Oracle8L] ConTextLl Cartridge

Application Developer’s Guide

Release 2.4

July 1998
Part No. A63821-01

ORACLE"

Enabling the Information Age™

Oracle8 ConText Cartridge Application Developer’s Guide, Release 2.4
Part No. A63821-01

Release 2.4

Copyright © 1996, 1998, Oracle Corporation. All rights reserved.
Primary Author: Colin McGregor

Contributing Author: D. Yitzik Brenman

Contributors: Peter Bell, Chandu Bhavsar, Anny Chan, Chung-Ho Chen, Yun Cheng, Roy Clarke, Paul
Dixon, Garret Kaminaga, Kim Kepchar, Jeff Krauss, Jackie Kud, Kavi Mahesh, Yasuhiro Matsuda,
Mohammad Faisal, Josh Powers, Gerda Shank, Dipti Sonak, and Steve Yang.

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be licensee’s responsibility to take all appropriate fail-safe,
back up, redundancy and other measures to ensure the safe use of such applications if the Programs
are used for such purposes, and Oracle disclaims liability for any damages caused by such use of the
Programs.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright, patent and
other intellectual property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose, without the express written permission of Oracle
Corporation

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is
delivered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are "restricted computer software" and use, duplication and
disclosure of the Programs shall be subject to the restrictions in FAR 52.227-14, Rights in Data -- General,
including Alternate Il (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle, SQL*Net, SQL*Plus, and ConText are registered trademarks of Oracle Corporation. Oracle8, Net8,
Oracle Forms, Oracle Server, PL/SQL, and Gist are trademarks of Oracle Corporation.

All other company or product names mentioned are used for identification purposes only and may be
trademarks of their respective owners.

Contents

SENA US YOUT COMIMEBNTES .ottt ettt e e ses e e eeeeeees s eeeeeeeseseseeeeeeeseseseseeseeseseseaeeeeeees Xiii
o Y = (o1 < NSRSV XV

1 Building a Query Application

OVEBIVIBW ..ottt et et ettt etttk et s et et eh e ee et ehe ek ek £ Rt eheeb e b e ben bt ebeeees b en e ne e enbeb e ses e see e ane e 1-2
=T =To [TS 1 (=SSP 1-4
(o T=To [T g Lo N - TSRV SRR 1-4
CreatiNg AN INAEX ...c.oouiiiiie ettt et ettt eb bbb e et et e et ereem s e e e 1-4
ENtEring the QUEKY ...t et et et e et e e st et e e st e et eesteebaenre et s 1-6
TEXE QUEKIES....ecute ettt ettt sttt e sttt ettt b eae e s ae e e s e e st et s e s beebbe st ebbesbeebeesbeereesneesrestaenren 1-6
THEME QUETIES ...ttt et e et e e e et e e st e st e e sbe et b etbeebeerbeebeerbe s e e sransrens 1-6
USING OPBIALOTS ...ttt ettt et ettt sttt es et e se e s eb ettt ebesb e be st sbese et enbesee e ereanaen e e e 1-7
Case-SENSItIVE SEAICHING ..o e e e et b e e eaaenes 1-7
Document SECTION SEAICHINGcoiviiie et st bbb ere s 1-8
Structured Field SEarChinNg........ccooie it 1-9
Rewriting the QUEIY EXPrESSION........cuiiiiciitiie ettt et s et s e en b s 1-10
Presenting EXpression FEEADACK ..o 1-11
EXECULING the QUETY ... ettt st e st a e bbbt eae e be e e e e et e e 1-12
TWWO-SEEP QUETTES ...ttt sttt e et b et b b et es e s e et ae bbbt b eb e b e b st sb e e es bbb e e e 1-12
IN-MEMOIY QUEKIESeevie ittt ettt ettt ettt st st s b e et ea e ebeeabeeae e besae e e e s e et e s e st e s e ane 1-12
ONE-STEP QUETTESeieetetee ettt ettt et b bbb e et es e se et e Rt ek e st Rt ebeebenb et sbenr e e en bt e s 1-13
CoUuNtiNG QUENY HITS.....oociie e sttt e et et sr e teesreenas 1-13

Presenting the HItlSt ... e e e 1-14

Presenting Structured FIEIAScc.oui i e 1-14
PrESENTING SCOME ...ttt et ettt ettt b e et es e et be et et eaesb et et ebeseeneens 1-14
Presenting Document Hit COUNT ..ot 1-15
Presenting Expression Feedback in Hitlist...........ocoiiii e 1-15
Presenting Gists (ENGlish ONIY).......o.o e 1-15
Presenting the DOCUMEBNTttt ettt sttt e eae b et beseesee e e 1-16
Presenting Highlighted DOCUMENTS.c..oiiiiiiie et 1-16
Presenting CTX_LING Output (ENglish ONlY)ccooiiiiiiiiie e 1-18

Query Methods

Selecting @ QUEINY IMETNOU.........ooiiie et et bbb e e es b en e e 2-2
USING TWO-STEP QUETTES ... eieieiitie ettt ettt e et ettt st ebe b e e et b e e e e st en e seeneen et e anas 2-3
TWO-SteP QUETY EXAMPIE ..ottt e e e e e 2-3
SToTo] 1 o Lo USSR 2-4
Hitlist RESUIT TaADIES. ...t e e e e enea 2-4
SELECT from a Pre-defined VIBWcccoiiiiii i e 2-6
COoMPOSIte TEXLKEY QUETIES ... eieiuieeieiiie ettt sttt ettt sttt sb et sbe e et s bt eneeneeaeenes 2-7
YU (U] g=To W@ LU LT g T OSSPSR 2-8
Querying Columns in Remote Databasescccueiiiiiiiii it 2-9
TwO-Step QUETIES IN PArallel... ..o e e e 2-9
USING ONE-STEP QUETIES ... ittt ettt ettt ettt eb bbb e bbb et ebe b e st bt ebesb e e st see e ene e 2-11
ONE-StEP QUETY PrOCESSING....cviieiieuie ittt ettt ettt st sttt et st esbe et be et b e beneas 2-11
One-Step QUETY EXAMPIE ..ottt et e bbb e 2-12
MUILIPIE CONTAINS .ot ettt s bbb s e se et es bt e e 2-12
1o 15 o RSP 2-13
RESEFICTIONS ..ttt ettt bbb b et s b et ebe b et ebesb et e s b ebesbe e en 2-13
MUILIPIE POLICIES ettt e et e et e b e et ebe bbb st sbe e an 2-14
ComMPOSIte TEXLKEY QUEIIES ...c.eieiuietirierie ettt ettt sttt et st sb bbb bt bbb se e eneeneas 2-14
Querying Columns in Remote Databasescccoe i iiciici et 2-14
USING IN-MEMOIY QUETIES ...ooiieieii ettt ettt ettt ettt sttt et sbe st s b ea e s b eaeeae e e ae e ereas 2-16
IN-Memory QUErY EXAMPIEcooiiii ettt e e 2-17
In-Memory Queries and COmMPOSIte TEXTKEYScccciririiiii it 2-18
In-Memory QUEry LIMItationscccoiiiiiiiii et rae s 2-18
Querying Columns in Remote Databasescccce i i st 2-18

CoUNTING QUETY HITS ..ottt ettt eb e et sb e e benbe e e e s s e e 2-19
Using COUNT_HITS Before the QUENYcuiiiiiiiiece et 2-19
Using COUNT_LAST After the QUETYcoci ittt 2-19

Understanding Query Expressions

ADOUL QUETNY EXPIESSIONSviiiiieite ettt ettt ettt es e et es et e b sb e et e e e ben e se e ereenennes 3-2
(O U L=T oV =T o 0 OO PSPPSR 3-2
CaSE-SENSITIVE QUEKIES.eciiictieie ettt ettt e sttt e e be et b eab e be e e s et e s e st et aeseeenaenes 3-3
Composite Word Queries (German and DUtch only) ... 3-5
BasSE-LEtLEr QUEKIES ...ccuviieiiiiie ettt et ettt et et te e be e et e st et e et e st e abee st s eteesre et besnneans 3-6
Query EXPression EXAMIPIEScoiiiiiie et ettt e e et en e en 3-6

(o To Lot LI @ o1T -1 (o] - F SRRSO 3-8
YN 1B @] o 1T - 1] SR PP PR UR TP UUP 3-8
(O] O] o 1= -1 (0] SRR PR 3-9
N[O O] o =] ¢ 1 (o] SR U URUP VPSRRI 3-9
EQUIVAIENCE OPEIALON ...ttt ettt et bbb et ettt et et en et 3-9

WWITHIIN OPEIALOT ...ttt ettt et bbb bbb ekt ae e e s e e st b e b e e sbeebeesbesbben b ebeennas 3-11
WWITHIN SYNTAX ..ottt ettt et et eb bbb b ekt b e bbb e e eneeneas 3-11
Querying Within Sentence or Paragraphs ..o s 3-11
Querying Within User-defined SECLIONSccvcieii it 3-12
(10 0T 7 Lo o P STP TSP 3-13

SCOre-ChanginNg OPEIAtOFS.couiueiie ittt sttt sttt sb e b b e b e besbe e e e s benes e s e 3-14
ACCUMUIALE OPEIALON ... ccuti ettt ettt ettt sttt et eb e sb et be b bt et sae e st es 3-14
Y IO RN @] o1=1 ¢ 10 g TSP TP 3-15
VAT To] ol A @ o 1=] =1 (o] TSP SRTPTRTPRRN 3-15

INEAR OPEIATON ...c.eiii ettt ettt ettt ettt ettt et bt eb e sh e b e sb e eb b es b eb e st ebe st be e bt ne e nr e e e nreas 3-17
N =TT ToTo] 1 o [P 3-18
Near With Other OPEratorsottt e e e enea 3-18
Backward Compatibility Near SYNTaX.........c.ccooiiiiiiiiiiie e s 3-19
Highlighting with the Near OPerator..........cccciveiiiie e e e 3-19
Section Searching anNd NEATc.ooviiiiii e sr e rae s araes 3-20

e] L T A @] o =T - U (o] SRR SRPR 3-21
TRIESNOIA OPEIALONccuiiie et e e e et e et st e et sreetaesaeans 3-21
Y VO] o 1= - (o] USSP 3-22

Vi

FIFSTZINEXE OPEIALON ...ttt ettt ettt s st s e et ere b e st ebe bt e et saeseeeeen 3-22

Combined First/Next and Max QUETIEScccociiiiie ittt 3-23
(o Lo IS [o] s W@ o 1= -1 (o] <3PS 3-24
STEIM EXPANSIONS ... eieietetie ettt ettt ettt st ebe b et et sbe st et es b e e e bt ebeeb e be b seennesbeneas 3-24
SOUNAEX EXPANSIONS. ...ttt ettt ettt ettt ettt et eaeee e bes e se e e aneneas 3-25
FUZZY EXPANSIONS ...ttt et ettt sttt he et es e st e ebe b et eaesb et et seeseeneen 3-25
Penetration in EXPansion OPEratoOrS...... ..ot sttt s se e e e 3-26
Examining QUETY EXPANSIONSooiiuriiiiietirtcnenie st ettt st e s e e s e e ene e 3-27
BaSE-1ETEET SUPPOIT ...ttt et ettt eb e eee e r e seesee e en 3-27
THESAUIUS OPEIALOISeeieiiiite ettt ettt ettt ettt ebe e e e eabes e se et es et et ebeeb et e sbe st sbeneenben e senas 3-28
LI =R LT AN o 10 L =T oL TSP 3-29
SYNONYM OPEIALON ...ttt ettt ettt ettt ettt et e et e b e eb e e sbeeb b ebbeeb b es b abeerbesaeeene e e aneas 3-30
Preferred Term OPEIAtOrcccoii ittt et et b b e e e s nr e an 3-31
Related Term OPEIALONciiiiie ettt ettt b e et sbe bbbt e e e ans 3-31
NarroWer TermM OPEFATOISooieuiiieiieeit ettt sttt et eb s bbb sie e e e et e e b e s sbesbeeseesbeeneas 3-31
Broader Term OPEIAOFScieieiiiieiietie ettt ettt sttt se et et b b st e ebe b e et see e e an 3-32
Broader and Narrower Term Operator on HOomographscccoooeeiiniiene e 3-32
TOP TEIM OPEIALON ...ttt ettt ettt ettt et et eb e b eb bbb b ebb e sbe s bebe e e e e nneas 3-33
Thesaural Expansions and Case-SENSITIVILYccccoiiiiiiiiieie e 3-33
Base-letter Support for Thesaural QUETIES.........coouiiiiiiiiii i 3-34
WilACArd CRATACTEIS ..ottt et e ekt e bbb b e e e e en e 3-35
L] foTUT oY] gTo [@ g T- U Uoi 1= £ TPV URTUTTPO 3-36
5] (o] (1o I @ U [T VA bt o] =1S1] [o SRS T U 3-37
Using Stored QUENY EXPIESSIONS.ooiuieuiriireite ettt e sbe bt st et bes e e sneeneas 3-37
SeSSION aNd SYSTEM SQESocuiiiicicie ettt et r e e e e renreas 3-38
Re-evaluation of Stored QUErY EXPreSSIONSccvciviiuiiieiiieiieeiie st 3-38
IEEFALIVE QUEKIES ... ittt ettt sttt st e et e st et es b es b e s beeae e be s e e s e e sreareas 3-39
L@] 1= o] =T ORI 3-40
Using Operators in Stored QUErY EXPreSSIiONSc..civicieiiiieiieiie et 3-41
PL/SQL iN QUEINY EXPIESSIONScoiieivictie sttt ettt ettt sv st e st st es e st sne e ae e e e snenreas 3-42
Ot U] o 1= OSSR 3-42
(@] 0 1=] -1 (] gl o €=Tor=To (= o [or -SSR 3-43
LT (o1 o I TSRS 3-43
LT (01U o 1TSS PRSP 3-44
o Tol= Yo [N @] o 1= - L o] RS 3-44

Precedence EXAMPIES ...ttt et et ea et bbb e e enea 3-44

PN 1 (=] g g Lo o £ =TotcTe 1= o o= TSRS 3-45
Escaping Reserved Words and CharaCterso et s 3-46
EXAIMPIE. ..ttt ettt s etk et e eb bbbt ettt e e eneenea 3-46
= Y =Te VY o] o TSR 3-47
QUErYING ESCAPE ChAraCters.......coiiieieiieeie ettt bttt eb b e 3-48
QUENYING WIth STOPWWOITAS.eiieiiietie ittt et ettt e et e e e s s e 3-49
StOPWOrdS DY ThEMSEIVES.....c..iii it e e 3-49
Stopwords With NON-STOPWOITS.cuii ittt e e 3-49
StOPWOIAS WIth OPEIALOISc.eiuei ettt ettt ettt e ben e e 3-50
Querying With Special CharaCters ... e e 3-51
Querying with Punctuation and Continuation Characters............ccccccecvieiieive i 3-52
Querying with Printjoins and SKIPJOINS.......ocoiiiiiii i 3-52
Querying with Numjoins and NUMQIOUPSouiiueieiiiiieie et esienee s 3-53
Querying with Startjoin and ENdjoin Characters ... 3-55

Theme Queries

Understanding Theme QUETTES.......c.oui ittt et et s e s bea e 4-2
Theme INAEXING CONCEPLS ..ottt ettt et sttt e e st ere ettt ereebeanenteneeseeas 4-3
THEME QUETYING ...ttt ettt sttt bttt s e et ee bt bt bt e besh e e et es e ne et esbeb e se e ane 4-5

Constructing THemMeE QUEKIESc..ouii ittt ettt ettt sttt sb e e e bes e e e e s beb e se et e 4-7
USING OPEBIALOTS ... ettt ettt ettt ettt et es et e se e eh b e et et eb e be st sbese et esbesee e ereanaenee e e 4-7
Phrasing Theme QUETIESooiiie ettt ettt sr et et st eb e st bt beebeenbesaeeans 4-9

RefiNiNg THemME QUETIESc..oiiieiiee ettt ettt et ee s s e e 4-10
T 1o (T g T - W @ U 1= o 2R TR 4-10
EXPaNAiNg @ QUEKY ...ttt ettt ettt ettt sttt es ettt eb b et e e e benb e e e e eneenea 4-11

Theme QUEIY EXAMPIES.......oi ettt ettt eb bbb e et en e e 4-13
TWO-SEEP QUETY ..ottt ettt ettt eb e eb ek e eb e ek ket es ekt et e bt e et et bt e b e eb e sbeeb bbb e eneannas 4-13
(O] g1 E (T o J @ LU =] o TP O PRSPPSO 4-13

Query Expression Feedback

The FEEADACK PIrOCESSottt ettt e e et eb e e ebe b e 5-2
Understanding CONTEXE PArSE TIEESccooieuirerieiieetiriesiee ettt st sae e e s e e s sese e 5-4
(@0 1CT - 1 (0] gl = £=Tot<To (=T o TSRS 5-5
QUETY EXPANSIONSeiiiiiieiiiiteie ettt ettt etttk et et eb et e eae e et es s e e enees s ebe e e e e enen 5-6

vii

Theme Query NOrmMaliZation ..o e 5-8

QUETY OPLIMIZATION ...ttt et et be bbb b e et en e et et es et s 5-9
STOPWOIT REWIITE ...ttt et ettt eb ettt b e et es et et eb b e ne b sae e e neneas 5-10
Decompounding of Composite Word TOKENS..........coiieiiiie et 5-11
Understanding the Feedback Table ... 5-12
TADIE SEFUCLUIE ...ttt ettt h bt eb e et sa e e beneas 5-12
EXAIMIPIE .. ettt ettt s bttt bt e e b e ae e nee e en 5-15
Obtaining Query Expression Feedback...........ccoiii e 5-16
Creating the FEedback Table........cocviiiiie e e e 5-16
Executing CTX_QUERY.FEEDBACKc.cccit ittt sttt e s 5-16
Retrieving Data from Feedback Table ... e 5-16
CONSLIUCTING ThE PAISE TIEE ..ottt cee ettt sttt et st sttt s e et e re e e st et e e st e sraesee e 5-17

6 Document Presentation: Highlighting

Overview of DocumMent PreSentation ...t e 6-2
Using CTX_QUERY. HIGHLIGHT ...ttt e s 6-3
L@ 1811 o 11 | ST TPRUPP 6-4
Highlighting IMarK-Up........coo ittt e e e 6-5
Creating Highlighted TeXt ..ottt st s e r e e ere e e e 6-6
Allocating RESUIT TADIES ..ottt e e e 6-6
ISSUING @ QUETY ..ttt sttt et et et et et e s ae et e s e st e s see s b e et aesbe et besbeebbenbesaeebesnesnnesrens 6-7
Calling CTX_QUERY. HIGHLIGHT ..ot e e e 6-7
Presenting HIGHLIGHT OULPUL ..ottt se e s 6-8
Release Highlight RESUIL TabBIESc.ocvveiiieiiece e e 6-10

7 ConText Linguistics

Overview Of CONTEXE LINQUISTICS ...o.oiuiiiiiieiieie ettt e st e een s 7-2
WRAL IS 8 TREME? .o bbbt r e 7-4
THEME WRIGNT ...ttt et et en e e 7-4
TEXE TNPUL. ...ttt er e e ekt h e e e sh e e b e st e ab e e b e e sbe e b et e s e e ene e e 7-5
Theme EXEraCtioN SYSTEIMocviiii ittt b et b e et be s besa b sbeeae e sbe e e e nnens 7-6
KINOWIEAGE BASE ... ettt ettt ettt e e st es bt et re et e e e e aneenen 7-6
Parsing ENQINEoouiiie ittt ettt s et sttt b e e e et en e sbeseeneen 7-11

viii

[T Lo T T IS 1o 1= 1 K] Lo SRR 7-13

Case-CONVEISION SETHINGScuiie ittt ettt ettt et aes e se et st e e e 7-13
Gist and Theme SUMMANY SETHINGS.......couiii ittt s eee s 7-13
Enabling LiNQUISEIC SETHINGS. ..ottt ettt e s e enea 7-14

Using CTX_LING

OVEIVIBW ..ottt et ettt et etttk b sttt eh e e e et ehe ek ek £ Rt eheeb £ b e b es bt s b e e en b en e ne e ehbeb e ees e se e ene s 8-2
LiNQUISTIC PErSONAIILYc.ouiiiiii ittt ettt e 8-4
SEIVICES QUEUEoicutiite ittt sttt st e st et e e e e beeae e ae s seesae e se et eesbe st aesbe et besbeebeeabeeaeesbessnestensrens 8-4

LIST OF TREIMES ..ottt e et h et e b e bt bt ee et e re s e et ebe et e b e nees 8-5
YT o | [T 1= 3 L= OSSOSO 8-5
Theme HIBIarChies ..ot ettt eb e en 8-5

THREIME SUNMIMAIIESeiiieiieie ettt et et ettt e b bbb sbe s e e ben e se st ere bt ee e ebeebe e e nenes 8-6

L1 £ TSRS 8-7

Generating CTX_LING OULPULoooiiiiie ettt ettt e e ben e e sne s 8-8
Creating OULPUL TADIESoouiiiiiee ettt et st en b 8-8
Generating Lists of Themes, Theme Summaries, and GistS..........cccocevvviinvesie v ciciece e, 8-10

Combining Queries With CTX_LING OULPUL ...t e 8-14
IMPIEMENTALION ...ttt bt et b bttt b bt e se e enea 8-14

ENabling LINQUISTIC SETHINGS ...ccvoviiiiiie ittt e e e e 8-16

Monitoring the SErvices QUEBUEccve ittt ettt bbb b st en b nbesreenees 8-17
Monitoring the Status Of REQUESTScouiiiiiii et 8-17
RemMOVING PeNdiNg REQUESTESoiiiiie ittt et et b e e e enea 8-18
Clearing REQUESES WIth EFTOIS......c.oiiiiiieiii ettt ettt s s e ben s 8-19

Specifying Completion and Error ProCEAUIESccoco it e 8-20

Logging Parse INTOrMAatioNcccociiiiiiiici ettt a e e re e 8-22

SQL Functions

QUEKY FUNCLIONS ...ttt ettt ettt et e et es e et ehe b b e b ebesbene et en e se et enbeb e e neene s 9-2
=T =T o [T L (=SSR 9-2
CONTAINS bbbttt b et b et b et b et bt b bttt bbbttt 9-3
SCORE ... ettt e R R R R e bbb e 9-5

SELECT SEateMENT......ccuiiiiiiie ittt et e s e e b e er e e 9-6

10 PL/SQL Packages

Developing with ConText PL/SQL PaCKagEScceuiiiiieiiriieie st 10-2
CTX_QUERY: Query and Highlightingcccooiiiiiii e 10-3
CLOSE_CON ...ttt ettt ettt ettt st bbb £ b bt eb bt et eb e s bbbt 10-4
CONTAINS ettt btk et b e e s b ekt s £t E b ee bbb s bt eb bt £ eb e ees b s bbb 10-5
COUNT_HITS ottt ettt e b bbb bbb bbb bbb e bbb 10-8
COUNT _LAST ittt sttt e bbb e eb e b e bbbt e bbb bbb bbb et et e 10-10
FEEDBACK ..ottt ettt ettt s bbb st eh £ bbb b et b e ettt et en s 10-12
FETCH _HIT ottt bbb e e bbb bbb ettt 10-14
GETTAB .ttt e b bbb e bbb e bbb bt h b e s bbb e b e e 10-16
HIGHLIGHT ..ttt ettt es bbb ettt bbbt en s 10-18
OPEN_CON ettt bbb b e bbbt e bbb bbb et b b e 10-22
PIDECODE ...ttt sttt bttt eh b st eb e bbb st b b bbbt bbb ettt bbb 10-24
PIENGCODE...... .ttt ettt eb e e eb e bbb st bt bbb bbb et bbb 10-25
PURGE_SQE ...ttt ittt e s bbb st bbb bbbt e 10-26
REFRESH_SQE ..ottt ittt ittt ettt bbb bt bbb bbb sttt 10-27
RELTAB .. ettt et bttt th bbb £ eh bbbt b e et b b ettt et en s 10-28
REMOWE_SQE ..ottt ettt st eb e bbbt st bbbt bbbt bbbt 10-29
STORE_SQE ... ittt ettt bbbk e bbb e bbb bbb et e 10-30
CTX LING: LINQUISTICS ...oecviciiiciiciie ettt sttt sttt st s e es et sae s be e e e e e sae s sae b e saenrens 10-32
CANCEL ..ottt skt b bt £ b bbb eh et bbb e 10-33
GET_COMPLETION_CALLBACK ...ttt ittt st bbb e 10-34
GET_ERROR_CALLBACK ... oottt sttt ettt st 10-35
GET_FULL_THEMES. ...ttt ittt ettt st bbbt st s s 10-36
GET_LOG_PARSE ..ottt ettt b et e bbbt et s 10-37
GET_SETTINGS_LABEL ...ttt et st e bbb s s 10-38
REQUEST _GIST .ttt ettt et b bbb b bbb bbb e 10-39
REQUEST _THEMES ..ottt st s ettt as e 10-42
SET_COMPLETION_CALLBACK ...ttt sttt e 10-44
SET_ERROR_CALLBACK ... ettt ettt ettt et sttt bbbt st 10-45
SET_FULL_THEMES ..ottt ettt sttt bbb bbb b e 10-46
SET_LOG_PARSE ...ttt ettt ettt st b bbb bbbt e eb b e s 10-47
SET_SETTINGS_LABEL ...ttt st et e bbb e 10-48
SUBMIT <ttt e bbbk e bbb bbb e bbb bbbt et e 10-50

A

CTX_SVC: Services Queue AdmMIiniStrationcccccueiicieiie et 10-52

CANGCEL ..ottt eee e ee et e et e e s e ees e 10-53
CANGCEL_ALL 1.t eeee e eee et nes e 10-54
CANGCEL_USERcoieveeeeeeeeeeeeee oo eeee e eeee e sesee e eee e see e seees e eee e es e see e 10-55
CLEAR_ALL_ERRORSoovooeeeeteeeeeeeeeee e e eeeeesee e ess e s seee s eeees e 10-56
CLEAR_ERRORooveoeeit oo eeeeeeeeeee e ee oo e ses e ee oo ss e 10-57
CLEAR_INDEX_ERRORSoootveeireeeeeeeeieeeeseeseeeeseees e seees e seess e eseeseeeese e eeees oo 10-58
CLEAR_LING_ERRORScoitveeeeeeeeeeeseeeeeeseeeeeeeees e se oo eeese e ss e es s se e eeee e 10-59
REQUEST _STATUS ..o eeeeeeeeeeee e eeeee e sesee et ees oo ees e 10-60

Result Tables

HItliSt TADIE STrUCTUIE. ... e A-2
Composite Textkey Hitlist TabIeS ..o A-2
Highlight TaDIle STrUCTUIESoiuiie ittt ettt e et e e se s A-3
HIGHTAB Highlight Table ..o s A-3
MUTAB Highlight TabIec.ooiie e e A-3
ICFTAB Highlight TabIe......cuiii et bbb e A-4
Display Table STIUCLUIESooui ittt e e e e bbb A-5
NOFILTAB DiSplay Tablecooieeie ettt et A-5
PLAINTAB DiSPlay TabIecoooiiiie ettt st A-5
CTX_LING OUtpUt TabIe STIUCTUIESeiuiiiiieee ettt sttt st e aeb e e ene e A-6
THEME TADIE ... e A-6
GISETADIE .. b e A-7

Scoring Algorithm

Scoring Algorithm fOr TEXt QUEKIESc.uiueiiiiee ettt st et e B-2
EXAIMIPIE. ...ttt et ettt b e bRt ettt ne e e et s e B-2
(B0 I UgTo IS Tolo] T o To [T B-3

SQL*Plus Sample Code

Setting Up the ConText Sample ApPlIiCatioNS ... C-2
OVErVIEW OF CTXPLUS ... C-3
(0] g T1=7 o] 1< JT TSR U O RTPO PP S C-3
USING CTXPLUS ...ttt ettt te ettt e st e be et e e se e st e ate e seeateesaestbesneenns C-4

xi

CTXPLUS EXAMPIES ...ttt st e e sttt et et an e be b seeenee s C-5

OVErVIEW OF CTXLING ..ot C-7
1070] o To1=7 o] < J TSSOV C-7
USING CTXLING ...ttt ettt ettt eb et e be ek s e et e e e neen e e neeneenen C-7
CTXLING EXAMPIES ...ttt ettt ettt et sttt ettt eereeee e s C-9

D Stopword Transformations

Understanding Stopword Transformations ... s D-2
WOrd TransSformMationNS.........cccociiie ittt s eb e e s ab et e e sbe e e saeearens D-3
AND TransfOrmMationNScociuiiiiiie ettt et e e sr et st e sae e e b e D-3
OR TranSfOrMALtiONScccuiiiiciiie ettt et e e e et se et e e s ae st e enbe et aen b eaeennas D-4
Accumulate TransfOrMatiONScccvciiiiee e e e ee e se e neas D-4
MINUS TransfOrMatiONSc.coviie ittt sttt s te et e s be s e e e e e e sr e s e sreas D-5
NOT TranSTOrMaAtiONScoiiie it e e e e e e see e e enae e D-5
Equivalence TransfOrmMationscoooii ittt et e D-6
NEAR TransfOrMatiONScccciiiiiiiiiie ettt sttt e e e e e et e en e e D-6
Weight TransformMatioNsccci o e e sr et e D-7
Threshold TransSformMations ... e e e r e ere s D-7
MaX TranSTOrMATIONScci ittt be e re e re e e re e e e eneeens D-7
First/Next TranSfOrmMationscccoiiiiiiiii it st r e b s e et enes D-7
WITHIN Transformationsccooiiiiiiiii it nr et sre st e s raen e D-7

E Knowledge Catalog - Category Hierarchy

Branch 1: science and teChNOIOQYouioiiiiiiii e e s E-2

Branch 2: business and @CONOMICS.........occiiiiiii i s E-8

Branch 3: government and MilITary ... e s E-9

Branch 4: social ENVIFONMENT..........coiiiii e E-10

Branch 5: geOGIaPNYuo ittt e bbb et e e E-13

Branch 6: abstract ideas and CONCEPLSccuo it e E-16
Index

Xii

Send Us Your Comments

Oracle8 ConText Cartridge Application Developer’s Guide, Release 2.4
Part No. A63821-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

FAX - (650) 506-7200. Attn: Oracle8 ConText Cartridge Documentation
Postal service:

Oracle Corporation

Oracle8 ConText Cartridge Documentation

500 Oracle Parkway

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle World Wide Support Center.

xiii

Xiv

Preface

This manual explains the SQL*Plus and PL/SQL tools you use to issue text and
theme queries with Oracle8 ConText Cartridge and how to enable users to view
gueried documents. It also explains how to generate document summaries using
the linguistic capabilities of Oracle8 ConText Cartridge.

XV

Audience

This document is intended for an application designer, application programmer, or
systems analyst responsible for designing and developing text query applications
using the facilities provided by ConText.

It is also applicable to the user responsible for managing text in a ConText
application. Such users could also include DBASs or system administrators.

Prerequisites

This document assumes that you have experience with the Oracle relational
database management system, SQL, SQL*Plus, and PL/SQL. See the documentation
provided with your hardware and software for additional information.

If you are unfamiliar with the Oracle RDBMS and related tools, read Chapter 1, "A
Technical Introduction to the Oracle Server", in the Oracle8 Concepts Manual. The
chapter is a comprehensive introduction to the concepts and terminology used
throughout Oracle documentation.

Related Publications

XVi

For more information about ConText, see:

» Oracle8 ConText Cartridge QuickStart

» Oracle8 ConText Cartridge Administrator’s Guide.
« Oracle8 Error Messages.

« Oracle8 ConText Cartridge Workbench User’s Guide.
For more information about Oracle8, see:

« Oracle8 Concepts.

» Oracle8 Administrator’s Guide.

« Oracle8 Utilities

» Oracle8 Tuning

« Oracle8 SQL Reference.

» Oracle8 Application Developer’s Guide.

For more information about PL/SQL, see:

. PL/SQL User’s Guide and Reference.

How To Use This Manual

This manual is designed to be used by application developers to produce text
retrieval applications for end users.

Specific tasks in the application design process depend on the type and complexity
of the application being developed, but in general, the development process
consists of six tasks:

« Analyzing user requirements

« Designing the application

« Developing a ConText application

» Estimating data storage requirements for the application

» Creating the ConText system environment with the database administrator
« Tuning the application’s performance

This book only deals with developing a ConText application and tuning the
application’s performance. All the information necessary to develop and maintain
ConText applications is covered in the following chapters.

The Oracle8 ConText Cartridge Administrator’s Guide contains information about
creating and maintaining the system environment to support ConText applications.
The administrator’s guide and the application developer’s guide are designed to be
used together.

How This Manual Is Organized

Chapter 1: Building a Query Application
This chapter describes a typical ConText query application and the ConText features
you can use to build the application.

Chapter 2: Query Methods
This chapter describes and compares the different query methods.

xvii

xviii

Chapter 3: Understanding Query Expressions
This chapter describes the various operators you can use to build query expressions.

Chapter 4: Theme Queries
This chapter describes how to issue theme queries.

Chapter 5: Query Expression Feedback
This chapter describes query expression feedback.

Chapter 6: Document Presentation: Highlighting

This chapter describes how to create highlighted output from a text or theme query
and how to present highlighted documents to users.

Chapter 7: ConText Linguistics
This chapter describes ConText’s theme extraction system.

Chapter 8: Using CTX_LING

This chapter describes how to create linguistic output, including managing the
service queue and combining theme/text queries with linguistic output.

Chapter 9: SQL Functions
This reference chapter describes the SQL functions you can use with ConText.

Chapter 10: PL/SQL Packages

This reference chapter describes the procedures and functions included in the
PL/SQL packages shipped with ConText.

Appendix A, "Result Tables"

This appendix describes the schema for the result tables used for issuing text and
theme queries, highlighting text, and creating linguistic output.

Appendix B, "Scoring Algorithm"
This appendix describes ConText’s scoring algorithm for text queries.

Appendix C, "SQL*Plus Sample Code"

This appendix contains explanations of the demonstration applications distributed
with ConText.

Appendix D, "Stopword Transformations"
This appendix lists all ConText stopword transformations.

Appendix E, "Knowledge Catalog - Category Hierarchy"

This appendix provides a list of the concepts in the knowledge catalog that serve as
grouping categories.

Type Conventions

This book adheres to the following type conventions:

Type Meaning

UPPERCASE Uppercase letters indicate Oracle commands, standard database
objects and constants, and standard Oracle PL/SQL procedures.

lowercase italics Italics indicate variable names, PL/SQL parameter names, table
names, view names and the names of example PL/SQL
procedures.

nonospace Monospace type indicate example SQL*Plus commands and
example PL/SQL code. Type in the command or code exactly as
it appears.

Customer Support

You can reach Oracle Worldwide Customer Support 24 hours a day.
In the USA: 1.415.506.1500
In Europe: + 44.344.860.160
Please be prepared to supply the following information:
« your CSI number

This helps Oracle Corporation track problems for each customer.
« the release numbers of the Oracle Server and associated products
« the operating system name and version number
« details of error numbers and descriptions

Write down the exact errors.

« adescription of the problem

Xix

« adescription of the changes made to the system

Your Comments Are Welcome

Please use the "Send Us Your Comments" form at the front of this document to
convey your comments to us. You can also contact us at:

Documentation Manager

Oracle8 ConText Cartridge

Oracle Corporation

500 Oracle Parkway

Redwood Shores, California 94065

XX

1

Building a Query Application

This chapter introduces the ConText features you can use to build a query
application. It describes a typical query application then discusses the options
ConText provides at each step:

Overview

Prerequisites

Entering the Query

Rewriting the Query Expression
Presenting Expression Feedback
Executing the Query

Presenting the Hitlist

Presenting the Document

Building a Query Application

1-1

Overview

Overview

Figure 1-1

C Enter Query)

| Rewrite Query
. Expression |

I Present Expression ! 4 Refine Query
: Feedback I \ Expression

Execute Query B

|

Present Hitlist

|

Select from Hitlist T resent Expression 1
—— | Present Expression X
\ Feedback |

| Ptk |

Present Document [Typical Step

L _ ~ "1 Optional Step

(D user Action
[Application

Action

Figure 1-1 illustrates a basic design of a ConText query application. It shows the
different modules required to let the user enter the query and hence view the

1-2 Oracle8 ConText Cartridge Application Developer’s Guide

Overview

results. Each module represents a step in the querying process, where rectangular
boxes indicate application tasks and round boxes indicate user-tasks.

As shown, the process of issuing a query can be modeled according to the following
steps:

user enters query

application re-writes query (optional)

application presents expression feedback (optional)
user refines query expression (optional)
application executes query

application presents hitlist

user selects from hitlist

application presents document

Building a Query Application 1-3

Prerequisites

Prerequisites

Loading Text

Generally, query applications assume the following tasks have been performed:
« textisloaded in the database

.« textisindexed

Documents must be loaded in a text column before you can index the document set
and issue queries. You can store documents directly in the text column or you can
store a pointer to an external file or URL.

See Also: For more information about loading and storing text,
see Oracle8 Context Cartridge Administrator’s Guide.

Creating an Index

How you index your document set affects how the user of an application can issue
gueries. With ConText, you can create the following basic types of indexes for
documents stored in a text column:

.« textindex
= theme index

Having a text index allows you to issue text queries against the document set,
which is a search on words or phrases.

Having a theme index allows you to issue theme queries against a document set,
which is a search on the main ideas in a document.

You can create either type of index by specifying either a text or theme lexer when
you create the index preference.

See Also: For more information about creating preferences and
text and theme indexes, see Oracle8 Context Cartridge Administrator’s
Guide.

Text Indexing Options

The options you can give the user for issuing text queries are determined by how
you create the text index. Table 1-1 describes the more frequently used options and
which index preference to set to enable each option. The Reference column in

1-4 Oracle8 ConText Cartridge Application Developer’s Guide

Prerequisites

Table 1-1 gives the name of the section in this book that describes the query feature
in detail.

Once an index is created with these options, the options cannot be changed unless a
new index is created.

Table 1-1

Text Query Option

Description

Index Preference

Reference

Stemming

Soundex

Fuzzy Matching

Section Searching

Base-letter Matching

Case Sensitivity

Composite word query

(German and Dutch
only)

Enables searches for words with
same root as specified term.

Enables searches for words that
sound like specified term.

Enables searches for words that
have similar spelling to specified
term.

Enables searches for terms within
pre-defined document sections.

Queries match words with or
without diacritical marks such as
tildes, accents, and umlauts.

For example in Spanish with a
base-letter index, a query of
mafiana matches manana and
mafiana in the index.

Enables case-sensitive searches.

Enables searching on words that
contain specified term as
sub-composite.

Wordlist

Wordlist

Wordlist

Wordlist

Lexer

Lexer

Lexer

"Stem Expansions" in
Chapter 3.

"Soundex Expansions" in
Chapter 3

"Fuzzy Expansions" in
Chapter 3

"WITHIN Operator" in
Chapter 3

"Base-Letter Queries" in
Chapter 3

"Case-Sensitive Queries"
in Chapter 3

"Composite Word Queries
(German and Dutch only)"
in Chapter 3

See Also:

For more information about creating index preferences,

see Oracle8 Context Cartridge Administrator’s Guide.

Theme Indexing Options

The options discussed in the previous section entitled "Text Indexing Options" are
not supported for theme indexes. ConText has no options for creating theme
indexes.

Building a Query Application 1-5

Entering the Query

Entering the Query

Text Queries

This section provides an overview of the options you can build into your
application for user queries.

In ConText, a text query is a search for a word or phrase in an indexed text column.
ConText returns the documents (or rows) that satisfy the query along with a score
that says how relevant the document is to the entered query.

For example, a text query on the term unify returns all documents that contain the
word unify.

The simplest text query is one in which the application user enters a single word or
phrase and ConText returns all documents that contain the word or phrase. More
sophisticated queries can include operators to do logical searches, section searches,
and wildcard searches. All of ConText’s operators are available with text queries.

You can use the standard query methods to perform text queries, namely one-step,
two-step, and in-memory.

Theme Queries

In addition to querying English-language documents by words (text query), you
can query these documents by theme, or by their main concepts.

Theme queries work similarly to text querying in that you must create an index
(theme) for the documents before you can query. Theme queries differ from text
queries in that you need not provide exact wording for searches. ConText interprets
your query conceptually according to its view of the world and returns an
appropriate document hitlist based on theme, along with a measure of how relevant
each document is to the query.

For example, a theme query on unify returns documents about the concept of
unification or unifying.

You can use the standard query methods to perform theme queries, namely
one-step, two-step, and in-memory. In a theme query, you can use some of the
operators you use in regular text queries.

See Also: For more information about theme queries, see
Chapter 4, "Theme Queries".

1-6 Oracle8 ConText Cartridge Application Developer’s Guide

Entering the Query

Using Operators

Operators in ConText enable you to issue a wide variety of queries including logical
AND/OR searches, NOT searches, near searches, document section searches, term
weighted searches, and expanded term searches.

You can embed these operators within your application or pass them on to the user.
When you embed them within the application, you allow users to enter only query
terms. The application can then intelligently process entered terms by combining
operators to get different results.

You can also pass on the functionality of operators to users. You can do this by
allowing users to enter ConText operators directly or with an interface of pull-down
menus and radio buttons. Allowing users to enter operators gives users the ability
to tailor their queries.

See Also: Some operators can only work if the index is enabled
for them. For a complete list of these operators, see the previous
section entitled "Text Indexing Options".

For more information about ConText operators, Chapter 3,
"Understanding Query Expressions".

Case-Sensitive Searching
ConText supports case-sensitivity in both text and theme queries.S

Text Queries

By default, ConText creates text indexes without being sensitive to the case of
tokens in the documents. Because of this, text queries are case-insensitive. That is, a
guery on United returns documents that contain United and UNITED and united.

However, you can make text queries case-sensitive by using a case-sensitive lexer
when you or your ConText administrator indexes the document set. When you
create a case-sensitive index, a query on United is different from united, which is
different from UNITED.

See Also: For more information about issuing case-sensitive text
queries, see "Case-Sensitive Queries" in Chapter 3, "Understanding
Query Expressions".

For more information about creating case-sensitive text indexes for
columns, see Oracle8 ConText Cartridge Administrator’s Guide.

Building a Query Application 1-7

Entering the Query

Theme Queries

Theme queries are case-sensitive. This means that a query on Turkey returns hits on
Turkey the country and not turkey the bird.

Even though ConText theme queries are case-sensitive, ConText tolerates poorly
formatted input for known themes.

For example, entering microsoft or microSoft returns documents that include the
theme of Microsoft, a known company. Likewise, entering Currency Rates returns
documents that include a theme of currency rates, a standard classification in
business and economics.

Note: For poorly formatted input, ConText always attempts to
match the entered theme with themes in the index. For example if
you enter microsoft, ConText looks up microsoft and Microsoft in the
index. Likewise, if you enter Currency Rates as your theme, ConText
looks up Currency Rates and currency rates in the index.

Document Section Searching

Section searching enables users to narrow text queries down to sections within
documents. Sections can be of the following:

« sentence or paragraphs
= user-defined sections

Sentence or paragraph searching enables users to search for combination of words
within sentences or paragraphs.

Searching within user-defined sections enables users to search for a term within
sections they have defined prior to creating a text index. To do this type of section
searching, you or your ConText administrator must define sections by specifying
what tags delimit the section.

User-defined section searching is useful when your documents have internal
structure, such as HTML documents.

Note: Section searching is supported for text queries only.

See Also: For more information about section searching, see the
"WITHIN Operator" section in Chapter 3.

1-8 Oracle8 ConText Cartridge Application Developer’s Guide

Entering the Query

Structured Field Searching

For both text and theme queries, your application interface can give the user the
options of querying on structured fields such as date, document author etc.

You can issue structured searches with one-step, two-step and in-memory queries
and subsequently present the structured information related to each document in
the hitlist.

See Also: For more information about issuing structured queries,
see "Using Two-Step Queries" and "Using In-Memory Queries" in
Chapter 2.

Building a Query Application 1-9

Rewriting the Query Expression

Rewriting the Query Expression

You can design your query interface to allow users to enter ConText operators,
either by allowing the user to enter operators directly or by using a more
sophisticated interface in which the user can choose operators from a pull-down
menu or radio button. In either case, your application can refine the query
expression further by adding operators or adding or removing special words or
symbols to achieve different results.

See Also: For more information about ConText operators,
Chapter 3, "Understanding Query Expressions".

1-10 Oracle8 ConText Cartridge Application Developer’s Guide

Presenting Expression Feedback

Presenting Expression Feedback

After the user enters the query, you can either present expression feedback or
execute the query. See Figure 1-1.

Expression feedback allows the user to view how ConText executes the query.
Feedback is useful for understanding how ConText expands theme queries as well
as how it expands stem, fuzzy, thesaurus, soundex, or wildcard text queries. By
providing this additional information, query expression feedback helps users refine
gueries that might return an unwanted result set.

If the user requires feedback, the application presents the expression feedback, and
gives the user the option of re-entering a refined query. See Figure 1-1

Your application can also present expression feedback after executing the query
when you present the hitlist. See Figure 1-1

See Also: For more information about query expression feedback,
see Chapter 5, "Query Expression Feedback".

Building a Query Application 1-11

Executing the Query

Executing the Query

In a PL/SQL application, you can issue a two-step query or an in-memory query,
depending on your requirements. You can also count the number of hits in a query.

A third type of query, the one-step query, is discussed in this section for
completeness, even though one-step queries cannot be used in PL/SQL
applications.

Two-step Queries

Two-step queries use the PL/SQL CONTAINS procedure in the first step to store
the results in a specified result table. The second step uses a SELECT statement to
select the results from the result table. In the SELECT statement, you can join the
result table with the original text table to return more detailed document
information.

Because two-step queries use tables to store the hits, they are best suited for
applications that require all the results to a query.

See Also: For more information about using two-step queries, see
"Using Two-Step Queries" in Chapter 2.

In-memory Queries

In-memory queries use a cursor to return query results, rather than the result tables
used in two-step and one-step queries.

In an in-memory query, you open a cursor and issue the query. ConText writes the
results of the query to the cursor. You fetch the results one row at a time, then close
the cursor. Results can be returned unordered or sorted by score.

Because in-memory queries store results in memory, they generally return hits faster
than two-step queries for large hitlists, since you need not retrieve all hits at a time.

As such, in-memory queries are best suited for applications that might return large

hitlist but where only a small portion of hits are required at a time.

See Also: For more information about using in-memory queries,
see "Using In-Memory Queries" in Chapter 2.

1-12 Oracle8 ConText Cartridge Application Developer’s Guide

Executing the Query

One-step Queries
In a one-step query, you create a single SQL SELECT statement with a WHERE...
CONTAINS clause to search for relevant documents. ConText returns the rows and
columns of the text table that satisfy the query.

Because PL/SQL does not recognize the CONTAINS function in the SELECT
statement, one-step queries are limited to interactive or ad-hoc queries in SQL*Plus.

See Also: For more information about using one-step queries, see
"Using One-Step Queries" in Chapter 2.

Counting Query Hits
In addition to fully executing two-step, one-step, and in-memory queries, you can
count the number of hits in a two-step or in-memory query before or after you issue
the query. Counting query hits helps to analyze queries to ensure large and
unmanageable hitlists are not returned.

See Also: For more information about counting query hits, see
"Counting Query Hits" in Chapter 2.

Building a Query Application 1-13

Presenting the Hitlist

Presenting the Hitlist
Your application presents a hitlist in one or more of the following ways:
= show structured fields related to document, such as title or author
« show documents ordered by score
« show document hit count
« show query expression feedback

» show document Gist (English only)

Presenting Structured Fields

Structured columns related to the text column can help identify documents. When
you present the hitlist, you can show related columns such as document titles or
author or any other combination of fields that identify the document.

In a two-step query, you can obtain the structured fields by joining the result table
with the base table.

In an in-memory query, you must specify what structured column or columns to
fetch into the cursor along with the textkey.

