PL/SQL™

User’'s Guide and Reference

Release 8.0

December, 1997
Part No. A58236-01

ORACLE"

Enabling the Information Age™

PL/SQL User’s Guide and Reference

Part No. A58236-01

Release 8.0

Copyright © 1997, Oracle Corporation. All rights reserved.
Author: Tom Portfolio

Graphics Designer: Val Moore

Contributors: Dave Alpern, Cailein Barclay, Gray Clossman, Ervan Darnell, Jacco Draaijer, John
Frazzini, Radhakrishna Hari, Ken Jacobs, Kannan Muthukkaruppan, Dmitry Nizhegorodov, Olga
Peschansky, Dave Posner, Shirish Puranik, Ken Rudin, Tim Smith, Usha Sangam, Peter Vasterd

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be licensee's responsibility to take all appropriate fail-safe,
back up, redundancy and other measures to ensure the safe use of such applications if the Programs
are used for such purposes, and Oracle disclaims liability for any damages caused by such use of the
Programs.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright patent and
other intellectual property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free.

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is
delivered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are ‘commercial
computer software' and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are 'restricted computer software' and use, duplication and
disclosure of the Programs shall be subject to the restrictions in FAR 52..227-14, Rights in Data -- General,
including Alternate Il (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Net8, Oracle, and SQL*Plus are registered trademarks of Oracle Corporation.

Developer/2000, Oracle7, Oracle8, Oracle Call Interface, Oracle Forms, Oracle Reports, Oracle Enterprise
Manager, PL/SQL, Pro*C, Pro*C/C++, and Trusted Oracle are trademarks of Oracle Corporation.

All other products or company names are used for identification purposes only, and may be trademarks
of their respective owners.

Contents

Y=g (o WO ET o 10 SO0] 1 110 01=1 01 £ xiii
o =) =01 < PSSR XV

1 Overview

YT gl =T (L =SSR 1-2
BIOCK STIUCTUTE ...ttt ettt et e s b e et e sbeeebesaeesbesaeesbeeseesbeenbesreens 1-2
Variables and CONSLANTSc.cviiiiiiiie e e e te e aeerenre e 1-3
(11 [510 £ PSUSPPURSIN 1-5
CUISON FOR LOOPS ...ttt sttt sttt ettt b e ar b nneanens 1-6
LU T0] GV £ U T=1 o] L= RS 1-6
F N 1] 01Uy (=SSOSR 1-7
CONLIOL STFUCTUIES ..ottt ettt e be et s be et e st e e be et b et e eabesbeeatesbeenbesbeebesreas 1-8
V[T LU] F= T 1 Y/ SO S 1-11
(BT U7 W AN o 1S 7 1od A (o] o [PPSR 1-14
INFOrMAatioN HIdING ...oovoiiiiiee e e 1-16
g o] gl o F-T oV | [T 0o USSR 1-17

g N (o] oV (=Tod (U = TSRS 1-18
IN ThE OFACIE SEIVET ...ttt ettt sttt b e e esbe e e sbeeaesbeestesaeesaesreens 1-19
L@ - Tod [T o To | LRSS 1-20

AdVANTAZES OF PLISQL ...ttt bbb e ettt s et bbb e 1-21
SUPPOIT FOF SQL ...ttt b et bttt bbb 1-21
Support for Object-Oriented Programmingcccccoiviiiiiieiesenesesesieseeseessesesessesasesesnens 1-21
1= T =T o (0] 0 4 F= T ot TSSO 1-22
POFTADTTITY ©.ecveiee bbbttt 1-23

[[To | et g = oo (U] od ALY Y 2SS S PR 1-23
INtEGration WIth OFaCIEcoviiiiici s 1-23

2 Fundamentals

(01 ¢ T = o1 (=] T ST USRI 2-2
LEXTCAI UNITS....ctiiiitiictiie bbb bbbt b bbbttt ettt 2-2
DBIIMITEIS ...t h bbbt bbbt bt b bbb e b et eh e e bt e bt e bt bt et e b b e 2-3
([0 (=T 0) LT TSSOSO 2-4
LITEIAIS ... bbb bbbt et 2-7
L070] 0 0] 0 1T 0 | T TP U TP PO PPT PRSP 2-9
DIALALYPES ...ttt e e et 2-10
T L] =] g 1Y/ o LTSRS 2-11
(O g T L= Ted (T gl Y o1 TSP TP SOPRURTURUR 2-14
NLS CharaCler TYPES ...ocuciiuiiitiiiteieiertet ettt b et bbb bbb 2-17
I = T IV o L= SR 2-19
(O 1 =] g Y/ o1 TSP UO TSSO PR PSRRI 2-21
USEr-DefiNed SUDTYPESocuiiiiiii bbb 2-22
DEfiNING SUDLYPES . .oveie sttt sttt n e seeneeneerenrenrens 2-23
USING SUDTYPES. ...ttt bbb bbb bbbttt b ettt be b e 2-24
DatatyPe CONVEISIONttt ettt ettt ettt bbb s bbbt bt e bbbttt nnenes 2-25
o] Lo 0] g 1Y =T 53 L] o SR 2-25
IMPLICIT CONVEISION ...ttt bbb bbb et be et e e 2-26
Implicit versus EXPliCit CONVEISIONcc.ciiiiiiiiiciicis e 2-27
DATE VAIUES ..ottt bbbttt bbb e 2-27
RAW and LONG RAW VAIUEScoociiieitiiee ettt 2-28
INLS VAIUES ...t ettt ettt b et st st e b et et et e st eseeneenesbenresnens 2-28
DIECIAIALIONS ...ttt ettt bbbt b et b ettt e 2-28
USING DEFAULT ..ottt sttt ettt sttt sttt ne b 2-29
USING NOT NULL ..ottt sttt ettt sttt sttt re b nesrns 2-30
LS [T T3 I =SSR 2-30
USING OROWTYPE.......o ottt sttt ettt sttt sttt nnns 2-31
R LEES] € o1 (o] LSS 2-34
N ETa T o T @] a1V =T a1 1 L] o TSSO 2-34
)74 010])71 0 T TP R PPN 2-35
R Tole] o 11 o TR OO TP TSSO T TSP P PP UPTUUPTPPPTPRRTPR 2-35

(O TSI =T K 1 (V7 1 YRS 2-35

NAME RESOIULION ...ttt et ne st neas 2-35
SCOPE AN VISTDIIILY ..ottt e e nenre e nne s 2-37
g o Y0 1= 01 £ USSR 2-40

BOOIEAN WVAIUES ...ttt st b et sttt ne e b e e b e b ste st e 2-40

DAtabASE VAIUES.......c.eiuiiiiieicie ettt ettt sb et b bbbt eb e 2-41
EXpressions and COMPATTSONScccuiiiiiiiiierieni ettt sb bt b bbb sbe b e 2-41

OPEIALOr PrECEOEICEcuiitiiiitiiieteeet ettt bbbt bbbttt b bbb 2-42

[0 To To7= 1 I @] o 1-1 = L (o] S 2-43

COMPATISON OPETALOIScviiiiteiteite sttt ettt bbb bbb e b et e e esesseebeebeebesbesreas 2-44

CoNCAtENALION OPEIALONeuiiviiiitiictiiet sttt bbbttt 2-46

BOOIEAN EXPIESSIONS.....ccuviueitiiiesiesiesie e siesieste st esae e e e eseste s e stestestesressesteseensesseaenseneeseaseanearenrenes 2-46

[P2 T 1T T TN AT S S RSS 2-48
BUITE-TN FUNCEIONS ...ttt bbbttt sesne e b e 2-51

3 Control Structures

OVEIVIBW ...ttt ettt sttt e e et e et e e te et e e as e ebeeae e ebeeaeeebeessesbeeseesbeebesteebeateesbeensebeensenreanes 3-2
Conditional Control: IF StatemMENTSccccceieiicec e 3-2
L I | N RO 3-3
IF-THEN-ELSE ...ttt ettt sttt sttt ettt et e e beeaeebeebesbesbeebe b ne 3-3
L I | AN] | S 3-4
LU T Lo (=1 1T 1= SRS 3-5
Iterative Control: LOOP and EXIT StatemMentS........cccoiveieiiiiiiie et 3-6
0 10 | 3-6
WWHILE-LOOP ...ttt sttt ettt ettt st et be s b et e e et et e s e eseeneeteeteebesre st ne 3-9
FOR-LOOP......c ettt ettt et et e b e et e s be st e st e s be st et et et e s eneebaereebeebe et e 3-10
Sequential Control: GOTO and NULL Statementsccccovvivieiivnnienesese e sese s 3-15
(C1@ O] -1 =] 1 (=] o | SO PRSPPI 3-15
L] -1 =] 1= o | SRR 3-19

4 Collections and Records

WAt 1S @ COHBCLIONT?......eiiiieiece e e ettt s ettt e besbesbenbe b 4-2
Understanding Nested TabIES ..o 4-2
UNAErstandiNng VarTAYSccviiieiiiiieie it e e ste et e te et esteebesaeeste s e e stesnaesteeseesteeaesreans 4-4
Varrays versus Nested TabIes. ... 4-4

Defining and Declaring CoOlECtIONS...........cco i 4-5

Declaring COIECTIONScoiveiiiiiiieiite bbbttt 4-7
Initializing and Referencing COHECtIONS ... s 4-9
Referencing Collection EIEMENTS..........ccoii i s 4-11
Assigning and Comparing COECTIONS...........ccviiiiiiiiic s 4-12
Comparing Whole CollECHIONS..........cociviiiire e ens 4-13
Manipulating COIECHIONS. ..o e et 4-14
Some Nested Table EXAMPIESoociiiiiiiie e 4-14
SOME Varray EXAMPIEScviieieiie sttt ne e enenns 4-16
Manipulating INndividual EIBMENTS ..o 4-18
UsiNg Collection METNOMS............coiiii e 4-21
L0 L To T = 1S I TS 4-22
USING COUNT ..ottt bbbt b bbbt b ettt bbb 4-22
USING LIMIT Lottt bbbt bbbttt 4-22
USING FIRST @NA LAST ..ottt sttt naena e eneenenns 4-23
USING PRIOR AN NEXT ..ottt 4-23
USING EXTEND ...ttt bbbttt bbbttt 4-24
LS [T T I 1SR 4-25
USING DELETE ..ottt bbbt bbbt 4-26
Applying Methods to Collection Parameters ... 4-27
ANVZoYTo [T aTo MOTo] | [=Tot A Lo g I =00 (eT= o] £ 1] o < 0SS 4-27
WAL 1S @ RECOTA? ... bbb bbb ettt be b 4-28
Defining and Declaring RECONTS..........coiiiiiiiiieiiere e 4-29
[1= F= U] o T =T oo} o [SPPRSR 4-30
Initializing and Referencing RECOIASccoiiie i 4-31
RETErENCING RECOMTUS ...ttt 4-31
Assigning and CompParing RECOIUS........c.ccvcviviiiiiererciee s neere s e 4-33
COMPANNG RECOTAS. ...ttt b ettt sb b bbbt b e e be b e 4-35
MaNTPUIALING RECOTUS. ..ottt bbbt nb e 4-35

Interaction with Oracle

SQL SUPPOIT ...t er e ettt 5-2
(D= 1tz Y =T T 01U = o] o S 5-2
TranSaCtioN CONTIOL.......c.oiiiiiiie bbbttt be bt sre 5-2
31 @ I U o Tex £ o] o SRRSO 5-3

1@] I Yo Lo [oToto] 11 1o] LS SRS 5-4

SQL OPIEIALOIS. ...ttt r e r e et b et 5-6
SQLO92 CONTOIMIANCEc.viiieiitecee ettt et be e st s b e st e et e et b e beeabesbeeatesbeebesaeeatesres 5-7
Using DDL and DYNamiC SQL........cc.oiiiiiiicieiiese ettt ste e sae e sreanees 5-7
Efficiency versus FIEXiDIIITY ... 5-7
SOME LIMILALIONS ...ttt ettt et 5-8
Overcoming the LIMITAtiONSccoiieiiiiccc et 5-8
MANAGING CUISOIS ...ttt ettt ettt bbb bt b st h et e bt e bt bbb ekt se et e nr et e nb et e b bt ab e areneas 5-9
o] [To]) O U] Yo} =SS 5-9
IMPIICIT CUISOTS ..ottt bbb bbb bttt be b e sbe b 5-14
PaCKAGING CUISOIS ..otttk b et b bt bt bt ekt b bbbt eb bt eb st e b e ene e ane e 5-15
USING CUISOr FOR LOOPS ...cvveueiiieeieieie sttt sttt e et sa e te st sttt sae s saesaesaensenassesnessensenes 5-16
USING SUDQUETIES ...ttt bbb e bbb bttt eb et e e 5-17
USING AIBSES ...ttt bbbt b bttt bbbt 5-17
o T [Lo = U=V 1] (=T S 5-18
USING CUISOr VariabIesc.oooiioi ettt nree s 5-18
What Are CUrSOr Variables?cco i 5-19
Why USE CUISOT VariableS?cviv ittt ene e 5-19
Defining REF CURSOR TYPES ..ottt sttt sttt sne e 5-20
Declaring Cursor Variables ... 5-20
Controlling CUrSOr VariableS.........cccoeieieiieeieeee s re e sne s 5-22
EXAIMPIE L. bbb b b e bbbt ettt b b e 5-27
EXAMPIE 2. bbbttt 5-28
ez 10 0] o L= S 5-29
EXAIMPIE 4.ttt b bbb e bbbttt b bbb 5-31
Reducing NetWOIK TraffiC.........ccoiiiiiiiiie s 5-33
W ANV 01T TT g o [(=T o) T ISR 5-34
Guarding AgaiNSt AlIASINGc.coviiiiiiie e 5-36
L LEES] £ o1 o] LRSS 5-37
USING CUISON ALIFIDULEScveeec ettt ra e sneerenne e 5-38
EXPLICIt CUISOr ATEITDULESeiiiiiiiiiie e e 5-38
IMPLICIt CUISOr ATIFIDULES ...t e 5-42
o Tot Ty g o =T 1T Ut o o 1SS 5-44
How Transactions Guard Your Database ... 5-45
USING COMMIT ..ottt ettt st s ettt ettt e s st s et enennenen 5-46

USING ROLLBAGCKttt 5-47

USING SAVEPOINT ..ottt sttt ettt sttt ettt bt benesbens 5-48
IMPLCIT ROIDACKS ... re e s 5-49
=T aTe [T gTo N I =1 1T Tod A (o] o 1SRRI 5-49
USING SET TRANSACTION ..ottt sttt sttt s sb e b sans 5-50
Overriding Default LOCKINGoviiv it n e enenns 5-51
IMProViNg PeIrfOIMMANCE...........oiiiiiiie bbb bbb et ee e 5-54
Dealing With Size LIMITatioNS..........cccoeiiiiniiiiiieese e 5-60
Ensuring Backward Compatibility ... 5-61

