
Oracle8 ConText Cartridge

Administrator’s Guide

Release 2.4

July 1998

Part No. A63820-01

Oracle8 ConText Cartridge Administrator’s Guide, Release 2.4

Part No. A63820-01

Release 2.4

Copyright © 1996, 1998 Oracle Corporation. All rights reserved.

Primary Author: D. Yitzik Brenman

Contributors: Dave Allewell, Paul Anderson, Peter Bell, Steve Buxton, Chandu Bhavsar, Jack Chen,
Chung-Ho Chen, Yun Cheng, Roy Clarke, Franco Cravero, Paul Dixon, Mohammad Faisal, Elena Huang,
Garret Kaminaga, Hassan Karraby, Jeff Krauss, Jacqueline Kud, Kavi Mahesh, Yasuhiro Matsuta ,Colin
mcGregor, Josh Powers, Gerda Shank, Dipti Sonak, and Steve Yang.

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be licensee’s responsibility to take all appropriate fail-safe,
back up, redundancy and other measures to ensure the safe use of such applications if the Programs
are used for such purposes, and Oracle disclaims liability for any damages caused by such use of the
Programs.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright, patent and
other intellectual property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free. No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose, without the express written permission of Oracle
Corporation

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is
delivered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are "restricted computer software" and use, duplication and
disclosure of the Programs shall be subject to the restrictions in FAR 52.227-14, Rights in Data -- General,
including Alternate III (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle, SQL*Net, SQL*Plus, and ConText are registered trademarks of Oracle Corporation. Oracle8, Net8,
Oracle Forms, Oracle Server, PL/SQL, and Gist are trademarks of Oracle Corporation.

All other company or product names mentioned are used for identification purposes only and may be
trademarks of their respective owners.

iii

Contents

Send Us Your Comments .. xvii

Preface.. xix

1 Introduction

What is ConText?... 1-2
ConText Features ... 1-3
ConText and the Oracle Server... 1-4
Overview of ConText Functions .. 1-6

ConText Administration.. 1-7
Text Loading.. 1-8
Indexing ... 1-9

Administration Methods ... 1-10
Command-line .. 1-10
Administration Tools ... 1-11

Part I ConText Administration

2 Administration Concepts

Administrator Responsibilities.. 2-2
System Administrator .. 2-2
Database Administrator (DBA) .. 2-2

iv

ConText Roles .. 2-3
CTXADMIN Role.. 2-4
CTXAPP Role .. 2-4
CTXUSER Role .. 2-4

Predefined ConText Users ... 2-5
CTXSYS User ... 2-5
CTXDEMO User.. 2-5

ConText Data Dictionary ... 2-8
ConText Servers ... 2-9

Text Operations ... 2-9
Server Log .. 2-10
Server Shutdown .. 2-10

Personalities ... 2-11
Personality Masks ... 2-11
Loader (R) Personality ... 2-11
DDL (D) Personality ... 2-12
DML (M) Personality.. 2-12
Query (Q) Personality .. 2-12
Linguistic (L) Personality... 2-13
DBA Personality.. 2-13

Text Request Queue .. 2-15
Query Pipe ... 2-16
DDL Pipe.. 2-16
DML Queue ... 2-17
Services Queue .. 2-20

3 Administering ConText

Enabling One-step Queries... 3-2
 Setting TEXT_ENABLE for All Users ... 3-2
 Setting TEXT_ENABLE for the Session .. 3-2

Managing Users... 3-3
Creating ConText Users... 3-3
Granting ConText Roles to Users ... 3-4
Granting EXECUTE Privileges to Application Developers.. 3-4

v

Managing ConText Servers ... 3-6
Starting ConText Servers ... 3-6
Viewing the Status of ConText Servers ... 3-8
Changing the Personality Masks of ConText Servers ... 3-9
Shutting Down ConText Servers.. 3-10

Managing ConText Queues... 3-11
Viewing the DML Queue .. 3-11
Viewing the Services Queue ... 3-11
Removing Requests from the Services Queue.. 3-12
Enabling and Disabling Queues ... 3-13

4 ConText Server Executable and Utility

ctxsrv Executable ... 4-2
Syntax ... 4-2
Examples .. 4-3

ctxctl Utility .. 4-5
Commands... 4-5
Examples .. 4-6

5 PL/SQL Packages - Administration

CTX_ADM: ConText Administration ... 5-2
CHANGE_MASK ... 5-3
GET_QUEUE_STATUS.. 5-4
RECOVER .. 5-6
SET_QUERY_BUFFER_SIZE .. 5-7
SHUTDOWN... 5-8
UPDATE_QUEUE_STATUS... 5-9

CTX_SVC: Services Queue Administration .. 5-11
CANCEL .. 5-12
CANCEL_ALL .. 5-13
CANCEL_USER.. 5-14
CLEAR_ALL_ERRORS.. 5-15
CLEAR_ERROR .. 5-16

vi

CLEAR_INDEX_ERRORS ... 5-17
CLEAR_LING_ERRORS.. 5-18
REQUEST_STATUS.. 5-19

CTX_INFO: Product Information .. 5-21
GET_INFO ... 5-22
GET_STATUS .. 5-23
GET_VERSION ... 5-24

Part II Text Setup and Management

6 Text Concepts

Text Operations ... 6-2
Automated Text Loading... 6-2
DDL... 6-2
DML .. 6-3
Text/Theme Queries .. 6-5
Linguistics Requests ... 6-7

Text Columns ... 6-8
Supported Datatypes.. 6-8
Textkeys ... 6-8
Composite Textkeys ... 6-9

Text Loading ... 6-11
Individual Row Insert/Update/Export .. 6-11
Batch Load ... 6-12
Automated Text Load .. 6-13
Client-side Insert/Update/Export ... 6-13

ConText Indexes .. 6-14
Text Indexes... 6-14
Theme Indexes .. 6-17
ConText Index Tables... 6-19
Columns with Multiple Indexes ... 6-19
Index Creation... 6-20
Index Fragmentation .. 6-22
Memory Allocation... 6-22
Index Log ... 6-23

vii

Index Updates (DML) .. 6-24
Immediate Vs. Batch Update .. 6-24
Deferred Deletion ... 6-24

Index Optimization .. 6-26
Compaction of Index Fragments .. 6-26
Removal of Obsolete Document References... 6-27
Piecewise Optimization ... 6-27
When to Optimize .. 6-29

Thesauri .. 6-30
Thesaurus Creation and Maintenance... 6-30
Thesauri in Queries .. 6-31
Case-sensitivity ... 6-32
Default Thesaurus .. 6-33
Supplied Thesaurus.. 6-33

Thesaurus Entries and Relationships ... 6-35
Synonyms .. 6-35
Hierarchical Relationships .. 6-37
Related Terms ... 6-39
Scope Notes ... 6-40

Document Sections ... 6-41
Section Searching .. 6-41
Sentences and Paragraphs as Sections... 6-42
User-Defined Sections.. 6-43
Section Groups .. 6-47
Setup Process for Section Searching .. 6-49

7 Automated Text Loading

Overview of Automated Loading .. 7-2
ConText Servers .. 7-3
Text Loading Utility (ctxload)... 7-3
Error Handling.. 7-3

Sources .. 7-4

viii

Preferences for Text Loading .. 7-6
What is a Text Loading Preference?... 7-6
Reader Predefined Preferences ... 7-8
Translator Predefined Preferences ... 7-8
Engine Predefined Preferences ... 7-8

Reader Tiles.. 7-9
DIRECTORY READER... 7-9

Translator Tiles .. 7-10
NULL TRANSLATOR ... 7-10
USER TRANSLATOR .. 7-10

Engine Tiles.. 7-12
GENERIC LOADER ... 7-12

8 ConText Indexing

Overview of Indexing .. 8-2
Policies .. 8-4

What is a Policy? ... 8-5
Policy Examples .. 8-7
Predefined Template Policies.. 8-9

Preferences for Indexing.. 8-12
What is an Indexing Preference? .. 8-12
Data Store Predefined Preferences ... 8-14
Filter Predefined Preferences .. 8-16
Lexer Predefined Preferences.. 8-18
Engine Predefined Preferences ... 8-20
Wordlist Predefined Preferences .. 8-21
Stoplist Predefined Preferences .. 8-22

Data Storage ... 8-23
Direct Storage .. 8-24
Master-Detail Storage... 8-25
External Storage (Operating System Files).. 8-28
External Storage (URLs)... 8-29

ix

Data Store Tiles ... 8-34
DIRECT .. 8-34
MASTER DETAIL... 8-35
MASTER DETAIL NEW.. 8-36
OSFILE ... 8-37
URL... 8-38
Data Store Preference Example .. 8-40

Filtering... 8-41
Internal Filters ... 8-42
External Filters .. 8-44
Filters for Single-Format Columns... 8-47
Filters for Mixed-Format Columns .. 8-48

Filter Tiles... 8-50
BLASTER FILTER... 8-51
FILTER NOP.. 8-52
HTML FILTER .. 8-52
USER FILTER .. 8-54
Filter Preference Examples ... 8-54

Lexers... 8-56
Text Lexers... 8-57
Theme Lexer .. 8-58
Base-letter Conversion ... 8-58
NLS Compliance... 8-60
Composite Word Indexing.. 8-61

Lexer Tiles .. 8-63
BASIC LEXER.. 8-63
CHINESE V-GRAM LEXER.. 8-69
JAPANESE V-GRAM LEXER ... 8-70
KOREAN LEXER.. 8-70
THEME LEXER ... 8-70
Lexer Preference Examples ... 8-71

Indexing Engine .. 8-72

x

Engine Tiles.. 8-73
ENGINE NOP ... 8-73
GENERIC ENGINE .. 8-73
Engine Preference Example... 8-76

Advanced Query (Wordlist) Options .. 8-77
Stemming ... 8-77
Fuzzy Matching... 8-78
Soundex.. 8-79

Wordlist Tiles ... 8-80
GENERIC WORD LIST.. 8-80
Wordlist Preference Example.. 8-82

Stop Words ... 8-83
Stop Words in Queries ... 8-83
Case-sensitivity ... 8-83

Stoplist Tiles .. 8-85
GENERIC STOP LIST... 8-85
Stoplist Preference Example.. 8-85

9 Setting Up and Managing Text

Loading Text ... 9-2
Using ctxload... 9-2
Using ConText Servers for Automated Text Loading... 9-3
Generating Document Textkeys ... 9-6
Updating/Exporting a Document.. 9-7

Managing Policies... 9-9
Creating a Template Policy ... 9-10
Creating a Column Policy.. 9-10
Creating a Column Policy for an Object Table ... 9-11
Creating a Column Policy for Theme Indexing ... 9-12
Using Composite Textkeys in a Column Policy... 9-13
Modifying a Policy.. 9-14
Deleting a Policy ... 9-14

xi

Managing Preferences.. 9-15
Creating a Preference ... 9-15
Creating an Engine Preference ... 9-17
Creating a Data Store Preference for a Master Table .. 9-18
Creating Filter Preferences .. 9-20
Creating a Theme Lexer Preference ... 9-22
Creating a Stoplist Preference... 9-23
Deleting a Preference ... 9-24

Managing Indexes .. 9-25
Creating an Index ... 9-25
ConText Indexing in Parallel .. 9-27
Indexing Existing Columns (Hot Upgrade).. 9-29
Updating an Index.. 9-29
Dropping an Index ... 9-30
Optimizing an Index .. 9-30
Resuming Index Creation/Optimization.. 9-32

Managing Thesauri .. 9-33
Creating a Thesaurus ... 9-34
Creating a Case-sensitive Thesaurus ... 9-35
Creating the Supplied Thesaurus... 9-35
Creating/Updating a Thesaurus Entry ... 9-36
Deleting a Thesaurus ... 9-37
Creating a Thesaurus Output File.. 9-37

Managing User-defined Document Sections .. 9-38
Creating a Section Group .. 9-38
Creating a Section ... 9-38
Creating a Wordlist Preference with a Section Group .. 9-39
Creating a Policy for a Section Group ... 9-39
Viewing Sections and Section Groups... 9-39
Removing a Section from a Section Group ... 9-40
Dropping a Section Group .. 9-40

xii

10 Text Loading Utility

Overview of ctxload.. 10-2
Text Loading.. 10-2
Document Updating/Exporting... 10-2
Thesaurus Importing and Exporting ... 10-3

Command-line Syntax ... 10-4
Mandatory Arguments .. 10-4
Optional Arguments .. 10-6
Usage Notes ... 10-8

Command-line Examples .. 10-9
Text Load Example ... 10-9
Document Update Example .. 10-9
Document Export Examples.. 10-9
Thesaurus Import Example ... 10-10
Thesaurus Export Example ... 10-10

Structure of Text Load File .. 10-11
Load File Structure ... 10-12
Load File Syntax.. 10-12
Example of Embedded Text in Load File .. 10-13
Example of File Name Pointers in Load File .. 10-13

Structure of Thesaurus Import File ... 10-14
Alternate Hierarchy Structure .. 10-17
Import File Structure for Terms.. 10-17
Import File Structure for Relationships ... 10-18
Examples of Import Files ... 10-19

11 PL/SQL Packages - Text Management

CTX_DDL: Text Setup and Management ... 11-2
ADD_SECTION .. 11-4
CLEAR_ATTRIBUTES ... 11-8
CREATE_INDEX .. 11-9
CREATE_POLICY .. 11-12
CREATE_PREFERENCE ... 11-15
CREATE_SECTION_GROUP ... 11-16

xiii

CREATE_SOURCE... 11-17
CREATE_TEMPLATE_POLICY... 11-19
DROP_INDEX... 11-21
DROP_INTTRIG ... 11-22
DROP_POLICY ... 11-23
DROP_PREFERENCE.. 11-24
DROP_SECTION_GROUP.. 11-25
DROP_SOURCE ... 11-26
OPTIMIZE_INDEX... 11-27
REMOVE_SECTION .. 11-30
RESUME_FAILED_INDEX ... 11-31
SET_ATTRIBUTE.. 11-34
UPGRADE_INDEX .. 11-37
UPDATE_POLICY.. 11-38
UPDATE_SOURCE .. 11-40

CTX_DML: ConText Index Update ... 11-42
REINDEX ... 11-43
SYNC .. 11-46
SYNC_QUERY .. 11-48

CTX_THES: Thesaurus Management ... 11-49
CREATE_PHRASE ... 11-50
CREATE_THESAURUS... 11-53
DROP_THESAURUS ... 11-54

Part III Appendices

A Supplied Stoplists

Creating a Supplied Stoplist .. A-2
Editing the Scripts .. A-2
Running the Scripts .. A-3

English .. A-4
Danish (DA) ... A-5
Dutch (NL).. A-6
Finnish (FI) ... A-7

xiv

French (FR) ... A-8
German (DE) .. A-9
Italian (IT)... A-10
Portuguese (PR) ... A-11
Spanish (ES) ... A-12
Swedish (SE) .. A-13

B ConText Views

ConText Server Views .. B-2
CTX_ALL_SERVERS .. B-2
CTX_SERVERS .. B-3

ConText Queue Views .. B-4
CTX_ALL_DML_QUEUE.. B-4
CTX_ALL_DML_SUM ... B-4
CTX_ALL_QUEUE ... B-5
CTX_INDEX_ERRORS... B-6
CTX_INDEX_STATUS ... B-7
CTX_LING_ERRORS ... B-7
CTX_USER_DML_QUEUE ... B-8
CTX_USER_DML_SUM... B-8
CTX_USER_QUEUE... B-9
CTX_USER_SVCQ .. B-9

ConText Data Dictionary Views ... B-10
CTX_ALL_PREFERENCES ... B-10
CTX_ALL_SECTIONS.. B-11
CTX_ALL_SECTION_GROUPS ... B-11
CTX_ALL_THESAURI... B-12
CTX_CLASS... B-12
CTX_COLUMN_POLICIES... B-13
CTX_INDEX_LOG.. B-14
CTX_OBJECTS... B-15
CTX_OBJECT_ATTRIBUTES .. B-16
CTX_OBJECT_ATTRIBUTES_LOV.. B-16
CTX_POLICIES ... B-17
CTX_PREFERENCES ... B-18

xv

CTX_PREFERENCE_ATTRIBUTES... B-18
CTX_PREFERENCE_USAGE ... B-19
CTX_SOURCE... B-19
CTX_SQES ... B-21
CTX_SYSTEM_PREFERENCES.. B-21
CTX_SYSTEM_PREFERENCE_USAGE.. B-22
CTX_SYSTEM_TEMPLATE_POLICIES.. B-22
CTX_TEMPLATE_POLICIES ... B-22
CTX_USER_COLUMN_POLICIES .. B-23
CTX_USER_INDEX_LOG ... B-24
CTX_USER_POLICIES... B-25
CTX_USER_PREFERENCES... B-25
CTX_USER_PREFERENCE_ATTRIBUTES .. B-26
CTX_USER_PREFERENCE_USAGE ... B-26
CTX_USER_SECTIONS ... B-27
CTX_USER_SECTION_GROUPS... B-27
CTX_USER_SOURCES .. B-28
CTX_USER_SQES ... B-29
CTX_USER_TEMPLATE_POLICIES ... B-29
CTX_USER_THESAURI .. B-30

C ConText Index Tables and Indexes

ConText Index Tables ... C-2
DR_nnnnn_I1Tn .. C-2
DR_nnnnn_KTB .. C-3
DR_nnnnn_LST ... C-3
DR_nnnnn_NLT.. C-3
DR_nnnnn_I1W... C-4

Oracle Indexes for ConText Index Tables .. C-5
SQR Table... C-6

DR_nnnnn_SQR .. C-6
Oracle Index for DR_nnnnn_SQR .. C-6

xvi

D External Filter Specifications

Supported Formats for Mixed-Format Columns .. D-2
Supplied External Filters ... D-6

Availability of Filters.. D-6
List of Filters .. D-7
Supplied External Filters Installation .. D-8
Supplied External Filter Setup .. D-8
Supplied External Filter Usage ... D-9

Index

xvii

Send Us Your Comments

Oracle8 ConText Cartridge Administrator’s Guide, Release 2.4

Part No. A63820-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?
■ Is the information clearly presented?
■ Do you need more information? If so, where?
■ Are the examples correct? Do you need more examples?
■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

■ FAX - (650) 506-7200. Attn: Oracle8 ConText Cartridge Documentation
■ Postal service:

Oracle Corporation
Oracle8 ConText Cartridge Documentation
500 Oracle Parkway
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, and telephone number below.

If you have problems with the software, please contact your local Oracle World Wide Support Center.

xviii

xix

Preface

This manual explains how to administer Oracle8 ConText Cartridge and perform
the necessary setup and maintenance to allow application developers to develop
ConText-enabled applications.

xx

Audience
This manual is intended for the DBA or system administrator responsible for
maintaining the ConText system.

It is also intended for the user who is responsible for setting up and maintaining the
text stored in the database. This user could be a DBA or system administer. It could
also be an application designer/developer.

Prerequisites
This document assumes that you have experience with the Oracle relational
database management system, SQL, SQL*Plus, and PL/SQL. See the documentation
provided with your hardware and software for additional information.

If you are unfamiliar with the Oracle RDBMS and related tools, read Chapter 1, “An
Introduction to the Oracle Server”, in Oracle8 Concepts. The chapter is a
comprehensive introduction to the concepts and terminology used throughout
Oracle documentation.

Related Publications
For more information about ConText, see:

■ Oracle8 ConText Cartridge QuickStart

■ Oracle8 ConText Cartridge Application Developer’s Guide

■ Oracle8 ConText Cartridge Workbench User’s Guide

■ Oracle8 Error Messages

For more information about Oracle8, see:

■ Oracle8 Concepts

■ Oracle8 Administrator’s Guide

■ Oracle8 Utilities

■ Oracle8 Tuning

xxi

■ Oracle8 SQL Reference

■ Oracle8 Reference Manual

■ Oracle8 Application Developer’s Guide

For more information about PL/SQL, see:

■ PL/SQL User’s Guide and Reference

How This Manual Is Organized
The manual is divided into an introduction and three parts:

Chapter 1, "Introduction"
This chapter introduces ConText and provides an overview of the features and
process model for the product.

PART I: CONTEXT ADMINISTRATION

Chapter 2, "Administration Concepts"
This chapter introduces the administration concepts, such as ConText users, roles,
servers, and queues, that are necessary for understanding ConText administration.

Chapter 3, "Administering ConText"
This chapter provides detailed instructions and examples for performing
administration tasks, such as creating ConText users, assigning ConText roles,
starting and stopping ConText servers, and managing the ConText queues, from the
command-line.

Chapter 4, "ConText Server Executable and Utility"
This chapter describes the ConText server executable, ctxsrv, and the control utility,
ctxctl, and lists the command-line options for both. It also provides syntax examples
for ctxsrv and ctxctl.

Chapter 5, "PL/SQL Packages - Administration"
This chapter describes the stored procedures and functions in the PL/SQL packages
provided for performing ConText administration.

xxii

PART II: TEXT SETUP AND MANAGEMENT

Chapter 6, "Text Concepts"
This chapter introduces the text concepts, such as text columns, text loading,
ConText indexes, thesauri, and document sections, that are necessary for
understanding text setup and management for enabling ConText queries.

Chapter 7, "Automated Text Loading"
This chapter introduces the concepts required for understanding automated text
loading in ConText. It also provides detailed descriptions of the ConText data
dictionary objects, such as sources, text loading preferences, and Tiles, that are
required for enabling automated text loading.

Chapter 8, "ConText Indexing"
This chapter introduces the concepts required for understanding ConText indexing.
It also provides detailed descriptions of the ConText data dictionary objects, such as
policies, indexing preferences, and Tiles, that are required for creating ConText
indexes.

Chapter 9, "Setting Up and Managing Text"
This chapter provides detailed instructions and examples for performing text setup
and management tasks, such as loading text, creating/managing ConText indexes,
creating/managing thesauri, and creating/managing document sections, from the
command line.

Chapter 10, "Text Loading Utility"
This chapter describes the ConText text loading utility, ctxload, and lists the
command-line options for the utility. It also provides syntax examples for the utility.

Chapter 11, "PL/SQL Packages - Text Management"
This chapter lists the stored procedures and functions in the PL/SQL packages
provided for setting up and managing text in ConText.

xxiii

PART III: APPENDICES

Appendix A, "Supplied Stoplists"
This chapter lists the stop words in the language-specific stoplists provided by
ConText. It also describes how to create the stoplists.

Appendix B, "ConText Views"
This chapter lists the views that ConText provides for managing ConText servers
and queues, as well as the views for the ConText data dictionary.

Appendix C, "ConText Index Tables and Indexes"
This chapter lists the database tables and views that comprise a ConText index.

Appendix D, "External Filter Specifications"
This chapter lists the external filter formats supported by ConText for mixed-format
columns, as well as provides installation, setup, and usage details for the external
filters supplied by ConText.

Type Conventions
This manual adheres to the following type conventions:

Type Meaning

UPPERCASE Uppercase letters indicate Oracle commands, standard database
objects and constants, and standard Oracle PL/SQL procedures.

lowercase italics Italics indicate variable names, names of user objects (tables, views,
preferences, policies, etc.), PL/SQL parameter/argument names, and
names of example PL/SQL procedures.

Italics also indicate emphasis.

monospace Monospace type indicate example SQL*Plus commands and example
PL/SQL code. Type in the command or code exactly as it appears.

xxiv

Customer Support
You can reach Oracle Worldwide Customer Support 24 hours a day.

In the USA: 1.415.506.1500

In Europe: + 44.344.860.160

Please be prepared to supply the following information:

■ your CSI number (This helps Oracle Corporation track problems for each
customer)

■ the release numbers of the Oracle Server and associated products

■ the operating system name and version number

■ details of error numbers and descriptions (Write down the exact errors you
encounter)

■ a description of the problem

■ a description of the changes made to the system

Your Comments Are Welcome
Please use the Reader’s Comment Form at the back of this document to convey
your comments to us. You can also contact us at:

Documentation Manager
Oracle8 ConText Cartridge
Oracle Corporation
500 Oracle Parkway
Redwood Shores, California 94065
Phone: 1.415.506.7000 FAX: 1.415.506.7200

Introduction 1-1

1
Introduction

This chapter introduces Oracle8 ConText Cartridge and discusses the various
administration tasks that you may need to perform for your ConText system.

The topics covered in this chapter are:

■ What is ConText?

■ ConText Features

■ ConText and the Oracle Server

■ Overview of ConText Functions

■ Administration Methods

What is ConText?

1-2 Oracle8 ConText Cartridge Administrator’s Guide

What is ConText?
ConText is an Oracle server option which enables text queries to be performed
through SQL and PL/SQL from most Oracle interfaces.

By installing ConText with an Oracle server, client tools such as SQL*Plus, Oracle
Forms, and Pro*C are able to retrieve and manipulate text in an Oracle database.
Most tools which can call an Oracle stored procedure can perform text queries and
other text operations.

ConText manages textual data in concert with traditional datatypes in an Oracle
database. When text is inserted, updated, or deleted, ConText automatically
manages the change.

ConText Features

Introduction 1-3

ConText Features
ConText provides advanced indexing, analysis, retrieval, and viewing functionality
that can be integrated into any text applications that use Oracle8. The list of features
include:

■ full integration of structured data and text

■ external and internal storage of text in the database

■ support for a variety of document formats, including plain text, plain text with
HTML tags, and many of the popular word processing formats

■ support for indexing and querying text stored in columns of all datatypes,
including LONG, LONG RAW, and LOBs

■ indexing and querying relational tables/views and object tables/views

■ text retrieval using Boolean, statistical, thesaural, and linguistic methods

■ indexing and retrieval for all NLS-supported languages, including the
following multi-byte languages: Japanese, Chinese, and Korean

■ advanced text retrieval (stemming, fuzzy matching, etc.) for English, French,
German, Italian, Spanish, and Dutch text

■ advanced linguistic analysis, including theme-based queries, for English text

■ text highlighting and viewing

■ application development using any tools that support SQL or PL/SQL,
including:

■ SQL*Plus

■ Designer 2000

■ Power Objects

■ Oracle WebServer

■ Visual Basic and Oracle Objects for OLE

■ OCI and the PRO languages

See Also: For more information about text retrieval, linguistic
analysis, highlighting, and document viewing, see Oracle8 ConText
Cartridge Application Developer’s Guide.

ConText and the Oracle Server

1-4 Oracle8 ConText Cartridge Administrator’s Guide

ConText and the Oracle Server

Figure 1–1

The ConText process model uses the Oracle server model with the addition of one
or more ConText server processes and a queue for handling text operations.

SYSTEM GLOBAL AREA

Text
Request
Queue

Background
Processes

ConText
Server

Process

ConText
Server

Process

Oracle8
Database

Oracle8
Server

Process

User
Process

ConText and the Oracle Server

Introduction 1-5

ConText can be used in both dedicated server (one server process for each user
process) and multi-threaded server environments (dispatcher, shared server, and
background processes).

This diagram shows ConText servers and the Text Request Queue working in
concert with an Oracle server process in a dedicated server environment.

In the standard Oracle server model, when a user process connects to the database,
it spawns a dedicated server process which handles all incoming requests from the
user process.

With ConText, if a request comes in that includes a text operation, the request is
picked up by the server process for the user process. The server process sends the
request to the Text Request Queue for processing by the next available ConText
server processes.

For example, a text query is submitted by a user. The query is picked up by the
Oracle server process and sent to the Text Request Queue.

The first available ConText server picks up the text query from the Text Request
Queue and processes it. The results from the text query are then returned to the user
process.

See Also: For more information about ConText servers, see
"ConText Servers" in Chapter 2, "Administration Concepts".

For more information about text operations, see "Text Operations"
in Chapter 6, "Text Concepts".

For more information about the Oracle server model, see Oracle8
Concepts.

Overview of ConText Functions

1-6 Oracle8 ConText Cartridge Administrator’s Guide

Overview of ConText Functions

Figure 1–2

Figure 1–1 illustrates the six main functional areas of ConText:

■ ConText Administration

■ Text Loading

Load
Individual

Rows

Batch
Loading

TEXT LOADING

Manage
ConText

Users

Manage
ConText
Servers

Manage
ConText
Queues

CONTEXT
ADMINISTRATION INDEXING

Create
Index

Optimize
Index

Update
Index
(DML)

QUERYING

DOCUMENT
PRESENTATION

LINGUISTICS

Overview of ConText Functions

Introduction 1-7

■ Indexing

■ Querying

■ Document Presentation

■ Linguistics

Oracle8 ConText Cartridge Administrator’s Guide provides details about and
instructions for the tasks that can be performed in ConText administration, text
loading, and indexing. These tasks may be performed by a single user or may be
divided between different users/responsibilities.

The remaining three areas, querying, document presentation, and Linguistics, are
typically part of a ConText application and are described in full in Oracle8 ConText
Cartridge Application Developer’s Guide.

ConText Administration
ConText administration includes the following tasks, which are covered in Part 1 of
this manual:

Who Performs ConText Administration?
ConText administration tasks are always performed by the ConText administrator,
who may be the system and/or database administrator or a separate user.

Task
Supported from
Command-line?

Supported in GUI
Admin Tools?

Enabling one-step queries Yes No

Managing ConText users Yes Yes

Monitoring and managing ConText servers Yes Yes

Monitoring and managing the ConText queues Yes‘ Yes

See Also: For examples of performing the ConText administration
tasks from the command-line, see Chapter 3, "Administering
ConText".

For more information about ConText users, servers, and queues, see
Chapter 2, "Administration Concepts".

Overview of ConText Functions

1-8 Oracle8 ConText Cartridge Administrator’s Guide

Text Loading
Text loading includes the following tasks, which are covered in Part II of this
manual:

Who Performs Text Loading?
Text loading may be performed by the ConText administrator because it requires
access to system and database resources or it may be performed by application
developers.

For example, loading text into the database requires access to the appropriate tables.

In addition, automated text loading requires ConText servers to be running with the
appropriate designation and only ConText administrators can manage ConText
servers.

However, an application may provide users with the ability to load/update text for
an individual file, which requires the application developer to build the
functionality into the application.

Task
Supported from
Command-line?

Supported in GUI
Admin Tools?

Loading, updating, and deleting text for
individual rows

Yes No

Exporting text for individual rows Yes No

Batch text loading Yes No

Enabling automated batch loading through
sources

Yes Yes

See Also: For examples of performing the text loading tasks from
the command-line, see Chapter 9, "Setting Up and Managing Text".

For more information about loading text, see Chapter 6, "Text
Concepts".

For more information about sources and other text loading objects
in the ConText data dictionary, see Chapter 7, "Automated Text
Loading".

Overview of ConText Functions

Introduction 1-9

Indexing
Indexing includes the following tasks, which are covered in Part II of this manual:

Who Performs Indexing?
Indexing may be performed by the ConText administrator because they require
access to system and database resources.

For example, creating indexes requires ConText servers to be running with the
appropriate designation and only ConText administrators can manage ConText
servers.

However, some tasks, such as defining policies and preferences, may be performed
by application developers because the options used to create a index have an effect
on how an application retrieves text.

Task
Supported from
Command-line?

Supported in GUI
Admin Tools?

Defining text storage and indexing options
through preferences

Yes Yes

Identifying text columns through policies Yes Yes

Creating ConText text and theme indexes Yes‘ Yes

Creating and managing thesauri for use in
queries

Yes Yes

Creating and managing document sections to
enable section searching in queries

Yes Yes

See Also: For examples of performing the indexing tasks from the
command-line, see Chapter 9, "Setting Up and Managing Text".

For more information about text columns and ConText indexes, see
Chapter 6, "Text Concepts".

For more information about preferences, policies, and other text
loading objects in the ConText data dictionary, see Chapter 8,
"ConText Indexing".

Administration Methods

1-10 Oracle8 ConText Cartridge Administrator’s Guide

Administration Methods
ConText provides two different methods for performing the administration tasks
associated with ConText administration, text loading, and indexing:

■ Command-line

■ Administration Tools

Most of the administration tasks can be accomplished using either method;
however, some tasks can only be accomplished using one or the other method.

For example, setting configurations for the ConText Linguistics can only be enabled
for a database session through the command-line, while custom setting
configurations can only be created/modified in the administration tool. As a result,
if you want to use custom settings for the Linguistics, you must use both the
administration tool and the command-line to administer ConText.

Command-line
Command-line administration includes:

■ machine command-line for running ConText executables and utilities

■ SQL*PLus and PL/SQL

For example, the command-line for the server machine on which ConText is
installed must be used to start ConText servers and access the administration
utilities provided with ConText.

All remaining ConText administration tasks, such as shutting down ConText
servers, managing queues, and creating indexes, can be performed using SQL or
PL/SQL, either on the server machine or on any other machine that has SQL*Plus
and PL/SQL installed and is connected to the server machine through SQL*Net.

Note: Much of the conceptual and reference information
presented in this manual are relevant to both the command-line and
the administration tools.

However, the instructions presented in this manual are for
performing administration tasks using the command-line.

For more information about performing administration tasks using
the administration tools, see the help systems provided with the
specific tool.

Administration Methods

Introduction 1-11

Administration Tools
ConText provides two GUI tools for administering ConText:

■ System Administration tool

■ Configuration Manager

Both administration tools are distributed with the ConText Workbench, which can
be installed on any PC running a Microsoft Windows 32-bit environment, such as
Windows NT or 95.

System Administration Tool
The System Administration tool is a client-based application that provides a 32-bit
Windows, graphical user interface (GUI) for administering ConText servers, text,
and the Linguistics from a 32-bit Windows environment, such as Windows NT or
Windows 95.

Configuration Manager
The Configuration Manager is a Web-based application that allows the CTXSYS
user to manage various administration tasks quickly and easily. It also incorporates
a simple ad-hoc query tool and a utility for generating Web-based prototype
ConText applications.

In contrast to the System Administration tool, which is for Windows NT and
Windows 95 only and is installed separately on each client machine, the
Configuration Manager is platform-independent and is installed only once per
database. Each Configuration Manager installation runs under the CTXSYS user.

See Also: For more information about the GUI administration
tools and the other components in the ConText Workbench, see
Oracle8 ConText Cartridge Workbench User’s Guide.

See Also: For more information about using the System
Administration tool, see the online help provided with the tool.

See Also: For more information about using the Configuration
Manager, see the online help provided with the tool.

Administration Methods

1-12 Oracle8 ConText Cartridge Administrator’s Guide

Part I
 ConText Administration

This part provides information specific to ConText administration. It introduces
administration concepts such as ConText users, queues, and servers, as well as
provides instructions and examples for setting up and administering ConText. It
also includes reference information for the ConText executables, utilities, and
PL/SQL packages provided for performing these tasks.

This part contains the following chapters:

■ Chapter 2, "Administration Concepts"

■ Chapter 3, "Administering ConText"

■ Chapter 4, "ConText Server Executable and Utility"

■ Chapter 5, "PL/SQL Packages - Administration"

Administration Concepts 2-1

2
Administration Concepts

This chapter describes the concepts necessary for understanding ConText
administration.

The following concepts are discussed in this chapter:

■ Administrator Responsibilities

■ ConText Roles

■ Predefined ConText Users

■ ConText Data Dictionary

■ ConText Servers

■ Personalities

■ Text Request Queue

Administrator Responsibilities

2-2 Oracle8 ConText Cartridge Administrator’s Guide

Administrator Responsibilities
Administrative responsibilities for ConText can be divided into two functional
areas:

■ System Administrator

■ Database Administrator (DBA)

System Administrator
The system administrator’s main responsibility is managing ConText servers. This
includes:

■ starting and stopping ConText servers to balance the processing loads of the
machines on which the servers are running

■ changing the personality masks of ConText servers as needed

Database Administrator (DBA)
The DBA’s main responsibilities include:

■ creating and maintaining Oracle users for ConText

■ monitoring and administering the ConText queues

■ monitoring the ConText data dictionary

ConText Roles

Administration Concepts 2-3

ConText Roles
ConText provides database roles for performing the following tasks with ConText:

■ managing ConText servers, including shut down, monitoring ConText server
status, and changing the personality masks for ConText servers

■ administering ConText queues, including removing entries from the queues
changing the status of the queues, and setting the buffer size of the Query pipes

■ managing the ConText data dictionary, including creating/deleting preferences,
creating/deleting/modifying policies, creating/deleting ConText indexes,
creating/deleting/updating thesauri

■ managing linguistics, including creating custom setting configurations for
linguistics, enabling setting configurations for linguistics, generating linguistic
output

■ performing ConText queries

Three database roles are provided for performing these tasks:

■ CTXADMIN Role

■ CTXAPP Role

■ CTXUSER Role

Each ConText user should be assigned one of the ConText roles. The role assigned to
a ConText users depends on the tasks performed by the user.

Note: It is not necessary to assign more than one ConText role to a
user because the roles are defined hierarchically in the following
descending order: CTXADMIN, CTXAPP, CTXUSER.

Each higher-level role provides all the privileges of the lower-level
roles, as well as additional privileges.

See Also: For an example of assigning ConText roles to users, see
"Managing Users" in Chapter 3, "Administering ConText".

For more information about Oracle users and database roles, see
Oracle8 SQL Reference.

ConText Roles

2-4 Oracle8 ConText Cartridge Administrator’s Guide

CTXADMIN Role
The CTXADMIN role provides users with the ability to perform all ConText tasks.

CTXADMIN should be assigned to Oracle users who perform system and database
administration for ConText.

CTXAPP Role
The CTXAPP role users with the ability to perform the following tasks/actions:

■ managing the ConText data dictionary

■ managing linguistics

■ performing queries

CTXAPP should be assigned to Oracle users who develop ConText applications.

CTXUSER Role
The CTXUSER role provides users with the ability to perform ConText queries (text
and theme). It should be assigned to Oracle users of a ConText application.

Predefined ConText Users

Administration Concepts 2-5

Predefined ConText Users
ConText provides two predefined Oracle users:

■ CTXSYS User

■ CTXDEMO User

CTXSYS User
CTXSYS is created automatically during installation and is used primarily to
perform administration tasks, such as starting ConText servers and administering
the ConText queues.

CTXSYS has the following functions and privileges:

■ Oracle DBA with all privileges

■ owner of the ConText data dictionary

■ CTXADMIN role

CTXDEMO User
CTXDEMO is created automatically if you choose to enable the ConText demos
during installation. It is used primarily to run the sample applications provided
with ConText.

CTXDEMO has the following functions and privileges:

■ owner of the ConText database schema (tables, views, etc.) and data dictionary
objects (policies, preferences) used in the sample applications

■ CTXAPP role

The sample applications, which illustrate some typical uses of ConText, can be
divided into three groups:

■ Sample Populated Database Tables

■ Sample SQL Scripts

■ Sample Oracle Forms Application

Note: Only the CTXSYS user can start ConText servers.

Predefined ConText Users

2-6 Oracle8 ConText Cartridge Administrator’s Guide

Sample Populated Database Tables
This sample consists of two tables, EMP and DEPT, owned by CTXDEMO. Each
table has a text column containing sample plain (i.e. ASCII) English text and a text
index associated with the column. These tables can be used to perform ad-hoc text
queries to familiarize yourself with ConText’s basic features.

The tables and their associated ConText objects are created automatically if you
choose to enable the ConText demos when prompted during ConText installation.

Sample SQL Scripts
This sample consists of a populated table, ARTICLES, and two sets of SQL scripts,
CTXPLUS and CTXLING, for performing the following tasks:

■ creating a text index for ARTICLES

■ creating result/output tables for highlighting and ConText Linguistics

■ generating Linguistic output for documents in ARTICLES

■ performing text queries using different query methods

■ viewing documents and highlighted documents

■ viewing Linguistic output for documents

The table and its associated ConText objects are not created automatically during
ConText installation. They must be created after ConText installation using setup
scripts provided with the sample scripts.

See Also: For more information about text columns and text
indexes, see Chapter 6, "Text Concepts".

For more information about text queries, see Oracle8 ConText
Cartridge Application Developer’s Guide.

See Also: For more information about text indexes, see Chapter 6,
"Text Concepts".

For instructions on setting up the sample scripts, as well as
information about text queries, highlighting, and ConText
Linguistics, see Oracle8 ConText Cartridge Application Developer’s
Guide.

Predefined ConText Users

Administration Concepts 2-7

Sample Oracle Forms Application
This sample consists of an Oracle Forms application that uses the ARTICLES table
(from the SQL scripts sample) to illustrate how to incorporate text queries and
document highlighting/viewing into a ConText application.

The Oracle Forms sample is distributed with the ConText Workbench and requires
the same setup as the SQL scripts for CTXQUERY.

Note: The Oracle Forms sample uses the same ARTICLES table
and ConText objects as the CTXQUERY sample; once setup has
been performed for CTXQUERY, you do not need to perform any
setup for the Oracle Forms sample.

See Also: For instructions on setting up the CTXQUERY and
Oracle Forms samples, as well as information about text queries
and highlighting, see Oracle8 ConText Cartridge Application
Developer’s Guide.

For a description of the Oracle Forms sample, including the source
code for the sample, see Oracle8 ConText Cartridge Workbench User’s
Guide

ConText Data Dictionary

2-8 Oracle8 ConText Cartridge Administrator’s Guide

ConText Data Dictionary
ConText utilizes a data dictionary, separate from the Oracle data dictionary, to store
the ConText objects required for index creation, Linguistic output generation, and
automated text loading:

■ template policies

■ column policies and the table/column to which each column policy is assigned

■ indexing preferences (predefined and user-defined) and the Tiles used to create
them

■ sources for automated batch-loading of text into database columns

■ text loading preferences (predefined and user-defined) and the Tiles used to
create them

The ConText data dictionary also stores resource limits and the status of all ConText
servers that are currently running.

The ConText data dictionary is owned by the Oracle user CTXSYS. CTXSYS and the
data dictionary tables and views are created during installation of ConText.

See Also: For more information about policies and indexing
preferences, see Chapter 8, "ConText Indexing".

For more information about sources and text loading preferences,
see Chapter 7, "Automated Text Loading".

ConText Servers

Administration Concepts 2-9

ConText Servers
ConText servers are shared processes that handle text operations in SQL requests.
ConText server processes mirror their shared Oracle server counterparts, but
process only text-related operations. ConText servers can be started using the ctxsrv
executable or the ctxctl utility.

ConText servers can be started only from the command-line of the machine on
which the ctxsrv executable is installed. In addition, only the CTXSYS user can start
ConText servers.

If the server machine can support multiple ConText servers, multiple ConText
servers can run at the same time to help balance the processing load. In addition,
ConText servers can work with databases installed on either the server machine or
on remote machines.

Text Operations
ConText servers can process five types of text operations:

■ text loading

■ DDL operations (creating, dropping, and updating text indexes)

■ DML operations (updating the text index for a text column when inserts,
updates, and deletes are performed on the table)

■ Linguistics requests (generating linguistic output for documents)

■ text/theme queries

The type of text operations processed by each ConText server is determined by the
personalities assigned to the server.

Requests for text operations are stored in the Text Request Queue. Available
ConText servers monitor the queue for text requests. As text operations are
submitted, available ConText servers with the appropriate personalities pick up the
operations and process them.

See Also: For more information about ctxsrv and ctxctl, see
Chapter 4, "ConText Server Executable and Utility".

ConText Servers

2-10 Oracle8 ConText Cartridge Administrator’s Guide

Server Log
ConText provides a timestamped report for each action performed by a ConText
server. These reports are written to the standard output on which the server was
started; however, the reports can be directed to a log file if one is specified when the
ConText server is started.

Server Shutdown
A ConText server performs the following tasks before shutting down:

■ releases all currently held resources

■ cleans up and closes the server’s mailboxes

■ updates the server process table by removing the corresponding entry for the
server from the table

See Also: For more information about each of the text operations
that can be processed by ConText servers, see "Text Operations" in
Chapter 6, "Text Concepts".

For more information about personality masks, see "Personalities"
in this chapter.

For more information about the database tables and pipes that
comprise the Text Request Queue, see "Text Request Queue" in this
chapter.

See Also: For examples of starting ConText servers, see "Starting
ConText Servers" in Chapter 3, "Administering ConText".

Personalities

Administration Concepts 2-11

Personalities
A personality for a ConText server indicates the type of text operation that the
server can process. A ConText server can be assigned one or more of the following
personalities (corresponding to the five text operations supported by ConText):

■ Loader (R) Personality

■ DDL (D) Personality

■ DML (M) Personality

■ Query (Q) Personality

■ Linguistic (L) Personality

In addition to the user-specified personalities, all ConText servers automatically
take on a DBA Personality.

Personality Masks
The collection of all the personalities for a server is called the personality mask.
When a ConText server is started, it is assigned a default personality mask
consisting of the DDL (D), DML (M), and Query (Q) personalities. The DBA
personality does not appear as part of the personality mask because it is
automatically assigned to all ConText servers.

Loader (R) Personality
The Loader personality enables a ConText server to scan directories at regular
intervals for files to be loaded into columns in the database. When the ConText
server detects a new file in a specified directory, it uses the ctxload utility to load the
contents of the file into a specified column.

The directories scanned by ConText servers running with the Loader personality, as
well as the scanning intervals and the columns to which the text is loaded, are
specified by a ConText object, called a source, which can be attached to a column.

See Also: For more information about the text operations
supported by ConText, see "Text Operations" in Chapter 6, "Text
Concepts".

Personalities

2-12 Oracle8 ConText Cartridge Administrator’s Guide

DDL (D) Personality
The DDL personality enables a ConText server to process requests for creating,
optimizing, and dropping text indexes. The text index on a column is what allows
users to query the text stored in the column.

The DDL personality also enables a ConText server to process DML requests when
DML operations are processed in batch mode.

DML (M) Personality
The DML personality enables a ConText server to automatically update the text
index for a table when changes to the table are made that require the text index to
be update. Such changes include inserting new documents, updating existing
documents, and deleting existing documents.

Query (Q) Personality
The Query personality enables a ConText server to process queries for text stored
either internally or externally in a text column in a database table. If no running
ConText servers have the Query personality, queries submitted to ConText will fail.

See Also: For more information about automated text loading,
see "Overview of Automated Loading" in Chapter 7, "Automated
Text Loading".

For an example of setting up ConText servers to load text, see
"Using ConText Servers for Automated Text Loading" in Chapter 9,
"Setting Up and Managing Text".

See Also: For more information about batch DML processing, see
"DML" in Chapter 6, "Text Concepts".

Suggestion: When systems have a high volume of text inserts,
updates, and deletes, assign the DML personality to multiple
servers to better distribute the system load.

Note: The Query personality is not required to use the output
generated by the Linguistics. Linguistic output is stored as
structured data and, as such, no ConText servers are not required to
process queries for this type of information.

Personalities

Administration Concepts 2-13

Linguistic (L) Personality
The Linguistic personality allows a ConText server to process requests for the
Linguistics and generate linguistic output. Linguistic output includes:

■ document themes

■ document Gists and/or document theme summaries

DBA Personality
The DBA personality allows a ConText server to detect and correct client/server
failures and perform system cleanup (recovery).

The DBA personality is automatically assigned to each ConText server during start
up, which prevents a single point of failure in a multi-server configuration.

ConText Server Monitoring
When a working ConText server detects a failed ConText server, it performs the
following DBA actions:

■ the working server cleans up the failed server’s mailbox and logs the event

■ if the failed server was processing a Query request, the working server releases
any allocated resources

■ if the failed server was processing a DDL request, the working server drops any
tables that are not needed for recovery of the requested action

■ if the failed server was processing a DML request, the working server places
any uncompleted DML requests back in the queue

■ if the failed server was processing a Query or DDL request, the working server
notifies the waiting client

Note: The Linguistic personality is only required to process
requests for Linguistics. Once the requests have been processed,
Linguistic servers can be shut down or the Linguistic personality
can be removed from the personality mask of a running ConText
server.

For more information about the ConText Linguistics, see Oracle8
ConText Cartridge Application Developer’s Guide.

Personalities

2-14 Oracle8 ConText Cartridge Administrator’s Guide

System Recovery
When a table has a text column with an existing ConText index and the table is
dropped without first dropping the index and policy for the column, the index
tables and policy for the column remain in the system until recovery is performed.

System recover is performed automatically by ConText servers approximately every
fifteen minutes.

System cleanup can also be performed manually using CTX_ADM.RECOVER.

Text Request Queue

Administration Concepts 2-15

Text Request Queue

Figure 2–1

The Text Request Queue is the logical mechanism ConText servers use to process all
text operations, except for automated text loading.

When a client submits a request for a text operation, such as a query, the request is
sent to the Text Request Queue. All available ConText servers regularly scan the

TEXT
REQUEST

QUEUE

DML Queue

ConText
Server

(Q, D, M, L)

ConText
Server

(L)

ConText
Server

(M)

ConText
Server

(D)

ConText
Server

(Q)

Services Queue
DDL PipeQuery Pipe

Admin Pipe

Admin Pipe Admin Pipe Admin Pipe Admin Pipe

Text Request Queue

2-16 Oracle8 ConText Cartridge Administrator’s Guide

Text Request Queue, retrieve pending requests if they have the appropriate
personality, and perform the requested operations. Figure 2–1 illustrates how
ConText servers with different personalities access the Text Request Queue.

When a ConText server finishes processing a request of any type, it checks the pipes
and queues for the next pending request.

The Text Request Queue is made up of the following database pipes and tables:

■ Query Pipe

■ DDL Pipe

■ DML Queue

■ Services Queue

In addition, each ConText server has a dedicated administration pipe for processing
the administrative tasks that control its operation (e.g. server shutdown).

Query Pipe
When a SQL statement includes a ConText query (text or theme), the system
dispatches the query to the query pipe.

To help regulate the flow of query requests, ConText provides a stored procedure,
CTX_ADM.SET_QUERY_BUFFER_SIZE, which allocates the amount of memory
used by the query pipe. In addition, the pipe can be disabled/enabled using CTX_
ADM.UPDATE_QUEUE_STATUS.

DDL Pipe
ConText dispatches all requests for DDL operations (e.g. CREATE_INDEX, DROP_
INDEX, and OPTIMIZE_INDEX) to the DDL pipe. The processing of DDL requests
is controlled through CTX_ADM.UPDATE_QUEUE_STATUS, which can be used to
disable/enable the DDL pipe.

If a ConText server encounters a problem with a request in the DDL pipe, the error
does not affect the pipe or the server processing the pipe. The errored request is
recorded as a row in the Services Queue and the server continues processing the
remaining requests in the pipe.

The CTX_INDEX_ERRORS view can be used to display errored DDL requests.

Text Request Queue

Administration Concepts 2-17

DML Queue
The DML Queue stores index update requests when changes are made to a table
containing a text column with a ConText index.

When a DML operation is performed (i.e. data in a text table is modified, deleted, or
added), an index update request is automatically recorded in the DML Queue.
Requests are placed in the DML Queue by internal database triggers that are created
during the initial creation of a ConText index for a text column.

If DML processing is running in immediate mode, the next available ConText server
with the DML (M) personality picks up the requests and updates the index as soon
as resources and system load allow.

If DML processing is running in batch mode, the requests are stored in the queue
until a user explicitly requests DML processing. Then, available ConText servers
with the DDL (D) personality pick up all the pending requests and process the
requests as one or more batches.

The DML Queue consists of the following internal tables:

■ Pending Table (DRQ_PENDING)

■ In-Progress Table (DRQ_INPROG)

■ Waiting Table (DRQ_WAITING)

■ Batches Table (DRQ_BATCHES)

Note: The DML tables are internal tables and should not be
accessed directly. To view the queue, use the queue views or the
GUI administration tools provided with the ConText Workbench.
To administer the queue, use the CTX_DML package.

For more information about the DML queue views, see "ConText
Queue Views" in Appendix B, "ConText Views".

For more information about the CTX_DML package, see "CTX_
DML: ConText Index Update" in Chapter 11, "PL/SQL Packages -
Text Management".

See Also: For more information about DML operations, see
"DML" in Chapter 6, "Text Concepts".

Text Request Queue

2-18 Oracle8 ConText Cartridge Administrator’s Guide

Pending Table (DRQ_PENDING)
This table contains one row for each DML operation (request for index update) that
has not yet been picked up by a ConText server. The row indicates the specific cell
that has changed in the text table.

When a request has been picked up by a ConText server, the corresponding row is
deleted from the pending table and the server beginsto update the ConText index.
In addition, a new row is written to the in-progress table to indicate that the request
is being processed.

In-Progress Table (DRQ_INPROG)
This table contains one row for each DML request being processed by a ConText
server.

Once the ConText server finishes processing the request, the row is deleted from the
in-progress table, indicating that the appropriate index has been updated to reflect
the document modification that generated the request.

Waiting Table (DRQ_WAITING)
This table contains a row for each DML request for which a duplicate request exists
in the pending table. This condition occurs when a DML request for a row has not
been picked up by a ConText server and additional requests for the row are issued.
This table ensures that DML requests for a row in a text table are processed in order.

Batches Table (DRQ_BATCHES)
This table contains one row for each batch of DML requests. A batch consists of up
to 10,000 DML requests for an indexed column. If the queue contains more than
10,000 DML requests for a column or requests for different columns, ConText uses
multiple batches to process the requests.

For each batch, the table stores information such as the number of rows in the batch,
the batch ID, and the ID of the server processing the batch.

If immediate DML is enabled, batches are created automatically as ConText servers
with the DML personality pick up requests from the queue. If batch DML is
enabled, batches are created by users calling CTX_DML.SYNC.

Note: Requests are stored in the pending table only after the
insert, update, or delete has been committed.

Text Request Queue

Administration Concepts 2-19

Timestamps
Requests in the DML Queue are processed in the order they are received, based on a
timestamp. Rows are inserted into the pending table without a timestamp. At a
specified time interval, all unmarked rows within the pending table are marked
with a timestamp. The timestamp is based on the time each change was committed.

Error Handling
If a ConText server encounters a problem with a request in the DML Queue, the
error does not affect the queue or the server processing the queue. The errored
request is recorded as a row in the Services Queue and the server continues
processing the remaining requests in the queue.

The CTX_INDEX_ERRORS view of the Services Queue can be used to display
errored DML requests.

Queue Management
To control the processing of DML requests, CTX_ADM.UPDATE_QUEUE_STATUS
can be used to disable/enable the DML Queue. When the DML Queue is disabled,
the queue continues to accept requests; however, new requests and any pending
requests in the disabled DML Queue are not picked up by ConText servers until the
queue is enabled manually.

See Also: For more information about immediate and batch
DML, see "DML" in Chapter 6, "Text Concepts"

Text Request Queue

2-20 Oracle8 ConText Cartridge Administrator’s Guide

Services Queue
The Services Queue is used for processing requests for all ConText services. The
Services Queue is designed to be extensible. As additional services are provided by
ConText, the Services Queue is the mechanism by which the services will be
managed. Currently, the Services Queue supports the following services:

■ requests for the ConText Linguistics (theme, Gist, and theme summary
generation)

■ error handling for index creation and optimization (DDL) and index updating
(DML)

When a request is submitted for the Linguistics, the request is stored in the Services
Queue. A request is picked up by the first available ConText server with the
Linguistic personality and the server generates linguistic output for the specified
request.

ConText servers with the Linguistic personality pick requests out of the queue
based on the request priority and creation timestamp. Clients may queue a request
and continue to work while the request is being processed.

The Services Queue is asynchronous. Clients that place a request in the queue do
not automatically block their subsequent requests while waiting for a reply.
However, clients can choose to block their subsequent requests for a specified time
when they submit requests.

Services Queue Table (CTX_SVCQ)
The Services Queue consists of the CTX_SVCQ internal table. This table stores a row
for each request for the ConText Linguistics, as well as the request status.

Note: CTX_SVCQ is an internal table and should not be accessed
directly. To view the queue, use the queue views or the GUI
administration tools provided with the ConText Workbench.

To administer the Services Queue (e.g. cleaning up entries), use the
CTX_SVC package or the GUI administration tools.

For more information about the CTX_SVC package, see "CTX_DDL:
Text Setup and Management" in Chapter 11, "PL/SQL Packages -
Text Management".

Text Request Queue

Administration Concepts 2-21

Error Handling
If a ConText server encounters a problem with a request in the Services Queue, the
error does not affect the queue or the server processing the queue. The errored
request is recorded as a row in the Services Queue and the server continues
processing the remaining requests in the queue.

The CTX_LING_ERRORS view of the Services Queue can be used to display errored
requests for Linguistics.

Queue Management
To control the processing of Linguistic requests, CTX_ADM.UPDATE_QUEUE_
STATUS can be used to disable/enable the Services Queue. When the Services
Queue is disabled, requests are still accepted into the queue; however, new requests
and any pending requests in the disabled Services Queue are not picked up by
ConText servers until the queue is enabled manually.

Text Request Queue

2-22 Oracle8 ConText Cartridge Administrator’s Guide

Administering ConText 3-1

3
Administering ConText

This chapter provides details on how to administer ConText users, servers, and
queues from the command-line.

The process of administering ConText can be divided into three main tasks:

■ Enabling One-step Queries

■ Managing Users

■ Managing ConText Servers

■ Managing ConText Queues

Management of ConText users can be performed by any Oracle DBA user or the
CTXSYS user. Management of ConText servers and queues is performed by the
CTXSYS user.

Note: Many of the ConText server and queue administration tasks
can be performed from the GUI administration tools (System
Administration tool or Configuration Manager). These tasks are
diagramed in each section of the chapter.

Enabling One-step Queries

3-2 Oracle8 ConText Cartridge Administrator’s Guide

Enabling One-step Queries
If you want to use one-step queries in ConText, you must set the ConText
initialization parameter TEXT_ENABLE for each database instance to TRUE. TEXT_
ENABLE enables Oracle8 to recognize the CONTAINS SQL function utilized in
one-step queries.

You can set TEXT_ENABLE for all users and sessions in the initsid.ora file. You can
also set TEXT_ENABLE for the current session using the SQL command, ALTER
SESSION.

 Setting TEXT_ENABLE for All Users
To set TEXT_ENABLE for all users, perform the following steps:

1. Shut down the database.

2. Add the following line to the initsid.ora file:

text_enable=true

3. Restart the database

 Setting TEXT_ENABLE for the Session
To set TEXT_ENABLE for the current session only, issue the following SQL
command:

alter session set text_enable = true

Note: TEXT_ENABLE only needs to be set once for each database
instance. Also, once you have set TEXT_ENABLE, start one or more
ConText servers with the Query (Q) personality to ensure one-step
queries are processed.

See Also: For the location of the initsid.ora file, see the Oracle8
installation documentation specific to your operating system.

For more information about setting initialization parameters, see
Oracle8 Administrator’s Guide.

Note: Once you set TEXT_ENABLE in the initsid.ora file, one-step
queries are enabled each time you start up a database instance.

Managing Users

Administering ConText 3-3

Managing Users
This section provides details for performing the following user administration tasks
from the command-line:

Creating ConText Users
ConText provides a predefined Oracle user called CTXSYS for performing system
and database administration.

To create additional Oracle users for ConText, log in to SQL*Plus as an Oracle DBA
and use the SQL command CREATE USER.

For example:

create user app_dev
identified by 123abc
default tablespace app_tables;

Task
Supported in Sys.
Admin. Tool?

Supported in
Config. Manager?

Creating ConText Users No No

Granting ConText Roles to Users Yes Yes

Granting EXECUTE Privileges to Application
Developers

No No

Note: In addition to these tasks, a ConText administrator may be
responsible for importing/exporting the database schema objects
for ConText users.

ConText does not currently support the importing/exporting of
schema objects (tables and Oracle indexes) for which ConText
indexes have been created.

To replicate a ConText user’s database schema in another database,
a full export/import of the user’s schema, as well as the CTXSYS
user’s schema would have to be performed, then the ConText
indexes would have to be recreated in the new schema.

Managing Users

3-4 Oracle8 ConText Cartridge Administrator’s Guide

Granting ConText Roles to Users
To assign a ConText role to a user, log in to SQL*Plus as an Oracle DBA and use the
SQL command GRANT. For example:

grant ctxapp to ctxdev;

Granting EXECUTE Privileges to Application Developers
To enable users (i.e. application developers) to call procedures from within their
own stored procedures and triggers, you must explicitly grant to each user
EXECUTE privileges for the ConText PL/SQL packages that contain the procedures.

To grant EXECUTE privileges to users, log in to SQL*Plus as CTXSYS and use the
GRANT command. For example:

grant execute on ctx_query to ctxdev;

In this example, CTXSYS grants EXECUTE privileges to the user CTXDEV for all
the stored procedures in the CTX_QUERY package.

Note: Do not use PL/SQL and SQL reserved words in usernames.
In addition, certain words, such as ascii, html, blaster, and filter, are
used internally by ConText and should not be used by themselves
as usernames.

See Also: For more information about creating Oracle users, see
Oracle8 SQL Reference.

See Also: For more information about the ConText roles, see
"ConText Roles" in Chapter 2, "Administration Concepts".

For more information about granting roles to users, see Oracle8 SQL
Reference.

See Also: For more information about granting privileges to
users, see Oracle8 SQL Reference.

Managing Users

Administering ConText 3-5

Application Development Packages
The ConText packages for which users may need EXECUTE privileges are:

■ CTX_LING: Linguistics

■ CTX_QUERY: Query and Highlighting

Administration Packages
If the application developer is building administration functionality into an
application, they may need EXECUTE privileges on the remaining ConText
packages

■ CTX_ADM: ConText Administration

■ CTX_DDL: Text Setup and Management

■ CTX_DML: ConText Index Update

■ CTX_INFO: Product Information

■ CTX_SVC: Services Queue Administration

■ CTX_THES: Thesaurus Management

See Also: For more information about the CTX_QUERY and
CTX_LING packages, see Oracle8 ConText Cartridge Application
Developer’s Guide.

Managing ConText Servers

3-6 Oracle8 ConText Cartridge Administrator’s Guide

Managing ConText Servers
This section provides details for performing the following ConText server
administration tasks from the command-line:

Starting ConText Servers
You can start ConText servers using a number of methods, all from the
command-line:

■ Using ctxsrv

■ Using ctxsrv (Masking the Password for CTXSYS)

■ Using ctxctl

Task
Supported in Sys.
Admin. Tool?

Supported in
Config. Manager?

Starting ConText Servers No No

Viewing the Status of ConText Servers Yes Yes

Shutting Down ConText Servers Yes Yes

Changing the Personality Masks of ConText
Servers

Yes Yes

Suggestion: If your machine supports running multiple ConText
servers, to prevent contention between text operations, you should
start multiple servers, each with a different personality mask.

For example, if your machine supports running four servers, you
could designate one server for processing queries, one server for
processing DML and DDL, one server for linguistics, and one for
text loading.

In addition, the Linguistic personality is only required for
generating linguistic output. Once the output has been generated,
the separate Linguistic server could be shut down or reassigned to
other text operations.

Managing ConText Servers

Administering ConText 3-7

Using ctxsrv
To start a ConText server, run the ctxsrv executable from the command-line of the
server machine.

For example, in a UNIX-based environment, to start a ConText server in the
background with a personality mask of D (DDL) and L (Linguistics), type the
following command on the command-line of the server host machine:

ctxsrv -user ctxsys/password -personality DL &

Using ctxsrv (Masking the Password for CTXSYS)
When -user is specified in the command-line for ctxsrv, the password for CTXSYS is
visible to users of the machine on which the ConText server process is running.

If you wish to mask the password from users, you can run ctxsrv without specifying
-user. The required user information can be supplied in two ways:

■ system-provided prompt

■ text file (containing the user information)

system-provided prompt If you do not specify the -user argument, ConText prompts
you to enter user information. The information must be entered in the format
’CTXSYS/password’ where password is the password for CTXSYS.

The disadvantage of using this method is ConText servers cannot be run as
background processes in environments that support background processes.

text file If your environment supports it, you can pass the required information for
-user to ctxsrv through a plain text file.

The file must contain a single line of text in the format ’CTXSYS/password’ where
password is the password for CTXSYS.

See Also: For more information about ctxsrv, see "ctxsrv
Executable" in Chapter 4, "ConText Server Executable and Utility".

For more information about the text operations that ConText
servers can process, see "Text Operations" in Chapter 6, "Text
Concepts".

Managing ConText Servers

3-8 Oracle8 ConText Cartridge Administrator’s Guide

For example, in a UNIX-based environment, the following command starts a
ConText Server with the Loader (R) personality. The user information is passed to
ctxsrv through a file named pword.txt.

ctxsrv -personality R < pword.txt

The advantage of using this method is ConText servers can be run as background
processes in environments that support background processes. In addition, this
method provides the highest level of security for masking the password.

Using ctxctl
The ctxctl utility provides a command-line interface for starting, shutting down,
and viewing the status of your ConText servers.

To start the ctxctl utility, type the following command on the command-line of the
server host machine:

ctxctl

Then, use the start command at the ctxctl command prompt to start ConText
servers. For example, to start a single ConText server with the Loader personality,
type:

command> start 1 load

Viewing the Status of ConText Servers
You can view the status of currently running ConText servers using ctxctl. You can
also use the CTX_SERVERS or CTX_ALL_SERVERS views to monitor the status of
ConText servers.

Using ctxctl
To view the status of ConText servers, start the ctxctl utility by typing the following
command on the command-line of the server host machine:

ctxctl

Then, at the ctxctl command prompt, use the status command:

command> status

See Also: For more information about ctxctl, see "ctxctl Utility" in
Chapter 4, "ConText Server Executable and Utility".