In a one-step query, you specify the name of structured column or columns in the
SELECT statement.

Presenting Score

When you issue either a text query or theme query, ConText returns the hitlist of
documents that satisfy the query with a relevance score for each document
returned. You can present these scores when you return the hitlist to the user.

The score for each document is between one and one hundred and indicates how
relevant the document is to the query entered; the higher the score, the more
relevant the document. You can use scores to order the hitlist to show the most
relevant documents first.

In two-step queries, ConText calculates the score when you call the CTX_
QUERY.CONTAINS procedure. This procedure stores the score in the result table.

In in-memory queries, ConText returns the score for a hit as an out parameter with
the CTX_QUERY.FETCH_HIT function.

In one-step queries, ConText calculates scores when you use the CONTAINS
function. You obtain scores using the SCORE function.

1-14 Oracle8 ConText Cartridge Application Developer’s Guide

Presenting the Hitlist

See Also: For more information about manipulating a result set,
see "Result-Set Operators" in Chapter 3.

For more information about how ConText scores text queries,
Appendix B, "Scoring Algorithm".

For more information about scoring for theme queries, see "Theme
Querying" in Chapter 4.

Presenting Document Hit Count

You present the number of hits the query returned alongside the hitlist, using CTX_
QUERY.COUNT_LAST, which returns the number of hits in the last two-step or
in-memory query.

However, when the number is all that is required, you can use CTX_
QUERY.COUNT_HITS, which is more efficient than executing the two-step or
in-memory query and then counting the hits.

Presenting Expression Feedback in Hitlist

You can accompany a query hitlist with expression feedback. Using feedback in this
way gives the user an opportunity to see the expanded query alongside the results
of the query.

When you present your hitlist with expression feedback, you can give the user the
option of selecting a document, or of refining and then re-entering another query if
the user is not satisfied with the results in the hitlist.

See Also: For more information about query expression feedback,
see Chapter 5, "Query Expression Feedback".

Presenting Gists (English only)

If presenting a hitlist is not enough information, you can present a Gist for every
document in the hitlist. A Gist is essentially a document summary. However, the
generation of a Gist requires an extra processing step and is available for English
only.

See Also: For more information about generating Gists and other
CTX_LING output, see Chapter 8, "Using CTX_LING".

Building a Query Application 1-15

Presenting the Document

Presenting the Document

When your application obtains the results of a query;, it can let the user select a
document from the hitlist and then present one or more of the following ConText
document services:

» document with or without query terms highlighted (text and theme queries)

» document Gist, theme summary, or list of themes (English only)

Presenting Highlighted Documents

Figure 1-2

Document

Highlighting in PL/SQL
(CTX_QUERY)

Highlighting in ConText Viewers
(32-bit Windows and World Wide Web)

/N

(Microsoft Word, V6 or lower; (All other supported
WordPerfect, V6 or lower) document formats)

5

<

LN
\

Original
Document

Plain Text
(Filtered)
Document

Plain Text
Highlighting

WYSIWYG Plain Text
Highlighting Highlighting

ConText enables you to present documents to the user with query terms highlighted
for text queries, or with the relevant paragraphs highlighted for theme queries. You
can do highlighting in PL/SQL as well as with the ConText viewers for Windows
32-bit and world wide web applications.

1-16 Oracle8 ConText Cartridge Application Developer’s Guide

Presenting the Document

Hlghlighting in PL/SQL

With PL/SQL, you create the viewable output by calling the highlighting
procedure, CTX_QUERY.HIGHLIGHT, usually after you issue the query. You can
use this procedure to highlight documents stored as plain text or documents stored
in formats such as Microsoft Word.

With the highlighting procedure, you can obtain the document plain-text, document
plain-text with highlights, or the document in its native format without highlights.
This procedure outputs to result tables, which you use to present the document.The
highlighting procedure works for text and theme queries (See Figure 1-2).

See Also: For more information about presenting highlighted
documents, see Chapter 6, "Document Presentation: Highlighting".

Highlighting in ConText Viewers

Context provides a custom control that you can embed programmatically in 32-bit
Windows client-side applications. This custom control allows users to query
documents and then view them in their native formats (WYSIWYG), such as
Microsoft Word, with query terms or paragraphs highlighted. See Figure 1-2

You can use the ConText custom control to view documents in the following
server-side supported formats:

= Microsoft Word for Windows 2, 6.x
= WordPerfect for Windows 5.x, 6.x
= WordPerfect for DOS 5.0, 5.1, 6.0

For world wide web applications that use the Oracle Web Application server, you
can present documents in a Windows 32-bit environment using one of the
following:

« ConText viewer plug-in with the Netscape browser
« ConText custom control with the Microsoft Internet Explorer.

Both these configurations require that the ConText viewer cartridge be installed on
the Oracle Web Application Server.

See Also: For more information about highlighting with ConText
viewers, see the Oracle8 ConText Cartridge Workbench User’s Guide.

Building a Query Application 1-17

Presenting the Document

Presenting CTX_LING Output (English Only)

Figure 1-3

Document

Theme and Gist Generation

(CTX_LING)
List of Theme Gist
Themes Summaries

For English-language documents, the CTX_LING PL/SQL package enables you to
create different document summaries and list of themes, which you create on a
per-document basis. These summaries and lists of themes are shorter than the
documents themselves and can help application users quickly view the essential
content of documents.

ConText can generate the following forms of CTX_LING output on a per document

basis:

Output Type Description

List of Themes A list of the main concepts of a document.

Gist Paragraph or paragraphs in a document that best represent what the

document is about as a whole. You can also generate Gists at the
sentence level.

1-18 Oracle8 ConText Cartridge Application Developer’s Guide

Presenting the Document

Output Type Description

Theme Summary Paragraph or paragraphs in a document that best represent a given
theme in the document. You can also generate theme summaries at the

sentence-level.

You obtain linguistic output by submitting a linguistic request using the CTX_LING
PL/SQL package.

See Also: For more information about generating CTX_LING
output, see Chapter 8, "Using CTX_LING".

Building a Query Application 1-19

Presenting the Document

1-20 Oracle8 ConText Cartridge Application Developer’s Guide

2

Query Methods

This chapter describes the different query methods you can use in your ConText
application. You can use these methods with text queries and theme queries. The
following topics are covered:

Selecting a Query Method
Using Two-Step Queries
Using One-Step Queries
Using In-Memory Queries

Counting Query Hits

Query Methods 2-1

Selecting a Query Method

Selecting a Query Method

Each of the query methods (two-step, one-step, and in-memory) provide
advantages and disadvantages that you must consider when developing an
application. The following table briefly describes each method and illustrates the

various advantages and disadvantages to using each:

Query
Method Use Advantage Disadvantage
One-step Used in SQL*Plus. Best « No pre-allocation of result « Generally slower than two-step
suited for interactive tables or in-memory queries
quertes. « Usesstandard SQL « No access to result tables
statements « Cannot use in PL/SQL
« Usestable and column applications
names
« Queryresults returned ina
single step
= Can retrieve all hits at once
Two-step Two-step queries are best .« Result tables can be « Requires pre-allocation of
suited for PL/SQL-based manipulated result tables
applications that require Generally faster than « Uses policy names
all the results to a query. .
one-step queries, .
: . = Requires two steps to complete
especially for mixed
queries « Requires join to base text table
. . to return document details
= Can retrieve all hits at once
« Query can include a
structured condition
In-memory In-memory queries are « No result tables « Uses policy names

best suited for
PL/SQL-based
applications that might
generate large hitlists, but
where only a small portion
of the hits are required at a
time, such as World Wide
Web applications.

Faster response time than
two-step, since you need

not retrieve all hits in the
hitlist.

Large hitlists generally
faster than one-step and
two-step queries

Can specify the number of
hits returned

Query can include a
structured condition

Cannot retrieve all hits at once

With small hitlists,
performance improvement
over two-step is negligible

Requires three steps, including
a loop, to complete

Max and first/next operators
are not supported

2-2 Oracle8 ConText Cartridge Application Developer’s Guide

Using Two-Step Queries

Using Two-Step Queries
To perform a two-step query, do the following:

1. Execute CTX_QUERY.CONTAINS. The procedure selects all documents that
match the specified search criteria (query expression) and generates a score for
each document.

The document textkeys and scores are stored in the specified result table.

Note: You must create the result table before you execute the
CONTAINS procedure.

2. Use a SELECT statement on the result table (and the base text table, if desired)
to return the specified columns as a hitlist for the rows (documents) that satisfy
the query expression.

Two-Step Query Example

The following example shows a simple two-step query. The query uses a policy
named ARTICLES POL to search the text column in a table named TEXTTAB for
any articles that contain the word petroleum. The CONTAINS procedure populates
the CTX_TEMP results table with the document primary keys that satisfy the query.

The select statement then joins the results in CTX_TEMP with TEXTAB to create a
list of document titles ordered by score.

Note that before the two-step query example is executed, the result table, CTX_
TEMP, is created:

create tabl e CTX TEMX
text key varchar2(64),
score nunber,
coni d nunber);

execute ctx_query.contains(ARTICLE_POLICY’,'petroleun’,CTX_TEMP’)
SELECT SCORE, tifle
FROM CTX_TEMP, TEXTTAB

WHERE texttab.PK=ctx_temp.textkey
ORDER BY SCORE DESC;

In this example, the articles with the highest scores appear first in the hitlist because
the results are sorted by score in descending order.

Query Methods 2-3

Using Two-Step Queries

Scoring

In a two-step query, the score results generated by the CONTAINS procedure are
physically stored in a result table that has been allocated (either by the application
developer or dynamically within the application).

If you want to include scores in the hitlist returned by a two-step query, select the
from the result table in the second step of the query.

Note: The way in which ConText calculates a relevance score for
text queries is different than the way it calculates scores for theme
queries.

To learn more about how ConText calculates relevance score for text
queries, see Appendix B, "Scoring Algorithm".

To learn more about how ConText calculates relevance scores for
theme queries, see "Understanding Theme Queries" in Chapter 4,
"Theme Queries".

Hitlist Result Tables

In two-step queries, ConText uses result tables called hitlist tables to store
intermediate results. Intermediate results can be merged into the standard SQL
query through a join operation or a sub-query operation. The result tables must be
created before the query is performed. A hitlist table can be created manually or
allocated through the CTX_QUERY.GETTAB procedure.

Hitlist tables can be named anything; however, they must have the following
structure:

Column Name Column Datatype Purpose

TEXTKEY VARCHAR2(64) Stores textkeys of the rows satisfying the query

SCORE NUMBER Stores the score for each row (document)

CONID NUMBER Stores the CONTAINS ID when multiple
ti\gll(\elTAlNS procedures utilize the same result

2-4 Oracle8 ConText Cartridge Application Developer’s Guide

Using Two-Step Queries

See Also: For more information about the structure of the hitlist
result tables, see "Hitlist Table Structure" in Appendix A, "Result
Tables".

Sharing a Hitlist Result Table

For applications that support multiple concurrent users, ConText allows for sharing
a single result table among all the users rather than allocating a separate table for
each user.

You control sharing of result tables with the sharelevel and the query_id parameters
of the CTX_QUERY.CONTAINS procedure. If the result table is shared, the
CONTAINS procedure must specify that sharelevel is equal to one and include a
unique query_id so that each result can be distinguished from others in the result
table.

When sharelevel is equal to 0:

« the hitlist result table is intended for exclusive use

« ConText truncates the hitlist result table at the start of each query
« after the query is completed, CONID values are NULL

When sharelevel is equal to 1 then:

« the hitlist result table is intended for shared use

« specify a unique number for query_id in the CONTAINS procedure to identify
which entries belong to you in the hitlist result table. This number will be
assigned to the CONID for each row in the result table generated by the query.

« before the query is run, you must delete existing rows in the result table with
the same query_id as that specified in the CONTAINS procedure

« after the query is complete, the CONID column for all rows returned by the
guery contains the query_id specified in the CONTAINS procedure

« select your rows by specifying the appropriate CONID in the WHERE clause of
the SELECT statement

Attention: ConText does not verify that these rules are observed.
You must control multiple concurrent usage by passing a different
query_id to the requestor if the result table is shared.

Query Methods 2-5

Using Two-Step Queries

Composite Textkey Result Tables

When you execute a two-step query on a table with a composite textkey, the
number of textkey columns in the result table must match the composite keys count
in the document table. For example, if you want to execute a query on a document
table that has a two-column textkey, create a result table with the following schema:
TEXTKEY, TEXTKEY2, SCORE, CONID.

The following SQL*Plus examples show two different ways in which to create a
result table with a two-column composite textkey:

/* create conposite textkey result table nanual ly */
create table ctx_tenp(

t ext key varchar2(64),

text key2 var char 2(64),

score nunber,

coni d nunber);

/* allocate conposite textkey result table with CTX QUERY. CETTAB() */
exec ctx_query. gettab(CTX QUERY.H TTAB, :hit_tab, 2)

See Also: For more information on the structure of composite
textkey result tables, see "Composite Textkey Hitlist Tables" in
Appendix A, "Result Tables".

SELECT from a Pre-defined View

There is an alternative to the second step of a two-step query. Rather than joining
the result table and text table in a SELECT statement, you can create a view to
perform the join. Then use a SELECT statement to select the appropriate rows from
that view. Use this approach when the development tool does not allow tables to be
joined in a SELECT statement (e.g. Oracle Forms).

For example:

CREATE M EWSLRVEY AS SHLECT * FROM TEXTTAB, CIX TEW
WERE PK = TEXTKEY;

SH ECT SCCRE, AUTHOR FROM SLRVEY
CGRDER BY SOCORE DESC

In this example:

2-6 Oracle8 ConText Cartridge Application Developer’s Guide

Using Two-Step Queries

« The CREATE VIEW statement joins the table of articles (TEXTTAB) and the
result table (CTX_TEMP). The PK column holds the primary key of the
documents.

« The SELECT statement retrieves the scores from the view.

Composite Textkey Queries

To execute a two-step query on a table with a composite textkey, you first specify
the multiple textkey columns when you create the policy for the text column.

See Also: For more information about creating policies for
composite textkey tables, see Oracle8 ConText Cartridge
Administrator’s Guide.

In addition, before the two-step query, create a result table in which the number of
TEXTKEY columns match the number of columns in the composite textkey in the
document table. You can create the result table manually or using the CTX_
QUERY.GETTAB procedure.

See Also: For more information on the structure of composite
textkey result tables, see "Composite Textkey Hitlist Tables" in
Appendix A, "Result Tables".

For example, to create a result table manually with a composite textkey consisting
of two columns, issue the following SQL statement:

create tabl e CTX TEMP2(
t ext key varchar2(64),
t ext key2 varchar2(64),
scor e nunber,
coni d nunber);

In the two-step query, use the AND operator in the WHERE condition when you
join the result and text tables. For example:

exec ctx_query.contains(ARTICLE2_POLICY’,petroleum’,CTX_TEMP2)

SELECT SCORE, tifle

FROM CTX_TEMP2, TEXTTAB2

WHERE texttab2.PK=ctx_temp2.textkey AND
texttiab2.PK2=ctx_temp?2.textkey?2

ORDER BY SCORE DESC;

Query Methods 2-7

Using Two-Step Queries

Structured Queries

A structured query is a query based on a text column and a structured data column.
The structured data column is usually in the same table as the text column. For
example, you might use a structured query to retrieve documents on a certain
subject that were written after a certain date, where the document content isin a
text column and date information is in a structured data column.

The CTX_QUERY.CONTAINS procedure provides an additional parameter, struct_
query, for specifying the WHERE condition in a structured query. For example, to
select all news articles that contain the word Oracle that were written on or after
October 1st, 1996, you might use:

exec ctx_query.contains(news_text,'Oracle’,res_tab’,
struct_query =>issue_date >= ("1-OCT-1996"))

Note: Because the struct_query parameter expects a WHERE
condition, you can specify a subquery. This is useful when the
structured data column is in another table.

Executing a structured query with the struct_query parameter improves
performance over processing a query on a text column and then refining the hitlist
by applying a where condition against a structured column. This is especially so
when the selectivity of the WHERE condition is high, because when you use the
structured query parameter, the ConText server executes the entire query without
first writing out a potentially large hitlist to be refined later by the Oracle server.

Note: If the user who includes a structured query in a two-step
query is not the owner of the table containing the structured and
text columns, the user must have SELECT privilege with GRANT
OPTION on the table. In addition, if the object being queried is a
view, the user must have SELECT privilege with GRANT OPTION
on the base table for the view. SELECT privilege with GRANT
OPTION can be granted to a user using the GRANT command in
SQL.

For more information, see Oracle8 SQL Reference.

2-8 Oracle8 ConText Cartridge Application Developer’s Guide

Using Two-Step Queries

Querying Columns in Remote Databases

If a database link has been created for a remote database, two-step queries support
querying text columns in the remote database.

Note: Database links are created using the CREATE DATABASE
LINK command in SQL.

For more information about creating database links, see Oracle8
SQL Reference.

To perform a two-step query for a text column in a remote database, specify the
database link for the remote database in the CONTAINS procedure as part of the
policy for the column in the remote database.

In addition, the result table specified in CONTAINS must exist in the remote
database, and you, the user performing the query, must have the appropriate
privileges on the result table.

For example:
exec ctx_query.contains(MY_POL@DBY’, petroleum’,CTX_TEMP’)

In this example, MY_POL exists in a remote database identified by the database link
DB1. The CTX_TEMP result table exists in the same remote database.

See Also: For more information about remote queries and
distributed databases, see Oracle8 Concepts.

Two-Step Queries in Parallel

The CONTAINS procedure provides an argument for processing two-step queries
in parallel. Processing queries in parallel helps balance the load between ConText
servers and might improve query performance.

When the CONTAINS procedure is called in a two-step query, the PARALLEL
argument can be used to specify the number of ConText servers, up to the total
number of ConText servers running with the Query personality, that are used to
process two-step queries and write the results to the result table.

For example:

exec ctx_query.contains(ARTICLE_POLICY’,'petroleun’, 'CTX_TEMP', parallel=>2)

Query Methods 2-9

Using Two-Step Queries

In this example, the text column in the ARTICLE_POLICY policy is queried for
documents that contain the term petroleum. The query is processed in parallel by
any two available ConText servers with the Query personality and the results are

written to CTX_TEMP.

2-10 Oracle8 ConText Cartridge Application Developer’s Guide

Using One-Step Queries

Using One-Step Queries

The one-step query uses the CONTAINS and SCORE functions in a SQL statement
to execute a user’s request for documents. Rows and columns containing the text
and structured data for relevant documents are returned to the application program
as a record set like any other query in SQL.

Note: Before one-step queries can be executed, the database in
which the text resides must be text enabled by setting the ConText
initialization parameter TEXT_ENABLE = TRUE. This can be done
by either setting it in the initsid.ora system initialization file, or by
using the ALTER SESSION command.

For more information about initialization parameters and the
initsid.ora file, see Oracle8 Administrator’s Guide.

For more information about using the ALTER SESSION command,
see Oracle8 SQL Reference.

One-Step Query Processing

After a user has submitted a one-step query, ConText performs the following tasks
to return the results to the user:

1.

The query is placed on the text queue (query pipe). The Oracle server intercepts
the query and passes the text portion (CONTAINS) to ConText.

A ConText server with the Query personality picks up the text portion of the
query, processes the CONTAINS function(s) and stores the results in an internal
table created automatically for the user who submitted the query. This table
(and the corresponding intermediate results) are not available to the
application.

The ConText server rewrites the query as a standard SQL statement and passes
it back to Oracle.

The rewritten query is executed by an Oracle server and the results are returned
to the user.

The internal result table is truncated.

Query Methods 2-11

Using One-Step Queries

One-Step Query Example

The following SELECT statement shows a simple one-step query. This query
searches a text table called TEXTTAB for any articles that contain the word
petroleum.

SHELECT *
FROMtexttab
WHERE CONTAINS (text, ‘petroleum’) > 0;

Because ConText functions execute within normal SQL statements, all of the
capabilities for selecting and querying normal structured data fields, as well as text,
are available. For instance, in the example, if the text table had a column listing the
date the article was published, the user could select articles based on that date as
well as the content of the text column.

Note: The asterisk wildcard character (*) in specifies that the
record set returned by the query includes all the columns of the text
table for the selected documents, as well as the scores generated for
each document. If a query has more than one CONTAINS function,
the asterisk wildcard does not return scores for the multiple
CONTAINS and the SCORE function must be called explicitly. See
"Scoring" in this chapter for an example.

Multiple CONTAINS

One-step queries support calling more than one CONTAINS functions in the
WHERE clause of a SELECT statement. Multiple CONTAINS can be used in a
one-step query to perform queries on multiple text columns located either in the
same table or in separate tables.

If multiple ConText servers with the Query personality are running and a one-step
query with multiple CONTAINS is executed, the query is processed in parallel.
Each CONTAINS function is evaluated by one of the available ConText servers and
the results from the servers are combined before they are returned to the user.

2-12 Oracle8 ConText Cartridge Application Developer’s Guide

Using One-Step Queries

Scoring

Restrictions

Suggestion: If your application makes use of multiple
CONTAINS in one-step queries, ensure that multiple ConText
servers with the Query personality are running to optimize query
performance. The number of ConText servers should be at least
equal to the number of CONTAINS you support in one-step queries
for the application.

In a one-step query, the document scores are generated by the CONTAINS function
and returned by the SCORE function.

Each CONTAINS function in a query produces a separate score. When there are
multiple CONTAINS functions, each CONTAINS function must have a label (a
number) so the SCORE value can be identified in other clauses of the SELECT
statement.

The SCORE function can be used in the SELECT statement to order a hitlist as
follows:
SH ECT SOCRE (10), title FROM DOOUMENTS

WHERE CONTAINS (TEXT, 'dog’, 10)>0
ORDER BY SCORE(10) DESC;

Note: The way in which ConText calculates a relevance score for
text queries is different than the way it calculates scores for theme
queries.

To learn more about how ConText calculates relevance score for text
queries, see Appendix B, "Scoring Algorithm".

To learn more about how ConText calculates relevance scores for
theme queries, see "Understanding Theme Queries" in Chapter 4.

The CONTAINS function can only appear in the WHERE clause of a SELECT
statement.

You cannot issue the CONTAINS function in the WHERE clause of an UPDATE,
INSERT or DELETE statement.

Query Methods 2-13

Using One-Step Queries

Multiple Policies

For a text column that has more than one policy associated with it, you must specify
which policy to use in the CONTAINS clause using the pol_hint parameter.

You might create two policies for a column when you want to perform both theme
and text queries on the column, or in any application where you build two separate
indexes for a text column.

See Also: For more information on issuing one-step queries with
multiple policies see "Theme Query Examples" in Chapter 4.

To learn more about using the pol_hint parameter, see the
specification for the SELECT Statement in Chapter 9.

Composite Textkey Queries

You can perform one-step queries on text tables with composite textkeys. The
syntax for the query is the same as the syntax for a query on a table with a
single-column textkey.

Querying Columns in Remote Databases

If a database link has been created for a remote database, one-step queries support
querying text columns in the remote database.

To perform a one-step query for a text column in a remote database, the database
link for the remote database is specified as part of the table name in the SELECT
clause.

For example:

SHELECT *
FROM t ext t ab@b1
WHERE CONTAINS (text, ‘petroleum’) > 0;

In this example, texttab exists in a remote database identified by the database link
DB1

2-14 Oracle8 ConText Cartridge Application Developer’s Guide

Using One-Step Queries

Note: One-step queries do not support querying LONG and
LONG RAW columns in remote database tables.

For more information about creating database links, see Oracle8
SQL Reference.

For more information about remote queries and distributed
databases, see Oracle8 Concepts.

Query Methods 2-15

Using In-Memory Queries

Using In-Memory Queries

In-memory queries use a buffer and a cursor to return query results. Returning
query results to a buffer in memory improves performance over writing and
reading query results to and from database result tables, which is typical of one-
and two-step queries.

To perform an in-memory query, do the following:

1. Call the CTX_QUERY.OPEN_CON function. OPEN_CON performs the
following operations:

= Opens a cursor to the query buffer
= queries a text column using the specified policy and query expression

« stores in the query buffer the document textkeys and scores for all the
documents that meet the search criteria. Hits are stored in order that they
are returned or ranked by score, depending on the argument specified for
OPEN_CON

In addition, you can specify that OPEN_CON return additional columns (up to
five) for the selected documents from the text table.

2. Call the CTX_QUERY.FETCH_HIT function for each textkey in the buffer to
fetch the desired query results, one hit at a time, until the desired number of
hits has been returned or no hits remain in the buffer.

3. Call the CTX_QUERY.CLOSE_CON procedure to release the cursor opened by
OPEN_CON.

2-16 Oracle8 ConText Cartridge Application Developer’s Guide

Using In-Memory Queries

In-Memory Query Example

The following example shows a simple in-memory query. This query uses a policy
named ARTICLES POL to search the text column in a table named TEXTTAB for
any articles that contain the word petroleum.

decl are
score char(5);
pk char(5);
curid nunber;
title char(256);

begi n
dbns_out put . enabl e(100000) ;
curid : = ctx_query. open_con(
policy_name => 'ARTICLES _POL’,
text_query => 'petroleunn,
score_sorted => true,
other_cols => 'itle’);
while (ctx_query.fetch_hit(curid, pk, score, titie)>0)
loop
dbms_output.put_line(score||pk||substr(tite,1,50));
end loop;
ctx_query.close_con(curid);
end;

In this example, the TITLE column from the table is also returned by OPEN_CON,
so a variable must be declared for TITLE.

DBMS_OUTPUT.ENABLE sets the buffer size to the maximum of 100000 bytes (1
Mb) to ensure that the buffer is large enough to hold the results of the query.

The SCORE_SORTED argument in OPEN_CON is set to true which causes OPEN_
CON to store the hits in the query buffer in descending order by score.

FETCH_HIT is called in a loop to fetch SCORE, PK, and TITLE for each hit until a
value less than zero is returned, indicating that the buffer is empty.

DBMS_OUTPUT.PUT_LINE prints the results to the standard output.

See Also: For more information about the DBMS_OUTPUT
PL/SQL package, see Oracle8 Application Developer’s Guide.

Query Methods 2-17

Using In-Memory Queries

In-Memory Queries and Composite Textkeys

You can perform in-memory queries on text tables that have multiple column
textkeys. When you use CTX_QUERY.FETCH_HIT to retrieve each hit from the
buffer, the PK argument is returned as an encoded string. To access an individual
textkey, you must use CTX_QUERY.PKDECODE.

In-Memory Query Limitations
In-memory queries have the following limitation:

Max and First/Next Operators
You cannot use the max and first/next operators with in-memory queries.

Querying Columns in Remote Databases

If a database link has been created for a remote database, in-memory queries
support querying text columns in the remote database.

Note: Database links are created using the CREATE DATABASE
LINK command in SQL.

For more information about creating database links, see Oracle8
SQL Reference.

To perform an in-memory query for a text column in a remote database, the
database link for the remote database is specified in the CTX_QUERY.OPEN_CON
procedure as part of the policy for the column in the remote database.

In addition, the result table specified in CTX_QUERY.CONTAINS must exist in the
remote database and the user performing the query must have the appropriate
privileges on the result table.

See Also: For more information about remote queries and
distributed databases, see Oracle8 Concepts.

2-18 Oracle8 ConText Cartridge Application Developer’s Guide

Counting Query Hits

Counting Query Hits

In addition to two-step, one-step, and in-memory queries, you can count the
number of hits in a two-step or in-memory query. Counting query hits helps to
audit queries to ensure large and unmanageable hitlists are not returned.

You can count the number of hits before or after you issue the query using one of
the following functions:

. CTX_QUERY.COUNT_HITS
. CTX_QUERY.COUNT_LAST

Using COUNT_HITS Before the Query

Before you issue a two-step or in-memory query, you can use the CTX_
QUERY.COUNT_HITS function to return the number of hits for the query without
generating scores for the hits or returning the textkeys for the documents.

COUNT_HITS can be called in two modes, estimate and exact. The results in
estimate mode may be inaccurate; however, the results are generally returned faster
than in exact mode.

See Also: CTX_QUERY.COUNT_HITS in Chapter 10.

Using COUNT_LAST After the Query

You can use the CTX.QUERY.COUNT_LAST function to obtain the number of hits
in a two-step query and in-memory query after issuing CONTAINS or OPEN_CON.

COUNT_LAST returns the number of hits obtained from the last call to CTX_
QUERY.CONTAINS or CTX_QUERY.OPEN_CON.

For two-step queries, the time it takes to issue the query with CONTAINS and then
to call COUNT_LAST is not as fast as calling COUNT_HITS before the query.
However, in the case where you need to process all hits in a two-step query, issuing
the query with CONTAINS and then calling COUNT_LAST is more efficient than
calling COUNT_HITS and then calling CONTAINS.

With in-memory queries, issuing OPEN_CON and then calling COUNT_LAST is
always a more efficient way to obtain an estimate of the query hits over calling
COUNT_HITS and then calling OPEN_CON, since COUNT_LAST returns a
number faster than COUNT_HITS.

See Also: CTX.QUERY.COUNT_LAST in Chapter 10.

Query Methods 2-19

Counting Query Hits

2-20 Oracle8 ConText Cartridge Application Developer’s Guide

3

Understanding Query Expressions

This chapter explains how to use ConText to create query expressions to find
relevant text in documents. The topics covered in this chapter are:

« About Query Expressions

« Logical Operators

« WITHIN Operator

« Score-Changing Operators

« Result-Set Operators

« NEAR Operator

« Expansion Operators

« Thesaurus Operators

« Wildcard Characters

« Grouping Characters

« Stored Query Expressions

« PL/SQL in Query Expressions
« Operator Precedence

« Escaping Reserved Words and Characters
« Querying with Stopwords

« Querying with Special Characters

Understanding Query Expressions 3-1

About Query Expressions

About Query Expressions

Query Terms

A query expression defines the search criteria for retrieving documents using
ConText. A query expression consists of query terms (words and phrases) and other
components such as operators and special characters which allow users to specify
exactly which documents are retrieved by ConText.

A query expression can also call stored query expressions (SQESs) to return stored
query results or call PL/SQL functions to return values used in the query.

When a query is executed using any of the methods supported by ConText, one of
the arguments included in the query is a query expression. ConText then returns a
list of all the documents that satisfy the search criteria, as well as scores that
measure the relevance of the document to the search criteria

Query terms can consist of words and phrases. Query terms can also contain
stopwords.

Words and Phrases

The words in a query expression are the individual tokens on which the query
expression operators perform an action. If multiple words are contained in a query
expression, separated only by blank spaces (no operators), the string of words is
considered a phrase and the entire string is searched for during a query.

Stopwords

Stopwords are common words, such as and, the, of, and to, that are not considered
significant query terms by themselves because they occur so often in text. However,
stopwords can provide useful search information when combined with more
significant terms.

For example, a query for documents containing the phrase peanut butter and jelly
returns different results than a query for documents containing the terms peanut
butter and jelly.

When you define a policy for a column, ConText lets you identify a list of
stopwords. When stopwords are encountered in the documents in the column, they
are not included as indexed terms in the text index; however, they are recorded.

As a result, stopwords cannot be searched for explicitly in text queries, but can be
included as part of a phrase in a query expression.

3-2 Oracle8 ConText Cartridge Application Developer’s Guide

About Query Expressions

See Also: For more information about querying with stopwords,
see "Querying with Stopwords" in this chapter.

Stoplists can be created in any language supported by ConText. ConText provides a
default stoplist in English.

Note: Stopwords do not have an affect on the theme indexes
generated by ConText for your English-language documents.

Query Expression Components

In addition to query terms, a query expression may contain any or all of the
following components:

Component Purpose

Operators Define the relationships between the terms in a query expression
and specify the output returned by the query. The different types
of operators are: logical, ranking, result set, proximity,
expansion, and thesaurus.

Wildcard Characters Expand query terms using pattern matching

Grouping Characters Group terms and operators in a query expression

Stored Query Return the results of a query that has been executed and the
Expressions (SQEs) results stored in an SQE table

PL/SQL Functions Execute a function and use the results in a query expression

Case-Sensitive Queries

ConText supports case-insensitivity for text queries and case-sensitivity for both text
and theme queries.

Text Queries

With text queries, you can issue case-sensitive and case-insensitive queries. The
ability to query in a case-sensitive way depends on the lexer preference used to
index the document set.

Understanding Query Expressions 3-3

About Query Expressions

By default, ConText uses a lexer preference that is not case-sensitive when indexing
documents. Therefore, with a policy containing the default lexer preference, queries
are not case-sensitive. When queries are not case-sensitive, a query on United
returns the same hits as a query on united.

To issue case-sensitive text queries, you or your ConText administrator must first
index your document set using a policy with a case-sensitive lexer preference. Using
the same policy, you can issue case-sensitive queries. With case-sensitive queries, a
query on United is different from a query on united.

Case-sensitive querying helps to identify words that have different meaning when
capitalized. For example, to query on the proper nhoun Church (as someone’s name)
without getting the hits for the common noun church, you issue Church as your
guery. ConText returns all appearances of Church.

Note: Because a case-sensitive query on a term such as Church
returns all appearances of Church, the hitlist includes occurrences of
Church at the beginning of a sentence, whether it is the common or
proper noun.

Stopwords and Case-Sensitivity When you have case-sensitivity enabled, searches on
stopwords are also case-sensitive. Thus when you issue a case-sensitive query on a
phrase containing stopwords and non-stopwords, ConText searches for the phrase
containing the stopwords with the specified case.

For example, assuming the word on is a stopword and case-sensitivity is enabled, a
search on the phrase on the waterfront does not return hits for documents containing
the phrase On the waterfront.

Theme Queries

Theme queries are case-sensitive. For example, a query on Turkey produces hits on
Turkey the country and not Turkey the bird.

See Also: For more information about case-sensitive theme
queries, see Chapter 4, "Theme Queries".

3-4 Oracle8 ConText Cartridge Application Developer’s Guide

About Query Expressions

Composite Word Queries (German and Dutch only)

German and Dutch language text contains composite words. With ConText, you can
create a composite index and subsequently issue queries to search for composite
words using a subcomposite word as your query term.

To query against a composite index, you specify the policy associated with the
composite index with two-step or in-memory queries. For one-step queries, you
must specify the policy if the text column has more than one index attached to it.

See Also: For more information about creating a composite index
for German, see Oracle8 Context Cartridge Administrator’s Guide.

German Example

When using a German composite index, a query on the term Bahnhof (train station)
returns documents that contain Bahnhof or any word containing Bahnhof as a
sub-composite, such as Hauptbahnhof, Nordbahnhof, or Ostbahnhof.

However, a query on Bahnhof does not return documents that contain the single
words Bahn or Hof.

Dutch Example

When using a Dutch composite index, a query on the term kapitien returns
documents that contain kapitien or any word containing kapitien as a sub-composite,
such a scheepskapitien.

Highlighting Composite Terms

You can use text highlighting with composite word queries. When you do so,
ConText highlights the entire composite word, not just the sub-composite you
entered as your query.

For example, when you issue Bahnhof as your query, context highlights the words
Hauptbahnhof, Nordbahnhof, and Osthahnhof entirely.

See Also: For more information on highlighting text queries, see
Chapter 6, "Document Presentation: Highlighting".

Understanding Query Expressions 3-5

About Query Expressions

Base-Letter Queries

For languages that use an 8-bit character set, such as French and Spanish, Context
gives you the option of converting characters to their base-letter representation
before text indexing. This means that words with tildes, accents, umlauts, and so on
are converted to their base-letter representation before their tokens are placed in the
text index.

When you specify a text index that has used base-letter conversion in a query,
ConText converts the term in the query expression to match the base-letter
representation before the query is processed.

The result is that with base-letter conversion on for Spanish text index, a query on
manafia returns documents that contain manafia and manana.

However, with base letter conversion off for a Spanish text index, a query on manafa
returns documents that contain only manafia.

In addition, all expansion and stopword checking for the query is performed on the
base-letter terms.

See Also: For more information about creating an index that
supports base-letter conversion, see Oracle8 Context Cartridge
Administrator’s Guide.

Thesaural Queries

The terms in a thesaural query are not converted to base-letter representation before
look-up in the thesaurus. The base-letter conversion takes place after the thesaurus
look-up and is performed on all the terms returned by the thesaurus.

Query Expression Examples

The following example of a one-step query returns all articles that contain the word
wine in the TEXTTAB.TEXT_COLUMN column. The query expression consists only
of the query term wine, surrounded by single quotes.

SH ECT articles FROMtexttab
WHERE CONTAINS(textcol, ‘'wine) > 0;

3-6 Oracle8 ConText Cartridge Application Developer’s Guide

About Query Expressions

The following example of a one-step query returns all articles that contain the
phrase wine and roses in the TEXTTAB.TEXT_COLUMN column. The query
expression consists of the query phrase wine and roses, surrounded by single quotes.

SH ECT articles FROMtexttab
WHERE CONTAINS(textcol, {wine and roses}) >0;

See Also: For more information about the CONTAINS function
used in one-step queries, see CONTAINS in Chapter 9.

Understanding Query Expressions 3-7

Logical Operators

Logical Operators

AND Operator

Logical operators combine the terms in a query expression. All single words and
phrases may be combined with logical operators. When query terms are combined,
the number of spaces around the logical operator is not significant.

Logical operators link query terms together to produce scores that are based on the
relationship of the terms to each other. The logical operators combine the scores of
their operands up to a maximum value of 100. Operands can be any query terms, as
well as other operators.

Operator Syntax Description

AND terml&term2 Returns documents that contain term1 and term2.
Returns the minimum score of its operands. All

terml and term2
query terms must occur; lower score taken.

OR terml|term2 Returns documents that contain term1 or term2.
Returns the maximum score of its operands. At

terml or term2 least one term must exist; higher score taken.

NOT terml~term2 Returns documents that contain term1 and not
term1 not term2 term2.
EQUIVALENCE terml=term2 Specifies that term2 is an acceptable substitution
for term1.

term1 equiv term?2

Use the AND operator to search for documents that contain at least one occurrence
of each of the query terms. For example, to obtain all the documents that contain the
terms batman and robin and penguin, issue the following query:

‘batman & robin & penguin’
In an AND query, the score returned is the score of the lowest query term. In the

example above, if the three individual scores for the terms batman, robin, and
penguin is 10, 20 and 30 within a document, the document scores 10.

3-8 Oracle8 ConText Cartridge Application Developer’s Guide

Logical Operators

OR Operator

NOT Operator

Use the OR operator to search for documents that contain at least one occurrence of
any of the query terms. For example, to obtain the documents that contain the term
cats or the term dogs, use one of the following:

‘cats | dogs’
‘cats OR dogs’

In an OR query, the score returned is the score for the highest query term. In the
example above, if the scores for cats and dogs is 30 and 40 within a document, the
document scores 40.

Use the NOT operator to search for documents that contain one query term and not
another.

For example, to obtain the documents that contain the term animals but not dogs, use
the following expression:

‘animals ~dogs’
Similarly, to obtain the documents that contain the term transportation but not
automobiles or trains, use the following expression:

fransportation not (automobiles or trainsy’

Note: The NOT operator does not affect the scoring produced by
the other logical operators.

Equivalence Operator

Use the equivalence operator to specify an acceptable substitution for a word in a
search. For example, if you want all the documents that contain the phrase alsatians
are big dogs or labradors are big dogs, you can write:

labradors=alsatians are big dogs’
ConText processes the above query faster and more efficiently than the same query

written with the accumulate operator. For example, you could write the above
query less efficiently and less concisely as follows:

labradors are big dogs, alsatians are big dogs’

Understanding Query Expressions 3-9

Logical Operators

The savings you gain in using the equivalence operator over the accumulate
operator is most significant when you have more than one equivalence operator in
the query expression. For example, the following query

labradors=alsatians are big canines=dogs’

is a more efficient, more concise form of:

labradors are big dogs,
alsatians are big dogs,
alsatians are big canines,
labradors are big canines’

Precedence of Equivalence Operator

The equivalence operator has higher precedence that all other operators except the
unary operators (fuzzy, soundex, stem, and PL/SQL function calls).

3-10 Oracle8 ConText Cartridge Application Developer’s Guide

WITHIN Operator

WITHIN Operator

You can use the WITHIN operator to narrow a query down into document sections.
Document sections can be one of the following:

« sentence or paragraphs

« pre-defined sections

WITHIN Syntax
The syntax for the WITHIN operator is as follows:

Syntax Description

expression WITHIN SENTENCE Searches for documents that contain expression within
a sentence. Specify an AND or NOT query for
expression.

expression WITHIN PARAGRAPH Searches for documents that contain expression within
a paragraph. Specify an AND or NOT query for
expression.

term WITHIN section Searches for term within the pre-defined section. The
WITHIN operator has no effect on score.

Querying Within Sentence or Paragraphs

Querying within sentence or paragraph boundaries is useful to find combinations
of words that occur in the same sentence or paragraph.

Examples
To find documents that contain dog and cat within the same sentence:

'(dog and cat) WITHIN SENTENCE'

To find documents that contain dog and cat within the same paragraph:

'(dog and cat) WITHIN PARAGRAPH’

To find documents that contain sentences with the word dog but not cat:

'(dog not cat) WITHIN SENTENCE'

Understanding Query Expressions 3-11

WITHIN Operator

Querying Within User-defined Sections

Use the WITHIN operator to narrow down a query into user-defined document
sections.

For example in an HTML document set, you or your ConText administrator can
define a section for all headings delimited with <HEAD> and <\HEAD> and
subsequently issue a query for a term in a heading across all documents.

Note: The WITHIN operator requires you to know the name of
the section you wish to search. A list of defined sections can be
obtained using the CTX_ALL_SECTIONS or CTX_USER_
SECTIONS views.

See Also: For more information about defining sections, see the
Oracle8 Context Cartridge Administrator’s Guide.

Examples

To find all the documents that contain the term San Francisco within the
user-defined section Headings, write your query as follows:

'San Francisco WITHIN Headings'
To find all the documents that contain the term sailing and contain the term San

Francisco within the user-defined section Headings, write your query in one of two
ways:

'(San Francisco WITHIN Headings) and sailing’
‘salling and San Francisco WITHIN Headings'

To find all documents that contain the terms dog and cat within the same
user-defined section Headings, write your query as follows:

'(dog and cat) WITHIN Headings'

Note that the above query is logically different from:
‘dog WITHIN Headings and cat WITHIN Headings'
which finds all documents that contain dog and cat where the terms dog and cat are

in Headings sections, regardless of whether they occur in the same Headings section
or different sections.

3-12 Oracle8 ConText Cartridge Application Developer’s Guide

WITHIN Operator

Limitations

To find all documents in which dog is near cat within the section Headings, write
your query as follows:

‘dog near cat WITHIN Headings'

The WITHIN operator has the following limitations:

The theme lexer does not support the WITHIN operator

You cannot embed the WITHIN clause in a phrase. For example, you cannot
write: term1 WITHIN section term2

You cannot combine WITHIN with expansion operators
Subqueries passed to WITHIN cannot use the Max or First/Next operators.

You cannot nest the WITHIN operator For example, you cannot write: dog
WITHIN body WITHIN heading.

Since WITHIN is a reserved word, you must escape the word with braces to
search on it.

Understanding Query Expressions 3-13

Score-Changing Operators

Score-Changing Operators

Score changing operators behave like logical operators in that they return
documents given the terms you specify. However, these operators affect document
scores differently and, as such, can be used to change a document’s rank in a hitlist
with respect to a query term. The following table describes these operators:

Operator Syntax Description

ACCUMULATE terml,term2 Returns documents that contain term1 or term2.
Calculates score by adding the score of each
operand. Similar to OR, except that the returned
score is the sum of all scores.

term1 accum term2

MINUS term1-term?2 Returns documents that contain term1.
Calculates score by subtracting occurrences of

term1 minus term2
term2 from occurrences of term1.

WEIGHT term*n Returns documents that contain term. Cal cul ates
score by multiplying the raw score of termby n,
where nisanumber from 0.1 to 10.

Accumulate Operator

Use the accumulate operator to search for documents that contain at least one
occurrence of any of the query terms, where the documents that contain the most
frequent occurrences of the query terms are given the highest score.

For example, to search for documents that contain either term Brazil or soccer and to
have the highest scores attached to the documents that contain the most occurrences
of these words, you can issue:

'soccer,Brazil

Accumulate is similar to OR, in the sense that a document satisfies the query
expression if any of the terms occur in the document; however, the scoring is
different. OR returns a score based only on the query term that occurs most
frequently in a document. Accumulate combines the scores for all the query terms
that occur in a document, topping out at 100 when the sum exceeds 100. Thus
documents that contain the most query terms are ranked the highest.

3-14 Oracle8 ConText Cartridge Application Developer’s Guide

Score-Changing Operators

MINUS Operator

Use the MINUS operator to search for documents that contain a query term, and
when you want the presence of a second query term to cause the document to be
ranked lower.

The minus operator is useful for lowering the score of documents that contain
"noise". For example, suppose a query on the term cars always returned high
scoring documents about Ford cars. You can lower the scoring of the Ford
documents by using the expression:

‘cars - Ford’

In essence, this expression returns the documents that contain the term cars.
However, the score returned for a document is the number of occurrences of cars
minus the number of occurrences of Ford. When a returned document does not
contain Ford, the occurrence of the term Ford is counted as zero.

Weight Operator

The weight operator multiplies the score by the given factor, topping out at 100
when the product exceeds 100. For example, the query cat, dog*2’ sums the score of
cat with twice the score of dog, topping out at 100 when the score is greater than 100.

In expressions that contain more than one query term, use the weight operator to
adjust the relative scoring of the query terms. You can reduce the score of a query
term by using the weight operator with a number less than 1; you can increase the
score of a query term by using the weight operator with a number greater than 1
and less than 10.

The weight operator is useful in accumulate, OR, or AND queries when the
expression has more than one query term. With no weighting on individual terms,
the score cannot tell you which of the query terms occurs the most. If you are
interested in documents that contain a particular query term more than another
term, the overall ranking tells you nothing about which documents pertain to the
term that you are most interested in.

Understanding Query Expressions 3-15

Score-Changing Operators

Example

You have a collection of sports articles. You are interested in the articles about
soccer, in particular Brazilian soccer. It turns out that a regular query on soccer, Brazil
returns many high ranking articles on US soccer. To raise the ranking of the articles
on Brazilian soccer, you can issue the following query:

'soccer, Brazi*3'

Table 3-1 illustrates how the weight operator can change the ranking of three
hypothetical documents A, B, and C, which all contain information about soccer.
The columns in the table show the total score of four different query expressions on
the three documents.

Table 3-1
soccer Brazil soccer,Brazil soccer,Brazil*3
A 20 10 30 50
10 30 40 100
C 50 10 60 80

The score in the third column containing the query soccer, Brazil is the sum of the
scores in the first two columns. The score in the fourth column containing the query
soccer,Brazil*3 is the sum of the score of the first column soccer plus three times the
score of the second, Brazil.

With the initial query of soccer,Brazil, the documents are ranked in the order C B A.
With the query of soccer,Brazil*3, the documents are ranked B C A, which is the
preferred ranking.

3-16 Oracle8 ConText Cartridge Application Developer’s Guide

NEAR Operator

NEAR Operator

Use the near operator to have Context return a score based on the proximity of two
or more query terms. ConText returns higher scores for terms closer together and
lower scores for terms farther apart in a document.

Note: The NEAR operator works with only text queries. You
cannot use NEAR with theme queries.

The syntax for the near operator is as follows:

OPERATOR SYNTAX

NEAR NEAR((word1, word2,..., wordn) [, MAX_SPAN [, ORDER]])

wordn
Specify the terms in the query separated by commas. The query terms can be single
words or phrases.

MAX_SPAN
Optionally specify the size of the biggest clump. The default is 100. ConText returns
an error if you specify a number greater than 100.

A clump is the smallest group of words in which all query terms occur. All clumps
begin and end with a query term.

For near queries with two terms, max_span is the maximum distance allowed
between the two terms. For example, to query on dog and cat where dog is within 6
words of cat, issue the following query:

‘near((dog, cat), 6)
ORDER

Specify TRUE for ConText to search for terms in the order you specify. The default
is FALSE.