6 Error Handling

vi

OVEBIVIBW ...ttt et e R e Rt E Rt E et n et n s 6-2
AdVaNTages OF EXCEPLIONSc.oiiiiiiiirie ittt se bttt sb bbb e 6-3
Predefined EXCEPTIONS ..o bbbttt et 6-4
USEr-DefiNed EXCEPLIONScvivitiiiiieiesies et ettt sttt sa et sa e sae s e e enaerenresnesreneenes 6-6
DECIAriNG EXCEPTIONSccuiiuiiiiitiitiiie sttt sb bbb bbbttt ettt st b e 6-6
SCOPE RUIES ...ttt bbbt bbbt b et n et b 6-7
USING EXCEPTION_INIT ..ottt 6-8
USINg raise_apPliCatiON_BITOFcouiiiiiiieiieieeise ettt sb e 6-9
Redeclaring Predefined EXCEPLIONSccooiiriiiiiieiieisere et 6-10
HOW EXCEPLiONS Are RAISEA........ocviiiiie ittt sttt st e e enaeresnennens 6-11
UsiNg the RAISE StAteMEeNt........cc.ociiiiii ettt st sre e 6-11
HOW EXCEPTIONS PrOPAJALE.ccviiiitiiiitiiiteiet ettt 6-12
R CT VST o I U T =T (ol=T o) o o 1SS 6-14
Handling RaiSEd EXCEPTIONS........ciiiiiiiiiieie ettt sttt ene 6-15
Exceptions Raised in DECIArations ... e 6-16
Exceptions RaiSed iN HANAIEIScoviviieeec e 6-17
Branching to or from an Exception Handler ... 6-17
Using SQLCODE and SQLERRM..........ccccoiiiiiiiieienisie et 6-18
UnNhandled EXCEPLIONSccviiiiiice et s naer e e aneerenns 6-19
USETUI TECHNTQUES ... bbb bbb ettt ettt eb e 6-20
Continuing after an EXCeption IS RAISEdcccooiiiiiiiiiiieinee e 6-20
REtrYING @ TraNSACTIONecvviieiiiieiiee ettt st s e e e enaereeneeneerenns 6-21
USING LOCAtOr VariabIes...........cooiiiiii ettt st 6-22

7 Subprograms

What Are SUDPIOGIAIMS? ..ottt b et b et eb ekt e et ne et nr et sn bt abe e enenea 7-2
VAN \VZ: Lol e=To (=S IR U1 o] T oo | - s P 7-3
[0 Tot=T0 [U] = SRS 7-3
LU T (o1 (o] o OSSR RR TS SRRO 7-5
R ES] € o1 1 o USSP 7-6
RETURN STAtEMIENT.......eiiieiiciie ettt e e s b e e be e sbaeenbeestbeabeeneee s 7-7
Declaring SUBDPIOGramMIS.ottt 7-8
FOrward DeClarations...........c.ccviiiieiiiriiesesetee st eenesre e snesrenrenrens 7-8
R (o] £=To BTN] o] o] fo]o | £= 10 4 LS JNUE U PP STRSOPRURURPRRN 7-10
Actual versus FOrmal ParameEters ..ottt be e sre e 7-11
Positional and Named NOTAtION ..o 7-12
POSITIONAI NOTALION......c.viiicic ettt esbe e e sre e e reanees 7-12
N =10 g 1Yo I AN To) = 1 { [o] o [TSROSO 7-12
YLD =T o I AN o) 7= 1 To) o 1SS 7-12
PArameter IMIOEScc.ooiiieeiecee ettt et e b et e ese et e eneesbeeneesteeeestaeseentaeseenraens 7-13
TNV T T L SRRSO 7-13
L@ 1O N 1Y/ o o -SSRSO 7-13
NI L I 1V, o o L= PSRRI 7-14
Parameter DEefaUlt ValUES..........cc.ooiiiiiiie ettt te e testeeas 7-15
V= 10 0 1= (=T AN LT Y1 g o PSS 7-17
L@ V=1 o [0 To [T o T ST 7-18
RESTFICTIONS ..ottt e e s e e b e s te et e sbe et e s beesbeebeenbeebsesbeeneenbeeneesreaneas 7-19
HOW Calls Are RESOIVEX..........coiiiiiire ettt ne e nne e 7-21
L L= Tot U | 57 o o PSSR 7-23
RECUISIVE SUDPIOGIAMIS .. .ottt bbbttt 7-24
Y LU (O LI =T ot U]] o] o S 7-26
RECUISION VEISUS ITEFAtION........cviiiiiii ittt sre e nre s 7-27
8 Packages
WRAL IS @ PACKAGE?.ottt ettt et et e s b e et e saeenaesaeesreaneas 8-2
AdVANTAGES OF PACKAGEScuiiveiiitiiitieete bbbttt sb et sb e 8-4
The Package SPeCITiCAtION........cccv it sre e s 8-5
Referencing Package CONENTScvcoiiiiiie et 8-6
THe PACKage BOAY ..ottt bbbttt 8-7

vii

SOME EXAMPIES ...t bbb bbb bbbt e bt et eebe bt e b b 8-8

Private Versus PUDLIC TTEMS ..o 8-14
L@ Y71 o [oT- o |1 o IS 8-14
Package STANDARDoo ettt a e et sa e e te e e e teara e teeneesteenbeeneenes 8-15
Product-SPeCifiCc PACKAGES..........couiiiiiiciiie bbb 8-16
DBMS_STANDARD ..ottt bbbttt bbb b 8-16
DBIMS _OUTPUT ...ttt bbbttt bttt bbb nennne 8-16
DBIMS _PIPE ...ttt ettt bbb s bttt bttt ettt b ne e e 8-17
UTL_FILE ..ottt bbb bbbttt ettt et b b nnne 8-17
L O I OSSOSO 8-17
DBIMS _SQL .ttt R bRttt ettt bbbt rerenrne 8-17
DBIMS _ALERT ..ttt bbbt bbbt bbb 8-18
GUITRTINES ...t h bt bbbt bbb s b bt b sb et et et et e st e b e e bt eb e b e b e 8-18

9 Object Types

viii

The ROIE OF ADSIFACTION ..ottt ettt sbe b e 9-2
WHaL IS @N OBJECT TYPE? ...t bbbttt 9-3
AVA)Y O LI @ o =T ol d)Y/ 0 =TSP 9-5
Structure Of an ODJECT TYPE .. .ottt b 9-5
Components Of aN ODJECT TYPE......cui i 9-7
AEFTDULES ..t bbbt bbbttt 9-7
1Y 1=3 1 g To o LSS OSSPSR PR PSR PPN 9-8
Pragma RESTRICT_REFERENCES.........ccoioiiiiitieieseeset et 9-12
(- (] YT Vo @ oY T=Tod A Y/ o =TSRSS 9-14
ODJECT TYPE STACK ...t bbb bbbttt eb e 9-14
Object TyPe TiCKET_BOOTNciiiiiciiecir e 9-17
Object TYPE BANK _ACCOUNTcviiieiieie st siese et e e et e ettt st sn et e seeneenaenesneenenns 9-19
ODjJECt TYPE RALIONAL ...ttt sb s 9-21
Declaring and INitializing ODJECTS ..ot s 9-23
(1T F= U] o O o= £ SPPSSRTN 9-23
INILANIZING ODJECTS ...ciiiiiiice ettt e b e st e sbe e e ste e e nreanees 9-24
How PL/SQL Treats Uninitialized ODJECES ... 9-25
ACCESSING AIITDULES.ottt e et e s ene e e eneerenrens 9-25

10

Calling Constructors and METNOUScocviiiiiiiice e 9-26

Passing Parameters t0 @ CONSIIUCTONoouiiriiiiieirieinicieeesi s 9-27
(0= 11 1T To TRV, =1 1 oo 3OS 9-27
] P T o T @ o] = S OU ST 9-28
USING RETS ...t bbbt b bbbttt e 9-29
Forward TYpe DefinitioNS ... 9-30
ManNiPUIALING ODJECTSc.oiuiiiiiie ettt ebe bt e 9-31
SEIECTING ODJECLS ...ttt b ettt bbb 9-32
INSEITING ODJECLS ...vovviieieic ettt sttt e ae st e e eneese e e enesrenrearens 9-36
UPAAtING ODJECLS ...t e ettt b b e 9-38
DEIEting ODJECEScuiiveiiiteiete ettt bbbt et ne bt r et b et b e er e r e 9-38
External Procedures
What IS an EXternal PrOCEAUIE?c.ooe ittt sttt 10-2
Creating an EXternal ProCEAUIE..........coov it eenesresnesnens 10-2
Registering an EXternal ProCEAUIEccoccvi it 10-3
Understanding the EXTERNAL CIAUSE ..ot 10-4
F AN T =V 1] o 1= 10-5
Calling an EXternal ProCEAUIE..........ccoiiiii ettt sre s 10-5
AN EXAMPIE .ottt 10-7
How PL/SQL Calls an EXternal ProCeAUIE..........c..ccviiieiiiiecce ettt 10-7
ENVIFONMENT VAITADIESocuiiiiiiiiiie e 10-8
Passing Parameters to an External ProCeAUIe..........ccoeiieiiiiiiici e 10-9
SPECITYING DALALYPES.....eiviiieieiiiiereriesere et ettt sttt see e e e e e e s eseeseaneanenresresrens 10-9
Using the PARAMETERS ClaUSEcc.iiiiie ettt sttt sttt 10-12
Using the WITH CONTEXT CIAUSE.......cccouiiiiiiiitiiieieriete sttt 10-16
USING SEIVICE ROULINES.......ciiiiiciicese sttt sttt et a e eneeneeneenenns 10-17
(O 104 1571 = (o Toy AN (o o @F=11 11/ (=10 4 To] oY/ USRS 10-17
OCIEXIPIOCRAISEEXCP ...ttt bbbttt 10-19
OCIEXtProcRaiSEEXCPWItNIMSHc.viiiieeceee e 10-20
OCIEXIPIOCGEIENV ... oottt bbb bbb e sb e ne e nn e sne e 10-21
DOING CAIIDACKS.......ceiiiiiiiiii bbbt bbb 10-22
ReStrictions 0N CallDACKS.........cooiiiiiiiiiiie bbb 10-23
Debugging EXternal ProCEAUIEScocveiiiice ettt 10-24
Using Package DEBUG_EXTPROCccoiiiiiiiiiieieee et 10-24

11

(DT o [0 I ad oo | -1 o o PR TP PRI 10-24

Guidelines for EXternal PrOoCEAUIEScoviiiiiiiece ettt 10-25
Restrictions on EXtErnal ProCeAUIES.........cciiiiieieiceeeee et ne e enens 10-25
Language Elements

ASSIGNMENT STALEMENTcviiecceeee ettt sa et e e re e e eneerenrens 11-3
[[0 T 2SSOSR 11-7
(O I @ 1T o 7 (=] 1 1] | S SO OPSPS 11-14
L070] 1 [=Tox 1 o] 181V, 1= 1 o o Lo |- SRS 11-16
(070] =Tox 4 T0] o 1S USRS 11-21
(O70] 0 010 01T o | £ 7SSOSR 11-26
(O @ 11 1AV I IS -1 =] o = o | U 11-27
Constants and VariabIes ..o s 11-29
(oL U [=To] g AN 1 1 01U = RS S TSRS 11-33
LU o T 7 T T 1o =TSSR 11-38
(G150 £ PSPPSR 11-45
(D] I) = 1 (=] (=7 | ST SSRR 11-49
EXCEPTION _INIT Pragma....ccccoieiiieiesisiesiesieseseeseessesessesssssessessessesssssessessesssssensessesssssessssessessens 11-52
D (ed=] o A o] o I SO O TP UTRORPRURPRPRO 11-54
o) I) 71 =] 0 01 | SRR 11-57
Dt o =TT T 1RSSR 11-59
EXTEINAl PrOCEAUIESc.viiiie ettt ettt et e s ae e tesaeestesneesteanaesteaneens 11-70
[o IO o IR - 1 =] 1= 1 S SRR 11-76
U Tod £ T 1RSSR 11-79
(CTO N @ IS] =1 0] 0 =] o | AP OPP PR 11-83
LY =1 (=] 1 1] | SO P PR OPRURSRTIN 11-85
AN ST = IS = 1= 0 0T= o | ST 11-88
LI (=] | TSSO SS S 11-91
LOCK TABLE SEAtEIMENTcueiuiiviiieciectece ettt sttt sttt st st et et seneereene e 11-94
[1 1o v 1 =] =T o] £SO 11-96
N O I IS =11 =T LT o | PSPPSR 11-102
O] o] =T B 1Y 013 ST S OO P TSP P PSP PSP TSP PP 11-103
L@ T = I IS =1 =0 1= | ST 11-111
OPEN-FOR SEateMENT......coiiiiiiiiecieste ettt sttt sttt e et s s e e eneebaetesaesresras 11-113
PACKBIGES ...ttt bbbt b ettt 11-117

[0 To1 T (U] (R 11-121

Ry AN IS =i = 1] 0 1] o | AP STRR 11-126
=TT o RS SSRN 11-128
RETURN STAtEMIENT.......oi it st sb e b et s e e nbeesnbeeees 11-132
ROLLBACK STAtEMENTociiiiciic ettt st sttt e st et e s re e aeeneesbeeneesteeseesteennens 11-134
YOROWTYPE ALIIDULE ...t st sttt re e 11-136
SAVEPOINT STAteMENT.......ciiiiciiieicce ettt b ettt sae st et e s seensereenas 11-138
SELECT INTO STAtEMENT......oiiieiecie ettt sttt st te e s be s e sbeenbesaeeneesaeeanas 11-139
SET TRANSACTION StatemMeNtcoccviiiiiererere et s naens 11-142
1@ I O U =10] o TSRS PPTRPP 11-144
SQLCODE FUNCLION ...ttt ettt sttt be st e st e et esbeesbesbeenbesbeentesreeanas 11-146
SQLERRM FUNCHION ...ttt ettt ettt sttt be st st e et esbeenbesbeenbesbeentesreennas 11-147
QOTYPE ATIIIDULE. ... st eereene e 11-149
U B YAl Y = (] 1 1= 0 | A PSR 11-151

A New Features

e (=T g gt L o g Tol=To (UL =TSRSS A-2
(@] o] =01 S 1Y 01 A-2
(70 | 1=Tox 4 T0] o 1SS PSP A-2
LLOB TYPES .ttt ettt A-3
N LS T 1Y o 1= SR A-3

B Sample Programs

R8Tl o T aTo TRt g Tl ad oo - o o B-2
S Tag] o] (=3 N e O] = 3 I To] o J TP R SO URURURPRURTON B-11
SAMPIE 2. CUISOS ..ottt bbb bbbt bbbt e bt et b et nb et nnenes B-12
= L] o] (=T TS (ol o] o] 1 g T RSP PSSRR B-13
Sample 4. Batch Transaction ProCESSING........coeiiieiiiieieiieeise et B-15
Sample 5. EMbedded PLISQLc.coiiiiieeie et B-19
Sample 6. Calling a Stored ProCeAUIE...........ccviieiericicce e snen B-23

C CHAR versus VARCHAR?2 Semantics

ASSIGNING Character ValUES..........ccooviiiie et sre e s C-2
Comparing Character ValUES............coco it C-2

Xi

INSErtiNG CharacCter VAIUESoccviiiee ettt st st te e re et C-4
Selecting CharaCter MAlUES ..ot C-4

D PL/SQL Wrapper

AdVANTAGES OF WP PING ...veieteieieieeeriee ettt ettt bbbt b ettt b ettt D-2
RUNNING the PL/ISQL WIAPPDEL ...ttt sese ettt e e ste e sre st saesresae e sneseaeseeneenens D-2

E Name Resolution

What IS Name RESOIULIONT?........ouiiiiiiiiii bbbt E-2
Various FOrMS OF RETFEIEINCEScooiiiiiiii e et E-3
Name-Resolution AIGOTTtNM ..o e E-5
(0] LT Sy vz T [T g Yo [@1 o (U] - P E-8
AVOTAING CAPTUIE ...ttt bbb ettt b bt b e bt eb et sbe b e sbe b e b e s E-10
Accessing Attributes and METNOUS. ..o E-10
Calling Subprograms and Methods ... s E-11
SQL VEISUS PLISQL ..ttt sttt ettt sttt st te sttt e saeresbe e sbe et E-13

F Reserved Words

Index

Xii

Send Us Your Comments

PL/SQL User's Guide and Reference, Release 8.0
Part No. A58236-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

« Didyou find any errors?

