar spelling to specified
term.

Wordlist "Fuzzy Expansions" in
Chapter 3

Section Searching Enables searches for terms within
pre-defined document sections.

Wordlist "WITHIN Operator" in
Chapter 3

Base-letter Matching Queries match words with or
without diacritical marks such as
tildes, accents, and umlauts.

For example in Spanish with a
base-letter index, a query of
mañana matches manana and
mañana in the index.

Lexer "Base-Letter Queries" in
Chapter 3

Case Sensitivity Enables case-sensitive searches. Lexer "Case-Sensitive Queries"
in Chapter 3

Composite word query

(German and Dutch
only)

Enables searching on words that
contain specified term as
sub-composite.

Lexer "Composite Word Queries
(German and Dutch only)"
in Chapter 3

See Also: For more information about creating index preferences,
see Oracle8 Context Cartridge Administrator’s Guide.

Entering the Query

1-6 Oracle8 ConText Cartridge Application Developer’s Guide

Entering the Query
This section provides an overview of the options you can build into your
application for user queries.

Text Queries
In ConText, a text query is a search for a word or phrase in an indexed text column.
ConText returns the documents (or rows) that satisfy the query along with a score
that says how relevant the document is to the entered query.

For example, a text query on the term unify returns all documents that contain the
word unify.

The simplest text query is one in which the application user enters a single word or
phrase and ConText returns all documents that contain the word or phrase. More
sophisticated queries can include operators to do logical searches, section searches,
and wildcard searches. All of ConText’s operators are available with text queries.

You can use the standard query methods to perform text queries, namely one-step,
two-step, and in-memory.

Theme Queries
In addition to querying English-language documents by words (text query), you
can query these documents by theme, or by their main concepts.

Theme queries work similarly to text querying in that you must create an index
(theme) for the documents before you can query. Theme queries differ from text
queries in that you need not provide exact wording for searches. ConText interprets
your query conceptually according to its view of the world and returns an
appropriate document hitlist based on theme, along with a measure of how relevant
each document is to the query.

For example, a theme query on unify returns documents about the concept of
unification or unifying.

You can use the standard query methods to perform theme queries, namely
one-step, two-step, and in-memory. In a theme query, you can use some of the
operators you use in regular text queries.

See Also: For more information about theme queries, see
Chapter 4, "Theme Queries".

Entering the Query

Building a Query Application 1-7

Using Operators
Operators in ConText enable you to issue a wide variety of queries including logical
AND/OR searches, NOT searches, near searches, document section searches, term
weighted searches, and expanded term searches.

You can embed these operators within your application or pass them on to the user.
When you embed them within the application, you allow users to enter only query
terms. The application can then intelligently process entered terms by combining
operators to get different results.

You can also pass on the functionality of operators to users. You can do this by
allowing users to enter ConText operators directly or with an interface of pull-down
menus and radio buttons. Allowing users to enter operators gives users the ability
to tailor their queries.

Case-Sensitive Searching
ConText supports case-sensitivity in both text and theme queries.S

Text Queries
By default, ConText creates text indexes without being sensitive to the case of
tokens in the documents. Because of this, text queries are case-insensitive. That is, a
query on United returns documents that contain United and UNITED and united.

However, you can make text queries case-sensitive by using a case-sensitive lexer
when you or your ConText administrator indexes the document set. When you
create a case-sensitive index, a query on United is different from united, which is
different from UNITED.

See Also: Some operators can only work if the index is enabled
for them. For a complete list of these operators, see the previous
section entitled "Text Indexing Options".

For more information about ConText operators, Chapter 3,
"Understanding Query Expressions".

See Also: For more information about issuing case-sensitive text
queries, see "Case-Sensitive Queries" in Chapter 3, "Understanding
Query Expressions".

For more information about creating case-sensitive text indexes for
columns, see Oracle8 ConText Cartridge Administrator’s Guide.

Entering the Query

1-8 Oracle8 ConText Cartridge Application Developer’s Guide

Theme Queries
Theme queries are case-sensitive. This means that a query on Turkey returns hits on
Turkey the country and not turkey the bird.

Even though ConText theme queries are case-sensitive, ConText tolerates poorly
formatted input for known themes.

For example, entering microsoft or microSoft returns documents that include the
theme of Microsoft, a known company. Likewise, entering Currency Rates returns
documents that include a theme of currency rates, a standard classification in
business and economics.

Document Section Searching
Section searching enables users to narrow text queries down to sections within
documents. Sections can be of the following:

■ sentence or paragraphs

■ user-defined sections

Sentence or paragraph searching enables users to search for combination of words
within sentences or paragraphs.

Searching within user-defined sections enables users to search for a term within
sections they have defined prior to creating a text index. To do this type of section
searching, you or your ConText administrator must define sections by specifying
what tags delimit the section.

User-defined section searching is useful when your documents have internal
structure, such as HTML documents.

Note: For poorly formatted input, ConText always attempts to
match the entered theme with themes in the index. For example if
you enter microsoft, ConText looks up microsoft and Microsoft in the
index. Likewise, if you enter Currency Rates as your theme, ConText
looks up Currency Rates and currency rates in the index.

Note: Section searching is supported for text queries only.

See Also: For more information about section searching, see the
"WITHIN Operator" section in Chapter 3.

Entering the Query

Building a Query Application 1-9

Structured Field Searching
For both text and theme queries, your application interface can give the user the
options of querying on structured fields such as date, document author etc.

You can issue structured searches with one-step, two-step and in-memory queries
and subsequently present the structured information related to each document in
the hitlist.

See Also: For more information about issuing structured queries,
see "Using Two-Step Queries" and "Using In-Memory Queries" in
Chapter 2.

Rewriting the Query Expression

1-10 Oracle8 ConText Cartridge Application Developer’s Guide

Rewriting the Query Expression
You can design your query interface to allow users to enter ConText operators,
either by allowing the user to enter operators directly or by using a more
sophisticated interface in which the user can choose operators from a pull-down
menu or radio button. In either case, your application can refine the query
expression further by adding operators or adding or removing special words or
symbols to achieve different results.

See Also: For more information about ConText operators,
Chapter 3, "Understanding Query Expressions".

Presenting Expression Feedback

Building a Query Application 1-11

Presenting Expression Feedback
After the user enters the query, you can either present expression feedback or
execute the query. See Figure 1–1.

Expression feedback allows the user to view how ConText executes the query.
Feedback is useful for understanding how ConText expands theme queries as well
as how it expands stem, fuzzy, thesaurus, soundex, or wildcard text queries. By
providing this additional information, query expression feedback helps users refine
queries that might return an unwanted result set.

If the user requires feedback, the application presents the expression feedback, and
gives the user the option of re-entering a refined query. See Figure 1–1

Your application can also present expression feedback after executing the query
when you present the hitlist. See Figure 1–1

See Also: For more information about query expression feedback,
see Chapter 5, "Query Expression Feedback".

Executing the Query

1-12 Oracle8 ConText Cartridge Application Developer’s Guide

Executing the Query
In a PL/SQL application, you can issue a two-step query or an in-memory query,
depending on your requirements. You can also count the number of hits in a query.

A third type of query, the one-step query, is discussed in this section for
completeness, even though one-step queries cannot be used in PL/SQL
applications.

Two-step Queries
Two-step queries use the PL/SQL CONTAINS procedure in the first step to store
the results in a specified result table. The second step uses a SELECT statement to
select the results from the result table. In the SELECT statement, you can join the
result table with the original text table to return more detailed document
information.

Because two-step queries use tables to store the hits, they are best suited for
applications that require all the results to a query.

In-memory Queries
In-memory queries use a cursor to return query results, rather than the result tables
used in two-step and one-step queries.

In an in-memory query, you open a cursor and issue the query. ConText writes the
results of the query to the cursor. You fetch the results one row at a time, then close
the cursor. Results can be returned unordered or sorted by score.

Because in-memory queries store results in memory, they generally return hits faster
than two-step queries for large hitlists, since you need not retrieve all hits at a time.
As such, in-memory queries are best suited for applications that might return large
hitlist but where only a small portion of hits are required at a time.

See Also: For more information about using two-step queries, see
"Using Two-Step Queries" in Chapter 2.

See Also: For more information about using in-memory queries,
see "Using In-Memory Queries" in Chapter 2.

Executing the Query

Building a Query Application 1-13

One-step Queries
In a one-step query, you create a single SQL SELECT statement with a WHERE...
CONTAINS clause to search for relevant documents. ConText returns the rows and
columns of the text table that satisfy the query.

Because PL/SQL does not recognize the CONTAINS function in the SELECT
statement, one-step queries are limited to interactive or ad-hoc queries in SQL*Plus.

Counting Query Hits
In addition to fully executing two-step, one-step, and in-memory queries, you can
count the number of hits in a two-step or in-memory query before or after you issue
the query. Counting query hits helps to analyze queries to ensure large and
unmanageable hitlists are not returned.

See Also: For more information about using one-step queries, see
"Using One-Step Queries" in Chapter 2.

See Also: For more information about counting query hits, see
"Counting Query Hits" in Chapter 2.

Presenting the Hitlist

1-14 Oracle8 ConText Cartridge Application Developer’s Guide

Presenting the Hitlist
Your application presents a hitlist in one or more of the following ways:

■ show structured fields related to document, such as title or author

■ show documents ordered by score

■ show document hit count

■ show query expression feedback

■ show document Gist (English only)

Presenting Structured Fields
Structured columns related to the text column can help identify documents. When
you present the hitlist, you can show related columns such as document titles or
author or any other combination of fields that identify the document.

In a two-step query, you can obtain the structured fields by joining the result table
with the base table.

In an in-memory query, you must specify what structured column or columns to
fetch into the cursor along with the textkey.

In a one-step query, you specify the name of structured column or columns in the
SELECT statement.

Presenting Score
When you issue either a text query or theme query, ConText returns the hitlist of
documents that satisfy the query with a relevance score for each document
returned. You can present these scores when you return the hitlist to the user.

The score for each document is between one and one hundred and indicates how
relevant the document is to the query entered; the higher the score, the more
relevant the document. You can use scores to order the hitlist to show the most
relevant documents first.

In two-step queries, ConText calculates the score when you call the CTX_
QUERY.CONTAINS procedure. This procedure stores the score in the result table.

In in-memory queries, ConText returns the score for a hit as an out parameter with
the CTX_QUERY.FETCH_HIT function.

In one-step queries, ConText calculates scores when you use the CONTAINS
function. You obtain scores using the SCORE function.

Presenting the Hitlist

Building a Query Application 1-15

Presenting Document Hit Count
You present the number of hits the query returned alongside the hitlist, using CTX_
QUERY.COUNT_LAST, which returns the number of hits in the last two-step or
in-memory query.

However, when the number is all that is required, you can use CTX_
QUERY.COUNT_HITS, which is more efficient than executing the two-step or
in-memory query and then counting the hits.

Presenting Expression Feedback in Hitlist
You can accompany a query hitlist with expression feedback. Using feedback in this
way gives the user an opportunity to see the expanded query alongside the results
of the query.

When you present your hitlist with expression feedback, you can give the user the
option of selecting a document, or of refining and then re-entering another query if
the user is not satisfied with the results in the hitlist.

Presenting Gists (English only)
If presenting a hitlist is not enough information, you can present a Gist for every
document in the hitlist. A Gist is essentially a document summary. However, the
generation of a Gist requires an extra processing step and is available for English
only.

See Also: For more information about manipulating a result set,
see "Result-Set Operators" in Chapter 3.

For more information about how ConText scores text queries,
Appendix B, "Scoring Algorithm".

For more information about scoring for theme queries, see "Theme
Querying" in Chapter 4.

See Also: For more information about query expression feedback,
see Chapter 5, "Query Expression Feedback".

See Also: For more information about generating Gists and other
CTX_LING output, see Chapter 8, "Using CTX_LING".

Presenting the Document

1-16 Oracle8 ConText Cartridge Application Developer’s Guide

Presenting the Document
When your application obtains the results of a query, it can let the user select a
document from the hitlist and then present one or more of the following ConText
document services:

■ document with or without query terms highlighted (text and theme queries)

■ document Gist, theme summary, or list of themes (English only)

Presenting Highlighted Documents

Figure 1–2

ConText enables you to present documents to the user with query terms highlighted
for text queries, or with the relevant paragraphs highlighted for theme queries. You
can do highlighting in PL/SQL as well as with the ConText viewers for Windows
32-bit and world wide web applications.

Document

Highlighting in ConText Viewers
(32-bit Windows and World Wide Web)

WYSIWYG
Highlighting

Plain Text
Highlighting

Original
Document

Plain Text
Highlighting

Highlighting in PL/SQL
(CTX_QUERY)

Plain Text
(Filtered)

Document

(All other supported
document formats)

(Microsoft Word, V6 or lower;
WordPerfect, V6 or lower)

Presenting the Document

Building a Query Application 1-17

HIghlighting in PL/SQL
With PL/SQL, you create the viewable output by calling the highlighting
procedure, CTX_QUERY.HIGHLIGHT, usually after you issue the query. You can
use this procedure to highlight documents stored as plain text or documents stored
in formats such as Microsoft Word.

With the highlighting procedure, you can obtain the document plain-text, document
plain-text with highlights, or the document in its native format without highlights.
This procedure outputs to result tables, which you use to present the document.The
highlighting procedure works for text and theme queries (See Figure 1–2).

Highlighting in ConText Viewers
Context provides a custom control that you can embed programmatically in 32-bit
Windows client-side applications. This custom control allows users to query
documents and then view them in their native formats (WYSIWYG), such as
Microsoft Word, with query terms or paragraphs highlighted. See Figure 1–2

You can use the ConText custom control to view documents in the following
server-side supported formats:

■ Microsoft Word for Windows 2, 6.x

■ WordPerfect for Windows 5.x, 6.x

■ WordPerfect for DOS 5.0, 5.1, 6.0

For world wide web applications that use the Oracle Web Application server, you
can present documents in a Windows 32-bit environment using one of the
following:

■ ConText viewer plug-in with the Netscape browser

■ ConText custom control with the Microsoft Internet Explorer.

Both these configurations require that the ConText viewer cartridge be installed on
the Oracle Web Application Server.

See Also: For more information about presenting highlighted
documents, see Chapter 6, "Document Presentation: Highlighting".

See Also: For more information about highlighting with ConText
viewers, see the Oracle8 ConText Cartridge Workbench User’s Guide.

Presenting the Document

1-18 Oracle8 ConText Cartridge Application Developer’s Guide

Presenting CTX_LING Output (English Only)

Figure 1–3

For English-language documents, the CTX_LING PL/SQL package enables you to
create different document summaries and list of themes, which you create on a
per-document basis. These summaries and lists of themes are shorter than the
documents themselves and can help application users quickly view the essential
content of documents.

ConText can generate the following forms of CTX_LING output on a per document
basis:

Output Type Description

List of Themes A list of the main concepts of a document.

Gist Paragraph or paragraphs in a document that best represent what the
document is about as a whole. You can also generate Gists at the
sentence level.

Theme and Gist Generation
(CTX_LING)

Document

Theme
Summaries

GistList of
Themes

Presenting the Document

Building a Query Application 1-19

You obtain linguistic output by submitting a linguistic request using the CTX_LING
PL/SQL package.

Theme Summary Paragraph or paragraphs in a document that best represent a given
theme in the document. You can also generate theme summaries at the
sentence-level.

See Also: For more information about generating CTX_LING
output, see Chapter 8, "Using CTX_LING".

Output Type Description

Presenting the Document

1-20 Oracle8 ConText Cartridge Application Developer’s Guide

Query Methods 2-1

2
Query Methods

This chapter describes the different query methods you can use in your ConText
application. You can use these methods with text queries and theme queries. The
following topics are covered:

■ Selecting a Query Method

■ Using Two-Step Queries

■ Using One-Step Queries

■ Using In-Memory Queries

■ Counting Query Hits

Selecting a Query Method

2-2 Oracle8 ConText Cartridge Application Developer’s Guide

Selecting a Query Method
Each of the query methods (two-step, one-step, and in-memory) provide
advantages and disadvantages that you must consider when developing an
application. The following table briefly describes each method and illustrates the
various advantages and disadvantages to using each:

Query
Method Use Advantage Disadvantage

One-step Used in SQL*Plus. Best
suited for interactive
queries.

■ No pre-allocation of result
tables

■ Uses standard SQL
statements

■ Uses table and column
names

■ Query results returned in a
single step

■ Can retrieve all hits at once

■ Generally slower than two-step
or in-memory queries

■ No access to result tables

■ Cannot use in PL/SQL
applications

Two-step Two-step queries are best
suited for PL/SQL-based
applications that require
all the results to a query.

■ Result tables can be
manipulated

■ Generally faster than
one-step queries,
especially for mixed
queries

■ Can retrieve all hits at once

■ Query can include a
structured condition

■ Requires pre-allocation of
result tables

■ Uses policy names

■ Requires two steps to complete

■ Requires join to base text table
to return document details

In-memory In-memory queries are
best suited for
PL/SQL-based
applications that might
generate large hitlists, but
where only a small portion
of the hits are required at a
time, such as World Wide
Web applications.

■ No result tables

■ Faster response time than
two-step, since you need
not retrieve all hits in the
hitlist.

■ Large hitlists generally
faster than one-step and
two-step queries

■ Can specify the number of
hits returned

■ Query can include a
structured condition

■ Uses policy names

■ Cannot retrieve all hits at once

■ With small hitlists,
performance improvement
over two-step is negligible

■ Requires three steps, including
a loop, to complete

■ Max and first/next operators
are not supported

Using Two-Step Queries

Query Methods 2-3

Using Two-Step Queries
To perform a two-step query, do the following:

1. Execute CTX_QUERY.CONTAINS. The procedure selects all documents that
match the specified search criteria (query expression) and generates a score for
each document.

The document textkeys and scores are stored in the specified result table.

2. Use a SELECT statement on the result table (and the base text table, if desired)
to return the specified columns as a hitlist for the rows (documents) that satisfy
the query expression.

Two-Step Query Example
The following example shows a simple two-step query. The query uses a policy
named ARTICLES_POL to search the text column in a table named TEXTTAB for
any articles that contain the word petroleum. The CONTAINS procedure populates
the CTX_TEMP results table with the document primary keys that satisfy the query.

The select statement then joins the results in CTX_TEMP with TEXTAB to create a
list of document titles ordered by score.

Note that before the two-step query example is executed, the result table, CTX_
TEMP, is created:

create table CTX_TEMP(
 textkey varchar2(64),
 score number,
 conid number);

execute ctx_query.contains(’ARTICLE_POLICY’,’petroleum’,’CTX_TEMP’)

SELECT SCORE, title
FROM CTX_TEMP, TEXTTAB
WHERE texttab.PK=ctx_temp.textkey
ORDER BY SCORE DESC;

In this example, the articles with the highest scores appear first in the hitlist because
the results are sorted by score in descending order.

Note: You must create the result table before you execute the
CONTAINS procedure.

Using Two-Step Queries

2-4 Oracle8 ConText Cartridge Application Developer’s Guide

Scoring
In a two-step query, the score results generated by the CONTAINS procedure are
physically stored in a result table that has been allocated (either by the application
developer or dynamically within the application).

If you want to include scores in the hitlist returned by a two-step query, select the
from the result table in the second step of the query.

Hitlist Result Tables
In two-step queries, ConText uses result tables called hitlist tables to store
intermediate results. Intermediate results can be merged into the standard SQL
query through a join operation or a sub-query operation. The result tables must be
created before the query is performed. A hitlist table can be created manually or
allocated through the CTX_QUERY.GETTAB procedure.

Hitlist tables can be named anything; however, they must have the following
structure:

Note: The way in which ConText calculates a relevance score for
text queries is different than the way it calculates scores for theme
queries.

To learn more about how ConText calculates relevance score for text
queries, see Appendix B, "Scoring Algorithm".

To learn more about how ConText calculates relevance scores for
theme queries, see "Understanding Theme Queries" in Chapter 4,
"Theme Queries".

Column Name Column Datatype Purpose

TEXTKEY VARCHAR2(64) Stores textkeys of the rows satisfying the query

SCORE NUMBER Stores the score for each row (document)

CONID NUMBER Stores the CONTAINS ID when multiple
CONTAINS procedures utilize the same result
table

Using Two-Step Queries

Query Methods 2-5

Sharing a Hitlist Result Table
For applications that support multiple concurrent users, ConText allows for sharing
a single result table among all the users rather than allocating a separate table for
each user.

You control sharing of result tables with the sharelevel and the query_id parameters
of the CTX_QUERY.CONTAINS procedure. If the result table is shared, the
CONTAINS procedure must specify that sharelevel is equal to one and include a
unique query_id so that each result can be distinguished from others in the result
table.

When sharelevel is equal to 0:

■ the hitlist result table is intended for exclusive use

■ ConText truncates the hitlist result table at the start of each query

■ after the query is completed, CONID values are NULL

When sharelevel is equal to 1 then:

■ the hitlist result table is intended for shared use

■ specify a unique number for query_id in the CONTAINS procedure to identify
which entries belong to you in the hitlist result table. This number will be
assigned to the CONID for each row in the result table generated by the query.

■ before the query is run, you must delete existing rows in the result table with
the same query_id as that specified in the CONTAINS procedure

■ after the query is complete, the CONID column for all rows returned by the
query contains the query_id specified in the CONTAINS procedure

■ select your rows by specifying the appropriate CONID in the WHERE clause of
the SELECT statement

See Also: For more information about the structure of the hitlist
result tables, see "Hitlist Table Structure" in Appendix A, "Result
Tables".

Attention: ConText does not verify that these rules are observed.
You must control multiple concurrent usage by passing a different
query_id to the requestor if the result table is shared.

Using Two-Step Queries

2-6 Oracle8 ConText Cartridge Application Developer’s Guide

Composite Textkey Result Tables
When you execute a two-step query on a table with a composite textkey, the
number of textkey columns in the result table must match the composite keys count
in the document table. For example, if you want to execute a query on a document
table that has a two-column textkey, create a result table with the following schema:
TEXTKEY, TEXTKEY2, SCORE, CONID.

The following SQL*Plus examples show two different ways in which to create a
result table with a two-column composite textkey:

/* create composite textkey result table manually */
create table ctx_temp(
 textkey varchar2(64),
 textkey2 varchar2(64),
 score number,
 conid number);

/* allocate composite textkey result table with CTX_QUERY.GETTAB() */
exec ctx_query.gettab(CTX_QUERY.HITTAB, :hit_tab, 2)

SELECT from a Pre-defined View
There is an alternative to the second step of a two-step query. Rather than joining
the result table and text table in a SELECT statement, you can create a view to
perform the join. Then use a SELECT statement to select the appropriate rows from
that view. Use this approach when the development tool does not allow tables to be
joined in a SELECT statement (e.g. Oracle Forms).

For example:

CREATE VIEW SURVEY AS SELECT * FROM TEXTTAB, CTX_TEMP
WHERE PK = TEXTKEY;

SELECT SCORE, AUTHOR FROM SURVEY
ORDER BY SCORE DESC;

In this example:

See Also: For more information on the structure of composite
textkey result tables, see "Composite Textkey Hitlist Tables" in
Appendix A, "Result Tables".

Using Two-Step Queries

Query Methods 2-7

■ The CREATE VIEW statement joins the table of articles (TEXTTAB) and the
result table (CTX_TEMP). The PK column holds the primary key of the
documents.

■ The SELECT statement retrieves the scores from the view.

Composite Textkey Queries
To execute a two-step query on a table with a composite textkey, you first specify
the multiple textkey columns when you create the policy for the text column.

In addition, before the two-step query, create a result table in which the number of
TEXTKEY columns match the number of columns in the composite textkey in the
document table. You can create the result table manually or using the CTX_
QUERY.GETTAB procedure.

For example, to create a result table manually with a composite textkey consisting
of two columns, issue the following SQL statement:

create table CTX_TEMP2(
 textkey varchar2(64),
 textkey2 varchar2(64),
 score number,
 conid number);

In the two-step query, use the AND operator in the WHERE condition when you
join the result and text tables. For example:

exec ctx_query.contains(’ARTICLE2_POLICY’,’petroleum’,’CTX_TEMP2’)
SELECT SCORE, title
FROM CTX_TEMP2, TEXTTAB2
WHERE texttab2.PK=ctx_temp2.textkey AND
 texttab2.PK2=ctx_temp2.textkey2
ORDER BY SCORE DESC;

See Also: For more information about creating policies for
composite textkey tables, see Oracle8 ConText Cartridge
Administrator’s Guide.

See Also: For more information on the structure of composite
textkey result tables, see "Composite Textkey Hitlist Tables" in
Appendix A, "Result Tables".

Using Two-Step Queries

2-8 Oracle8 ConText Cartridge Application Developer’s Guide

Structured Queries
A structured query is a query based on a text column and a structured data column.
The structured data column is usually in the same table as the text column. For
example, you might use a structured query to retrieve documents on a certain
subject that were written after a certain date, where the document content is in a
text column and date information is in a structured data column.

The CTX_QUERY.CONTAINS procedure provides an additional parameter, struct_
query, for specifying the WHERE condition in a structured query. For example, to
select all news articles that contain the word Oracle that were written on or after
October 1st, 1996, you might use:

exec ctx_query.contains(’news_text’,’Oracle’,’res_tab’,
struct_query => ’issue_date >= (’’1-OCT-1996’’)’)

Executing a structured query with the struct_query parameter improves
performance over processing a query on a text column and then refining the hitlist
by applying a where condition against a structured column. This is especially so
when the selectivity of the WHERE condition is high, because when you use the
structured query parameter, the ConText server executes the entire query without
first writing out a potentially large hitlist to be refined later by the Oracle server.

Note: Because the struct_query parameter expects a WHERE
condition, you can specify a subquery. This is useful when the
structured data column is in another table.

Note: If the user who includes a structured query in a two-step
query is not the owner of the table containing the structured and
text columns, the user must have SELECT privilege with GRANT
OPTION on the table. In addition, if the object being queried is a
view, the user must have SELECT privilege with GRANT OPTION
on the base table for the view. SELECT privilege with GRANT
OPTION can be granted to a user using the GRANT command in
SQL.

For more information, see Oracle8 SQL Reference.

Using Two-Step Queries

Query Methods 2-9

Querying Columns in Remote Databases
If a database link has been created for a remote database, two-step queries support
querying text columns in the remote database.

To perform a two-step query for a text column in a remote database, specify the
database link for the remote database in the CONTAINS procedure as part of the
policy for the column in the remote database.

In addition, the result table specified in CONTAINS must exist in the remote
database, and you, the user performing the query, must have the appropriate
privileges on the result table.

For example:

exec ctx_query.contains(’MY_POL@DB1’, ’petroleum’,’CTX_TEMP’)

In this example, MY_POL exists in a remote database identified by the database link
DB1. The CTX_TEMP result table exists in the same remote database.

Two-Step Queries in Parallel
The CONTAINS procedure provides an argument for processing two-step queries
in parallel. Processing queries in parallel helps balance the load between ConText
servers and might improve query performance.

When the CONTAINS procedure is called in a two-step query, the PARALLEL
argument can be used to specify the number of ConText servers, up to the total
number of ConText servers running with the Query personality, that are used to
process two-step queries and write the results to the result table.

For example:

exec ctx_query.contains(’ARTICLE_POLICY’,’petroleum’, ’CTX_TEMP’, parallel=>2)

Note: Database links are created using the CREATE DATABASE
LINK command in SQL.

For more information about creating database links, see Oracle8
SQL Reference.

See Also: For more information about remote queries and
distributed databases, see Oracle8 Concepts.

Using Two-Step Queries

2-10 Oracle8 ConText Cartridge Application Developer’s Guide

In this example, the text column in the ARTICLE_POLICY policy is queried for
documents that contain the term petroleum. The query is processed in parallel by
any two available ConText servers with the Query personality and the results are
written to CTX_TEMP.

Using One-Step Queries

Query Methods 2-11

Using One-Step Queries
The one-step query uses the CONTAINS and SCORE functions in a SQL statement
to execute a user’s request for documents. Rows and columns containing the text
and structured data for relevant documents are returned to the application program
as a record set like any other query in SQL.

One-Step Query Processing
After a user has submitted a one-step query, ConText performs the following tasks
to return the results to the user:

1. The query is placed on the text queue (query pipe). The Oracle server intercepts
the query and passes the text portion (CONTAINS) to ConText.

2. A ConText server with the Query personality picks up the text portion of the
query, processes the CONTAINS function(s) and stores the results in an internal
table created automatically for the user who submitted the query. This table
(and the corresponding intermediate results) are not available to the
application.

3. The ConText server rewrites the query as a standard SQL statement and passes
it back to Oracle.

4. The rewritten query is executed by an Oracle server and the results are returned
to the user.

5. The internal result table is truncated.

Note: Before one-step queries can be executed, the database in
which the text resides must be text enabled by setting the ConText
initialization parameter TEXT_ENABLE = TRUE. This can be done
by either setting it in the initsid.ora system initialization file, or by
using the ALTER SESSION command.

For more information about initialization parameters and the
initsid.ora file, see Oracle8 Administrator’s Guide.

For more information about using the ALTER SESSION command,
see Oracle8 SQL Reference.

Using One-Step Queries

2-12 Oracle8 ConText Cartridge Application Developer’s Guide

One-Step Query Example
The following SELECT statement shows a simple one-step query. This query
searches a text table called TEXTTAB for any articles that contain the word
petroleum.

SELECT *
FROM texttab
WHERE CONTAINS (text, ’petroleum’) > 0;

Because ConText functions execute within normal SQL statements, all of the
capabilities for selecting and querying normal structured data fields, as well as text,
are available. For instance, in the example, if the text table had a column listing the
date the article was published, the user could select articles based on that date as
well as the content of the text column.

Multiple CONTAINS
One-step queries support calling more than one CONTAINS functions in the
WHERE clause of a SELECT statement. Multiple CONTAINS can be used in a
one-step query to perform queries on multiple text columns located either in the
same table or in separate tables.

If multiple ConText servers with the Query personality are running and a one-step
query with multiple CONTAINS is executed, the query is processed in parallel.
Each CONTAINS function is evaluated by one of the available ConText servers and
the results from the servers are combined before they are returned to the user.

Note: The asterisk wildcard character (*) in specifies that the
record set returned by the query includes all the columns of the text
table for the selected documents, as well as the scores generated for
each document. If a query has more than one CONTAINS function,
the asterisk wildcard does not return scores for the multiple
CONTAINS and the SCORE function must be called explicitly. See
"Scoring" in this chapter for an example.

Using One-Step Queries

Query Methods 2-13

Scoring
In a one-step query, the document scores are generated by the CONTAINS function
and returned by the SCORE function.

Each CONTAINS function in a query produces a separate score. When there are
multiple CONTAINS functions, each CONTAINS function must have a label (a
number) so the SCORE value can be identified in other clauses of the SELECT
statement.

The SCORE function can be used in the SELECT statement to order a hitlist as
follows:

SELECT SCORE (10), title FROM DOCUMENTS
WHERE CONTAINS (TEXT, ’dog’, 10) > 0
ORDER BY SCORE(10) DESC;

Restrictions
The CONTAINS function can only appear in the WHERE clause of a SELECT
statement.

You cannot issue the CONTAINS function in the WHERE clause of an UPDATE,
INSERT or DELETE statement.

Suggestion: If your application makes use of multiple
CONTAINS in one-step queries, ensure that multiple ConText
servers with the Query personality are running to optimize query
performance. The number of ConText servers should be at least
equal to the number of CONTAINS you support in one-step queries
for the application.

Note: The way in which ConText calculates a relevance score for
text queries is different than the way it calculates scores for theme
queries.

To learn more about how ConText calculates relevance score for text
queries, see Appendix B, "Scoring Algorithm".

To learn more about how ConText calculates relevance scores for
theme queries, see "Understanding Theme Queries" in Chapter 4.

Using One-Step Queries

2-14 Oracle8 ConText Cartridge Application Developer’s Guide

Multiple Policies
For a text column that has more than one policy associated with it, you must specify
which policy to use in the CONTAINS clause using the pol_hint parameter.

You might create two policies for a column when you want to perform both theme
and text queries on the column, or in any application where you build two separate
indexes for a text column.

Composite Textkey Queries
You can perform one-step queries on text tables with composite textkeys. The
syntax for the query is the same as the syntax for a query on a table with a
single-column textkey.

Querying Columns in Remote Databases
If a database link has been created for a remote database, one-step queries support
querying text columns in the remote database.

To perform a one-step query for a text column in a remote database, the database
link for the remote database is specified as part of the table name in the SELECT
clause.

For example:

SELECT *
FROM texttab@db1
WHERE CONTAINS (text, ’petroleum’) > 0;

In this example, texttab exists in a remote database identified by the database link
DB1

See Also: For more information on issuing one-step queries with
multiple policies see "Theme Query Examples" in Chapter 4.

To learn more about using the pol_hint parameter, see the
specification for the SELECT Statement in Chapter 9.

Using One-Step Queries

Query Methods 2-15

Note: One-step queries do not support querying LONG and
LONG RAW columns in remote database tables.

For more information about creating database links, see Oracle8
SQL Reference.

For more information about remote queries and distributed
databases, see Oracle8 Concepts.

Using In-Memory Queries

2-16 Oracle8 ConText Cartridge Application Developer’s Guide

Using In-Memory Queries
In-memory queries use a buffer and a cursor to return query results. Returning
query results to a buffer in memory improves performance over writing and
reading query results to and from database result tables, which is typical of one-
and two-step queries.

To perform an in-memory query, do the following:

1. Call the CTX_QUERY.OPEN_CON function. OPEN_CON performs the
following operations:

■ opens a cursor to the query buffer

■ queries a text column using the specified policy and query expression

■ stores in the query buffer the document textkeys and scores for all the
documents that meet the search criteria. Hits are stored in order that they
are returned or ranked by score, depending on the argument specified for
OPEN_CON

In addition, you can specify that OPEN_CON return additional columns (up to
five) for the selected documents from the text table.

2. Call the CTX_QUERY.FETCH_HIT function for each textkey in the buffer to
fetch the desired query results, one hit at a time, until the desired number of
hits has been returned or no hits remain in the buffer.

3. Call the CTX_QUERY.CLOSE_CON procedure to release the cursor opened by
OPEN_CON.

Using In-Memory Queries

Query Methods 2-17

In-Memory Query Example
The following example shows a simple in-memory query. This query uses a policy
named ARTICLES_POL to search the text column in a table named TEXTTAB for
any articles that contain the word petroleum.

declare
 score char(5);
 pk char(5);
 curid number;
 title char(256);

begin
 dbms_output.enable(100000);
 curid := ctx_query.open_con(
 policy_name => ’ARTICLES_POL’,
 text_query => ’petroleum’,
 score_sorted => true,
 other_cols => ’title’);
 while (ctx_query.fetch_hit(curid, pk, score, title)>0)
 loop
 dbms_output.put_line(score||pk||substr(title,1,50));
 end loop;
 ctx_query.close_con(curid);
end;

In this example, the TITLE column from the table is also returned by OPEN_CON,
so a variable must be declared for TITLE.

DBMS_OUTPUT.ENABLE sets the buffer size to the maximum of 100000 bytes (1
Mb) to ensure that the buffer is large enough to hold the results of the query.

The SCORE_SORTED argument in OPEN_CON is set to true which causes OPEN_
CON to store the hits in the query buffer in descending order by score.

FETCH_HIT is called in a loop to fetch SCORE, PK, and TITLE for each hit until a
value less than zero is returned, indicating that the buffer is empty.

DBMS_OUTPUT.PUT_LINE prints the results to the standard output.

See Also: For more information about the DBMS_OUTPUT
PL/SQL package, see Oracle8 Application Developer’s Guide.

Using In-Memory Queries

2-18 Oracle8 ConText Cartridge Application Developer’s Guide

In-Memory Queries and Composite Textkeys
You can perform in-memory queries on text tables that have multiple column
textkeys. When you use CTX_QUERY.FETCH_HIT to retrieve each hit from the
buffer, the PK argument is returned as an encoded string. To access an individual
textkey, you must use CTX_QUERY.PKDECODE.

In-Memory Query Limitations
In-memory queries have the following limitation:

Max and First/Next Operators
You cannot use the max and first/next operators with in-memory queries.

Querying Columns in Remote Databases
If a database link has been created for a remote database, in-memory queries
support querying text columns in the remote database.

To perform an in-memory query for a text column in a remote database, the
database link for the remote database is specified in the CTX_QUERY.OPEN_CON
procedure as part of the policy for the column in the remote database.

In addition, the result table specified in CTX_QUERY.CONTAINS must exist in the
remote database and the user performing the query must have the appropriate
privileges on the result table.

Note: Database links are created using the CREATE DATABASE
LINK command in SQL.

For more information about creating database links, see Oracle8
SQL Reference.

See Also: For more information about remote queries and
distributed databases, see Oracle8 Concepts.

Counting Query Hits

Query Methods 2-19

Counting Query Hits
In addition to two-step, one-step, and in-memory queries, you can count the
number of hits in a two-step or in-memory query. Counting query hits helps to
audit queries to ensure large and unmanageable hitlists are not returned.

You can count the number of hits before or after you issue the query using one of
the following functions:

■ CTX_QUERY.COUNT_HITS

■ CTX_QUERY.COUNT_LAST

Using COUNT_HITS Before the Query
Before you issue a two-step or in-memory query, you can use the CTX_
QUERY.COUNT_HITS function to return the number of hits for the query without
generating scores for the hits or returning the textkeys for the documents.

COUNT_HITS can be called in two modes, estimate and exact. The results in
estimate mode may be inaccurate; however, the results are generally returned faster
than in exact mode.

Using COUNT_LAST After the Query
You can use the CTX.QUERY.COUNT_LAST function to obtain the number of hits
in a two-step query and in-memory query after issuing CONTAINS or OPEN_CON.

COUNT_LAST returns the number of hits obtained from the last call to CTX_
QUERY.CONTAINS or CTX_QUERY.OPEN_CON.

For two-step queries, the time it takes to issue the query with CONTAINS and then
to call COUNT_LAST is not as fast as calling COUNT_HITS before the query.
However, in the case where you need to process all hits in a two-step query, issuing
the query with CONTAINS and then calling COUNT_LAST is more efficient than
calling COUNT_HITS and then calling CONTAINS.

With in-memory queries, issuing OPEN_CON and then calling COUNT_LAST is
always a more efficient way to obtain an estimate of the query hits over calling
COUNT_HITS and then calling OPEN_CON, since COUNT_LAST returns a
number faster than COUNT_HITS.

See Also: CTX_QUERY.COUNT_HITS in Chapter 10.

See Also: CTX.QUERY.COUNT_LAST in Chapter 10.

Counting Query Hits

2-20 Oracle8 ConText Cartridge Application Developer’s Guide

Understanding Query Expressions 3-1

3
Understanding Query Expressions

This chapter explains how to use ConText to create query expressions to find
relevant text in documents. The topics covered in this chapter are:

■ About Query Expressions

■ Logical Operators

■ WITHIN Operator

■ Score-Changing Operators

■ Result-Set Operators

■ NEAR Operator

■ Expansion Operators

■ Thesaurus Operators

■ Wildcard Characters

■ Grouping Characters

■ Stored Query Expressions

■ PL/SQL in Query Expressions

■ Operator Precedence

■ Escaping Reserved Words and Characters

■ Querying with Stopwords

■ Querying with Special Characters

About Query Expressions

3-2 Oracle8 ConText Cartridge Application Developer’s Guide

About Query Expressions
A query expression defines the search criteria for retrieving documents using
ConText. A query expression consists of query terms (words and phrases) and other
components such as operators and special characters which allow users to specify
exactly which documents are retrieved by ConText.

A query expression can also call stored query expressions (SQEs) to return stored
query results or call PL/SQL functions to return values used in the query.

When a query is executed using any of the methods supported by ConText, one of
the arguments included in the query is a query expression. ConText then returns a
list of all the documents that satisfy the search criteria, as well as scores that
measure the relevance of the document to the search criteria

Query Terms
Query terms can consist of words and phrases. Query terms can also contain
stopwords.

Words and Phrases
The words in a query expression are the individual tokens on which the query
expression operators perform an action. If multiple words are contained in a query
expression, separated only by blank spaces (no operators), the string of words is
considered a phrase and the entire string is searched for during a query.

Stopwords
Stopwords are common words, such as and, the, of, and to, that are not considered
significant query terms by themselves because they occur so often in text. However,
stopwords can provide useful search information when combined with more
significant terms.

For example, a query for documents containing the phrase peanut butter and jelly
returns different results than a query for documents containing the terms peanut
butter and jelly.

When you define a policy for a column, ConText lets you identify a list of
stopwords. When stopwords are encountered in the documents in the column, they
are not included as indexed terms in the text index; however, they are recorded.

As a result, stopwords cannot be searched for explicitly in text queries, but can be
included as part of a phrase in a query expression.

About Query Expressions

Understanding Query Expressions 3-3

Stoplists can be created in any language supported by ConText. ConText provides a
default stoplist in English.

Query Expression Components
In addition to query terms, a query expression may contain any or all of the
following components:

Case-Sensitive Queries
ConText supports case-insensitivity for text queries and case-sensitivity for both text
and theme queries.

Text Queries
With text queries, you can issue case-sensitive and case-insensitive queries. The
ability to query in a case-sensitive way depends on the lexer preference used to
index the document set.

See Also: For more information about querying with stopwords,
see "Querying with Stopwords" in this chapter.

Note: Stopwords do not have an affect on the theme indexes
generated by ConText for your English-language documents.

Component Purpose

Operators Define the relationships between the terms in a query expression
and specify the output returned by the query. The different types
of operators are: logical, ranking, result set, proximity,
expansion, and thesaurus.

Wildcard Characters Expand query terms using pattern matching

Grouping Characters Group terms and operators in a query expression

Stored Query
Expressions (SQEs)

Return the results of a query that has been executed and the
results stored in an SQE table

PL/SQL Functions Execute a function and use the results in a query expression

About Query Expressions

3-4 Oracle8 ConText Cartridge Application Developer’s Guide

By default, ConText uses a lexer preference that is not case-sensitive when indexing
documents. Therefore, with a policy containing the default lexer preference, queries
are not case-sensitive. When queries are not case-sensitive, a query on United
returns the same hits as a query on united.

To issue case-sensitive text queries, you or your ConText administrator must first
index your document set using a policy with a case-sensitive lexer preference. Using
the same policy, you can issue case-sensitive queries. With case-sensitive queries, a
query on United is different from a query on united.

Case-sensitive querying helps to identify words that have different meaning when
capitalized. For example, to query on the proper noun Church (as someone’s name)
without getting the hits for the common noun church, you issue Church as your
query. ConText returns all appearances of Church.

Stopwords and Case-Sensitivity When you have case-sensitivity enabled, searches on
stopwords are also case-sensitive. Thus when you issue a case-sensitive query on a
phrase containing stopwords and non-stopwords, ConText searches for the phrase
containing the stopwords with the specified case.

For example, assuming the word on is a stopword and case-sensitivity is enabled, a
search on the phrase on the waterfront does not return hits for documents containing
the phrase On the waterfront.

Theme Queries
Theme queries are case-sensitive. For example, a query on Turkey produces hits on
Turkey the country and not Turkey the bird.

Note: Because a case-sensitive query on a term such as Church
returns all appearances of Church, the hitlist includes occurrences of
Church at the beginning of a sentence, whether it is the common or
proper noun.

See Also: For more information about case-sensitive theme
queries, see Chapter 4, "Theme Queries".

About Query Expressions

Understanding Query Expressions 3-5

Composite Word Queries (German and Dutch only)
German and Dutch language text contains composite words. With ConText, you can
create a composite index and subsequently issue queries to search for composite
words using a subcomposite word as your query term.