For example, to search for the words monday, tuesday, and wednesday in that order
with a maximum clump size of 20, issue the following query:

"near((monday, tuesday, wednesday), 20, TRUE)

Understanding Query Expressions 3-17

NEAR Operator

Note: To specify ORDER , you must always specify a number for
the MAX_SPAN parameter.

ConText might return different scores for the same document when you use
identical query expressions that have the ORDER flag set differently. For example,
ConText might return different scores for the same document when you issue the
following queries:

‘near((dog, cat), 50, FALSE)'
‘near((dog, cat), 50, TRUE)'

Near Scoring

The scoring for the near operator combines frequency of the terms with proximity
of terms. For each document that satisfies the query, ConText returns a score
between 1 and 100 that is proportional to the number of clumps in the document
and inversely proportional to the average size of the clumps. This means many
small clumps in a document result in higher scores, since small clumps imply
closeness of terms.

The number of terms in a query also affects score. Queries with many terms, such as
seven, generally need fewer clumps in a document to score 100 than do queries
with few terms, such as two.

A clump is the smallest group of words in which all query terms occur. All clumps
begin and end with a query term. You can define clump size with the max_span
parameter as described in this section.

Near with Other Operators

You can use the near operator with other operators such as AND and OR. Scores are
calculated in the regular way.

For example, to find all documents that contain the terms tiger, lion, and cheetah
where the terms lion and tiger are within 10 words of each other, issue the following

query.
‘near((lion, tiger), 10) AND cheetah’

The score returned for each document is the lower score of the near operator and
the term cheetah.

3-18 Oracle8 ConText Cartridge Application Developer’s Guide

NEAR Operator

You can also use the equivalence operator to substitute a single term in a near
query:
‘near((stock crash, Japan=Korea), 20)’

This query ask for all documents that contain the phrase stock crash within twenty
words of Japan or Korea.

Backward Compatibility Near Syntax

You can write near queries using the syntax of ConText release 2.3.6 and before. For
example, to find all documents where lion occurs near tiger, you can write:

lion near tiger'
or with the semi-colon as follows:

lion;tiger

This query is equivalent to the following query:
‘near((ion, tiger), 100, FALSEY

Note: Only the syntax of the near operator is backward
compatible. In the example above, the score returned is calculated
using the clump method as described in this section.

Highlighting with the Near Operator

When you use highlighting and your query contains the near operator, all
occurrences of all terms in the query that satisfy the proximity requirements are
highlighted. Highlighted terms can be single words or phrases.

For example, assume a document contains the following text:

Chocolate and vanilla are my favorite ice cream flavors. | like chocolate

served in a waffle cone, and vanilla served in a cup with carmel syrup.

If the query is near((chocolate, vanilla)), 100, FALSE), the following is highlighted:

<<Chocolate>> and <<vanilla>> are my favorite ice cream flavors. 1like
<<chocolate>> served in a waffle cone, and <<vanila>> served served in acup
with carmel syrup.

Understanding Query Expressions 3-19

NEAR Operator

However, if the query is near((chocolate, vanilla)), 4, FALSE), only the following is
highlighted:

<<Chocol at e>> and <<vanilla>> are ny favorite ice creamflavors. | like
chocol ate served in a waffle cone, and vanilla served in a cup wth carnel
Syr up.

See Also: For more information about highlighting, see

Chapter 6, "Document Presentation: Highlighting".

Section Searching and Near

You can use the NEAR operator with the WITHIN operator for section searching as
follows:

‘near((dog, cat), 10) WITHIN Headings'

When evaluating expressions such as these, Context looks for clumps that lie
entirely within the given section.

In the example above, only those clumps that contain dog and cat that lie entirely
within the section Headings are counted. That is, if the term dog lies within Headings
and the term cat lies five words from dog, but outside of Headings, this pair of words
does not satisfy the expression and is not counted.

3-20 Oracle8 ConText Cartridge Application Developer’s Guide

Result-Set Operators

Result-Set Operators

Use the result-set operators to control what documents are returned from a query
result set. The operands for these operators are expressions, which can be an
individual query term or a logical combination of query terms that use other
operators.

Note: Because these operators manipulate a result set, they cannot
be embedded within each other; they must be placed at the
outermost level of the query expression.

These operators also have no effect on highlighting with CTX_
QUERY.HIGHLIGHT.

Result set operators are typically used to exclude noise from the hitlist (irrelevant
documents) and to retrieve documents out of a hitlist more efficiently. There are
three result set operators:

Operator Syntax Description

THRESHOLD expression>n Returns only those documents in the result set that
score above the threshold n.

Within an expression, selects documents that contain

term>n the query term with score of at least n.

MAX expression:n Returns the first n highest scoring documents. For
example,:20 means to return the top 20 documents in
the hitlist. The value n must be an integer between 1
and 65535.

FIRST/NEXT expression#m-n Returns the specified number of documents as ordered
in the hitlist range m to n.

Threshold Operator

You can use the threshold operator in two ways:
« atthe expression level

« atthe query term level

Understanding Query Expressions 3-21

Result-Set Operators

Max Operator

Expression level

Use the expression level threshold operator to eliminate documents in the result set
that score below a threshold number. For example, to search for documents that
contain relational databases and to return only documents that score greater than 75,
use the following expression:

relational databases > 75’

Query Term Level

Use the query term threshold operator in a query expression to select a document
based on how a term scores in the document. For example, to select documents that
have at least a score of 30 for lion and contain tiger, use:

‘(lion > 30) and tiger’

Use the max operator to retrieve a given number of the highest scoring documents.
For example, to obtain the twenty highest scoring documents that contain the word
dance, you can write;

'dance:20’

The max operator is particularly useful to prevent writing a large number of records
to the hitlist table, which could result in performance degradation.

Note: The max operator cannot be used with the CTX_
QUERY.COUNT_HITS function or with in-memory queries.

First/Next Operator

Use the first/next operator to return a specified range of documents from the hitlist.

Note: In afirst/next query, the order of the returned documents is
not based on score or textkey. ConText returns the documents based
on the order in which it encounters the documents in the queried
text column

3-22 Oracle8 ConText Cartridge Application Developer’s Guide

Result-Set Operators

For example, to return the first 10 documents encountered by ConText that contain
the term dog, use the following expression:

‘dog#1-10

You could then return the next 10 documents using the following expression:

‘dog#11-20

The first/next operator can be used to create an application interface in which
query results (rows in the hitlist) are returned incrementally. Because the query
results are returned incrementally, query response is generally faster. The
application can display the hitlists in a more manageable size, and control can be
returned to the user faster.

Note: The first/next operator cannot be used with the CTX_
QUERY.COUNT_HITS function or with in-memory queries.

Combined First/Next and Max Queries

You can use the first/next operator extract chunks of a sorted hitlist returned by the
max operator. For example, if you use the max operator to return only the highest
scoring 50 documents that contain the term cat, you can extract the first 10
documents from the 50 as follows:

‘cat50#1-10

Note: Placing the max operator inside the first/next operator as
such is the only instance in which you can embed the max operator
in a query expression.

Understanding Query Expressions 3-23

Expansion Operators

Expansion Operators

The expansion operators expand a query expression to include variants of the query
term supplied by the user. There are three kinds of expansion operators:

Operator Syntax Description

STEM $term Expands a query to include all terms having the same stem or
root word as the specified term.

SOUNDEX Iterm Expands a query to include all terms that sound the same as
the specified term (English-language text only).

FUzzY ?term Expands a query to include all terms with similar spellings as
the specified term (English-language text only).

The expansion operators are unary operators. They may be used in combination
with each other and with any other operators described in this chapter. In addition,
searches can be broadened by performing an expansion on an expansion.

The methods used by the expansion operators to perform stemming, fuzzy
matching, and soundex matching for a text column are determined by the Wordlist
preference in the policy for the column.

See Also: For more information about setting up preferences and
policies, see Oracle8 Context Cartridge Administrator’s Guide.

Stem Expansions

Use the STEM ($) operator to search for terms that have the same linguistic root as
the query term. For example:

Input Expands To

$scream scream screaming screamed
$distinguish distinguish distinguished distinguishes
$guitars guitars guitar

$commit commit committed

$cat cat cats

$sing sang sung sing

3-24 Oracle8 ConText Cartridge Application Developer’s Guide

Expansion Operators

The ConText stemmer, licensed from Xerox Corporation’s XSoft Division, supports
the following languages: English, French, Spanish, Italian, German, and Dutch.

Note: If STEM returns a stopword, the stopword is not included
in the query or highlighted by CTX_QUERY.HIGHLIGHT.

Soundex Expansions

The soundex (!) operator enables searches on words that have similar sounds; that
is, words that sound like other words. This function allows comparison of words
that are spelled differently, but sound alike in English.

Soundex in ConText uses the same logic as the soundex function in SQL to search
for words that have a similar sound. It returns all words in a text column that have
the same soundex value.

The following example illustrates the results that could be returned for a one-step
query that uses SOUNDEX:

SHECT I D, COMVENT FROM EMP_RESUME
WHERE CONTAINS (COMMENT, 'SMYTHE) >0

ID COMMENT

23 Smith is a hard worker who..

Note: SOUNDEX works best for languages that use a 7-bit
character set, such as English. It can be used, with lesser
effectiveness, for languages that use an 8-bit character set, such as
many Western European languages.

For more information about the SOUNDEX function in SQL, see
Oracle8 SQL Reference.

Fuzzy Expansions

Fuzzy (?) expansions generate words that are spelled similarly. This type of
expansion is helpful for finding more accurate results when there are frequent
misspellings in the documents in the database.

Understanding Query Expressions 3-25

Expansion Operators

Penetration in

Unlike the stem expansion, the number of words generated by a fuzzy search
depends on what is in the text index; results can vary significantly according to the
contents of the database index.

For example:

Input Expands To

?cat cat cats calc case

?feline feline defined filtering
?apply apply apple applied April
?read lead real

Note: Fuzzy works best for languages that use a 7-bit character
set, such as English. It can be used, with lesser effectiveness, for
languages that use an 8-bit character set, such as many Western
European languages. Also, the Japanese lexer provides limited
fuzzy matching.

In addition, if fuzzy returns a stopword, the stopword is not
included in the query or highlighted by CTX_QUERY.HIGHLIGHT.

Expansion Operators

Penetration allows complex query expansions to be expressed in short concise
notation. Penetration is a system of notation for query expressions and does not
affect the meaning of the expansion operators or the order in which operations are
performed; it is a tool to help you generate non-ambiguous queries using the
expansion operators.

Penetration applies the expansion operators to each term within an explicit
expression (i.e., an expression delimited by parentheses or braces). Any expansion
operators outside an expression delimited by parentheses () or braces { } is applied
to each word or phrase inside the expression.

3-26 Oracle8 ConText Cartridge Application Developer’s Guide

Expansion Operators

For example:

Query Before Penetration Query After Penetration

?(dog, cat, mouse) ?dog, ?cat, ?mouse
?(dog,!(cat & mouse)) ?dog, (!?cat & !?mouse)
?((cat=feline) meows) (?cat =?feline)?meows

In the first example, a fuzzy expansion is performed on each term.

In the second example, a fuzzy expansion is performed on each term and a soundex
expansion is performed only on the terms cat and mouse because cat and mouse are
enclosed in a separate set of parentheses

In the third example, a fuzzy expansion is performed on each term, including both
equivalence terms.

Note: Expansion operators do not penetrate expressions delimited
by brackets [].

Examining Query Expansions

You can use query expression feedback to examine how ConText expands query
expressions containing fuzzy, stem and soundex operators.

See Also: Chapter 5, "Query Expression Feedback".

Base-letter Support

If you have base-letter conversion specified for a text column and the query
expression contains a SOUNDEX or FUZZY operator, ConText operates on the
base-letter form of the query.

The STEM operator does hot support base-letter conversion.

Understanding Query Expressions 3-27

Thesaurus Operators

Thesaurus Operators

The thesaurus operators expand a query for a single term (word or phrase) using a
thesaurus that defines relationships between the user-specified term and other
semantically related terms.

There are ten kinds of thesaurus operators, corresponding to the ten types of
relationships that can be defined in an 1SO2788 standard thesaurus.

Operator Syntax Description

SYNONYM SYN(term[,thes]) Expands a query to include all the terms
defined in the thesaurus as synonyms for
term.

PREFERRED PT(term[,thes]) Replaces the specified word in a query with
the preferred term for term.

RELATED RT(term[,thes]) Expands a query to include all the terms
defined in the thesaurus as a related term for
term.

TOP TT(term[,thes]) Replaces the specified word in a query with
the top term in the standard hierarchy (BT,
NT) for term.

NARROWER NT(term[,level[,thes]]) Expands a query to include all the lower
level terms defined in the thesaurus as
narrower terms for term.

NARROWER NTG(term[,level[,thes]]) Expands a query to include all the lower

GENERIC level terms defined in the thesaurus as
narrower generic terms for term.

NARROWER NTP(term[,level[,thes]]) Expands a query to include all the lower

PARTITIVE level terms defined in the thesaurus as
narrower partitive term for term.

NARROWER NTI(term[,level[,thes]]) Expands a query to include all the lower

INSTANCE level terms defined in the thesaurus as
narrower instance term for term.

BROADER BT (term[,level[,thes]]) Expands a query to include the term defined
in the thesaurus as a broader term for term.

BROADER BTG(term[,level[,thes]]) Expands a query to include all terms defined

GENERIC in the thesaurus as a broader generic terms

3-28 Oracle8 ConText Cartridge Application Developer’s Guide

for term.

Thesaurus Operators

Operator Syntax Description

BROADER BTP(term[,level[,thes]]) Expands a query to include all the terms

PARTITIVE defined in the thesaurus as broader partitive
terms for term.

BROADER BTI(term[,level[,thes]]) Expands a query to include all the terms

INSTANCE defined in the thesaurus as broader instance

terms for term.

Internally, ConText processes the expansion by bracketing each individual term
returned by the expansion, then the terms are accumulated together using the
ACCUMULATE operator.

For example, if bird, birdy, and avian are all synonyms:
SYN(bird) is expanded to {bird},{avian}{birdy}.
If a term in a thesaural query does not have corresponding entries in the specified
thesaurus, no expansion is produced and the term itself is used in the query.
See Also: For more information about viewing thesaural
expansions, see Chapter 5, "Query Expression Feedback".

For more information about thesaural relationships and creating
thesauri, see Oracle8 Context Cartridge Administrator’s Guide.

Limitations

The thesaurus operators can be used in conjunction with all the other query
expression operators and special characters supported by ConText, with the
exception of the near operator.

The maximum length of the expanded query is 32000 characters.

Thesaural operations cannot be nested. For example, the following query is not
allowed.

'SYNBT(ird)y

Thesaurus Arguments

The thesaurus operators are implemented in ConText as PL/SQL functions, and, as
such, have arguments that must be specified with the operator. All of the notational
conventions and usage rules for PL/SQL apply to the thesaurus operators.

Understanding Query Expressions 3-29

Thesaurus Operators

The thesaurus operators have the following arguments:

term

Specify the operand for the thesaurus operator. You must specify a term when using
the NT operator. For preferred term (PT) and top term (TT) queries, term is replaced
by the preferred term/top term defined for the term in the specified thesaurus;
however, if no PT or TT entries are defined for the term, the term is not replaced
and is used in the query.

For all other thesaural queries, term is expanded to include the synonymous,
related, broader, or narrower terms defined for the term in the specified thesaurus.

level

Specify the number of levels traversed in the thesaurus hierarchy to return the
broader (BT, BTG, BTP) or narrower (NT, NTG, NTP) term for the specified term.
For example, a level of 1 in a BT query returns only the broader term, if one exists,
for the specified term. A level of 2 returns the broader term for the specified term, as
well as the broader term, if one exists, for the broader term.

The level argument is optional and has a default value of one (1). Zero or negative
values for the level argument return only the original query term.

thes

Specify the name of the thesaurus used to return the expansions for the specified
term. The thes argument is optional and has a default value of DEFAULT. As a
result, a thesaurus named DEFAULT must exist in the thesaurus tables before using
any of the thesaurus operators.

Synonym Operator

3-30 Oracle8 Con

Use the synonym operator (SYN) to expand a query to include all the terms that
have been defined in a thesaurus as synonyms for a specified term.

The following query returns all documents that contain the term tutorial or any of
the synonyms defined for tutorial in the DEFAULT thesaurus:

'SYN(tutorialy
Compound Phrases in Synonym Operator

Expansion of compound phrases for a term in a synonym query are returned as
AND conjunctives.

Text Cartridge Application Developer’s Guide

Thesaurus Operators

For example, the compound phrase temperature + measurement + instruments is
defined in a thesaurus as a synonym for the term thermometer. In a synonym query
for thermometer, the query is expanded to:

{therrmonet er}, ({t enper at ur e} & measur enent } & i nst r unent s})

Note: In athesaurus, compound phrases can only be defined in
synonym relationships for a term.

Preferred Term Operator

Use the preferred term operator (PT) to replace a term in a query with the preferred
term that has been defined in a thesaurus for the term.

For example, the term building has a preferred term of construction in a thesaurus. A
PT query for building returns all documents that contain the word construction.
Documents that contain the word building are not returned.

Related Term Operator

Use the related term operator (RT) to expand a query to include all terms with the
related term that has been defined in a thesaurus for the term.

For example, the term dinosaur has a related term of paleontology. A RT query for
dinosaur returns all documents that contain the word paleontology. Documents that
contain the word dinosaur are not returned.

Narrower Term Operators

Use the narrower term operators (NT, NTG, NTP, NTI) to expand a query to include
all the terms that have been defined in a thesaurus as the narrower or lower level
terms for a specified term. They can also expand the query to include all of the
narrower terms for each narrower term, and so on down through the thesaurus
hierarchy.

Note: The hierarchy can contain four separate branches,
represented by the four narrower term operators. During a
narrower term query, the specified operator only searches down the
designated branch of the hierarchy.

Understanding Query Expressions 3-31

Thesaurus Operators

The following query returns all documents that contain either the term tutorial or
any of the NT terms defined for tutorial in the DEFAULT thesaurus:

NT(tutorialy
The following query returns all documents that contain either fairy tale or any of the
narrower instance terms for fairy tale as defined in the DEFAULT thesaurus:

‘NTI(fairy tale)

That is, if the terms cinderella and snow white are defined as narrower term instances

for fairy tale, ConText returns documents that contain fairy tale, cinderella, or snow
white.

Broader Term Operators

Use the broader term operators (BT, BTG, BTP, BTI) to expand a query to include the
term that has been defined in a thesaurus as the broader or higher level term for a
specified term. They can also expand the query to include the broader term for the
broader term and the broader term for that broader term, and so on up through the
thesaurus hierarchy.

Note: The hierarchy can contain four separate branches,
represented by the four broader term operators. In a broader term
query, the specified operator only searches up the designated
branch of the hierarchy.

The following query returns all documents that contain the term tutorial or the BT
term defined for tutorial in the DEFAULT thesaurus:

BT (ttorial)

Broader and Narrower Term Operator on Homographs

If a homograph (a word or phrase with multiple meanings, but the same spelling)
appears in two or more nodes in the same hierarchy branch of a thesaurus, a
qualifier is required for each occurrence of the term in the branch.

If the qualifier is not specified for a homograph in a broader or narrower term
query, the query expands to include all of the broader/narrower terms for the
homograph.

3-32 Oracle8 ConText Cartridge Application Developer’s Guide

Thesaurus Operators

For example, if machine is a broader term for crane (building equipment) and bird is a
broader term for crane (waterfoul):

BT (crane) expands to {crane},{machine}{bird}

If the qualifier for a homograph is specified in a broader or narrower term query,
only the broader/narrower terms for the qualified homograph are returned.

Using the previous example:

BT (crane{(waterfoul)}) expands to {crane},{bird}

Note: When specifying a qualifier in a broader or narrower term
query, the qualifier and its notation (parentheses) must be escaped,
as is shown in this example.

Top Term Operator

Use the TOP TERM operator (TT) to replace a term in a query with the top term that
has been defined for the term in the standard hierarchy (BT, NT) in a thesaurus. Top
terms in the generic (BTG, NTG), partitive (BTP, NTP), and instance (BTI, NTI)
hierarchies are not returned.

For example, the term tutorial has a top term of learning systems in the standard
hierarchy of a thesaurus. A TT query for tutorial returns all documents that contain
the phrase learning systems. Documents that contain the word tutorial are not
returned.

Thesaural Expansions and Case-Sensitivity
Thesaural expansions in text queries can differentiate between terms based on case.

For example, a case-sensitive thesaurus named thesl is created and Mercury is
defined as a narrower term for planets, while mercury is defined as a narrower term
for metals.

During a query, the following expansions occur:
BT(mercury,1,thesl) expands to {MERCURY?}, {METALS}
BT(Mercury,1,thesl) expands to {MERCURY}, {PLANETS}

Understanding Query Expressions 3-33

Thesaurus Operators

Note: There is no way to enable or disable case-sensitivity.
ConText preserves the case of all entries entered in a thesaurus
based on whether the thesaurus was specified during creation to be
case-sensitive. Similarly, text queries use the cases of terms to
perform the thesaural look-up based on the thesaurus specified for
the term(s).

Limitations

Case-sensitive thesauri only affect the expansion of a term and not the terms
actually used in the query. The case of the expanded terms depends on whether the
text index being queried is case-sensitive or case-insensitive.

For example, when the case-sensitive thesaurus, thesl, is used with a
case-insensitive index, the following expansion is returned:

BT(Mercury,1,thesl) expands to {MERCURY}, {PLANETS}

The query then returns all documents in which the two terms occur, regardless of
case. In other words, documents that contain mercury, Mercury, planets, Planets, or
any other combinations of case for the two terms are all returned by the query.

With a case-sensitive text index, the same query expands to:
BT(Mercury,1,thesl) expands to {Mercury}, {planets}

The query returns only those documents in which Mercury and planets occur.

Base-letter Support for Thesaural Queries

3-34 Oracle8 Con

When ConText processes a query on a base-letter index and the expression contains
a thesaurus operator, ConText looks up the query term in the thesaurus without
converting the query to base-letter. The expansions obtained from the thesaurus are
converted to base-letter and looked up subsequently within the index according to
query rules.

This sequence of look-up enables base-letter queries to work independent of
whether the thesaurus is in base-letter form. However, if the keys in the thesaurus
are in base letter form, these keys will not match the corresponding non-base letter
form query terms. When you have a base-letter thesaurus, you must specify the
base-letter form in the query.

Text Cartridge Application Developer’s Guide

Wildcard Characters

Wildcard Characters

Wildcard characters can be used in query expressions to expand word searches into
pattern searches. The wildcard characters are:

Wildcard Character Description

% The percent wildcard specifies that any characters can appear in
multiple positions represented by the wildcard.

The underscore wildcard specifies a single position in which any
character can occur.

For example, the following abbreviated one-step query finds all terms beginning
with the pattern scal in a column named text:

...contains(TEXT, 'scal%o) > 0

Note: To expand the wildcard query, ConText uses the word list
for the text column and rewrites the query with these terms. When
your wildcard query expands to a number of terms greater than the
maximum allowed in a query, ConText returns an error.

In addition, if a wildcard expression translates to a stopword, the
stopword is not included in the query or highlighted by CTX_
QUERY.HIGHLIGHT.

Understanding Query Expressions 3-35

Grouping Characters

Grouping Characters

The grouping characters control operator precedence by grouping query terms and
operators in a query expression. The grouping characters are:

« parentheses ()
« brackets[]

The beginning of a group of terms and operators is indicated by an open character
from one of the sets of grouping characters. The ending of a group is indicated by
the occurrence of the appropriate close character for the open character that started
the group. Between the two characters, other groups may occur.

For example, the open parenthesis indicates the beginning of a group. The first close
parenthesis encountered is the end of the group. Any open parentheses encountered
before the close parenthesis indicate nested groups.

Brackets perform the same function as the parentheses, but prevent penetration for
the expansion operators.

3-36 Oracle8 ConText Cartridge Application Developer’s Guide

Stored Query Expressions

Stored Query Expressions

You can store the results of a query expression and then call the SQE later in a query
expression to return the stored results. To call a stored query expression, use the
SQE operator.

Operator Syntax Description

Stored Query Expression SQE(SQE_name) Returns the stored result of SQE_name.

The advantage of calling an SQE in a query expression, rather than specifying query
terms, is that the results are typically returned faster, since ConText does not have to
query the text table directly.

In addition, SQEs can be used to perform iterative queries, in which an initial query
is refined using one or more additional queries.

Using Stored Query Expressions
The process for using stored query expressions is:

1. Call CTX_QUERY.STORE_SQE to store the results for the text column or policy.
With STORE_SQE, you specify a name for the SQE, a policy (which identifies
the text column for the SQE), a query expression, and whether the SQE is a
session or system SQE

2. Call the stored query expression in the query expression of a text (or theme)
guery. ConText returns the results of the SQE in the same way it returns the
results of a regular query. If the results of the SQE are out-of-date, ConText
automatically re-evaluates the SQE before returning the results.

Note: Because ConText must first determine if the results are
out-of-date with respect to the document index, many changes to
the index though inserting, deleting, and updating documents will
slow down the retrieval of the stored query expression results.

Administration of stored query expressions can be performed using the REFRESH_
SQE, REMOVE_SQE, and PURGE_SQE procedures in the CTX_QUERY PL/SQL
package.

Understanding Query Expressions 3-37

Stored Query Expressions

Example

To create a session SQE named PROG_LANG, use CTX_QUERY.STORE_SQE as
follows:

exec ctx_quety.store_sge('emp_resumes’, ‘prog_lang’, ‘cobal, 'session);

This SQE queries the text column for the EMP_RESUMES policy (in this case,
EMP.RESUMES) and returns all documents that contain the term cobol. It stores the
results in the SQE table for the policy.

PROG_LANG can then be called within a query expression as follows:

select score, docid from emp
where contains(resume, 'sge(prog_lang))>0
order by score;

Session and System SQEs

When you initially create an SQE using CTX_QUERY.STORE_SQE, you can specify
whether the SQE is for the current session or for all sessions (system SQE).

You can use session SQEs only in the current session. These SQEs are stored only for
the duration of the session. When a session is terminated, all session SQEs created
during the session are deleted from the SQE tables. If you want to use a session SQE
in another session, you must recreate the SQE.

System SQEs can be used in all sessions, including concurrent sessions. When a
session is terminated, system SQEs created during the session are not deleted from
the SQE tables and can be used in future sessions.

Re-evaluation of Stored Query Expressions

If the text column referenced by an stored query expression has been modified since
the stored query expression was created, the stored query expression results may be
out-of-date. Before returning the results of an stored query expression in a query
expression, ConText verifies that the results are current. If they are not current,
ConText automatically evaluates the differences and updates the results.

ConText also verifies that any stored query expressions nested within an stored
guery expression have up-to-date results

3-38 Oracle8 ConText Cartridge Application Developer’s Guide

Stored Query Expressions

Note: ConText does not verify whether PL/SQL functions in
stored query expressions have been updated. If a PL/SQL function
in an stored query expression has been updated, the stored query
expression must be manually re-evaluated.

Result lists in stored query expression tables may get fragmented by consecutive
re-evaluations. You can resolve fragmentation by calling CTX_QUERY.REFRESH _
SQE.

lterative Queries

Iterative queries are queries built on other queries to refine or add to the result set of
the original query. Once you define a stored query expression, you can add
additional search criteria in two ways:

« extending the expression in the CONTAINS procedure
= hesting SQEs

Extending the Expression in the CONTAINS Procedure

Sometimes you might want to add a condition to a stored query expression to
re-define your search criteria. You can do so by extending the query with additional
operators when you call CTX_QUERY.CONTAINS. When you extend stored queries
in this way, the response time is usually faster than an equivalent query without the
SQE operator.

For example, you find that wildcard queries take a long time to process. You
therefore define a wildcard query as a stored query expression, Q1, to return all
documents indexed under policy pol that have words beginning with the letter z:

ctx_query.store_sge(pol,'QL’, 'z%, 'session’);
You then extend the query by adding an OR condition: You ask for all documents

indexed under policy pol that contain words beginning with the letter z or contains
the word cat:

ctx_query.contains(’pol’,'SQE(Q1) | cat, ‘ctx_temp’);

Understanding Query Expressions 3-39

Stored Query Expressions

SQE Tables

Internally, ConText must still use the text index to find those documents that might
have the word cat but not z%; however, the response time is generally much faster
than the following equivalent query:

ctx_query.contains(pol’, 'z% | cats', 'ctx_temp’);

Nesting Stored Query Expressions

You can use stored query expressions to define other stored query expressions. This
is useful when you want to refine the result set returned from a stored query
expression.

For example, you define the stored query expression, Q1 as follows:
ctx_query.store_sge('pol, 'QL’, 'lions | tigers, 'session’);

You then want to reduce this hitlist by adding another condition, so you define Q2
as follows:

ctx_query.store_sge('pol,'Q2', 'SQE(Q1) and zoos', 'session’);

You then execute Q2 as follows:

ctx_query.contains('pol’,'SQE(Q2)’, ‘ctx_temp);

This query searches for all documents that contain the terms lions or tigers and zoos.
It is generally faster that the following equivalent query:

ctx_query.contains('pol, lions | tigers and zoos', 'ctx_temp’);

Each stored query expression is stored in two tables: a central or system table
owned by CTXSYS and an text index table attached to the policy for which the
stored gquery expression was created.

The table owned by CTXSYS is an internal table which stores the stored query
expression definitions for all the stored query expressions that have been created for
all existing policies. It cannot be accessed directly, but can be viewed through two
views, CTX_SQES (users with CTXADMIN role) and CTX_USER_SQES (users with
CTXAPP and CTXADMIN roles).

3-40 Oracle8 ConText Cartridge Application Developer’s Guide

Stored Query Expressions

The table used to store the results of an stored query expression for a text column is
one of the tables created automatically when the column is indexed; however, the
SQR table is only populated when an stored query expression is created and
updated when an stored query expression is re-evaluated.

The tablespace, storage clause, and other parameters used to create the SQR table
are specified by the Engine preference in the policy for the text column of the stored
query expression.

Note: Similar to the other ConText index tables, the SQR table is
an internal table that is accessed only by ConText when an stored
guery expression is processed in a query.

For more information about policies, preferences, text indexing,
and the structure of the stored query expression tables and views,
see Oracle8 Context Cartridge Administrator’s Guide.

Using Operators in Stored Query Expressions

You can use all query expression operators in stored query expressions, with the
following exceptions:

. Max
« First/Next

Stored query expressions also support all of the special characters and other
components that can be used in a query expression, including PL/SQL functions
and other stored query expressions.

Understanding Query Expressions 3-41

PL/SQL in Query Expressions

PL/SQL in Query Expressions

In a query expression, you can call a PL/SQL function that returns a value. The
syntax for the PL/SQL operator is as follows:

Syntax

Description

@owner_name.fname(argl, arg2,...,argn) Executes fname() where fname() returns a value. Return values that are not of

execute owner_name.fname()

type VARCHAR? are cast into strings when possible. If fname() does not return a
value, an exception is raised.

exec owner_name.fname()

Example

Calling a PL/SQL function within a query is useful for converting words to
alternate forms. For example, you can call a function that takes acronyms and
returns the expanded string.

Suppose you, as user ctxuser, create a function named CONVERT that takes an
acronym as input and returns the fully-expanded version of the acronym. Then, to
obtain all documents that contain either IBM or International Business Machine, you
issue the following query:

‘execute ctxuser.convert(IBM), IBM’
Likewise, you can call a PL/SQL function that translates words. For example, you

can call a function french that converts an English word to its French equivalent. You
can then search on the French word for cat by issuing the following query:

‘@ctxuser french(cat)y

3-42 Oracle8 ConText Cartridge Application Developer’s Guide

Operator Precedence

Operator Precedence

Group 1

Operator precedence is the order in which the components of a query expression are
evaluated. ConText query operators can be divided into two sets of operators that
have their own order of evaluation. These two groups are described below as Group
1 and Group 2.

In all cases, query expressions are evaluated in order from left to right according to
the precedence of their operators. Operators with higher precedence are applied
first. Operators of equal precedence are applied in order of their appearance in the
expression from left to right.

Within query expressions, the Group 1 operators have the following order of
evaluation from highest precedence to lowest:

Operator Equivalent
EQUIV =

NEAR
Weight, Threshold * >
MINUS -
NOT ~
WITHIN

AND &
OR |
ACCUM
Max

First/Next #

Understanding Query Expressions 3-43

Operator Precedence

Group 2

Within query expression, the Group 2 operators have the following order of
evaluation from highest to lowest:

Operator Equivalent
Wildcard % _

Stem $

Fuzzy ?
Soundex !

Procedural Operators

Other operators not listed under Group 1 or Group 2 are procedural. These
operators have no sense of precedence attached to them. They include the SQE,
PL/SQL, and thesaurus operators.

Precedence Examples

3-44 Oracle8 Con

Query Expression Order of Evaluation

wl | w2 & w3 (wl) | (w2 & w3)

wl&w2 | w3 (Wl&w2) | w3

2wl w2 | w3 & w4 (Pwl), (W2 | (w3 & w4))

abc = def ghi & jkl = mno ((abc = def) ghi) & (jkl=mno)

dog and cat WITHIN body dog and (cat WITHIN body)

In the first example, because AND has a higher precedence than OR, the query
returns all documents that contain wl and all documents that contain both w2 and
w3.

In the second example, the query returns all documents that contain both wl and w2
and all documents that contain w3.

In the third example, the fuzzy operator is first applied to wl, then the AND
operator is applied to arguments w3 and w4, then the OR operator is applied to
term w2 and the results of the AND operation, and finally, the score from the fuzzy
operation on w1l is added to the score from the OR operation.

Text Cartridge Application Developer’s Guide

Operator Precedence

The fourth example shows that the equivalence operator has higher precedence
than the AND operator.

The fifth example shows that the AND operator has lower precedence than the
WITHIN operator.

Altering Precedence

Precedence is altered by grouping characters as follows:

« expansion or execution of operations within parentheses is resolved before
other expansions regardless of operator precedence

Precedence of operators is maintained during evaluation of expressions inside
of the parentheses.

= expansion operators are not applied to expressions within brackets unless the
operators are also within the brackets

Understanding Query Expressions 3-45

Escaping Reserved Words and Characters

Escaping Reserved Words and Characters

To query on words or symbols that have special meaning to query expressions such
as and & or| accum, execute, you must escape them. There are two ways to escape
characters in a query expression:

Example

Escape Symbol

Meaning

{

\

Use braces to escape a string of characters or symbols. Everything
within a set of braces in considered part of the escape sequence.

Use the backslash character to escape an individual character or
symbol. Only the character immediately following the backslash is
escaped.

In the following examples, an escape sequence is necessary because each expression
contains a ConText operator or reserved symbol:

ATRT
(AT&TY

‘high\-voltage’
‘{high-voltage}

Note:

If you use braces to escape an individual character within

a word, the character is escaped, but the word is broken into
three tokens.

For example, a query written as high{-}voltage searches for high -
voltage, with the space on either side of the hyphen.

3-46 Oracle8 ConText Cartridge Application Developer’s Guide

Escaping Reserved Words and Characters

Reserved Words

The following is a list of ConText reserved words and characters that must be
escaped to be searched on:

Operator Reserved Word Reserved Character
And AND &
or OR |
Accumulate ACCUM ,
Minus MINUS -
Not NOT ~
Near (none) ;
Stem (none) $
Soundex (none) !
Fuzzy (none) ?
Threshold (none) >
Weight (none) *
First/Next (none) #
Max (none)
Wildcard (multiple) (none) %
Wildcard (single) (none) _
Within WITHIN (none)
Grouping (parentheses) (none) @)
Grouping (brackets) (none) [1
Escape (multiple characters) (none) {}
Escape (single character) (none) \
Paragraph Searching PARAGRAPH (used with (none)
WITHIN)
PL/SQL call EXECUTE @
EXEC @
Sentence Searching SENTENCE (used with WITHIN) (none)

Understanding Query Expressions 3-47

Escaping Reserved Words and Characters

Operator Reserved Word Reserved Character
Stored Query Expression SQE (none)
Synonym SYN (none)
Preferred PT (none)
Related RT (none)
Top TT (none)
Broader BT (none)
Narrower NT (none)
Broader Generic BTG (none)
Narrower Generic NTG (none)
Broader Partitive BTP (none)
Narrower Partitive NTP (none)

Querying Escape Characters

The open brace { signals the beginning of the escape sequence, and the closed brace}
indicates the end. Everything between the opening brace and the closing brace is
part of the query expression (including any open brace characters). To include the
close brace character in a query expression, use}}.

To escape the backslash escape character, use \\.

3-48 Oracle8 ConText Cartridge Application Developer’s Guide

Querying with Stopwords

Querying with Stopwords

Stopwords are words for which ConText does not create an index entry. They are
usually common words that are unlikely to be searched on by themselves.

ConText is shipped with a default list of stopwords in English containing common
words such as this and that. However, you or ConText administrator can define
stopwords.

See Also: For more information about defining stopwords, see
Oracle8 Context Cartridge Administrator’s Guide.

Stopwords by Themselves

You cannot query on a stopword by itself or a phrase of only stopwords; whenever
you attempt to query on a stopword by itself or a stopword-only phrase, the result
is always no hits.

For example, you cannot issue a query to retrieve all documents that contain this if
this is defined as a stopword, nor can you issue a query on a phrase of stopwords
such as the who, if the words the and who are defined as stopwords.

Stopwords with Non-stopwords

You can query on phrases that contain stopwords as well as non-stopwords, such as
this boy talks to that girl, where this and that are the only stopwords. This is possible
because Context records the position of stopwords even though it does not create an
index entry for them.

Case-Sensitivity

If you have case-sensitivity enabled for text queries and you issue a query on a
phrase containing stopwords and non-stopwords, you must specify the correct case
for the stopwords. For example, a query on this boy talks to that girl does not return
documents that containing the phrase This boy talks to that girl, assuming this is a
stopword.

See Also: For more information about issuing case-sensitive text
queries, see "Case-Sensitive Queries" in this chapter.

Understanding Query Expressions 3-49

Querying with Stopwords

Stopwords with Operators

When you use a stopword or a stopword-only phrase as an operand of a query
operator, ConText rewrites the expression to eliminate the stopword or
stopword-only phrase and then executes the query.

The following table describes some common stopword transformations. The
Stopword Expression column describes the query expression or component of a query
expression you enter, while the right-hand column describes the way ConText
rewrites the query.

In these examples, a value of no_token for the rewritten expression means no hits are
returned for the query.

Stopword Expression Rewritten Expression
non_stopword AND stopword non_stopword
stopword AND non_stopword non_stopword
stopword AND stopword no_token

non_stopword NOT stopword non_stopword
stopword NOT non_stopword no_token

stopword NOT stopword no_token

For example, assuming that the word this is a stopword and that the word dog is a
non-stopword, the query dog and that is rewritten to dog, applying the first
transformation is the list.

See Also: For a complete list of stopword transformations, see
Appendix D, "Stopword Transformations".

To learn about how to examine stopword transformations, see
Chapter 5, "Query Expression Feedback".

3-50 Oracle8 ConText Cartridge Application Developer’s Guide

Querying with Special Characters

Querying with Special Characters

Context indexes text by identifying tokens (words). For English and most European
languages it assumes that blank spaces delimit tokens. At index time, ConText must
also know how to interpret punctuation characters and characters that occur within
words and numbers. Such special characters must be defined in the BASIC LEXER
preference. They are described as follows:

Type of Character Description

Punctuations Characters that delimit the end of sentences such as the period ’.” and
question mark ’'?* and those that occur next to words and numbers,
such as the comma ’,” and the dollar sign '$’. These characters are not
indexed.

Continuation Characters that indicate a word continues on the next line. An
example is the hyphen ’-’. These characters are not indexed.

Printjoins Characters that join words together such as hyphen ’-’. These
characters are indexed.

Skipjoins Characters that join words together such as hyphen ’-’. These
characters are not indexed.

Numjoin Characters that occur in numbers such as the decimal point’.’. These
characters are indexed.

Numgroup Characters that group digits within a number such as the comma’,’.
These characters are indexed.

Startjoin Non-alphanumeric characters that occur at the beginning of a token.
For example, you can define < as a startjoin character for HTML
tagged text. These characters are indexed.

Enjoin Non-alphanumeric characters that occur at the end of a token. For
example, you can define > as and endjoin character for HTML tagged
text. These characters are indexed.

In the BASIC LEXER preference, ConText defines a default set of characters for each
group.

The way you query on tokens that contain these characters depends on how
ConText indexes the tokens containing these characters. This is because ConText
tokenizes words at query time the same way it tokenizes words at index time. To
guery on words or numbers that contain special characters, you must know how
these words are represented in the index.

Understanding Query Expressions 3-51

Querying with Special Characters

See Also: For more information about defining special characters
for the BASIC LEXER preference, see Oracle8 Context Cartridge
Administrator’s Guide.

Querying with Punctuation and Continuation Characters

Punctuation and continuation characters are not indexed with the words they occur
next to or with, and thus are ignored by ConText at query time. The following table
shows how ConText strips punctuation characters at query time:

Query Equivalent Query

"John swims fast. Sharks eat.’ "John swims fast sharks eat’
"John swims. Fast sharks eat.’ "John swims fast sharks eat’
'{John swims, fast sharks eat}’ "John swims fast sharks eat’
{SHAZAM!Y 'SHAZAM’

{$250) '250°

(#101) '101°

{phone#}’ ‘phone’

Suggestion: Because ConText strips punctuation characters at
query time, leaving them out of the query expression and using the
equivalent query might be a better approach, especially when the
characters are reserved as in the last five examples.

Querying with Printjoins and Skipjoins
Printjoins and skipjoins are characters such as hyphens that join words together.

When you define a character as a printjoin, such as a hyphen, you specify that the
words on either side of the hyphen are to be indexed with the hyphen. For example,
sister-in-law is indexed as the token sister-in-law.

When you define a character as a skipjoin, such as a hyphen, you specify that the
two words on either side of the hyphen are to be indexed as one token without the
hyphen. For example, sister-in-law is indexed as sisterinlaw.

To query on words that contain a join character, you must know if the character is
defined as a skipjoin or printjoin in the BASIC LEXER preference.

3-52 Oracle8 ConText Cartridge Application Developer’s Guide

Querying with Special Characters

Printjoin Example

If the hyphen character is defined as a printjoin, you must write your query with
the hyphen, since the indexed token contains the hyphen. Thus, to query on all the
documents that contain the term sister-in-law, you must write your query as follows
with the hyphen:

{sister-in-lawy

Note: The ’-’ character must be escaped, or else ConText interprets
it as the MINUS operator.

Skipjoin Example

When a character is defined a as skipjoin, it is not indexed with the word, therefore
you can write queries with or without the skipjoin character.

If the hyphen character is defined as a skipjoin, you can write your query with or
without the hyphen. Thus, to query on all documents that contain sister-in-law, you
can write your query as one of the following expressions:

‘sisterinlaw’
{sister-in-lawy

You can write your query in two ways, because both queries are lexed to sisterinlaw
before index look-up. This also means that the documents retrieved can contain
either sisterinlaw or sister-in-law.

Querying with Numjoins and Numgroups

Numjoin and numgroup characters are characters that can appear in numbers, such
as the decimal point and the comma.

Numjoin

A numijoin is a character that occurs once in a string of digits, such as a decimal
point, and gets indexed with the number. (ConText defines the decimal as a default
numjoin character for the BASIC LEXER preference.) For example, the number 3.14
is indexed as 3.14. Thus to query on 3.14 with the decimal point defined as a
numjoin character, you write:

314

Understanding Query Expressions 3-53

Querying with Special Characters

When you define the numjoin character to be NULL, Context indexes 3.14 as the
two separate numbers 3 and 14.

Note: When a period follows a number such as at the end of a
sentence, ConText knows to index the number without the decimal
point. For example, the number fourteen in the following sentence
gets indexed as 14 without the period:

The score was San Francisco 21, Dallas 14.

Numgroup

A numgroup is a character such as a comma that groups digits together in a
number. Numgroup characters get indexed with the number. (ConText defines the
comma as a default numgroup character for the BASIC LEXER preference.) For
example, the number 6,344,555 gets indexed as 6,344,555.

To query on a number that contains numgroup characters, you must write the query
with the numgroup character. For example, to query on 6,344,555, you write:

16,344,555}

Note that the comma must be escaped.

Note: When you have the comma defined as a numgroup
character, you must query on numbers using the comma. That is, a
guery on {1,000} does not return documents that contain 1000
without the comma. A better query is with the equivalence
operator:

*{1,000}=1000’

When you define the numgroup character as NULL, numbers such as 1,000 get
indexed as 1 and 000.

3-54 Oracle8 ConText Cartridge Application Developer’s Guide

Querying with Special Characters

Querying with Startjoin and Endjoin Characters

Startjoin and endjoin characters are non-alphanumeric characters that start and end
tokens. These characters are indexed with the token they occur with.

You or your ConText administrator typically define startjoin and endjoin characters
when you index tagged text such as HTML. This makes it easy to define sections for
section searching as well as to query on the tags themselves.

For example, to query on the tag <HEAD> with < defined as a startjoin and >
defined as an endjoin, write your query as follows:

{<HEAD>}

In the query above, an escape sequence is necessary, since > is an operator.

See Also: For more information about section searching, see
"WITHIN Operator” in this chapter.

Understanding Query Expressions 3-55

Querying with Special Characters

3-56 Oracle8 ConText Cartridge Application Developer’s Guide

A

Theme Queries

This chapter describes how to perform theme queries. The following topics are
covered:

« Understanding Theme Queries
« Constructing Theme Queries
« Refining Theme Queries

« Theme Query Examples

Theme Queries 4-1

Understanding Theme Queries

Understanding Theme Queries

Theme queries enable you to search for documents by their major concepts. The
following sections describe the theme indexing and querying processes and how
they use the knowledge base:

« Theme Indexing Concepts

« Theme Querying
See Also: For more information about the knowledge base, see
"Knowledge Base" in Chapter 7, "ConText Linguistics".

For more information about how to create a theme index, see
Oracle8 Context Cartridge Administrator’s Guide.

4-2 Oracle8 ConText Cartridge Application Developer’s Guide

Understanding Theme Queries

Theme Indexing Concepts

Figure 4-1
Knowledge Catalog (Segment)
4 .
science and technology
hard sciences social sciences
/ E \ '
biology chemistry
i ;
botany zoology
insects mammals
. J
- science and technology -+ | science and technology
e . .
Reproductive hard sugnces — hgrd sciences
Cycle of biology —— | biology
Insects” | 5 zoology +— | zoology
— Theme 1: Insects —(known) | insects T | insects
Unk
Theme 2: Dr. Mack (Unksowr) Dr. Mack —— | Dr. Mack
Document
Document Themes Theme Index

Before you can issue a theme query, your set of documents must be indexed by
theme. During theme indexing, ConText extracts up to fifty main concepts or
themes of a document and stores these themes in the theme index. A weight is also
associated with every theme that is indexed. A theme can be a concrete concept,
such as insects, or an abstract concept, such as success, sufficiently developed in the

document.

Figure 4-1 illustrates how ConText uses the knowledge base to extract document
themes from an example document "The Reproductive Cycle of Insects" that
contains information about insects. This example shows that ConText recognizes the
following types of themes:

Theme Queries 4-3

Understanding Theme Queries

=« known themes

= unknown themes

Known Themes

Known themes are document themes that can attach to a branch of the knowledge
base.

In the example in Figure 4-1, the document A entitled "The Reproductive Cycle of
Insects" contains information about insects. The known document theme insects has
four parent themes corresponding to the branch of the knowledge base: science and
technology, hard sciences, biology, zoology, and insects. Each theme in the branch is
entered as a searchable row in the theme index along with a weight.

When themes are indexed as such, a theme query on insects or any of its parents
returns the document A.