« Isthe information clearly presented?

« Do you need more information? If so, where?

= Are the examples correct? Do you need more examples?
« What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can also send comments to us by

email: infodev@us.oracle.com

fax: (650) 506-7200
Attn: Server Technologies Documentation Manager

letter: Server Technologies Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
USA

If you would like a reply, please give your name, address, and telephone number below.

Xii

Xiv

Preface

PL/SQL is Oracle’s procedural extension to SQL, the standard database access
language. A full-fledged programming language, PL/SQL offers modern software
engineering features such as data encapsulation, overloading, exception handling,
and information hiding. PL/SQL also offers seamless SQL access, tight integration
with the Oracle server and tools, portability, and security.

This guide explains all the concepts behind PL/SQL and illustrates every facet of
the language. Good programming style is stressed throughout and supported by
numerous examples. Using this guide, you learn PL/SQL quickly and effectively,
and you learn why PL/SQL is ideal for building enterprise-wide applications.

Major Topics

What’s New in This Edition?
How This Guide Is Organized
Notational Conventions
Sample Database Tables

XV

Audience

Anyone developing applications for Oracle will benefit from reading this guide.
Written especially for programmers, this comprehensive treatment of PL/SQL will
also be of value to systems analysts, project managers, and others interested in
database applications. To use this guide effectively, you need a working knowledge
of the following subjects:

« aprocedural programming language such as Ada, C, or COBOL
« the SQL database language
« Oracle concepts and terminology

You will not find installation instructions or system-specific information in this
guide. For that kind of information, see the Oracle installation or user’s guide for
your system.

What's New in This Edition?

XVi

Release 8.0 of PL/SQL offers an array of new features that help you build powerful
database applications. For example, now you can benefit from

« an interface for calling routines written in other languages
« support for object-oriented programming based on object types

« the collection types TABLE and VARRAY, which allow you to declare nested
tables and variable-size arrays

« the LOB (large object) datatypes BFILE, BLOB, CLOB, and NCLOB, which let
you manipulate blocks of unstructured data up to four gigabytes in size

« extended National Language Support (NLS) including national character sets
and the datatypes NCHAR and NVARCHAR?2, which store NLS data

For more information, see Appendix A

Note: This guide applies to Oracle8 and the Oracle8 Enterprise Edition.
They have the same basic features. However, several advanced features
are available only with the Enterprise Edition, and some of these are
optional. For example, to use object types, you must have the Enterprise
Edition and the Objects Option. To find out which features are available
to you, see Getting to Know Oracle8 and the Oracle8 Enterprise Edition.

How This Guide Is Organized

The PL/SQL User’s Guide and Reference has 11 chapters and 6 appendices.
Chapters 1 through 10 introduce you to PL/SQL and shows you how to use its
many features. Chapter 11 serves as a reference to PL/SQL commands, syntax, and
semantics. Appendices A through F provide a survey of new features, sample
programs, supplementary technical information, and a list of reserved words.

Chapter 1: Overview This chapter surveys the main features of PL/SQL and
points out the advantages they offer. It also acquaints you with the basic concepts
behind PL/SQL and the general appearance of PL/SQL programs.

Chapter 2: Fundamentals This chapter focuses on the small-scale aspects of
PL/SQL. It discusses lexical units, scalar datatypes, user-defined subtypes, data
conversion, expressions, assignments, block structure, declarations, and scope.

Chapter 3: Control Structures This chapter shows you how to structure the
flow of control through a PL/SQL program. It describes conditional, iterative, and
sequential control. You learn how to apply simple but powerful control structures
such as IF-THEN-ELSE and WHILE-LOOP.

Chapter 4: Collections and Records This chapter focuses on the composite
datatypes TABLE, VARRAY, and RECORD. You learn how to reference and
manipulate whole collections of data. You also learn how to treat related but
dissimilar data as a logical unit.

Chapter 5: Interaction with Oracle This chapter shows you how PL/SQL
supports the SQL commands, functions, and operators that let you manipulate
Oracle data. You also learn how to manage cursors, process transactions, and
safeguard your database.

Chapter 6: Error Handling This chapter provides an in-depth discussion of error
reporting and recovery. You learn how to detect and handle errors using PL/SQL
exceptions.

Chapter 7: Subprograms This chapter shows you how to write and use
subprograms. It discusses procedures, functions, forward declarations, actual
versus formal parameters, positional and named notation, parameter modes,
parameter default values, aliasing, overloading, and recursion.

Xvii

xViii

Chapter 8: Packages This chapter shows you how to bundle related PL/SQL
types, items, and subprograms into a package. Once written, your general-purpose
package is compiled, then stored in an Oracle database, where its contents can be
shared by many applications.

Chapter 9: Object Types This chapter introduces you to object-oriented
programming based on object types, which provide abstract templates for real-
world objects. You learn how to define object types and manipulate objects.

Chapter 10: External Procedures This chapter presents a new PL/SQL interface
for calling routines written in other languages. It shows you how dynamic link
libraries (DLLs) already written and available in another language can be called
directly from PL/SQL programs.

Chapter 11: Language Elements This chapter uses syntax diagrams to show
how commands, parameters, and other language elements are sequenced to form
PL/SQL statements. Also, it provides usage notes and short examples to help you
become fluent in PL/SQL quickly.

Appendix A: New Features This appendix surveys the major new features in
Release 8.0 of PL/SQL.

Appendix B: Sample Programs This appendix provides several PL/SQL
programs to guide you in writing your own. The sample programs illustrate
important concepts and features.

Appendix C: CHAR versus VARCHAR2 Semantics This appendix explains the
subtle but important semantic differences between the CHAR and VARCHAR?2
base types.

Appendix D: PL/SQL Wrapper This appendix shows you how to run the
PL/SQL Wrapper, a stand-alone utility that enables you to deliver PL/SQL
applications without exposing your source code.

Appendix E: Name Resolution Thus appendix explains how PL/SQL resolves
references to names in potentially ambiguous procedural and SQL statements.

Appendix F: Reserved Words This appendix lists those words reserved for use
by PL/SQL.

Notational Conventions

This guide uses the following notation in code examples:

lower case

UPPER CASE

Angle brackets enclose the name of a syntactic element.

A double hyphen begins a single-line comment, which
extends to the end of a line.

A slash-asterisk and an asterisk-slash delimit a multi-line
comment, which can span multiple lines.

An ellipsis shows that statements or clauses irrelevant to the
discussion were left out.

Lower case denotes user-defined items such as variables,
parameters, and exceptions.

Upper case denotes PL/SQL keywords.

Terms being defined for the first time, words being emphasized, error messages,
and book titles are italicized.

The syntax of PL/SQL is described using a simple variant of Backus-Naur Form
(BNF), which has the following symbols and lexical conventions:

(1
{
|

lower case

UPPER CASE

punctuation

Brackets enclose optional items.
Braces enclose items only one of which is required.

A vertical bar separates alternatives within brackets or
braces.

An ellipsis shows that the preceding syntactic element can be
repeated.

Lower case denotes a syntactic element for which you must
substitute a literal, identifier, or construct, whichever is
appropriate.

Upper case denotes PL/SQL keywords, which must be
spelled as shown but can be entered in lower or mixed case.

Punctuation other than brackets, braces, vertical bars, and
ellipses must be entered as shown.

Xix

Sample Database Tables

XX

Most programming examples in this guide use two sample database tables named

dept and emp Their definitions follow:

CREATE TABLE dept (deptno NUMBER(2) NOT NULL,
dname VARCHAR2(14),
loc VARCHAR2(13))

CREATE TABLE emp (empno NUMBER(4) NOT NULL,
ename VARCHAR2(10),
job VARCHAR2(9),
mgr NUMBER(),
hiredate DATE,
sal NUMBER(7.2),
comm NUMBER(7,2),
deptno NUMBER(2))

Sample Data
Respectively, the dept and emptables contain the following rows of data:
DEPTNO DNAME LOC

10 ACCOUNTING NEW YORK
20 RESEARCH DALLAS

30 SALES CHICAGO

40 OPERATIONS BOSTON

EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
7369 SMITH CLERK 7902 17-DEC-80 800 20
TA9ALLEN SALESMAN 769820-FEB-81 1600 300 30
7521 WARD SALESMAN 7698 22-FEB-81 1250 500 30
7566 JONES MANAGER 783902-APR-81 2975 20
7654 MARTIN SALESMAN 7698 28-SEP-81 1250 1400 30
7698 BLAKE MANAGER 7839 01-MAY-81 2850 30
7782 CLARK MANAGER 783909-JUN-81 2450 10
7788 SCOTT ANALYST 7566 19-APR-87 3000 20
7839KING PRESIDENT 17-NOV-81 5000 10

7844 TURNER SALESMAN 7698 08-SEP-81 1500 30
7876 ADAMS CLERK 7788 23-MAY-87 1100 20
7900JAMES CLERK 7698 03-DEC-81 950 30
7902FORD ANALYST 7566 03-DEC-81 3000 20
7934 MILLER CLERK 7782 23-JAN-82 1300 10

Your Comments Are Welcome

We appreciate your comments and suggestions. In fact, your opinions are the most
important feedback we receive. We encourage you to use the Reader’s Comment
Form at the front of this guide. You can also send comments to us by

email: infodev@us.oracle.com

fax: (650) 506-7200
Attn: Server Technologies Documentation Manager

letter: Server Technologies Documentation Manager
Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065
USA

XXi

XXii

1

Overview

The limits of my language mean the limits of my world.
Ludwig Wittgenstein

This chapter surveys the main features of PL/SQL and points out the advantages
they offer. It also acquaints you with the basic concepts behind PL/SQL and the
general appearance of PL/SQL programs. You see how PL/SQL bridges the gap
between database technology and procedural programming languages.

Major Topics

Main Features
Architecture
Advantages of PL/SQL

Overview 1-1

Main Features

Main Features

A good way to get acquainted with PL/SQL is to look at a sample program. The
program below processes an order for tennis rackets. First, it declares a variable of
type NUMBERo store the quantity of tennis rackets on hand. Then, it retrieves the
guantity on hand from a database table named inventory . If the quantity is
greater than zero, the program updates the table and inserts a purchase record into
another table named purchase_record . Otherwise, the program inserts an out-
of-stock record into the purchase_record table.

— available online in file ‘'exampl’
DECLARE
qty_on_hand NUMBER(5);
BEGIN
SELECT quantity INTO qty_on_hand FROM inventory
WHERE product = TENNIS RACKET
FOR UPDATE OF quartty;
IF gty_on_hand >0 THEN - check quantity
UPDATE inventory SET quantity = quantity - 1
WHERE product = TENNIS RACKET;
INSERT INTO purchase_record
VALUES (Tennis racket purchased’, SYSDATE);
ELSE
INSERT INTO purchase_record
VALUES (Out of tennis rackets’, SYSDATE);
ENDIF;
COMMIT;
END;

With PL/SQL, you can use SQL statements to manipulate Oracle data and flow-of-
control statements to process the data. Moreover, you can declare constants and
variables, define procedures and functions, and trap runtime errors. Thus, PL/SQL
combines the data manipulating power of SQL with the data processing power of
procedural languages.

Block Structure

PL/SQL is a block-structured language. That is, the basic units (procedures,
functions, and anonymous blocks) that make up a PL/SQL program are logical
blocks, which can contain any number of nested sub-blocks. Typically, each logical
block corresponds to a problem or subproblem to be solved. Thus, PL/SQL
supports the divide-and- conquer approach to problem solving called stepwise
refinement.

1-2 PL/SQL User's Guide and Reference

Main Features

A block (or sub-block) lets you group logically related declarations and statements.
That way, you can place declarations close to where they are used. The declarations
are local to the block and cease to exist when the block completes.

As Figure 1-1 shows, a PL/SQL block has three parts: a declarative part, an
executable part, and an exception-handling part. (In PL/SQL, a warning or error
condition is called an exception.) Only the executable part is required.

The order of the parts is logical. First comes the declarative part, in which items can
be declared. Once declared, items can be manipulated in the executable part.
Exceptions raised during execution can be dealt with in the exception-handling
part.

Figure 1-1 Block Structure

[DECLARE

-- declarations]
BEGIN

-- statements
[EXCEPTION
-- handlers]
END;

You can nest sub-blocks in the executable and exception-handling parts of a
PL/SQL block or subprogram but not in the declarative part. Also, you can define
local subprograms in the declarative part of any block. However, you can call local
subprograms only from the block in which they are defined.

Variables and Constants

PL/SQL allows you to declare constants and variables, then use them in SQL and
procedural statements anywhere an expression can be used. However, forward
references are not allowed. So, you must declare a constant or variable before
referencing it in other statements, including other declarative statements.

Overview 1-3

Main Features

Declaring Variables

Variables can have any SQL datatype, such as CHARDATE and NUMBERor any
PL/SQL datatype, such as BOOLEANINd BINARY_INTEGER For example, assume
that you want to declare a variable named part_no to hold 4-digit numbers and a
variable named in_stock to hold the Boolean value TRUEor FALSE You declare
these variables as follows:

part no NUMBER(®4),
in_stock BOOLEAN,;

You can also declare nested tables, variable-size arrays (varrays for short), and
records using the TABLE, VARRAYand RECORDBomposite datatypes.

Assigning Values to a Variable

You can assign values to a variable in two ways. The first way uses the assignment
operator (:=), a colon followed by an equal sign. You place the variable to the left
of the operator and an expression to the right. Some examples follow:

tax := price * tax_rate;

bonus := current_salary *0.10;

amount := TO_NUMBER(SUBSTR(750 dollars, 1, 3));
valid :=FALSE;

The second way to assign values to a variable is to select or fetch database values
into it. In the following example, you have Oracle compute a 10% bonus when you
select the salary of an employee:

SELECT sal*0.10 INTO bonus FROM emp WHERE empno =emp _id;

Then, you can use the variable bonus in another computation or insert its value
into a database table.

Declaring Constants

Declaring a constant is like declaring a variable except that you must add the
keyword CONSTANENd immediately assign a value to the constant. Thereafter, no
more assignments to the constant are allowed. In the following example, you
declare a constant named credit_limit

credit_imit CONSTANT REAL :=5000.00;

1-4 PL/SQL User's Guide and Reference

Main Features

Cursors

Oracle uses work areas to execute SQL statements and store processing
information. A PL/SQL construct called a cursor lets you name a work area and
access its stored information. There are two kinds of cursors: implicit and explicit.
PL/SQL implicitly declares a cursor for all SQL data manipulation statements,
including queries that return only one row. For queries that return more than one
row, you can explicitly declare a cursor to process the rows individually. An
example follows:

DECLARE
CURSORCLIS
SELECT empno, ename, job FROM emp WHERE deptno = 20;

The set of rows returned by a multi-row query is called the result set. Its size is the
number of rows that meet your search criteria. As Figure 1-2 shows, an explicit
cursor “points” to the current row in the result set. This allows your program to
process the rows one at a time.