Managing ConText Servers

Administering ConText 3-9

The status command display results similar to the following:

+-------+-------+-------+-------+-------+-------+
| PID | LING. | QUERY | DDL | DML | LOAD |
+-------+-------+-------+-------+-------+-------+
| 23266 | X | X | | | |
+-------+-------+-------+-------+-------+-------+
| 23285 | | X | X | X | |
+=======+=======+=======+=======+=======+=======+
| Total | 1 | 2 | 1 | 1 | 0 |
+-------+-------+-------+-------+-------+-------+

Using the Server Views
To view all the currently running ConText servers using CTX_ALL_SERVERS, issue
the following SQL statement:

column ser_name format a30
select ser_name, ser_status, ser_started_at
from ctx_all_servers;

If a ConText server is running, the query will display results similar to the following
output:

SER_NAME SER_STAT SER_START
-------------------- -------- ---------
DRSRV_1120 IDLE 18-MAR-97

Changing the Personality Masks of ConText Servers
To change the personality mask for a ConText server, use the PL/SQL procedure
CTX_ADM.CHANGE_MASK.

For example:

execute ctx_adm.change_mask(’DRSRV_1120’,’QD’)

This example illustrates a personality mask consisting of the Query (Q) and DDL
(D) personalities replacing the existing personality mask for the ConText server.

Also, in this example, drsrv_1120 is the name (identifier) for the ConText server. A
server identifier is generated automatically when you start up a ConText server. You
can use the ctxctl utility or the CTX_ALL_SERVERS view to obtain the identifier for
a ConText server.

Managing ConText Servers

3-10 Oracle8 ConText Cartridge Administrator’s Guide

Shutting Down ConText Servers
To shut down a ConText server, use CTX_ADM.SHUTDOWN.

For example:

execute ctx_adm.shutdown (’DRSRV_1120’,1)

In this example, drsrv_1120 is the name (identifier) of the ConText server and the
shutdown method is 1 (immediate). A server identifier is generated automatically
when you start up a ConText server. You can use the ctxctl utility or the CTX_ALL_
SERVERS view to obtain the identifier for a ConText server.

You can also use the ctxctl utility to shutdown ConText servers.

Note: You do not need to specify a server identifier when calling
SHUTDOWN. If you do not specify an identifier, SHUTDOWN
shuts down all currently running ConText servers. For example:

execute ctx_adm.shutdown

Managing ConText Queues

Administering ConText 3-11

Managing ConText Queues
This section provides details for performing the following ConText server
administration tasks from the command-line:

Viewing the DML Queue
You can view the status of requests in the DML Queue, using the following views
provided by ConText:

■ CTX_ALL_DML_QUEUE

■ CTX_ALL_DML_SUM

■ CTX_ALL_QUEUE

■ CTX_USER_DML_QUEUE

■ CTX_USER_DML_SUM

■ CTX_USER_QUEUE

Viewing the Services Queue
To view the status of requests in the Services Queue, you can use the CTX_
SVC.REQUEST_STATUS function. For example:

declare status varchar2(10);
declare timestamp date;
declare errors varchar2(60);
begin
 status := ctx_svc.request_status(3341,timestamp,errors);
 dbms_output.put_line(status,timestamp,substr(errors,1,20);
end;

Task
Supported in Sys.
Admin. Tool?

Supported in
Config. Manager?

Viewing the DML Queue Yes Yes

Viewing the Services Queue Yes Yes

Removing Requests from the Services Queue Yes Yes

Enabling and Disabling Queues No No

Managing ConText Queues

3-12 Oracle8 ConText Cartridge Administrator’s Guide

In this example, variables are defined for status, timestamp, and errors. Then,
REQUEST_STATUS is called to return the status of the request with handle 3341 and
the DBMS_OUTPUT package is used to display the results of the output.

A handle is generated automatically when a request is submitted to the Services
Queue using CTX_LING.SUBMIT.

Removing Requests from the Services Queue
You can remove pending and errored requests from the Services Queue using
procedures in the CTX_SVC package.

Pending Requests
To remove a request with a status of PENDING, use the CTX_SVC.CANCEL
procedure. For example:

execute ctx_svc.cancel(3341)

In this example, the request with handle 3341 is removed from the Services Queue.

In addition, you can use the CTX_SVC.CANCEL_ALL procedure to remove all
requests with a status of PENDING from the Services Queue. For example:

execute ctx_svc.cancel_all

Errored Requests
To remove a request with a status of ERROR, use the CTX_SVC.CLEAR_ERROR
procedure. For example:

execute ctx_svc.clear_error(3341)

In addition, you can use the CTX_SVC.CLEAR_ALL_ERRORS procedure to remove
all requests with a status of ERROR from the Services Queue. For example:

execute ctx_svc.clear_all_errors

See Also: For more information about submitting requests to the
Services Queue and using the CTX_LING package, see Oracle8
ConText Cartridge Application Developer’s Guide.

For more information about the DBMS_OUTPUT package, see
Oracle8 Application Developer’s Guide.

Managing ConText Queues

Administering ConText 3-13

You can also use the CLEAR_INDEX_ERRORS or CLEAR_LING_ERRORS to
remove all errored indexing/Linguistics requests from the Services Queue.

Enabling and Disabling Queues
You can enable or disable the following queues in the Text Request Queue:

■ Text Queue (DDL and Query pipes)

■ DML Queue

■ Services Queue

If a queue is disabled, pending requests in the queue are not processed by ConText
servers.

Enabling Queues
To enable a queue, use the CTX_ADM.UPDATE_QUEUE_STATUS procedure. For
example:

execute ctx_adm.update_queue_status(ctx_adm.DML_QUEUE, ctx_adm.ENABLE_QUEUE)

In this example, the DML Queue is enabled, which allows entries in the queue to be
processed by ConText servers.

Disabling Queues
To disable a queue, use the CTX_ADM.UPDATE_QUEUE_STATUS procedure. For
example:

execute ctx_adm.update_queue_status(ctx_adm.TEXT_QUEUE, ctx_adm.DISABLE_QUEUE)

In this example, the Text Queue (DDL and Query pipes) is disabled, which prevents
all text/theme queries and DDL requests from being processed by ConText servers.

Note: A disabled queue continues to accept requests. The queues
should be monitored regularly to prevent an excessive backlog of
pending requests.

To obtain the status of a queue, use the CTX_ADM.GET_QUEUE_
STATUS function.

See Also: For more information about the Text Request Queue,
see "Text Request Queue" in Chapter 2, "Administration Concepts".

Managing ConText Queues

3-14 Oracle8 ConText Cartridge Administrator’s Guide

ConText Server Executable and Utility 4-1

4
ConText Server Executable and Utility

This chapter provides reference information for using the ConText server executable
and control utility provided with ConText.

The following topics are discussed in this chapter:

■ ctxsrv Executable

■ ctxctl Utility

ctxsrv Executable

4-2 Oracle8 ConText Cartridge Administrator’s Guide

ctxsrv Executable
The ctxsrv executable starts ConText servers. You execute ctxsrv for each ConText
server that you want to start.

You can also use the ctxctl utility to start and shut down ConText servers.

Syntax
ctxsrv -user ctxsys/passwd[@sqlnet_address]
 [-personality RQDML]
 [-logfile log_name]
 [-sqltrace]

where:

-user
specifies the username and password for the Oracle user CTXSYS.

The username and password may be immediately followed by @sqlnet_address to
permit logon to remote databases. The value for sqlnet_address is a database connect
string. If the TWO_TASK environment variable is set to a remote database, you do
not have to specify a value for sqlnet_address to connect to the database.

Note: ctxsrv can only be executed by the Oracle user, CTXSYS.

See Also: For more information about the CTXSYS user, see
"CTXSYS User" in Chapter 2, "Administration Concepts".

For more information about ctxctl, see "ctxctl Utility" in this chapter.

Note: If you do not specify user in the ctxsrv command-line, you
are prompted by ConText to enter the required information in the
format: ’CTXSYS/password’ where password is the password for
CTXSYS.

This is useful if you wish to mask the CTXSYS password from other
users of the machine on which the ConText server is running.

ctxsrv Executable

ConText Server Executable and Utility 4-3

-personality
specifies the personality mask for the ConText server started by ctxsrv. The possible
values can be any combination of:

■ R (Loader personality)

■ Q (Query personality)

■ D (DDL personality)

■ M (DML personality)

■ L (Linguistic personality)

The default is QDM.

-logfile
specifies the name of a log file to which the ConText server writes all session
information and errors.

-sqltrace
enables the ConText server to write to a trace file in the directory specified by the
USER_DUMP_DEST initialization parameter.

Before you specify -sqltrace for ctxsrv, you should specify a value for USER_
DUMP_DEST in your initsid.ora file.

Examples
The following example starts a ConText server with a Query and DDL personality
mask and writes all server messages to a file named ctx.log:

ctxsrv -user ctxsys/ctxsys -personality QD -log ctx.log &

Note: Oracle does not recommend assigning all the personalities
to a single ConText server. This will result in the server bearing the
majority of the processing load.

See Also: For more information about SQL trace and the USER_
DUMP_DEST initialization parameter, see Oracle8 Administrator’s
Guide.

ctxsrv Executable

4-4 Oracle8 ConText Cartridge Administrator’s Guide

The following example starts a linguistically-enabled ConText server with a
Linguistic personality and writes all server messages to a file named ctx.log. Because
-user is not specified, ConText prompts you to enter a user:

ctxsrv -personality L -log ctx.log

...
ConText: Release 2.0.6.0.0 - Production on Sat Jun 7 14:06:26 1997
...
Copyright (c) Oracle Corporation 1979, 1998. All rights reserved.
...
Enter user:

At the prompt, enter ’CTXSYS/password’, where password is the password assigned
to the CTXSYS user.

Note: In this example, the server is run as a background process in
a UNIX-based environment. This is useful if you need to use the
window/screen from which you started the server for other tasks.

Note: In this example, the process is not run in the background.

In environments where you can run processes in the background, if
you do not specify -user in the ctxsrv command-line, you must run
the server process in the foreground or pass a value for -user to
ctxsrv from an operating system file.

For example:

ctxsrv -personality L -log ctx.log < pword.txt

The file must contain a single line consisting of the following text:
’CTXSYS/password’

If you pass a value to ctxsrv from a file, ConText does not prompt
you to enter a user.

ctxctl Utility

ConText Server Executable and Utility 4-5

ctxctl Utility
The ctxctl utility is a shell script that can be used to start up and shut down ConText
servers on the system from which you run ctxctl. It can also be used to check the
status of all the ConText servers currently running on the system.

To start ctxctl, at the operating system prompt, type:

ctxctl

Commands
Once ctxctl is running, you can issue the following commands from the ctxctl
command prompt:

help [command]
Provides online help for the specified command. If called without a command, it
provides a list of all the commands you can use in ctxctl.

status
Provides a list of all the ConText servers and their personality masks currently
running on the server host.

start n [load query ddl dml ling]
Starts n number of servers, each with the personalities specified. The personalities
can be typed in any order, but must be typed in lowercase and exactly as they are
named (e.g. load, query, ddl, dml, ling).

If you do not specify a personality, ctxctl starts the specified number of servers, each
with the query, ddl, and dml personalities.

The first time you type the start command for a ctxctl session, ConText prompts you
to enter the password for the ConText administrator (CTXSYS). After you enter the
password, ConText starts the specified number of servers.

Note: The ConText servers listed in the status output may be
connected to different database instances.

Note: The ConText server(s) are started on the host machine from
which the start command is issued.

ctxctl Utility

4-6 Oracle8 ConText Cartridge Administrator’s Guide

stop pid | all
Shuts down the ConText server identified by pid or shuts down all ConText servers
(all).

The status command can be used to obtain the pid for all currently running ConText
servers.

quit | exit
Terminates ctxctl and returns you to the command-line of the host machine.

Examples
The following example starts two ConText servers, each with a DML, DDL, and
Query personality mask:

command> start 2 query dml ddl

The following example shuts down a ConText server with a pid of 230454:

command> stop 23054

Note: ctxctl does not use CTX_ADM.SHUTDOWN to shut down
the ConText server. Instead, it aborts the server process running on
the host machine.

PL/SQL Packages - Administration 5-1

5
PL/SQL Packages - Administration

This chapter provides reference information for using the PL/SQL packages
provided with ConText to administer ConText servers and queues, as well as to
obtain product information about ConText.

The topics covered in this chapter are:

■ CTX_ADM: ConText Administration

■ CTX_SVC: Services Queue Administration

■ CTX_INFO: Product Information

CTX_ADM: ConText Administration

5-2 Oracle8 ConText Cartridge Administrator’s Guide

CTX_ADM: ConText Administration
The CTX_ADM PL/SQL package is used to manage ConText servers and queues.

CTX_ADM contains the following stored procedures and functions:

Name Description

CHANGE_MASK Modifies the personality mask for a ConText server

GET_QUEUE_STATUS Returns the status of the specified queue

RECOVER Cleans up database objects for deleted text tables

SET_QUERY_BUFFER_SIZE Increases the size of the pipe used for queries

SHUTDOWN Shuts down a single ConText server or all currently
running ConText servers

UPDATE_QUEUE_STATUS Updates the status of the specified queue

CTX_ADM: ConText Administration

PL/SQL Packages - Administration 5-3

CHANGE_MASK

The CHANGE_MASK procedure changes the personality mask of the specified
ConText server.

Syntax
CTX_ADM.CHANGE_MASK(name IN VARCHAR2
 personality_mask IN VARCHAR2 DEFAULT ’QDM’);

name
Specify the name (internal identifier) of the server for which you are changing the
personality mask.

personality_mask
Specify the new personality mask that you want to assign to the server. Can be any
combination of:

■ R (Loader)

■ Q (Query)

■ D (DDL)

■ M (DML)

■ L (Linguistic)

Default is QDM.

Examples
execute ctx_adm.change_mask(’DRSRV_8025’, ’D’)

Notes
The names of all currently running ConText servers can be obtained from the CTX_
SERVERS or CTX_ALL_SERVERS views.

CTX_ADM: ConText Administration

5-4 Oracle8 ConText Cartridge Administrator’s Guide

GET_QUEUE_STATUS

The GET_QUEUE_STATUS function returns the status of the specified ConText
queue.

Syntax
CTX_ADM.GET_QUEUE_STATUS(qname IN VARCHAR2)
RETURN VARCHAR2;

qname
Specify the queue/pipe for which you want to return the status:

■ TEXT_QUEUE (DDL and Query pipes)

■ DML_QUEUE

■ SERVICES_QUEUE

Returns
Status of the queue, which is one of the following:

ENABLED
The specified queue is enabled.

DISABLED
The specified queue is disabled.

Examples
declare status varchar2(8);
begin
 status := ctx_adm.get_queue_status(’DML_QUEUE’);
end;

CTX_ADM: ConText Administration

PL/SQL Packages - Administration 5-5

Notes
A status of DISABLED indicates the queue or pipe is inactive and requests in the
queue will not be processed by any of the available ConText servers.

When a queue or pipe has a status of DISABLED, the queue continues to accept
requests. The ConText administrator should regularly monitor the status of the
queues and pipes to prevent accumulation of requests in disabled queues.

To enable a disabled queue, you must call CTX_ADM.UPDATE_QUEUE_STATUS.

CTX_ADM: ConText Administration

5-6 Oracle8 ConText Cartridge Administrator’s Guide

RECOVER

The RECOVER procedure deletes all database objects for text tables that have been
deleted without first dropping the index or policies for the tables.

Syntax
CTX_ADM.RECOVER;

Examples
execute ctx_adm.recover

Notes
ConText Servers automatically perform recovery approximately every fifteen
minutes. CTX_ADM.RECOVER provides a method for users to manually perform
recovery on command.

CTX_ADM: ConText Administration

PL/SQL Packages - Administration 5-7

SET_QUERY_BUFFER_SIZE

The SET_QUERY_BUFFER_SIZE procedure sets the size of the database pipe used
for queries.

Syntax
CTX_ADM.SET_QUERY_BUFFER_SIZE(buffer_size IN NUMBER);

buffer_size
Specify the size, in bytes, of the query buffer.

Examples
execute ctx_adm.set_query_buffer_size(100000);

Notes
The default size of the buffer is 8192 bytes.

CTX_ADM.SET_QUERY_BUFFER_SIZE can only be used to increase the size of the
buffer from the default size.

CTX_ADM: ConText Administration

5-8 Oracle8 ConText Cartridge Administrator’s Guide

SHUTDOWN

The SHUTDOWN procedure shuts down the specified ConText server.

Syntax
CTX_ADM.SHUTDOWN(name IN VARCHAR2 DEFAULT ’ALL’,
 sdmode IN NUMBER DEFAULT NULL);

name
Specify the name (internal identifier) of the ConText server to shutdown.

Default is ALL.

sdmode
Specify the shutdown mode for the server:

■ 0 or NULL (Normal)

■ 1 (Immediate)

■ 2 (Abort)

Default is NULL.

Examples
execute ctx_adm.shutdown(’DRSRV_3321’, 1)

Notes
If you do not specify a ConText server to shut down, CTX_ADM.SHUTDOWN
shuts down all currently running ConText servers.

The names of all currently running ConText servers can be obtained from the CTX_
SERVERS view.

CTX_ADM: ConText Administration

PL/SQL Packages - Administration 5-9

UPDATE_QUEUE_STATUS

The UPDATE_QUEUE_STATUS procedure is used to change the status of the
specified ConText queue (Text, DML, or Services).

For example, the GET_QUEUE_STATUS returns a status of DISABLED for one of
the queues. Once the error that caused the queue to become disabled is cleared,
UPDATE_QUEUE_STATUS can be called with an action of ENABLE_QUEUE to
reactivate the queue.

UPDATE_QUEUE_STATUS can also be used to control request processing in the
system. When you disable a queue, you prevent any currently running ConText
servers from picking up queued requests until you enable the queue.

Syntax
CTX_ADM.UPDATE_QUEUE_STATUS(qname IN VARCHAR2,
 qstatus IN VARCHAR2 DEFAULT ENABLE_QUEUE);

qname
Specify the queue or pipe for which you want to return the status:

■ TEXT_QUEUE (DDL and Query pipes)

■ DML_QUEUE

■ SERVICES_QUEUE

qstatus
Specify the action to perform on the queue:

■ DISABLE_QUEUE

■ ENABLE_QUEUE

Default is ENABLE_QUEUE.

Examples
execute ctx_adm.update_queue_status(ctx_adm.dml_queue,ctx_adm.enable_queue)

CTX_ADM: ConText Administration

5-10 Oracle8 ConText Cartridge Administrator’s Guide

Notes
A queue with a status of DISABLED will remain inactive until it is enabled using
UPDATE_QUEUE_STATUS; however, the queue will continue to accept requests.
The ConText administrator should regularly monitor the status of the queues and
pipes to prevent accumulation of requests in disabled queues.

Both qname and qstatus must be fully qualified with the PL/SQL package name
(CTX_ADM) as shown in the examples.

CTX_SVC: Services Queue Administration

PL/SQL Packages - Administration 5-11

CTX_SVC: Services Queue Administration
The CTX_SVC PL/SQL package is used to query requests in the Services Queue
and to manage the queue.

CTX_SVC contains the following stored procedures and functions:

Name Description

CANCEL Removes a pending request from the Services Queue

CANCEL_ALL Removes all pending requests from the Services Queue

CANCEL_USER Removes a pending request from the Services Queue for
the current user

CLEAR_ALL_ERRORS Removes all requests with an error status from the
Services Queue

CLEAR_ERROR Removes a request with an error status from the Services
Queue

CLEAR_INDEX_ERRORS Removes errored indexing requests from the Services
Queue

CLEAR_LING_ERRORS Removes errored Linguistics requests from the Services
Queue

REQUEST_STATUS Returns the status of a request in the Services Queue

CTX_SVC: Services Queue Administration

5-12 Oracle8 ConText Cartridge Administrator’s Guide

CANCEL

The CANCEL procedure removes a request with a status of PENDING from the
Services Queue.

Syntax
CTX_SVC.CANCEL(request_handle IN NUMBER);

request_handle
Specify the handle, returned by CTX_LING.SUBMIT, of the service request to
remove.

Examples
execute ctx_svc.cancel(3321)

Notes
Requests with a status other than pending in the Services Queue cannot be removed
using CTX_SVC.CANCEL. To cancel requests that ConText has not yet entered into
the Services Queue, use CTX_LING.CANCEL.

See Also: For more information about the CTX_LING PL/SQL
package, see Oracle8 ConText Cartridge Application Developer’s Guide.

CTX_SVC: Services Queue Administration

PL/SQL Packages - Administration 5-13

CANCEL_ALL

The CANCEL_ALL procedure removes all requests with a status of PENDING from
the Services Queue.

Syntax
CTX_SVC.CANCEL_ALL;

Examples
execute ctx_svc.cancel_all

CTX_SVC: Services Queue Administration

5-14 Oracle8 ConText Cartridge Administrator’s Guide

CANCEL_USER

The CANCEL_USER procedure removes all requests with a status of PENDING for
the current user from the Services Queue.

Syntax
CTX_SVC.CANCEL_USER;

Examples
execute cancel

CTX_SVC: Services Queue Administration

PL/SQL Packages - Administration 5-15

CLEAR_ALL_ERRORS

The CLEAR_ALL_ERRORS procedure removes all requests (text indexing, theme
indexing, and linguistics) that have a status of ERROR in the Services Queue.

Syntax
CTX_SVC.CLEAR_ALL_ERROR;

Examples
execute ctx_svc.clear_all_errors

CTX_SVC: Services Queue Administration

5-16 Oracle8 ConText Cartridge Administrator’s Guide

CLEAR_ERROR

The CLEAR_ERROR procedure can be used to remove a request with a status of
ERROR from the Services Queue.

Syntax
CTX_SVC.CLEAR_ERROR(request_handle IN NUMBER);

request_handle
Specify the handle, returned by CTX_LING.SUBMIT, of the errored service request
to remove.

Examples
execute clear_error(214)

Notes
If you call CLEAR_ERROR with a 0 (zero) value for request_handle, all requests with
a status of ERROR in the Services Queue are removed.

Use the CTX_SVC.REQUEST_STATUS function to return the status of a request in
the Services Queue.

See Also: For more information about SUBMIT and the CTX_
LING PL/SQL package, see Oracle8 ConText Cartridge Application
Developer’s Guide.

CTX_SVC: Services Queue Administration

PL/SQL Packages - Administration 5-17

CLEAR_INDEX_ERRORS

The CLEAR_INDEX_ERRORS procedure removes all indexing requests that have a
status of ERROR in the Services Queue.

Syntax
CTX_SVC.CLEAR_INDEX_ERROR;

Examples
execute ctx_svc.clear_index_errors

CTX_SVC: Services Queue Administration

5-18 Oracle8 ConText Cartridge Administrator’s Guide

CLEAR_LING_ERRORS

The CLEAR_LING_ERRORS procedure removes all Linguistics requests that have a
status of ERROR in the Services Queue.

Syntax
CTX_SVC.CLEAR_LING_ERROR;

Examples
execute ctx_svc.clear_ling_errors

CTX_SVC: Services Queue Administration

PL/SQL Packages - Administration 5-19

REQUEST_STATUS

The REQUEST_STATUS function returns the status of a request in the Services
Queue.

Syntax
CTX_SVC.REQUEST_STATUS(request_handle IN NUMBER,
 timestamp OUT DATE,
 errors OUT VARCHAR2)
RETURN VARCHAR2;

request_handle
Specify the handle of the service request, as returned by CTX_LING.SUBMIT.

timestamp
Returns the time at which request was submitted.

errors
Returns the error message stack for the request. The message stack is returned only
if the status of the request is ERROR.

Returns
Status of the request, which is one of the following:

PENDING
The request has not yet been picked up by a ConText server.

RUNNING
The request is being processed by a ConText server.

ERROR
The request encountered an error (see errors argument).

SUCCESS
The request completed successfully.

See Also: For more information about SUBMIT and the CTX_
LING PL/SQL package, see Oracle8 ConText Cartridge Application
Developer’s Guide.

CTX_SVC: Services Queue Administration

5-20 Oracle8 ConText Cartridge Administrator’s Guide

Examples
declare status varchar2(10);
declare timestamp date;
declare errors varchar2(60);
begin
 status := ctx_svc.request_status(3461,timestamp,errors);
 dbms_output.put_line(status,timestamp,substr(errors,1,20);
end;

Notes
Specifying an invalid value for request_handle causes CTX_SVC.REQUEST_STATUS
to return a status of SUCCESS.

CTX_INFO: Product Information

PL/SQL Packages - Administration 5-21

CTX_INFO: Product Information
The CTX_INFO PL/SQL package is used to obtain information about the installed
version of ConText.

CTX_INFO contains the following stored procedures and functions:

Name Description

GET_INFO Returns the status and version number for the installed
ConText

GET_STATUS Returns the status of ConText

GET_VERSION Returns the version number for the installed ConText

CTX_INFO: Product Information

5-22 Oracle8 ConText Cartridge Administrator’s Guide

GET_INFO

The GET_INFO procedure calls the GET_VERSION and GET_STATUS functions in
CTX_INFO to return version and status information for ConText.

Syntax
CTX_INFO.GET_INFO(product IN VARCHAR2,
 version OUT VARCHAR2,
 status OUT VARCHAR2);

product
Specify the product code for which information is returned. Currently, the only
valid value for product is OCO.

version
Specify the version of the product.

status
Specify the status of the product.

Examples
set serveroutput on

declare
 ver varchar2(20);
 stat varchar2(20);
begin
 ctx_info.get_info(’OCO’, ver, stat);
 dbms_output.put_line (’Version is ’||ver);
 dbms_output.put_line (’Status is ’||stat);
end;

CTX_INFO: Product Information

PL/SQL Packages - Administration 5-23

GET_STATUS

The GET_STATUS function returns the product status for ConText.

Syntax
CTX_INFO.GET_STATUS(product IN VARCHAR2)
RETURN VARCHAR2;

product
Specify the product for which a status returned. Currently, the only valid value for
product is OCO.

Returns
The product status for ConText.

Examples
set serveroutput on

declare
 stat varchar2(60);
begin
 stat := ctx_info.get_status(’OCO’);
 dbms_output.put_line (’Status is ’||stat);
end;

CTX_INFO: Product Information

5-24 Oracle8 ConText Cartridge Administrator’s Guide

GET_VERSION

The GET_VERSION function returns the version number for ConText.

Syntax
CTX_INFO.GET_VERSION(product IN VARCHAR2)
RETURN NUMBER;

product
Specify the product for which a version number is returned. Currently, the only
valid value for product is OCO.

Returns
The version number for ConText.

Examples
set serveroutput on

declare
 ver varchar2(20);
begin
 ver := ctx_info.get_version(’OCO’);
 dbms_output.put_line (’Version is ’||ver);
end;

Part II
 Text Setup and Management

This part provides information specific to setting up and managing text for enabling
ConText queries. It introduces text concepts, such as text loading, ConText indexes,
and thesauri, as well as provides instructions and examples for setting up and
managing text from the command line. It also includes reference information for the
ConText utilities and PL/SQL packages provided for performing these tasks.

This part contains the following chapters:

■ Chapter 6, "Text Concepts"

■ Chapter 7, "Automated Text Loading"

■ Chapter 8, "ConText Indexing"

■ Chapter 9, "Setting Up and Managing Text"

■ Chapter 10, "Text Loading Utility"

■ Chapter 11, "PL/SQL Packages - Text Management"

Text Concepts 6-1

6
Text Concepts

This chapter introduces the concepts necessary for understanding how text is setup
and managed by ConText.

The following topics are discussed in this chapter:

■ Text Operations

■ Text Columns

■ Text Loading

■ ConText Indexes

■ Index Updates (DML)

■ Index Optimization

■ Thesauri

■ Thesaurus Entries and Relationships

■ Document Sections

Text Operations

6-2 Oracle8 ConText Cartridge Administrator’s Guide

Text Operations
ConText supports five types of operations that are processed by ConText servers:

■ Automated Text Loading

■ DDL

■ DML

■ Text/Theme Queries

■ Linguistics Requests

Automated Text Loading
Automated text loading is performed by ConText servers running with the Loader
(R) personality. It differs from the other text operations in that a request is not made
to the Text Request Queue for handling by the appropriate ConText server.

Instead, ConText servers with the R personality regularly scan a document
repository (i.e. operating system directory) for documents to be loaded into text
columns for indexing.

If a file is found in the directory, the contents of the file are automatically loaded by
the ConText server into the appropriate table and column.

DDL
A ConText DDL operation is a request for the creation, deletion, or optimization of a
text/theme index on a text column. DDL requests are sent to the DDL pipe in the
Text Request Queue, where available ConText servers with the DDL personality
pick up the requests and perform the operation.

DDL operations are requested through the GUI administration tools (System
Administration or Configuration Manager) or the CTX_DDL package.

Note: The personality mask for a ConText server determines
which operations the server can process.

For more information about personality masks, see "Personalities"
in Chapter 2, "Administration Concepts".

See Also: For more information about text loading using ConText
servers, see "Overview of Automated Loading" in Chapter 7,
"Automated Text Loading".

Text Operations

Text Concepts 6-3

DML
A text DML operation is a request for the ConText index (text or theme) of a column
to be updated. An index update is necessary for a column when the following
modifications have been made to the table:

■ insertion of a new row

■ deletion of an existing row

■ update of the primary key or text column(s) for an existing row

Requests for index updates are stored in the DML Queue where they are picked up
and processed by available ConText servers. The requests can be placed on the
queue automatically by ConText or they can be placed on the queue manually.

In addition, the system can be configured so DML requests in the queue are
processed immediately or in batch mode.

Automatic DML Queue Notification
DML requests are automatically placed in the queue via an internal trigger that is
created on a table the first time a ConText index is created for a text column in the
table.

ConText supports disabling automatic DML at index creation time through a
parameter, create_trig, for CTX_DDL.CREATE_INDEX. The create_trig parameter
specifies whether the DML trigger is created/updated during indexing of the text
column in the column policy.

In addition, the DML trigger can be removed at any time from a table using CTX_
DDL.DROP_INTTRIG.

See Also: For more information about the CTX_DDL package, see
"CTX_DDL: Text Setup and Management" in Chapter 11, "PL/SQL
Packages - Text Management".

Text Operations

6-4 Oracle8 ConText Cartridge Administrator’s Guide

If the DML trigger is not created during indexing or is dropped, the ConText index
is not automatically updated when subsequent DML occurs for the table. Manual
DML can always be performed, but automatic DML can only be reenabled by first
dropping, then recreating the ConText index or creating your own trigger to handle
updates.

Manual DML Queue Notification
DML operations may be requested manually at any time using the CTX_
DML.REINDEX procedure, which places a request in the DML Queue for a
specified document.

Immediate DML Processing
In immediate mode, one or more ConText servers are running with the DML
personality. The ConText servers regularly poll the DML Queue for requests, pick
up any pending requests (up to 10,000 at a time) for an indexed column and update
the index in real-time.

In this mode, an index is only briefly out of synchronization with the last insert,
delete, or update that was performed on the table; however, immediate DML
processing can use considerable system resources and create index fragmentation.

Batch DML Processing
If a text table has frequent updates, you may want to process DML requests in batch
mode. In batch mode, no ConText servers are running with the DML personality.
The queue continues to accept requests, but the requests are not processed because
no DML servers are available.

To start DML processing, the CTX_DML.SYNC procedure is called. This procedure
batches all the pending requests for an indexed column in the queue and sends
them to the next available ConText server with a DDL personality. Any DML

Note: DROP_INTTRIG deletes the trigger for the table. If the table
contains more than one text column with existing ConText indexes,
automatic DML is disabled for all the text columns.

DROP_INTTRIG is provided mainly for maintaining backward
compatibility with previous releases of ConText and should be used
only when it is absolutely necessary to disable automatic DML for
all the text columns in a table.

Text Operations

Text Concepts 6-5

requests that are placed in the queue after SYNC is called are not included in the
batch. They are included in the batch that is created the next time SYNC is called.

SYNC can be called with a level of parallelism. The level of parallelism determine
the number of batches into which the pending requests are grouped. For example, if
SYNC is called with a parallelism level of two, the pending requests are grouped
into two batches and the next two available DDL ConText servers process the
batches.

Calling SYNC in parallel speeds up the updating of the indexes, but may increase
the degree of index fragmentation.

Concurrent Index Creation
A text column within a table can be updated while a ConText server is creating an
index on the same text column. Any changes to the table being indexed by a
ConText server are stored as entries in the DML Queue, pending the completion of
the index creation.

After index creation completes, the entries are picked up by the next available DML
ConText server and the index is updated to reflect the changes. This avoids a race
condition in which the DML Queue request might be processed, but then
overwritten by index creation, even though the index creation was processing an
older version of the document.

Text/Theme Queries
A text query is any query that selects rows from a table based on the contents of the
text stored in the text column(s) of the table.

A theme query is any query that selects rows from a table based on the themes
generated for the text stored in the text column(s) of the table.

ConText supports three query methods for text/theme queries:

■ Two-step Queries

■ One-step Queries

■ In-memory Queries

Note: Theme queries are only supported for English-language
text.

Text Operations

6-6 Oracle8 ConText Cartridge Administrator’s Guide

In addition, ConText supports Stored Query Expressions (SQEs).

Before a user can perform a query using any of the methods, the column to be
queried must be defined as a text column in the ConText data dictionary and a text
and/or theme index must be generated for the column.

Two-step Queries
In a two-step query, the user performs two distinct operations. First, the ConText
PL/SQL procedure, CONTAINS, is called for a column. The CONTAINS procedure
performs a query of the text stored in a text column and generates a list of the
textkeys that match the query expression and a relevance score for each document.
The results are stored in a user-defined table.

Then, a SQL statement is executed on the result table to return the list of documents
(hitlist) or some subset of the documents.

One-step Queries
In a one-step query, the ConText SQL function, CONTAINS, is called directly in the
WHERE clause of a SQL statement. The CONTAINS function accepts a column
name and query expression as arguments and generates a list of the textkeys that
match the query expression and a relevance score for each document.

The results generated by CONTAINS are returned through the SELECT clause of
the SQL statement.

In-memory Queries
In an in-memory query, PL/SQL stored procedures and functions are used to query
a text column and store the results in a query buffer, rather than in the result tables
used in two-step queries.

The user opens a CONTAINS cursor to the query buffer in memory, executes a text
query, then fetches the hits from the buffer, one at a time.

See Also: For more information about text columns, see "Text
Columns" in this chapter.

For more information about text/theme queries and creating/using
SQEs, see Oracle8 ConText Cartridge Application Developer’s Guide.

Text Operations

Text Concepts 6-7

Stored Query Expressions
In a stored query expression (SQE), the results of a query expression for a text
column, as well as the definition of the SQE, are stored in database tables. The
results of a SQE can be accessed within a query (one-step, two-step, or in-memory)
for performing iterative queries and improving query response.

The results of an SQE are stored in an internal table in the index (text or theme) for
the text column. The SQE definition is stored in a system-wide, internal table owned
by CTXSYS. The SQE definitions can be accessed through the views, CTX_SQES and
CTX_USER_SQES.

Linguistics Requests
The ConText Linguistics are used to analyze the content of English-language
documents. The application developer uses the Linguistics output to create different
views of the contents of documents.

The Linguistics currently provide two types of output, on a per document basis, for
English-language documents stored in an Oracle database:

■ list of themes

■ document Gist and/or theme summaries

See Also: For more information about the SQE result table, see
"SQR Table" in Appendix C, "ConText Index Tables and Indexes".

See Also: For more information about themes, Gists, and theme
summaries, as well as using the Linguistics in applications, see
Oracle8 ConText Cartridge Application Developer’s Guide.

Text Columns

6-8 Oracle8 ConText Cartridge Administrator’s Guide

Text Columns
A text column is any column used to store either text or text references (pointers) in
a database table or view. ConText recognizes a column as a text column if one or
more policies are defined for the column.

Supported Datatypes
Text columns can be any of the supported Oracle datatypes; however, text columns
are usually one of the following datatypes:

■ CHAR

■ VARCHAR2

■ LONG

■ LONG RAW

■ BLOB

■ CLOB

■ BFILE

A table can contain more than one text column; however, each text column requires
a separate policy.

Textkeys
ConText uses textkeys to uniquely identify a document in a text column. The
textkey for a text column usually corresponds to the primary key for the table or
view in which the column is located; however, the textkey for a column can also
reference unique keys (columns) that have been defined for the table.

When a policy is defined for a column, the textkey for the column is specified. If the
textkey is not specified, ConText uses the first primary key or unique key that it
encounters for the table.

See Also: For more information about policies and text columns,
see "Policies" in Chapter 8, "ConText Indexing".

For more information about Oracle datatypes, see Oracle8 Concepts.

For more information about managing LOBs (BLOB, CLOB, and
BFILE), see Oracle8 Application Developer’s Guide and PL/SQL User’s
Guide and Reference.

Text Columns

Text Concepts 6-9

Composite Textkeys
A textkey for a text column can consist of up to sixteen primary or unique key
columns.

During policy definition, the primary/unique key columns are specified, using a
comma to separate each column name.

In two-step queries, the columns in a composite textkey are returned in the order in
which the columns were specified in the policy.

In in-memory queries, the columns in a composite textkey are returned in encoded
form (e.g. ’p1,p2,p3’). This encoded textkey must be decoded to access the
individual columns in the textkey.

Column Name Limitations
There is a 256 character limit, including the comma separators, on the string of
column names that can be specified for a composite textkey.

Because the comma separators are included in this limit, the actual limit is 256
minus (number of columns minus 1), with a maximum of 241 characters (256 - 15),
for the combined length of all the column names in the textkey.

This limit is enforced during policy creation.

Note: ConText fully supports creating indexes on text columns in
object tables; however, the object table must have a primary key
that was explicitly defined during creation of the table.

For more information about object tables, see Oracle8 Concepts.

Note: There are some limits to composite textkeys that must be
considered when setting up your tables and columns, and when
creating policies for the columns.

See Also: For more information about encoding and decoding
composite textkeys, see Oracle8 ConText Cartridge Application
Developer’s Guide.

Text Columns

6-10 Oracle8 ConText Cartridge Administrator’s Guide

Column Length Limitations
There is a 256 character limit on the combined lengths of the columns in a
composite textkey. This is due to the way the textkey values for composite textkeys
are stored in the index.

For a given row, ConText concatenates all of the values from the columns that
constitute the composite textkey into a single value, using commas to separate the
values from each column.

As such, the actual limit for the lengths of the textkey columns is 256 minus
(number of columns minus 1), with a maximum of 241 characters (256 - 15), for the
combined length of all the columns.

Note: If you allow values that contain commas (e.g. numbers,
dates) in your textkey columns, the commas are escaped
automatically by ConText during indexing. The escape character is
the backslash character.

In addition, if you allow values that contain backslashes (e.g. dates
or directory structures in Windows) in your textkey columns,
ConText uses the backslash character to escape the backslashes.

As a result, when calculating the limit for the length of columns in a
composite textkey, the overall limit of 256 (241) characters must
include the backslash characters used to escape commas and
backslashes contained in the data.

Text Loading

Text Concepts 6-11

Text Loading
The loading of text into database tables is required for creating ConText indexes and
generating linguistic output. This task can be performed within an application;
however, if you have a large document set, you may want to perform loading as a
batch process.

Individual Row Insert/Update/Export
The method you can use for inserting, updating, or exporting text for individual
rows depends on the amount of text to be manipulated and whether the text is
formatted.

SQL
For inserting small amounts of plain (ASCII) text into individual rows, you can use
the INSERT command in SQL.

For updating individual rows containing small amounts of plain text, you can use
the UPDATE command in SQL.

ctxload Utility
For updating individual rows from server-side files containing plain or formatted,
you can use the ctxload command-line utility provided by ConText. ctxload is
especially well-suited for loading large amounts of text contained in server-side
files.

ctxload also allows you to export the contents (plain or formatted text) of the text
column for a single row to a server-side file.

See Also: For more information about building text loading
capabilities into your applications, see Oracle8 ConText Cartridge
Application Developer’s Guide.

See Also: For more information about the INSERT and UPDATE
commands, see Oracle8 SQL Reference.

Text Loading

6-12 Oracle8 ConText Cartridge Administrator’s Guide

Batch Load
Either SQL*Loader or ctxload can be used to perform batch loading of text into a
database column.

SQL*Loader
To perform batch loading of plain (ASCII) text into a table, you can use SQL*Loader,
a data loading utility provided by Oracle.

ctxload Utility
For batch loading plain or formatted text, you can use the ctxload command-line
utility provided by ConText.

The ctxload utility loads text from a load file into the LONG or LONG RAW column
of a specified database table. The load file can contain multiple documents, but
must use a defined structure and syntax. In addition, the load file can contain plain
(ASCII) text or it can contain pointers to separate files containing either plain or
formatted text.

Note: If your server environment is Windows NT, you can also
use the Input/Output utility for manipulating text in individual
rows.

For more information, see "Client-side Insert/Update/Export" in
this chapter.

See Also: For an example of updating/exporting an individual
row using ctxload, see "Updating/Exporting a Document" in
Chapter 9, "Setting Up and Managing Text".

See Also: For more information about SQL*Loader, see Oracle8
Utilities.

Note: ctxload is best suited for loading text into columns that use
direct data store. If you use external data store to store file pointers
in the database, it is possible to use ctxload; however, you should
consider using another loading method, such as SQL*Loader.

Text Loading

Text Concepts 6-13

Automated Text Load
Automated text loading uses ctxload and ConText servers running with a Loader
personality to automatically load text from ctxload load files into text columns of
datatype LONG or LONG RAW.

Client-side Insert/Update/Export
Context supports inserting/updating text from files residing on a PC running in a
Microsoft Windows 32-bit environment, such as Windows NT or 95. In addition,
ConText supports exporting text from individual rows into files on a PC.

ConText provides support for these functions through the Input/Output
command-line utility provided with the ConText Workbench.

See Also: For an example of loading text using ctxload, see
"Using ctxload" in Chapter 9, "Setting Up and Managing Text".

See Also: For more information, see Chapter 7, "Automated Text
Loading".

Note: Client-side text insert/update/export is supported only
from 32-bit Windows environments, such as Windows NT or 95.

In addition, the Input/Output utility must be installed on each PC
from which text loading/exporting is performed.

See Also: For more information, see Oracle8 ConText Cartridge
Workbench User’s Guide.

ConText Indexes

6-14 Oracle8 ConText Cartridge Administrator’s Guide

ConText Indexes
A ConText index is an inverted index containing entries for all the tokens (words or
themes) that occur in a text column and the documents (i.e. rows) in which the
tokens are found. The index entries are stored in database tables that are associated
with the text column through a policy.

ConText supports creating indexes on text columns in relational tables and views, as
well as text columns in object tables. In addition, ConText supports creating two
types of indexes, text and theme.

This section discusses the following concepts relevant to ConText indexes:

■ Text Indexes

■ Theme Indexes

■ Text Indexes

■ Columns with Multiple Indexes

■ Index Creation

■ Index Fragmentation

■ Memory Allocation

■ Thesauri

Text Indexes
A text index is generated by the text lexers provided by ConText and consists of:

■ every unique token (word) in the collection of documents in a text column

■ for each word, a string that identifies each document in which the word occurs
and the location offsets for each occurrence within each document

In addition, if section searching has been enabled for the column, the index stores
the section names, as well as the documents in which the section occurs and the
location offsets for each occurrence within each document.

See Also: For examples of creating policies and indexes, see
"Creating a Column Policy" and "Creating an Index" in Chapter 9,
"Setting Up and Managing Text".

For more information about policies, see "Policies" in Chapter 8,
"ConText Indexing".

ConText Indexes

Text Concepts 6-15

There is a one-to-one relationship between a text index and the text indexing policy
for which it was created.

Text Lexers
The text lexer identifies tokens for creating text indexes. During text indexing, each
document in the text column is retrieved and filtered by ConText. Then, the lexer
identifies the tokens and extracts them from the filtered text and stores the tokens in
memory, along with the document ID and locations for each word, until all of the
documents in the column have been processed or the memory buffer is full.

The index entries, consisting of each token and its location string, are then written
as rows to the token table for the ConText index and the buffer is flushed.

ConText provides a number of Lexer Tiles that can be used to create text indexes.

Tokens in Text Indexes
A token is the smallest unit of text that can be indexed.

In non-pictorial languages, tokens are generally identified as alphanumeric
characters surrounded by white space and/or punctuation marks. As a result,
tokens can be single words, strings of numbers, and even single characters.

In pictorial languages, tokens may consist of single characters or combinations of
characters, which is why separate lexers are required for each pictorial language.
The lexers search for character patterns to determine token boundaries.

Token Location Information
The location information for a token is bit string that contains the location (offsets in
ASCII) of each occurrence of the token in each document in the column. The
location information also contains any stop words that precede and follow the
token.

See Also: For more information about text indexing policies, see
"Text Indexing Policies" in Chapter 8, "ConText Indexing".

For more information about section searching, see "Document
Sections" in this chapter.

See Also: For more information about the lexers used for text
indexing, see "Text Lexers" in Chapter 8, "ConText Indexing".

See Also: For more information about token recognition, see "Text
Lexers" in Chapter 8, "ConText Indexing".

ConText Indexes

6-16 Oracle8 ConText Cartridge Administrator’s Guide

Case-sensitivity
For non-pictorial languages, the BASIC LEXER Tile, by default, creates
case-insensitive text indexes. In a case-insensitive index, tokens are converted to all
uppercase in the index entries.

However, the Tile also provides an attribute, mixed_case, for creating case-sensitive
text indexes. In a case-sensitive index, entries are created using the tokens exactly as
they appear in the text, including those tokens that appear at the beginning of
sentences.

For example, in a case-insensitive text index, the tokens oracle and Oracle are
recorded as a single entry, ORACLE. In a case-sensitive text index, two entries, oracle
and Oracle, are created.

As a result, case-sensitive indexes may be much larger than case-insensitive indexes
and may have some effect on text query performance; however, case-sensitive
indexes allow for greater precision in text queries.

Stop Words
A stop word is any combination of alphanumeric characters (generally a word or
single character) for which ConText does not create an entry in the index. Stop
words are specified in the Stoplist preference for a text indexing policy.

Note: The case-sensitivity of a text index determines whether the
text queries performed against the index are case-sensitive. If the
text index is case-sensitive, text queries are automatically
case-sensitive.

See Also: For more information about case-sensitivity in text
queries, see Oracle8 ConText Cartridge Application Developer’s Guide.

See Also: For more information about stop words and stoplists,
see "Stop Words" in Chapter 8, "ConText Indexing".

For an example of creating a Stoplist preference, see "Creating a
Stoplist Preference" in Chapter 9, "Setting Up and Managing Text".

For more information about stop words in text queries, see Oracle8
ConText Cartridge Application Developer’s Guide.

ConText Indexes

Text Concepts 6-17

Theme Indexes
A theme index contains a list of all the tokens (themes) for the documents in a
column and the documents in which each theme is found. Each document can have
up to fifty themes.

Theme Lexer
For theme indexing, ConText provides a Tile, THEME_LEXER, that bypasses the
standard text parsing routines and, instead, accesses the linguistic core in ConText
to generate themes for documents.

The theme lexer analyzes text at the sentence, paragraph, and document level to
create a context in which the document can be understood. It uses a mixture of
statistical methods and heuristics to determine the main topics that are developed
throughout the course of the document.

It also uses the ConText Knowledge Catalog, a collection of over 200,000 words and
phrases, organized into a conceptual hierarchy with over 2,000 categories, to
generate its theme information.

Tokens in Theme Indexes
Unlike the single tokens that constitute the entries in a text index, the tokens in a
theme index often consist of phrases. In addition, these phrases may be common
terms or they may be the names of companies, products, and fields of study as
defined in the Knowledge Catalog.

Note: Theme indexing is only supported for English text.

In addition, offset and frequency information are not relevant in a
theme index, so this type of information is not stored.

See Also: For more information about theme queries and query
methods, see Oracle8 ConText Cartridge Application Developer’s Guide.

See Also: For more information about the ConText Knowledge
Catalog, see Oracle8 ConText Cartridge Application Developer’s Guide.

ConText Indexes

6-18 Oracle8 ConText Cartridge Administrator’s Guide

For example, a document about Oracle contains the phrase Oracle Corp. In a
(case-sensitive) text index for the document, this phrase would have two entries,
ORACLE and CORP, all in uppercase. In a theme index, the entry would be Oracle
Corporation, which is the canonical form of Oracle Corp., as stored in the Knowledge
Catalog.

Theme Weights
Each document theme has a weight associated with it. The theme weight measures
the strength of the theme relative to the other themes in the document. Theme
weights are stored as part of the theme signature for a document and are used by
ConText to calculate scores for ranking the results of theme queries.

Case-sensitivity
Theme indexes are always case-sensitive. Tokens (themes) are recorded in
uppercase, lowercase, and mixed-case in a theme index. The case for the entry is
determined by whether the theme is found in the Knowledge Catalog:

■ if the theme is in the Knowledge Catalog, the case for the index entry matches
the canonical form of the theme in the Knowledge Catalog

■ if the theme is not in the Knowledge Catalog, the case for the index entry is
identical to the theme as it appears in the text of the document

Linguistic Settings
ConText uses linguistic settings, specified as setting configurations, to perform
special processing for text that is in all-uppercase or all-lowercase. ConText
provides two predefined setting configurations:

■ GENERIC (mixed-case text)

■ SA (all-uppercase or all-lowercase text)

GENERIC is the default predefined setting configuration and is automatically
enabled for each ConText server at start up.

You can create your own custom setting configurations in either of the GUI
administration tools provided in the ConText Workbench.

See Also: For more information about themes and the Knowledge
Catalog, see Oracle8 ConText Cartridge Application Developer’s Guide.

See Also: For more information about Linguistics, see Oracle8
ConText Cartridge Application Developer’s Guide.

ConText Indexes

Text Concepts 6-19

ConText Index Tables
The ConText index for a text column consists of the following internal tables:

■ DR_nnnnn_I1Tn (token table)

■ DR_nnnnn_KTB (textkey mapping table)

■ DR_nnnnn_LST (DOCID generation table)

■ DR_nnnnn_NLT (DOCID control table)

■ DR_nnnnn_I1W (Soundex wordlist table -- created only if Soundex is enabled)

■ DR_nnnnn_SQR (stored query expression result table)

The nnnnn string is an identifier (from 1000-99999) which indicates the policy of the
text column for which the ConText index is created.

In addition, ConText automatically creates one or more Oracle indexes for each
ConText index table.

The tablespaces, storage clauses, and other parameters used to create the ConText
index tables and Oracle indexes are specified by the attributes set for the Engine
preference (GENERIC ENGINE Tile) in the policy for the text column.

Columns with Multiple Indexes
A column can have more than one index by simply creating more than one policy
for the column and creating a ConText index for each policy. This is useful if you
want to specify different indexing options for the same column. In particular, this is
useful if you want to create a text and theme index on a column.

When two indexes exist for the same column, one-step queries (theme or text)
require the policy name, as well as the column name, to be specified for the
CONTAINS function in the query. In this way, the correct index is accessed for the
query.

This requirement is not enforced for two-step and in-memory queries, because they
use policy name, rather than column name, to identify the column to be queried.

See Also: For a description of the ConText index tables, see
Appendix C, "ConText Index Tables and Indexes".

For more information about stored query expressions (SQEs), see
Oracle8 ConText Cartridge Application Developer’s Guide.

ConText Indexes

6-20 Oracle8 ConText Cartridge Administrator’s Guide

Index Creation
A ConText index is created for a column by calling CTX_DDL.CREATE_INDEX for
the column policy; however, before calling CREATE_INDEX, a ConText server must
be running with the DDL (D) personality.

Stages of ConText Indexing
ConText indexing takes place in three stages:

■ Index Initialization

■ Index Population

■ Index Termination

Index Initialization During index initialization, the tables used to store the ConText
index are created.

Index Population During index population, the ConText index entries for the
documents in the text column are created in memory, then transferred to the index
tables.

If the memory buffer fills up before all of the documents in the column have been
processed, ConText writes the index entries from the buffer to the index tables and
retrieves the next document from the text column to continue ConText indexing.

The amount of memory allocated for ConText indexing for a text column
determines the size of the memory buffer and, consequently, how often the index
entries are written to the index tables.

See Also: For more information about one-step queries and the
CONTAINS function, see Oracle8 ConText Cartridge Application
Developer’s Guide.

See Also: For more information, see "ConText Servers" in
Chapter 2, "Administration Concepts".

See Also: For a list of the tables used to store the ConText index,
see "Text Indexes" in this chapter.

See Also: For more information about the effects of frequent
writes to the index tables, see "Index Fragmentation" and "Memory
Allocation" in this chapter.

ConText Indexes

Text Concepts 6-21

Index Termination During index termination, the Oracle indexes are created for the
ConText index tables. Each ConText index table has one or more Oracle indexes that
are created automatically by ConText.

Creating Empty ConText Indexes
If you want to create a ConText index without populating the tables, ConText
provides a parameter, pop_index, for CTX_DDL.CREATE_INDEX, which specifies
whether the ConText index tables are populated during indexing.

Parallel Indexing
Parallel indexing is the process of dividing ConText indexing between two or more
ConText servers. Dividing indexing between servers can help reduce the time it
takes to index large amounts of text.

To perform indexing in parallel, you must start two or more ConText servers (each
with the DDL personality) and you must correctly allocate indexing memory.

The amount of allocated index memory should not exceed the total memory
available on the host machine(s) divided by the number of ConText servers
performing the parallel indexing.

For example, you allocate 10 Mb of memory in the policy for the text column for
which you want to create a ConText index. If you want to use two servers to
perform parallel indexing on your machine, you should have at least 20 Mb of
memory available during indexing.

Note: The termination stage only starts when the population stage
has completed for all of the documents in the text column.

Note: When using multiple ConText servers to perform parallel
indexing, the servers can run on different host machines if the
machines are able to connect via SQL*Net to the database where the
index is stored.

ConText Indexes

6-22 Oracle8 ConText Cartridge Administrator’s Guide

Index Fragmentation
As ConText builds an index entry for each token (word or theme) in the documents
in a column, it caches the index entries in memory. When the memory buffer is full,
the index entries are written to the ConText index tables as individual rows.

If all the documents (rows) in a text column have not been indexed when the index
entries are written to the index tables, the index entry for a token may not include
all of the documents in the column. If the same token is encountered again as
ConText indexing continues, a new index entry for the token is stored in memory
and written to the index table when the buffer is full.

As a result, a token may have multiple rows in the index table, with each row
representing a index fragment. The aggregate of all the rows for a word/theme
represents the complete index entry for the word/theme.

Memory Allocation
A machine performing ConText indexing should have enough memory allocated
for indexing to prevent excessive index fragmentation. The amount of memory
allocated depends on the capacity of the host machine doing the indexing and the
amount of text being indexed.

If a large amount of text is being indexed, the index can be very large, resulting in
more frequent inserts of the index text strings to the tables. By allocating more
memory, fewer inserts of index strings to the tables are required, resulting in faster
indexing and fewer index fragments.

Note: Because the number of distinct themes in a collection of
documents is usually fewer than the number of distinct tokens,
theme indexes generally contain fewer entries than text index.

As a result, index fragmentation is not as much of a concern in
theme indexes as in text indexes; however, some fragmentation
may occur during theme indexing and subsequent DML.

See Also: For more information about resolving index
fragmentation, see "Index Optimization" in this chapter.

See Also: For more information about allocating memory for
ConText indexing, see "Creating an Engine Preference" in
Chapter 9, "Setting Up and Managing Text".

ConText Indexes

Text Concepts 6-23

Index Log
The ConText index log records all the indexing operations performed on a policy for
a text column. Each time an index is created, optimized, or deleted for a text
column, an entry is created in the index log.

Log Details
Each entry in the log provides detailed information about the specified indexing
operation, including:

■ the policy for the text column on which the indexing operation was performed

■ the indexing operation that was performed (creation, optimization, deletion)

■ if the indexing operation was performed in parallel, the ID of the server that
processed the operation

■ whether the operation failed and, if it did, the stage at which it failed

■ the number of documents selected for processing and the number of documents
actually processed during the indexing operation

■ the textkeys of the first and last documents processed

Accessing the Log
The index log is stored in an internal table and can be viewed using the CTX_
INDEX_LOG or CTX_USER_INDEX_LOG views. The index log can also be viewed
in the GUI administration tools (System Administration or Configuration Manager).

Index Updates (DML)

6-24 Oracle8 ConText Cartridge Administrator’s Guide

Index Updates (DML)
When an existing document in a text column is deleted or modified such that the
ConText index (text and/or theme) is no longer up-to-date, the index must be
updated.

Text index updates are processed by ConText servers with the DML or DDL
personality, depending on the DML index update method (immediate or batch) that
is currently enabled.

Immediate Vs. Batch Update
If immediate index update is enabled, ConText servers with a DML personality
regularly scan the DML Queue and process update requests as they come into the
queue.

If batch index update is enabled, no ConText servers with a DML personality are
running and update requests in the DML Queue are processed by ConText servers
with a DDL personality only when explicitly requested.

Deferred Deletion
Updating the index for modified/deleted documents affects every row that contains
references to the document in the index. Because this can take considerable time,
ConText utilizes a deferred delete mechanism for updating the index for
modified/deleted documents.

Note: In contrast to requests for theme and Gist/theme summary
generation, which are processed by ConText servers with the
Linguistic personality, updates to theme indexes are processed
identically to text indexes, using ConText servers with the DML
personality.

See Also: For more information about DML index update
methods, see "DML" in this chapter.

For more information about ConText servers, see "Personalities" in
Chapter 2, "Administration Concepts".

Index Updates (DML)

Text Concepts 6-25

In a deferred delete, the document references in the ConText index token table (DR_
nnnnn_I1Tn) for the modified/deleted document are not actually removed. Instead,
the status of the document is recorded in the ConText index DOCID control table
(DR_nnnnn_NLT), so that the textkey for the document is not returned in
subsequent text queries that would normally return the document.

Actual deletion of the document references from the token table (I1Tn) takes place
only during optimization of a index.

See Also: For more information, see "Removal of Obsolete
Document References" in "Index Optimization" in this chapter.

Index Optimization

6-26 Oracle8 ConText Cartridge Administrator’s Guide

Index Optimization
ConText supports index optimization for improving query performance.
Optimization performs two functions for an index:

■ Compaction of Index Fragments

■ Removal of Obsolete Document References

ConText supports index optimization through the CTX_DDL.OPTIMIZE_INDEX
procedure.

Compaction of Index Fragments
Compaction combines the index fragments for a token into longer, more complete
strings, up to a maximum of 64 Kb for any individual string. Compaction of index
fragments results in fewer rows in the ConText index tables, which results in faster
and more efficient queries. It also allows for more efficient use of tablespace.

ConText provides two methods of index compaction:

■ in-place compaction

■ two-table compaction (default)

In-place compaction uses available memory to compact index fragments, then
writes the compacted strings back into the original (existing) token table in the
ConText index.

Two-table compaction creates a second token table into which the compacted index
fragments are written. When compaction is complete, the original token table is
deleted.

Two-table compaction is faster than in-place compaction; however, it requires
enough tablespace to be available during compaction to accommodate the creation
and population of the second token table.

Note: Optimization cannot be performed for an index while any
other DDL or DML operation is being performed on the index.
Likewise, while optimization is being performed on an index, no
DML operations can be performed on the index.

As such, it may not always be practical to optimize an entire index.
ConText also supports piecewise optimization for individual index
entries (words and sections) that are stored in the index

Index Optimization

Text Concepts 6-27

Removal of Obsolete Document References
ConText provides optimization methods which can be used to actually delete all
references to modified/deleted documents from an index.

During an actual delete (also referred to as garbage collection), the index references
for all modified/deleted documents are removed from the ConText index token
table (DR_nnnnn_I1Tn), leaving only references to existing, unchanged documents.
In addition, the ConText index DOCID control table (DR_nnnnn_NLT) is cleared of
the information which records the status of documents.

Similar to compaction, ConText supports both in-place or two-table garbage
collection.

Piecewise Optimization
Index optimization can be performed piecewise for individual words in a ConText
index (text or theme). Because it is generally faster than optimizing an entire index,
piecewise optimization is useful when an index has a large number of index
fragments or obsolete document references and it is not practical to block DML on
the index while optimization is performed.

Piecewise optimization is specified for a word using arguments in CTX_
DDL.OPTIMIZE_INDEX. Piecewise optimization supports only one type of
optimization: combined compaction/garbage collection performed in-place.

Note: While text index entries consist only of single words, theme
index entries often consist of phrases as well as single words.

For documentation purposes, the term word refers to words and
phrases with regards to piecewise optimization for theme indexes.

Note: Piecewise garbage collection for a word only removes
obsolete document references from the corresponding entries
(rows) in the token table; obsolete references are retained in the
entries for other words in the index, as well as in DR_nnnnn_NLT,
which ensures that the other entries are not affected by the
piecewise optimization.

To remove obsolete document references from all the entries in an
index, garbage collection must be performed for the entire index.

Index Optimization

6-28 Oracle8 ConText Cartridge Administrator’s Guide

Optimizing Index Entries for Tokens and Sections
The word to be optimized can have two types of entries in the index: token and
section.

Token entries consist of a word (and its location information) that occurs in one or
more documents in a text column. Section entries, found only in text indexes,
consist of the name (and location information) for a section that occurs in one or
more documents in the column.

If the word to be optimized has token entries in the index, all the token entries
(rows) corresponding to the word are combined into as few rows as possible and all
obsolete document references are removed from the location strings for the rows.

If the word to be optimized has section entries in the index, all the section entries
(rows) corresponding to the word are combined into as few rows as possible and all
obsolete document references are removed from the location strings for the rows.

If the word to be optimized has both types of entries in the index, ConText
optimizes all the entries for both types in a single pass; however, ConText optimizes
the different types of entries as separate, distinct entities.

Case-sensitivity
Piecewise optimization is case-sensitive regardless of the case of the index, meaning
index entries for a word are optimized only if the entries exactly match the word
specified for piecewise optimization.

This feature is of particular importance for piecewise optimization in theme
indexes, because theme indexes are always case-sensitive and the index entries
often consist of phrases in mixed case.

For example, a theme index contains separate token entries for the word oracle and
the phrase Oracle Corporation. If piecewise optimization is specified for the phrase
Oracle Corporation, only those entries that exactly match the phrase are optimized;
entries for oracle are not optimized. In addition, if piecewise optimization is
specified for the word Oracle, no entries are optimized.

See Also: For an example of piecewise optimization, see
"Optimizing an Index" in Chapter 9, "Setting Up and Managing
Text".

Index Optimization

Text Concepts 6-29

Identifying Candidates for Piecewise Optimization
The word_text and doclsize columns in the index token table (DR_nnnnn_I1Tn) can
be queried to identify words that are potential candidates for piecewise
optimization. Also note that the word_type column in the table identifies whether
the row serves as a token entry or a section entry.

In general, if word_text returns a large number of rows for a word and/or the
doclsize for many of the rows is significantly less than 64 Kilobytes (the maximum
size of the location string for an index entry), the word is a good candidate for
compaction.

When to Optimize
Index optimization should be performed regularly, as index creation and frequent
updating can result in excessive fragmentation and accumulation of obsolete
document references. The level of fragmentation for an index depends on the
amount of memory allocated for indexing and the amount of text being indexed.
The number of obsolete document references in an index depends on the frequency
of DML for documents in the column and the degree of DML changes for the
documents.

In general, optimize an index after:

■ large amounts of text are indexed

■ parallel indexing has been utilized

■ large numbers of documents in a table have been modified/deleted

Thesauri

6-30 Oracle8 ConText Cartridge Administrator’s Guide

Thesauri
Users looking for information on a given topic may not know which words have
been used in documents that refer to that topic.

ConText enables users to create case-sensitive or case-insensitive thesauri which
define relationships between lexically equivalent words and phrases. Users can then
retrieve documents that contain relevant text by expanding queries to include
similar or related terms as defined in a thesaurus.

Thesauri are stored in internal tables owned by CTXSYS. Each thesaurus is uniquely
identified by a name that is specified when the thesaurus is created.

Thesaurus Creation and Maintenance
Thesauri and thesaurus entries can be created, modified, and deleted by all ConText
users with the CTXAPP role.

ConText supports thesaurus maintenance from the command line through the
PL/SQL package, CTX_THES. ConText also supports GUI viewing and
administration of thesauri in the System Administration tool.

In addition, the ctxload utility can be used for loading (creating) thesauri from a
load file into the thesaurus tables, as well as dumping thesauri from the tables into
output (dump) files.

The thesaurus dump files created by ctxload can be printed out or used as input for
other applications. The dump files can also be used to load a thesaurus into the
thesaurus tables. This can be useful for using an existing thesaurus as the basis for
creating a new thesaurus.

Note: The ConText thesauri formats and functionality are
compliant with both the ISO-2788 and ANSI Z39.19 (1993)
standards.

See Also: For more information about the relationships you can
define for terms in a thesaurus, see "Thesaurus Entries and
Relationships" in this chapter.