Unknown Themes

Unknown themes are document themes that cannot be found in the knowledge
base, because they are either unknown to the knowledge base or inherently
ambiguous.

Figure 4-1 shows how an unknown theme of Dr. Mack is extracted without having a
representation in the knowledge base. Unknown themes such as this are indexed as
a single row.

Ambiguous document themes such as the term cricket or the term table also have no
attachments to the knowledge base and hence are indexed as a single row. To
qguery on ambiguous document themes, you would rely on other supporting themes
such as sports or insects being indexed with an ambiguous theme like cricket.

See Also: For more information about querying ambiguous
themes, see "Refining Theme Queries" in this chapter.

Theme Weight

The theme weight is a measure of the strength of a theme relative to the other
themes in a document. Weights are indexed with every theme and the related
parent themes extracted from a document. ConText uses theme weights to help
score theme queries.

4-4 Oracle8 ConText Cartridge Application Developer’s Guide

Understanding Theme Queries

Theme Querying
Figure 4-2
Knowledge
Catalog
—
— =
—_ =
—_ =

L (Lookup)

...contains (..."insect"...)... > insects ———» insects > | =
Theme Normalized -
uer Theme .
Query Theme Hitlist
Index

To execute a theme query, you specify a query string, which can be a sentence or a
phrase with or without operators. ConText uses the knowledge base to normalize
the word or phrase you enter into a standard form. It then looks up the normalized
theme in the index and returns the documents that were indexed with the given
theme. See Figure 4-2. Scores for theme queries are calculated based on the weights
associated with each theme in the index.

For example, a theme query on insect retrieves the document indexed in Figure 4-1
entitled, "The Reproductive Cycle of Insects". Likewise, a theme query on any of the
indexed parents, such as science and technology, hard sciences, biology, or zoology also
retrieves the same document.

Note: When you issue a theme query, you are asking ConText to
return to you all the documents that ConText indexed with that
theme. For ConText to attach a theme to a document, the idea or
concept must be developed sufficiently in the document. If a
concept is not developed sufficiently in a document, ConText does
not index it as a document theme, and consequently the document
is not returned in a query for that theme.

Theme Queries 4-5

Understanding Theme Queries

Scoring

ConText returns a relevance score for each document it returns in a theme query;
the higher the score, the more relevant the returned document. This relevance score
is out of 100 and is based on the weight of the indexed theme.

Generally, specifying broader themes or concepts in a theme query will return
higher scoring documents.

When using operators in theme queries, the scoring behavior is the same as for
regular text queries. For example, the OR operator returns the higher score of its
operand, and the AND operator returns the lower score of its operands.

Case-Sensitivity

Theme queries are case-sensitive. For example, doing a query on the common noun
turkey produces a hit on turkey the bird. Such a query does not produce a hit on the
proper noun Turkey, which describes a country. To query on the proper nhoun, you
must enter the query as Turkey.

Recognition of Known Themes Even though ConText theme queries are case-sensitive,
ConText tolerates poorly formatted input for known themes.

For example, entering microsoft or microSoft returns documents that include the
theme of Microsoft, a known company. Likewise, entering Currency Rates returns
documents that include a theme of currency rates, a standard classification in
business and economics.

Note: ConText always attempts to match the entered theme with
themes in the index. For example if you enter microsoft, ConText
looks up microsoft and Microsoft in the index. Likewise, if you enter
Currency Rates as your theme, ConText looks up Currency Rates and
currency rates in the index.

4-6 Oracle8 ConText Cartridge Application Developer’s Guide

Constructing Theme Queries

Constructing Theme Queries
The following section describes how to construct theme queries:
» Using Operators

« Phrasing Theme Queries

Using Operators

With theme queries, the following operators have the same semantics as with
regular text queries:

Operator Symbol
Accumulate ,

Or |

And &
Minus -

Not ~
Weight *
Threshold >

Max

Examples

Some valid theme query strings using operators are as follows:

contains(text, ‘cricket ~ insects’) > 0;

contains(text, ‘cricket & sports) > 0;

contains(text, 'music, reggae*s’) > 0;
contains(text, ‘chemistry > 30°) > 0;

contains(text, 'soccer | basketball’) > 0;
contains(text, ‘computer software - Microsoft) > O;
contains(text, 'music:20’) > 0;

See Also: For more information about how to use operators in
theme queries, see "Refining Theme Queries" in this chapter.

For more information about the semantics of query operators, see
Chapter 3, "Understanding Query Expressions".

Theme Queries 4-7

Constructing Theme Queries

Thesaurus Operators

In a theme query, the thesaurus operators (synonym, broader term, narrower term
etc.) work the same way as in a regular text query, provided a thesaurus has been
created/loaded.

See Also: For more information about thesaurus operators, see
"Thesaurus Operators" in Chapter 3.

Grouping Characters

In theme query expressions, the grouping characters () [] have the same semantics
as with a regular text query.

See Also: For more information about grouping characters, see
"Grouping Characters" in Chapter 3.

Wildcard Characters

In theme query expressions, the wildcard characters% _ work the same way as in
regular text queries.

Note: There is a risk of ambiguity when using the wildcard
character. For example, doing a theme query on %court% might
return documents that have a theme of court of law or tennis court.

See Also: For more information about grouping characters, see
"Wildcard Characters" in Chapter 3.

Unsupported Operators
ConText does not support the following query expression operators with theme

queries:

Operator Symbol
Near :

Fuzzy ?
Soundex !

Stem $

4-8 Oracle8 ConText Cartridge Application Developer’s Guide

Constructing Theme Queries

Phrasing Theme Queries
The following issues affect the phrasing of theme queries.

Use Noun Forms

When you enter your theme query, ConText normalizes the word or phrase
representing your theme into a form that it can use to compare with document
themes in the index. This normal form is nouns and noun phrases, such as chemistry
or personal computer. It is therefore better to use nouns and noun phrases when
constructing theme queries. Avoid using sentences or long phrases.

For example, to search for documents about computer programming, use the noun
form computer programming not programming my computer.

Avoid Splitting Phrases

Avoid splitting phrases that describe your idea as a whole. For example, use the
phrase physical chemistry, not physical and chemistry.

Understand Case-Sensitivity

Theme queries are case-sensitive. For example, doing a query on the common noun
turkey, which describes a type of bird, will not produce a hit on the proper noun
Turkey, which describes a country.

See Also: For more information about case-sensitivity and theme
queries, see the "Theme Querying" section in this chapter.

Theme Queries 4-9

Refining Theme Queries

Refining Theme Queries

Depending on how you write your theme query, ConText usually returns
documents that are relevant to your query as well as documents that might be
irrelevant to your query. Before you issue the query, you do not know what
combination of document themes your query will return.

For example, a query on cricket might return documents on sports and insects
depending on your document set. The best way to know the possible outcome is to
run the query and examine the set of returned documents. Then you run the query
again, using logical operators to eliminate unwanted documents.

You can approach the trial and error method in one of two ways:

« Restrict query. You select a broad category/concept, examine results, and then
issue the query again using the AND or NOT operator to further restrict the
query hitlist.

« Expand query. You select a specific category, examine the results, then expand
query to include more documents in the hitlist.

Restricting a Query
Starting with broad theme queries might generate noise or unwanted documents.
This is because of the following:
« the word or phrase in your query can represent more than one concept
« adocument can have more than one theme attached to it

You can use the AND or NOT operator to eliminate unwanted documents.
However, use these operators with caution, because in both cases you run the risk
of eliminating documents that you might be interested in. For this reason, it is
always better to have some noise than none at all.

Using AND
You can use the AND operator with a qualifying theme to restrict your theme query
and hence eliminate noise.

For example, if a theme query on cricket always returned documents about the
sport cricket and the insect cricket, and you were interested only in those documents
about cricket the sport, you can restrict your query by qualifying cricket with the
more general category sports as follows:

‘cricket and sports’

4-10 Oracle8 ConText Cartridge Application Developer’s Guide

Refining Theme Queries

The disadvantage of using AND with a restricting theme is that a successful query
depends on both themes being developed sufficiently in the document for ConText
to index them as such. For example, a hypothetical news article about the personal
affairs of cricket player might not have the theme of sports developed substantially
for ConText to index sports as a theme, and therefore such a document would not be
returned in the above query.

Suggestion: When choosing the restricting condition to use with
the AND operator, we recommend choosing a broad category;
choosing a very specific category as the restricting condition might
inadvertently eliminate relevant documents.

Using NOT
You can use the NOT operator to exclude unwanted themes. For example, suppose

you have a collection of news articles. You find that a theme query on cricket
returns documents about cricket the sport as well as cricket the insect.

In such a scenario, you can use the NOT operator to exclude the unwanted theme.
Thus if you are interested in those documents only about the sport cricket, you
exclude documents about insects as follows:

‘cricket not insects’

One disadvantage of using the NOT operator is that you run the risk of excluding
documents that are coincidentally about the desired theme and the unwanted
theme. For example, the above query does not return a hypothetical document
about a cricket game that was swarmed by locusts, assuming that the theme of
insects is developed sufficiently for ConText to index insects as a document theme.

Another disadvantage of using NOT is that you usually have a better idea of the
themes you want, not of the themes you don’t want. Predicting unwanted themes
depends on knowing your document corpus. For this reason, using NOT is best
suited for eliminating irrelevant high-ranking documents you specifically know
about.

Expanding a Query
Sometimes it is better to start with specific categories and then expand these queries
into more general ones, especially when your query covers a topic that is
categorized specifically in the world. For example, if you are searching for
documents that are about bees, you issue a query on bees, which is a specific

Theme Queries 4-11

Refining Theme Queries

category of insects. If you find that the result set is not returning the documents you

need, you can expand the query by issuing a theme of insects, which is slightly
broader.

After expanding a query, you can use the NOT or AND operators to scale back the
query.

4-12 Oracle8 ConText Cartridge Application Developer’s Guide

Theme Query Examples

Theme Query Examples

To execute a theme query, you specify a query string, which can be a sentence or a
phrase with or without operators. ConText interprets your query, creating a
normalized form of your query that it can use to match against document themes in
the index. Context returns a list of documents that satisfy the query, based on
certain rules, along with a score of how relevant each document is to the query.

You can issue themes queries using either the two-step or one-step method. The
way in which ConText matches themes and scores hits is the same for both
methods.

Note: To issue theme queries, you must have a theme index.

For more information about how to create a theme index on a text
column, see Oracle8 Context Cartridge Administrator’s Guide.

Two-Step Query

To execute a theme query with the CTX_QUERY.CONTAINS procedure against a
theme index, you must specify a policy that has a theme lexer associated with it.

For example, you specify a theme query on computer software as follows:

execute ctx_query.contains(THEME_POL', ‘computer software’,'CTX_TEMP);

In the above example, ConText normalizes computer software, and then attempts to
match the normal form with document themes in the index.

When a match is found, ConText uses the weight of the matched theme to compute
a score that reflects how relevant the match is to the query; the higher the score, the
more relevant the hit. ConText returns the matched document as part of the hitlist.

One-Step Query

You can execute theme queries in SQL*Plus using the one-step method. To do so,
the text column must be indexed by theme. The way in which ConText matches
themes and scores hits is the same as in a two-step query.

For example, to execute a theme query on computer software:

SELECT * FROM TEXTAB
WHERE CONTAINS (text, ‘computer software’) >0;

Theme Queries 4-13

Theme Query Examples

Multiple Policies

For a text column that has more than one policy associated with it, you must specify
which policy to use in the CONTAINS clause using the pol_hint parameter. You
might create two policies for a column when you want to perform both theme and
text queries on the column.

For example, if the column text had a regular text policy and a theme policy
THEME_POL associated with it, you issue a theme query as follows:

SHECT ID, SQORE(0) FRCM TEXTAB
WHERE CONTAINS (text, ‘computer software’, 0, THEME_POL) >0;

When you specify pol_hint, you must also specify a placeholder (in this example 0)
for the LABEL parameter.

See Also: For more information about using the pol_hint
parameter in the CONTAINS function, see the specification for
CONTAINS in Chapter 9.

4-14 Oracle8 ConText Cartridge Application Developer’s Guide

D

Query Expression Feedback

This chapter describes query expression feedback. The following topics are covered:
« The Feedback Process

« Understanding ConText Parse Trees

« Understanding the Feedback Table

« Obtaining Query Expression Feedback

Query Expression Feedback 5-1

The Feedback Process

The Feedback Process

Figure 5-1

Generate Feedback:

CTX_QUERY.FEEDBACK(...
text_query=>'a=b and c',...)

Execute Query:

: ‘. CTX_QUERY.CONTAINS(...)
i Refine Query OR
' Expression | CTX_QUERY.OPEN_CON(...)
N S OR

Feedback Table .~ - SELECT...

WHERE CONTAINS(...)

v

Examine Query Expression
Transformations and Expressions:

Query expression feedback is a feature that enables you to know how ConText
parses a text or theme query expression before you execute the query. Knowing how
ConText evaluates a text or theme query expression is useful for refining and

debugging queries. You can also design your application so that it uses the feedback
information to help users write better queries.

The diagram above shows how you use query expression feedback. You execute the
PL/SQL procedure CTX_QUERY.FEEDBACK, which generates and stores feedback

5-2 Oracle8 ConText Cartridge Application Developer’s Guide

The Feedback Process

information to a table. From the data in this feedback table, you can visualize the
ConText parse tree to examine how the expression was expanded and parsed. You
can then refine the query and re-execute FEEDBACK, or you can execute the real
query with CONTAINS for two-step queries, OPEN_CON for in-memory queries,
or SELECT for one-step queries.

In text queries, query expression feedback is especially useful for knowing how
context expands expressions that contain stem, wildcard, thesaurus, fuzzy, soundex,
PL/SQL, or SQE operators before you execute the query. This is because such
queries can potentially expand into many tokens or result in very large hitlists.

In theme queries, query expression feedback is useful for knowing how ConText
uses the knowledge catalog to normalize query expressions.

Query Expression Feedback 5-3

Understanding ConText Parse Trees

Understanding ConText Parse Trees

Before ConText executes a query, it parses the expression. The resulting expression
can be represented as a parse tree. A ConText parse tree can show:

order of execution (precedence of operators)

stem, fuzzy, thesaurus, soundex, PL/SQL, SQE, and wildcard expansions
theme query normalization

query optimization

stop-word transformations

breakdown of composite-word tokens (German)

The output table of the FEEDBACK procedure is graphical representation of a
ConText parse tree.

5-4 Oracle8 ConText Cartridge Application Developer’s Guide

Understanding ConText Parse Trees

Operator Precedence

aAND b OR c

/

b

~— /
§

u\:p

ND\
(a) (

Parse trees are read in a depth-first manner and from left to right. This means the
first operation is always furthest to the left and at the bottom of the branch. In this
way, parse trees illustrate operator precedence.

The example above shows the parse tree for the evaluation of a AND b OR ¢, where
a, b and c stand for three arbitrary words. Since the and operation a AND b is the
leftmost operation and at the bottom of the tree, it is executed first. In this way, the
parse tree above indicates correctly that the and operator has higher precedence
over the or operator. The resulting query is hence (a AND b) OR ¢ rather than a AND
(b OR¢c).

Query Expression Feedback 5-5

Understanding ConText Parse Trees

Query Expansions

Eomp% OR ’?smith)

/ N

Eomp% OR ’?smith]

— ~~
CEQUIVALENCE) CEQUIVALENC@
/ N / N

(computer] Gomptroller) (smith] (smythe]

The above example shows how ConText expands the query comp% OR ?smith. The
parse tree shows that before ConText executes the query, the token comp% is
expanded to computer and comptroller, while ?smith is expanded to smith and smythe.

ConText parse trees show similar expansions with thesaurus, wildcard, soundex,
stem, SQE, and PL/SQL operators. In the case of the wildcard, soundex, and fuzzy
operators, ConText obtains the correct word expansions from the index.

5-6 Oracle8 ConText Cartridge Application Developer’s Guide

Understanding ConText Parse Trees

Note: When you include the SQE operator in the feedback
expression, the feedback (expansion of the stored query expression)
is based on the current state of the index and will take into account
any inserts, updates, or deletes made to the base table; however,
unlike a call to CONTAINS, the stored query expression is not
updated or refreshed as a result of the call to FEEDBACK.

Query Expression Feedback 5-7

Understanding ConText Parse Trees

Theme Query Normalization

C ratified laws)

AND

WEIGHT
0.561

WEIGHT
0.438

'/

ratification law

"\

You can use query expression feedback to know how ConText interprets theme
gueries. The feedback information provides the normalized version of the query as
obtained from the knowledge catalog.

The example above shows how ConText normalizes the theme query ratified laws to
the themes ratification and law. The resulting expression is an AND operation with
weights attached to the normal forms: ratification*0.561 AND law*0.438.

Note: Because numbers are rounded off when displayed, weights
might not always add up to 1.000 exactly.

See Also: For more information about theme queries, see
Chapter 4, "Theme Queries".

5-8 Oracle8 ConText Cartridge Application Developer’s Guide

Understanding ConText Parse Trees

Query Optimization

GANDbANDa [aANDbOR Cj

| |
VRN VRN
(ano) (e) (a (o JCe)
VRN
(a) (o)
Un-optimized Execution Optimized Execution

The example above shows how ConText optimizes the expression a AND b AND c,
where a and b and c stand for three different words.

In the first step of the parse, ConText evaluates a AND b, then ANDs the result with
c. With such a parse tree, ConText must search for all documents that contain a and
b, then search for all documents that contain c, and then intersect the two result sets.

The ConText optimizer realizes this query is more efficiently executed by
simultaneously searching for all the documents that contain a and b and c, which is
illustrated in the second step of the optimizing process.

Query Expression Feedback 5-9

Understanding ConText Parse Trees

Stopword Rewrite

[dog NOT that] [doc NOT that]

| |

7\
(dog) (that)

Step 1 Step 2

The example above shows the parse sequence for the stopword transformation:
non_stopword NOT stopword => non_stopword

Assuming that is a stopword, ConText reduces the query dog NOT that to dog.

See Also: To learn more about querying with stopwords, see
"Querying with Stopwords" in Chapter 3.

For a list of all possible stopword transformations, see Appendix D,
"Stopword Transformations".

5-10 Oracle8 ConText Cartridge Application Developer’s Guide

Understanding ConText Parse Trees

Decompounding of Composite Word Tokens

[Hauptbahnhof)

CCOMPOSITE)

N T~
Cro) (oan) (o) (vt)

When using a composite index with German or Dutch text, you can use query
feedback to examine how ConText breaks down a composite word query into its
subcomposites. Even though ConText does not return documents that contain only
subcomposite words in a query, composite word query feedback is useful for
verifying where ConText places word boundaries.

The above example shows that ConText breaks down the German composite word
Hauptbahnhof into haupt, bahn, bahnen, and hof.

Note: To obtain composite word query feedback, the policy’s lexer
must have the COMPOSITE attribute of the lexer set to 1.

For more information about defining policies, see the Oracle8
Context Cartridge Administrator’s Guide.

Query Expression Feedback 5-11

Understanding the Feedback Table

Understanding the Feedback Table

Before you issue a query, you can obtain the parse tree information for the query
expression. The procedure CTX_QUERY.FEEDBACK creates a graphical
representation of the parse tree and stores this information in a feedback table,
which you create before executing CTX_QUERY.FEEDBACK. To reconstruct
ConText parse trees, you must understand the structure of this table.

Table Structure

The feedback table has the following structure:

Table 5-1

Column Name

Datatype

Description

FEEDBACK_ID

ID

PARENT_ID

OPERATION

OPTIONS

OBJECT_NAME

POSITION

CARDINALITY

VARCHAR2(30)

NUMBER

NUMBER

VARCHAR2(30)

VARCHAR2(30)

VARCHAR2(64)

NUMBER

NUMBER

The value of the feedback_id argument specified in
the FEEDBACK call.

A number assigned to each node in the query
execution tree. The root operation node has ID =1.
The nodes are numbered in a top-down, left-first
manner as they appear in the parse tree.

The ID of the execution step that operates on the
output of the ID step. Graphically, this is the parent
node in the query execution tree. The root operation
node (ID =1) has PARENT_ID =0.

Name of the internal operation performed. Refer to
Table 5-2 for possible values.

Characters that describe a variation on the operation
described in the OPERATION column. When an
OPERATION has more than one OPTIONS
associated with it, OPTIONS values are
concatenated in the order of processing. See

Table 5-3 for possible values.

Section name, or wildcard term, or term to lookup in
the index.

The order of processing for nodes that all have the
same PARENT_ID.The positions are numbered in
ascending order starting at 1.

Reserved for future use. You should create this
column for forward compatibility.

5-12 Oracle8 ConText Cartridge Application Developer’s Guide

Understanding the Feedback Table

OPERATION Column

Table 5-2 lists the possible values for the OPERATION column in the feedback

table:
Table 5-2

Operation Value

Query Operator

Equivalent Symbol

ACCUMULATE

AND
COMPOSITE

EQUIVALENCE
FIRST_NEXT_DOC

MAX_DOC
MINUS
NEAR

NOT
NO_HITS

OR

PHRASE
SECTION
THRESHOLD
WEIGHT
WITHIN
WORD

ACCUM
AND
(none)
EQUIV
#

MINUS
NEAR
NOT

(no hits will result from this query)

OR

(a phrase term)
(section)

>

*

within

(a single term)

(none)

Query Expression Feedback 5-13

Understanding the Feedback Table

OPTIONS Column

Table 5-3 shows the values for the OPTIONS column in the feedback table. When an
OPERATION has more than one OPTIONS associated with it, the OPTIONS values
are concatenated in the order of processing.

Table 5-3

Options Value Description

(&) Stem

(?) Fuzzy

) Soundex

(T Order for ordered Near.

(F) Order for unordered Near.

(n) A number associated with Threshold, Weight, Max, or the
max_span parameter for the Near operator.

(m-n) First next range (m and n are integers)

5-14 Oracle8 ConText Cartridge Application Developer’s Guide

Understanding the Feedback Table

Example

comp% OR ?smith

|
(R) pp-
PID=0

\
/

ID=2 ID=5
EQUIVALENCE | PARENT_ID=1 EQUIVALENCE | PARENT_ID=1
OBJECT_NAME = COMP% OPTIONS = (?)

WORD WORD WORD WORD

'/

ID=3 D=4 ID=6 D=7

PARENT_ID =2 PARENT_ID =2 PARENT_ID =5 PARENT_ID =5

OBJECT_NAME = OBJECT_NAME = OBJECT_NAME = OBJECT_NAME =
COMPUTER COMPTROLLER SMITH SMYTHE

The figure above shows how ConText encodes the parse tree for the query comp%
OR $smith, which is asking for all documents that contain words beginning with
comp or contain words that are spelled like smith.

Each node is labeled with a value that corresponds to the OPERATION column in
the feedback table. The tree above contains one OR node, two EQUIVALENCE
nodes, and four WORD nodes.

The ID and PARENT_ID values are listed beside each node. For example, the OR
node has an ID of 1 and PARENT _ID of 0, since it is the root node.

The EQUIVALENCE node with ID =2, PARENT_ID =1, has an OBJECT_NAME
value of COMP%, because this equivalence operation is a result of wildcard term
comp%.

The WORD node with id = 3 has an OBJECT_NAME value of computer, because in
this instance, computer is one of the words that satisfy comp%.

Query Expression Feedback 5-15

Obtaining Query Expression Feedback

Obtaining Query Expression Feedback
To obtain query expression feedback information, you must do the following:
1. Create the feedback table.
2. Execute CTX_QUERY.FEEDBACK.
3. Retrieve data from feedback table.
4

Optionally, construct expansion tree from table information.

Creating the Feedback Table

To create a feedback table called test_feedback for example, use the following SQL
statement:

create tabl e test_feedback(
f eedback_i d varchar 2(30)
id nunber,
parent _i d nunber,
operation varchar2(30),
options varchar2(30),
obj ect _nane varchar 2(64),
posi ti on nunber,
cardinality nunber);

Executing CTX_QUERY.FEEDBACK

To obtain the expansion of a query expression such as comp% OR ?smith, use CTX_
QUERY.FEEDBACK as follows:

ctx_query. f eedback(
policy_name =>'scott.test_poalicy’,
text_query =>'comp% OR ?smith’,
feedback table =>test feedback,
sharelevel => 0,
feedback_id =>"Test);

Retrieving Data from Feedback Table
To read the feedback table, you can select the columns as follows:

select feedback id, id, parent_id, operation, options, object_name, position
fromtest_feedback
order by id;

5-16 Oracle8 ConText Cartridge Application Developer’s Guide

Obtaining Query Expression Feedback

The output is ordered by ID to simulate a hierarchical query:

FEECBACK ID | D PARENT_I D GPERATI (N CPTI ONS GBIECT_NAME PCH Tl ON

Test 1 0 R NLL NULL 1
Test 2 1 EQUVALENCE NAL COVP% 1
Test 3 2 WRD NLL QOMPTROLLER 1
Test 4 2 WRD NLL COMPUTER 2
Test 5 1 EQU VALENCE (?) SM TH 2
Test 6 5 WRD NLL SMTH 1
Test 7 5 WRD NLL SWTHE 2

Constructing the Parse Tree

You can optionally construct an approximate graphical representation of the parse
tree using a hierarchical query. This type of query outputs rows in a hierarchical
manner, where children nodes are indented under parent nodes.

The following statement selects from a populated feedback table, indenting the
output according to level:

select Ipad(’’,2*(evel-1)) || operation operation, options, object_name,
position

fromtest_feedback

startwithid =1

connect by priorid = parent_id;

This statement produces hierarchical output for the query comp% OR ?smith as
follows:

OPERATION OPTIONS OBJECT_NAME POSITION

OR NULL NULL 1
EQUIVALENCE NULL COMP% 1
WORD NULL COMPTROLLER 1
WORD NULL COMPUTER 2
EQUIVALENCE (?) SMITH 2
WORD NULL SMITH 1
WORD NULL SMYTHE 2

Query Expression Feedback 5-17

Obtaining Query Expression Feedback

5-18 Oracle8 ConText Cartridge Application Developer’s Guide

S

Document Presentation: Highlighting

This chapter describes how ConText query applications can present documents with
highlighted information.

The following topics are covered in this chapter:
« Overview of Document Presentation

« Using CTX_QUERY.HIGHLIGHT

« Creating Highlighted Text

Document Presentation: Highlighting 6-1

Overview of Document Presentation

Overview of Document Presentation

In a typical query application, users can issue text or theme queries. The application
executes the query and returns to the user a hitlist, allowing the user to select one or
more documents.

When the user chooses a document, ConText enables you to present the selected
document with the query terms highlighted for text queries, or with the relevant
paragraphs highlighted for theme queries.

Your application can also present linguistic summaries of the selected documents.

See Also: For more information about linguistic output, see
Chapter 7, "ConText Linguistics".

When developing applications in PL/SQL, you use the CTX_QUERY.HIGHLIGHT
procedure to create various forms of highlighted documents that can be presented
to users. The source documents can be stored as plain text or in any of the formats
ConText supports for text indexing.

For world wide web applications, you can use the ConText viewers to present
highlighted documents.

See Also: For more information about highlighting with ConText
viewers, see the Oracle8 ConText Cartridge Workbench User’s Guide.

6-2 Oracle8 ConText Cartridge Application Developer’s Guide

Using CTX_QUERY.HIGHLIGHT

Using CTX_QUERY.HIGHLIGHT

Figure 6-1
Document (Textkey),
Policy (Text or Theme),
Query Expression
CTX_QUERY.HIGHLIGHT
(Text Policy) (Theme Policy)
—
E—— |
Original Plain Text Text Theme
(Unfiltered) (Filtered) Highlighting: Highlighting:
Document Document Highlighted words Highlighted paragraphs
in plain text in plain text
(or word offsets) (or paragraph offsets)
Y Y
NOFILTAB PLAINTAB MUTAB (or HIGHTAB)
Result Table Result Table Result Table

170 generate HIGHLIGHT results, a
policy (text or theme) is required.
In addition, an index for the policy

must exist.

CTX_QUERY.HIGHLIGHT generates highlighting information for text or theme
queries. You typically call CTX_QUERY.HIGHLIGHT after executing a text or

Document Presentation: Highlighting 6-3

Using CTX_QUERY.HIGHLIGHT

theme query. With text queries, HIGHLIGHT marks the relevant words or phrases
in the document. With theme queries, HIGHLIGHT marks the relevant paragraphs
in the document.

Note: ConText does not do sentence-level theme highlighting.

Output

As illustrated in Figure 6-1, CTX_QUERY.HIGHLIGHT can be used to generate the
following output for a document:

Output Description Table

Original Document Document in native format without NOFILTAB
highlights.

Plain Text Document Plain text of document without PLAINTAB
highlights.

Highlighted Document Plain text document with occurrences MUTAB
of the specified word (text query) or
paragraph (theme query) highlighted.

Offset Information Highlight information that identifies HIGHTAB
the position and length of the query
terms or paragraphs found in the
source document.

The positions and lengths of the query
terms are specified as offsets from the
beginning of the plain text version of
the document.

Note: The filter ConText uses to create the plain text in the
PLAINTAB and MUTAB tables is the same filter ConText uses to
index the document.

For more information about supported formats, see Oracle8 ConText
Cartridge Administrator’s Guide.

6-4 Oracle8 ConText Cartridge Application Developer’s Guide

Using CTX_QUERY.HIGHLIGHT

Note: If the document is an HTML document filtered through the
internal HTML filter, the marked-up ASCII text version generated
by HIGHLIGHT and stored in a MUTAB table retains the original
HTML tags from the document.

See Also: For more information about the structure of the
highlight output tables, see "Highlight Table Structures" in
Appendix A, "Result Tables".

Highlighting Mark-up
When you call CTX_QUERY.HIGHLIGHT, you can specify the markup used to

indicate the start and end of a highlighted word or phrase for text queries, or the
start and end of a highlighted paragraph for theme queries.

When you specify no markup, HIGHLIGHT uses default markup. The default
highlighting mark-up produced by HIGHLIGHT differs depending on the format of
the source document.

If the source document is an ASCII document or a formatted document, the default
highlighting markup is three angle brackets immediately to the left (<<<) and right
(>>>) of each term.

If the source document is an HTML document filtered through an external filter, the
default highlighting markup is the same as the highlighting markup for plain text
or formatted documents (<<< and >>>).

If the source document is an HTML document filtered through the internal HTML
filter, the default highlighting markup is the HTML tags used to indicate the start
and end of a font change:

« to the immediate left of the term
« to the immediate right of the term

See Also: For more information about internal and external
filters, see Oracle8 ConText Cartridge Administrator’s Guide.

Document Presentation: Highlighting 6-5

Creating Highlighted Text

Creating Highlighted Text
To present highlighted documents in an application, do the following:
1. Allocate one or more highlight result tables to store the results.
Issue a query to obtain a list of documents.
Call the CTX_QUERY.HIGHLIGHT procedure for a document from the hitlist.

2
3.
4. Display (or otherwise use) the output generated by HIGHLIGHT.
5

Release the result table(s).

Allocating Result Tables

The result tables required by the HIGHLIGHT procedure can be allocated manually
using the CREATE TABLE command in SQL or using the CTX_QUERY.GETTAB
procedure.

For example, to create a MUTAB table to store highlighted ascii mark-up, issue the
following statement:

create table mu_ascii

(
id nunber,

docunent | ong

)

To create a HIGHTAB table to store highlight offset information, issue the following
statement:

create tabl e highlight_ascii

(
id nunber,

of f set nunber,
| engt h nunber,
strengt h nunber
E

See Also: For more information about the structure of the
highlight output tables, see "Highlight Table Structures" in
Appendix A, "Result Tables".

6-6 Oracle8 ConText Cartridge Application Developer’s Guide

Creating Highlighted Text

Issuing a Query
Issue a one-step, two-step, or in-memory query to return a hitlist of documents. You
can issue either a text or theme query. For text queries, you call CONTAINS with a
text policy; for theme queries, you call CONTAINS with a theme policy. The hitlist
provides the textkeys that are used to generate highlight and display output for
specified documents in the hitlist.

Calling CTX_QUERY.HIGHLIGHT

Call CTX_QUERY.HIGHLIGHT with a pointer to a document (generally the textkey
obtained from the hitlist) and a text or theme query expression.

CTX_QUERY. HIGHLIGHT returns various forms of the specified document that
can be further processed or displayed by the application.

ConText uses the query expression specified in the HIGHLIGHT procedure to
generate the highlight offset information and marked-up ASCII text. In addition,
the offset information is based on the ASCII text version of the document.

Note: While the query expression is usually the same as the
expression used to return documents in the text query, it is not
required that the query expressions match. For example, you might
allow a user to search for all articles by a particular author and then
allow the user to view highlighted references to a specified subject
in the returned documents.

If the query expression contains a result set operator (first/next, max, threshold),
the result set operator is ignored. ConText returns highlight information for the
entire result set.

See Also: For more information about the query expression in
HIGHLIGHT, see the CTX_QUERY.HIGHLIGHT specification in
Chapter 10.

Text Query Highlighting

To create highlight mark-up for text queries, you must specify a text policy, which is
usually the policy you specify with the CONTAINS procedure for the same query.
With text queries, the HIGHLIGHT procedure highlights the terms you specify in
the query parameter.

Document Presentation: Highlighting 6-7

Creating Highlighted Text

For example, to highlight all the occurrences of the term dog with a document
identified by textkey 14, issue the following statement:

ctx_query. hi ghl i ght
(
cspec=> "text_policy’,
textkey => ' 14",
query => 'dog’,
id=> 14,
hightab => " highlight_ascii’,
mitab =>'mi_ascii’

)

Theme Query Highlighting

To create highlight mark-up for a theme query, you must specify a theme policy,
which is usually the policy you specify with the CONTAINS procedure for the same
query. With theme queries, the HIGHLIGHT procedure highlights the relevant
paragraphs in the document.

For example, to highlight all the paragraphs that are relevant to the theme query
computers for document with textkey 12, issue the following query:

ctx_query. hi ghl i ght
(
cspec=> ’'thene_policy’,
textkey =>'12',
query => 'conputers’,
id=> 12,
hightab => " highlight_ascii’,
mitab =>'mi_ascii’

)

Presenting HIGHLIGHT Output

You can use the MUTAB table to view highlighted ascii text. For example in
SQL*Plus, you can issue the following statement to view a MUTAB table called mu_
ascii:

sel ect * fromnu_ascii order by id,;

You can also use the offset information in the HIGHTAB table to highlight the
document in ways that suit your application.

6-8 Oracle8 ConText Cartridge Application Developer’s Guide

Creating Highlighted Text

Text Query Highlight Output

With text queries, the word or phrase is highlighted. For example, a text query on
dog might produce the following type of highlighted ascii output for a document:

The qui ck brown <<dog>> j unped over the fox.

Theme Query Highlight Output

With theme queries, the relevant paragraphs in the document are highlighted. For
example, a theme query of computers produces the following type of highlighted
ascii output for a document:

<<< LAS VEGAS -- International Business Machines Corp. is using the huge
conput er trade show here this week to try to prove a much disputed narketing
claimofthe past year and a half: that its P§2 line of personal conputers
really does offer unique benefits.>>>

In the battle for the hearts and ninds of the 100, 000 deal ers, corporate
customers and other spectators gathered here, |BMhas set up a series of
denonstrations of the Mcro Channel, which is the P§¥2' s internal data pathway.
The denonstrations seek to show that this pathway has extra flexibility
that can translate into nore speed. (ne denonstration uses an add-in circuit
board that IBMclains allows data to be sent over a network about 60%faster.

Another illustrates a quicker way to store the huge anounts of data handl ed by a
so-cal led file server, the nachine that controls a network of personal
conput ers.

<<< Wil e nost personal conputers contain just one "naster" processor -- the

chip that tells the various parts of the conputer what to do -- the Mcro
Channel allows for nore than one. That neans that i n Mcro Channel nachines, the
wor khorse central processor can dunp lots of work onto anot her processor,
freeing itself to go about other tasks.>>>

In this three paragraph excerpt of a news article that satisfies the theme query
computers, ConText highlights (with angle brackets) only the paragraphs that are
about computers.

Document Presentation: Highlighting 6-9

Creating Highlighted Text

Release Highlight Result Tables

After documents have been processed by the HIGHLIGHT procedure and
displayed to the user, drop the highlight result tables.

If the tables were allocated using CTX_QUERY.GETTAB, you use CTX_
QUERY.RELTARB to release the tables.

If the tables were created manually, drop the tables using the SQL command DROP
TABLE.

6-10 Oracle8 ConText Cartridge Application Developer’s Guide

v

ConText Linguistics

This chapter describes the approach used by ConText to provide thematic analysis
of English-language text.

The following topics are covered in this chapter:

Overview of ConText Linguistics
What is a Theme?

Text Input

Theme Extraction System

Linguistic Settings

ConText Linguistics 7-1

Overview of ConText Linguistics

Overview of ConText Linguistics

Figure 7-1

Plain Text

T

Theme Lexer CTX_LING
" Theme T Theme
! Extraction D 5 Settings Pomemeees bl Extraction
L System L System
Indexing Engine
| .|]
:_ I ! !]
__: » | CTX_QUERY
| Theme Index | ‘ Y
Indexing — =
(Per Column) —_— T
|
Theme List of Theme Gist
Highlighting Themes Summaries

Document Presentation
(Per Document)

ConText linguistics is a system that extracts the main ideas from English-language

text and uses the main ideas to produce different forms of output. These main ideas
are referred to as themes.

7-2 Oracle8 ConText Cartridge Application Developer’s Guide

Overview of ConText Linguistics

As shown in Figure 7-1, ConText’s theme extraction system extracts themes from
documents to produce CTX_LING output, theme highlighting, and theme indexes.

CTX_LING output is created on a per-document basis and gives you different views
of documents for presentation. Theme highlighting is also available on a
per-document basis. CTX_LING output and theme highlighting are known as
ConText document services.

Theme indexes are created from a document set, against which you issue theme
queries.

You can optionally use linguistic settings to control case conversion of text before it
is processed as well as to control the size of Gists and theme summaries.

The theme extraction system illustrated in Figure 7-1 is comprised of a parsing
engine and knowledge base which work to extract themes from text. You can obtain
thematic output in different forms, depending on how you invoke the system. The
following table describes how to obtain each type of output:

Output Text Input Invocation

Theme Summaries Single Document Use the CTX_LING package with a ConText 'L’

List of Themes server.

Gists

Theme Highlighting Single Document Use CTX_QUERY.HIGHLIGHT with a ConText
'Q’ server. A theme index is required.

Theme Index Document Set Use theme lexer in policy with CTX_
DDL.CREATE_INDEX to index documents.

See Also: For more information about how the theme extraction
system works, refer to the "Theme Extraction System" section in this
chapter.

For more information about theme summaries, list of themes, and
Gists, see Chapter 8, "Using CTX_LING".

For more information about theme highlighting, see Chapter 6,
"Document Presentation: Highlighting".

For information about creating theme indexes, see the Oracle8
ConText Cartridge Administrator’s Guide.

For more information about issuing theme queries, see
"Understanding Theme Queries" in Chapter 4.

ConText Linguistics 7-3

What is a Theme?

What is a Theme?

Themes are the main ideas in a document. Themes can be concrete concepts such as
Oracle Corporation, jazz music, football, England, or Nelson Mandela; themes can be
abstract concepts such as success, happiness, motivation, or unification. Themes can
also be groupings commonly defined in the world, such as chemistry, botany, or fruit.

When processing text to extract themes, Context extracts up to fifty themes per
document.

To derive document themes, ConText uses the information stored in the knowledge
catalog. Most themes are concepts in the knowledge catalog. However, ConText can
still infer themes that are not known concepts in the knowledge catalog.

See Also: For more information about the knowledge catalog and
how ConText extracts themes, see "Theme Extraction System" in
this chapter.

Theme Weight

ConText assigns a weight to every theme it extracts from a document. Theme
weight is a measure of how well that idea is developed in the document with
respect to other themes in the document.

ConText returns a theme weight with each theme returned in a list of themes.
During theme indexing, Context also indexes document theme weights with themes
and uses the weights to score theme queries issued against the index.

7-4 Oracle8 ConText Cartridge Application Developer’s Guide

Text Input

Text Input

Text input to the theme extraction system in Figure 7-1 can be one of the following:
« single documents to create CTX_LING output

« single documents to create theme highlighting

« aset of documents stored in a text column to create theme indexes.

« atheme query expression which ConText normalizes for index look-up

The best results are obtained when the text input to the theme extraction system is
in mixed case. However, if your text is all-uppercase or all-lower text, you can
convert it to mixed case by changing linguistic settings.

See Also: For more information about linguistic settings,
see"Linguistic Settings" in this chapter.

In addition, having good paragraph and sentence structure improves results for
generating CTX_LING output, theme highlighting, and theme indexes.

ConText Linguistics 7-5

Theme Extraction System

Theme Extraction System

Figure 7-2

Plain Text

l

Theme Extraction System

<:> - Settings

Knowledge Theme
Base Parser

l

Themes

The theme extraction system extracts themes from English-language text. It is made
up of the following components:

« knowledge base

« parsing engine

Knowledge Base

The knowledge base is a collective term referring to the lexicon and the knowledge
catalog. The parsing engine uses the knowledge base to help extract themes from
text.

Lexicon

The lexicon is a static information store that provides word and phrase information
for the parsing engine. The lexicon recognizes over five hundred thousand English
words and phrases and defines hundreds of lexical characteristics for each word.

7-6 Oracle8 ConText Cartridge Application Developer’s Guide

Theme Extraction System

Note: The lexicon is specific to the English language, handling
both American and British usage and spelling.

Linguistic information about words in the lexicon is divided into the following
types:

Information Type Description

Syntax Syntax flags indicate the part-of-speech of a word or phrase.

Theme Theme flags identify the thematic qualities of a word (e.g. weak
noun/needs support, strong verb). The parser uses these flags to
determine how a word contributes to the thematic construction
of the document as a whole.

In the theme extraction process, ConText uses the information in the lexicon to
identify potential themes, and to help rank themes in a document.

ConText Linguistics 7-7

Theme Extraction System

Knowledge Catalog

Figure 7-3

4 I

business and government science and social abstract ideas
economics and military technology environment geography and concepts
hard sciences social sciences
chemistry mathematics
calculus geometry
mathematical plane trigonometry
topology geometry

o /

The knowledge catalog is a tree-like structure whose branches break down various
realms of discourse. The knowledge catalog is divided into the following six main
categories as shown in Figure 7-3:

« Business and Economics
« Government and Military
» Science and Technology
« Social Environment
« Geography
« Abstract Ideas and Concepts
See Also: For a complete breakdown of the categories in the

knowledge catalog, see Appendix E, "Knowledge Catalog -
Category Hierarchy".

7-8 Oracle8 ConText Cartridge Application Developer’s Guide

Theme Extraction System

Categories Categories are groupings of related nouns and ideas that can be
sub-divided into further categories and concepts.

Children categories are related to parent categories by an "is-associated-with"
relationship, loosely defined as such to cover other standard child-parent type

relationships such as "is-a-part-of", "belongs-to", or "is-a".

Figure 7-3 illustrates the basic structure of the knowledge catalog, showing a break
down of an example branch within the top-level category of science and technology. In
the example branch (outlined in boldface), the category of trigonometry belongs to
the category of geometry, which is a part of the more general category of mathematics,
which is part of the even more general category of hard sciences.

In the theme extraction process, ConText uses this structure of categories and
concepts to interpret document themes, to help relate themes to each other, and to
rank themes.

See Also: For a complete listing of the categories in the knowledge
catalog, see Appendix E, "Knowledge Catalog - Category
Hierarchy".

Concepts Concepts are leaf nodes in the knowledge catalog and can be associated
with any level in the category tree. Concepts are related to parent categories by an
"is-associated-with" relationship that covers specific relationships such as "is-a".

The category of trigonometry, whose branch appears in Figure 7-3, contains over 30
associated concepts including sines, cosines, radians and polar axes.

The category of success, located in the abstract ideas and concepts branch, contains
over 30 associated concepts including award winners, conquerors, prosperity, and
winning streaks.

Concepts can be associated with any level in the category tree. Using the example in
Figure 7-3, the category of mathematics, which is in the middle of the branch, has
over 130 associated concepts. Some of these concepts include Isaac Newton, Fibonacci
sequences, arithmetic progressions, and complex integers.

Other categories such as flowering plants contain over 1000 associated concepts.

The average number of concepts associated with a category in the knowledge
catalog is approximately 94.

In the theme extraction process, all concepts in the knowledge catalog are potential
document themes.

ConText Linguistics 7-9

Theme Extraction System

Note: All categories are also concepts. This means that categories
can also be potential document themes in the theme extraction
process. For example, the categories of trigonometry and success can
appear as document themes.

Unknown and Ambiguous Concepts ConText’s knowledge catalog is not an exhaustive
repository of all possible themes (concepts) that can be extracted from a document.
Some concepts that ConText might extract from a document are not known to the
knowledge catalog.

In addition, concepts such as bank, cricket, or tangent can have more than one
meaning in English and hence are ambiguous. Because they are ambiguous, these
concepts cannot be placed in the knowledge catalog and are treated as if they are
unknown.

See Also: For more information about how ConText handles
unknown and ambiguous themes in the theme extraction process,
see the following sections:

"Parsing Engine" in this chapter

"Theme Indexing Concepts" in Chapter 4
Normal Forms In the theme extraction process, ConText must convert words and

phrases in text to their normal forms so they can attach into the knowledge
hierarchy. To make this conversion, the knowledge catalog keeps the following lists:

Type of List Description

Standard Noun Forms A list of mappings from inflected variations of words to their
standard noun forms as stored in the knowledge catalog’s
hierarchy of concepts. For example, the words notify and notifies
are mapped to the normal form notification; likewise, the words
summarize and summarizes are mapped to the normal form
summaries.

Alternate Forms A list of mappings from acronyms, abbreviations, and alternate
spellings to their standard forms. For example, IBM is an
acronym for the standard form IBM - International Business
Machines Corporation

7-10 Oracle8 ConText Cartridge Application Developer’s Guide

Theme Extraction System

Parsing Engine
ConText uses the parsing engine to produce all types of thematic output, including
CTX_LING output and theme indexes.

The parsing engine syntactically analyzes text, identifying phrase, sentence and
paragraph boundaries. It then interprets meaning, selecting the high-information
content to produce themes. The lexicon and knowledge catalog provide the
reference information necessary to do this processing.

If case-conversion is enabled, the parsing engine converts all the text to lowercase
and processes the text through the case-sensitivity routines to determine
capitalization.

Note: Case conversion does not affect the original text of the
documents being processed; only the output of the parsing engine
is stored in mixed-case.

The following sections describe how the parsing engine analyzes text to extract
themes.

Token Recognition

ConText breaks up text into paragraphs and then breaks paragraphs into tokens.
Tokens can consist of either single words or phrases. Words are groups of characters
separated by blank space or punctuation marks; phrases are sequences of two or
more words.

Information about English words and phrases is derived from ConText’s knowledge
base. Sequences of words that match known phrases are collapsed and treated as
single tokens for further processing. For example, the phrases stock market and
relational database are treated as tokens.

Token Normalization

ConText converts each token to a normal form using information stored in the
knowledge base. Normal forms are the preferred forms of all alternative forms of
the token. When ConText is able to find the token in the knowledge base it is a
known token.

Specifically, token normalization includes the following transformations of
alternative forms to preferred forms: Verbs are converted to their noun forms; most
nouns are converted to their plural forms; and acronyms and abbreviations are

ConText Linguistics 7-11

Theme Extraction System

converted to their full forms. For example, the acronyms IBM and 1.B.M are
converted to IBM - International Business Machines.

Words that mean the same thing for the purposes of text indexing and retrieval are
also converted to normal forms. For example, the words loving and amorousness are
normalized to love.

When a token cannot be found in the knowledge base, ConText guesses its
part-of-speech and then normalizes it according to one of the standard
transformations. However, since the token cannot be placed in the knowledge base,
it is unknown, and is treated as its own normal form isolated from the knowledge
base.