Figure 1-2 Query Processing

Result Set
7369 SMITH CLERK
7566 JONES MANAGER
7876 ADAMS CLERK
7902 FORD ANALYST

Multi-row query processing is somewhat like file processing. For example, a
COBOL program opens a file, processes records, then closes the file. Likewise, a
PL/SQL program opens a cursor, processes rows returned by a query, then closes
the cursor. Just as a file pointer marks the current position in an open file, a cursor
marks the current position in a result set.

You use the OPENFETCH and CLOSEstatements to control a cursor. The OPEN
statement executes the query associated with the cursor, identifies the result set,
and positions the cursor before the first row. The FETCHstatement retrieves the
current row and advances the cursor to the next row. When the last row has been
processed, the CLOSEstatement disables the cursor.

Overview 1-5

Main Features

Cursor FOR Loops

In most situations that require an explicit cursor, you can simplify coding by using
a cursor FORIoop instead of the OPENFETCH and CLOSEstatements. A cursor
FORIloop implicitly declares its loop index as a record that represents a row in a
database table, opens a cursor, repeatedly fetches rows of values from the result set
into fields in the record, then closes the cursor when all rows have been processed.
In the following example, the cursor FORIloop implicitly declares emp_rec as a
record:

DECLARE
CURSORC1IS
SELECT ename, sal, hiredate, deptno FROM emp;

BEGIN
FOR emp_recIN c1 LOOP

salary total .= salary_total +emp_rec.sal;
END LOOP;

To reference individual fields in the record, you use dot notation, in which a dot (.)
serves as the component (field) selector.

Cursor Variables

Like a cursor, a cursor variable points to the current row in the result set of a multi-
row query. But, unlike a cursor, a cursor variable can be opened for any type-
compatible query. It is not tied to a specific query. Cursor variables are true
PL/SQL variables, to which you can assign new values and which you can pass to
subprograms stored in an Oracle database. This gives you more flexibility and a
convenient way to centralize data retrieval.

Typically, you open a cursor variable by passing it to a stored procedure that
declares a cursor variable as one of its formal parameters. The following procedure
opens the cursor variable generic_cv for the chosen query:

PROCEDURE open_cv (generic_cv IN OUT GenericCurTyp, choice INNUMBER) IS
BEGIN
IF choice=1THEN
OPEN generic_cv FOR SELECT * FROM emp;
ELSIF choice =2 THEN
OPEN generic_cv FOR SELECT * FROM dept;
ELSIF choice =3 THEN
OPEN generic_cv FOR SELECT * FROM salgrade;
ENDIF;

1-6 PL/SQL User's Guide and Reference

Main Features

Attributes

PL/SQL variables and cursors have attributes, which are properties that let you
reference the datatype and structure of an item without repeating its definition.
Database columns and tables have similar attributes, which you can use to ease
maintenance. A percent sign (%) serves as the attribute indicator.

%TYPE

The %TYPEattribute provides the datatype of a variable or database column. This is
particularly useful when declaring variables that will hold database values. For
example, assume there is a column named title in a table named books . To
declare a variable named my _title that has the same datatype as column title
you use dot notation and the %TYPEattribute, as follows:

my_title books.tile%TYPE;

Declaring my_title with %TYPEhas two advantages. First, you need not know
the exact datatype of title . Second, if you change the database definition of
titte (make it a longer character string, for example), the datatype of my _title
changes accordingly at run time.

%ROWTYPE

In PL/SQL, records are used to group data. A record consists of a number of
related fields in which data values can be stored. The %ROWTY Rétribute provides
a record type that represents a row in a table. The record can store an entire row of
data selected from the table or fetched from a cursor or cursor variable.

Columns in a row and corresponding fields in a record have the same names and
datatypes. In the example below, you declare a record named dept_rec . Its fields
have the same names and datatypes as the columns in the dept table.

DECLARE
dept_rec dept¥eROWTYPE; — declare record variable

You use dot notation to reference fields, as the following example shows:
my_deptno :=dept_rec.deptno;

Overview 1-7

Main Features

If you declare a cursor that retrieves the last name, salary, hire date, and job title of
an employee, you can use %ROWTYRR declare a record that stores the same
information, as follows:

DECLARE
CURSOR c1 IS SELECT ename, sal, hiredate, job FROM emp;
emp_rec c1%ROWTYPE; - declare record variable that
- represents a row in the emp table

When you execute the statement

FETCH C1INTO emp _rec;

the value in the ename column of the emptable is assigned to the ename field of
emp_rec , the value in the sal column is assigned to the sal field, and so on.
Figure 1-3 shows how the result might appear.

Figure 1-3 %ROWTYPE Record

emp_rec
emp_rec.ename JAMES
emp_rec.sal 950.00
emp_rec.hiredate 03-DEC-95
emp_rec.job CLERK

Control Structures

Control structures are the most important PL/SQL extension to SQL. Not only does
PL/SQL let you manipulate Oracle data, it lets you process the data using
conditional, iterative, and sequential flow-of-control statements such as IF-THEN-
ELSE, FOR-LOOPWHILE-LOOREXIT-WHEN and GOTOCollectively, these
statements can handle any situation.

Conditional Control

Often, it is necessary to take alternative actions depending on circumstances. The
IF-THEN-ELSE statement lets you execute a sequence of statements conditionally.
The IF clause checks a condition; the THENclause defines what to do if the
condition is true; the ELSEclause defines what to do if the condition is false or null.

1-8 PL/SQL User's Guide and Reference

Main Features

Consider the program below, which processes a bank transaction. Before allowing
you to withdraw $500 from account 3, it makes sure the account has sufficient
funds to cover the withdrawal. If the funds are available, the program debits the
account; otherwise, the program inserts a record into an audit table.

—available online infile ‘'examp2’
DECLARE
acct_balance NUMBER(11,2);
acct CONSTANT NUMBER(®4) =3;
debit amt CONSTANT NUMBER(5,2) :=500.00;
BEGIN
SELECT bal INTO acct_balance FROM accounts
WHERE account_id =acct
FOR UPDATE OF bal;
IF acct_balance >=debit amt THEN
UPDATE accounts SET bal =bal - debit_amt
WHERE account_id = acct;
ELSE
INSERT INTO temp VALUES
(acct, acct_balance, 'Insufficient funds’);
—insert account, current balance, and message
ENDIF;
COMMIT;
END;

A sequence of statements that uses query results to select alternative actions is
common in database applications. Another common sequence inserts or deletes a
row only if an associated entry is found in another table. You can bundle these
common sequences into a PL/SQL block using conditional logic. This can improve
performance and simplify the integrity checks built into Oracle Forms applications.

[terative Control

LOOPstatements let you execute a sequence of statements multiple times. You place
the keyword LOOPbefore the first statement in the sequence and the keywords END
LOOPafter the last statement in the sequence. The following example shows the
simplest kind of loop, which repeats a sequence of statements continually:

LOOP
- sequence of statements
END LOOP;

Overview 1-9

Main Features

The FOR-LOOPstatement lets you specify a range of integers, then execute a
sequence of statements once for each integer in the range. For example, suppose
that you are a manufacturer of custom-made cars and that each car has a serial
number. To keep track of which customer buys each car, you might use the
following FORIloop:

FORIIN 1.order_gty LOOP
UPDATE sales SET custno = customer_id
WHERE serial_num=serial num_seq.NEXTVAL;
END LOOP;

The WHILE-LOOPstatement associates a condition with a sequence of statements.
Before each iteration of the loop, the condition is evaluated. If the condition yields
TRUE the sequence of statements is executed, then control resumes at the top of the
loop. If the condition yields FALSE or NULL, the loop is bypassed and control
passes to the next statement.

In the following example, you find the first employee who has a salary over $4000
and is higher in the chain of command than employee 7902:

— available online in file ‘'examp3
DECLARE
salary emp.sal%TYPE;
mgr_num emp.mgr%TYPE;
last name emp.ename%TYPE;
starting_empno CONSTANT NUMBER(4) :=7902;
BEGIN
SELECT sal, mgr INTO salary, mgr_num FROM emp
WHERE empno = starting_empno;
WHILE salary <4000 LOOP
SELECT sal, mgr, ename INTO salary, mgr_num, last_name
FROM emp WHERE empno =mgr_num;
END LOOP;
INSERT INTO temp VALUES (NULL, salary, last_name);
COMMIT;
END;

1-10 PL/SQL User's Guide and Reference

Main Features

Modularity

The EXIT-WHENSstatement lets you complete a loop if further processing is
impossible or undesirable. When the EXIT statement is encountered, the condition
in the WHEN Iause is evaluated. If the condition yields TRUE the loop completes
and control passes to the next statement. In the following example, the loop
completes when the value of total exceeds 25,000:

LOOP

total := total + salary;

EXIT WHEN total > 25000; — exit loop if condition is true
END LOOP;
— control resumes here

Sequential Control

The GOTGtatement lets you branch to a label unconditionally. The label, an
undeclared identifier enclosed by double angle brackets, must precede an
executable statement or a PL/SQL block. When executed, the GOTGtatement
transfers control to the labeled statement or block, as the following example shows:

IF rating > 90 THEN
GOTO calc_raise; — branchto label
ENDIF;

<<calc_raise>>

IFjob_title ="SALESMAN' THEN - control resumes here
amount ;= commission * 0.25;

ELSE
amount :=salary *0.10;

ENDIF;

Modularity lets you break an application down into manageable, well-defined logic
modules. Through successive refinement, you can reduce a complex problem to a
set of simple problems that have easy-to-implement solutions. PL/SQL meets this
need with program units. Besides blocks and subprograms, PL/SQL provides the
package, which allows you to group related program items into larger units.

Overview 1-11

Main Features

Subprograms

PL/SQL has two types of subprograms called procedures and functions, which can
take parameters and be invoked (called). As the following example shows, a
subprogram is like a miniature program, beginning with a header followed by an
optional declarative part, an executable part, and an optional exception-handling
part:

PROCEDURE award_bonus (emp_id NUMBER) IS
bonus REAL;
comm_missing EXCEPTION;
BEGIN
SELECT comm *0.15 INTO bonus FROM emp WHERE empno =emp_id;
IF bonus IS NULL THEN
RAISE comm_missing;
ELSE
UPDATE payroll SET pay = pay + bonus WHERE empno =emp_id;
ENDIF;
EXCEPTION
WHEN comm_missing THEN

END award_bonus;

When called, this procedure accepts an employee number. It uses the number to
select the employee’s commission from a database table and, at the same time,
compute a 15% bonus. Then, it checks the bonus amount. If the bonus is null, an
exception is raised; otherwise, the employee’s payroll record is updated.

External Procedures

Some programming tasks are more quickly or easily done in a lower-level language
such as C, which is more efficient at machine-precision calculations. For example, a
Fast Fourier Transform (FFT) routine written in C runs faster than one written in
PL/SQL.

To support such special-purpose processing, PL/SQL provides an interface for
calling routines written in other languages. This makes the strengths and
capabilities of those languages available to you.

An external procedure is a third-generation-language routine stored in a dynamic
link library (DLL), registered with PL/SQL, and called by you to do special-
purpose processing. At run time, PL/SQL loads the library dynamically, then calls
the routine as if it were a PL/SQL subprogram.

1-12 PL/SQL User's Guide and Reference

Main Features

Typically, external procedures are used to interface with embedded systems, solve
scientific and engineering problems, analyze data, or control real-time devices and
processes. In the following example, you write a PL/SQL stand-alone function
named interp that registers the C routine c_interp as an external function:

CREATE FUNCTION interp (
—find the value of y at x degrees using Lagrange interpolation
X FLOAT,
y FLOAT)
RETURN FLOAT AS EXTERNAL
LIBRARY mathlib
NAME "c_interp"
LANGUAGEC;

Packages

PL/SQL lets you bundle logically related types, variables, cursors, and
subprograms into a package. Each package is easy to understand and the interfaces
between packages are simple, clear, and well defined. This aids application
development.

Packages usually have two parts: a specification and a body. The specification is the
interface to your applications; it declares the types, constants, variables, exceptions,
cursors, and subprograms available for use. The body defines cursors and
subprograms and so implements the specification.

In the following example, you package two employment procedures:

CREATE PACKAGE emp_actions AS — package specification
PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...);
PROCEDURE fire_employee (emp_id NUMBER);

END emp_actions;

CREATE PACKAGE BODY emp_actions AS — package body
PROCEDURE hire_employee (empno NUMBER, ename CHAR, ...) IS
BEGIN

INSERT INTO emp VALUES (empno, ename, ...);
END hire_employee;
PROCEDURE fire_employee (emp_id NUMBER) IS
BEGIN
DELETE FROM emp WHERE empno =emp_id;
END fire_employee;
END emp_actions;

Overview 1-13

Main Features

Only the declarations in the package specification are visible and accessible to
applications. Implementation details in the package body are hidden and
inaccessible.

Packages can be compiled and stored in an Oracle database, where their contents
can be shared by many applications. When you call a packaged subprogram for the
first time, the whole package is loaded into memory. So, subsequent calls to related
subprograms in the package require no disk 1/0. Thus, packages can enhance
productivity and improve performance.

Data Abstraction

Data abstraction lets you extract the essential properties of data while ignoring
unnecessary details. Once you design a data structure, you can forget the details
and focus on designing algorithms that manipulate the data structure.

Collections

The collection types TABLEand VARRAYallow you to declare nested tables and
variable-size arrays (varrays for short). A collection is an ordered group of
elements, all of the same type. Each element has a unique subscript that determines
its position in the collection.

To reference an element, you use standard subscripting syntax. For example, the
following call references the fifth element in the nested table (of type Staff)
returned by function new_hires

DECLARE
TYPE Staff IS TABLE OF Employee;
staffer Employee;
FUNCTION new_hires (hiredate DATE) RETURN Staff IS
BEGIN
END;
BEGIN
staffer := new_hires(10-NOV-96))(5);

END;

Collections work like the arrays found in most third-generation programming
languages. They can store instances of an object type and, conversely, can be
attributes of an object type. Also, collections can be passed as parameters. So, you

can use them to move columns of data into and out of database tables or between
client-side applications and stored subprograms.

1-14 PL/SQL User's Guide and Reference

Main Features

Records

You can use the %ROWTY R#tribute to declare a record that represents a row in a
table or a row fetched from a cursor. But, with a user-defined record, you can
declare fields of your own.

Records contain uniquely named fields, which can have different datatypes.
Suppose you have various data about an employee such as name, salary, and hire
date. These items are dissimilar in type but logically related. A record containing a
field for each item lets you treat the data as a logical unit.

Consider the following example:

DECLARE
TYPE TimeRec IS RECORD (minutes SMALLINT, hours SMALLINT);
TYPE MeetingTyp IS RECORD (
day DATE,
time TimeRec, —nested record
place VARCHAR2(20),
purpose VARCHAR2(50));

Notice that you can nest records. That is, a record can be the component of another
record.