Note: The CTX_THES package calls an internal package, CTX_
THS, which should not be called directly.

Thesauri

Text Concepts 6-31

Thesauri in Queries
Thesauri are primarily used for expanding the query terms in text queries to include
entries that have been defined as having relationships with the terms in the
specified thesaurus.

Thesauri can be used for expanding theme queries; however, expansion of theme
queries is generally not needed, because ConText uses an internal lexicon, called the
Knowledge Catalog, to automatically expand theme queries.

Query Expansion
The expansions returned by the thesaurus operators in queries are combined using
the ACCUMULATE operator (,).

Limitations
In a query, the expansions generated by the thesaurus operators don’t follow nested
thesaural relationships. In other words, only one thesaural relationship at a time is
used to expand a query.

For example, B is a narrower term for A. B is also in a synonym ring with terms C
and D, and has two related terms, E and F. In a narrower term query for A, the
following expansion occurs:

NT(A) query is expanded to {A}, {B}

See Also: For more information about command line
administration of thesauri, see "Managing Thesauri" in Chapter 9,
"Setting Up and Managing Text".

For more information about GUI administration of thesauri, see the
help system provided with the System Administration tool.

For more information about ctxload, see Chapter 10, "Text Loading
Utility".

Note: ConText supports creating multiple thesauri; however, only
one thesaurus can be used at a time in a query.

See Also: For more information about using thesauri and the
thesaurus operators to expand queries, see Oracle8 ConText
Cartridge Application Developer’s Guide.

Thesauri

6-32 Oracle8 ConText Cartridge Administrator’s Guide

Case-sensitivity
ConText thesauri supports creating case-sensitive and case-insensitive thesauri.

Case-sensitive Thesauri
In a case-sensitive thesaurus, terms (words and phrases) are stored exactly as
entered. For example, if a term is entered in mixed-case (using either CTX_THES,
the System Administration tool, or a thesaurus load file), the thesaurus stores the
entry in mixed-case.

In addition, when a case-sensitive thesaurus is specified in a query, the thesaurus
lookup uses the query terms exactly as entered in the query. As a result, queries that
use case-sensitive thesauri allow for a higher level of precision in the query
expansion performed by ConText.

For example, a case-sensitive thesaurus is created with different entries for the
distinct meanings of the terms Turkey (the country) and turkey (the type of bird).
Using the thesaurus, a query for Turkey expands to include only the entries
associated with Turkey.

Case-insensitive Thesauri
In a case-insensitive thesaurus, terms are stored in all-uppercase, regardless of the
case in which they were entered.

In addition, when a case-insensitive thesaurus is specified in a query, the query
terms are converted to all-uppercase for thesaurus lookup. As a result, ConText is
unable to distinguish between terms that have different meanings when they are in
mixed-case.

For example, a case-insensitive thesaurus is created with different entries for the
two distinct meanings of the term TURKEY (the country or the type of bird). Using
the thesaurus, a query for either Turkey or turkey is converted to TURKEY for
thesaurus lookup and then expanded to include all the entries associated with both
meanings.

Note: The query expression is not expanded to include C and D
(as synonyms of B) or E and F (as related terms for B).

Thesauri

Text Concepts 6-33

Default Thesaurus
If you do not specify a thesaurus by name in a query, by default, the thesaurus
operators use a thesaurus named DEFAULT; however, because the entries in a
thesaurus may vary greatly depending on the subject matter of the documents for
which the thesaurus is used, ConText does not provide a DEFAULT thesaurus.

As a result, if you want to use a default thesaurus for the thesaurus operators, you
must create a thesaurus named DEFAULT. You can create the thesaurus through any
of the thesaurus creation methods supported by ConText:

■ System Administration tool (GUI)

■ CTX_THES.CREATE_THESAURUS (PL/SQL)

■ ctxload

Supplied Thesaurus
Although ConText does not provide a default thesaurus, ConText does supply a
thesaurus, in the form of a ctxload load file, that can be used to create a
general-purpose, English-language thesaurus.

The thesaurus load file can be used to create a default thesaurus for ConText or it
can be used as the basis for creating thesauri tailored to a specific subject or range of
subjects.

Supplied Thesaurus Structure and Content
The supplied thesaurus is similar to a traditional thesaurus, such as Roget’s
Thesaurus, in that it provides a list of synonymous and semantically related terms,
sorted into conceptual domains.

The supplied thesaurus provides additional value by organizing the conceptual
domains into a hierarchy that defines real-world, practical relationships between
narrower terms and their broader terms.

Additionally, cross-references are established between domains in different areas of
the hierarchy. At the lower levels of the hierarchy, synonym rings are attached to
domain names.

See Also: For more information about using ctxload to create the
thesaurus, see "Creating the Supplied Thesaurus" in Chapter 9,
"Setting Up and Managing Text".

Thesauri

6-34 Oracle8 ConText Cartridge Administrator’s Guide

Supplied Thesaurus Location
The exact name and location of the thesaurus load file is operating system
dependent; however, the file is generally named ’dr0thsus’ (with an appropriate
extension for text files) and is generally located in the following directory structure:

<Oracle_home_directory>
 <ConText_directory>
 thes

See Also: For more information about the directory structure for
ConText, see the Oracle8 installation documentation specific to
your operating system.

Thesaurus Entries and Relationships

Text Concepts 6-35

Thesaurus Entries and Relationships
Three types of relationships can be defined for entries (words and phrases) in a
thesaurus:

■ Synonyms

■ Hierarchical Relationships

■ Related Terms

In addition, each entry in a thesaurus can have Scope Notes associated with it.

Synonyms

Figure 6–1

Support for synonyms is implemented through synonym entries in a thesaurus. The
collection of all of the synonym entries for a term and its associated terms is known
as a synonym ring.

Synonym entries support the following relationships:

■ Synonym Rings

■ Preferred Terms

Synonym Rings
Synonym rings are transitive. If term A is synonymous with term B and term B is
synonymous with term C, term A and term C are synonymous. Similarly, if term A
is synonymous with both terms B and C, terms B and C are synonymous. In either
case, the three terms together form a synonym ring.

car SYN auto
auto SYN automoble

main SYN principal
main SYN major

main SYN predominant

Thesaurus Entries and Relationships

6-36 Oracle8 ConText Cartridge Administrator’s Guide

For example, in the synonym rings shown in this example, the terms car, auto, and
automobile are all synonymous. Similarly, the terms main, principal, major, and
predominant are all synonymous.

While synonym rings are not explicitly named, they have an ID associated with
them. The ID is assigned when the synonym entry is first created.

Preferred Terms
Each synonym ring can have one, and only one, term that is designated as the
preferred term. A preferred term is used in place of the other terms in a synonym
ring when one of the terms in the ring is specified with the PT operator in a query.

Note: A thesaurus can contain multiple synonym rings; however,
synonym rings are not named. A synonym ring is created implicitly
by the transitive association of the terms in the ring.

As such, a term cannot exist twice within the same synonym ring or
within more than one synonym ring in a thesaurus.

Note: A term in a preferred term (PT) query is replaced by, rather
than expanded to include, the preferred term in the synonym ring.

Thesaurus Entries and Relationships

Text Concepts 6-37

Hierarchical Relationships

Figure 6–2

Hierarchical relationships consist of broader and narrower terms represented as an
inverted tree. Each entry in the hierarchy is a narrower term for the entry
immediately above it and to which it is linked. The term at the root of each tree is
known as the top term.

For example, in the tree structure shown in the following example, the term elephant
is a narrower term for the term mammal. Conversely, mammal is a broader term for
elephant. The top term is animal.

In addition to the standard hierarchy, ConText also supports the following
specialized hierarchical relationships in thesauri:

■ Generic Hierarchy

■ Partitive Hierarchy

■ Instance Hierarchy

Each of the three hierarchical relationships supported by ConText represents a
separate branch of the hierarchy and are accessed in a query using different
thesaurus operators.

Note: The three types of hierarchical relationships are optional.
Any of the three hierarchical relationships can be specified for a
term.

animal

insect mammal reptile fish bird

dog cat elephant

Thesaurus Entries and Relationships

6-38 Oracle8 ConText Cartridge Administrator’s Guide

Generic Hierarchy
The generic hierarchy represents relationships between terms in which one term is a
generic name for the other.

For example, the terms rat and rabbit could be specified as narrower generic terms
for rodent.

Partitive Hierarchy
The partitive hierarchy represents relationships between terms in which one term is
part of another.

For example, the provinces of British Columbia and Quebec could be specified as
narrower partitive terms for Canada.

Instance Hierarchy
The instance hierarchy represents relationships between terms in which one term is
an instance of another.

For example, the terms Cinderella and Snow White could be specified as narrower
instance terms for fairy tales.

Multiple Occurrences of the Same Term
Because the four hierarchies are treated as separate structures, the same term can
exist in more than hierarchy. In addition, a term can exist more than once in a single
hierarchy; however, in this case, each occurrence of the term in the hierarchy must
be accompanied by a qualifier.

If a term exists more than once as a narrower term in one of the hierarchies, broader
term queries for the term are expanded to include all of the broader terms for the
term.

If a term exists more than once as a broader term in one of the hierarchies, narrower
term queries for the term are expanded to include the narrower terms for each
occurrence of the broader term.

For example, C is a generic narrower term for both A and B. D and E are generic
narrower terms for C. In queries for terms A, B, or C, the following expansions take
place:

NTG(A) expands to {C}, {A}
NTG(B) expands to {C}, {B}
NTG(C) expands to {C}, {D}, {E}
BTG(C) expands to {C}, {A}, {B}

Thesaurus Entries and Relationships

Text Concepts 6-39

Qualifiers
For homographs (terms that are spelled the same way, but have different meanings)
in a hierarchy, a qualifier must be specified as part of the entry for the word. When
homographs that have a qualifier for each occurrence appear in a hierarchy, each
term is treated as a separate entry in the hierarchy.

For example, the term spring has different meanings relating to seasons of the year
and mechanisms/machines. The term could be qualified in the hierarchy using the
terms season and machinery.

To differentiate between the terms during a query, the qualifier must be specified.
Then, only the terms that are broader terms, narrower terms, or related terms for the
term and its qualifier are returned. If no qualifier is specified, all of the related,
narrower, and broader terms for the terms are returned.

Related Terms
Each entry in a thesaurus can have one or more related terms associated with it.
Related terms are terms that are close in meaning to, but not synonymous with,
their related term. Similar to synonyms, related terms are reflexive; however, related
terms are not transitive.

If a term that has one or more related terms defined for it is specified in a related
term query, the query is expanded to include all of the related terms.

For example, B and C are related terms for A. In queries for A, B, and C, the
following expansions take place:

RT(A) expands to {A}, {B}, {C}
RT(B) expands to {A}, {B}
RT(C) expands to {C}, {A}

Note: This example uses the generic hierarchy. The same
expansions hold true for the standard, partitive, and instance
hierarchies.

Note: In thesaural queries that include a term and its qualifier, the
qualifier must be escaped, because the parentheses required to
identify the qualifier for a term will cause the query to fail.

Thesaurus Entries and Relationships

6-40 Oracle8 ConText Cartridge Administrator’s Guide

Scope Notes
Each entry in the hierarchy, whether it is a main entry or one of the synonymous,
hierarchical, or related entries for a main entry, can have scope notes associated
with it.

Scope notes can be used to provide descriptions or comments for the entry. In
particular, they can be used to provide information about the usage/function of the
entry or to distinguish the entry from other entries with similar meanings.

Note: Terms B and C are not related terms and, as such, are not
returned in the expansions performed by ConText.

Document Sections

Text Concepts 6-41

Document Sections
ConText enables users to increase query precision using structure (i.e. sections)
found in most documents. The most common structure found in documents is the
grouping of text into sentences and paragraphs. In addition, many documents
create structure through the use of tags or regularly-occurring fields delimited by
strings of repeating text.

For example, World Wide Web documents use HTML, a defined set of tags and
codes, to identify titles, headers, paragraph offsets, and other document
meta-information as part of the document content. Similarly, e-mail messages often
contains fields with consistent, regularly-occurring headers such as subject: and
date:.

For each text column, users can choose to define rules for dividing the documents in
the column into user-defined sections. In addition, for text columns that use the
BASIC LEXER Tile, users can enable section searching for sentences and
paragraphs. ConText includes section information as entries (rows) in the text index
for a column so that text queries on the column can be restricted to a specified
section.

Section Searching
A query expression operator, WITHIN, is provided for restricting a text query to a
particular section.

The WITHIN operator can be used to restricts queries in two distinct ways:

■ sentence and paragraph searching

■ user-defined section searching

Note: Section searching does not apply to theme queries. As such,
defining sections and enabling section searching for theme indexes
is not supported.

In addition, because section information is stored in the text index,
sections must be defined, if desired, and section searching must be
enabled before text index creation. If you want to use section
searching for columns with existing text indexes, you must drop
the indexes, define sections, if desired, enable section searching
(through the preferences for the column policies), then reindex the
columns.

Document Sections

6-42 Oracle8 ConText Cartridge Administrator’s Guide

Sentence and Paragraph Searching
Sentence/paragraph searching returns documents in which two or more words
occur within the same sentence or paragraph. In this way, sentence/paragraph
searching is similar to proximity searching (NEAR operator), which returns
documents in which two or more words occur within a user-specified distance.

For sentence/paragraph searching, the WITHIN operator takes sentence or paragraph
as the value for the section name.

User-defined Section Searching
Section searching for user-defined sections returns documents in which one or more
terms occur in a user-defined section.

For user-defined section searching, the WITHIN operator takes the name of a
user-defined section.

Sentences and Paragraphs as Sections
ConText provides two system-level, predefined sections, sentence and paragraph,
for sentence/paragraph searching; however, to enable ConText to identify sentence
and paragraphs as sections, sentence and paragraph delimiters must be specified
for the text lexer (BASIC LEXER Tile).

BASIC LEXER provides three attributes (punctuations, whitespace, and newline) for
specifying sentence and paragraph delimiters.

Note: Sentence/paragraph searching and user-defined section
searching can be enabled concurrently for a text column; however,
text queries can reference only a single section (sentence,
paragraph, or user-defined) at a time.

In addition, if both sentence/paragraph searching and user-defined
section searching are enabled for a text column, certain restrictions
apply. For more information, see "User-Defined Sections" in this
chapter.

See Also: For more information about the WITHIN operator and
performing text queries using document sections, see Oracle8
ConText Cartridge Application Developer’s Guide.

Document Sections

Text Concepts 6-43

Sentence Delimiters
Sentence delimiters are characters that, when they occur in the following sequence,
indicate the end of a sentence and the beginning of a new sentence:

token -> punctuation character(s) -> whitespace character(s)

Paragraph Delimiters
Paragraph delimiters are characters that, when they occur in any of the following
sequences, indicate the end of a paragraph and the beginning of a new paragraph:

token -> punctuation character(s) -> whitespace character(s) -> newline character(s)

token -> punctuation character(s) -> newline character(s) -> newline character(s)

By definition, paragraph delimiters also serve as sentence delimiters.

User-Defined Sections
A user-defined section is a body of text, delimited by user-specified start and end
tags, within a document. ConText allows users to control the behavior/interaction
of user-defined sections through the definition of sections as top-level or
self-enclosing sections.

User-defined sections must be assigned a name and grouped into a section group.
Sections are not created as individual, stand-alone objects. Instead, users create
sections by adding them to an existing section group.

Start and End Tags
The beginning of a user-defined section is explicitly identified by a start tag, which
can be any token in the text, as long as the token is a valid token recognized by the
lexer for the text column. Each section must have a start tag.

Note: If user-defined sections are used in conjunction with
sentence/paragraph sections, sentence and paragraph are reserved
words and cannot be used as section names.

See Also: For examples of creating section groups and adding, as
well as removing, sections in section groups, see "Managing
User-defined Document Sections" in Chapter 9, "Setting Up and
Managing Text".

Document Sections

6-44 Oracle8 ConText Cartridge Administrator’s Guide

The end of a section can be identified explicitly by an end tag or implicitly by the
occurrence of the next occurring start tag, depending on whether the section is
defined as a top-level or self-enclosing section. As a result, end tags can be optional.
Similar to start tags, end tags can be any token in the text, as long as the token can
be recognized by the lexer.

Start and end tags are stored as part of the ConText index, but do not take up space
in the index. For example, a document contains the following string, where
<TITLE> and </TITLE> are defined as start and end tags:

<TITLE>cats</TITLE> make good pets

The string is indexed by ConText as:

cats make good pets

which enables searching on phrases such as cats make.

In addition, start and end tags do not produce hits if searched upon.

Note: Start and end tags are case-sensitive if the text index for
which they are defined is case-sensitive.

For documentation purposes, all references to start and end tags in
this section are presented in uppercase.

For more information about case-sensitivity in text indexes, see
"Text Indexes" in this chapter.

Suggestion: Because each occurrence of a token that is defined as
a start/end tag indicates the beginning/end of a section, specify
tokens for start and end tags that are as distinctive as possible.
Include any non-alphanumeric characters such as colons ’: ’ or
angle brackets ’<>’ which help to uniquely identify the tokens.

For example, the token TITLE by itself does not make a good start
tag, because it is a common word and ConText would record the
start of a new section each time the token was encountered in the
text. A better start tag would be the string <TITLE> or TITLE:.

Document Sections

Text Concepts 6-45

Top-level Sections
A top-level section is only closed (implicitly) by the next occurring top-level section
or (explicitly) by the occurrence of the end tag for the section; however, end tags are
not required for top-level sections. In addition, a top-level section implicitly closes
all sections that are not defined as top-level.

Top-level sections cannot enclose themselves or each other. As a result, if a section is
defined as top-level, it cannot also be defined as self-enclosing.

Self-Enclosing Sections
A self-enclosing section is only closed (explicitly) when the end tag for the section is
encountered or (implicitly) when a top-level section is encountered. As a result, end
tags are required for sections that are defined as self-enclosing.

Self-enclosing sections support defining tags such as the table tag <TD> in HTML
as a start tag. Table data in HTML is always explicitly ended with the </TD> tag. In
addition, tables in HTML can have embedded or nested tables.

If a section is not defined as self-enclosing, the section is implicitly closed when
another start tag is encountered. For example, the paragraph tag <P> in HTML can
be defined as a start tag for a section that is not self-enclosing, because paragraphs
in HTML are sometimes explicitly ended with the </P> tag, but are often ended
implicitly with the start of another tag.

Startjoin and Endjoin Characters
To enable defining document sections, ConText supports specifying
non-alphanumeric characters (e.g. hyphens, colons, periods, brackets) using the
startjoins and endjoins attribute for the BASIC LEXER Tile.

When a character defined as a startjoins appears at the beginning of a word, it
explicitly identifies the word as a new token and end the previous token. When an
character specified as an endjoins appears at the end of a word, it explicitly identifies
the end of the token.

Note: Characters that are defined as startjoins and endjoins are
included as part of the entry for the token in the ConText index.

Document Sections

6-46 Oracle8 ConText Cartridge Administrator’s Guide

Text Filtering
Section searching for user-defined sections requires the start and end tags for the
document sections to be included in the ConText index. This is accomplished
through the use of ConText filters and the (optional) definition of startjoins and
printjoins for the BASIC LEXER Tile.

For HTML text that uses the internal HTML filter, document sections have an
additional requirement. Because the internal HTML filter removes all HTML
markup during filtering, you must explicitly specify the HTML tags that serve as
section start and end tags and, consequently, must not be removed by the filter.

This is accomplished through the keep_tag attribute for the HTML FILTER Tile. The
keep_tag attribute is a multi-value attribute that lets users specify the HTML tags to
keep during filtering with the internal HTML filter.

For HTML filter that is filtered using an external HTML filter, the filter must
provide some mechanism for retaining HTML tags used as section start and end
tags.

Limitations
User-defined sections have the following limitations:

Implicit Start of Body Sections ConText does not recognize the start of a body section
after the implicit end of a header section.

For example, consider the following e-mail message in which FROM:, SUBJECT:,
and NEWSGROUPS: are defined as start tags for three different sections:

From: jsmith@ABC.com
Subject: New teams
Newsgroups: arts.recreation, alt.sports

New teams have been added to the league.

All of the text following the NEWSGROUPS: header tag is included in the header
section, including the body of the message.

Multi-word Start and End Tags ConText does not support start and end tags consisting
of more than one word. Each start and end tag for a section can contain only a
single word and the word must be unique for each tag within the section group.

For example:

problem description: Insufficent privileges
problem solution: Grant required privileges to file

Document Sections

Text Concepts 6-47

The strings PROBLEM DESCRIPTION: and PROBLEM SOLUTION: cannot be
specified as start tags.

Identical Start and End Tags ConText does not recognize sections in which the start
and end tags are the same.

For example:

:Author:
Joseph Smith
:Author:
:Title:
Guide to Oracle
:Title:

The strings :AUTHOR: and :TITLE: cannot be specified as both start and end tags.

Section Groups
A section group is the collection of all the user-defined sections for a text column.
Section groups are assigned by name to a text column through the Wordlist
preference in the column policy.

Sections in Section Groups
The start and end tags for a particular section must be unique within the section
group to which the section belongs. In addition, within a section group, no start tag
can also be an end tag.

Section names do not have to be unique within a section group. This allows
defining multiple start and end tags for the same logical section, while making the
section details transparent to queries.

Section Group Management
Section groups can be created and deleted by ConText users with the CTXADMIN
or CTXAPP roles. In addition, users with CTXADMIN or CTXAPP can add and
remove sections from section groups. Section group names must be unique for the
user who creates the section group.

Document Sections

6-48 Oracle8 ConText Cartridge Administrator’s Guide

Predefined HTML Section Group
ConText provides a predefined section group, BASIC_HTML_SECTION, which
enables user-defined section searching in basic HTML documents.

BASIC_HTML_SECTION contains the following section definitions:

In addition, the following predefined preferences have been created to support
ready-to-use basic HTML section searching:

■ Filter preference - BASIC_HTML_FILTER

■ Lexer preference - BASIC_HTML_LEXER

■ Wordlist preference - BASIC_HTML_WORDLIST

See Also: For examples of creating and deleting section groups,
as well as adding and removing sections in section groups, see
"Managing User-defined Document Sections" in Chapter 9, "Setting
Up and Managing Text".

Section Name Start Tag End Tag Top Level Self-Enclosing

HEAD <HEAD> </HEAD> Yes No

TITLE <TITLE> </TITLE> No No

BODY <BODY> </BODY> Yes No

PARA <P> </P> No No

HEADING <H1> </H1> No No

<H2> </H2> No No

<H3> </H3> No No

<H4> </H4> No No

<H5> </H5> No No

<H6> </H6> No No

Document Sections

Text Concepts 6-49

Setup Process for Section Searching
The process for setting up section searching differs depending on whether you are
enabling section searching for sentences/paragraphs or user-defined sections.

Sentence and Paragraph Searching
The process model for enabling sentence/paragraph searching is as follows:

1. If necessary, specify values for the whitespace, newline, and punctuations
attributes of the BASIC LEXER Tile.

2. Specify a value of ’1’ for the sent_para attribute (BASIC LEXER).

3. Create a Lexer preference for the Tile.

4. Create a policy that includes the Lexer preference you created.

User-defined Section Searching
The process model for defining sections and enabling section searching for these
sections is as follows:

1. Use CTX_DDL.CREATE_SECTION_GROUP to create a section group for your
user-defined sections.

When you call CREATE_SECTION_GROUP, you specify the name of the
section group to create.

2. Call CTX_DDL.ADD_SECTION for each user-defined section that you want to
create in your section group.

When you call ADD_SECTION, you specify the name of the section, the start
and end tags for the section, and whether the section is top-level or
self-enclosing.

3. If you are creating sections for HTML documents and you use the internal
HTML filter, set the keep_tag attribute (HTML FILTER Tile) once for each of the
HTML tags that the filter must retain for use as section start and end tags.

Then create a Filter preference for the Tile.

4. If necessary, specify values for the startjoins and endjoins attributes of the BASIC
LEXER Tile.

Then, create a Lexer preference for the Tile.

Document Sections

6-50 Oracle8 ConText Cartridge Administrator’s Guide

5. Use the section_group attribute of the GENERIC WORD LIST Tile to specify the
name of your section group and create a Wordlist preference for the Tile.

6. Create a policy that includes the section-enabled preferences (Filter, Lexer, and
Wordlist) that you created.

See Also: For examples of defining section groups and sections,
as well as creating a section-enabled Wordlist preference, see
"Managing User-defined Document Sections" in Chapter 9, "Setting
Up and Managing Text".

For examples of specifying attributes for the HTML FILTER and
BASIC LEXER Tiles, see "Filter Preference Examples" and "Lexer
Preference Examples" in Chapter 8, "ConText Indexing".

Automated Text Loading 7-1

7
Automated Text Loading

This chapter describes the ConText data dictionary objects provided for automated
text loading.

The topics discussed in this chapter are:

■ Overview of Automated Loading

■ Sources

■ Preferences for Text Loading

■ Reader Tiles

■ Translator Tiles

■ Engine Tiles

Overview of Automated Loading

7-2 Oracle8 ConText Cartridge Administrator’s Guide

Overview of Automated Loading

Figure 7–1

If you set up sources for your columns, you can use ConText servers running with
the Loader (R) personality to automate batch loading of text from operating system
files.

See Also: For an example of automated text loading, see "Using
ConText Servers for Automated Text Loading" in Chapter 9,
"Setting Up and Managing Text".

Source

Table with Text Column
(LONG or LONG RAW)

Documents

Text Loading Utility
(ctxload)

ConText Server
(with R Personality)

Overview of Automated Loading

Automated Text Loading 7-3

ConText Servers
If a ConText server is running with the R personality, it regularly checks all the
sources that have been defined for columns in the database, then scans the specified
directories for new files. When a new file appears, it calls ctxload to load the
contents of the file into the appropriate column.

When loading of the file contents is successful, the server deletes the file to prevent
the contents from being loaded again.

Text Loading Utility (ctxload)
The text loading utility, ctxload, loads text from operating system files into the
LONG or LONG RAW column in a table. ctxload requires the files to be in the load
file format. If the files are not in the load file format, the files need to be formatted
before loading.

To ensure that the files are in the correct format, a user-defined translator can be
specified as one of the preferences in the source for the column.

A user-defined translator is any program that accepts a plain text file as input and
generates a load file formatted for ctxload as its output. The user-defined translator
could also be used to perform pre-loading cleanup and spell-checking of your text.

Error Handling
If an error occurs while loading, the error is written to the error log, which can be
viewed using CTX_INDEX_ERRORS. In addition, the original file is not deleted.

See Also: For more information about ctxload and the required
format for load files, see Chapter 10, "Text Loading Utility".

For more information about translators for text loading, see
"Translator Tiles" in this chapter.

Sources

7-4 Oracle8 ConText Cartridge Administrator’s Guide

Sources

Figure 7–2

Table with Text Column
(LONG or LONG RAW)

Documents

Text Loading Utility
(ctxload)

ConText Server
(with R Personality)

File(s) in Directory

Reader

Translator

Loading Engine

ctxload load file

SOURCE

ctxload command

Sources

Automated Text Loading 7-5

To automate loading text from operating system files into a database column,
ConText requires the following information:

■ where are the files located in the local file system?

■ are the files in the load file format required by ctxload?

■ which command-line options to use when calling ctxload?

A source provides this information, in the form of text loading preferences (one
preference for each of the requirements). Sources can be created by any ConText
user with the CTXAPP role. Sources are stored in the ConText data dictionary.

In addition to the preferences for a source, users specify a name and text column for
the source. The text column in the source indicates the column to which text is
loaded by ConText servers.

Users can also choose to specify a description and a refresh rate for directory
scanning.

The sources created by a user must be unique for the user. As such, the same source
for a user cannot be assigned to more than one column.

Note: A source must exist for a column before a ConText server
with the Loader personality can load text from operating system
files into the column.

Note: The column datatype must be LONG or LONG RAW,
because ctxload only supports loading text for these types.

See Also: For an example of automated text loading with ConText
servers, see "Loading Text" in Chapter 9, "Setting Up and Managing
Text".

For more information about text loading preferences, see
"Preferences for Text Loading" in this chapter.

Preferences for Text Loading

7-6 Oracle8 ConText Cartridge Administrator’s Guide

Preferences for Text Loading
This section provides conceptual, as well as reference, information for text loading
preferences, which are stored in the ConText data dictionary:

■ What is a Text Loading Preference?

■ Reader Predefined Preferences

■ Translator Predefined Preferences

■ Engine Predefined Preferences

What is a Text Loading Preference?
 Text loading preferences specify the options that ConText uses to automatically
load text. Each preference represents one (and only one) text loading option and is
grouped into one of three categories or types, which correspond to the information
ConText requires for automating text loading:

■ Reader preferences

■ Translator preferences

■ Engine preferences

When creating a source, three preferences are specified for the source, one for each
of the three types. If one of the types of preference is not specified when the source
is created, the default, predefined preference for that type is used in the source.

A preference can be used in more than one source; however, two preferences of the
same type cannot be used in the same source.

Tiles in Preferences
A text loading preference consists of a ConText Tile and one or more attributes (and
their corresponding values) for the Tile.

Predefined Preferences
ConText provides predefined preferences for each type. These predefined
preferences can be used by any ConText user with the CTXAPP role to create
sources without first creating preferences.

See Also: For more information about the Tiles used in text
loading preferences, see "Reader Tiles", "Translator Tiles", or
"Engine Tiles" in this chapter.

Preferences for Text Loading

Automated Text Loading 7-7

User-defined Preferences
A ConText user with the CTXAPP role can create their own preferences by setting
the required attributes for the appropriate Tile, then calling CTX_DDL.CREATE_
PREFERENCE and specifying the name of the Tile.

Note: The predefined preference for the Reader category should
not be used. The directory specified in the default Reader
preference is a generic directory specified for default purposes only;
the directory most likely does not exist in your file system.

Note: When creating a source, users can use all preferences that
have been defined in the ConText data dictionary, including their
own preferences, preferences created by other users, or the
predefined preferences provided by ConText.

Preferences for Text Loading

7-8 Oracle8 ConText Cartridge Administrator’s Guide

Reader Predefined Preferences
ConText provides a single predefined Reader preference, DEFAULT_READER, for
text loading.

DEFAULT_READER
This preference calls the DIRECTORY READER Tile, which specifies a dummy
directory for the Tile.

Translator Predefined Preferences
ConText provides a single predefined Translator preference, DEFAULT_
TRANSLATOR, for text loading.

DEFAULT_TRANSLATOR
This preference calls the NULL TRANSLATOR Tile, which indicates no translation
is performed on the files to be loaded; the files are in the format required by ctxload.

Engine Predefined Preferences
ConText provides a single predefined Engine preference, DEFAULT_LOADER, for
text loading.

DEFAULT_LOADER
This preference calls the GENERIC LOADER Tile, which indicates the preference
can be used to load text from files in a operating system directory.

Note: Because it is unknown which directory contains the files to
be loaded and path names are operating-system specific, this
preference is provided as a default only and should not be used
when creating a source.

Before creating a source, you should create your own Reader
preference that specifies the directory where your files to be loaded
are located.

Reader Tiles

Automated Text Loading 7-9

Reader Tiles
The Reader Tiles are used to specify the location of the files to be loaded.

ConText provides a single Tile, DIRECTORY READER, for creating Reader
preferences for text loading sources.

DIRECTORY READER
The DIRECTORY READER Tile is used to specify the location of files to be loaded
when the files are located in the local operating system.

DIRECTORY READER has the following attribute(s):

directories
The directories attribute specifies the full pathname for the directory that the
ConText server with the Loader personality scans when looking for new files to
load into a column in a table or view.

The structure of the value for directories will vary depending on the directory
naming conventions used by your operating system.

Attribute Attribute Values

directories pathname for the directory where text loading files are located

Translator Tiles

7-10 Oracle8 ConText Cartridge Administrator’s Guide

Translator Tiles
ConText provides the following Tiles for creating Translator preferences for text
loading sources:

NULL TRANSLATOR
The NULL TRANSLATOR Tile is used to specify that the load files for the loader
(ctxload) are already in the format required by ctxload. It has no attributes.

USER TRANSLATOR
The USER TRANSLATOR Tile is used to specify a translator program that converts
load files into the format required by ctxload.

USER TRANSLATOR has the following attribute(s):

command
The command attribute specifies the executable name of the translator program used
to convert a load file into the format required by ctxload.

Tile Description

NULL TRANSLATOR Files to be loaded are already in the load file format required
by ctxload.

USER TRANSLATOR Files to be loaded are converted into the required load file
format using a translator provided and specified by the user.

Attribute Attribute Values

command executable for translator program

Translator Tiles

Automated Text Loading 7-11

Note: The specified translator executable must be stored in the
appropriate directory in the Oracle home directory.

For example, in a UNIX-based environment, all translator
executables must be stored in $ORACLE_HOME/ctx/bin.

In a Windows NT environment, the translator executables must be
stored in \BIN in the Oracle home directory.

For more information about directory structures for ConText, see
the Oracle8 installation documentation specific to your operating
system.

Engine Tiles

7-12 Oracle8 ConText Cartridge Administrator’s Guide

Engine Tiles
ConText provides a single Tile, GENERIC LOADER, for creating Engine preferences
for text loading sources:

GENERIC LOADER
The GENERIC LOADER Tile is used to specify the command-line options for
ctxload.

GENERIC LOADER has the following attribute(s):

separate
The separate attribute specifies whether the -separate option for ctxload is enabled.
When the -separate option is enabled, the load files do not contain the actual text of
the documents to be loaded, but, rather, contain pointers to separate files where the
text of the documents is stored.

The default for separate is N.

longsize
The longsize attribute specifies a value for the -longsize option for ctxload. The
-longsize option specifies the maximum size, in kilobytes, allowed for text loaded by
ctxload.

Attribute Attribute Values

separate Y (text stored in separate file(s), load file contains pointers to
separate file(s))

N (text stored in load file, default)

longsize maximum size, in kilobytes, of text to be loaded (default 64)

See Also: For more information about how the -separate and
-longsize options work in ctxload for loading text, see
"Command-line Syntax" in Chapter 10, "Text Loading Utility".

ConText Indexing 8-1

8
ConText Indexing

This chapter introduces the concepts necessary for understanding the indexing
objects in the ConText data dictionary.

The following topics are discussed in this chapter:

■ Overview of Indexing

■ Policies

■ Preferences for Indexing

■ Data Storage and Data Store Tiles

■ Filtering and Filter Tiles

■ Lexers and Lexer Tiles

■ Indexing Engine and Engine Tiles

■ Advanced Query (Wordlist) Options and Wordlist Tiles

■ Stop Words and Stoplist Tiles

Overview of Indexing

8-2 Oracle8 ConText Cartridge Administrator’s Guide

Overview of Indexing

Figure 8–1

ConText indexes enable text and theme queries to be performed against text
columns. Figure 8–1 illustrates the basic relationships between text tables, policies,
ConText indexes, and ConText queries.

ConText Index

Column Policy

Table with
Text Column

Documents

Query Results
(Hitlist)

SELECT TITLE, SCORE(10)
FROM TEXT_TABLE
WHERE CONTAINS...

ConText Query

Overview of Indexing

ConText Indexing 8-3

In a typical ConText system, text is loaded into a text column in a table, then a
policy is created for the column.

The policy is used to create the ConText index, which resides in separate database
tables associated with the text column through the policy. Once an index exists for a
column, queries can be performed against the column using any of the query
methods supported by ConText.

When an query is issued against a text column that has a ConText index, rather than
scan the actual text to find documents that satisfy the search criteria of the query,
ConText searches the ConText index tables to determine whether a document
should be returned in the results of the query.

The query results are then returned, in the form of a hitlist, to the user that
submitted the query. The query results can be returned directly or can be combined
with structured data from the base table to refine the query or provide more
information about the document that satisfy the query.

See Also: For more information about ConText indexes and the
objects used to create them, see:

■ "ConText Indexes" in Chapter 6, "Text Concepts"

■ "Policies" in this chapter

For more information about text loading, see "Text Loading" in
Chapter 6, "Text Concepts".

For more information about ConText queries, see Oracle8 ConText
Cartridge Application Developer’s Guide.

Policies

8-4 Oracle8 ConText Cartridge Administrator’s Guide

Policies

Figure 8–2

Document(s)

Data Store

Filter

Indexing Engine

Wordlist

Stoplist

Lexer (Theme)

Theme
Extraction

System

Lexer (Text)

Plain Text Document(s)

Advanced Query
Options

Stop Words

Tokens

Index Entries

Text Index Theme Index

Text Table

POLICY

Policies

ConText Indexing 8-5

This section provides conceptual, as well as reference, information about policies:

■ What is a Policy?

■ Policy Examples

■ Predefined Template Policies

What is a Policy?
To create a ConText index for text stored in a database column, ConText requires the
following information about the text:

■ how is the text stored in the column? - Data Storage

■ what format(s) is the text in? - Filtering

■ how should tokens in the text be identified? - Lexers

■ how should the index be generated and where should it be stored? - Indexing
Engine

■ are any advanced query options going to be used? - Advanced Query (Wordlist)
Options

■ are there any words which should not have entries in the index? - Stop Words

A policy provides this information for the column, in the form of indexing
preferences (one preference for each of the requirements). Policies can be created by
any ConText user with the CTXAPP role and are stored in the ConText data
dictionary.

In addition to the preferences for a policy, users specify a name for the policy and
the text column for the policy, and a number of other policy attributes.

The policies created by a user must be unique for the user. As such, the same policy
for a user cannot be assigned to more than one column.

Note: ConText also provides a facility for specifying whether the
text is compressed; however, this facility is not currently
implemented.

Note: A policy must exist for a column before a ConText server
can create a index for the column.

Policies

8-6 Oracle8 ConText Cartridge Administrator’s Guide

Column Policies
A column policy is a policy that has a text column assigned to it. Only column
policies can be used to create ConText indexes.

Template Policies
A template policy is a policy that does not have a text column assigned to it.
Template policies are used as source policies when creating column policies or other
template policies. The source policy for a policy specifies the preferences (one for
each requirement) to be used as defaults in the policy.

For example, ConText provides a template policy, DEFAULT_POLICY, that is the
default source policy for all column and template policies.

Any of the preferences provided in a template policy can be overwritten with other
preferences (of the same type) by explicitly naming the preference during creation
of the new policy.

ConText provides a number of predefined template policies, owned by CTXSYS.
Users can create their own template policies or use the predefined template policies
when creating policies.

Multiple Policies on a Column
Multiple policies, as long as they are unique for the user, can be assigned to a
column. As a result, a column can have more than one index. When a query is
performed, you can specify a policy name to indicate the index that is used to
process the query.

This feature is particularly useful if you have English-language documents for
which you want to enable both text and theme queries. To enable text and theme
queries, you must create both a text indexing policy and a theme indexing policy on
the column containing the documents and create a ConText index for each policy.

See Also: For examples of creating policies, see "Creating a
Column Policy" in Chapter 9, "Setting Up and Managing Text".

See Also: For more information about text and theme queries, see
"Text/Theme Queries" in Chapter 6, "Text Concepts".

For more information about text indexing and theme indexing
policies, see "Text Lexers" and "Theme Lexer" in this chapter.

For a complete discussion of text and theme queries, see Oracle8
ConText Cartridge Application Developer’s Guide.

Policies

ConText Indexing 8-7

Policy Examples
Consider a table with two text columns: one holds Microsoft Word documents and
the other holds (plain text) comments for the documents. The table structure is:

To create a text index for both the comment and doc columns in doc_and_comment, a
policy must be defined for each column. The following example illustrates two
policies named i_doc and i_comments that could be created:

Table name Column Name Datatype Description

DOC_AND_COMMENT TEXTKEY NUMBER Primary key column

DATE DATE Publishing date of
document

AUTHOR VARCHAR2(50) Name of document
author

COMMENTS VARCHAR2(2000) Text column storing
comments (ASCII text)
for documents

TEXT LONG RAW Text column storing MS
Word documents

Policy Name Indexing Option Indexing Option Value

I_DOC Text Column DOC_AND_COMMENT.DOC

Data Store Direct (text in column)

Filter MS Word

Lexer General purpose text lexer

Engine General purpose indexing engine

Stoplist Default stoplist (English)

Wordlist Soundex and stemming

Policies

8-8 Oracle8 ConText Cartridge Administrator’s Guide

To create a theme index for the doc column, a theme indexing policy must be
defined. The following example illustrates a policy named i_theme that could be
created for the table:

I_COMMENTS Text Column DOC_AND_COMMENT.COMMENTS

Data Store Direct (text in column)

Filter None (ASCII text)

Lexer General purpose lexer

Engine General purpose indexing engine

Stoplist Default stoplist (English)

Wordlist None

Policy Name Indexing Option Indexing Option Value

I_THEME Text Column DOC_AND_COMMENT.DOC

Data Store Direct (text in column)

Filter MS Word

Lexer Theme lexer

Engine General purpose indexing engine

Stoplist Not applicable

Wordlist Not applicable

Policy Name Indexing Option Indexing Option Value

Policies

ConText Indexing 8-9

Predefined Template Policies
ConText provides the following template policies (listed in alphabetical order):

■ DEFAULT_POLICY (Default)

■ TEMPLATE_AUTOB

■ TEMPLATE_BASIC_WEB

■ TEMPLATE_DIRECT

■ TEMPLATE_LONGTEXT_STOPLIST_OFF

■ TEMPLATE_LONGTEXT_STOPLIST_ON

■ TEMPLATE_MD

■ TEMPLATE_MD_BIN

■ TEMPLATE_WW6B

DEFAULT_POLICY
This template policy uses all of the default preferences. It can be used to create a
policy with the following characteristics:

Preferences Characteristics

DEFAULT_DIRECT_DATASTORE Text stored in database

DEFAULT_NULL_FILTER No filter (text stored in plain, ASCII format)

DEFAULT_LEXER Basic lexer (standard punctuation and continuation
characters, no printjoins or skipjoins characters)

DEFAULT_INDEX Indexing memory = 12582912 bytes, default
storage/other clauses for ConText index tables and
indexes

NO_SOUNDEX No Soundex word mappings stored during text
indexing

DEFAULT_STOPLIST Default stoplist (English) is active

Note: DEFAULT_POLICY is the default for source_policy in both
CTX_DDL.CREATE_POLICY and CTX_DDL.CREATE_
TEMPLATE_POLICY.

Policies

8-10 Oracle8 ConText Cartridge Administrator’s Guide

TEMPLATE_AUTOB
This template policy uses the AUTOB predefined Lexer preference and all the
remaining preferences from DEFAULT_POLICY. It can be used to create a column
policy for a text column that contains documents in any of the formats supported by
the ConText internal filters.

TEMPLATE_BASIC_WEB
This template policy uses the following predefined preferences and can be used to
create a column policy which enables basic section searching for a text column
containing HTML documents:

TEMPLATE_DIRECT
This template policy uses the same preferences as DEFAULT_POLICY. It can be
used to create a policy for indexing basic text stored in a text column.

TEMPLATE_LONGTEXT_STOPLIST_OFF
This template policy uses the NO_STOPLIST predefined Stoplist preference and all
the remaining preferences from DEFAULT_POLICY. It can be used to create a policy
that does not use a stoplist during indexing.

Preferences Characteristics

DEFAULT_URL Text stored in external files, URLs to external files
stored in text column

BASIC_HTML_FILTER HTML filter with certain HTML tags specified for
keep_tag

BASIC_HTML_LEXER Basic lexer with characters specified for startjoins
and endjoins

DEFAULT_LEXER Indexing memory = 12582912 bytes, default
storage/other clauses for ConText index tables and
indexes

BASIC_HTML_WORDLIST No Soundex word mappings stored during text
indexing; HTML section group specified for
section_group

DEFAULT_STOPLIST Default stoplist (English) is active

Policies

ConText Indexing 8-11

TEMPLATE_LONGTEXT_STOPLIST_ON
This template policy uses the DEFAULT_STOPLIST predefined Stoplist preference
and all the remaining preferences from DEFAULT_POLICY. It can be used to create
a policy that uses the default stoplist (English) during indexing.

TEMPLATE_MD
This template policy uses the MD_TEXT predefined Data Store preference and all
the remaining preferences from DEFAULT_POLICY. It can be used to create a policy
for indexing text stored in the detail column in a master-detail table.

TEMPLATE_MD_BIN
This template policy uses the MD_BINARY predefined preference and all the
remaining preferences from DEFAULT_POLICY. It can be used to create a policy for
indexing text stored in the detail column in a master-detail table.

TEMPLATE_WW6B
This template policy uses the WW6B predefined preference and all the remaining
preferences from DEFAULT_POLICY. It can be used to create a policy for indexing
text in Microsoft Word for Windows 6 format.

Preferences for Indexing

8-12 Oracle8 ConText Cartridge Administrator’s Guide

Preferences for Indexing
This section provides conceptual, as well as reference, information for indexing
preferences:

■ What is an Indexing Preference?

■ Data Store Predefined Preferences

■ Filter Predefined Preferences

■ Lexer Predefined Preferences

■ Engine Predefined Preferences

■ Wordlist Predefined Preferences

■ Stoplist Predefined Preferences

What is an Indexing Preference?
Indexing preferences specify the options that ConText uses to create ConText
indexes. Each preference represents one (and only one) indexing option and is
grouped into one of six categories or types, which correspond to the information
ConText requires for creating indexes:

■ Data Store preferences

■ Filter preferences

■ Lexer preferences

■ Engine preferences

■ Wordlist preferences

■ Stoplist preferences

When creating a policy, six preferences are specified, one for each of the six types. If
one of the preference is not specified when the policy is created, the preference (for
that type) from the DEFAULT_POLICY template policy is used.

A preference can be used in more than one policy; however, two preferences of the
same type cannot be used in the same policy.

Preferences for Indexing

ConText Indexing 8-13

Tiles in Preferences
Tiles are the objects in the ConText data dictionary that provide ConText with
information about how text is managed in the system, as well as indexing
instructions. Each Tile specifies a distinct indexing option within the ConText
framework.

A Tile is the main component of a preference. Each Tile may have none, one, or
many attributes that are used to define preferences. The attributes identify which
indexing options are active for the preference.

You define one of the types of preferences by setting the attributes with the desired
values for the appropriate Tile, then creating the preference. While a type is not
explicitly assigned to a preference, it is implied through the association of the Tile
with the preference.

Predefined Preferences
ConText provides a number of predefined preferences (owned by CTXSYS) for each
type. These predefined preferences can be used by any ConText user with the
CTXAPP role to create policies without having to first create preferences.

User-defined Preferences
ConText users with the CTXAPP role can create their own preferences by setting the
required attributes for one of the Tiles provided by ConText, then calling CTX_
DDL.CREATE_PREFERENCE and specifying the name of the Tile.

Note: If you want to use the same preferences for two text
columns, you must create two separate policies. The policies will be
identical (having all of the same preferences), but they must have
unique names and be attached to different columns. This is true
whether the columns are in the same table or in different tables.

Note: When creating a policy, users can use all preferences that
have been defined in the ConText data dictionary, including their
own preferences, preferences created by other users, or the
predefined preferences provided by ConText.

Preferences for Indexing

8-14 Oracle8 ConText Cartridge Administrator’s Guide

Data Store Predefined Preferences
ConText provides the following predefined Data Store preferences:

■ DEFAULT_DIRECT_DATASTORE (Used in DEFAULT_POLICY)

■ DEFAULT_OSFILE

■ DEFAULT_URL

■ MD_BINARY

■ MD_TEXT

DEFAULT_DIRECT_DATASTORE
This preference calls the DIRECT Tile, which is used to indicate that text is stored
directly in the text column of a text table.

DEFAULT_OSFILE
This preference calls the OSFILE Tile, which is used to indicate that text is stored as
files in a file system,

DEFAULT_OSFILE uses the path attribute and a hardcoded set of dummy directory
paths to indicate the directories in which the text files are located.

The hardcoded paths, delimited by colons are: /oracle/data, /oracle/data2,
/oracle/data3.

Note: If the locations of your files do not match the hardcoded
paths, do not use the DEFAULT_OSFILE preference in a policy.

Preferences for Indexing

ConText Indexing 8-15

DEFAULT_URL
This preference calls the URL Tile which is used to indicate that text is stored as
URLs.

DEFAULT_URL uses all of the attribute defaults for the URL Tile:

■ timeout of 30 seconds

■ up to 8 HTTP threads handled simultaneously

■ up to 256 HTML documents can be accessed simultaneously

■ the maximum length of a URL stored in the text column is 256 bytes

■ the maximum size of an HTML file that the URL data store will access without
error is 2 megabytes

■ no proxy server

MD_BINARY
This preference calls the MASTER DETAIL Tile which is used to indicate text is
stored in a master detail table.

MD_BINARY uses the binary attribute and a value of YES to indicate that the text in
the table is stored in binary format (newline characters do not indicate end of line).

MD_TEXT
This preference calls the MASTER DETAIL Tile which is used to indicate text is
stored in a master detail table.

MD_TEXT uses the binary attribute and a value of NO to indicate that the text in the
table is stored in plain text format (newline characters indicate end of line).

Preferences for Indexing

8-16 Oracle8 ConText Cartridge Administrator’s Guide

Filter Predefined Preferences
ConText provides the following predefined Filter preferences:

■ AUTOB

■ BASIC_HTML_FILTER

■ DEFAULT_NULL_FILTER (Used in DEFAULT_POLICY)

■ HTML_FILTER

■ WW6B

AUTOB
This preference calls the BLASTER FILTER Tile which specifies an internal filter
used to extract text from formatted documents in a text column.

AUTOB uses the format attribute and a value of 997 to indicate that ConText uses the
autorecognize filter to extract text. It can be used to filter text in a column that
contains the following document formats:

Document Format Version

AmiPro for Windows 1, 2, 3

ASCII N/A

HTML 1, 2, 3

Lotus 123 for DOS 4, 5

Lotus 123 for Windows 2, 3, 4, 5

Microsoft Word for Windows 2, 6.x

Microsoft Word for DOS 5.0, 5.5

Microsoft Word for MAC 3, 4, 5.x

Word Perfect for Windows 5.x, 6.x

WordPerfect for DOS 5.0, 5.1, 6.0

Xerox XIF for UNIX 5, 6

Preferences for Indexing

ConText Indexing 8-17

BASIC_HTML_FILTER
This preference is identical to the HTML_FILTER predefined preference, except the
keep_tag attribute is set with the following values to support basic section searching
in HTML documents:

■ ’P’

■ ’TITLE’

■ ’H1’,’H2’,’H3’,’H4’,’H5’,’H6’

■ ’HEAD’

■ ’BODY’

DEFAULT_NULL_FILTER
This preference calls the FILTER NOP Tile which indicates that the text column in a
text table contains plain, unformatted (ASCII) text and does not require filtering for
indexing and highlighting.

HTML_FILTER
This preference calls the HTML FILTER Tile and can be used to filter documents in a
column that contains only HTML-formatted documents.

WW6B
This preference calls the BLASTER FILTER Tile and specifies a value of 11 for the
format attribute to indicate ConText uses the Word for Windows 6 filter to extract
text. It can be used in a column that contains only Word for Windows 6-formatted
documents.

Preferences for Indexing

8-18 Oracle8 ConText Cartridge Administrator’s Guide

Lexer Predefined Preferences
ConText provides the following predefined Lexer preferences:

■ BASIC_HTML_LEXER

■ DEFAULT_LEXER (Used in DEFAULT_POLICY)

■ KOREAN

■ THEME_LEXER

■ VGRAM_CHINESE_1 and VGRAM_CHINESE_2

■ VGRAM_JAPANESE_1 and VGRAM_JAPANESE_2

BASIC_HTML_LEXER
This preference is identical to DEFAULT_LEXER, except the startjoins and endjoins
attributes for the BASIC LEXER Tile are set with ’</’ and ’>’ respectively to support
basic section searching in HTML documents.

DEFAULT_LEXER
This preference calls the BASIC LEXER Tile, which indicates the lexer settings used
to identify word and sentence boundaries for text indexing and text queries.

DEFAULT_LEXER uses the following Tile attributes and values to indicate the lexer
settings:

KOREAN
This preference calls the KOREAN LEXER Tile and can be used for parsing Korean
text. Because the KOREAN LEXER Tile does not have any attributes, no attributes
are set for this preference.

Attribute Values

punctuations . ? !

printjoins NULL (indicates no characters defined as printjoins for the
BASIC LEXER)

skipjoins NULL (indicates no characters defined as skipjoins for the BASIC
LEXER)

continuation - \

Preferences for Indexing

ConText Indexing 8-19

THEME_LEXER
This preference calls the THEME LEXER Tile, which indicates the preference can be
used in a column policy to create theme indexes for a column.

The THEME_LEXER preference does not set any attributes because the THEME
LEXER preference doesn’t have any attributes.

VGRAM_CHINESE_1 and VGRAM_CHINESE_2
This preference call the CHINESE V-GRAM LEXER Tile, which indicates the
preferences can be used for parsing Chinese text.

The 1 or 2 indicates that the preference uses either method 1 or 2 for identifying
tokens in Chinese text (hanzi_indexing attribute).

VGRAM_JAPANESE_1 and VGRAM_JAPANESE_2
This preference call the JAPANESE V-GRAM LEXER Tile which indicates the
preferences can be used for parsing Japanese text.

The 1 or 2 indicates that the preference uses either method 1 or 2 for identifying
tokens in Japanese text (kanji_indexing attribute).

Preferences for Indexing

8-20 Oracle8 ConText Cartridge Administrator’s Guide

Engine Predefined Preferences
ConText supplies a single predefined Engine preference, DEFAULT_INDEX.

DEFAULT_INDEX
This preference calls the GENERIC ENGINE Tile which is used to specify the
amount of memory reserved for indexing.

DEFAULT_INDEX uses the index_memory attribute to allocate the following amount
of memory for indexing: 12582912 bytes.

Preferences for Indexing

ConText Indexing 8-21

Wordlist Predefined Preferences
ConText provides the following predefined Wordlist preferences, which all use the
GENERIC WORD LIST Tile:

■ BASIC_HTML_WORDLIST

■ NO_SOUNDEX (Used in DEFAULT_POLICY)

■ SOUNDEX

■ VGRAM_CHINESE_WORDLIST

■ VGRAM_CHINESE_WORDLIST

BASIC_HTML_WORDLIST
This preference is identical to the NO_SOUNDEX preference, except the section_
group attribute has a value of ’BASIC_HTML_SECTION’, which is a predefined
section group provided by ConText for basic section searching of HTML text.

NO_SOUNDEX
This preference specifies a value of 0 for the soundex_at_index attribute to indicate
that ConText does not generate Soundex word mappings during text indexing.

SOUNDEX
This preference specifies a value of 1 for the soundex_at_index attribute to indicate
that ConText generates Soundex word mappings during text indexing.

KOREAN_WORDLIST
This preference specifies a value 3 for the fuzzy_match attribute to ensure fuzzy
matching is not enabled for Korean.

VGRAM_CHINESE_WORDLIST
This preference specifies a value 4 for the fuzzy_match attribute to ensure fuzzy
matching is not enabled for Chinese.

VGRAM_JAPANESE_WORDLIST
This preference specifies a value 2 for the fuzzy_match attribute to enable fuzzy
matching for Japanese.

Preferences for Indexing

8-22 Oracle8 ConText Cartridge Administrator’s Guide

Stoplist Predefined Preferences
ConText provides the following predefined Stoplist preferences for creating text
indexes:

■ DEFAULT_STOPLIST (Used in DEFAULT_POLICY)

■ NO_STOPLIST

DEFAULT_STOPLIST
This preference defines a list of English terms treated as stop words during
indexing.

In addition to the English stoplist in DEFAULT_STOPLIST, ConText supplies
stoplists for many European languages. These stoplists are not provided as
predefined Stoplist preferences; they are provided as SQL scripts which can be used
to create Stoplist preferences for the languages.

NO_STOPLIST
This preference specifies that no list of stop words is used during text indexing. All
words that ConText encounters are stored in the text index.

Note: All of the Stoplist preferences call the GENERIC STOP LIST
Tile.

See Also: For a complete list of the stop words in DEFAULT_
STOPLIST, as well as the list of stop words for each supplied
stoplist, see Appendix A, "Supplied Stoplists".

Data Storage

ConText Indexing 8-23

Data Storage

Figure 8–3

LOCATION OF DATA

Document(s)

Data Store

Filter

Direct
Document = single row
(Text stored in text column)

Operating System
Document = file
(File name stored in text column)

Internet or Intranet
Document = URL
(URL stored in text column)

Supported protocols:
- HyperText Transfer Protocol (HTTP)
- File Transfer Protocol (FTP)
- File Protocol

Text
Table

Master Detail
Document = one or more rows
(Text stored in detail table column)

Data Storage

8-24 Oracle8 ConText Cartridge Administrator’s Guide

ConText supports four methods of storing text in a column:

■ Direct Storage

■ Master-Detail Storage

■ External Storage (Operating System Files)

■ External Storage (URLs)

Direct Storage
With direct storage, text for documents is stored directly in a database column. The
following table description illustrates a table in which text is stored directly in a
column:

The requirements for storing text directly in a column are relatively straightforward.
The text is physically stored in a text column and the policy for the text column
contains a Data Store preference that utilizes the DIRECT Tile.

Note: The tables illustrated in the following sections are examples
only. The column names and definitions for actual tables used to
store text will vary depending on the needs of your application.

Table Name Column Name Datatype Description

DIR_TEXT TEXTKEY NUMBER Primary or unique key for table

TEXTDATE DATE Document publication date

AUTHOR VARCHAR2(50) Document author

NOTES VARCHAR2(2000) Text column with direct storage

TEXT LONG Text column with direct storage

Data Storage

ConText Indexing 8-25

Master-Detail Storage
Master-detail storage is for documents stored directly in a text column, similar to
direct storage; however, each document consists of one or more rows which are
indexed as a single row.

In a master-detail relationship, the master table contains the textkey column and the
detail table contains the text column, the line number column, and a foreign key to a
primary or unique key column in the master table.

The foreign key and the line number columns comprise the primary key for the
detail table, which is used to store the text.

The following table description illustrates two tables with a master-detail
relationship:

The following query illustrates the relationship between the two tables:

select DETAIL.TEXT
from DETAIL
where DETAIL.FK = MASTER.PK
order by DETAIL.LINENO

ConText supports two methods of creating policies for text columns in master-detail
tables:

■ Policies on Columns in Master Table

■ Policies on Columns in Detail Table

Table Name Column Name Datatype Description

MASTER PK NUMBER Primary key for table

AUTHOR VARCHAR2 Document author

TITLE VARCHAR2 Document title

DETAIL FK NUMBER Foreign key to master.pk

LINENO NUMBER Detail information for document

TEXT VARCHAR2 Text column

Data Storage

8-26 Oracle8 ConText Cartridge Administrator’s Guide

Policies on Columns in Master Table
With this method, the MASTER DETAIL NEW Tile is used to create Data Store
preferences, which are used in the policy assigned to one of the columns in the
master table. The column to which the policy is assigned (i.e. the text column) can
be any column in the master table, except the column that serves as the textkey
column for the policy.

The detail table name and attributes, including the name of the column that
contains the text to be indexed, are specified in the Data Store preference.

Using the tables described above, the textkey for the policy would be pk in master.
The text column for the policy could be either author or title.

The Data Store preference for the policy would identify detail as the detail table,
lineno as the line number column, and text as the column containing the text to be
indexed.

Advantages This method has the following advantages:

1. DML is handled with one insert to the DML Queue, resulting in a smaller queue
and quicker processing

2. Structured data queries in text/theme queries can be applied to the master table

For example:

exec ctx_query.contains('MY_POL','Oracle','ctx_temp', struct_query=>'author=’’SMITH’’’);

Limitations This method has the following limitations:

1. The column storing text in the detail table is limited to CHAR, VARCHAR2,
and LONG datatypes.

2. Updates to individual rows in the detail table are no longer automatically
detected, since the DML trigger is on the master table. Updates to the text in the
detail table must be manually reindexed using CTX_DML.REINDEX or by
creating a trigger on the detail table that calls CTX_DML.REINDEX.

Note: The contents of the text column are not actually indexed.
The text column only serves as a place-holder for the policy.

See Also: For an example of creating a policy on a master table
column, see"Creating a Data Store Preference for a Master Table" in
Chapter 9, "Setting Up and Managing Text"

Data Storage

ConText Indexing 8-27

Policies on Columns in Detail Table
With this method, the policy is created on the detail table, rather than on the master
table, and the MASTER DETAIL Tile is used instead of the MASTER DETAIL NEW
Tile, to create Data Store preferences.

The textkey column and text column for the detail table, along with the line number
column, are specified in the policy. The textkey column and the line number column
together uniquely identify rows in the detail table.

Using the tables described above, the textkey for the policy would be fk in detail. The
text column for the policy would be text.

Disadvantages This method has the following disadvantages:

1. Structured data queries in text/theme queries may be slow. The relevant
relational criteria is often stored in a different table, resulting in sub-selects to
return structured data.

2. DML may be slow, because the DML trigger is created on the detail table. When
a new row is created in the master table and its corresponding rows are created
in the detail table, one request is sent to the DML queue for each new detail
row, thereby slowing down the queue.

3. The syntax for one-step queries is non-intuitive. Since the policy is created on
the detail table, the one-step query is on the detail table, which may result in
multiple rows per document returned by a query.

Note: This method is provided primarily to maintain backward
compatibility with previous versions of ConText.

If you want to index text stored in master-detail tables, Oracle
Corporation suggests that you create policies on the master table.

Data Storage

8-28 Oracle8 ConText Cartridge Administrator’s Guide

External Storage (Operating System Files)
With operating system storage, the text column does not contain the actual text of
the document, but rather stores a pointer (file name) to the operating-system file
that contains the text of the document. The Data Store preference for the column
policy uses the OSFILE Tile and specifies the location of the file.

The following table description illustrates a table that uses external data storage:

In this example, the only difference between a table used to store text internally and
externally is the datatype of the text column. In an external table, the text column
would typically be assigned a datatype of VARCHAR2, rather than LONG, because
the column contains a pointer to a file rather than the contents of the file (which
requires more space to store).

File Names
The names of the external text files are stored in the text column.

Directory Path Names
The directory path(s) where the external text files are located can be stored in the
text column as part of the file name or in the Data Store preference that you create
for the OSFILE Tile.

Suggestion: If text is stored in operating system files, the column
containing the file names should be either a CHAR or VARCHAR2
column. LONG and LONG RAW columns are best suited for long
documents stored directly in the database.

Table Name Column Name Datatype Description

EXT_TEXT TEXTKEY NUMBER Primary or unique key for the table

TEXTDATE DATE Document publication date

AUTHOR VARCHAR2(50) Document author

NOTES VARCHAR2(2000) Text column with direct text storage

TEXT VARCHAR2(100) Text column with names of
operating system files that contain
the document text

Data Storage

ConText Indexing 8-29

File Access
All the external files referenced in the text column must be accessible from the
server machine on which the ConText server is running. This can be accomplished
by storing the files locally in the file system for the server machine or by mounting
the remote file system to the server machine.

File Permissions
File permissions for external files in which text is stored must be set accordingly to
allow ConText to access the files. If the file permissions are not set properly for a file
and ConText cannot access the file, the file cannot be indexed or retrieved by
ConText.

External Storage (URLs)
For text stored in external World Wide Web files, the complete address for each file
must be stored as a Uniform Resource Locator (URL) in the text column and the
URL Tile must be utilized in the Data Store preference for the column policy.

A URL consists of the access scheme for the Web file and the address of the file, in
the following format:

access_scheme://file_address

Note: If the preference does not contain the directory path for the
files, ConText requires the directory path to be included as part of
the file name stored in the text column.

Note: Text that contains HTML tags and is stored directly in a text
column is considered internal, rather than external, text. As such,
the Data Store preference for the text column policy would use the
Data Store Tiles which support direct text storage.

In addition, Web files can be any format supported by the World
Wide Web, including HTML files, plain (ASCII) text files, and
proprietary formats, such as PDF and Word. The filter for the
column must be able to recognize and process any of the possible
documents formats that may be encountered on the Web.

Data Storage

8-30 Oracle8 ConText Cartridge Administrator’s Guide

The ConText URL Tile supports three access scheme protocols in URLs:

■ Hypertext Transfer Protocol (HTTP)

■ File Transfer Protocol (FTP)

■ File Protocol

Hypertext Transfer Protocol (HTTP)
If a URL uses HTTP, the file address contains the host name of the Web server
where the file is located and, optionally, the URL path for the file on the Web server.

For example:

http://my_server.com/welcome.html

http://www.oracle.com

In this context, a Web server is any host machine that is running an HTTP daemon,
which accepts requests for files and transfers the files to the requestor.

File Transfer Protocol (FTP)
If a URL uses FTP, the file address contains the host name of the Web server where
the file is located and, optionally, the directory path for the file on the Web server.

For example:

ftp://my_server.com/code/samples/sample1.tar.Z

In this context, a Web server is any host machine that is running an FTP daemon,
which accepts requests for files and transfers the files to the requestor.

File Protocol
If a URL uses the file protocol, the address for the file contains the absolute
directory path for the location of the file on the local file system.

Note: The file address may also (optionally) contain the port on
which the Web server is listening.