Theme Ranking

In this step, ConText scores the normalized tokens, known and unknown, then sorts
the tokens, which are potential document themes, into a ranked list. The scoring
and ranking of tokens is based on the information associated with each token in the
knowledge base, such as what words and parts-of-speech are good candidates for
themes. The highest ranking tokens are called themes.

Theme Accumulation

ConText combines duplicated and closely related themes into single themes. This is
done by generalizing related themes to common parents using the hierarchical
structure of the knowledge catalog. The goal of this process is to find the
top-ranking themes, up to fifty, for a document.

Theme Proving
In the final step, ConText looks back at the known themes it generated and
evaluates the evidence for each theme in the surrounding text.

Because words can be ambiguous or can be used with new meaning, ConText
attempts to find support for the parent concept of each theme. Parent concepts are
derived from the knowledge catalog.

If no support exists for the parent concept, ConText indexes the theme as a single
row without the parent concept (theme).

Themes that are indexed as single rows have no parents in the hierarchical
list-of-themes you obtain with CTX_LING.REQUEST_THEMES.

See Also: For more information about how ConText indexes
themes, see "Theme Indexing Concepts" in Chapter 4.

7-12 Oracle8 ConText Cartridge Application Developer’s Guide

Linguistic Settings

Linguistic Settings
Linguistic setting are settings you can enable to control how ConText processes text
to extract themes.

There are two types of linguistic settings that affect output to the theme extraction
system:

« case-conversion settings

« Gist and theme summary settings

Case-Conversion Settings

ConText provides two pre-defined linguistic setting labels for case-conversion.
These settings affect the processing of all text input to the theme extraction system:

Setting Description

GENERIC Default configuration. Parses mixed-case English text. Produces
theme output.

SA (Case Sensitive) Same as GENERIC except that ConText converts text that is
all-uppercase or all lower-case to mixed-case text before
performing theme analysis.

You can set linguistic settings labels with the CTX_LING.SET_SETTINGS_LABEL
procedure.

Gist and Theme Summary Settings

You can use the administration tool to create settings labels to control the following
options:

« size of Gist
« size of theme summary
« Gist generation method

When you use the administration tool to create your own settings, you must use
one of the ConText predefined settings as a starting point, depending on whether
your text is mixed-case, or all upper-case, or all lower-case.

ConText Linguistics 7-13

Linguistic Settings

See Also: For more information about using the administration
tool to create your own labels, see the help file for the
administration tool.

For more information about Gists and theme summaries, see
Chapter 7, "ConText Linguistics".

Enabling Linguistic Settings
To switch to a case-sensitive setting (SA) or to enable settings labels you create with
the administration tool, you must use the CTX_LING.SET_SETTINGS_LABEL
procedure.

Note: When you enable a setting other than the default, it affects
the way ConText processes text for only that session. To obtain the
same type of processing in a new session, you must re-enable the
settings with CTX_LING.SET_SETTINGS_LABEL.

See Also: For more information on how to specify linguistic
settings, see "Enabling Linguistic Settings" in Chapter 8, "Using
CTX_LING".

7-14 Oracle8 ConText Cartridge Application Developer’s Guide

8

Using CTX_LING

This chapter explains how to use the CTX_LING PL/SQL package in ConText to
generate the different types of theme output for English text. It also provides some
tips and suggestions for using the output to enhance query applications.

The topics covered in this chapter are:

« Overview

« Generating CTX_LING Output

« Combining Queries with CTX_LING Output
« Enabling Linguistic Settings

« Monitoring the Services Queue

« Specifying Completion and Error Procedures

« Logging Parse Information

Using CTX_LING 8-1

Overview

Overview

Figure 8-1

Document (Textkey),
Policy (Text or Theme) *

e

/

CTX_LING.REQUEST_THEMES

CTX_LING.REQUEST_GIST

List of
Themes

Theme
Output Table

1 To generate CTX_LING output, a policy

(text or theme) is required; however, an
index for the policy does not have to exist.
In addition, CTX_LING only uses the Data
Store and Filter preferences from the policy

Theme Extraction System

Theme Gist
Summaries

AN

Gist
Output Table

As shown in Figure 8-1, CTX_LING output consists of lists of themes, theme

8-2 Oracle8 ConText Cartridge Application Developer’s Guide

Overview

summaries, and Gists. ConText stores the output in either the theme or Gist table.
The following table describes the different output as well as how to generate each

type:

Table 8-1

Output Type

Description

How to Generate

List of Themes

Gist

Theme Summary

The main concepts of a
document.

You can generate list of themes
where each theme is a single
word or phrase or where each
theme is a hierarchical list of
parent themes.

Text in a document that best
represents what the document
is about as a whole.

You can generate either
paragraph or sentence level
Gists.

Text in a document that best
represent a given theme in the
document.

You can generate either
paragraph or sentence level
theme summaries.

Call CTX_LING.REQUEST_THEMES
with document textkey and a policy.

Use CTX_LING.SET_FULL_
THEMES to enable hierarchical list
of themes.

Call CTX_LING.REQUEST_GIST
with document textkey and a policy.
Specify GENERIC for the pov
parameter and specify either
PARAGRAPH or SENTENCE for the
glevel parameter.

Call CTX_LING.REQUEST_GIST
with document textkey and a policy.
Specify the required document theme
with the pov parameter and specify
either PARAGRAPH or SENTENCE
for the glevel parameter

In a query application, you can use CTX_LING output as an alternative to
presenting the entire text of a document. For example, you can present some form
of CTX_LING output next to each title when you present the hitlist to the user.

Likewise, after the user selects a document from the hitlist, you can also give the
user the option of viewing the Gist of a document in addition to or as an alternative
to viewing the entire text of a document.

You can use linguistic settings to enable case-conversion for all-uppercase or
all-lowercase text, or to change the default size of Gists and theme summaries.

See Also:

For more information about linguistic settings, see
"Enabling Linguistic Settings" in this chapter.

Using CTX_LING 8-3

Overview

You obtain CTX_LING output (list-of-themes, theme summaries, and gists) by
submitting a request using procedures in the CTX_LING PL/SQL package.
Table 8-1 describes which procedures to use.

To generate CTX_LING output, the documents must be stored in a column (either
directly or indirectly through a pathname to files), and a policy must be attached to
the column.

Note: The setup requirements of having text in a column and
having a policy for the column apply to ConText indexes
(text/theme) as well as ConText linguistics. The procedures for
storing text and creating policies are not discussed in this manual.

For more information about storing text in columns and creating
policies for the columns, see Oracle8 ConText Cartridge
Administrator’s Guide.

Linguistic Personality

Requests for CTX_LING output can only be processed by ConText servers running
with the Linguistic personality. A ConText server with the Linguistic personality
can also have other personalities in its personality mask. Starting up ConText
servers is the task of the ConText administrator, through the CTXSYS Oracle user.

See Also: For more information about the Linguistic personality
and starting ConText servers, see Oracle8 ConText Cartridge
Administrator’s Guide.

Services Queue

The Services Queue is used for managing requests for CTX_LING output. Such a
request is cached in memory until the requestor uses the CTX_LING.SUBMIT
procedure to add the request to the Services Queue. If more than one request for a
single document is cached in memory when the user submits the requests, ConText
stores all of the requests as a single batch request in the queue.

ConText servers with the Linguistic personality monitor the Service Queue for
requests and process the next request in the queue.

See Also: For more information about the Services Queue, see
Oracle8 ConText Cartridge Administrator’s Guide.

8-4 Oracle8 ConText Cartridge Application Developer’s Guide

List of Themes

List of Themes

A list of themes is a list of the main ideas of a document. With each theme, ConText
returns a weight that measures the strength of the theme relative to the other
themes in the document.

You can use a list of themes in a query application as an alternative to presenting
the entire text of a document after a query. When used with theme queries, a
presentation of a list of themes for a returned document can also help the user select
other documents with the same theme.

You generate a list of themes on a per document basis. To generate a list of themes,
use CTX_LING.REQUEST_THEMES. You can generate a list of themes in two ways:

« single themes

= theme hierarchies

Single Themes

You can generate up to fifty themes for each document, using the CTX_
LING.REQUEST_THEMES procedure. This procedure writes a single word or
phrase that represents the theme to a row in the theme table. The words or phrases
that represent the themes are normalized themes derived from the knowledge
catalog.

Theme Hierarchies

You can also generate each document theme (up to 50) accompanied by the
hierarchical list of parent themes as defined in the knowledge catalog. A theme is
related to its parent theme usually by an "is-associated-with" or "is-a-part-of"
relationship. For example, a theme of insects belongs to the hierarchical list of parent
themes defined as zoology, biology, hard sciences and science and technology.

To enable hierarchical list of themes output, you must use CTX_LING.SET_FULL _
THEMES before you call CTX_LING.REQUEST_THEMES.

Generating theme hierarchical information in the theme table helps to match themes
with theme summaries generated with CTX_LING.REQUEST_GIST.

See Also: For more information about generating themes, see
"Generating Lists of Themes, Theme Summaries, and Gists" in this
chapter.

Using CTX_LING 8-5

Theme Summaries

Theme Summaries

A theme summary for a document provides a short summary of the document from
a specific point-of-view. You can use theme summaries to present the relevant text
(paragraph or sentence) of documents selected by a theme query.

Because a theme summary provides a concise, focused summary for a particular
theme in a document, users of a query application can use a theme summary to
compare documents with similar themes.

You can generate two types of theme summaries:
« paragraph-level
= sentence-level

A paragraph-level theme summary consists of the paragraph or paragraphs that
best represent a single document theme. A sentence-level theme summary consists
of the sentence or sentences that best match a single document theme.

To create either paragraph-level or sentence-level theme summaries, use CTX_
LING.REQUEST_GIST.

You can control the size of theme summaries with linguistic settings.

Note: The size settings for theme summaries can only be modified
by creating custom setting labels in the administration tool.

See Also: For more information about how to generate theme
summaries, see "Generating Lists of Themes, Theme Summaries,
and Gists" in this chapter.

For more information on specifying linguistic settings, see
"Enabling Linguistic Settings" in this chapter.

8-6 Oracle8 ConText Cartridge Application Developer’s Guide

Gists

Gists

A Gist for a document provides a summary that reflects all of the themes in the
document. In a query application, you can use a Gist to give the user a overall
summary of a document returned in a hitlist.

You can generate two types of Gists:
« paragraph-level
= sentence-level

A paragraph-level Gist consists of the document paragraphs that best represent the
themes in a document as a whole. A sentence-level Gist is the sentence or sentences
that best represent the themes in a document as a whole.

To generate either a paragraph-level or sentence-level Gist, use CTX_
LING.REQUEST_GIST.

Note: The settings for Gist can only be modified by creating
custom setting configurations in the GUI administration tool.

See Also: For more information about how to generate Gists, see
"Generating Lists of Themes, Theme Summaries, and Gists" in this
chapter.

For more information on specifying linguistic settings, see
"Enabling Linguistic Settings" in this chapter.

Using CTX_LING 8-7

Generating CTX_LING Output

Generating CTX_LING Output

You can present CTX_LING output (lists of themes, theme summaries, and Gists) as
an alternative to presenting entire documents to users after a query. To generate
theme and Gist information, follow these steps:

« create CTX_LING output tables for the theme and Gist output.

« call either REQUEST_GIST or REQUEST_THEMES in the CTX_LING package
to generate the output.

« call CTX_LING.SUBMIT to submit the request to the services queue.

Note: For ConText to generate CTX_LING output, at least one
server must be running with the Linguistic (L) personality. For
more information about ConText Servers, see Oracle8 ConText
Cartridge Administrator’s Guide.

Creating Output Tables

To create a theme table called CTX_THEMES to store the list of themes from
REQUEST_THEMES, issue the following SQL statement:

create tabl e ctx_themes (

cid nunber ,

pk var char 2(64) ,

t here var char 2(2000) ,
wei ght nunber) ;

To create a Gist table called CTX_GIST to store the Gist or theme summaries from
REQUEST_GIST, issue the following SQL statement:

create table ctx_gist (

cid nunber ,

pk var char 2(64) ,
pov var char 2(80),
gi st I ong);

8-8 Oracle8 ConText Cartridge Application Developer’s Guide

Generating CTX_LING Output

Note: Because the combination of the CID (column ID) and PK
(primary key) columns in the output tables uniquely identify each
document in a text column, you can use the output tables to store
theme and Gist information for multiple text columns. You can also
choose to create multiple output tables to store the theme and Gist
information separately for each text column.

See Also: For more information about the structure of CTX_LING
output tables, see "CTX_LING Output Table Structures" in
Appendix A, "Result Tables".

Creating Composite Textkey Output Tables
To create a theme table whose textkey has two columns, issue the following SQL
statement:

create tabl e ctx_thenes

cid nunber ,

pkl var char 2(64) ,
pk2 var char 2(64) ,

t here var char 2(2000) ,
wei ght nunber) ;

To create a Gist table whose textkey has two columns, issue the following SQL
statement:

create table ctx_gist (

cid nunber ,

pkl var char 2(64) ,
pk2 var char 2(64) ,
pov var char 2(80),
gi st I ong);

See Also: For more information about the structure of CTX_LING
output tables, see "CTX_LING Output Table Structures" in
Appendix A, "Result Tables".

Using CTX_LING 8-9

Generating CTX_LING Output

Generating Lists of Themes, Theme Summaries, and Gists
Table 8-2 describes the different types of CTX_LING output and how to generate

each type.
Table 8-2

Output Type Description

How to Generate

List of Themes The main concepts of a
document.

You can generate list of
themes where each theme is a
single word or phrase or
where each theme is a
hierarchical list of parent
themes.

Gist Text in a document that best
represents what the
document is about as a
whole.

You can generate either
paragraph or sentence level
Gists.

Theme Summary Text in a document that best
represent a given theme in
the document.

You can generate either
paragraph or sentence level
theme summaries.

Call CTX_LING.REQUEST_THEMES
with document id.

Use CTX_LING.SET_FULL_THEMES to
enable hierarchical list of themes.

Call CTX_LING.REQUEST GIST.

Specify GENERIC for the pov parameter
and specify either paragraph or sentence
for the glevel parameter.

Call CTX_LING.REQUEST GIST.

Specify the required document theme
with the pov parameter and specify
either paragraph or sentence for the glevel
parameter.

To generate CTX_LING output for a document in a text column, you first call CTX_
LING.REQUEST_GISTor CTX_LING.REQUEST_THEMES as described in

Table 8-2, then call CTX_LING.SUBMIT to enter these requests in the services
gueue as a single transaction for that particular document.

Note: A policy must be defined for a column before you can
generate CTX_LING output for the documents in the column.

8-10 Oracle8 ConText Cartridge Application Developer’s Guide

Generating CTX_LING Output

The following example shows how to generate a list of themes and a
paragraph-level theme summary. It assumes the tables ctx_themes and ctx_gist have
already been created:

decl ar e handl e nunber;

begi n

ctx_ling.request_themes(CTXSYS.DOC_POLICY’,7039,CTXSYS.CTX_THEMES);

ctx_ling.request_gist’(CTXSYS.DOC_POLICY’,7039''CTXSYS.CTX_GIST,
'PARAGRAPH;, 'Oracle Corporation);

handle := ctx_ling.submit;
end;

The first call requests a list of themes from document 7039, stored in a column
identified by the DOC_POLICY policy. The second call requests a paragraph-level
theme summary for Oracle Corporation from the same document. The list of themes
and theme summary that ConText generates is stored in the CTX_LING output
tables (ctx_themes and ctx_gists), which were created beforehand.

The call to CTX_LING.SUBMIT submits the requests as one batch request to the
services queue and returns a handle which can be used to monitor the status of the
request. Because the two requests are submitted as one batch request, ConText
generates the theme and Gist output in only one linguistic processing cycle.

See Also: For more examples on generating Gists and theme
summaries, refer to CTX_LING.REQUEST_GIST in Chapter 10.

For more examples on generating lists of themes, refer to CTX_
LING.REQUEST_THEMES in Chapter 10.

Generating Theme Hierarchical Information

By default, ConText generates single themes when you request a list of themes with
CTX_LING.REQUEST_THEMES. To generate the hierarchical theme information,
you must set the full themes flag to TRUE with CTX_LING.SET_FULL_THEMES. A
hierarchical list-of-themes contains single themes accompanied by its parent themes
as defined in the knowledge catalog. A theme is related to its parent theme usually
by an "is-a-part-of" relationship.

Generating theme hierarchical information helps to match themes with the theme
summaries generated with CTX_LING.REQUEST_GIST.

The following examples illustrates the difference between single theme output and
hierarchical theme output.

Using CTX_LING 8-11

Generating CTX_LING Output

Examples

The following SQL statements generate and output single theme information for a
document identified by pk:

SQA > exec ctx_|ing.request_thenes(’ctx_thidx, pk, 'ctx_thenes’)
SQA > exec ctx_|ing.subnit (200)
SQ> sel ect thene fromctx_thenes;

NASDAQ - National Association of Securities Deal ers Autonated Quotati on System
st ocks

i ndexes

weakness

conposi tes
prices

franchi ses
shares
cellularity

decl i ning issues
neasur es

anal ysts

orc

pur chases

Wl | Street

| ows

16 rows sel ect ed.

8-12 Oracle8 ConText Cartridge Application Developer’s Guide

Generating CTX_LING Output

However, when you set the full themes flag to TRUE, ConText generates theme
hierarchical information:

SQA > exec ctx_|ing.set_full_themes(TRUE)

SQA > exec ctx_|ing.request_thenes(’ctx_thidx , pk, 'ctx_thenes’)
SQA > exec ctx_|ing.subnt (200)

SQ> sel ect thene fromctx_thenes

:stock market: NASDAQ - MNational Association of Securities Deal ers Automat ed
Quotation System

:stock market : st ocks:

:catal ogs, item zation:indexes:
:weakness, fatigue: weakness:

:conbi nation, m xture: conposites:
‘retail trade industry:prices:
:busi ness fundanent al s: franchi ses:
: possessi on, owner shi p: shar es:
ccellularity:

:stock market: declining i ssues:
ranal ysi s, eval uati on: neasur es:
ranal ysis, eval uation: anal ysts:
:arc

:general commer ce: pur chases:
:general investnent:Vll Sreet:
:bottons, under sides: | ows:

Using CTX_LING 8-13

Combining Queries with CTX_LING Output

Combining Queries with CTX_LING Output

Generating a list of themes is a good way of extending theme or text queries. For a
document in a query hitlist, the user can learn more about the document by reading
a list-of themes or Gist.

For example, suppose a theme query on music returns a hitlist containing 20
documents. If these documents are lengthy, the user might not want to read every
single document to find out what each is about. Rather than return to the user the
document text, you can return a list of themes or a Gist for each document for the
user to skim.

Implementation

Generally, you can generate CTX_LING output for a document set at two different
times:

« text/theme indexing time

« (querytime

Generating CTX_LING output at Indexing Time

You can generate CTX_LING output at indexing time; that is, generate output
before queries are issued against the document set. When you do so, the CTX_LING
output is returned to the user immediately, since the output was already created.

However, while the retrieval time for the CTX_LING output is good, the drawback
to this method is that you have to maintain a permanent theme or Gist output table,
using your own triggers to keep it updated. A permanent output table for an entire
document set also takes up system disk space.

Generating CTX_LING output at Query-Time

You could also generate CTX_LING output after executing a query. The advantage
of generating themes as needed is that the output table lasts only for the user
session; you need not maintain a permanent CTX_LING output table for all your
documents.

However, generating CTX_LING output takes time depending on the number of
documents, the length of the documents, and how your linguistic servers are
configured. A user might not want to wait a few minutes for a ConText query
application to process a large number of documents.

The example below shows how to generate CTX_LING output after a theme query.

8-14 Oracle8 ConText Cartridge Application Developer’s Guide

Combining Queries with CTX_LING Output

Example

The following PL/SQL code illustrates how to generate a list of themes for every
document in a hitlist table returned from a theme query on birds. (You can use the
same method to loop through any text table, once the text column table has a policy
attached to it.)

create or replace procedure get_thene |S
handl e nunber ;

cursor ctx cur is
sel ect textkey fromctx_tenp;

BEQ N
ctx_query.contains(DOWTHEME', 'birds’, ‘ctx_temp);

for ctx_cur_recin ctx_curloop
ctx_ling.request_themes(DOWPOLICY:, ctx_cur_rec.textkey, \
‘ctx_themes));
handle:= ctx_ling.submit;
end loop;

END;
/

This routine first declares a cursor that selects the rows from the ctx_temp result
table, to be populated with a theme query on birds.

The cursor FOR loop opens the cursor, executing the select statement that copies all
textkeys in the ctx_temp table to the cursor. The loop index ctx_cur_rec is implicitly
defined as a cursor record of type%ROWTYPE.

Every iteration of the loop calls the CTX_LING.REQUEST_THEMES procedure
with the document textkey derived from ctx_cur_rec. Each request is submitted to
the services queue with CTX_LING.SUBMIT, which returns a handle.

The theme output is written to the ctx_themes table.

Using CTX_LING 8-15

Enabling Linguistic Settings

Enabling Linguistic Settings

The default linguistic setting of GENERIC is active whenever you initialize
linguistics to create theme indexes, theme highlighting or to generate CTX_LING
output.

You can enable a linguistic setting other than the default (GENERIC) when you
want to process all lower-case or all upper-case text, or when you want to change
the sizes of Gists and theme summaries. When you enable a linguistic setting for a
session, the setting applies only to that session.

The settings for case-conversion (GENERIC or SA) are pre-defined. However, to
change the size of Gists and theme summaries, you must create a custom setting
with the administration tool.

To enable either a case-conversion setting or a custom setting created with the
administration tool, use the CTX_LING.SET_SETTINGS_LABEL procedure with a
setting label. For example, to process all-uppercase or all-lowercase text for your
current session:

execute ctx_ling.set _settings label('SAY)

The specified setting configuration is active for your session until SET_SETTINGS_
LABEL is called with a new setting configuration label.

You can use the CTX_LING.GET_SETTINGS_LABEL function to return the label for

the active setting configuration for the current session.

See Also: For more information about creating custom settings,
refer to the online help system for the administration tool.

8-16 Oracle8 ConText Cartridge Application Developer’s Guide

Monitoring the Services Queue

Monitoring the Services Queue

When you submit a request to the services queue with CTX_LING.SUBMIT, a
handle is returned. With this handle, you can use procedures in the CTX_SVC
package to perform the following tasks:

= monitor the status of requests in the queue

« remove pending requests (requests that have not yet been picked up by a
ConText server)

« clear requests with errors

Monitoring the Status of Requests

To monitor the status of requests in the Services Queue, use the CTX_
SVC.REQUEST_STATUS function. This function returns one of the following

statuses:

Status Meaning

PENDING The request has not yet been picked up by a ConText server.
RUNNING The request is being processed by a ConText server.

ERROR The request errored.

SUCCESS The request completed successfully.

Using CTX_LING 8-17

Monitoring the Services Queue

For example, the following PL/SQL procedure submits a request to generate
themes and gist for a document with an id of 49. It then checks the status of the
request.

CREATE CR REPLACE PROCEDURE (ENERATE_THEMES AS

v_Handl e nunber ;
v_Status varchar2(10);
v.Tine date;
v_Errors varchar2(60);

BEQ N
DBVE_QUTPUT. PUT_LI NE(’ Begi n gener at e_t henes procedure’);

ctx_ling.request _themes(’ CTX0DBEMD DEMD PQLICY' , 49, ' CTXDEMD ctx_t henes’);
ctx_ling. request _gist(’ CTXoBMQ DEMD PQLICY, '49, 'CIXDEMD ctx_gist’);
v_Handl e : = ctx_ling.subnmt;

DBVB_QUTPUT. PUT_LINE(v_Handl e) ;

v_Satus := ctx_svc.request_status(v_Handle, v_Time, v_ErorS);
DBVE QUJTPUT. PUT_LINE(v_Status);

DBVS QUTPUT. PUT_LINE(v_Tine);

DBVS QUJTPUT. PUT_LI NE(substr(v_Erors, 1, 20));

EXCEPTI ON
WHEN OTHERS THEN
DBMVB QUTPUT. PUT_LI NE(' Exception handling);

END GENERATE_THEMES,
/

This procedure binds the return value of REQUEST_STATUS to v_Status for the
linguistic request identified by v_Handle. The value for v_Handle is returned by the
call to CTX_LING.SUBMIT which placed the requests for the themes and gists in
the Services Queue.

Removing Pending Requests

To remove requests with a status of PENDING from the Services Queue, use the
CTX_SVC.CANCEL procedure.

For example:

execut e ctx_svc. cancel (3321)

8-18 Oracle8 ConText Cartridge Application Developer’s Guide

Monitoring the Services Queue

In this example, a pending request with handle 3321 is removed from the Services
Queue.

If a request has a status of RUNNING, ERROR, or SUCCESS, it cannot be removed
from the Services Queue.

Clearing Requests with Errors

To remove requests with a status of ERROR from the Services Queue, use the CTX_
SVC.CLEAR_ERROR procedure.

For example:

execut e ctx_svc. cl ear_error(3321)

In this example, a request with handle 3321 is removed from the Services Queue.

If a value of 0 (zero) is specified for the handle, all requests with a status of ERROR
are removed from the queue. If a request has a status of PENDING, RUNNING, or
SUCCESS, it cannot be removed from the queue using CLEAR_ERROR.

Using CTX_LING 8-19

Specifying Completion and Error Procedures

Specifying Completion and Error Procedures

To specify a procedure to be called when a linguistic request completes or errors,
use the SET_COMPLETION_CALLBACK and SET_ERROR_CALLBACK
procedures in CTX_LING. ConText invokes the procedure defined by SET_
COMPLETION_CALLBACK after it processes a linguistic request; ConText invokes
the procedure defined by SET_ERROR_CALLBACK when it encounters an error.

The following is an example of how to define and use a completion callback
procedure. This example is taken from genling.sql in the ctxling demonstration
provided with the ConText installation.

For every linguistic request processed, ling_comp_callback keeps track of the number
articles processed by decrementing num_docs, previously defined as the number of
articles in the table. The procedure also keeps track of any errors by incrementing
num_errors.

create or replace procedure LI NG COMP_CALLBACK
p_handl e i n nunber,
p_status in varchar2,
p_errors in varchar?2
) IS
| total nunber;
| _pk var char 2(64) ;
BEQ N

-- decrenent the count in the tracking table
updat e Iing_tracking set numdocs = numdocs - 1;
-- if the request errored, nark the errors in the pending table
IF (p_status = 'ERROR) then
update ling_tracking set num_enTos = num_errors + 1;
endIF;

Ccommit;

END;
/

8-20 Oracle8 ConText Cartridge Application Developer’s Guide

Specifying Completion and Error Procedures

The following code is an anonymous PL/SQL block that sets the linguistic
completion callback procedure to ling_comp_callback and then generates CTX_LING
output for every document in the articles table:

decl are
cursor cl is select articleid
fromarticles;
| _handl e nunber;

begi n
-- set the conpletion cal | back procdure to keep the pending table
-- in sync with the nunber of docunents processed (conpl eted requests)

-- and the nunber of errored requests.

ctx_ling.set_completion_callback(LING_COMP_CALLBACK);
end;

- loop through all articles in the article table, requesting themes
—and gists

for crecin c1 loop

ctx_ling.request _themes(DEMO_POLICY’, crec.article_id, ’ARTICLE_THEMES));
ctx_ling.request _gist'DEMO_POLICY’, crec.article_id, ’ARTICLE_GISTS));
|_handle := ctx_ling.submit;

end loop;

end;

Using CTX_LING 8-21

Logging Parse Information

Logging Parse Information

At start-up of a ConText server, the logging of linguistic parse information is
disabled by default.

To enable logging of the parse information generated by ConText linguistics during
a session, use the CTX_LING.SET_LOG_PARSE procedure.

For example:
execute ctx_ling.set log parse(TRUE)
Once you enable parse logging for a session, it is active until you explicitly disable it

during the session. You can use the CTX_LING.GET_LOG_PARSE function to know
whether parse logging is enabled or disabled for the session.

Attention: Parse logging is a useful feature if you are having
difficulty generating CTX_LING output and you want to monitor
how ConText is parsing your documents; however, parse logging
may affect performance considerably. As such, you should only
enable parse logging if you encounter problems with generating
CTX_LING output.

8-22 Oracle8 ConText Cartridge Application Developer’s Guide

9

SQL Functions

This chapter contains details for using the ConText SQL functions in SELECT
statements to perform one-step queries.

The following topics are covered in this chapter:
« Query Functions

« SELECT Statement

SQL Functions 9-1

Query Functions

Query Functions

Prerequisites

In addition to the functions in the PL/SQL packages, ConText provides the
following functions for performing one-step queries in SQL*Plus:

Name Description

CONTAINS Specifies the query expression and SCORE label for a one-step query.

SCORE Returns the score generated by CONTAINS.

Before one-step queries can be executed, the database in which the text resides must
be text enabled by setting the ConText initialization parameter TEXT_ENABLE =
TRUE. This can be done in two ways:

» setting it in the initsid.ora system initialization file

» using the ALTER SESSION command

See Also: For more information about initialization parameters
and the initsid.ora file, see Oracle8 Administrator’s Guide.

For more information about using the ALTER SESSION command,
see Oracle8 SQL Reference.

9-2 Oracle8 ConText Cartridge Application Developer’s Guide

Query Functions

CONTAINS

Syntax

Example

Notes

Use the CONTAINS function in the WHERE clause of a SELECT statement to
specify the query expression for a one-step query. You can also define a numeric
label for the scores generated by the function so that the SCORE function can be
used in other clauses of the SELECT statement.

QONTAI NS(
col umm_i d NUMBER,
text_query VARCHAR?,
| abel NUMBER
pol _hi nt VARCHAR?)
column_id

Specify the text column to be searched in the table.

text_query
Specify the query expression for the text or theme to search for in column_id.

See Also: For more information about how to write query
expressions, see Chapter 3, "Understanding Query Expressions".

label
Specify the label that identifies the score generated by the CONTAINS function
(required only if CONTAINS called more than once in a query).

pol_hint
Specify which policy to use for text columns that have multiple policies.

See the SELECT statement syntax in this chapter.

Each CONTAINS function in a query produces a separate set of score values. When
there are multiple CONTAINS functions, each CONTAINS function must have a
label specified.

SQL Functions 9-3

Query Functions

If only one CONTAINS function is used in a SELECT statement, the label parameter
is not required in the CONTAINS function; however, a SCORE label value of zero
(0) is automatically generated. When the SCORE function is call (e.g. in a SELECT
clause), the function must reference the label value.

The CONTAINS function may only be used in the WHERE clause of a SELECT
statement; it may not be issued in the WHERE clause of an UPDATE, INSERT or
DELETE statement.

In order to specify pol_hint, you must specify label as a place holder. pol_hint must
name a policy that is indexed either by text or theme. Do not specify user.policy
name notation for pol_hint; specify only policy name, otherwise ConText will raise an
error. You cannot specify bind variables for pol_hint.

When you do not specify pol_hint and column_id has more than one indexed policy
attached to it, ConText uses the policy whose name is lexicographically first. For
example, if a text column had policies named POL1 and POL2 associated with it
and you did not specify pol_hint, ConText uses POL1.

Suggestion: Oracle Corporation does not recommend relying on
ConText to select a policy when you perform queries on columns
with multiple policies. In this situation, always specify a policy
name in pol_hint.

9-4 Oracle8 ConText Cartridge Application Developer’s Guide

Query Functions

SCORE

Syntax

Notes

Example

The SCORE function returns the score values produced by the CONTAINS function
in a one-step query.

SOORE(| abel NUVBER)

label
Identifies the scores produced by a query.

The SCORE function may be used in any of these clauses: SELECT, ORDER BY, or
GROUP BY.

The value specified for LABEL is the same value defined by the LABEL argument in
the CONTAINS function that generated the scores and is referenced by the SCORE
function in all other clauses.

If only one CONTAINS function is used in a SELECT statement, the LABEL
parameter is not required in the CONTAINS clause, but a SCORE label value of zero
(0) will be generated. All other clauses must then refer to SCORE(0) or SCORE(*).

SH ECT SOCRE(10), title FROM docunent s
WHERE CONTAINS(text, 'dog’, 10) >0
ORDER BY SCORE(10);

This example returns the score and title of all articles (documents) in the
DOCUMENTS.TEXT column that contain the word dog, sorted by score.

SQL Functions 9-5

SELECT Statement

SELECT Statement

You perform one-step queries in SQL*Plus using the SELECT statement. The
following syntax illustrates how the CONTAINS and SCORE query functions can
be used in a SELECT statement.

Syntax
SH ECT SOORE(| abel ;), SORE(| abel ,), ...SORE(I abel),
col um; colum, ... colum,
FROM t abl e[@bl i nk]
WHERE CONTAINS (column_id, text_query’, label 1, pohint ~ 1)>0
CONTAINS (column_id, 'text_query, label 2, pohint ;)>0
CONTAINS (column_id, 'text_query, label n, bohint)>0

ORDER BY SCORE(label)

label,
Specify the numeric label that identifies the specific CONTAINS function that
generated the score (required only when CONTAINS is called more than once in a

query).

column,

Specify the columns to be returned by the query. Each CONTAINS clause produces
avirtual SCORE column that can be referenced by its numeric label (label,) and
included in the query output.

table
Specify the name of the table that contains the text column to be searched.

Note: If a database link has been created for a remote database,
the table specified in a one-step query can reside in the remote
database. The table name must include the database link (@dblink)
to access the remote table.

For more information about database links and remote queries, see
Oracle8 Concepts.

column_id
Specify the name of the text column.

9-6 Oracle8 ConText Cartridge Application Developer’s Guide

SELECT Statement

Notes

text_query
Specify the query expression to be used to return the relevant text.

pol_hint,
Specify the policy to be used when column_id has multiple policies.

The CONTAINS function must always be followed by the > 0 syntax which
specifies that the score value calculated by the CONTAINS function must be greater
than zero for the row to be selected.

Note: Other comparison operators and other numeric values can
be used to satisfy this requirement and select rows with specific
SCORE values; however, this method of refining the selection
criteria is significantly less efficient than using the threshold and
weight query expression operators.

The following example returns the names of all employees who have listed trumpet
in their resume or who have been in an orchestra, sorted by the value of the score
for the first CONTAINS (trumpet) and the second CONTAINS (orchestra).

SH ECT enpl oyee_nane, SOCRE10), SOCRE 20)
FRCM enpl oyee_dat abase

WHERE CONTAINS (emp.resume, ‘rumpet, 10) >0 OR
CONTAINS (emp.history, ‘orchestra’, 20) >0

ORDER BY NVL(SCORE(10),0), NVL(SCORE(20),0);

SQL Functions 9-7

SELECT Statement

9-8 Oracle8 ConText Cartridge Application Developer’s Guide

10

PL/SQL Packages

This chapter describes the ConText Option PL/SQL packages you use to develop
applications. The following topics are described in this chapter are:

Developing with ConText PL/SQL Packages
CTX_QUERY: Query and Highlighting
CTX_LING: Linguistics

CTX_SVC: Services Queue Administration

PL/SQL Packages 10-1

Developing with ConText PL/SQL Packages

Developing with ConText PL/SQL Packages

Before you can develop your own PL/SQL stored procedures and triggers that call
the procedures in the ConText packages described in this chapter, your ConText
administrator must explicitly grant EXECUTE privileges to you for each ConText
PL/SQL package you use.

See Also: For more information about granting execute
privileges, see Oracle8 ConText Cartridge Administrator’s Guide.

For more information about creating and invoking PL/SQL
packages, see Oracle8 Application Developer’s Guide.

10-2 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_QUERY: Query and Highlighting

CTX_QUERY: Query and Highlighting

The CTX_QUERY package contains stored procedures and functions that enable
processing of two-step queries and highlighting for documents returned by queries.

The package includes the following procedures and functions:

Name Description

CLOSE_CON Closes the in-memory query cursor.

CONTAINS Selects documents in the text column for a policy and writes the
results to a specified result table.

COUNT_HITS Performs a query and returns the number of hits without returning a
hitlist.

COUNT_LAST Returns the number of hits retrieved in the last call to CONTAINS or
OPEN_CON.

FEEDBACK Generates query expression feedback information.

FETCH_HIT Retrieves hits stored in query buffer by OPEN_CON.

GETTAB Gets tables from the result table pool.

HIGHLIGHT Provides filtering and/or highlighting for documents returned by a
query.

OPEN_CON Opens a cursor and executes an in-memory query.

PKDECODE Decodes a composite textkey string (value).

PKENCODE Encodes a composite textkey string (value).

PURGE_SQE Deletes all SQEs from SQE tables.

REFRESH_SQE Re-executes an SQE and updates the results stored in the SQE tables.

RELTAB Releases tables allocated by GETTAB.

REMOVE_SQE Removes a specified SQE from the SQL tables.

STORE_SQE Executes a query and stores the results in stored query expression

tables.

PL/SQL Packages 10-3

CTX_QUERY: Query and Highlighting

CLOSE_CON

The CTX_QUERY.CLOSE_CON procedure closes a cursor opened by CTX_
QUERY.OPEN_CON. The CLOSE_CON procedure is used in in-memory queries
and called after CTX_QUERY.FETCH_HIT, which retrieves the desired number of

hits.
Syntax
CTX_QUERY. CLCBE_ OON(curid NUMBER) ;
curid
Specify the cursor to be closed.
Examples

See CTX_QUERY.FETCH_HIT.

10-4 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_QUERY: Query and Highlighting

CONTAINS

Syntax

The CTX_QUERY.CONTAINS procedure selects documents from a text column
that match the specified search criteria, generates scores for each document, and
writes the results to a specified hitlist result table.

CTX_QUERY. QONTAI N(
pol i cy_nane[@bl i nk] | N VARCHAR?,

text_query I N VARGHAR2,

restab I N VARHAR?,

shar el evel IN NOMBER DEFAULT O,
query_id I N NUVBER

cursor_id I N NUMVBER,

paral | el I N NUMBER,

struct _query IN VARCHAR?) ;

policy_name
Specify the policy that identifies the text column to be searched.

If a database link to a remote database has been created, the database link can be
specified as part of the policy name (using the syntax shown) to reference a policy
in the remote database.

text_query
Specify the query expression to be used as criteria for selecting rows.

See Also: For more information about how to write query
expressions, see Chapter 3, "Understanding Query Expressions".

restab
Specify the name of the hitlist table that stores intermediate results returned by
CONTAINS.

sharelevel
Specify whether the results table is shared by multiple CONTAINS. Specify 0 for
exclusive use and 1 for shared use. This parameter defaults to 0 (single-use).

When you specify 0, the system automatically truncates the result table before the
query. In this case, conid is set to NULL and query_id is ignored.

PL/SQL Packages 10-5

CTX_QUERY: Query and Highlighting

Examples

Notes

When you specify 1 for multiple use, you must give a query_id to distinguish the
results in the shared result table. Because the system does not truncate shared result
tables, you must get rid of results from a previous CONTAINS by deleting from the
result table where conid = query_id before you issue the query.

query_id
Specify the ID used to identify query results returned by a CONTAINS procedure
when more than one CONTAINS uses the same result table (sharelevel = 1).

cursor_id
Not currently used.

parallel
Specify the number of ConText servers (with the Query personality) which execute
a query and write the results to restab.

struct_query

Specify the structured WHERE condition related to text_query. This WHERE
condition can include a subquery that selects rows from a structured data column in
another table.

exec ctx_query.contains(my_pol’, ‘catjdog’,CTX_TEMP, 1, 10)
exec ctx_query.contains(my_pol@db1’, 'oracle’,CTX_DB1 TEMP’)

In the first example, the results of the query for the term cat or dog are stored in the
ctx_temp result table. The result table is shared because sharelevel is specified as 1.
The results in ctx_temp are identified by query_id of 10.

In the second example, my_pol exists in a remote database that has a database link
named DB1. The result table, ctx_dbl_temp exists in the same remote database.

The parallel parameter does not support the max (:) and first/next (#) query
expression operators. When you specify either operator in the query expression, the
query is processed by a single ConText server, regardless of the specified parallel
level.

sharelevel determines whether the hitlist result table is shared by multiple
CONTAINS procedures.

10-6 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_QUERY: Query and Highlighting

If the result table (restab) is used to hold the results of multiple CONTAINS, a
sharelevel must be specified by each CONTAINS so that the results of previous
CONTAINS are not truncated.

If a query is performed on a policy in a remote database, the result table specified
by restab must exist in the remote database.

In struct_query, you can use any predicate, value expression or subquery except
USERENV function, CONTAINS function, SCORE function, DISPLAY function and
the ROWNUM pseudo column.

If the user who includes a structured query in a two-step query is not the owner of
the table containing the structured and text columns, the user must have SELECT
privilege with GRANT OPTION on the table. In addition, if the object being queried
is a view, the user must have SELECT privilege with GRANT OPTION on the base
table for the view.

See Also: For more information about SELECT privilege with
GRANT OPTION, see Oracle8 SQL Reference.

PL/SQL Packages 10-7

CTX_QUERY: Query

and Highlighting

COUNT_HITS

Syntax

Returns

The CTX_QUERY.COUNT_HITS function executes a query for a policy and
returns the number of hits for the query. It does not populate a result table with
query results.

COUNT_HITS can be called in two modes, estimate and exact. The results in
estimate mode may be inaccurate; however, the results are generally returned faster
than in exact mode.

CTX_QUERY. CONT_H TY
pol i cy_name[@bl i nk] | N VARCHAR?,

text_query I N VARCHAR2,
struct _query I'N VARCHAR2,
exact I N BOOLEAN DEFAULT FALSE)

RETURN NUMBER

policy_name[@dblink]
Specify the name of the policy that defines the column to be searched.

If a database link to a remote database has been created, the database link can be
specified as part of the policy name (using the syntax shown) to reference a policy
in the remote database.

text_query
Specify the query expression to be used as criteria for counting returned hits (rows)

struct_query
Specify the structured where condition related to text_query.

exact

Specify TRUE to obtain an exact count of the documents in the hitlist. Specify
FALSE to obtain an estimate count. The result returned when you request an
estimate count includes hits for documents that have been deleted or updated. The
default is FALSE.

NUMBER that represents the number of hits.

10-8 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_QUERY: Query and Highlighting

Examples

Notes

decl are count nunber;

begi n

count := ctx_query.count_hits(my_pol, 'dogjcat’, TRUE);
dbms_output.put_line(No. of Docs with dog or cat’);
dbms_output.put_line(count);

end;

Counting query hits can be performed in two modes: estimate and exact. The
modes are based on the method ConText uses to record deleted documents in a text
index.

In exact mode, hits are returned only for those documents that satisfy the conditions
of the query expression and are currently in the text column of the table.

In estimate mode, hits may be included for documents that satisfy the query
condition, but have been deleted from the text column or have been updated so that
they no longer satisfy the query expression. This can occur when the text index for
the column has not been optimized and the internal document IDs are still present
in the index.

In general, the inaccuracy of the results returned by COUNT_HITS in estimate
mode is proportional to the amount of DML that has been performed on a text
column.

Note: If the index being queried has been optimized and no
further DML has been performed on the text column, estimate
mode will return accurate results.

See Also: For more information about text indexing, DML, and
optimization, see Oracle8 ConText Cartridge Administrator’s Guide.

PL/SQL Packages 10-9

CTX_QUERY: Query and Highlighting

COUNT LAST

Use the CTX_QUERY.COUNT _LAST function to obtain the number of hits after
executing CONTAINS in a two-step query or OPEN_CON in an in-memory query.
The alternative method of obtaining the number of hits is to run the query once to
get the row count using CTX_QUERY.COUNT_HITS and then run the query again
to get the query results.

Syntax
CTX_QUERY. GOUNT_LAST RETURN NUMBER

Returns
The number of hits obtained from the last call to CTX_QUERY.CONTAINS or CTX_
QUERY.OPEN_CON.

Examples

In-memory Query
decl are
curid nunber;
count nunber;
begi n
curid := ctx_query.open_con(mypol, 'me’, score_sorted=>true);
count := ctx_query.count_last;
end

Two-step Query

declare
count number;

begin
ctx_query.contains(mypol, 'dog’, 'ctx_temp’);
count := ctx_query.count_last;

end

10-10 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_QUERY: Query and Highlighting

Notes

With two-step queries, COUNT_LAST always returns an exact count.

With in-memory queries, COUNT_LAST returns an exact count except when you
include a structured condition, in which case it returns an estimate. This is because
COUNT_LAST ignores the structured condition, specified in the struct_query
parameter of OPEN_CON, when computing number of hits in an in-memory query.

For two-step queries, the COUNT_LAST function is not meant to replace calling
COUNT_HITS, which is always faster than running the query. However, in the case
where you want to process all hits in a two-step query, issuing the query with
CONTAINS and then calling COUNT _LAST is more efficient than calling COUNT _
HITS and then calling CONTAINS.

With in-memory queries, issuing OPEN_CON and then calling COUNT_LAST is
always a more efficient way to obtain an estimate of the query hits over calling
COUNT_HITS and then calling OPEN_CON, since COUNT_LAST returns a
number faster than COUNT_HITS.

PL/SQL Packages 10-11

CTX_QUERY: Query and Highlighting

FEEDBACK

Syntax

Use CTX_QUERY.FEEDBACK to generate feedback information for query
expressions. This procedure creates a graphical representation of the ConText parse
tree and stores the information in a feedback table.

CTX_QUERY. FEEEDRACK(

pol i cy_nane I N VARCHAR?,

text _query I N VARCHAR2,

feedback table | N VARCHAR?,

shar el evel I N NUMBER DEFALLT O,

f eedback_id I N VARCHAR2 DEFAULT NULL);

policy_name
Specify the policy that identifies the text column to be queried.

text_query
Specify the query expression to be used as criteria for selecting rows.

feedback_table
Specify the name of the feedback table to store representation of the ConText parse
tree for text_query.

sharelevel
Specify whether feedback_table is shared by multiple FEEDBACK calls. Specify 0 for
exclusive use and 1 for shared use. This parameter defaults to 0 (single-use).

When you specify 0, the system automatically truncates the feedback table before
the next call to FEEDBACK.

When you specify 1 for shared use, Context does not truncate the feedback table.
Only results with the same feedback_id are updated. When no results with the same
feedback_id exist, then new results are added to the feedback table.

feedback_id

Specify a name that identifies the feedback results returned by a FEEDBACK
procedure when more than one FEEDBACK call uses the same shared feedback
table. This parameter defaults to NULL.

10-12 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_QUERY: Query and Highlighting

Notes

The user must have at least INSERT and DELETE privileges on the feedback table.
You must have at least CTXUSER role to call FEEDBACK.

When you include a wildcard, fuzzy, or soundex operator in text_query, ConText
looks at the index tables to determine the expansion.

When you include the SQE operator in text_query, the expression feedback
(expansion of the SQE expression) is based on the current state of the index and will
take into account any inserts, updates, or deletes made to the base table; however,
unlike a call to CONTAINS, the SQE is not updated or refreshed as a result of the
call to FEEDBACK.

Wildcard, fuzzy (?), and soundex (!) expression feedback does not account for lazy
deletes.

You cannot use FEEDBACK with remote queries.

To use the FEEDBACK procedure, you must have at least one Q server running.

See Also: For more information on using the FEEDBACK
procedure, see Chapter 5, "Query Expression Feedback".

PL/SQL Packages 10-13

CTX_QUERY: Query and Highlighting

FETCH_HIT

Syntax

Returns

The CTX_QUERY.FETCH_HIT function returns a hit stored in the query buffer
created by CTX_QUERY.OPEN_CON. You must call FETCH_HIT once for each hit
in the buffer until the desired number of hits is returned or the buffer is empty.

CTX_QUERY. FETCH H T(
curid IN NUMBER

pk QJT VARCHAR?,
score QJT NUMBER

col 1 QJT VARCHAR?,
col 2 QJT VARCHAR?,
col 3 QJT VARCHAR?,
col 4 QJT VARCHAR?,
col 5 QUT VARCAHR?) ;

curid
Specify the cursor opened by CTX_QUERY.OPEN_CON.

pk

Returns the primary key of the document. When the primary key is a composite
textkey, PK is returned as encoded string. In this situation, use CTX_
QUERY.PKDECODE to access an individual textkey column.

score
Returns the score of the document.

coll-5
Returns additional columns for the document.