To query against a composite index, you specify the policy associated with the
composite index with two-step or in-memory queries. For one-step queries, you
must specify the policy if the text column has more than one index attached to it.

German Example
When using a German composite index, a query on the term Bahnhof (train station)
returns documents that contain Bahnhof or any word containing Bahnhof as a
sub-composite, such as Hauptbahnhof, Nordbahnhof, or Ostbahnhof.

However, a query on Bahnhof does not return documents that contain the single
words Bahn or Hof.

Dutch Example
When using a Dutch composite index, a query on the term kapitien returns
documents that contain kapitien or any word containing kapitien as a sub-composite,
such a scheepskapitien.

Highlighting Composite Terms
You can use text highlighting with composite word queries. When you do so,
ConText highlights the entire composite word, not just the sub-composite you
entered as your query.

For example, when you issue Bahnhof as your query, context highlights the words
Hauptbahnhof, Nordbahnhof, and Ostbahnhof entirely.

See Also: For more information about creating a composite index
for German, see Oracle8 Context Cartridge Administrator’s Guide.

See Also: For more information on highlighting text queries, see
Chapter 6, "Document Presentation: Highlighting".

About Query Expressions

3-6 Oracle8 ConText Cartridge Application Developer’s Guide

Base-Letter Queries
For languages that use an 8-bit character set, such as French and Spanish, Context
gives you the option of converting characters to their base-letter representation
before text indexing. This means that words with tildes, accents, umlauts, and so on
are converted to their base-letter representation before their tokens are placed in the
text index.

When you specify a text index that has used base-letter conversion in a query,
ConText converts the term in the query expression to match the base-letter
representation before the query is processed.

The result is that with base-letter conversion on for Spanish text index, a query on
manaña returns documents that contain manaña and manana.

However, with base letter conversion off for a Spanish text index, a query on manaña
returns documents that contain only manaña.

In addition, all expansion and stopword checking for the query is performed on the
base-letter terms.

Thesaural Queries
The terms in a thesaural query are not converted to base-letter representation before
look-up in the thesaurus. The base-letter conversion takes place after the thesaurus
look-up and is performed on all the terms returned by the thesaurus.

Query Expression Examples
The following example of a one-step query returns all articles that contain the word
wine in the TEXTTAB.TEXT_COLUMN column. The query expression consists only
of the query term wine, surrounded by single quotes.

SELECT articles FROM texttab
WHERE CONTAINS(textcol, ’wine’) > 0;

See Also: For more information about creating an index that
supports base-letter conversion, see Oracle8 Context Cartridge
Administrator’s Guide.

About Query Expressions

Understanding Query Expressions 3-7

The following example of a one-step query returns all articles that contain the
phrase wine and roses in the TEXTTAB.TEXT_COLUMN column. The query
expression consists of the query phrase wine and roses, surrounded by single quotes.

SELECT articles FROM texttab
WHERE CONTAINS(textcol, ’{wine and roses}’) > 0;

See Also: For more information about the CONTAINS function
used in one-step queries, see CONTAINS in Chapter 9.

Logical Operators

3-8 Oracle8 ConText Cartridge Application Developer’s Guide

Logical Operators
Logical operators combine the terms in a query expression. All single words and
phrases may be combined with logical operators. When query terms are combined,
the number of spaces around the logical operator is not significant.

Logical operators link query terms together to produce scores that are based on the
relationship of the terms to each other. The logical operators combine the scores of
their operands up to a maximum value of 100. Operands can be any query terms, as
well as other operators.

AND Operator
Use the AND operator to search for documents that contain at least one occurrence
of each of the query terms. For example, to obtain all the documents that contain the
terms batman and robin and penguin, issue the following query:

’batman & robin & penguin’

In an AND query, the score returned is the score of the lowest query term. In the
example above, if the three individual scores for the terms batman, robin, and
penguin is 10, 20 and 30 within a document, the document scores 10.

Operator Syntax Description

AND term1&term2

term1 and term2

Returns documents that contain term1 and term2.
Returns the minimum score of its operands. All
query terms must occur; lower score taken.

OR term1|term2

term1 or term2

Returns documents that contain term1 or term2.
Returns the maximum score of its operands. At
least one term must exist; higher score taken.

NOT term1~term2

term1 not term2

Returns documents that contain term1 and not
term2.

EQUIVALENCE term1=term2

term1 equiv term2

Specifies that term2 is an acceptable substitution
for term1.

Logical Operators

Understanding Query Expressions 3-9

OR Operator
Use the OR operator to search for documents that contain at least one occurrence of
any of the query terms. For example, to obtain the documents that contain the term
cats or the term dogs, use one of the following:

’cats | dogs’
’cats OR dogs’

In an OR query, the score returned is the score for the highest query term. In the
example above, if the scores for cats and dogs is 30 and 40 within a document, the
document scores 40.

NOT Operator
Use the NOT operator to search for documents that contain one query term and not
another.

For example, to obtain the documents that contain the term animals but not dogs, use
the following expression:

’animals ~ dogs’

Similarly, to obtain the documents that contain the term transportation but not
automobiles or trains, use the following expression:

’transportation not (automobiles or trains)’

Equivalence Operator
Use the equivalence operator to specify an acceptable substitution for a word in a
search. For example, if you want all the documents that contain the phrase alsatians
are big dogs or labradors are big dogs, you can write:

’labradors=alsatians are big dogs’

ConText processes the above query faster and more efficiently than the same query
written with the accumulate operator. For example, you could write the above
query less efficiently and less concisely as follows:

’labradors are big dogs, alsatians are big dogs’

Note: The NOT operator does not affect the scoring produced by
the other logical operators.

Logical Operators

3-10 Oracle8 ConText Cartridge Application Developer’s Guide

The savings you gain in using the equivalence operator over the accumulate
operator is most significant when you have more than one equivalence operator in
the query expression. For example, the following query

’labradors=alsatians are big canines=dogs’

is a more efficient, more concise form of:

’labradors are big dogs,
alsatians are big dogs,
alsatians are big canines,
labradors are big canines’

Precedence of Equivalence Operator
The equivalence operator has higher precedence that all other operators except the
unary operators (fuzzy, soundex, stem, and PL/SQL function calls).

WITHIN Operator

Understanding Query Expressions 3-11

WITHIN Operator
You can use the WITHIN operator to narrow a query down into document sections.
Document sections can be one of the following:

■ sentence or paragraphs

■ pre-defined sections

WITHIN Syntax
The syntax for the WITHIN operator is as follows:

Querying Within Sentence or Paragraphs
Querying within sentence or paragraph boundaries is useful to find combinations
of words that occur in the same sentence or paragraph.

Examples
To find documents that contain dog and cat within the same sentence:

’(dog and cat) WITHIN SENTENCE’

To find documents that contain dog and cat within the same paragraph:

’(dog and cat) WITHIN PARAGRAPH’

To find documents that contain sentences with the word dog but not cat:

’(dog not cat) WITHIN SENTENCE’

Syntax Description

expression WITHIN SENTENCE Searches for documents that contain expression within
a sentence. Specify an AND or NOT query for
expression.

expression WITHIN PARAGRAPH Searches for documents that contain expression within
a paragraph. Specify an AND or NOT query for
expression.

term WITHIN section Searches for term within the pre-defined section. The
WITHIN operator has no effect on score.

WITHIN Operator

3-12 Oracle8 ConText Cartridge Application Developer’s Guide

Querying Within User-defined Sections
Use the WITHIN operator to narrow down a query into user-defined document
sections.

For example in an HTML document set, you or your ConText administrator can
define a section for all headings delimited with <HEAD> and <\HEAD> and
subsequently issue a query for a term in a heading across all documents.

Examples
To find all the documents that contain the term San Francisco within the
user-defined section Headings, write your query as follows:

’San Francisco WITHIN Headings’

To find all the documents that contain the term sailing and contain the term San
Francisco within the user-defined section Headings, write your query in one of two
ways:

’(San Francisco WITHIN Headings) and sailing’

’sailing and San Francisco WITHIN Headings’

To find all documents that contain the terms dog and cat within the same
user-defined section Headings, write your query as follows:

’(dog and cat) WITHIN Headings’

Note that the above query is logically different from:

’dog WITHIN Headings and cat WITHIN Headings’

which finds all documents that contain dog and cat where the terms dog and cat are
in Headings sections, regardless of whether they occur in the same Headings section
or different sections.

Note: The WITHIN operator requires you to know the name of
the section you wish to search. A list of defined sections can be
obtained using the CTX_ALL_SECTIONS or CTX_USER_
SECTIONS views.

See Also: For more information about defining sections, see the
Oracle8 Context Cartridge Administrator’s Guide.

WITHIN Operator

Understanding Query Expressions 3-13

To find all documents in which dog is near cat within the section Headings, write
your query as follows:

’dog near cat WITHIN Headings’

Limitations
The WITHIN operator has the following limitations:

■ The theme lexer does not support the WITHIN operator

■ You cannot embed the WITHIN clause in a phrase. For example, you cannot
write: term1 WITHIN section term2

■ You cannot combine WITHIN with expansion operators

■ Subqueries passed to WITHIN cannot use the Max or First/Next operators.

■ You cannot nest the WITHIN operator For example, you cannot write: dog
WITHIN body WITHIN heading.

■ Since WITHIN is a reserved word, you must escape the word with braces to
search on it.

Score-Changing Operators

3-14 Oracle8 ConText Cartridge Application Developer’s Guide

Score-Changing Operators
Score changing operators behave like logical operators in that they return
documents given the terms you specify. However, these operators affect document
scores differently and, as such, can be used to change a document’s rank in a hitlist
with respect to a query term. The following table describes these operators:

Accumulate Operator
Use the accumulate operator to search for documents that contain at least one
occurrence of any of the query terms, where the documents that contain the most
frequent occurrences of the query terms are given the highest score.

For example, to search for documents that contain either term Brazil or soccer and to
have the highest scores attached to the documents that contain the most occurrences
of these words, you can issue:

’soccer,Brazil’

Accumulate is similar to OR, in the sense that a document satisfies the query
expression if any of the terms occur in the document; however, the scoring is
different. OR returns a score based only on the query term that occurs most
frequently in a document. Accumulate combines the scores for all the query terms
that occur in a document, topping out at 100 when the sum exceeds 100. Thus
documents that contain the most query terms are ranked the highest.

Operator Syntax Description

ACCUMULATE term1,term2

term1 accum term2

Returns documents that contain term1 or term2.
Calculates score by adding the score of each
operand. Similar to OR, except that the returned
score is the sum of all scores.

MINUS term1-term2

term1 minus term2

Returns documents that contain term1.
Calculates score by subtracting occurrences of
term2 from occurrences of term1.

WEIGHT term*n Returns documents that contain term. Calculates
score by multiplying the raw score of term by n,
where n is a number from 0.1 to 10.

Score-Changing Operators

Understanding Query Expressions 3-15

MINUS Operator
Use the MINUS operator to search for documents that contain a query term, and
when you want the presence of a second query term to cause the document to be
ranked lower.

The minus operator is useful for lowering the score of documents that contain
"noise". For example, suppose a query on the term cars always returned high
scoring documents about Ford cars. You can lower the scoring of the Ford
documents by using the expression:

’cars - Ford’

In essence, this expression returns the documents that contain the term cars.
However, the score returned for a document is the number of occurrences of cars
minus the number of occurrences of Ford. When a returned document does not
contain Ford, the occurrence of the term Ford is counted as zero.

Weight Operator
The weight operator multiplies the score by the given factor, topping out at 100
when the product exceeds 100. For example, the query cat, dog*2’ sums the score of
cat with twice the score of dog, topping out at 100 when the score is greater than 100.

In expressions that contain more than one query term, use the weight operator to
adjust the relative scoring of the query terms. You can reduce the score of a query
term by using the weight operator with a number less than 1; you can increase the
score of a query term by using the weight operator with a number greater than 1
and less than 10.

The weight operator is useful in accumulate, OR, or AND queries when the
expression has more than one query term. With no weighting on individual terms,
the score cannot tell you which of the query terms occurs the most. If you are
interested in documents that contain a particular query term more than another
term, the overall ranking tells you nothing about which documents pertain to the
term that you are most interested in.

Score-Changing Operators

3-16 Oracle8 ConText Cartridge Application Developer’s Guide

Example
You have a collection of sports articles. You are interested in the articles about
soccer, in particular Brazilian soccer. It turns out that a regular query on soccer, Brazil
returns many high ranking articles on US soccer. To raise the ranking of the articles
on Brazilian soccer, you can issue the following query:

’soccer, Brazil*3’

Table 3–1 illustrates how the weight operator can change the ranking of three
hypothetical documents A, B, and C, which all contain information about soccer.
The columns in the table show the total score of four different query expressions on
the three documents.

The score in the third column containing the query soccer, Brazil is the sum of the
scores in the first two columns. The score in the fourth column containing the query
soccer,Brazil*3 is the sum of the score of the first column soccer plus three times the
score of the second, Brazil.

With the initial query of soccer,Brazil, the documents are ranked in the order C B A.
With the query of soccer,Brazil*3, the documents are ranked B C A, which is the
preferred ranking.

Table 3–1

 soccer Brazil soccer,Brazil soccer,Brazil*3

 A 20 10 30 50

 B 10 30 40 100

 C 50 10 60 80

NEAR Operator

Understanding Query Expressions 3-17

NEAR Operator
Use the near operator to have Context return a score based on the proximity of two
or more query terms. ConText returns higher scores for terms closer together and
lower scores for terms farther apart in a document.

The syntax for the near operator is as follows:

wordn
Specify the terms in the query separated by commas. The query terms can be single
words or phrases.

MAX_SPAN
Optionally specify the size of the biggest clump. The default is 100. ConText returns
an error if you specify a number greater than 100.

A clump is the smallest group of words in which all query terms occur. All clumps
begin and end with a query term.

For near queries with two terms, max_span is the maximum distance allowed
between the two terms. For example, to query on dog and cat where dog is within 6
words of cat, issue the following query:

’near((dog, cat), 6)’

ORDER
Specify TRUE for ConText to search for terms in the order you specify. The default
is FALSE.

For example, to search for the words monday, tuesday, and wednesday in that order
with a maximum clump size of 20, issue the following query:

’near((monday, tuesday, wednesday), 20, TRUE)

Note: The NEAR operator works with only text queries. You
cannot use NEAR with theme queries.

OPERATOR SYNTAX

NEAR NEAR((word1, word2,..., wordn) [, MAX_SPAN [, ORDER]])

NEAR Operator

3-18 Oracle8 ConText Cartridge Application Developer’s Guide

ConText might return different scores for the same document when you use
identical query expressions that have the ORDER flag set differently. For example,
ConText might return different scores for the same document when you issue the
following queries:

’near((dog, cat), 50, FALSE)’
’near((dog, cat), 50, TRUE)’

Near Scoring
The scoring for the near operator combines frequency of the terms with proximity
of terms. For each document that satisfies the query, ConText returns a score
between 1 and 100 that is proportional to the number of clumps in the document
and inversely proportional to the average size of the clumps. This means many
small clumps in a document result in higher scores, since small clumps imply
closeness of terms.

The number of terms in a query also affects score. Queries with many terms, such as
seven, generally need fewer clumps in a document to score 100 than do queries
with few terms, such as two.

A clump is the smallest group of words in which all query terms occur. All clumps
begin and end with a query term. You can define clump size with the max_span
parameter as described in this section.

Near with Other Operators
You can use the near operator with other operators such as AND and OR. Scores are
calculated in the regular way.

For example, to find all documents that contain the terms tiger, lion, and cheetah
where the terms lion and tiger are within 10 words of each other, issue the following
query.

’near((lion, tiger), 10) AND cheetah’

The score returned for each document is the lower score of the near operator and
the term cheetah.

Note: To specify ORDER , you must always specify a number for
the MAX_SPAN parameter.

NEAR Operator

Understanding Query Expressions 3-19

You can also use the equivalence operator to substitute a single term in a near
query:

’near((stock crash, Japan=Korea), 20)’

This query ask for all documents that contain the phrase stock crash within twenty
words of Japan or Korea.

Backward Compatibility Near Syntax
You can write near queries using the syntax of ConText release 2.3.6 and before. For
example, to find all documents where lion occurs near tiger, you can write:

’lion near tiger’
or with the semi-colon as follows:

’lion;tiger’

This query is equivalent to the following query:

’near((lion, tiger), 100, FALSE)’

Highlighting with the Near Operator
When you use highlighting and your query contains the near operator, all
occurrences of all terms in the query that satisfy the proximity requirements are
highlighted. Highlighted terms can be single words or phrases.

For example, assume a document contains the following text:

Chocolate and vanilla are my favorite ice cream flavors. I like chocolate
served in a waffle cone, and vanilla served in a cup with carmel syrup.

If the query is near((chocolate, vanilla)), 100, FALSE), the following is highlighted:

 <<Chocolate>> and <<vanilla>> are my favorite ice cream flavors. I like
<<chocolate>> served in a waffle cone, and <<vanilla>> served served in a cup
with carmel syrup.

Note: Only the syntax of the near operator is backward
compatible. In the example above, the score returned is calculated
using the clump method as described in this section.

NEAR Operator

3-20 Oracle8 ConText Cartridge Application Developer’s Guide

However, if the query is near((chocolate, vanilla)), 4, FALSE), only the following is
highlighted:

 <<Chocolate>> and <<vanilla>> are my favorite ice cream flavors. I like
chocolate served in a waffle cone, and vanilla served in a cup with carmel
syrup.

Section Searching and Near
You can use the NEAR operator with the WITHIN operator for section searching as
follows:

’near((dog, cat), 10) WITHIN Headings’

When evaluating expressions such as these, Context looks for clumps that lie
entirely within the given section.

In the example above, only those clumps that contain dog and cat that lie entirely
within the section Headings are counted. That is, if the term dog lies within Headings
and the term cat lies five words from dog, but outside of Headings, this pair of words
does not satisfy the expression and is not counted.

See Also: For more information about highlighting, see
Chapter 6, "Document Presentation: Highlighting".

Result-Set Operators

Understanding Query Expressions 3-21

Result-Set Operators
Use the result-set operators to control what documents are returned from a query
result set. The operands for these operators are expressions, which can be an
individual query term or a logical combination of query terms that use other
operators.

Result set operators are typically used to exclude noise from the hitlist (irrelevant
documents) and to retrieve documents out of a hitlist more efficiently. There are
three result set operators:

Threshold Operator
You can use the threshold operator in two ways:

■ at the expression level

■ at the query term level

Note: Because these operators manipulate a result set, they cannot
be embedded within each other; they must be placed at the
outermost level of the query expression.

These operators also have no effect on highlighting with CTX_
QUERY.HIGHLIGHT.

Operator Syntax Description

THRESHOLD expression>n

term>n

Returns only those documents in the result set that
score above the threshold n.

Within an expression, selects documents that contain
the query term with score of at least n.

MAX expression:n Returns the first n highest scoring documents. For
example,:20 means to return the top 20 documents in
the hitlist. The value n must be an integer between 1
and 65535.

FIRST/NEXT expression#m-n Returns the specified number of documents as ordered
in the hitlist range m to n.

Result-Set Operators

3-22 Oracle8 ConText Cartridge Application Developer’s Guide

Expression level
Use the expression level threshold operator to eliminate documents in the result set
that score below a threshold number. For example, to search for documents that
contain relational databases and to return only documents that score greater than 75,
use the following expression:

’relational databases > 75’

Query Term Level
Use the query term threshold operator in a query expression to select a document
based on how a term scores in the document. For example, to select documents that
have at least a score of 30 for lion and contain tiger, use:

’(lion > 30) and tiger’

Max Operator
Use the max operator to retrieve a given number of the highest scoring documents.
For example, to obtain the twenty highest scoring documents that contain the word
dance, you can write:

’dance:20’

The max operator is particularly useful to prevent writing a large number of records
to the hitlist table, which could result in performance degradation.

First/Next Operator
Use the first/next operator to return a specified range of documents from the hitlist.

Note: The max operator cannot be used with the CTX_
QUERY.COUNT_HITS function or with in-memory queries.

Note: In a first/next query, the order of the returned documents is
not based on score or textkey. ConText returns the documents based
on the order in which it encounters the documents in the queried
text column

Result-Set Operators

Understanding Query Expressions 3-23

For example, to return the first 10 documents encountered by ConText that contain
the term dog, use the following expression:

’dog#1-10’

You could then return the next 10 documents using the following expression:

’dog#11-20’

The first/next operator can be used to create an application interface in which
query results (rows in the hitlist) are returned incrementally. Because the query
results are returned incrementally, query response is generally faster. The
application can display the hitlists in a more manageable size, and control can be
returned to the user faster.

Combined First/Next and Max Queries
You can use the first/next operator extract chunks of a sorted hitlist returned by the
max operator. For example, if you use the max operator to return only the highest
scoring 50 documents that contain the term cat, you can extract the first 10
documents from the 50 as follows:

’cat:50#1-10’

Note: The first/next operator cannot be used with the CTX_
QUERY.COUNT_HITS function or with in-memory queries.

Note: Placing the max operator inside the first/next operator as
such is the only instance in which you can embed the max operator
in a query expression.

Expansion Operators

3-24 Oracle8 ConText Cartridge Application Developer’s Guide

Expansion Operators
The expansion operators expand a query expression to include variants of the query
term supplied by the user. There are three kinds of expansion operators:

The expansion operators are unary operators. They may be used in combination
with each other and with any other operators described in this chapter. In addition,
searches can be broadened by performing an expansion on an expansion.

The methods used by the expansion operators to perform stemming, fuzzy
matching, and soundex matching for a text column are determined by the Wordlist
preference in the policy for the column.

Stem Expansions
Use the STEM ($) operator to search for terms that have the same linguistic root as
the query term. For example:

Operator Syntax Description

STEM $term Expands a query to include all terms having the same stem or
root word as the specified term.

SOUNDEX !term Expands a query to include all terms that sound the same as
the specified term (English-language text only).

FUZZY ?term Expands a query to include all terms with similar spellings as
the specified term (English-language text only).

See Also: For more information about setting up preferences and
policies, see Oracle8 Context Cartridge Administrator’s Guide.

Input Expands To

$scream scream screaming screamed

$distinguish distinguish distinguished distinguishes

$guitars guitars guitar

$commit commit committed

$cat cat cats

$sing sang sung sing

Expansion Operators

Understanding Query Expressions 3-25

The ConText stemmer, licensed from Xerox Corporation’s XSoft Division, supports
the following languages: English, French, Spanish, Italian, German, and Dutch.

Soundex Expansions
The soundex (!) operator enables searches on words that have similar sounds; that
is, words that sound like other words. This function allows comparison of words
that are spelled differently, but sound alike in English.

Soundex in ConText uses the same logic as the soundex function in SQL to search
for words that have a similar sound. It returns all words in a text column that have
the same soundex value.

The following example illustrates the results that could be returned for a one-step
query that uses SOUNDEX:

SELECT ID, COMMENT FROM EMP_RESUME
WHERE CONTAINS (COMMENT, ’!SMYTHE’) > 0

ID COMMENT
-- ------------
23 Smith is a hard worker who..

Fuzzy Expansions
Fuzzy (?) expansions generate words that are spelled similarly. This type of
expansion is helpful for finding more accurate results when there are frequent
misspellings in the documents in the database.

Note: If STEM returns a stopword, the stopword is not included
in the query or highlighted by CTX_QUERY.HIGHLIGHT.

Note: SOUNDEX works best for languages that use a 7-bit
character set, such as English. It can be used, with lesser
effectiveness, for languages that use an 8-bit character set, such as
many Western European languages.

For more information about the SOUNDEX function in SQL, see
Oracle8 SQL Reference.

Expansion Operators

3-26 Oracle8 ConText Cartridge Application Developer’s Guide

Unlike the stem expansion, the number of words generated by a fuzzy search
depends on what is in the text index; results can vary significantly according to the
contents of the database index.

For example:

Penetration in Expansion Operators
Penetration allows complex query expansions to be expressed in short concise
notation. Penetration is a system of notation for query expressions and does not
affect the meaning of the expansion operators or the order in which operations are
performed; it is a tool to help you generate non-ambiguous queries using the
expansion operators.

Penetration applies the expansion operators to each term within an explicit
expression (i.e., an expression delimited by parentheses or braces). Any expansion
operators outside an expression delimited by parentheses () or braces { } is applied
to each word or phrase inside the expression.

Input Expands To

?cat cat cats calc case

?feline feline defined filtering

?apply apply apple applied April

?read lead real

Note: Fuzzy works best for languages that use a 7-bit character
set, such as English. It can be used, with lesser effectiveness, for
languages that use an 8-bit character set, such as many Western
European languages. Also, the Japanese lexer provides limited
fuzzy matching.

In addition, if fuzzy returns a stopword, the stopword is not
included in the query or highlighted by CTX_QUERY.HIGHLIGHT.

Expansion Operators

Understanding Query Expressions 3-27

For example:

In the first example, a fuzzy expansion is performed on each term.

In the second example, a fuzzy expansion is performed on each term and a soundex
expansion is performed only on the terms cat and mouse because cat and mouse are
enclosed in a separate set of parentheses

In the third example, a fuzzy expansion is performed on each term, including both
equivalence terms.

Examining Query Expansions
You can use query expression feedback to examine how ConText expands query
expressions containing fuzzy, stem and soundex operators.

Base-letter Support
If you have base-letter conversion specified for a text column and the query
expression contains a SOUNDEX or FUZZY operator, ConText operates on the
base-letter form of the query.

The STEM operator does not support base-letter conversion.

Query Before Penetration Query After Penetration

?(dog, cat, mouse) ?dog, ?cat, ?mouse

?(dog,!(cat & mouse)) ?dog, (!?cat & !?mouse)

?((cat=feline) meows) (?cat =?feline)?meows

Note: Expansion operators do not penetrate expressions delimited
by brackets [].

See Also: Chapter 5, "Query Expression Feedback".

Thesaurus Operators

3-28 Oracle8 ConText Cartridge Application Developer’s Guide

Thesaurus Operators
The thesaurus operators expand a query for a single term (word or phrase) using a
thesaurus that defines relationships between the user-specified term and other
semantically related terms.

There are ten kinds of thesaurus operators, corresponding to the ten types of
relationships that can be defined in an ISO2788 standard thesaurus.

Operator Syntax Description

SYNONYM SYN(term[,thes]) Expands a query to include all the terms
defined in the thesaurus as synonyms for
term.

PREFERRED PT(term[,thes]) Replaces the specified word in a query with
the preferred term for term.

RELATED RT(term[,thes]) Expands a query to include all the terms
defined in the thesaurus as a related term for
term.

TOP TT(term[,thes]) Replaces the specified word in a query with
the top term in the standard hierarchy (BT,
NT) for term.

NARROWER NT(term[,level[,thes]]) Expands a query to include all the lower
level terms defined in the thesaurus as
narrower terms for term.

NARROWER
GENERIC

NTG(term[,level[,thes]]) Expands a query to include all the lower
level terms defined in the thesaurus as
narrower generic terms for term.

NARROWER
PARTITIVE

NTP(term[,level[,thes]]) Expands a query to include all the lower
level terms defined in the thesaurus as
narrower partitive term for term.

NARROWER
INSTANCE

NTI(term[,level[,thes]]) Expands a query to include all the lower
level terms defined in the thesaurus as
narrower instance term for term.

BROADER BT(term[,level[,thes]]) Expands a query to include the term defined
in the thesaurus as a broader term for term.

BROADER
GENERIC

BTG(term[,level[,thes]]) Expands a query to include all terms defined
in the thesaurus as a broader generic terms
for term.

Thesaurus Operators

Understanding Query Expressions 3-29

Internally, ConText processes the expansion by bracketing each individual term
returned by the expansion, then the terms are accumulated together using the
ACCUMULATE operator.

For example, if bird, birdy, and avian are all synonyms:

SYN(bird) is expanded to {bird},{avian},{birdy}.

If a term in a thesaural query does not have corresponding entries in the specified
thesaurus, no expansion is produced and the term itself is used in the query.

Limitations
The thesaurus operators can be used in conjunction with all the other query
expression operators and special characters supported by ConText, with the
exception of the near operator.

The maximum length of the expanded query is 32000 characters.

Thesaural operations cannot be nested. For example, the following query is not
allowed.

’SYN(BT(bird))’

Thesaurus Arguments
The thesaurus operators are implemented in ConText as PL/SQL functions, and, as
such, have arguments that must be specified with the operator. All of the notational
conventions and usage rules for PL/SQL apply to the thesaurus operators.

BROADER
PARTITIVE

BTP(term[,level[,thes]]) Expands a query to include all the terms
defined in the thesaurus as broader partitive
terms for term.

BROADER
INSTANCE

BTI(term[,level[,thes]]) Expands a query to include all the terms
defined in the thesaurus as broader instance
terms for term.

See Also: For more information about viewing thesaural
expansions, see Chapter 5, "Query Expression Feedback".

For more information about thesaural relationships and creating
thesauri, see Oracle8 Context Cartridge Administrator’s Guide.

Operator Syntax Description

Thesaurus Operators

3-30 Oracle8 ConText Cartridge Application Developer’s Guide

The thesaurus operators have the following arguments:

term
Specify the operand for the thesaurus operator. You must specify a term when using
the NT operator. For preferred term (PT) and top term (TT) queries, term is replaced
by the preferred term/top term defined for the term in the specified thesaurus;
however, if no PT or TT entries are defined for the term, the term is not replaced
and is used in the query.

For all other thesaural queries, term is expanded to include the synonymous,
related, broader, or narrower terms defined for the term in the specified thesaurus.

level
Specify the number of levels traversed in the thesaurus hierarchy to return the
broader (BT, BTG, BTP) or narrower (NT, NTG, NTP) term for the specified term.
For example, a level of 1 in a BT query returns only the broader term, if one exists,
for the specified term. A level of 2 returns the broader term for the specified term, as
well as the broader term, if one exists, for the broader term.

The level argument is optional and has a default value of one (1). Zero or negative
values for the level argument return only the original query term.

thes
Specify the name of the thesaurus used to return the expansions for the specified
term. The thes argument is optional and has a default value of DEFAULT. As a
result, a thesaurus named DEFAULT must exist in the thesaurus tables before using
any of the thesaurus operators.

Synonym Operator
Use the synonym operator (SYN) to expand a query to include all the terms that
have been defined in a thesaurus as synonyms for a specified term.

The following query returns all documents that contain the term tutorial or any of
the synonyms defined for tutorial in the DEFAULT thesaurus:

’SYN(tutorial)’

Compound Phrases in Synonym Operator
Expansion of compound phrases for a term in a synonym query are returned as
AND conjunctives.

Thesaurus Operators

Understanding Query Expressions 3-31

For example, the compound phrase temperature + measurement + instruments is
defined in a thesaurus as a synonym for the term thermometer. In a synonym query
for thermometer, the query is expanded to:

{thermometer},({temperature}&{measurement}&{instruments})

Preferred Term Operator
Use the preferred term operator (PT) to replace a term in a query with the preferred
term that has been defined in a thesaurus for the term.

For example, the term building has a preferred term of construction in a thesaurus. A
PT query for building returns all documents that contain the word construction.
Documents that contain the word building are not returned.

Related Term Operator
Use the related term operator (RT) to expand a query to include all terms with the
related term that has been defined in a thesaurus for the term.

For example, the term dinosaur has a related term of paleontology. A RT query for
dinosaur returns all documents that contain the word paleontology. Documents that
contain the word dinosaur are not returned.

Narrower Term Operators
Use the narrower term operators (NT, NTG, NTP, NTI) to expand a query to include
all the terms that have been defined in a thesaurus as the narrower or lower level
terms for a specified term. They can also expand the query to include all of the
narrower terms for each narrower term, and so on down through the thesaurus
hierarchy.

Note: In a thesaurus, compound phrases can only be defined in
synonym relationships for a term.

Note: The hierarchy can contain four separate branches,
represented by the four narrower term operators. During a
narrower term query, the specified operator only searches down the
designated branch of the hierarchy.

Thesaurus Operators

3-32 Oracle8 ConText Cartridge Application Developer’s Guide

The following query returns all documents that contain either the term tutorial or
any of the NT terms defined for tutorial in the DEFAULT thesaurus:

’NT(tutorial)’

The following query returns all documents that contain either fairy tale or any of the
narrower instance terms for fairy tale as defined in the DEFAULT thesaurus:

’NTI(fairy tale)’

That is, if the terms cinderella and snow white are defined as narrower term instances
for fairy tale, ConText returns documents that contain fairy tale, cinderella, or snow
white.

Broader Term Operators
Use the broader term operators (BT, BTG, BTP, BTI) to expand a query to include the
term that has been defined in a thesaurus as the broader or higher level term for a
specified term. They can also expand the query to include the broader term for the
broader term and the broader term for that broader term, and so on up through the
thesaurus hierarchy.

The following query returns all documents that contain the term tutorial or the BT
term defined for tutorial in the DEFAULT thesaurus:

’BT(tutorial)’

Broader and Narrower Term Operator on Homographs
If a homograph (a word or phrase with multiple meanings, but the same spelling)
appears in two or more nodes in the same hierarchy branch of a thesaurus, a
qualifier is required for each occurrence of the term in the branch.

If the qualifier is not specified for a homograph in a broader or narrower term
query, the query expands to include all of the broader/narrower terms for the
homograph.

Note: The hierarchy can contain four separate branches,
represented by the four broader term operators. In a broader term
query, the specified operator only searches up the designated
branch of the hierarchy.

Thesaurus Operators

Understanding Query Expressions 3-33

For example, if machine is a broader term for crane (building equipment) and bird is a
broader term for crane (waterfoul):

BT(crane) expands to {crane},{machine},{bird}

If the qualifier for a homograph is specified in a broader or narrower term query,
only the broader/narrower terms for the qualified homograph are returned.

Using the previous example:

BT(crane{(waterfoul)}) expands to {crane},{bird}

Top Term Operator
Use the TOP TERM operator (TT) to replace a term in a query with the top term that
has been defined for the term in the standard hierarchy (BT, NT) in a thesaurus. Top
terms in the generic (BTG, NTG), partitive (BTP, NTP), and instance (BTI, NTI)
hierarchies are not returned.

For example, the term tutorial has a top term of learning systems in the standard
hierarchy of a thesaurus. A TT query for tutorial returns all documents that contain
the phrase learning systems. Documents that contain the word tutorial are not
returned.

Thesaural Expansions and Case-Sensitivity
Thesaural expansions in text queries can differentiate between terms based on case.

For example, a case-sensitive thesaurus named thes1 is created and Mercury is
defined as a narrower term for planets, while mercury is defined as a narrower term
for metals.

During a query, the following expansions occur:

BT(mercury,1,thes1) expands to {MERCURY}, {METALS}

BT(Mercury,1,thes1) expands to {MERCURY}, {PLANETS}

Note: When specifying a qualifier in a broader or narrower term
query, the qualifier and its notation (parentheses) must be escaped,
as is shown in this example.

Thesaurus Operators

3-34 Oracle8 ConText Cartridge Application Developer’s Guide

Limitations
Case-sensitive thesauri only affect the expansion of a term and not the terms
actually used in the query. The case of the expanded terms depends on whether the
text index being queried is case-sensitive or case-insensitive.

For example, when the case-sensitive thesaurus, thes1, is used with a
case-insensitive index, the following expansion is returned:

BT(Mercury,1,thes1) expands to {MERCURY}, {PLANETS}

The query then returns all documents in which the two terms occur, regardless of
case. In other words, documents that contain mercury, Mercury, planets, Planets, or
any other combinations of case for the two terms are all returned by the query.

With a case-sensitive text index, the same query expands to:

BT(Mercury,1,thes1) expands to {Mercury}, {planets}

The query returns only those documents in which Mercury and planets occur.

Base-letter Support for Thesaural Queries
When ConText processes a query on a base-letter index and the expression contains
a thesaurus operator, ConText looks up the query term in the thesaurus without
converting the query to base-letter. The expansions obtained from the thesaurus are
converted to base-letter and looked up subsequently within the index according to
query rules.

This sequence of look-up enables base-letter queries to work independent of
whether the thesaurus is in base-letter form. However, if the keys in the thesaurus
are in base letter form, these keys will not match the corresponding non-base letter
form query terms. When you have a base-letter thesaurus, you must specify the
base-letter form in the query.

Note: There is no way to enable or disable case-sensitivity.
ConText preserves the case of all entries entered in a thesaurus
based on whether the thesaurus was specified during creation to be
case-sensitive. Similarly, text queries use the cases of terms to
perform the thesaural look-up based on the thesaurus specified for
the term(s).

Wildcard Characters

Understanding Query Expressions 3-35

Wildcard Characters
Wildcard characters can be used in query expressions to expand word searches into
pattern searches. The wildcard characters are:

For example, the following abbreviated one-step query finds all terms beginning
with the pattern scal in a column named text:

...contains(TEXT, ’scal%’) > 0

Wildcard Character Description

% The percent wildcard specifies that any characters can appear in
multiple positions represented by the wildcard.

 _ The underscore wildcard specifies a single position in which any
character can occur.

Note: To expand the wildcard query, ConText uses the word list
for the text column and rewrites the query with these terms. When
your wildcard query expands to a number of terms greater than the
maximum allowed in a query, ConText returns an error.

In addition, if a wildcard expression translates to a stopword, the
stopword is not included in the query or highlighted by CTX_
QUERY.HIGHLIGHT.

Grouping Characters

3-36 Oracle8 ConText Cartridge Application Developer’s Guide

Grouping Characters
The grouping characters control operator precedence by grouping query terms and
operators in a query expression. The grouping characters are:

■ parentheses ()

■ brackets []

The beginning of a group of terms and operators is indicated by an open character
from one of the sets of grouping characters. The ending of a group is indicated by
the occurrence of the appropriate close character for the open character that started
the group. Between the two characters, other groups may occur.

For example, the open parenthesis indicates the beginning of a group. The first close
parenthesis encountered is the end of the group. Any open parentheses encountered
before the close parenthesis indicate nested groups.

Brackets perform the same function as the parentheses, but prevent penetration for
the expansion operators.

Stored Query Expressions

Understanding Query Expressions 3-37

Stored Query Expressions
You can store the results of a query expression and then call the SQE later in a query
expression to return the stored results. To call a stored query expression, use the
SQE operator.

The advantage of calling an SQE in a query expression, rather than specifying query
terms, is that the results are typically returned faster, since ConText does not have to
query the text table directly.

In addition, SQEs can be used to perform iterative queries, in which an initial query
is refined using one or more additional queries.

Using Stored Query Expressions
The process for using stored query expressions is:

1. Call CTX_QUERY.STORE_SQE to store the results for the text column or policy.
With STORE_SQE, you specify a name for the SQE, a policy (which identifies
the text column for the SQE), a query expression, and whether the SQE is a
session or system SQE

2. Call the stored query expression in the query expression of a text (or theme)
query. ConText returns the results of the SQE in the same way it returns the
results of a regular query. If the results of the SQE are out-of-date, ConText
automatically re-evaluates the SQE before returning the results.

Administration of stored query expressions can be performed using the REFRESH_
SQE, REMOVE_SQE, and PURGE_SQE procedures in the CTX_QUERY PL/SQL
package.

Operator Syntax Description

Stored Query Expression SQE(SQE_name) Returns the stored result of SQE_name.

Note: Because ConText must first determine if the results are
out-of-date with respect to the document index, many changes to
the index though inserting, deleting, and updating documents will
slow down the retrieval of the stored query expression results.

Stored Query Expressions

3-38 Oracle8 ConText Cartridge Application Developer’s Guide

Example
To create a session SQE named PROG_LANG, use CTX_QUERY.STORE_SQE as
follows:

exec ctx_query.store_sqe(’emp_resumes’, ’prog_lang’, ’cobol’, ’session’);

This SQE queries the text column for the EMP_RESUMES policy (in this case,
EMP.RESUMES) and returns all documents that contain the term cobol. It stores the
results in the SQE table for the policy.

PROG_LANG can then be called within a query expression as follows:

select score, docid from emp
where contains(resume, ’sqe(prog_lang)’)>0
order by score;

Session and System SQEs
When you initially create an SQE using CTX_QUERY.STORE_SQE, you can specify
whether the SQE is for the current session or for all sessions (system SQE).

You can use session SQEs only in the current session. These SQEs are stored only for
the duration of the session. When a session is terminated, all session SQEs created
during the session are deleted from the SQE tables. If you want to use a session SQE
in another session, you must recreate the SQE.

System SQEs can be used in all sessions, including concurrent sessions. When a
session is terminated, system SQEs created during the session are not deleted from
the SQE tables and can be used in future sessions.

Re-evaluation of Stored Query Expressions
If the text column referenced by an stored query expression has been modified since
the stored query expression was created, the stored query expression results may be
out-of-date. Before returning the results of an stored query expression in a query
expression, ConText verifies that the results are current. If they are not current,
ConText automatically evaluates the differences and updates the results.

ConText also verifies that any stored query expressions nested within an stored
query expression have up-to-date results

Stored Query Expressions

Understanding Query Expressions 3-39

Result lists in stored query expression tables may get fragmented by consecutive
re-evaluations. You can resolve fragmentation by calling CTX_QUERY.REFRESH_
SQE.

Iterative Queries
Iterative queries are queries built on other queries to refine or add to the result set of
the original query. Once you define a stored query expression, you can add
additional search criteria in two ways:

■ extending the expression in the CONTAINS procedure

■ nesting SQEs

Extending the Expression in the CONTAINS Procedure
Sometimes you might want to add a condition to a stored query expression to
re-define your search criteria. You can do so by extending the query with additional
operators when you call CTX_QUERY.CONTAINS. When you extend stored queries
in this way, the response time is usually faster than an equivalent query without the
SQE operator.

For example, you find that wildcard queries take a long time to process. You
therefore define a wildcard query as a stored query expression, Q1, to return all
documents indexed under policy pol that have words beginning with the letter z:

ctx_query.store_sqe(’pol’, ’Q1’, ’z%’, ’session’);

You then extend the query by adding an OR condition: You ask for all documents
indexed under policy pol that contain words beginning with the letter z or contains
the word cat:

ctx_query.contains(’pol’, ’SQE(Q1) | cat’, ’ctx_temp’);

Note: ConText does not verify whether PL/SQL functions in
stored query expressions have been updated. If a PL/SQL function
in an stored query expression has been updated, the stored query
expression must be manually re-evaluated.

Stored Query Expressions

3-40 Oracle8 ConText Cartridge Application Developer’s Guide

Internally, ConText must still use the text index to find those documents that might
have the word cat but not z%; however, the response time is generally much faster
than the following equivalent query:

ctx_query.contains(’pol’, ’z% | cats’, ’ctx_temp’);

Nesting Stored Query Expressions
You can use stored query expressions to define other stored query expressions. This
is useful when you want to refine the result set returned from a stored query
expression.

For example, you define the stored query expression, Q1 as follows:

ctx_query.store_sqe(’pol’, ’Q1’, ’lions | tigers’, ’session’);

You then want to reduce this hitlist by adding another condition, so you define Q2
as follows:

ctx_query.store_sqe(’pol’, ’Q2’, ’SQE(Q1) and zoos’, ’session’);

You then execute Q2 as follows:

ctx_query.contains(’pol’, ’SQE(Q2)’, ’ctx_temp’);

This query searches for all documents that contain the terms lions or tigers and zoos.
It is generally faster that the following equivalent query:

ctx_query.contains(’pol’, ’lions | tigers and zoos’, ’ctx_temp’);

SQE Tables
Each stored query expression is stored in two tables: a central or system table
owned by CTXSYS and an text index table attached to the policy for which the
stored query expression was created.

The table owned by CTXSYS is an internal table which stores the stored query
expression definitions for all the stored query expressions that have been created for
all existing policies. It cannot be accessed directly, but can be viewed through two
views, CTX_SQES (users with CTXADMIN role) and CTX_USER_SQES (users with
CTXAPP and CTXADMIN roles).