Object Types

In PL/SQL, object-oriented programming is based on object types. An object type
encapsulates a data structure along with the functions and procedures needed to
manipulate the data. The variables that form the data structure are called attributes.
The functions and procedures that characterize the behavior of the object type are
called methods.

Object types reduce complexity by breaking down a large system into logical
entities. This allows you to create software components that are modular,
maintainable, and reusable.

When you define an object type using the CREATE TYPBtatement (in SQL*Plus for
example), you create an abstract template for some real-world object. As the
following example of a bank account shows, the template specifies only those
attributes and behaviors the object will need in the application environment:

CREATE TYPE Bank_Account AS OBJECT (
acct_number INTEGER(5),
balance REAL,
status VARCHAR2(10),
MEMBER PROCEDURE open (amount IN REAL),
MEMBER PROCEDURE verify_acct (hum IN INTEGER),

Overview 1-15

Main Features

MEMBER PROCEDURE close (num IN INTEGER, amount OUT REAL),
MEMBER PROCEDURE deposit (num IN INTEGER, amount IN REAL),
MEMBER PROCEDURE withdraw (num IN INTEGER, amount IN REAL),
MEMBER FUNCTION curr_bal (num IN INTEGER) RETURN REAL

)

At run time, when the data structure is filled with values, you have created an
instance of an abstract bank account. You can create as many instances (called
objects) as you need. Each object has the number, balance, and status of an actual
bank account.

Information Hiding

With information hiding, you see only the details that are relevant at a given level
of algorithm and data structure design. Information hiding keeps high-level design
decisions separate from low-level design details, which are more likely to change.

Algorithms

You implement information hiding for algorithms through top-down design. Once
you define the purpose and interface specifications of a low-level procedure, you
can ignore the implementation details. They are hidden at higher levels. For
example, the implementation of a procedure named raise_salary is hidden. All
you need to know is that the procedure will increase a specific employee salary by
a given amount. Any changes to the definition of raise_salary are transparent
to calling applications.

Data Structures

You implement information hiding for data structures though data encapsulation. By
developing a set of utility subprograms for a data structure, you insulate it from
users and other developers. That way, other developers know how to use the
subprograms that operate on the data structure but not how the structure is
represented.

With PL/SQL packages, you can specify whether subprograms are public or
private. Thus, packages enforce data encapsulation by letting you put subprogram
definitions in a black box. A private definition is hidden and inaccessible. Only the
package, not your application, is affected if the definition changes. This simplifies
maintenance and enhancement.

1-16 PL/SQL User's Guide and Reference

Main Features

Error Handling

PL/SQL makes it easy to detect and process predefined and user-defined error
conditions called exceptions. When an error occurs, an exception is raised. That is,
normal execution stops and control transfers to the exception-handling part of your
PL/SQL block or subprogram. To handle raised exceptions, you write separate
routines called exception handlers.

Predefined exceptions are raised implicitly by the runtime system. For example, if
you try to divide a number by zero, PL/SQL raises the predefined exception
ZERO_DIVIDE automatically. You must raise user-defined exceptions explicitly
with the RAISE statement.

You can define exceptions of your own in the declarative part of any PL/SQL block
or subprogram. In the executable part, you check for the condition that needs
special attention. If you find that the condition exists, you execute a RAISE
statement. In the example below, you compute the bonus earned by a salesperson.
The bonus is based on salary and commission. So, if the commission is null, you
raise the exception comm_missing .

DECLARE

comm_missing EXCEPTION; — declare exception
BEGIN

IF commission IS NULL THEN
RAISE comm_missing; — raise exception
ELSE
bonus := (salary * 0.10) + (commission * 0.15);
ENDIF;
EXCEPTION
WHEN comm_missing THEN
— process ermor

Overview 1-17

Architecture

Architecture

The PL/SQL runtime system is a technology, not an independent product. Think of
this technology as an engine that executes PL/SQL blocks and subprograms. The
engine can be installed in an Oracle server or in an application development tool
such as Oracle Forms or Oracle Reports. So, PL/SQL can reside in two
environments:

« the Oracle server
« Oracle tools

These two environments are independent. PL/SQL might be available in the Oracle
server but unavailable in tools, or the other way around. In either environment, the
PL/SQL engine accepts as input any valid PL/SQL block or subprogram.

Figure 1-4 shows the PL/SQL engine processing an anonymous block. The engine
executes procedural statements but sends SQL statements to the SQL Statement
Executor in the Oracle server.

Figure 1-4 PL/SQL Engine

- N
PL/SQL Engine

PLISOL PLISOL procedural > E{Otceduréil
- atemen

Block Executor
Block I SoL
N—
' N
‘ SQL Statement Executor ’
Oracle
N e

1-18 PL/SQL User's Guide and Reference

Architecture

In the Oracle Server

Application development tools that lack a local PL/SQL engine must rely on
Oracle to process PL/SQL blocks and subprograms. When it contains the PL/SQL
engine, an Oracle server can process PL/SQL blocks and subprograms as well as
single SQL statements. The Oracle server passes the blocks and subprograms to its
local PL/SQL engine.

Anonymous Blocks

Anonymous PL/SQL blocks can be embedded in an Oracle Precompiler or OCI
program. At run time, the program, lacking a local PL/SQL engine, sends these
blocks to the Oracle server, where they are compiled and executed. Likewise,
interactive tools such as SQL*Plus and Enterprise Manager, lacking a local PL/SQL
engine, must send anonymous blocks to Oracle.

Stored Subprograms

Subprograms can be compiled separately and stored permanently in an Oracle
database, ready to be executed. A subprogram explicitly CREATHE using an Oracle
tool is called a stored subprogram. Once compiled and stored in the data dictionary,
it is a schema object, which can be referenced by any number of applications
connected to that database.

Stored subprograms defined within a package are called packaged subprograms;
those defined independently are called stand-alone subprograms. (Subprograms
defined within another subprogram or within a PL/SQL block are called local
subprograms. They cannot be referenced by other applications and exist only for
the convenience of the enclosing block.)

Stored subprograms offer higher productivity, better performance, memory
savings, application integrity, and tighter security. For example, by designing
applications around a library of stored procedures and functions, you can avoid
redundant coding and increase your productivity.

You can call stored subprograms from a database trigger, another stored
subprogram, an Oracle Precompiler application, an OCI application, or
interactively from SQL*Plus or Enterprise Manager. For example, you might call
the stand-alone procedure create_dept from SQL*Plus as follows:

SQL>EXECUTE create_dept(FINANCE’, NEW YORK);

Overview 1-19

Architecture

In Oracle Tools

Subprograms are stored in parsed, compiled form. So, when called, they are loaded
and passed to the PL/SQL engine immediately. Also, they take advantage of
shared memory. So, only one copy of a subprogram need be loaded into memory
for execution by multiple users.

Database Triggers

A database trigger is a stored subprogram associated with a table. You can have
Oracle automatically fire the database trigger before or after an INSERT, UPDATE
or DELETEstatement affects the table. One of the many uses for database triggers is
to audit data modifications. For example, the following database trigger fires
whenever salaries in the emptable are updated:

CREATE TRIGGER audit_sal
AFTER UPDATE OF sal ON emp
FOR EACHROW
BEGIN
INSERT INTO emp_audit VALUES ..
END;

You can use all the SQL data manipulation statements and any procedural
statement in the executable part of a database trigger.

When it contains the PL/SQL engine, an application development tool can process
PL/SQL blocks. The tool passes the blocks to its local PL/SQL engine. The engine
executes all procedural statements at the application site and sends only SQL
statements to Oracle. Thus, most of the work is done at the application site, not at
the server site.

Furthermore, if the block contains no SQL statements, the engine executes the
entire block at the application site. This is useful if your application can benefit
from conditional and iterative control.

Frequently, Oracle Forms applications use SQL statements merely to test the value
of field entries or to do simple computations. By using PL/SQL instead, you can
avoid calls to the Oracle server. Moreover, you can use PL/SQL functions to
manipulate field entries.

1-20 PL/SQL User's Guide and Reference

Advantages of PL/SQL

Advantages of PL/SQL

PL/SQL is a completely portable, high-performance transaction processing
language that offers the following advantages:

« support for SQL

« support for object-oriented programming
« better performance

« portability

« higher productivity

« integration with Oracle

Support for SQL

SQL has become the standard database language because it is flexible, powerful,
and easy to learn. A few English-like commands such as INSERT, UPDATEand
DELETEmake it easy to manipulate the data stored in a relational database.

SQL is non-procedural, meaning that you can state what you want done without
stating how to do it. Oracle determines the best way to carry out your request.
There is no necessary connection between consecutive statements because Oracle
executes SQL statements one at a time.

PL/SQL lets you use all the SQL data manipulation, cursor control, and transaction
control commands, as well as all the SQL functions, operators, and pseudocolumns.
So, you can manipulate Oracle data flexibly and safely. Also, PL/SQL fully
supports SQL datatypes. That reduces the need to convert data passed between
your applications and the database.

Support for Object-Oriented Programming

Obiject types are an ideal object-oriented modeling tool, which you can use to
reduce the cost and time required to build complex applications. Besides allowing
you to create software components that are modular, maintainable, and reusable,
object types allow different teams of programmers to develop software components
concurrently.

By encapsulating operations with data, object types let you move data-maintenance
code out of SQL scripts and PL/SQL blocks into methods. Also, object types hide
implementation details, so that you can change the details without affecting client
programs.

Overview 1-21

Advantages of PL/SQL

In addition, object types allow for realistic data modeling. Complex real-world
entities and relationships map directly into object types. That helps your programs

better reflect the world they are trying to simulate.

Better Performance

Without PL/SQL, Oracle must process SQL statements one at a time. Each SQL
statement results in another call to Oracle and higher performance overhead. In a
networked environment, the overhead can become significant. Every time a SQL
statement is issued, it must be sent over the network, creating more traffic.

However, with PL/SQL, an entire block of statements can be sent to Oracle at one
time. This can drastically reduce communication between your application and
Oracle. As Figure 1-5 shows, if your application is database intensive, you can use
PL/SQL blocks and subprograms to group SQL statements before sending them to

Oracle for execution.

Figure 1-5 PL/SQL Boosts Performance

PL/SQL also improves performance by adding procedural processing power to
Oracle tools. Using PL/SQL, a tool can do any computation quickly and efficiently
without calling on the Oracle server. This saves time and reduces network traffic.

1-22 PL/SQL User's Guide and Reference

(‘sad) >
Application — @ > Other DBMSs
(sad) >
~ o) .
N/
R
Application vovirt?\CII:?L/SQL
—
R
Oracle
Application RPC > \QV:}tQSPtIB/SB(gL
Procedures
N

Advantages of PL/SQL

Portability
Applications written in PL/SQL are portable to any operating system and platform
on which Oracle runs. In other words, PL/SQL programs can run anywhere Oracle
can run; you need not tailor them to each new environment. That means you can
write portable program libraries, which can be reused in different environments.
Higher Productivity

PL/SQL adds functionality to non-procedural tools such as Oracle Forms and
Oracle Reports. With PL/SQL in these tools, you can use familiar procedural
constructs to build applications. For example, you can use an entire PL/SQL block
in an Oracle Forms trigger. You need not use multiple trigger steps, macros, or user
exits. Thus, PL/ZSQL increases productivity by putting better tools in hands of
programmers.

Moreover, PL/SQL is the same in all environments. As soon as you master PL/SQL
with one Oracle tool, you can transfer your knowledge to other tools, and so
multiply the productivity gains. For example, scripts written with one tool can be
used by other tools.

Integration with Oracle

Both PL/SQL and Oracle are based on SQL. Moreover, PL/SQL supports all the
SQL datatypes. Combined with the direct access that SQL provides, these shared
datatypes integrate PL/SQL with the Oracle data dictionary.

The %TYPENnd %ROWTY RPé#tributes further integrate PL/SQL with the data
dictionary. For example, you can use the %TYPHEttribute to declare variables,
basing the declarations on the definitions of database columns. If a definition
changes, the variable declaration changes accordingly at run time. This provides
data independence, reduces maintenance costs, and allows programs to adapt as
the database changes to meet new business needs.

Overview 1-23

Advantages of PL/SQL

1-24 PL/SQL User's Guide and Reference

2

Fundamentals

There are six essentials in painting. The first is called spirit; the second, rhythm; the third,
thought; the fourth, scenery; the fifth, the brush; and the last is the ink.
Ching Hao

The previous chapter provided an overview of PL/SQL. This chapter focuses on
the small-scale aspects of the language. Like every other programming language,
PL/SQL has a character set, reserved words, punctuation, datatypes, rigid syntax,
and fixed rules of usage and statement formation. You use these basic elements of
PL/SQL to represent real-world objects and operations.

Major Topics
Character Set

Lexical Units
Datatypes
User-Defined Subtypes
Datatype Conversion
Declarations

Naming Conventions
Scope and Visibility
Assignments
Expressions and Comparisons
Built-In Functions

Fundamentals 2-1

Character Set

Character Set

Lexical Units

You write a PL/SQL program as lines of text using a specific set of characters. The
PL/SQL character set includes

« the upper and lowercase letters A .. Z,a .. z

« thenumerals0..9

« tabs, spaces, and carriage returns

« thesymbols()+-*/<>=1~::."@%,"#$ & _|{}?[1]

PL/SQL is not case sensitive, so lowercase letters are equivalent to corresponding
uppercase letters except within string and character literals.

A line of PL/SQL text contains groups of characters known as lexical units, which
can be classified as follows:

« delimiters (simple and compound symbols)
« identifiers, which include reserved words

« literals

« comments

For example, the line

bonus :=salary * 0.10; — compute bonus

contains the following lexical units:
« identifiers bonus and salary

« compound symbol ;=

« simple symbols * and ;

« numeric literal 0.10

« comment -- compute bonus

To improve readability, you can separate lexical units by spaces. In fact, you must
separate adjacent identifiers by a space or punctuation. The following line is illegal
because the reserved words ENDand IF are joined:

IF x>y THEN high :=x; ENDIF; —illegal

2-2 PL/SQL User’s Guide and Reference

Lexical Units

Delimiters

However, you cannot embed spaces in lexical units except for string literals and
comments. For example, the following line is illegal because the compound symbol
for assignment (:=) is split:

count: =count +1; —illegal

To show structure, you can divide lines using carriage returns and indent lines
using spaces or tabs. Compare these IF statements for readability:

IF x>y THEN max=x;ELSE max=y;END IF; | IFx>yTHEN
| max=x;
| ELSE

| max=y;

| ENDIF,

A delimiter is a simple or compound symbol that has a special meaning to PL/SQL.
For example, you use delimiters to represent arithmetic operations such as addition
and subtraction.