NUMBER that indicates whether hit was retrieved: 0 if no hits fetched, 1 if hit was
fetched.

10-14 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_QUERY: Query and Highlighting

Example

declare
score char(5);
pk char(5);
curid nunber;
title char(256);
begi n
dbns_out put . enabl e(100000) ;
curid : = ctx_query. open_con(
policy_name => 'MY_POL,
text_query => 'dog,
score_sorted => true,
other_cols => 'title’);
while (ctx_query.fetch_hit(curid, pk, score, titie)>0)
loop
dbms_output.put_line(score||pk|substr(tite,1,50));
end loop;
ctx_query.close_con(curid);

end;

Notes

If the primary key PK is a composite textkey, use CTX_QUERY.PKDECODE to

access the individual columns of the textkey.

PL/SQL Packages 10-15

CTX_QUERY: Query and Highlighting

GETTAB
CTX_QUERY.GETTAB procedure allocates result tables from the result table pool to
be used to store results from CTX_QUERY.HIGHLIGHT or CTX_
QUERY.CONTAINS.
If no result table of the specified type exists, GETTAB creates a new table.
Syntax
CTX_QUERY. GETTAR(
type IN VARCHARZ,
tab QUr VARGHARZ,
tk_count IN NUMBER DEFAULT 1);
type

Specify the type of table to be allocated for text processing. This parameter must be
fully qualified with the PL/SQL package name (CTX_QUERY). The type of table
you specify can be one of the following:

Table Type Description Stores Results For

DOCTAB Result table which is used to store the marked-up text MUTAB or
(MUTAB) or plain ASCII text (PLAINTAB) returned PLAINTAB
by CTX_QUERY.HIGHLIGHT

RDOCTAB Result table which is used to store the non-filtered NOFILTAB or
documents (NOFILTAB) or ICF output (ICFTAB) ICFTAB
returned by CTX_QUERY.HIGHLIGHT

HIGHTAB Result table which is used to store the textkey, offsets, HIGHTAB
and lengths of query terms to be highlighted in
documents (returned by CTX_QUERY.HIGHLIGHT)

HITTAB Result table which is used to store the hitlist data Hitlist Result Table.
returned by CTX_QUERY.CONTAINS

See Also: For more information about the structure of result
tables, see Appendix A, "Result Tables".

For more information about using HIGHLIGHT, see Chapter 6,
"Document Presentation: Highlighting".

10-16 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_QUERY: Query and Highlighting

Examples

Notes

tab
Returns the name of the allocated table.

tk_count
Specify the number of textkeys in the allocated result table. This parameter applies
only to HITTAB tables. The tk_count parameter defaults to 1.

set serveroutput on

decl are
nytab varchar2(32) ;
begi n
ctx_query. gettab(CrX QUERY. H TTAB, nytab, 3) ;
dbns_output. put_line(’'table : '||nytab) ;
end ;

This example returns a HITTAB result table that has a three-column composite
textkey. The name of the table is then output.

The schema for the returned table is: TEXTKEY, TEXTKEY2, TEXTKEY3, SCORE,
CONID.

The tk_count parameter applies only to HITTAB tables; it has no effect on other table
types.

PL/SQL Packages 10-17

CTX_QUERY: Query and Highlighting

HIGHLIGHT
THE CTX_QUERY.HIGHLIGHT procedure takes a query specification and a
document textkey and returns information that you can use to display the
document with or without the query terms highlighted. This procedure is usually
used after a query, from which you identify the document to be processed.
Syntax
CTX_QUERY. H GHLI GHT(
cspec I'N VARCHAR?,
t ext key I N VARHAR?,
query IN VARGHAR2 DEFAULT NULL,
id N NUOMBER DEFAULT NULL,

nofilttab I N VARCHARZ DEFALLT NULL,
pl ai ntab IN VARCHAR2 DEFAULT NULL,

hi ght ab IN VARCHAR2 DEFALLT NULL,
icftab IN VARCHAR2 DEFALLT NULL,
nut ab IN VARCHAR2 DEFALLT NULL,
starttag IN VARCHAR?2 DEFALLT NULL,
endt ag IN VARCHAR2 DEFALLT NULL);

cspec
Specify the policy name for the column in which the document is stored.

textkey
Specify the unique identifier (usually the primary key) for the document.

The textkey parameter can be a single column textkey or an encoded specification
for a composite (multiple column) textkey.

query
Specify the original query expression used to retrieve the document. If NULL, no
highlights are generated.

If query includes wildcards, stemming, fuzzy matching which result in stopwords
being returned, HIGHLIGHT does not highlight the stopwords.

If query contains a result set operator (threshold, max, or first/next), the operator is
ignored. The HIGHLIGHT procedure always returns highlight information for the
entire result set.

10-18 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_QUERY: Query and Highlighting

id
Specify the identifier to be used in the results tables to identify the rows that were
returned by this procedure call. If NULL, the result tables are truncated.

nofilttab
Specify name of the RDOCTAB table where unfiltered document is stored. If
NULL, the unfiltered version is not returned.

plaintab
Specify the name of the DOCTAB table where plain text version of document is
stored. If NULL, the plain text is not returned.

hightab
Specify the name of the HIGHTAB table where highlight information for the
document is stored. If NULL, the highlight information is not returned.

icftab

Used internally by the Windows 32-bit viewer to specify where the ICF output
required for WYSIWYG viewing of documents is stored. If NULL, the ICF is not
returned.

mutab
Specify table where marked-up, plain text version of document is stored. If NULL,
marked-up version is not returned.

starttag
Specify the markup to be inserted by HIGHLIGHT for indicating the start of a
highlighted term.

The default for ASCII and formatted documents is’<<<’.
The default for HTML documents filtered using an external filter is’<<<’.

The default for HTML documents filtered using the internal HTML filter is the
HTML tag used to indicate the beginning of a font change (i.e.).

endtag
Specify the markup to be inserted by HIGHLIGHT for indicating the end of a
highlighted term.

The default for ASCII and formatted documents is’>>>’.

The default for HTML documents filtered using an external filter is’>>>’.

PL/SQL Packages 10-19

CTX_QUERY: Query and Highlighting

Examples

Notes

The default for HTML documents filtered using the internal HTML filter is the
HTML tag used to indicate the end of a font change (i.e.).

begi n
ctx_query.highlight(cspec =>'2354’,

textkey =>"23,
query =>'dogjcat,
nofitab =>'FORMATTED_TEXT,
hightab =>"HIGHLIGHTED_TEXT,
Starttag => '<<,
endtag => ">*>");

end;

Before CTX_QUERY.HIGHLIGHT is called, the highlight/display result tables
(NOFILTAB, PLAINTAB, HIGHTAB, MUTAB, and ICFTAB) for the desired output
must be created, either manually or using the PL/SQL procedure CTX_
QUERY.GETTAB.

If the query argument is not specified or is set to NULL, highlighting is not
generated.

If query includes wildcards, stemming, fuzzy matching which result in stopwords
being returned, HIGHLIGHT does not highlight the stopwords.

If the query expression gquery contains a result set operator (threshold, max, or
first/next), the operator is ignored. Highlight always returns highlight information
for the entire result set.

When textkey is a composite textkey, you must encode the composite textkey string
using the CTX_QUERY.PKENCODE procedure.

If any of the table name parameters are omitted or set to NULL, the respective table
is not populated.

If the id argument is not specified or if id is set to NULL, each specified table has all
its rows deleted and the session-id is used as the ID for all inserted rows. If an id is
specified, all rows with the same id are deleted from the respective tables before
new rows are generated with that id by the HIGHLIGHT procedure.

For HTML documents filtered through the internal HTML filter, the plain text
output generated for MUTAB retains the HTML tags from the original document.

10-20 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_QUERY: Query and Highlighting

For HTML documents filtered through an external filter, HIGHLIGHT removes all
the HTML tags and stores only the plain (ASCII) marked-up text for the document
in MUTAB.

See Also: For more information about internal and external
filters, see Oracle8 ConText Cartridge Administrator’s Guide.

For more information about the structure of result tables, see
Appendix A, "Result Tables".

PL/SQL Packages 10-21

CTX_QUERY: Query and Highlighting

OPEN_CON
The CTX_QUERY.OPEN_CON function opens a cursor to a query buffer and
executes a query using the specified query expression. The results of the query are
stored in the buffer and retrieved using CTX_QUERY.FETCH_HIT.
Syntax
CTX_QUERY. CPEN OCN(
pol i cy_name[@bl i nk] I N VARCHAR?,
text_query I N VARCHAR?Z,
score_sorted I N BOOLEAN DEFAULT FALSE
other_col s I N VARCHAR?,
struct_query I N VARCHAR?)

RETURN NUMBER

policy_name[@dblink]
Specify the name of the policy that defines the column to be searched.

If a database link to a remote database has been created, the database link can be
specified as part of the policy name (using the syntax shown) to reference a policy
in the remote database.

text_query
Specify the query expression to be used as criteria for selecting rows.

score_sorted
Specify whether the results are sorted by score.

The default is FALSE.

other_cols
Specify a comma separated list of the table columns (up to 5) to be displayed, in
addition to document ID and score, in the hitlist.

struct_query

Specify the structured WHERE condition related to text_query. This WHERE
condition can include a subquery that selects rows from a structured data column in
another table.

10-22 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_QUERY: Query and Highlighting

Returns
Cursor ID.

Examples
declare
cid nunber;
begi n
cid :=ctx_query.open_con(MYPOL’, 'dog’, score_sorted =>true, struct_query
=>'id <900);
end;

In this example, the structured condition specifies that ConText must return the
documents that contain dog and where the document id is greater than 900.

See Also: CTX_QUERY.FETCH_HIT.

PL/SQL Packages 10-23

CTX_QUERY: Query and Highlighting

PKDECODE

Syntax

Returns

Examples

The CTX_QUERY.PKDECODE function extracts and returns a composite textkey
element from a composite textkey string.

This function is useful for in-memory queries when querying against a composite
textkey table. Use PKDECODE to extract textkey columns from the primary key
returned by CTX_QUERY.FETCH_HIT.

CTX_QUERY. PKDEQDE(
encoded tk [|IN VARCHAR2,

whi ch I N NUMBER)
RETURN VARCHAR?;

encoded_tk
Specify the encoded composite textkey string

which

Specify the ordinal position of which primary key to extract from encoded_tk. When
which is 0 or a number greater than the number of textkeys in encoded_tk, encoded_tk
is returned.

String that represents the decoded value of the composite textkey.

decl are pkey varchar?2(64);

begi n

pkey := ctx_query.pkdecode(pl,p2,p3, 2)
pkey := ctx_query.pkdecode(pl,p2,p3, 0)
pkey := ctx_query.pkdecode(pl,p2,p3, 5)
end;

In this example, the value for the textkey is p1,p2,p3. The first call to PKDECODE
returns the value p2. The second and third calls to PKDECODE specify ordinal
positions that don’t exist, thus these calls return the same value, which is the
concatenated value p1,p2,p3.

10-24 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_QUERY: Query and Highlighting

PKENCODE

The CTX_QUERY.PKENCODE function converts a composite textkey list into a
single string and returns the string.

The string created by PKENCODE can be used as the primary key parameter PK in
other ConText procedures, such as CTX_LING.REQUEST_GIST.

Syntax
CTX_QUERY. PKENCCDE(
pkl I'N VARCHAR?,
pk2 I N VARCHAR?,
pk4 I N VARCHAR?,
pk5 I N VARCHAR?,
pk6 I N VARCHAR?,
pk7 I N VARCHAR?,
pk8 I N VARCHAR?,
pk9 I N VARCHAR?,
pk10 I N VARCHAR?,
pk11 I N VARCHAR?,
pk12 I N VARCHAR?,
pk13 I'N VARCHAR?,
pk1l4 I N VARCHAR?,
pk15 I N VARCHAR?,
pk16 IN VARCHARR)
RETURN VARCHARZ;
pkl-pk16
Each PK argument specifies a column element in the composite textkey list. You can
encode at most 16 column elements.
Returns
String that represents the encoded value of the composite textkey.
Examples

execctx_lingrequest_gist’my_policy’,CTX_QUERY.PKENCODE(pkl-date’, ‘pk2-data)), ‘theme table))

In this example, pk1-date and pk2-data constitute the composite textkey value for the
document.

PL/SQL Packages 10-25

CTX_QUERY: Query and Highlighting

PURGE_SQE

The CTX_QUERY.PURGE_SQE procedure removes all session stored query
expressions for the current session. Session SQEs in other sessions are not affected
by PURGE_SQE.

Syntax

CIX_QUERY. PURE S(Kpolicy name |IN VARCHAR?);

policy_name

Specify the name of the policy for which the current session SQEs are purged.
Examples

exec ctx_query. purge_sqge(ny_pol)

10-26 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_QUERY: Query and Highlighting

REFRESH_SQE

Syntax

Examples

The CTX_QUERY.REFRESH_SQE procedure re-executes a stored query expression
and stores the results in the SQR table, overwriting existing results.

See Also: For more information about the structure of the SQR
table, see Oracle8 ConText Cartridge Administrator’s Guide.

CTX_QUERY. REFRESH S(K(
policy name | N VARCHAR?,

query name | N VARCHAR?);
policy_name
Specify the policy for the stored query expression.

query_name
Specify the name of the stored query expression to be refreshed.

exec ctx_query.refresh_sge(my_pol’, DOG)

PL/SQL Packages 10-27

CTX_QUERY: Query and Highlighting

RELTAB
The CTX_QUERY.RELTAB procedure releases a table previously allocated by CTX_
QUERY.GETTAB.
Syntax
CIX_QUERY. RELTAB(tab | N VARCHAR?) ;
tab
Specify the name of table to be released, previously assigned by CTX_
QUERY.GETTAB.
Examples
set serveroutput on
decl are
nytab varchar2(32) ;
begi n
ctx_query. gettab(CrX QUERY. H TTAB, nytab, 3) ;
dbns_output. put_line(’'table : '||nytab) ;

ctx_query.rel tab(nytab);
end ;

This PL/SQL example allocates a HITTAB result table with GETTAB, then releases
it with RELTAB.

10-28 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_QUERY: Query and Highlighting

REMOVE_SQE

Syntax

Examples

The CTX_QUERY.REMOVE_SQE procedure removes a specified stored query
expression from the system SQE table and the results of the SQE from the SQR table
for the policy.

See Also: For more information about the structure of the SQE
and SQR tables, see Oracle8 ConText Cartridge Administrator’s Guide.

CTX_QUERY. REMDVE_S(K(
pol i cy_nane IN VARCHAR?,
query_hane IN VARCHAR?) ;

policy_name
Specify the policy for the stored query expression.

query_name
Specify the name of the stored query expression to be removed.

exec ctx_query.remove_sge(my_pal, 'DOG))

PL/SQL Packages 10-29

CTX_QUERY: Query and Highlighting

STORE_SQE

Syntax

Examples

The CTX_QUERY.STORE_SQE procedure executes a query for a policy and stores
the named SQE in the SQE table and results from the SQE in the SQR table for the

policy.

See Also: For more information about the structure of the SQE
and SQR tables, see Oracle8 ConText Cartridge Administrator’s Guide.

CTX_QUERY. STCRE_ S
pol i cy_nane IN VARCHAR?,

guery_nane I'N VARCHAR2,
text _query I'N VARCHAR2,
scope IN VARCHAR?) ;

policy_name
Specify the policy for the stored query expression.

query_name
Specify the name of the stored query expression to be created.

text_query
Specify the query expression.

scope
Specify whether the SQE is a session or system. When you specify session, the stored
query expression exists only for the current session. When you specify system, the
stored query expression can be used in all sessions including concurrent sessions.
SQEs defined as system are not deleted when your session terminates.

exec ctx_query.store_sge('my_pol','DOG’, '$(dogs|puppy)’,'session))

10-30 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_QUERY: Query and Highlighting

Notes
SQEs support all of the ConText query expression operators, except for:

= Mmax
« first/next

SQEs also support all of the special characters and other components that can be
used in a query expression, including PL/SQL functions and other SQEs.

PL/SQL Packages 10-31

CTX_LING: Linguistics

CTX_LING: Linguistics

CTX_LING is the package of PL/SQL procedures used to request linguistic output
and to control how requests are submitted and processed by ConText servers with

the Linguistics personality.

CTX_LING contains the following stored procedures and functions:

Name

Description

CANCEL
GET_COMPLETION_CALLBACK

GET_ERROR_CALLBACK

GET_FULL_THEMES

GET_LOG_PARSE

GET_SETTINGS_LABEL
REQUEST GIST

REQUEST THEMES
SET_COMPLETION_CALLBACK

SET_ERROR_CALLBACK

SET_FULL_THEMES

SET_LOG_PARSE

SET_SETTINGS_LABEL

SUBMIT

Cancels all cached theme and gist requests.

Returns the completion callback procedure
specified for the current session.

Returns the error callback procedure specified for
the current session.

Returns TRUE when theme hierarchy generation is
enabled for the current session.

Returns TRUE when parse logging is enabled for
current session.

Returns the currently active setting configuration.
Requests gists for a document.
Requests themes for a document.

Specifies a procedure to be called when a request
completes.

Specifies a procedure to be called if an error is
encountered by a request.

Enables/disables the writing of theme hierarchy
information.

Enables/disables logging of parse information for
the current session.

Specifies a setting configuration for the current
session.

Submits all cached theme and gist requests to
Services Queue.

10-32 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_LING: Linguistics

CANCEL
The CTX_LING.CANCEL procedure cancels all pending linguistic requests cached
in memory.
Syntax
CTX_LI NG CANCHL ;
Examples
exec ctx_|ing.cancel
Notes

Requests for themes and gists are cached in memory until CTX_LING.SUBMIT is
called. CTX_LING.CANCEL only cancels these cached requests. After these
requests have been submitted and placed in the Service Queue, CTX_
LING.CANCEL has no effect.

To cancel requests that have already been submitted to the Services Queue, use
CTX_SVC.CANCEL.

PL/SQL Packages 10-33

CTX_LING: Linguistics

GET_COMPLETION_CALLBACK

Syntax

Returns

Examples

Notes

The CTX_LING.GET_COMPLETION_CALLBACK function returns the name of
the completion callback procedure for the current session (specified in CTX_
LING.SET_COMPLETION_CALLBACK).

CIX_LI NG GET_QOMPLETT ON_CALLBACK RETURN VARCHARZ;

Completion callback procedure.

decl are cal | back varchar2(60);
begi n

cal | back : = get_conpl etion_cal | back;
dbms_outputput_line(Completion callback:);
dbms_outputput_line(callback);
end;

To call procedures for both completed task processing as well as error processing,
you must also identify the error completion processing routine with CTX_
LING.SET_COMPLETION_CALLBACK.

If both completion and error callback procedures are defined, the completion
callback routine is performed first, then the error callback routine.

The value assigned to VARCHAR? in the declarative part of the PL/SQL block
depends on the length of the name for the specified completion callback.

10-34 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_LING: Linguistics

GET_ERROR_CALLBACK

Syntax

Returns

Examples

Notes

The CTX_LING.GET_ERROR_CALLBACK function returns the name of the error
callback procedure for the current session (specified in CTX_LING.SET_ERROR_
CALLBACK).

CIX_ LI NG GET_ERRR CALLBAKK RETURN VARCHARZ;

Error callback procedure.

decl are e_cal | back varchar?2(60);
begi n
e_call back : = ctx_ling.get_error_call back;
doms_output.put_line(Error callback:);
doms_outputput_line(e_callback);
end;

If both completion and error callback are set, the completion callback is performed
first, then the error callback.

The value assigned to VARCHAR? in the declarative part of the PL/SQL block
depends on the length of the name for the specified completion callback.

PL/SQL Packages 10-35

CTX_LING: Linguistics

GET_FULL_THEMES

This function returns TRUE if the generation of theme hierarchy information is
enabled for the current session; otherwise it returns FALSE.

You enable the generation of theme hierarchy information with SET_FULL _
THEMES. ConText writes theme hierarchy information to the THEME column of
the theme table when you call REQUEST_THEMES.

Syntax
CTX_LI NG GET_FULL_THEMES RETURN BOOLEAN

Returns

Returns TRUE if the generation of theme hierarchy information is enabled;
otherwise returns FALSE.

10-36 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_LING: Linguistics

GET_LOG_PARSE

The CTX_LING.GET_LOG_PARSE function returns a FALSE or TRUE string to
indicate whether parse logging is enabled for the current database session (specified
in CTX_LING.SET_LOG_PARSE).

Syntax

CTX_LI NG CGET_LGG PARSE RETURN BOOLEAN
Returns

TRUE if parse logging is enabled, FALSE if parse logging is not enabled.
Examples

decl are parse_| oggi ng bool ean;

begi n

par se_| oggi ng : = get_| og_par se;
end;

PL/SQL Packages 10-37

CTX_LING: Linguistics

GET_SETTINGS_LABEL

The CTX_LING.GET_SETTINGS_LABEL function returns the label for the setting
configuration that is active for the current session (specified in CTX_LING.SET_
SETTINGS_LABEL).

Syntax
CTX_LI NG GET_SETTI NGS LABH. RETURN VARCHAR?;
Returns
Current settings configuration label.
Examples
decl are settings varchar2(60);
begi n
settings := get_settings_| abel;
doms_output.put_line(Current setting configuration:’);
doms_outputput_line(settings);
end;
Notes

The value assigned to VARCHAR? in the declarative part of the PL/SQL block
depends on the character length of the label for the specified setting configuration.
The maximum length of a setting configuration label is 80 characters.

10-38 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_LING: Linguistics

REQUEST_GIST

Use the CTX_LING.REQUEST_GIST procedure to generate theme summaries and
a Gist for a document. You can generate paragraph-level or sentence-level Gists and
theme summaries.

By default, this procedure generates theme summaries for all the themes in a
document (up to 50); however, you can specify a single theme for which a theme
summary is to be generated.

Syntax
CTX_LI NG REQUEST_Q ST(
policy IN VARCHAR?,
pk IN VARCHARZ,
table IN VARCHARZ,
glevel INVARCHAR2 DEFAULT ‘PARAGRAPH;,
pov INVARCHAR2 DEFAULT NULL);

policy
Specify the name of the ConText policy on the column.

pk

Specify the primary key (textkey) of the document (row) to be processed. The
parameter pk can be a single column textkey or an encoded specification for a
multiple column textkey.

table
Specify the table used to store the gist output.

glevel
Specify the type of Gist/theme summary to produce. The possible values are:

« paragraph
= sentence

The default is paragraph.

PL/SQL Packages 10-39

CTX_LING: Linguistics

Examples

pov
Specify the theme for which a single Gist or theme summary is generated. The type
of Gist/theme summary generated (sentence-level or paragraph-level) depends on
the value specified for glevel.

To generate a Gist for the document, specify a theme of ‘GENERIC’ for pov. To
generate a theme summary for the document, specify the theme from the document
for which the matching paragraphs/sentences are selected.

If you specify a NULL value for pov, ConText generates a Gist for the document and
a theme summary for each of the document themes (up to 50).

Note: The pov parameter is case sensitive. To return a Gist for a
document, specify ‘GENERIC’ in all uppercase. To return a theme
summary, specify the theme exactly as it is generated for the
document.

The themes generated by CTX_LING.REQUEST_THEMES can be
used as input for pov.

execctx_lingrequest_gist’my_pol, '34', ‘ctx_gist)

begin

ctx_ling.request gist(doc_poal,
CTX_QUERY.PKENCODE(Jones',Naval Inst Pr',10-1-1970)),
'CTX_GIST);

end;

Theme Summary Generation for a Single Theme

In the following example, a single, paragraph-level theme summary is generated for
a document with a pk of 1442 stored in the text column for policy my_pol. The theme
(pov) for which the theme summary is generated is Oracle Corporation:

execctx_lingrequest_gist(my_pol’,'1442''ctx_gist ,pov=>"Oracle Corporation’)
Sentence-level Gist

In the following example, a sentence-level Gist is generated for document with a pk
of 1442 stored in the text column for policy my_pol:

execctx_lingrequest_gist(my_pol’,'1442' 'ctx_gist,'sentence’,GENERIC)

10-40 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_LING: Linguistics

Notes

You must call the CTX_LING.REQUEST_GIST procedure once for each document
for which you want to generate gists.

By default, ConText linguistics generates up to 50 themes for a document. If the user
settings specify that gists are to be created for only the top 10 themes of the
document, the REQUEST_GIST procedure creates a total of 11 gists: one gist for the
specified number of themes and one generic gist for the entire document.

The REQUEST_GIST procedure only creates gists if the setting configuration for the
session in which REQUEST_GIST is called supports gist generation.

The parameter pk can be either a single column textkey or a multiple column
(composite) textkey. When pk is a composite textkey, you must encode the
composite textkey string using the CTX_QUERY.PKENCODE procedure as in the
second example above.

Requests are not automatically entered into the Services Queue; each request is
cached in memory until the application calls the CTX_LING.SUBMIT procedure.

CTX_LING.SUBMIT explicitly enters all of the cached requests into the Services
Queue as a single batch.

All of the linguistic settings that can be specified for Gist-generation also apply to
sentence-level Gists/theme summaries when requested. The settings simply act on
sentences rather than paragraphs.

For example, the size setting for Gists, which determines the maximum number of
paragraphs in a paragraph-level Gist, determines the maximum number of
sentences in a sentence-level Gist, when a sentence-level Gist is requested.

See Also: For more information about the size setting, as well as
the other settings that can be specified for Gists and theme
summaries, see the help system provided with the ConText System
Administration tool.

PL/SQL Packages 10-41

CTX_LING: Linguistics

REQUEST_THEMES

Syntax

Examples

The CTX_LING.REQUEST_THEMES procedure generates a list of up to fifty
themes for a document.

By default, this procedure generates single theme information. To generate
hierarchical theme information, you must first call CTX_LING.SET_FULL _
THEMES.

CTX_LI NG REQUEST THEMES(

pol i cy IN VARCHAR?,
pk IN VARCHARZ,
tabl e IN VARCHAR?) ;

policy
Specify the name of the ConText policy for the column.

pk

Specify the primary key (textkey) of the document (row) to be processed. The
parameter pk can be a single column textkey or an encoded specification for a
multiple column textkey.

table
Specify the table used to store the theme output.

execctx_lingrequest_themes(my_pol, 34, CTX_THEMES)

begin

ctx_ling.request _themes(doc_po,
CTX_QUERY.PKENCODE(Jones',Naval Inst Pr',10-1-1970)),
"CTX_THEMES);

end;

10-42 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_LING: Linguistics

Notes

You must call CTX_LING.REQUEST_THEMES procedure once for each document
for which you want to generate themes.

The parameter pk can be either a single column textkey or a multiple column
textkey. When pk is a composite key, you must encode the composite textkey string
using the CTX_QUERY.PKENCODE procedure as in the second example above.

Requests for themes are not automatically entered into the Services Queue; each
request is cached in memory pending submission by CTX_LING.SUBMIT.

CTX_LING.SUBMIT explicitly enters all of the cached requests into the Services
Queue as a single batch.

PL/SQL Packages 10-43

CTX_LING: Linguistics

SET_COMPLETION_CALLBACK

Syntax

Examples

Notes

The CTX_LING.SET_COMPLETION_CALLBACK procedure specifies the
user-defined PL/SQL processing routine (usually a procedure) to be called when a
ConText server finishes processing a request in the Services Queue.

CTX_LI NG SET_GOMPLETI CN_CALLBACK(cal | back_nane | N VARCHAR?) ;

callback_name
Specify the name of the callback procedure. See below for a description of the
arguments to the callback_name procedure.

execctx_ling.set_completion_callback(COMP_PROCEDURE))

A completion callback procedure must be defined before SET_COMPLETION _
CALLBACK can be called. The completion callback procedure must accept the
following arguments:

Argument Type Purpose

HANDLE NUMBER Specify the internal identifier for the request, as returned by
SUBMIT.

STATUS VARCHAR?2 Specify the status of the request: SUCCESS or ERROR.

ERRCODE VARCHAR?2 Specify the code for the error (NULL if request processed
successfully).

Control is passed to the SET_COMPLETION_CALLBACK procedure at the
completion of a linguistic request. It can log errors or otherwise notify the
application when a request has finished processing. This can be particularly useful
for a large job that is run asynchronously in batch mode.

To call a procedure specifically for requests that terminate with errors, use CTX_
LING. SET_ERROR_CALLBACK.

10-44 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_LING: Linguistics

SET_ERROR_CALLBACK

Syntax

Examples

Notes

The CTX_LING.SET_ERROR_CALLBACK procedure specifies the user-defined
PL/SQL processing routine (usually a procedure) to be called when a ConText
server encounters an error while processing a linguistic request.

CTX_LI NG SET_ERRCR CALLBACK(cal | back_nare | N VARCHARR) ;

callback_name
Specify the name of the callback procedure to be used when an error occurs.

execctx_lingset_eror_callbacklERROR_PROCEDURE)

An error callback procedure must be defined before SET_ERROR_CALLBACK can
be called. The error callback procedure must accept the following arguments:

Argument Type Purpose
HANDLE NUMBER Specify the internal identifier for the request, as returned
by SUBMIT

ERRCODE VARCHAR?2 Specify the code for the error.

Control is passed to the SET_ERROR_CALLBACK procedure at the completion of a
linguistic request. The procedure can be used to log errors or otherwise notify the
application when a request has finished processing. This can be particularly useful
for a large job that is run asynchronously in batch mode.

To call a procedures for both completed task processing and error processing, use
SET_COMPLETION_CALLBACK.

PL/SQL Packages 10-45

CTX_LING: Linguistics

SET_FULL_THEMES

Use this procedure to enable the writing of theme hierarchy information to the
theme table. ConText writes the theme hierarchy information when you call CTX_
LING.REQUEST_THEMES. (By default, ConText writes only single theme
information to the theme table when you call REQUEST_THEMES.)

Syntax
CIX_LING SET_FULL_THEMES (thene_node | N BOOLEAN DEFAULT TRUE) ;
theme_mode
Specify TRUE for ConText to write theme hierarchy information to the THEME
column of the theme table.
Specify FALSE to disable the writing of theme hierarchy information to the THEME
column of the theme table.

Notes

At the start of a session, the theme_mode flag is FALSE.

Calling SET_FULL_THEMES without an argument is the same as calling this
procedure with theme_mode set to TRUE.

You can check whether the writing of theme hierarchy information is turned on
using GET_FULL_THEMES.

10-46 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_LING: Linguistics

SET LOG_PARSE

Syntax

Examples

Notes

The CTX_LING.SET_LOG_PARSE procedure enables/disables logging of
linguistic parsing information for a session.

CTX_LI NG SET_LOG PARSE(| og_mode BOOLEAN DEFALLT TRUE);

log_mode
Specify whether to write parse information to a log file during linguistic processing
in a session. The default is TRUE.

exec ctx_|ing.set_| og_parse(TRE)

At start-up of a ConText server, parse information logging is disabled.

Once logging is enabled, it stays enabled for the session until it is explicitly
disabled.

When logging is enabled, the text of the document being parsed and the paragraph
offset information used by ConText to separate the document into its constituent
paragraphs is written to the log file specified when the ConText server is started.

The log provides information about the input text used to generate linguistic output
and can be used for debugging the system. The parse information is especially
useful for debugging linguistic output for formatted documents from which the text
is extracted before it is processed.

However, due to the large amount of information generated by ConText and written
to the log file, parse logging may affect performance considerably. For this reason,
you should only enable parse logging if you encounter problems with linguistics.

PL/SQL Packages 10-47

CTX_LING: Linguistics

SET_SETTINGS_LABEL

Use the CTX_LING.SET_SETTINGS_LABEL procedure to change the linguistic
settings for a database session.

Syntax
CTX LI NG SET_SETTI NGS LABH (settings_| abel I N VARCHAR?) ;
settings_label
Specify the label for the setting configuration used for the session. You can use one
of the following predefined settings or one that you create with the administration
tool:
Label Description
GENERIC Use this configuration to analyze mixed-case English text to produce
theme and Gist output.
This configuration is the default.
SA This configuration is identical to GENERIC, except it converts
all-uppercase or all lower-case text to mixed case before processing text to
produce theme or Gist output.
This setting should be used only when text is all-uppercase or
all-lowercase, or where you are not sure of the accuracy of the case.
Examples
execctx_ling.set settings label('SAY)
Notes

At start-up of a ConText server, the GENERIC default setting configuration is active.

The setting specified by SET_SETTINGS_LABEL is active for the entire session or
until you call SET_SETTINGS_LABEL with a new setting configuration. In addition,
the specified setting is active only for your current session; settings specified for
your session have no effect on the server setting.

You can specify any predefined ConText setting configuration or any custom setting
configuration. Define custom setting configurations with the Administration Tool
provided with ConText Workbench.

10-48 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_LING: Linguistics

When your text is all upper-case or all lower-case and you use the SA setting to
convert the text to mixed-case, Oracle Corporation does not recommend creating
theme indexes or issuing theme queries. Creating theme indexes with the SA
linguistic setting does not produce consistent results.

PL/SQL Packages 10-49

CTX_LING: Linguistics

SUBMIT

Syntax

Returns

Examples

The CTX_LING.SUBMIT procedure creates a single request (row) in the Services
Queue for all linguistic requests cached in memory for a single row (identified by
PK) and returns a handle for the request.

CTX_LI NG SUBM T(

wai t IN NUMBER DEFAULT O,

do_conmi t I N BOOLEAN DEFAULT TRUE,

priority I N NUMBER DEFALLT 0)
RETURN NUMBER

wait
Specify maximum time in seconds to block subsequent requests while ConText
server processes request. The default is 0.

do_commit
Specify whether the job request should be committed to the database. The default is
TRUE.

priority
Specify the priority for the request. Requests are processed in order of priority from
lowest priority to highest priority. The default is 0.

Handle that identifies the request.

decl ar e handl e nunber;
begi n

handl e : = ctx_| i ng. subni t (500);
end;

In this example, procedures to create one or more gists and/or themes have already
been executed and the requests cached in memory. The SUBMIT procedure enters
the request(s) into the Services Queue and returns a handle. It this case, it also

10-50 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_LING: Linguistics

Notes

prevents the queue from accepting other submissions from the same requestor for
500 seconds.

SUBMIT does not cache requests for multiple documents nor for documents in
different columns. Only requests for a single document at a time can be submitted.

If more than one request is queued in memory, SUBMIT processes all of the requests
as a single batch job. If the request is a batch job, the ConText server processes each
request in the batch in order.

All of the individual requests in the batch must be processed successfully or the
ConText server returns an ERROR status for the entire batch. The error message
stack returned by the ConText server identifies the request that caused the batch to
fail.

If SUBMIT is called from a database trigger, the DO_COMMIT argument must be
set to FALSE.

PL/SQL Packages 10-51

CTX_SVC: Services Queue Administration

CTX_SVC: Services Queue Administration

The CTX_SVC package contains PL/SQL procedures used to query requests in the
Services Queue and to perform administrative tasks on the Queue.

CTX_SVC contains the following stored procedures and functions:

Name Description
CANCEL Removes a pending request from the Services Queue.
CANCEL_ALL Removes all pending requests from the Services Queue.

CANCEL_USER

CLEAR_ALL_ERRORS

CLEAR_ERROR

CLEAR_INDEX_ERRORS

CLEAR_LING_ERRORS

REQUEST_STATUS

Removes a pending request from the Services Queue for the
current user.

Removes all requests with an error status from the Services
Queue.

Removes a request that produced an error from the Services
Queue.

Removes errored indexing requests from the Services
Queue.

Removes errored linguistic requests from the Services
Queue.

Returns the status of a request in the Services Queue.

10-52 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_SVC: Services Queue Administration

CANCEL
The CTX_SVC.CANCEL procedure removes a request from the Services Queue, if
the request has a status of PENDING.
Syntax
CIX_SVC CANCHEL(request _handl e NUMBER) ;
request_handle
Specify the handle, returned by CTX_LING.SUBMIT, of the service request to
remove.
Examples
exec ctx_svc. cancel (3321)
Notes

To cancel requests that have not been entered in the Services Queue, use the CTX_
LING.CANCEL procedure.

PL/SQL Packages 10-53

CTX_SVC: Services Queue Administration

CANCEL_ALL

The CTX_SVC.CANCEL_ALL procedure removes all requests with a status of
PENDING from the Services Queue.

Syntax
CTX_SVC CANCEL_ALL ;

Examples
execut e ctx_svc. cancel _all

10-54 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_SVC: Services Queue Administration

CANCEL_USER

The CTX_SVC.CANCEL_USER procedure removes all requests with a status of
PENDING for the current user.

Syntax
CTX_SVC. CANCEL_LSER ;

Examples
execut e ctx_svc. cancel _user

PL/SQL Packages 10-55

CTX_SVC: Services Queue Administration

CLEAR_ALL_ERRORS

The CTX_SVC.CLEAR_ALL_ERRORS procedure removes all requests (text
indexing, theme indexing, and linguistics) that have a status of ERROR in the
Services Queue.

Syntax
CTX_SVC CLEAR ALL_ERRCFS ;

Examples
execute ctx _svc.clear_all _errors

10-56 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_SVC: Services Queue Administration

CLEAR_ERROR

Syntax

Examples

Notes

The CTX_SVC.CLEAR_ERROR procedure removes a request with a status of
ERROR from the Services Queue.

CIX_SVC CLEAR ERRCR(request _handl e | N NUMBER);

request_handle
Specify the handle, returned by CTX_LING.SUBMIT, of the errored service request
that is to be removed.

exec ctx_svc. cl ear _error(3321)

When you call CTX_SVC.CLEAR_ERROR with a 0 for the REQUEST_HANDLE,
ConText removes all requests in the Services Queue that have an ERROR status.

You can use CTX_SVC.REQUEST_STATUS to return the status of a request in the
Services Queue.

PL/SQL Packages 10-57

CTX_SVC: Services Queue Administration

CLEAR_INDEX_ERRORS

The CTX_SVC.CLEAR_INDEX_ERRORS procedure removes all indexing requests
(text and theme) that have a status of ERROR in the Services Queue.

Syntax
CTX_SVC. CLEAR | NDEX ERRCR ;

Examples
execut e ctx_svc.clear index errors

10-58 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_SVC: Services Queue Administration

CLEAR_LING_ERRORS

The CTX_SVC.CLEAR_LING_ERRORS procedure removes all linguistic requests
that have a status of ERROR in the Services Queue.

Syntax
CTX_SVC CLEAR LING ERRCR ;

Examples
execute ctx_svc.clear_ling_errors

PL/SQL Packages 10-59

CTX_SVC: Services Queue Administration

REQUEST_STATUS

Syntax

Returns

The CTX_SVC.REQUEST_STATUS function returns the status of a request in the
Services Queue.

CTX_SVC REQUEST_STATUY(
request_handle IN NUMER
ti mest anp QJT DATE,
errors QAJT VARGHAR?)
RETURN VARCHAR?;

request_handle
Specify the handle of the service request, as returned by CTX_LING.SUBMIT.

timestamp
Returns the time at which request was submitted.

errors
Returns the error message stack for the request; message stack is returned only if
the status of the request is ERROR.

Status of the request, which is one of the following:

PENDING
The request has not yet been picked up by a ConText server.

RUNNING
The request is being processed by a ConText server.

ERROR
The request encountered an error (see ERRORS argument).

SUCCESS
The request completed successfully.

10-60 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_SVC: Services Queue Administration

Examples

decl are status varchar2(10);

declare tine date;

decl are errors var char 2(60)

begi n

status := ctx_svc.request_status(3461,ti nestanp, errors);
dbns_out put . put _| i ne(stat us, ti mestanp, substr(errors,1,20));
end;

Notes

Specifying an invalid request handle in REQUEST_HANDLE causes CTX_
SVC.REQUEST_STATUS to return a status of SUCCESS.

PL/SQL Packages 10-61

CTX_SVC: Services Queue Administration

10-62 Oracle8 ConText Cartridge Application Developer’s Guide

A

Result Tables

This appendix describes the database schema of the result tables utilized by
ConText. Result tables are database tables that store results from the CTX_
QUERY.CONTAINS and CTX_QUERY.HIGHLIGHT procedures as well as the
output from linguistic procedures, CTX_LING.REQUEST_THEMES and CTX_
LING.REQUEST_GIST.

The topics described in this chapter are:
= Hitlist Table Structure

« Highlight Table Structures

« Display Table Structures

« CTX_LING Output Table Structures

Result Tables A-1

Hitlist Table Structure

Hitlist Table Structure

The hitlist result table stores the results returned by the CTX_QUERY.CONTAINS
procedure in the first step of a two-step query. The results can be queried directly to
produce a hitlist for the query or combined with the base table to produce more
detailed hitlists.

A hitlist result table must be created before executing a two-step query. It can be
created manually or using CTX_QUERY.GETTAB.

If the hitlist table is created manually, it can be given any name; however, the table
must have the following columns (with names and datatypes as specified).

Column Name Type Description

TEXTKEY VARCHAR2(64) Unique identifier (usually the primary key for the table) for
documents that satisfy the two-step query.

SCORE NUMBER Score generated by CONTAINS function for each
document.

CONID NUMBER ID for results returned by CONTAINS function when

multiple CONTAINS use the same hitlist result table.

Composite Textkey Hitlist Tables

When you perform a two-step query on a text table that has a composite textkey, the
schema of the resulting hitlist table is the same as for when you issue a query on a
table with a single column textkey, except that a composite textkey result table has
additional TEXTKEY columns.

The number of TEXTKEY columns in the hitlist table match the number of columns
in the textkey for the original text table. The TEXTKEY columns in the hitlist table
are named TEXTKEY, TEXTKEY?2, TEXTKEYS,..., TEXTKEYN, where N is the
number of columns in the textkey in the original text table. N is always less than or
equal to 16.

For example, if you do a query on a text table that has a four-column composite
textkey, the schema of the resulting hitlist table is: TEXTKEY, TEXTKEY2,
TEXTKEY3, TEXTKEY4, SCORE, CONID.

The resulting TEXTKEY columns in the hitlist table are populated in the same order
as they were registered in the column policy.

A-2 Oracle8 ConText Cartridge Application Developer’s Guide

Highlight Table Structures

Highlight Table Structures

The highlight result tables store the highlighting results returned by the CTX_
QUERY.HIGHLIGHT procedure.

Highlight tables must be created before calling HIGHLIGHT to generate
highlighting results. They can be created manually or using CTX_QUERY.GETTAB.

If a highlight table is created manually, it can be assigned any name; however, the
table must have the columns (with names and datatypes) as specified.

HIGHTAB Highlight Table

The HIGHTAB highlight table stores query term offset and length information for
query terms in documents.

If a document is formatted, the text is filtered by CTX_QUERY.HIGHLIGHT into
plain text and the offset information is generated for the filtered text. The offset
information can be used to highlight query terms in a document.

The table must have the following columns:

Column

Name Type Description

ID NUMBER The identifier for the results generated by a particular
call to CTX_QUERY.HIGHLIGHT. Only used when table
is used to store results from multiple HIGHLIGHTS.

OFFSET NUMBER The position of the query terms in the document, relative
to the rest of the terms in the documents. Measured from
a base of 1.

LENGTH NUMBER The length of the query term.

STRENGTH NUMBER The strength of the highlight table.

MUTAB Highlight Table

The MUTAB display table stores documents in plain text (ASCII) format with the
query terms in the documents highlighted by mark-up tags generated by CTX_
QUERY.HIGHLIGHT. This mark-up can be used to provide an ASCII version of the
document with query terms highlighted.

The highlighting mark-up tags can be specified when HIGHLIGHT is called or the
default mark-up tags can be used.

Result Tables A-3

Highlight Table Structures

Note: For HTML documents filtered through the internal HTML
filter, the MUTAB stores the document with the original HTML
tags.

The table must have the following columns:

Column Name Type Description

ID NUMBER The identifier for the results generated by a particular
call to CTX_QUERY.HIGHLIGHT (only used when
table is used to store results from multiple
HIGHLIGHTS)

DOCUMENT LONG Marked-up text of the document, stored in ASCII
format

ICFTAB Highlight Table

The ICFTAB highlight table stores the ICF output generated by CTX_
QUERY.HIGHLIGHT.

Note: ICF output is used primarily by the Windows viewer
control to provide WYSIWIG viewing of documents in the
supported formats. As such, it is stored as binary data in a LONG
RAW column and is generally inaccessible to users.

The table must have the following columns:

Column Name Type Description

ID NUMBER The identifier for the results generated by a particular
call to CTX_QUERY.HIGHLIGHT (only used when
table is used to store results from multiple
HIGHLIGHTS)

DOCUMENT LONG RAW Text of the document, stored in ICF format

A-4 Oracle8 ConText Cartridge Application Developer’s Guide

Display Table Structures

Display Table Structures

The display result tables store the display results returned by the CTX_
QUERY.HIGHLIGHT procedure. The display results can be either the document in
its original format or the document filtered to plain (ASCII) text.

Display result tables must be created before calling HIGHLIGHT to generate
display output. They can be created manually or using CTX_QUERY.GETTAB.

If a display table is created manually, it can be assigned any name; however, the
table must have the columns (with names and datatypes) as specified.

NOFILTAB Display Table

The NOFILTAB display table stores formatted documents in their native format (i.e.
WordPerfect, Microsoft Word, HTML, ASCII). No highlighting or filtering is
performed on the text of the document.

The NOFILTAB table must have the following columns:

Column Name Type Description

ID NUMBER The identifier for the results generated by a particular
call to CTX_QUERY.HIGHLIGHT (only used when
table is used to store results from multiple
HIGHLIGHTS)

DOCUMENT LONG RAW Text of the document, stored in the original format

PLAINTAB Display Table

The PLAINTAB display table stores documents in plain text (ASCII) format. The
documents are processed through the filter defined for the text column and the
results are stored in the PLAINTAB table.

The PLAINTAB table must have the following columns:

Column Name Type Description

ID NUMBER The identifier for the results generated by a particular
call to CTX_QUERY.HIGHLIGHT (only used when
table is used to store results from multiple
HIGHLIGHTS)

DOCUMENT LONG Text of the document, stored in ASCII format

Result Tables A-5

CTX_LING Output Table Structures

CTX_LING Output Table Structures

Theme Table

The output tables store the results returned by the CTX_LING package. The output
tables serve only as temporary holding areas. You modify, augment, or truncate the
output into a form best suited for your application.

See Also: For more information about generating linguistic
output, see "Generating CTX_LING Output" in Chapter 8, "Using
CTX_LING".

The theme results table stores one row for each theme generated by CTX_
LING.REQUEST_THEMES. The value stored in the THEME column is either a
theme phrase or a colon separated list of parent themes.

The table can be named anything, but must include the following columns with
names and datatypes as specified:

Column

Name Type Description

CID NUMBER Policy ID.

PK VARCHAR2(64) Primary key (textkey) for the text table.

THEME VARCHAR2(2000) Theme phrase or hierarchical list of parent themes
separated by colons (3).

WEIGHT NUMBER Weight of theme phrase, relative to other theme phrases

for the document.

Composite Textkey Theme Tables

You can use CTX_LING.REQUEST_THEMES to generate themes for a document
contained in a composite textkey table. When you do so, the schema of the resulting
theme table is the same as for when you request a theme on a single column textkey
table, except that the composite textkey result table has additional PK columns.

The number of textkey columns in the theme table match the number of textkey
columns in the original text table. The textkey columns in the theme table are
named PK1, PK2, PK3,..., PKN, where N is the number of textkeys in the original
text table. N is always less than or equal to 16.

A-6 Oracle8 ConText Cartridge Application Developer’s Guide

CTX_LING Output Table Structures

For example, if you request a theme on a text table that has four textkeys, the
schema of the output table would be (CID, PK1, PK2, PK3, PK4, THEME,
WEIGHT).

The resulting textkey columns in the theme table are populated in the same order as
they were registered.

Gist Table

The Gist result table stores one row for each Gist generated by CTX_
LING.REQUEST_GIST.