Note: The file address may also (optionally) contain a
username/password for accessing the host machine.

Data Storage

ConText Indexing 8-31

For example:

file://private/docs/html/intro.html

The file referenced by a URL using the file protocol must reside locally on a file
system that is accessible to the machine running ConText.

Because the file is accessed through the operating system, the machine on which the
file is located does not need to be configured as a Web server. However, the same
requirements that apply to text stored as file names apply to text stored as URLs
which use the file protocol.

If the requirements are not met, ConText returns one or more error messages.

Intranet Support
Through HTTP and FTP, the URL Tile can be used to index files in an intranet, as
well as files on any publicly-accessible Web servers on the World Wide Web.

Intranets are private networks that use the Internet to link machines in the network,
but are protected from public access on the Internet via a gateway proxy server
which acts as a firewall.

Outside a firewall, a URL request for a Web file is processed directly by the host
machine identified in the URL. Within a firewall, requests are processed by the
proxy server, which passes the request to the appropriate host machine and
transfers the response back to the requestor.

For security reasons, access to an intranet is generally restricted to machines within
the firewall; however, machines in an intranet can access the World Wide Web
through the gateway proxy server if they have the appropriate permission and
security clearance.

Document Access Using HTTP or FTP
When HTTP or FTP is used in a URL stored in the database, ConText acts as a client,
submitting a request to a Web server for the file (document) referenced by the URL.
If the request is successful, the Web server returns the file to ConText where it can
be indexed for querying or highlighted for viewing.

See Also: For more information, see "External Storage (URLs)" in
this chapter.

For the error messages returned by the URL data store, see Oracle8
Error Messages.

Data Storage

8-32 Oracle8 ConText Cartridge Administrator’s Guide

Proxy Servers If the document to be accessed is located on the World Wide Web
outside a firewall and the machine on which ConText is installed is inside the
firewall, a host machine that serves as the proxy (gateway) for the firewall must be
specified as an attribute for the URL Tile.

A single machine can be specified as the proxy for handling HTTP and FTP requests
or two separate machines can be specified, one for each protocol. If network traffic
is expected to be heavy or a large number of FTP requests are expected, separate
proxies should be specified for HTTP and FTP, since FTP is generally used for
accessing large, binary files which may affect performance on the proxy server.

In addition to specifying proxy servers, a sub-string of host or domain names,
which identify all or most of the machines internal to the firewall, should be
specified. Access to these machines does not require going through the proxy
server, which helps reduce the request load that your proxy server(s) have to
process.

Multi-threading In a single-threaded environment, a request for a URL blocks all other
requests until a response to the request is returned. Because a response may not be
returned for a long time, a single-threaded environment in any text system using
HTTP or FTP to access files could create a bottleneck.

To prevent this type of bottleneck, the URL Tile supports multi-threading. With
multi-threading, while one thread is blocked, waiting to communicate with a Web
server, another thread can retrieve a document from another Web server.

Redirection The response to a request to retrieve a URL may be a new (redirected)
document to retrieve. The URL Tile supports this type of redirection by
automatically processing the redirection to retrieve the new document. However, to
avoid infinite loops, the URL Tile limits the number of redirections that it attempts
to process to three (3).

Timeouts The time necessary to retrieve a URL using HTTP may vary widely,
depending on where the Web server is geographically located. The Web server may
even be temporarily unreachable.

To allow control over the length of time an application waits for a response to an
HTTP request for a URL, the URL data store supports specifying a maximum
timeout.

Exception Handling When using URLs as your data store, a number of exceptions can
occur when a file is accessed. These exceptions are written as errors to the CTX_
INDEX_ERRORS view.

Data Storage

ConText Indexing 8-33

The URL data store returns error messages for the following exceptions:

■ the document referenced in the URL has been permanently moved or cannot be
found

■ access to the document referenced in the URL requires authentication which the
user does not have or requires payment which the user must provide

■ access to the document referenced in the URL is denied by the Web server

■ the Web server referenced in the URL does not comply with HTTP standards

■ the specified URL is incorrectly formatted

■ connection to the Web server is denied (this may occur when the incorrect port
is referenced in the URL or the Web server is outside the firewall of an intranet)

■ the wait for a response to a request to retrieve a URL from a Web server exceeds
the maximum timeout specified for the URL preference in the text column
policy

■ the maximum number of supported redirections were encountered in
attempting to retrieve the document referenced in the URL

■ the length of the URL exceeds the maximum specified for the URL preference in
the text column policy

■ the size of the document referenced in the URL exceeds the maximum specified
for the URL preference in the text column policy

See Also: For the error messages returned by the URL data store,
see Oracle8 Error Messages.

Data Store Tiles

8-34 Oracle8 ConText Cartridge Administrator’s Guide

Data Store Tiles
ConText provides the following Tile(s) for creating Data Store preferences:

DIRECT
The DIRECT Tile is used for text stored directly in the database. It has no attributes.

Tile Description

DIRECT Data stored internally in the text column. Each row is
indexed as a single document

MASTER DETAIL Data stored internally in the text column. Document consists
of one or more rows in a detail table, with header
information stored in a master table.

The policy is created on the text column in the detail table.
As a result, queries return detail information from the detail
table. Header information must be queried explicitly.

MASTER DETAIL NEW Data stored internally in the text column. Document consists
of one or more rows in a detail table, with header
information stored in a master table.

The policy is created on a designated text column in the
master table. As a result, queries return header information
from the master table. Detail information must be queried
explicitly.

OSFILE Data stored externally in operating system files. File names
stored in the text column.

URL Data stored externally in files located on an intranet or the
Internet. Uniform Resource Locators (URLs) stored in the
text column.

Data Store Tiles

ConText Indexing 8-35

MASTER DETAIL
The MASTER DETAIL Tile is used for text stored directly in the database in
master-detail tables, with the textkey column located in the detail table. The column
policy is assigned to this column.

The MASTER DETAIL Tile has the following attribute(s):

binary
The binary attribute specifies whether text is in plain text format (0) or binary format
(1) in the detail table in a master-detail relationship.

Text in plain text format uses newline characters at the end of each line to indicate
the end of the line. Text in binary format does not use newline characters to indicate
the end of the line.

Attribute Attribute Values

binary 0 (plain text)

1 (binary text)

Data Store Tiles

8-36 Oracle8 ConText Cartridge Administrator’s Guide

MASTER DETAIL NEW
The MASTER DETAIL NEW Tile is used for text stored directly in the database in
master-detail tables, with the textkey column located in the master table. The
column policy is assigned to this column and all detail information is stored in the
Data Store preference, rather than the column policy.

MASTER DETAIL NEW has the following attribute(s):

binary
The binary attribute specifies whether the text in a master detail table is in plain text
format (0) or binary format (1).

detail_table
The detail_table attribute specifies the name of the detail table in the master-detail
relationship.

detail_key
The detail_key attribute specifies the name of the foreign key column in the detail
table.

detail_lineno
The detail_lineno attribute specifies the name of the column in the detail table that
identifies rows in the table.

detail_text
The detail_text attribute specifies the name of the text column in the detail table.

Attribute Attribute Values

binary 0 (plain text)

1 (binary text)

detail_table name of the detail table (string)

detail_key name of the foreign key column in the detail table (string)

detail_lineno name of the line number column in the detail table (string)

detail_text name of the text column in the detail table (string)

detail_text_size Internal use only

Data Store Tiles

ConText Indexing 8-37

OSFILE
The OSFILE Tile is used for text stored in files accessed through the local file
system.

OSFILE has the following attribute(s):

path
The path attribute specifies the location of text files that are stored externally in a file
system.

Multiple paths can be specified for path, with each path separated by a colon (:). File
names are stored in the text column in the text table. If path is not used to specify a
path for external files, ConText requires the path to be included in the file names
stored in the text column.

Attribute Attribute Values

path path1:path2:...:pathn

Note: If text is stored in external files rather than in a database, the
files must be accessible from the host machine on which the
ConText server is running.

This can be accomplished by storing the files in the file system for
the host machine or by mounting the file system where the files are
stored to the host machine.

Data Store Tiles

8-38 Oracle8 ConText Cartridge Administrator’s Guide

URL
The URL Tile is used for text stored:

■ in files on the World Wide Web (accessed through HTTP or FTP)

■ in files in the local file system (accessed through the file protocol)

URL has the following attribute(s):

timeout
The timeout attribute specifies the length of time, in seconds, that a network
operation such as ’connect’ or ’read’ waits before timing out and returning a
timeout error to the application. The valid range for timeout is 0 to 3600 and the
default is 30.

maxthread
The maxthreads attribute specifies the maximum number of threads that can be
running at the same time. The valid range for maxthreads is 1 to 1024 and the default
is 8.

Attribute Attribute Values

timeout seconds (0 to 3600, default 30)

maxthreads number of threads (0 to 1024, default 8)

maxurls buffer length in bytes (1 to 4294967295, default 256)

urlsize URL length (32 to 65535, default 256)

maxdocsize document size (256 to 4294967295, default 2000000)

http_proxy host name

ftp_proxy host name

no_proxy string (up to 16 strings, separated by commas)

Note: Since timeout is at the network operation level, the total
timeout may be longer than the time specified for timeout.

Data Store Tiles

ConText Indexing 8-39

maxurls
The maxurls attribute specifies the maximum number of rows that the internal
buffer can hold for HTML documents (rows) retrieved from the text table. The valid
range for maxurls is 1 to 4294967295 and the default is 256.

urlsize
The urlsize attribute specifies the maximum length, in bytes, that the URL data store
supports for URLs stored in the database. If a URL is over the maximum length, an
error is returned. The valid range for urlsize is 32 to 65535 and the default is 256.

maxdocsize
The maxdocsize attribute specifies the maximum size, in bytes, that the URL data
store supports for accessing HTML documents whose URLs are stored in the
database. The valid range for maxdocsize is 1 to 4294967295 and the default is 200000
(2 Mb).

http_proxy
The http_proxy attribute specifies the fully-qualified name of the host machine that
serves as the HTTP proxy (gateway) for the machine on which ConText is installed.
This attribute must be set if the machine is in an intranet that requires
authentication through a proxy server to access Web files located outside the
firewall.

ftp_proxy
The ftp_proxy attribute specifies the fully-qualified name of the host machine that
serves as the FTP proxy (gateway) for the machine on which ConText is installed.
This attribute must be set if the machine is in an intranet that requires

Note: The upper range of maxthreads corresponds to the number
of file descriptors that the operating system can process at one time.
If the number of files the operating system can process at one time
is less than the value set, an invalid socket error may be returned.

Note: The values specified for maxurls and urlsize, when
multiplied, cannot exceed 5000000.

In other words, the maximum size of the memory buffer (maxurls *
urlsize) for the URL Tile is approximately 5 Megabytes.

Data Store Tiles

8-40 Oracle8 ConText Cartridge Administrator’s Guide

authentication through a proxy server to access Web files located outside the
firewall.

no_proxy
The no_proxy attribute specifies a string of domains (up to sixteen, separate by
commas) which are found in most, if not all, of the machines in your intranet. When
one of the domains is encountered in a host name, no request is sent to the
machine(s) specified for ftp_proxy and http_proxy. Instead, the request is processed
directly by the host machine identified in the URL.

For example, if the string ’us.oracle.com, uk.oracle.com’ is entered for no_proxy, any
URL requests to machines that contain either of these domains in their host names
are not processed by your proxy server(s).

Data Store Preference Example
The following example creates a preference named doc_ref for the OSFILE Tile:

begin
 ctx_ddl.set_attribute (’PATH’, ’/private/mydocs’);
 ctx_ddl.create_preference (’DOC_PREF’, ’Path my for my documents’ ’OSFILE’);
end;

Note: This example illustrates usage of OSFILE for documents
stored in a UNIX-based environment.

The directory path syntax may be different for other environments.

Filtering

ConText Indexing 8-41

Filtering

Figure 8–4

Document(s)

Data Store

Filter

Lexer

Plain Text
Document(s)

HTML

AmiPro

Xwerox XIF

Microsoft
Word

Lotus 123 WordPerfect

Microsoft
Excel

Lotus
Freelance

Microsoft
Powerpoint

Adobe
PDF

Plain Text Filter
(e,g, spell checking)

Format Filter
(e.g. MacWrite)

Format Filter
(e.g. FrameMaker)

Format Filter
(e.g. EBCDIC)

Format Filter
(e.g. Interleaf)

Format Filter
(e.g. AutoCAD)

Format Filter
(e.g. CorelDraw)

Format Filter Format Filter

Format Filter
(e.g. WordStar)

Format Filter
(e.g. Quattro Pro)

INTERNAL FILTERS

EXTERNAL FILTERS (SUPPLIED)

EXTERNAL FILTERS

Filtering

8-42 Oracle8 ConText Cartridge Administrator’s Guide

ConText supports both plain text and formatted text (i.e. Microsoft Word,
WordPerfect). In addition, ConText supports text that contains hypertext markup
language (HTML) tags.

Regardless of the format, ConText requires text to be filtered for the purposes of
indexing the text or processing the text through the Linguistics, as well as
highlighting the text for viewing.

This section discusses the following topics relevant to text filtering:

■ Internal Filters

■ External Filters

■ Filters for Single-Format Columns

■ Filters for Mixed-Format Columns

Internal Filters
ConText provides internal filters for:

■ Plain Text Filtering

■ HTML Filtering (plain text containing HTML tags)

■ Formatted Text Filtering

In addition, ConText provides the Autorecognize Filter, an internal filter for
columns containing mixed formats.

Plain Text Filtering
Plain text requires no filtering because the text is already in the format that ConText
requires for identifying tokens.

HTML Filtering
ConText provides an internal filter that supports English and Japanese text with
HTML tags for versions 1, 2, and 3.

See Also: For more information about Linguistics and text
highlighting, see Oracle8 ConText Cartridge Application Developer’s
Guide.

Filtering

ConText Indexing 8-43

The HTML filter processes all text that is delimited by the standard HTML tag
characters (angle brackets).

All HTML tags are either ignored or converted to their representative characters in
the ASCII character set. This ensures that only the text of the document is processed
during indexing or by the Linguistics.

Formatted Text Filtering
ConText provides internal filters for filtering English and Western European text in
a number of proprietary word processing formats.

The filters extract plain, ASCII text from a document, then pass the text to ConText,
where the text is indexed or processed through the Linguistics. The following
document formats are supported by the internal filters:

Note: For non-English and non-Japanese documents that contain
HTML tags, an external filter must be used.

Note: For Japanese, Korean, and Chinese formatted text, external
filters must be used.

Format Version

AmiPro for Windows 1, 2, 3

Lotus 123 for DOS 4, 5

Lotus 123 for Windows 2, 3, 4, 5

Microsoft Word for DOS 5.0, 5.5

Microsoft Word for Macintosh 3, 4, 5.x

Microsoft Word for Windows 2, 6.x, 7.0

WordPerfect for DOS 5.0, 5.1, 6.0

WordPerfect for Windows 5.x, 6.x

Xerox XIF for UNIX 5, 6

Filtering

8-44 Oracle8 ConText Cartridge Administrator’s Guide

For those formats not supported by the internal filters, user can define/create their
own external filters.

Autorecognize Filter
Autorecognize is an internal filter that automatically recognizes the document
formats of all the supported internal filters, as well as plain text (ASCII) and HTML
formats, and extracts the text from the document using the appropriate filters.

External Filters
ConText provides a framework for users to plug-in user-defined and/or third-party
filters to extract plain text from documents. These external filters can be used for a
number of purposes, including:

■ indexing text stored in a format, such as PDF, for which an internal filter does
not exist

■ removing unnecessary text or markup in a document prior to indexing or
processing through the ConText Linguistics

For example, the Linguistics rely on text that is grouped into logical paragraphs. If
the text stored in the database does not contain clearly-identified paragraphs, the
quality of the output generated by the Linguistics may be poor.

Note: Only the following formats support WYSIWYG viewing in
the ConText viewers:

■ Microsoft Word for Windows 2 and 6.x

■ Word Perfect for DOS 5.0, 5.1, 6.0

■ Word Perfect for Windows 5.x, 6.x

For more information about the ConText viewers, see Oracle8
ConText Cartridge Workbench User’s Guide.

Note: Microsoft Word for Windows 7.0 documents are not
recognized by Autorecognize. As a result, ConText does not
support storing Microsoft Word for Windows 7.0 documents in
mixed-format columns.

Filtering

ConText Indexing 8-45

An external filter that outlines the paragraph boundaries according to ConText
standards could be created to ensure that the Linguistics are provided with an
ordered, logical text feed.

External Filter Requirements
An external filter can be any executable (e.g. shell script, C program, perl script) that
processes an input file and produces a plain text output file. The text in the output
file then can be indexed.

If the document is in a proprietary format, the executable must recognize the format
tags for the document and be able to convert the formatted text into plain (ASCII)
text.

In addition, the executable must be able to run from the operating system
command-line and accept two system-supplied arguments:

■ name of an input file, which stores the document to be filtered

■ name of an output file, which stores the filtered, ASCII text of the document

The external filter does not need to provide the values for these arguments; Context
provides the values as part of its external filter processing.

Performance Issues
Performance is dependent on the external filter; ConText cannot begin processing a
document until the entire document has been filtered. The external filter that
performs the filtering should be tuned/optimized accordingly.

Note: External filters do not support WYSIWYG viewing in the
ConText viewers provided with the ConText Workbench.

For more information about the ConText viewers, see Oracle8
ConText Cartridge Workbench User’s Guide.

Note: The name of the executable cannot be larger than 64 bytes.
In addition, the name cannot contain blank spaces or any of the
following illegal characters:

! @ # $ % ^ & * () ~ \ Q ’ , ^ : ” ; ,

Filtering

8-46 Oracle8 ConText Cartridge Administrator’s Guide

Using External Filters
The process model for using external filters is:

1. Create a filter in the form of a command-line executable.

2. Store the executable on the server machine where ConText is installed.

3. Create a Filter preference that calls the filter executable.

The Tile you use to create the preference depends on whether you use the
column to store documents in a single format or mixed formats.

4. Create a policy that includes the Filter preference for the external filter.

Supplied External Filters
ConText provides a number of external filters for filtering many of the most popular
word processing and desktop publishing formats on a number of platforms.

Note: The filter executable must be located in the appropriate
directory for your environment.

For example, in a UNIX-based environment, the filter executables
must be stored in $ORACLE_HOME/ctx/bin.

In a Windows NT environment, the executables must be stored in
\BIN in the Oracle home directory.

For more information about the required location for the external
filter executables, see the Oracle8 installation documentation
specific to your operating system.

See Also: For examples of creating Filter preferences for external
filters, see "Creating Filter Preferences" in Chapter 9, "Setting Up
and Managing Text".

See Also: For a complete list of the external filters supplied by
ConText, as well as instructions for setting up and using the filters,
see "Supplied External Filters" in Appendix D, "External Filter
Specifications".

Filtering

ConText Indexing 8-47

Filters for Single-Format Columns

Figure 8–5

For columns that store documents in only one format, a single filter is specified in
the Filter preference for the column policy. The filtering method for the column is
determined by whether the format is supported by the internal or external filters.

Figure 8–5 illustrates the different filtering methods for single-format columns.

See Also: For examples of creating Filter preferences for
single-format columns, see "Creating Filter Preferences" in
Chapter 9, "Setting Up and Managing Text".

Does
ConText supply an

internal filter for your
format?

For the
supplied external filter

you want to use, set the
command attribute
(USER FILTER Tile)

and specify the filter name
(e.g. 'amipro', 'acropdf').

Set the
command attribute
(USER FILTER Tile)

and specify the name,
as well as any required

command-line parameters,
for your filter.

Create/supply an external
filters for your format.

NO

YES YES

NO
Does

ConText supply an
external filter for your

format?

For the
internal filter

you want to use, set the
format attribute

(BLASTER FILTER Tile)
and specify the filter

code (e.g. '8' for AmiPro).

Filtering

8-48 Oracle8 ConText Cartridge Administrator’s Guide

Filters for Mixed-Format Columns

Figure 8–6

For columns that store documents in mixed formats, the filtering method is
determined by whether the formats are supported by the internal filters, external
filters, or both.

Does ConText
recognize all
your formats?

Does ConText
supply internal filters

for all your
formats?

For those
formats that do

not have internal
filters, does ConText

supply external
filters?

STOP
In a mixed-format

column, you can only
store formats that

ConText recognizes.

Set the format attribute
(BLASTER FILTER Tile)

and specify a
value of '997'.

For each of the
supplied external filters
you want to use, set the

executable attribute
(BLASTER FILTER Tile)

and specify the filter name
(e.g. 'amipro', 'acropdf').

NOTE: When you set the executable attribute,
you do not need to set it for any formats
for which ConText provides an internal
filter; ConText automatically uses internal
filters for all supported formats

For each filter you
create/supply, set the
executable attribute

(BLASTER FILTER Tile)
and specify the name,
as well as any required

command-line parameters,
for your filter.

Create/supply an external
filters for each format that
ConText does not supply.

NO

YES

NO

YES YES

NO

Filtering

ConText Indexing 8-49

Figure 8–6 illustrates the different filter specification methods for mixed-format
columns.

Note: If required, internal filters can be overridden in a Filter
preference by explicitly calling an external filter for the format. This
can be useful if you have an external filter that provides additional
filtering not provided by the internal filters.

For example, you may have MS Word documents that you want
spellchecked before indexing. You could create an external MS
Word filter that performs the spellchecking and specify the external
filter in the Filter preference for the column policy.

See Also: For examples of creating Filter preferences for
mixed-format columns, see "Creating Filter Preferences" in
Chapter 9, "Setting Up and Managing Text".

For a complete list of supported formats for mixed-format columns,
see "Supported Formats for Mixed-Format Columns" in
Appendix D, "External Filter Specifications".

Filter Tiles

8-50 Oracle8 ConText Cartridge Administrator’s Guide

Filter Tiles
Filter Tiles are used to create preferences which determine how text is filtered for
indexing and highlighting. Filters allow word processor and formatted documents,
as well as ASCII and HTML text documents, to be indexed and highlighted by
ConText.

For formatted documents, ConText stores documents in their native format and
uses filters to build temporary ASCII versions of the documents. ConText indexes
the temporary ASCII text of the formatted document. ConText also uses the ASCII
version to highlight query terms.

ConText provides internal filters for processing many of the popular document
formats, including Microsoft Word, WordPerfect, and AmiPro.

In addition, ConText allows users to specify external filters for filtering documents
in formats not supported by the internal filters provided with ConText.

External filters can also be used to perform operations, such as cleaning up or
converting text, before the text is filtered for indexing and highlighting.

ConText provides the following Tile(s) for creating Filter preferences:

Tile Description

BLASTER FILTER Tile for filtering formatted text and/or plain text using
internal filters, external filters or some combination of both.

FILTER NOP Tile for plain text (does not require filtering)

HTML FILTER Tile for filtering plain text containing HTML tags

USER FILTER Tile for specifying external filter for a column.

Filter Tiles

ConText Indexing 8-51

BLASTER FILTER
The BLASTER FILTER Tile is used to specify either:

■ internal filters are used to filter document

■ multiple external filters are used to filter documents in a mixed-format column.

Attributes
BLASTER FILTER has the following attribute(s):

executable
The executable attribute specifies the external filters that are used to filter text stored
in a mixed-format text column. It has three values that must be specified:

■ format_id (document format for the external filter)

■ filter_executable (name of executable that performs the filtering for the document
format)

■ sequence_num (identifier for the executable and document format used in the
preference)

Attribute Attribute Values

executable format id (number), filter executable, sequence (number)

format 0 or 999 (No filter -- plain/ASCII text)

1 or 4 (Word Perfect for Windows 5.x; Word Perfect for DOS 5.0,
5.1)

2 (MS Word for DOS 5.0, 5.5)

5 (Word Perfect for Windows 6.x; Word Perfect for DOS 6.0)

6 (MS Word for Mac 3, 4, 5.x)

7 (MS Word for Windows 2)

8 (AMIPRO for Windows 1, 2, 3)

9 (Lotus 1-2-3 for Windows 2, 3, 4, 5; Lotus 1-2-3 for DOS 4, 5)

11 (MS Word for Windows 6.x, 7.0)

13 (Xerox XIF for UNIX 5, 6)

997 (Autorecognize)

Filter Tiles

8-52 Oracle8 ConText Cartridge Administrator’s Guide

format
The format attribute specifies the internal filter used for filtering text stored in a text
column.

FILTER NOP
The FILTER NOP Tile is used to specify that plain text is stored in the text column
and no filtering needs to be performed. It has no attributes.

HTML FILTER
The HTML FILTER Tile is used to specify that the internal HTML filter is used to
filter plain text that contains HTML tags.

Attributes
HTML_FILTER has the following attribute(s):

code_conversion
The code_conversion attribute specifies whether code conversion is enabled for
documents which contain Japanese ASCII text with HTML tags.

Code conversion is required for Japanese HTML documents if the documents use
more than one of the three character sets supported for HTML text in Japanese. If
code conversion is enabled, all Japanese HTML documents are converted to a
single, common character set before indexing.

The default for code_conversion is 0 (disabled).

Note: format and executable are mutually exclusive.

See Also: For a list of the format IDs supported by the executable
attribute, see "Supported Formats for Mixed-Format Columns" in
Appendix D, "External Filter Specifications".

Attribute Attribute Values

code_conversion 0 (disabled)

1(enabled)

keep_tag tag (string), sequence (number)

Filter Tiles

ConText Indexing 8-53

keep_tag
The keep_tag attribute takes two values: the HTML tag to retain during indexing and
a sequence number that uniquely identifies the tag.

The following rules apply to keep_tag:

■ the angle brackets ’<>’ that identify tags in HTML are not required when
setting keep_tag

■ multiple tags can be specified for a Filter preference by calling CTX_DDL.SET_
ATTRIBUTE once for each tag, then calling CTX_DDL.CREATE_PREFERENCE

■ the sequence number specified for each tag must be unique within the
preference

■ if the tag specified for keep_tag contains additional (i.e. meta) information, the
additional information is filtered by the HTML filter

For example, keep_tag is set to BODY and the following string occurs in a
document:

<HTML><BODY BGCOLOR=#ffffff>hello</BODY></HTML>

ConText translates the string to:

<BODY>hello</BODY>

This string is passed to the HTML filter, which ignores the HTML tags, then to
the lexer, which indexes the token hello as belonging to the BODY section.

Note: For mixed-format columns that use Autorecognize
(BLASTER Tile, format attribute = 997) or use external filters
(BLASTER Tile, executable attribute) for all formats except HTML,
code conversion is always enabled.

Filter Tiles

8-54 Oracle8 ConText Cartridge Administrator’s Guide

USER FILTER
The USER FILTER Tile is used to specify an external filter for filtering documents in
a column.

Attributes
USER FILTER has the following attribute(s):

command
The command attribute specifies the executable for the single external filter used to
filter all text stored in a column. If more than one document format is stored in the
column, the external filter specified for command must recognize and handle all such
formats, otherwise the BLASTER FILTER Tile (with the executable attribute) should
be used instead of the USER FILTER Tile.

Filter Preference Examples
The following section provides two Filter preference examples.

Example 1 (MS Word 6 documents)
The following example creates a preference named word6 for the BLASTER FILTER
Tile:

begin
 ctx_ddl.set_attribute (’FORMAT’, ’11’);
 ctx_ddl.create_preference (’WORD6’, ’Microsoft Word docs’, ’BLASTER FILTER’);
end;

Attribute Attribute Values

command filter executable

See Also: For more examples of creating Filter preferences, see
"Creating Filter Preferences" in Chapter 9, "Setting Up and
Managing Text".

Filter Tiles

ConText Indexing 8-55

Example 2 (HTML documents with document sections enabled)
The following example creates a preference named sect_filt_pref for the HTML
FILTER Tile:

begin
 ctx_ddl.set_attribute(’KEEP_TAG’, ’TITLE’, 1);
 ctx_ddl.set_attribute(’KEEP_TAG’, ’HEAD’, 1);
 ctx_ddl.set_attribute(’KEEP_TAG’, ’BODY’, 1);
 ctx_ddl.set_attribute(’KEEP_TAG’, ’H1’, 1);
 ctx_ddl.create_preference(’sect_filt_pref’,’sect search filt’,’HTML FILTER’);
end;

In this example, the <TITLE>, </TITLE>, <HEAD>, </HEAD>, <BODY>,
</BODY>, <H1>, and </H1> HTML tags are retained by the HTML filter during
filtering, provided the startjoins and endjoins attributes for the BASIC LEXER Tile are
set appropriately.

Note: When using keep_tag to specify tags to be retained, you do
not need to specify the angle bracket or forward slash characters in
the tag strings.

See Also: For more information about document sections, see
"Document Sections" in Chapter 6, "Text Concepts".

Lexers

8-56 Oracle8 ConText Cartridge Administrator’s Guide

Lexers

Figure 8–7

A lexer parses text and identifies tokens for indexing. ConText supports two types
of lexers:

■ Text Lexers

■ Theme Lexer

Filter

Theme Lexer
(English Only)

Theme
Extraction

System

Text Lexer

Plain Text Document(s)

Indexing Engine

Tokens (Words) Tokens (Themes)

Basic

Japanese

Chinese

Korean

Single-byte
(Space-delimited)

Languages

Multi-byte
(Pictorial)

Languages

Lexers

ConText Indexing 8-57

The text lexer provided for English and other single-byte, space-delimited
languages supports the following features:

■ Base-letter Conversion

■ NLS Compliance

■ Composite Word Indexing

Text Lexers
English and other single-byte languages, including most European languages, can
use the same lexer because tokens (words) in those languages are delimited by
blank spaces and standard punctuation (commas, periods, question marks, etc.).

Japanese, Chinese, and many other Asian languages are pictorial (multi-byte)
languages that cannot be tokenized in the same manner as single-byte languages.

Single-Byte Languages
ConText includes a single lexer (BASIC LEXER Tile) for all of the single-byte,
space-delimited languages, such as English (7-bit character set) and other European
languages (8-bit character sets). The basic lexer also works with languages such as
Greek, which have different alphabets, but still utilize blank spaces to delimit
words.

Multi-Byte Languages
ConText provides three separate lexers for processing Japanese, Chinese, and
Korean text.

The Chinese (CHINESE V-GRAM LEXER Tile) and Japanese (JAPANESE V-GRAM
LEXER Tile) lexers do not rely on finding token boundaries within text; instead,
they uses a dictionary of terms to match and index patterns of characters at
user-specified, variable points of length.

The Japanese and Chinese lexers also work with languages that use a 7-bit character
set, such as English. As a result, ConText supports indexing and querying Japanese
and Chinese text that also contains English text.

Note: Languages that use an 8-bit character set, such as many of
the European languages, are not supported by the Japanese and
Chinese lexers.

Lexers

8-58 Oracle8 ConText Cartridge Administrator’s Guide

The Korean lexer (KOREAN LEXER Tile), works similarly to the Japanese and
Chinese lexers by finding character patterns in the text and matching the patterns to
a dictionary of terms. However, due to the significant morphological
transformations that Korean verbs undergo, the Korean lexer only indexes nouns
and noun phrases.

Text Indexing Policies
By specifying one of the text lexers in the Lexer preference for a policy, you
designate the policy as a text indexing policy.

Once a text index is created for the policy, any text requests, including text queries,
on the policy will result in the text index being accessed.

Theme Lexer
For English-language text, a separate lexer (THEME LEXER Tile) is provided for
creating theme indexes. This lexer breaks text into tokens; however, the tokens are
not stored in the theme index. The tokens are passed to the ConText linguistic core
where they are analyzed within the context of the sentences and paragraphs in
which they appeared to determine whether they are content-bearing words. The
linguistic core then generates themes, which are stored in the theme index.

The themes generated by ConText are based on, but are not identical to, the
content-bearing tokens in the text.

By specifying the THEME LEXER Tile in the Lexer preference for a policy, you
designate the policy as a theme indexing policy.

Once a theme index is created for the policy, any text requests, including theme
queries, on the policy will result in the theme index being accessed.

Base-letter Conversion
For text indexes created on text columns containing languages that use an 8-bit
(single-byte) character set, you can specify whether extended characters
encountered in tokens are converted to their base-letter representation before their

See Also: For more information about text indexing, see "Text
Indexes" in Chapter 6, "Text Concepts".

See Also: For more information about theme indexing, see
"Theme Indexes" in Chapter 6, "Text Concepts".

Lexers

ConText Indexing 8-59

tokens are stored in the text index. Extended characters include special characters
and characters with diacritical marks (e.g. accents, umlauts).

Text Indexing
Base-letter conversion is an attribute that you can set when creating a Lexer
preference using the BASIC LEXER Tile.

If base-letter conversion is enabled for the Lexer preference in a policy, during text
indexing, all characters containing diacritical marks are converted to their base form
in the text index. The original text is not affected.

Base-letter conversion requires that the database character set is a subset of the
NLS_LANG character set.

For example, suppose the NLS_LANG environment variable is set to French_
France.WE8ISO8859P1 and base-letter conversion is enabled. The following string of
text is encountered:

La référence de session doit être égale à ’name’

The sentence is indexed as:

la reference de session doit etre egale a name

Text Queries
In a text query on a column with base-letter conversion enabled, the query terms are
automatically converted to match the base-letter conversion that was performed
during text indexing.

Note: Base-letter conversion requires that the language component
for NLS_LANG is set to a single-byte language (e.g. French, German)
that supports an extended (8-bit) character set. In addition, the
charset component must be set to one of the 8-bit character sets (e.g.
WE8ISO8859P1).

See Also: For more information about National Language
Support and the NLS_LANG environment variable, see Oracle8
Reference Manual.

Lexers

8-60 Oracle8 ConText Cartridge Administrator’s Guide

NLS Compliance
The BASIC LEXER Tile supports all NLS-compliant character sets, including the
AL24UTFFSS (UTF-8) character set. UTF-8 is a character set that recognizes the
characters from most single-byte and multi-byte character sets.

Users with multilingual environments, such as multinational companies, can
specify UTF-8 for a database and use the database to store documents that use any
one of the character sets supported by UTF-8. ConText supports indexing all
documents stored in a UTF-8 database and queries to the database from clients
running any of the UTF-8 supported character sets.

Supported Languages The BASIC LEXER Tile currently supports the UTF-8 character
set only for space-delimited, single-byte languages, which includes English and
other Western European languages.

The BASIC LEXER Tile does not support UTF-8 for the multi-byte languages, nor do
the Japanese, Chinese, and Korean lexers currently support UTF-8.

Enabling the NLS-compliant Lexer The BASIC LEXER Tile does not require any setup to
enable it to handle UTF-8 or other NLS-compliant character sets; however, the NLS_
LANG environment variable must be set to the appropriate
language/territory/character set. In addition, the ORA_NLS32 and ORA_NLS
environment variables must be set to the directories containing the appropriate NLS
data.

Limitations The lexer has the following limitations when UTF-8 is the character set
specified for the database:

■ base-letter conversion is not supported

■ characters from 8-bit character sets are not supported in the BASIC LEXER Tile
attributes (i.e. printjoins, skipjoins, startjoins, endjoins, punctuations, numjoin,
numgroup, continuation)

Note: Base-letter conversion works with all of the query operators
(logical, control, expansion, thesaurus, etc.), except the STEM
expansion operator.

See Also: For more information about text queries and the query
operators, see Oracle8 ConText Cartridge Application Developer’s
Guide.

Lexers

ConText Indexing 8-61

Composite Word Indexing
For German or Dutch text, the BASIC LEXER Tile provides an attribute for enabling
composite word indexing. With composite word indexing, tokens that are
compound words (specifically nouns) are divided into their constituent (root)
nouns, including inflected forms of the roots, and the roots are stored in the
ConText index along with the entry for the compound word.

For example, if the word Hauptbahnhof is encountered in a German-language
document during composite word indexing, the following entries are created in the
index: HAUPTBAHNHOF, HAUPT, BAHN, BAHNEN, HOF.

Supported Character Sets Composite word indexing supports both single-byte and
multi-byte character sets, specifically WE8ISO8859P9 (extended, single-byte) and
AL24UTFFSS (multi-byte).

Limitations Composite indexes have the following limitations:

■ composite indexing can be enabled for text columns containing only German or
Dutch text. If the column contains text in other languages, composite indexing
will fail

■ composite word indexes do not support exact word searches (i.e. standard text
queries). If you want to enable composite and exact word queries for a column,
you must create both a compound index and a standard index for the column

■ case-sensitivity is not supported for composite indexes (all tokens are stored in
all-uppercase)

Note: Because each token that is encountered has to be processed
through the ConText decompounding routines, composite indexing
may affect indexing performance.

In addition, because composite word indexes may be substantially
larger than standard text indexes, composite word indexing may
affect query performance.

Note: The uppercasing of all tokens in a composite index results
in the composite routines not recognizing some compound nouns.
As a result, those nouns are not divided into their root nouns and
are indexed as regular tokens with a single entry only in the index.

Lexers

8-62 Oracle8 ConText Cartridge Administrator’s Guide

Word Queries Composite word indexing enables text queries to return all documents
that contain either the query term itself or the query term as a root of a compound
word; however, queries for phrases that contain one or more compound words
return only the documents that contain the exact phrase.

Note: For more information about composite word queries, see
Oracle8 ConText Cartridge Application Developer’s Guide.

Lexer Tiles

ConText Indexing 8-63

Lexer Tiles
ConText provides the following Tile(s) for creating Lexer preferences:

BASIC LEXER
The BASIC LEXER Tile is used to identify tokens for creating text indexes for
English and all other supported single-byte languages. It is also used to enable
base-letter conversion for single-byte languages that have extended character sets
and composite word indexing for German and Dutch text.

Tile Description

BASIC LEXER Basic lexer used for extracting tokens from text in languages,
such as English and most Western European languages, that
use single-byte character sets.

CHINESE V-GRAM LEXER Lexer used for extracting tokens from Chinese-language
text.

JAPANESE V-GRAM LEXER Lexer used for extracting tokens from Japanese-language
text.

KOREAN LEXER Lexer used for extracting tokens from Korean-language text.

THEME LEXER Lexer which utilitizes the Linguistics Theme Extraction
System to generate themes as tokens for theme indexing.

Note: Any changes made to tokens before text indexing (e.g.
removing of characters, base-letter conversion) are also performed
on the query terms in a text query. This ensures that the query
terms match the form of the tokens in the text index entries.

Lexer Tiles

8-64 Oracle8 ConText Cartridge Administrator’s Guide

BASIC LEXER has the following attribute(s):

Attribute Attribute Values

continuation characters (string)

numgroup characters (string)

numjoin characters (string)

printjoins characters (string)

punctuations characters (string)

skipjoins characters (string)

startjoins non-alphanumeric characters that occur at the beginning of a token
(string)

endjoins non-alphanumeric characters that occur at the end of a token (string)

whitespace characters (string)

newline characters (string)

sent_para 0 (disabled)

1 (enabled)

base_letter 0 (disabled)

1 (enabled)

mixed_case 0 (disabled)

1 (enabled)

composite 0 (no composite word indexing)

1 (German composite word indexing)

2 (Dutch composite word indexing)

Note: The BASIC LEXER Tile attributes that use character strings
can contain multiple characters. Each character in the string serves
as a distinct character for that type of attribute.

For example, if the string ’*_.-’ is specified for the printjoins
attribute, each individual character (’*’, ’_’, ’.’, and ’-’) in the string
is treated by ConText as a joining character that is included in the
index entry for a token in which the character occurs.

Lexer Tiles

ConText Indexing 8-65

continuation
continuation specifies the characters that indicate a word continues on the next line
and should be indexed as a single token. The most common continuation characters
are hyphen ’-’ and backslash ’\’.

numgroup
numgroup specifies the characters that, when they appear in a string of digits,
indicate that the digits are groupings within a larger single unit.

For example, comma ’,’ or period ’.’ may be defined as numgroup characters because
they often indicate a grouping of thousands when they appear in a string of digits.

numjoin
numjoin specifies the characters that, when they appear in a string of digits, cause
ConText to index the string of digits as a single unit or word.

For example, period ’.’ or comma ’,’ may be defined as numjoin characters because
they often serve as decimal points when they appear in a string of digits.

printjoins
printjoins specifies the non-alphanumeric characters that, when they appear
anywhere in a word (beginning, middle, or end), are processed by ConText as
alphanumeric and included with the token in the text index. This includes printjoins
that occur consecutively.

For example, if the hyphen ’-’ and underscore ’_’ characters are defined as printjoins,
terms such as pseudo-intellectual and _file_ are stored in the text index as
pseudo-intellectual and _file_.

Note: The default values for numjoin and numgroup are
determined by the NLS initialization parameters that are specified
for the database.

In general, a value does not need to be specified for either numjoin
or numgroup when creating a Lexer preference for the BASIC
LEXER Tile.

Lexer Tiles

8-66 Oracle8 ConText Cartridge Administrator’s Guide

punctuations
punctuations specifies the non-alphanumeric characters that, when they appear at
the end of a word, indicate the end of a sentence. The defaults are period ’.’,
question mark ’?’, and exclamation point ’!’.

Characters that are defined as punctuations are removed from a token before text
indexing; however, if a punctuations character is also defined as a printjoins
character, the character is only removed if it is the last character in the token and it
is immediately preceded by the same character.

For example, if the period (.) is defined as both a printjoins and a punctuations
character, the following transformations take place during indexing and querying as
well:

In addition, BASIC LEXER uses punctuations characters in conjunction with newline
and whitespace characters to determine sentence and paragraph deliminters for
sentence/paragraph searching.

skipjoins
skipjoins specifies the non-alphanumeric characters that, when they appear within a
word, identify the word as a single token; however, the characters are not stored
with the token in the text index.

For example, if the hyphen character ’-’ is defined as a skipjoins, the word
pseudo-intellectual is stored in the text index as pseudointellectual.

Note: If a printjoins character is also defined as a punctuations
character, the character is only processed as an alphanumeric
character if the character immediately following it is a standard
alphanumeric character or has been defined as a printjoins or
skipjoins character.

Token Indexed Token

.doc .doc

dog.doc dog.doc

dog..doc dog..doc

dog. dog

dog... dog..

Lexer Tiles

ConText Indexing 8-67

startjoins/endjoins
startjoins specifies the characters that, when encountered as the first character in a
token, explicitly identify the start of the token. The character, as well as any other
startjoins characters that immediately follow it, is included in the ConText index
entry for the token. In addition, the first startjoins character in a string of startjoins
characters implicitly end the previous token.

endjoins specifies the characters that, when encountered as the last character in a
token, explicitly identify the end of the token. The character, as well as any other
startjoins characters that immediately follow it, is included in the ConText index
entry for the token.

The following rules apply to both startjoins and endjoins:

■ the characters specified for startjoins/endjoins cannot occur in any of the other
attributes for BASIC LEXER.

■ startjoins/endjoins characters can occur only at the beginning/end of tokens

■ multiple, contiguous startjoins/endjoins characters are allowed at the
beginning/end of a token; however, multiple occurrences of the same
startjoins/endjoins character at the beginning/end of a token are not supported

Note: printjoins and skipjoins are mutually exclusive. The same
characters cannot be specified for both attributes.

Note: Defining startjoins and endjoins characters is particularly
useful for creating document sections that enable section searching
in a column.

For examples of creating sections and section groups, see
"Managing User-defined Document Sections" in Chapter 9, "Setting
Up and Managing Text".

For more information about sections, see "Document Sections" in
Chapter 6, "Text Concepts".

For more information about section searching, see Oracle8 ConText
Cartridge Application Developer’s Guide.

Lexer Tiles

8-68 Oracle8 ConText Cartridge Administrator’s Guide

whitespace
whitespace specifies the characters that are treated as blank spaces between tokens.
BASIC LEXER uses whitespace characters in conjunction with punctuations and
newline characters to identify character strings that serve as sentence delimiters for
sentence/paragraph searching.

The predefined, default values for whitespace are ’space’ and ’tab’; these values
cannot be changed. Specifying characters as whitespace characters adds to these
defaults.

newline
newline specifies the characters that indicate the beginning of a new line of text.
BASIC LEXER uses newline characters in conjunction with punctuations and
whitespace characters to identify character strings that server as paragraph
delimiters for sentence/paragraph searching.

The only valid values for newline are ’\n’ and ’\r’ (for carriage returns) and the
default is ’\n’.

sent_para
sent_para enables (1) or disables (0) sentence/paragraph searching. The default is ’0’.

base_letter
base_letter specifies whether characters that have diacritical marks (umlauts,
cedillas, acute accents, etc.) are converted to their base form before being stored in
the text index. The default is 0 (base-letter conversion disabled).

mixed_case
mixed_case specifies whether the lexer converts the tokens in text index entries to all
uppercase or stores the tokens exactly as they appear in the text. The default is 0
(tokens converted to all uppercase).

composite
The composite attribute specifies whether composite word indexing is disabled (0) or
enabled for either German (1) or Dutch (2) text. The default is 0 (composite word
indexing disabled).

Note: ConText ensures text queries match the case-sensitivity of
the index being queried. As a result, if you enable case-sensitivity
for your text index, queries against the index are always
case-sensitive.

Lexer Tiles

ConText Indexing 8-69

CHINESE V-GRAM LEXER
The CHINESE V-GRAM LEXER Tile is used for identifying tokens for creating text
indexes for Chinese text.

CHINESE V-GRAM LEXER has the following attribute(s):

hanzi_indexing
The hanzi_indexing attribute specifies the number of characters used for pattern
matching while indexing.

A value of 1 indicates that the Chinese lexer examines each character individually to
determine token boundaries.

A value of 2 indicates that the lexer examines characters in pairs to determine token
boundaries. Pattern matching using pairs is generally faster than matching
individual characters, resulting in faster index creation.

The default is 2.

Note: The composite and mixed_case attributes are mutually
exclusive; Composite indexes do not support case-sensitivity.

See Also: For more information, see "Composite Word Indexing"
in this chapter.

Attribute Attribute Values

hanzi_indexing 1

2

Lexer Tiles

8-70 Oracle8 ConText Cartridge Administrator’s Guide

JAPANESE V-GRAM LEXER
The JAPANESE V-GRAM LEXER Tile is used for identifying tokens for creating text
indexes for Japanese text.

JAPANESE V-GRAM LEXER has the following attribute(s):

kanji_indexing
The kanji_indexing attribute specifies the number of characters used for pattern
matching while indexing.

A value of 1 indicates that the Japanese lexer examines each character individually
to determine token boundaries.

A value of 2 indicates that the lexer examines pairs of characters to determine token
boundaries. Pattern matching using pairs is generally faster than matching
individual characters, resulting in faster index creation.

The default is 2.

KOREAN LEXER
The KOREAN LEXER Tile is used for identifying tokens for creating text indexes for
Korean text. It has no attributes.

THEME LEXER
The THEME LEXER Tile is used in theme indexing policies to create theme indexes
for English-language text. It has no attributes.

Attribute Attribute Values

kanji_indexing 1

2

See Also: For an example of creating a theme indexing policy, see
"Creating a Column Policy for Theme Indexing" in Chapter 9,
"Setting Up and Managing Text".

Lexer Tiles

ConText Indexing 8-71

Lexer Preference Examples
The following section provides two Lexer preference examples that both use the
BASIC LEXER Tile.

Example 1
The following example creates a preference named doc_link:

begin
 ctx_ddl.set_attribute (’PRINTJOINS’, ’.-@&$#/’);
 ctx_ddl.create_preference (’DOC_LINK’, ’numerous joins’, ’BASIC LEXER’);
end;

In this example, the ’.’, ’-’, ’@’, ’&’, ’$’, ’#’, and ’/’ characters are all defined as
printjoins characters.

Characters such as the dollar sign ’$’ and number sign ’#’ are useful if you want to
index tokens that may contain these characters, such as sums of money and
numbers.

Example 2 (startjoins and endjoins)
The following example creates a preference named section_pref:

exec ctx_ddl.set_attribute(‘startjoins’,’</’);
exec ctx_ddl.set_attribute(‘endjoins’,’>’);
exec ctx_ddl.set_attribute(‘printjoins’,’_@-&$#.’);
...
exec ctx_ddl.create_preference(‘sect_lex_pref’,’basic lexing + sections’,’BASIC LEXER’);

In this example, the characters ‘<‘ and ’/’ are defined as startjoins characters. The
character ‘>’ is defined as an endjoins character.

The open and closed angle brackets ’< >’ and the forward slash ’/’ are useful for
identifying HTML tags for document sections.

See Also: For more information about sections, see "Document
Sections" in Chapter 6, "Text Concepts"

Indexing Engine

8-72 Oracle8 ConText Cartridge Administrator’s Guide

Indexing Engine
The indexing engine is the ConText component that creates a ConText index for a
text column. A ConText index is required before text in a column can be queried.

ConText supplies a single engine that creates index entries for Context indexes,
independent of the format, location, language, and character set of the text.

In particular, the engine determines the amount of memory used to create ConText
indexes and where in the database the indexes are stored.

See Also: For more information about creating an Engine
preference, see "Creating an Engine Preference" in Chapter 9,
"Setting Up and Managing Text".

Engine Tiles

ConText Indexing 8-73

Engine Tiles
ConText provides the following Tile(s) for creating Engine preferences:

ENGINE NOP
The ENGINE NOP Tile specifies that no engine is used for indexing. This Tile is
currently not implemented and should not be used to create Engine preferences for
indexing.

GENERIC ENGINE
The GENERIC ENGINE Tile specifies that the indexing engine provided by ConText
is used for indexing.

In particular, the GENERIC ENGINE Tile attributes specify the amount of memory
allocated for indexing, and the tablespace(s) and creation parameters for the
database tables and indexes that constitute a ConText index.

GENERIC ENGINE has the following attribute(s):

Tile Description

ENGINE NOP No engine used for indexing (Not implemented - DO NOT
USE)

GENERIC ENGINE Indexing engine used to create index entries and store in
database tables comprising the ConText index.

See Also: For descriptions of the ConText index tables and
indexes, see “Appendix C, "ConText Index Tables and Indexes".

Attribute Attribute Values

** none ** N/A

index_memory memory in bytes (integer)

optimize_default default ConText index optimization method

i1t_tablespace, i1t_storage,
i1t_other_parms

tablespace (string), STORAGE clause (string), and other table
creation parameters (string) for token table

i1i_tablespace, i1i_storage,
i1i_other_parms

tablespace (string), STORAGE clause (string), and other index
creation parameters (string) for index on token table

Engine Tiles

8-74 Oracle8 ConText Cartridge Administrator’s Guide

index_memory
index_memory specifies the amount of memory, in bytes, allocated for indexing.

optimize_default
optimize_default specifies the type of optimization used when CTX_
DDL.OPTIMIZE_INDEX is called without an optimization type. If no value is
specified for optimize_default, the default is DEFRAGMENT_TO_NEW_TABLE.

xxx_tablespace
i1t_tablespace, ktb_tablespace, and lst_tablespace specify the tablespaces used for the
ConText index tables created during indexing.

ktb_tablespace, ktb_storage,
ktb_other_parms

tablespace (string), STORAGE clause (string), and other table
creation parameters (string) for mapping table

kid_tablespace, kid_storage,
kid_other_parms

kik_tablespace, kik_storage,
kik_other_parms

tablespace (string), STORAGE clause (string), and other
index creation parameters (string) for indexes on mapping
table

lst_tablespace, lst_storage,
lst_other_parms

tablespace (string), STORAGE clause (string), and other
table creation parameters (string) for control table

lix_tablespace, lix_storage,
lix_other_parms

tablespace (string), STORAGE clause (string), and other
table creation parameters (string) for index on control table

sqr_tablespace, sqr_storage,
sqr_other_parms

tablespace (string), STORAGE clause (string), and other
table creation parameters (string) for SQE results table

sri_tablespace, sri_storage,
sri_other_parms

tablespace (string), STORAGE clause (string), and other
table creation parameters (string) for index on SQE results
table

Note: When specifying a value for index_memory in a preference,
specify as much real (not virtual) memory as is available on the
machine which is running the ConText server that will be creating
indexes.

For parallel indexing, the memory specified should be the amount
of available memory divided evenly among the number of ConText
servers that will perform the indexing in parallel.

Attribute Attribute Values

Engine Tiles

ConText Indexing 8-75

sqr_tablespace specifies the tablespace used for the stored query expression result
(SQR) table that is created, but not populated, during indexing. The SQR table for a
policy stores the results of stored query expressions for the policy.

i1i_tablespace, kid_tablespace, kik_tablespace, and lix_tablespace specify the tablespaces
used for the Oracle indexes generated for each ConText index table.

sri_tablespace specifies the tablespace used for the Oracle index generated for each
SQR table.

xxx_storage
i1t_storage, ktb_storage, and lst_storage specify the STORAGE clauses used to create
the ConText index tables during ConText indexing.

sqr_storage specifies the STORAGE clause used to create the stored query expression
result (SQR) table during ConText indexing.

i1i_storage, kid_storage, kik_storage, and lix_storage specify the STORAGE clauses
used to create the Oracle indexes for each ConText index table.

sri_storage specifies the STORAGE clause used to create the Oracle index for each
SQR table.

xxx_other_parms
i1t_other_parms, ktb_other_parms, and lst_other_parms specify any additional
parameters used to create the ConText index tables during ConText indexing.

sqr_other_parms specifies any additional parameters used to create the stored query
expression result (SQR) table during ConText indexing.

i1i_other_parms, kid_other_parms, kik_other_parms, and lix_other_parms specify any
additional parameters used to create the Oracle indexes for each ConText index
table.

Note: For each xxx_tablespace attribute that is not specified when
creating an Engine preference, the text table owner’s default
tablespace is used for storing the ConText index objects (tables and
indexes).

See Also: For more information about the STORAGE clause, see
the CREATE TABLE and CREATE INDEX commands in Oracle8
SQL Reference.

Engine Tiles

8-76 Oracle8 ConText Cartridge Administrator’s Guide

sri_other_parms specifies any additional parameters used to create the Oracle index
for each SQR table.

Engine Preference Example
The following example creates a preference named doc_engine for the GENERIC
ENGINE Tile:

begin
 ctx_ddl.set_attribute (’INDEX_MEMORY’, 30000000);
 ctx_ddl.set_attribute (’I1T_TABLESPACE’, ’DOCUMENTS’);
 ctx_ddl.set_attribute (’I1T_STORAGE’,’ initial 10M next 2M
 maxextents 10’);
 ctx_ddl.set_attribute (’I1T_OTHER_PARMS’,’ pctfree 20’);
 ctx_ddl.set_attribute (’I1I_OTHER_PARMS’,’ parallel 2’);
 ctx_ddl.create_preference (’DOC_ENGINE’, ’Test case’,
 ’GENERIC ENGINE’);
end;

Note: In particular, the xxx_other_parms attributes are used to
specify a value for the PARALLEL clause in the CREATE
TABLE|INDEX command. The PARALLEL clause determines the
degree of parallelism used by the Oracle parallel query option for
operations such as generating Oracle indexes.

For more information about the PARALLEL clause in CREATE
TABLE and CREATE INDEX, as well as the other parameters that
can be used to create database tables and indexes, see Oracle8 SQL
Reference.

For more information about the parallel query option in Oracle, see
Oracle8 Tuning.

See Also: For more information about SQEs, see Oracle8 ConText
Cartridge Application Developer’s Guide.

Advanced Query (Wordlist) Options

ConText Indexing 8-77

Advanced Query (Wordlist) Options
ConText provides advanced query (Wordlist) options for expanding text queries
using the following methods:

■ Stemming

■ Fuzzy Matching

■ Soundex

ConText also provides an option for refining text queries using user-defined
document sections.

Stemming
Stemming expands a text query by deriving variations (verb conjugation, noun,
pronoun, and adjective inflections) of the search token(s) in the query.

For example, a stem search on the verb buy expands to include its alternate verb
forms, such as buys, buying, and bought, but not on the noun buyer. A search on the
noun buyer would expand only to include its plural form buyers.

Since different languages have different stemming rules, stemming is
language-dependent and uses term lists that define the relationships between the
words in a given language

Note: While the expansion options provided by ConText can be
used in theme queries, ConText automatically provides expansion
for theme queries through the Linguistics Theme Extraction
System.

In addition, the concept of document sections does not apply to
theme indexes.

As such, the Wordlist options are not generally used for theme
indexes.

See Also: For more information about expanding and refining
text queries, see Oracle8 ConText Cartridge Application Developer’s
Guide.

For more information about user-defined sections for refining
queries, see "User-Defined Sections" in Chapter 6, "Text Concepts".

Advanced Query (Wordlist) Options

8-78 Oracle8 ConText Cartridge Administrator’s Guide

ConText provides a stemmer, licensed from Xerox Corporation, that utilizes Xerox
Lexical Technology to support inflectional and derivational stemming in English
and inflectional stemming in a number of Western European languages.

Inflectional Stemming
For all the supported languages, the stemmers return standard inflected forms of a
word, such as the plural form (e.g. department --> departments).

Derivational Stemming
For English, an additional stemmer is provided which returns standard inflected
forms and derived forms (e.g. department --> departments, departmentalize).

Fuzzy Matching
Fuzzy matching expands queries by including terms that are spelled similar to the
search token in the query. This type of expansion can be useful in queries for text
that contains frequent misspellings or has been scanned using OCR software.

For example, a fuzzy matching query for the term cat expands to include cats, calc,
case.

The number of expansions generated by fuzzy matching depends on the tokens that
ConText identified during indexing; results can vary significantly according to the
tokens that were identified and indexed by ConText for the column. As such, fuzzy
matching depends on how tokens are delimited in a given language.

Note: Fuzzy matching is designed primarily for English-language
documents, but can be used, with varying degrees of success with
many of the Western European languages.

Advanced Query (Wordlist) Options

ConText Indexing 8-79

Soundex
During text indexing of a column, Soundex, if enabled, creates a list of all the words
that sound alike and assigns one or more IDs to each word to identify the other
words in the list that sound like the word.

The Soundex wordlist is stored in the DR_nnnnn_I1W ConText index table, where
nnnnn is the identifier of the policy for the text index.

If Soundex is enabled for a text column, users can call Soundex in a query to expand
the query. Soundex expands a query by searching the I1W table for terms that
sound similar to the specified query term.

For example, a Soundex search on the name Smith would also find the names
Smythe and Smit.

Note: Soundex is designed primarily to look for matches in
phonetic spellings used in English, but can be used, with varying
degrees of success with many of the other Western European
languages.

Note: Soundex in ConText uses the same algorithm as the
SOUNDEX function in SQL.

For more information about the SOUNDEX function in SQL, see
Oracle8 SQL Reference.

Wordlist Tiles

8-80 Oracle8 ConText Cartridge Administrator’s Guide

Wordlist Tiles
ConText provides a single Tile, GENERIC WORD LIST, for creating Wordlist
preferences.

GENERIC WORD LIST
The GENERIC WORD LIST Tile is used to enable the advanced query options
(stemming, fuzzy matching, Soundex, and user-defined section searching) for text
indexes.

GENERIC WORD LIST has the following attribute(s):

See Also: For more information about expansion methods in
queries, see Oracle8 ConText Cartridge Application Developer’s Guide.

Attribute Attribute Values

stclause STORAGE clause (string) for Soundex wordlist table

instclause STORAGE clause (string) for index on Soundex wordlist table

soundex_at_index 0 (disabled)

1 (enabled)

stemmer 1 (English)

2 (English -- derivational)

3 (Dutch)

4 (French)

5 (German)

6 (Italian)

7 (Spanish)

fuzzy_match 1 (English and other Western European languages)

2 (Japanese)

3 (Korean)

4 (Chinese)

12 (Soundex emulation)

13 (Dutch)

Wordlist Tiles

ConText Indexing 8-81

stclause
The stclause attribute specifies the STORAGE clause used to create the Soundex
wordlist table during ConText indexing. The Soundex wordlist table is only created
if Soundex is enabled through the soundex_at_index attribute.

instclause
The instclause attribute specifies the STORAGE clause used to create the Oracle
index for the Soundex wordlist table.

soundex_at_index
The soundex_at_index attribute specifies whether ConText generates Soundex word
mappings and stores them in the Soundex wordlist table during text indexing. If
Soundex word mappings are not generated and stored in the wordlist table during
indexing, queries that use Soundex are not expanded.

stemmer
The stemmer attribute specifies the stemmer used for word stemming in text queries.
The default for stemmer is 1 (inflectional English)

fuzzy_match
The fuzzy_match attribute specifies which fuzzy matching routines are used for the
column. Fuzzy matching is currently supported for English, Japanese, and, to a
lesser extent, the Western European languages.

The default for fuzzy_match is 1.

14 (French)

15 (German)

16 (Italian)

17 (Spanish)

18 (OCR text)

section_group name of section group

Note: The fuzzy_match attribute values for Chinese and Korean are
dummy attribute values that prevent the English and Japanese
fuzzy matching routines from being used on Chinese and Korean
text.

Attribute Attribute Values

Wordlist Tiles

8-82 Oracle8 ConText Cartridge Administrator’s Guide

section_group
The section_group attribute specifies the name of the section group to assign to a text
column. The following rules apply to section_group:

■ no default value for section_group

■ all available section groups in the ConText data dictionary can be specified for
section_group; the section group owner does not need to be the same as the
policy owner

Wordlist Preference Example
The following example creates a preference named soundex_yes for the GENERIC
WORD LIST Tile:

begin
 ctx_ddl.set_attribute(’SOUNDEX_AT_INDEX’, ’1’);
 ctx_ddl.create_preference(’ SOUNDEX_YES’,
 ’Will build the soundex mapping during indexing’,
 ’GENERIC WORD LIST’);
end;

See Also: For more information about section groups, see
"Document Sections" in Chapter 6, "Text Concepts".

Stop Words

ConText Indexing 8-83

Stop Words
To manage the size of text indexes, ConText supports defining stop words. Stop
words are common terms that you do not want to include in a text index.

The collection of stop words for a text column is called a stoplist, as defined in a
Stoplist preference. You can define up to 4095 stop words for a stoplist.

Stop Words in Queries
ConText does not create index entries for words defined as stop words; however, it
does record the stop words, up to eight, that proceed and follow an indexed term.
This enables text queries for phrases which contain stop words.

To conserve space in the text index, ConText does not record the actual stop words
in the index entries. Instead, ConText records code numbers, called sequences, that
correspond to the stop words. Sequence numbers are assigned to stop words by the
user when a stoplist is defined.

For example, the words he, is, at, the, and of are defined as stop words and each stop
word is assigned a sequence by the user. During indexing, the string "he is at the
top of the class" is encountered.

Index entries are created only for the words top and class; however, the words he, is,
at, the, and top are stored as preceding and following stop words for the index
entries.

As a result, users can query phrases such as ’he is at the top’ and ’top of the class’.

Case-sensitivity
Stoplists for case-sensitive text indexes are automatically case-sensitive, meaning
that words in the text are only indexed as stop words if they exactly match the case
of the stop words in the stoplist.

Note: Because theme indexes contain proportionately fewer
entries than text indexes and size is not considered an issue,
stoplists generally do not provide much value for theme indexes.

As such, ConText does not use stoplists for theme indexes. If a
stoplist exists for a text column, the stoplist is ignored during
theme indexing

Stop Words

8-84 Oracle8 ConText Cartridge Administrator’s Guide

As a result, when creating a Stoplist preference for a column on which you want
create a case-sensitive text index, you should specify a stop word entry for each
commonly occurring variation (i.e. lowercase, initial uppercase, all-uppercase) that
may occur for a stop word. For example, some articles, such as a and the in English,
often appear at the beginning of sentences. As a result, the initial uppercase form of
the articles (A and The) should be included in the stoplist.

Stoplist Tiles

ConText Indexing 8-85

Stoplist Tiles
ConText provides a single Tile, GENERIC STOP LIST, for creating Stoplist
preferences.

GENERIC STOP LIST
The GENERIC STOP LIST Tile specifies the terms that should not be included in the
text index.

GENERIC STOP LIST has the following attribute(s):

stop_word
The stop_word attribute has two values that must be specified:

■ the word for which ConText does not create an entry in the text index

■ the sequence (1 to 4095) for the word

Stoplist Preference Example
The following example creates a preference named mini_stoplist for the GENERIC
STOP LIST Tile:

begin
 ctx_ddl.set_attribute (’STOP_WORD’, ’a’, 1);
 ctx_ddl.set_attribute (’STOP_WORD’, ’A’, 2);
 ctx_ddl.set_attribute (’STOP_WORD’, ’the’, 3);
 ctx_ddl.set_attribute (’STOP_WORD’, ’The’, 4);
 ctx_ddl.set_attribute (’STOP_WORD’, ’and’, 5);
 ctx_ddl.set_attribute (’STOP_WORD’, ’And’, 6);
 ctx_ddl.create_preference (’MINI_STOPLIST’, ’minilist’, ’GENERIC STOP LIST’);
end;

Attribute Attribute Values

stop_word word (string), sequence (number)

Note: This example illustrates a stoplist for a case-sensitive text
index. If the stoplist is for a case-insensitive index, the stoplist
requires only one entry for each stop word and the case of the entry
has no effect.

Stoplist Tiles

8-86 Oracle8 ConText Cartridge Administrator’s Guide

Setting Up and Managing Text 9-1

9
Setting Up and Managing Text

This chapter provides details on how to use the command-line to set up and
maintain text in ConText.