Stored Query Expressions

Understanding Query Expressions 3-41

The table used to store the results of an stored query expression for a text column is
one of the tables created automatically when the column is indexed; however, the
SQR table is only populated when an stored query expression is created and
updated when an stored query expression is re-evaluated.

The tablespace, storage clause, and other parameters used to create the SQR table
are specified by the Engine preference in the policy for the text column of the stored
query expression.

Using Operators in Stored Query Expressions
You can use all query expression operators in stored query expressions, with the
following exceptions:

■ Max

■ First/Next

Stored query expressions also support all of the special characters and other
components that can be used in a query expression, including PL/SQL functions
and other stored query expressions.

Note: Similar to the other ConText index tables, the SQR table is
an internal table that is accessed only by ConText when an stored
query expression is processed in a query.

 For more information about policies, preferences, text indexing,
and the structure of the stored query expression tables and views,
see Oracle8 Context Cartridge Administrator’s Guide.

PL/SQL in Query Expressions

3-42 Oracle8 ConText Cartridge Application Developer’s Guide

PL/SQL in Query Expressions
In a query expression, you can call a PL/SQL function that returns a value. The
syntax for the PL/SQL operator is as follows:

Example
Calling a PL/SQL function within a query is useful for converting words to
alternate forms. For example, you can call a function that takes acronyms and
returns the expanded string.

Suppose you, as user ctxuser, create a function named CONVERT that takes an
acronym as input and returns the fully-expanded version of the acronym. Then, to
obtain all documents that contain either IBM or International Business Machine, you
issue the following query:

’execute ctxuser.convert(IBM), IBM’

Likewise, you can call a PL/SQL function that translates words. For example, you
can call a function french that converts an English word to its French equivalent. You
can then search on the French word for cat by issuing the following query:

’@ctxuser.french(cat)’

Syntax Description

@owner_name.fname(arg1, arg2,...,argn)

execute owner_name.fname()

exec owner_name.fname()

Executes fname() where fname() returns a value. Return values that are not of
type VARCHAR2 are cast into strings when possible. If fname() does not return a
value, an exception is raised.

Operator Precedence

Understanding Query Expressions 3-43

Operator Precedence
Operator precedence is the order in which the components of a query expression are
evaluated. ConText query operators can be divided into two sets of operators that
have their own order of evaluation. These two groups are described below as Group
1 and Group 2.

In all cases, query expressions are evaluated in order from left to right according to
the precedence of their operators. Operators with higher precedence are applied
first. Operators of equal precedence are applied in order of their appearance in the
expression from left to right.

Group 1
Within query expressions, the Group 1 operators have the following order of
evaluation from highest precedence to lowest:

Operator Equivalent

EQUIV =

NEAR ;

Weight, Threshold * >

MINUS -

NOT ~

WITHIN

AND &

OR |

ACCUM ,

Max :

First/Next #

Operator Precedence

3-44 Oracle8 ConText Cartridge Application Developer’s Guide

Group 2
Within query expression, the Group 2 operators have the following order of
evaluation from highest to lowest:

Procedural Operators
Other operators not listed under Group 1 or Group 2 are procedural. These
operators have no sense of precedence attached to them. They include the SQE,
PL/SQL, and thesaurus operators.

Precedence Examples

In the first example, because AND has a higher precedence than OR, the query
returns all documents that contain w1 and all documents that contain both w2 and
w3.

In the second example, the query returns all documents that contain both w1 and w2
and all documents that contain w3.

In the third example, the fuzzy operator is first applied to w1, then the AND
operator is applied to arguments w3 and w4, then the OR operator is applied to
term w2 and the results of the AND operation, and finally, the score from the fuzzy
operation on w1 is added to the score from the OR operation.

Operator Equivalent

Wildcard % _

Stem $

Fuzzy ?

Soundex !

Query Expression Order of Evaluation

w1 | w2 & w3 (w1) | (w2 & w3)

w1 & w2 | w3 (w1 & w2) | w3

?w1, w2 | w3 & w4 (?w1), (w2 | (w3 & w4))

abc = def ghi & jkl = mno ((abc = def) ghi) & (jkl=mno)

dog and cat WITHIN body dog and (cat WITHIN body)

Operator Precedence

Understanding Query Expressions 3-45

The fourth example shows that the equivalence operator has higher precedence
than the AND operator.

The fifth example shows that the AND operator has lower precedence than the
WITHIN operator.

Altering Precedence
Precedence is altered by grouping characters as follows:

■ expansion or execution of operations within parentheses is resolved before
other expansions regardless of operator precedence

Precedence of operators is maintained during evaluation of expressions inside
of the parentheses.

■ expansion operators are not applied to expressions within brackets unless the
operators are also within the brackets

Escaping Reserved Words and Characters

3-46 Oracle8 ConText Cartridge Application Developer’s Guide

Escaping Reserved Words and Characters
To query on words or symbols that have special meaning to query expressions such
as and & or| accum, execute, you must escape them. There are two ways to escape
characters in a query expression:

Example
In the following examples, an escape sequence is necessary because each expression
contains a ConText operator or reserved symbol:

’AT\&T’
’{AT&T}’

’high\-voltage’
’{high-voltage}’

Escape Symbol Meaning

 {} Use braces to escape a string of characters or symbols. Everything
within a set of braces in considered part of the escape sequence.

 \ Use the backslash character to escape an individual character or
symbol. Only the character immediately following the backslash is
escaped.

Note: If you use braces to escape an individual character within
a word, the character is escaped, but the word is broken into
three tokens.

For example, a query written as high{-}voltage searches for high -
voltage, with the space on either side of the hyphen.

Escaping Reserved Words and Characters

Understanding Query Expressions 3-47

Reserved Words
The following is a list of ConText reserved words and characters that must be
escaped to be searched on:

Operator Reserved Word Reserved Character

And AND &

Or OR |

Accumulate ACCUM ,

Minus MINUS -

Not NOT ~

Near (none) ;

Stem (none) $

Soundex (none) !

Fuzzy (none) ?

Threshold (none) >

Weight (none) *

First/Next (none) #

Max (none) :

Wildcard (multiple) (none) %

Wildcard (single) (none) _

Within WITHIN (none)

Grouping (parentheses) (none) ()

Grouping (brackets) (none) []

Escape (multiple characters) (none) { }

Escape (single character) (none) \

Paragraph Searching PARAGRAPH (used with
WITHIN)

(none)

PL/SQL call EXECUTE

EXEC

 @

 @

Sentence Searching SENTENCE (used with WITHIN) (none)

Escaping Reserved Words and Characters

3-48 Oracle8 ConText Cartridge Application Developer’s Guide

Querying Escape Characters
The open brace { signals the beginning of the escape sequence, and the closed brace}
indicates the end. Everything between the opening brace and the closing brace is
part of the query expression (including any open brace characters). To include the
close brace character in a query expression, use}}.

To escape the backslash escape character, use \\.

Stored Query Expression SQE (none)

Synonym SYN (none)

Preferred PT (none)

Related RT (none)

Top TT (none)

Broader BT (none)

Narrower NT (none)

Broader Generic BTG (none)

Narrower Generic NTG (none)

Broader Partitive BTP (none)

Narrower Partitive NTP (none)

Operator Reserved Word Reserved Character

Querying with Stopwords

Understanding Query Expressions 3-49

Querying with Stopwords
Stopwords are words for which ConText does not create an index entry. They are
usually common words that are unlikely to be searched on by themselves.

ConText is shipped with a default list of stopwords in English containing common
words such as this and that. However, you or ConText administrator can define
stopwords.

Stopwords by Themselves
You cannot query on a stopword by itself or a phrase of only stopwords; whenever
you attempt to query on a stopword by itself or a stopword-only phrase, the result
is always no hits.

For example, you cannot issue a query to retrieve all documents that contain this if
this is defined as a stopword, nor can you issue a query on a phrase of stopwords
such as the who, if the words the and who are defined as stopwords.

Stopwords with Non-stopwords
You can query on phrases that contain stopwords as well as non-stopwords, such as
this boy talks to that girl, where this and that are the only stopwords. This is possible
because Context records the position of stopwords even though it does not create an
index entry for them.

Case-Sensitivity
If you have case-sensitivity enabled for text queries and you issue a query on a
phrase containing stopwords and non-stopwords, you must specify the correct case
for the stopwords. For example, a query on this boy talks to that girl does not return
documents that containing the phrase This boy talks to that girl, assuming this is a
stopword.

See Also: For more information about defining stopwords, see
Oracle8 Context Cartridge Administrator’s Guide.

See Also: For more information about issuing case-sensitive text
queries, see "Case-Sensitive Queries" in this chapter.

Querying with Stopwords

3-50 Oracle8 ConText Cartridge Application Developer’s Guide

Stopwords with Operators
When you use a stopword or a stopword-only phrase as an operand of a query
operator, ConText rewrites the expression to eliminate the stopword or
stopword-only phrase and then executes the query.

The following table describes some common stopword transformations. The
Stopword Expression column describes the query expression or component of a query
expression you enter, while the right-hand column describes the way ConText
rewrites the query.

In these examples, a value of no_token for the rewritten expression means no hits are
returned for the query.

For example, assuming that the word this is a stopword and that the word dog is a
non-stopword, the query dog and that is rewritten to dog, applying the first
transformation is the list.

Stopword Expression Rewritten Expression

non_stopword AND stopword non_stopword

stopword AND non_stopword non_stopword

stopword AND stopword no_token

non_stopword NOT stopword non_stopword

stopword NOT non_stopword no_token

stopword NOT stopword no_token

See Also: For a complete list of stopword transformations, see
Appendix D, "Stopword Transformations".

To learn about how to examine stopword transformations, see
Chapter 5, "Query Expression Feedback".

Querying with Special Characters

Understanding Query Expressions 3-51

Querying with Special Characters
Context indexes text by identifying tokens (words). For English and most European
languages it assumes that blank spaces delimit tokens. At index time, ConText must
also know how to interpret punctuation characters and characters that occur within
words and numbers. Such special characters must be defined in the BASIC LEXER
preference. They are described as follows:

In the BASIC LEXER preference, ConText defines a default set of characters for each
group.

The way you query on tokens that contain these characters depends on how
ConText indexes the tokens containing these characters. This is because ConText
tokenizes words at query time the same way it tokenizes words at index time. To
query on words or numbers that contain special characters, you must know how
these words are represented in the index.

Type of Character Description

Punctuations Characters that delimit the end of sentences such as the period ’.’ and
question mark ’?’ and those that occur next to words and numbers,
such as the comma ’,’ and the dollar sign ’$’. These characters are not
indexed.

Continuation Characters that indicate a word continues on the next line. An
example is the hyphen ’-’. These characters are not indexed.

Printjoins Characters that join words together such as hyphen ’-’. These
characters are indexed.

Skipjoins Characters that join words together such as hyphen ’-’. These
characters are not indexed.

Numjoin Characters that occur in numbers such as the decimal point ’.’. These
characters are indexed.

Numgroup Characters that group digits within a number such as the comma ’,’.
These characters are indexed.

Startjoin Non-alphanumeric characters that occur at the beginning of a token.
For example, you can define < as a startjoin character for HTML
tagged text. These characters are indexed.

Enjoin Non-alphanumeric characters that occur at the end of a token. For
example, you can define > as and endjoin character for HTML tagged
text. These characters are indexed.

Querying with Special Characters

3-52 Oracle8 ConText Cartridge Application Developer’s Guide

Querying with Punctuation and Continuation Characters
Punctuation and continuation characters are not indexed with the words they occur
next to or with, and thus are ignored by ConText at query time. The following table
shows how ConText strips punctuation characters at query time:

Querying with Printjoins and Skipjoins
Printjoins and skipjoins are characters such as hyphens that join words together.

When you define a character as a printjoin, such as a hyphen, you specify that the
words on either side of the hyphen are to be indexed with the hyphen. For example,
sister-in-law is indexed as the token sister-in-law.

When you define a character as a skipjoin, such as a hyphen, you specify that the
two words on either side of the hyphen are to be indexed as one token without the
hyphen. For example, sister-in-law is indexed as sisterinlaw.

To query on words that contain a join character, you must know if the character is
defined as a skipjoin or printjoin in the BASIC LEXER preference.

See Also: For more information about defining special characters
for the BASIC LEXER preference, see Oracle8 Context Cartridge
Administrator’s Guide.

Query Equivalent Query

’John swims fast. Sharks eat.’ ’John swims fast sharks eat’

’John swims. Fast sharks eat.’ ’John swims fast sharks eat’

’{John swims, fast sharks eat}’ ’John swims fast sharks eat’

’{SHAZAM!}’ ’SHAZAM’

’{$250}’ ’250’

’{#101}’ ’101’

’{phone#}’ ’phone’

Suggestion: Because ConText strips punctuation characters at
query time, leaving them out of the query expression and using the
equivalent query might be a better approach, especially when the
characters are reserved as in the last five examples.

Querying with Special Characters

Understanding Query Expressions 3-53

Printjoin Example
If the hyphen character is defined as a printjoin, you must write your query with
the hyphen, since the indexed token contains the hyphen. Thus, to query on all the
documents that contain the term sister-in-law, you must write your query as follows
with the hyphen:

’{sister-in-law}’

Skipjoin Example
When a character is defined a as skipjoin, it is not indexed with the word, therefore
you can write queries with or without the skipjoin character.

If the hyphen character is defined as a skipjoin, you can write your query with or
without the hyphen. Thus, to query on all documents that contain sister-in-law, you
can write your query as one of the following expressions:

’sisterinlaw’
’{sister-in-law}’

You can write your query in two ways, because both queries are lexed to sisterinlaw
before index look-up. This also means that the documents retrieved can contain
either sisterinlaw or sister-in-law.

Querying with Numjoins and Numgroups
Numjoin and numgroup characters are characters that can appear in numbers, such
as the decimal point and the comma.

Numjoin
A numjoin is a character that occurs once in a string of digits, such as a decimal
point, and gets indexed with the number. (ConText defines the decimal as a default
numjoin character for the BASIC LEXER preference.) For example, the number 3.14
is indexed as 3.14. Thus to query on 3.14 with the decimal point defined as a
numjoin character, you write:

’3.14’

Note: The ’-’ character must be escaped, or else ConText interprets
it as the MINUS operator.

Querying with Special Characters

3-54 Oracle8 ConText Cartridge Application Developer’s Guide

When you define the numjoin character to be NULL, Context indexes 3.14 as the
two separate numbers 3 and 14.

Numgroup
A numgroup is a character such as a comma that groups digits together in a
number. Numgroup characters get indexed with the number. (ConText defines the
comma as a default numgroup character for the BASIC LEXER preference.) For
example, the number 6,344,555 gets indexed as 6,344,555.

To query on a number that contains numgroup characters, you must write the query
with the numgroup character. For example, to query on 6,344,555, you write:

’{6,344,555}’

Note that the comma must be escaped.

When you define the numgroup character as NULL, numbers such as 1,000 get
indexed as 1 and 000.

Note: When a period follows a number such as at the end of a
sentence, ConText knows to index the number without the decimal
point. For example, the number fourteen in the following sentence
gets indexed as 14 without the period:

 The score was San Francisco 21, Dallas 14.

Note: When you have the comma defined as a numgroup
character, you must query on numbers using the comma. That is, a
query on {1,000} does not return documents that contain 1000
without the comma. A better query is with the equivalence
operator:

’{1,000}=1000’

Querying with Special Characters

Understanding Query Expressions 3-55

Querying with Startjoin and Endjoin Characters
Startjoin and endjoin characters are non-alphanumeric characters that start and end
tokens. These characters are indexed with the token they occur with.

You or your ConText administrator typically define startjoin and endjoin characters
when you index tagged text such as HTML. This makes it easy to define sections for
section searching as well as to query on the tags themselves.

For example, to query on the tag <HEAD> with < defined as a startjoin and >
defined as an endjoin, write your query as follows:

’{<HEAD>}’

In the query above, an escape sequence is necessary, since > is an operator.

See Also: For more information about section searching, see
"WITHIN Operator" in this chapter.

Querying with Special Characters

3-56 Oracle8 ConText Cartridge Application Developer’s Guide

Theme Queries 4-1

4
Theme Queries

This chapter describes how to perform theme queries. The following topics are
covered:

■ Understanding Theme Queries

■ Constructing Theme Queries

■ Refining Theme Queries

■ Theme Query Examples

Understanding Theme Queries

4-2 Oracle8 ConText Cartridge Application Developer’s Guide

Understanding Theme Queries
Theme queries enable you to search for documents by their major concepts. The
following sections describe the theme indexing and querying processes and how
they use the knowledge base:

■ Theme Indexing Concepts

■ Theme Querying

See Also: For more information about the knowledge base, see
"Knowledge Base" in Chapter 7, "ConText Linguistics".

For more information about how to create a theme index, see
Oracle8 Context Cartridge Administrator’s Guide.

Understanding Theme Queries

Theme Queries 4-3

Theme Indexing Concepts

Figure 4–1

Before you can issue a theme query, your set of documents must be indexed by
theme. During theme indexing, ConText extracts up to fifty main concepts or
themes of a document and stores these themes in the theme index. A weight is also
associated with every theme that is indexed. A theme can be a concrete concept,
such as insects, or an abstract concept, such as success, sufficiently developed in the
document.

Figure 4–1 illustrates how ConText uses the knowledge base to extract document
themes from an example document "The Reproductive Cycle of Insects" that
contains information about insects. This example shows that ConText recognizes the
following types of themes:

Document

"The
Reproductive

Cycle of
Insects" zoology

insects

science and technology
hard sciences

biology

Theme 1: Insects

Theme 2: Dr. Mack Dr. Mack
(Unknown)

(Known)

Document Themes

zoology
insects

science and technology
hard sciences
biology

Dr. Mack

Theme Index

Knowledge Catalog (Segment)

zoology

social sciences

botany

insects mammals

hard sciences

biology chemistry

science and technology

Understanding Theme Queries

4-4 Oracle8 ConText Cartridge Application Developer’s Guide

■ known themes

■ unknown themes

Known Themes
Known themes are document themes that can attach to a branch of the knowledge
base.

In the example in Figure 4–1, the document A entitled "The Reproductive Cycle of
Insects" contains information about insects. The known document theme insects has
four parent themes corresponding to the branch of the knowledge base: science and
technology, hard sciences, biology, zoology, and insects. Each theme in the branch is
entered as a searchable row in the theme index along with a weight.

When themes are indexed as such, a theme query on insects or any of its parents
returns the document A.

Unknown Themes
Unknown themes are document themes that cannot be found in the knowledge
base, because they are either unknown to the knowledge base or inherently
ambiguous.

Figure 4–1 shows how an unknown theme of Dr. Mack is extracted without having a
representation in the knowledge base. Unknown themes such as this are indexed as
a single row.

Ambiguous document themes such as the term cricket or the term table also have no
attachments to the knowledge base and hence are indexed as a single row. To
query on ambiguous document themes, you would rely on other supporting themes
such as sports or insects being indexed with an ambiguous theme like cricket.

Theme Weight
The theme weight is a measure of the strength of a theme relative to the other
themes in a document. Weights are indexed with every theme and the related
parent themes extracted from a document. ConText uses theme weights to help
score theme queries.

See Also: For more information about querying ambiguous
themes, see "Refining Theme Queries" in this chapter.

Understanding Theme Queries

Theme Queries 4-5

Theme Querying

Figure 4–2

To execute a theme query, you specify a query string, which can be a sentence or a
phrase with or without operators. ConText uses the knowledge base to normalize
the word or phrase you enter into a standard form. It then looks up the normalized
theme in the index and returns the documents that were indexed with the given
theme. See Figure 4–2. Scores for theme queries are calculated based on the weights
associated with each theme in the index.

For example, a theme query on insect retrieves the document indexed in Figure 4–1
entitled, "The Reproductive Cycle of Insects". Likewise, a theme query on any of the
indexed parents, such as science and technology, hard sciences, biology, or zoology also
retrieves the same document.

Note: When you issue a theme query, you are asking ConText to
return to you all the documents that ConText indexed with that
theme. For ConText to attach a theme to a document, the idea or
concept must be developed sufficiently in the document. If a
concept is not developed sufficiently in a document, ConText does
not index it as a document theme, and consequently the document
is not returned in a query for that theme.

Theme
Query

Normalized
Theme

Theme
Index

Knowledge Catalog

...contains (...'insect'...)... insects
(Lookup)

insects

Hitlist

Knowledge
Catalog

Understanding Theme Queries

4-6 Oracle8 ConText Cartridge Application Developer’s Guide

Scoring
ConText returns a relevance score for each document it returns in a theme query;
the higher the score, the more relevant the returned document. This relevance score
is out of 100 and is based on the weight of the indexed theme.

Generally, specifying broader themes or concepts in a theme query will return
higher scoring documents.

When using operators in theme queries, the scoring behavior is the same as for
regular text queries. For example, the OR operator returns the higher score of its
operand, and the AND operator returns the lower score of its operands.

Case-Sensitivity
Theme queries are case-sensitive. For example, doing a query on the common noun
turkey produces a hit on turkey the bird. Such a query does not produce a hit on the
proper noun Turkey, which describes a country. To query on the proper noun, you
must enter the query as Turkey.

Recognition of Known Themes Even though ConText theme queries are case-sensitive,
ConText tolerates poorly formatted input for known themes.

For example, entering microsoft or microSoft returns documents that include the
theme of Microsoft, a known company. Likewise, entering Currency Rates returns
documents that include a theme of currency rates, a standard classification in
business and economics.

Note: ConText always attempts to match the entered theme with
themes in the index. For example if you enter microsoft, ConText
looks up microsoft and Microsoft in the index. Likewise, if you enter
Currency Rates as your theme, ConText looks up Currency Rates and
currency rates in the index.

Constructing Theme Queries

Theme Queries 4-7

Constructing Theme Queries
The following section describes how to construct theme queries:

■ Using Operators

■ Phrasing Theme Queries

Using Operators
With theme queries, the following operators have the same semantics as with
regular text queries:

Examples
Some valid theme query strings using operators are as follows:

contains(text, ’cricket ~ insects’) > 0;
contains(text, ’cricket & sports’) > 0;
contains(text, ’music, reggae*5’) > 0;
contains(text, ’chemistry > 30’) > 0;
contains(text, ’soccer | basketball’) > 0;
contains(text, ’computer software - Microsoft’) > 0;
contains(text, ’music:20’) > 0;

Operator Symbol

Accumulate ,

Or |

And &

Minus -

Not ~

Weight *

Threshold >

Max :

See Also: For more information about how to use operators in
theme queries, see "Refining Theme Queries" in this chapter.

For more information about the semantics of query operators, see
Chapter 3, "Understanding Query Expressions".

Constructing Theme Queries

4-8 Oracle8 ConText Cartridge Application Developer’s Guide

Thesaurus Operators
In a theme query, the thesaurus operators (synonym, broader term, narrower term
etc.) work the same way as in a regular text query, provided a thesaurus has been
created/loaded.

Grouping Characters
In theme query expressions, the grouping characters () [] have the same semantics
as with a regular text query.

Wildcard Characters
In theme query expressions, the wildcard characters% _ work the same way as in
regular text queries.

Unsupported Operators
ConText does not support the following query expression operators with theme
queries:

See Also: For more information about thesaurus operators, see
"Thesaurus Operators" in Chapter 3.

See Also: For more information about grouping characters, see
"Grouping Characters" in Chapter 3.

Note: There is a risk of ambiguity when using the wildcard
character. For example, doing a theme query on %court% might
return documents that have a theme of court of law or tennis court.

See Also: For more information about grouping characters, see
"Wildcard Characters" in Chapter 3.

Operator Symbol

Near ;

Fuzzy ?

Soundex !

Stem $

Constructing Theme Queries

Theme Queries 4-9

Phrasing Theme Queries
The following issues affect the phrasing of theme queries.

Use Noun Forms
When you enter your theme query, ConText normalizes the word or phrase
representing your theme into a form that it can use to compare with document
themes in the index. This normal form is nouns and noun phrases, such as chemistry
or personal computer. It is therefore better to use nouns and noun phrases when
constructing theme queries. Avoid using sentences or long phrases.

For example, to search for documents about computer programming, use the noun
form computer programming not programming my computer.

Avoid Splitting Phrases
Avoid splitting phrases that describe your idea as a whole. For example, use the
phrase physical chemistry, not physical and chemistry.

Understand Case-Sensitivity
Theme queries are case-sensitive. For example, doing a query on the common noun
turkey, which describes a type of bird, will not produce a hit on the proper noun
Turkey, which describes a country.

See Also: For more information about case-sensitivity and theme
queries, see the "Theme Querying" section in this chapter.

Refining Theme Queries

4-10 Oracle8 ConText Cartridge Application Developer’s Guide

Refining Theme Queries
Depending on how you write your theme query, ConText usually returns
documents that are relevant to your query as well as documents that might be
irrelevant to your query. Before you issue the query, you do not know what
combination of document themes your query will return.

For example, a query on cricket might return documents on sports and insects
depending on your document set. The best way to know the possible outcome is to
run the query and examine the set of returned documents. Then you run the query
again, using logical operators to eliminate unwanted documents.

You can approach the trial and error method in one of two ways:

■ Restrict query. You select a broad category/concept, examine results, and then
issue the query again using the AND or NOT operator to further restrict the
query hitlist.

■ Expand query. You select a specific category, examine the results, then expand
query to include more documents in the hitlist.

Restricting a Query
Starting with broad theme queries might generate noise or unwanted documents.
This is because of the following:

■ the word or phrase in your query can represent more than one concept

■ a document can have more than one theme attached to it

You can use the AND or NOT operator to eliminate unwanted documents.
However, use these operators with caution, because in both cases you run the risk
of eliminating documents that you might be interested in. For this reason, it is
always better to have some noise than none at all.

Using AND
You can use the AND operator with a qualifying theme to restrict your theme query
and hence eliminate noise.

For example, if a theme query on cricket always returned documents about the
sport cricket and the insect cricket, and you were interested only in those documents
about cricket the sport, you can restrict your query by qualifying cricket with the
more general category sports as follows:

’cricket and sports’

Refining Theme Queries

Theme Queries 4-11

The disadvantage of using AND with a restricting theme is that a successful query
depends on both themes being developed sufficiently in the document for ConText
to index them as such. For example, a hypothetical news article about the personal
affairs of cricket player might not have the theme of sports developed substantially
for ConText to index sports as a theme, and therefore such a document would not be
returned in the above query.

Using NOT
You can use the NOT operator to exclude unwanted themes. For example, suppose
you have a collection of news articles. You find that a theme query on cricket
returns documents about cricket the sport as well as cricket the insect.

In such a scenario, you can use the NOT operator to exclude the unwanted theme.
Thus if you are interested in those documents only about the sport cricket, you
exclude documents about insects as follows:

’cricket not insects’

One disadvantage of using the NOT operator is that you run the risk of excluding
documents that are coincidentally about the desired theme and the unwanted
theme. For example, the above query does not return a hypothetical document
about a cricket game that was swarmed by locusts, assuming that the theme of
insects is developed sufficiently for ConText to index insects as a document theme.

Another disadvantage of using NOT is that you usually have a better idea of the
themes you want, not of the themes you don’t want. Predicting unwanted themes
depends on knowing your document corpus. For this reason, using NOT is best
suited for eliminating irrelevant high-ranking documents you specifically know
about.

Expanding a Query
Sometimes it is better to start with specific categories and then expand these queries
into more general ones, especially when your query covers a topic that is
categorized specifically in the world. For example, if you are searching for
documents that are about bees, you issue a query on bees, which is a specific

Suggestion: When choosing the restricting condition to use with
the AND operator, we recommend choosing a broad category;
choosing a very specific category as the restricting condition might
inadvertently eliminate relevant documents.

Refining Theme Queries

4-12 Oracle8 ConText Cartridge Application Developer’s Guide

category of insects. If you find that the result set is not returning the documents you
need, you can expand the query by issuing a theme of insects, which is slightly
broader.

After expanding a query, you can use the NOT or AND operators to scale back the
query.

Theme Query Examples

Theme Queries 4-13

Theme Query Examples
To execute a theme query, you specify a query string, which can be a sentence or a
phrase with or without operators. ConText interprets your query, creating a
normalized form of your query that it can use to match against document themes in
the index. Context returns a list of documents that satisfy the query, based on
certain rules, along with a score of how relevant each document is to the query.

You can issue themes queries using either the two-step or one-step method. The
way in which ConText matches themes and scores hits is the same for both
methods.

Two-Step Query
To execute a theme query with the CTX_QUERY.CONTAINS procedure against a
theme index, you must specify a policy that has a theme lexer associated with it.

For example, you specify a theme query on computer software as follows:

execute ctx_query.contains(’THEME_POL’, ’computer software’, ’CTX_TEMP’);

In the above example, ConText normalizes computer software, and then attempts to
match the normal form with document themes in the index.

When a match is found, ConText uses the weight of the matched theme to compute
a score that reflects how relevant the match is to the query; the higher the score, the
more relevant the hit. ConText returns the matched document as part of the hitlist.

One-Step Query
You can execute theme queries in SQL*Plus using the one-step method. To do so,
the text column must be indexed by theme. The way in which ConText matches
themes and scores hits is the same as in a two-step query.

For example, to execute a theme query on computer software:

SELECT * FROM TEXTAB
WHERE CONTAINS (text, ’computer software’) > 0;

Note: To issue theme queries, you must have a theme index.

For more information about how to create a theme index on a text
column, see Oracle8 Context Cartridge Administrator’s Guide.

Theme Query Examples

4-14 Oracle8 ConText Cartridge Application Developer’s Guide

Multiple Policies
For a text column that has more than one policy associated with it, you must specify
which policy to use in the CONTAINS clause using the pol_hint parameter. You
might create two policies for a column when you want to perform both theme and
text queries on the column.

For example, if the column text had a regular text policy and a theme policy
THEME_POL associated with it, you issue a theme query as follows:

SELECT ID, SCORE(0) FROM TEXTAB
WHERE CONTAINS (text, ’computer software’, 0, ’THEME_POL’) > 0;

When you specify pol_hint, you must also specify a placeholder (in this example 0)
for the LABEL parameter.

See Also: For more information about using the pol_hint
parameter in the CONTAINS function, see the specification for
CONTAINS in Chapter 9.

Query Expression Feedback 5-1

5
Query Expression Feedback

This chapter describes query expression feedback. The following topics are covered:

■ The Feedback Process

■ Understanding ConText Parse Trees

■ Understanding the Feedback Table

■ Obtaining Query Expression Feedback

The Feedback Process

5-2 Oracle8 ConText Cartridge Application Developer’s Guide

The Feedback Process

Figure 5–1

Query expression feedback is a feature that enables you to know how ConText
parses a text or theme query expression before you execute the query. Knowing how
ConText evaluates a text or theme query expression is useful for refining and
debugging queries. You can also design your application so that it uses the feedback
information to help users write better queries.

The diagram above shows how you use query expression feedback. You execute the
PL/SQL procedure CTX_QUERY.FEEDBACK, which generates and stores feedback

Generate Feedback:

CTX_QUERY.FEEDBACK(...
text_query=>'a=b and c',...)

Refine Query
Expression

Examine Query Expression
Transformations and Expressions:

Execute Query:

CTX_QUERY.CONTAINS(...)

CTX_QUERY.OPEN_CON(...)

SELECT...
WHERE CONTAINS(...)

OR

OR
Feedback Table

The Feedback Process

Query Expression Feedback 5-3

information to a table. From the data in this feedback table, you can visualize the
ConText parse tree to examine how the expression was expanded and parsed. You
can then refine the query and re-execute FEEDBACK, or you can execute the real
query with CONTAINS for two-step queries, OPEN_CON for in-memory queries,
or SELECT for one-step queries.

In text queries, query expression feedback is especially useful for knowing how
context expands expressions that contain stem, wildcard, thesaurus, fuzzy, soundex,
PL/SQL, or SQE operators before you execute the query. This is because such
queries can potentially expand into many tokens or result in very large hitlists.

In theme queries, query expression feedback is useful for knowing how ConText
uses the knowledge catalog to normalize query expressions.

Understanding ConText Parse Trees

5-4 Oracle8 ConText Cartridge Application Developer’s Guide

Understanding ConText Parse Trees
Before ConText executes a query, it parses the expression. The resulting expression
can be represented as a parse tree. A ConText parse tree can show:

■ order of execution (precedence of operators)

■ stem, fuzzy, thesaurus, soundex, PL/SQL, SQE, and wildcard expansions

■ theme query normalization

■ query optimization

■ stop-word transformations

■ breakdown of composite-word tokens (German)

The output table of the FEEDBACK procedure is graphical representation of a
ConText parse tree.

Understanding ConText Parse Trees

Query Expression Feedback 5-5

Operator Precedence

Parse trees are read in a depth-first manner and from left to right. This means the
first operation is always furthest to the left and at the bottom of the branch. In this
way, parse trees illustrate operator precedence.

The example above shows the parse tree for the evaluation of a AND b OR c, where
a, b and c stand for three arbitrary words. Since the and operation a AND b is the
leftmost operation and at the bottom of the tree, it is executed first. In this way, the
parse tree above indicates correctly that the and operator has higher precedence
over the or operator. The resulting query is hence (a AND b) OR c rather than a AND
(b OR c).

a AND b OR c

c

OR

ba

AND

Understanding ConText Parse Trees

5-6 Oracle8 ConText Cartridge Application Developer’s Guide

Query Expansions

The above example shows how ConText expands the query comp% OR ?smith. The
parse tree shows that before ConText executes the query, the token comp% is
expanded to computer and comptroller, while ?smith is expanded to smith and smythe.

ConText parse trees show similar expansions with thesaurus, wildcard, soundex,
stem, SQE, and PL/SQL operators. In the case of the wildcard, soundex, and fuzzy
operators, ConText obtains the correct word expansions from the index.

comp% OR ?smith

comptroller

comp% ?smith

OR

comp% OR ?smith

computer

OR

EQUIVALENCE EQUIVALENCE

smith smythe

Understanding ConText Parse Trees

Query Expression Feedback 5-7

Note: When you include the SQE operator in the feedback
expression, the feedback (expansion of the stored query expression)
is based on the current state of the index and will take into account
any inserts, updates, or deletes made to the base table; however,
unlike a call to CONTAINS, the stored query expression is not
updated or refreshed as a result of the call to FEEDBACK.

Understanding ConText Parse Trees

5-8 Oracle8 ConText Cartridge Application Developer’s Guide

Theme Query Normalization

You can use query expression feedback to know how ConText interprets theme
queries. The feedback information provides the normalized version of the query as
obtained from the knowledge catalog.

The example above shows how ConText normalizes the theme query ratified laws to
the themes ratification and law. The resulting expression is an AND operation with
weights attached to the normal forms: ratification*0.561 AND law*0.438.

Note: Because numbers are rounded off when displayed, weights
might not always add up to 1.000 exactly.

See Also: For more information about theme queries, see
Chapter 4, "Theme Queries".

law

AND

ratified laws

ratification

WEIGHT
0.561

WEIGHT
0.438

Understanding ConText Parse Trees

Query Expression Feedback 5-9

Query Optimization

The example above shows how ConText optimizes the expression a AND b AND c,
where a and b and c stand for three different words.

In the first step of the parse, ConText evaluates a AND b, then ANDs the result with
c. With such a parse tree, ConText must search for all documents that contain a and
b, then search for all documents that contain c, and then intersect the two result sets.

The ConText optimizer realizes this query is more efficiently executed by
simultaneously searching for all the documents that contain a and b and c, which is
illustrated in the second step of the optimizing process.

Un-optimized Execution Optimized Execution

a AND b AND c

c

AND

ba

AND

a AND b OR c

c

AND

ba

Understanding ConText Parse Trees

5-10 Oracle8 ConText Cartridge Application Developer’s Guide

Stopword Rewrite

The example above shows the parse sequence for the stopword transformation:

non_stopword NOT stopword => non_stopword

Assuming that is a stopword, ConText reduces the query dog NOT that to dog.

See Also: To learn more about querying with stopwords, see
"Querying with Stopwords" in Chapter 3.

For a list of all possible stopword transformations, see Appendix D,
"Stopword Transformations".

Step 1 Step 2

dog NOT that

that

NOT

dog

doc NOT that

dog

Understanding ConText Parse Trees

Query Expression Feedback 5-11

Decompounding of Composite Word Tokens

When using a composite index with German or Dutch text, you can use query
feedback to examine how ConText breaks down a composite word query into its
subcomposites. Even though ConText does not return documents that contain only
subcomposite words in a query, composite word query feedback is useful for
verifying where ConText places word boundaries.

The above example shows that ConText breaks down the German composite word
Hauptbahnhof into haupt, bahn, bahnen, and hof.

Note: To obtain composite word query feedback, the policy’s lexer
must have the COMPOSITE attribute of the lexer set to 1.

For more information about defining policies, see the Oracle8
Context Cartridge Administrator’s Guide.

COMPOSITE

Hauptbahnhof

bahnhaupt bahnen hof

Understanding the Feedback Table

5-12 Oracle8 ConText Cartridge Application Developer’s Guide

Understanding the Feedback Table
Before you issue a query, you can obtain the parse tree information for the query
expression. The procedure CTX_QUERY.FEEDBACK creates a graphical
representation of the parse tree and stores this information in a feedback table,
which you create before executing CTX_QUERY.FEEDBACK. To reconstruct
ConText parse trees, you must understand the structure of this table.

Table Structure
The feedback table has the following structure:

Table 5–1

Column Name Datatype Description

FEEDBACK_ID VARCHAR2(30) The value of the feedback_id argument specified in
the FEEDBACK call.

ID NUMBER A number assigned to each node in the query
execution tree. The root operation node has ID =1.
The nodes are numbered in a top-down, left-first
manner as they appear in the parse tree.

PARENT_ID NUMBER The ID of the execution step that operates on the
output of the ID step. Graphically, this is the parent
node in the query execution tree. The root operation
node (ID =1) has PARENT_ID = 0.

OPERATION VARCHAR2(30) Name of the internal operation performed. Refer to
Table 5–2 for possible values.

OPTIONS VARCHAR2(30) Characters that describe a variation on the operation
described in the OPERATION column. When an
OPERATION has more than one OPTIONS
associated with it, OPTIONS values are
concatenated in the order of processing. See
Table 5–3 for possible values.

OBJECT_NAME VARCHAR2(64) Section name, or wildcard term, or term to lookup in
the index.

POSITION NUMBER The order of processing for nodes that all have the
same PARENT_ID.The positions are numbered in
ascending order starting at 1.

CARDINALITY NUMBER Reserved for future use. You should create this
column for forward compatibility.

Understanding the Feedback Table

Query Expression Feedback 5-13

OPERATION Column
Table 5–2 lists the possible values for the OPERATION column in the feedback
table:

Table 5–2

Operation Value Query Operator Equivalent Symbol

ACCUMULATE ACCUM ,

AND AND &

COMPOSITE (none) (none)

EQUIVALENCE EQUIV =

FIRST_NEXT_DOC # #

MAX_DOC : :

MINUS MINUS -

NEAR NEAR ;

NOT NOT ~

NO_HITS (no hits will result from this query)

OR OR |

PHRASE (a phrase term)

SECTION (section)

THRESHOLD > >

WEIGHT * *

WITHIN within (none)

WORD (a single term)

Understanding the Feedback Table

5-14 Oracle8 ConText Cartridge Application Developer’s Guide

OPTIONS Column
Table 5–3 shows the values for the OPTIONS column in the feedback table. When an
OPERATION has more than one OPTIONS associated with it, the OPTIONS values
are concatenated in the order of processing.

Table 5–3

Options Value Description

($) Stem

(?) Fuzzy

(!) Soundex

(T) Order for ordered Near.

(F) Order for unordered Near.

(n) A number associated with Threshold, Weight, Max, or the
max_span parameter for the Near operator.

(m-n) First next range (m and n are integers)

Understanding the Feedback Table

Query Expression Feedback 5-15

Example

The figure above shows how ConText encodes the parse tree for the query comp%
OR $smith, which is asking for all documents that contain words beginning with
comp or contain words that are spelled like smith.

Each node is labeled with a value that corresponds to the OPERATION column in
the feedback table. The tree above contains one OR node, two EQUIVALENCE
nodes, and four WORD nodes.

The ID and PARENT_ID values are listed beside each node. For example, the OR
node has an ID of 1 and PARENT_ID of 0, since it is the root node.

The EQUIVALENCE node with ID = 2, PARENT_ID = 1, has an OBJECT_NAME
value of COMP%, because this equivalence operation is a result of wildcard term
comp%.

The WORD node with id = 3 has an OBJECT_NAME value of computer, because in
this instance, computer is one of the words that satisfy comp%.

ID = 1
PID = 0

ID = 2
PARENT_ID = 1
OBJECT_NAME = COMP%

ID = 5
PARENT_ID = 1
OPTIONS = (?)

ID = 7
PARENT_ID = 5
OBJECT_NAME =

SMYTHE

ID = 6
PARENT_ID = 5
OBJECT_NAME =

SMITH

ID = 4
PARENT_ID = 2
OBJECT_NAME =

COMPTROLLER

ID = 3
PARENT_ID =2
OBJECT_NAME =

COMPUTER

WORD

OR

comp% OR ?smith

WORD

EQUIVALENCE EQUIVALENCE

WORD WORD

Obtaining Query Expression Feedback

5-16 Oracle8 ConText Cartridge Application Developer’s Guide

Obtaining Query Expression Feedback
To obtain query expression feedback information, you must do the following:

1. Create the feedback table.

2. Execute CTX_QUERY.FEEDBACK.

3. Retrieve data from feedback table.

4. Optionally, construct expansion tree from table information.

Creating the Feedback Table
To create a feedback table called test_feedback for example, use the following SQL
statement:

create table test_feedback(
 feedback_id varchar2(30)
 id number,
 parent_id number,
 operation varchar2(30),
 options varchar2(30),
 object_name varchar2(64),
 position number,
 cardinality number);

Executing CTX_QUERY.FEEDBACK
To obtain the expansion of a query expression such as comp% OR ?smith, use CTX_
QUERY.FEEDBACK as follows:

ctx_query.feedback(
 policy_name => ’scott.test_policy’,
 text_query => ’comp% OR ?smith’,
 feedback_table => ’test_feedback’,
 sharelevel => 0,
 feedback_id => ’Test’);

Retrieving Data from Feedback Table
To read the feedback table, you can select the columns as follows:

select feedback_id, id, parent_id, operation, options, object_name, position
from test_feedback
order by id;

Obtaining Query Expression Feedback

Query Expression Feedback 5-17

The output is ordered by ID to simulate a hierarchical query:

FEEDBACK_ID ID PARENT_ID OPERATION OPTIONS OBJECT_NAME POSITION
----------- ---- --------- ------------ ------- ----------- --------
Test 1 0 OR NULL NULL 1
Test 2 1 EQUIVALENCE NULL COMP% 1
Test 3 2 WORD NULL COMPTROLLER 1
Test 4 2 WORD NULL COMPUTER 2
Test 5 1 EQUIVALENCE (?) SMITH 2
Test 6 5 WORD NULL SMITH 1
Test 7 5 WORD NULL SMYTHE 2

Constructing the Parse Tree
You can optionally construct an approximate graphical representation of the parse
tree using a hierarchical query. This type of query outputs rows in a hierarchical
manner, where children nodes are indented under parent nodes.