The table can be named anything, but must include the following columns (with
names and datatypes as specified):

Column Name Type Description

CID NUMBER Policy ID.

PK VARCHAR2(64) Primary key (textkey) for the text table.
POV VARCHAR2(80) Document theme.

GIST LONG ASCII text of Gist or theme summary.

The value in the POV column for a theme summary is a string which identifies the
theme in the document.

The value in the POV column for a Gist is the term GENERIC.

Note: GENERIC is the only value that is consistently in
all-uppercase. For all other themes in the POV column, the case
depends on how the themes were used in the document.

Composite Textkey Gist Tables

You can use CTX_LING.REQUEST_GIST to generate Gists for a document
contained in a composite textkey table. When you do so, the schema of the resulting
Gist table is the same as for when you request a Gist on a single column textkey
table, except that the composite textkey result table has additional PK columns.

The number of textkey columns in the Gist table match the number of textkey
columns in the original text table. The textkey columns in the Gist table are named

Result Tables A-7

CTX_LING Output Table Structures

PK1, PK2, PK3,..., PKN, where N is the number of textkeys in the original text table.
N is always less than or equal to 16.

For example, if you request a Gist on a text table that has four textkeys, the schema
of the resulting hitlist table is (CID, PK1, PK2, PK3, PK4, POV, GIST).

The resulting textkey columns in the Gist table are populated in the same order as
they were registered.

A-8 Oracle8 ConText Cartridge Application Developer’s Guide

B

Scoring Algorithm

This appendix describes the scoring algorithm for text queries.

Note: This appendix discusses how ConText calculates score for
text queries, which is different from the way it calculates score for
theme queries.

For more information about scoring for theme queries, see "Theme
Querying" in Chapter 4.

Scoring Algorithm B-1

Scoring Algorithm for Text Queries

Scoring Algorithm for Text Queries

Example

To calculate a relevance score for a returned document in a text query, ConText uses
an inverse frequency algorithm. Inverse frequency scoring assumes that frequently
occurring terms in a document set are "noise" terms, and so these terms are scored
lower. For a document to score high, the query term must occur frequently in the
document but infrequently in the document set as a whole.

The following table illustrates ConText’s inverse frequency scoring. The first
column shows the number of documents in the document set, and the second
column shows the number of terms in the document necessary to score 100.

This table assumes that only one document in the set contains the query term.

Number of Documents in

Document Set Frequency of Term in Document
1 34
5 20
10 17
50 13
100 12
500 10
1,000 9
10,000 7
100,000 5
1,000,000 4

The table illustrates that if only one document contained the query term and there
were five documents in the set, the term would have to occur 20 times in the
document to score 100. Whereas, if there were 1,000,000 documents in the set, the
term would have to occur only 4 times in the document to score 100.

You have 5000 documents dealing with chemistry in which the term chemical occurs
at least once in every document. The term chemical thus occurs frequently in the
document set.

B-2 Oracle8 ConText Cartridge Application Developer’s Guide

Scoring Algorithm for Text Queries

You have a document that contains 5 occurrences of chemical and 5 occurrences of
the term hydrogen. No other document contains the term hydrogen.

Because chemical occurs so frequently in the document set, its score for the
document is lower with respect to hydrogen, which is infrequent is the document set
as a whole. This is so even though both terms occur 5 times in the document.

Note: Even if the relatively infrequent term hydrogen occurred 4
times in the document, and chemical occurred 5 times in the
document, the score for hydrogen might still be higher, because
chemical occurs so frequently in the document set (at least 5000
times).

Inverse frequency scoring also means that adding documents that contain hydrogen
lowers the score for that term in the document, and adding more documents that do
not contain hydrogen raises the score.

DML and Scoring

Because the scoring algorithm is based on the number of documents in the
document set, inserting, updating or deleting documents in the document set is
likely change the score for any given term before and after the DML.

If DML is heavy, you or your ConText administrator must optimize the index.
Perfect relevance ranking is obtained by executing a query right after optimizing
the index.

If DML is light, ConText still gives fairly accurate relevance ranking.

In either case, you or your ConText administrator must synchronize the index with
CTX_DML.SYNC whenever DML is performed on the index.

See Also: For more information about optimizing and
synchronizing an index, see Oracle8 ConText Cartridge
Administrator’s Guide.

Scoring Algorithm B-3

Scoring Algorithm for Text Queries

B-4 Oracle8 ConText Cartridge Application Developer’s Guide

C

SQL*Plus Sample Code

This appendix describes the sample SQL*Plus scripts provided by ConText. The
scripts illustrate how to use SQL*Plus to build simple queries and generate
linguistic output using ConText linguistics.

The scripts are divided into two functional areas: CTXPLUS (performing ad-hoc
gueries) and CTXLING (generating linguistic output).

The following topics are covered in this chapter:
« Setting Up the ConText Sample Applications
« Overview of CTXPLUS
« Overview of CTXLING

SQL*Plus Sample Code C-1

Setting Up the ConText Sample Applications

Setting Up the ConText Sample Applications

Before you can use either CTXPLUS or CTXLING, as well as the Oracle Forms
sample application distributed with the ConText Workbench, you must create the
required demonstration objects by preforming the following setup tasks.

Note: The files required for performing the setup tasks are located
in the demo directory for ConText. For example, in a UNIX
environment, the files are named demo.dmp and demoinst.sql and are
located in $ORACLE_HOME/ctx/demo/install.

For the exact location and name of the setup files, see the Oracle8
installation documentation specific to your operating system.

1. Import the export file into the predefined ConText user CTXDEMO'’s schema.

For example:

I MP ct xdeno/ ct xdermo Fl LE=deno. dnp TABLES=arti cl es

Importing the export file creates an ARTICLES table for CTXDEMO and
populates ARTICLES.TEXT with the text of the articles used in the samples.

2. Start one or more ConText Server with the DDL (D) and Linguistics (L)
personalities.

3. Log into SQL*Plus as the demo user and run the install script.
For example:
@enoi nst
The script creates the policies, preferences, views, and results tables used by the

samples and creates a text index for the ARTICLES table. It also creates the
tables required for highlighting and CTX_LING.

Note: If you want to use CTXLING, you must also run the
genling.sql script, located in the ctxling subdirectory in the demo
directory.

For more information, see "Using CTXLING" in this chapter.

C-2 Oracle8 ConText Cartridge Application Developer’s Guide

Overview of CTXPLUS

Overview of CTXPLUS

Concepts

The CTXPLUS sample code consists of the following SQL scripts:
Script Description
queryl.sgl Performs a one-step query using the input query expression and returns a hitlist,
sorted by score, to the standard output.
query2.sql Performs a two-step query using the input query expression and returns a hitlist,
sorted by score, to the standard output.
queryc.sgl Performs an in-memory query using the input query expression and returns an
unsorted hitlist to standard output
querys.sl Performs an in-memory query using the input query expression and returns a
hitlist, sorted by score, to the standard output.
storeqry.sql Performs a query and stores the results as a system SQE. The results of the SQE
can then be used in a query (one-step, two-step, or in-memory).
showsge.sql Returnsalist of al the system SQEs that have been stored for apolicy. Note that
this script isnot currently implemented.
view.sgl Selectsadocument based on theinput textkey and returnsthetext of the document

to the standard output.

See Also: For more information about the location of the scripts,
see the Oracle8 installation documentation specific to you operating

system.

The ConText concepts illustrated in this sample code are:

= query expression syntax

= One-step queries

« two-step queries

» two-step queries (sorted and unsorted)

« stored query expressions

SQL*Plus Sample Code C-3

Overview of CTXPLUS

Using CTXPLUS

To use the CTXPLUS sample SQL scripts:

1.

Ensure that one or more ConText servers are running with the Query (Q)
personality.

Log in to SQL*Plus as the owner of the demonstration objects (usually
CTXDEMO).

To initiate a query, run one of the query scripts (queryl, query2, queryc, or
querys). The scripts prompt you to enter a query expression.

For example:

@ueryl
Enter val ue for query terns: coffee|tea

The script then returns a hitlist of the documents in the ARTICLES table that satisfy
the query expression you enter. The hitlist consists of a score, 1D, author, and title.

To view an article, run the view.sgl script and give it an article ID. The article ID
is the value displayed in the ID column in the hitlist generated by the query
scripts.

For example:

@iew 14

The script then returns the text for the document with the article 1D you
specified.

To create a stored query expression (SQE), run the storeqry.sqgl script. The
scripts prompt you to enter a name for the SQE and a query expression.
For example:

@toreqry
Enter query nane: test_sge
Enter val ue for query terns: coffee|tea

Note: The script does not return the results of the query to the
standard output.

C-4 Oracle8 ConText Cartridge Application Developer’s Guide

Overview of CTXPLUS

To view the SQEs for the demonstration user, use the CTX_USER_SQES view.

For example:

sel ect pol _name, query_nane, query_nane
fromct x_user_sqges;

CTXPLUS Examples

The following examples execute the queryl.sgl, query2.sql, and querys.sql scripts
using the query terms California and politics and various logical operators (OR,
ACCUMULATE, and AND).

These examples illustrate how one-step, two-step, and (sorted) in-memory queries
produce the same results and how the operators in a query expression affect the
rows and scores returned by a query:

Single Term Queries

@uery?2
Enter val ue for query terns: California

100 17 Nolo Rchards REMBEW& QUTLAXK (Editorial):
Cali forni a Svashup
50 18 Nolo Rchards State Farmand California
30 25 David Shribman Inthe Wilderness: Democrats’
Troubles In Winning
20 49 Nolo Richards California High Court Is
Asked to Lift Block Of In
10 16HeidiWaleson LEISURE & ARTS: Cynthia
Phelps: Vidlist in Vogue
@aueryl
Enter value for query_terms: politics

SCR IDAUTHOR TITLE

20 25 David Shribman Inthe Wilderness: Democrats’
Troubles In Winning

10 13 Frederick C. KILEISURE & ARTS - Sports:
Mediocrity’s the Word Ar

SQL*Plus Sample Code C-5

Overview of CTXPLUS

Multiple Term Query Using OR

@uerys
Enter val ue for query terns: politics|California
SR | D AUTHRR TITLE

100 17 Nolo Rchards REMBEW& QUTLAXK (Editorial):
Cal i forni a Svashup
50 18 Nolo Rchards State Farmand California
30 25 David Shribman Inthe Wilderness: Democrats’
Troubles In Winning
20 49 Nolo Richards Cadlifornia High Court Is Asked
to Lift Block Of In
10 13Frederick C. KILEISURE & ARTS - Sports:
Mediocrity’s the Word Ar
10 16HeidiWaleson LEISURE & ARTS: Cynthia
Phelps: Vidlist in Vogue

Multiple Term Query Using ACCUMULATE

@aueryl

Enter value for query_terms: politics,Califomia

SCR ID AUTHOR TITLE

100 17 Nolo Richards REVIEW & OUTLOCK (Editorial):
California Smashup

50 18Nolo Richards State Farm and Califomia

50 25 David Shribman Inthe Wildermness: Democrats’
Troubles In Winning

20 49 Nolo Richards Cadlifornia High Court Is Asked
to Lift Block Of In

10 13Frederick C. KILEISURE & ARTS - Sports:
Mediocrity’s the Word Ar

10 16HeidiWaleson LEISURE & ARTS: Cynthia
Phelps: Violistin VVogue

Multiple Term Queries Using AND

@auery2

Enter value for query_terms: politics&Califomia

SCR ID AUTHOR TITLE

20 25David Shribman Inthe Wildermness: Democrats’
Troubles In Winning

C-6 Oracle8 ConText Cartridge Application Developer’s Guide

Overview of CTXLING

Overview of CTXLING

The CTXLING demo is a set of simple, related SQL*Plus scripts. Two of the scripts
automate and track linguistic extraction on the demonstration documents. The
remaining scripts can be used to query this linguistic output.

The CTXLING sample code consists of the following SQL scripts:

Script Description

genling.sql Requests theme and Gist generation for each of the documents in the
ARTICLES table.

status.sql Shows the status of the theme and Gist generation initiated by
genling.sql.

gist.sql Displays the Gists for a document.

themes.sql Displays the themes for a document.

similar.sql Displays documents with similar themes for the input document

See Also: For more information about the location of the scripts,
see the Oracle8 installation documentation specifc to your
operating system.

Concepts
The ConText concepts illustrated in this sample code are:
« generating linguistic output using the Linguistic Services
« document theme viewing
« document Gist viewing
Using CTXLING

To use the CTXLING sample SQL scripts:

1. Ensure that one or more ConText servers with the Linguistic (L) personality are
running.

2. Loginto SQL*Plus as the owner of the demonstration objects (usually
CTXDEMO).

SQL*Plus Sample Code C-7

Overview of CTXLING

3. To generate linguistic output, run genling.sql:

@enl i ng

dearing thene table...

Qearing article table...

Initializing ling_tracking table

Geating ling. callback function LING COMP_CALLBACK . .
Submitting all articles for linguistic extraction...
Al articles subnitted.

The script generates Gist and theme information for each document in the
ARTICLES table and stores the information in the linguistic output tables
created by demoinst.sgl.

4. The linguistic generation runs in the background. While this is happening, you
can use status.sql to check on the progress:

For example:

@t at us
Li ngui stic Requests left: 36
Request Errors....

The extraction is complete when there are 0 Linguistic Requests left.

5. To view the themes or Gists of an article, run the appropriate script and give it
an article ID.

For example:

@i st 40

Points of View

01 GNERC ..

15 production

16 pur chases

whi ch point of viewgist to print: 15

The script then returns the themes or Gists for the document with the article ID
you specified.

6. To select articles with the same themes as an article, run the similar.sql script
and give it an article ID.

For example:
@imlar 14

C-8 Oracle8 ConText Cartridge Application Developer’s Guide

Overview of CTXLING

The script then returns a list of the articles with the same themes as the article
ID you specified.

CTXLING Examples

The following examples illustrate using themes.sqgl, gist.sgl, and similar.sql to view
the linguistic output generated by genling.sql.

Theme Viewing

@henes 40

Comodi ties: ffee Futures Prices Decline on News That
US Mght Not Participate in New International Pact

by John Val enti ne

T# THEME VE GHT
01 Uhited States 11

02 comerce and trade 10

03 coffee 10
Gist Viewing

@i st 40

Poi nts of View

01 GENERC...
15 production
16 pur chases

Wi ch point of viewgist to print: 15

Commodities: CGoffee Futures Prices Decline on News That
US Mght Not Participate in New International Pact

by John Val enti ne

Gonsuning and produci ng nati ons appear to be pol es apart

in their positions. Producing countries proposed a quota
that woul d i ncorporate the sal es of

SQL*Plus Sample Code C-9

Overview of CTXLING

Theme Comparison Viewing

@imlar 40

Comodi ties: ffee Futures Prices Decline on News That
US Mght Not Participate in New International Pact

by John Val enti ne

Article Thenes

01 Lhited S ates

02 commer ce and trade

03 cof fee

14 production
15 pur chases

Wi ch theme to query: 15

Qher articles with this thene

ID W AUHR TITLE

1 8 WIliamPower OIC Focus: Conposite Index Falls

33 7 Aex Kaufmann Your Mney Matters: How to Take

5 7 George Anders Shades of US. Steel: J.P.

30 6 Mchael Sconol Mitual Funds: ...And Find Qut if

47 6 Nolo Rchards Ponce Federal Bank Is in Tal ks

45 5 Nolo Rchards Farley Wns Round In Hs Bid to
2

Aix M Freedna Super narkets Push Pri vat e- Label

C-10 Oracle8 ConText Cartridge Application Developer’s Guide

D

Stopword Transformations

This appendix describes stopword transformations. The following topic is covered:

« Understanding Stopword Transformations

Stopword Transformations D-1

Understanding Stopword Transformations

Understanding Stopword Transformations

When you use a stopword or stopword-only phrase as an operand for a query
operator, ConText rewrites the expression to eliminate the stopword or
stopword-only phrase and then executes the query.

The following section describes the stopword rewrites or transformations for each
operator. In all tables, the Stopword Expression column describes the query
expression or component of a query expression, while the right-hand column
describes the way ConText rewrites the query.

The token stopword stands for a single stopword or a stopword-only phrase.

The token non_stopword stands for either a single non-stopword, a phrase of all
non-stopwords, or a phrase of non-stopwords and stopwords.

The token no_lex stands for a single character or a string of characters that is neither
a stopword nor a word that is indexed. For example, the + character by itself is an
example of a no_lex token.

When the Stopword Expression column completely describes the query expression, a
rewritten expression of no_token means that no hits are returned when you enter
such a query.

When the Stopword Expression column describes a component of a query expression
with more than one operator, a rewritten expression of no_token means that a no_
token value is passed to the next step of the rewrite.

Transformations that contain a no_token as an operand in the Stopword Expression
column describe intermediate transformations in which the no_token is a result of a
previous transformation. These intermediate transformations apply when the
original query expression has at least one stopword and more than one operator.

For example, consider the following compound query expression:

'this NOT dog) AND cat

Assuming that this is the only stopword in this expression, ConText applies the
following transformations in the following order:

stopword NOT non-stopword => no_token
no_token AND non_stopword => non_stopword
The resulting expression is:

’

cat’

D-2 Oracle8 ConText Cartridge Application Developer’s Guide

Understanding Stopword Transformations

See Also: To learn more about how to examine stopword
transformations, see Chapter 5, "Query Expression Feedback".

For more information about defining stopwords, see Oracle8
ConText Cartridge Administrator’s Guide.

Word Transformations

Stopword Expression Rewritten Expression
stopword no_token
no_lex no_token

The first transformation mean that a stopword or stopword-only phrase by itself in
a query expression results in no hits.

The second transformation says that a term that is not lexed such as + results in no
hits.

AND Transformations

Stopword Expression Rewritten Expression
non_stopword AND stopword non_stopword
non_stopword AND no_token non_stopword
stopword AND non_stopword non_stopword
no_token AND non_stopword non_stopword
stopword AND stopword no_token

no_token AND stopword no_token

stopword AND no_token no_token

no_token AND no_token no_token

Stopword Transformations D-3

Understanding Stopword Transformations

OR Transformations

Stopword Expression Rewritten Expression
non_stopword OR stopword non_stopword
non_stopword OR no_token non_stopword
stopword OR non_stopword non_stopword
no_token OR non_stopword non_stopword
stopword OR stopword no_token

no_token OR stopword no_token

stopword OR no_token no_token

no_token OR no_token no_token

Accumulate Transformations

Stopword Expression Rewritten Expression

non_stopword ACCUM stopword non_stopword
non_stopword ACCUM no_token non_stopword
stopword ACCUM non_stopword non_stopword

no_token ACCUM non_stopword ~ non_stopword

stopword ACCUM stopword no_token
no_token ACCUM stopword no_token
stopword ACCUM no_token no_token
no_token ACCUM no_token no_token

D-4 Oracle8 ConText Cartridge Application Developer’s Guide

Understanding Stopword Transformations

MINUS Transformations

Stopword Expression Rewritten Expression

non_stopword MINUS stopword non_stopword
non_stopword MINUS no_token non_stopword
stopword MINUS non_stopword no_token

no_token MINUS non_stopword no_token

stopword MINUS stopword no_token
no_token MINUS stopword no_token
stopword MINUS no_token no_token
no_token MINUS no_token no_token
NOT Transformations

Stopword Expression Rewritten Expression
non_stopword NOT stopword non_stopword
non_stopword NOT no_token non_stopword
stopword NOT non_stopword no_token
no_token NOT non_stopword no_token
stopword NOT stopword no_token
no_token NOT stopword no_token
stopword NOT no_token no_token
no_token NOT no_token no_token

Stopword Transformations D-5

Understanding Stopword Transformations

Equivalence Transformations

Stopword Expression Rewritten Expression
non_stopword EQUIV stopword non_stopword
non_stopword EQUIV no_token non_stopword
stopword EQUIV non_stopword non_stopword
no_token EQUIV non_stopword non_stopword
stopword EQUIV stopword no_token

no_token EQUIV stopword no_token

stopword EQUIV no_token no_token

no_token EQUIV no_token no_token

Note: When you use query expression feedback, not all of the
equivalence transformations are represented in the feedback table.

NEAR Transformations

Stopword Expression Rewritten Expression
non_stopword NEAR stopword non_stopword
non_stopword NEAR no_token non_stopword
stopword NEAR non_stopword non_stopword
no_token NEAR non_stopword non_stopword
stopword NEAR stopword no_token

no_token NEAR stopword no_token

stopword NEAR no_token no_token

no_token NEAR no_token no_token

D-6 Oracle8 ConText Cartridge Application Developer’s Guide

Understanding Stopword Transformations

Weight Transformations

Stopword Expression

Rewritten Expression

stopword * n

no_token * n

no_token

no_token

Threshold Transformations

Stopword Expression

Rewritten Expression

stopword > n no_token
no_token >n no_token
Max Transformations

Stopword Expression

Rewritten Expression

stopword: n

no_token: n

no_token

no_token

First/Next Transformations

Stopword Expression

Rewritten Expression

stopword # m-n

no_token # m-n

no_token

no_token

WITHIN Transformations

Stopword Expression

Rewritten Expression

stopword WITHIN section
no_token WITHIN section

no_token

no_token

Stopword Transformations

D-7

Understanding Stopword Transformations

D-8 Oracle8 ConText Cartridge Application Developer’s Guide

E

Knowledge Catalog - Category Hierarchy

This appendix provides a list of all the concepts in the knowledge catalog that serve
as categories.

The appendix is divided into six sections, corresponding to the six main branches of
the knowledge catalog:

« Branch 1: science and technology

« Branch 2: business and economics

« Branch 3: government and military

« Branch 4: social environment

« Branch 5: geography

« Branch 6: abstract ideas and concepts

The categories are presented in an inverted-tree hierarchy and within each category;,
sub-categories are listed in alphabetical order.

Note: This appendix does not contain all the concepts found in the
knowledge catalog. It only contains those concepts that serve as
categories (meaning they are parent nodes in the hierarchy).

See Also: For more information about categories and concepts in
the knowledge catalog, see "Knowledge Catalog"section in
Chapter 7, "ConText Linguistics".

Knowledge Catalog - Category Hierarchy E-1

Branch 1: science and technology

Branch 1: science and technology

[1] communications

[2] journalism
[3] broadcast journalism
[3] phot oj ournal i sm
[3] print journalism

[4] newspapers

[2] public speaking

[2] publishing industry
[3] desktop publishing
[3] periodicals

[4] business publications

[3] printing
[2] tel ecomunications industry
[3] conputer networking

[4] Internet technol ogy
[5] Internet providers
[5] Véb browsers
[5] search engi nes

[3] data transmi ssion
[3] fiber optics
[3] tel ephone service

[1] formal education

[2] colleges and universities
[3] acadenic degrees
[3] business education
2] curricula and net hods
2] library science

2] school s

[
[
[2] reference books
[
[

2] teachers and students

[1] hard sciences

[2] aerospace industry

[3l
(3l

satel lite technol ogy

space expl oration

[4] Mars exploration

[4] lunar exploration

[4] space explorers

[4] spacecraft and space stations

[2] chemical industry

cheni cal adhesi ves
chenical dyes
chenical engi neering
naterial s technol ogy
[4] industrial ceranics
[4] netal industry
[5] al um numindustry
[5] metallurgy
[5] steel industry
[4] plastics
[4] rubber
[4] synthetic textiles
paints and finishing naterial s
pesti ci des

[4] fungicides
[4] herbi ci des
[2] chemistry
[3] chemcal properties
[3] chenical reactions
[3] chenicals
[4] chemical acids
[4] chemical elenents
[4] nol ecul ar reactivity
[4] ol ecul ar structure
[3] chemistry tool s
[4] chemical analysis
[4] chemistry gl assware
[4] purification and isolation of chenical s
[3] organic chenistry
[3] theory and physics of chemistry
civil engineering
[3] building architecture
[3] construction industry
[4] building conponents
[5] exterior structures
[6] entryways and extensions
6] | andscapi ng
6] ornanental architecture
6] roofs and towers

[
[
[
[6] walls
[
i
[
[

[2

6] w ndows
nterior structures
6] building foundations
6] building systens
[7] electrical systens
[7] fireproofing and insul ation
[7] plunbing
[6] roons
[4] buildings and dwel | ings
[5] outbuil di ngs
[4] carpentry
[4] construction equi prent
[4] construction nmaterials
[5] paneling and conposites
[5] surfaces and fi ni shing
[2] conputer industry
[3] conputer hardware industry
[4] conputer conponents
[5] conputer nenory
[5] microprocessors
[4] conputer peripheral s
[5] data storage devices
[4] hand-hel d conputers
[4] laptop conputers
[4] nainframes
[4] personal conputers
[4] workstations
[3] conputer science
[4] artificial intelligence
[3] conputer security and data encryption
[4] conputer viruses and protection
[3] conputer software industry

(5]

E-2 Oracle8 ConText Cartridge Application Developer’s Guide

Branch 1: science and technology

[2

[2

[2

[2

[4] CADCAM
[4] client-server software
[4] conputer programmi ng
[5] programmng devel oprent tool s
[5] programmng | anguages
[4] operating systens
[3] conputer standards
[3] cyberculture
[3] hunan-conput er interaction
[3] information technol ogy
[4] conputer multinedia
[5] conputer graphics
[5] conputer sound
[5] conputer video
[4] databases
[4] docunent nanagenent
[4] natural |anguage processing
[4] spreadsheets
[3] network conputing
[3] superconputing and paral |l el conputing
[3] virtual reality
el ectrical engineering
el ectronics
[3] consuner el ectronics
[4] audio el ectronics
[4] video el ectronics
[3] electronic circuits and conponents
[4] microel ectronics
[4] semiconductors and superconduct ors
[3] radar technol ogy
energy industry
[3] electric power industry
[3] energy sources
[4] alternative energy sources
[4] fossil fuels industry
[5] coal industry
[5] petrol eumproducts industry
[4] nucl ear power industry
envi ronnent control industries
[3] heating and cooling systens
[3] pest control
[3] waste managenent
expl osives and firearns
[3] chemcal expl osives
[3] firearmparts and accessories
[3] recreational firearns
geol ogy
[3] geol ogi c fornations
[3] geol ogi c subst ances
[4] mineral ogy
[5] genstones
[5] igneous rocks
[5] et anor phic rocks
[5] sedinentary rocks
[3] hydrol ogy
[3] neteorol ogy
[4] atnospheric science
[4] clouds
[4] storns
[4] weather nodification
[4] weather phenonena
[4] winds

3] nmining industry
3] natural disasters
3] oceanogr aphy

3] spel eol ogy
3] vul canol ogy
[2] inventions
[2] life sciences
[3] biol ogy

[
[
[
[3] seisnol ogy
[
[

4

4

4

4
4

Knowledge Catalog - Category Hierarchy

bi ochenmi stry
[5] biological conpounds
[6] amino acids
[6] enzynes
[6] hornones
[7] androgens and anabol i c steroids
[7] blood sugar hornones
[7] corticosteroids
[7] estrogens and progestins
[7] gonadotropi ns
[7] pituitary hornones
[7] thyroid hormones
[6] lipids and fatty acids
[6] nucleic acids
[6] sugars and carbohydrat es
[6] toxins
[6] vitamins
[5] cell reproduction
[5] cell structure and function
[5] nol ecul ar genetics
bot any
[5] al gae
[5] fungi
[5] plant diseases
[5] plant ki ngdom
[6] ferns
[6] flowering plants
[7] cacti
[7] grasses
[6] nosses
[6] trees and shrubs
[7] conifers
[7] deciduous trees
[7] palmtrees
[5] plant physiol ogy
[6] plant devel opnent
[6] plant parts
lover life forns
[5] bacteria
[5] viruses
pal eont ol ogy
[5] dinosaurs
physi ol ogy
[5] anatony
[6] cardiovascul ar systens
[6] digestive systens
[6] extremties and appendages
[6] gl andul ar systens
[6] head and neck
[7] ear anatony
[7] eye anatony
[7] mouth and teeth
[6] inmmune systens

Branch 1: science and technology

[7] antigens and antibodi es
[6] lynphatic systens
[6] nuscul ar systens
[6] nervous systens
[6] reproductive systens
[6] respiratory systens
[6] skeletal systens
[6] tissue systens
[

[6] rmammal s

[7] anteaters and sl oths
[8] aardvarks

[7] carnivores
[8] canines
[8] felines

[7] chiropterans

[7] el ephants

6] torso [7] hoofed nammal s
[6] urinary systens [8] cattle
[5] reproduction and devel opnent [8] goats
[4] popul ations and vi vi syst ens [8] horses
[5] biological evolution [8] pigs
[5] ecol ogy [8] sheep
[6] ecol ogi cal conservation [7] hyraxes
[6] environnmental pollution [7] rarine nammal s
[5] genetics and heredity [8] seals and wal ruses
[4] zool ogy [9] nanatees

[5] invertebrates [8] whal es and por poi ses

[6] aquatic sponges
[6] arthropods
[7] arachnids
[8] mites and ticks
[8] scor pions
[8] spiders
[7] crustaceans
[7] insects
[6] coral and sea anenones
[6] jellyfish
[6] ol | usks
[7] clans, oysters, and nussel s
[7] octopi and squids
[7] snails and sl ugs
[6] starfish and sea urchins
[6] worns

[5] vertebrates

[6] anphi bi ans
[6] birds
[7] birds of prey
[8] ows
[7] gane birds
[7] hurm ngbi rds
[7] jays, crows, and nagpies
[7] parrots and parakeets
[7] pengui ns
[7] pigeons and doves
[7] warblers and sparrows
[7] water birds
[8] ducks, geese, and swans
[8] gulls and terns
[8] pelicans
[7] woodpeckers
[7] wens
[6] fish
[7] bonel ess fish
[8] rays and skates
[8] sharks
[7] bony fish
[8] deep sea fish
[8] eels
[8] tropical fish
[7] jaw ess fish

E-4 Oracle8 ConText Cartridge Application Developer’s Guide

[7] rarsupials

[7] nonot renes

[7] prinates
[8] lemurs

[7] rabbits

[7] rodents

[6] reptiles

[7] crocodilians

[7] lizards

[7] snakes

[7] turtles

[3] bi ot echnol ogy

[4
4

[4
4

ant i body technol ogy
[5] inmmunoassays
bi onetrics
[5] voice recognition technol ogy
geneti c engi neering
phar maceuti cal industry
[5] anesthetics
[6] general anesthetics
[6] local anesthetics
[5] antagonists and anti dot es
[5] antibiotics, antimcrobials, and
antiparasitics
[6] anthel mntics
[6] antibacterials
[7] antinal arials

[7] antituberculars and antileprotics

[6] antifungal s
[6] antivirals
[6] local anti-infectives
[5] antigout agents
[5] autonomic nervous system drugs
[6] neuronuscul ar bl ockers
[6] skeletal nuscle rel axants
[5] blood drugs
[5] cardiovascul ar drugs
[6] antihypertensives
[5] central nervous system drugs
[6] anal gesics and antipyretics
[6] antianxiety agents
[6] antidepressants
[6] antipsychotics

Branch 1: science and technology

[6] narcotic and opioi d anal gesics
[6] nonsteroidal anti-inflammatory drugs
[6] sedative-hypnotics
[5] chenot herapeutics, antineopl astic agents
[5] dernatomucosal agents
[6] topical corticosteroids
[5] digestive system drugs
[6] antacids, adsorbents, and
antiflatul ents
[6] antidiarrheals
[6] antienetics
[6] antiulcer agents
[6] digestants
[6] laxatives
[5] eye, ear, nose, and throat drugs
[6] nasal agents
[6] ophthal nics
[7] ophthal mc vasoconstrictors
[6] otics, ear care drugs
[5] fluid and el ectrol yte bal ance drugs
[6] diuretics
[5] hornonal agents
[5] inmmune system drugs
[6] antitoxins and antiveni ns
[6] biological response nodifiers
[6] inmune seruns
[6] i mmunosuppr essant s
[6] vaccines and toxoi ds
[5] oxytocics
[5] respiratory drugs
[6] anti hi stam nes
[6] bronchodil at ors
[6] expectorants and antitussives
[5] spasnol ytics
[5] topical agents

[3] health and nedi ci ne

[4

[4

heal t hcare industry
[5] healthcare providers and practices
[5] medical disciplines and specialties
[6] cardi ol ogy
[6] dentistry
[6] dernat ol ogy
[6] geriatrics
[6] neurol ogy
[6] obstetrics and gynecol ogy
[6] oncol ogy
[6] opht hal nol ogy
[6] pediatrics
[5] medical equi prent
[6] artificial linbs and organs
[6] dressings and supports
[5] medical equi prent nmanufacturers
[5] nedical facilities
nedi cal probl ens
[5] blood disorders
[5] cancers and tunors
[6] carcinogens
[5] cardiovascul ar disorders
[5] devel oprental di sorders
[5] environment-related afflictions
[5] gastrointestinal disorders
[5] genetic and hereditary disorders

[5] infectious di seases
[6] communi cabl e di seases

[7] sexually transmtted di seases

[5] injuries
[5] medical disabilities
[5] neurol ogical disorders
[5] respiratory disorders
[5] skin conditions
[4] nutrition
[4] practice of nedicine
[5] alternative nedicine
[5] medical diagnosis
[6] medical inaging
[5] medical personnel
[5] nmedical procedures
[6] physical therapy
[6] surgical procedures
[7] cosnetic surgery
[4] veterinary nedicine

[2] machinery

[2

]

(3l

nachi ne conponent s

mat hemat i cs

(3l

(3l

(3l

nmechani cal

al gebra

[4] linear al gebra

[4] nodern al gebra
arithnetic

[4] elenentary al gebra
cal cul us

geonet ry

[4] nathenatical topol ogy
[4] plane geonetry

[4] trigononetry

nath tool s

nat henati cal anal ysi s
nat henat i cal foundations
[4] nunber theory

[4] set theory

[4] synbolic |ogic
statistics

engi neering

physics

[3l
(3l

acousti cs
cosnol ogy
[4] astronony
[5] celestial bodies
[6] celestial stars
[6] conets
[6] constellations
[6] gal axi es
[6] moons
[6] nebul ae
[6] planets
[5] celestial phenonena
electricity and nagnetism
noti on physics
nucl ear physics
[4] subatomic particles
optical technol ogy
[4] hol ogr aphy
[4] laser technol ogy
[5] high-energy |asers
[5] lowenergy |lasers

Knowledge Catalog - Category Hierarchy

Branch 1: science and technology

[2

]

[3] thernodynanm cs
robotics

[2] textiles
[2] tools and hardware

[3] cenents and gl ues

[3] hand and power tools
[4] chisels
[4] drills and bits
[4] gauges and cal i pers
[4] hammers
[4] nachine tool s
[4] planes and sanders
[4] pliers and cl anps
[4] screwdrivers
[4] shovel s
[4] trowels
[4] wenches

[3] knots

[1] social sciences
[2] anthropol ogy

[2

[2

[2

[2

[2

E-6

]

[3] cultural identities
[4] Native Anericans
[3] cultural studies
[4] ancient cultures
[3] custons and practices
ar cheol ogy
[3] ages and peri ods
[3] prehistoric humanoi ds
hi story
[3] US history
[4] slavery in the US
[3] ancient Rone
[4] Ronan enperors
[3] ancient history
[3] bi ographies
[3] historical eras
human sexuality
[3] honosexual ity
[3] por nography
[3] prostitution
[3] sexual issues
i ngui stics
[3] descriptive linguistics
[4] grammar
[5] parts of speech
[4] phonetics and phonol ogy
[3] historical 1inguistics
[3] languages
[3] linguistic theories
[3] rhetoric and figures of speech
[3] sociolinguistics
[4] dialects and accents
[3] witing and nechani cs
[4] punctuation and diacritics
[4] witing systens
psychol ogy
[3] abnornal psychol ogy
[4] anxiety disorders
[4] childhood onset disorders
[4] cognitive disorders

Oracle8 ConText Cartridge Application Developer’s Guide

[2

[4] dissociative disorders

[4] eating disorders

[4] inpul se control disorders
[4] rood di sorders

[4] personality disorders

[4] phobi as

[4] psychosonatic disorders

[4] psychotic disorders

[4] sonat of ormdi sorders

[4] substance rel ated di sorders
behavi ori st psychol ogy

cogni tive psychol ogy

devel opnent al psychol ogy
experinental psychol ogy

hunani sti ¢ psychol ogy

neur opsychol ogy

per cept ual psychol ogy

psychi atry

psychoanal yti c psychol ogy
psychol ogi cal states and behavi ors
psychol ogi cal therapy

psychol ogi cal tool s and techni ques
sl eep psychol ogy

[4] sleep disorders

soci ol ogy

[3l
(3l

[3l
(3l

denogr aphi cs

social identities

[4] gender studies

[4] senior citizens

soci al novenents and institutions
soci al structures

[1] transportation

[2] aviation

[2

[2

[2

aircraft
airlines
airports
avi oni cs

freight and shi pping

[3l
(3l

package del i very industry
trucki ng i ndustry

ground transportation

[3l
(3l

[3l
(3l

(3l

ani nal powered transportation
aut onot i ve i ndustry
[4] autonobil es
[4] autonotive engi neering
[5] autonotive parts
[5] internal conbustion engi nes
[4] autonotive sal es
[4] autonotive service and repair
[4] car rentals
[4] notorcycl es
[4] trucks and buses
human power ed vehi cl es
rail transportation
[4] subways
[4] trains
roadways and driving

marine transportation

[3l
(3l

boats and shi ps
seananshi p

Branch 1: science and technology

[3] waterways
[2] travel industry
[3] hotels and | odgi ng
[3] tourism
[4] cruise lines
[4] places of interest
[4] resorts and spas

Knowledge Catalog - Category Hierarchy E-7

Branch 2: business and economics

Branch 2: business and economics

[1] business services industry

[1] commerce and trade

[2] el ectronic commerce
[2] general commerce
[2] international trade and finance
[2] mail-order industry
[2] retail trade industry
[3] conveni ence stores
[3] departnent stores
[3] discount stores
[3] supernarkets
[2] whol esal e trade industry

[1] corporate business

[2] business enterprise
[3] entrepreneurship
[2] business fundanental s
[2] consulting industry
[2] corporate finance
[3] accountancy
[2] corporate nanagenent
[2] corporate practices
[2] diversified conpanies
[2] human resources
[3] enpl oyment agenci es
[2] office products
2] quality control
[3] custoner support
[2] research and devel opnent
[2] sales and nmarketing
[3] advertising industry

[1] economics

[1] financial institutions

[2] banking industry
[2] insurance industry
[2] real -estate industry

[1] financial investments

[2] commodities narket

[3] noney

[4] currency narket

[3] precious netal s narket
[2] general investnent
[2] personal finance

[3] retirement investnents
[2] securities narket

[3] bond nar ket

[3] mutual funds

[3] stock market

[1] financial lending
[2] credit cards

[1] industrial business

[2] industrial engineering

[3] production nethods
[2] industrialists and financiers
[2] manufacturing

[3] industrial goods manufacturing

[1] public sector industry
[1] taxes and tariffs

[1] work force

[2] organi zed | abor

E-8 Oracle8 ConText Cartridge Application Developer’s Guide

Branch 3: government and military

Branch 3. government and military

[1] government

[2] county governnent
[2] forns and phil osophies of governnent
[2] governnent actions
[2] governnent bodies and institutions
[3] executive branch

[4] US presidents

[4] executive cabi net
[3] judiciary branch

[4] Suprene Court

[5] chief justices

[3] legislative branch

[4] house of representatives

[4] senate
government officials
[3] royalty and ari stocracy
[3] statesnmanship

[2

[2] governnent prograns
[3] social prograns
[4] welfare
[2] international relations
[3] Qold ver
[3] dipl omacy
[3] inmgration
[2] law
[3] business | aw
[3] courts

[3] crines and of f enses
[4] controlled substances
[5] substance abuse
[4] crimnals
[4] organi zed crine
[3] law enf orcenent
[3] lawfirns
[3] law systens
[4] constitutional |aw
[3] legal bodies
[3] legal custons and formalities
[3] legal judgnents
[3] legal proceedi ngs
[3] prisons and puni shnents
muni ci pal gover nnent
[3] municipal infrastructure
[3] urban areas
[4] urban phenonena
[4] urban structures
politics
[3] civil rights
[3] elections and canpai gns
[3] political activities
[3] political advocacy
[4] aninal rights
[4] consuner advocacy
[3] political parties
[3] political principles and phil osophies
[4] utopias
[3] political scandal s

[2

[2

[3] revol ution and subversion
[4] terrorism
[2] postal communications
[2] public facilities
[2] state governnent

[1] military

[2] air force
[2] arnored clothing
[2] arny
[2] cryptography
[2] mlitary honors
[2] mlitary intelligence
[2] mlitary |eaders
[2] mlitary ranks
[3] arny, air force, and marine ranks
[3] navy and coast guard ranks
[2] mlitary wars
[3] American Avil Vér
[3] Anerican Revol ution
[3] Wérlid Ver |
[3] vorid veér 11
[3] warfare
mlitary weaponry
[3] bonbs and nines
[3] chemcal and biol ogi cal warfare
[3] mlitary aircraft
[3] nmissiles, rockets, and torpedoes
[
[

[2

3] nucl ear weaponry

3] space- based weapons
[2] navy

[3] warships
[2] service acadenm es

Knowledge Catalog - Category Hierarchy E-9

Branch 4: social environment

Branch 4: social environment

[1] belief systems

[2] folklore

[2] nythol ogy

3] Celtic nythol ogy
3] Egyptian nyt hol ogy
3] Geek nythol ogy

3] Japanese nyt hol ogy

Norse and Ger nani ¢ nyt hol ogy
3] Ronan nyt hol ogy

3] nythol ogi cal bei ngs
3] nyths and | egends
paranornal phenonena
[3] astrol ogy
[3] occult
[3] superstitions
[2] phil osophy

[3] epistenol ogy

[3] ethics and aesthetics
[3] netaphysics
[
[

K]

[2

3] phil osophi cal |ogic

3] school s of phil osophy
[2] religion

[3] God and divinity

[3] doctrines and practices
[3] history of religion
[
[

3] religious institutions and structures

3] sacred texts and objects
[4] Bible
[4] liturgical garnents
[3] world religions
[4] Christianity
[5] Christian denoninations
5] Ghristian heresi es
5] Ghristian theol ogy
5] Mor noni sm
5] Ronan Cathol i ci sm
[6] popes
[6] religious orders
[5] evangel i sm
[5] protestant refornation
[4] Islam
[4] Judai sm
[4] eastern religions
[5] Buddhi sm
[5] H ndui sm
[6] Hndu deities

[1] clothing and appearance

[2] clothing
[3] clothing accessories
[4] belts
[4] functional accessories
[4] dl oves
[3] fabrics

3] Mesopotamian and Sunerian nyt hol ogy

3] South and Central American nythol ogy

[4] laces
[4] leather and fur
[3] footwear
[3] garnent parts
[4] garnent fasteners
[4] garnent trim
[3] headgear
[4] hats
[4] hel nets
[3] laundry
[3] neckwear
[3] outer garnents
[4] dresses
[4] fornal wear
[4] jackets
[4] pants
[4] shirts
[4] skirts
[4] sporting wear
[4] sweaters
[3] sew ng
[3] undergarnents
[4] deshabille
[4] hosiery
[4] lingerie
[4] men’s underwear
[2] cosnetics
[3] facial hair
[3] hair styling
[2] fashion industry
[3] supernodel s
[2] groom ng
[3] grooning aids
[2] jewelry

[1] emergency services

[2] energency dispatch

[2] energency nedical services

[2] fire prevention and suppression
[2] hazardous naterial control

[2] heavy rescue

[1] family

[2] death and burial
[3] funeral industry
[2] divorce
[2] infancy
[2] kinship and ancestry
[2] marriage
[2] pregnancy
[3] contraception
[2] upbringing

[1] food and agriculture

[2] agri business

E-10 Oracle8 ConText Cartridge Application Developer’s Guide

Branch 4: social environment

agri cul tural equi pment
agri cul tural technol ogy
[3] soil managenent
[4] fertilizers
aquacul ture
cereal s
condi ment s
crop grain
dairy products
[3] cheeses
drinking and di ni ng
[3] al coholic beverages
[4] beers
[4] liqueurs
[4] liquors
[4] mixed drinks
[4] wines
[5] wineries
[3] cooking
[3] meal s and di shes
[4] sandw ches
[3] non-al cohol i c beverages
[4] coffee
[4] soft drinks
[4] tea
farm ng
fats and oils
[3] butter and nargarine
food and drink industry
[3] foodservice industry
[3] neat packing industry
forestry
[3] forest products
fruits and vegetabl es
[3] Iegunes
| eaveni ng agents
mari cul ture
neat s
[3] beef
[3] pate and sausages
[3] pork
[3] poultry
nuts and seeds
past a
prepared foods
[3] breads
[3] candies
[3] crackers
[3] desserts
[4] cakes
[4] cooki es
[4] pies
[3] pastries
[3] sauces
[3] soups and stews
ranchi ng
seaf ood
spices and flavorings
[3] sweeteners

[1] housekeeping and butlery

[1] housewares

beds
candl es
carpets and rugs
cases, cabinets, and chests
chairs and sof as
curtains, drapes, and screens
functional wares
[3] cleaning supplies
hone appliances
ki t chenwar e
[3] cookers
[3] fine china
[3] gl assware
[3] kitchen appliances
[3] kitchen utensils

[4] cutting utensils
[3] pots and pans
[3] serving containers
[3] tablewnare
| anps
I'i nen
mrrors
ornament al objects
stationery
stool s and stands
tabl es and desks
ti nepi eces

[1] leisure and recreation

[2]

arts and entertai nnent
[3] broadcast nedi a
[4] radio
[5] amateur radio
[4] television
[3] cartoons, comc books, and superheroes
[3] cinena
[4] novie stars
[4] movie tools and techni ques
[4] novies
[3] entertainnents and spect acl es
[4] entertainers
[3] hunor and satire
[3] literature
[4] children's literature
[4] literary criticism
[4] literary devices and techni ques
[

4] poetry

[5] classical poetry
[4] prose

[5] fiction

[6] horror fiction
[6] nystery fiction
[4] styles and schools of literature
[3] performing arts
[4] dance
[5] ballet

Knowledge Catalog - Category Hierarchy E-11

Branch 4: social environment

[2]
[2]

[5] chor eography
[5] fol k dances
[5] modern dance
[4] drana
[5] dramatic structure
[5] stagecraft
[4] music
[5] blues nusic
[5] classical nusic
[5] conposition types
[5] folk nusic
[5] jazz nusic
[5] nusic industry
[5] nusical instrunments
[6] keyboard instrunents
[6] percussion instrunents
[6] string instrunents
[6] wind instruments
[7] brass instrunents
[7] woodw nds
[5] opera and vocal
[5] popul ar nusic and dance
[5] world nusic
[3] science fiction
[3] visual arts
[4] art galleries and nuseuns
[4] artistic painting
[5] painting tools and techni ques
[5] styles and school s of art
[4] graphic arts
[4] phot ogr aphy
[5] caneras
[5] phot ographi c | enses
[5] phot ographi ¢ processes
[5] phot ographi ¢ techni ques
[5] phot ographi ¢ tool s
[4] scul pture
[5] scul pture tools and techni ques
crafts
ganes
[3] indoor ganes
[4] board ganes
[4] card games
[4] video ganes
[3] outdoor ganes
gam ng industry
[3] ganbling
gardeni ng
hobbi es
[3] coin collecting
[3] stanp collecting
outdoor recreation
[3] hunting and fishing
pets
restaurant industry
sports
[3] Qynpics
[3] aquatic sports
[4] canoei ng, kayaking, and rafting
[4] swmming and diving
[4] yachting
[3] basebal |