The process of administering text in a ConText system comprises the following
tasks:

■ Loading Text

■ Managing Indexes

■ Managing Preferences

■ Managing Indexes

■ Managing Thesauri

■ Managing User-defined Document Sections

Note: Most of the text setup and administration tasks can also be
performed from the GUI administration tools (System
Administration tool or Configuration Manager). These tasks are
diagramed in each section of the chapter.

Loading Text

9-2 Oracle8 ConText Cartridge Administrator’s Guide

Loading Text
This section provides instructions for loading text into database columns from the
command-line:

Using ctxload
Use ctxload to load text from a load file or from separate text files into the database.

For example:

ctxload -user jsmith/welcome -name MY_DOCS -file docs.txt -log docload.log

In this example, the Oracle user’s username/password is jsmith/welcome. Because
the -thes argument for ctxload isn’t specified, by default, ctxload loads text, rather
than a thesaurus, into the specified database table. The table to which the
documents are loaded is my_docs and the load file being used is docs.txt.

In addition, this example generates a log file named docload.log.

Task
Supported in Sys.
Admin. Tool?

Supported in
Config. Manager?

Using ctxload No No

Using ConText Servers for Automated Text
Loading

No No

Generating Document Textkeys No No

Updating/Exporting a Document No No

Note: The ConText Workbench includes a command-line
input/output (I/O) utility for loading/updating text from
client-side files in a Windows environment to database columns, as
well as exporting text from database columns to client-side files.

For more information about using the ConText Workbench I/O
utility, see Oracle8 ConText Cartridge Workbench User’s Guide.

See Also: For a complete description of ctxload requirements and
options, as well as the structure and syntax of the text load file, see
Chapter 10, "Text Loading Utility".

Loading Text

Setting Up and Managing Text 9-3

Loading Text into External Data Store Columns
If you use the external data store (i.e. in your text column, you store pointers to
documents in your file system), you can use ctxload to load the file pointers.

To use ctxload with external data store columns, the following conditions must
exist:

■ the column that you are using to store the file pointers is a LONG column

■ each file pointer is embedded in the load file as the text of the document;
however do not use the -separate option in the ctxload command-line.

For example:

<TEXTSTART: EMPNO=1010, ENAME=’Mary Jones’>
mjones.pdf
<TEXTEND>

In this example, the file name mjones.pdf will be loaded into the LONG column for
the table and the structured employee information, such as employee number
(1010) and name (Mary Jones), will be loaded into the specified columns.

Using ConText Servers for Automated Text Loading
ConText servers can be used to automatically load text from files in an operating
system directory as the directory is populated with files.

ConText uses ConText servers with the Loader personality to scan a specified
directory for files and call ctxload to load all existing files in the directory into a
specified column. The column and the directory to be scanned are specified in a text
loading source created by the user.

To setup ConText servers for automated text loading, perform the following tasks:

Note: The ctxload utility is best suited for loading text into
columns that utilize the direct data store for storing text.

Suggestion: Because a LONG column is an inefficient means of
storing file pointers, you probably do not want to use ctxload to
load file pointers into columns that use the external data store. You
may want to consider using SQL*Loader to load the file pointers
instead.

Loading Text

9-4 Oracle8 ConText Cartridge Administrator’s Guide

1. Use the SET_ATTRIBUTE and CREATE_PREFERENCE procedures in CTX_
DDL to create a Reader preference. The Reader preference identifies the
directory where the files are (or will be) located.

For example:

begin
 ctx_ddl.set_attribute(’DIRECTORIES’, ’/product/docs’);
 ctx_ddl.create_preference(’PRODUCT_DOCS_READER’,
 ’Directory scanner for /private/docs’,
 ’DIRECTORY READER’);
end;

In this example, the name of the preference created is reader_pref. The directories
attribute for the DIRECTORY READER Tile specifies the directory path and
name for the directory to be scanned (/private/docs).

2. Use SET_ATTRIBUTE and CREATE_PREFERENCE to (optionally) create a
Translator preference. The Translator preference converts incoming files into the
format required by ctxload.

For example:

begin
 ctx_ddl.set_attribute(’COMMAND’, ’/bin/convert.sh’);
 ctx_ddl.create_preference(’PRODUCT_DOCS_TRANSLATOR’,
 ’script that converts files to ctxload format’,
 ’USER TRANSLATOR’);
end;

In this example, the name of the preference created is reader_pref. The command
attribute for the USER TRANSLATOR Tile specifies the location and the name
of the translation program (a shell script named convert.sh).

Note: This example assumes that ConText is installed in a
UNIX-based environment and the files to be loaded are stored in
local directories on the operating system.

Note: If the incoming files do not need to be converted, you can
skip this step and use the predefined preference, DEFAULT_
TRANSLATOR, in your text loading source.

Loading Text

Setting Up and Managing Text 9-5

3. Use SET_ATTRIBUTE and CREATE_PREFERENCE to (optionally) create a
Loader Engine preference. The Loader Engine preference specifies values for
the required parameters in ctxload.

For example:

begin
 ctx_ddl.set_attribute(’separate’, ’Y’);
 ctx_ddl.set_attribute(’longsize’,2000);
 ctx_ddl.create_preference(’PRODUCT_DOCS_LOADER’,
 ’text in separate files, max size of text 2MB’,
 ’GENERIC LOADER’);
end;

In this example, the separate attribute is set for the GENERIC LOADER Tile,
which indicates that the text to be loaded by ctxload is stored in separate files
and not in the load file. In addition, a value of 2000 Kilobytes (2 Megabytes) is
specified for longsize, which sets the maximum size of the text to be loaded by
ctxload.

4. Use the CTX_DDL.CREATE_SOURCE procedure to create a source for the
column into which you want to load text.

When you create a source, you specify the name of the source and the column
to be loaded. You also specify the Reader, Translator, and Engine preferences
that you created.

For example:

begin
 ctx_ddl.create_source(’DOCS_SOURCE’,’DOCS.TEXT’,
 ’basic source for documents in /product/docs’,
 reader_pref =>’PRODUCT_DOCS_READER’
 translator_pref =>’PRODUCT_DOCS_TRANSLATOR’,
 engine_pref => ’PRODUCT_DOCS_LOADER’);
end;

In this example, the source name is docs_source and the column to be loaded is
text in a table named docs.

Note: If the text to be loaded is stored directly in the load file and
the amount of text for any given document is less than 64 Kilobytes,
you can skip this step and use the predefined preference,
DEFAULT_LOADER, in your text loading source.

Loading Text

9-6 Oracle8 ConText Cartridge Administrator’s Guide

5. Start a ConText server with the Loader (R) personality.

For example:

ctxsrv -user ctxsys/passwd -personality R &

Generating Document Textkeys
Each document loaded into a table must be assigned a value in the primary key
column of the table. This value serves as the textkey for the document.

Textkeys can be assigned using the following methods:

■ Embedding Textkeys in Load File

■ Generating Textkeys Using Sequences and Triggers

Embedding Textkeys in Load File
To manually embed textkey values for documents in the load file, in each document
header, create an entry which specifies the name of the primary key column in the
table and the textkey value to be assigned to the document.

For example:

. . .
<TEXTSTART: PK=1000, TITLE=’DOC 1000’>
doc1000.txt
<TEXTEND>
<TEXTSTART: PK=1001, TITLE=’DOC 10001’>
doc1001.txt
<TEXTEND>
. . .

In this example, the load file contains pointers to separate text files (doc1000.txt and
doc1001.txt), rather than the text for each document. The primary key column for the
table is pk and the values specified are loaded into pk when ctxload is run.

See Also: For more information about sources and automated
text loading, see Chapter 7, "Automated Text Loading".

See Also: For a complete description of ctxsrv, see "ctxsrv
Executable" in Chapter 4, "ConText Server Executable and Utility".

Loading Text

Setting Up and Managing Text 9-7

Generating Textkeys Using Sequences and Triggers
To automatically generate textkey values for each document loaded into a table, use
the SQL command CREATE to create a trigger and sequence for the table.

The sequence generates unique values for each document. The trigger calls the
sequence each time a row (document) is loaded into the table and stores the value in
the primary key column for the table.

For example:

create sequence doc_seq;
create trigger doc_trigger
before insert on DOCS
for each row
 BEGIN
 select docs_seq.nextval into :new.pk from dual;
 END;

In this example, a sequence named doc_seq and a trigger named doc_trigger are
created for a table named docs, in which the primary key column is pk.

doc_trigger specifies that the next available value generated by doc_seq is inserted
into the docs table before each new row is inserted into the table.

Updating/Exporting a Document
This section provides details for using ctxload to update the text column for an
existing document (row in the table) from an operating-system file or to export the
contents of the text column for a row to an operating-system file.

To use ctxload to update/export a document, the document must already exist as a
row in the table. To create the row, you can use ctxload or other text loading
methods supported by Oracle.

If you are using the ConText Workbench, you can use the I/O Utility, which
provides the same functionality, except it uses client-side files to perform the
update/export.

See Also: For a complete description of the structure of the load
file, see "Structure of Text Load File" in Chapter 10, "Text Loading
Utility".

See Also: For more information about creating sequences and
triggers, see Oracle8 SQL Reference.

Loading Text

9-8 Oracle8 ConText Cartridge Administrator’s Guide

Update a Document
To update an existing document, you can use ctxload in update mode. To specify
update mode for ctxload, use the -update option and specify the name of the policy
for the text column, the primary key of the row to be updated, and the file
containing the updated text.

For example:

ctxload -user ctxdemo/passwd -update -name word_docs -pk 3452 -file /docs/resume1.doc

In this UNIX-based example, the row identified by primary key 3452, in the table
for a policy named word_docs, is updated with the contents of resume1.doc located in
/docs.

Export a Document
To export a document, you can use ctxload in export mode. To specify update mode
for ctxload, use the -export option and specify the name of the policy for the text
column, the primary key of the row to be exported, and the file to which the text is
exported.

For example:

ctxload -user ctxdemo/passwd -export -name word_docs -pk 3452 -file /docs/new.doc

In this UNIX-based example, the contents of the text column for the row identified
by primary key 3452, in the table for a policy named word_docs, are written to an
operating system file named new.doc located in /docs.

See Also: For a complete description of ctxload, see Chapter 10,
"Text Loading Utility".

For a description of the I/O Utility, see Oracle ConText Workbench
User’s Guide.

Managing Policies

Setting Up and Managing Text 9-9

Managing Policies
This section provides details for using the CTX_DDL PL/SQL package to perform
the following policy administration tasks:

Task
Supported in Sys.
Admin. Tool?

Supported in
Config. Manager?

Modifying a Policy Yes Yes

Creating a Column Policy Yes Yes

Creating a Column Policy for an Object
Table

Yes Yes

Creating a Column Policy for Theme
Indexing

Yes Yes

Using Composite Textkeys in a Column
Policy

Yes Yes

Modifying a Policy Yes Yes

Deleting a Policy Yes Yes

Note: When creating policies (template or column), do not use
PL/SQL and SQL reserved words as the names of your policies.

In addition, certain words, such as ascii, html, blaster, and filter are
used internally by ConText and, consequently, should not be used
by themselves as policy names; however, they can be combined
with other words to create descriptive policy names, such as ascii_
indexing_policy.

Managing Policies

9-10 Oracle8 ConText Cartridge Administrator’s Guide

Creating a Template Policy
To create a template policy, use the PL/SQL procedure CTX_DDLCREATE_
TEMPLATE_POLICY and specify the names of the preferences that you want to use
in the policy:

begin
 ctx_ddl.create_template_policy (policy_name => ’TEMPLATE_POL’,
 dstore_pref => ’PUB_DOCS’,
 engine_pref => ’DOC_ENGINE’,
 filter_pref => ’WORD6’,
 lexer_pref => ’DOC_LINK’,
 wordlist_pref => ’SOUNDEX_YES’,
 stoplist_pref => ’MINI_STOP_LIST’);
end;

In this example, the name of the policy is template_pol. The preferences for the policy
are as specified. If template_pol is specified as the source policy when creating a
column policy, these preferences are copied to the new column policy.

Creating a Column Policy
To create a column policy for text indexing, use the PL/SQL procedure CTX_
DDL.CREATE_POLICY:

begin
 ctx_ddl.create_policy (policy_name => ’DOC_POL’,
 colspec => ’DOCS.ARTICLES’,
 textkey => ’PK’,
 dstore_pref => ’PUB_DOCS’,
 engine_pref => ’DOC_ENGINE’,
 filter_pref => ’WORD6’,
 lexer_pref => ’DOC_LINK’,
 wordlist_pref => ’CTXSYS.SOUNDEX’,
 stoplist_pref => ’MINI_STOP_LIST’);
end;

In this example, the name of the policy is doc_pol. The policy does not have a
description, nor does it use a source (i.e. template) policy. The text column (specified
by colspec) is articles in a table named docs in the current user’s schema. The textkey
for the table is pk.

The preferences used in the policy are all user-owned policies, except for the
Wordlist preference, which uses the SOUNDEX predefined preference owned by
CTXSYS.

Managing Policies

Setting Up and Managing Text 9-11

Usage Notes for colspec and textkey
The following conditions apply to the colspec and textkey parameters in CREATE_
POLICY:

■ the column name in colspec must include the table name, using the following
syntax: table_name.column_name

■ textkey and colspec must be distinct; a textkey column cannot also serve as the
text column for the policy

■ if a value is not specified for textkey, ConText does not, by default, always select
the primary key column for the table identified in colspec. Instead, ConText
selects the first primary key or unique column encountered in the table.

Compressor Preferences
It is not necessary to specify a Compressor preference when creating a policy.
ConText uses the NULL COMPRESSOR predefined preference as the default.

Preferences and Policies in Other Schemas
In a policy, you can use preferences owned by other users; however, you must
specify the fully qualified name of the preference. For example, to specify a
preference owned by CTXSYS, such as the SOUNDEX preference, use the following
syntax: CTXSYS.pref_name (e.g. CTXSYS.soundex).

In addition, if you use a source policy in a policy, you can specify either your
template policies or the CTXSYS-owned template policies; however, you must
specify the fully-qualified name of the template policy.

Creating a Column Policy for an Object Table
The process for creating a column policy for a text column in an object table is
identical to the process for a text column in a relational table; however, the object
table must have a primary key defined.

Note: In addition to the required primary key for the object table,
the datatype for the text column and textkey column must be one of
the standard datatypes supported by ConText; user-defined object
datatypes are not supported.

For more information about standard datatypes and user-defined
object datatypes, see Oracle8 Concepts.

Managing Policies

9-12 Oracle8 ConText Cartridge Administrator’s Guide

Consider the following example of a simple object table:

CREATE TYPE doc_t AS OBJECT(
id NUMBER,
text VARCHAR2(255));

CREATE TABLE doc_tab of doc_t (id PRIMARY KEY);

When creating a policy for the text column, ConText uses the id column as the
textkey, regardless of whether a textkey value is explicitly specified for CREATE_
POLICY; however, you should always specify a textkey value to ensure the correct
column is used. For example:

begin;
 ctx_ddl.create_policy(
 policy_name => ’doc_pol’,
 colspec => ’doc_tab.text’,
 textkey => ’id’);
end;

Creating a Column Policy for Theme Indexing
To create a theme indexing policy, use the PL/SQL procedure CTX_DDL.CREATE_
POLICY and specify the THEME_LEXER predefined preference:

begin
 ctx_ddl.create_policy (policy_name => ’DOC_POL’,
 colspec => ’DOCS.ARTICLE’,
 textkey => ’PK’,
 dstore_pref => ’PUB_DOCS’,
 engine_pref => ’DOC_ENGINE’,
 filter_pref => ’WORD6’,
 lexer_pref => ’MY_THEME_PREF’,
 wordlist_pref => ’CTXSYS.SOUNDEX’,
 stoplist_pref => ’MINI_STOP_LIST’);
end;

The following example illustrates how to create a policy identical to the previous
policy example, except that THEME_LEXER is used in place of doc_link:

See Also: For more information about the CREATE TYPE
command, see Oracle8 SQL Reference.

See Also: For more information about theme indexes and queries,
see "ConText Indexes" in Chapter 6, "Text Concepts".

Managing Policies

Setting Up and Managing Text 9-13

Using Composite Textkeys in a Column Policy
To create a policy that uses a composite textkey, use the PL/SQL procedure CTX_
DDL.CREATE_POLICY; however, when you specify the textkey for the column,
reference each of the primary or unique key columns (up to 16) that constitute the
composite textkey for the column.

For example:

begin
 ctx_ddl.create_policy (policy_name => ’DOC_POL’,
 colspec => ’DOCS.ARTICLE’,
 textkey => ’AUTH,TITLE’,
 dstore_pref => ’PUB_DOCS’,
 engine_pref => ’DOC_ENGINE’,
 filter_pref => ’WORD6’,
 lexer_pref => ’DOC_LINK’,
 wordlist_pref => ’CTXSYS.SOUNDEX’,
 stoplist_pref => ’MINI_STOP_LIST’);
end;

In this example, the textkey for the articles column is a composite textkey consisting
of the columns auth and title in the docs table. The names of the textkey columns are
separated by commas and are registered in the ConText data dictionary in the order
in which they are specified.

Note: There is a 256 character limit, including the comma
separators, on the combined length of the column names in a
composite textkey.

Also, there is a 256 character limit on the combined length of the
columns in a composite textkey.

For more information about these limits, see "Composite Textkeys"
in Chapter 6, "Text Concepts".

Managing Policies

9-14 Oracle8 ConText Cartridge Administrator’s Guide

Modifying a Policy
To modify a policy (column or template), use the PL/SQL procedure CTX_
DDL.UPDATE_POLICY:

begin
 ctx_ddl.update_policy (policy_name => ’DOC_POL’,
 filter_pref => ’HTML_DOC’,
 wordlist_pref => ’CTXSYS.NO_SOUNDEX’);
end;

In this example, a Filter preference named html_doc replaces the existing preference
for the Filter category, while the predefined Wordlist preference named NO_
SOUNDEX replaces the existing preference for the Wordlist category.

Deleting a Policy
To delete a policy (column or template) from the ConText data dictionary, use the
PL/SQL procedure CTX_DDL.DROP_POLICY:

execute ctx_ddl.drop_policy (’DOC_POL’)

To use DROP_POLICY, you only need to specify the name (in this example, doc_pol)
of the policy that you want to drop.

Note: If a column policy has been used to create a index for the
text column in the policy, the index must be dropped before the
policy can be updated.

In addition, you cannot modify the attributes for a policy; you can
only modify the description and preferences for a policy.

Note: If a column policy has been used to create a index for the
text column in the policy, the index must be dropped before the
policy can be deleted.

Managing Preferences

Setting Up and Managing Text 9-15

Managing Preferences
This section provides details for using the CTX_DDL PL/SQL package to perform
the following administration tasks for preferences:

Creating a Preference
To create a preference in the ConText data dictionary, use the SET_ATTRIBUTE and
CREATE_PREFERENCE procedures in CTX_DDL.

Task
Supported in Sys.
Admin. Tool?

Supported in
Config. Manager?

Creating a Preference: Yes Yes

Creating an Engine Preference Yes Yes

Creating a Data Store Preference for a
Master Table

Yes Yes

Creating Filter Preferences Yes Yes

Creating a Theme Lexer Preference Yes Yes

Creating a Stoplist Preference Yes Yes

Deleting a Preference Yes Yes

Note: When creating preferences, do not use PL/SQL and SQL
reserved words as the names of your preferences.

In addition, certain words, such as ascii, html, blaster, and filter are
used internally by ConText and, consequently, should not be used
by themselves as preference names; however, they can be combined
with other words to create descriptive names, such as html_filter_
pref.

Note: CREATE_PREFERENCE must be called immediately after
SET_ATTRIBUTE to assign the specified attribute(s) to the
preference that you are creating.

Managing Preferences

9-16 Oracle8 ConText Cartridge Administrator’s Guide

For example:

begin
 ctx_ddl.set_attribute (’PATH’,
 ’/public/doc1:/public/doc2’);
 ctx_ddl.create_preference (’PUB_DOCS’,
 ’Docs stored in files’,
 ’OSFILE’);
end;

In this example, a Data Store preference named pub_docs is created for text stored
externally in operating system files in a UNIX-based environment.

The path attribute for the OSFILE Tile specifies the directory paths and names
(/pub/doc1 and /public/doc2) where the files are stored. A colon is used to separate the
multiple directory paths/names.

Specifying Multiple Values for Attributes
To assign more than one value to the same Tile attribute, you must call SET_
ATTRIBUTE separately for each value that you want to set before calling CREATE_
PREFERENCE.

The following attributes require multiple values:

■ stop_word (GENERIC STOP LIST Tile)

■ executable (BLASTER FILTER Tile)

■ keep_tag (GENERIC WORD LIST Tile)

Clearing Attributes from the Buffer
Each time CREATE_PREFERENCE is called, the buffer used to store the attributes
for preferences is automatically cleared. As a result, if the preference creation failed,
all of the attributes must be entered again before calling CREATE_PREFERENCE
again.

If you enter an incorrect value for an attribute, you can override the attribute value
by simply calling SET_ATTRIBUTE again for the same attribute. If you need to
remove all of the attributes from the buffer, use the CTX_DDL.CLEAR_
ATTRIBUTES procedure.

See Also: For examples of specifying multiple attribute values for
preferences, see "Creating Filter Preferences" and "Creating a
Stoplist Preference" in this chapter.

Managing Preferences

Setting Up and Managing Text 9-17

Creating an Engine Preference
One of the most important preferences you create is an Engine preference. In the
Engine preference for a policy, you specify the amount of indexing memory
allocated for the column in the policy, as well as the STORAGE clauses used for the
automatically-generated tables and Oracle indexes that comprise a ConText index.

Because ConText index strings for indexed tokens are stored in memory before they
are saved to the ConText index tables, it is vital that you allocate as much indexing
memory as possible to avoid excessive index fragmentation.

When you create an Engine preference, you use the index_memory attribute for the
GENERIC ENGINE Tile to allocate indexing memory.

If you plan to use parallel indexing, the memory specified for the Engine preference
should be the amount of real memory available divided evenly among the number
of ConText servers that will perform the indexing in parallel.

For example, if you are going to use three ConText servers in parallel to create an
index for a column and you have 100 Mb of memory available on the machine on
which the servers will be running, you should create an Engine preference with
index_memory set to 33 Mb, then specify the preference in the policy for the column.

Suggestion: To ensure the best results for indexing, calculate the
total amount of real memory (not virtual memory) available on the
machine which will be used to create the index, then specify this
amount when you create an Engine preference.

See Also: For an example of creating a policy, see "Creating a
Column Policy" in this chapter.

Managing Preferences

9-18 Oracle8 ConText Cartridge Administrator’s Guide

Creating a Data Store Preference for a Master Table
The following example illustrates creating a Data Store preference for two tables
with the following master/detail relationship:

To create a Data Store preference for use in a policy on the master table, use the
MASTER DETAIL NEW Tile.

For example:

exec ctx_ddl.set_attribute(’BINARY’,’0’);
exec ctx_ddl.set_attribute(’DETAIL_TABLE’,’DOCS_TEXT’);
exec ctx_ddl.set_attribute(’DETAIL_KEY’,’FK_DOCID’);
exec ctx_ddl.set_attribute(’DETAIL_LINENO’,’CHAPTER’);
exec ctx_ddl.set_attribute(’DETAIL_TEXT’,’TEXT’);
exec ctx_ddl.create_preference(’MDN’,’’,’MASTER DETAIL NEW’);
exec ctx_ddl.create_policy('DOCS_POL','DOCS.COMMENT',textkey=>’DOCID’,dstore_pref=>'MDN');

In this example, the text column for the policy is the comment column in master;
however, ConText does not index the contents of this column. The column simply
serves as the place-holder for the policy.

As such, any column in the master table, except for the textkey column, can serve as
the text column for the policy; however, the DML trigger for the table always
includes the text column. Any changes to the text column result in a reindexing
request sent to the DML queue.

You may wish to create a dummy column in your master table for use as the text
column so that changes to the column do not trigger reindexing requests. In the
example above, every time comments changes, reindexing is performed on the text
column for each row in the docs_text table that is associated with comments.

Table Columns Datatype Description

DOCS DOCID NUMBER Primary key for docs_text.fk_docid

TITLE VARCHAR2 Document title

COMMENT VARCHAR2 Text column

DOCS_TEXT FK_DOCID NUMBER Foreign key to docs.docid

CHAPTER NUMBER Detail information (combined
with docs.docid uniquely
identifies rows in docs_text)

TEXT VARCHAR2 Actual column containing text of
documents

Managing Preferences

Setting Up and Managing Text 9-19

In addition, the dummy column, if named something appropriate (e.g. text or detail),
makes one-step queries more intuitive to write.

For example:

alter table master add (text char(1));
exec ctx_ddl.create_policy('MY_POL','master.text',textkey => ’PK’ dstore_pref=>'MY_MD')

select title
from master
where contains(text, 'Oracle')> 0;

Managing Preferences

9-20 Oracle8 ConText Cartridge Administrator’s Guide

Creating Filter Preferences
When creating Filter preferences, the following considerations determine which
Tiles and attributes you use, as well as the values that you specify for each attribute:

■ internal filters or external filters

■ single-format or mixed-format columns

Creating a Filter Preference Using Internal Filters
This section provides one example for internal filters in single-format columns and
one example for mixed-format columns.

Single-Format Columns: For a single-format column using one of the internal filters,
create a Filter preference that sets the format attribute (BLASTER FILTER Tile) to the
format used in your column.

The following example illustrates creating a Filter preference for a column that
contains documents only in MS Word for Windows format:

begin
 ctx_ddl.set_attribute(’FORMAT’,’11’)
 ctx_ddl.create_preference(’WP6_FILT’,
 ’WP6 filter’,
 ’BLASTER FILTER’);
end;

Mixed-Format Columns: For mixed-format columns using internal filters, create a
Filter preference that sets the format attribute (BLASTER FILTER Tile) for the
Autorecognize filter:

begin
 ctx_ddl.set_attribute(’FORMAT’,’997’)
 ctx_ddl.create_preference(’MULTI_FILT’,
 ’multiple internal filters’,
 ’BLASTER FILTER’);
end;

See Also: For a complete list of the Tiles and attributes for Filter
preferences, see "Filter Tiles" in Chapter 8, "ConText Indexing".

Managing Preferences

Setting Up and Managing Text 9-21

Creating a Filter Preference Using External Filters
This section provides one example for external filters in single-format columns and
one example for mixed-format columns.

Single-Format Columns: For a single-format column that uses external filters, create a
Filter preference that uses the command attribute (USER FILTER Tile) to specify the
filter executable for the format used in your column.

The following example illustrates creating a Filter preference for a column that
contains documents in AmiPro format and uses the supplied external filter named
amipro:

begin
 ctx_ddl.set_attribute(’COMMAND’,’amipro’)
 ctx_ddl.create_preference(’AMIPRO_FILT’,
 ’amipro external filter’,
 ’USER FILTER’);
end;

Mixed-Format Columns: For a mixed-format column that uses external filters only or
external and internal filters, create a Filter preference that sets the executable
attribute (BLASTER FILTER Tile) once for each of the external filters you want to
use in your column.

Note: Before a Filter preference that uses external filters can be
created, one or more external filters (executables) must be created
and stored in the appropriate directory in your Oracle home
directory.

You can choose to create your own external filters or use the
external filters provided by ConText. The examples in this section
use the external filters provided by ConText.

For a complete list of the external filters supplied by ConText, see
"Supplied External Filters" in Appendix D, "External Filter
Specifications".

For the location of the directory for the external filter executables,
see the Oracle8 installation documentation specific to your
operating system.

Managing Preferences

9-22 Oracle8 ConText Cartridge Administrator’s Guide

The following example illustrates creating a Filter preference for a column that
contains documents in AmiPro, PDF (Adobe Acrobat), and WordPerfect 6.0 formats.
It uses the supplied external filters amipro and acropdf, because these formats are not
supported by the internal filters:

begin
 ctx_ddl.set_attribute(’EXECUTABLE’, 19,’amipro’, 1)
 ctx_ddl.set_attribute(’EXECUTABLE’, 57,’acropdf’, 2)
 ctx_ddl.create_preference(’MULT_FILT’,
 ’multiple filters, some external’,
 ’BLASTER FILTER’);
end;

Creating a Theme Lexer Preference
If you have English-language documents in a column and you want to create a
theme index for the column to enable theme queries, you need to create a column
policy that uses the theme lexer (THEME LEXER Tile). For this purpose, ConText
provides a predefined lexer preference, THEME_LEXER, that calls THEME LEXER.

Note: The executable attribute requires that you specify a format ID
which identifies the document format supported by the filter
executable.

For a complete list of format IDs for document formats, see
"Supported Formats for Mixed-Format Columns" in Appendix D,
"External Filter Specifications".

Note: It is not necessary to explicitly specify the external filter for
WordPerfect 6.0, because ConText provides an internal filter for
WordPerfect 6.0.

When a Filter preference is created using the executable attribute,
ConText always uses internal filters, unless an external filter is
explicitly specified in the preference.

Note: Because THEME LEXER does not have any attributes to be
set, you do not generally need to create theme lexer preferences.

Managing Preferences

Setting Up and Managing Text 9-23

Creating a Stoplist Preference
To create a Stoplist preference:

1. Use CTX_DDL.SET_ATTRIBUTE to set the stop_word attribute (GENERIC STOP
LIST Tile) for each word that you do not want ConText to index.

2. Call CTX_DDL.CREATE_PREFERENCE and specify the GENERIC STOP LIST
Tile to create the preference.

For example:

begin
 ctx_ddl.set_attribute(’STOP_WORD’, ’OF’, 1);
 ctx_ddl.set_attribute(’STOP_WORD’, ’TO’, 2);
 ctx_ddl.set_attribute(’STOP_WORD’, ’A’, 3);
 . . .
 . . .
 . . .
 ctx_ddl.set_attribute(’STOP_WORD’, ’SO’, 82);
 ctx_ddl.set_attribute(’STOP_WORD’, ’MOST’, 83);
 ctx_ddl.set_attribute(’STOP_WORD’, ’MAY’, 85);
 ctx_ddl.set_attribute(’STOP_WORD’, ’INTO’, 86);
 ctx_ddl.set_attribute(’STOP_WORD’, ’ANY’, 87);
 ctx_ddl.create_preference(’MY_STOPLIST’,
 ’My list of stop words’,
 ’GENERIC STOP LIST’);
end;

See Also: For examples of creating a policy that uses the
THEME_LEXER predefined preference, see "Creating a Column
Policy for Theme Indexing" in this chapter.

Note: The maximum number of terms (stop words) that a Stoplist
preference can contain is 4095.

Note: This example illustrates a stoplist for a case-insensitive text
index. To create a stoplist for a case-sensitive index, specify the stop
words in the stoplist exactly as they would appear in the text of
your documents (e.g. Of, of, To, to)

Managing Preferences

9-24 Oracle8 ConText Cartridge Administrator’s Guide

Deleting a Preference
To delete a preference from the ConText data dictionary, use the PL/SQL procedure
CTX_DDL.DROP_PREFERENCE.

For example:

exec ctx_ddl.drop_preference(’PUB_DOCS’)

To use DROP_PREFERENCE, you need to specify only the name (in this example,
pub_docs) of the preference that you want to drop.

Note: If a preference is used in a policy, the policy must be deleted
from the ConText data dictionary before the preference can be
deleted.

Managing Indexes

Setting Up and Managing Text 9-25

Managing Indexes
This section provides details for using the CTX_DDL PL/SQL package to perform
the following indexing tasks:

Creating an Index
To create a ConText index (theme or text) on a table or view, use the CTX_
DDL.CREATE_INDEX procedure.

The only argument required for CREATE_INDEX is the name of the policy for the
text column to be indexed.

For example:

execute ctx_ddl.create_index(’DOC_POL’)

In this example, CREATE_INDEX creates an index for the text column defined in a
policy named doc_pol.

Task
Supported in Sys.
Admin. Tool?

Supported in
Config. Manager?

Creating an Index Yes Yes

ConText Indexing in Parallel Yes Yes

Indexing Existing Columns (Hot Upgrade) Yes Yes

Updating an Index Yes Yes

Dropping an Index Yes Yes

Optimizing an Index Yes Yes

Resuming Index Creation/Optimization Yes Yes

Managing Indexes

9-26 Oracle8 ConText Cartridge Administrator’s Guide

Creating a Non-populated Index
To create the ConText index tables without populating the tables, use the pop_index
parameter in CTX_DDL.CREATE_INDEX.

For example:

execute ctx_ddl.create_index(’DOC_POL’, pop_index => FALSE)

This example creates the ConText index tables for the doc_pol policy without
populating the tables with index entries.

To populate the tables, the CTX_DML.REINDEX procedure can be called for each of
the rows (documents) in the table for doc_pol or, if automatic DML is enabled,
update each of the rows in the table.

Note: During indexing, ConText creates Oracle indexes for the
index tables using the temporary tablespace for CTXSYS. To ensure
successful creation of the Oracle indexes, the temporary tablespace
for CTXSYS must have enough space to store the temporary
segments used in creating the Oracle indexes.

The temporary tablespace for CTXSYS is defined during
installation of ConText.

For more information about defining the temporary tablespace for
CTXSYS, see the Oracle8 installation documentation specific to
your operating system.

Managing Indexes

Setting Up and Managing Text 9-27

ConText Indexing in Parallel
You can optionally include a numeric value in the argument string for CTX_
DDL.CREATE_INDEX to specify the number of ConText servers used for parallel
indexing.

For example:

execute ctx_ddl.create_index(’DOC_POL’, 4)

In this example, CREATE_INDEX uses the first four available ConText servers with
the DDL personality to create an index in parallel for the text column defined in the
doc_pol policy.

Parallel Creation of Oracle Indexes
ConText indexing in parallel does not automatically cause the Oracle indexes on the
ConText index tables to be created in parallel.

To have Oracle8 create Oracle indexes in parallel, the parallel query option for
Oracle8 must be installed. In addition, a value must be specified for the PARALLEL
clause used in the CREATE INDEX command.

To specify a value for the PARALLEL clause used in the CREATE INDEX command
for the Oracle index created on the token table in the ConText index, use the i1i_
other_params attribute (GENERIC ENGINE Tile) in the Engine preference for the
column policy.

To set the PARALLEL clause for the Oracle indexes created on the other tables in the
ConText index, use the kid_other_params, kik_other_params, lix_other_params, and sri_
other_params attributes.

Note: The value you specify for parallel creation of ConText
indexes cannot exceed the number of ConText servers currently
running with the DDL personality. If you specify more ConText
servers than the number of servers running, CREATE_INDEX will
not execute.

See Also: For more information about ConText indexing in
parallel, see "Parallel Indexing" in Chapter 6, "Text Concepts".

Managing Indexes

9-28 Oracle8 ConText Cartridge Administrator’s Guide

For example:

begin
 ctx_ddl.set_attribute(’I1I_OTHER_PARMS’, ’ PARALLEL 4’);
 ctx_ddl.set_attribute(’KID_OTHER_PARMS’, ’ PARALLEL 4’);
 ctx_ddl.set_attribute(’KIK_OTHER_PARMS’, ’ PARALLEL 4’);
 ctx_ddl.create_preference(’PAR_INDEX’,
 ’Parallel indexing x 4’,
 ’GENERIC ENGINE’);
end;

In this example, an Engine preference named par_index is created with a PARALLEL
value of 4 for the Oracle indexes created on the token and document mapping
tables in ConText indexes.

If the par_index preference is used in a column policy, when a ConText index is
created for the policy, four Oracle8 server processes create the indexes in parallel for
the token and document mapping tables.

Note: If you do not set the other_params attributes for the indexes
on a particular ConText index table, the value for PARALLEL is
derived from the PARALLEL value specified for the CREATE
TABLE command used to create the ConText index table.

If no PARALLEL value is specified for the ConText index table, the
default is 1.

See Also: For more information about the PARALLEL clause in
the CREATE INDEX and CREATE TABLE commands, see Oracle8
SQL Reference.

For more information about the parallel query option, see Oracle8
Tuning.

Managing Indexes

Setting Up and Managing Text 9-29

Indexing Existing Columns (Hot Upgrade)
ConText does not require you to create new tables or modify existing tables to create
indexes for text already stored in a database. If you already have text stored in a
column in an existing database, you can use ConText to index the text in the column
without changing the structure of the table itself. Once the column has an index,
queries can be submitted against the column.

The only requirements are:

■ the table must have a primary key or unique column that can serve as a textkey
column for identifying the documents stored in the table

■ if the text in the column is formatted, it must be in a format supported by
ConText

■ if the text in the column is stored in mixed formats, the policy for the column
must include a preference that uses the Autorecognize filter

The procedure for indexing an existing text column is identical to the procedure for
indexing a new text column:

1. Create preferences (optional)

2. Create a policy for the column

3. Create an index using the policy for the column

Updating an Index
Once an index is created for a text column, ConText automatically updates the index
each time a document (row) is added, deleted, or modified in the table.

In addition, the index can be manually updated for a single document using CTX_
DML.REINDEX.

See Also: For examples of creating preferences and policies, see
"Creating a Preference" and "Creating a Column Policy" in this
chapter.

For an example of creating a ConText index, see "Creating an Index"
in this chapter.

Managing Indexes

9-30 Oracle8 ConText Cartridge Administrator’s Guide

Dropping an Index
To drop an existing index from the data dictionary, use the PL/SQL procedure
CTX_DDL.DROP_INDEX.

For example:

execute ctx_ddl.drop_index (’DOC_POL’)

In this example, the index and associated tables for doc_pol are deleted from the
database. If you wanted to perform subsequent text queries against the text column
for doc_pol, the index for the column in doc_pol must be recreated using CTX_
DDL.CREATE_INDEX.

Optimizing an Index
Index optimization can be used to help reduce the size of ConText indexes, as well
as update the indexes to reflect deleted/modified documents.

To optimize an index in the data dictionary, use the PL/SQL procedure, CTX_
DDL.OPTIMIZE_INDEX.

For example:

execute ctx_ddl.optimize_index(’DOC_POL’, ctx_ddl.defragment_to_new_table);

In this example, the optimization method used for the ConText index for doc_pol is
defragment_to_new_table. This method uses a second, mirror ConText index table to
compact the index fragments for all indexed terms with multiple fragments and
remove references from the index strings for all deleted/modified documents.

Parallel Optimization
Similar to index creation, index optimization can be performed in parallel. To
perform parallel index optimization, specify a degree of parallelism when calling
the OPTIMIZE_INDEX procedure.

See Also: For more information about ConText index
optimization, see "Index Optimization" in Chapter 6, "Text
Concepts"

Managing Indexes

Setting Up and Managing Text 9-31

For example:

begin
 ctx_ddl.optimize_index(policy_name => ’DOC_POL’,
 optyp => ctx_ddl.defragment_to_new_table,
 parallel => 4);
end;

In this example, OPTIMIZE_INDEX is called for doc_pol with an optimization
method of defragment_to_new_table and degree of parallelism of 4.

Piecewise Optimization
To optimize the entries for an individual word in an index, set opttyp to DR_
OPTIMIZE_PIECEWISE and specify a value for term in CTX_DDL.OPTIMIZE_
INDEX.

For example:

begin
 ctx_ddl.optimize_index(policy_name => ’DOC_POL’,
 optyp => ctx_ddl.dr_optimize_piecewise,
 term => ’company’);
end;

begin
 ctx_ddl.optimize_index(policy_name => ’THEME_POL’,
 optyp => ctx_ddl.dr_optimize_piecewise,
 term => ’ABC Corp’);
end;

In the first example, OPTIMIZE_INDEX is called in piecewise mode for the word
company in the index for a policy named doc_pol.

In the second example, OPTIMIZE_INDEX is called in piecewise mode for the
theme ABC Corp in the index for a policy named theme_pol.

Note: The parallel issues for Oracle index creation on ConText
index tables apply to ConText index optimization as well.

For more information about the issues regarding parallel index
creation, see "Parallel Creation of Oracle Indexes" in this chapter.

Managing Indexes

9-32 Oracle8 ConText Cartridge Administrator’s Guide

Resuming Index Creation/Optimization
If index creation/optimization fails, you can use the PL/SQL procedure CTX_
DDL.RESUME_FAILED_INDEX to resume the operation once the reason for the
failure has been determined and corrected/removed.

In the following example, index creation is resumed for the text column in a policy
named doc_pol.

execute ctx_ddl.resume_failed_index(’DOC_POL’)

You can also choose to start the index creation over from the beginning using CTX_
DDL.CREATE_INDEX.

You can view the index log in the GUI administration tools or through the CTX_
INDEX_LOG view to determine when and where the index creation failed.

The log also can be used to determine whether to resume index creation or simply
start the operation over, based on the stage at which the creation failed and/or the
percentage of the creation completed before failure.

Managing Thesauri

Setting Up and Managing Text 9-33

Managing Thesauri
This section provides details for using the CTX_THES PL/SQL package and/or
ctxload to perform the following indexing tasks:

Task
Supported in Sys.
Admin. Tool?

Supported in
Config. Manager?

Creating a Thesaurus Yes No

Creating a Case-sensitive Thesaurus Yes No

Creating the Supplied Thesaurus No No

Creating/Updating a Thesaurus Entry Yes No

Deleting a Thesaurus Yes No

Creating a Thesaurus Output File No No

Note: The Configuration Manager, included in the ConText
Workbench, does not provide thesaurus maintenance or viewing
functionality.

All thesauri maintenance tasks must be performed through the
command-line or the System Administration tool, which is also
included in the ConText Workbench.

In addition, thesauri viewing can be performed only through the
System Administration tool. The System Administration tool
provides a graphical interface for illustrating relationships between
thesaurus entries.

Managing Thesauri

9-34 Oracle8 ConText Cartridge Administrator’s Guide

Creating a Thesaurus
To create a thesauri, use the PL/SQL function CTX_THES.CREATE_THESAURUS
or use the ctxload command-line utility.

Using CREATE_THESAURUS
The following SQL*Plus example creates an empty thesaurus named tech_thes using
CREATE_THESAURUS:

variable thesid number
execute :thesid := ctx_thes.create_thesaurus(’tech_thes’)

Using ctxload
The following command-line example creates a thesaurus named science_thes using
ctxload:

ctxload -user ctxdev/ passwd -thes -name science_thes -file sci_terms.txt

In this example, the owner of the thesaurus is an Oracle user named ctxdev. The -thes
argument specifies that ctxload is used to create/import a thesaurus. The name of
the thesaurus import file is sci_terms.txt.

Note: CREATE_THESAURUS creates a thesaurus with no entries.

ctxload creates a thesaurus using a thesaurus import file. The file
can contain thesaurus entries or can be empty.

To add entries to a thesaurus, you must use CTX_THES.CREATE_
PHRASE or the System Administration tool.

See Also: For a complete description of ctxload requirements and
options, as well as the structure and syntax of the thesaurus import
file, see Chapter 10, "Text Loading Utility".

Managing Thesauri

Setting Up and Managing Text 9-35

Creating a Case-sensitive Thesaurus
To create a case-sensitive thesaurus that contains no entries, use CTX_
THES.CREATE_THESAURUS and specify TRUE for case_sensitive.

To create a case-sensitive thesaurus with entries, use ctxload and the -thescase
argument.

Using CREATE_THESAURUS
The following SQL*Plus example creates an empty, case-sensitive thesaurus named
science_terms. ConText retains the case of all terms that are subsequently entered in
the thesaurus:

variable thesid number
execute :thesid := ctx_ddl.create_thesaurus(’scinece_terms’,TRUE)

Using ctxload
The following UNIX-based example creates a case-sensitive thesaurus named
science_terms and populates the thesaurus with entries from a file named science.thes:

ctxload -thes -thescase y -name science_terms -file science.thes

Creating the Supplied Thesaurus
To create the thesaurus supplied by ConText, navigate to the directory containing
the thesaurus load file.

For example, in a UNIX-based environment, type the following command at the
operating system prompt:

cd $ORACLE_HOME/ctx/thes

Then run ctxload in thesaurus creation mode (-thes parameter) and specify the name
of the load file (-file parameter). For the -name parameter, specify the name that you
want to assign to the thesaurus created by ctxload.

Note: You can give the thesaurus any name; however, if you want
to use the thesaurus as the default thesaurus, name it DEFAULT.

Managing Thesauri

9-36 Oracle8 ConText Cartridge Administrator’s Guide

For example, in a UNIX-based environment, type the following command at the
operating system prompt:

ctxload -thes -thescase y -file dr0thsus.txt -name generic_thes

In this example, a case-sensitive thesaurus named generic_thes is created using the
’dr0thsus.txt’ load file. The supplied thesaurus is designed for use as a
case-sensitive thesaurus; however, it can be used equally well as a case-insensitive
thesaurus. To create the supplied thesaurus as case-insensitive, omit the -thescase
parameter when running ctxload.

Creating/Updating a Thesaurus Entry
To create a entry in an existing thesaurus or update an existing entry, use the
PL/SQL function CTX_THES.CREATE_PHRASE. The only update allowed for an
existing entry is the definition of a new relationship between the phrase in the entry
and another phrase in the thesaurus.

The following SQL*Plus example creates two new phrases (intranet and world wide
web) in a thesaurus named tech_thes:

variable phraseid number
execute :phraseid := ctx_ddl.create_phrase(’tech_thes’,’intranet’)
execute :phraseid := ctx_ddl.create_phrase(’tech_thes’,’world wide web’)

The following SQL*Plus example establishes the phrase intranet as a narrower
partitive term for world wide web in tech_thes:

variable phraseid number
execute :phraseid := ctx_ddl.create_phrase(’tech_thes’,’intranet’,’NTP’,’world wide web’)

See Also: For a complete description of ctxload, see Chapter 10,
"Text Loading Utility".

For more information about case-sensitivity in thesauri, see
"Thesauri" in Chapter 6, "Text Concepts".

Suggestion: Because the relationships between terms in a
thesaurus entry can be complex, Oracle does not recommend
updating entries using CREATE_PHRASE.

When possible, use the System Administration tool to update
entries. The System Administration tool provides a graphical
representation of thesaurus entries and relationships.

Managing Thesauri

Setting Up and Managing Text 9-37

Deleting a Thesaurus
To delete an existing thesaurus, use the PL/SQL procedure CTX_THES.DROP_
THESAURUS.

For example:

execute ctx_ddl.drop_thesaurus(’science_thes’)

In this example, a thesaurus named science_thes and all of its entries are deleted
from the thesaurus tables.

Creating a Thesaurus Output File
To create an output file containing all the entries for an existing thesaurus, use the
ctxload command-line utility.

For example:

ctxload -user ctxdev/ passwd -thesdump -name tech_thes -file tech_terms.out

In this example, the owner of the thesaurus is an Oracle user named ctxdev. The
-thesdump argument specifies that ctxload is used to create/export a thesaurus
output file. The thesaurus import file, named tech_terms.out, is created in the
directory from which ctxload is run.

See Also: For a complete description of ctxload requirements and
options, as well as the structure and syntax of the thesaurus import
file, see Chapter 10, "Text Loading Utility".

Managing User-defined Document Sections

9-38 Oracle8 ConText Cartridge Administrator’s Guide

Managing User-defined Document Sections
This section provides details for creating user-defined sections and section groups
and assigning a section group to a text column via the column policy:

Creating a Section Group
To create a section group, use the CTX_DDL.CREATE_SECTION_GROUP
procedure. The only argument required for CREATE_SECTION_GROUP is the
name of the section group to be created.

For example:

exec ctx_ddl.create_section_group(’HTML_SECTIONS’)

Creating a Section
To create a user-defined section and assign the section to a section group, use the
CTX_DDL.ADD_SECTION procedure. The ADD_SECTION procedure requires you
to enter a name for the section, the name of the section group to which the section is
assigned, start and end tags for the section, and whether the section is a top-level
section or self-enclosing.

For example:

exec ctx_ddl.add_section('HTML_SECTIONS','HEAD','<HEAD>','</HEAD>',true,false)

Task
Supported in Sys.
Admin. Tool?

Supported in
Config. Manager?

Creating a Section Group Yes Yes

Creating a Section Yes Yes

Creating a Wordlist Preference with a Section
Group

Yes Yes

Creating a Policy for a Section Group Yes Yes

Viewing Sections and Section Groups Yes Yes

Removing a Section from a Section Group Yes Yes

Dropping a Section Group Yes Yes

Managing User-defined Document Sections

Setting Up and Managing Text 9-39

In this example, the name of the section is head, the start and end tags for the section
are <HEAD> and </HEAD>, and the section is defined as a top-level section,
meaning the section ends when an end tag for the section or a start tag for another
top-level section is encountered.

Creating a Wordlist Preference with a Section Group
To create a Wordlist preference for sections in a text column, set the section_group
attribute (GENERIC WORD LIST Tile), then use CTX_DDL.CREATE_PREFERENCE
to create a preference for the Tile.

For example:

exec ctx_ddl.set_attribute(̀ SECTION_GROUP’,’HTML_SECTIONS’);
exec ctx_ddl.create_preference(̀ html_sect’,’HTML sections’,’GENERIC WORD LIST’);

Creating a Policy for a Section Group
To use the preference in a policy, use CTX_DDL.CREATE_POLICY and specify the
name of the preference.

For example:

ctx_ddl.create_policy(̀ html_pol’,’docs.text’,wordlist_pref=>’html_sect’);

Viewing Sections and Section Groups
To view all the user-defined sections and section groups that have been created in
the ConText data dictionary, use the CTX_ALL_SECTIONS and CTX_ALL_
SECTIONS views.

To view only the sections and section groups that you have created, use the CTX_
USER_SECTIONS and CTX_USER_SECTION_GROUPS views.

Note: For the strings <HEAD> and </HEAD> to be treated as start
and end tags in HTML documents, both strings must be specified
for the keep_tag attribute (HTML FILTER Tile) and the startjoins and
endjoins attributes (BASIC LEXER Tile) must be set.

For examples of setting these attributes, see "Filter Preference
Examples" and "Lexer Preference Examples" in Chapter 8, "ConText
Indexing".

Managing User-defined Document Sections

9-40 Oracle8 ConText Cartridge Administrator’s Guide

Removing a Section from a Section Group
To remove a section from a section group, use the CTX_DDL.REMOVE_SECTION
procedure and specify the name of the section group to which the section belongs
and the name of the section to remove.

For example:

exec ctx_ddl.remove_section(’headers’,’heading1’)

To remove all the sections from a section group, you must call REMOVE_SECTION
for each section in the group. You can also drop the section group, which
automatically removes all sections defined for the group.

Dropping a Section Group
To drop a section group (and all of its sections) from the ConText data dictionary,
use the CTX_DDL.DROP_SECTION_GROUP procedure and specify the name of
the section group to drop.

For example:

exec ctx_ddl.remove_section(’headers’,’heading1’)

Note: A section can only be removed from a section group if the
section group is not currently used in any existing preferences.

Note: A section group can only be dropped if it is not currently
used in any existing preferences.

Text Loading Utility 10-1

10
Text Loading Utility

This chapter provides reference information for using the text loading utility,
ctxload, provided with ConText.

The topics discussed in this chapter are:

■ Overview of ctxload

■ Command-line Syntax

■ Command-line Examples

■ Structure of Text Load File

■ Structure of Thesaurus Import File

Overview of ctxload

10-2 Oracle8 ConText Cartridge Administrator’s Guide

Overview of ctxload
The ctxload utility can be used to perform the following operations:

■ Text Loading

■ Document Updating/Exporting

■ Thesaurus Importing and Exporting

Text Loading
Use ctxload to load text from a load file into a LONG or LONG RAW column in a
table.

A load file is an ASCII flat file that contains the plain text, as well as any structured
data (title, author, date, etc.), for documents to be stored in a text table; however, in
place of the text for each document, the load file can store a pointer to a separate file
that holds the actual text (formatted or plain) of the document.

The ctxload utility creates one row in the table for each document identified by a
header in the load file.

Document Updating/Exporting
The ctxload utility supports updating database columns from operating system files
and exporting database columns to files, specifically LONG RAW and LONG
columns used as text columns for ConText.

Suggestion: If the target table does not contain a LONG or LONG
RAW column or you do not want to load text into a LONG or
LONG RAW column, you may want to use SQL*Loader to populate
the table with text.

Note: The ctxload utility does not support load files that contain
both embedded text and file pointers. You must use one method or
the other when creating a load file.

See Also: For examples of load files for text loading, see
"Structure of Text Load File" in this chapter.

Overview of ctxload

Text Loading Utility 10-3

Thesaurus Importing and Exporting
Use ctxload to load a thesaurus from an import file into the ConText thesaurus
tables.

An import file is an ASCII flat file that contains entries for synonyms, broader
terms, narrower terms, or related terms which can be used to expand queries.

ctxload can also be used to export a thesaurus by dumping the contents of the
thesaurus into a user-specified operating-system file.

Note: The updating/exporting of data is performed in sections to
avoid the necessity of a large amount of memory (up to 2
Gigabytes) for the update/fetch buffer.

As a result, a minimum of 16 Kilobytes of memory is required for
document update/export.

See Also: For examples of import files for thesaurus importing,
see "Structure of Thesaurus Import File" in this chapter.

Command-line Syntax

10-4 Oracle8 ConText Cartridge Administrator’s Guide

Command-line Syntax
The syntax for running ctxload is:

ctxload -user username[/password][@sqlnet_address]
 -name object_name
 -file file_name
 -pk primary_key
 [-export]
 [-update]
 [-thes]
 [-thescase y|n]
 [-thesdump]
 [-separate]
 [-longsize n]
 [-date date_mask]
 [-log file_name]
 [-trace]
 [-commitafter n]
 [-verbose]

Mandatory Arguments

-user
Specifies the username and password of the user running ctxload.

The username and password can be followed immediately by @sqlnet_address to
permit logon to remote databases. The value for sqlnet_address is a database connect
string. If the TWO_TASK environment variable is set to a remote database, you do
not have to specify a value for sqlnet_address to connect to the database.

-name
If ctxload is used to load text, -name specifies the name of the table to be loaded. The
table must be accessible to the user specified in the command-line.

If ctxload is used to update/export a text column, -name specifies the policy for the
column to be exported/updated.

If ctxload is used to import a thesaurus, -name specifies the name of the thesaurus to
be imported. The thesaurus name is used to specify the thesaurus to be used for
expanding query terms in queries.

Command-line Syntax

Text Loading Utility 10-5

If ctxload is used to export a thesaurus, -name specifies the name of the thesaurus to
be exported.

-file
If ctxload is used to load text, -file specifies the name of the load file which contains
the document header markers, structured data, and text/file pointers (see the
-separate argument).

If ctxload is used to update a row in a text column, -file specifies the file which
stores the text to be inserted into the text column for the row specified by -pk.

If ctxload is used to export a row in a text column, -file specifies the file which stores
the text to be exported from the text column for the row specified by -pk.

If ctxload is used to load a thesaurus, -file specifies the name of the import file
which contains the thesaurus entries.

If ctxload is used to export a thesaurus, -file specifies the name of the export file
created by ctxload.

-pk
Specifies the primary key for the row in which the text column (LONG or LONG
RAW) to be exported/updated is located.

For tables that contain composite primary keys, enter the multiple primary key
values as a string, with each primary key value separated by a comma.

Note: Thesaurus name must be unique. If the name specified for
the thesaurus is identical to an existing thesaurus, ctxload returns
an error and does not overwrite the existing thesaurus.

Note: If the name specified for the thesaurus dump file is identical
to an existing file, ctxload overwrites the existing file.

Note: A value is required for -pk only when ctxload is used to
update/export the contents of a text column for a row.

Command-line Syntax

10-6 Oracle8 ConText Cartridge Administrator’s Guide

Optional Arguments

-export
Specifies that ctxload exports the contents of a cell in a database table into the
operating system file specified by -file. The cell is identified as the LONG RAW or
LONG column for the row specified by -pk in the table for the policy specified by
-name.

-update
Specifies that ctxload updates the contents of a cell in a database table with the
contents of the operating system file specified by -file. The cell is identified as the
LONG RAW or LONG column for the row specified by -pk in the table for the policy
specified by -name.

Note: For composite textkeys, the string must be entered in the
same order in which the primary key columns were defined as
textkeys for the policy.

If the primary key value(s) contain blank spaces, the entire value
for -pk must be enclosed in double quotation marks (“ “).

For example:

...-pk “3452,Joe Smith,500 Oracle Parkway”...

If the primary key values contain commas (,) or backslashes (\),
each comma/backslash must be preceded by a backslash.

For example:

...-pk “3452,Smith\, Joe”...

In this example, the second value ‘Smith, Joe’ contains a blank
space, so the entire primary key value is enclosed in double quotes.

Note: If the file specified by -file already exists, ctxload overwrites
the contents of the file with the contents of the LONG/LONG RAW
column.

Command-line Syntax

Text Loading Utility 10-7

-thes
Specifies that ctxload imports a thesaurus. The file from which it loads the
thesaurus is specified by the -file argument. The name of the thesaurus to be
imported is specified by the -name argument.

-thescase
Specifies whether ctxload create a case-sensitive thesaurus with the name specified
by -name and populate the thesaurus with entries from the thesaurus import file
specified by -file. If -thescase is ’y’ (the thesaurus is case-sensitive), ConText enters
the terms in the thesaurus exactly as they appear in the import file.

The default for -thescase is ’n’ (case-insensitive thesaurus)

-thesdump
Specifies that ctxload exports a thesaurus. The name of the thesaurus to be exported
is specified by the -name argument. The file into which the thesaurus is dumped is
specified by the -file argument.

-separate
For text loading, specifies that the text of each document in the load file is actually a
pointer to a separate text file. During processing, ctxload loads the contents of each
text file into the LONG or LONG RAW column for the specified row.

-longsize
For text loading, specifies the maximum number of kilobytes to be loaded into the
LONG or LONG RAW column. This argument may be necessary for loading
separate data and to help reduce memory usage when loading smaller embedded
data.

The minimum value is 1 (Kb, i.e. 1024 bytes) and the maximum value is
machine-dependent. The default is 64 (Kb).

-date
Specifies the TO_CHAR date format for any date columns loaded using ctxload.

Note: -thescase is only valid for use with the -thes argument.

Note: The value for -longsize must be entered as a numeric value.
Do not include a ’K’ or ’k’ to indicate Kilobytes.

Command-line Syntax

10-8 Oracle8 ConText Cartridge Administrator’s Guide

-log
Specifies the name of the log file to which ctxload writes any national-language
supported (NLS) messages generated during processing. If you do not specify a log
file name, the messages appear on the standard output.

-trace
Specifies that a server process trace file is enabled using ’ALTER SESSION SET
SQL_TRACE TRUE’. This command captures all processed SQL statements in a
trace file, which can be used for debugging purposes. The location of the trace file is
operating-system dependent and may be modified using the USER_DUMP_DEST
initialization parameter.

-commitafter
Specifies the number of rows (documents) that are inserted into the table before a
commit is issued to the database. The default is 1.

-verbose
Specifies that non-NLS messages can appear on standard output.

Usage Notes
The following conditions apply to the command-line syntax:

■ if you do not specify -thes or -thesdump, by default ctxload loads text into the
specified table.

■ for text loading, you do not need to specify a column name because ctxload
automatically loads text to the LONG or LONG RAW column in a table and a
table can contain only one such column

■ if you use embedded text instead of separate file pointers in the text load file, do
not use the -separate option

■ loading text from separate files (using the -separate option) is faster, in general,
than loading text embedded in the load file

See Also: For more information about the available date format
models, see Oracle8 SQL Reference.

Command-line Examples

Text Loading Utility 10-9

Command-line Examples
This section provides examples for each of the operations that ctxload can perform:

■ Text Load Example

■ Document Update Example

■ Document Export Examples

■ Thesaurus Import Example

■ Thesaurus Export Example

Text Load Example
The following example loads documents from the reviews.txt load file into table docs
for user jsmith. It also writes log information to a file called log2.out. Because
-commitafter was not specified, each row (document) is committed to the database
after it is inserted into the docs table.

Also, because -separate was not specified, ctxload expects the text for each document
to be embedded in the reviews.txt file.

ctxload -user jsmith/123abc -name docs -file review.txt -log log2.out

Document Update Example
The following UNIX-based example illustrates updating the LONG RAW column
for the row identified by primary key 3452 in the table for a policy named word_
docs. The column is updated with the contents of resume1.doc located in /docs:

ctxload -user ctxdemo/passwd -update -name word_docs -pk 3452 -file /docs/resume1.doc

Document Export Examples
The following UNIX-based example illustrates exporting the LONG RAW column
for the row identified by primary key 3452 in the table for a policy named word_
docs. The contents of the cell in the column are copied to a file named new.doc
located in /docs:

ctxload -user ctxdemo/passwd -export -name word_docs -pk 3452 -file /docs/new.doc

Command-line Examples

10-10 Oracle8 ConText Cartridge Administrator’s Guide

The following example is identical to the preceding example, except the row is
identified by a compound primary key consisting of a name and location. The name
and location values are separate by a comma and the entire primary key string is
enclosed in double quotation marks because the location value includes a space:

ctxload -user ctxdemo/passwd -export -name word_docs -pk “Smith,HQ 1” -file /docs/new.doc

Thesaurus Import Example
The following example imports a thesaurus named tech_doc from an import file
named tech_thesaurus.txt:

ctxload -user jsmith/123abc -thes -name tech_doc -file tech_thesaurus.txt

Thesaurus Export Example
The following example dumps the contents of a thesaurus named tech_doc into a file
named tech_thesaurus.out:

ctxload -user jsmith/123abc -thesdump -name tech_doc -file tech_thesaurus.out

Structure of Text Load File

Text Loading Utility 10-11

Structure of Text Load File
The load file must use the following format for each document, as well as any
structured data associated with the document:

<TEXTSTART: col_name1=doc_data, col_name2=doc_data,...col_nameN=doc_data>
text. . .
<TEXTEND>

where:

<TEXTSTART: ... >
is a header marker that indicates the beginning of a document. It also may contain
one or more of the following fields used to specify structured data for a document:

col_name
is the name of a column that will store structured data for the document.

doc_data
is the structured data that will be stored in the column specified in col_name.

text
is the text of the document to be loaded or the name (and location, if necessary) of
an operating system file containing the text to be loaded.

<TEXTEND>
indicates the end of the document.

Note: The data in text (either a string of text or a file name pointer)
is treated by ctxload as literal data, including any
non-alphanumeric characters or blank spaces that may occur. As a
result, you must ensure that text exactly represents the data you
wish ctxload to process.

For example, if you use ctxload to load text from separate files, the
file names in the load file must exactly represent the name(s) of the
operating-system file(s) containing the text. If any blank spaces are
included in a file name, ctxload cannot locate the file and the text is
not loaded.

Structure of Text Load File

10-12 Oracle8 ConText Cartridge Administrator’s Guide

Load File Structure
The following conditions apply to the structure of the load file:

■ for each document to be loaded, either the text of the document or a pointer to a
separate file must be in the load file.

■ embedded text and separate file pointers cannot be used together in the same
load file

■ if the text for your documents is embedded in the load file, the text must be in
ASCII format

■ if pointers to separate files are used, the text in the files can be in plain (ASCII)
format or a proprietary format (e.g. MS Word)

■ if the text in a separate file is in a proprietary format, the format must be
supported by ConText and it must be loaded into a LONG RAW column

■ each separate file must contain a single document (the contents of a separate file
are stored as a single row in the table)

Load File Syntax
The following conditions apply to the syntax utilized in the text load file:

■ <TEXTSTART: ... > and <TEXTEND> must each start on a new line

■ the structured data parameters within the <TEXTSTART: ... > string do not have
to be in any particular order

■ a newline character (either hard or soft return) cannot occur between a col_name
and the beginning of its associated doc_data

■ the first col_name should be on the same line as the ’TEXTSTART:’

■ the ’>’ character which indicates the end of the <TEXTSTART: ... > string must
be on the same line as the last doc_data field for the document

■ structured and LONG data may span more than one line

Note: The entire value for doc_data does not have to be on the
same line as the col_name; only the beginning of the value and the
col_name must share the same line.

Structure of Text Load File

Text Loading Utility 10-13

■ single quote-marks must be escaped in doc_data (e.g. don’t must be entered as
don’’t)

■ each <TEXTSTART: ... > string must be followed by the text of a document or a
pointer to a separate file

■ the text or file pointer must be placed after the complete <TEXTSTART: ... >
string and should start on a new line

■ the last character in the load file should be a newline character

Example of Embedded Text in Load File
The following example illustrates a correctly formatted text load file containing
structured employee information, such as employee number (1000, 1024) and name
(Joe Smith, Mary Jones), and the text for each document:

<TEXTSTART: EMPNO=1000, ELNAME=’Smith’, EFNAME=’Joe’>
Joe has an interesting resume, includes...cliff-diving.
<TEXTEND>
<TEXTSTART: EMPNO=1024, EFNAME=’Mary’, ELNAME=’Jones’>
Mary has many excellent skills, including...technical,
marketing, and organizational. Team player.
<TEXTEND>

Example of File Name Pointers in Load File
The following example illustrates a correctly formatted text load file containing
structured employee information, such as employee number (1000, 1024) and name
(Joe Smith, Mary Jones), and a file name pointer for each document.