The following statement selects from a populated feedback table, indenting the
output according to level:

select lpad(’ ’,2*(level-1)) || operation operation, options, object_name,
position
from test_feedback
start with id = 1
connect by prior id = parent_id;

This statement produces hierarchical output for the query comp% OR ?smith as
follows:

OPERATION OPTIONS OBJECT_NAME POSITION
-------------------- ---------- -------------------- -------
OR NULL NULL 1
 EQUIVALENCE NULL COMP% 1
 WORD NULL COMPTROLLER 1
 WORD NULL COMPUTER 2
 EQUIVALENCE (?) SMITH 2
 WORD NULL SMITH 1
 WORD NULL SMYTHE 2

Obtaining Query Expression Feedback

5-18 Oracle8 ConText Cartridge Application Developer’s Guide

Document Presentation: Highlighting 6-1

6
Document Presentation: Highlighting

This chapter describes how ConText query applications can present documents with
highlighted information.

The following topics are covered in this chapter:

■ Overview of Document Presentation

■ Using CTX_QUERY.HIGHLIGHT

■ Creating Highlighted Text

Overview of Document Presentation

6-2 Oracle8 ConText Cartridge Application Developer’s Guide

Overview of Document Presentation
In a typical query application, users can issue text or theme queries. The application
executes the query and returns to the user a hitlist, allowing the user to select one or
more documents.

When the user chooses a document, ConText enables you to present the selected
document with the query terms highlighted for text queries, or with the relevant
paragraphs highlighted for theme queries.

Your application can also present linguistic summaries of the selected documents.

When developing applications in PL/SQL, you use the CTX_QUERY.HIGHLIGHT
procedure to create various forms of highlighted documents that can be presented
to users. The source documents can be stored as plain text or in any of the formats
ConText supports for text indexing.

For world wide web applications, you can use the ConText viewers to present
highlighted documents.

See Also: For more information about linguistic output, see
Chapter 7, "ConText Linguistics".

See Also: For more information about highlighting with ConText
viewers, see the Oracle8 ConText Cartridge Workbench User’s Guide.

Using CTX_QUERY.HIGHLIGHT

Document Presentation: Highlighting 6-3

Using CTX_QUERY.HIGHLIGHT

Figure 6–1

CTX_QUERY.HIGHLIGHT generates highlighting information for text or theme
queries. You typically call CTX_QUERY.HIGHLIGHT after executing a text or

Document (Textkey),
Policy (Text or Theme),

Query Expression

CTX_QUERY.HIGHLIGHT

Original
(Unfiltered)
Document

Plain Text
(Filtered)

Document

Text
Highlighting:

Highlighted words
in plain text

(or word offsets)

Theme
Highlighting:

Highlighted paragraphs
in plain text

(or paragraph offsets)

(Theme Policy)

NOFILTAB
Result Table

PLAINTAB
Result Table

MUTAB (or HIGHTAB)
Result Table

1

To generate HIGHLIGHT results, a
policy (text or theme) is required.
In addition, an index for the policy

must exist.

1

(Text Policy)

Using CTX_QUERY.HIGHLIGHT

6-4 Oracle8 ConText Cartridge Application Developer’s Guide

theme query. With text queries, HIGHLIGHT marks the relevant words or phrases
in the document. With theme queries, HIGHLIGHT marks the relevant paragraphs
in the document.

Output
As illustrated in Figure 6–1, CTX_QUERY.HIGHLIGHT can be used to generate the
following output for a document:

Note: ConText does not do sentence-level theme highlighting.

Output Description Table

Original Document Document in native format without
highlights.

NOFILTAB

Plain Text Document Plain text of document without
highlights.

PLAINTAB

Highlighted Document Plain text document with occurrences
of the specified word (text query) or
paragraph (theme query) highlighted.

MUTAB

Offset Information Highlight information that identifies
the position and length of the query
terms or paragraphs found in the
source document.

The positions and lengths of the query
terms are specified as offsets from the
beginning of the plain text version of
the document.

HIGHTAB

Note: The filter ConText uses to create the plain text in the
PLAINTAB and MUTAB tables is the same filter ConText uses to
index the document.

For more information about supported formats, see Oracle8 ConText
Cartridge Administrator’s Guide.

Using CTX_QUERY.HIGHLIGHT

Document Presentation: Highlighting 6-5

Highlighting Mark-up
When you call CTX_QUERY.HIGHLIGHT, you can specify the markup used to
indicate the start and end of a highlighted word or phrase for text queries, or the
start and end of a highlighted paragraph for theme queries.

When you specify no markup, HIGHLIGHT uses default markup. The default
highlighting mark-up produced by HIGHLIGHT differs depending on the format of
the source document.

If the source document is an ASCII document or a formatted document, the default
highlighting markup is three angle brackets immediately to the left (<<<) and right
(>>>) of each term.

If the source document is an HTML document filtered through an external filter, the
default highlighting markup is the same as the highlighting markup for plain text
or formatted documents (<<< and >>>).

If the source document is an HTML document filtered through the internal HTML
filter, the default highlighting markup is the HTML tags used to indicate the start
and end of a font change:

■ to the immediate left of the term

■ to the immediate right of the term

Note: If the document is an HTML document filtered through the
internal HTML filter, the marked-up ASCII text version generated
by HIGHLIGHT and stored in a MUTAB table retains the original
HTML tags from the document.

See Also: For more information about the structure of the
highlight output tables, see "Highlight Table Structures" in
Appendix A, "Result Tables".

See Also: For more information about internal and external
filters, see Oracle8 ConText Cartridge Administrator’s Guide.

Creating Highlighted Text

6-6 Oracle8 ConText Cartridge Application Developer’s Guide

Creating Highlighted Text
To present highlighted documents in an application, do the following:

1. Allocate one or more highlight result tables to store the results.

2. Issue a query to obtain a list of documents.

3. Call the CTX_QUERY.HIGHLIGHT procedure for a document from the hitlist.

4. Display (or otherwise use) the output generated by HIGHLIGHT.

5. Release the result table(s).

Allocating Result Tables
The result tables required by the HIGHLIGHT procedure can be allocated manually
using the CREATE TABLE command in SQL or using the CTX_QUERY.GETTAB
procedure.

For example, to create a MUTAB table to store highlighted ascii mark-up, issue the
following statement:

create table mu_ascii
(
id number,
document long
);

To create a HIGHTAB table to store highlight offset information, issue the following
statement:

create table highlight_ascii
(
id number,
offset number,
length number,
strength number
);

See Also: For more information about the structure of the
highlight output tables, see "Highlight Table Structures" in
Appendix A, "Result Tables".

Creating Highlighted Text

Document Presentation: Highlighting 6-7

Issuing a Query
Issue a one-step, two-step, or in-memory query to return a hitlist of documents. You
can issue either a text or theme query. For text queries, you call CONTAINS with a
text policy; for theme queries, you call CONTAINS with a theme policy. The hitlist
provides the textkeys that are used to generate highlight and display output for
specified documents in the hitlist.

Calling CTX_QUERY.HIGHLIGHT
Call CTX_QUERY.HIGHLIGHT with a pointer to a document (generally the textkey
obtained from the hitlist) and a text or theme query expression.

CTX_QUERY. HIGHLIGHT returns various forms of the specified document that
can be further processed or displayed by the application.

ConText uses the query expression specified in the HIGHLIGHT procedure to
generate the highlight offset information and marked-up ASCII text. In addition,
the offset information is based on the ASCII text version of the document.

If the query expression contains a result set operator (first/next, max, threshold),
the result set operator is ignored. ConText returns highlight information for the
entire result set.

Text Query Highlighting
To create highlight mark-up for text queries, you must specify a text policy, which is
usually the policy you specify with the CONTAINS procedure for the same query.
With text queries, the HIGHLIGHT procedure highlights the terms you specify in
the query parameter.

Note: While the query expression is usually the same as the
expression used to return documents in the text query, it is not
required that the query expressions match. For example, you might
allow a user to search for all articles by a particular author and then
allow the user to view highlighted references to a specified subject
in the returned documents.

See Also: For more information about the query expression in
HIGHLIGHT, see the CTX_QUERY.HIGHLIGHT specification in
Chapter 10.

Creating Highlighted Text

6-8 Oracle8 ConText Cartridge Application Developer’s Guide

For example, to highlight all the occurrences of the term dog with a document
identified by textkey 14, issue the following statement:

ctx_query.highlight
 (
cspec=> ’text_policy’,
textkey => ’14’,
query => ’dog’,
id=> 14,
hightab => ’highlight_ascii’,
mutab => ’mu_ascii’
);

Theme Query Highlighting
To create highlight mark-up for a theme query, you must specify a theme policy,
which is usually the policy you specify with the CONTAINS procedure for the same
query. With theme queries, the HIGHLIGHT procedure highlights the relevant
paragraphs in the document.

For example, to highlight all the paragraphs that are relevant to the theme query
computers for document with textkey 12, issue the following query:

ctx_query.highlight
 (
cspec=> ’theme_policy’,
textkey => ’12’,
query => ’computers’,
id=> 12,
hightab => ’highlight_ascii’,
mutab => ’mu_ascii’
);

Presenting HIGHLIGHT Output
You can use the MUTAB table to view highlighted ascii text. For example in
SQL*Plus, you can issue the following statement to view a MUTAB table called mu_
ascii:

select * from mu_ascii order by id;

You can also use the offset information in the HIGHTAB table to highlight the
document in ways that suit your application.

Creating Highlighted Text

Document Presentation: Highlighting 6-9

Text Query Highlight Output
With text queries, the word or phrase is highlighted. For example, a text query on
dog might produce the following type of highlighted ascii output for a document:

...
The quick brown <<dog>> jumped over the fox.
...

Theme Query Highlight Output
With theme queries, the relevant paragraphs in the document are highlighted. For
example, a theme query of computers produces the following type of highlighted
ascii output for a document:

<<< LAS VEGAS -- International Business Machines Corp. is using the huge
computer trade show here this week to try to prove a much disputed marketing
claim ofthe past year and a half: that its PS/2 line of personal computers
really does offer unique benefits.>>>
 In the battle for the hearts and minds of the 100,000 dealers, corporate
customers and other spectators gathered here, IBM has set up a series of
demonstrations of the Micro Channel, which is the PS/2’s internal data pathway.
The demonstrations seek to show that this pathway has extra flexibility
that can translate into more speed. One demonstration uses an add-in circuit
board that IBM claims allows data to be sent over a network about 60% faster.
Another illustrates a quicker way to store the huge amounts of data handled by a
so-called file server, the machine that controls a network of personal
computers.
 <<< While most personal computers contain just one "master" processor -- the
chip that tells the various parts of the computer what to do -- the Micro
Channel allows for more than one. That means that in Micro Channel machines, the
workhorse central processor can dump lots of work onto another processor,
freeing itself to go about other tasks.>>>

...

In this three paragraph excerpt of a news article that satisfies the theme query
computers, ConText highlights (with angle brackets) only the paragraphs that are
about computers.

Creating Highlighted Text

6-10 Oracle8 ConText Cartridge Application Developer’s Guide

Release Highlight Result Tables
After documents have been processed by the HIGHLIGHT procedure and
displayed to the user, drop the highlight result tables.

If the tables were allocated using CTX_QUERY.GETTAB, you use CTX_
QUERY.RELTAB to release the tables.

If the tables were created manually, drop the tables using the SQL command DROP
TABLE.

ConText Linguistics 7-1

7
ConText Linguistics

This chapter describes the approach used by ConText to provide thematic analysis
of English-language text.

The following topics are covered in this chapter:

■ Overview of ConText Linguistics

■ What is a Theme?

■ Text Input

■ Theme Extraction System

■ Linguistic Settings

Overview of ConText Linguistics

7-2 Oracle8 ConText Cartridge Application Developer’s Guide

Overview of ConText Linguistics

Figure 7–1

ConText linguistics is a system that extracts the main ideas from English-language
text and uses the main ideas to produce different forms of output. These main ideas
are referred to as themes.

Plain Text

Theme
Highlighting

Theme Index

List of
Themes

Theme
Summaries

Gist

Theme Lexer

Theme
Extraction

System

Document Presentation
(Per Document)

Indexing
(Per Column)

Settings

CTX_LING

Theme
Extraction

System

Indexing Engine

CTX_QUERY

Overview of ConText Linguistics

ConText Linguistics 7-3

As shown in Figure 7–1, ConText’s theme extraction system extracts themes from
documents to produce CTX_LING output, theme highlighting, and theme indexes.

CTX_LING output is created on a per-document basis and gives you different views
of documents for presentation. Theme highlighting is also available on a
per-document basis. CTX_LING output and theme highlighting are known as
ConText document services.

Theme indexes are created from a document set, against which you issue theme
queries.

You can optionally use linguistic settings to control case conversion of text before it
is processed as well as to control the size of Gists and theme summaries.

The theme extraction system illustrated in Figure 7–1 is comprised of a parsing
engine and knowledge base which work to extract themes from text. You can obtain
thematic output in different forms, depending on how you invoke the system. The
following table describes how to obtain each type of output:

Output Text Input Invocation

Theme Summaries

List of Themes

Gists

 Single Document Use the CTX_LING package with a ConText ’L’
server.

Theme Highlighting Single Document Use CTX_QUERY.HIGHLIGHT with a ConText
’Q’ server. A theme index is required.

Theme Index Document Set Use theme lexer in policy with CTX_
DDL.CREATE_INDEX to index documents.

See Also: For more information about how the theme extraction
system works, refer to the "Theme Extraction System" section in this
chapter.

For more information about theme summaries, list of themes, and
Gists, see Chapter 8, "Using CTX_LING".

For more information about theme highlighting, see Chapter 6,
"Document Presentation: Highlighting".

For information about creating theme indexes, see the Oracle8
ConText Cartridge Administrator’s Guide.

For more information about issuing theme queries, see
"Understanding Theme Queries" in Chapter 4.

What is a Theme?

7-4 Oracle8 ConText Cartridge Application Developer’s Guide

What is a Theme?
Themes are the main ideas in a document. Themes can be concrete concepts such as
Oracle Corporation, jazz music, football, England, or Nelson Mandela; themes can be
abstract concepts such as success, happiness, motivation, or unification. Themes can
also be groupings commonly defined in the world, such as chemistry, botany, or fruit.

When processing text to extract themes, Context extracts up to fifty themes per
document.

To derive document themes, ConText uses the information stored in the knowledge
catalog. Most themes are concepts in the knowledge catalog. However, ConText can
still infer themes that are not known concepts in the knowledge catalog.

Theme Weight
ConText assigns a weight to every theme it extracts from a document. Theme
weight is a measure of how well that idea is developed in the document with
respect to other themes in the document.

ConText returns a theme weight with each theme returned in a list of themes.
During theme indexing, Context also indexes document theme weights with themes
and uses the weights to score theme queries issued against the index.

See Also: For more information about the knowledge catalog and
how ConText extracts themes, see "Theme Extraction System" in
this chapter.

Text Input

ConText Linguistics 7-5

Text Input
Text input to the theme extraction system in Figure 7–1 can be one of the following:

■ single documents to create CTX_LING output

■ single documents to create theme highlighting

■ a set of documents stored in a text column to create theme indexes.

■ a theme query expression which ConText normalizes for index look-up

The best results are obtained when the text input to the theme extraction system is
in mixed case. However, if your text is all-uppercase or all-lower text, you can
convert it to mixed case by changing linguistic settings.

In addition, having good paragraph and sentence structure improves results for
generating CTX_LING output, theme highlighting, and theme indexes.

See Also: For more information about linguistic settings,
see"Linguistic Settings" in this chapter.

Theme Extraction System

7-6 Oracle8 ConText Cartridge Application Developer’s Guide

Theme Extraction System

Figure 7–2

The theme extraction system extracts themes from English-language text. It is made
up of the following components:

■ knowledge base

■ parsing engine

Knowledge Base
The knowledge base is a collective term referring to the lexicon and the knowledge
catalog. The parsing engine uses the knowledge base to help extract themes from
text.

Lexicon
The lexicon is a static information store that provides word and phrase information
for the parsing engine. The lexicon recognizes over five hundred thousand English
words and phrases and defines hundreds of lexical characteristics for each word.

Plain Text

Settings

Theme Extraction System

Knowledge
Base

Theme
Parser

Themes

Theme Extraction System

ConText Linguistics 7-7

Linguistic information about words in the lexicon is divided into the following
types:

In the theme extraction process, ConText uses the information in the lexicon to
identify potential themes, and to help rank themes in a document.

Note: The lexicon is specific to the English language, handling
both American and British usage and spelling.

Information Type Description

Syntax Syntax flags indicate the part-of-speech of a word or phrase.

Theme Theme flags identify the thematic qualities of a word (e.g. weak
noun/needs support, strong verb). The parser uses these flags to
determine how a word contributes to the thematic construction
of the document as a whole.

Theme Extraction System

7-8 Oracle8 ConText Cartridge Application Developer’s Guide

Knowledge Catalog

Figure 7–3

The knowledge catalog is a tree-like structure whose branches break down various
realms of discourse. The knowledge catalog is divided into the following six main
categories as shown in Figure 7–3:

■ Business and Economics

■ Government and Military

■ Science and Technology

■ Social Environment

■ Geography

■ Abstract Ideas and Concepts

See Also: For a complete breakdown of the categories in the
knowledge catalog, see Appendix E, "Knowledge Catalog -
Category Hierarchy".

geometry

social sciences

mathematics

science and
technology

hard sciences

calculus

chemistry

mathematical
topology

plane
geometry

trigonometry

business and
economics

government
and military

social
environment geography

abstract ideas
and concepts

Theme Extraction System

ConText Linguistics 7-9

Categories Categories are groupings of related nouns and ideas that can be
sub-divided into further categories and concepts.

Children categories are related to parent categories by an "is-associated-with"
relationship, loosely defined as such to cover other standard child-parent type
relationships such as "is-a-part-of", "belongs-to", or "is-a".

Figure 7–3 illustrates the basic structure of the knowledge catalog, showing a break
down of an example branch within the top-level category of science and technology. In
the example branch (outlined in boldface), the category of trigonometry belongs to
the category of geometry, which is a part of the more general category of mathematics,
which is part of the even more general category of hard sciences.

In the theme extraction process, ConText uses this structure of categories and
concepts to interpret document themes, to help relate themes to each other, and to
rank themes.

Concepts Concepts are leaf nodes in the knowledge catalog and can be associated
with any level in the category tree. Concepts are related to parent categories by an
"is-associated-with" relationship that covers specific relationships such as "is-a".

The category of trigonometry, whose branch appears in Figure 7–3, contains over 30
associated concepts including sines, cosines, radians and polar axes.

The category of success, located in the abstract ideas and concepts branch, contains
over 30 associated concepts including award winners, conquerors, prosperity, and
winning streaks.

Concepts can be associated with any level in the category tree. Using the example in
Figure 7–3, the category of mathematics, which is in the middle of the branch, has
over 130 associated concepts. Some of these concepts include Isaac Newton, Fibonacci
sequences, arithmetic progressions, and complex integers.

Other categories such as flowering plants contain over 1000 associated concepts.

The average number of concepts associated with a category in the knowledge
catalog is approximately 94.

In the theme extraction process, all concepts in the knowledge catalog are potential
document themes.

See Also: For a complete listing of the categories in the knowledge
catalog, see Appendix E, "Knowledge Catalog - Category
Hierarchy".

Theme Extraction System

7-10 Oracle8 ConText Cartridge Application Developer’s Guide

Unknown and Ambiguous Concepts ConText’s knowledge catalog is not an exhaustive
repository of all possible themes (concepts) that can be extracted from a document.
Some concepts that ConText might extract from a document are not known to the
knowledge catalog.

In addition, concepts such as bank, cricket, or tangent can have more than one
meaning in English and hence are ambiguous. Because they are ambiguous, these
concepts cannot be placed in the knowledge catalog and are treated as if they are
unknown.

Normal Forms In the theme extraction process, ConText must convert words and
phrases in text to their normal forms so they can attach into the knowledge
hierarchy. To make this conversion, the knowledge catalog keeps the following lists:

Note: All categories are also concepts. This means that categories
can also be potential document themes in the theme extraction
process. For example, the categories of trigonometry and success can
appear as document themes.

See Also: For more information about how ConText handles
unknown and ambiguous themes in the theme extraction process,
see the following sections:

"Parsing Engine" in this chapter

"Theme Indexing Concepts" in Chapter 4

Type of List Description

Standard Noun Forms A list of mappings from inflected variations of words to their
standard noun forms as stored in the knowledge catalog’s
hierarchy of concepts. For example, the words notify and notifies
are mapped to the normal form notification; likewise, the words
summarize and summarizes are mapped to the normal form
summaries.

Alternate Forms A list of mappings from acronyms, abbreviations, and alternate
spellings to their standard forms. For example, IBM is an
acronym for the standard form IBM - International Business
Machines Corporation

Theme Extraction System

ConText Linguistics 7-11

Parsing Engine
ConText uses the parsing engine to produce all types of thematic output, including
CTX_LING output and theme indexes.

The parsing engine syntactically analyzes text, identifying phrase, sentence and
paragraph boundaries. It then interprets meaning, selecting the high-information
content to produce themes. The lexicon and knowledge catalog provide the
reference information necessary to do this processing.

If case-conversion is enabled, the parsing engine converts all the text to lowercase
and processes the text through the case-sensitivity routines to determine
capitalization.

The following sections describe how the parsing engine analyzes text to extract
themes.

Token Recognition
ConText breaks up text into paragraphs and then breaks paragraphs into tokens.
Tokens can consist of either single words or phrases. Words are groups of characters
separated by blank space or punctuation marks; phrases are sequences of two or
more words.

Information about English words and phrases is derived from ConText’s knowledge
base. Sequences of words that match known phrases are collapsed and treated as
single tokens for further processing. For example, the phrases stock market and
relational database are treated as tokens.

Token Normalization
ConText converts each token to a normal form using information stored in the
knowledge base. Normal forms are the preferred forms of all alternative forms of
the token. When ConText is able to find the token in the knowledge base it is a
known token.

Specifically, token normalization includes the following transformations of
alternative forms to preferred forms: Verbs are converted to their noun forms; most
nouns are converted to their plural forms; and acronyms and abbreviations are

Note: Case conversion does not affect the original text of the
documents being processed; only the output of the parsing engine
is stored in mixed-case.

Theme Extraction System

7-12 Oracle8 ConText Cartridge Application Developer’s Guide

converted to their full forms. For example, the acronyms IBM and I.B.M are
converted to IBM - International Business Machines.

Words that mean the same thing for the purposes of text indexing and retrieval are
also converted to normal forms. For example, the words loving and amorousness are
normalized to love.

When a token cannot be found in the knowledge base, ConText guesses its
part-of-speech and then normalizes it according to one of the standard
transformations. However, since the token cannot be placed in the knowledge base,
it is unknown, and is treated as its own normal form isolated from the knowledge
base.

Theme Ranking
In this step, ConText scores the normalized tokens, known and unknown, then sorts
the tokens, which are potential document themes, into a ranked list. The scoring
and ranking of tokens is based on the information associated with each token in the
knowledge base, such as what words and parts-of-speech are good candidates for
themes. The highest ranking tokens are called themes.

Theme Accumulation
ConText combines duplicated and closely related themes into single themes. This is
done by generalizing related themes to common parents using the hierarchical
structure of the knowledge catalog. The goal of this process is to find the
top-ranking themes, up to fifty, for a document.

Theme Proving
In the final step, ConText looks back at the known themes it generated and
evaluates the evidence for each theme in the surrounding text.

Because words can be ambiguous or can be used with new meaning, ConText
attempts to find support for the parent concept of each theme. Parent concepts are
derived from the knowledge catalog.

If no support exists for the parent concept, ConText indexes the theme as a single
row without the parent concept (theme).

Themes that are indexed as single rows have no parents in the hierarchical
list-of-themes you obtain with CTX_LING.REQUEST_THEMES.

See Also: For more information about how ConText indexes
themes, see "Theme Indexing Concepts" in Chapter 4.

Linguistic Settings

ConText Linguistics 7-13

Linguistic Settings
Linguistic setting are settings you can enable to control how ConText processes text
to extract themes.

There are two types of linguistic settings that affect output to the theme extraction
system:

■ case-conversion settings

■ Gist and theme summary settings

Case-Conversion Settings
ConText provides two pre-defined linguistic setting labels for case-conversion.
These settings affect the processing of all text input to the theme extraction system:

You can set linguistic settings labels with the CTX_LING.SET_SETTINGS_LABEL
procedure.

Gist and Theme Summary Settings
You can use the administration tool to create settings labels to control the following
options:

■ size of Gist

■ size of theme summary

■ Gist generation method

When you use the administration tool to create your own settings, you must use
one of the ConText predefined settings as a starting point, depending on whether
your text is mixed-case, or all upper-case, or all lower-case.

Setting Description

GENERIC Default configuration. Parses mixed-case English text. Produces
theme output.

SA (Case Sensitive) Same as GENERIC except that ConText converts text that is
all-uppercase or all lower-case to mixed-case text before
performing theme analysis.

Linguistic Settings

7-14 Oracle8 ConText Cartridge Application Developer’s Guide

Enabling Linguistic Settings
To switch to a case-sensitive setting (SA) or to enable settings labels you create with
the administration tool, you must use the CTX_LING.SET_SETTINGS_LABEL
procedure.

See Also: For more information about using the administration
tool to create your own labels, see the help file for the
administration tool.

For more information about Gists and theme summaries, see
Chapter 7, "ConText Linguistics".

Note: When you enable a setting other than the default, it affects
the way ConText processes text for only that session. To obtain the
same type of processing in a new session, you must re-enable the
settings with CTX_LING.SET_SETTINGS_LABEL.

See Also: For more information on how to specify linguistic
settings, see "Enabling Linguistic Settings" in Chapter 8, "Using
CTX_LING".

Using CTX_LING 8-1

8
Using CTX_LING

This chapter explains how to use the CTX_LING PL/SQL package in ConText to
generate the different types of theme output for English text. It also provides some
tips and suggestions for using the output to enhance query applications.

The topics covered in this chapter are:

■ Overview

■ Generating CTX_LING Output

■ Combining Queries with CTX_LING Output

■ Enabling Linguistic Settings

■ Monitoring the Services Queue

■ Specifying Completion and Error Procedures

■ Logging Parse Information

Overview

8-2 Oracle8 ConText Cartridge Application Developer’s Guide

Overview

Figure 8–1

As shown in Figure 8–1, CTX_LING output consists of lists of themes, theme

Document (Textkey),
Policy (Text or Theme)

Settings

1

To generate CTX_LING output, a policy
(text or theme) is required; however, an

index for the policy does not have to exist.
In addition, CTX_LING only uses the Data

Store and Filter preferences from the policy

1

List of
Themes

Theme
Summaries

Gist

Theme
Output Table

Gist
Output Table

CTX_LING.REQUEST_GIST

Theme Extraction System

CTX_LING.REQUEST_THEMES

Overview

Using CTX_LING 8-3

summaries, and Gists. ConText stores the output in either the theme or Gist table.
The following table describes the different output as well as how to generate each
type:

In a query application, you can use CTX_LING output as an alternative to
presenting the entire text of a document. For example, you can present some form
of CTX_LING output next to each title when you present the hitlist to the user.

Likewise, after the user selects a document from the hitlist, you can also give the
user the option of viewing the Gist of a document in addition to or as an alternative
to viewing the entire text of a document.

You can use linguistic settings to enable case-conversion for all-uppercase or
all-lowercase text, or to change the default size of Gists and theme summaries.

Table 8–1

Output Type Description How to Generate

List of Themes The main concepts of a
document.

You can generate list of themes
where each theme is a single
word or phrase or where each
theme is a hierarchical list of
parent themes.

Call CTX_LING.REQUEST_THEMES
with document textkey and a policy.

Use CTX_LING.SET_FULL_
THEMES to enable hierarchical list
of themes.

Gist Text in a document that best
represents what the document
is about as a whole.

You can generate either
paragraph or sentence level
Gists.

Call CTX_LING.REQUEST_GIST
with document textkey and a policy.
Specify GENERIC for the pov
parameter and specify either
PARAGRAPH or SENTENCE for the
glevel parameter.

Theme Summary Text in a document that best
represent a given theme in the
document.

You can generate either
paragraph or sentence level
theme summaries.

Call CTX_LING.REQUEST_GIST
with document textkey and a policy.
Specify the required document theme
with the pov parameter and specify
either PARAGRAPH or SENTENCE
for the glevel parameter

See Also: For more information about linguistic settings, see
"Enabling Linguistic Settings" in this chapter.

Overview

8-4 Oracle8 ConText Cartridge Application Developer’s Guide

You obtain CTX_LING output (list-of-themes, theme summaries, and gists) by
submitting a request using procedures in the CTX_LING PL/SQL package.
Table 8–1 describes which procedures to use.

To generate CTX_LING output, the documents must be stored in a column (either
directly or indirectly through a pathname to files), and a policy must be attached to
the column.

Linguistic Personality
Requests for CTX_LING output can only be processed by ConText servers running
with the Linguistic personality. A ConText server with the Linguistic personality
can also have other personalities in its personality mask. Starting up ConText
servers is the task of the ConText administrator, through the CTXSYS Oracle user.

Services Queue
The Services Queue is used for managing requests for CTX_LING output. Such a
request is cached in memory until the requestor uses the CTX_LING.SUBMIT
procedure to add the request to the Services Queue. If more than one request for a
single document is cached in memory when the user submits the requests, ConText
stores all of the requests as a single batch request in the queue.

ConText servers with the Linguistic personality monitor the Service Queue for
requests and process the next request in the queue.

Note: The setup requirements of having text in a column and
having a policy for the column apply to ConText indexes
(text/theme) as well as ConText linguistics. The procedures for
storing text and creating policies are not discussed in this manual.

For more information about storing text in columns and creating
policies for the columns, see Oracle8 ConText Cartridge
Administrator’s Guide.

See Also: For more information about the Linguistic personality
and starting ConText servers, see Oracle8 ConText Cartridge
Administrator’s Guide.

See Also: For more information about the Services Queue, see
Oracle8 ConText Cartridge Administrator’s Guide.

List of Themes

Using CTX_LING 8-5

List of Themes
A list of themes is a list of the main ideas of a document. With each theme, ConText
returns a weight that measures the strength of the theme relative to the other
themes in the document.

You can use a list of themes in a query application as an alternative to presenting
the entire text of a document after a query. When used with theme queries, a
presentation of a list of themes for a returned document can also help the user select
other documents with the same theme.

You generate a list of themes on a per document basis. To generate a list of themes,
use CTX_LING.REQUEST_THEMES. You can generate a list of themes in two ways:

■ single themes

■ theme hierarchies

Single Themes
You can generate up to fifty themes for each document, using the CTX_
LING.REQUEST_THEMES procedure. This procedure writes a single word or
phrase that represents the theme to a row in the theme table. The words or phrases
that represent the themes are normalized themes derived from the knowledge
catalog.

Theme Hierarchies
You can also generate each document theme (up to 50) accompanied by the
hierarchical list of parent themes as defined in the knowledge catalog. A theme is
related to its parent theme usually by an "is-associated-with" or "is-a-part-of"
relationship. For example, a theme of insects belongs to the hierarchical list of parent
themes defined as zoology, biology, hard sciences and science and technology.

To enable hierarchical list of themes output, you must use CTX_LING.SET_FULL_
THEMES before you call CTX_LING.REQUEST_THEMES.

Generating theme hierarchical information in the theme table helps to match themes
with theme summaries generated with CTX_LING.REQUEST_GIST.

See Also: For more information about generating themes, see
"Generating Lists of Themes, Theme Summaries, and Gists" in this
chapter.

Theme Summaries

8-6 Oracle8 ConText Cartridge Application Developer’s Guide

Theme Summaries
A theme summary for a document provides a short summary of the document from
a specific point-of-view. You can use theme summaries to present the relevant text
(paragraph or sentence) of documents selected by a theme query.

Because a theme summary provides a concise, focused summary for a particular
theme in a document, users of a query application can use a theme summary to
compare documents with similar themes.

You can generate two types of theme summaries:

■ paragraph-level

■ sentence-level

 A paragraph-level theme summary consists of the paragraph or paragraphs that
best represent a single document theme. A sentence-level theme summary consists
of the sentence or sentences that best match a single document theme.

 To create either paragraph-level or sentence-level theme summaries, use CTX_
LING.REQUEST_GIST.

You can control the size of theme summaries with linguistic settings.

Note: The size settings for theme summaries can only be modified
by creating custom setting labels in the administration tool.

See Also: For more information about how to generate theme
summaries, see "Generating Lists of Themes, Theme Summaries,
and Gists" in this chapter.

For more information on specifying linguistic settings, see
"Enabling Linguistic Settings" in this chapter.

Gists

Using CTX_LING 8-7

Gists
A Gist for a document provides a summary that reflects all of the themes in the
document. In a query application, you can use a Gist to give the user a overall
summary of a document returned in a hitlist.

You can generate two types of Gists:

■ paragraph-level

■ sentence-level

A paragraph-level Gist consists of the document paragraphs that best represent the
themes in a document as a whole. A sentence-level Gist is the sentence or sentences
that best represent the themes in a document as a whole.

To generate either a paragraph-level or sentence-level Gist, use CTX_
LING.REQUEST_GIST.

Note: The settings for Gist can only be modified by creating
custom setting configurations in the GUI administration tool.

See Also: For more information about how to generate Gists, see
"Generating Lists of Themes, Theme Summaries, and Gists" in this
chapter.

For more information on specifying linguistic settings, see
"Enabling Linguistic Settings" in this chapter.

Generating CTX_LING Output

8-8 Oracle8 ConText Cartridge Application Developer’s Guide

Generating CTX_LING Output
You can present CTX_LING output (lists of themes, theme summaries, and Gists) as
an alternative to presenting entire documents to users after a query. To generate
theme and Gist information, follow these steps:

■ create CTX_LING output tables for the theme and Gist output.

■ call either REQUEST_GIST or REQUEST_THEMES in the CTX_LING package
to generate the output.

■ call CTX_LING.SUBMIT to submit the request to the services queue.

Creating Output Tables
To create a theme table called CTX_THEMES to store the list of themes from
REQUEST_THEMES, issue the following SQL statement:

 create table ctx_themes (
 cid number,
 pk varchar2(64),
 theme varchar2(2000),
 weight number);

To create a Gist table called CTX_GIST to store the Gist or theme summaries from
REQUEST_GIST, issue the following SQL statement:

 create table ctx_gist (
 cid number,
 pk varchar2(64),
 pov varchar2(80),
 gist long);

Note: For ConText to generate CTX_LING output, at least one
server must be running with the Linguistic (L) personality. For
more information about ConText Servers, see Oracle8 ConText
Cartridge Administrator’s Guide.

Generating CTX_LING Output

Using CTX_LING 8-9

Creating Composite Textkey Output Tables
To create a theme table whose textkey has two columns, issue the following SQL
statement:

 create table ctx_themes
 cid number,
 pk1 varchar2(64),
 pk2 varchar2(64),
 theme varchar2(2000),
 weight number);

To create a Gist table whose textkey has two columns, issue the following SQL
statement:

 create table ctx_gist (
 cid number,
 pk1 varchar2(64),
 pk2 varchar2(64),
 pov varchar2(80),
 gist long);

Note: Because the combination of the CID (column ID) and PK
(primary key) columns in the output tables uniquely identify each
document in a text column, you can use the output tables to store
theme and Gist information for multiple text columns. You can also
choose to create multiple output tables to store the theme and Gist
information separately for each text column.

See Also: For more information about the structure of CTX_LING
output tables, see "CTX_LING Output Table Structures" in
Appendix A, "Result Tables".

See Also: For more information about the structure of CTX_LING
output tables, see "CTX_LING Output Table Structures" in
Appendix A, "Result Tables".

Generating CTX_LING Output

8-10 Oracle8 ConText Cartridge Application Developer’s Guide

Generating Lists of Themes, Theme Summaries, and Gists
Table 8–2 describes the different types of CTX_LING output and how to generate
each type.

To generate CTX_LING output for a document in a text column, you first call CTX_
LING.REQUEST_GISTor CTX_LING.REQUEST_THEMES as described in
Table 8–2, then call CTX_LING.SUBMIT to enter these requests in the services
queue as a single transaction for that particular document.

Table 8–2

Output Type Description How to Generate

List of Themes The main concepts of a
document.

You can generate list of
themes where each theme is a
single word or phrase or
where each theme is a
hierarchical list of parent
themes.

Call CTX_LING.REQUEST_THEMES
with document id.

Use CTX_LING.SET_FULL_THEMES to
enable hierarchical list of themes.

Gist Text in a document that best
represents what the
document is about as a
whole.

You can generate either
paragraph or sentence level
Gists.

Call CTX_LING.REQUEST_GIST.

Specify GENERIC for the pov parameter
and specify either paragraph or sentence
for the glevel parameter.

Theme Summary Text in a document that best
represent a given theme in
the document.

You can generate either
paragraph or sentence level
theme summaries.

Call CTX_LING.REQUEST_GIST.

Specify the required document theme
with the pov parameter and specify
either paragraph or sentence for the glevel
parameter.

Note: A policy must be defined for a column before you can
generate CTX_LING output for the documents in the column.

Generating CTX_LING Output

Using CTX_LING 8-11

The following example shows how to generate a list of themes and a
paragraph-level theme summary. It assumes the tables ctx_themes and ctx_gist have
already been created:

declare handle number;
begin
ctx_ling.request_themes(’CTXSYS.DOC_POLICY’,’7039’,’CTXSYS.CTX_THEMES’);
ctx_ling.request_gist(’CTXSYS.DOC_POLICY’,’7039’,’CTXSYS.CTX_GIST’,
 ’PARAGRAPH’, ’Oracle Corporation’);

handle := ctx_ling.submit;
end;

The first call requests a list of themes from document 7039, stored in a column
identified by the DOC_POLICY policy. The second call requests a paragraph-level
theme summary for Oracle Corporation from the same document. The list of themes
and theme summary that ConText generates is stored in the CTX_LING output
tables (ctx_themes and ctx_gists), which were created beforehand.

The call to CTX_LING.SUBMIT submits the requests as one batch request to the
services queue and returns a handle which can be used to monitor the status of the
request. Because the two requests are submitted as one batch request, ConText
generates the theme and Gist output in only one linguistic processing cycle.

Generating Theme Hierarchical Information
By default, ConText generates single themes when you request a list of themes with
CTX_LING.REQUEST_THEMES. To generate the hierarchical theme information,
you must set the full themes flag to TRUE with CTX_LING.SET_FULL_THEMES. A
hierarchical list-of-themes contains single themes accompanied by its parent themes
as defined in the knowledge catalog. A theme is related to its parent theme usually
by an "is-a-part-of" relationship.

Generating theme hierarchical information helps to match themes with the theme
summaries generated with CTX_LING.REQUEST_GIST.

The following examples illustrates the difference between single theme output and
hierarchical theme output.

See Also: For more examples on generating Gists and theme
summaries, refer to CTX_LING.REQUEST_GIST in Chapter 10.

For more examples on generating lists of themes, refer to CTX_
LING.REQUEST_THEMES in Chapter 10.

Generating CTX_LING Output

8-12 Oracle8 ConText Cartridge Application Developer’s Guide

Examples
The following SQL statements generate and output single theme information for a
document identified by pk:

SQL> exec ctx_ling.request_themes(’ctx_thidx’, pk, ’ctx_themes’)
SQL> exec ctx_ling.submit(200)
SQL> select theme from ctx_themes;

THEME

NASDAQ - National Association of Securities Dealers Automated Quotation System
stocks
indexes
weakness
composites
prices
franchises
shares
cellularity
declining issues
measures
analysts
OTC
purchases
Wall Street
lows

16 rows selected.

Generating CTX_LING Output

Using CTX_LING 8-13

However, when you set the full themes flag to TRUE, ConText generates theme
hierarchical information:

SQL> exec ctx_ling.set_full_themes(TRUE)
SQL> exec ctx_ling.request_themes(’ctx_thidx’, pk, ’ctx_themes’)
SQL> exec ctx_ling.submit(200)
SQL> select theme from ctx_themes

THEME

:stock market:NASDAQ - National Association of Securities Dealers Automated
Quotation System:
:stock market:stocks:
:catalogs, itemization:indexes:
:weakness, fatigue:weakness:
:combination, mixture:composites:
:retail trade industry:prices:
:business fundamentals:franchises:
:possession, ownership:shares:
:cellularity:
:stock market:declining issues:
:analysis, evaluation:measures:
:analysis, evaluation:analysts:
:OTC:
:general commerce:purchases:
:general investment:Wall Street:
:bottoms, undersides:lows:

Combining Queries with CTX_LING Output

8-14 Oracle8 ConText Cartridge Application Developer’s Guide

Combining Queries with CTX_LING Output
Generating a list of themes is a good way of extending theme or text queries. For a
document in a query hitlist, the user can learn more about the document by reading
a list-of themes or Gist.

For example, suppose a theme query on music returns a hitlist containing 20
documents. If these documents are lengthy, the user might not want to read every
single document to find out what each is about. Rather than return to the user the
document text, you can return a list of themes or a Gist for each document for the
user to skim.

Implementation
Generally, you can generate CTX_LING output for a document set at two different
times:

■ text/theme indexing time

■ query time

Generating CTX_LING output at Indexing Time
You can generate CTX_LING output at indexing time; that is, generate output
before queries are issued against the document set. When you do so, the CTX_LING
output is returned to the user immediately, since the output was already created.

However, while the retrieval time for the CTX_LING output is good, the drawback
to this method is that you have to maintain a permanent theme or Gist output table,
using your own triggers to keep it updated. A permanent output table for an entire
document set also takes up system disk space.

Generating CTX_LING output at Query-Time
You could also generate CTX_LING output after executing a query. The advantage
of generating themes as needed is that the output table lasts only for the user
session; you need not maintain a permanent CTX_LING output table for all your
documents.

However, generating CTX_LING output takes time depending on the number of
documents, the length of the documents, and how your linguistic servers are
configured. A user might not want to wait a few minutes for a ConText query
application to process a large number of documents.

 The example below shows how to generate CTX_LING output after a theme query.

Combining Queries with CTX_LING Output

Using CTX_LING 8-15

Example
The following PL/SQL code illustrates how to generate a list of themes for every
document in a hitlist table returned from a theme query on birds. (You can use the
same method to loop through any text table, once the text column table has a policy
attached to it.)

create or replace procedure get_theme IS
handle number;

cursor ctx_cur is
 select textkey from ctx_temp;

BEGIN

ctx_query.contains(’DOWTHEME’, ’birds’, ’ctx_temp’);

for ctx_cur_rec in ctx_cur loop
 ctx_ling.request_themes(’DOWPOLICY’, ctx_cur_rec.textkey, \
 ’ctx_themes’);
 handle:= ctx_ling.submit;
end loop;

END;
/

This routine first declares a cursor that selects the rows from the ctx_temp result
table, to be populated with a theme query on birds.

The cursor FOR loop opens the cursor, executing the select statement that copies all
textkeys in the ctx_temp table to the cursor. The loop index ctx_cur_rec is implicitly
defined as a cursor record of type%ROWTYPE.

Every iteration of the loop calls the CTX_LING.REQUEST_THEMES procedure
with the document textkey derived from ctx_cur_rec. Each request is submitted to
the services queue with CTX_LING.SUBMIT, which returns a handle.

The theme output is written to the ctx_themes table.

Enabling Linguistic Settings

8-16 Oracle8 ConText Cartridge Application Developer’s Guide

Enabling Linguistic Settings
The default linguistic setting of GENERIC is active whenever you initialize
linguistics to create theme indexes, theme highlighting or to generate CTX_LING
output.

You can enable a linguistic setting other than the default (GENERIC) when you
want to process all lower-case or all upper-case text, or when you want to change
the sizes of Gists and theme summaries. When you enable a linguistic setting for a
session, the setting applies only to that session.

The settings for case-conversion (GENERIC or SA) are pre-defined. However, to
change the size of Gists and theme summaries, you must create a custom setting
with the administration tool.