Simple Symbols
Simple symbols consist of one character; a list follows:

+ addition operator

% attribute indicator

" character string delimiter
component selector

/ division operator
expression or list delimiter

) expression or list delimiter

: host variable indicator

, item separator

multiplication operator

guoted identifier delimiter

relational operator

relational operator

relational operator

remote access indicator

; statement terminator

- subtraction/negation operator

@V/\

Fundamentals 2-3

Lexical Units

|dentifiers

Compound Symbols
Compound symbols consist of one character; a list follows:

* exponentiation operator

< relational operator

= relational operator

~= relational operator

<= relational operator

>= relational operator

= assignment operator

=> association operator

. range operator

|| concatenation operator

<< (beginning) label delimiter

>> (ending) label delimiter

- single-line comment indicator

F (beginning) multi-line comment delimiter
* (ending) multi-line comment delimiter

You use identifiers to name PL/SQL program items and units, which include
constants, variables, exceptions, cursors, cursor variables, subprograms, and
packages. Some examples of identifiers follow:

X

2

phonet
credit_limit
LastName
oracle$number

An identifier consists of a letter optionally followed by more letters, numerals,
dollar signs, underscores, and number signs. Other characters such as hyphens,
slashes, and spaces are illegal, as the following examples show:

mine&yours - illegal ampersand
debit-amount — illegal hyphen
onfoff —illegal slash

userid —illegal space

2-4 PL/SQL User’s Guide and Reference

Lexical Units

The next examples show that adjoining and trailing dollar signs, underscores, and
number signs are legal:

money$$ree
SN##

try_again

You can use upper, lower, or mixed case to write identifiers. PL/SQL is not case
sensitive except within string and character literals. So, if the only difference
between identifiers is the case of corresponding letters, PL/SQL considers the
identifiers to be the same, as the following example shows:

lastname
LastName —same as lastname
LASTNAME - same as lastname and LastName

The length of an identifier cannot exceed 30 characters. But, every character,
including dollar signs, underscores, and number signs, is significant. For example,
PL/SQL considers the following identifiers to be different:

lastname
last_ name

Identifiers should be descriptive. So, avoid obscure names such as cpm. Instead, use
meaningful names such as cost_per_thousand

Reserved Words

Some identifiers, called reserved words, have a special syntactic meaning to PL/SQL
and so should not be redefined. For example, the words BEGIN and END which
bracket the executable part of a block or subprogram, are reserved. As the next
example shows, if you try to redefine a reserved word, you get a compilation error:

DECLARE
end BOOLEAN; - illegal; causes compilation error
However, you can embed reserved words in an identifier, as the following example
shows:
DECLARE
end_of game BOOLEAN; —legal

Often, reserved words are written in upper case to promote readability. However,
like other PL/SQL identifiers, reserved words can be written in lower or mixed
case. For a list of reserved words, see Appendix F.

Fundamentals 2-5

Lexical Units

Predefined Identifiers

Identifiers globally declared in package STANDARDsuch as the exception
INVALID_NUMBER can be redeclared. However, redeclaring predefined identifiers
is error prone because your local declaration overrides the global declaration.

Quoted Identifiers

For flexibility, PL/SQL lets you enclose identifiers within double quotes. Quoted
identifiers are seldom needed, but occasionally they can be useful. They can
contain any sequence of printable characters including spaces but excluding double
quotes. Thus, the following identifiers are legal:

N

"last name”

"on/off switch”

"employee(s)”
ek header info *

The maximum length of a quoted identifier is 30 characters not counting the double
guotes. Though allowed, using PL/SQL reserved words as quoted identifiers is a
poor programming practice.

Some PL/SQL reserved words are not reserved by SQL. For example, you can use
the PL/SQL reserved word TYPEin a CREATE TABLEtatement to name a
database column. But, if a SQL statement in your program refers to that column,
you get a compilation error, as the following example shows:

SELECT acct, type, bal INTO ... — causes compilation error

To prevent the error, enclose the uppercase column name in double quotes, as
follows:

SELECT acct, " TYPE", bal INTO ...

The column name cannot appear in lower or mixed case (unless it was defined that

way in the CREATE TABLEtatement). For example, the following statement is
invalid:

SELECT acct, type”, bal INTO ... — causes compilation error

Alternatively, you can create a view that renames the troublesome column, then use
the view instead of the base table in SQL statements.

2-6 PL/SQL User’s Guide and Reference

Lexical Units

Literals

A literal is an explicit numeric, character, string, or Boolean value not represented
by an identifier. The numeric literal 147 and the Boolean literal FALSE are examples.

Numeric Literals

Two kinds of numeric literals can be used in arithmetic expressions: integers and
reals. An integer literal is an optionally signed whole number without a decimal
point. Some examples follow:

030 6 -14 0 +32767

A real literal is an optionally signed whole or fractional number with a decimal
point. Several examples follow:

6.6667 00 -120 3.14159 +830000 5 25.

PL/SQL considers numbers such as 12.0 and 25. to be reals even though they have
integral values.

Numeric literals cannot contain dollar signs or commas, but can be written using
scientific notation. Simply suffix the number with an E (or e) followed by an
optionally signed integer. A few examples follow:

2E5 10E-7 3141590 -1E38 -9.5e-3
E stands for “times ten to the power of.” As the next example shows, the number

after E is the power of ten by which the number before E must be multiplied (the
double asterisk (**) is the exponentiation operator):

B5E3=5 10*3=5 1000 =5000
The number after E also corresponds to the number of places the decimal point

shifts. In the last example, the implicit decimal point shifted three places to the
right; in the next example, it shifts three places to the left:

5E-3=5 10*-3=5 0.001=0.005

Character Literals

A character literal is an individual character enclosed by single quotes
(apostrophes). Several examples follow:

1z1 iOA)l 171 1 1Z| 1(1

Fundamentals 2-7

Lexical Units

Character literals include all the printable characters in the PL/SQL character set:
letters, numerals, spaces, and special symbols.

PL/SQL is case sensitive within character literals. For example, PL/SQL considers
the literals’Z’ and 'z’ to be different.

The character literals '0"..’9’ are not equivalent to integer literals, but can be
used in arithmetic expressions because they are implicitly convertible to integers.

String Literals

A character value can be represented by an identifier or explicitly written as a
string literal, which is a sequence of zero or more characters enclosed by single
guotes. Several examples follow:

"Hello, world!

"XYZ Corporation’

"10-NOV-9r

"He said "Life is like licking honey from a thom.”
'$1,000,000

All string literals except the null string (”’) have datatype CHAR

Given that apostrophes (single quotes) delimit string literals, how do you represent
an apostrophe within a string? As the next example shows, you write two single
guotes, which is not the same as writing a double quote:

‘Don’t leave without saving your work.”

PL/SQL is case sensitive within string literals. For example, PL/SQL considers the
following literals to be different:

‘baker
'Baker

Boolean Literals

Boolean literals are the predefined values TRUEand FALSEand the non-value
NULL, which stands for a missing, unknown, or inapplicable value. Remember,
Boolean literals are values, not strings. For example, TRUEis no less a value than
the number 25.

2-8 PL/SQL User’s Guide and Reference

Lexical Units

Comments

The PL/SQL compiler ignores comments, but you should not. Adding comments
to your program promotes readability and aids understanding. Generally, you use
comments to describe the purpose and use of each code segment. PL/SQL supports
two comment styles: single-line and multi-line.

Single-Line
Single-line comments begin with a double hyphen (--) anywhere on a line and
extend to the end of the line. A few examples follow:
— begin processing
SELECT sal INTO salary FROM emp — get current salary
WHERE empno =emp_id;
bonus :=salary * 0.15; — compute bonus amount

Notice that comments can appear within a statement at the end of a line.

While testing or debugging a program, you might want to disable a line of code.
The following example shows how you can “comment-out” the line;

- DELETE FROM emp WHERE comm IS NULL,

Multi-line

Multi-line comments begin with a slash-asterisk (/*), end with an asterisk-slash
(*/), and can span multiple lines. Some examples follow:

BEGIN
F Compute a 15% bonus for top-rated employees. */
IF rating >90 THEN
bonus :=salary * 0.15 /* bonus is based on salary */
ELSE
bonus :=0;
END If;

P The following line computes the area of a circle using pi,

which is the ratio between the circumference and diameter. */
area = pi *radius*2;

Fundamentals 2-9

Datatypes

Datatypes

You can use multi-line comment delimiters to comment-out whole sections of code,
as the following example shows:

*

LOOP
FETCH c1INTO emp_rec;
EXIT WHEN c1%NOTFOUND,;

END LOOP;
*

Restrictions

You cannot nest comments. Also, you cannot use single-line comments in a
PL/SQL block that will be processed dynamically by an Oracle Precompiler
program because end-of-line characters are ignored. As a result, single-line
comments extend to the end of the block, not just to the end of a line. So, use multi-
line comments instead.

Every constant and variable has a datatype, which specifies a storage format,
constraints, and valid range of values. PL/SQL provides a variety of predefined
datatypes. A scalar type has no internal components. A composite type has internal
components that can be manipulated individually. A reference type holds values,
called pointers, that designate other program items. A LOBtype holds values, called
locators, that specify the location of large objects (graphic images for example)
stored out-of-line.

Figure 2-1 shows the predefined datatypes available for your use. An additional
scalar type, MLSLABEL is available with Trusted Oracle, a specially secured version
of Oracle. The scalar types fall into four families, which store number, character,
Boolean, and date/time data, respectively.

2-10 PL/SQL User's Guide and Reference

Datatypes

Number Types

Figure 2—-1 Built-in Datatypes

PL/SQL Datatypes

Scalar Types Composite Types
RECORD
BINARY_INTEGER CHAR TABLE
DEC CHARACTER VARRAY
DECIMAL LONG
DOUBLE PRECISION LONG RAW
FLOAT NCHAR
INT NVARCHAR2
INTEGER RAW Reference Types
NATURAL ROWID REF CURSOR
NATURALN STRING REF object_type
NUMBER VARCHAR
NUMERIC VARCHAR?2
PLS_INTEGER
REAL BOOLEAN BFILE
SIGNTYPE BLOB
SMALLINT | DATE | cLOB
NCLOB

This section discusses the scalar types and LOBtypes. The composite types are
discussed in Chapter 4. The reference types are discussed in Chapter 5 and
Chapter 9.

Number types allow you to store numeric data (integers, real numbers, and
floating-point numbers), represent quantities, and do calculations.

BINARY_INTEGER

You use the BINARY_INTEGERdatatype to store signed integers. Its magnitude
range is -2147483647 .. 2147483647. Like PLS_INTEGERvalues, BINARY_INTEGER
values require less storage than NUMBERalues. However, most BINARY_INTEGER
operations are slower than PLS_INTEGERoperations. (See “PLS_INTEGER” on
page 2-13.)

Fundamentals 2-11

Datatypes

BINARY_INTEGER Subtypes A base type is the datatype from which a subtype is
derived. A subtype associates a base type with a constraint and so defines a subset
of values. For your convenience, PL/SQL predefines the following
BINARY_INTEGERsubtypes:

NATURAL
NATURALN
POSITIVE
POSITIVEN
SIGNTYPE

The subtypes NATURALand POSITIVE let you restrict an integer variable to non-
negative or positive values, respectively. NATURALNind POSITIVEN prevent the
assigning of nulls to an integer variable. SIGNTYPElIlets you restrict an integer
variable to the values -1, 0, and 1, which is useful in programming tri-state logic.

NUMBER

You use the NUMBERIatatype to store fixed-point or floating-point numbers of
virtually any size. Its magnitude range is 1.0E-130 .. 9.99E125. You can specify

precision, which is the total number of digits, and scale, which is the number of
digits to the right of the decimal point. The syntax follows:

NUMBER((precision,scale)]

To declare fixed-point numbers, for which you must specify scale, use the following
form:

NUMBER (precision,scale)

To declare floating-point numbers, for which you cannot specify precision or scale
because the decimal point can “float” to any position, use the following form:
NUMBER

To declare integers, which have no decimal point, use this form:
NUMBER precision) —same as NUMBER (precision,0)

You cannot use constants or variables to specify precision and scale; you must use
integer literals. The maximum precision of a NUMBERalue is 38 decimal digits. If
you do not specify precision, it defaults to 38 or the maximum supported by your
system, whichever is less.

2-12 PL/SQL User's Guide and Reference

Datatypes

Scale, which can range from -84 to 127, determines where rounding occurs. For
instance, a scale of 2 rounds to the nearest hundredth (3.456 becomes 3.46). A
negative scale rounds to the left of the decimal point. For example, a scale of -3
rounds to the nearest thousand (3456 becomes 3000). A scale of 0 rounds to the
nearest whole number. If you do not specify scale, it defaults to 0.

NUMBER Subtypes You can use the following NUMBERubtypes for compatibility
with ANSI/ZISO and IBM types or when you want a more descriptive name:

DEC

DECIMAL

DOUBLE PRECISION
FLOAT

INTEGER

INT

NUMERIC

REAL

SMALLINT

Use the subtypes DEC DECIMAL and NUMERICo declare fixed-point numbers
with a maximum precision of 38 decimal digits.

Use the subtypes DOUBLE PRECISIONind FLOATto declare floating-point
numbers with a maximum precision of 126 binary digits, which is roughly
equivalent to 38 decimal digits. Or, use the subtype REAL to declare floating-point
numbers with a maximum precision of 63 binary digits, which is roughly
equivalent to 18 decimal digits.

Use the subtypes INTEGER INT, and SMALLINT to declare integers with a
maximum precision of 38 decimal digits.

PLS_INTEGER

You use the PLS_INTEGERdatatype to store signed integers. Its magnitude range
is-2147483647 .. 2147483647. PLS_INTEGERvalues require less storage than
NUMBERalues. Also, PLS_INTEGERoperations use machine arithmetic, so they
are faster than NUMBERNd BINARY_INTEGERoperations, which use library
arithmetic. For better performance, use PLS_INTEGERfor all calculations that fall
within its magnitude range.

Fundamentals 2-13

Datatypes

Although PLS_INTEGERand BINARY_INTEGERhave the same magnitude range,
they are not fully compatible. When a PLS_INTEGERcalculation overflows, an
exception is raised. However, when a BINARY_INTEGERcalculation overflows, no
exception is raised if the result is assigned to a NUMBERariable.

Because of this small semantic difference, you might want to continue using
BINARY_INTEGERIn old applications for compatibility. In new applications,
always use PLS_INTEGERfor better performance.

Character Types

Character types allow you to store alphanumeric data, represent words and text,
and manipulate character strings.

CHAR

You use the CHARdatatype to store fixed-length character data. How the data is
represented internally depends on the database character set, which might be 7-bit
ASCII or EBCDIC Code Page 500, for example.

The CHARdatatype takes an optional parameter that lets you specify a maximum
length up to 32767 bytes. The syntax follows:

CHAR[(maximum_length)]

You cannot use a constant or variable to specify the maximum length; you must use
an integer literal in the range 1 .. 32767.

If you do not specify a maximum length, it defaults to 1. Remember, you specify

the maximum length in bytes, not characters. So, if a CHAR(n) variable stores multi-
byte characters, its maximum length is less than n characters. The maximum width
of a CHARdatabase column is 2000 bytes. So, you cannot insert CHARvalues longer
than 2000 bytes into a CHARcolumn.

You can insert any CHAR(n) value into a LONGdatabase column because the
maximum width of a LONGcolumn is 2147483647 bytes or 2 gigabytes. However,
you cannot retrieve a value longer than 32767 bytes from a LONGcolumn into a
CHAR(n) variable.

CHAR Subtype The CHARsubtype CHARACTEIRas the same range of values as its
base type. That is, CHARACTER just another name for CHAR You can use this
subtype for compatibility with ANSIZISO and IBM types or when you want an
identifier more descriptive than CHAR

2-14 PL/SQL User's Guide and Reference

Datatypes

LONG

You use the LONCGdatatype to store variable-length character strings. The LONG
datatype is like the VARCHAR2atatype, except that the maximum length of a LONG
value is 32760 bytes.