<TEXTSTART: EMPNO=1024, EFNAME=’Mary’, ELNAME=’Jones’>
mjones.doc
<TEXTEND>
<TEXTSTART: EMPNO=1000, EFNAME=’Joe’, EFNAME=’Smith’>
jsmith.doc
<TEXTEND>

Note: To use the load file in this example, you would have to
specify the - separate argument when executing ctxload.

Structure of Thesaurus Import File

10-14 Oracle8 ConText Cartridge Administrator’s Guide

Structure of Thesaurus Import File
The import file must use the following format for entries in the thesaurus:

phrase
BT broader_term
NT narrower_term1
NT narrower_term2
. . .
NT narrower_termN

BTG broader_term
NTG narrower_term1
NTG narrower_term2
. . .
NTG narrower_termN

BTP broader_term
NTP narrower_term1
NTP narrower_term2
. . .
NTP narrower_termN

BTI broader_term
NTI narrower_term1
NTI narrower_term2
. . .
NTI narrower_termN

SYN synonym1
SYN synonym2
. . .
SYN synonymN
USE|SEE synonym1

RT related_term1
RT related_term2
. . .
RN related_termN

SN text

where:

Structure of Thesaurus Import File

Text Loading Utility 10-15

phrase
is a word or phrase that is defined as having synonyms, broader terms, narrower
terms, and/or related terms.

In compliance with ISO-2788 standards, a TT marker can be placed before a phrase
to indicate that the phrase is the top term in a hierarchy; however, the TT marker is
not required. In fact, ctxload ignores TT markers during import.

In ConText, a top term is identified as any phrase that does not have a broader term
(BT, BTG, BTP, or BTI).

BT, BTG, BTP, BTI
are the markers that indicate broader_termN is a broader
(generic|partitive|instance) term for phrase.

NT, NTG, NTP, NTI
are the markers that indicate narrower_termN is a narrower
(generic|partitive|instance) term for phrase.

If phrase does not have a broader (generic|partitive|instance) term, but has one or
more narrower (generic|partitive|instance) terms, phrase is created as a top term in
the respective hierarchy (in a ConText thesaurus, the BT/NT, BTG/NTG, BTP/NTP,
and BTI/NTI hierarchies are separate structures).

SYN
is a marker that indicates phrase and synonymN are synonyms within a synonym
ring.

USE | SEE
are markers that indicate phrase and synonymN are synonyms within a synonym
ring (similar to SYN); however, USE | SEE also indicates synonymN is the preferred

Note: The thesaurus query operators (SYN, PT, BT, BTG, BTP, BTI,
NT, NTG, NTP, NTI, and RT) are reserved words and, thus, cannot
be used as phrases in thesaurus entries.

In addition, the string ’E$_’ is reserved for internal use and cannot
be used as a phrase in thesaurus entries.

Note: Synonym rings are not defined explicitly in ConText
thesauri. They are created by the transitive nature of synonyms.

Structure of Thesaurus Import File

10-16 Oracle8 ConText Cartridge Administrator’s Guide

term for the synonym ring. Either marker can be used to define the preferred term
for a synonym ring.

RT
is the marker that indicates related_termN is a related term for phrase.

SN
is the marker that indicates the following text is a scope note (i.e. comment) for the
preceding entry.

broader_termN
is a word or phrase that conceptually provides a more general description or
category for phrase. For example, the word elephant could have a broader term of
land mammal.

narrower_termN
is a word or phrase that conceptually provides a more specific description for
phrase. For example, the word elephant could have a narrower terms of indian
elephant and african elephant.

synonymN
is a word or phrase that has the same meaning for phrase. For example, the word
elephant could have a synonym of pachyderm.

related_termN
is a word or phrase that has a meaning related to, but not necessarily synonymous
with phrase. For example, the word elephant could have a related term of wooly
mammoth.

Note: Related terms are not transitive. If a phrase has two or more
related terms, the terms are related only to the parent phrase and
not to each other.

Structure of Thesaurus Import File

Text Loading Utility 10-17

Alternate Hierarchy Structure
In compliance with thesauri standards, the load file supports formatting hierarchies
(BT/NT, BTG/NTG, BTP, NTP, BTI/NTI) by indenting the terms under the top term
and using NT (or NTG, NTP, NTI) markers that indicate the level for the term:

phrase
 NT1 narrower_term1
 NT2 narrower_term1.1
 NT2 narrower_term1.2
 NT3 narrower_term1.2.1
 NT3 narrower_term1.2.2
 NT1 narrower_term2
 . . .
 NT1 narrower_termN

Using this method, the entire branch for a top term can be represented
hierarchically in the load file.

Import File Structure for Terms
The following conditions apply to the structure of the entries in the import file:

■ each entry (phrase, BT, NT, or SYN) must be on a single line followed by a
newline character

■ entries can consist of a single word or phrases

■ the maximum length of an entry (phrase, BT, NT, or SYN) is 255 characters, not
including the BT, NT, and SYN markers or the newline characters

■ entries cannot contain parentheses or plus signs.

■ each line of the file that does not start with the BT, NT, and SYN markers
indicates a phrase

■ a phrase can occur more than once in the file

■ each phrase can have one or more narrower term entries (NT, NTG, NTP),
broader term entries (BT, BTG, BTP), synonym entries, and related term entries

■ each broader term, narrower term, synonym, and preferred term entry must
start with the appropriate marker and the markers must be in capital letters

■ the broader terms, narrower terms, and synonyms for a phrase can be in any
order

Structure of Thesaurus Import File

10-18 Oracle8 ConText Cartridge Administrator’s Guide

■ holographs must be followed by parenthetical disambiguators everywhere they
are used

For example: cranes (birds), cranes (lifting equipment)

■ compound terms are signified by a plus sign between each factor (e.g. buildings
+ construction)

■ compound terms are allowed only as synonyms or preferred terms for other
terms -- never as terms by themselves, or in hierarchical relations.

■ terms can be followed by a scope note (SN), total maximum length of 2000
characters, on subsequent lines

■ multi-line scope notes are allowed, but require an SN marker on each line of the
note

Example of Incorrect SN usage:

VIEW CAMERAS
SN Cameras with through-the lens focusing and a
range of movements of the lens plane relative to
the film plane

Example of Correct SN usage:

VIEW CAMERAS
SN Cameras with through-the lens focusing and a
SN range of movements of the lens plane relative
SN to the film plane

■ Multi-word terms cannot start with reserved words (e.g. use is a reserved word,
so use other door is not an allowed term; however, use is an allowed term)

Import File Structure for Relationships
The following conditions apply to the relationships defined for the entries in the
import file:

■ related term entries must follow a phrase or another related term entry

■ related term entries start with the RT marker, followed by white space, then the
related term on the same line

■ multiple related terms require multiple RT markers

Example of incorrect RT usage:

MOVING PICTURE CAMERAS

Structure of Thesaurus Import File

Text Loading Utility 10-19

RT CINE CAMERAS
TELEVISION CAMERAS

Example of correct RT usage:

MOVING PICTURE CAMERAS
RT CINE CAMERAS
RT TELEVISION CAMERAS

■ Terms are allowed to have multiple broader terms, narrower terms, and related
terms

Examples of Import Files
This section provides three examples of correctly formatted thesaurus import files.

Example 1 (Flat Structure)
cat
SYN feline
NT domestic cat
NT wild cat
BT mammal
mammal
BT animal
domestic cat
NT Persian cat
NT Siamese cat
wild cat
NT tiger
tiger
NT Bengal tiger
dog
BT mammal
NT domestic dog
NT wild dog
SYN canine
domestic dog
NT German Shepard
wild dog
NT Dingo

Structure of Thesaurus Import File

10-20 Oracle8 ConText Cartridge Administrator’s Guide

Example 2 (Hierarchical)
animal
 NT1 mammal
 NT2 cat
 NT3 domestic cat
 NT4 Persian cat
 NT4 Siamese cat
 NT3 wild cat
 NT4 tiger
 NT5 Bengal tiger
 NT2 dog
 NT3 domestic dog
 NT4 German Shepard
 NT3 wild dog
 NT4 Dingo
cat
SYN feline
dog
SYN canine

Example 3
35MM CAMERAS
BT MINIATURE CAMERAS
CAMERAS
BT OPTICAL EQUIPMENT
NT MOVING PICTURE CAMERAS
NT STEREO CAMERAS
LAND CAMERAS
USE VIEW CAMERAS
VIEW CAMERAS
SN Cameras with through-the lens focusing and a range of
SN movements of the lens plane relative to the film plane
UF LAND CAMERAS
BT STILL CAMERAS

PL/SQL Packages - Text Management 11-1

11
PL/SQL Packages - Text Management

This chapter provides reference information for using the PL/SQL packages
provided with ConText to manage text.

The topics covered in this chapter are:

■ CTX_DDL: Text Setup and Management

■ CTX_DML: ConText Index Update

■ CTX_THES: Thesaurus Management

CTX_DDL: Text Setup and Management

11-2 Oracle8 ConText Cartridge Administrator’s Guide

CTX_DDL: Text Setup and Management
The CTX_DDL PL/SQL package is used to create preferences and policies for
ConText and to perform DDL actions such as index creation and optimization.

CTX_DDL contains the following stored procedures and functions:

Name Description

ADD_SECTION Creates a user-defined section and assigns the section to
the specified section group

CLEAR_ATTRIBUTES Clears the buffer for any attributes that have been set

CREATE_INDEX Creates an index for the text column using the specified
policy

CREATE_POLICY Creates a policy in the ConText data dictionary

CREATE_PREFERENCE Creates a preference in the ConText data dictionary

CREATE_SECTION_GROUP Creates a section group in the ConText data dictionary

CREATE_SOURCE Creates a text loading source in the ConText data
dictionary

CREATE_TEMPLATE_POLICY Creates a policy that has no text column defined

DROP_INDEX Deletes the ConText index for the specified policy

DROP_INTTRIG Deletes the DML trigger for the specified table

DROP_POLICY Deletes a policy from the ConText data dictionary

DROP_PREFERENCE Deletes a preference from the ConText data dictionary

DROP_SECTION_GROUP Deletes a section group from the ConText data dictionary

DROP_SOURCE Deletes a text loading source from the ConText data
dictionary

OPTIMIZE_INDEX Combines index fragments into complete strings and
updates index strings for deleted documents

REMOVE_SECTION Deletes a section from a section group

RESUME_FAILED_INDEX Resumes creation of a failed ConText index

SET_ATTRIBUTE Specifies the Tile attribute and corresponding value for a
preference

UPGRADE_INDEX Converts ConText indexes from Release 2.0 or earlier to
the current release

CTX_DDL: Text Setup and Management

PL/SQL Packages - Text Management 11-3

UPDATE_POLICY Changes the description and/or the preferences in a policy

UPDATE_SOURCE Changes the description and/or the preferences in a
source

Name Description

CTX_DDL: Text Setup and Management

11-4 Oracle8 ConText Cartridge Administrator’s Guide

ADD_SECTION

The ADD_SECTION procedure creates a user-defined section and adds the section
to an existing section group.

Syntax
CTX_DDL.ADD_SECTION(group_name IN VARCHAR2,
 section_name IN VARCHAR2,
 start_tag IN VARCHAR2,
 end_tag IN VARCHAR2,
 top_level IN BOOLEAN DEFAULT FALSE,
 enclose_self IN BOOLEAN DEFAULT FALSE);

group_name
Specify the name of the section group to which ConText adds the section.

section_name
Specify the name of the section ConText adds to the section group.

start_tag
Specify the token, including any characters that appear at the beginning or end or
the token, which marks the start of a section. For example: <HTML>

end_tag
specify the token, including any characters that appear at the beginning or end or
the token, which marks the end of a section. For example: </HTML>

top_level
Specify that the section implicitly closes non-top-level sections and is implicitly
closed by the start of other top-level sections.

enclose_self
Specify that the section can enclose itself. If this parameter is not set, the section is
implicitly closed when the next start tag is encountered.

If enclose_self is TRUE, the end of the section is identified by either:

1. the end tag for the section

2. the end of the document

CTX_DDL: Text Setup and Management

PL/SQL Packages - Text Management 11-5

If enclose_self is FALSE, the end of the section is identified by either:

1. the end tag (if any) for the section

2. the next start or end tag encountered (if top_level is FALSE)

3. the end of the document

Examples
Examples are provided for four different types of sections you can create.

Example 1: Non-enclosed, repeating sections
Title: Guide to Oracle
Author: Joseph Smith
Review: Very well written
Review: Interesting and exciting

exec ctx_ddl.add_section(‘doc_section’,’title’,’Title:’, top_level=>TRUE)
exec ctx_ddl.add_section(‘doc_section’,’author’,’Author:’, top_level=>TRUE)
exec ctx_ddl.add_section(‘doc_section’,’review’,’Review:’, top_level=>TRUE)

See Also: For more information about top-level sections and
self-enclosing sections, see "User-Defined Sections" in Chapter 6,
"Text Concepts".

Section Name Start Tag End Tag Top Level Enclose Self

TITLE Title: Y N

AUTHOR Author: Y N

REVIEW Review: Y N

CTX_DDL: Text Setup and Management

11-6 Oracle8 ConText Cartridge Administrator’s Guide

Example 2: Enclosed and non-enclosed repeating sections
<BODY>
<P> This is the first paragraph
<P> This is the second paragraph
</BODY>

exec ctx_ddl.add_section(‘html_section’,’BODY’,’<BODY>’, ‘</BODY>’, top_level=>TRUE)
exec ctx_ddl.add_section(‘html_section’,’PARA’,’<P>’,’</P>’)
exec ctx_ddl.add_section(‘html_section’,’BOLD’,’,’’)

Example 3: Enclosed, overlapping sections
<CODE>
<OLD>
a := 9;
<NEW>
c := 14;
</OLD>
d := 15;
</NEW>
</CODE>

exec ctx_ddl.add_section(‘html_sections’,’CODE’,’<CODE>’, ‘</CODE>’, top_level=>TRUE)
exec ctx_ddl.add_section(‘html_sections’,’OLD’,’<OLD>’,’</OLD>’)
exec ctx_ddl.add_section(‘html_sections’,’NEW’,’<NEW>,’</NEW>’)

Section Name Start Tag End Tag Top Level Enclose Self

BODY <BODY> </BODY> Y N

PARA <P> </P> N N

BOLD N N

Section Name Start Tag End Tag Top Level Enclose Self

CODE <CODE> </CODE> Y N

OLD <OLD> </OLD> N N

NEW <NEW> </NEW> N N

CTX_DDL: Text Setup and Management

PL/SQL Packages - Text Management 11-7

Example 4: Enclosed, self enclosing, repeating sections
<TABLE>
<TR>
<TD>March</TD>
<TD>
<TABLE>
<TR>
<TD>14</TD>
</TR>
</TABLE>
</TD>
</TR>
</TABLE>

exec ctx_ddl.add_section(‘html_sections’,’TABLE’,’<TABLE>’,‘</TABLE>’, enclose_self=>TRUE)
exec ctx_ddl.add_section(‘html_sections’,’ROW’,’<TR>’,’</TR>’, enclose_self=>TRUE)
exec ctx_ddl.add_section(‘html_sections’,’DATA’,’<TD>,’</TD>’, enclose_self=>TRUE)

Notes
If the section group specified in group_name is currently used in a preference, the
preference must be dropped using CTX_DDL.DROP_PREFERENCE before sections
can be added to the section group.

Section Name Start Tag End Tag Top Level Enclose Self

TABLE <TABLE> </TABLE> N Y

ROW <TR> </TR> N Y

DATA <TD> </TD> N Y

CTX_DDL: Text Setup and Management

11-8 Oracle8 ConText Cartridge Administrator’s Guide

CLEAR_ATTRIBUTES

The CLEAR_ATTRIBUTES procedure clears the buffer of all attributes that have
been set using CTX_DDL.SET_ATTRIBUTE.

Syntax
CTX_DDL.CLEAR_ATTRIBUTES;

Examples
execute ctx_ddl.clear_attributes

Notes
Clearing the attribute buffer is not required to create a preference. The buffer is
cleared automatically after each call to CTX_DDL.CREATE_PREFERENCE.

CLEAR_ATTRIBUTE is used primarily for clearing attributes that have been set
incorrectly for a preference prior to the actual creation of the preference.

CTX_DDL: Text Setup and Management

PL/SQL Packages - Text Management 11-9

CREATE_INDEX

The CREATE_INDEX procedure creates an index for the column defined in the
specified policy.

Syntax
CTX_DDL.CREATE_INDEX(policy_name IN VARCHAR2,
 parallel IN VARCHAR2 DEFAULT 1
 create_trig IN BOOLEAN DEFAULT TRUE
 pop_index IN BOLLEAN DEFAULT TRUE);

policy_name
Specify the name of the policy for which the index is created.

parallel
Specify the number of ConText servers to be used in parallel to create the index for a
column.

The default is 1.

create_trig
Specify whether to create a DML trigger for the table or update the existing trigger
to include the text column for the specified policy:

■ TRUE (create/update trigger)

■ FALSE (do not create/update trigger)

The default is TRUE.

pop_index
Specify whether to populate the ConText index tables with index entries during
ConText indexing:

■ TRUE (create and populate ConText index tables)

■ FALSE (create ConText index tables, but do not populate tables)

The default is TRUE.

CTX_DDL: Text Setup and Management

11-10 Oracle8 ConText Cartridge Administrator’s Guide

Examples
Examples are provided for parallel indexing, DML trigger control, and table
population during indexing.

Example 1: Parallel Indexing
In the following example, a ConText index is created with a parallelism level of 2 for
the text column in my_policy.

execute ctx_ddl.create_index(’MY_POLICY’, 2)

Example 2: DML Trigger and Index Population Control
In the following example, a table has policies pol1, pol2, pol3 for text columns text1,
text2, text3 respectively. ConText indexes are created for each policy:

ctx_ddl.create_index(‘P1’, create_trig=>FALSE, pop_index=>FALSE);
ctx_ddl.create_index(̀ P2’, create_trig=>TRUE, pop_index=>TRUE);
ctx_ddl.create_index(̀ P3’, create_trig=>FALSE, pop_index=>FALSE);

The DML trigger is created for the table; however, only the text column (text2) for
policy pol2 is included in the trigger. As a result, only an update to the textkey or
text column for policy pol2 will cause a request to be inserted into the DML Queue.

In addition, during ConText indexing, only the ConText index tables for policy pol2
are populated. To populate the ConText index tables for pol1 and pol3, CTX_
DML.REINDEX must be called for each document in text columns text1 and text3.

Example 3: DML Trigger Control
In the following example, the same three policies and tables are used from before.
The create_trig parameter is set to FALSE for all three, so no DML trigger is created
for the table. The pop_index parameter is set to TRUE for all three, so the ConText
index tables for all three policies are populated.

ctx_ddl.create_index(̀ P1’, create_trig=>FALSE, pop_index=>TRUE);
ctx_ddl.create_index(̀ P2’, create_trig=>FALSE, pop_index=>TRUE);
ctx_ddl.create_index(̀ P3’, create_trig=>FALSE, pop_index=>TRUE);

CTX_DDL: Text Setup and Management

PL/SQL Packages - Text Management 11-11

Notes
If a DML trigger is not created for a table during ConText indexing, changes to the
table will not result in the ConText index being updated. Changes to a document in
the table can be recorded in the DML Queue using the CTX_DML.REINDEX
procedure; however, REINDEX must be called each time a document changes.

Automated DML notification can be enabled for the table by creating a trigger that
calls CTX_DML.REINDEX.

CTX_DDL: Text Setup and Management

11-12 Oracle8 ConText Cartridge Administrator’s Guide

CREATE_POLICY

The CREATE_POLICY procedure creates a policy for a column.

Syntax
CTX_DDL.CREATE_POLICY(
 policy_name IN VARCHAR2,
 colspec IN VARCHAR2 DEFAULT NULL,
 source_policy IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_POLICY’,
 description IN VARCHAR2 DEFAULT NULL,
 textkey IN VARCHAR2 DEFAULT NULL,
 lineno IN VARCHAR2 DEFAULT NULL,
 dstore_pref IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_DIRECT_DATASTORE’,
 compressor_pref IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_NULL_COMPRESSOR’,
 filter_pref IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_NULL_FILTER’,
 lexer_pref IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_LEXER’,
 wordlist_pref IN VARCHAR2 DEFAULT ’CTXSYS.NO_SOUNDEX’,
 stoplist_pref IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_STOPLIST’,
 engine_pref IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_INDEX’);

policy_name
Specify the name of the policy to be created. Because a policy is owned by the user
who creates it, the policy name must be unique for a user.

colspec
Specify the column and table in the current user’s schema for which the policy is
created. This is the column that contains the text to be indexed. If no value is
specified for colspec, a template policy is created.

source_policy
Specify the name of a template policy on which the column policy to be created is
based. The preferences in the template policy are used to create the column policy,
except when explicitly overwritten. The template policy can be owned by the
current user or CTXSYS.

The default is DEFAULT_POLICY owned by CTXSYS.

description
Specify the description of the policy.

CTX_DDL: Text Setup and Management

PL/SQL Packages - Text Management 11-13

textkey
Specify the column or columns (up to sixteen) that represent the unique identifier
(textkey) for each document. This is usually the primary key(s) for the table, but can
also be any column(s) for which a UNIQUE constraint has been defined.

lineno
Specify the column that stores the unique ID for each document section in a
master-detail table.

dstore_pref
Specify the name of the Data Store preference assigned to the policy.

compressor_pref
Specify the name of the Compressor preference assigned to the policy (Compressor
preferences are not currently provided or supported by ConText).

filter_pref
Specify the name of the Filter preference assigned to the policy.

lexer_pref
Specify the name of the Lexer preference assigned to the policy.

wordlist_pref
Specify the name of the Wordlist preference assigned to the policy.

Note: If no value is specified for textkey in CREATE_POLICY,
ConText does not, by default, always select the primary key column
for the table identified in colspec.

ConText selects the first primary key or unique column
encountered in the table. To ensure that the desired column(s) are
defined as the textkey for a text column, always specify a textkey
value when creating a policy for the column.

Note: This attribute is used only if the Data Store preference for
the policy calls the MASTER DETAIL Tile.

If the Data Store preference calls the MASTER DETAIL NEW Tile,
the line number column is specified in the preference.

CTX_DDL: Text Setup and Management

11-14 Oracle8 ConText Cartridge Administrator’s Guide

stoplist_pref
Specify the name of the Stoplist preference assigned to the policy.

engine_pref
Specify the name of the Engine preference assigned to the policy.

Examples
begin
 ctx_ddl.create_policy(policy_name => ’MY_POLICY’,
 colspec => ’DOCS.TEXT’,
 desrcription => ’This is my policy’,
 textkey => ’AUTH,TITLE’
 dstore_pref => ’INTERNAL_STORE’,
 filter_pref => ’ASCII_TXT’,
 lexer_pref => ’ENGLISH_BASIC’,
 wordlist_pref => ’CTXSYS.NO_SOUNDEX’,
 stoplist_pref => ’MY_LIST’
 engine_pref => ’BASIC_INDEX’,);
end;

In this example, the textkey for docs.text is a composite textkey consisting of two
columns named auth and title in docs.

Notes
A policy can only be created for a table in the current user’s schema.

All of the arguments are optional, except for policy_name. If you do not specify a
preference for one of the preference types, the preference (for that type) in
DEFAULT_POLICY is automatically used.

The values for colspec and textkey cannot be the same. In other words, a column that
serves as a text column cannot also be the (only) column that uniquely identifies
rows in the table.

For a composite textkey, each column name specified in textkey must be separated
from the other column names by a comma. In addition, the string of column names
is limited to 256 characters, including the comma.

If a preference belonging to another user is specified in a policy, the fully-qualified
name of the preference must be used. For example, if you want to include the NO_
SOUNDEX predefined preference in a policy, the syntax would be:

exec ctx_ddl.create_policy(...,wordlist_pref => CTXSYS.NO_SOUNDEX,...)

CTX_DDL: Text Setup and Management

PL/SQL Packages - Text Management 11-15

CREATE_PREFERENCE

The CREATE_PREFERENCE procedure creates a preference in the ConText data
dictionary for a Tile. All Tile attributes and their values that have been set using
CTX_DDL.SET_ATTRIBUTE are applied to the preference created by CREATE_
PREFERENCE.

The preference can then be used in a policy (indexing/linguistic generation) or a
source (text loading).

Syntax
CTX_DDL.CREATE_PREFERENCE(preference_name IN VARCHAR2,
 description IN VARCHAR2,
 object_name IN VARCHAR2);

preference_name
Specify the name of the preference to be created.

description
Specify the description for the preference.

object_name
Specify the Tile for the preference.

Examples
begin
 ctx_ddl.create_preference(’NO_JOIN’,
 ’Lexer that does not use any printjoins’,
 ’BASIC LEXER’);
end;

Notes
CREATE_PREFERENCE must always be preceded by one or more SET_ATTRIBUTE
calls, which set the attribute values for the specified Tile.

Once CREATE_PREFERENCE is called, the buffer used to store the attributes that
were set for the preference is cleared. If the preference creation failed, all of the
attributes must be entered again before calling CREATE_PREFERENCE.

CTX_DDL: Text Setup and Management

11-16 Oracle8 ConText Cartridge Administrator’s Guide

CREATE_SECTION_GROUP

The CREATE_SECTION_GROUP procedure creates a section group for defining
sections for a text column.

Syntax
CTX_DDL.CREATE_SECTION_GROUP(group_name IN VARCHAR2);

group_name
Specify the name of the section group to create.

Examples
The following example creates a section group named html_sections:

exec ctx_ddl.create_section_group(’html_sections’)

CTX_DDL: Text Setup and Management

PL/SQL Packages - Text Management 11-17

CREATE_SOURCE

The CREATE_SOURCE procedure creates a text loading source for a column.

Syntax
CTX_DDL.CREATE_SOURCE(name IN VARCHAR2,
 colspec IN VARCHAR2 DEFAULT NULL,
 description IN VARCHAR2 DEFAULT NULL,
 refresh IN NUMBER DEFAULT NULL,
 engine_pref IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_LOADER’,
 translator_pref IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_TRANSLATOR’,
 reader_pref IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_READER’);

name
Specify the name of the source to be created.

colspec
Specify the column (and table) to which the source is assigned.

description
Specify the description of the source.

refresh
Specify the elapsed time, in minutes, before a ConText server checks the specified
directory for new files to be loaded.

engine_pref
Specify the name of the Loader Engine preference assigned to the source.

translator_pref
Specify the name of the Translator preference assigned to the policy.

reader_pref
Specify the name of the Reader preference assigned to the source.

CTX_DDL: Text Setup and Management

11-18 Oracle8 ConText Cartridge Administrator’s Guide

Examples
begin
 ctx_ddl.create_source(name => ’MY_SOURCE’,
 colspec => ’DOCS.TEXT’,
 desrcription => ’Source for loading’,
 reader_pref => ’DOCS_DIRECTORY’);
end;

In this example, the default, predefined Loader Engine and Translator preferences
are used.

Notes
colspec must be a LONG or LONG RAW column, because load servers only support
loading text into LONG or LONG RAW columns.

If a Loader Engine, Reader, or Translator preference belonging to another user is
used to create a source, the fully-qualified name of the preference must be used.

The first time the source directory is scanned for files to load is SYSDATE (of source
creation) + refresh. Subsequent scans occur at regular intervals specified by refresh.

CTX_DDL: Text Setup and Management

PL/SQL Packages - Text Management 11-19

CREATE_TEMPLATE_POLICY

The CREATE_TEMPLATE_POLICY procedure creates a policy that does not have a
reference to a text column. It is identical to CTX_DDL.CREATE_POLICY, except the
colspec argument is not included.

The template policy can be used as a source policy for other policies in the user’s
schema. If CTXSYS creates a template policy, the policy is available to all ConText
users.

Syntax
CTX_DDL.CREATE_TEMPLATE_POLICY(
 policy_name IN VARCHAR2,
 source_policy IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_POLICY’,
 description IN VARCHAR2 DEFAULT NULL,
 textkey IN VARCHAR2 DEFAULT NULL,
 lineno IN VARCHAR2 DEFAULT NULL,
 dstore_pref IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_DIRECT_DATASTORE’,
 compressor_pref IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_NULL_COMPRESSOR’,
 filter_pref IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_NULL_FILTER’,
 lexer_pref IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_LEXER’,
 wordlist_pref IN VARCHAR2 DEFAULT ’CTXSYS.NO_SOUNDEX’,
 stoplist_pref IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_STOPLIST’,
 engine_pref IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_INDEX’);

policy_name
Specify the name of the template policy to be created.

source_policy
Specify the name of another template policy on which the template policy to be
created is based.

The default is DEFAULT_POLICY.

description
Specify the description of the template policy.

textkey
Specify the column or columns (up to sixteen) that represent the unique identifier
(textkey) for each document.

CTX_DDL: Text Setup and Management

11-20 Oracle8 ConText Cartridge Administrator’s Guide

lineno
Specify the column that stores the unique ID for each document section in a
master-detail table.

dstore_pref
Specify the name of the Data Store preference assigned to the template policy.

compressor_pref
Specify the name of the Compressor preference assigned to the template policy
(Compressors are not currently provided or supported by ConText).

filter_pref
Specify the name of the Filter preference assigned to the template policy.

lexer_pref
Specify the name of the Lexer preference assigned to the template policy.

wordlist_pref
Specify the name of the Wordlist preference assigned to the template policy.

stoplist_pref
Specify the name of the Stoplist preference assigned to the template policy.

engine_pref
Specify the name of the Engine preference assigned to the template policy.

Examples
See CTX_DDL.CREATE_POLICY

CTX_DDL: Text Setup and Management

PL/SQL Packages - Text Management 11-21

DROP_INDEX

The DROP_INDEX procedure deletes the index for the column defined in the
specified policy.

Syntax
CTX_DDL.DROP_INDEX(policy_name IN VARCHAR2);

policy_name
Specify the name of the policy for which the index is deleted.

Examples
execute ctx_ddl.drop_index(’MY_POLICY’)

CTX_DDL: Text Setup and Management

11-22 Oracle8 ConText Cartridge Administrator’s Guide

DROP_INTTRIG

The DROP_INTTRIG procedure deletes the internal DML trigger for a specified
table. A DML trigger is created/updated automatically for a table when a ConText
index is created for a text column in the table.

Syntax
CTX_DDL.DROP_INTTRIG(tablename IN VARCHAR2);

tablename
Specify the name of the table for which the DML trigger is dropped.

Examples
execute ctx_ddl.drop_inttrig(’DOCS’)

Notes
DROP_INTTRIG deletes the trigger for the table; it cannot be used to selectively
disable automatic DML for a text column in a table. If the table contains more than
one text column with existing ConText indexes, automatic DML is disabled for all
the text columns.

To reenble automatic DML after the trigger has been dropped, either the index must
be dropped and recreated or a trigger must be created using CTX_DML.REINDEX.

CTX_DDL: Text Setup and Management

PL/SQL Packages - Text Management 11-23

DROP_POLICY

The DROP_POLICY procedure deletes the specified policy from the ConText data
dictionary.

Syntax
CTX_DDL.DROP_POLICY(policy_name IN VARCHAR2);

policy_name
Specify the name of the policy to be dropped.

Examples
execute ctx_ddl.drop_policy(’MY_POLICY’)

Notes
If the specified policy has an existing index, the index must be dropped using CTX_
DDL.DROP_INDEX before the policy can be dropped.

CTX_DDL: Text Setup and Management

11-24 Oracle8 ConText Cartridge Administrator’s Guide

DROP_PREFERENCE

The DROP_PREFERENCE procedure deletes the specified preference from the
ConText data dictionary.

Syntax
CTX_DDL.DROP_PREFERENCE(preference_name IN VARCHAR2);

preference_name
Specify the name of the preference to be dropped.

Examples
execute ctx_ddl.drop_preference(’MY_ENGINE’)

Notes
If the specified preference is currently used in a policy, the policy must be dropped,
using CTX_DDL.DROP_POLICY, before the preference can be dropped.

CTX_DDL: Text Setup and Management

PL/SQL Packages - Text Management 11-25

DROP_SECTION_GROUP

The DROP_SECTION_GROUP deletes the specified section group, as well as all the
sections in the group, from the ConText data dictionary.

Syntax
CTX_DDL.DROP_SECTION_GROUP(group_name IN VARCHAR2);

group_name
Specify the name of the section group to delete.

Examples
exec ctx_ddl.drop_section_group(’html_sections’)

Notes
If the specified section group is used in an existing Wordlist preference, the
preference must be dropped, using CTX_DDL.DROP_PREFERENCE, before the
section can be dropped from the section group.

CTX_DDL: Text Setup and Management

11-26 Oracle8 ConText Cartridge Administrator’s Guide

DROP_SOURCE

The DROP_SOURCE procedure deletes the specified text loading source from the
ConText data dictionary. A source can be dropped at any time.

Syntax
CTX_DDL.DROP_SOURCE(source_name IN VARCHAR2);

source_name
Specify the name of the source to be dropped.

Examples
execute ctx_ddl.drop_source(’MY_LOADER’)

CTX_DDL: Text Setup and Management

PL/SQL Packages - Text Management 11-27

OPTIMIZE_INDEX

The OPTIMIZE_INDEX procedure optimizes the index for the column defined in
the specified policy.

Syntax
CTX_DDL.OPTIMIZE_INDEX(policy_name IN VARCHAR2,
 opttyp IN NUMBER DEFAULT NULL,
 threshold IN NUMBER DEFAULT 50,
 parallel IN NUMBER DEFAULT 1,
 term IN VARCHR2 DEFAULT NULL,
 switch_new IN BOOLEAN DEFAULT TRUE,
 drop_old IN BOOLEAN DEFAULT TRUE);

policy_name
Specify the name of the policy for the index to be optimized.

opttyp
Specify the type of optimization performed on the index:

■ 1 (DR_OPTIMIZE_LAZY_DELETES) - use original token table to perform
in-place deletion of references to deleted/modified documents, otherwise
known as garbage collection

■ 2 (DR_OPTIMIZE_COMPACT_INDEXES) - use original token table to perform
in-place compaction of index fragments

■ 3 (DR_OPTIMIZE_COMPACT_NEW) - use second, mirror token table to
perform two-table compaction of index fragments

■ 4 (DEFRAGMENT_TO_NEW_TABLE) - use second, mirror token table to
perform combined two-table compaction/garbage collection

■ 5 (DEFRAGMENT_IN_PLACE) - use original token table to perform combined
in-place compaction/garbage collection

■ 6 (DR_OPTIMIZE_PIECEWISE) - use original token table to perform combined
in-place compaction/garbage collection for a single word, specified by term

The default for opttyp depends on the value set for the default_optimize attribute in
the GENERIC ENGINE Tile (see "Notes" for more information).

CTX_DDL: Text Setup and Management

11-28 Oracle8 ConText Cartridge Administrator’s Guide

threshold
Specify the threshold, as a percentage, under which a term’s index strings are not
compacted during in-place compaction.

The default is 50.

parallel
Specify the number of ConText servers to be used in parallel to perform two-table
compaction and/or garbage collection.

The default is 1.

term
Specify the word (index token or section name) for which piecewise optimization is
performed. This argument is used only if opttyp is set to DR_OPTIMIZE_
PIECEWISE.

switch_new
For internal use only.

drop_old
For internal use only.

Examples
begin
 ctx_ddl.optimize_index(’MY_POLICY’,
 opttyp => CTX_DDL.DEFRAGMENT_IN_PLACE,
 parallel => 2);
end;

Notes
opttyp must be fully qualified with the PL/SQL package name (CTX_DDL) as
shown in the examples.

If opttyp is set to DR_OPTIMIZE_PIECEWISE, a value for term must be specified. If
opttyp is set to any other value, any value specified for term is ignored.

The default for opttyp is the value specified for the default_optimize attribute
(GENERIC ENGINE Tile) in the Engine preference of the policy for the text column
to be optimized. If no value was specified for default_optimize in the Engine
preference for the policy, the default is DEFRAGMENT_TO_NEW_TABLE.

CTX_DDL: Text Setup and Management

PL/SQL Packages - Text Management 11-29

threshold is used only when opttyp is set to DR_OPTIMIZE_COMPACT_INDEX
(in-place compaction only). If opttyp is set to any value other than DR_OPTIMIZE_
COMPACT_INDEX, threshold is ignored.

threshold specifies the percentage under which ConText compacts a term’s index
fragments (rows) if the compaction will result in the number of fragments for the
term being reduced to more than or equal to the percentage specified.

For example, a value of 60 for threshold indicates the number of fragments for a
given term must be reduced to 60% or more of the total number of pre-optimization
fragments for in-place compaction to take place.

parallel is used only for two-table compaction and/or garbage collection. If a value
that utilizes in-place compaction and/or garbage collection is specified for opttyp,
parallel is ignored.

term is case-sensitive, regardless of whether the index (text or theme) is
case-sensitive. As a result, ConText only performs piecewise optimization for those
rows in an index that exactly match the value specified for term.

In addition, if a value is specified for term and no rows (index tokens or section
names) exist for the specified value, OPTIMIZE_INDEX completes successfully;
however, no optimization takes place.

CTX_DDL: Text Setup and Management

11-30 Oracle8 ConText Cartridge Administrator’s Guide

REMOVE_SECTION

The REMOVE_SECTION procedure removes the specified section from the
specified section group.

Syntax
CTX_DDL.REMOVE_SECTION(group_name IN VARCHAR2,
 section_name IN VARCHAR2);

group_name
Specify the name of the section group from which ConText deletes the section.

section_name
Specify the name of the section ConText deletes from the section group.

Examples
exec ctx_ddl.remove_section(’html_sections’, ’H1’)

Notes
If the specified section is part of a section group used in an existing Wordlist
preference, the preference must be dropped, using CTX_DDL.DROP_
PREFERENCE, before the section can be dropped from the section group.

CTX_DDL: Text Setup and Management

PL/SQL Packages - Text Management 11-31

RESUME_FAILED_INDEX

The RESUME_FAILED_INDEX procedure resumes an unsuccessful index DML
operation (creation or optimizationo).

Syntax
CTX_DDL.RESUME_FAILED_INDEX(policy_name IN VARCHAR2,
 operation IN NUMBER DEFAULT 1,
 parallel IN NUMBER DEFAULT 1,
 opttyp IN NUMBER DEFAULT 3,
 switch_new IN BOOLEAN DEFAULT TRUE,
 drop_old IN BOOLEAN DEFAULT TRUE);

policy_name
Specify the index (through the policy) that requires indexing/optimization
resumption.

operation
Specify the operation that was being performed on the index at the time of failure
and needs to be resumed:

■ 1 (OPERATION_CREATE)

■ 2 (OPERATION_OPTIMIZE)

The default is 1.

parallel
Specify the degree of parallelism used for creating/optimizing the index. The
default is 1.

opttyp
If operation is 2 (OPERATION_OPTIMIZE), use this argument to specify the type of
two-table optimization to perform:

■ 3 (DR_OPTIMIZE_COMPACT_NEW) - perform compaction of index fragments

■ 4 (DEFRAGMENT_TO_NEW_TABLE) - perform combined compaction of index
fragments and garbage collection of obsolete DOCIDs.

The default depends on the value set for the default_optimize attribute in the
GENERIC ENGINE Tile (see "Notes" for more information).

CTX_DDL: Text Setup and Management

11-32 Oracle8 ConText Cartridge Administrator’s Guide

switch_new
Internal use only.

drop_old
Internal use only.

Examples
begin
 ctx_ddl.resume_failed_index(’MY_POLICY’,
 operation => 2,
 parallel => 2
 opttyp => DDL>DEFRAGMENT_TO_NEW_TABLE);
end;

In this example, index optimization is resumed with a parallelism level of 2 for the
index for my_policy. The type of optimization performed is combined two-table
compaction/garbage collection.

Notes
RESUME_FAILED_INDEX should be called only after the problem that caused the
failure has been corrected or removed.

Only the owner of the policy or CTXSYS can resume creation/optimization of a
ConText index.

RESUME_FAILED_INDEX uses the ConText index log to determine the point of
failure for the index and the point from which to proceed with
indexing/optimization.

Depending on the stage at which the text DDL operation failed, RESUME_FAILED_
INDEX may start the operation from the beginning, in which case, CREATE_INDEX
or OPTIMIZE_INDEX serves the same purpose as RESUME_FAILED_INDEX and
can be called in its place.

Because RESUME_FAILED_INDEX automatically determines where to resume a
failed DDL operation, the user should consult the index log before calling
RESUME_FAILED_INDEX to decide whether to call CREATE_INDEX/OPTIMIZE_
INDEX instead.

opttyp must be fully qualified with the PL/SQL package name (CTX_DDL) as
shown in the example.

CTX_DDL: Text Setup and Management

PL/SQL Packages - Text Management 11-33

The default for opttyp is the value specified for the default_optimize attribute
(GENERIC ENGINE Tile) in the Engine preference of the column policy. If no value
was specified for default_optimize when the Engine preferece was created, the
default is 3 (DR_OPTIMIZE_COMPACT_NEW).

CTX_DDL: Text Setup and Management

11-34 Oracle8 ConText Cartridge Administrator’s Guide

SET_ATTRIBUTE

The SET_ATTRIBUTE procedure assigns values to Tile attributes used in the CTX_
DDL.CREATE_PREFERENCE procedure.

Syntax
CTX_DDL.SET_ATTRIBUTE(name IN VARCHAR2,
 value IN VARCHAR2,
 seq IN NUMBER DEFAULT 1);

CTX_DDL.SET_ATTRIBUTE(name IN VARCHAR2,
 value1 IN VARCHAR2,
 value2 IN VARCHAR2,
 seq IN NUMBER);

name
Specify the attribute to which a value is assigned.

value
Specify the value assigned to the attribute. This argument is not used when value1
and value2 are used.

value1
Specify the first value assigned to the attribute (used only with the executable
attribute for the BLASTER FILTER Tile).

value2
Specify the second value assigned to attribute (used only with the executable
attribute for the BLASTER FILTER Tile).

seq
Specify the sequence number assigned to the attribute (only required for creating
preferences that use Tiles which support multiple values for the same attribute).

The default is 1.

CTX_DDL: Text Setup and Management

PL/SQL Packages - Text Management 11-35

Examples
Examples are provided- for setting attributes for Engine, Stoplist, and Filter Tiles.

Example 1: Engine Tile Attribute
In this example, the index_memory attribute is assigned approximately 3 megabytes
of memory. The index_memory attribute belongs to the GENERIC ENGINE Tile and
is used for allocating indexing memory.

execute ctx_ddl.set_attribute(’INDEX_MEMORY’, ’3000000’)

Example 2: Stoplist Tile Attributes
In this example, the stop_word attribute (GENERIC STOP LIST Tile) is set twice,
once for the stop word of and once for the stop word and. The stop words are
assigned sequences of 1 and 2 respectively.

execute ctx_ddl.set_attribute(’STOP_WORD’, ’of’, 1)
execute ctx_ddl.set_attribute(’STOP_WORD’, ’and’, 2)

Example 3: Filter Tile Attributes
In example 3, the executable attribute (BLASTER FILTER Tile) is set twice to register
external filter executables (amipro.sh and acrobat.sh) for AmiPro and Adobe Acrobat
(PDF) documents. AmiPro has a format code of 19 and Acrobat has a format code of
57. The executables are assigned sequences of 1 and 2 respectively.

execute ctx_ddl.set_attribute(’EXECUTABLE’, 19, ’amipro.sh’, 1)
execute ctx_ddl.set_attribute(’EXECUTABLE’, 57, ’acrobat.sh’, 2)

Notes
SET_ATTRIBUTE writes the specified attribute values to an internal buffer. Once all
of the attributes for a particular Tile have been set, CTX_DDL.CREATE_
PREFERENCE is called to create a preference for the Tile.

Any errors that may occur from entering incorrect values for SET_ATTRIBUTE are
not reported until CREATE_PREFERENCE is called.

When CREATE_PREFERENCE is called, the buffer used to store the attributes for
the preference is automatically cleared. As a result, if the preference creation failed,
all of the attributes must be entered again before calling CREATE_PREFERENCE.

CTX_DDL.CLEAR_ATTRIBUTES can be used to manually clear all attributes in the
buffer.

CTX_DDL: Text Setup and Management

11-36 Oracle8 ConText Cartridge Administrator’s Guide

seq is only used with the Tiles that have attributes that support multiple values for
the same attribute (i.e. BLASTER FILTER, GENERIC STOP LIST, and GENERIC
WORD LIST). For all the other Tiles, seq is not required and should not be set.

A call to SET_ATTRIBUTE that uses the same seq value as a previous call to SET_
ATTRIBUTE overrides the previously attribute that was set in the buffer.

CTX_DDL: Text Setup and Management

PL/SQL Packages - Text Management 11-37

UPGRADE_INDEX

The UPGRADE_INDEX procedure upgrades the ConText index for a policy from
the format used in ConText, Release 2.0 and earlier, to the current format.

Syntax
CTX_DDL.UPGRADE_INDEX(policy_name IN VARCHAR2);

policy_name
The name of the policy for which the index is upgraded.

Examples
In the following example, UPGRADE_INDEX is called for a policy named doc_pol1
that is owned by ctxdemo.

connect ctxdemo/passwd
SQL> exec ctx_ddl.upgrade_index(‘doc_pol1’)

In the following example, UPGRADE_INDEX is called by CTXSYS for a policy
named doc_pol2 that is owned by ctxdemo.

connect ctxsys/ passwd
SQL> exec ctx_ddl.upgrade_index(‘ctxdemo.doc_pol2’)

Notes
You only need to run UPGRADE_INDEX for ConText indexes that were created in
Release 2.0 or earlier. In addition, you only need to run UPGRADE_INDEX once for
each ConText index

If CTXSYS is used to upgrade the indexes for other users, the policy name specified
for UPGRADE_INDEX must be fully qualified with the username for the user.

The CTX_INDEX_LOG view can be used by users with the CTXADMIN role to
view the status of all ConText indexes.

The CTX_USER_INDEX_LOG view can be used by users with the CTXAPP role to
view the status of all ConText indexes for the user.

CTX_DDL: Text Setup and Management

11-38 Oracle8 ConText Cartridge Administrator’s Guide

UPDATE_POLICY

The UPDATE_POLICY procedure updates the description and/or the preferences
for an existing column or template policy. For column policies, it can only be used to
update a column policy if ConText has not yet generated a ConText index for the
policy.

Syntax
CTX_DDL.UPDATE_POLICY(
 policy_name IN VARCHAR2,
 description IN VARCHAR2 DEFAULT NULL,
 dstore_pref IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_DIRECT_DATASTORE’,
 compressor_pref IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_NULL_COMPRESSOR’,
 filter_pref IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_NULL_FILTER’,
 lexer_pref IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_LEXER’,
 wordlist_pref IN VARCHAR2 DEFAULT ’CTXSYS.NO_SOUNDEX’,
 stoplist_pref IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_STOPLIST’,
 engine_pref IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_INDEX’);

policy_name
Specify the name of the policy to be updated.

description
Specify the new description of the policy.

dstore_pref
Specify the name of the new Data Store preference for the policy.

compressor_pref
Specify the name of the new Compressor preference (Compressors are not currently
provided or supported by ConText).

filter_pref
Specify the name of the new Filter preference for the policy.

lexer_pref
Specify the name of the new Lexer preference for the policy.

wordlist_pref
Specify the name of the new Wordlist preference for the policy.

CTX_DDL: Text Setup and Management

PL/SQL Packages - Text Management 11-39

stoplist_pref
Specify the name of the new Stoplist preference for the policy.

engine_pref
Specify the name of the new Engine preference for the policy.

Examples
begin
 ctx_ddl.update_policy(policy_name => ’MY_POLICY’,
 dstore_pref => ’CTXSYS.MD_BINARY’);
end;

Notes
If a preference belonging to another user is used to update a policy, the
fully-qualified name of the preference must be used.

CTX_DDL: Text Setup and Management

11-40 Oracle8 ConText Cartridge Administrator’s Guide

UPDATE_SOURCE

The UPDATE_SOURCE procedure updates the description, text column, refresh
rate, and preferences for the text loading source specified in the argument string.
UPDATE_SOURCE can be called at any time for any existing source.

Syntax
CTX_DDL.UPDATE_SOURCE(name IN VARCHAR2,
 colspec IN VARCHAR2 DEFAULT NULL,
 description IN VARCHAR2 DEFAULT NULL,
 refresh IN NUMBER DEFAULT NULL,
 next IN DATE DEFAULT NULL
 engine_pref IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_LOADER’,
 translator_pref IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_TRANSLATOR’,
 reader_pref IN VARCHAR2 DEFAULT ’CTXSYS.DEFAULT_READER’);

name
Specify the name of the source to be updated.

colspec
Specify the new text column (and table) to which the source is assigned.

description
Specify the new description for the source.

refresh
Specify the new elapsed time, in minutes, before a ConText server checks the
directory (specified in the Reader preference) for new files to be loaded.

next
Specify the date and time for the initial scan of the updated source by available
Loader servers.

engine_pref
Specify the name of the new Loader Engine preference assigned to the source.

translator_pref
Specify the name of the new Translator preference assigned to the source.

CTX_DDL: Text Setup and Management

PL/SQL Packages - Text Management 11-41

reader_pref
Specify the name of the new Reader preference assigned to the source.

Examples
begin
 ctx_ddl.update_policy(policy_name => ’MY_POLICY’,
 dstore_pref => ’CTX.MD_BINARY’);
end;

Notes
If a Loader Engine, Reader, or Translator preference belonging to another user is
used to update a source, the fully-qualified name of the preference must be used.

next specifies the date and time that an updated source is initially scanned by
ConText servers running with the Loader (R) personality.

The next scan of the source occurs at next + refresh, then all subsequent scans occur
at regular intervals specified by refresh.

CTX_DML: ConText Index Update

11-42 Oracle8 ConText Cartridge Administrator’s Guide

CTX_DML: ConText Index Update
The CTX_DML PL/SQL package is used to manage DML Operations.

CTX_DML contains the following stored procedures and functions:

Name Description

REINDEX Specify reindexing for a document

SYNC Batches all pending requests in DML Queue and enables
ConText servers with DDL personality to process the
batches

SYNC_QUERY Returns a timestamp in the form of a date for the batches
generated by SYNC

CTX_DML: ConText Index Update

PL/SQL Packages - Text Management 11-43

REINDEX

The REINDEX procedure is used to write a row to the DML Queue for a specified
document. The index for the document is then created/updated according to the
DML method being used (immediate or batch).

REINDEX can be used to reindex documents that have errored during DDL or
DML. It can also be used to provide automatic DML processing when the internal
trigger that is normally created during index creation does not exist.

Finally, it can be used to notify the system of updates to documents stored
externally. For example, if a text column uses the OSFILE Tile for documents stored
in the file system, REINDEX can be called when a document is updated to ensure
that the update is recorded in the DML Queue.

Syntax
CTX_DML.REINDEX(policy IN VARCHAR2,
 pk IN VARCHAR2);

CTX_DML.REINDEX(cid IN NUMBER,
 pk IN VARCHAR2);

policy
Specify name of policy for text column where document to be reindexed is stored. If
policy is used, cid is not used.

cid
Specify the identifier for the text column where document to be reindexed is stored.
If cid is used, policy is not used.

pk
Specify the identifier for the document to be reindexed.

Examples
In the first two examples, REINDEX is called for a single document identified by
textkey and either the policy name for the column or the column id.

execute ctx_dml.reindex(’MY_POLICY’, ’1’)

execute ctx_dml.reindex(3451, ’1’)

CTX_DML: ConText Index Update

11-44 Oracle8 ConText Cartridge Administrator’s Guide

In the last example, REINDEX is used to create a trigger named resume_update on a
table named emp in the database schema for user ctxdev. empno is the primary key
(and textkey) and resume is the text column for emp. A policy named resume_pol has
been created for the text column and an index created for the policy.

Each time a row is inserted or deleted from emp, or empno or resume is updated for
an existing row, resume_update places a DML request for the row (document) in the
DML queue.

create or replace trigger resume_update
before delete or insert or update of empno,resume on ctxdev.emp
for each row
 declare
 newkey varchar2(1000) := :new.empno;
 oldkey varchar2(1000) := :old.empno;
 begin
 if inserting then
 ctx_dml.reindex(’resume_pol’,newkey);
 else if updating then
 ctx_dml.reindex(’resume_pol’,oldkey);
 ctx_dml.reindex(’resume_pol’,newkey);
 else
 ctx_dml.reindex(’resume_pol’,oldkey);
 end if;
 end;

Notes
REINDEX uses either the policy name or the column ID to identify the column
where the document to be reindexed is stored.

REINDEX does not perform a COMMIT. After REINDEX is called for a document,
COMMIT must be performed to save the request in the DML Queue.

REINDEX can be used to enable automatic DML queue notification when the
internal DML trigger does not exist. The internal trigger may not exist for the
following reasons:

■ trigger could not be created (i.e. indexing a view)

■ trigger was not initially created (i.e. create_trig in CTX_DDL.CREATE_INDEX
set to ’FALSE’)

■ trigger was dropped using CTX_DDL.DROP_INTTRIG

CTX_DML: ConText Index Update

PL/SQL Packages - Text Management 11-45

To enable automatic DML, a trigger must be created on the object containing the
text for which the index needs to be updated. In the case of a ConText index on a
view, the object is the base table for the view. For a table without a trigger, the object
is the table itself.

CTX_DML: ConText Index Update

11-46 Oracle8 ConText Cartridge Administrator’s Guide

SYNC

The SYNC procedure bundles all pending rows in the DML Queue at the time it is
called and enables ConText servers with the DDL personality to process the rows as
a single batch (if parallelism is not specified) or as a group of batches (if parallelism
is specified).

Syntax
CTX_DML.SYNC(timestamp IN DATE DEFAULT NULL,
 pol IN VARCHAR2 DEFAULT NULL,
 parallel IN NUMBER DEFAULT 1,
 testing IN NUMBER DEFAULT 0,
 timeout IN NUMBER DEFAULT 0);

timestamp
Specify the time at which you want the batch DML to start.

The default is SYSDATE.

pol
Specify the policy for the text column for which SYNC is performed.

parallel
Specify the number of ConText servers used to process the operation.

The default is 1.

testing
For internal use only.

timeout
For internal use only.

Examples
execute ctx_dml.sync(PARALLEL=>2)

CTX_DML: ConText Index Update

PL/SQL Packages - Text Management 11-47

Notes
timestamp limits the rows in the batch to those rows with a date equal to or less than
the date specified.

pol limits SYNC to a particular text column. If a value is not specified for pol, SYNC
is performed for every text column in the database.

CTX_DML: ConText Index Update

11-48 Oracle8 ConText Cartridge Administrator’s Guide

SYNC_QUERY

The SYNC_QUERY function returns a DATE which is the lower bound to which
rows in the DML Queue have been indexed.

Syntax
CTX_DML.SYNC_QUERY(cid IN NUMBER DEFAULT NULL,
 cur_date IN DATE DEFAULT SYSDATE)
RETURN DATE;

cid
Specify the text column for which SYNC_QUERY is called.

cur_date
Specify the date from which to perform the query synchronization.

Returns
The timestamp (date and time) for the reindexed rows.

Examples
select ctx_dml.sync_query(3) from dual;

Notes
cid can be used to limit SYNC_QUERY to a particular text column. Otherwise,
SYNC_QUERY returns the DATE value for all text columns.

CTX_THES: Thesaurus Management

PL/SQL Packages - Text Management 11-49

CTX_THES: Thesaurus Management
The CTX_THES PL/SQL package is used to manage thesauri in the ConText
thesaurus tables.

CTX_THES contains the following stored procedures and functions:

Name Description

CREATE_PHRASE Adds a phrase to the specified thesaurus or modifies the
information about the phrase in the thesaurus and returns
the ID for the phrase

CREATE_THESAURUS Creates the specified thesaurus and returns the ID for the
thesaurus

DROP_THESAURUS Drops the specified thesaurus from the thesaurus tables

Note: These are the only procedures and functions that are
required for creating and maintaining thesauri and thesaurus
entries. The remaining procedures and functions in CTX_THES are
used internally by ConText to enable the thesaurus operators in
query expressions.

In addition, CTX_THES calls an internal package, CTX_THS. The
procedures and functions in CTX_THS should not be called directly.

For more information about the thesaurus operators, see Oracle8
ConText Cartridge Application Developer’s Guide.

CTX_THES: Thesaurus Management

11-50 Oracle8 ConText Cartridge Administrator’s Guide

CREATE_PHRASE

The CREATE_PHRASE function adds a new phrase to the specified thesaurus or
creates a relationship between two existing phrases.

Syntax
CTX_THES.CREATE_PHRASE(tname IN VARCHAR2,
 phrase IN VARCHAR2,
 rel IN VARCHAR2 DEFAULT NULL,
 relname IN VARCHAR2 DEFAULT NULL)
RETURN NUMBER;

tname
Specify the name of the thesaurus in which the new phrase is added or the existing
phrase is located.

phrase
Specify the phrase to be added to a thesaurus or the phrase for which a new
relationship is created.

rel
Specify the new relationship between phrase and relname:

■ SYN (i.e. phrase is synonymous term for relname)

■ PT | USE | SEE (i.e. phrase is preferred synonymous term for relname)

■ BT (i.e. phrase is broader term for relname)

■ NT (i.e. phrase is narrower term for relname)

■ BTG (broader generic term)

■ NTG (narrower generic term)

Note: The thesaurus query operators (SYN, PT, BT, BTG, BTP, BTI,
NT, NTG, NTP, NTI, and RT) are reserved words and, thus, cannot
be used as phrases in thesaurus entries.

n addition, the string ’E$_’ is reserved for internal use and cannot
be used as a phrase in thesaurus entries.

CTX_THES: Thesaurus Management

PL/SQL Packages - Text Management 11-51

■ BTP (broader partitive term)

■ NTP (narrower partitive term)

■ BTI (broader instance term)

■ NTI (narrower instance term)

■ RT (related term)

relname
Specify the existing phrase that is related to phrase.

Returns
The ID for the entry.

Examples
Examples are provided for creating entries for two phrases and defining a
relationship between the phrases.

Example 1: Creating Entries for Phrases
In this example, two new phrases (os and operating system) are created in a thesaurus
named tech_thes.

declare phraseid number;
begin
 phraseid := ctx_thes.create_phrase(’tech_thes’,’os’);
 phraseid := ctx_thes.create_phrase(’tech_thes’,’operating system’);
end;

Example 2: Creating a Relationship
In this example, the two phrases (os and operating system) in tech_thes are recorded as
synonyms (syn).

declare phraseid number;
begin
 phraseid := ctx_thes.create_phrase(’tech_thes’,’os’,’syn’,’oprating system);
end;

See Also: For more information about the relationships you can
define for thesaurus entries, see "Thesaurus Entries and
Relationships" in Chapter 6, "Text Concepts".

CTX_THES: Thesaurus Management

11-52 Oracle8 ConText Cartridge Administrator’s Guide

Notes
rel and relname can only be used in CREATE_PHRASE if the phrases specified for
both phrase and relname already exist in the thesaurus.

CREATE_PHRASE cannot be used to update the relationship between two existing
phrases. It can only be used to create a new relationship between two existing
phrases.

CTX_THES: Thesaurus Management

PL/SQL Packages - Text Management 11-53

CREATE_THESAURUS

The CREATE_THESAURUS function creates an empty thesaurus with the specified
name in the thesaurus tables.

Syntax
CTX_THES.CREATE_THESAURUS(thes_name IN VARCHAR2
 case_sensitive IN BOOLEAN DEFAULT FALSE)
RETURN NUMBER;

thes_name
Specify the name of the thesaurus to be created.

case_sensitive
Specify whether the thesaurus to be created is case-sensitive. If case_sensitive is
TRUE, ConText retains the cases of all terms entered in the specified thesaurus. As a
result, queries that use the thesaurus are case-sensitive.

Returns
The ID for the thesaurus.

Examples
declare thesid number;
begin
 thesid := ctx_thes.create_phrase(’tech_thes’);
end;

Notes
The name of the thesaurus must be unique. If a thesaurus with the specified name
already exists, CREATE_THESAURUS returns an error and does not create the
thesaurus.

To enter phrases in the thesaurus, use CTX_THES.CREATE_PHRASE or use the
Thesaurus Maintenance screen in the ConText System Administration tool.

CTX_THES: Thesaurus Management

11-54 Oracle8 ConText Cartridge Administrator’s Guide

DROP_THESAURUS

The DROP_THESAURUS procedure deletes the specified thesaurus and all of its
entries from the thesaurus tables.

Syntax
CTX_THES.DROP_THESAURUS(name IN VARCHAR2);

name
Specify the name of the thesaurus to be dropped.

Examples
execute ctx_thes.drop_thesaurus(’tech_thes’);

Part III
 Appendices

This part contains the following appendices:

■ Appendix A, "Supplied Stoplists"

■ Appendix B, "ConText Views"

■ Appendix C, "ConText Index Tables and Indexes"

■ Appendix D, "External Filter Specifications"

Supplied Stoplists A-1

A
Supplied Stoplists

ConText supplies an English stoplist, which serves as the default stoplist. In
addition, ConText supplied stoplists for many European languages.

This appendix describes how to create Stoplist preferences for all the supplied
stoplists, except the English stoplist, and lists the stop words in each stoplist:

■ Creating a Supplied Stoplist

■ English

■ Danish (DA)

■ Dutch (NL)

■ Finnish (FI)

■ French (FR)

■ German (DE)

■ Italian (IT)

■ Portuguese (PR)

■ Spanish (ES)

■ Swedish (SE)

Note: Each of the supplied stoplists, except for the English
stoplist, is provided as a SQL script that can be run to create a
Stoplist preference for the indicated language.

The English stoplist is provided as a predefined Stoplist preference
named DEFAULT_STOPLIST.

Creating a Supplied Stoplist

A-2 Oracle8 ConText Cartridge Administrator’s Guide

Creating a Supplied Stoplist
To create a Stoplist preference for any of the following languages, run the SQL script
for the language:

The exact location of the SQL scripts is operating system dependent; however, the
scripts are generally located in the following directory structure:

<Oracle_home_directory>
<ConText_directory>

demo

Editing the Scripts
If you need to add or remove words from a stoplist, you can directly edit the SQL
script for the stoplist.

You can edit the scripts using any line/text editor, provided the editor supports the
character set for the language of the stoplist(s) you are editing.

Language SQL Script

Danish (DA) drstopda

Dutch (NL) drstopnl

Finnish (FI) drstopfi

French (FR) drstopfr

German (DE) drstopde

Italian (IT) drstopit

Portuguese (PR) drstoppr

Spanish (ES) drstopes

Swedish (SE) drstopse

See Also: For more information about the directory structure for
ConText, see the Oracle8 installation documentation specific to
your operating system.

Note: If you want to edit a stoplist, you should edit the respective
script before running it.

Creating a Supplied Stoplist

Supplied Stoplists A-3

Running the Scripts
The SQL scripts can be run in SQL*Plus or any other utility that supports SQL
scripts. Each script takes a single argument, preference_name, as input.

The following SQL*Plus example creates a Stoplist preference named danish_
stopwords:

SQL> @drstopda danish_stopwords

This example assumes SQL*Plus was started from the directory in which the
stoplist scripts are located, which is the recommended method for running the
scripts.