To enable either a case-conversion setting or a custom setting created with the
administration tool, use the CTX_LING.SET_SETTINGS_LABEL procedure with a
setting label. For example, to process all-uppercase or all-lowercase text for your
current session:

execute ctx_ling.set_settings_label(’SA’)

The specified setting configuration is active for your session until SET_SETTINGS_
LABEL is called with a new setting configuration label.

You can use the CTX_LING.GET_SETTINGS_LABEL function to return the label for
the active setting configuration for the current session.

See Also: For more information about creating custom settings,
refer to the online help system for the administration tool.

Monitoring the Services Queue

Using CTX_LING 8-17

Monitoring the Services Queue
When you submit a request to the services queue with CTX_LING.SUBMIT, a
handle is returned. With this handle, you can use procedures in the CTX_SVC
package to perform the following tasks:

■ monitor the status of requests in the queue

■ remove pending requests (requests that have not yet been picked up by a
ConText server)

■ clear requests with errors

Monitoring the Status of Requests
To monitor the status of requests in the Services Queue, use the CTX_
SVC.REQUEST_STATUS function. This function returns one of the following
statuses:

Status Meaning

PENDING The request has not yet been picked up by a ConText server.

RUNNING The request is being processed by a ConText server.

ERROR The request errored.

SUCCESS The request completed successfully.

Monitoring the Services Queue

8-18 Oracle8 ConText Cartridge Application Developer’s Guide

For example, the following PL/SQL procedure submits a request to generate
themes and gist for a document with an id of 49. It then checks the status of the
request.

 CREATE OR REPLACE PROCEDURE GENERATE_THEMES AS

 v_Handle number;
 v_Status varchar2(10);
 v_Time date;
 v_Errors varchar2(60);

BEGIN
 DBMS_OUTPUT.PUT_LINE(’Begin generate_themes procedure’);

 ctx_ling.request_themes(’CTXDEMO.DEMO_POLICY’, ’49’, ’CTXDEMO.ctx_themes’);
 ctx_ling.request_gist(’CTXDEMO.DEMO_POLICY’, ’49’, ’CTXDEMO.ctx_gist’);
 v_Handle := ctx_ling.submit;

 DBMS_OUTPUT.PUT_LINE(v_Handle);

 v_Status := ctx_svc.request_status(v_Handle, v_Time, v_ErrorS);
 DBMS_OUTPUT.PUT_LINE(v_Status);
 DBMS_OUTPUT.PUT_LINE(v_Time);
 DBMS_OUTPUT.PUT_LINE(substr(v_Errors, 1, 20));

 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(’ Exception handling’);

END GENERATE_THEMES;
/

This procedure binds the return value of REQUEST_STATUS to v_Status for the
linguistic request identified by v_Handle. The value for v_Handle is returned by the
call to CTX_LING.SUBMIT which placed the requests for the themes and gists in
the Services Queue.

Removing Pending Requests
To remove requests with a status of PENDING from the Services Queue, use the
CTX_SVC.CANCEL procedure.

For example:

execute ctx_svc.cancel(3321)

Monitoring the Services Queue

Using CTX_LING 8-19

In this example, a pending request with handle 3321 is removed from the Services
Queue.

If a request has a status of RUNNING, ERROR, or SUCCESS, it cannot be removed
from the Services Queue.

Clearing Requests with Errors
To remove requests with a status of ERROR from the Services Queue, use the CTX_
SVC.CLEAR_ERROR procedure.

For example:

execute ctx_svc.clear_error(3321)

In this example, a request with handle 3321 is removed from the Services Queue.

If a value of 0 (zero) is specified for the handle, all requests with a status of ERROR
are removed from the queue. If a request has a status of PENDING, RUNNING, or
SUCCESS, it cannot be removed from the queue using CLEAR_ERROR.

Specifying Completion and Error Procedures

8-20 Oracle8 ConText Cartridge Application Developer’s Guide

Specifying Completion and Error Procedures
To specify a procedure to be called when a linguistic request completes or errors,
use the SET_COMPLETION_CALLBACK and SET_ERROR_CALLBACK
procedures in CTX_LING. ConText invokes the procedure defined by SET_
COMPLETION_CALLBACK after it processes a linguistic request; ConText invokes
the procedure defined by SET_ERROR_CALLBACK when it encounters an error.

The following is an example of how to define and use a completion callback
procedure. This example is taken from genling.sql in the ctxling demonstration
provided with the ConText installation.

For every linguistic request processed, ling_comp_callback keeps track of the number
articles processed by decrementing num_docs, previously defined as the number of
articles in the table. The procedure also keeps track of any errors by incrementing
num_errors.

create or replace procedure LING_COMP_CALLBACK
 p_handle in number,
 p_status in varchar2,
 p_errors in varchar2
) IS
 l_total number;
 l_pk varchar2(64);
BEGIN

 -- decrement the count in the tracking table

 update ling_tracking set num_docs = num_docs - 1;

 -- if the request errored, mark the errors in the pending table

 IF (p_status = ’ERROR’) then
 update ling_tracking set num_errros = num_errors + 1;
 end IF;
 commit;

END;
/

Specifying Completion and Error Procedures

Using CTX_LING 8-21

The following code is an anonymous PL/SQL block that sets the linguistic
completion callback procedure to ling_comp_callback and then generates CTX_LING
output for every document in the articles table:

declare
 cursor c1 is select article_id
 from articles;
 l_handle number;

begin

-- set the completion callback procdure to keep the pending table
-- in sync with the number of documents processed (completed requests)
-- and the number of errored requests.

 ctx_ling.set_completion_callback(’LING_COMP_CALLBACK’);
end;

-- loop through all articles in the article table, requesting themes
-- and gists
--

for crec in c1 loop

ctx_ling.request_themes(’DEMO_POLICY’, crec.article_id, ’ARTICLE_THEMES’);
ctx_ling.request_gist(’DEMO_POLICY’, crec.article_id, ’ARTICLE_GISTS’);
l_handle := ctx_ling.submit;

end loop;

end;

Logging Parse Information

8-22 Oracle8 ConText Cartridge Application Developer’s Guide

Logging Parse Information
At start-up of a ConText server, the logging of linguistic parse information is
disabled by default.

To enable logging of the parse information generated by ConText linguistics during
a session, use the CTX_LING.SET_LOG_PARSE procedure.

For example:

execute ctx_ling.set_log_parse(’TRUE’)

Once you enable parse logging for a session, it is active until you explicitly disable it
during the session. You can use the CTX_LING.GET_LOG_PARSE function to know
whether parse logging is enabled or disabled for the session.

Attention: Parse logging is a useful feature if you are having
difficulty generating CTX_LING output and you want to monitor
how ConText is parsing your documents; however, parse logging
may affect performance considerably. As such, you should only
enable parse logging if you encounter problems with generating
CTX_LING output.

SQL Functions 9-1

9
SQL Functions

This chapter contains details for using the ConText SQL functions in SELECT
statements to perform one-step queries.

The following topics are covered in this chapter:

■ Query Functions

■ SELECT Statement

Query Functions

9-2 Oracle8 ConText Cartridge Application Developer’s Guide

Query Functions
In addition to the functions in the PL/SQL packages, ConText provides the
following functions for performing one-step queries in SQL*Plus:

Prerequisites
Before one-step queries can be executed, the database in which the text resides must
be text enabled by setting the ConText initialization parameter TEXT_ENABLE =
TRUE. This can be done in two ways:

■ setting it in the initsid.ora system initialization file

■ using the ALTER SESSION command

Name Description

CONTAINS Specifies the query expression and SCORE label for a one-step query.

SCORE Returns the score generated by CONTAINS.

See Also: For more information about initialization parameters
and the initsid.ora file, see Oracle8 Administrator’s Guide.

For more information about using the ALTER SESSION command,
see Oracle8 SQL Reference.

Query Functions

SQL Functions 9-3

CONTAINS

Use the CONTAINS function in the WHERE clause of a SELECT statement to
specify the query expression for a one-step query. You can also define a numeric
label for the scores generated by the function so that the SCORE function can be
used in other clauses of the SELECT statement.

Syntax
CONTAINS(
 column_id NUMBER,
 text_query VARCHAR2,
 label NUMBER,
 pol_hint VARCHAR2)

column_id
Specify the text column to be searched in the table.

text_query
Specify the query expression for the text or theme to search for in column_id.

label
Specify the label that identifies the score generated by the CONTAINS function
(required only if CONTAINS called more than once in a query).

pol_hint
Specify which policy to use for text columns that have multiple policies.

Example
See the SELECT statement syntax in this chapter.

Notes
Each CONTAINS function in a query produces a separate set of score values. When
there are multiple CONTAINS functions, each CONTAINS function must have a
label specified.

See Also: For more information about how to write query
expressions, see Chapter 3, "Understanding Query Expressions".

Query Functions

9-4 Oracle8 ConText Cartridge Application Developer’s Guide

If only one CONTAINS function is used in a SELECT statement, the label parameter
is not required in the CONTAINS function; however, a SCORE label value of zero
(0) is automatically generated. When the SCORE function is call (e.g. in a SELECT
clause), the function must reference the label value.

The CONTAINS function may only be used in the WHERE clause of a SELECT
statement; it may not be issued in the WHERE clause of an UPDATE, INSERT or
DELETE statement.

In order to specify pol_hint, you must specify label as a place holder. pol_hint must
name a policy that is indexed either by text or theme. Do not specify user.policy_
name notation for pol_hint; specify only policy name, otherwise ConText will raise an
error. You cannot specify bind variables for pol_hint.

When you do not specify pol_hint and column_id has more than one indexed policy
attached to it, ConText uses the policy whose name is lexicographically first. For
example, if a text column had policies named POL1 and POL2 associated with it
and you did not specify pol_hint, ConText uses POL1.

Suggestion: Oracle Corporation does not recommend relying on
ConText to select a policy when you perform queries on columns
with multiple policies. In this situation, always specify a policy
name in pol_hint.

Query Functions

SQL Functions 9-5

SCORE

The SCORE function returns the score values produced by the CONTAINS function
in a one-step query.

Syntax
SCORE(label NUMBER)

label
Identifies the scores produced by a query.

Notes
The SCORE function may be used in any of these clauses: SELECT, ORDER BY, or
GROUP BY.

The value specified for LABEL is the same value defined by the LABEL argument in
the CONTAINS function that generated the scores and is referenced by the SCORE
function in all other clauses.

If only one CONTAINS function is used in a SELECT statement, the LABEL
parameter is not required in the CONTAINS clause, but a SCORE label value of zero
(0) will be generated. All other clauses must then refer to SCORE(0) or SCORE(*).

Example
SELECT SCORE(10), title FROM documents
WHERE CONTAINS(text, ’dog’, 10) > 0
ORDER BY SCORE(10);

This example returns the score and title of all articles (documents) in the
DOCUMENTS.TEXT column that contain the word dog, sorted by score.

SELECT Statement

9-6 Oracle8 ConText Cartridge Application Developer’s Guide

SELECT Statement
You perform one-step queries in SQL*Plus using the SELECT statement. The
following syntax illustrates how the CONTAINS and SCORE query functions can
be used in a SELECT statement.

Syntax
SELECT SCORE(label1), SCORE(label2), ...SCORE(labeln),
column1, column2, ... columnn
FROM table[@dblink]
WHERE CONTAINS (column_id, ’text_query’, label 1, polhint 1) > 0
CONTAINS (column_id, ’text_query’, label 2, polhint 2) > 0
CONTAINS (column_id, ’text_query’, label n, polhint n) > 0
ORDER BY SCORE(label n)

labelx
Specify the numeric label that identifies the specific CONTAINS function that
generated the score (required only when CONTAINS is called more than once in a
query).

columnn

Specify the columns to be returned by the query. Each CONTAINS clause produces
a virtual SCORE column that can be referenced by its numeric label (labelx) and
included in the query output.

table
Specify the name of the table that contains the text column to be searched.

column_id
Specify the name of the text column.

Note: If a database link has been created for a remote database,
the table specified in a one-step query can reside in the remote
database. The table name must include the database link (@dblink)
to access the remote table.

For more information about database links and remote queries, see
Oracle8 Concepts.

SELECT Statement

SQL Functions 9-7

text_query
Specify the query expression to be used to return the relevant text.

pol_hintx

Specify the policy to be used when column_id has multiple policies.

Notes
The CONTAINS function must always be followed by the > 0 syntax which
specifies that the score value calculated by the CONTAINS function must be greater
than zero for the row to be selected.

The following example returns the names of all employees who have listed trumpet
in their resume or who have been in an orchestra, sorted by the value of the score
for the first CONTAINS (trumpet) and the second CONTAINS (orchestra).

SELECT employee_name, SCORE(10), SCORE(20)
FROM employee_database
WHERE CONTAINS (emp.resume, ’trumpet’, 10) > 0 OR
CONTAINS (emp.history, ’orchestra’, 20) > 0
ORDER BY NVL(SCORE(10),0), NVL(SCORE(20),0);

Note: Other comparison operators and other numeric values can
be used to satisfy this requirement and select rows with specific
SCORE values; however, this method of refining the selection
criteria is significantly less efficient than using the threshold and
weight query expression operators.

SELECT Statement

9-8 Oracle8 ConText Cartridge Application Developer’s Guide

PL/SQL Packages 10-1

10
PL/SQL Packages

This chapter describes the ConText Option PL/SQL packages you use to develop
applications. The following topics are described in this chapter are:

■ Developing with ConText PL/SQL Packages

■ CTX_QUERY: Query and Highlighting

■ CTX_LING: Linguistics

■ CTX_SVC: Services Queue Administration

Developing with ConText PL/SQL Packages

10-2 Oracle8 ConText Cartridge Application Developer’s Guide

Developing with ConText PL/SQL Packages
Before you can develop your own PL/SQL stored procedures and triggers that call
the procedures in the ConText packages described in this chapter, your ConText
administrator must explicitly grant EXECUTE privileges to you for each ConText
PL/SQL package you use.

See Also: For more information about granting execute
privileges, see Oracle8 ConText Cartridge Administrator’s Guide.

For more information about creating and invoking PL/SQL
packages, see Oracle8 Application Developer’s Guide.

CTX_QUERY: Query and Highlighting

PL/SQL Packages 10-3

CTX_QUERY: Query and Highlighting
The CTX_QUERY package contains stored procedures and functions that enable
processing of two-step queries and highlighting for documents returned by queries.

The package includes the following procedures and functions:

Name Description

CLOSE_CON Closes the in-memory query cursor.

CONTAINS Selects documents in the text column for a policy and writes the
results to a specified result table.

COUNT_HITS Performs a query and returns the number of hits without returning a
hitlist.

COUNT_LAST Returns the number of hits retrieved in the last call to CONTAINS or
OPEN_CON.

FEEDBACK Generates query expression feedback information.

FETCH_HIT Retrieves hits stored in query buffer by OPEN_CON.

GETTAB Gets tables from the result table pool.

HIGHLIGHT Provides filtering and/or highlighting for documents returned by a
query.

OPEN_CON Opens a cursor and executes an in-memory query.

PKDECODE Decodes a composite textkey string (value).

PKENCODE Encodes a composite textkey string (value).

PURGE_SQE Deletes all SQEs from SQE tables.

REFRESH_SQE Re-executes an SQE and updates the results stored in the SQE tables.

RELTAB Releases tables allocated by GETTAB.

REMOVE_SQE Removes a specified SQE from the SQL tables.

STORE_SQE Executes a query and stores the results in stored query expression
tables.

CTX_QUERY: Query and Highlighting

10-4 Oracle8 ConText Cartridge Application Developer’s Guide

CLOSE_CON

The CTX_QUERY.CLOSE_CON procedure closes a cursor opened by CTX_
QUERY.OPEN_CON. The CLOSE_CON procedure is used in in-memory queries
and called after CTX_QUERY.FETCH_HIT, which retrieves the desired number of
hits.

Syntax
CTX_QUERY.CLOSE_CON(curid NUMBER);

curid
Specify the cursor to be closed.

Examples
See CTX_QUERY.FETCH_HIT.

CTX_QUERY: Query and Highlighting

PL/SQL Packages 10-5

CONTAINS

The CTX_QUERY.CONTAINS procedure selects documents from a text column
that match the specified search criteria, generates scores for each document, and
writes the results to a specified hitlist result table.

Syntax
CTX_QUERY.CONTAINS(
 policy_name[@dblink] IN VARCHAR2,
 text_query IN VARCHAR2,
 restab IN VARCHAR2,
 sharelevel IN NUMBER DEFAULT 0,
 query_id IN NUMBER,
 cursor_id IN NUMBER,
 parallel IN NUMBER,
 struct_query IN VARCHAR2);

policy_name
Specify the policy that identifies the text column to be searched.

If a database link to a remote database has been created, the database link can be
specified as part of the policy name (using the syntax shown) to reference a policy
in the remote database.

text_query
Specify the query expression to be used as criteria for selecting rows.

restab
Specify the name of the hitlist table that stores intermediate results returned by
CONTAINS.

sharelevel
Specify whether the results table is shared by multiple CONTAINS. Specify 0 for
exclusive use and 1 for shared use. This parameter defaults to 0 (single-use).

When you specify 0, the system automatically truncates the result table before the
query. In this case, conid is set to NULL and query_id is ignored.

See Also: For more information about how to write query
expressions, see Chapter 3, "Understanding Query Expressions".

CTX_QUERY: Query and Highlighting

10-6 Oracle8 ConText Cartridge Application Developer’s Guide

When you specify 1 for multiple use, you must give a query_id to distinguish the
results in the shared result table. Because the system does not truncate shared result
tables, you must get rid of results from a previous CONTAINS by deleting from the
result table where conid = query_id before you issue the query.

query_id
Specify the ID used to identify query results returned by a CONTAINS procedure
when more than one CONTAINS uses the same result table (sharelevel = 1).

cursor_id
Not currently used.

parallel
Specify the number of ConText servers (with the Query personality) which execute
a query and write the results to restab.

struct_query
Specify the structured WHERE condition related to text_query. This WHERE
condition can include a subquery that selects rows from a structured data column in
another table.

Examples
exec ctx_query.contains(’my_pol’, ’cat|dog’,’CTX_TEMP’, 1, 10)

exec ctx_query.contains(’my_pol@db1’, ’oracle’,’CTX_DB1_TEMP’)

In the first example, the results of the query for the term cat or dog are stored in the
ctx_temp result table. The result table is shared because sharelevel is specified as 1.
The results in ctx_temp are identified by query_id of 10.

In the second example, my_pol exists in a remote database that has a database link
named DB1. The result table, ctx_db1_temp exists in the same remote database.

Notes
The parallel parameter does not support the max (:) and first/next (#) query
expression operators. When you specify either operator in the query expression, the
query is processed by a single ConText server, regardless of the specified parallel
level.

sharelevel determines whether the hitlist result table is shared by multiple
CONTAINS procedures.

CTX_QUERY: Query and Highlighting

PL/SQL Packages 10-7

If the result table (restab) is used to hold the results of multiple CONTAINS, a
sharelevel must be specified by each CONTAINS so that the results of previous
CONTAINS are not truncated.

If a query is performed on a policy in a remote database, the result table specified
by restab must exist in the remote database.

In struct_query, you can use any predicate, value expression or subquery except
USERENV function, CONTAINS function, SCORE function, DISPLAY function and
the ROWNUM pseudo column.

If the user who includes a structured query in a two-step query is not the owner of
the table containing the structured and text columns, the user must have SELECT
privilege with GRANT OPTION on the table. In addition, if the object being queried
is a view, the user must have SELECT privilege with GRANT OPTION on the base
table for the view.

See Also: For more information about SELECT privilege with
GRANT OPTION, see Oracle8 SQL Reference.

CTX_QUERY: Query and Highlighting

10-8 Oracle8 ConText Cartridge Application Developer’s Guide

COUNT_HITS

The CTX_QUERY.COUNT_HITS function executes a query for a policy and
returns the number of hits for the query. It does not populate a result table with
query results.

COUNT_HITS can be called in two modes, estimate and exact. The results in
estimate mode may be inaccurate; however, the results are generally returned faster
than in exact mode.

Syntax
CTX_QUERY.COUNT_HITS(
 policy_name[@dblink] IN VARCHAR2,
 text_query IN VARCHAR2,
 struct_query IN VARCHAR2,
 exact IN BOOLEAN DEFAULT FALSE)
RETURN NUMBER;

policy_name[@dblink]
Specify the name of the policy that defines the column to be searched.

If a database link to a remote database has been created, the database link can be
specified as part of the policy name (using the syntax shown) to reference a policy
in the remote database.

text_query
Specify the query expression to be used as criteria for counting returned hits (rows)

struct_query
Specify the structured where condition related to text_query.

exact
Specify TRUE to obtain an exact count of the documents in the hitlist. Specify
FALSE to obtain an estimate count. The result returned when you request an
estimate count includes hits for documents that have been deleted or updated. The
default is FALSE.

Returns
NUMBER that represents the number of hits.

CTX_QUERY: Query and Highlighting

PL/SQL Packages 10-9

Examples
declare count number;
begin
 count := ctx_query.count_hits(my_pol, ’dog|cat’, TRUE);
 dbms_output.put_line(’No. of Docs with dog or cat:’);
 dbms_output.put_line(count);
end;

Notes
Counting query hits can be performed in two modes: estimate and exact. The
modes are based on the method ConText uses to record deleted documents in a text
index.

In exact mode, hits are returned only for those documents that satisfy the conditions
of the query expression and are currently in the text column of the table.

In estimate mode, hits may be included for documents that satisfy the query
condition, but have been deleted from the text column or have been updated so that
they no longer satisfy the query expression. This can occur when the text index for
the column has not been optimized and the internal document IDs are still present
in the index.

In general, the inaccuracy of the results returned by COUNT_HITS in estimate
mode is proportional to the amount of DML that has been performed on a text
column.

Note: If the index being queried has been optimized and no
further DML has been performed on the text column, estimate
mode will return accurate results.

See Also: For more information about text indexing, DML, and
optimization, see Oracle8 ConText Cartridge Administrator’s Guide.

CTX_QUERY: Query and Highlighting

10-10 Oracle8 ConText Cartridge Application Developer’s Guide

COUNT_LAST

Use the CTX_QUERY.COUNT_LAST function to obtain the number of hits after
executing CONTAINS in a two-step query or OPEN_CON in an in-memory query.
The alternative method of obtaining the number of hits is to run the query once to
get the row count using CTX_QUERY.COUNT_HITS and then run the query again
to get the query results.

Syntax
CTX_QUERY.COUNT_LAST RETURN NUMBER;

Returns
The number of hits obtained from the last call to CTX_QUERY.CONTAINS or CTX_
QUERY.OPEN_CON.

Examples

In-memory Query
declare
 curid number;
 count number;
begin
 curid := ctx_query.open_con(’mypol’, ’me’, score_sorted=>true);
 count := ctx_query.count_last ;
end

Two-step Query
declare
 count number;
begin
 ctx_query.contains(’mypol’, ’dog’, ’ctx_temp’);
 count := ctx_query.count_last ;
end

CTX_QUERY: Query and Highlighting

PL/SQL Packages 10-11

Notes
With two-step queries, COUNT_LAST always returns an exact count.

With in-memory queries, COUNT_LAST returns an exact count except when you
include a structured condition, in which case it returns an estimate. This is because
COUNT_LAST ignores the structured condition, specified in the struct_query
parameter of OPEN_CON, when computing number of hits in an in-memory query.

For two-step queries, the COUNT_LAST function is not meant to replace calling
COUNT_HITS, which is always faster than running the query. However, in the case
where you want to process all hits in a two-step query, issuing the query with
CONTAINS and then calling COUNT_LAST is more efficient than calling COUNT_
HITS and then calling CONTAINS.

With in-memory queries, issuing OPEN_CON and then calling COUNT_LAST is
always a more efficient way to obtain an estimate of the query hits over calling
COUNT_HITS and then calling OPEN_CON, since COUNT_LAST returns a
number faster than COUNT_HITS.

CTX_QUERY: Query and Highlighting

10-12 Oracle8 ConText Cartridge Application Developer’s Guide

FEEDBACK

Use CTX_QUERY.FEEDBACK to generate feedback information for query
expressions. This procedure creates a graphical representation of the ConText parse
tree and stores the information in a feedback table.

Syntax
CTX_QUERY.FEEEDBACK(
 policy_name IN VARCHAR2,
 text_query IN VARCHAR2,
 feedback_table IN VARCHAR2,
 sharelevel IN NUMBER DEFAULT 0,
 feedback_id IN VARCHAR2 DEFAULT NULL);

policy_name
Specify the policy that identifies the text column to be queried.

text_query
Specify the query expression to be used as criteria for selecting rows.

feedback_table
Specify the name of the feedback table to store representation of the ConText parse
tree for text_query.

sharelevel
Specify whether feedback_table is shared by multiple FEEDBACK calls. Specify 0 for
exclusive use and 1 for shared use. This parameter defaults to 0 (single-use).

When you specify 0, the system automatically truncates the feedback table before
the next call to FEEDBACK.

When you specify 1 for shared use, Context does not truncate the feedback table.
Only results with the same feedback_id are updated. When no results with the same
feedback_id exist, then new results are added to the feedback table.

feedback_id
Specify a name that identifies the feedback results returned by a FEEDBACK
procedure when more than one FEEDBACK call uses the same shared feedback
table. This parameter defaults to NULL.

CTX_QUERY: Query and Highlighting

PL/SQL Packages 10-13

Notes
The user must have at least INSERT and DELETE privileges on the feedback table.
You must have at least CTXUSER role to call FEEDBACK.

When you include a wildcard, fuzzy, or soundex operator in text_query, ConText
looks at the index tables to determine the expansion.

When you include the SQE operator in text_query, the expression feedback
(expansion of the SQE expression) is based on the current state of the index and will
take into account any inserts, updates, or deletes made to the base table; however,
unlike a call to CONTAINS, the SQE is not updated or refreshed as a result of the
call to FEEDBACK.

Wildcard, fuzzy (?), and soundex (!) expression feedback does not account for lazy
deletes.

You cannot use FEEDBACK with remote queries.

To use the FEEDBACK procedure, you must have at least one Q server running.

See Also: For more information on using the FEEDBACK
procedure, see Chapter 5, "Query Expression Feedback".

CTX_QUERY: Query and Highlighting

10-14 Oracle8 ConText Cartridge Application Developer’s Guide

FETCH_HIT

The CTX_QUERY.FETCH_HIT function returns a hit stored in the query buffer
created by CTX_QUERY.OPEN_CON. You must call FETCH_HIT once for each hit
in the buffer until the desired number of hits is returned or the buffer is empty.

Syntax
CTX_QUERY.FETCH_HIT(
 curid IN NUMBER,
 pk OUT VARCHAR2,
 score OUT NUMBER,
 col1 OUT VARCHAR2,
 col2 OUT VARCHAR2,
 col3 OUT VARCHAR2,
 col4 OUT VARCHAR2,
 col5 OUT VARCAHR2);

curid
Specify the cursor opened by CTX_QUERY.OPEN_CON.

pk
Returns the primary key of the document. When the primary key is a composite
textkey, PK is returned as encoded string. In this situation, use CTX_
QUERY.PKDECODE to access an individual textkey column.

score
Returns the score of the document.

col1-5
Returns additional columns for the document.

Returns
NUMBER that indicates whether hit was retrieved: 0 if no hits fetched, 1 if hit was
fetched.

CTX_QUERY: Query and Highlighting

PL/SQL Packages 10-15

Example
declare
 score char(5);
 pk char(5);
 curid number;
 title char(256);
begin
 dbms_output.enable(100000);
 curid := ctx_query.open_con(
 policy_name => ’MY_POL’,
 text_query => ’dog’,
 score_sorted => true,
 other_cols => ’title’);
 while (ctx_query.fetch_hit(curid, pk, score, title)>0)
 loop
 dbms_output.put_line(score||pk||substr(title,1,50));
 end loop;
 ctx_query.close_con(curid);

end;

Notes
If the primary key PK is a composite textkey, use CTX_QUERY.PKDECODE to
access the individual columns of the textkey.

CTX_QUERY: Query and Highlighting

10-16 Oracle8 ConText Cartridge Application Developer’s Guide

GETTAB

CTX_QUERY.GETTAB procedure allocates result tables from the result table pool to
be used to store results from CTX_QUERY.HIGHLIGHT or CTX_
QUERY.CONTAINS.

If no result table of the specified type exists, GETTAB creates a new table.

Syntax
CTX_QUERY.GETTAB(
 type IN VARCHAR2,
 tab OUT VARCHAR2,
 tk_count IN NUMBER DEFAULT 1);

type
Specify the type of table to be allocated for text processing. This parameter must be
fully qualified with the PL/SQL package name (CTX_QUERY). The type of table
you specify can be one of the following:

Table Type Description Stores Results For

DOCTAB Result table which is used to store the marked-up text
(MUTAB) or plain ASCII text (PLAINTAB) returned
by CTX_QUERY.HIGHLIGHT

MUTAB or
PLAINTAB

RDOCTAB Result table which is used to store the non-filtered
documents (NOFILTAB) or ICF output (ICFTAB)
returned by CTX_QUERY.HIGHLIGHT

NOFILTAB or
ICFTAB

HIGHTAB Result table which is used to store the textkey, offsets,
and lengths of query terms to be highlighted in
documents (returned by CTX_QUERY.HIGHLIGHT)

HIGHTAB

HITTAB Result table which is used to store the hitlist data
returned by CTX_QUERY.CONTAINS

Hitlist Result Table.

See Also: For more information about the structure of result
tables, see Appendix A, "Result Tables".

For more information about using HIGHLIGHT, see Chapter 6,
"Document Presentation: Highlighting".

CTX_QUERY: Query and Highlighting

PL/SQL Packages 10-17

tab
Returns the name of the allocated table.

tk_count
Specify the number of textkeys in the allocated result table. This parameter applies
only to HITTAB tables. The tk_count parameter defaults to 1.

Examples
set serveroutput on
 declare
 mytab varchar2(32) ;
begin
 ctx_query.gettab(CTX_QUERY.HITTAB, mytab, 3) ;
 dbms_output.put_line(’table : ’||mytab) ;
 end ;

This example returns a HITTAB result table that has a three-column composite
textkey. The name of the table is then output.

The schema for the returned table is: TEXTKEY, TEXTKEY2, TEXTKEY3, SCORE,
CONID.

Notes
The tk_count parameter applies only to HITTAB tables; it has no effect on other table
types.

CTX_QUERY: Query and Highlighting

10-18 Oracle8 ConText Cartridge Application Developer’s Guide

HIGHLIGHT

THE CTX_QUERY.HIGHLIGHT procedure takes a query specification and a
document textkey and returns information that you can use to display the
document with or without the query terms highlighted. This procedure is usually
used after a query, from which you identify the document to be processed.

Syntax
CTX_QUERY.HIGHLIGHT(
 cspec IN VARCHAR2,
 textkey IN VARCHAR2,
 query IN VARCHAR2 DEFAULT NULL,
 id IN NUMBER DEFAULT NULL,
 nofilttab IN VARCHAR2 DEFAULT NULL,
 plaintab IN VARCHAR2 DEFAULT NULL,
 hightab IN VARCHAR2 DEFAULT NULL,
 icftab IN VARCHAR2 DEFAULT NULL,
 mutab IN VARCHAR2 DEFAULT NULL,
 starttag IN VARCHAR2 DEFAULT NULL,
 endtag IN VARCHAR2 DEFAULT NULL);

cspec
Specify the policy name for the column in which the document is stored.

textkey
Specify the unique identifier (usually the primary key) for the document.

The textkey parameter can be a single column textkey or an encoded specification
for a composite (multiple column) textkey.

query
Specify the original query expression used to retrieve the document. If NULL, no
highlights are generated.

If query includes wildcards, stemming, fuzzy matching which result in stopwords
being returned, HIGHLIGHT does not highlight the stopwords.

If query contains a result set operator (threshold, max, or first/next), the operator is
ignored. The HIGHLIGHT procedure always returns highlight information for the
entire result set.

CTX_QUERY: Query and Highlighting

PL/SQL Packages 10-19

id
Specify the identifier to be used in the results tables to identify the rows that were
returned by this procedure call. If NULL, the result tables are truncated.

nofilttab
Specify name of the RDOCTAB table where unfiltered document is stored. If
NULL, the unfiltered version is not returned.

plaintab
Specify the name of the DOCTAB table where plain text version of document is
stored. If NULL, the plain text is not returned.

hightab
Specify the name of the HIGHTAB table where highlight information for the
document is stored. If NULL, the highlight information is not returned.

icftab
Used internally by the Windows 32-bit viewer to specify where the ICF output
required for WYSIWYG viewing of documents is stored. If NULL, the ICF is not
returned.

mutab
Specify table where marked-up, plain text version of document is stored. If NULL,
marked-up version is not returned.

starttag
Specify the markup to be inserted by HIGHLIGHT for indicating the start of a
highlighted term.

The default for ASCII and formatted documents is’<<<’.

The default for HTML documents filtered using an external filter is’<<<’.

The default for HTML documents filtered using the internal HTML filter is the
HTML tag used to indicate the beginning of a font change (i.e.).

endtag
Specify the markup to be inserted by HIGHLIGHT for indicating the end of a
highlighted term.

The default for ASCII and formatted documents is’>>>’.

The default for HTML documents filtered using an external filter is’>>>’.

CTX_QUERY: Query and Highlighting

10-20 Oracle8 ConText Cartridge Application Developer’s Guide

The default for HTML documents filtered using the internal HTML filter is the
HTML tag used to indicate the end of a font change (i.e.).

Examples
begin
 ctx_query.highlight(cspec => ’2354’,
 textkey => ’23’,
 query => ’dog|cat’,
 nofiltab => ’FORMATTED_TEXT’,
 hightab => ’HIGHLIGHTED_TEXT’,
 starttag => ’<**<’,
 endtag => ’>**>’);
end;

Notes
Before CTX_QUERY.HIGHLIGHT is called, the highlight/display result tables
(NOFILTAB, PLAINTAB, HIGHTAB, MUTAB, and ICFTAB) for the desired output
must be created, either manually or using the PL/SQL procedure CTX_
QUERY.GETTAB.

If the query argument is not specified or is set to NULL, highlighting is not
generated.

If query includes wildcards, stemming, fuzzy matching which result in stopwords
being returned, HIGHLIGHT does not highlight the stopwords.

If the query expression query contains a result set operator (threshold, max, or
first/next), the operator is ignored. Highlight always returns highlight information
for the entire result set.

When textkey is a composite textkey, you must encode the composite textkey string
using the CTX_QUERY.PKENCODE procedure.

If any of the table name parameters are omitted or set to NULL, the respective table
is not populated.

If the id argument is not specified or if id is set to NULL, each specified table has all
its rows deleted and the session-id is used as the ID for all inserted rows. If an id is
specified, all rows with the same id are deleted from the respective tables before
new rows are generated with that id by the HIGHLIGHT procedure.

For HTML documents filtered through the internal HTML filter, the plain text
output generated for MUTAB retains the HTML tags from the original document.

CTX_QUERY: Query and Highlighting

PL/SQL Packages 10-21

For HTML documents filtered through an external filter, HIGHLIGHT removes all
the HTML tags and stores only the plain (ASCII) marked-up text for the document
in MUTAB.

See Also: For more information about internal and external
filters, see Oracle8 ConText Cartridge Administrator’s Guide.

For more information about the structure of result tables, see
Appendix A, "Result Tables".

CTX_QUERY: Query and Highlighting

10-22 Oracle8 ConText Cartridge Application Developer’s Guide

OPEN_CON

The CTX_QUERY.OPEN_CON function opens a cursor to a query buffer and
executes a query using the specified query expression. The results of the query are
stored in the buffer and retrieved using CTX_QUERY.FETCH_HIT.

Syntax
CTX_QUERY.OPEN_CON(
 policy_name[@dblink] IN VARCHAR2,
 text_query IN VARCHAR2,
 score_sorted IN BOOLEAN DEFAULT FALSE,
 other_cols IN VARCHAR2,
 struct_query IN VARCHAR2)
RETURN NUMBER;

policy_name[@dblink]
Specify the name of the policy that defines the column to be searched.

If a database link to a remote database has been created, the database link can be
specified as part of the policy name (using the syntax shown) to reference a policy
in the remote database.

text_query
Specify the query expression to be used as criteria for selecting rows.

score_sorted
Specify whether the results are sorted by score.

The default is FALSE.

other_cols
Specify a comma separated list of the table columns (up to 5) to be displayed, in
addition to document ID and score, in the hitlist.

struct_query
Specify the structured WHERE condition related to text_query. This WHERE
condition can include a subquery that selects rows from a structured data column in
another table.

CTX_QUERY: Query and Highlighting

PL/SQL Packages 10-23

Returns
Cursor ID.

Examples
declare

cid number;

begin
cid := ctx_query.open_con(’MYPOL’, ’dog’, score_sorted =>true, struct_query
=> ’id < 900’);

end;

In this example, the structured condition specifies that ConText must return the
documents that contain dog and where the document id is greater than 900.

See Also: CTX_QUERY.FETCH_HIT.

CTX_QUERY: Query and Highlighting

10-24 Oracle8 ConText Cartridge Application Developer’s Guide

PKDECODE

The CTX_QUERY.PKDECODE function extracts and returns a composite textkey
element from a composite textkey string.

This function is useful for in-memory queries when querying against a composite
textkey table. Use PKDECODE to extract textkey columns from the primary key
returned by CTX_QUERY.FETCH_HIT.

Syntax
CTX_QUERY.PKDECODE(
 encoded_tk IN VARCHAR2,
 which IN NUMBER)
RETURN VARCHAR2;

encoded_tk
Specify the encoded composite textkey string

which
Specify the ordinal position of which primary key to extract from encoded_tk. When
which is 0 or a number greater than the number of textkeys in encoded_tk, encoded_tk
is returned.

Returns
String that represents the decoded value of the composite textkey.

Examples
declare pkey varchar2(64);
begin
pkey := ctx_query.pkdecode(’p1,p2,p3’, 2)
pkey := ctx_query.pkdecode(’p1,p2,p3’, 0)
pkey := ctx_query.pkdecode(’p1,p2,p3’, 5)
end;

In this example, the value for the textkey is p1,p2,p3. The first call to PKDECODE
returns the value p2. The second and third calls to PKDECODE specify ordinal
positions that don’t exist, thus these calls return the same value, which is the
concatenated value p1,p2,p3.

CTX_QUERY: Query and Highlighting

PL/SQL Packages 10-25

PKENCODE

The CTX_QUERY.PKENCODE function converts a composite textkey list into a
single string and returns the string.

The string created by PKENCODE can be used as the primary key parameter PK in
other ConText procedures, such as CTX_LING.REQUEST_GIST.

Syntax
CTX_QUERY.PKENCODE(
 pk1 IN VARCHAR2,
 pk2 IN VARCHAR2,
 pk4 IN VARCHAR2,
 pk5 IN VARCHAR2,
 pk6 IN VARCHAR2,
 pk7 IN VARCHAR2,
 pk8 IN VARCHAR2,
 pk9 IN VARCHAR2,
 pk10 IN VARCHAR2,
 pk11 IN VARCHAR2,
 pk12 IN VARCHAR2,
 pk13 IN VARCHAR2,
 pk14 IN VARCHAR2,
 pk15 IN VARCHAR2,
 pk16 IN VARCHAR2)
RETURN VARCHAR2;

pk1-pk16
Each PK argument specifies a column element in the composite textkey list. You can
encode at most 16 column elements.

Returns
String that represents the encoded value of the composite textkey.

Examples
exec ctx_ling.request_gist(’my_policy’,CTX_QUERY.PKENCODE(’pk1-date’, ’pk2-data’), ’theme table’)

In this example, pk1-date and pk2-data constitute the composite textkey value for the
document.

CTX_QUERY: Query and Highlighting

10-26 Oracle8 ConText Cartridge Application Developer’s Guide

PURGE_SQE

The CTX_QUERY.PURGE_SQE procedure removes all session stored query
expressions for the current session. Session SQEs in other sessions are not affected
by PURGE_SQE.

Syntax
CTX_QUERY.PURGE_SQE(policy_name IN VARCHAR2);

policy_name
Specify the name of the policy for which the current session SQEs are purged.

Examples
exec ctx_query.purge_sqe(my_pol)

CTX_QUERY: Query and Highlighting

PL/SQL Packages 10-27

REFRESH_SQE

The CTX_QUERY.REFRESH_SQE procedure re-executes a stored query expression
and stores the results in the SQR table, overwriting existing results.

Syntax
CTX_QUERY.REFRESH_SQE(
 policy_name IN VARCHAR2,
 query_name IN VARCHAR2);

policy_name
Specify the policy for the stored query expression.

query_name
Specify the name of the stored query expression to be refreshed.

Examples
exec ctx_query.refresh_sqe(’my_pol’, ’DOG’)

See Also: For more information about the structure of the SQR
table, see Oracle8 ConText Cartridge Administrator’s Guide.

CTX_QUERY: Query and Highlighting

10-28 Oracle8 ConText Cartridge Application Developer’s Guide

RELTAB

The CTX_QUERY.RELTAB procedure releases a table previously allocated by CTX_
QUERY.GETTAB.

Syntax
CTX_QUERY.RELTAB(tab IN VARCHAR2);

tab
Specify the name of table to be released, previously assigned by CTX_
QUERY.GETTAB.

Examples
set serveroutput on
 declare
 mytab varchar2(32) ;
begin
 ctx_query.gettab(CTX_QUERY.HITTAB, mytab, 3) ;
 dbms_output.put_line(’table : ’||mytab) ;

 ctx_query.reltab(mytab);
end ;

This PL/SQL example allocates a HITTAB result table with GETTAB, then releases
it with RELTAB.

CTX_QUERY: Query and Highlighting

PL/SQL Packages 10-29

REMOVE_SQE

The CTX_QUERY.REMOVE_SQE procedure removes a specified stored query
expression from the system SQE table and the results of the SQE from the SQR table
for the policy.

Syntax
CTX_QUERY.REMOVE_SQE(
 policy_name IN VARCHAR2,
 query_name IN VARCHAR2);

policy_name
Specify the policy for the stored query expression.

query_name
Specify the name of the stored query expression to be removed.

Examples
exec ctx_query.remove_sqe(’my_pol’, ’DOG’)

See Also: For more information about the structure of the SQE
and SQR tables, see Oracle8 ConText Cartridge Administrator’s Guide.

CTX_QUERY: Query and Highlighting

10-30 Oracle8 ConText Cartridge Application Developer’s Guide

STORE_SQE

The CTX_QUERY.STORE_SQE procedure executes a query for a policy and stores
the named SQE in the SQE table and results from the SQE in the SQR table for the
policy.

Syntax
CTX_QUERY.STORE_SQE(
 policy_name IN VARCHAR2,
 query_name IN VARCHAR2,
 text_query IN VARCHAR2,
 scope IN VARCHAR2);

policy_name
Specify the policy for the stored query expression.

query_name
Specify the name of the stored query expression to be created.

text_query
Specify the query expression.

scope
Specify whether the SQE is a session or system. When you specify session, the stored
query expression exists only for the current session. When you specify system, the
stored query expression can be used in all sessions including concurrent sessions.
SQEs defined as system are not deleted when your session terminates.

Examples
exec ctx_query.store_sqe(’my_pol’, ’DOG’, ’$(dogs|puppy)’,’session’)

See Also: For more information about the structure of the SQE
and SQR tables, see Oracle8 ConText Cartridge Administrator’s Guide.

CTX_QUERY: Query and Highlighting

PL/SQL Packages 10-31

Notes
SQEs support all of the ConText query expression operators, except for:

■ max

■ first/next

SQEs also support all of the special characters and other components that can be
used in a query expression, including PL/SQL functions and other SQEs.