You can insert any LONGvalue into a LONCGdatabase column because the maximum
width of a LONCGcolumn is 2147483647 bytes. However, you cannot retrieve a value
longer than 32760 bytes from a LONGcolumn into a LONGvariable.

LONGCcolumns can store text, arrays of characters, or even short documents. You
can reference LONCGcolumns in UPDATEINSERT, and (most) SELECTstatements,
but not in expressions, SQL function calls, or certain SQL clauses such as WHERE
GROUP B¥ind CONNECT BY¥or more information, see Oracle8 SQL Reference.

RAW

You use the RAWHatatype to store binary data or byte strings. For example, a RAW
variable might store a sequence of graphics characters or a digitized picture. Raw
data is like VARCHARZ2lata, except that PL/SQL does not interpret raw data.
Likewise, Net8 does no character set conversions when you transmit raw data from
one system to another.

The RAWHatatype takes a required parameter that lets you specify a maximum
length up to 32767 bytes. The syntax follows:

RAW/(maximum_length)

You cannot use a constant or variable to specify the maximum length; you must use
an integer literal in the range 1 .. 32767.

The maximum width of a RAWHatabase column is 2000 bytes. So, you cannot insert
RAWvalues longer than 2000 bytes into a RAWolumn.

You can insert any RAWalue into a LONG RAWatabase column because the
maximum width of a LONG RAWblumn is 2147483647 bytes. However, you cannot
retrieve a value longer than 32767 bytes from a LONG RAWbIlumn into a RAW
variable.

LONG RAW

You use the LONG RAWWatatype to store binary data or byte strings. LONG RAWata
is like LONGdata, except that LONG RAWata is not interpreted by PL/SQL. The
maximum length of a LONG RAWAalue is 32760 bytes.

Fundamentals 2-15

Datatypes

You can insert any LONG RAWalue into a LONG RAWatabase column because the
maximum width of a LONG RAWbIlumn is 2147483647 bytes. However, you cannot
retrieve a value longer than 32760 bytes from a LONG RAWbIlumn into a LONG RAW
variable.

ROWID

Internally, every database table has a ROWIDpseudocolumn, which stores
hexadecimal strings called rowids. Each rowid represents the storage address of a
row. You use the ROWIDdatatype to store rowids.

You can compare a ROWIDvariable with the ROWIDpseudocolumn in the WHERE
clause of an UPDATEor DELETEstatement to identify the latest row fetched from a
cursor. See “Fetching Across Commits” on page 5-53.

With Oracle8, rowids have been extended to support partitioned tables and
indexes. Extended rowids include a data object number, which identifies the database
segment. Schema objects in the same segment (for example, a cluster of tables) have
the same object number.

A rowid contains the following information, which is needed to locate a row:
« data object number

« data file (the first file is 1)

« datablock in the data file

« row in the data block (the first row is 0)

Rowids provide the fastest way to access particular rows. Normally, a rowid
uniquely identifies a row. However, rows in different tables stored in the same
cluster can have the same rowid.

To manipulate rowids, you use the supplied package DBMS_ROWIDQvhich is
described in Oracle8 Application Developer’s Guide.

VARCHAR2

You use the VARCHARZ2latatype to store variable-length character data. How the
data is represented internally depends on the database character set, which might
be 7-bit ASCII or EBCDIC Code Page 500, for example.

The VARCHARZ2latatype takes a required parameter that specifies a maximum
length up to 32767 bytes. The syntax follows:

VARCHAR2(maximum _length)

2-16 PL/SQL User's Guide and Reference

Datatypes

You cannot use a constant or variable to specify the maximum length; you must use
an integer literal in the range 1 .. 32767.

Remember, you specify the maximum length of a VARCHAR2() variable in bytes,
not characters. So, if a VARCHAR2() variable stores multi-byte characters, its
maximum length is less than n characters. The maximum width of a VARCHAR2
database column is 4000 bytes. Therefore, you cannot insert VARCHAR®alues
longer than 4000 bytes into a VARCHARZolumn.

You can insert any VARCHAR2() value into a LONGdatabase column because the
maximum width of a LONGcolumn is 2147483647 bytes. However, you cannot
retrieve a value longer than 32767 bytes from a LONGcolumn into a VARCHAR2()
variable.

Semantic differences between the CHARand VARCHARDase types are discussed in
Appendix C.
VARCHAR2 Subtypes The VARCHARZ2ubtypes below have the same range of values
as their base type. For example, VARCHARs just another name for VARCHAR2
STRING
VARCHAR

You can use these subtypes for compatibility with ANSIZISO and IBM types.

Note: Currently, VARCHARs synonymous with VARCHAR2However,
in future releases of PL/SQL, to accommodate emerging SQL standards,
VARCHARnight become a separate datatype with different comparison
semantics. So, it is a good idea to use VARCHAR2ather than VARCHAR

NLS Character Types

Although the widely used 7- or 8-bit ASCII and EBCDIC character sets are
adequate to represent the Roman alphabet, some Asian languages, such as
Japanese, contain thousands of characters. These languages require 16 bits (two
bytes) to represent each character. How does Oracle deal with such dissimilar
languages?

Oracle provides National Language Support (NLS), which lets you process
single-byte and multi-byte character data and convert between character sets. It
also lets your applications run in different language environments.

Fundamentals 2-17

Datatypes

With NLS, number and date formats adapt automatically to the language
conventions specified for a user session. Thus, NLS allows users around the world
to interact with Oracle in their native languages. For more information about NLS,
see Oracle8 SQL Reference.

PL/SQL V2 supports just one character set called the database character set, which is
used for identifiers and source code. But, PL/SQL V8 supports a second character
set called the national character set, which is used for NLS data. The datatypes
NCHARand NVARCHARZ&tore character strings formed from the national character
set.

NCHAR

You use the NCHARJatatype to store fixed-length (blank-padded if necessary) NLS
character data. How the data is represented internally depends on the national
character set, which might use a fixed-width encoding such as US7ASCII or a
variable-width encoding such as JA16SJIS.

The NCHARJatatype takes an optional parameter that lets you specify a maximum
length up to 32767 bytes. The syntax follows:

NCHAR[(maximum_length)]

You cannot use a constant or variable to specify the maximum length; you must use
an integer literal in the range 1 .. 32767.

If you do not specify a maximum length, it defaults to 1. How you specify the
maximum length depends on the national character set. For fixed-width character
sets, you specify the maximum length in characters. For variable-width character
sets, you specify it in bytes. In the following example, the character set is
JA16EUCFIXED (which is fixed-width), so you specify the maximum length in
characters:

my_string NCHAR(100); —maximum length is 100 characters

The maximum width of an NCHARJatabase column is 2000 bytes. So, you cannot
insert NCHARvalues longer than 2000 bytes into an NCHARolumn. Remember, for
fixed-width, multi-byte character sets, you cannot insert NCHARvalues longer than
the number of characters that fit in 2000 bytes.

If the NCHARvalue is shorter than the defined width of the NCHARolumn, Oracle
blank-pads the value to the defined width. You cannot insert CHARvalues into an
NCHARolumn. Likewise, you cannot insert NCHARralues into a CHARcolumn.

2-18 PL/SQL User's Guide and Reference

Datatypes

LOB Types

NVARCHAR?2

You use the NVARCHAR®atatype to store variable-length NLS character data. How
the data is represented internally depends on the national character set, which
might use a fixed-width encoding such as WESBEBCDIC37C or a variable-width
encoding such as JA16DBCS.

The NVARCHAR®atatype takes a required parameter that specifies a maximum
length up to 32767 bytes. The syntax follows:

NVARCHAR2(maximum_length)

You cannot use a constant or variable to specify the maximum length; you must use
an integer literal in the range 1 .. 32767.

How you specify the maximum length depends on the national character set. For
fixed-width character sets, you specify the maximum length in characters. For
variable-width character sets, you specify it in bytes. In the following example, the
character set is JA16SJIS (which is variable-width), so you specify the maximum
length in bytes:

my_string NVARCHAR2(200); — maximum length is 200 bytes

The maximum width of a NVARCHAR#®atabase column is 4000 bytes. Therefore,
you cannot insert NVARCHAR®alues longer than 4000 bytes into a NVARCHAR2
column. Remember, for fixed-width, multi-byte character sets, you cannot insert
NVARCHAR®alues longer than the number of characters that fit in 4000 bytes.

You cannot insertVARCHAR2 values into an NVARCHARR2olumn. Likewise, you
cannot insert NVARCHARZ®alues into a VARCHARZ2olumn.

The LOB(large object) datatypes BFILE , BLOB CLOB and NCLOBlet you store
blocks of unstructured data (such as text, graphic images, video clips, and sound
waveforms) up to four gigabytes in size. And, they allow efficient, random, piece-
wise access to the data.

The LOBtypes differ from the LONGand LONG RAWypes in several ways. For
example, LOBs (except NCLOB can be attributes of an object type, but LONG
cannot. The maximum size of a LOBis four gigabytes, but the maximum size of a
LONGs two gigabytes. Also, LOBs support random access to data, but LONG
support only sequential access.

LOBtypes store values, called locators, that specify the location of large objects
stored in an external file, in-line (inside the row) or out-of-line (outside the row).

Fundamentals 2-19

Datatypes

Database columns of type BLOB CLOB NCLOBor BFILE store the locators. BLOB
CLOB and NCLOBdata is stored in the database, in or outside the row. BFILE data
is stored in operating system files outside the database.

PL/SQL operates on LOBs through the locators. For example, when you retrieve a
BLOBcolumn value, only a locator is returned. Locators cannot span transactions or
sessions. So, you cannot save a locator in a PL/SQL variable during one transaction
or session, then use it in another transaction or session. To manipulate LOBs, you
use the supplied package DBMS_LOBFor more information about LOBs and
package DBMS_LOBsee Oracle8 Application Developer’s Guide.

BFILE

You use the BFILE datatype to store large binary objects in operating system files
outside the database. Every BFILE variable stores a file locator, which points to a
large binary file on the server. The locator includes a directory alias, which specifies
a full path name (logical path names are not supported).

BFILE s are read-only. You cannot modify them. The maximum number of open
BFILE s is set by the Oracle initialization parameter SESSION_MAX_OPEN_FILES
which is system dependent.

Also, BFILE s do not participate in transactions. The underlying operating system
maintains file integrity. The size of a BFILE is system dependent but cannot exceed
four gigabytes (2**32 - 1 bytes). Your DBA makes sure that the BFILE exists and
that Oracle has read permissions on it.

BLOB

You use the BLOBdatatype to store large binary objects in the database in-line or
out-of-line. Every BLOBvariable stores a locator, which points to a large binary
object. The size of a BLOBcannot exceed four gigabytes.

BLOB participate fully in transactions. Changes made by package DBMS_LOBr
the OCI can be committed or rolled back. However, BLOBlocators cannot span
transactions or sessions.

CLOB

You use the CLOBdatatype to store large blocks of single-byte character data in the
database, in-line or out-of-line. (Variable-width character sets are not supported.)
Every CLOBvariable stores a locator, which points to a large block of character
data. The size of a CLOBcannot exceed four gigabytes.

2-20 PL/SQL User's Guide and Reference

Datatypes

Other Types

CLOB participate fully in transactions. Changes made by package DBMS_LOBr
the OCI can be committed or rolled back. However, CLOBIlocators cannot span
transactions or sessions.

NCLOB

You use the NCLOBdatatype to store large blocks of single-byte or fixed-width
multi-byte NCHARJata in the database, in-line or out-of-line. (Variable-width
character sets are not supported.) Every NCLOBvariable stores a locator, which
points to a large block of NCHARJata. The size of an NCLOBcannot exceed four
gigabytes.

NCLORB participate fully in transactions. Changes made by package DBMS_LOBr
the OCI can be committed or rolled back. However, NCLOBocators cannot span
transactions or sessions.

The following types allow you to store and manipulate logical (true, false) values,
date/time values, and Trusted Oracle operating system labels.

BOOLEAN

You use the BOOLEANIatatype to store the logical values TRUEand FALSEand the
non-value NULL, which stands for a missing, inapplicable, or unknown value. Only
logic operations are allowed on BOOLEANariables.

The BOOLEANMlatatype takes no parameters. Only the values TRUEand FALSEand
the non-value NULL can be assigned to a BOOLEANariable. You cannot insert the
values TRUEand FALSEinto a database column. Also, you cannot select or fetch
column values into a BOOLEANariable.

DATE

You use the DATEdatatype to store fixed-length date/time values. DATEvalues
include the time of day in seconds since midnight. The date portion defaults to the
first day of the current month; the time portion defaults to midnight. The date
function SYSDATEreturns the current date and time.

Valid dates range from January 1, 4712 BC to December 31, 4712 AD. A Julian date
is the number of days since January 1, 4712 BC. Julian dates allow continuous
dating from a common reference. You can use the date format model 'J’ with date
functions TO_DATEand TO_CHARo convert between DATEvalues and their Julian
equivalents.

Fundamentals 2-21

User-Defined Subtypes

In date expressions, PL/SQL automatically converts character values in the default
date format to DATEvalues. The default date format is set by the Oracle
initialization parameter NLS_DATE_FORMATor example, the default might be
'DD-MON-YY’ , which includes a two-digit number for the day of the month, an
abbreviation of the month name, and the last two digits of the year.

You can add and subtract dates. For example, the following statement returns the
number of days since an employee was hired:

SELECT SYSDATE - hiredate INTO days_worked FROM emp WHERE empno = 7499;

In arithmetic expressions, PL/SQL interprets integer literals as days. For instance,
SYSDATE+ 1 is tomorrow.

For more information about date functions and format models, see Oracle8 SQL
Reference.

MLSLABEL

Trusted Oracle provides the MLSLABELdatatype, which stores Trusted Oracle’s
internal representation of labels generated by multi-level secure operating systems.
Trusted Oracle uses the labels to control database access.

For compatibility with Trusted Oracle applications, the Oracle server lets you use
MLSLABELto define database columns. However, such columns can store only
nulls. For more information, see your Trusted Oracle documentation.

User-Defined Subtypes

Each PL/SQL base type specifies a set of values and a set of operations applicable
to items of that type. Subtypes specify the same set of operations as their base type
but only a subset of its values. Thus, a subtype does not introduce a new type; it
merely places an optional constraint on its base type.

PL/SQL predefines several subtypes in package STANDARDFor example, PL/SQL
predefines the subtype CHARACTERs follows:

SUBTYPE CHARACTER IS CHAR,

The subtype CHARACTERpecifies the same set of values as its base type CHAR
Thus, CHARACTER an unconstrained subtype.

Subtypes can increase reliability, provide compatibility with ANSI/ZISO types, and
improve readability by indicating the intended use of constants and variables.