English

A-4 Oracle8 ConText Cartridge Administrator’s Guide

English
The following English words are defined as stop words in the DEFAULT_STOPLIST
preference provided by ConText:

Stop word Stop word Stop word Stop word Stop word Stop word Stop word

a be had it only she was

about because has its of some we

after been have last on such were

all but he more one than when

also by her most or that which

an can his mr other the who

any co if mrs out their will

and corp in ms over there with

are could inc mz s they would

as for into no so this up

at from is not says to

Danish (DA)

Supplied Stoplists A-5

Danish (DA)
The drstopda script creates a Stoplist preference containing the following Danish
words:

Stop word Stop word Stop word Stop word Stop word Stop word Stop word

af en god hvordan med og udenfor

aldrig et han I meget oppe under

alle endnu her De mellem pe ved

altid fe hos i mere rask vi

bagved lidt hovfor imod mindre hurtig

de fjernt hun ja ner sammen

der for hvad jeg hvoner temmelig

du foran hvem langsom nede nok

efter fra hvor mange nej til

eller gennem hvorhen meske nu uden

Dutch (NL)

A-6 Oracle8 ConText Cartridge Administrator’s Guide

Dutch (NL)
The drstopnl script creates a Stoplist preference containing the following words:

Stop word Stop word Stop word Stop word Stop word Stop word Stop word Stop word Stop word

aan betreffende eer had juist na overeind van weer

aangaande bij eerdat hadden jullie naar overigens vandaan weg

aangezien binnen eerder hare kan nadat pas vanuit wegens

achter binnenin eerlang heb klaar net precies vanwege wel

achterna boven eerst hebben kon niet reeds veeleer weldra

afgelopen bovenal elk hebt konden noch rond verder welk

al bovendien elke heeft krachtens nog rondom vervolgens welke

aldaar bovengenoemd en hem kunnen nogal sedert vol wie

aldus bovenstaand enig hen kunt nu sinds volgens wiens

alhoewel bovenvermeld enigszins het later of sindsdien voor wier

alias buiten enkel hierbeneden liever ofschoon slechts vooraf wij

alle daar er hierboven maar om sommige vooral wijzelf

allebei daarheen erdoor hij mag omdat spoedig vooralsnog zal

alleen daarin even hoe meer omhoog steeds voorbij ze

alsnog daarna eveneens hoewel met omlaag tamelijk voordat zelfs

altijd daarnet evenwel hun mezelf omstreeks tenzij voordezen zichzelf

altoos daarom gauw hunne mij omtrent terwijl voordien zij

ander daarop gedurende ik mijn omver thans voorheen zijn

andere daarvanlangs geen ikzelf mijnent onder tijdens voorop zijne

anders dan gehad in mijner ondertussen toch vooruit zo

anderszins dat gekund inmiddels mijzelf ongeveer toen vrij zodra

behalve de geleden inzake misschien ons toenmaals vroeg zonder

behoudens die gelijk is mocht onszelf toenmalig waar zou

beide dikwijls gemoeten jezelf mochten onze tot waarom zouden

beiden dit gemogen jij moest ook totdat wanneer zowat

ben door geweest jijzelf moesten op tussen want zulke

beneden doorgaand gewoon jou moet opnieuw uit waren zullen

bent dus gewoonweg jouw moeten opzij uitgezonderd was zult

bepaald echter haar jouwe mogen over vaak wat

Finnish (FI)

Supplied Stoplists A-7

Finnish (FI)
The drstopfi script creates a Stoplist preference containing the following Finnish
words:

Stop word Stop word Stop word Stop word Stop word Stop word Stop word

aina hyvin kesken me nyt takia yhdessd

alla hoikein kukka mikd oikea tdssd ylvs

ansiosta ilman kylld miksi oikealla te

ei ja kylliksi milloin paljon ulkopuolella

enemmdn jdlkeen tarpeeksi milloinkan sielld vdhdn

ennen jos ldhelld koskaan sind vahemmdn

etessa kanssa ldpi mind ssa vasen

haikki kaukana liian missd sta vasenmalla

hdn kenties lla miten suoraan vastan

he ehkd luona kuinkan tai vield

hitaasti keskelld lla nopeasti takana vieressd

French (FR)

A-8 Oracle8 ConText Cartridge Administrator’s Guide

French (FR)
The drstopfr script creates a Stoplist preference containing the following French
words:

Stop word Stop word Stop word Stop word Stop word Stop word Stop word Stop word Stop word

a beaucoup comment encore lequel moyennant près ses toujours

afin ça concernant entre les ne puis sien tous

ailleurs ce dans et lesquelles ni puisque sienne toute

ainsi ceci de étaient lesquels non quand siennes toutes

alors cela dedans était leur nos quant siens très

après celle dehors étant leurs notamment que soi trop

attendant celles déjà etc lors notre quel soi-même tu

au celui delà eux lorsque notres quelle soit un

aucun cependant depuis furent lui nôtre quelqu''un sont une

aucune certain des grâce ma nôtres quelqu''une suis vos

au-dessous certaine desquelles hormis mais nous quelque sur votre

au-dessus certaines desquels hors malgré nulle quelques-unes ta vôtre

auprès certains dessus ici me nulles quelques-uns tandis vôtres

auquel ces dès il même on quels tant vous

aussi cet donc ils mêmes ou qui te vu

aussitôt cette donné jadis mes où quiconque telle y

autant ceux dont je mien par quoi telles

autour chacun du jusqu mienne parce quoique tes

aux chacune duquel jusque miennes parmi sa tienne

auxquelles chaque durant la miens plus sans tiennes

auxquels chez elle laquelle moins plusieurs sauf tiens

avec combien elles là moment pour se toi

à comme en le mon pourquoi selon ton

German (DE)

Supplied Stoplists A-9

German (DE)
The drstopde script creates a Stoplist preference containing the following German
words:

Stop word Stop word Stop word Stop word Stop word Stop word Stop word Stop word Stop word

ab dann des es ihnen keinem obgleich sondern welchem

aber daran desselben etwa ihr keinen oder sonst welchen

allein darauf dessen etwas ihre keiner ohne soviel welcher

als daraus dich euch Ihre keines paar soweit welches

also darin die euer ihrem man sehr über wem

am darüber dies eure Ihrem mehr sei um wen

an darum diese eurem ihren mein sein und wenn

auch darunter dieselbe euren Ihren meine seine uns wer

auf das dieselben eurer Ihrer meinem seinem unser weshalb

aus dasselbe diesem eures ihrer meinen seinen unsre wessen

außer daß diesen für ihres meiner seiner unsrem wie

bald davon dieser fürs Ihres meines seines unsren wir

bei davor dieses ganz im mich seit unsrer wo

beim dazu dir gar in mir seitdem unsres womit

bin dazwischen doch gegen ist mit selbst vom zu

bis dein dort genau ja nach sich von zum

bißchen deine du gewesen je nachdem Sie vor zur

bist deinem ebenso her jedesmal nämlich sie während zwar

da deinen ehe herein jedoch neben sind war zwischen

dabei deiner ein herum jene nein so wäre zwischens

dadurch deines eine hin jenem nicht sogar wären

dafür dem einem hinter jenen nichts solch warum

dagegen demselben einen hintern jener noch solche was

dahinter den einer ich jenes nun solchem wegen

damit denn eines ihm kaum nur solchen weil

danach der entlang ihn kein ob solcher weit

daneben derselben er Ihnen keine ober solches welche

Italian (IT)

A-10 Oracle8 ConText Cartridge Administrator’s Guide

Italian (IT)
The drstopfit script creates a Stoplist preference containing the following Italian
words:

Stop word Stop word Stop word Stop word Stop word Stop word Stop word

a da durante lo o seppure un

affinchè dachè e loro onde si una

agl'' dagl'' egli ma oppure siccome uno

agli dagli eppure mentre ossia sopra voi

ai dai essere mio ovvero sotto vostro

al dal essi ne per su

all'' dall'' finché neanche perchè subito

alla dalla fino negl'' perciò sugl''

alle dalle fra negli però sugli

allo dallo giacchè nei poichè sui

anzichè degl'' gl'' nel prima sul

avere degli gli nell'' purchè sull''

bensì dei grazie nella quand''anche sulla

che del I nelle quando sulle

chi dell'' il nello quantunque sullo

cioè delle in nemmeno quasi suo

come dello inoltre neppure quindi talchè

comunque di io noi se tu

con dopo l'' nonchè sebbene tuo

contro dove la nondimeno sennonchè tuttavia

cosa dunque le nostro senza tutti

Portuguese (PR)

Supplied Stoplists A-11

Portuguese (PR)
The drstopfpr script creates a Stoplist preference containing the following
Portuguese words:

Stop word Stop word Stop word Stop word Stop word Stop word Stop word

a bem e longe para se vocj

abaixo com ela mais por sem vocjs

adiante como elas menos porque sempre

agora contra jle muito pouco sim

ali debaixo eles nco prsximo sob

antes demais em ninguem qual sobre

aqui depois entre nss quando talvez

ati depressa eu nunca quanto todas

atras devagar fora onde que todos

bastante direito junto ou quem vagarosamente

Spanish (ES)

A-12 Oracle8 ConText Cartridge Administrator’s Guide

Spanish (ES)
The drstopfes script creates a Stoplist preference containing the following Spanish
words:

Stop word Stop word Stop word Stop word Stop word Stop word Stop word Stop word Stop word

a aquí cuantos esta misma nosotras querer tales usted

acá cada cuán estar mismas nosotros qué tan ustedes

ahí cierta cuánto estas mismo nuestra quien tanta varias

ajena ciertas cuántos este mismos nuestras quienes tantas varios

ajenas cierto de estos mucha nuestro quienesquiera tanto vosotras

ajeno ciertos dejar hacer muchas nuestros quienquiera tantos vosotros

ajenos como del hasta muchísima nunca quién te vuestra

al cómo demasiada jamás muchísimas os ser tener vuestras

algo con demasiadas junto muchísimo otra si ti vuestro

alguna conmigo demasiado juntos muchísimos otras siempre toda vuestros

algunas consigo demasiados la mucho otro sí todas y

alguno contigo demás las muchos otros sín todo yo

algunos cualquier el lo muy para Sr todos

algún cualquiera ella los nada parecer Sra tomar

allá cualquieras ellas mas ni poca Sres tuya

allí cuan ellos más ninguna pocas Sta tuyo

aquel cuanta él me ningunas poco suya tú

aquella cuantas esa menos ninguno pocos suyas un

aquellas cuánta esas mía ningunos por suyo una

aquello cuántas ese mientras no porque suyos unas

aquellos cuanto esos mío nos que tal unos

Swedish (SE)

Supplied Stoplists A-13

Swedish (SE)
The drstopfse script creates a Stoplist preference containing the following Swedish
words:

Stop word Stop word Stop word Stop word Stop word Stop word Stop word

ab de emot gott lengt ni under

aldrig ddr en hamske lite nu uppe

all de ett han man och ut

alla dem fastdn hdr med ocksa utan

alltid den fvr hellre med om utom

dn denna fort hon medan vver vad

dnnu deras framfvr hos mellan pe vdl

enyo dess fren hur mer se var

dr det genom i mera sedan varfvr

att detta gott in mindre sin vart

av du fastdn ingen mot skall varthdn

avser efter fvr innan myckett som vem

avses efteret fort inte ndr till vems

bakom eftersom framfvr ja ndra tillrdckligt vi

bra ej fren jag nej tillsammans vid

bredvid eller genom lengsamt nere trots att vilken

Swedish (SE)

A-14 Oracle8 ConText Cartridge Administrator’s Guide

ConText Views B-1

B
ConText Views

This appendix lists all of the views provided by ConText.

The views are divided into the following three groups:

■ ConText Server Views

■ ConText Queue Views

■ ConText Data Dictionary Views

ConText Server Views

B-2 Oracle8 ConText Cartridge Administrator’s Guide

ConText Server Views
This section describes the views provided with ConText for monitoring the status of
ConText servers.

CTX_ALL_SERVERS
This view displays all the ConText servers that have been started, including idle
servers and inactive servers. Only users assigned the CTXAPP or CTXADMIN roles
can query CTX_ALL_SERVERS.

Column Name Type Description

SER_NAME VARCHAR2(60) ConText server identifier

SER_STATUS VARCHAR2(8) ConText server status (IDLE, RUN, EXIT)

SER_ADMMBX VARCHAR2(60) Admin pipe mailbox name for ConText
server

SER_OOBMBX VARCHAR2(60) Out-of-bound mailbox name for ConText
server

SER_SESSION NUMBER No Longer Used

SER_AUDSID NUMBER ConText server audit session ID

SER_DBID NUMBER ConText server database ID

SER_PROCID VARCHAR2(10) No Longer Used

SER_PERSON_MASK VARCHAR2(30) Personality mask for ConText server

SER_STARTED_AT DATE Date on which ConText server was started

SER_IDLE_TIME NUMBER Idle time, in seconds, for ConText server

SER_DB_INSTANCE VARCHAR2(10) Database instance ID

SER_MACHINE VARCHAR2(64) Name of host machine on which ConText
server is running

ConText Server Views

ConText Views B-3

CTX_SERVERS
This view displays only ConText servers that are currently active. Only DBA users
and users assigned CTXADMIN can query CTX_SERVERS.

Column Name Type Description

SER_NAME VARCHAR2(60) ConText server identifier

SER_STATUS VARCHAR2(8) ConText server status (IDLE, RUN, EXIT)

SER_ADMMBX VARCHAR2(60) Admin pipe mailbox name for ConText
server

SER_OOBMBX VARCHAR2(60) Out-of-bound mailbox name for ConText
server

SER_SESSION NUMBER No Longer Used

SER_AUDSID NUMBER ConText server audit session ID

SER_DBID NUMBER ConText server database ID

SER_PROCID VARCHAR2(10) No Longer Used

SER_PERSON_MASK VARCHAR2(30) Personality mask for ConText server

SER_STARTED_AT DATE Date on which ConText server was started

SER_IDLE_TIME NUMBER Idle time, in seconds, for ConText server

SER_DB_INSTANCE VARCHAR2(10) Database instance ID

SER_MACHINE VARCHAR2(64) Name of host machine on which ConText
server is running

ConText Queue Views

B-4 Oracle8 ConText Cartridge Administrator’s Guide

ConText Queue Views
This section describes the views provided with ConText for monitoring the status of
all the ConText queues.

CTX_ALL_DML_QUEUE
This view displays a row for each entry in the DML Queue. Only users assigned
CTXADMIN can query CTX_ALL_DML_QUEUE.

CTX_ALL_DML_SUM
This view displays the total number of entries in the DML Queue for each policy.
Only users assigned CTXADMIN can query CTX_ALL_DML_QUEUE.

Column Name Type Description

CID NUMBER Text column ID

POL_OWNER VARCHAR2(30) Owner of policy for text column

POL_NAME VARCHAR2(30) Name of policy for text column

SID VARCHAR2(10) Identifier for ConText server working on row
(value is PENDING if a ConText server is not
yet assigned)

PKEY VARCHAR2(256) Primary key of row being processed

TIME DATE Lower bound of time row was last updated

Column Name Type Description

CID NUMBER Text column ID

POL_OWNER VARCHAR2(30) Owner of policy for text column

POL_NAME VARCHAR2(30) Name of policy for text column

CNT NUMBER Count of rows in DML Queue

TSTAMP DATE Minimum time stamp for rows

ConText Queue Views

ConText Views B-5

CTX_ALL_QUEUE
This view displays all of the rows (pending and in progress requests) in the DML
Queue. Only users assigned CTXADMIN can query CTX_ALL_QUEUE.

Column Name Type Description

CID NUMBER Policy ID

SID VARCHAR2(10) ID (name) of server processing the request (if
the request is pending, this column is NULL)

PKEY VARCHAR2(256) Textkey (primary key) of column policy

TIME DATE Lower boundary of time row was last
updated

BATCH NUMBER ID of batch in which request is being
processed (used for batch DML)

ConText Queue Views

B-6 Oracle8 ConText Cartridge Administrator’s Guide

CTX_INDEX_ERRORS
This view displays a row for each document for which ConText indexing failed
during a DDL or DML operation. Only users assigned CTXADMIN or CTXAPP can
query CTX_INDEX_ERRORS.

When the error that caused the indexing for the document to fail is corrected and
automatic DML is enabled, once the table that contains the document has been
updated, the document is automatically reindexed.

You can also use the CTX_DML.REINDEX procedure to manually reindex the
errored document once the error condition has been corrected.

Note: Rows in CTX_INDEX_ERRORS are not automatically
deleted when the errored documents have been corrected and
reindexed. The rows must be manually cleared using CTX_
SVC.CLEAR_ERROR.

Column Name Type Description

HANDLE NUMBER Handle ID for errored document

TSTAMP DATE Time stamp

POL_OWNER VARCHAR2(30) Username of Policy owner for text column in
which errored document is stored

POL_NAME VARCHAR2(30) Name of Policy for text column in which
errored document is stored

PK VARCHAR2(64) Textkey for errored document

ERRORS VARCHAR2(2000) Error text for errored document

ConText Queue Views

ConText Views B-7

CTX_INDEX_STATUS
This view displays the reindexing status of requests (rows) in the DML Queue. Only
users assigned CTXADMIN or CTXAPP can query CTX_INDEX_STATUS.

CTX_LING_ERRORS
This view displays all the Linguistics requests that have a status of ERROR. Only
users assigned CTXADMIN or CTXAPP can query CTX_LING_ERRORS.

Column Name Type Description

STATUS VARCHAR2(1) Status of DML request

POL_OWNER VARCHAR2(30) Username of policy owner for DML request

POL_NAME VARCHAR2(30) Name of policy for DML request

PK VARCHAR2(256) ID for the document being processed by the
DML request

Note: Rows in CTX_LING_ERRORS are not automatically deleted
when the errored documents have been corrected and reprocessed
through the Linguistics. The rows must be manually cleared using
CTX_SVC.CLEAR_ERROR.

Column Name Type Description

HANDLE NUMBER Handle ID

TSTAMP DATE Time stamp

POL_OWNER VARCHAR2(2000) Policy owner for column in which document
with errored request is stored

POL_NAME VARCHAR2(2000) Policy name for column in which document
with errored request is stored

PK VARCHAR2(64) Textkey for document with errored request

ERRORS VARCHAR2(2000) Error text for errored request

ConText Queue Views

B-8 Oracle8 ConText Cartridge Administrator’s Guide

CTX_USER_DML_QUEUE
This view displays a row for each of the user’s entries in the DML Queue. All users
can query CTX_INDEX_STATUS.

CTX_USER_DML_SUM
This view displays the total number of user’s entries in the DML Queue for each
text column. All users can query CTX_INDEX_STATUS.

Column Name Type Description

CID NUMBER Text column ID

POL_NAME VARCHAR2(30) Name of policy for text column

SID VARCHAR2(10) Identifier for ConText server working on row
(value is PENDING if a ConText server is not
yet assigned)

PKEY VARCHAR2(256) Primary key of row being processed

TIME DATE Lower bound of time row was last updated

Column Name Type Description

CID NUMBER Text column ID

POL_NAME VARCHAR2(30) Name of policy for text column

CNT NUMBER Count of rows in DML Queue

TSTAMP DATE Minimum time stamp for rows

ConText Queue Views

ConText Views B-9

CTX_USER_QUEUE
This view displays all of the rows (pending and in progress requests) in the DML
Queue for policies owned by the current user. Only users assigned CTXADMIN or
CTXAPP can query CTX_USER_QUEUE.

CTX_USER_SVCQ
This view displays a row for each Linguistics request and each reindexing request
(DML or DDL) that has a status of ERROR. Only users assigned CTXADMIN or
CTXAPP can query CTX_USER_SVCQ.

Column Name Type Description

CID NUMBER Policy ID

SID VARCHAR2(10) ID (name) of server processing the request (if
the request is pending, this column is NULL)

PKEY VARCHAR2(256) Textkey (primary key) of column policy

TIME DATE Lower boundary of time row was last
updated

BATCH NUMBER ID of batch in which request is being
processed (for batch DML)

Column Name Type Description

SVCNO NUMBER Services Queue number

STATUS VARCHCHAR2(1) Request status

SID NUMBER Identifier of server that processed request

SERVICE NUMBER Requested service

PRIORITY NUMBER Priority of request

TSTAMP DATE Lower boundary of time row was last
updated

USERNAME VARCHAR2(30) Policy owner who submitted request

PAR1-10 VARCHAR2(2000) Parameters (internal use only)

ERRORS VARCHAR2(2000) Error text

ConText Data Dictionary Views

B-10 Oracle8 ConText Cartridge Administrator’s Guide

ConText Data Dictionary Views
This section describes the views that can be used to query the Oracle ConText
objects in the ConText data dictionary.

CTX_ALL_PREFERENCES
This view displays preferences created by ConText users, as well as all the
predefined preferences included with ConText. The view contains one row for each
preference. It can be viewed only by users with the CTXADMIN or CTXAPP role.

 Column Name Type Description

PRE_ID NUMBER Preference identifier

 PRE_NAME VARCHAR2(30) Preference name

 PRE_DESC VARCHAR2(240) Preference description

 PRE_OBJ_NAME VARCHAR2(30) Tile specified in preference

 PRE_CLA_NAME VARCHAR2(30) Category for Tile

 PRE_OBJ_ID NUMBER Identifier for Tile in preference

 PRE_CLA_ID NUMBER Identifier for category of preference

 PRE_OWNER VARCHAR2(30) Username of preference owner

ConText Data Dictionary Views

ConText Views B-11

CTX_ALL_SECTIONS
This view displays information about all the sections that have been created in the
ConText data dictionary. It can be viewed only by users with the CTXADMIN or
CTXAPP role.

CTX_ALL_SECTION_GROUPS
This view displays information about all the section groups that have been created
in the ConText data dictionary. It can be viewed only by users with the CTXADMIN
or CTXAPP role.

Column Name Type Description

SEC_ID NUMBER Identifier for the section

SEC_NAME VARCHAR2(30) Name of the section

SGRP_ID NUMBER Identifier for the section group to which the
section belongs

SGRP_NAME VARCHAR2(30) Name of the section group to which the
section belongs

SGRP_OWNER VARCHAR2(30) Owner of the section group to which the
section belongs

START_TAG VARCHAR2(64) String of characters that identify the start of
the section

END_TAG VARCHAR2(64) String of characters that identify the end of
the section

TOP_LEVEL CHAR(1) Indicates whether the section is a top-level
section

ENCLOSE_SELF CHAR(1) Indicates whether the section is
self-enclosing

Column Name Type Description

SGRP_ID NUMBER Identifier for the section group

SGRP_NAME VARCHAR2(30) Name of the section group

SGRP_OWNER VARCHAR2(30) Owner of the section group

ConText Data Dictionary Views

B-12 Oracle8 ConText Cartridge Administrator’s Guide

CTX_ALL_THESAURI
This view displays information about all the thesauri that have been created in the
ConText data dictionary. It can be viewed by all ConText users.

CTX_CLASS
This view displays all the preference categories registered in the ConText data
dictionary. It can be viewed only by users with the CTXADMIN or CTXAPP role.

Column Name Type Description

THS_OWNER VARCHAR2(30) Username for thesaurus owner

THS_NAME VARCHAR2(30) Thesaurus name

Column Name Type Description

CLA_ID NUMBER(38) Category identifier

CLA_NAME VARCHAR2(30) Category name

CLA_DESC VARCHAR2(240) Category description

ConText Data Dictionary Views

ConText Views B-13

CTX_COLUMN_POLICIES
This view displays all policies that have been assigned to a column (non-template
policies). It can be viewed only by users with the CTXADMIN roll.

Column Name Type Description

POL_ID NUMBER(38) Policy identifier

POL_NAME VARCHAR2(30) Policy name

POL_DESC VARCHAR2(240) Policy description

POL_TABLENAME VARCHAR2(30) Name of table to which policy is attached

POL_OWNER VARCHAR2(30) Username of policy owner

POL_KEY_NAME VARCHAR2(256) Name of textkey column in table containing
text column

POL_LN_NAME VARCHAR2(60) Name of line number column in table
containing text column (only used when
master/ detail data store used)

POL_TEXT_EXPR VARCHAR2(2000) Name of text column

POL_STATUS VARCHAR2(12) Status of policy (VALID or INVALID)

ConText Data Dictionary Views

B-14 Oracle8 ConText Cartridge Administrator’s Guide

CTX_INDEX_LOG
This view displays all of the details for each indexing operation (index creation,
optimization, resumption, etc.) that has been requested. It can be viewed only by
users with the CTXADMIN role.

Column Name Type Description

TXIL_POL_ID NUMBER Policy identifier

TXIL_OPERATION VARCHAR2(1) Code which identifies the index operation
performed for the policy

TXIL_OPER_STAGE VARCHAR2(1) Code which identifies the current stage of the
indexing operation

TXIL_RUN_SEQ NUMBER Identifier for run in which the index operation
was processed

TXIL_SERVER_ID NUMBER Identifier for ConText server processing the
indexing request

TXIL_START_TIME DATE Time and date the index operation was started

TXIL_FIRST_DOC VARCHAR2(256) Textkey for first document processed

TXIL_DOC_

SELECTED_CNT

NUMBER Number of documents selected for processing

TXIL_LAST_DOC VARCHAR2(256) Textkey for last document processed

TXIL_DOC_
PROCESSED_CNT

NUMBER Number of documents processed

TXIL_MID_
FLUSH_FLAG

VARCHAR2(1) Flag indicating whether a halted index
operation is resumed or started over

TXIL_END_TIME DATE Time and date the index operation ended

TXIL_CURR_RUN VARCHAR2(1) Identifier for current run (internal use only)

ConText Data Dictionary Views

ConText Views B-15

CTX_OBJECTS
This view displays all of the ConText Tiles registered in the ConText data dictionary.
Only users assigned the CTXAPP and CTXADMIN roles can query CTX_OBJECTS.
It can be viewed only by users with the CTXADMIN or CTXAPP role.

Column Name Type Description

OBJ_NAME VARCHAR2(30) Tile name

CLA_NAME VARCHAR2(30) Preference category for Tile (Data Store,
Filter, Lexer, etc.)

OBJ_DESC VARCHAR2(240) Tile description

OBJ_VALIDATE_
PROC

VARCHAR2(240) Procedure to call to validate preference
settings for Tile

OBJ_IS_
DEFAULT

VARCHAR2(1) Default Tile for the preference category (Y or
N)

OBJ_ID NUMBER(38) Tile identifier

CLA_ID NUMBER(38) Preference category identifier for Tile

ConText Data Dictionary Views

B-16 Oracle8 ConText Cartridge Administrator’s Guide

CTX_OBJECT_ATTRIBUTES
This view displays the attributes that can be assigned to each Tile. It can be viewed
only by users with the CTXADMIN or CTXAPP role.

CTX_OBJECT_ATTRIBUTES_LOV
This view displays the values for the Tile attributes provided by ConText. It can be
viewed only by users with the CTXADMIN or CTXAPP role.

Column Name Type Description

CLA_NAME VARCHAR2(30) Preference category for Tile (Data Store,
Filter, Lexer, etc.)

CLA_ID NUMBER(38) Preference category identifier for Tile

OBJ_NAME VARCHAR2(30) Tile name

OBJ_ID NUMBER(38) Tile identifier

OAT_NAME VARCHAR2(64) Attribute name

OAT_ORDINAL NUMBER(4) Order number for attribute

OAT_DATATYPE VARCHAR2(64) Attribute datatype

OAT_OPTIONAL VARCHAR2(2) Attribute optional (Y or N)

OAT_CARDINALITY NUMBER Number of times attribute can be specified in
the same preference (4095 for STOP_WORD
attribute, 1 for all other attributes)

OAT_DEFAULT_VAL VARCHAR2(1000) Default value for attribute

OAT_DESCRIPTION VARCHAR2(1000) Description of attribute

Column Name Type Description

CLA_ID NUMBER(38) Preference category identifier

CLA_NAME VARCHAR2(30) Preference category for Tile

OBJ_ID NUMBER(38) Tile identifier

OBJ_NAME VARCHAR2(30) Tile name

OAT_NAME VARCHAR2(64) Attribute name

OAL_VALUE VARCHAR2(64) Attribute value

OAL_DESCRIPTION VARCHAR2(64) Attribute value description

ConText Data Dictionary Views

ConText Views B-17

CTX_POLICIES
This view displays all of the policies created by ConText users, as well as the
template policies included with ConText. The view may contain policies with the
same name, because a policy must be unique only for the owner. It can be viewed
only by users with the CTXADMIN role.

Column Name Type Description

POL_ID NUMBER(38) Policy identifier

POL_NAME VARCHAR2(30) Policy name

POL_DESC VARCHAR2(240) Policy description

POL_TABLENAME VARCHAR2(30) Name of table to which policy is attached

POL_OWNER VARCHAR2(30) Username of policy owner

POL_KEY_NAME VARCHAR2(256) Name of textkey column in table containing
text column

POL_LN_NAME VARCHAR2(60) Name of line number column in table
containing text column (only used when
master/ detail data store used)

POL_TEXT_EXPR VARCHAR2(2000) Name of text column

POL_STATUS VARCHAR2(12) Status of policy (VALID or INVALID)

ConText Data Dictionary Views

B-18 Oracle8 ConText Cartridge Administrator’s Guide

CTX_PREFERENCES
This view displays preferences created by ConText users, as well as all the
predefined preferences included with ConText. The view contains one row for each
preference. It can be viewed only by users with the CTXADMIN role.

CTX_PREFERENCE_ATTRIBUTES
This view displays the attributes assigned to all the preferences in the ConText data
dictionary. The view contains one row for each attribute. It can be viewed only by
users with the CTXADMIN role.

Column Name Type Description

PRE_ID NUMBER(38) Preference identifier

PRE_NAME VARCHAR2(30) Preference name

PRE_OWNER VARCHAR2(30) Username of preference owner

PRE_DESC VARCHAR2(240) Preference description

PRE_OBJ_NAME VARCHAR2(30) Tile specified in preference

PRE_CLA_NAME VARCHAR2(30) Category for Tile

PRE_OBJ_ID NUMBER(38) Identifier for Tile in preference

PRE_CLA_ID NUMBER(38) Identifier for category of preference

Column Name Type Description

PRE_OWNER VARCHAR2(30) Username of preference owner

PRE_NAME VARCHAR2(30) Preference name

ATT_NAME VARCHAR2(64) Name of Tile attribute specified in preference

ATT_VALUE VARCHAR2(1000) Value of Tile attribute

ATT_SEQ NUMBER(38) Sequence assigned to Tile attribute

ATT_PRE_ID NUMBER(38) Identifier for preference

ATT_DESC VARCHAR2(1000) Attribute description

ATT_TYPE VARCHAR2(64) Attribute type

ConText Data Dictionary Views

ConText Views B-19

CTX_PREFERENCE_USAGE
This view displays the relationship between preferences and policies. The view
contains one row for each preference attached to a policy. It can be viewed only by
users with the CTXADMIN role.

CTX_SOURCE
This view displays all the sources that have been created by ConText users. The
view may contain sources with the same name, because a source must be unique
only for the owner. It can be viewed by users only with the CTXADMIN role.

Column Name Type Description

POL_TYPE VARCHAR2(6) Policy type

POL_ID NUMBER(38) Policy identifier

POL_OWNER VARCHAR2(30) Username of policy owner

POL_NAME VARCHAR2(30) Policy name

PRE_ID NUMBER(38) Preference identifier

PRE_OWNER VARCHAR2(30) Username of preference owner

PRE_NAME VARCHAR2(30) Preference name

 Name Null? Type

 SRC_ID NUMBER(38) Source identifier

 SRC_NAME VARCHAR2(30) Source name

 SRC_DESC VARCHAR2(240) Source description

 SRC_OWNER VARCHAR2(30) Username of source owner

 SRC_CREATED_BY VARCHAR2(30) Username of user who created source

 SRC_REFRESH NUMBER Refresh rate, in minutes, before a ConText
server with the Reader personality checks for
new files to be loaded.

 SRC_NEXT DATE Date and time of the next load (calculated
using SYSDATE of last load plus refresh rate

 SRC_SID NUMBER Identifier for ConText server processing the
source, NULL if no ConText servers are
currently processing the source

ConText Data Dictionary Views

B-20 Oracle8 ConText Cartridge Administrator’s Guide

 SRC_CURRENT VARCHAR2(2000) Not currently used

 SRC_TABLE_NAME VARCHAR2(30) Name of the table for the source

SRC_COLUMN_
NAME

VARCHAR2(30) Name of the text column for the source

 Name Null? Type

ConText Data Dictionary Views

ConText Views B-21

CTX_SQES
This view displays the definitions for all system and session SQEs that have been
created by users. It can be viewed only by users with the CTXADMIN role.

CTX_SYSTEM_PREFERENCES
This view displays all the system-wide preferences (preferences owned by user
CTXSYS) registered in the ConText data dictionary. It can be viewed only by users
with the CTXADMIN or CTXAPP role.

Column Name Type Description

POL_NAME VARCHAR2(30) Policy name for SQE

POL_OWNER VARCHAR2(30) Username of policy owner for SQE

POL_ID NUMBER(38) Policy identifier for SQE

QUERY_NAME VARCHAR2(32) Name of SQE

SESSION_ID VARCHAR2(32) Session identifier for SQE (’SYSTEM’ for
System SQEs)

QUERY_TEXT VARCHAR2(2000) Query expression for SQE

TSTAMP DATE Date and time SQE was created or last
updated

Column Name Type Description

PRE_ID NUMBER(38) Preference identifier

PRE_NAME VARCHAR2(30) Preference name

PRE_DESC VARCHAR2(240) Preference description

PRE_OBJ_NAME VARCHAR2(30) Tile specified in preference

PRE_CLA_NAME VARCHAR2(30) Category for Tile

PRE_OBJ_ID NUMBER(38) Identifier for Tile in preference

PRE_CLA_ID NUMBER(38) Identifier for category of preference

PRE_OWNER VARCHAR2(30) Username for preference owner

ConText Data Dictionary Views

B-22 Oracle8 ConText Cartridge Administrator’s Guide

CTX_SYSTEM_PREFERENCE_USAGE
This view displays the relationship between system-wide preferences (preferences
owned by CTXSYS) and policies. The view contains one row for each preference
owned by CTXSYS attached to a policy. It can be viewed only by users with the
CTXADMIN or CTXAPP role.

CTX_SYSTEM_TEMPLATE_POLICIES
This view displays all the system-wide template policies (template policies owned
by user CTXSYS) registered in the ConText data dictionary. It can be viewed only by
users with the CTXADMIN or CTXAPP role.

CTX_TEMPLATE_POLICIES
This view displays all the template policies registered in the ConText data
dictionary. It can be viewed only by users with the CTXADMIN role.

Column Name Type Description

POL_ID NUMBER Policy identifier

POL_NAME VARCHAR2(30) Policy name

PRE_ID NUMBER Preference identifier

PRE_NAME VARCHAR2(30) Preference name

Column Name Type Description

POL_ID NUMBER(38) Policy identifier

POL_NAME VARCHAR2(30) Policy name

POL_DESC VARCHAR2(240) Policy description

POL_OWNER VARCHAR2(30) Username of policy owner

Column Name Type Description

POL_ID NUMBER(38) Policy identifier

POL_NAME VARCHAR2(30) Policy name

POL_OWNER VARCHAR2(30) Username of policy owner

POL_DESC VARCHAR2(240) Policy description

ConText Data Dictionary Views

ConText Views B-23

CTX_USER_COLUMN_POLICIES
This view displays all policies that have been assigned to a column (non-template
policies) and are owned by the current user. It can be viewed only by users with the
CTXADMIN or CTXAPP role.

Column Name Type Description

POL_ID NUMBER(38) Policy identifier

POL_NAME VARCHAR2(30) Policy name

POL_DESC VARCHAR2(240) Policy description

POL_TABLENAME VARCHAR2(30) Name of table to which policy is attached

POL_KEY_NAME VARCHAR2(256) Name of textkey column in table containing
text column

POL_LN_NAME VARCHAR2(60) Name of line number column in table
containing text column (only used when
master/ detail data store used)

POL_TEXT_EXPR VARCHAR2(2000) Name of text column

POL_STATUS VARCHAR2(12) Status of policy (VALID or INVALID)

ConText Data Dictionary Views

B-24 Oracle8 ConText Cartridge Administrator’s Guide

CTX_USER_INDEX_LOG
This view displays all of the details for each indexing operation (index creation,
optimization, resumption, etc.) that has been requested by the current user. It can be
viewed only by users with the CTXADMIN or CTXAPP role.

Column Name Type Description

TXIL_POL_ID NUMBER Policy identifier

TXIL_OPERATION VARCHAR2(1) Code which identifies the index operation
performed for the policy

TXIL_OPER_STAGE VARCHAR2(1) Code which identifies the current stage of
the indexing operation

TXIL_RUN_SEQ NUMBER Identifier for run in which the indexing
operation was processed

TXIL_SERVER_ID NUMBER Identifier for ConText server processing the
indexing request

TXIL_START_TIME DATE Time and date the index operation was
started

TXIL_FIRST_DOC VARCHAR2(256) Textkey for first document processed

TXIL_DOC_

SELECTED_CNT

NUMBER Number of documents selected for
processing

TXIL_LAST_DOC VARCHAR2(256) Textkey for last document processed

TXIL_DOC_
PROCESSED_CNT

NUMBER Number of documents processed

TXIL_MID_
FLUSH_FLAG

VARCHAR2(1) Flag indicating whether a halted index
operation is resumed or started over

TXIL_END_TIME DATE Time and date the index operation ended

TXIL_CURR_RUN VARCHAR2(1) Identifier for current run (internal use only)

ConText Data Dictionary Views

ConText Views B-25

CTX_USER_POLICIES
This view displays all policies that are registered in the ConText data dictionary for
the current user. It can be viewed only by users with the CTXADMIN or CTXAPP
role.

CTX_USER_PREFERENCES
This view displays all preferences defined by the current user. It can be viewed only
by users with the CTXADMIN or CTXAPP role.

Column Name Type Description

POL_ID NUMBER(38) Policy identifier

POL_NAME VARCHAR2(30) Policy name

POL_DESC VARCHAR2(240) Policy description

POL_TABLENAME VARCHAR2(30) Name of table to which policy is attached

POL_KEY_NAME VARCHAR2(256) Name of textkey column in table containing
text column

POL_LN_NAME VARCHAR2(60) Name of line number column in table
containing text column (only used when
master/ detail data store used)

POL_TEXT_EXPR VARCHAR2(2000) Name of text column

POL_STATUS VARCHAR2(12) Status of policy (VALID or INVALID)

Column Name Type Description

PRE_ID NUMBER(38) Preference identifier

PRE_NAME VARCHAR2(30) Preference name

PRE_DESC VARCHAR2(240) Preference description

PRE_OBJ_NAME VARCHAR2(30) Tile specified in preference

PRE_CLA_NAME VARCHAR2(30) Category for Tile

PRE_OBJ_ID NUMBER(38) Identifier for Tile in preference

PRE_CLA_ID NUMBER(38) Identifier for category of preference

PRE_OWNER VARCHAR2(30) Username for preference owner

ConText Data Dictionary Views

B-26 Oracle8 ConText Cartridge Administrator’s Guide

CTX_USER_PREFERENCE_ATTRIBUTES
This view displays all the attributes for preferences defined by the current user. It
can be viewed only by users with the CTXADMIN or CTXAPP role.

CTX_USER_PREFERENCE_USAGE
This view displays the preferences that are attached to the policies defined for the
current user. It can be viewed only by users with the CTXADMIN or CTXAPP role.

Column Name Type Description

PRE_OWNER VARCHAR2(30) Username of preference owner

PRE_NAME VARCHAR2(30) Preference name

ATT_NAME VARCHAR2(64) Name of Tile attribute specified in preference

ATT_VALUE VARCHAR2(1000) Value of Tile attribute

ATT_SEQ NUMBER(38) Sequence assigned to Tile attribute

ATT_PRE_ID NUMBER(38) Identifier for preference

ATT_DESC VARCHAR2(1000) Attribute description

ATT_TYPE VARCHAR2(64) Attribute type

Column Name Type Description

POL_ID NUMBER Policy identifier

POL_NAME VARCHAR2(30) Policy name

PRE_ID NUMBER Preference identifier

PRE_NAME VARCHAR2(30) Preference name

PRE_OWNER VARCHAR2(30) Username of preference owner

ConText Data Dictionary Views

ConText Views B-27

CTX_USER_SECTIONS
This view displays information about the sections that have been created in the
ConText data dictionary for the current user. It can be viewed only by users with the
CTXADMIN or CTXAPP role.

CTX_USER_SECTION_GROUPS
This view displays information about the section groups that have been created in
the ConText data dictionary for the current user. It can be viewed only by users with
the CTXADMIN or CTXAPP role.

Column Name Type Description

SEC_ID NUMBER Identifier for section

SEC_NAME VARCHAR2(30) Name of section

SGRP_ID NUMBER Identifier for section group to which the
section belongs

SGRP_NAME VARCHAR2(30) Name of the section group to which the
section belongs

START_TAG VARCHAR2(64) String of characters that identify the start of
the section

END_TAG VARCHAR2(64) String of characters that identify the end of
the section

TOP_LEVEL CHAR(1) Indicates whether the section is a top-level
section

ENCLOSE_SELF CHAR(1) Indicates whether the section is
self-enclosing

Column Name Type Description

SGRP_ID NUMBER Identifier for the section group

SGRP_NAME VARCHAR2(30) Name of the section group

ConText Data Dictionary Views

B-28 Oracle8 ConText Cartridge Administrator’s Guide

CTX_USER_SOURCES
This view displays all sources that are registered in the ConText data dictionary for
the current user. It can be viewed only by users with the CTXADMIN or CTXAPP
role.

 Name Null? Type

 SRC_ID NUMBER(38) Source identifier

 SRC_NAME VARCHAR2(30) Source name

 SRC_DESC VARCHAR2(240) Source description

 SRC_OWNER VARCHAR2(30) Username of source owner

 SRC_CREATED_BY VARCHAR2(30) Username of user who created source

 SRC_REFRESH NUMBER Refresh rate, in minutes, before a ConText
server with the Reader personality checks for
new files to be loaded.

 SRC_NEXT DATE Date and time of the next load (calculated
using SYSDATE of last load plus refresh rate

 SRC_SID NUMBER Identifier for ConText server processing the
source, NULL if no ConText servers are
currently processing the source

 SRC_CURRENT VARCHAR2(2000) Not currently used

 SRC_TABLE_NAME VARCHAR2(30) Name of the table for the source

SRC_COLUMN_
NAME

VARCHAR2(30) Name of the text column for the source

ConText Data Dictionary Views

ConText Views B-29

CTX_USER_SQES
This view displays the definitions for all system and session SQEs that have been
created by the current user. It can be viewed only by users with the CTXADMIN or
CTXAPP role.

CTX_USER_TEMPLATE_POLICIES
This view displays all the template policies defined by the current user. It can be
viewed only by users with the CTXADMIN or CTXAPP role.

Column Name Type Description

POL_NAME VARCHAR2(30) Policy name for SQE

POL_OWNER VARCHAR2(30) Username of policy owner for SQE

POL_ID NUMBER Policy identifier for SQE

QUERY_NAME VARCHAR2(32) Name of SQE

SESSION_ID VARCHAR2(32) Session identifier for SQE (’SYSTEM’ for
System SQEs)

QUERY_TEXT VARCHAR2(2000) Query expression for SQE

TSTAMP DATE Date and time SQE was created or last
updated

Column Name Type Description

POL_ID NUMBER(38) Policy identifier

POL_NAME VARCHAR2(30) Policy name

POL_DESC VARCHAR2(240) Policy description

POL_OWNER VARCHAR2(30) Username of policy owner

ConText Data Dictionary Views

B-30 Oracle8 ConText Cartridge Administrator’s Guide

CTX_USER_THESAURI
This view displays the information about all of the thesauri that have been created
in the system by the current user. It can be viewed by all ConText users.

Column Name Type Description

THS_OWNER VARCHAR2(30) Username for thesaurus owner

THS_NAME VARCHAR2(30) Thesaurus name

ConText Index Tables and Indexes C-1

C
ConText Index Tables and Indexes

This appendix contains detailed information about the database tables and Oracle
indexes that are created by ConText when a text or theme index is created for a
column.

The following topics are covered in this appendix:

■ ConText Index Tables

■ Oracle Indexes for ConText Index Tables

■ SQR Table

ConText Index Tables

C-2 Oracle8 ConText Cartridge Administrator’s Guide

ConText Index Tables
ConText index tables are created automatically by ConText during text and theme
indexing. The five digit number nnnnn is the identifier for the policy that owns the
index. Each of the ConText index tables for a policy has the same five digit
identifier.

DR_nnnnn_I1Tn
This is the main table of a ConText index. It stores each indexed token from the text
column, as well as a reference to the documents in which the word occurs and the
location of each occurrence.

The n appended to the end of the table name is an internal identifier (value of 1 or
2) which ConText uses to prevent table name collisions when two-table compaction
or two-table combined real deletion and compaction are used to optimize the
ConText index for a table.

Note: The ConText index tables are internal tables and should not
be accessed directly. To perform administrative tasks on a ConText
index, use the CTX_DDL and CTX_DML packages or the
administration tools.

Note: The appended n is transparent to users because a synonym
called DR_nnnnn_I1T, which points to DR_nnnnn_I1Tn, is
automatically created/updated after two-table index optimization.

For more information about two-table index optimization, see
"Index Optimization" in Chapter 6, "Text Concepts".

Name Type Description

WORD_TEXT VARCHAR2(64) Indexed word

FIRST_DOC NUMBER(38) DOCID of first document in WORD_INFO

DOCLSIZE NUMBER(38) Size, in bytes, of WORD_INFO string

WORD_TYPE NUMBER(3) Index entry type (token or section)

WORD_INFO LONG RAW String identifying DOCIDs for all documents
in which the indexed word occurs and
location of each occurrence.

ConText Index Tables

ConText Index Tables and Indexes C-3

DR_nnnnn_KTB
This internal table maps the textkey for each indexed document to a document
identifier (DOCID). ConText indexes use DOCIDs internally to identify the
documents in which indexed words occur. ConText indexes also use DOCIDs to
track documents for which DML has occurred (i.e. deletion or modification).

DR_nnnnn_LST
This internal table generates the unique document IDs (DOCID) used in a ConText
index. It also stores the next available DOCID for use in the index.

DR_nnnnn_NLT
This internal table is used to optimize DOCID resolution during queries. It stores
the DOCIDs of documents that have been modified or deleted from the text table.

Name Type Description

TEXTKEY VARCHAR2(256) ID for document in text table

DOCID NUMBER(38) ID for document in index

Name Type Description

SID NUMBER(38) Audit session ID of the ConText server which
is currently creating an index

IDCOUNT NUMBER(38) Maximum value for DOCIDs

LTYPE VARCHAR2(32) Status of DOCID in index:

F = Free, D = Deleted

CONTIGUOUS NUMBER(2) Indicates the range of DOCIDs is contiguous
for the current indexing (ensures that no
overlapping DOCIDs are used in index)

DATA VARCHAR2(1024) If LTYPE = F, DOCID for next insert;

If LTYPE = D, DOCID for deleted document

Name Type Description

FIRST_DOC NUMBER(38) Internal use only

IDLIST LONG RAW Internal use only

ConText Index Tables

C-4 Oracle8 ConText Cartridge Administrator’s Guide

DR_nnnnn_I1W
This internal table stores each word identified by the Soundex function and the
groups to which the word belongs. This table is only created when you index a table
with a policy that includes Soundex (soundex_at_index attribute enabled for the
GENERIC WORD LIST Tile).

Name Type Description

WORD VARCHAR2(15) Word identified by Soundex

GROUP1 VARCHAR2(15) ID for 1st Soundex group to which word
belongs

GROUP2 VARCHAR2(15) Reserved for future use

GROUP3 VARCHAR2(15) Reserved for future use

Oracle Indexes for ConText Index Tables

ConText Index Tables and Indexes C-5

Oracle Indexes for ConText Index Tables
The Oracle indexes for a ConText index are created automatically by ConText after
the index tables have been populated with the ConText index information.

ConText creates a total of five Oracle indexes for the three ConText index tables
created during indexing. The Oracle indexes follow the naming conventions used to
name the index tables, where the five digit number nnnnn is the internal identifier
for the policy that owns the ConText index.

ConText Index Table Oracle Index

DR_nnnnn_I1Tn DR_nnnnn_I1In

DR_nnnnn_KTB DR_nnnnn_KID

DR_nnnnn_KIK

DR_nnnnn_KSQ

DR_nnnnn_LST DR_nnnnn_LIX

SQR Table

C-6 Oracle8 ConText Cartridge Administrator’s Guide

SQR Table
The SQR table is created automatically by ConText during text and theme indexing
of a text column; however, the table is not populated until a stored query expression
(SQE) is created (stored) for the policy of the text column.

The five digit number nnnnn is the identifier for the policy that owns the SQE.

DR_nnnnn_SQR
This internal table stores the results of an SQE. The definition of the SQE is stored in
an internal table owned by CTXSYS.

Oracle Index for DR_nnnnn_SQR
During creation of the SQR table, an Oracle index, DR_nnnnn_SRI, is created on the
table.

Note: The SQR table is an internal table and should not be
accessed directly. To perform administration tasks on an SQE, use
the CTX_QUERY package or the System Administration tool.

For more information about creating SQEs and using the CTX_
QUERY package, see Oracle8 ConText Cartridge Application
Developer’s Guide.

Name Type Description

QUERY_NAME VARCHAR2(32) Name of SQE

SESSION_ID VARCHAR2(32) SQE type (session or system)

FIRST_DOC VARCHAR2(38) DOCID for the first document retrieved by
SQE

QUERY_RESULT LONG RAW Binary string containing results of SQE

External Filter Specifications D-1

D
External Filter Specifications

This appendix contains a list of the external filter formats supported for use in
mixed-format columns. It also provides details for installation, setup, and usage of
the external filters provided by ConText.

The following topics are covered in this appendix:

■ Supported Formats for Mixed-Format Columns

■ Supplied External Filters

See Also: For more information about external filters, see
"External Filters" in Chapter 8, "ConText Indexing".

Supported Formats for Mixed-Format Columns

D-2 Oracle8 ConText Cartridge Administrator’s Guide

Supported Formats for Mixed-Format Columns
The following table lists all of the document formats that ConText supports for
columns that use external filters and store documents in more than one format.

For each format, the format ID is also listed. This is the value that must be specified
when creating a Filter preference using the BLASTER FILTER Tile with the
executable attribute.

Note: This list does not represent the complete list of formats that
ConText is able to process. The external filter framework enables
ConText to process any document format, provided the documents
are stored in a single format and an external filter exists which can
filter the format to plain text.

It also does not represent the list of formats for which Oracle
provides external filters.

For the complete list of external filters supplied by Oracle, see
"Supplied External Filters" in this chapter.

See Also: For an example of using format IDs in Filter
preferences, see "Creating Filter Preferences" in Chapter 9, "Setting
Up and Managing Text".

Document Format ID

AmiPro 1.x - 3.1 19

AmiPro Graphics SDW Samna Draw 62

ASCII 90

AT&T Crystal Writer 46

AutoCAD (DXF, DXB) 53

CEOwrite 3.0 78

Computer Graphics Metafile (CGM) 79

CorelDraw 2.x and 3.x 59

CTOS DEF 75

DBase IV 1.0; DBase III, III + 37

DCA/FFT - Final Form Text 27

Supported Formats for Mixed-Format Columns

External Filter Specifications D-3

DCA/RFT - Revisable Form Text 0

Digital DX 15

Digital WPS-PLUS 47

EBCDIC 89

Enable 1.1, 2.0, 2.15 11

Encapsulated PostScript Preview; Encapsulated
PostScript Bitmap

66

First Choice 3.0 Data Base 13

FrameMaker (MIF) 3.0; FrameMaker (MIF) 3.0 Win 42

Framework III, 1.0, 1.1 22

FullWrite Professional 1.0x 31

GIF (Graphical Interchange Format) 51

Harvard Graphics 87

HP Graphics Language (HPGL) 83

HTML Level 1, 2, 3 91

IBM Writing Assistant 1.0 16

IGES 52

Interleaf 5.2; Interleaf 5.2 - 6.0 32

JPEG (Joint Photographic Experts Group) 58

Legacy 1.x, 2.0 41

Lotus 123 4.x; Lotus 123 3.0; Lotus 123 1A, 2.0, 2.1 20

Lotus Freelance 85

Lotus Manuscript 2.0, 2.1 26

Lotus PIC 67

Macintosh Paint 88

Microsoft Windows Paint 2.x 70

Macintosh QuickDraw (PICT) 64

MacWrite 4.5 - 5.0 29

MacWrite II 1.0 - 1.1 30

Mass 11, Version 8.0 -8.33 36

Document Format ID

Supported Formats for Mixed-Format Columns

D-4 Oracle8 ConText Cartridge Administrator’s Guide

MastSoft Graphics (MSG) 49

Micrografx Designer (DRW) 60

MS Access 2.0 39

MS Excel 5.0 - 6.0; MS Excel 4.0; MS Excel 3.0; MS
Excel 2.1

21

MS Powerpoint for Windows 2, 3, 4 84

MS RTF; MS RTF (ANSI Char Set) 17

MS Word for DOS 6.0; MS Word for DOS 5.0, 5.5; MS
Word for DOS 4.0; MS Word for DOS 3.0, 3.1

8

MS Word for Mac 5.0, 5.1; MS Word for Mac 4.0; MS
Word for Mac 3.0

28

MS Word for Windows 2.0; MS Word for Windows 1.x 18

MS Word for Windows 6.0; MS Word for Mac 6.0 68

MS Works for Windows 3.0 69

MS Write for Windows 3.x 7

MultiMate 4; MultiMate Advantage II; MultiMate
Advantage; MultiMate 3.3

6

Navy DIF (GSA) 35

OfficePower 7; OfficePower 6 44

OfficeWriter 6.0 - 6.2; OfficeWriter 5.0; OfficeWriter 4.0 9

OS/2 Bitmap; Windows Bitmap (BMP); Windows
RLE

63

Paradox 3.5, 4.0 38

PC Paintbrush (PCX) 71

PDF (Adobe Acrobat) 57

PeachText 5000 2.1.2 82

PFS:First Choice 3.0; PFS:First Choice 2.0; PFS:First
Choice 1.0; PFS:WRITE Ver C; Professional Write 2.0 -
2.2; Professional Write 1.0

12

Quattro Pro DOS; Quattro Pro Windows 45

Q&A 4.0; Q&A Write 1.x, Q&A 3.0 10

Rapid File 1.0 23

RGIP 61

Document Format ID

Supported Formats for Mixed-Format Columns

External Filter Specifications D-5

Samna Word IV & IV + 1.0, 2.0 25

Sun Raster Graphics 65

TIFF (Tagged Image File Format) 50

Uniplex V7 - V8 77

Vokswriter 3, 4 74

Wang PC, Version 3 24

Wang WITA 55

Windows Clipboard 72

Windows ICON 73

Windows Metafile (WMF) 48

WiziDraw 86

WiziWord 56

Word For Word Intermediate Communications format
(COM)

34

WordPerfect for Windows 6.1; WordPerfect for
Windows 6.0; WordPerfect 6.0

1

WordPerfect 5.1 (Mail Merge) 2

WordPerfect for Windows 5.x; WordPerfect 5.1;
WordPerfect 5.0

3

WordPerfect Graphics 1 (WPG) 4

WordPerfect Graphics 2 (WPG) 5

WordPerfect 4.2; WordPerfect 4.1 80

WordPerfect Mac 1.0 81

WordPerfect Mac 3.0; WordPerfect Mac 2.1;
WordPerfect Mac 2.0

33

WordStar 5.0, 5.5, 6.0, 7.0 40

WordStar 2000, Rel 3.0 14

WriteNow 3.0 54

Xerox - XIF 5.0, 6.0 43

XYWrite IV; XyWrite III Plus 76

Document Format ID

Supplied External Filters

D-6 Oracle8 ConText Cartridge Administrator’s Guide

Supplied External Filters
ConText supplies a set of ready-to-use external filters, licensed from MasterSoft
(Inso Corporation), which can be used for filtering documents in many of the most
popular desktop publishing and word processor formats.

Availability of Filters
Because the external filters are supplied as executables, the availability of the filters
is platform-dependent; however, the filters are generally supplied for the following
platforms/operating systems:

■ DEC Alpha

■ Data General

■ Hewlett-Packard HP 9000/9008

■ IBM AIX

■ Intel SVR4

■ MS-DOS (Windows NT)

■ SCO

■ SGI SGI52/SGI52M

■ SUN Solaris/Solaris X86/SunOS

See Also: To verify the availability of the filters on your
platform/operating system, see the Oracle8 documentation specific
to your operating system.

Supplied External Filters

External Filter Specifications D-7

List of Filters
The following filters are supplied by ConText. The executables for the filters do not
provide ConText with the required arguments, so ConText also provides scripts
which act as wrappers for the executables:

Document Format Version
Format
ID

Wrapper
Name Executable Name

AmiPro for Windows 1, 2, 3 19 amipro The executable names are
operating system specific.

It is generally not necessary to
know the names of the filter
executables because ConText
supplies wrappers for each
executable and the wrapper name
is the value specified in the Filter
preference(s) that use the filter.

However, if you find it necessary
to modify the wrappers, you may
need to know the names of the
filter executables.

For more information about the
names of the executables, see the
Oracle8 installation
documentation specific to your
operating system.

Lotus Freelance for Windows 2 85 lotusfre

Lotus 123 2, 3, 4 20 lotus123

Lotus 123 5 N/A lotus123

MS Excel 5 21 msexcel

MS Excel 7 N/A msexcel

MS PowerPoint for Windows 2, 3, 4 84 power234

MS PowerPoint for Windows 7 N/A power7

MS Word for DOS 5.0, 5.5 8 worddos

MS Word for Macintosh 3, 4, 5 28 wordmac

MS Word for Windows 2 18 wordwn2

MS Word for Windows 6 68 wordwn67

MS Word for Windows 7 N/A wordwn67

PDF (Adobe Acrobat) N/A 57 acropdf

WordPerfect for DOS;

WordPerfect for Windows

5.0, 5.1;

5.x

3 wp5

WordPerfect for DOS;

WordPerfect for Windows

6.0;

6.x

1 wp67

WordPerfect for Windows 7.0 N/A wp67

Xerox XIF 5, 6 43 xeroxxif

Note: The PDF filter has a status of production for the following
platforms: DEC, HP, IBM AIX, MS-DOS (Windows NT), SGI, and
SUN (Solaris, Solaris X86, and SunOS)

For all other platforms for which ConText supplies external filters,
the PDF filter has a status of BETA.

Supplied External Filters

D-8 Oracle8 ConText Cartridge Administrator’s Guide

Supplied External Filters Installation
The supplied external filter executables and their wrappers are installed
automatically during installation of ConText. The location and format of the
executable and wrapper files are operating system dependent.

Supplied External Filter Setup
The supplied external filters do not require any setup, aside from creating
preferences that call the wrappers for the filters; however, if you have upgraded
from ConText release 2.0 and already have wrappers for the external filters
provided in the previous release, as well as preferences that call the wrappers,
choose one of the following actions:

■ modify the names of the new wrappers to match the names of your existing
wrappers

■ modify your existing wrappers to call the new external filter executables

■ modify the names of the new external filters to match the names of the previous
external filters

Otherwise, you must drop your indexes, policies, and preferences, then create new
preferences, policies, and indexes that use the new wrappers/filters.

Note: If you have upgraded from a release prior to release 2.4 of
ConText, you may have existing external filters supplied by
ConText. These external filters are no longer up-to-date and should
be replaced by the external filters provided in this release.

You may also need to change your wrappers accordingly or use the
wrappers provided by ConText in this release.

See Also: For more information about the location of the supplied
external filters, see the Oracle8 installation documentation specific
to your operating system.

Supplied External Filters

External Filter Specifications D-9

Supplied External Filter Usage
The supplied external filters have the following usage issues:

1. The wrapper name (e.g. ’amipro’), not the executable name, must be specified in
the Filter preferences that you create for the supplied external filters.

You generally do not need to know the name of the filter executables; however,
if you find it necessary to modify the wrappers, it may be useful to know the
names of the filter executables.

2. If a format does not have a format ID (e.g. MS Word for Windows, version 7),
the external filter cannot be used in text columns that store multiple formats. It
can only be used in text columns that store a single format.

3. Wrapper names are operating system dependent and may be different than the
names listed. In particular, the wrapper names may have suffixes (e.g. ’.sh’ or
’.bat’) that your operating system uses to identify scripts.

If your operating system requires specifying the complete name of a script in
order to run the script, you must include any suffixes in the Filter preferences
that you create using the supplied external filters.

Note: If you are using the BETA PDF filter provided in previous
releases and wish to use the new production PDF filter, you should
drop any ConText indexes that you created with the BETA PDF
filter, as well as the policies and preferences that called the filter.
Then, create new preferences/policies that use the new filter and
create new ConText indexes using the policies.

See Also: For examples of using the supplied external filters, see
"Creating Filter Preferences" in Chapter 9, "Setting Up and
Managing Text".