CTX_LING: Linguistics

10-32 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_LING: Linguistics
CTX_LING is the package of PL/SQL procedures used to request linguistic output
and to control how requests are submitted and processed by ConText servers with
the Linguistics personality.

CTX_LING contains the following stored procedures and functions:

Name Description

CANCEL Cancels all cached theme and gist requests.

GET_COMPLETION_CALLBACK Returns the completion callback procedure
specified for the current session.

GET_ERROR_CALLBACK Returns the error callback procedure specified for
the current session.

GET_FULL_THEMES Returns TRUE when theme hierarchy generation is
enabled for the current session.

GET_LOG_PARSE Returns TRUE when parse logging is enabled for
current session.

GET_SETTINGS_LABEL Returns the currently active setting configuration.

REQUEST_GIST Requests gists for a document.

REQUEST_THEMES Requests themes for a document.

SET_COMPLETION_CALLBACK Specifies a procedure to be called when a request
completes.

SET_ERROR_CALLBACK Specifies a procedure to be called if an error is
encountered by a request.

SET_FULL_THEMES Enables/disables the writing of theme hierarchy
information.

SET_LOG_PARSE Enables/disables logging of parse information for
the current session.

SET_SETTINGS_LABEL Specifies a setting configuration for the current
session.

SUBMIT Submits all cached theme and gist requests to
Services Queue.

CTX_LING: Linguistics

PL/SQL Packages 10-33

CANCEL

The CTX_LING.CANCEL procedure cancels all pending linguistic requests cached
in memory.

Syntax
CTX_LING.CANCEL ;

Examples
exec ctx_ling.cancel

Notes
Requests for themes and gists are cached in memory until CTX_LING.SUBMIT is
called. CTX_LING.CANCEL only cancels these cached requests. After these
requests have been submitted and placed in the Service Queue, CTX_
LING.CANCEL has no effect.

To cancel requests that have already been submitted to the Services Queue, use
CTX_SVC.CANCEL.

CTX_LING: Linguistics

10-34 Oracle8 ConText Cartridge Application Developer’s Guide

GET_COMPLETION_CALLBACK

The CTX_LING.GET_COMPLETION_CALLBACK function returns the name of
the completion callback procedure for the current session (specified in CTX_
LING.SET_COMPLETION_CALLBACK).

Syntax
CTX_LING.GET_COMPLETION_CALLBACK RETURN VARCHAR2;

Returns
Completion callback procedure.

Examples
declare callback varchar2(60);
begin
 callback := get_completion_callback;
 dbms_output.put_line(’Completion callback:’);
 dbms_output.put_line(callback);
end;

Notes
To call procedures for both completed task processing as well as error processing,
you must also identify the error completion processing routine with CTX_
LING.SET_COMPLETION_CALLBACK.

If both completion and error callback procedures are defined, the completion
callback routine is performed first, then the error callback routine.

The value assigned to VARCHAR2 in the declarative part of the PL/SQL block
depends on the length of the name for the specified completion callback.

CTX_LING: Linguistics

PL/SQL Packages 10-35

GET_ERROR_CALLBACK

The CTX_LING.GET_ERROR_CALLBACK function returns the name of the error
callback procedure for the current session (specified in CTX_LING.SET_ERROR_
CALLBACK).

Syntax
CTX_LING.GET_ERROR_CALLBACK RETURN VARCHAR2;

Returns
Error callback procedure.

Examples
declare e_callback varchar2(60);
begin
 e_callback := ctx_ling.get_error_callback;
 dbms_output.put_line(’Error callback:’);
 dbms_output.put_line(e_callback);
end;

Notes
If both completion and error callback are set, the completion callback is performed
first, then the error callback.

The value assigned to VARCHAR2 in the declarative part of the PL/SQL block
depends on the length of the name for the specified completion callback.

CTX_LING: Linguistics

10-36 Oracle8 ConText Cartridge Application Developer’s Guide

GET_FULL_THEMES

This function returns TRUE if the generation of theme hierarchy information is
enabled for the current session; otherwise it returns FALSE.

You enable the generation of theme hierarchy information with SET_FULL_
THEMES. ConText writes theme hierarchy information to the THEME column of
the theme table when you call REQUEST_THEMES.

Syntax
CTX_LING.GET_FULL_THEMES RETURN BOOLEAN;

Returns
Returns TRUE if the generation of theme hierarchy information is enabled;
otherwise returns FALSE.

CTX_LING: Linguistics

PL/SQL Packages 10-37

GET_LOG_PARSE

The CTX_LING.GET_LOG_PARSE function returns a FALSE or TRUE string to
indicate whether parse logging is enabled for the current database session (specified
in CTX_LING.SET_LOG_PARSE).

Syntax
CTX_LING.GET_LOG_PARSE RETURN BOOLEAN;

Returns
TRUE if parse logging is enabled, FALSE if parse logging is not enabled.

Examples
declare parse_logging boolean;
begin
 parse_logging := get_log_parse;
end;

CTX_LING: Linguistics

10-38 Oracle8 ConText Cartridge Application Developer’s Guide

GET_SETTINGS_LABEL

The CTX_LING.GET_SETTINGS_LABEL function returns the label for the setting
configuration that is active for the current session (specified in CTX_LING.SET_
SETTINGS_LABEL).

Syntax
CTX_LING.GET_SETTINGS_LABEL RETURN VARCHAR2;

Returns
Current settings configuration label.

Examples
declare settings varchar2(60);
begin
 settings := get_settings_label;
 dbms_output.put_line(’Current setting configuration:’);
 dbms_output.put_line(settings);
end;

Notes
The value assigned to VARCHAR2 in the declarative part of the PL/SQL block
depends on the character length of the label for the specified setting configuration.
The maximum length of a setting configuration label is 80 characters.

CTX_LING: Linguistics

PL/SQL Packages 10-39

REQUEST_GIST

Use the CTX_LING.REQUEST_GIST procedure to generate theme summaries and
a Gist for a document. You can generate paragraph-level or sentence-level Gists and
theme summaries.

By default, this procedure generates theme summaries for all the themes in a
document (up to 50); however, you can specify a single theme for which a theme
summary is to be generated.

Syntax
CTX_LING.REQUEST_GIST(
 policy IN VARCHAR2,
 pk IN VARCHAR2,
 table IN VARCHAR2,
 glevel IN VARCHAR2 DEFAULT ‘PARAGRAPH’,
 pov IN VARCHAR2 DEFAULT NULL);

policy
Specify the name of the ConText policy on the column.

pk
Specify the primary key (textkey) of the document (row) to be processed. The
parameter pk can be a single column textkey or an encoded specification for a
multiple column textkey.

table
Specify the table used to store the gist output.

glevel
Specify the type of Gist/theme summary to produce. The possible values are:

■ paragraph

■ sentence

The default is paragraph.

CTX_LING: Linguistics

10-40 Oracle8 ConText Cartridge Application Developer’s Guide

pov
Specify the theme for which a single Gist or theme summary is generated. The type
of Gist/theme summary generated (sentence-level or paragraph-level) depends on
the value specified for glevel.

To generate a Gist for the document, specify a theme of ‘GENERIC’ for pov. To
generate a theme summary for the document, specify the theme from the document
for which the matching paragraphs/sentences are selected.

If you specify a NULL value for pov, ConText generates a Gist for the document and
a theme summary for each of the document themes (up to 50).

Examples
exec ctx_ling.request_gist(’my_pol’, ’34’, ’ctx_gist’)

begin
ctx_ling.request_gist(’doc_pol’,
 CTX_QUERY.PKENCODE(’Jones’,’Naval Inst Pr’,’10-1-1970’),
 ’CTX_GIST’);
end;

Theme Summary Generation for a Single Theme
In the following example, a single, paragraph-level theme summary is generated for
a document with a pk of 1442 stored in the text column for policy my_pol. The theme
(pov) for which the theme summary is generated is Oracle Corporation:

exec ctx_ling.request_gist(‘my_pol’,’1442’,’ctx_gist’,pov=>’Oracle Corporation’)

Sentence-level Gist
In the following example, a sentence-level Gist is generated for document with a pk
of 1442 stored in the text column for policy my_pol:

exec ctx_ling.request_gist(‘my_pol’,’1442’,’ctx_gist’,’sentence’,’GENERIC’)

Note: The pov parameter is case sensitive. To return a Gist for a
document, specify ‘GENERIC’ in all uppercase. To return a theme
summary, specify the theme exactly as it is generated for the
document.

The themes generated by CTX_LING.REQUEST_THEMES can be
used as input for pov.

CTX_LING: Linguistics

PL/SQL Packages 10-41

Notes
You must call the CTX_LING.REQUEST_GIST procedure once for each document
for which you want to generate gists.

By default, ConText linguistics generates up to 50 themes for a document. If the user
settings specify that gists are to be created for only the top 10 themes of the
document, the REQUEST_GIST procedure creates a total of 11 gists: one gist for the
specified number of themes and one generic gist for the entire document.

The REQUEST_GIST procedure only creates gists if the setting configuration for the
session in which REQUEST_GIST is called supports gist generation.

The parameter pk can be either a single column textkey or a multiple column
(composite) textkey. When pk is a composite textkey, you must encode the
composite textkey string using the CTX_QUERY.PKENCODE procedure as in the
second example above.

Requests are not automatically entered into the Services Queue; each request is
cached in memory until the application calls the CTX_LING.SUBMIT procedure.

CTX_LING.SUBMIT explicitly enters all of the cached requests into the Services
Queue as a single batch.

All of the linguistic settings that can be specified for Gist-generation also apply to
sentence-level Gists/theme summaries when requested. The settings simply act on
sentences rather than paragraphs.

For example, the size setting for Gists, which determines the maximum number of
paragraphs in a paragraph-level Gist, determines the maximum number of
sentences in a sentence-level Gist, when a sentence-level Gist is requested.

See Also: For more information about the size setting, as well as
the other settings that can be specified for Gists and theme
summaries, see the help system provided with the ConText System
Administration tool.

CTX_LING: Linguistics

10-42 Oracle8 ConText Cartridge Application Developer’s Guide

REQUEST_THEMES

The CTX_LING.REQUEST_THEMES procedure generates a list of up to fifty
themes for a document.

By default, this procedure generates single theme information. To generate
hierarchical theme information, you must first call CTX_LING.SET_FULL_
THEMES.

Syntax
CTX_LING.REQUEST_THEMES(
 policy IN VARCHAR2,
 pk IN VARCHAR2,
 table IN VARCHAR2);

policy
Specify the name of the ConText policy for the column.

pk
Specify the primary key (textkey) of the document (row) to be processed. The
parameter pk can be a single column textkey or an encoded specification for a
multiple column textkey.

table
Specify the table used to store the theme output.

Examples
exec ctx_ling.request_themes(’my_pol’, 34, ’CTX_THEMES’)

begin
ctx_ling.request_themes(’doc_pol’,
 CTX_QUERY.PKENCODE(’Jones’,’Naval Inst Pr’,’10-1-1970’),
 ’CTX_THEMES’);
end;

CTX_LING: Linguistics

PL/SQL Packages 10-43

Notes
You must call CTX_LING.REQUEST_THEMES procedure once for each document
for which you want to generate themes.

The parameter pk can be either a single column textkey or a multiple column
textkey. When pk is a composite key, you must encode the composite textkey string
using the CTX_QUERY.PKENCODE procedure as in the second example above.

Requests for themes are not automatically entered into the Services Queue; each
request is cached in memory pending submission by CTX_LING.SUBMIT.

CTX_LING.SUBMIT explicitly enters all of the cached requests into the Services
Queue as a single batch.

CTX_LING: Linguistics

10-44 Oracle8 ConText Cartridge Application Developer’s Guide

SET_COMPLETION_CALLBACK

The CTX_LING.SET_COMPLETION_CALLBACK procedure specifies the
user-defined PL/SQL processing routine (usually a procedure) to be called when a
ConText server finishes processing a request in the Services Queue.

Syntax
CTX_LING.SET_COMPLETION_CALLBACK(callback_name IN VARCHAR2);

callback_name
Specify the name of the callback procedure. See below for a description of the
arguments to the callback_name procedure.

Examples
exec ctx_ling.set_completion_callback(’COMP_PROCEDURE’)

Notes
A completion callback procedure must be defined before SET_COMPLETION_
CALLBACK can be called. The completion callback procedure must accept the
following arguments:

Control is passed to the SET_COMPLETION_CALLBACK procedure at the
completion of a linguistic request. It can log errors or otherwise notify the
application when a request has finished processing. This can be particularly useful
for a large job that is run asynchronously in batch mode.

To call a procedure specifically for requests that terminate with errors, use CTX_
LING. SET_ERROR_CALLBACK.

Argument Type Purpose

HANDLE NUMBER Specify the internal identifier for the request, as returned by
SUBMIT.

STATUS VARCHAR2 Specify the status of the request: SUCCESS or ERROR.

ERRCODE VARCHAR2 Specify the code for the error (NULL if request processed
successfully).

CTX_LING: Linguistics

PL/SQL Packages 10-45

SET_ERROR_CALLBACK

The CTX_LING.SET_ERROR_CALLBACK procedure specifies the user-defined
PL/SQL processing routine (usually a procedure) to be called when a ConText
server encounters an error while processing a linguistic request.

Syntax
CTX_LING.SET_ERROR_CALLBACK(callback_name IN VARCHAR2);

callback_name
Specify the name of the callback procedure to be used when an error occurs.

Examples
exec ctx_ling.set_error_callback(’ERROR_PROCEDURE’)

Notes
An error callback procedure must be defined before SET_ERROR_CALLBACK can
be called. The error callback procedure must accept the following arguments:

Control is passed to the SET_ERROR_CALLBACK procedure at the completion of a
linguistic request. The procedure can be used to log errors or otherwise notify the
application when a request has finished processing. This can be particularly useful
for a large job that is run asynchronously in batch mode.

To call a procedures for both completed task processing and error processing, use
SET_COMPLETION_CALLBACK.

Argument Type Purpose

HANDLE NUMBER Specify the internal identifier for the request, as returned
by SUBMIT

ERRCODE VARCHAR2 Specify the code for the error.

CTX_LING: Linguistics

10-46 Oracle8 ConText Cartridge Application Developer’s Guide

SET_FULL_THEMES

Use this procedure to enable the writing of theme hierarchy information to the
theme table. ConText writes the theme hierarchy information when you call CTX_
LING.REQUEST_THEMES. (By default, ConText writes only single theme
information to the theme table when you call REQUEST_THEMES.)

Syntax
CTX_LING.SET_FULL_THEMES (theme_mode IN BOOLEAN DEFAULT TRUE);

theme_mode
Specify TRUE for ConText to write theme hierarchy information to the THEME
column of the theme table.

Specify FALSE to disable the writing of theme hierarchy information to the THEME
column of the theme table.

Notes
At the start of a session, the theme_mode flag is FALSE.

Calling SET_FULL_THEMES without an argument is the same as calling this
procedure with theme_mode set to TRUE.

You can check whether the writing of theme hierarchy information is turned on
using GET_FULL_THEMES.

CTX_LING: Linguistics

PL/SQL Packages 10-47

SET_LOG_PARSE

The CTX_LING.SET_LOG_PARSE procedure enables/disables logging of
linguistic parsing information for a session.

Syntax
CTX_LING.SET_LOG_PARSE(log_mode BOOLEAN DEFAULT TRUE);

log_mode
Specify whether to write parse information to a log file during linguistic processing
in a session. The default is TRUE.

Examples
exec ctx_ling.set_log_parse(TRUE)

Notes
At start-up of a ConText server, parse information logging is disabled.

Once logging is enabled, it stays enabled for the session until it is explicitly
disabled.

When logging is enabled, the text of the document being parsed and the paragraph
offset information used by ConText to separate the document into its constituent
paragraphs is written to the log file specified when the ConText server is started.

The log provides information about the input text used to generate linguistic output
and can be used for debugging the system. The parse information is especially
useful for debugging linguistic output for formatted documents from which the text
is extracted before it is processed.

However, due to the large amount of information generated by ConText and written
to the log file, parse logging may affect performance considerably. For this reason,
you should only enable parse logging if you encounter problems with linguistics.

CTX_LING: Linguistics

10-48 Oracle8 ConText Cartridge Application Developer’s Guide

SET_SETTINGS_LABEL

Use the CTX_LING.SET_SETTINGS_LABEL procedure to change the linguistic
settings for a database session.

Syntax
CTX_LING.SET_SETTINGS_LABEL(settings_label IN VARCHAR2);

settings_label
Specify the label for the setting configuration used for the session. You can use one
of the following predefined settings or one that you create with the administration
tool:

Examples
exec ctx_ling.set_settings_label(’SA’)

Notes
At start-up of a ConText server, the GENERIC default setting configuration is active.

The setting specified by SET_SETTINGS_LABEL is active for the entire session or
until you call SET_SETTINGS_LABEL with a new setting configuration. In addition,
the specified setting is active only for your current session; settings specified for
your session have no effect on the server setting.

You can specify any predefined ConText setting configuration or any custom setting
configuration. Define custom setting configurations with the Administration Tool
provided with ConText Workbench.

Label Description

GENERIC Use this configuration to analyze mixed-case English text to produce
theme and Gist output.

This configuration is the default.

SA This configuration is identical to GENERIC, except it converts
all-uppercase or all lower-case text to mixed case before processing text to
produce theme or Gist output.

This setting should be used only when text is all-uppercase or
all-lowercase, or where you are not sure of the accuracy of the case.

CTX_LING: Linguistics

PL/SQL Packages 10-49

When your text is all upper-case or all lower-case and you use the SA setting to
convert the text to mixed-case, Oracle Corporation does not recommend creating
theme indexes or issuing theme queries. Creating theme indexes with the SA
linguistic setting does not produce consistent results.

CTX_LING: Linguistics

10-50 Oracle8 ConText Cartridge Application Developer’s Guide

SUBMIT

The CTX_LING.SUBMIT procedure creates a single request (row) in the Services
Queue for all linguistic requests cached in memory for a single row (identified by
PK) and returns a handle for the request.

Syntax
CTX_LING.SUBMIT(
 wait IN NUMBER DEFAULT 0,
 do_commit IN BOOLEAN DEFAULT TRUE,
 priority IN NUMBER DEFAULT 0)
RETURN NUMBER;

wait
Specify maximum time in seconds to block subsequent requests while ConText
server processes request. The default is 0.

do_commit
Specify whether the job request should be committed to the database. The default is
TRUE.

priority
Specify the priority for the request. Requests are processed in order of priority from
lowest priority to highest priority. The default is 0.

Returns
Handle that identifies the request.

Examples
declare handle number;
begin
 handle := ctx_ling.submit(500);
end;

In this example, procedures to create one or more gists and/or themes have already
been executed and the requests cached in memory. The SUBMIT procedure enters
the request(s) into the Services Queue and returns a handle. It this case, it also

CTX_LING: Linguistics

PL/SQL Packages 10-51

prevents the queue from accepting other submissions from the same requestor for
500 seconds.

Notes
SUBMIT does not cache requests for multiple documents nor for documents in
different columns. Only requests for a single document at a time can be submitted.

If more than one request is queued in memory, SUBMIT processes all of the requests
as a single batch job. If the request is a batch job, the ConText server processes each
request in the batch in order.

All of the individual requests in the batch must be processed successfully or the
ConText server returns an ERROR status for the entire batch. The error message
stack returned by the ConText server identifies the request that caused the batch to
fail.

If SUBMIT is called from a database trigger, the DO_COMMIT argument must be
set to FALSE.

CTX_SVC: Services Queue Administration

10-52 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_SVC: Services Queue Administration
The CTX_SVC package contains PL/SQL procedures used to query requests in the
Services Queue and to perform administrative tasks on the Queue.

CTX_SVC contains the following stored procedures and functions:

Name Description

CANCEL Removes a pending request from the Services Queue.

CANCEL_ALL Removes all pending requests from the Services Queue.

CANCEL_USER Removes a pending request from the Services Queue for the
current user.

CLEAR_ALL_ERRORS Removes all requests with an error status from the Services
Queue.

CLEAR_ERROR Removes a request that produced an error from the Services
Queue.

CLEAR_INDEX_ERRORS Removes errored indexing requests from the Services
Queue.

CLEAR_LING_ERRORS Removes errored linguistic requests from the Services
Queue.

REQUEST_STATUS Returns the status of a request in the Services Queue.

CTX_SVC: Services Queue Administration

PL/SQL Packages 10-53

CANCEL

The CTX_SVC.CANCEL procedure removes a request from the Services Queue, if
the request has a status of PENDING.

Syntax
CTX_SVC.CANCEL(request_handle NUMBER);

request_handle
Specify the handle, returned by CTX_LING.SUBMIT, of the service request to
remove.

Examples
exec ctx_svc.cancel(3321)

Notes
To cancel requests that have not been entered in the Services Queue, use the CTX_
LING.CANCEL procedure.

CTX_SVC: Services Queue Administration

10-54 Oracle8 ConText Cartridge Application Developer’s Guide

CANCEL_ALL

The CTX_SVC.CANCEL_ALL procedure removes all requests with a status of
PENDING from the Services Queue.

Syntax
CTX_SVC.CANCEL_ALL ;

Examples
execute ctx_svc.cancel_all

CTX_SVC: Services Queue Administration

PL/SQL Packages 10-55

CANCEL_USER

The CTX_SVC.CANCEL_USER procedure removes all requests with a status of
PENDING for the current user.

Syntax
CTX_SVC.CANCEL_USER ;

Examples
execute ctx_svc.cancel_user

CTX_SVC: Services Queue Administration

10-56 Oracle8 ConText Cartridge Application Developer’s Guide

CLEAR_ALL_ERRORS

The CTX_SVC.CLEAR_ALL_ERRORS procedure removes all requests (text
indexing, theme indexing, and linguistics) that have a status of ERROR in the
Services Queue.

Syntax
CTX_SVC.CLEAR_ALL_ERRORS ;

Examples
execute ctx_svc.clear_all_errors

CTX_SVC: Services Queue Administration

PL/SQL Packages 10-57

CLEAR_ERROR

The CTX_SVC.CLEAR_ERROR procedure removes a request with a status of
ERROR from the Services Queue.

Syntax
CTX_SVC.CLEAR_ERROR(request_handle IN NUMBER);

request_handle
Specify the handle, returned by CTX_LING.SUBMIT, of the errored service request
that is to be removed.

Examples
exec ctx_svc.clear_error(3321)

Notes
When you call CTX_SVC.CLEAR_ERROR with a 0 for the REQUEST_HANDLE,
ConText removes all requests in the Services Queue that have an ERROR status.

You can use CTX_SVC.REQUEST_STATUS to return the status of a request in the
Services Queue.

CTX_SVC: Services Queue Administration

10-58 Oracle8 ConText Cartridge Application Developer’s Guide

CLEAR_INDEX_ERRORS

The CTX_SVC.CLEAR_INDEX_ERRORS procedure removes all indexing requests
(text and theme) that have a status of ERROR in the Services Queue.

Syntax
CTX_SVC.CLEAR_INDEX_ERROR ;

Examples
execute ctx_svc.clear_index_errors

CTX_SVC: Services Queue Administration

PL/SQL Packages 10-59

CLEAR_LING_ERRORS

The CTX_SVC.CLEAR_LING_ERRORS procedure removes all linguistic requests
that have a status of ERROR in the Services Queue.

Syntax
CTX_SVC.CLEAR_LING_ERROR ;

Examples
execute ctx_svc.clear_ling_errors

CTX_SVC: Services Queue Administration

10-60 Oracle8 ConText Cartridge Application Developer’s Guide

REQUEST_STATUS

The CTX_SVC.REQUEST_STATUS function returns the status of a request in the
Services Queue.

Syntax
CTX_SVC.REQUEST_STATUS(
 request_handle IN NUMBER,
 timestamp OUT DATE,
 errors OUT VARCHAR2)
RETURN VARCHAR2;

request_handle
Specify the handle of the service request, as returned by CTX_LING.SUBMIT.

timestamp
Returns the time at which request was submitted.

errors
Returns the error message stack for the request; message stack is returned only if
the status of the request is ERROR.

Returns
Status of the request, which is one of the following:

PENDING
The request has not yet been picked up by a ConText server.

RUNNING
The request is being processed by a ConText server.

ERROR
The request encountered an error (see ERRORS argument).

SUCCESS
The request completed successfully.

CTX_SVC: Services Queue Administration

PL/SQL Packages 10-61

Examples
declare status varchar2(10);
declare time date;
declare errors varchar2(60)
begin
status := ctx_svc.request_status(3461,timestamp,errors);
dbms_output.put_line(status,timestamp,substr(errors,1,20));
end;

Notes
Specifying an invalid request handle in REQUEST_HANDLE causes CTX_
SVC.REQUEST_STATUS to return a status of SUCCESS.

CTX_SVC: Services Queue Administration

10-62 Oracle8 ConText Cartridge Application Developer’s Guide

Result Tables A-1

A
Result Tables

This appendix describes the database schema of the result tables utilized by
ConText. Result tables are database tables that store results from the CTX_
QUERY.CONTAINS and CTX_QUERY.HIGHLIGHT procedures as well as the
output from linguistic procedures, CTX_LING.REQUEST_THEMES and CTX_
LING.REQUEST_GIST.

The topics described in this chapter are:

■ Hitlist Table Structure

■ Highlight Table Structures

■ Display Table Structures

■ CTX_LING Output Table Structures

Hitlist Table Structure

A-2 Oracle8 ConText Cartridge Application Developer’s Guide

Hitlist Table Structure
The hitlist result table stores the results returned by the CTX_QUERY.CONTAINS
procedure in the first step of a two-step query. The results can be queried directly to
produce a hitlist for the query or combined with the base table to produce more
detailed hitlists.

A hitlist result table must be created before executing a two-step query. It can be
created manually or using CTX_QUERY.GETTAB.

If the hitlist table is created manually, it can be given any name; however, the table
must have the following columns (with names and datatypes as specified).

Composite Textkey Hitlist Tables
When you perform a two-step query on a text table that has a composite textkey, the
schema of the resulting hitlist table is the same as for when you issue a query on a
table with a single column textkey, except that a composite textkey result table has
additional TEXTKEY columns.

The number of TEXTKEY columns in the hitlist table match the number of columns
in the textkey for the original text table. The TEXTKEY columns in the hitlist table
are named TEXTKEY, TEXTKEY2, TEXTKEY3,..., TEXTKEYN, where N is the
number of columns in the textkey in the original text table. N is always less than or
equal to 16.

For example, if you do a query on a text table that has a four-column composite
textkey, the schema of the resulting hitlist table is: TEXTKEY, TEXTKEY2,
TEXTKEY3, TEXTKEY4, SCORE, CONID.

The resulting TEXTKEY columns in the hitlist table are populated in the same order
as they were registered in the column policy.

Column Name Type Description

TEXTKEY VARCHAR2(64) Unique identifier (usually the primary key for the table) for
documents that satisfy the two-step query.

SCORE NUMBER Score generated by CONTAINS function for each
document.

CONID NUMBER ID for results returned by CONTAINS function when
multiple CONTAINS use the same hitlist result table.

Highlight Table Structures

Result Tables A-3

Highlight Table Structures
The highlight result tables store the highlighting results returned by the CTX_
QUERY.HIGHLIGHT procedure.

Highlight tables must be created before calling HIGHLIGHT to generate
highlighting results. They can be created manually or using CTX_QUERY.GETTAB.

If a highlight table is created manually, it can be assigned any name; however, the
table must have the columns (with names and datatypes) as specified.

HIGHTAB Highlight Table
The HIGHTAB highlight table stores query term offset and length information for
query terms in documents.

If a document is formatted, the text is filtered by CTX_QUERY.HIGHLIGHT into
plain text and the offset information is generated for the filtered text. The offset
information can be used to highlight query terms in a document.

The table must have the following columns:

MUTAB Highlight Table
The MUTAB display table stores documents in plain text (ASCII) format with the
query terms in the documents highlighted by mark-up tags generated by CTX_
QUERY.HIGHLIGHT. This mark-up can be used to provide an ASCII version of the
document with query terms highlighted.

The highlighting mark-up tags can be specified when HIGHLIGHT is called or the
default mark-up tags can be used.

Column
Name Type Description

ID NUMBER The identifier for the results generated by a particular
call to CTX_QUERY.HIGHLIGHT. Only used when table
is used to store results from multiple HIGHLIGHTS.

OFFSET NUMBER The position of the query terms in the document, relative
to the rest of the terms in the documents. Measured from
a base of 1.

LENGTH NUMBER The length of the query term.

STRENGTH NUMBER The strength of the highlight table.

Highlight Table Structures

A-4 Oracle8 ConText Cartridge Application Developer’s Guide

The table must have the following columns:

ICFTAB Highlight Table
The ICFTAB highlight table stores the ICF output generated by CTX_
QUERY.HIGHLIGHT.

The table must have the following columns:

Note: For HTML documents filtered through the internal HTML
filter, the MUTAB stores the document with the original HTML
tags.

Column Name Type Description

ID NUMBER The identifier for the results generated by a particular
call to CTX_QUERY.HIGHLIGHT (only used when
table is used to store results from multiple
HIGHLIGHTS)

DOCUMENT LONG Marked-up text of the document, stored in ASCII
format

Note: ICF output is used primarily by the Windows viewer
control to provide WYSIWIG viewing of documents in the
supported formats. As such, it is stored as binary data in a LONG
RAW column and is generally inaccessible to users.

Column Name Type Description

ID NUMBER The identifier for the results generated by a particular
call to CTX_QUERY.HIGHLIGHT (only used when
table is used to store results from multiple
HIGHLIGHTS)

DOCUMENT LONG RAW Text of the document, stored in ICF format

Display Table Structures

Result Tables A-5

Display Table Structures
The display result tables store the display results returned by the CTX_
QUERY.HIGHLIGHT procedure. The display results can be either the document in
its original format or the document filtered to plain (ASCII) text.

Display result tables must be created before calling HIGHLIGHT to generate
display output. They can be created manually or using CTX_QUERY.GETTAB.

If a display table is created manually, it can be assigned any name; however, the
table must have the columns (with names and datatypes) as specified.

NOFILTAB Display Table
The NOFILTAB display table stores formatted documents in their native format (i.e.
WordPerfect, Microsoft Word, HTML, ASCII). No highlighting or filtering is
performed on the text of the document.

The NOFILTAB table must have the following columns:

PLAINTAB Display Table
The PLAINTAB display table stores documents in plain text (ASCII) format. The
documents are processed through the filter defined for the text column and the
results are stored in the PLAINTAB table.

The PLAINTAB table must have the following columns:

Column Name Type Description

ID NUMBER The identifier for the results generated by a particular
call to CTX_QUERY.HIGHLIGHT (only used when
table is used to store results from multiple
HIGHLIGHTS)

DOCUMENT LONG RAW Text of the document, stored in the original format

Column Name Type Description

ID NUMBER The identifier for the results generated by a particular
call to CTX_QUERY.HIGHLIGHT (only used when
table is used to store results from multiple
HIGHLIGHTS)

DOCUMENT LONG Text of the document, stored in ASCII format

CTX_LING Output Table Structures

A-6 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_LING Output Table Structures
The output tables store the results returned by the CTX_LING package. The output
tables serve only as temporary holding areas. You modify, augment, or truncate the
output into a form best suited for your application.

Theme Table
The theme results table stores one row for each theme generated by CTX_
LING.REQUEST_THEMES. The value stored in the THEME column is either a
theme phrase or a colon separated list of parent themes.

The table can be named anything, but must include the following columns with
names and datatypes as specified:

Composite Textkey Theme Tables
You can use CTX_LING.REQUEST_THEMES to generate themes for a document
contained in a composite textkey table. When you do so, the schema of the resulting
theme table is the same as for when you request a theme on a single column textkey
table, except that the composite textkey result table has additional PK columns.

The number of textkey columns in the theme table match the number of textkey
columns in the original text table. The textkey columns in the theme table are
named PK1, PK2, PK3,..., PKN, where N is the number of textkeys in the original
text table. N is always less than or equal to 16.

See Also: For more information about generating linguistic
output, see "Generating CTX_LING Output" in Chapter 8, "Using
CTX_LING".

Column
Name Type Description

CID NUMBER Policy ID.

PK VARCHAR2(64) Primary key (textkey) for the text table.

THEME VARCHAR2(2000) Theme phrase or hierarchical list of parent themes
separated by colons (:).

WEIGHT NUMBER Weight of theme phrase, relative to other theme phrases
for the document.

CTX_LING Output Table Structures

Result Tables A-7

For example, if you request a theme on a text table that has four textkeys, the
schema of the output table would be (CID, PK1, PK2, PK3, PK4, THEME,
WEIGHT).

The resulting textkey columns in the theme table are populated in the same order as
they were registered.

Gist Table
The Gist result table stores one row for each Gist generated by CTX_
LING.REQUEST_GIST.

The table can be named anything, but must include the following columns (with
names and datatypes as specified):

The value in the POV column for a theme summary is a string which identifies the
theme in the document.

The value in the POV column for a Gist is the term GENERIC.

Composite Textkey Gist Tables
You can use CTX_LING.REQUEST_GIST to generate Gists for a document
contained in a composite textkey table. When you do so, the schema of the resulting
Gist table is the same as for when you request a Gist on a single column textkey
table, except that the composite textkey result table has additional PK columns.

The number of textkey columns in the Gist table match the number of textkey
columns in the original text table. The textkey columns in the Gist table are named

Column Name Type Description

CID NUMBER Policy ID.

PK VARCHAR2(64) Primary key (textkey) for the text table.

POV VARCHAR2(80) Document theme.

GIST LONG ASCII text of Gist or theme summary.

Note: GENERIC is the only value that is consistently in
all-uppercase. For all other themes in the POV column, the case
depends on how the themes were used in the document.

CTX_LING Output Table Structures

A-8 Oracle8 ConText Cartridge Application Developer’s Guide

PK1, PK2, PK3,..., PKN, where N is the number of textkeys in the original text table.
N is always less than or equal to 16.

For example, if you request a Gist on a text table that has four textkeys, the schema
of the resulting hitlist table is (CID, PK1, PK2, PK3, PK4, POV, GIST).

The resulting textkey columns in the Gist table are populated in the same order as
they were registered.

Scoring Algorithm B-1

B
Scoring Algorithm

This appendix describes the scoring algorithm for text queries.

Note: This appendix discusses how ConText calculates score for
text queries, which is different from the way it calculates score for
theme queries.

For more information about scoring for theme queries, see "Theme
Querying" in Chapter 4.

Scoring Algorithm for Text Queries

B-2 Oracle8 ConText Cartridge Application Developer’s Guide

Scoring Algorithm for Text Queries
To calculate a relevance score for a returned document in a text query, ConText uses
an inverse frequency algorithm. Inverse frequency scoring assumes that frequently
occurring terms in a document set are "noise" terms, and so these terms are scored
lower. For a document to score high, the query term must occur frequently in the
document but infrequently in the document set as a whole.

The following table illustrates ConText’s inverse frequency scoring. The first
column shows the number of documents in the document set, and the second
column shows the number of terms in the document necessary to score 100.

This table assumes that only one document in the set contains the query term.

The table illustrates that if only one document contained the query term and there
were five documents in the set, the term would have to occur 20 times in the
document to score 100. Whereas, if there were 1,000,000 documents in the set, the
term would have to occur only 4 times in the document to score 100.

Example
You have 5000 documents dealing with chemistry in which the term chemical occurs
at least once in every document. The term chemical thus occurs frequently in the
document set.

Number of Documents in
Document Set Frequency of Term in Document

1 34

5 20

10 17

50 13

100 12

500 10

1,000 9

10,000 7

100,000 5

1,000,000 4

Scoring Algorithm for Text Queries

Scoring Algorithm B-3

You have a document that contains 5 occurrences of chemical and 5 occurrences of
the term hydrogen. No other document contains the term hydrogen.

Because chemical occurs so frequently in the document set, its score for the
document is lower with respect to hydrogen, which is infrequent is the document set
as a whole. This is so even though both terms occur 5 times in the document.

Inverse frequency scoring also means that adding documents that contain hydrogen
lowers the score for that term in the document, and adding more documents that do
not contain hydrogen raises the score.

DML and Scoring
Because the scoring algorithm is based on the number of documents in the
document set, inserting, updating or deleting documents in the document set is
likely change the score for any given term before and after the DML.

If DML is heavy, you or your ConText administrator must optimize the index.
Perfect relevance ranking is obtained by executing a query right after optimizing
the index.

If DML is light, ConText still gives fairly accurate relevance ranking.

In either case, you or your ConText administrator must synchronize the index with
CTX_DML.SYNC whenever DML is performed on the index.

Note: Even if the relatively infrequent term hydrogen occurred 4
times in the document, and chemical occurred 5 times in the
document, the score for hydrogen might still be higher, because
chemical occurs so frequently in the document set (at least 5000
times).

See Also: For more information about optimizing and
synchronizing an index, see Oracle8 ConText Cartridge
Administrator’s Guide.

Scoring Algorithm for Text Queries

B-4 Oracle8 ConText Cartridge Application Developer’s Guide

SQL*Plus Sample Code C-1

C
SQL*Plus Sample Code

This appendix describes the sample SQL*Plus scripts provided by ConText. The
scripts illustrate how to use SQL*Plus to build simple queries and generate
linguistic output using ConText linguistics.

The scripts are divided into two functional areas: CTXPLUS (performing ad-hoc
queries) and CTXLING (generating linguistic output).

The following topics are covered in this chapter:

■ Setting Up the ConText Sample Applications

■ Overview of CTXPLUS

■ Overview of CTXLING

Setting Up the ConText Sample Applications

C-2 Oracle8 ConText Cartridge Application Developer’s Guide

Setting Up the ConText Sample Applications
Before you can use either CTXPLUS or CTXLING, as well as the Oracle Forms
sample application distributed with the ConText Workbench, you must create the
required demonstration objects by preforming the following setup tasks.

1. Import the export file into the predefined ConText user CTXDEMO’s schema.

For example:

IMP ctxdemo/ctxdemo FILE=demo.dmp TABLES=articles

Importing the export file creates an ARTICLES table for CTXDEMO and
populates ARTICLES.TEXT with the text of the articles used in the samples.

2. Start one or more ConText Server with the DDL (D) and Linguistics (L)
personalities.

3. Log in to SQL*Plus as the demo user and run the install script.

For example:

@demoinst

The script creates the policies, preferences, views, and results tables used by the
samples and creates a text index for the ARTICLES table. It also creates the
tables required for highlighting and CTX_LING.

Note: The files required for performing the setup tasks are located
in the demo directory for ConText. For example, in a UNIX
environment, the files are named demo.dmp and demoinst.sql and are
located in $ORACLE_HOME/ctx/demo/install.

For the exact location and name of the setup files, see the Oracle8
installation documentation specific to your operating system.

Note: If you want to use CTXLING, you must also run the
genling.sql script, located in the ctxling subdirectory in the demo
directory.

For more information, see "Using CTXLING" in this chapter.

Overview of CTXPLUS

SQL*Plus Sample Code C-3

Overview of CTXPLUS
The CTXPLUS sample code consists of the following SQL scripts:

Concepts
The ConText concepts illustrated in this sample code are:

■ query expression syntax

■ one-step queries

■ two-step queries

■ two-step queries (sorted and unsorted)

■ stored query expressions

Script Description

query1.sql Performs a one-step query using the input query expression and returns a hitlist,
sorted by score, to the standard output.

query2.sql Performs a two-step query using the input query expression and returns a hitlist,
sorted by score, to the standard output.

queryc.sql Performs an in-memory query using the input query expression and returns an
unsorted hitlist to standard output

querys.sql Performs an in-memory query using the input query expression and returns a
hitlist, sorted by score, to the standard output.

storeqry.sql Performs a query and stores the results as a system SQE. The results of the SQE
can then be used in a query (one-step, two-step, or in-memory).

showsqe.sql Returns a list of all the system SQEs that have been stored for a policy. Note that
this script is not currently implemented.

view.sql Selects a document based on the input textkey and returns the text of the document
to the standard output.

See Also: For more information about the location of the scripts,
see the Oracle8 installation documentation specific to you operating
system.

Overview of CTXPLUS

C-4 Oracle8 ConText Cartridge Application Developer’s Guide

Using CTXPLUS
To use the CTXPLUS sample SQL scripts:

1. Ensure that one or more ConText servers are running with the Query (Q)
personality.

2. Log in to SQL*Plus as the owner of the demonstration objects (usually
CTXDEMO).

3. To initiate a query, run one of the query scripts (query1, query2, queryc, or
querys). The scripts prompt you to enter a query expression.

For example:

@query1
Enter value for query_terms: coffee|tea

The script then returns a hitlist of the documents in the ARTICLES table that satisfy
the query expression you enter. The hitlist consists of a score, ID, author, and title.

4. To view an article, run the view.sql script and give it an article ID. The article ID
is the value displayed in the ID column in the hitlist generated by the query
scripts.

For example:

@view 14

The script then returns the text for the document with the article ID you
specified.

5. To create a stored query expression (SQE), run the storeqry.sql script. The
scripts prompt you to enter a name for the SQE and a query expression.

For example:

@storeqry
Enter query name: test_sqe
Enter value for query_terms: coffee|tea

Note: The script does not return the results of the query to the
standard output.

Overview of CTXPLUS

SQL*Plus Sample Code C-5

To view the SQEs for the demonstration user, use the CTX_USER_SQES view.

For example:

select pol_name, query_name, query_name
from ctx_user_sqes;

CTXPLUS Examples
The following examples execute the query1.sql, query2.sql, and querys.sql scripts
using the query terms California and politics and various logical operators (OR,
ACCUMULATE, and AND).

These examples illustrate how one-step, two-step, and (sorted) in-memory queries
produce the same results and how the operators in a query expression affect the
rows and scores returned by a query:

Single Term Queries
@query2
Enter value for query_terms: California

SCR ID AUTHOR TITLE
---- -- --------------- ----------------------------
100 17 Nolo Richards REVIEW & OUTLOOK (Editorial):
 California Smashup
50 18 Nolo Richards State Farm and California
30 25 David Shribman In the Wilderness: Democrats’
 Troubles In Winning
20 49 Nolo Richards California High Court Is
 Asked to Lift Block Of In
10 16 Heidi Waleson LEISURE & ARTS: Cynthia
 Phelps: Violist in Vogue
@query1
Enter value for query_terms: politics

SCR ID AUTHOR TITLE
---- -- --------------- ----------------------------
20 25 David Shribman In the Wilderness: Democrats’
 Troubles In Winning
10 13 Frederick C. Kl LEISURE & ARTS -- Sports:
 Mediocrity’s the Word Ar

Overview of CTXPLUS

C-6 Oracle8 ConText Cartridge Application Developer’s Guide

Multiple Term Query Using OR
@querys
Enter value for query_terms: politics|California
SCR ID AUTHOR TITLE
---- -- --------------- ----------------------------
100 17 Nolo Richards REVIEW & OUTLOOK (Editorial):
 California Smashup
50 18 Nolo Richards State Farm and California
30 25 David Shribman In the Wilderness: Democrats’
 Troubles In Winning
20 49 Nolo Richards California High Court Is Asked
 to Lift Block Of In
10 13 Frederick C. Kl LEISURE & ARTS -- Sports:
 Mediocrity’s the Word Ar
10 16 Heidi Waleson LEISURE & ARTS: Cynthia
 Phelps: Violist in Vogue

Multiple Term Query Using ACCUMULATE
@query1
Enter value for query_terms: politics,California
SCR ID AUTHOR TITLE
---- -- --------------- ----------------------------
100 17 Nolo Richards REVIEW & OUTLOOK (Editorial):
 California Smashup
50 18 Nolo Richards State Farm and California
50 25 David Shribman In the Wilderness: Democrats’
 Troubles In Winning
20 49 Nolo Richards California High Court Is Asked
 to Lift Block Of In
10 13 Frederick C. Kl LEISURE & ARTS -- Sports:
 Mediocrity’s the Word Ar
10 16 Heidi Waleson LEISURE & ARTS: Cynthia
 Phelps: Violist in Vogue

Multiple Term Queries Using AND
@query2
Enter value for query_terms: politics&California
SCR ID AUTHOR TITLE
---- -- --------------- ----------------------------
20 25 David Shribman In the Wilderness: Democrats’
 Troubles In Winning

Overview of CTXLING

SQL*Plus Sample Code C-7

Overview of CTXLING
The CTXLING demo is a set of simple, related SQL*Plus scripts. Two of the scripts
automate and track linguistic extraction on the demonstration documents. The
remaining scripts can be used to query this linguistic output.