[3] basketball
[3] bicycling
[3] bowing
[3] boxing
[3] equestrian events
[4] horse racing
[4] rodeo
[3] fantasy sports
[3] fitness and heal th
[4] fitness equi prent
[3] football
[3] gol f
[3] gymmastics
[3] nartial arts
[3] motor sports
[4] Formula | racing
[4] Indy car racing
[4] NASCAR raci ng
[4] drag racing
[4] notorcycl e racing
[4] off-road racing
[3] soccer
[3] sports equi prent
[3] tennis
[3] track and field
[3] winter sports
[4] hockey
[4] ice skating
[4] skiing
[2] tobacco industry
[2] toys

E-12 Oracle8 ConText Cartridge Application Developer’s Guide

Branch 5: geography

Branch 5: geography
[1] cartography

[2] explorers

[1] physical geography

[2] bodies of water

[3] Iakes

[3] oceans

[3] rivers
[2] land forns
[3] coastlands
[3] continents
[3] deserts
[3] highlands
[3] islands
[3] |ow ands
[3] nountains
[3] wetlands

[1] political geography

[2] Africa
[3] Central Africa
[4] Angol a
[4] Burundi
[4] Central African Republic
[4] Gongo
[4] Gabon
[4] Kenya
[4] Mal awi
[4] Rwanda
[4] Tanzani a
[4] Wanda
[4] zaire
[4] Zanbia
[3] North Africa
[4] Ageria
[4] Chad
[4] DOibouti
[4] Egypt
[4] Ehiopia
[4] Libya
[4] Morocco
[4] Sonalia
[4] Sudan
[4] Tunisia
[3] Southern Africa
[4] Botswana
[4] Lesotho
[4] Mbzanbi que
[4] Namibia
[4] South Africa
[4] Swaziland
[4] Z nbabwe
[3] Wést Africa
[4] Benin
[4] Burkina Faso

Caner oon
Equatorial Quinea
Ganbi a

CGhana

Qui nea

Qui nea- B ssau

| vory Qoast

Li beria

Mal i

Mauritani a

N ger

N geria

Sao Tone and Princi pe
Senegal

Serra Leone

Togo

[2] Antarctica

[2] Arctic

[3] Geenland
[3] Iceland
[2] Asia

[3] Central Asia

(3l

(3l

Af ghani st an
Bangl adesh
Bhut an

Indi a
Kazakhst an
Kyrgyzst an
Nepal

Paki st an
Taj i kstan
Tur kneni st an
Wzbeki st an

Chi na

Hong Kong
Japan

Macao
Mongol i a
North Korea
Sout h Korea
Tai wan

Sout heast Asi a

Br unei
Canbodi a

| ndonesi a
Laos

Ml aysi a
Myannar
Papua New Qui nea
Phi | i ppi nes
S ngapor e
Thai | and

M et nam

[2] Atlantic area
[3] Azores
[3] Bernuda
[3] Ganary Islands

Knowledge Catalog - Category Hierarchy

E-13

Branch 5: geography

[2

[2

[2

[3] Cape Verde

[3] Falkland Islands

Cari bbean

[3] Antigua and Barbuda

[3] Bahanmas

[3] Barbados

[3] Quba

[3] Doninica

[3] Donmini can Republic

[3] Genada

[3] Haiti

[3] Janai ca

[3] Netherlands Antilles

[3] Puerto Rco

[3] Trinidad and Tobago

Central Anmerica

[3] Belize

[3] Costa Rca

[3] B Salvador

[3] Quatenal a

[3] Honduras

[3] N caragua

[3] Panana

Eur ope

[3] Eastern Europe
[4] A bania

[4] Arnenia

[4] Azerbaijan

[4] Belarus

[4] Bulgaria

[4] Czech Republic

[4] Czechosl| ovaki a

[4] Estonia

[4] Geece

[4] Hungary

[4] Latvia

[4] Lithuania

[4] Ml dava

[4] Pol and

[

[

[

4] Republic of Georgia

4] Rormani a
4] Russia

[5] Sberia
[4] Y ovakia
[4] Soviet Whion
[4] Wkraine
[4] Yugosl avi a

[5] Bosnia and Herzegovi na

[5] Qoatia
[5] Macedoni a
[5] Mont enegro
[5] Serbia
[5] S ovenia
[3] VWéstern Europe
[4] Austria
[4] Belgium
[4] Dennark
[4] Faeroe Island
[4] Finland
[4] France
[4] Gernany
[4] lberia

[2

[2

[2

[2

]

]

[5] Andorra
[5] Portugal
[5] Spain
[4] Ireland
[4] Italy
[4] Liechtenstein
[4] Luxenbourg
[4] Mnaco
[4] Netherlands
[4] Norway
[4] San Marino
[4] Swneden
[4] Switzerland
[4] Wited K ngdom
[5] Engl and

5] Northern Irel and

[
[5] Scotland
[5] Vvéles

I ndi an Ccean area

[3] Gonoros

[3] Madagascar

[3] Maldives

[3] Mauritius

[3] Seychelles

[3] Si Lanka

Medi t err anean

[3] Corsica

[3] Qprus

[3] Mita

[3] Sardinia

M ddl e East

[3] Bahrain

[3] Iran

[3] Iraq

[3] Israel

[3] Jordan

[3] Kuwait

[3] Lebanon

[3] Oman

[3] Palestine

[3] Qutar

[3] Saudi Arabia

[3] Socotra

[3] Syria

[3] Turkey

[3] Whited Arab Emrates

[3] Yenen

North America

[3] Ganada

[3] Mexico

[3] Whited Sates
[4] A abama
[4] A aska
[4] Arizona
[4] Arkansas
[4] Galifornia
[4] ol orado
[4] Del avare
[4] Horida
[4] Georgia
[4] Hawaii
[4] Idaho

E-14 Oracle8 ConText Cartridge Application Developer’s Guide

Branch 5: geography

[4] Illinois [2] South Anerica
[4] Indiana [3] Ng_en_ti na
%4% | ova %3% BoI|v:a
4] Kansas 3] Brazi
[4] Kentucky [3] hile
[4] Loui si ana [3] Col onbi a
[4] Maryl and [3] Ecuador
[4] Mchigan [3] French Quiana
[4] Mnnesota [3] Quyana
[4] Mssi ssippi [3] Paraguay
[4] Mssouri [3] Peru
[4] Montana [3] Surinanme
[4] Nebraska [3] Wuguay
%4% Nevada o [3] Venezuel a
4] New Engl an
[5] Gonnecti cut

[5] Maine
[5] Massachusetts
[5] New Hanpshire
[5] Rhode Island
[5] Vernont
[4] New Jersey
[4] New Mexi co
[4] New York
[4] North Garolina
[4] North Dekota
[4] Chio
[4] &I ahonma
[4] Oegon
[4] Pennsyl vani a
[4] South Garolina
[4] South Dekota
[4] Tennessee
[4] Texas
[4] Wah
[4] Mrginia
[4] Wéshi ngton
[4] VWéshington D C
[4] Vést Mirginia
[4] Wsconsin
[4] woning
[2] Pacific area
[3] Anerican Sanoa
[3] Australia
[4] Tasnani a
[3] Gook Islands
[3] Fji
[3] French Pol ynesi a
[3] Quam
[3] Kiribati
[3] Mariana Islands
[3] Marshall 1slands
[3] Mcronesia
[3] Nauru
[3] New Cal edoni a
[3] New Zeal and
[3] Palau
[3] Sol onon I sl ands
[3] Tonga
[3] Tuvalu
[3] Vanuatu
[3] Véstern Sanoa

Knowledge Catalog - Category Hierarchy E-15

Branch 6: abstract ideas and concepts

Branch 6: abstract ideas and concepts

[1] dynamic relations
[2] activity

[1] human life and activity

[2] communication

[3] attenpts
[4] achi everent

3] announcenent s
3] conversation

i

[4] difficulty [3] declarations

[4] ease [3] disclosure

[4] ext enpor aneousness [3] identifiers

[4] failure [3] inplication

[4] preparation [3] obscene | anguage
[

[4] success
[3] inertia
[3] motion
[4] agitation
[4] directional novenent
[5] ascent
[5] convergence
[5] departure
[5] descent
[5] divergence
[5] entrance
[5] inward notion
[5] junps
[5] motions around
[5] outward notion
[5] progression
[5] withdrawal

[2

3] representation
[4] interpretation
[3] secrecy
[3] shyness
[3] speech
[3] styles of expression
[4] boasting
[4] clarity
[4] el oquence
[4] intelligibility
[4] nonsense
[4] plain speech
[4] wordiness
feelings and sensations
[3] cal ness
[3] conposure
[3] enotions

[4] forceful notions [4] anger
[5] friction 4] content nent
[5] pulls 4] courage
[5] pushes 4] cowardice
[5] throws 4] happi ness
[4] haste 4] humliation

[4] sl owness
[4] transporting

[
[
[
[
[
[4] i1l hunor
[4] insol ence
[
[
[
[
[

[3] rest 4] nervousness
(2] [32] vi ol ence 4% pi cki ness
2] change 4] regret

[3] exchanges 4] relief

[3] gradual change 4] sadness

[3] najor change [4] vanity

[3] reversion [3] excitenent

[2]

tine

[3] five senses

[3] future [4] audi ences
[3] longevity [4] hearing
%3% pastI . %5% Ifai zt ness of sound
3] regularity of tine 5] | oudness
[3] relative age [5] silence
[4] stages of devel opnent [5] sound
[3] simultaneity [6] cries

[3] tine neasurenent
[4] instants

[3] tineliness
[4] earliness

[6] dissonant sound

[6] harnoni ous sound

[6] harsh sound
[6] repeated sounds

[4] |ateness [4] sight
[3] transience [5] appearance
[5] fading
[5] visibility

E-16 Oracle8 ConText Cartridge Application Developer’s Guide

Branch 6: abstract ideas and concepts

[4] snelling
[5] odors
[4] tasting
[5] flavor
[6] sweetness
[4] touching
[3] nunbness
[3] pleasure
[3] suffering
[2] gender
[2] intellect
[3] cleverness
[3] foolishness
[3] ignorance
[3] intelligence and wi sdom
[3] intuition
[3] know edge
[3] learning
[3] teaching
[3] thinking
[4] concl usion
[5] discovery
[5] evidence
[5] rebuttal
[4] consideration
[5] analysis
[5] questioning
[5] tests
[4] faith
[5] ideol ogy
[5] sanctinony
[4] j udgnent
[4] rationality
[4] skepticism
[4] sophistry
[4] specul ation
[2] social attitude, custom
[3] behavi or
[4] approval
[4] courtesy
[4] criticism
[4] cruelty
[4] flattery
[4] forgiveness
[4] friend iness
[4] generosity
[4] gratitude
[4] hatred
[4] jeal ousy
[4] ki ndness
[4] love
[5] adoration
[4] respect
[4] rudeness
[4] ruthl essness
[4] stinginess
[4] synpathy
[3] morality and ethics
[4] evil
[4] goodness
[4] noral action
[5] asceticism

[2

[2]

5] decency
5] deception
5] integrity
5] | ewdness
[5] self-indul gence
[4] noral consequences
[5] allegation
[5] entitlenent
[5] excuses
[5] puni shrent
[5] reparation
[4] rnoral states
[5] fairness
[5] guilt
[5] innocence
[5] partiality
[4] responsibility
[3] reputation
[4] acclaim
[4] notoriety
[3] social activities
[4] enjoynent
[4] ronot ony
[3] social conventions
[4] conventional i sm
[4] formality
[4] trends
[3] social transactions
[4] debt
[4] offers
[4] paynents
[4] petitions
[4] promises and contracts
states of mnd
[3] anticipation
[4] fear
[4] frustration
[4] hopef ul ness
[4] hopel essness
[
[

4] prediction
4] surprise
[4] warni ngs
[3] boredom
[3] broad- m ndedness
[3] carel essness
[3] caution
[3] confusion
[3] creativity
[3] curiosity
[3] forgetful ness
[3] patience
[3] prejudice
[3] renenbering
[3] seriousness
volition
[3] assent
[3] choi ces
[4] denial
[3] deci dedness
[3] dissent
[3] eagerness
[3] enticenent

Knowledge Catalog - Category Hierarchy E-17

Branch 6: abstract ideas and concepts

[3] evasion
[4] abandonment
[4] escape
[3] inpul ses
[3] indecision
[3] indifference
[3] inevitability
[3] motivation
[3] obstinacy
[3] tendency

[1] potential relations
[2] ability, power

3] conpetence, expertise

[
[3] energy, vigor
[3] ineptness
[3] productivity
[3] provision
[3] strength
[3] weakness
conflict
[3] attacks
[3] conpetition
[3] crises
[3] retaliation
control
[3] anarchy
[3] command
[4] cancel ations
[4] del egation
[4] permssion
[4] prohibiting
[3] defiance
[3] influence
[3] |eadership
[3] nodes of authority
[4] confi nerent
4] constraint
4] discipline
4] freedom
4] 1eniency
[4] liberation
[3] obedi ence
[3] regulation
[3] servility
possessi on
[3] giving
[3] keeping
[3] losing
[3] receiving
[
[

[2

[2

[
[
[
[

[2

3] sharing
3] taking
possibility
[3] chance
[3] fal seness
[3] truth
[2] purpose

[3] abuse

[3] depletion

[3] obsol escence
[2] support

[2

[3] cooperation
[3] nediation

[3] neutrality
[3] peace

[3] protection
[3] sanctuary

[3] security

[1] relation

agr eement
cause and effect
[3] causation
[3] result

di fference
exanpl es

rel evance
simlarity
[3] duplication
uniformty
variety

[1] static relations

[2]

[2

[2]

amount s
[3] fewness
[3] fragnentation
[3] large quantities
[3] majority
[3] mass quantity
[3] minority
[3] nunbers
[3] quantity nodification
[4] conbi nation
[4] connection
[4] decrease
[4] increase
[4] renai nders
[4] separation
[3] required quantity
[4] deficiency
[4] excess
[4] sufficiency
[3] whol eness
[4] onission
[4] thoroughness
exi stence
[3] creation
[3] life
form
[3] defects
[3] effervescence
[3] physical qualities
[4] brightness and col or
[5] color
[6] variegation
[5] col orl essness
[5] darkness
[5] lighting
[6] opaqueness
[6] transparency

E-18 Oracle8 ConText Cartridge Application Developer’s Guide

Branch 6: abstract ideas and concepts

[4] dryness
[4] fragility
[4] heavi ness
[4] nass and wei ght neasur enent
[4] noisture
[4] pliancy
[4] rigidity
[4] softness
[4] tenperature
[5] col dness
[5] heat
[4] texture
[5] fluids
[5] gaseousness
[5] jaggedness
[5] powderiness
[5] semliquidity
[5] snoot hness
[4] wei ghtl essness
[3] shape
[4] angularity
[4] circularity
[4] curvature
[4] roundness
[4] straightness
[3] symmetry
[3] tangibility
[3] topol ogical form
[4] concavity
[4] convexity
[4] covering
[4] folds
[4] openi ngs
nonexi st ence
[3] death
[3] destruction
quality
[3] badness
[3] beauty
[3] cl eanness
[3] conplexity
[3] correctness
[3] deterioration
[3] dirtiness
[3] good quality
[3] i nprovenent
[3] nediocrity
[3] mistakes
[3] normality
[3] perfection
[
[
[

3] renedy
3] sinplicity
3] stability

[4] resistance to change
[3] strangeness
[3] ugliness
[3] value
range
[3] areas
[4] area neasurenent
[4] regions
[4] storage

[4] vol une neasur enent
ar r angenent
[4] locations
[5] anteriors
[5] conpass directions
[5] exteriors
[5] interiors
[5] left side
[5] posteriors
[5] right side
[5] topsides
[5] undersi des
[4] positions
[5] disorder
[5] groups
[6] dispersion
[6] exclusion
[6] inclusion
[6] itemzation
[6] seclusion
[6] togetherness
[5] hierarchical relationships
[6] downgrades
[6] ranks
[6] upgrades
[5] sequence
[6] begi nni ngs
[6] continuation
[6] ends
[6] niddles
[6] prel udes
boundari es
di nensi on
[4] contraction
[4] depth
[4] expansion
[4] flatness
[4] height
[4] largeness
[4] length
[4] linear measurenent
[4] narrowness
[4] shal | owness
[4] shortness
[4] sl opes
[4] snal |l ness
[4] steepness
[4] thickness
essence
general i zation
near ness
obstruction
r enot eness
renoval
si gni fi cance
trivial ness
uni queness
ways and net hods

Knowledge Catalog - Category Hierarchy E-19

Branch 6: abstract ideas and concepts

E-20 Oracle8 ConText Cartridge Application Developer’s Guide

. (decimal point) numjoin, 3-53

- (hyphen) as skipjoin or printjoin,
. (period) as punctuation, 3-52

- operator, 3-14, 3-15

Symbols

3-52

I as punctuation, 3-52
! operator, 3-24, 3-25
escape character, 3-46
as punctuation, 3-52
operator, 3-21, 3-22
$ as punctuation, 3-52
$ operator, 3-24
% wildcard, 3-35
theme queries, 4-8
& operator, 3-8
* operator, 3-14, 3-15
, (comma)
as a numgroup character, 3-54
as accumulate operator, 3-14
as punctuation, 3-52
:operator, 3-21, 3-22
= operator, 3-8, 3-9
> operator, 3-21
? operator, 3-24,3-25
@ operator, 3-42
_wildcard, 3-35
{} escape character, 3-46
| operator, 3-8
~ operator, 3-8

Index

A

accumulate operator, 3-14
example, 3-14
in thesaurus queries, 3-29
stopword transformations, D-4
accumulation of themes, 7-12
algorithm for scoring, B-2
altering precedence, 3-45
ambiguous concept in knowledge catalog, 7-10
ambiguous themes, 4-4
AND operator, 3-8
example, 3-8
stopword transformations, D-3
theme queries, 4-10
application
building, 1-2

B

backslash escape character, 3-46
backward compatibility

near operator syntax, 3-19
base-letter conversion, 3-6
base-letter query

thesuarus operator, 3-6
base-letter support

expansion operators, 3-27

thesuarus operator, 3-34
brace escape character, 3-46
brackets

altering precedence, 3-36, 3-45

grouping character, 3-36
broader term generic operator, 3-28

Index-1

broader term instance operator, 3-29
broader term operator, 3-28
broader term operators
example, 3-32
broader term partitive operator, 3-29
BT operator, 3-28, 3-32
BTG operator, 3-28, 3-32
BTI operator, 3-29, 3-32
BTP operator, 3-29, 3-32

C

CANCEL procedure

CTX_LING, 10-33

CTX_SVC, 10-53
CANCEL_ALL procedure, 10-54
CANCEL_USER procedure, 10-55
case-conversion linguistic settings, 7-13
case-sensitivity

stopwords, 3-4, 3-49

text queries, 1-7,3-3

theme query, 1-8,4-6

thesaural queries, 3-33
categories in knowledge catalog, E-1

definition, 7-9
CLEAR_ALL_ERRORS procedure, 10-56
CLEAR_ERROR procedure, 8-19, 10-57
CLEAR_INDEX_ERRORS procedure, 10-58
CLEAR_LING_ERRORS procedure, 10-59
clearing linguistic requests with errors, 8-19
CLOSE_CON procedure, 2-16, 10-4
clump size in near operator, 3-17
combined queries

first/next and max, 3-23
comma

accumulate operator, 3-14

as a numgroup, 3-54
composite textkey table

creating theme and Gist, 8-9

gist structure, A-7

hitlist structure, A-2

theme structure, A-6
composite textkeys

in-memory queries, 2-18

one-step queries, 2-14

Index-2

two-step queries, 2-7
using FETCH_HIT, 10-14
using PKDECODE, 10-24
using PKENCODE, 10-25
composite word queries, 3-5
highlighting, 3-5
compound phrases
in synonym queries, 3-30
concept
ambiguous, 7-10
unknown, 7-10
concepts in knowledge catalog
definition, 7-9
CONTAINS function, 2-11,2-12, 9-3
restrictions, 2-12
using multiple, 2-12
CONTAINS procedure, 2-3,10-5
tables created, A-2
using SQEs, 3-39
ConText linguistics
about, 7-2
continuation character, 3-51
querying, 3-52
count
presenting, 1-15
COUNT_HITS function, 2-19, 10-8
COUNT_LAST function, 2-19, 10-10
counting hits, 1-13,2-19
CREATE TABLE command, 6-6
CREATE VIEW statement, 2-7
CTX_LING
CANCEL, 10-33
GET_COMPLETION_CALLBACK, 10-34
GET_ERROR_CALLBACK, 10-35
GET_FULL_THEMES, 10-36
GET_LOG_PARSE, 8-22,10-37
GET_SETTINGS_LABEL, 10-38
package, 10-32
REQUEST_GIST, 8-10, 10-39
REQUEST_THEMES, 8-10, 10-42
SET_COMPLETION_CALLBACK, 8-20, 10-44
SET_ERROR_CALLBACK, 8-20, 10-45
SET_FULL_THEMES, 8-11, 10-46
SET_LOG_PARSE, 8-22,10-47
SET_SETTINGS_LABEL, 8-16, 10-48

SUBMIT, 8-10, 10-50
CTX_LING output
about, 8-2
combining with queries, 8-14
generating, 8-8,8-14
presenting, 1-18
CTX_LING output tables
creating, 8-8
CTX_QUERY
CLOSE_CON, 2-16, 10-4
CONTAINS, 2-3,3-39, 10-5
COUNT_HITS, 10-8
COUNT_LAST, 10-10
FEEDBACK, 5-2,5-16, 10-12
FETCH_HIT, 2-16,10-14
GETTAB, 6-6, 6-10, 10-16, A-2
HIGHLIGHT, 6-7,10-18
OPEN_CON, 2-16, 10-22
package, 10-3
PKDECODE, 10-24
PKENCODE, 10-25
PURGE_SQE, 3-37,10-26
REFRESH_SQE, 3-37, 3-39, 10-27
RELTAB, 6-10, 10-28
REMOVE_SQE, 3-37,10-29
STORE_SQE, 3-37,10-30
CTX_SQES view, 3-40
CTX_SvC
CANCEL, 10-53
CANCEL_ALL, 10-54
CANCEL_USER, 10-55
CLEAR_ALL_ERRORS, 10-56
CLEAR_ERROR, 8-19, 10-57
CLEAR_INDEX_ERRORS, 10-58
CLEAR_LING_ERRORS, 10-59
package, 10-52
REQUEST_STATUS, 10-60
CTX_USER_SQES view, 3-40
CTXLING sample application, C-7
CTXPLUS sample application, C-3
CTXSYS user, 8-4

D

database links

creating, 2-9,2-18
in CONTAINS PL/SQL procedure, 10-5
in COUNT_HITS PL/SQL function, 10-8
in OPEN_CON PL/SQL function, 10-22
using in in-memory queries, 2-18
using in one-step queries, 2-14, 9-6
using in two-step queries, 2-9
DBMS_OUTPUT.ENABLE, 2-17
decimal point
as a numjoin, 3-53
DEFAULT thesaurus, 3-30
demo application
CTXLING, C-7
CTXPLUS, C-3
settting up, C-2
DML
affect on scoring, B-3
document hit count
presenting, 1-15
document presentation, 6-2
highlighting composites, 3-5
structure of tables, A-3
using CTX_LING output, 8-14
document viewing, 6-2
DROP TABLE command, 6-10
Dutch composite queries, 3-5

E

endjoin character, 3-51
querying, 3-55
equivalence operator, 3-8, 3-9
stopword transformations, D-6
with near, 3-18
error clearing from services queue, 8-19
error processing for linguistics, 8-20
escaping special characters, 3-46
EXECUTE command, 3-42
expansion operator
fuzzy, 3-24,3-25
penetration, 3-26
soundex, 3-24,3-25
stem, 3-24
expansions
viewing query, 5-6

Index-3

expression feedback structure, A-7

presenting, 1-15 granting execute privileges, 10-2
viewing, 5-17 grouping characters, 3-36
extending stored query expressions, 3-39 theme queries, 4-8
F H
feedback hierarchical list of themes, 8-5
query expansion, 5-6 generating, 8-11
query expression, 5-2 hierarchical query
query optimization, 5-9 query expression feedback, 5-17
stopword rewite, 5-10 highlight output
theme query normalization, 5-8 text and theme queries, 6-8
FEEDBACK procedure, 5-2,5-16, 10-12 HIGHLIGHT procedure, 6-7, 10-18
feedback table output, 6-4
creating, 5-16 result table, A-3
understanding, 5-12 using, 6-3
FETCH_HIT function, 2-16, 10-14 highlight result tables
first/next operator, 3-21, 3-22 creating, 6-6
stopword transformations, D-7 releasing, 6-10
with max, 3-23 structure, A-3
formats highlighted documents
supported for Windows 32-bit viewing, 1-17 presenting, 1-16
fuzzy expansions highlighting
viewing with expression feedback, 5-6 composite word queries, 3-5
fuzzy operator, 3-24 mark-up, 6-5
example, 3-25 near operator, 3-19
text and theme, 6-2
G text query, 6-7
theme query, 6-8
generalizing theme queries, 4-11 viewers, 1-17
German composite queries, 3-5 HIGHTAB table, 6-3,6-8
GET_COMPLETION_CALLBACK function, 10-34 structure, A-3
GET_ERROR_CALLBACK function, 10-35 hints
GET_FULL _THEMES, 10-36 theme queries’ 4-9
GET_LOG_PARSE function, 8-22, 10-37 hitlist
GET_SETTINGS_LABEL function, 10-38 result tables, 2-4
GETTAB procedure, 6-6, 10-16, A-2 sharing, 2-5
Gist, 8-2,8-7 hitlist table
generating, 8-10, 10-39 composite textkey, A-2
presenting, 1-18 structure, A-2
Gist table hits counting, 2-19
composite textkey, 8-9 homographs
composite textkey stucture, A-7 in broader term queries, 3-32
creating, 8-8 in narrower term queries, 3-32

Index-4

hyphenated words
querying, 3-52

ICF highlight output, 6-3
ICFTAB table
structure, A-4
index
creating, 1-4
options for text index, 1-4
indexing
special characters, 3-51
theme, 4-3
in-memory query, 1-12
example, 2-17,C-6
limitations, 2-18
using, 2-16
with composite textkeys, 2-18
input to theme extraction system, 7-5
inverse frequency scoring, B-2
iterative queries, 3-37, 3-39

K

knowledge catalog
about, 7-8
category hiearchy, E-1
normal forms, 7-10
structure, 7-8
knowlege base
about, 7-6
known themes, 4-4
known tokens, 7-11

L

lexicon, 7-6
linguistic completion processing, 8-20
linguistic output, 8-4
table structure, A-6
linguistic personality, 8-4
linguistic request
about, 1-18,8-4
clearing, 8-19

monitoring status, 8-17

removing, 8-18

submitting, 8-11
linguistic settings

about, 7-13
enabling, 7-14, 8-16
linguistics

about, 1-18,7-2
list of themes, 8-2,8-5
generating, 8-10, 10-42
generating parent themes, 8-11
hierarchies, 8-5
presenting, 1-18
single themes, 8-5
loading text, 1-4
logging linguistic parse information, 8-22
logical operators, 3-8
with near, 3-18

M

mark-up

highlighting, 6-5
max operator, 3-21, 3-22

stopword transformations, D-7

with first/next, 3-23
max_span parameter in near operator, 3-17
MINUS operator, 3-14

example, 3-15

stopword transformations, D-5
monitoring services queue, 8-17
multiple CONTAINS, 2-12
multiple policies

one-step queries, 4-14

with one-step queries, 2-14
MUTAB table, 6-3, 6-8, A-3

N

narrower term generic operator, 3-28
narrower term instance operator, 3-28
narrower term operator, 3-28
narrower term operators

example, 3-31
narrower term partitive operator, 3-28

Index-5

near operator, 3-17
backward compatibility, 3-19
highlighting, 3-19
scoring, 3-18
section searching, 3-20
stopword transformations, D-6
with other operators, 3-18
nesting stored query expressions, 3-40
NOFILTAB table, 6-3
structure, A-5
normal forms in knowledge catalog, 7-10
normalization of tokens, 7-11
NOT operator, 3-8
example, 3-9
stopword transformations, D-5
theme queries, 4-11
NT operator, 3-28, 3-31
NTG operator, 3-28, 3-31
NTI operator, 3-28, 3-31
NTP operator, 3-28, 3-31
numbers
querying, 3-53
numgroup character, 3-51
querying, 3-53
numjoin character, 3-51
querying, 3-53

O

one-step query, 1-13,2-11

example, 2-12,C-5

multiple policies, 2-14, 4-14

processing, 2-11

SELECT statement, 9-6

theme query, 4-13
OPEN_CON function, 2-16, 10-22
OPERATION column of feedback table, 5-13

operator
accumulate, 3-14
AND, 3-8

broader term, 3-32
equivalence, 3-8, 3-9
first/next, 3-21, 3-22
fuzzy, 3-25

max, 3-21, 3-22

Index-6

MINUS, 3-14, 3-15

narrower term, 3-31

NOT, 3-8,3-9

OR, 3-8

penetration, 3-26

preferred term, 3-31

related term, 3-31

soundex, 3-25

SQE, 3-37

stem, 3-24

synonym, 3-28, 3-29, 3-30

thesaurus, 3-28

threshold, 3-21

top term, 3-33

weight, 3-14, 3-15

WITHIN, 3-12
operator precedence, 3-43

examples, 3-44

viewing with parse trees, 5-5

operators
expansion, 3-24
logical, 3-8

result-set, 3-21

score-changing, 3-14

stem, 3-24

theme query examples, 4-7

thesaurus, 3-28

using, 1-7

with theme queries, 4-7
operators in SQEs, 3-41
optimization of queries

expression feedback, 5-9
OPTIONS column of feedback table, 5-14
OR operator, 3-8

example, 3-9

stopword transformations, D-4
Oracle Worldwide Technical Support

how to contact, Xix

how to contact in Europe, Xix

how to contact in U.S.A., Xxix
order parameter in near operator, 3-17
output

linguistic, 8-4

P

package
CTX_LING, 10-32
CTX_QUERY, 10-3
CTX_SVC, 10-52
PARAGRAPH keyword, 3-11
paragraph-level Gist, 8-7
generating, 10-39
paragraph-level theme summary, 8-6
generating, 10-39
parallel processing
two-step queries, 2-9
parent themes
generating, 8-11
in list of themes, 8-5
parentheses
altering precedence, 3-36, 3-45
grouping character, 3-36
parse logging, 8-22
parse trees
query expansion, 5-6
query optimization, 5-9
stopword transformation, 5-10
theme query normalization, 5-8
understanding, 5-4
parsing engine, 7-11
PENDING requests
removing, 8-18
penetration of operators, 3-26
personality
linguistic, 8-4
PKDECODE function, 10-24
PKENCODE function, 10-25
PLAINTAB table, 6-3
structure, A-5
PL/SQL
in text queries, 3-42
PL/SQL packages
granting privileges, 10-2
pol_hint parameter in SELECT statement, 2-14,
4-14, 9-7
policies
multiple, 2-14, 4-14
precedence of operators, 3-43

altering, 3-36, 3-45
equivalence operator, 3-10
example, 3-44
preferred term operator, 3-28
example, 3-31
presenting document
about, 1-16
printjoin character, 3-51
querying with, 3-52
privileges
granting, 10-2
procedures
in queries, 3-42
proving themes, 7-12
proximity operator, see near operator
PT operator, 3-28, 3-31
punctuation character, 3-51
querying, 3-52
PURGE_SQE procedure, 3-37,10-26

Q

qualifiers

using in thesaural queries, 3-33
queries

combining with CTX_LING output, 8-14
query

accumulate, 3-14

AND, 3-8

base-letter, 3-6

broader term, 3-32

combined first/next and max, 3-23
composite textkey, 2-7

counting hits, 1-13,2-19
equivalence, 3-9

executing PL/SQL function in, 3-42
first/next, 3-22

in-memory, 1-12,2-16
in-memory example, C-6
iterative, 3-37,3-39

max, 3-22

MINUS, 3-15

narrower term, 3-31

NOT, 3-9

one-step, 1-13

Index-7

one-step example, C-5
OR, 3-9

preferred term, 3-31
related term, 3-31

remote, 2-9, 2-14, 2-18, 9-6, 10-5, 10-8, 10-22

structured, 2-8

synonym, 3-30

theme, 1-6

threshold, 3-21

top term, 3-33

two-step example, C-5

weight, 3-15
query expansions

viewing with expression feedback, 5-6
query expression

about, 3-2

components, 3-3

examples, 3-6
query expression feedback

about, 5-2

obtaining, 5-16
query optimization

viewing with expression feedback, 5-9
query terms, 3-2
query_id parameter in CONTAINS, 2-5,10-6
querying

continuation characters, 3-52

numbers, 3-53

punctuation chacracters, 3-52

theme, 4-5
querying with stopwords, 3-49
queue

services, see services queue

R

re-evaluation of SQEs, 3-38
refining theme queries, 4-10
REFRESH_SQE procedure, 3-37, 3-39, 10-27
related term operator, 3-28
example, 3-31
relevance ranking
text queries, B-2
RELTAB procedure, 10-28
remote databases

Index-8

counting query hitsin, 10-8
in-memory queries in, 2-18, 10-22
one-step queries in, 2-14,9-6
two-step queries in, 2-9, 10-5
remote queries
in-memory, 2-18,10-22
one-step, 2-14,9-6
query hits counting, 10-8
two-step, 2-9, 10-5
REMOVE_SQE procedure, 3-37, 10-29
request
clearing errors, 8-19
monitoring linguistic, 8-17
removing linguistic, 8-18
REQUEST_GIST procedure, 8-10, 10-39
REQUEST_STATUS function, 10-60
REQUEST_THEMES procedure, 8-10, 10-42
reserved words and characters, 3-46
escaping, 3-46
restricting theme query, 4-10
result table
allocating, 6-6
composite textkey, A-2
highlight, A-3
hitlist, 2-4, A-2
shared, 2-5
result-set operators, 3-21
rewrite
stopword, 3-50, D-2
RT operator, 3-28, 3-31

S

sample application
CTXLING, C-7
CTXPLUS, C-3
setting up, C-2
score
presenting, 1-14
SCORE function, 2-11, 2-13, 9-5
score-changing operators, 3-14
scoring
DML, B-3
theme queries, 4-6
two-step queries, 2-4

scoring algorithm
text queries, B-2
scoring for near operator, 3-18
section searching, 3-12
about, 1-8
with NEAR operator, 3-20
SELECT statement, 2-12, 2-13, 9-6
in one-step queries, 2-12
in two-step queries, 2-3
SENTENCE keyword, 3-11
sentence-level Gist, 8-7
sentence-level Gist and theme summary
generating, 10-39
sentence-level theme summary, 8-6
server personality, 8-4
service request
cancelling, 10-53, 10-54, 10-55
removing errors, 10-56, 10-58, 10-59
services queue
about, 8-4
monitoring, 8-17
session and system SQEs, 3-38
session configuration
setting, 8-16
SET_COMPLETION_CALLBACK procedure,
10-44

SET_ERROR_CALLBACK procedure, 8-20, 10-45

SET_FULL_THEMES procedure, 8-11, 10-46
SET_LOG_PARSE procedure, 8-22,10-47

SET_SETTINGS_LABEL procedure, 8-16, 10-48

settings
linguistic, 7-13, 8-16

sharelevel parameter in CONTAINS, 2-5,10-5

sharing result table, 2-5
single themes
in list of themes, 8-5
skipjoin character, 3-51
querying with, 3-52
soundex expansions
view with expression feedback, 5-6
soundex operator, 3-24
example, 3-25
special characters
indexing, 3-51
querying, 3-51

SQE operator, 3-37
SQE tables, 3-40
SQL functions
CONTAINS, 9-3
SCORE, 9-5
startjoin character, 3-51
querying, 3-55
stem expansions
viewing with expression feedback, 5-6
stem operator, 3-24
stoplist, 3-2
stopword transformation, D-2
viewing with expression feedback, 5-10
stopwords, 3-2
case-sensitivity, 3-4, 3-49
querying, 3-49
STORE_SQE procedure, 3-37,10-30
stored query expressions
behavior with FEEDBACK, 10-13
extending, 3-39
iterative queries, 3-39
nesting, 3-40
re-evaluation, 3-38
session and system, 3-38
support of operators, 3-41
using, 3-37
stripping punctuation characters, 3-52
structured field searching
about, 1-9
structured query, 2-8
SUBMIT function, 8-10, 10-50
submitting linguistic requests, 8-11
supported document formats
for Windows 32-bit viewing, 1-17
SYN operator, 3-28, 3-30
synonym operator, 3-28
example, 3-30

T

table structure
Gist, A-7
HIGHLIGHT, A-3
hitlist, A-2
ICFTAB, A-4

Index-9

MUTAB, A-3
NOFILTAB, A-5
PLAINTAB, A-5
theme, A-6
tables
CTX_LING output, 8-8
SQE, 3-40
SQR, 3-41,10-27
tagged text
querying, 3-55
searching, 3-12
text highlighting, 6-2
text index
options, 1-4
text loading, 1-4
text query
about, 1-6
case-sensitivity, 1-7,3-3
highlighting, 6-7
selecting method, 2-2
theme accumulation
in theme extraction process, 7-12
theme extraction
about, 7-2
text input, 7-5
theme hierarchy generation
setting, 10-46
theme highlighting, 6-2
theme indexing, 4-3
theme proving
in theme extraction process, 7-12
theme query
about, 1-6,4-5
case-sensitivity, 1-8,4-6
constructing, 4-7
generalizing, 4-11
highlighting, 6-8
one-step, 4-13
operators not supported, 4-8
phrasing hints, 4-9
refining, 4-10
restricting, 4-10
scoring, 4-6
two-step, 4-13
using operators, 4-7

Index-10

theme query normalization
viewing with expression feedback,
theme ranking
in theme extraction process
ranking of themes, 7-12
theme summaries, 8-2, 8-6
generating, 8-10, 10-39
presenting, 1-18

theme table
composite textkey, 8-9, A-6
creating, 8-8

structure, A-6
theme weight, 7-4
in theme indexes, 4-4
list of themes, 8-5
themes
about, 7-4
ambiguous, 4-4
generating, 10-42
generating parent themes, 8-11
known, 4-4
list of, 8-5
unknown, 4-4
thesaural query
base-letter, 3-6
thesaurus
calling in queries, 3-30
DEFAULT, 3-30
hierarchy levels, 3-30
thesaurus expansions
viewing with expression feedback,
thesaurus operators, 3-28
arguments, 3-29
limitations, 3-29
theme queries, 4-8
threshold operator, 3-21
stopword transformations, D-7
token normalization, 7-11
tokens, 7-11
top term operator, 3-28
example, 3-33
transformation
stopword, 3-50, 5-10, D-2
tree-structure of knowledge catalog,
TT operator, 3-28, 3-33

5-8

5-6

7-8

two-step query, 2-3
alternative, 2-6
example, 2-3,C-5
parallel processing, 2-9
result table, 2-4
scoring, 2-4
tables used in, A-2
theme query, 4-13

U

unknown concept in knowledge catalog,

unknown themes, 4-4
unknown tokens, 7-11

\Y,

7

view

using in two-step query, 2-6
viewers

about, 1-17

viewing documents, see document presentation

views
CTX_SQES, 3-40
CTX_USER_SQES, 3-40

w

weight
in list of themes, 8-5
theme, 4-4,7-4
weight operator, 3-14, 3-15
stopword transformations, D-7
wildcard characters, 3-35
theme queries, 4-8
wildcard expansions
viewing with expression feedback,
Windows viewer control
table used, A-4
WITHIN operator, 3-11, 3-12
limitations, 3-13
precedence, 3-44
stopword transformations, D-7
with near, 3-20

5-6

Index-11

Index-12

	Up
	Contents
	Send Us Your Comments
	Preface
	1 Building a Query Application
	Overview
	Prerequisites
	Loading Text
	Creating an Index

	Entering the Query
	Text Queries
	Theme Queries
	Using Operators
	Case-Sensitive Searching
	Document Section Searching
	Structured Field Searching

	Rewriting the Query Expression
	Presenting Expression Feedback
	Executing the Query
	Two-step Queries
	In-memory Queries
	One-step Queries
	Counting Query Hits

	Presenting the Hitlist
	Presenting Structured Fields
	Presenting Score
	Presenting Document Hit Count
	Presenting Expression Feedback in Hitlist
	Presenting Gists (English only)

	Presenting the Document
	Presenting Highlighted Documents
	Presenting CTX_LING Output (English Only)

	2 Query Methods
	Selecting a Query Method
	Using Two-Step Queries
	Two-Step Query Example
	Scoring
	Hitlist Result Tables
	SELECT from a Pre-defined View
	Composite Textkey Queries
	Structured Queries
	Querying Columns in Remote Databases
	Two-Step Queries in Parallel

	Using One-Step Queries
	One-Step Query Processing
	One-Step Query Example
	Multiple CONTAINS
	Scoring
	Restrictions
	Multiple Policies
	Composite Textkey Queries
	Querying Columns in Remote Databases

	Using In-Memory Queries
	In-Memory Query Example
	In-Memory Queries and Composite Textkeys
	In-Memory Query Limitations
	Querying Columns in Remote Databases

	Counting Query Hits
	Using COUNT_HITS Before the Query
	Using COUNT_LAST After the Query

	3 Understanding Query Expressions
	About Query Expressions
	Query Terms
	Case-Sensitive Queries
	Composite Word Queries (German and Dutch only)
	Base-Letter Queries
	Query Expression Examples

	Logical Operators
	AND Operator
	OR Operator
	NOT Operator
	Equivalence Operator

	WITHIN Operator
	WITHIN Syntax
	Querying Within Sentence or Paragraphs
	Querying Within User-defined Sections
	Limitations

	Score-Changing Operators
	Accumulate Operator
	MINUS Operator
	Weight Operator

	NEAR Operator
	Near Scoring
	Near with Other Operators
	Backward Compatibility Near Syntax
	Highlighting with the Near Operator
	Section Searching and Near

	Result-Set Operators
	Threshold Operator
	Max Operator
	First/Next Operator
	Combined First/Next and Max Queries

	Expansion Operators
	Stem Expansions
	Soundex Expansions
	Fuzzy Expansions
	Penetration in Expansion Operators
	Examining Query Expansions
	Base-letter Support

	Thesaurus Operators
	Thesaurus Arguments
	Synonym Operator
	Preferred Term Operator
	Related Term Operator
	Narrower Term Operators
	Broader Term Operators
	Broader and Narrower Term Operator on Homographs
	Top Term Operator
	Thesaural Expansions and Case-Sensitivity
	Base-letter Support for Thesaural Queries

	Wildcard Characters
	Grouping Characters
	Stored Query Expressions
	Using Stored Query Expressions
	Session and System SQEs
	Re-evaluation of Stored Query Expressions
	Iterative Queries
	SQE Tables
	Using Operators in Stored Query Expressions

	PL/SQL in Query Expressions
	Example

	Operator Precedence
	Group 1
	Group 2
	Procedural Operators
	Precedence Examples
	Altering Precedence

	Escaping Reserved Words and Characters
	Example
	Reserved Words
	Querying Escape Characters

	Querying with Stopwords
	Stopwords by Themselves
	Stopwords with Non-stopwords
	Stopwords with Operators

	Querying with Special Characters
	Querying with Punctuation and Continuation Characters
	Querying with Printjoins and Skipjoins
	Querying with Numjoins and Numgroups
	Querying with Startjoin and Endjoin Characters

	4 Theme Queries
	Understanding Theme Queries
	Theme Indexing Concepts
	Theme Querying

	Constructing Theme Queries
	Using Operators
	Phrasing Theme Queries

	Refining Theme Queries
	Restricting a Query
	Expanding a Query

	Theme Query Examples
	Two-Step Query
	One-Step Query

	5 Query Expression Feedback
	The Feedback Process
	Understanding ConText Parse Trees
	Operator Precedence
	Query Expansions
	Theme Query Normalization
	Query Optimization
	Stopword Rewrite
	Decompounding of Composite Word Tokens

	Understanding the Feedback Table
	Table Structure
	Example

	Obtaining Query Expression Feedback
	Creating the Feedback Table
	Executing CTX_QUERY.FEEDBACK
	Retrieving Data from Feedback Table
	Constructing the Parse Tree

	6 Document Presentation: Highlighting
	Overview of Document Presentation
	Using CTX_QUERY.HIGHLIGHT
	Output
	Highlighting Mark-up

	Creating Highlighted Text
	Allocating Result Tables
	Issuing a Query
	Calling CTX_QUERY.HIGHLIGHT
	Presenting HIGHLIGHT Output
	Release Highlight Result Tables

	7 ConText Linguistics
	Overview of ConText Linguistics
	What is a Theme?
	Theme Weight

	Text Input
	Theme Extraction System
	Knowledge Base
	Parsing Engine

	Linguistic Settings
	Case-Conversion Settings
	Gist and Theme Summary Settings
	Enabling Linguistic Settings

	8 Using CTX_LING
	Overview
	Linguistic Personality
	Services Queue

	List of Themes
	Single Themes
	Theme Hierarchies

	Theme Summaries
	Gists
	Generating CTX_LING Output
	Creating Output Tables
	Generating Lists of Themes, Theme Summaries, and Gists

	Combining Queries with CTX_LING Output
	Implementation

	Enabling Linguistic Settings
	Monitoring the Services Queue
	Monitoring the Status of Requests
	Removing Pending Requests
	Clearing Requests with Errors

	Specifying Completion and Error Procedures
	Logging Parse Information

	9 SQL Functions
	Query Functions
	Prerequisites

	CONTAINS
	SCORE
	SELECT Statement

	10 PL/SQL Packages
	Developing with ConText PL/SQL Packages
	CTX_QUERY: Query and Highlighting
	CLOSE_CON
	CONTAINS
	COUNT_HITS
	COUNT_LAST
	FEEDBACK
	FETCH_HIT
	GETTAB
	HIGHLIGHT
	OPEN_CON
	PKDECODE
	PKENCODE
	PURGE_SQE
	REFRESH_SQE
	RELTAB
	REMOVE_SQE
	STORE_SQE
	CTX_LING: Linguistics
	CANCEL
	GET_COMPLETION_CALLBACK
	GET_ERROR_CALLBACK
	GET_FULL_THEMES
	GET_LOG_PARSE
	GET_SETTINGS_LABEL
	REQUEST_GIST
	REQUEST_THEMES
	SET_COMPLETION_CALLBACK
	SET_ERROR_CALLBACK
	SET_FULL_THEMES
	SET_LOG_PARSE
	SET_SETTINGS_LABEL
	SUBMIT
	CTX_SVC: Services Queue Administration
	CANCEL
	CANCEL_ALL
	CANCEL_USER
	CLEAR_ALL_ERRORS
	CLEAR_ERROR
	CLEAR_INDEX_ERRORS
	CLEAR_LING_ERRORS
	REQUEST_STATUS

	A Result Tables
	Hitlist Table Structure
	Composite Textkey Hitlist Tables

	Highlight Table Structures
	HIGHTAB Highlight Table
	MUTAB Highlight Table
	ICFTAB Highlight Table

	Display Table Structures
	NOFILTAB Display Table
	PLAINTAB Display Table

	CTX_LING Output Table Structures
	Theme Table
	Gist Table

	B Scoring Algorithm
	Scoring Algorithm for Text Queries
	Example
	DML and Scoring

	C SQL*Plus Sample Code
	Setting Up the ConText Sample Applications
	Overview of CTXPLUS
	Concepts
	Using CTXPLUS
	CTXPLUS Examples

	Overview of CTXLING
	Concepts
	Using CTXLING
	CTXLING Examples

	D Stopword Transformations
	Understanding Stopword Transformations
	Word Transformations
	AND Transformations
	OR Transformations
	Accumulate Transformations
	MINUS Transformations
	NOT Transformations
	Equivalence Transformations
	NEAR Transformations
	Weight Transformations
	Threshold Transformations
	Max Transformations
	First/Next Transformations
	WITHIN Transformations

	E Knowledge Catalog - Category Hierarchy
	Branch 1: science and technology
	Branch 2: business and economics
	Branch 3: government and military
	Branch 4: social environment
	Branch 5: geography
	Branch 6: abstract ideas and concepts

	Index