Supplied External Filters

D-10 Oracle8 ConText Cartridge Administrator’s Guide

Index-1

Index
Symbols
, query operator, 6-31

Numerics
7-bit character sets

using V-Gram lexers with, 8-57
8-bit character sets, 8-59

using V-Gram lexers with, 8-57

A
ACCUMULATE query operator

in thesaural expansions, 6-31
actual deletion

of ConText index entries, 6-25, 6-27
ADD_SECTION procedure, 11-4
administration

ConText, 1-7
ConText servers, 4-5
Services Queue, 2-20
using command-line, 1-10, 3-1, 9-1
using GUI tools, 1-11, 3-1, 9-1

administration tools, 1-11
See also Configuration Manager, System

Administration tool
Adobe Acrobat format. See PDF format
allocating

indexing memory, 8-73
AmiPro format

internal filter, 8-16, 8-43
supplied external filter, D-7

applications

sample, 2-5
ASCII text. See plain text
attributes

base_letter, 8-68
binary, 8-35, 8-36
code_conversion, 8-52
command, 7-10, 8-54
composite, 8-68
continuation, 8-65
detail_key, 8-36
detail_lineno, 8-36
detail_table, 8-36
detail_text, 8-36
directories, 7-9
endjoins, 6-45, 8-67
executable, 8-51
format, 8-52
ftp_proxy, 8-39
fuzzy_match, 8-81
hanzi_indexing, 8-69
http_proxy, 8-39
index_memory, 8-74
instclause, 8-81
kanji_indexing, 8-70
keep_tag, 8-53
longsize, 7-12
maxdocsize, 8-39
maxthread, 8-38
maxurls, 8-39
mixed_case, 8-68
newline, 8-68
no_proxy, 8-40
numgroup, 8-65
numjoin, 8-65

Index-2

optimize_default, 8-74
other_parms, 8-75
path, 8-37
printjoins, 8-65
punctuations, 8-66
section_group, 8-82
sent_para, 8-68
separate, 7-12
skipjoins, 8-66
soundex_at_index, 8-81
startjoins, 6-45, 8-67
stclause, 8-81
stemmer, 8-81
stop_word, 8-85
storage, 8-75
tablespace, 8-74
timeout, 8-38
urlsize, 8-39
viewing values for, B-18
whitespace, 8-68

AUTOB predefined indexing preference, 8-16
automated

batch text loading, 7-2, 7-5
DML Queue notification, 6-3

Autorecognize filter, 8-16, 8-44
formats supported by, 8-44
in Filter preferences, 9-20

B
base_letter attribute, 8-68
base-letter conversion, 8-58

in text queries, 8-59
in UTF-8 databases, 8-60
setting NLS_LANG for, 8-59

BASIC LEXER Tile
attributes for, 8-63
in text indexing policies, 8-58
NLS compliance for, 8-60

BASIC_HTML_FILTER predefined indexing
preference, 8-17

BASIC_HTML_LEXER predefined indexing
preference, 8-18

BASIC_HTML_SECTION predefined section
group, 6-48

BASIC_HTML_WORDLIST predefined indexing
preference, 8-21

batch mode
DML operations, 6-4
processing in DML Queue, 2-18
text loading using ConText servers, 7-2
text loading using ctxload, 6-12

BFILE datatype, 6-8
binary attribute

for MASTER DETAIL NEW Tile, 8-36
for MASTER DETAIL Tile, 8-35

BLASTER FILTER Tile, 9-20
attributes for, 8-51

BLOB datatype, 6-8
broader terms

generic hierarchy, 6-38
in thesauri, 6-37
instance hierarchy, 6-38
multiple occurrences in a hierarchy, 6-38
partitive hierarchy, 6-38

C
calling

procedures within stored procedures, 3-4
procedures within triggers, 3-4

CANCEL procedure, 5-12
using, 3-12

CANCEL_ALL procedure, 5-13
CANCEL_USER procedure, 5-14
case-sensitivity

for piecewise optimization, 6-28
in composite word indexes, 8-61
in stoplists, 8-83
in theme indexes, 6-18
in thesauri, 6-35

categories
See also indexing Tiles, text loading Tiles
Engine (text loading), 7-12
Filter, 8-50
Reader, 7-9
Translator, 7-10

CHANGE_MASK procedure, 5-3
using, 3-9

changing

Index-3

personality masks for ConText servers, 3-9
Query pipe buffer size, 5-7

CHAR datatype, 6-8
character sets

7-bit, 8-57
8-bit, 8-57, 8-59
supported for German or Dutch composite word

indexing, 8-61
characters

base-letter conversion for, 8-34
continuation, 8-65
in multi-byte languages, 8-57
in single-byte languages, 8-57
numgroup, 8-65
numjoin, 8-65
printjoin, 8-65
punctuation, 8-66
skipjoin, 8-66
specifying for newline, 8-68
specifying for whitespace, 8-68
startjoin and endjoin, 6-45, 8-67

Chinese language
lexers for, 8-57
pattern matching, 8-69

CHINESE V-GRAM LEXER Tile
attributes for, 8-69

classes. See categories
CLEAR_ALL_ERRORS procedure, 5-15
CLEAR_ATTRIBUTES procedure, 11-8
CLEAR_ERROR procedure, 5-16, B-6

using, 3-12
CLEAR_INDEX_ERRORS procedure, 5-17
CLEAR_LING_ERRORS procedure, 5-18
CLOB datatype, 6-8
code_conversion attribute, 8-52
column policies

See also policies
creating, 11-12
viewing, B-23

columns
See also text columns
loading text into, 6-2
requirements for automated batch loading, 7-5
textkey, 9-29
with multiple indexes, 6-19

with multiple policies, 8-6
command attribute, 7-10, 8-54
command-line

See also utilities
administration, 1-10, 3-1, 9-1

compaction
in-place, 6-26
two-table, 6-26

composite attribute, 8-68
composite textkeys, 6-9

column length limitations, 6-10
column name limitations, 6-9
creating policies with, 9-13
updating documents containing, 10-6

composite word indexing
enabling for German or Dutch text, 8-68
for Dutch text, 8-61
for German text, 8-61

compound words
in German or Dutch text, 8-61

Configuration Manager, 1-11, 3-1, 9-1
CONTAINS

cursor (in-memory queries), 6-6
PL/SQL procedure (two-step queries), 6-6
SQL function (one-step queries), 6-6, 6-19

ConText
description, 1-2
features, 1-3
overview of administration, 1-7
related publications, xx

ConText data dictionary
creating a preference for a Tile, 11-15
description, 2-8
querying objects, B-10
storing sources, 7-5
viewing preference categories, B-12
viewing Tiles, B-15

ConText index tables
multiple rows for tokens, 6-22
Oracle indexes for, C-5
specifying additional parameters for, 8-75
specifying STORAGE clauses for, 8-75
specifying tablespaces for, 8-74

ConText indexes
See also text indexes, theme indexes

Index-4

compaction, 6-26
creating, 9-25, 11-9
DDL operations, 6-2, 9-32
dropping, 9-14, 9-30, 11-21
Engine preferences for, 8-72
fragmentation, 6-4, 6-22, 6-26, 9-17
initialization stage for, 6-20
managing, 9-25
optimizing, 6-26, 9-30
piecewise optimization for, 6-27
population stage for, 6-20
recording index operations, 6-23
tables for, 6-19, C-2
termination stage for, 6-21
themes in, 6-17
tuning, 6-22
updating, 6-24, 9-29
updating using DDL ConText servers, 6-4

ConText indexing
in parallel, 6-21, 9-17, 9-27
memory allocation for, 6-20, 6-22, 8-74, 9-17
Oracle indexes created during, C-5
Tiles for, 8-13

ConText Linguistics. See Linguistics
ConText queues. See queues
ConText roles, 2-3

granting to users, 3-4
ConText server processes. See ConText servers
ConText servers, 1-4, 2-9

See also ctxsrv executable
accessing external text files, 8-29
accessing the Text Request Queue, 2-15
assigning personalities, 4-3
checking status of, 4-5
failed, 2-13
loading text using, 7-2
managing, 3-6
masking CTXSYS password for, 3-7
monitoring status of, B-2
personality masks for, 2-11
running as background processes, 3-7
running multiple servers, 3-6
server log, 2-10
shutting down, 3-10, 4-2, 4-5, 5-8
specifying directories for text loading, 7-9

starting, 3-7, 4-2, 4-5
starting using ctxctl, 3-8
using for parallel indexing, 6-21
viewing the status of, 3-8

ConText users
See also users
creating, 3-3
managing, 3-3
predefined, 2-5

ConText Workbench
administration tools, 1-11
loading/updating/exporting text using, 9-2

continuation attribute, 8-65
control tables, C-3

in ConText indexes, 6-19, 6-25
conventions

notational, xxiii
conversion

base-letter, 8-58
CREATE_INDEX procedure, 11-9

using, 9-25
CREATE_PHRASE function, 11-50

using, 9-36
CREATE_POLICY procedure, 11-12

using, 9-10, 9-12
CREATE_PREFERENCE procedure, 11-15

using, 9-23
CREATE_SECTION_GROUP procedure, 11-16
CREATE_SOURCE procedure, 11-17
CREATE_TEMPLATE_POLICY procedure, 11-19

using, 9-10
CREATE_THESAURUS function, 11-53

using, 9-34, 9-35
creating

case-sensitive thesauri, 9-35
column policies, 9-10
ConText indexes, 9-25
ConText users, 3-3
Engine preferences (indexing), 9-17
Engine preferences (text loading), 9-5
Filter preferences for external filters, 9-21
Filter preferences for internal filters, 9-20
indexes in parallel, 9-27
Oracle indexes in parallel, 9-27
phrases in thesauri, 11-50

Index-5

policies for columns in object tables, 9-11
policies for detail tables, 8-27
policies for master tables, 8-26
policies using composite textkeys, 9-13
preferences, 9-15
Reader preferences, 9-4
section groups, 9-38
sections, 9-38
sources, 9-5
stoplists, 8-85, 9-23
supplied stoplists, A-2
template policies, 9-10
text indexing policies, 9-10
theme indexing policies, 9-12
Theme Lexer preferences, 9-22
thesauri, 6-30
thesaurus entries, 9-36
thesaurus output files, 9-37
Translator preferences, 9-4, 9-5

CTX_ADM package
CHANGE_MASK, 5-3
GET_QUEUE_STATUS, 5-4
RECOVER, 5-6
SET_QUERY_BUFFER_SIZE, 5-7
SHUTDOWN, 5-8
UPDATE_QUEUE_STATUS, 5-9

CTX_ALL_DML_QUEUE view, 3-11, B-4
CTX_ALL_DML_SUM view, 3-11, B-4
CTX_ALL_PREFERENCES view, B-10
CTX_ALL_QUEUE view, 3-11, B-5
CTX_ALL_SECTION_GROUPS view, B-11
CTX_ALL_SECTIONS view, B-11
CTX_ALL_SERVERS view, B-2

using, 3-9
CTX_ALL_THESAURI view, B-12, B-30
CTX_CLASS view, B-12
CTX_COLUMN_POLICIES view, B-13
CTX_DDL package, 11-2

ADD_SECTION, 11-4
CLEAR_ATTRIBUTES, 11-8
CREATE_INDEX, 11-9
CREATE_POLICY, 11-12
CREATE_PREFERENCE, 11-15
CREATE_SECTION_GROUP, 11-16
CREATE_SOURCE, 11-17

CREATE_TEMPLATE_POLICY, 11-19
DROP_INDEX, 11-21
DROP_INTTRIG, 11-22
DROP_POLICY, 11-23
DROP_PREFERENCE, 11-24
DROP_SECTION_GROUP, 11-25
DROP_SOURCE, 11-26
OPTIMIZE_INDEX, 11-27
REMOVE_SECTION, 11-30
RESUME_FAILED_INDEX, 11-31
SET_ATTRIBUTE, 11-34
UPDATE_POLICY, 11-38
UPDATE_SOURCE, 11-40
UPGRADE_INDEX, 11-37

CTX_DML package, 11-42
REINDEX, 11-43
SYNC, 11-46
SYNC_QUERY, 11-48

CTX_INDEX_ERRORS view, B-6
viewing errors for automated batch loading, 7-3
viewing URL indexing errors, 8-32

CTX_INDEX_LOG view, 6-23, B-14
CTX_INDEX_STATUS view, B-7
CTX_INFO package, 5-21

GET_INFO, 5-22
GET_STATUS, 5-23
GET_VERSION, 5-24

CTX_LING package
for requesting Linguistics, 3-12

CTX_LING_ERRORS view, 2-21, B-7
CTX_OBJECT_ATTRIBUTES view, B-16
CTX_OBJECT_ATTRIBUTES_LOV view, B-16
CTX_OBJECTS view, B-15
CTX_POLICIES view, B-17
CTX_PREFERENCE_ATTRIBUTES view, B-18
CTX_PREFERENCE_USAGE view, B-19
CTX_PREFERENCES view, B-18
CTX_SERVERS view, B-3
CTX_SOURCE view, B-19
CTX_SQES view, B-21
CTX_SVC package, 3-12, 11-2

CANCEL, 5-12
CANCEL_ALL, 5-13
CANCEL_USER, 5-14
CLEAR_ALL_ERRORS, 5-15

Index-6

CLEAR_ERROR, 5-16
CLEAR_INDEX_ERRORS, 5-17
CLEAR_LING_ERRORS, 5-18
REQUEST_STATUS, 5-19

CTX_SYSTEM_PREFERENCE_USAGE view, B-22
CTX_SYSTEM_PREFERENCES view, B-21
CTX_SYSTEM_TEMPLATE_POLICIES view, B-22
CTX_TEMPLATE_POLICIES view, B-22
CTX_THES package, 11-49

CREATE_PHRASE, 11-50
CREATE_THESAURUS, 11-53
DROP_THESAURUS, 11-54
for thesauri maintenance, 6-30

CTX_USER_COLUMN_POLICIES view, B-23
CTX_USER_DML_QUEUE view, 3-11, B-8
CTX_USER_DML_SUM view, 3-11, B-8
CTX_USER_INDEX_LOG view, 6-23, B-24
CTX_USER_POLICIES view, B-25
CTX_USER_PREFERENCE_ATTRIBUTES

view, B-26
CTX_USER_PREFERENCE_USAGE view, B-26
CTX_USER_PREFERENCES view, B-25
CTX_USER_QUEUE view, 3-11, B-9
CTX_USER_SECTION_GROUPS view, B-27
CTX_USER_SECTIONS view, B-27
CTX_USER_SOURCES view, B-28
CTX_USER_SQES view, B-29
CTX_USER_SVCQ view, B-9
CTX_USER_TEMPLATE_POLICIES view, B-29
CTXADMIN role, 2-4

granting to users, 3-4
CTXAPP role, 2-4

granting to users, 3-4
ctxctl utility, 4-5

examples, 4-6
shutting down ConText servers, 3-10
starting ConText servers, 3-8
starting the utility, 4-5
syntax, 4-5
viewing ConText server status, 3-8

CTXDEMO user
privileges, 2-5

ctxload utility, 6-12, 10-2
command-line restrictions, 10-8
mandatory arguments, 10-4

optional arguments, 10-6
syntax, 10-4
text load example, 10-9
thesaurus export example, 10-10
thesaurus import example, 10-10
using to create thesauri, 9-34, 9-35
using to export thesauri, 9-37
using to load file pointers, 9-3
using with external data store columns, 9-3

ctxsrv executable, 4-2
See also ConText servers
masking CTXSYS password in, 3-7, 4-2
syntax, 4-2
using, 3-7

CTXSYS user, 3-3
ConText data dictionary, 2-8
masking password in ctxsrv, 3-7, 4-2
privileges, 2-5
starting ConText servers, 4-2
temporary tablespaces, 9-26
viewing preferences owned by, B-21

CTXUSER role, 2-4
granting to users, 3-4

customer support
contacting, xxiv

D
Danish language

supplied stoplist, A-5
data dictionary. See ConText data dictionary
Data Store Tiles, 8-34

preference example, 8-40
database administrator. See DBA
database indexes. See Oracle indexes
database pipes. See pipes
database schema objects

deleting, 5-6
limitations on importing/exporting, 3-3

database triggers. See triggers
database views. See views, xix
datatypes

for text columns, 6-8
date format

specifying for ctxload, 10-7

Index-7

DBA
personality, 2-13
responsibilities, 2-2

DDL
description, 6-2
personality, 2-12, 2-17, 4-3, 6-24

DDL operations, 6-2
for theme indexes, 6-24

DDL pipe
disabling/enabling, 3-13
requests for DDL operations, 6-2

default
personality mask, 4-3
preferences, 8-9
stoplist, 8-22
thesaurus, 6-33

DEFAULT_DIRECT_DATASTORE predefined
indexing preference, 8-14

DEFAULT_INDEX predefined indexing
preference, 8-20

DEFAULT_LEXER predefined indexing
preference, 8-18

DEFAULT_LOADER predefined text loading
preference, 7-8

DEFAULT_NULL_FILTER predefined indexing
preference, 8-17

DEFAULT_OSFILE predefined indexing
preference, 8-14

DEFAULT_POLICY template policy, 8-9
DEFAULT_READER predefined text loading

preference, 7-8
DEFAULT_STOPLIST predefined indexing

preference, 8-22
list of stop words for, A-4

DEFAULT_TRANSLATOR predefined text loading
preference, 7-8

DEFAULT_URL predefined indexing
preference, 8-15

deferred deletion
of ConText index entries, 6-25

defining
thesaurus relationships between terms, 6-30

deleting
See also dropping
database schema objects, 5-6

document references in ConText indexes, 6-25,
6-27

rows in CTX_INDEX_ERRORS, B-6
sections, 9-40
triggers, 11-22

derivational stemming
enabling for English, 8-81

detail_key attribute, 8-36
detail_lineno attribute, 8-36
detail_table attribute, 8-36
detail_text attribute, 8-36
diacritical marks

conversion during text indexing, 8-59
direct data store, 6-12, 8-24

loading text using ctxload, 9-3
DIRECT Tile, 8-34
directories

ConText servers scanning for text loading, 6-2
specifying for text loading, 7-9
specifying in external data store, 8-28

directories attribute, 7-9
DIRECTORY READER Tile

attributes for, 7-9
disabling

pipes, 3-13
queues, 3-13, 5-10

DML
description, 6-3
personality, 2-12, 2-17, 4-3, 6-4, 6-24
processing, 6-4

DML operations, 2-18, 11-42
automated processing of, 6-3
batch mode, 2-17, 6-24, 11-46
batch mode processing of, 6-4
for theme indexes, 6-24
immediate mode, 2-17, 6-4
manual processing of, 6-4

DML operations immediate mode, 6-24
DML Queue, 2-17

batch processing of pending rows, 2-18, 11-46
disabling/enabling, 2-19, 2-21, 3-13
error handling, 2-19
requests for DML operations, 6-3
tables, 2-18
timestamps, 2-19

Index-8

updating status, 5-9
viewing, 2-17, 3-11
viewing status of, 5-4
views, B-4, B-5, B-7, B-8, B-9

documents
See also rows, text
accessing through HTTP/FTP, 8-31
changes affecting ConText indexes, 6-24
exporting, 9-8, 10-2
exporting example, 10-9
native format storage, 8-50
sections in, 6-41
stored inside database, 8-28
stored outside database, 8-28
uniquely identifying using textkeys, 6-8
updating, 9-8, 10-2
updating example, 10-9
with indexed words, C-3

DR_nnnnn_I1Tn table, 6-25, C-2
using for piecewise optimization, 6-29

DR_nnnnn_I1W table, C-4
DR_nnnnn_KTB table, C-3
DR_nnnnn_LST table, 6-25, C-3
DR_nnnnn_NLT table, C-3
DR_nnnnn_SQR table, C-6

Oracle index for, C-6
DROP_INDEX procedure, 11-21

using, 9-30
DROP_INTTRIG procedure, 11-22
DROP_POLICY procedure, 11-23

using, 9-14
DROP_PREFERENCE procedure, 11-24

using, 9-24
DROP_SECTION_GROUP procedure, 11-25
DROP_SOURCE procedure, 11-26
DROP_THESAURUS procedure, 11-54

using, 9-37
dropping

ConText indexes, 9-30
policies, 9-14
preferences, 9-24
section groups, 9-40
thesauri, 9-37

Dutch language
composite word indexing, 8-61

queries for composite words in, 8-62
supplied stoplist, A-6

E
embedded text, 10-2

in ctxload load files, 10-8, 10-13
enabling

base-letter conversion, 8-59
case-sensitive text indexes, 8-68
fuzzy matching, 8-78
German or Dutch composite word

indexing, 8-68
pipes, 3-13
queues, 3-13
sentence/paragraph searching, 8-68
Soundex, 8-79, 8-81
stemming, 8-77

end markers
in ctxload load files, 10-11

end tags
for sections, 6-43

endjoins attribute, 6-45, 8-67
ENGINE NOP Tile, 8-73
Engine preferences (indexing)

creating, 9-17
setting attributes for PARALLEL, 9-27

Engine preferences (text loading)
creating, 9-5

Engine Tiles (indexing), 8-73
preference example, 8-76

Engine Tiles (text loading)
list of, 7-12

English language
lexers for, 8-57
predefined stoplist, A-4

environment variables
NLS_LANG, 8-59
TWO_TASK, 4-2, 10-4

error handling
clearing disabled queues, 5-9
DDL operations, 2-16
DML Queue, 2-19
for automated batch loading, 7-3
for URL data store, 8-31, 8-33

Index-9

Services Queue, 2-21
errored requests

removing from Services Queue, 3-12
examples

Data Store preference, 8-40
Data Store preference for master table, 9-18
document exporting, 9-8, 10-9
document importing, 9-8
document updating, 10-9
Engine preference (indexing), 8-76
Filter preferences, 8-54, 9-20
import file, 10-19
Lexer preferences, 8-71
piecewise optimization, 9-31
section, 9-38, 11-5
section group, 9-38
Stoplist preference, 8-85, 9-23
text loading, 10-9
Theme Lexer preference, 9-22
thesaurus exporting, 10-10
thesaurus importing, 10-10
trigger for automated DML notification, 11-11
Wordlist preference, 8-82
Wordlist preference with section group, 9-39

executable attribute, 8-51
executables

ctxsrv, 4-2
EXECUTE privileges

granting to users, 3-4
packages requiring, 3-5

expanding
queries, 6-31

expansion
query, 8-77

exporting
documents to OS files, 9-8, 10-2
schema objects, 3-3
thesauri, 6-30, 9-37, 10-3

external data store
loading text using ctxload, 9-3

external filters, D-2
executables, 8-45
indexing text in unsupported formats, 8-44
performance, 8-45
specifying for mixed-format columns, 8-51

specifying for single-format columns, 8-54
supplied by ConText, D-6
using to perform document cleanup, 8-44

external text, 8-28
directory paths in, 8-28
file accessibility for indexing, 8-29
file permissions for indexing, 8-29
storing as file names, 8-28
storing as URLs, 8-29
Tile for, 8-37, 8-38

F
features

ConText, 1-3
file names

in ctxload load file, 10-13
file pointers, 10-2

in load files, 6-12, 10-7
storing, 10-2

file protocol
in URL data store, 8-30

File Transfer Protocol. See FTP
FILTER NOP Tile, 8-52
Filter Tiles

list of, 8-50
preference example, 8-54

filtering
formatted text, 8-43
HTML text, 8-42
mixed-format columns, 8-48
plain text, 8-42
single-format columns, 8-47

filters
external, 8-44, 8-51, 8-54, D-2
internal, 8-42, 8-52

Finnish language
supplied stoplist, A-7

firewalls. See gateway proxies
format attribute, 8-52
format ID

for document formats, D-2
using in Filter preferences, 9-21

formatted text
filtering, 8-43

Index-10

supported formats for external filters, 8-49
supported formats for internal filters, 8-43

formatting
text load files, 10-11
thesaurus import files, 10-14

fragmentation
in ConText indexes, 6-22
through immediate DML processing, 6-4

French language
supplied stoplist, A-8

FRENCH_STOPLIST predefined indexing
preference, 8-22

FTP
in URLs, 8-30

ftp_proxy attribute, 8-39
functions

CREATE_PHRASE, 11-50
CREATE_THESAURUS, 11-53
GET_QUEUE_STATUS, 5-4
GET_STATUS, 5-23
GET_VERSION, 5-24
REQUEST_STATUS, 5-19
SYNC_QUERY, 11-48

fuzzy matching
enabling, 8-78
specifying a method, 8-81

fuzzy_match attribute, 8-81

G
garbage collection. See actual deletion
gateway proxies

accessing the World Wide Web, 8-31
for URL data store, 8-31, 8-32

generating
Gists, 6-7
textkeys, 9-7
themes, 6-7

GENERIC ENGINE Tile
attributes for, 8-73

generic hierarchies
in thesauri, 6-38

GENERIC LOADER Tile
attributes for, 7-12

GENERIC STOP LIST Tile, 9-23

attributes for, 8-85
GENERIC WORD LIST Tile

attributes for, 8-80
German language

composite word indexing, 8-61
queries for composite words in, 8-62
supplied stoplist, A-9

GET_INFO procedure, 5-22
GET_QUEUE_STATUS function, 5-4, 5-9
GET_STATUS function, 5-23
GET_VERSION function, 5-24
Gists, 2-13, 6-7
GRANT command, 3-4
granting

ConText roles to users, 3-4
EXECUTE privileges to users, 3-4

groups
section, 6-47

H
hanzi_indexing attribute, 8-69
header markers

in ctxload load file, 10-11
hierarchical relationships

in thesauri, 6-37
in thesaurus import file, 10-17

hitlists, 8-2
homographs

qualifiers for, 6-39
HTML

filtering tags in, 8-53
internal filter, 8-16
text, 8-52
text filtering for sections, 6-46
text stored as URLs, 8-29

HTML FILTER Tile
attributes for, 8-52

HTML_FILTER predefined indexing
preference, 8-17

HTTP
in URLs, 8-30

http_proxy attribute, 8-39
HyperText Markup Language. See HTML
HyperText Transfer Protocol. See HTTP

Index-11

I
immediate DML processing, 6-4
import files, 10-3, 10-5

alternate hierarchy structures in, 10-17
examples of, 10-19, 10-20
formatting, 10-14
restrictions for thesaural relationships, 10-18
restrictions for thesaurus terms, 10-17

importing
schema objects, 3-3
thesauri, 6-30, 10-3

index entries in, 6-28
index_memory attribute, 8-74
indexes. See ConText indexes, Oracle indexes
indexing

See also ConText indexing
existing columns, 9-29
HTML text, 8-43
overview, 8-2
overview of, 1-9
text in unsupported formats, 8-44

indexing Tiles
Engine, 8-73
Filter, 8-50
Wordlist, 8-80

inflectional stemming
enabling, 8-81

initialization parameters
TEXT_ENABLE, 3-2
USER_DUMP_DEST, 4-3

initialization stage
for index creation, 6-20

initsid.ora file, 4-3
in-memory queries, 6-6

using composite textkeys, 6-9
in-place

compaction, 6-26
deletion, 6-27

input files
for external filters, 8-45

installing
supplied external filters, D-8

instance hierarchies
in thesauri, 6-38

instclause attribute, 8-81
internal filters, 8-42, 8-52

supported formats, 8-50
internal tables

ConText index tables, 6-19, C-2
SQE results, C-6

internal text
storage, 8-24
Tile for, 8-35

intranets
indexing using URL data store, 8-31

I/O utility
in ConText Workbench, 9-2

issues for external filters, 8-45
Italian language

supplied stoplist, A-10

J
Japanese language

HTML text conversion, 8-52
lexers for, 8-57
pattern matching, 8-70

JAPANESE V-GRAM LEXER Tile
attributes for, 8-70

K
kanji_indexing attribute, 8-70
keep_tag attribute, 8-53
Knowledge Catalog, 6-17, 6-18
Korean language

lexers for, 8-58
KOREAN LEXER Tile, 8-70
KOREAN predefined indexing preference, 8-18
KOREAN_WORDLIST predefined indexing

preference, 8-21

L
languages

multi-byte, 8-57
single-byte, 8-57
supported for fuzzy matching, 8-78
supported for Soundex, 8-79

Index-12

supported for stemming, 8-77
supported for text indexing, 8-57
supported for theme indexing, 8-58

Lexer Tiles
list of, 8-63
preference examples, 8-71

lexers
text indexing, 6-15
theme indexing, 6-17

limitations
composite textkeys, 6-9, 6-10
for importing/exporting schema objects, 3-3
German or Dutch composite word

indexing, 8-61
policies on master tables, 8-26
redirection for URL data store, 8-32
sections, 6-46
thesaurus query expansion, 6-31
UTF-8 character set, 8-60

linguistic output, 2-13, 6-7
generated by Linguistics, 6-7
used in theme indexes, 6-17

linguistic settings, 6-18
Linguistics

enabling, 3-7
personality for, 2-13, 3-6, 4-3
processing HTML text through, 8-43
requests for, 2-20, 6-7
viewing errored requests, B-7, B-9

load files, 6-12, 10-2
and the separate option, 10-8
example of embedded text in, 10-13
example of file pointers in, 10-13
formatting, 10-11
restrictions for structure of entries, 10-12
restrictions for syntax, 10-12
with embedded text, 10-8

Loader
personality, 2-11, 4-3, 6-2, 6-13, 7-9

loading
See also importing
file pointers using ctxload, 7-12
text, 6-2, 6-11, 6-13
text from client-side files, 6-13
text into direct data store columns, 9-3

text into LONG and LONG RAW columns, 10-2
text using ConText servers, 7-2, 9-3
text using ctxload, 9-2, 10-2
thesauri, 10-3

LOBs
support for, 6-8

log files
for ctxload, 9-2, 10-8
for ctxsrv, 4-3

logs
for ConText indexes, 6-23
for ConText servers, 2-10
using index logs, 9-32

LONG columns
in sources, 7-5
loading text into, 10-2

LONG datatype, 6-8
LONG RAW columns

in sources, 7-5
loading text into, 10-2

LONG RAW datatype, 6-8
longsize attribute, 7-12
longsize option (ctxload), 10-7
Lotus 123 format

internal filter, 8-16
internal filters, 8-43
supplied external filter, D-7

Lotus Freelance format
supplied external filter, D-7

M
maintaining

thesauri, 6-30
managing

ConText indexes, 9-25
ConText servers, 3-6, 4-5
ConText users, 3-3
policies, 9-9
preferences, 9-15
queues, 3-11
section groups, 9-38
sections, 9-38
text, 1-8, 1-9
thesauri, 9-33

Index-13

manual
DML Queue notification, 6-4

mapping tables, C-3
in ConText indexes, 6-19

markers
in ctxload load file, 10-11

MASTER DETAIL NEW Tile, 8-26
attributes for, 8-36

MASTER DETAIL Tile, 8-27
attributes for, 8-35

master-detail
tables, 8-25
text storage, 8-25

maxdocsize attribute, 8-39
maximum file size

specifying for URL Tile, 8-39
maximum length

specifying for URL Tile, 8-39
maximum number of rows

specifying for URL Tile, 8-39
maxthread attribute, 8-38
maxurls attribute, 8-39
MD_BINARY predefined indexing

preference, 8-15
MD_TEXT predefined indexing preference, 8-15
memory

allocating for ConText indexing, 6-20, 6-22
allocating for parallel ConText indexing, 6-21
in GENERIC ENGINE Tile, 8-73

Microsoft Excel format
supplied external filter, D-7

Microsoft PowerPoint format
supplied external filters, D-7

Microsoft Word format
internal filters, 8-16, 8-43
supplied external filters, D-7

mixed_case attribute, 8-68
mixed-format columns, 8-48

filtering using external filters, 9-21
filtering using internal filters, 9-20
supported formats for, D-2

modifying
policies, 9-14

multi-byte languages
lexers for, 8-57

multi-lingual environments
using UTF-8 in, 8-60

multi-threading
specifying for URL Tile, 8-38
with URL data store, 8-32

N
narrower terms

generic hierarchy, 6-38
in thesauri, 6-37
instance hierarchy, 6-38
multiple occurrences in a hierarchy, 6-38
partitive hierarchy, 6-38

National Language Support (NLS), 8-59
compliance with, 8-60
enabling support for, 8-60

newline attribute, 8-68
newline characters

in ctxload load file, 10-12
NLS_LANG environment variable

base-letter conversion, 8-59
no_proxy attribute, 8-40
NO_SOUNDEX predefined indexing

preference, 8-21
NO_STOPLIST predefined indexing

preference, 8-22
nouns

decompounding in German or Dutch text, 8-61
NULL TRANSLATOR Tile, 7-10
numgroup attribute, 8-65
numjoin attribute, 8-65

O
object tables

See also tables
creating policies for, 9-11
indexes for, 6-14
requirements for, 6-9
specifying textkeys for, 9-12

objects. See Tiles
offsets

for tokens in text indexes, 6-15
one-step queries, 6-6

Index-14

on columns with multiple indexes, 6-19
operations

See also text operations
optimize_default attribute, 8-74
OPTIMIZE_INDEX procedure, 11-27

using, 9-30
optimizing

ConText indexes, 6-26, 9-30
guidelines for, 6-29
individual words and phrases, 9-31
individual words in indexes, 6-27

Oracle Corporation
customer support, xxiv

Oracle indexes
creating in parallel, 9-27
for ConText index tables, C-5
for SQE results tables, C-6
specifying additional parameters, 8-75
specifying PARALLEL clauses for, 9-27
specifying STORAGE clauses for, 8-75, 8-81
specifying tablespaces for, 8-75

Oracle servers, 1-4
See also ConText servers

Oracle8 ConText Cartridge. See ConText
OSFILE Tile

attributes for, 8-37
other_parms attributes, 8-75
output files

for external filters, 8-45

P
packages. See PL/SQL packages
paragraph searching

enabling, 8-68
PARALLEL clause

for Oracle indexes, 8-76
setting for Oracle indexes, 9-27

parallel ConText indexing, 6-21, 9-27
memory allocation for, 9-17

parallel creation of Oracle indexes, 9-27
parallel processing

using SYNC, 6-5
parallel query option, 8-76, 9-27
parameters

for ConText index tables, 8-75
for Oracle indexes, 8-75

partitive hierarchies
in thesauri, 6-38

passwords
masking in ctxsrv, 3-7, 4-2
supplying through files, 3-7

path attribute, 8-37
pattern matching

Chinese language, 8-69
Japanese language, 8-70

PDF format
supplied external filter, D-7

pending requests
processing using SYNC, 6-5
removing from Services Queue, 3-12

performance, 8-45
permissions

granting permissions for external text files, 8-29
personalities

DBA, 2-13
DDL, 2-12
DML, 2-12
Linguistic, 2-13
Loader, 2-11
Query, 2-12

personality masks, 2-11
changing, 3-9
default, 4-3

phrases
creating in thesauri, 9-36
creating relationships for, 9-36
in theme indexes, 6-17, 8-58

pictorial languages
lexers for, 8-57
token recognition for, 6-15

piecewise optimization, 6-28
case-sensitivity in, 6-28
example of, 9-31
identifying words for, 6-29

pipes
administration, 2-16
DDL, 2-16
increasing the size of, 5-7
query, 2-16

Index-15

Text Request Queue, 2-16
plain text

filtering, 8-42
PL/SQL

reserved words, 3-4, 9-9
PL/SQL packages

CTX_DDL, 11-2
CTX_DML, 11-42
CTX_INFO, 5-21
CTX_SVC, 11-2
CTX_THES, 11-49
granting EXECUTE privileges for, 3-5

policies
creating, 9-10, 9-12, 11-12
creating on detail tables, 8-27
creating on master tables, 8-26
description, 8-5
dropping, 9-14, 11-23
for text indexing, 8-58
modifying, 9-14
multiple on a single column, 8-6
naming restrictions, 9-9
on columns, 8-6
section groups in, 9-39
specifying preferences, 9-11
template, 8-6, B-17
unique names for, 8-13
updating, 11-38
viewing, B-13, B-17

population stage
for index creation, 6-20

Portuguese language
supplied stoplist, A-11

predefined ConText users, 2-5
predefined preferences, 7-6, 8-13

See also preferences
predefined section groups, 6-48
predefined template policies, 8-9
preferences

creating, 9-15
dropping, 9-24, 11-24
enabling base-letter conversion, 8-59
Engine (text loading), 7-12
Filter, 8-50
for indexing, 8-12

in sources, 7-6
predefined, 7-8, 8-13
Reader, 7-9
Stoplist, A-4
text loading, 7-6
Tiles in, 8-13
Translator, 7-12
viewing, B-18, B-25
viewing attributes for, B-18
viewing policies for, B-19

preferred terms
in synonym rings, 6-36

primary keys, 6-8, 9-29
in object tables, 6-9

printjoins attribute, 8-65
procedures

ADD_SECTION, 11-4
CANCEL, 5-12
CANCEL_ALL, 5-13
CANCEL_USER, 5-14
CHANGE_MASK, 5-3
CLEAR_ALL_ERRORS, 5-15
CLEAR_ATTRIBUTES, 11-8
CLEAR_ERROR, 5-16
CLEAR_INDEX_ERRORS, 5-17
CLEAR_LING_ERRORS, 5-18
CREATE_INDEX, 11-9
CREATE_POLICY, 11-12
CREATE_PREFERENCE, 11-15
CREATE_SECTION_GROUP, 11-16
CREATE_SOURCE, 11-17
CREATE_TEMPLATE_POLICY, 11-19
DROP_INDEX, 11-21
DROP_INTTRIG, 11-22
DROP_POLICY, 11-23
DROP_PREFERENCE, 11-24
DROP_SECTION_GROUP, 11-25
DROP_SOURCE, 11-26
DROP_THESAURUS, 11-54
GET_INFO, 5-22
OPTIMIZE_INDEX, 11-27
RECOVER, 5-6
REINDEX, 11-43
REMOVE_SECTION, 11-30
RESUME_FAILED_INDEX, 11-31

Index-16

SET_ATTRIBUTE, 11-34
SET_QUERY_BUFFER_SIZE, 5-7
SHUTDOWN, 5-8
SYNC, 11-46
UPDATE_POLICY, 11-38
UPDATE_QUEUE_STATUS, 5-9
UPDATE_SOURCE, 11-40
UPGRADE_INDEX, 11-37

processes
See also ConText servers

processing
DML requests in parallel, 6-5
HTML text through Linguistics, 8-43
text before indexing, 8-44

protocols
URL support for, 8-30

proxies
gateway, 8-31, 8-32
specifying for URL Tile, 8-39

punctuation marks
indexing, 6-15
lexing, 8-57

punctuations attribute, 8-66

Q
qualifiers

in thesauri, 6-39
queries

in Text Request Queue, 2-16
in-memory, 6-6
iterative, 6-7
one-step, 6-6
results from, 8-2
SQEs, 6-7
two-step, 6-6

Query
personality, 2-12, 4-3

query expansion
using fuzzy matching, 8-78
using Soundex, 8-79
using stemming, 8-77
using thesauri, 6-31

query methods, 6-5
query operators

ACCUMULATE, 6-31
WITHIN, 6-48

query options
advanced, 8-77

Query pipe
disabling/enabling, 3-13
increasing buffer size, 5-7

queues
disabling/enabling, 3-13, 5-10
managing, 3-11
updating, 5-9
viewing entries in, B-4
viewing status of, 5-4

quotation marks
in ctxload load file, 10-13

R
Reader Tiles

list of, 7-9
real-time

ConText index updates in, 6-4
RECOVER procedure, 2-14, 5-6
recovery

system, 2-14
redirection

with URL data store, 8-32
REINDEX procedure, 11-43, B-6

manually reindexing documents, 6-4
using, 9-29

related terms
in thesauri, 6-39

relationships
defining in thesauri, 9-36

relevance ranking
in theme queries, 6-18

REMOVE_SECTION procedure, 11-30
removing

errored requests from Services Queue, 3-12
pending requests from Services Queue, 3-12
sections from section groups, 9-40

REQUEST_STATUS function, 5-19
using, 3-11

requirements
for indexes on object tables, 6-9

Index-17

reserved words, 3-4, 9-9
responsibilities

DBA, 2-2
system administrator, 2-2

results
from queries, 8-2

RESUME_FAILED_INDEX procedure, 11-31
using, 9-32

resuming
failed index creation/optimization, 9-32

roles. See ConText roles
rows

deleting from text columns, 6-3
deleting in CTX_INDEX_ERRORS, B-6
inserting into text columns, 6-3
multiple entries in index tables, 6-22
updating in text columns, 6-3

S
sample applications, 2-5
scanning

directories, 6-2
scope notes

in thesauri, 6-40
scoring

in queries, 6-6
in theme queries, 6-18

section groups
creating, 9-38
dropping, 9-40
for text queries, 6-47
in policies, 9-39
managing, 9-38
predefined, 6-48
specifying for text columns, 8-82
viewing, 9-39

section searching
process for enabling, 6-49
template policy for, 8-10
using document sections, 6-41
WITHIN operator for, 6-48

section_group attribute, 8-82
sections, 6-43

adding to section groups, 9-38

creating, 9-38
deleting, 9-40
filtering HTML text for, 6-46
limitations for, 6-46
managing, 9-38
optimizing in indexes, 6-28
removing from a section group, 9-40
section groups for, 6-47
self-enclosing, 6-45
start and end tags for, 6-43
template policy for, 8-10
top-level, 6-45
viewing, 9-39

security
masking CTXSYS passwords, 3-7

self-enclosing sections, 6-45
sent_para attribute, 8-68
sentence searching

enabling, 8-68
separate attribute, 7-12
separate option

for ConText servers with Loader
personality, 7-12

for ctxload, 10-7
sequences

for external filters, 9-21
for generating textkeys, 9-7
for stop words, 9-23

servers. See ConText servers
Services Queue, 2-20

enabling/disabling, 3-13
error handling, 2-21
querying requests, 11-2
removing requests, 5-12, 5-13, 5-14
requesting status, 5-19
tables, 2-20
updating status, 5-9
viewing requests in, 3-11
viewing status of, 3-11, 5-4

sessions
errors in ctxsrv log, 4-3
information in ctxsrv log, 4-3

SET_ATTRIBUTE procedure, 11-34
SET_QUERY_BUFFER_SIZE procedure, 5-7
setting

Index-18

environment variables for ctxsrv, 4-2, 10-4
Query pipe buffer size, 5-7

setting up
text, 1-8, 1-9

settings
linguistic, 6-18

SHUTDOWN procedure, 5-8
using, 3-10

shutting down
ConText servers, 3-10
ConText servers using ctxctl, 4-6

single-byte languages
lexers for, 8-57

single-format columns, 8-47
filtering using external filters, 9-21
filtering using internal filters, 9-20

skipjoins attribute, 8-66
SOUNDEX

predefined indexing preference, 8-21
SQL function, 8-79

Soundex
enabling, 8-79, 8-81
wordlist table, 6-19, C-4

soundex_at_index attribute, 8-81
source policies. See template policies
sources, 2-11, 7-2

creating, 9-5, 11-17
definition, 7-5
dropping, 11-26
preferences in, 7-6
viewing, B-19, B-28

Spanish language
supplied stoplist, A-12

specifying
additional parameters for Oracle indexes, 9-27
directories to scan for text loading, 7-9
fuzzy matching method, 8-81
language for stemming, 8-81
personality mask for ctxsrv, 4-3
stop words, 8-85
STORAGE clauses for tables/indexes, 8-81
tablespaces for Oracle indexes, 8-75
translator for text loading, 7-10

SQE result tables, 6-7, C-6
in ConText indexes, 6-19

SQEs
storing results, 6-7
viewing, B-29
viewing results, 6-7

SQL
ALTER SESSION command, 3-2
CREATE USER command, 3-3
GRANT command, 3-4
reserved words, 3-4, 9-9

SQL*Loader, 6-12, 9-3
start tags

for sections, 6-43
starting

ConText servers, 3-7
ConText servers on remote machines, 4-2
ConText servers using ctxctl, 4-5
ConText servers with Loader personality, 9-6

startjoins attribute, 6-45, 8-67
status

monitoring ConText servers, B-2
queues, 5-4, 5-9
Services Queue, 5-19

stclause attribute, 8-81
stemmer attribute, 8-81
stemming

derivational, 8-81
enabling, 8-77
inflectional, 8-81
specifying a language for, 8-81
supported languages, 8-77

stop words
case-sensitivity for, 8-83
in text indexes, 6-16, 8-83
in text queries, 8-83
specifying, 8-85

stop_word attribute, 8-85
Stoplist Tiles, 8-85

preference example, 8-85
stoplists

See also supplied stoplists
case-sensitivity in, 8-83
creating, 8-85, 9-23
default, A-4
in text indexes, 6-16
maximum size, 9-23

Index-19

storage attributes, 8-75
STORAGE clauses

for ConText index tables, 8-75, 9-17
for Oracle indexes, 8-75, 8-81
for wordlist tables, 8-81

stored procedures. See procedures
stored query expressions. See SQEs
storing

file names in text columns, 8-28
internal text, 8-24
text as multiple rows, 8-25
text in operating system files, 8-28
text using MASTER DETAIL, 8-35, 8-36
text using OSFILE, 8-37
text using URL, 8-38
URLs in text columns, 8-29

SUBMIT procedure
in CTX_LING package, 3-12

supplied external filters, D-6
installing, D-8
setting up, D-8
using, 9-21
wrappers for, D-9

supplied stoplists
creating, A-2
Danish, A-5
Dutch, A-6
Finnish, A-7
French, A-8
German, A-9
Italian, A-10
Portuguese, A-11
Spanish, A-12
Swedish, A-13

supported formats
for mixed-format columns, D-2
internal filters, 8-43
viewing in Windows 32-bit viewer, 8-44

supported languages
for fuzzy matching, 8-78
for Soundex, 8-79
for stemming, 8-77
for text indexing, 8-57
for theme indexing, 8-58

Swedish language

supplied stoplist, A-13
SYNC procedure, 11-46

initiating DML processing, 6-4
SYNC_QUERY function, 11-48
synonym rings

in thesauri, 6-35
preferred terms in, 6-36
synonyms in, 6-35

System Administration tool, 1-11, 3-1, 9-1
maintaining thesauri in, 6-30, 9-36

system administrator
responsibilities, 2-2

system recovery
automatic, 2-14
manual, 2-14, 5-6

T
table names

collisions, C-2
in policies, 9-11

tables
ConText index, C-2
DML Queue, 2-18
master-detail, 8-25
object, 6-14, 9-11
Services Queue, 2-20
text columns, 6-8

tablespace attributes, 8-74
tablespaces

for ConText index tables, 8-74
specifying for Oracle indexes, 8-75
temporary, 9-26

tags
retaining in HTML text, 8-53
start and end, 6-43

template policies, 8-6
See also policies
creating, 9-10, 11-19
DEFAULT_POLICY, 8-9
TEMPLATE_AUTOB, 8-10
TEMPLATE_BASIC_WEB, 8-10
TEMPLATE_DIRECT, 8-10
TEMPLATE_LONGTEXT_STOPLIST_OFF, 8-10
TEMPLATE_LONGTEXT_STOPLIST_ON, 8-11

Index-20

TEMPLATE_MD, 8-11
TEMPLATE_MD_BIN, 8-11
TEMPLATE_WW6B, 8-11
viewing, B-22

TEMPLATE_AUTOB template policy, 8-10
TEMPLATE_BASIC_WEB template policy, 8-10
TEMPLATE_DIRECT template policy, 8-10
TEMPLATE_LONGTEXT_STOPLIST_OFF template

policy, 8-10
TEMPLATE_LONGTEXT_STOPLIST_ON template

policy, 8-11
TEMPLATE_MD template policy, 8-11
TEMPLATE_MD_BIN template policy, 8-11
TEMPLATE_WW6B template policy, 8-11
temporary tablespaces

CTXSYS user, 9-26
termination stage

for index creation, 6-21
text

examples of loading, 10-9
external storage, 8-28, 8-37, 8-38
external storage in operating system files, 8-28
external storage with URL pointers, 8-29
filtering, 8-42
indexing, 6-14
internal storage, 8-24, 8-35
loading, 2-11, 6-11, 7-9, 7-10, 10-2
loading using ConText servers, 6-2, 6-13
overview of loading, 1-8
preprocessing using external filters, 8-44
storing as multiple rows, 8-25

text columns
datatypes for external storage, 8-28
description, 6-8
length limitations for composite textkeys, 6-10
LOB datatypes in, 6-8
naming limitations for composite textkeys, 6-9
specifying section groups for, 8-82
storing data, 8-24
textkeys for, 6-8
updating, 6-5

text indexes
See also ConText indexes
case-sensitivity in, 6-16
creating, 11-9

definition, 6-14
dropping, 11-21
enabling case-sensitivity

case-sensitivity
in text indexes, 8-68

for columns with theme indexes, 6-19
piecewise optimizing of, 9-31
stop words in, 6-16
tables for, C-2
tokens in, 6-15

text indexing policies, 8-58
text load files. See load files
text loading

in 32-bit environments, 6-13
text loading Tiles

Engine, 7-12
Reader, 7-9
Translator, 7-10

text operations
automated text loading, 6-2
DDL, 2-16, 6-2
DML, 2-17, 6-3
Linguistics requests, 6-7
Query, 2-16, 6-5
types of, 2-9

text queries, 6-5
using base-letter conversion, 8-59
with stop words, 8-83

Text Queue. See Text Request Queue
Text Request Queue, 1-5, 2-9, 2-15
text requests

controlling, 5-9
pending, 6-5

TEXT_ENABLE initialization parameter, 3-2
textkeys, 6-8, 9-29

composite, 6-9, 9-13, 10-6
for object tables, 9-12
generating, 9-6
generating using sequences and triggers, 9-7
in ctxload load file, 9-6
mapping to document IDs in ConText

indexes, C-3
theme indexes

See also ConText indexes
creating, 11-9

Index-21

DDL and DML processing, 6-24
definition, 6-17
dropping, 11-21
for columns with text indexes, 6-19
piecewise optimizing of, 9-31
tables for, C-2
tokens in, 6-17
weights in, 6-18

Theme Lexer preferences
creating, 9-22

THEME LEXER Tile, 6-17, 8-58, 8-70, 9-22
theme queries, 6-5

theme weights in, 6-18
theme summaries, 2-13, 6-7
theme weights

in theme indexes, 6-18
THEME_LEXER predefined indexing

preference, 8-19
themes, 2-13

in linguistic output, 6-7
indexing, 6-17, 8-58

thesauri, 6-30
broader term hierarchies, 6-37
case-sensitive, 6-35
creating, 6-30
creating case-sensitive, 9-35
creating using CREATE_THESAURUS, 9-34
creating using ctxload, 9-34
DEFAULT, 6-33
dropping, 9-37
export example, 10-10
exporting, 9-37, 10-3
hierarchical relationships, 6-37
import example, 10-10
importing, 10-3
maintaining, 6-30
managing, 9-33
narrower term hierarchies, 6-37
qualifiers for entries, 6-39
query expansion limitations, 6-31
related terms in, 6-39
scope notes in, 6-40
synonyms in, 6-35
synonyms rings in, 6-35
types of relationships in, 6-35

viewing, B-12
thesaurus entries

creating, 9-36
exporting to files, 9-37
updating, 9-36

thesaurus import files. See import files
thesaurus output files

creating, 9-37
Tiles, 8-13

assigning multiple attribute values, 9-16
BASIC LEXER, 8-63
BLASTER FILTER, 8-51
CHINESE V-GRAM LEXER, 8-69
DIRECT, 8-34
DIRECTORY READER, 7-9
ENGINE NOP, 8-73
FILTER NOP, 8-52
GENERIC ENGINE, 8-73
GENERIC LOADER, 7-12
GENERIC STOP LIST, 8-85
GENERIC WORD LIST, 8-80
HTML FILTER, 8-52
JAPANESE V-GRAM LEXER, 8-70
KOREAN LEXER, 8-70
MASTER DETAIL, 8-35
MASTER DETAIL NEW, 8-36
NULL TRANSLATOR, 7-10
OSFILE, 8-37
THEME LEXER, 8-70
URL, 8-38
USER FILTER, 8-54
USER TRANSLATOR, 7-10
viewing attribute values for, B-16
viewing attributes for, B-16

timeout attribute, 8-38
timeouts

with URL data store, 8-32
timestamps

DML Queue, 2-19
TO_CHAR date format

specifying for ctxload, 10-7
token tables, C-2

in ConText indexes, 6-19, 6-25
tokens

in ConText indexes, C-2

Index-22

in text indexes, 6-15, 8-57
in theme indexes, 6-17, 8-58
location information in text indexes, 6-15
optimizing in indexes, 6-28

tools
for GUI administration, 1-11

top terms
in ctxload import file, 10-15
in thesauri, 6-37

top-level sections, 6-45
trace files

for ctxload, 10-8
for ctxsrv, 4-3

Translator Tiles
list of, 7-10

translators
for automated text loading, 7-3
specifying for text loading, 7-10

triggers
creating DML trigger, 11-11
deleting, 11-22
for DML operations, 2-17, 6-3
for generating textkeys, 9-7

tuning
ConText indexes, 6-22

TWO_TASK environment variable, 4-2, 10-4
two-step queries, 6-6

using composite textkeys, 6-9
two-table

compaction, 6-26, C-2
deletion, 6-27, C-2

U
Unicode. See UTF-8 character set
uniform resource locators. See URLs
unique keys, 6-8
UPDATE_POLICY procedure, 11-38

using, 9-14
UPDATE_QUEUE_STATUS procedure, 5-9

using, 3-13
UPDATE_SOURCE procedure, 11-40
updating

ConText indexes, 6-4, 9-29
document references in ConText indexes, 6-24

documents from OS files, 9-8, 10-2
text columns during indexing, 6-5

UPGRADE_INDEX procedure, 11-37
URL Tile

attributes for, 8-38
using, 8-29

URLs
data store for, 8-29
file accessibility, 8-31
in text columns, 8-29
support for redirection, 8-32
using file protocol in, 8-30
using FTP in, 8-30
using HTTP in, 8-30, 8-31

urlsize attribute, 8-39
USER FILTER Tile, 9-21

attributes for, 8-54
USER TRANSLATOR Tile

attributes for, 7-10
USER_DUMP_DEST initialization parameter

for ctxload, 10-8
for ctxsrv, 4-3

user-defined sections, 9-38
user-defined translators

for automated text loading, 7-3
usernames

restrictions, 3-4
users

creating, 3-3
granting ConText roles to, 3-4
viewing policies for, B-25
viewing preferences for, B-25

using
ctxctl to manage ConText servers, 4-5
ctxload to import/export thesauri, 10-3
ctxload to load text, 10-2
ctxsrv to start ConText servers, 4-2
external filters, 8-46
index logs to resume index creation/

optimization, 9-32
log files with ctxload, 10-8
log files with ctxsrv, 4-3
trace files with ConText servers, 4-3
trace files with ctxload, 10-8

UTF-8 character set

Index-23

limitations, 8-60
supported languages for, 8-60

utilities
ctxctl, 4-5
ctxload, 10-2

V
VARCHAR datatype, 6-8
variable grammar lexer. See V-Gram lexer
V-Gram lexers, 8-57
VGRAM_CHINESE predefined indexing

preferences, 8-19
VGRAM_CHINESE_WORDLIST predefined

indexing preference, 8-21
VGRAM_JAPANESE predefined indexing

preferences, 8-19
VGRAM_JAPANESE_WORDLIST predefined

indexing preference, 8-21
viewing

column policies, B-23
column policies for a user, B-25
ConText server status, 3-8
DML Queue, 3-11
preference attributes defined by current

user, B-26
preferences attached to policies, B-26
sections and sections groups, 9-39
Services Queue, 3-11
SQEs, B-29
template policies, B-22
template policies for current user, B-29

views
CTX_ALL_DML_QUEUES, B-4
CTX_ALL_DML_SUM, B-4
CTX_ALL_PREFERENCES, B-10
CTX_ALL_QUEUE, B-5
CTX_ALL_SECTION_GROUPS, B-11
CTX_ALL_SECTIONS, B-11
CTX_ALL_SERVERS, B-2
CTX_ALL_THESAURI, B-12
CTX_CLASS, B-12
CTX_COLUMN_POLICIES, B-13
CTX_INDEX_ERRORS, B-6
CTX_INDEX_STATUS, B-7

CTX_INEX_LOG, B-14
CTX_LING_ERRORS, B-7
CTX_OBJECT_ATTRIBUTES, B-16
CTX_OBJECT_ATTRIBUTES_LOV, B-16
CTX_OBJECTS, B-15
CTX_PEFERENCE_ATTRIBUTES, B-18
CTX_POLICIES, B-17
CTX_PREFERENCE_USAGE, B-19
CTX_PREFERENCES, B-18
CTX_SERVERS, B-3
CTX_SOURCE, B-19
CTX_SQES, B-21
CTX_SYSTEM_PREFERENCE_USAGE, B-22
CTX_SYSTEM_PREFERENCES, B-21
CTX_SYSTEM_TEMPLATE_POLICIES, B-22
CTX_TEMPLATE_POLICIES, B-22
CTX_USER_COLUMN_POLICIES, B-23
CTX_USER_DML_QUEUE, B-8
CTX_USER_DML_SUM, B-8
CTX_USER_INDEX_LOG, B-24
CTX_USER_POLICIES, B-25
CTX_USER_PREFERENCE_ATTRIBUTES, B-26
CTX_USER_PREFERENCE_USAGE, B-26
CTX_USER_PREFERENCES, B-25
CTX_USER_QUEUE, B-9
CTX_USER_SECTION_GROUPS, B-27
CTX_USER_SECTIONS, B-27
CTX_USER_SOURCES, B-28
CTX_USER_SQES, B-29
CTX_USER_SVCQ, B-9
CTX_USER_TEMPLATE_POLICIES, B-29
CTX_USER_THESAURI, B-30

W
Web files

formats supported by URL data store, 8-29
Web servers, 8-30
whitespace attribute, 8-68
Windows 32-bit viewer

supported formats for, 8-44
WITHIN query operator

for section searching, 6-48
word processing formats, 8-43
wordlist tables, C-4

Index-24

See also Soundex
in ConText indexes, 6-19
specifying STORAGE clauses for, 8-81

Wordlist Tiles
list of, 8-80
preference example, 8-82

WordPerfect format
internal filters, 8-16, 8-43
supplied external filters, D-7

World Wide Web
administering ConText using, 1-11
indexing using URL data store, 8-29

wrappers
for supplied external filters, D-6
in Filter preferences, D-9

writing
ConText server output to trace file, 4-3

WW6B predefined indexing preference, 8-17
WWW. See World Wide Web
WYSIWYG document viewing, 8-44

X
Xerox XIF format

internal filter, 8-16, 8-43
supplied external filter, D-7

	Up
	Contents
	Send Us Your Comments
	Preface
	Chapter�1, "Introduction"
	PART I: CONTEXT ADMINISTRATION
	Chapter�2, "Administration Concepts"
	Chapter�3, "Administering ConText"
	Chapter�4, "ConText Server Executable and Utility"
	Chapter�5, "PL/SQL Packages - Administration"

	PART II: TEXT SETUP AND MANAGEMENT
	Chapter�6, "Text Concepts"
	Chapter�7, "Automated Text Loading"
	Chapter�8, "ConText Indexing"
	Chapter�9, "Setting Up and Managing Text"
	Chapter�10, "Text Loading Utility"
	Chapter�11, "PL/SQL Packages - Text Management"

	PART III: APPENDICES
	Appendix�A, "Supplied Stoplists"
	Appendix�B, "ConText Views"
	Appendix�C, "ConText Index Tables and Indexes"
	Appendix�D, "External Filter Specifications"

	1 Introduction
	What is ConText?
	ConText Features
	ConText and the Oracle Server
	Overview of ConText Functions
	ConText Administration
	Text Loading
	Indexing

	Administration Methods
	Command-line
	Administration Tools

	2 Administration Concepts
	Administrator Responsibilities
	System Administrator
	Database Administrator (DBA)

	ConText Roles
	CTXADMIN Role
	CTXAPP Role
	CTXUSER Role

	Predefined ConText Users
	CTXSYS User
	CTXDEMO User

	ConText Data Dictionary
	ConText Servers
	Text Operations
	Server Log
	Server Shutdown

	Personalities
	Personality Masks
	Loader (R) Personality
	DDL (D) Personality
	DML (M) Personality
	Query (Q) Personality
	Linguistic (L) Personality
	DBA Personality

	Text Request Queue
	Query Pipe
	DDL Pipe
	DML Queue
	Services Queue

	3 Administering ConText
	Enabling One-step Queries
	Setting TEXT_ENABLE for All Users
	Setting TEXT_ENABLE for the Session

	Managing Users
	Creating ConText Users
	Granting ConText Roles to Users
	Granting EXECUTE Privileges to Application Developers

	Managing ConText Servers
	Starting ConText Servers
	Viewing the Status of ConText Servers
	Changing the Personality Masks of ConText Servers
	Shutting Down ConText Servers

	Managing ConText Queues
	Viewing the DML Queue
	Viewing the Services Queue
	Removing Requests from the Services Queue
	Enabling and Disabling Queues

	4 ConText Server Executable and Utility
	ctxsrv Executable
	Syntax
	Examples

	ctxctl Utility
	Commands
	Examples

	5 PL/SQL Packages - Administration
	CTX_ADM: ConText Administration
	CHANGE_MASK
	GET_QUEUE_STATUS
	RECOVER
	SET_QUERY_BUFFER_SIZE
	SHUTDOWN
	UPDATE_QUEUE_STATUS
	CTX_SVC: Services Queue Administration
	CANCEL
	CANCEL_ALL
	CANCEL_USER
	CLEAR_ALL_ERRORS
	CLEAR_ERROR
	CLEAR_INDEX_ERRORS
	CLEAR_LING_ERRORS
	REQUEST_STATUS
	CTX_INFO: Product Information
	GET_INFO
	GET_STATUS
	GET_VERSION

	6 Text Concepts
	Text Operations
	Automated Text Loading
	DDL
	DML
	Text/Theme Queries
	Linguistics Requests

	Text Columns
	Supported Datatypes
	Textkeys
	Composite Textkeys

	Text Loading
	Individual Row Insert/Update/Export
	Batch Load
	Automated Text Load
	Client-side Insert/Update/Export

	ConText Indexes
	Text Indexes
	Theme Indexes
	ConText Index Tables
	Columns with Multiple Indexes
	Index Creation
	Index Fragmentation
	Memory Allocation
	Index Log

	Index Updates (DML)
	Immediate Vs. Batch Update
	Deferred Deletion

	Index Optimization
	Compaction of Index Fragments
	Removal of Obsolete Document References
	Piecewise Optimization
	When to Optimize

	Thesauri
	Thesaurus Creation and Maintenance
	Thesauri in Queries
	Case-sensitivity
	Default Thesaurus
	Supplied Thesaurus

	Thesaurus Entries and Relationships
	Synonyms
	Hierarchical Relationships
	Related Terms
	Scope Notes

	Document Sections
	Section Searching
	Sentences and Paragraphs as Sections
	User-Defined Sections
	Section Groups
	Setup Process for Section Searching

	7 Automated Text Loading
	Overview of Automated Loading
	ConText Servers
	Text Loading Utility (ctxload)
	Error Handling

	Sources
	Preferences for Text Loading
	What is a Text Loading Preference?
	Reader Predefined Preferences
	Translator Predefined Preferences
	Engine Predefined Preferences

	Reader Tiles
	DIRECTORY READER

	Translator Tiles
	NULL TRANSLATOR
	USER TRANSLATOR

	Engine Tiles
	GENERIC LOADER

	8 ConText Indexing
	Overview of Indexing
	Policies
	What is a Policy?
	Policy Examples
	Predefined Template Policies

	Preferences for Indexing
	What is an Indexing Preference?
	Data Store Predefined Preferences
	Filter Predefined Preferences
	Lexer Predefined Preferences
	Engine Predefined Preferences
	Wordlist Predefined Preferences
	Stoplist Predefined Preferences

	Data Storage
	Direct Storage
	Master-Detail Storage
	External Storage (Operating System Files)
	External Storage (URLs)

	Data Store Tiles
	DIRECT
	MASTER DETAIL
	MASTER DETAIL NEW
	OSFILE
	URL
	Data Store Preference Example

	Filtering
	Internal Filters
	External Filters
	Filters for Single-Format Columns
	Filters for Mixed-Format Columns

	Filter Tiles
	BLASTER FILTER
	FILTER NOP
	HTML FILTER
	USER FILTER
	Filter Preference Examples

	Lexers
	Text Lexers
	Theme Lexer
	Base-letter Conversion
	NLS Compliance
	Composite Word Indexing

	Lexer Tiles
	BASIC LEXER
	CHINESE V-GRAM LEXER
	JAPANESE V-GRAM LEXER
	KOREAN LEXER
	THEME LEXER
	Lexer Preference Examples

	Indexing Engine
	Engine Tiles
	ENGINE NOP
	GENERIC ENGINE
	Engine Preference Example

	Advanced Query (Wordlist) Options
	Stemming
	Fuzzy Matching
	Soundex

	Wordlist Tiles
	GENERIC WORD LIST
	Wordlist Preference Example

	Stop Words
	Stop Words in Queries
	Case-sensitivity

	Stoplist Tiles
	GENERIC STOP LIST
	Stoplist Preference Example

	9 Setting Up and Managing Text
	Loading Text
	Using ctxload
	Using ConText Servers for Automated Text Loading
	Generating Document Textkeys
	Updating/Exporting a Document

	Managing Policies
	Creating a Template Policy
	Creating a Column Policy
	Creating a Column Policy for an Object Table
	Creating a Column Policy for Theme Indexing
	Using Composite Textkeys in a Column Policy
	Modifying a Policy
	Deleting a Policy

	Managing Preferences
	Creating a Preference
	Creating an Engine Preference
	Creating a Data Store Preference for a Master Table
	Creating Filter Preferences
	Creating a Theme Lexer Preference
	Creating a Stoplist Preference
	Deleting a Preference

	Managing Indexes
	Creating an Index
	ConText Indexing in Parallel
	Indexing Existing Columns (Hot Upgrade)
	Updating an Index
	Dropping an Index
	Optimizing an Index
	Resuming Index Creation/Optimization

	Managing Thesauri
	Creating a Thesaurus
	Creating a Case-sensitive Thesaurus
	Creating the Supplied Thesaurus
	Creating/Updating a Thesaurus Entry
	Deleting a Thesaurus
	Creating a Thesaurus Output File

	Managing User-defined Document Sections
	Creating a Section Group
	Creating a Section
	Creating a Wordlist Preference with a Section Group
	Creating a Policy for a Section Group
	Viewing Sections and Section Groups
	Removing a Section from a Section Group
	Dropping a Section Group

	10 10 Text Loading Utility
	Overview of ctxload
	Text Loading
	Document Updating/Exporting
	Thesaurus Importing and Exporting

	Command-line Syntax
	Mandatory Arguments
	Optional Arguments
	Usage Notes

	Command-line Examples
	Text Load Example
	Document Update Example
	Document Export Examples
	Thesaurus Import Example
	Thesaurus Export Example

	Structure of Text Load File
	Load File Structure
	Load File Syntax
	Example of Embedded Text in Load File
	Example of File Name Pointers in Load File

	Structure of Thesaurus Import File
	Alternate Hierarchy Structure
	Import File Structure for Terms
	Import File Structure for Relationships
	Examples of Import Files

	11 PL/SQL Packages - Text Management
	CTX_DDL: Text Setup and Management
	ADD_SECTION
	CLEAR_ATTRIBUTES
	CREATE_INDEX
	CREATE_POLICY
	CREATE_PREFERENCE
	CREATE_SECTION_GROUP
	CREATE_SOURCE
	CREATE_TEMPLATE_POLICY
	DROP_INDEX
	DROP_INTTRIG
	DROP_POLICY
	DROP_PREFERENCE
	DROP_SECTION_GROUP
	DROP_SOURCE
	OPTIMIZE_INDEX
	REMOVE_SECTION
	RESUME_FAILED_INDEX
	SET_ATTRIBUTE
	UPGRADE_INDEX
	UPDATE_POLICY
	UPDATE_SOURCE
	CTX_DML: ConText Index Update
	REINDEX
	SYNC
	SYNC_QUERY
	CTX_THES: Thesaurus Management
	CREATE_PHRASE
	CREATE_THESAURUS
	DROP_THESAURUS

	A Supplied Stoplists
	Creating a Supplied Stoplist
	Editing the Scripts
	Running the Scripts

	English
	Danish (DA)
	Dutch (NL)
	Finnish (FI)
	French (FR)
	German (DE)
	Italian (IT)
	Portuguese (PR)
	Spanish (ES)
	Swedish (SE)

	B ConText Views
	ConText Server Views
	CTX_ALL_SERVERS
	CTX_SERVERS

	ConText Queue Views
	CTX_ALL_DML_QUEUE
	CTX_ALL_DML_SUM
	CTX_ALL_QUEUE
	CTX_INDEX_ERRORS
	CTX_INDEX_STATUS
	CTX_LING_ERRORS
	CTX_USER_DML_QUEUE
	CTX_USER_DML_SUM
	CTX_USER_QUEUE
	CTX_USER_SVCQ

	ConText Data Dictionary Views
	CTX_ALL_PREFERENCES
	CTX_ALL_SECTIONS
	CTX_ALL_SECTION_GROUPS
	CTX_ALL_THESAURI
	CTX_CLASS
	CTX_COLUMN_POLICIES
	CTX_INDEX_LOG
	CTX_OBJECTS
	CTX_OBJECT_ATTRIBUTES
	CTX_OBJECT_ATTRIBUTES_LOV
	CTX_POLICIES
	CTX_PREFERENCES
	CTX_PREFERENCE_ATTRIBUTES
	CTX_PREFERENCE_USAGE
	CTX_SOURCE
	CTX_SQES
	CTX_SYSTEM_PREFERENCES
	CTX_SYSTEM_PREFERENCE_USAGE
	CTX_SYSTEM_TEMPLATE_POLICIES
	CTX_TEMPLATE_POLICIES
	CTX_USER_COLUMN_POLICIES
	CTX_USER_INDEX_LOG
	CTX_USER_POLICIES
	CTX_USER_PREFERENCES
	CTX_USER_PREFERENCE_ATTRIBUTES
	CTX_USER_PREFERENCE_USAGE
	CTX_USER_SECTIONS
	CTX_USER_SECTION_GROUPS
	CTX_USER_SOURCES
	CTX_USER_SQES
	CTX_USER_TEMPLATE_POLICIES
	CTX_USER_THESAURI

	C ConText Index Tables and Indexes
	ConText Index Tables
	DR_nnnnn_I1Tn
	DR_nnnnn_KTB
	DR_nnnnn_LST
	DR_nnnnn_NLT
	DR_nnnnn_I1W

	Oracle Indexes for ConText Index Tables
	SQR Table
	DR_nnnnn_SQR
	Oracle Index for DR_nnnnn_SQR

	D D External Filter Specifications
	Supported Formats for Mixed-Format Columns
	Supplied External Filters
	Availability of Filters
	List of Filters
	Supplied External Filters Installation
	Supplied External Filter Setup
	Supplied External Filter Usage

	Index