The CTXLING sample code consists of the following SQL scripts:

Concepts
The ConText concepts illustrated in this sample code are:

■ generating linguistic output using the Linguistic Services

■ document theme viewing

■ document Gist viewing

Using CTXLING
To use the CTXLING sample SQL scripts:

1. Ensure that one or more ConText servers with the Linguistic (L) personality are
running.

2. Log in to SQL*Plus as the owner of the demonstration objects (usually
CTXDEMO).

Script Description

genling.sql Requests theme and Gist generation for each of the documents in the
ARTICLES table.

status.sql Shows the status of the theme and Gist generation initiated by
genling.sql.

gist.sql Displays the Gists for a document.

themes.sql Displays the themes for a document.

similar.sql Displays documents with similar themes for the input document

See Also: For more information about the location of the scripts,
see the Oracle8 installation documentation specifc to your
operating system.

Overview of CTXLING

C-8 Oracle8 ConText Cartridge Application Developer’s Guide

3. To generate linguistic output, run genling.sql:

@genling
Clearing theme table...
Clearing article table...
Initializing ling_tracking table
Creating ling. callback function LING_COMP_CALLBACK...
Submitting all articles for linguistic extraction...
All articles submitted.

The script generates Gist and theme information for each document in the
ARTICLES table and stores the information in the linguistic output tables
created by demoinst.sql.

4. The linguistic generation runs in the background. While this is happening, you
can use status.sql to check on the progress:

For example:

@status
Linguistic Requests left: 36
Request Errors....

The extraction is complete when there are 0 Linguistic Requests left.

5. To view the themes or Gists of an article, run the appropriate script and give it
an article ID.

For example:

@gist 40
Points of View
01 GENERIC ..
15 production
16 purchases
which point of view gist to print: 15

The script then returns the themes or Gists for the document with the article ID
you specified.

6. To select articles with the same themes as an article, run the similar.sql script
and give it an article ID.

For example:

@similar 14

Overview of CTXLING

SQL*Plus Sample Code C-9

The script then returns a list of the articles with the same themes as the article
ID you specified.

CTXLING Examples
The following examples illustrate using themes.sql, gist.sql, and similar.sql to view
the linguistic output generated by genling.sql.

Theme Viewing
@themes 40
Commodities: Coffee Futures Prices Decline on News That
U.S. Might Not Participate in New International Pact
by John Valentine

T# THEME WEIGHT
--- --------------------------------------- ------
01 United States 11
02 commerce and trade 10
03 coffee 10
...

Gist Viewing
@gist 40

Points of View

01 GENERIC ...
15 production
16 purchases

Which point of view gist to print: 15

Commodities: Coffee Futures Prices Decline on News That
U.S. Might Not Participate in New International Pact
by John Valentine

Consuming and producing nations appear to be poles apart
in their positions. Producing countries proposed a quota
that would incorporate the sales of
...

Overview of CTXLING

C-10 Oracle8 ConText Cartridge Application Developer’s Guide

Theme Comparison Viewing
@similar 40

Commodities: Coffee Futures Prices Decline on News That
U.S. Might Not Participate in New International Pact
by John Valentine

Article Themes

01 United States
02 commerce and trade
03 coffee
..
14 production
15 purchases

Which theme to query: 15

Other articles with this theme

ID WT AUTHOR TITLE
--- --- --------------- --------------------------------
1 8 William Power OTC Focus: Composite Index Falls
33 7 Alex Kaufmann Your Money Matters: How to Take
5 7 George Anders Shades of U.S. Steel: J.P.
30 6 Michael Siconol Mutual Funds: ...And Find Out if
47 6 Nolo Richards Ponce Federal Bank Is in Talks
45 5 Nolo Richards Farley Wins Round In His Bid to
35 2 Alix M. Freedma Supermarkets Push Private-Label

Stopword Transformations D-1

D
Stopword Transformations

This appendix describes stopword transformations. The following topic is covered:

■ Understanding Stopword Transformations

Understanding Stopword Transformations

D-2 Oracle8 ConText Cartridge Application Developer’s Guide

Understanding Stopword Transformations
When you use a stopword or stopword-only phrase as an operand for a query
operator, ConText rewrites the expression to eliminate the stopword or
stopword-only phrase and then executes the query.

The following section describes the stopword rewrites or transformations for each
operator. In all tables, the Stopword Expression column describes the query
expression or component of a query expression, while the right-hand column
describes the way ConText rewrites the query.

The token stopword stands for a single stopword or a stopword-only phrase.

The token non_stopword stands for either a single non-stopword, a phrase of all
non-stopwords, or a phrase of non-stopwords and stopwords.

The token no_lex stands for a single character or a string of characters that is neither
a stopword nor a word that is indexed. For example, the + character by itself is an
example of a no_lex token.

When the Stopword Expression column completely describes the query expression, a
rewritten expression of no_token means that no hits are returned when you enter
such a query.

When the Stopword Expression column describes a component of a query expression
with more than one operator, a rewritten expression of no_token means that a no_
token value is passed to the next step of the rewrite.

Transformations that contain a no_token as an operand in the Stopword Expression
column describe intermediate transformations in which the no_token is a result of a
previous transformation. These intermediate transformations apply when the
original query expression has at least one stopword and more than one operator.

For example, consider the following compound query expression:

’(this NOT dog) AND cat’

Assuming that this is the only stopword in this expression, ConText applies the
following transformations in the following order:

stopword NOT non-stopword => no_token

no_token AND non_stopword => non_stopword

The resulting expression is:

’cat’

Understanding Stopword Transformations

Stopword Transformations D-3

Word Transformations

The first transformation mean that a stopword or stopword-only phrase by itself in
a query expression results in no hits.

The second transformation says that a term that is not lexed such as + results in no
hits.

AND Transformations

See Also: To learn more about how to examine stopword
transformations, see Chapter 5, "Query Expression Feedback".

For more information about defining stopwords, see Oracle8
ConText Cartridge Administrator’s Guide.

Stopword Expression Rewritten Expression

stopword no_token

no_lex no_token

Stopword Expression Rewritten Expression

non_stopword AND stopword non_stopword

non_stopword AND no_token non_stopword

stopword AND non_stopword non_stopword

no_token AND non_stopword non_stopword

stopword AND stopword no_token

no_token AND stopword no_token

stopword AND no_token no_token

no_token AND no_token no_token

Understanding Stopword Transformations

D-4 Oracle8 ConText Cartridge Application Developer’s Guide

OR Transformations

Accumulate Transformations

Stopword Expression Rewritten Expression

non_stopword OR stopword non_stopword

non_stopword OR no_token non_stopword

stopword OR non_stopword non_stopword

no_token OR non_stopword non_stopword

stopword OR stopword no_token

no_token OR stopword no_token

stopword OR no_token no_token

no_token OR no_token no_token

Stopword Expression Rewritten Expression

non_stopword ACCUM stopword non_stopword

non_stopword ACCUM no_token non_stopword

stopword ACCUM non_stopword non_stopword

no_token ACCUM non_stopword non_stopword

stopword ACCUM stopword no_token

no_token ACCUM stopword no_token

stopword ACCUM no_token no_token

no_token ACCUM no_token no_token

Understanding Stopword Transformations

Stopword Transformations D-5

MINUS Transformations

NOT Transformations

Stopword Expression Rewritten Expression

non_stopword MINUS stopword non_stopword

non_stopword MINUS no_token non_stopword

stopword MINUS non_stopword no_token

no_token MINUS non_stopword no_token

stopword MINUS stopword no_token

no_token MINUS stopword no_token

stopword MINUS no_token no_token

no_token MINUS no_token no_token

Stopword Expression Rewritten Expression

non_stopword NOT stopword non_stopword

non_stopword NOT no_token non_stopword

stopword NOT non_stopword no_token

no_token NOT non_stopword no_token

stopword NOT stopword no_token

no_token NOT stopword no_token

stopword NOT no_token no_token

no_token NOT no_token no_token

Understanding Stopword Transformations

D-6 Oracle8 ConText Cartridge Application Developer’s Guide

Equivalence Transformations

NEAR Transformations

Stopword Expression Rewritten Expression

non_stopword EQUIV stopword non_stopword

non_stopword EQUIV no_token non_stopword

stopword EQUIV non_stopword non_stopword

no_token EQUIV non_stopword non_stopword

stopword EQUIV stopword no_token

no_token EQUIV stopword no_token

stopword EQUIV no_token no_token

no_token EQUIV no_token no_token

Note: When you use query expression feedback, not all of the
equivalence transformations are represented in the feedback table.

Stopword Expression Rewritten Expression

non_stopword NEAR stopword non_stopword

non_stopword NEAR no_token non_stopword

stopword NEAR non_stopword non_stopword

no_token NEAR non_stopword non_stopword

stopword NEAR stopword no_token

no_token NEAR stopword no_token

stopword NEAR no_token no_token

no_token NEAR no_token no_token

Understanding Stopword Transformations

Stopword Transformations D-7

Weight Transformations

Threshold Transformations

Max Transformations

First/Next Transformations

WITHIN Transformations

Stopword Expression Rewritten Expression

stopword * n no_token

no_token * n no_token

Stopword Expression Rewritten Expression

stopword > n no_token

no_token > n no_token

Stopword Expression Rewritten Expression

stopword: n no_token

no_token: n no_token

Stopword Expression Rewritten Expression

stopword # m-n no_token

no_token # m-n no_token

Stopword Expression Rewritten Expression

stopword WITHIN section no_token

no_token WITHIN section no_token

Understanding Stopword Transformations

D-8 Oracle8 ConText Cartridge Application Developer’s Guide

Knowledge Catalog - Category Hierarchy E-1

E
Knowledge Catalog - Category Hierarchy

This appendix provides a list of all the concepts in the knowledge catalog that serve
as categories.

The appendix is divided into six sections, corresponding to the six main branches of
the knowledge catalog:

■ Branch 1: science and technology

■ Branch 2: business and economics

■ Branch 3: government and military

■ Branch 4: social environment

■ Branch 5: geography

■ Branch 6: abstract ideas and concepts

The categories are presented in an inverted-tree hierarchy and within each category,
sub-categories are listed in alphabetical order.

Note: This appendix does not contain all the concepts found in the
knowledge catalog. It only contains those concepts that serve as
categories (meaning they are parent nodes in the hierarchy).

See Also: For more information about categories and concepts in
the knowledge catalog, see "Knowledge Catalog"section in
Chapter 7, "ConText Linguistics".

Branch 1: science and technology

E-2 Oracle8 ConText Cartridge Application Developer’s Guide

Branch 1: science and technology

[1] communications
 [2] journalism
 [3] broadcast journalism
 [3] photojournalism
 [3] print journalism
 [4] newspapers
 [2] public speaking
 [2] publishing industry
 [3] desktop publishing
 [3] periodicals
 [4] business publications
 [3] printing
 [2] telecommunications industry
 [3] computer networking
 [4] Internet technology
 [5] Internet providers
 [5] Web browsers
 [5] search engines
 [3] data transmission
 [3] fiber optics
 [3] telephone service

[1] formal education
 [2] colleges and universities
 [3] academic degrees
 [3] business education
 [2] curricula and methods
 [2] library science
 [2] reference books
 [2] schools
 [2] teachers and students

[1] hard sciences
 [2] aerospace industry
 [3] satellite technology
 [3] space exploration
 [4] Mars exploration
 [4] lunar exploration
 [4] space explorers
 [4] spacecraft and space stations
 [2] chemical industry
 [3] chemical adhesives
 [3] chemical dyes
 [3] chemical engineering
 [3] materials technology
 [4] industrial ceramics
 [4] metal industry
 [5] aluminum industry
 [5] metallurgy
 [5] steel industry
 [4] plastics
 [4] rubber
 [4] synthetic textiles
 [3] paints and finishing materials
 [3] pesticides

 [4] fungicides
 [4] herbicides
 [2] chemistry
 [3] chemical properties
 [3] chemical reactions
 [3] chemicals
 [4] chemical acids
 [4] chemical elements
 [4] molecular reactivity
 [4] molecular structure
 [3] chemistry tools
 [4] chemical analysis
 [4] chemistry glassware
 [4] purification and isolation of chemicals
 [3] organic chemistry
 [3] theory and physics of chemistry
 [2] civil engineering
 [3] building architecture
 [3] construction industry
 [4] building components
 [5] exterior structures
 [6] entryways and extensions
 [6] landscaping
 [6] ornamental architecture
 [6] roofs and towers
 [6] walls
 [6] windows
 [5] interior structures
 [6] building foundations
 [6] building systems
 [7] electrical systems
 [7] fireproofing and insulation
 [7] plumbing
 [6] rooms
 [4] buildings and dwellings
 [5] outbuildings
 [4] carpentry
 [4] construction equipment
 [4] construction materials
 [5] paneling and composites
 [5] surfaces and finishing
 [2] computer industry
 [3] computer hardware industry
 [4] computer components
 [5] computer memory
 [5] microprocessors
 [4] computer peripherals
 [5] data storage devices
 [4] hand-held computers
 [4] laptop computers
 [4] mainframes
 [4] personal computers
 [4] workstations
 [3] computer science
 [4] artificial intelligence
 [3] computer security and data encryption
 [4] computer viruses and protection
 [3] computer software industry

Branch 1: science and technology

Knowledge Catalog - Category Hierarchy E-3

 [4] CAD-CAM
 [4] client-server software
 [4] computer programming
 [5] programming development tools
 [5] programming languages
 [4] operating systems
 [3] computer standards
 [3] cyberculture
 [3] human-computer interaction
 [3] information technology
 [4] computer multimedia
 [5] computer graphics
 [5] computer sound
 [5] computer video
 [4] databases
 [4] document management
 [4] natural language processing
 [4] spreadsheets
 [3] network computing
 [3] supercomputing and parallel computing
 [3] virtual reality
 [2] electrical engineering
 [2] electronics
 [3] consumer electronics
 [4] audio electronics
 [4] video electronics
 [3] electronic circuits and components
 [4] microelectronics
 [4] semiconductors and superconductors
 [3] radar technology
 [2] energy industry
 [3] electric power industry
 [3] energy sources
 [4] alternative energy sources
 [4] fossil fuels industry
 [5] coal industry
 [5] petroleum products industry
 [4] nuclear power industry
 [2] environment control industries
 [3] heating and cooling systems
 [3] pest control
 [3] waste management
 [2] explosives and firearms
 [3] chemical explosives
 [3] firearm parts and accessories
 [3] recreational firearms
 [2] geology
 [3] geologic formations
 [3] geologic substances
 [4] mineralogy
 [5] gemstones
 [5] igneous rocks
 [5] metamorphic rocks
 [5] sedimentary rocks
 [3] hydrology
 [3] meteorology
 [4] atmospheric science
 [4] clouds
 [4] storms
 [4] weather modification
 [4] weather phenomena
 [4] winds

 [3] mining industry
 [3] natural disasters
 [3] oceanography
 [3] seismology
 [3] speleology
 [3] vulcanology
 [2] inventions
 [2] life sciences
 [3] biology
 [4] biochemistry
 [5] biological compounds
 [6] amino acids
 [6] enzymes
 [6] hormones
 [7] androgens and anabolic steroids
 [7] blood sugar hormones
 [7] corticosteroids
 [7] estrogens and progestins
 [7] gonadotropins
 [7] pituitary hormones
 [7] thyroid hormones
 [6] lipids and fatty acids
 [6] nucleic acids
 [6] sugars and carbohydrates
 [6] toxins
 [6] vitamins
 [5] cell reproduction
 [5] cell structure and function
 [5] molecular genetics
 [4] botany
 [5] algae
 [5] fungi
 [5] plant diseases
 [5] plant kingdom
 [6] ferns
 [6] flowering plants
 [7] cacti
 [7] grasses
 [6] mosses
 [6] trees and shrubs
 [7] conifers
 [7] deciduous trees
 [7] palm trees
 [5] plant physiology
 [6] plant development
 [6] plant parts
 [4] lower life forms
 [5] bacteria
 [5] viruses
 [4] paleontology
 [5] dinosaurs
 [4] physiology
 [5] anatomy
 [6] cardiovascular systems
 [6] digestive systems
 [6] extremities and appendages
 [6] glandular systems
 [6] head and neck
 [7] ear anatomy
 [7] eye anatomy
 [7] mouth and teeth
 [6] immune systems

Branch 1: science and technology

E-4 Oracle8 ConText Cartridge Application Developer’s Guide

 [7] antigens and antibodies
 [6] lymphatic systems
 [6] muscular systems
 [6] nervous systems
 [6] reproductive systems
 [6] respiratory systems
 [6] skeletal systems
 [6] tissue systems
 [6] torso
 [6] urinary systems
 [5] reproduction and development
 [4] populations and vivisystems
 [5] biological evolution
 [5] ecology
 [6] ecological conservation
 [6] environmental pollution
 [5] genetics and heredity
 [4] zoology
 [5] invertebrates
 [6] aquatic sponges
 [6] arthropods
 [7] arachnids
 [8] mites and ticks
 [8] scorpions
 [8] spiders
 [7] crustaceans
 [7] insects
 [6] coral and sea anemones
 [6] jellyfish
 [6] mollusks
 [7] clams, oysters, and mussels
 [7] octopi and squids
 [7] snails and slugs
 [6] starfish and sea urchins
 [6] worms
 [5] vertebrates
 [6] amphibians
 [6] birds
 [7] birds of prey
 [8] owls
 [7] game birds
 [7] hummingbirds
 [7] jays, crows, and magpies
 [7] parrots and parakeets
 [7] penguins
 [7] pigeons and doves
 [7] warblers and sparrows
 [7] water birds
 [8] ducks, geese, and swans
 [8] gulls and terns
 [8] pelicans
 [7] woodpeckers
 [7] wrens
 [6] fish
 [7] boneless fish
 [8] rays and skates
 [8] sharks
 [7] bony fish
 [8] deep sea fish
 [8] eels
 [8] tropical fish
 [7] jawless fish

 [6] mammals
 [7] anteaters and sloths
 [8] aardvarks
 [7] carnivores
 [8] canines
 [8] felines
 [7] chiropterans
 [7] elephants
 [7] hoofed mammals
 [8] cattle
 [8] goats
 [8] horses
 [8] pigs
 [8] sheep
 [7] hyraxes
 [7] marine mammals
 [8] seals and walruses
 [9] manatees
 [8] whales and porpoises
 [7] marsupials
 [7] monotremes
 [7] primates
 [8] lemurs
 [7] rabbits
 [7] rodents
 [6] reptiles
 [7] crocodilians
 [7] lizards
 [7] snakes
 [7] turtles
 [3] biotechnology
 [4] antibody technology
 [5] immunoassays
 [4] biometrics
 [5] voice recognition technology
 [4] genetic engineering
 [4] pharmaceutical industry
 [5] anesthetics
 [6] general anesthetics
 [6] local anesthetics
 [5] antagonists and antidotes
 [5] antibiotics, antimicrobials, and
 antiparasitics
 [6] anthelmintics
 [6] antibacterials
 [7] antimalarials
 [7] antituberculars and antileprotics
 [6] antifungals
 [6] antivirals
 [6] local anti-infectives
 [5] antigout agents
 [5] autonomic nervous system drugs
 [6] neuromuscular blockers
 [6] skeletal muscle relaxants
 [5] blood drugs
 [5] cardiovascular drugs
 [6] antihypertensives
 [5] central nervous system drugs
 [6] analgesics and antipyretics
 [6] antianxiety agents
 [6] antidepressants
 [6] antipsychotics

Branch 1: science and technology

Knowledge Catalog - Category Hierarchy E-5

 [6] narcotic and opioid analgesics
 [6] nonsteroidal anti-inflammatory drugs
 [6] sedative-hypnotics
 [5] chemotherapeutics, antineoplastic agents
 [5] dermatomucosal agents
 [6] topical corticosteroids
 [5] digestive system drugs
 [6] antacids, adsorbents, and
 antiflatulents
 [6] antidiarrheals
 [6] antiemetics
 [6] antiulcer agents
 [6] digestants
 [6] laxatives
 [5] eye, ear, nose, and throat drugs
 [6] nasal agents
 [6] ophthalmics
 [7] ophthalmic vasoconstrictors
 [6] otics, ear care drugs
 [5] fluid and electrolyte balance drugs
 [6] diuretics
 [5] hormonal agents
 [5] immune system drugs
 [6] antitoxins and antivenins
 [6] biological response modifiers
 [6] immune serums
 [6] immunosuppressants
 [6] vaccines and toxoids
 [5] oxytocics
 [5] respiratory drugs
 [6] antihistamines
 [6] bronchodilators
 [6] expectorants and antitussives
 [5] spasmolytics
 [5] topical agents
 [3] health and medicine
 [4] healthcare industry
 [5] healthcare providers and practices
 [5] medical disciplines and specialties
 [6] cardiology
 [6] dentistry
 [6] dermatology
 [6] geriatrics
 [6] neurology
 [6] obstetrics and gynecology
 [6] oncology
 [6] ophthalmology
 [6] pediatrics
 [5] medical equipment
 [6] artificial limbs and organs
 [6] dressings and supports
 [5] medical equipment manufacturers
 [5] medical facilities
 [4] medical problems
 [5] blood disorders
 [5] cancers and tumors
 [6] carcinogens
 [5] cardiovascular disorders
 [5] developmental disorders
 [5] environment-related afflictions
 [5] gastrointestinal disorders
 [5] genetic and hereditary disorders

 [5] infectious diseases
 [6] communicable diseases
 [7] sexually transmitted diseases
 [5] injuries
 [5] medical disabilities
 [5] neurological disorders
 [5] respiratory disorders
 [5] skin conditions
 [4] nutrition
 [4] practice of medicine
 [5] alternative medicine
 [5] medical diagnosis
 [6] medical imaging
 [5] medical personnel
 [5] medical procedures
 [6] physical therapy
 [6] surgical procedures
 [7] cosmetic surgery
 [4] veterinary medicine
 [2] machinery
 [3] machine components
 [2] mathematics
 [3] algebra
 [4] linear algebra
 [4] modern algebra
 [3] arithmetic
 [4] elementary algebra
 [3] calculus
 [3] geometry
 [4] mathematical topology
 [4] plane geometry
 [4] trigonometry
 [3] math tools
 [3] mathematical analysis
 [3] mathematical foundations
 [4] number theory
 [4] set theory
 [4] symbolic logic
 [3] statistics
 [2] mechanical engineering
 [2] physics
 [3] acoustics
 [3] cosmology
 [4] astronomy
 [5] celestial bodies
 [6] celestial stars
 [6] comets
 [6] constellations
 [6] galaxies
 [6] moons
 [6] nebulae
 [6] planets
 [5] celestial phenomena
 [3] electricity and magnetism
 [3] motion physics
 [3] nuclear physics
 [4] subatomic particles
 [3] optical technology
 [4] holography
 [4] laser technology
 [5] high-energy lasers
 [5] low-energy lasers

Branch 1: science and technology

E-6 Oracle8 ConText Cartridge Application Developer’s Guide

 [3] thermodynamics
 [2] robotics
 [2] textiles
 [2] tools and hardware
 [3] cements and glues
 [3] hand and power tools
 [4] chisels
 [4] drills and bits
 [4] gauges and calipers
 [4] hammers
 [4] machine tools
 [4] planes and sanders
 [4] pliers and clamps
 [4] screwdrivers
 [4] shovels
 [4] trowels
 [4] wrenches
 [3] knots

[1] social sciences
 [2] anthropology
 [3] cultural identities
 [4] Native Americans
 [3] cultural studies
 [4] ancient cultures
 [3] customs and practices
 [2] archeology
 [3] ages and periods
 [3] prehistoric humanoids
 [2] history
 [3] U.S. history
 [4] slavery in the U.S.
 [3] ancient Rome
 [4] Roman emperors
 [3] ancient history
 [3] biographies
 [3] historical eras
 [2] human sexuality
 [3] homosexuality
 [3] pornography
 [3] prostitution
 [3] sexual issues
 [2] linguistics
 [3] descriptive linguistics
 [4] grammar
 [5] parts of speech
 [4] phonetics and phonology
 [3] historical linguistics
 [3] languages
 [3] linguistic theories
 [3] rhetoric and figures of speech
 [3] sociolinguistics
 [4] dialects and accents
 [3] writing and mechanics
 [4] punctuation and diacritics
 [4] writing systems
 [2] psychology
 [3] abnormal psychology
 [4] anxiety disorders
 [4] childhood onset disorders
 [4] cognitive disorders

 [4] dissociative disorders
 [4] eating disorders
 [4] impulse control disorders
 [4] mood disorders
 [4] personality disorders
 [4] phobias
 [4] psychosomatic disorders
 [4] psychotic disorders
 [4] somatoform disorders
 [4] substance related disorders
 [3] behaviorist psychology
 [3] cognitive psychology
 [3] developmental psychology
 [3] experimental psychology
 [3] humanistic psychology
 [3] neuropsychology
 [3] perceptual psychology
 [3] psychiatry
 [3] psychoanalytic psychology
 [3] psychological states and behaviors
 [3] psychological therapy
 [3] psychological tools and techniques
 [3] sleep psychology
 [4] sleep disorders
 [2] sociology
 [3] demographics
 [3] social identities
 [4] gender studies
 [4] senior citizens
 [3] social movements and institutions
 [3] social structures

[1] transportation
 [2] aviation
 [3] aircraft
 [3] airlines
 [3] airports
 [3] avionics
 [2] freight and shipping
 [3] package delivery industry
 [3] trucking industry
 [2] ground transportation
 [3] animal powered transportation
 [3] automotive industry
 [4] automobiles
 [4] automotive engineering
 [5] automotive parts
 [5] internal combustion engines
 [4] automotive sales
 [4] automotive service and repair
 [4] car rentals
 [4] motorcycles
 [4] trucks and buses
 [3] human powered vehicles
 [3] rail transportation
 [4] subways
 [4] trains
 [3] roadways and driving
 [2] marine transportation
 [3] boats and ships
 [3] seamanship

Branch 1: science and technology

Knowledge Catalog - Category Hierarchy E-7

 [3] waterways
 [2] travel industry
 [3] hotels and lodging
 [3] tourism
 [4] cruise lines
 [4] places of interest
 [4] resorts and spas

Branch 2: business and economics

E-8 Oracle8 ConText Cartridge Application Developer’s Guide

Branch 2: business and economics

[1] business services industry

[1] commerce and trade
 [2] electronic commerce
 [2] general commerce
 [2] international trade and finance
 [2] mail-order industry
 [2] retail trade industry
 [3] convenience stores
 [3] department stores
 [3] discount stores
 [3] supermarkets
 [2] wholesale trade industry

[1] corporate business
 [2] business enterprise
 [3] entrepreneurship
 [2] business fundamentals
 [2] consulting industry
 [2] corporate finance
 [3] accountancy
 [2] corporate management
 [2] corporate practices
 [2] diversified companies
 [2] human resources
 [3] employment agencies
 [2] office products
 [2] quality control
 [3] customer support
 [2] research and development
 [2] sales and marketing
 [3] advertising industry

[1] economics

[1] financial institutions
 [2] banking industry
 [2] insurance industry
 [2] real-estate industry

[1] financial investments
 [2] commodities market
 [3] money
 [4] currency market
 [3] precious metals market
 [2] general investment
 [2] personal finance
 [3] retirement investments
 [2] securities market
 [3] bond market
 [3] mutual funds
 [3] stock market

[1] financial lending
 [2] credit cards

[1] industrial business
 [2] industrial engineering
 [3] production methods
 [2] industrialists and financiers
 [2] manufacturing
 [3] industrial goods manufacturing

[1] public sector industry

[1] taxes and tariffs

[1] work force
 [2] organized labor

Branch 3: government and military

Knowledge Catalog - Category Hierarchy E-9

Branch 3: government and military

[1] government
 [2] county government
 [2] forms and philosophies of government
 [2] government actions
 [2] government bodies and institutions
 [3] executive branch
 [4] U.S. presidents
 [4] executive cabinet
 [3] judiciary branch
 [4] Supreme Court
 [5] chief justices
 [3] legislative branch
 [4] house of representatives
 [4] senate
 [2] government officials
 [3] royalty and aristocracy
 [3] statesmanship
 [2] government programs
 [3] social programs
 [4] welfare
 [2] international relations
 [3] Cold War
 [3] diplomacy
 [3] immigration
 [2] law
 [3] business law
 [3] courts
 [3] crimes and offenses
 [4] controlled substances
 [5] substance abuse
 [4] criminals
 [4] organized crime
 [3] law enforcement
 [3] law firms
 [3] law systems
 [4] constitutional law
 [3] legal bodies
 [3] legal customs and formalities
 [3] legal judgments
 [3] legal proceedings
 [3] prisons and punishments
 [2] municipal government
 [3] municipal infrastructure
 [3] urban areas
 [4] urban phenomena
 [4] urban structures
 [2] politics
 [3] civil rights
 [3] elections and campaigns
 [3] political activities
 [3] political advocacy
 [4] animal rights
 [4] consumer advocacy
 [3] political parties
 [3] political principles and philosophies
 [4] utopias
 [3] political scandals

 [3] revolution and subversion
 [4] terrorism
 [2] postal communications
 [2] public facilities
 [2] state government

[1] military
 [2] air force
 [2] armored clothing
 [2] army
 [2] cryptography
 [2] military honors
 [2] military intelligence
 [2] military leaders
 [2] military ranks
 [3] army, air force, and marine ranks
 [3] navy and coast guard ranks
 [2] military wars
 [3] American Civil War
 [3] American Revolution
 [3] World War I
 [3] World War II
 [3] warfare
 [2] military weaponry
 [3] bombs and mines
 [3] chemical and biological warfare
 [3] military aircraft
 [3] missiles, rockets, and torpedoes
 [3] nuclear weaponry
 [3] space-based weapons
 [2] navy
 [3] warships
 [2] service academies

Branch 4: social environment

E-10 Oracle8 ConText Cartridge Application Developer’s Guide

Branch 4: social environment

[1] belief systems
 [2] folklore
 [2] mythology
 [3] Celtic mythology
 [3] Egyptian mythology
 [3] Greek mythology
 [3] Japanese mythology
 [3] Mesopotamian and Sumerian mythology
 [3] Norse and Germanic mythology
 [3] Roman mythology
 [3] South and Central American mythology
 [3] mythological beings
 [3] myths and legends
 [2] paranormal phenomena
 [3] astrology
 [3] occult
 [3] superstitions
 [2] philosophy
 [3] epistemology
 [3] ethics and aesthetics
 [3] metaphysics
 [3] philosophical logic
 [3] schools of philosophy
 [2] religion
 [3] God and divinity
 [3] doctrines and practices
 [3] history of religion
 [3] religious institutions and structures
 [3] sacred texts and objects
 [4] Bible
 [4] liturgical garments
 [3] world religions
 [4] Christianity
 [5] Christian denominations
 [5] Christian heresies
 [5] Christian theology
 [5] Mormonism
 [5] Roman Catholicism
 [6] popes
 [6] religious orders
 [5] evangelism
 [5] protestant reformation
 [4] Islam
 [4] Judaism
 [4] eastern religions
 [5] Buddhism
 [5] Hinduism
 [6] Hindu deities

[1] clothing and appearance
 [2] clothing
 [3] clothing accessories
 [4] belts
 [4] functional accessories
 [4] gloves
 [3] fabrics

 [4] laces
 [4] leather and fur
 [3] footwear
 [3] garment parts
 [4] garment fasteners
 [4] garment trim
 [3] headgear
 [4] hats
 [4] helmets
 [3] laundry
 [3] neckwear
 [3] outer garments
 [4] dresses
 [4] formalwear
 [4] jackets
 [4] pants
 [4] shirts
 [4] skirts
 [4] sporting wear
 [4] sweaters
 [3] sewing
 [3] undergarments
 [4] deshabille
 [4] hosiery
 [4] lingerie
 [4] men’s underwear
 [2] cosmetics
 [3] facial hair
 [3] hair styling
 [2] fashion industry
 [3] supermodels
 [2] grooming
 [3] grooming aids
 [2] jewelry

[1] emergency services
 [2] emergency dispatch
 [2] emergency medical services
 [2] fire prevention and suppression
 [2] hazardous material control
 [2] heavy rescue

[1] family
 [2] death and burial
 [3] funeral industry
 [2] divorce
 [2] infancy
 [2] kinship and ancestry
 [2] marriage
 [2] pregnancy
 [3] contraception
 [2] upbringing

[1] food and agriculture
 [2] agribusiness

Branch 4: social environment

Knowledge Catalog - Category Hierarchy E-11

 [2] agricultural equipment
 [2] agricultural technology
 [3] soil management
 [4] fertilizers
 [2] aquaculture
 [2] cereals
 [2] condiments
 [2] crop grain
 [2] dairy products
 [3] cheeses
 [2] drinking and dining
 [3] alcoholic beverages
 [4] beers
 [4] liqueurs
 [4] liquors
 [4] mixed drinks
 [4] wines
 [5] wineries
 [3] cooking
 [3] meals and dishes
 [4] sandwiches
 [3] non-alcoholic beverages
 [4] coffee
 [4] soft drinks
 [4] tea
 [2] farming
 [2] fats and oils
 [3] butter and margarine
 [2] food and drink industry
 [3] foodservice industry
 [3] meat packing industry
 [2] forestry
 [3] forest products
 [2] fruits and vegetables
 [3] legumes
 [2] leavening agents
 [2] mariculture
 [2] meats
 [3] beef
 [3] pate and sausages
 [3] pork
 [3] poultry
 [2] nuts and seeds
 [2] pasta
 [2] prepared foods
 [3] breads
 [3] candies
 [3] crackers
 [3] desserts
 [4] cakes
 [4] cookies
 [4] pies
 [3] pastries
 [3] sauces
 [3] soups and stews
 [2] ranching
 [2] seafood
 [2] spices and flavorings
 [3] sweeteners

[1] housekeeping and butlery

[1] housewares
 [2] beds
 [2] candles
 [2] carpets and rugs
 [2] cases, cabinets, and chests
 [2] chairs and sofas
 [2] curtains, drapes, and screens
 [2] functional wares
 [3] cleaning supplies
 [2] home appliances
 [2] kitchenware
 [3] cookers
 [3] fine china
 [3] glassware
 [3] kitchen appliances
 [3] kitchen utensils
 [4] cutting utensils
 [3] pots and pans
 [3] serving containers
 [3] tableware
 [2] lamps
 [2] linen
 [2] mirrors
 [2] ornamental objects
 [2] stationery
 [2] stools and stands
 [2] tables and desks
 [2] timepieces

[1] leisure and recreation
 [2] arts and entertainment
 [3] broadcast media
 [4] radio
 [5] amateur radio
 [4] television
 [3] cartoons, comic books, and superheroes
 [3] cinema
 [4] movie stars
 [4] movie tools and techniques
 [4] movies
 [3] entertainments and spectacles
 [4] entertainers
 [3] humor and satire
 [3] literature
 [4] children’s literature
 [4] literary criticism
 [4] literary devices and techniques
 [4] poetry
 [5] classical poetry
 [4] prose
 [5] fiction
 [6] horror fiction
 [6] mystery fiction
 [4] styles and schools of literature
 [3] performing arts
 [4] dance
 [5] ballet

Branch 4: social environment

E-12 Oracle8 ConText Cartridge Application Developer’s Guide

 [5] choreography
 [5] folk dances
 [5] modern dance
 [4] drama
 [5] dramatic structure
 [5] stagecraft
 [4] music
 [5] blues music
 [5] classical music
 [5] composition types
 [5] folk music
 [5] jazz music
 [5] music industry
 [5] musical instruments
 [6] keyboard instruments
 [6] percussion instruments
 [6] string instruments
 [6] wind instruments
 [7] brass instruments
 [7] woodwinds
 [5] opera and vocal
 [5] popular music and dance
 [5] world music
 [3] science fiction
 [3] visual arts
 [4] art galleries and museums
 [4] artistic painting
 [5] painting tools and techniques
 [5] styles and schools of art
 [4] graphic arts
 [4] photography
 [5] cameras
 [5] photographic lenses
 [5] photographic processes
 [5] photographic techniques
 [5] photographic tools
 [4] sculpture
 [5] sculpture tools and techniques
 [2] crafts
 [2] games
 [3] indoor games
 [4] board games
 [4] card games
 [4] video games
 [3] outdoor games
 [2] gaming industry
 [3] gambling
 [2] gardening
 [2] hobbies
 [3] coin collecting
 [3] stamp collecting
 [2] outdoor recreation
 [3] hunting and fishing
 [2] pets
 [2] restaurant industry
 [2] sports
 [3] Olympics
 [3] aquatic sports
 [4] canoeing, kayaking, and rafting
 [4] swimming and diving
 [4] yachting
 [3] baseball

 [3] basketball
 [3] bicycling
 [3] bowling
 [3] boxing
 [3] equestrian events
 [4] horse racing
 [4] rodeo
 [3] fantasy sports
 [3] fitness and health
 [4] fitness equipment
 [3] football
 [3] golf
 [3] gymnastics
 [3] martial arts
 [3] motor sports
 [4] Formula I racing
 [4] Indy car racing
 [4] NASCAR racing
 [4] drag racing
 [4] motorcycle racing
 [4] off-road racing
 [3] soccer
 [3] sports equipment
 [3] tennis
 [3] track and field
 [3] winter sports
 [4] hockey
 [4] ice skating
 [4] skiing
 [2] tobacco industry
 [2] toys

Branch 5: geography

Knowledge Catalog - Category Hierarchy E-13

Branch 5: geography

[1] cartography
 [2] explorers

[1] physical geography
 [2] bodies of water
 [3] lakes
 [3] oceans
 [3] rivers
 [2] land forms
 [3] coastlands
 [3] continents
 [3] deserts
 [3] highlands
 [3] islands
 [3] lowlands
 [3] mountains
 [3] wetlands

[1] political geography
 [2] Africa
 [3] Central Africa
 [4] Angola
 [4] Burundi
 [4] Central African Republic
 [4] Congo
 [4] Gabon
 [4] Kenya
 [4] Malawi
 [4] Rwanda
 [4] Tanzania
 [4] Uganda
 [4] Zaire
 [4] Zambia
 [3] North Africa
 [4] Algeria
 [4] Chad
 [4] Djibouti
 [4] Egypt
 [4] Ethiopia
 [4] Libya
 [4] Morocco
 [4] Somalia
 [4] Sudan
 [4] Tunisia
 [3] Southern Africa
 [4] Botswana
 [4] Lesotho
 [4] Mozambique
 [4] Namibia
 [4] South Africa
 [4] Swaziland
 [4] Zimbabwe
 [3] West Africa
 [4] Benin
 [4] Burkina Faso

 [4] Cameroon
 [4] Equatorial Guinea
 [4] Gambia
 [4] Ghana
 [4] Guinea
 [4] Guinea-Bissau
 [4] Ivory Coast
 [4] Liberia
 [4] Mali
 [4] Mauritania
 [4] Niger
 [4] Nigeria
 [4] Sao Tome and Principe
 [4] Senegal
 [4] Sierra Leone
 [4] Togo
 [2] Antarctica
 [2] Arctic
 [3] Greenland
 [3] Iceland
 [2] Asia
 [3] Central Asia
 [4] Afghanistan
 [4] Bangladesh
 [4] Bhutan
 [4] India
 [4] Kazakhstan
 [4] Kyrgyzstan
 [4] Nepal
 [4] Pakistan
 [4] Tajikstan
 [4] Turkmenistan
 [4] Uzbekistan
 [3] East Asia
 [4] China
 [4] Hong Kong
 [4] Japan
 [4] Macao
 [4] Mongolia
 [4] North Korea
 [4] South Korea
 [4] Taiwan
 [3] Southeast Asia
 [4] Brunei
 [4] Cambodia
 [4] Indonesia
 [4] Laos
 [4] Malaysia
 [4] Myanmar
 [4] Papua New Guinea
 [4] Philippines
 [4] Singapore
 [4] Thailand
 [4] Vietnam
 [2] Atlantic area
 [3] Azores
 [3] Bermuda
 [3] Canary Islands

Branch 5: geography

E-14 Oracle8 ConText Cartridge Application Developer’s Guide

 [3] Cape Verde
 [3] Falkland Islands
 [2] Caribbean
 [3] Antigua and Barbuda
 [3] Bahamas
 [3] Barbados
 [3] Cuba
 [3] Dominica
 [3] Dominican Republic
 [3] Grenada
 [3] Haiti
 [3] Jamaica
 [3] Netherlands Antilles
 [3] Puerto Rico
 [3] Trinidad and Tobago
 [2] Central America
 [3] Belize
 [3] Costa Rica
 [3] El Salvador
 [3] Guatemala
 [3] Honduras
 [3] Nicaragua
 [3] Panama
 [2] Europe
 [3] Eastern Europe
 [4] Albania
 [4] Armenia
 [4] Azerbaijan
 [4] Belarus
 [4] Bulgaria
 [4] Czech Republic
 [4] Czechoslovakia
 [4] Estonia
 [4] Greece
 [4] Hungary
 [4] Latvia
 [4] Lithuania
 [4] Moldava
 [4] Poland
 [4] Republic of Georgia
 [4] Romania
 [4] Russia
 [5] Siberia
 [4] Slovakia
 [4] Soviet Union
 [4] Ukraine
 [4] Yugoslavia
 [5] Bosnia and Herzegovina
 [5] Croatia
 [5] Macedonia
 [5] Montenegro
 [5] Serbia
 [5] Slovenia
 [3] Western Europe
 [4] Austria
 [4] Belgium
 [4] Denmark
 [4] Faeroe Island
 [4] Finland
 [4] France
 [4] Germany
 [4] Iberia

 [5] Andorra
 [5] Portugal
 [5] Spain
 [4] Ireland
 [4] Italy
 [4] Liechtenstein
 [4] Luxembourg
 [4] Monaco
 [4] Netherlands
 [4] Norway
 [4] San Marino
 [4] Sweden
 [4] Switzerland
 [4] United Kingdom
 [5] England
 [5] Northern Ireland
 [5] Scotland
 [5] Wales
 [2] Indian Ocean area
 [3] Comoros
 [3] Madagascar
 [3] Maldives
 [3] Mauritius
 [3] Seychelles
 [3] Sri Lanka
 [2] Mediterranean
 [3] Corsica
 [3] Cyprus
 [3] Malta
 [3] Sardinia
 [2] Middle East
 [3] Bahrain
 [3] Iran
 [3] Iraq
 [3] Israel
 [3] Jordan
 [3] Kuwait
 [3] Lebanon
 [3] Oman
 [3] Palestine
 [3] Qatar
 [3] Saudi Arabia
 [3] Socotra
 [3] Syria
 [3] Turkey
 [3] United Arab Emirates
 [3] Yemen
 [2] North America
 [3] Canada
 [3] Mexico
 [3] United States
 [4] Alabama
 [4] Alaska
 [4] Arizona
 [4] Arkansas
 [4] California
 [4] Colorado
 [4] Delaware
 [4] Florida
 [4] Georgia
 [4] Hawaii
 [4] Idaho

Branch 5: geography

Knowledge Catalog - Category Hierarchy E-15

 [4] Illinois
 [4] Indiana
 [4] Iowa
 [4] Kansas
 [4] Kentucky
 [4] Louisiana
 [4] Maryland
 [4] Michigan
 [4] Minnesota
 [4] Mississippi
 [4] Missouri
 [4] Montana
 [4] Nebraska
 [4] Nevada
 [4] New England
 [5] Connecticut
 [5] Maine
 [5] Massachusetts
 [5] New Hampshire
 [5] Rhode Island
 [5] Vermont
 [4] New Jersey
 [4] New Mexico
 [4] New York
 [4] North Carolina
 [4] North Dakota
 [4] Ohio
 [4] Oklahoma
 [4] Oregon
 [4] Pennsylvania
 [4] South Carolina
 [4] South Dakota
 [4] Tennessee
 [4] Texas
 [4] Utah
 [4] Virginia
 [4] Washington
 [4] Washington D.C.
 [4] West Virginia
 [4] Wisconsin
 [4] Wyoming
 [2] Pacific area
 [3] American Samoa
 [3] Australia
 [4] Tasmania
 [3] Cook Islands
 [3] Fiji
 [3] French Polynesia
 [3] Guam
 [3] Kiribati
 [3] Mariana Islands
 [3] Marshall Islands
 [3] Micronesia
 [3] Nauru
 [3] New Caledonia
 [3] New Zealand
 [3] Palau
 [3] Solomon Islands
 [3] Tonga
 [3] Tuvalu
 [3] Vanuatu
 [3] Western Samoa

 [2] South America
 [3] Argentina
 [3] Bolivia
 [3] Brazil
 [3] Chile
 [3] Colombia
 [3] Ecuador
 [3] French Guiana
 [3] Guyana
 [3] Paraguay
 [3] Peru
 [3] Suriname
 [3] Uruguay
 [3] Venezuela

Branch 6: abstract ideas and concepts

E-16 Oracle8 ConText Cartridge Application Developer’s Guide

Branch 6: abstract ideas and concepts

[1] dynamic relations
 [2] activity
 [3] attempts
 [4] achievement
 [4] difficulty
 [4] ease
 [4] extemporaneousness
 [4] failure
 [4] preparation
 [4] success
 [3] inertia
 [3] motion
 [4] agitation
 [4] directional movement
 [5] ascent
 [5] convergence
 [5] departure
 [5] descent
 [5] divergence
 [5] entrance
 [5] inward motion
 [5] jumps
 [5] motions around
 [5] outward motion
 [5] progression
 [5] withdrawal
 [4] forceful motions
 [5] friction
 [5] pulls
 [5] pushes
 [5] throws
 [4] haste
 [4] slowness
 [4] transporting
 [3] rest
 [3] violence
 [2] change
 [3] exchanges
 [3] gradual change
 [3] major change
 [3] reversion
 [2] time
 [3] future
 [3] longevity
 [3] past
 [3] regularity of time
 [3] relative age
 [4] stages of development
 [3] simultaneity
 [3] time measurement
 [4] instants
 [3] timeliness
 [4] earliness
 [4] lateness
 [3] transience

[1] human life and activity
 [2] communication
 [3] announcements
 [3] conversation
 [3] declarations
 [3] disclosure
 [3] identifiers
 [3] implication
 [3] obscene language
 [3] representation
 [4] interpretation
 [3] secrecy
 [3] shyness
 [3] speech
 [3] styles of expression
 [4] boasting
 [4] clarity
 [4] eloquence
 [4] intelligibility
 [4] nonsense
 [4] plain speech
 [4] wordiness
 [2] feelings and sensations
 [3] calmness
 [3] composure
 [3] emotions
 [4] anger
 [4] contentment
 [4] courage
 [4] cowardice
 [4] happiness
 [4] humiliation
 [4] ill humor
 [4] insolence
 [4] nervousness
 [4] pickiness
 [4] regret
 [4] relief
 [4] sadness
 [4] vanity
 [3] excitement
 [3] five senses
 [4] audiences
 [4] hearing
 [5] faintness of sound
 [5] loudness
 [5] silence
 [5] sound
 [6] cries
 [6] dissonant sound
 [6] harmonious sound
 [6] harsh sound
 [6] repeated sounds
 [4] sight
 [5] appearance
 [5] fading
 [5] visibility

Branch 6: abstract ideas and concepts

Knowledge Catalog - Category Hierarchy E-17

 [4] smelling
 [5] odors
 [4] tasting
 [5] flavor
 [6] sweetness
 [4] touching
 [3] numbness
 [3] pleasure
 [3] suffering
 [2] gender
 [2] intellect
 [3] cleverness
 [3] foolishness
 [3] ignorance
 [3] intelligence and wisdom
 [3] intuition
 [3] knowledge
 [3] learning
 [3] teaching
 [3] thinking
 [4] conclusion
 [5] discovery
 [5] evidence
 [5] rebuttal
 [4] consideration
 [5] analysis
 [5] questioning
 [5] tests
 [4] faith
 [5] ideology
 [5] sanctimony
 [4] judgment
 [4] rationality
 [4] skepticism
 [4] sophistry
 [4] speculation
 [2] social attitude, custom
 [3] behavior
 [4] approval
 [4] courtesy
 [4] criticism
 [4] cruelty
 [4] flattery
 [4] forgiveness
 [4] friendliness
 [4] generosity
 [4] gratitude
 [4] hatred
 [4] jealousy
 [4] kindness
 [4] love
 [5] adoration
 [4] respect
 [4] rudeness
 [4] ruthlessness
 [4] stinginess
 [4] sympathy
 [3] morality and ethics
 [4] evil
 [4] goodness
 [4] moral action
 [5] asceticism

 [5] decency
 [5] deception
 [5] integrity
 [5] lewdness
 [5] self-indulgence
 [4] moral consequences
 [5] allegation
 [5] entitlement
 [5] excuses
 [5] punishment
 [5] reparation
 [4] moral states
 [5] fairness
 [5] guilt
 [5] innocence
 [5] partiality
 [4] responsibility
 [3] reputation
 [4] acclaim
 [4] notoriety
 [3] social activities
 [4] enjoyment
 [4] monotony
 [3] social conventions
 [4] conventionalism
 [4] formality
 [4] trends
 [3] social transactions
 [4] debt
 [4] offers
 [4] payments
 [4] petitions
 [4] promises and contracts
 [2] states of mind
 [3] anticipation
 [4] fear
 [4] frustration
 [4] hopefulness
 [4] hopelessness
 [4] prediction
 [4] surprise
 [4] warnings
 [3] boredom
 [3] broad-mindedness
 [3] carelessness
 [3] caution
 [3] confusion
 [3] creativity
 [3] curiosity
 [3] forgetfulness
 [3] patience
 [3] prejudice
 [3] remembering
 [3] seriousness
 [2] volition
 [3] assent
 [3] choices
 [4] denial
 [3] decidedness
 [3] dissent
 [3] eagerness
 [3] enticement

Branch 6: abstract ideas and concepts

E-18 Oracle8 ConText Cartridge Application Developer’s Guide

 [3] evasion
 [4] abandonment
 [4] escape
 [3] impulses
 [3] indecision
 [3] indifference
 [3] inevitability
 [3] motivation
 [3] obstinacy
 [3] tendency

[1] potential relations
 [2] ability, power
 [3] competence, expertise
 [3] energy, vigor
 [3] ineptness
 [3] productivity
 [3] provision
 [3] strength
 [3] weakness
 [2] conflict
 [3] attacks
 [3] competition
 [3] crises
 [3] retaliation
 [2] control
 [3] anarchy
 [3] command
 [4] cancelations
 [4] delegation
 [4] permission
 [4] prohibiting
 [3] defiance
 [3] influence
 [3] leadership
 [3] modes of authority
 [4] confinement
 [4] constraint
 [4] discipline
 [4] freedom
 [4] leniency
 [4] liberation
 [3] obedience
 [3] regulation
 [3] servility
 [2] possession
 [3] giving
 [3] keeping
 [3] losing
 [3] receiving
 [3] sharing
 [3] taking
 [2] possibility
 [3] chance
 [3] falseness
 [3] truth
 [2] purpose
 [3] abuse
 [3] depletion
 [3] obsolescence
 [2] support

 [3] cooperation
 [3] mediation
 [3] neutrality
 [3] peace
 [3] protection
 [3] sanctuary
 [3] security

[1] relation
 [2] agreement
 [2] cause and effect
 [3] causation
 [3] result
 [2] difference
 [2] examples
 [2] relevance
 [2] similarity
 [3] duplication
 [2] uniformity
 [2] variety

[1] static relations
 [2] amounts
 [3] fewness
 [3] fragmentation
 [3] large quantities
 [3] majority
 [3] mass quantity
 [3] minority
 [3] numbers
 [3] quantity modification
 [4] combination
 [4] connection
 [4] decrease
 [4] increase
 [4] remainders
 [4] separation
 [3] required quantity
 [4] deficiency
 [4] excess
 [4] sufficiency
 [3] wholeness
 [4] omission
 [4] thoroughness
 [2] existence
 [3] creation
 [3] life
 [2] form
 [3] defects
 [3] effervescence
 [3] physical qualities
 [4] brightness and color
 [5] color
 [6] variegation
 [5] colorlessness
 [5] darkness
 [5] lighting
 [6] opaqueness
 [6] transparency

Branch 6: abstract ideas and concepts

Knowledge Catalog - Category Hierarchy E-19

 [4] dryness
 [4] fragility
 [4] heaviness
 [4] mass and weight measurement
 [4] moisture
 [4] pliancy
 [4] rigidity
 [4] softness
 [4] temperature
 [5] coldness
 [5] heat
 [4] texture
 [5] fluids
 [5] gaseousness
 [5] jaggedness
 [5] powderiness
 [5] semiliquidity
 [5] smoothness
 [4] weightlessness
 [3] shape
 [4] angularity
 [4] circularity
 [4] curvature
 [4] roundness
 [4] straightness
 [3] symmetry
 [3] tangibility
 [3] topological form
 [4] concavity
 [4] convexity
 [4] covering
 [4] folds
 [4] openings
 [2] nonexistence
 [3] death
 [3] destruction
 [2] quality
 [3] badness
 [3] beauty
 [3] cleanness
 [3] complexity
 [3] correctness
 [3] deterioration
 [3] dirtiness
 [3] good quality
 [3] improvement
 [3] mediocrity
 [3] mistakes
 [3] normality
 [3] perfection
 [3] remedy
 [3] simplicity
 [3] stability
 [4] resistance to change
 [3] strangeness
 [3] ugliness
 [3] value
 [2] range
 [3] areas
 [4] area measurement
 [4] regions
 [4] storage

 [4] volume measurement
 [3] arrangement
 [4] locations
 [5] anteriors
 [5] compass directions
 [5] exteriors
 [5] interiors
 [5] left side
 [5] posteriors
 [5] right side
 [5] topsides
 [5] undersides
 [4] positions
 [5] disorder
 [5] groups
 [6] dispersion
 [6] exclusion
 [6] inclusion
 [6] itemization
 [6] seclusion
 [6] togetherness
 [5] hierarchical relationships
 [6] downgrades
 [6] ranks
 [6] upgrades
 [5] sequence
 [6] beginnings
 [6] continuation
 [6] ends
 [6] middles
 [6] preludes
 [3] boundaries
 [3] dimension
 [4] contraction
 [4] depth
 [4] expansion
 [4] flatness
 [4] height
 [4] largeness
 [4] length
 [4] linear measurement
 [4] narrowness
 [4] shallowness
 [4] shortness
 [4] slopes
 [4] smallness
 [4] steepness
 [4] thickness
 [3] essence
 [3] generalization
 [3] nearness
 [3] obstruction
 [3] remoteness
 [3] removal
 [3] significance
 [3] trivialness
 [3] uniqueness
 [3] ways and methods

Branch 6: abstract ideas and concepts

E-20 Oracle8 ConText Cartridge Application Developer’s Guide

Index-1

Index
. (decimal point) numjoin, 3-53
- (hyphen) as skipjoin or printjoin, 3-52
. (period) as punctuation, 3-52
- operator, 3-14, 3-15

Symbols
! as punctuation, 3-52
! operator, 3-24, 3-25
escape character, 3-46
as punctuation, 3-52
operator, 3-21, 3-22
$ as punctuation, 3-52
$ operator, 3-24
% wildcard, 3-35

theme queries, 4-8
& operator, 3-8
* operator, 3-14, 3-15
, (comma)

as a numgroup character, 3-54
as accumulate operator, 3-14
as punctuation, 3-52

: operator, 3-21, 3-22
= operator, 3-8, 3-9
> operator, 3-21
? operator, 3-24, 3-25
@ operator, 3-42
_ wildcard, 3-35
{} escape character, 3-46
| operator, 3-8
~ operator, 3-8

A
accumulate operator, 3-14

example, 3-14
in thesaurus queries, 3-29
stopword transformations, D-4

accumulation of themes, 7-12
algorithm for scoring, B-2
altering precedence, 3-45
ambiguous concept in knowledge catalog, 7-10
ambiguous themes, 4-4
AND operator, 3-8

example, 3-8
stopword transformations, D-3
theme queries, 4-10

application
building, 1-2

B
backslash escape character, 3-46
backward compatibility

near operator syntax, 3-19
base-letter conversion, 3-6
base-letter query

thesuarus operator, 3-6
base-letter support

expansion operators, 3-27
thesuarus operator, 3-34

brace escape character, 3-46
brackets

altering precedence, 3-36, 3-45
grouping character, 3-36

broader term generic operator, 3-28

Index-2

broader term instance operator, 3-29
broader term operator, 3-28
broader term operators

example, 3-32
broader term partitive operator, 3-29
BT operator, 3-28, 3-32
BTG operator, 3-28, 3-32
BTI operator, 3-29, 3-32
BTP operator, 3-29, 3-32

C
CANCEL procedure

CTX_LING, 10-33
CTX_SVC, 10-53

CANCEL_ALL procedure, 10-54
CANCEL_USER procedure, 10-55
case-conversion linguistic settings, 7-13
case-sensitivity

stopwords, 3-4, 3-49
text queries, 1-7, 3-3
theme query, 1-8, 4-6
thesaural queries, 3-33

categories in knowledge catalog, E-1
definition, 7-9

CLEAR_ALL_ERRORS procedure, 10-56
CLEAR_ERROR procedure, 8-19, 10-57
CLEAR_INDEX_ERRORS procedure, 10-58
CLEAR_LING_ERRORS procedure, 10-59
clearing linguistic requests with errors, 8-19
CLOSE_CON procedure, 2-16, 10-4
clump size in near operator, 3-17
combined queries

first/next and max, 3-23
comma

accumulate operator, 3-14
as a numgroup, 3-54

composite textkey table
creating theme and Gist, 8-9
gist structure, A-7
hitlist structure, A-2
theme structure, A-6

composite textkeys
in-memory queries, 2-18
one-step queries, 2-14

two-step queries, 2-7
using FETCH_HIT, 10-14
using PKDECODE, 10-24
using PKENCODE, 10-25

composite word queries, 3-5
highlighting, 3-5

compound phrases
in synonym queries, 3-30

concept
ambiguous, 7-10
unknown, 7-10

concepts in knowledge catalog
definition, 7-9

CONTAINS function, 2-11, 2-12, 9-3
restrictions, 2-12
using multiple, 2-12

CONTAINS procedure, 2-3, 10-5
tables created, A-2
using SQEs, 3-39

ConText linguistics
about, 7-2

continuation character, 3-51
querying, 3-52

count
presenting, 1-15

COUNT_HITS function, 2-19, 10-8
COUNT_LAST function, 2-19, 10-10
counting hits, 1-13, 2-19
CREATE TABLE command, 6-6
CREATE VIEW statement, 2-7
CTX_LING

CANCEL, 10-33
GET_COMPLETION_CALLBACK, 10-34
GET_ERROR_CALLBACK, 10-35
GET_FULL_THEMES, 10-36
GET_LOG_PARSE, 8-22, 10-37
GET_SETTINGS_LABEL, 10-38
package, 10-32
REQUEST_GIST, 8-10, 10-39
REQUEST_THEMES, 8-10, 10-42
SET_COMPLETION_CALLBACK, 8-20, 10-44
SET_ERROR_CALLBACK, 8-20, 10-45
SET_FULL_THEMES, 8-11, 10-46
SET_LOG_PARSE, 8-22, 10-47
SET_SETTINGS_LABEL, 8-16, 10-48

Index-3

SUBMIT, 8-10, 10-50
CTX_LING output

about, 8-2
combining with queries, 8-14
generating, 8-8, 8-14
presenting, 1-18

CTX_LING output tables
creating, 8-8

CTX_QUERY
CLOSE_CON, 2-16, 10-4
CONTAINS, 2-3, 3-39, 10-5
COUNT_HITS, 10-8
COUNT_LAST, 10-10
FEEDBACK, 5-2, 5-16, 10-12
FETCH_HIT, 2-16, 10-14
GETTAB, 6-6, 6-10, 10-16, A-2
HIGHLIGHT, 6-7, 10-18
OPEN_CON, 2-16, 10-22
package, 10-3
PKDECODE, 10-24
PKENCODE, 10-25
PURGE_SQE, 3-37, 10-26
REFRESH_SQE, 3-37, 3-39, 10-27
RELTAB, 6-10, 10-28
REMOVE_SQE, 3-37, 10-29
STORE_SQE, 3-37, 10-30

CTX_SQES view, 3-40
CTX_SVC

CANCEL, 10-53
CANCEL_ALL, 10-54
CANCEL_USER, 10-55
CLEAR_ALL_ERRORS, 10-56
CLEAR_ERROR, 8-19, 10-57
CLEAR_INDEX_ERRORS, 10-58
CLEAR_LING_ERRORS, 10-59
package, 10-52
REQUEST_STATUS, 10-60

CTX_USER_SQES view, 3-40
CTXLING sample application, C-7
CTXPLUS sample application, C-3
CTXSYS user, 8-4

D
database links

creating, 2-9, 2-18
in CONTAINS PL/SQL procedure, 10-5
in COUNT_HITS PL/SQL function, 10-8
in OPEN_CON PL/SQL function, 10-22
using in in-memory queries, 2-18
using in one-step queries, 2-14, 9-6
using in two-step queries, 2-9

DBMS_OUTPUT.ENABLE, 2-17
decimal point

as a numjoin, 3-53
DEFAULT thesaurus, 3-30
demo application

CTXLING, C-7
CTXPLUS, C-3
settting up, C-2

DML
affect on scoring, B-3

document hit count
presenting, 1-15

document presentation, 6-2
highlighting composites, 3-5
structure of tables, A-3
using CTX_LING output, 8-14

document viewing, 6-2
DROP TABLE command, 6-10
Dutch composite queries, 3-5

E
endjoin character, 3-51

querying, 3-55
equivalence operator, 3-8, 3-9

stopword transformations, D-6
with near, 3-18

error clearing from services queue, 8-19
error processing for linguistics, 8-20
escaping special characters, 3-46
EXECUTE command, 3-42
expansion operator

fuzzy, 3-24, 3-25
penetration, 3-26
soundex, 3-24, 3-25
stem, 3-24

expansions
viewing query, 5-6

Index-4

expression feedback
presenting, 1-15
viewing, 5-17

extending stored query expressions, 3-39

F
feedback

query expansion, 5-6
query expression, 5-2
query optimization, 5-9
stopword rewite, 5-10
theme query normalization, 5-8

FEEDBACK procedure, 5-2, 5-16, 10-12
feedback table

creating, 5-16
understanding, 5-12

FETCH_HIT function, 2-16, 10-14
first/next operator, 3-21, 3-22

stopword transformations, D-7
with max, 3-23

formats
supported for Windows 32-bit viewing, 1-17

fuzzy expansions
viewing with expression feedback, 5-6

fuzzy operator, 3-24
example, 3-25

G
generalizing theme queries, 4-11
German composite queries, 3-5
GET_COMPLETION_CALLBACK function, 10-34
GET_ERROR_CALLBACK function, 10-35
GET_FULL_THEMES, 10-36
GET_LOG_PARSE function, 8-22, 10-37
GET_SETTINGS_LABEL function, 10-38
GETTAB procedure, 6-6, 10-16, A-2
Gist, 8-2, 8-7

generating, 8-10, 10-39
presenting, 1-18

Gist table
composite textkey, 8-9
composite textkey stucture, A-7
creating, 8-8

structure, A-7
granting execute privileges, 10-2
grouping characters, 3-36

theme queries, 4-8

H
hierarchical list of themes, 8-5

generating, 8-11
hierarchical query

query expression feedback, 5-17
highlight output

text and theme queries, 6-8
HIGHLIGHT procedure, 6-7, 10-18

output, 6-4
result table, A-3
using, 6-3

highlight result tables
creating, 6-6
releasing, 6-10
structure, A-3

highlighted documents
presenting, 1-16

highlighting
composite word queries, 3-5
mark-up, 6-5
near operator, 3-19
text and theme, 6-2
text query, 6-7
theme query, 6-8
viewers, 1-17

HIGHTAB table, 6-3, 6-8
structure, A-3

hints
theme queries, 4-9

hitlist
result tables, 2-4
sharing, 2-5

hitlist table
composite textkey, A-2
structure, A-2

hits counting, 2-19
homographs

in broader term queries, 3-32
in narrower term queries, 3-32

Index-5

hyphenated words
querying, 3-52

I
ICF highlight output, 6-3
ICFTAB table

structure, A-4
index

creating, 1-4
options for text index, 1-4

indexing
special characters, 3-51
theme, 4-3

in-memory query, 1-12
example, 2-17, C-6
limitations, 2-18
using, 2-16
with composite textkeys, 2-18

input to theme extraction system, 7-5
inverse frequency scoring, B-2
iterative queries, 3-37, 3-39

K
knowledge catalog

about, 7-8
category hiearchy, E-1
normal forms, 7-10
structure, 7-8

knowlege base
about, 7-6

known themes, 4-4
known tokens, 7-11

L
lexicon, 7-6
linguistic completion processing, 8-20
linguistic output, 8-4

table structure, A-6
linguistic personality, 8-4
linguistic request

about, 1-18, 8-4
clearing, 8-19

monitoring status, 8-17
removing, 8-18
submitting, 8-11

linguistic settings
about, 7-13
enabling, 7-14, 8-16

linguistics
about, 1-18, 7-2

list of themes, 8-2, 8-5
generating, 8-10, 10-42
generating parent themes, 8-11
hierarchies, 8-5
presenting, 1-18
single themes, 8-5

loading text, 1-4
logging linguistic parse information, 8-22
logical operators, 3-8

with near, 3-18

M
mark-up

highlighting, 6-5
max operator, 3-21, 3-22

stopword transformations, D-7
with first/next, 3-23

max_span parameter in near operator, 3-17
MINUS operator, 3-14

example, 3-15
stopword transformations, D-5

monitoring services queue, 8-17
multiple CONTAINS, 2-12
multiple policies

one-step queries, 4-14
with one-step queries, 2-14

MUTAB table, 6-3, 6-8, A-3

N
narrower term generic operator, 3-28
narrower term instance operator, 3-28
narrower term operator, 3-28
narrower term operators

example, 3-31
narrower term partitive operator, 3-28

Index-6

near operator, 3-17
backward compatibility, 3-19
highlighting, 3-19
scoring, 3-18
section searching, 3-20
stopword transformations, D-6
with other operators, 3-18

nesting stored query expressions, 3-40
NOFILTAB table, 6-3

structure, A-5
normal forms in knowledge catalog, 7-10
normalization of tokens, 7-11
NOT operator, 3-8

example, 3-9
stopword transformations, D-5
theme queries, 4-11

NT operator, 3-28, 3-31
NTG operator, 3-28, 3-31
NTI operator, 3-28, 3-31
NTP operator, 3-28, 3-31
numbers

querying, 3-53
numgroup character, 3-51

querying, 3-53
numjoin character, 3-51

querying, 3-53

O
one-step query, 1-13, 2-11

example, 2-12, C-5
multiple policies, 2-14, 4-14
processing, 2-11
SELECT statement, 9-6
theme query, 4-13

OPEN_CON function, 2-16, 10-22
OPERATION column of feedback table, 5-13
operator

accumulate, 3-14
AND, 3-8
broader term, 3-32
equivalence, 3-8, 3-9
first/next, 3-21, 3-22
fuzzy, 3-25
max, 3-21, 3-22

MINUS, 3-14, 3-15
narrower term, 3-31
NOT, 3-8, 3-9
OR, 3-8
penetration, 3-26
preferred term, 3-31
related term, 3-31
soundex, 3-25
SQE, 3-37
stem, 3-24
synonym, 3-28, 3-29, 3-30
thesaurus, 3-28
threshold, 3-21
top term, 3-33
weight, 3-14, 3-15
WITHIN, 3-12

operator precedence, 3-43
examples, 3-44
viewing with parse trees, 5-5

operators
expansion, 3-24
logical, 3-8
result-set, 3-21
score-changing, 3-14
stem, 3-24
theme query examples, 4-7
thesaurus, 3-28
using, 1-7
with theme queries, 4-7

operators in SQEs, 3-41
optimization of queries

expression feedback, 5-9
OPTIONS column of feedback table, 5-14
OR operator, 3-8

example, 3-9
stopword transformations, D-4

Oracle Worldwide Technical Support
how to contact, xix
how to contact in Europe, xix
how to contact in U.S.A., xix

order parameter in near operator, 3-17
output

linguistic, 8-4

Index-7

P
package

CTX_LING, 10-32
CTX_QUERY, 10-3
CTX_SVC, 10-52

PARAGRAPH keyword, 3-11
paragraph-level Gist, 8-7

generating, 10-39
paragraph-level theme summary, 8-6

generating, 10-39
parallel processing

two-step queries, 2-9
parent themes

generating, 8-11
in list of themes, 8-5

parentheses
altering precedence, 3-36, 3-45
grouping character, 3-36

parse logging, 8-22
parse trees

query expansion, 5-6
query optimization, 5-9
stopword transformation, 5-10
theme query normalization, 5-8
understanding, 5-4

parsing engine, 7-11
PENDING requests

removing, 8-18
penetration of operators, 3-26
personality

linguistic, 8-4
PKDECODE function, 10-24
PKENCODE function, 10-25
PLAINTAB table, 6-3

structure, A-5
PL/SQL

in text queries, 3-42
PL/SQL packages

granting privileges, 10-2
pol_hint parameter in SELECT statement, 2-14,

4-14, 9-7
policies

multiple, 2-14, 4-14
precedence of operators, 3-43

altering, 3-36, 3-45
equivalence operator, 3-10
example, 3-44

preferred term operator, 3-28
example, 3-31

presenting document
about, 1-16

printjoin character, 3-51
querying with, 3-52

privileges
granting, 10-2

procedures
in queries, 3-42

proving themes, 7-12
proximity operator, see near operator
PT operator, 3-28, 3-31
punctuation character, 3-51

querying, 3-52
PURGE_SQE procedure, 3-37, 10-26

Q
qualifiers

using in thesaural queries, 3-33
queries

combining with CTX_LING output, 8-14
query

accumulate, 3-14
AND, 3-8
base-letter, 3-6
broader term, 3-32
combined first/next and max, 3-23
composite textkey, 2-7
counting hits, 1-13, 2-19
equivalence, 3-9
executing PL/SQL function in, 3-42
first/next, 3-22
in-memory, 1-12, 2-16
in-memory example, C-6
iterative, 3-37, 3-39
max, 3-22
MINUS, 3-15
narrower term, 3-31
NOT, 3-9
one-step, 1-13

Index-8

one-step example, C-5
OR, 3-9
preferred term, 3-31
related term, 3-31
remote, 2-9, 2-14, 2-18, 9-6, 10-5, 10-8, 10-22
structured, 2-8
synonym, 3-30
theme, 1-6
threshold, 3-21
top term, 3-33
two-step example, C-5
weight, 3-15

query expansions
viewing with expression feedback, 5-6

query expression
about, 3-2
components, 3-3
examples, 3-6

query expression feedback
about, 5-2
obtaining, 5-16

query optimization
viewing with expression feedback, 5-9

query terms, 3-2
query_id parameter in CONTAINS, 2-5, 10-6
querying

continuation characters, 3-52
numbers, 3-53
punctuation chacracters, 3-52
theme, 4-5

querying with stopwords, 3-49
queue

services, see services queue

R
re-evaluation of SQEs, 3-38
refining theme queries, 4-10
REFRESH_SQE procedure, 3-37, 3-39, 10-27
related term operator, 3-28

example, 3-31
relevance ranking

text queries, B-2
RELTAB procedure, 10-28
remote databases

counting query hits in, 10-8
in-memory queries in, 2-18, 10-22
one-step queries in, 2-14, 9-6
two-step queries in, 2-9, 10-5

remote queries
in-memory, 2-18, 10-22
one-step, 2-14, 9-6
query hits counting, 10-8
two-step, 2-9, 10-5

REMOVE_SQE procedure, 3-37, 10-29
request

clearing errors, 8-19
monitoring linguistic, 8-17
removing linguistic, 8-18

REQUEST_GIST procedure, 8-10, 10-39
REQUEST_STATUS function, 10-60
REQUEST_THEMES procedure, 8-10, 10-42
reserved words and characters, 3-46

escaping, 3-46
restricting theme query, 4-10
result table

allocating, 6-6
composite textkey, A-2
highlight, A-3
hitlist, 2-4, A-2
shared, 2-5

result-set operators, 3-21
rewrite

stopword, 3-50, D-2
RT operator, 3-28, 3-31

S
sample application

CTXLING, C-7
CTXPLUS, C-3
setting up, C-2

score
presenting, 1-14

SCORE function, 2-11, 2-13, 9-5
score-changing operators, 3-14
scoring

DML, B-3
theme queries, 4-6
two-step queries, 2-4

Index-9

scoring algorithm
text queries, B-2

scoring for near operator, 3-18
section searching, 3-12

about, 1-8
with NEAR operator, 3-20

SELECT statement, 2-12, 2-13, 9-6
in one-step queries, 2-12
in two-step queries, 2-3

SENTENCE keyword, 3-11
sentence-level Gist, 8-7
sentence-level Gist and theme summary

generating, 10-39
sentence-level theme summary, 8-6
server personality, 8-4
service request

cancelling, 10-53, 10-54, 10-55
removing errors, 10-56, 10-58, 10-59

services queue
about, 8-4
monitoring, 8-17

session and system SQEs, 3-38
session configuration

setting, 8-16
SET_COMPLETION_CALLBACK procedure, 8-20,

10-44
SET_ERROR_CALLBACK procedure, 8-20, 10-45
SET_FULL_THEMES procedure, 8-11, 10-46
SET_LOG_PARSE procedure, 8-22, 10-47
SET_SETTINGS_LABEL procedure, 8-16, 10-48
settings

linguistic, 7-13, 8-16
sharelevel parameter in CONTAINS, 2-5, 10-5
sharing result table, 2-5
single themes

in list of themes, 8-5
skipjoin character, 3-51

querying with, 3-52
soundex expansions

view with expression feedback, 5-6
soundex operator, 3-24

example, 3-25
special characters

indexing, 3-51
querying, 3-51

SQE operator, 3-37
SQE tables, 3-40
SQL functions

CONTAINS, 9-3
SCORE, 9-5

startjoin character, 3-51
querying, 3-55

stem expansions
viewing with expression feedback, 5-6

stem operator, 3-24
stoplist, 3-2
stopword transformation, D-2

viewing with expression feedback, 5-10
stopwords, 3-2

case-sensitivity, 3-4, 3-49
querying, 3-49

STORE_SQE procedure, 3-37, 10-30
stored query expressions

behavior with FEEDBACK, 10-13
extending, 3-39
iterative queries, 3-39
nesting, 3-40
re-evaluation, 3-38
session and system, 3-38
support of operators, 3-41
using, 3-37

stripping punctuation characters, 3-52
structured field searching

about, 1-9
structured query, 2-8
SUBMIT function, 8-10, 10-50
submitting linguistic requests, 8-11
supported document formats

for Windows 32-bit viewing, 1-17
SYN operator, 3-28, 3-30
synonym operator, 3-28

example, 3-30

T
table structure

Gist, A-7
HIGHLIGHT, A-3
hitlist, A-2
ICFTAB, A-4

Index-10

MUTAB, A-3
NOFILTAB, A-5
PLAINTAB, A-5
theme, A-6

tables
CTX_LING output, 8-8
SQE, 3-40
SQR, 3-41, 10-27

tagged text
querying, 3-55
searching, 3-12

text highlighting, 6-2
text index

options, 1-4
text loading, 1-4
text query

about, 1-6
case-sensitivity, 1-7, 3-3
highlighting, 6-7
selecting method, 2-2

theme accumulation
in theme extraction process, 7-12

theme extraction
about, 7-2
text input, 7-5

theme hierarchy generation
setting, 10-46

theme highlighting, 6-2
theme indexing, 4-3
theme proving

in theme extraction process, 7-12
theme query

about, 1-6, 4-5
case-sensitivity, 1-8, 4-6
constructing, 4-7
generalizing, 4-11
highlighting, 6-8
one-step, 4-13
operators not supported, 4-8
phrasing hints, 4-9
refining, 4-10
restricting, 4-10
scoring, 4-6
two-step, 4-13
using operators, 4-7

theme query normalization
viewing with expression feedback, 5-8

theme ranking
in theme extraction process

ranking of themes, 7-12
theme summaries, 8-2, 8-6

generating, 8-10, 10-39
presenting, 1-18

theme table
composite textkey, 8-9, A-6
creating, 8-8
structure, A-6

theme weight, 7-4
in theme indexes, 4-4
list of themes, 8-5

themes
about, 7-4
ambiguous, 4-4
generating, 10-42
generating parent themes, 8-11
known, 4-4
list of, 8-5
unknown, 4-4

thesaural query
base-letter, 3-6

thesaurus
calling in queries, 3-30
DEFAULT, 3-30
hierarchy levels, 3-30

thesaurus expansions
viewing with expression feedback, 5-6

thesaurus operators, 3-28
arguments, 3-29
limitations, 3-29
theme queries, 4-8

threshold operator, 3-21
stopword transformations, D-7

token normalization, 7-11
tokens, 7-11
top term operator, 3-28

example, 3-33
transformation

stopword, 3-50, 5-10, D-2
tree-structure of knowledge catalog, 7-8
TT operator, 3-28, 3-33

Index-11

two-step query, 2-3
alternative, 2-6
example, 2-3, C-5
parallel processing, 2-9
result table, 2-4
scoring, 2-4
tables used in, A-2
theme query, 4-13

U
unknown concept in knowledge catalog, 7-10
unknown themes, 4-4
unknown tokens, 7-11

V
view

using in two-step query, 2-6
viewers

about, 1-17
viewing documents, see document presentation
views

CTX_SQES, 3-40
CTX_USER_SQES, 3-40

W
weight

in list of themes, 8-5
theme, 4-4, 7-4

weight operator, 3-14, 3-15
stopword transformations, D-7

wildcard characters, 3-35
theme queries, 4-8

wildcard expansions
viewing with expression feedback, 5-6

Windows viewer control
table used, A-4

WITHIN operator, 3-11, 3-12
limitations, 3-13
precedence, 3-44
stopword transformations, D-7
with near, 3-20

Index-12

	Up
	Contents
	Send Us Your Comments
	Preface
	1 Building a Query Application
	Overview
	Prerequisites
	Loading Text
	Creating an Index

	Entering the Query
	Text Queries
	Theme Queries
	Using Operators
	Case-Sensitive Searching
	Document Section Searching
	Structured Field Searching

	Rewriting the Query Expression
	Presenting Expression Feedback
	Executing the Query
	Two-step Queries
	In-memory Queries
	One-step Queries
	Counting Query Hits

	Presenting the Hitlist
	Presenting Structured Fields
	Presenting Score
	Presenting Document Hit Count
	Presenting Expression Feedback in Hitlist
	Presenting Gists (English only)

	Presenting the Document
	Presenting Highlighted Documents
	Presenting CTX_LING Output (English Only)

	2 Query Methods
	Selecting a Query Method
	Using Two-Step Queries
	Two-Step Query Example
	Scoring
	Hitlist Result Tables
	SELECT from a Pre-defined View
	Composite Textkey Queries
	Structured Queries
	Querying Columns in Remote Databases
	Two-Step Queries in Parallel

	Using One-Step Queries
	One-Step Query Processing
	One-Step Query Example
	Multiple CONTAINS
	Scoring
	Restrictions
	Multiple Policies
	Composite Textkey Queries
	Querying Columns in Remote Databases

	Using In-Memory Queries
	In-Memory Query Example
	In-Memory Queries and Composite Textkeys
	In-Memory Query Limitations
	Querying Columns in Remote Databases

	Counting Query Hits
	Using COUNT_HITS Before the Query
	Using COUNT_LAST After the Query

	3 Understanding Query Expressions
	About Query Expressions
	Query Terms
	Case-Sensitive Queries
	Composite Word Queries (German and Dutch only)
	Base-Letter Queries
	Query Expression Examples

	Logical Operators
	AND Operator
	OR Operator
	NOT Operator
	Equivalence Operator

	WITHIN Operator
	WITHIN Syntax
	Querying Within Sentence or Paragraphs
	Querying Within User-defined Sections
	Limitations

	Score-Changing Operators
	Accumulate Operator
	MINUS Operator
	Weight Operator

	NEAR Operator
	Near Scoring
	Near with Other Operators
	Backward Compatibility Near Syntax
	Highlighting with the Near Operator
	Section Searching and Near

	Result-Set Operators
	Threshold Operator
	Max Operator
	First/Next Operator
	Combined First/Next and Max Queries

	Expansion Operators
	Stem Expansions
	Soundex Expansions
	Fuzzy Expansions
	Penetration in Expansion Operators
	Examining Query Expansions
	Base-letter Support

	Thesaurus Operators
	Thesaurus Arguments
	Synonym Operator
	Preferred Term Operator
	Related Term Operator
	Narrower Term Operators
	Broader Term Operators
	Broader and Narrower Term Operator on Homographs
	Top Term Operator
	Thesaural Expansions and Case-Sensitivity
	Base-letter Support for Thesaural Queries

	Wildcard Characters
	Grouping Characters
	Stored Query Expressions
	Using Stored Query Expressions
	Session and System SQEs
	Re-evaluation of Stored Query Expressions
	Iterative Queries
	SQE Tables
	Using Operators in Stored Query Expressions

	PL/SQL in Query Expressions
	Example

	Operator Precedence
	Group 1
	Group 2
	Procedural Operators
	Precedence Examples
	Altering Precedence

	Escaping Reserved Words and Characters
	Example
	Reserved Words
	Querying Escape Characters

	Querying with Stopwords
	Stopwords by Themselves
	Stopwords with Non-stopwords
	Stopwords with Operators

	Querying with Special Characters
	Querying with Punctuation and Continuation Characters
	Querying with Printjoins and Skipjoins
	Querying with Numjoins and Numgroups
	Querying with Startjoin and Endjoin Characters

	4 Theme Queries
	Understanding Theme Queries
	Theme Indexing Concepts
	Theme Querying

	Constructing Theme Queries
	Using Operators
	Phrasing Theme Queries

	Refining Theme Queries
	Restricting a Query
	Expanding a Query

	Theme Query Examples
	Two-Step Query
	One-Step Query

	5 Query Expression Feedback
	The Feedback Process
	Understanding ConText Parse Trees
	Operator Precedence
	Query Expansions
	Theme Query Normalization
	Query Optimization
	Stopword Rewrite
	Decompounding of Composite Word Tokens

	Understanding the Feedback Table
	Table Structure
	Example

	Obtaining Query Expression Feedback
	Creating the Feedback Table
	Executing CTX_QUERY.FEEDBACK
	Retrieving Data from Feedback Table
	Constructing the Parse Tree

	6 Document Presentation: Highlighting
	Overview of Document Presentation
	Using CTX_QUERY.HIGHLIGHT
	Output
	Highlighting Mark-up

	Creating Highlighted Text
	Allocating Result Tables
	Issuing a Query
	Calling CTX_QUERY.HIGHLIGHT
	Presenting HIGHLIGHT Output
	Release Highlight Result Tables

	7 ConText Linguistics
	Overview of ConText Linguistics
	What is a Theme?
	Theme Weight

	Text Input
	Theme Extraction System
	Knowledge Base
	Parsing Engine

	Linguistic Settings
	Case-Conversion Settings
	Gist and Theme Summary Settings
	Enabling Linguistic Settings

	8 Using CTX_LING
	Overview
	Linguistic Personality
	Services Queue

	List of Themes
	Single Themes
	Theme Hierarchies

	Theme Summaries
	Gists
	Generating CTX_LING Output
	Creating Output Tables
	Generating Lists of Themes, Theme Summaries, and Gists

	Combining Queries with CTX_LING Output
	Implementation

	Enabling Linguistic Settings
	Monitoring the Services Queue
	Monitoring the Status of Requests
	Removing Pending Requests
	Clearing Requests with Errors

	Specifying Completion and Error Procedures
	Logging Parse Information

	9 SQL Functions
	Query Functions
	Prerequisites

	CONTAINS
	SCORE
	SELECT Statement

	10 PL/SQL Packages
	Developing with ConText PL/SQL Packages
	CTX_QUERY: Query and Highlighting
	CLOSE_CON
	CONTAINS
	COUNT_HITS
	COUNT_LAST
	FEEDBACK
	FETCH_HIT
	GETTAB
	HIGHLIGHT
	OPEN_CON
	PKDECODE
	PKENCODE
	PURGE_SQE
	REFRESH_SQE
	RELTAB
	REMOVE_SQE
	STORE_SQE
	CTX_LING: Linguistics
	CANCEL
	GET_COMPLETION_CALLBACK
	GET_ERROR_CALLBACK
	GET_FULL_THEMES
	GET_LOG_PARSE
	GET_SETTINGS_LABEL
	REQUEST_GIST
	REQUEST_THEMES
	SET_COMPLETION_CALLBACK
	SET_ERROR_CALLBACK
	SET_FULL_THEMES
	SET_LOG_PARSE
	SET_SETTINGS_LABEL
	SUBMIT
	CTX_SVC: Services Queue Administration
	CANCEL
	CANCEL_ALL
	CANCEL_USER
	CLEAR_ALL_ERRORS
	CLEAR_ERROR
	CLEAR_INDEX_ERRORS
	CLEAR_LING_ERRORS
	REQUEST_STATUS

	A Result Tables
	Hitlist Table Structure
	Composite Textkey Hitlist Tables

	Highlight Table Structures
	HIGHTAB Highlight Table
	MUTAB Highlight Table
	ICFTAB Highlight Table

	Display Table Structures
	NOFILTAB Display Table
	PLAINTAB Display Table

	CTX_LING Output Table Structures
	Theme Table
	Gist Table

	B Scoring Algorithm
	Scoring Algorithm for Text Queries
	Example
	DML and Scoring

	C SQL*Plus Sample Code
	Setting Up the ConText Sample Applications
	Overview of CTXPLUS
	Concepts
	Using CTXPLUS
	CTXPLUS Examples

	Overview of CTXLING
	Concepts
	Using CTXLING
	CTXLING Examples

	D Stopword Transformations
	Understanding Stopword Transformations
	Word Transformations
	AND Transformations
	OR Transformations
	Accumulate Transformations
	MINUS Transformations
	NOT Transformations
	Equivalence Transformations
	NEAR Transformations
	Weight Transformations
	Threshold Transformations
	Max Transformations
	First/Next Transformations
	WITHIN Transformations

	E Knowledge Catalog - Category Hierarchy
	Branch 1: science and technology
	Branch 2: business and economics
	Branch 3: government and military
	Branch 4: social environment
	Branch 5: geography
	Branch 6: abstract ideas and concepts

	Index