2-22 PL/SQL User's Guide and Reference

User-Defined Subtypes

Defining Subtypes

You can define your own subtypes in the declarative part of any PL/SQL block,
subprogram, or package using the syntax

SUBTYPE subtype_name IS base_type;

where subtype name is a type specifier used in subsequent declarations and
base _type is any scalar or user-defined PL/SQL type. To specify base type ,
you can use %TYPEwhich provides the datatype of a variable or database column.
Also, you can use %ROWTYPR&hich provides the rowtype of a cursor, cursor
variable, or database table. Some examples follow:

DECLARE
SUBTYPE EmpDate IS DATE; —based on DATE type
SUBTYPE Counter ISNATURAL; —based on NATURAL subtype
TYPE NamelList IS TABLE OF VARCHAR2(10);
SUBTYPE EmpRoster IS NamelList; —based on TABLE type
TYPE TimeRec IS RECORD (minutes INTEGER, hours INTEGER);
SUBTYPE Time IS TimeRec; - based on RECORD type
SUBTYPE ID_Num IS emp.empno%TYPE; — based on column type
CURSOR c1 IS SELECT * FROM dept;
SUBTYPE DeptFile IS c1%ROWTYPE; —based on cursor rowtype

However, you cannot specify a constraint on the base type. For example, the
following definitions are illegal:

DECLARE
SUBTYPE Accumulator IS NUMBER(7,2); - illegal; must be NUMBER
SUBTYPE Delimiter IS CHAR(L); —illegal; must be CHAR
SUBTYPE Word IS VARCHAR2(15); —illegal

Although you cannot define constrained subtypes directly, you can use a simple
workaround to define size-constrained subtypes indirectly. Simply declare a size-
constrained variable, then use %TYPRo provide its datatype, as shown in the
following example:

DECLARE
temp VARCHAR2(15);
SUBTYPE Word IS temp%T YPE; — maximum size of Word is 15

Likewise, if you define a subtype using %TYPEo provide the datatype of a

database column, the subtype adopts the size constraint (if any) of the column.
However, the subtype does not adopt other kinds of constraints such as NOT NULL

Fundamentals 2-23

User-Defined Subtypes

Using Subtypes

Once you define a subtype, you can declare items of that type. In the example
below, you declare two variables of type Counter . Notice how the subtype name
indicates the intended use of the variables.

DECLARE
SUBTYPE Counter IS NATURAL;
rows Counter,
employees Counter;

The following example shows that you can constrain a user-defined subtype when
declaring variables of that type:

DECLARE
SUBTYPE Accumulator IS NUMBER,;
total Accumulator(7,2);

Subtypes can increase reliability by detecting out-of-range values. In the example
below, you restrict the subtype Scale to storing integers in the range -9 .. 9. If your
program tries to store a number outside that range in a Scale variable, PL/SQL
raises an exception.

DECLARE
temp NUMBER(L,0);
SUBTYPE Scale IS ttmp%TYPE;
X_axis Scale; —magnitude rangeis-9..9
y_axis Scale;

BEGIN
X_axis :=10; —raises VALUE_ERROR

Type Compatibility
An unconstrained subtype is interchangeable with its base type. For example, given

the following declarations, the value of amount can be assigned to total without
conversion:

DECLARE
SUBTYPE Accumulator IS NUMBER,;
amount NUMBER(7,2);
total Accumulator;

BEGIN

fotal := amount;

2-24 PL/SQL User's Guide and Reference

Datatype Conversion

Different subtypes are interchangeable if they have the same base type. For
instance, given the following declarations, the value of finished can be assigned
to debugging

DECLARE
SUBTYPE Sentinel IS BOOLEAN;
SUBTYPE Switch IS BOOLEAN,;
finished Sentinel;
debugging Switch;

BEGIN

debugging :=finished;

Different subtypes are also interchangeable if their base types are in the same
datatype family. For example, given the following declarations, the value of verb
can be assigned to sentence

DECLARE
SUBTYPE Word IS CHAR;
SUBTYPE Text IS VARCHAR?Z;
verb Word,
sentence Text;

BEGIN

sentence = verb;

Datatype Conversion

Sometimes it is necessary to convert a value from one datatype to another. For
example, if you want to examine a rowid, you must convert it to a character string.
PL/SQL supports both explicit and implicit (automatic) datatype conversion.

Explicit Conversion

To convert values from one datatype to another, you use built-in functions. For
example, to convert a CHARvalue to a DATEor NUMBERalue, you use the function
TO_DATEor TO_NUMBERespectively. Conversely, to convert a DATEor NUMBER
value to a CHARvalue, you use the function TO_CHARFor more information about
these functions, see Oracle8 SQL Reference.

Fundamentals 2-25

Datatype Conversion

Implicit Conversion

When it makes sense, PL/SQL can convert the datatype of a value implicitly. This
allows you to use literals, variables, and parameters of one type where another type
is expected. In the example below, the CHARvariables start time and

finish_time hold string values representing the number of seconds past
midnight. The difference between those values must be assigned to the NUMBER
variable elapsed time . So, PL/SQL converts the CHARvalues to NUMBERalues
automatically.

DECLARE
start time CHAR(5);
finish_time CHAR(5);
elapsed_time NUMBER(5);
BEGIN
P Get system time as seconds past midnight. *
SELECT TO_CHAR(SYSDATE,'SSSSS) INTO start_time FROM sys.dual;
- do something
F* Get system time again. */
SELECT TO_CHAR(SYSDATE,'SSSSS) INTO finish_time FROM sys.dual;
F Compute elapsed time in seconds. */
elapsed_time :=finish_time - start_time;
INSERT INTO resuits VALUES (elapsed_time, ...);
END;

Before assigning a selected column value to a variable, PL/SQL will, if necessary,
convert the value from the datatype of the source column to the datatype of the
variable. This happens, for example, when you select a DATEcolumn value into a
VARCHARZariable.

Likewise, before assigning the value of a variable to a database column, PL/SQL
will, if necessary, convert the value from the datatype of the variable to the
datatype of the target column. If PL/SQL cannot determine which implicit
conversion is needed, you get a compilation error. In such cases, you must use a
datatype conversion function. Table 2-1 shows which implicit conversions PL/SQL
can do.

2-26 PL/SQL User's Guide and Reference

Datatype Conversion

Table 2-1 Implicit Conversions

BIN_INT CHAR DATE LONG NUMBER PLS_INT RAW ROWID VARCHAR2

BIN_INT X X X X X
CHAR X X X X X X X X
DATE X X X
LONG X X X
NUMBER X X X X X
PLS_INT X X X X X
RAW X X X
ROWID X X
VARCHAR?2 X X X X X X X X

It is your responsibility to ensure that values are convertible. For instance, PL/SQL
can convert the CHARvalue '02-JUN-92" to a DATEvalue but cannot convert the
CHARvalue 'YESTERDAY' to a DATEvalue. Similarly, PL/SQL cannot convert a
VARCHARZalue containing alphabetic characters to a NUMBERalue.

Implicit versus Explicit Conversion

DATE Values

Generally, to rely on implicit datatype conversions is a poor programming practice
because they can hamper performance and might change from one software release
to the next. Also, implicit conversions are context sensitive and therefore not
always predictable. Instead, use datatype conversion functions. That way, your
applications will be more reliable and easier to maintain.

When you select a DATEcolumn value into a CHARor VARCHAR®ariable, PL/SQL
must convert the internal binary value to a character value. So, PL/SQL calls the
function TO_CHARwhich returns a character string in the default date format. To
get other information such as the time or Julian date, you must call TO_CHARwith
a format mask.

Fundamentals 2-27

Declarations

A conversion is also necessary when you insert a CHARor VARCHAR®alue into a
DATEcolumn. So, PL/SQL calls the function TO_DATEwhich expects the default
date format. To insert dates in other formats, you must call TO_DATEwith a format
mask.

RAW and LONG RAW Values

When you select a RAWOr LONG RAWbHIumn value into a CHARor VARCHAR?2
variable, PL/SQL must convert the internal binary value to a character value. In
this case, PL/SQL returns each binary byte of RAWor LONG RAWata as a pair of
characters. Each character represents the hexadecimal equivalent of a nibble (half a
byte). For example, PL/SQL returns the binary byte 11111111 as the pair of
characters 'FF’ . The function RAWTOHE®oes the same conversion.

A conversion is also necessary when you insert a CHARor VARCHARvalue into a
RAWOr LONG RAWbLIumn. Each pair of characters in the variable must represent the
hexadecimal equivalent of a binary byte. If either character does not represent the
hexadecimal equivalent of a nibble, PL/SQL raises an exception.

NLS Values
When passed an uppercase character set name, the built-in function
NLS_CHARSET _IDreturns the corresponding character set ID number. Conversely,
when passed a character set ID number, the function NLS_ CHARSET _NAM®Eturns
the corresponding character set name.
If you pass the value 'CHAR_CS’ or 'NCHAR_CS’ to NLS_CHARSET _IDit returns
the database or national character set ID number, respectively. For a list of character
set names, see Oracle8 Reference.

Declarations

Your program stores values in variables and constants. As the program executes,
the values of variables can change, but the values of constants cannot.

You can declare variables and constants in the declarative part of any PL/SQL
block, subprogram, or package. Declarations allocate storage space for a value,
specify its datatype, and name the storage location so that you can reference it.

A couple of examples follow:

bithday DATE;
emp_count SMALLINT :=0;

2-28 PL/SQL User's Guide and Reference

Declarations

The first declaration names a variable of type DATE The second declaration names
a variable of type SMALLINT and uses the assignment operator to assign an initial
value of zero to the variable.

The next examples show that the expression following the assignment operator can
be arbitrarily complex and can refer to previously initialized variables:

pi REAL:=314159;
radius REAL =1;
area REAL = pi*radius®2;

By default, variables are initialized to NULL For example, the following
declarations are equivalent:

birthday DATE;

birthday DATE := NULL;

In constant declarations, the keyword CONSTANTust precede the type specifier,
as the following example shows:

credit_limit CONSTANT REAL :=5000.00;

This declaration names a constant of type REALand assigns an initial (also final)
value of 5000 to the constant. A constant must be initialized in its declaration.
Otherwise, you get a compilation error when the declaration is elaborated. (The
processing of a declaration by the PL/SQL compiler is called elaboration.)

Using DEFAULT

You can use the keyword DEFAULTinstead of the assignment operator to initialize
variables. For example, the declarations

blood_type CHAR :='O;;

valid BOOLEAN :=FALSE;

can be rewritten as follows:
blood_type CHAR DEFAULT 'O;

valid BOOLEAN DEFAULT FALSE;

Use DEFAULTfor variables that have a typical value. Use the assignment operator
for variables (such as counters and accumulators) that have no typical value. A
couple of examples follow:

hours worked INTEGER DEFAULT 40;
employee_countINTEGER :=0;

Fundamentals 2-29

Declarations

You can also use DEFAULTto initialize subprogram parameters, cursor parameters,
and fields in a user-defined record.

Using NOT NULL

Using %TYPE

Besides assigning an initial value, declarations can impose the NOT NULL
constraint, as the following example shows:

acct id INTEGER(@4) NOT NULL := 9999;

You cannot assign nulls to a variable defined as NOT NULLIf you try, PL/SQL
raises the predefined exception VALUE_ERRORhe NOT NULLconstraint must be
followed by an initialization clause. For example, the following declaration is
illegal:

acct_id INTEGER(5) NOT NULL; —illegal; not initialized

Recall that the subtypes NATURALNnd POSITIVEN are predefined as NOT NULL
For instance, the following declarations are equivalent:

emp_count NATURAL NOT NULL :=0;
emp_count NATURALN :=0;

In NATURALNNd POSITIVEN declarations, the type specifier must be followed by
an initialization clause. Otherwise, you get a compilation error. For example, the
following declaration is illegal:

line_items POSITIVEN; - illegal; not initialized

The %TYPHEttribute provides the datatype of a variable or database column. In the
following example, % TYPBorovides the datatype of a variable:

credit REAL(7,2);
debit credittoTYPE;

Variables declared using %TYPEare treated like those declared using a datatype
specifier. For example, given the previous declarations, PL/SQL treats debit like a
REAL(7,2) variable. The next example shows that a %TYPEdeclaration can
include an initialization clause:

balance NUMBER(7,2);
minimum_balance balance%TYPE = 10.00;

2-30 PL/SQL User's Guide and Reference

Declarations

The %TYPEattribute is particularly useful when declaring variables that refer to
database columns. You can reference a table and column, or you can reference an
owner, table, and column, as in

my_dname scott.deptdname%TYPE;

Using %TYPRo declare my_dnamehas two advantages. First, you need not know
the exact datatype of dname. Second, if the database definition of dname changes,
the datatype of my_dnamechanges accordingly at run time.

Note, however, that a NOT NULLcolumn constraint does not apply to variables
declared using %TYPEIn the next example, even though the database column
empnois defined as NOT NULL.you can assign a null to the variable my_empna

DECLARE

my_empno emp.empno%TYPE;
BEGIN

my_empno = NULL; —thisworks

Using %ROWTYPE

The %ROWTYPdtribute provides a record type that represents a row in a table (or
view). The record can store an entire row of data selected from the table or fetched
from a cursor or strongly typed cursor variable. In the example below, you declare
two records. The first record stores a row selected from the emptable. The second
record stores a row fetched from cursor c1.

DECLARE
emp_rec emp%ROWTYPE;
CURSOR 1 IS SELECT deptno, dname, loc FROM dept;
dept_rec c1%ROWTYPE;

Columns in a row and corresponding fields in a record have the same names and
datatypes. In the following example, you select column values into a record named
emp_rec:

DECLARE
emp_rec emp%ROWTYPE;

BEGIN
SELECT *INTO emp_rec FROM emp WHERE ...

Fundamentals 2-31

Declarations

The column values returned by the SELECTstatement are stored in fields. To
reference a field, you use dot notation. For example, you might reference the
deptno field as follows:

IFemp_recdeptno=20 THEN ...

Also, you can assign the value of an expression to a specific field, as the following
examples show:

emp_rec.ename :="JOHNSON
emp_rec.sal :=emp_rec.sal*1.15;

In the final example, you use %ROWTYR#& define a packaged cursor:

CREATE PACKAGE emp_actions AS
* Declare cursor specification. */
CURSOR c1 RETURN emp%ROWTYPE;

END emp_actions;

CREATE PACKAGE BODY emp_actions AS
* Define cursor body. */
CURSOR c1 RETURN emp%ROWTYPE IS
SELECT * FROM emp WHERE sal > 3000;

END emp_actions;

Aggregate Assignment

A %ROWTYREeclaration cannot include an initialization clause. However, there are
two ways to assign values to all fields in a record at once. First, PL/SQL allows
aggregate assignment between entire records if their declarations refer to the same
table or cursor. For example, the following assignment is legal:

DECLARE
dept_recl dept¥eROWTYPE;
dept_rec2 dept¥eROWTYPE;
CURSOR c1 IS SELECT deptno, dname, loc FROM dept;
dept_rec3 c1%ROWTYPE;
BEGIN

dept_recl :=dept _rec2;

However, because dept _rec2 is based on a table and dept_rec3 is based ona
cursor, the following assignment is illegal:

dept _rec2 :=dept rec3; —illegal

2-32 PL/SQL User's Guide and Reference

Declarations

Second, you can assign a list of column values to a record by using the SELECTor
FETCHstatement, as the example below shows. The column names must appear in
the order in which they were defined by the CREATE TABLEr CREATE VIEW
statement.

DECLARE
dept_rec dept%eROWTYPE;
BEGIN
SELECT deptno, dname, loc INTO dept_rec FROM dept
WHERE deptno = 30;

However, you cannot assign a list of column values to a record by using an
assignment statement. So, the following syntax is illegal:

record_name :=(valuel, value2, value3, ...); —illegal

Although you can retrieve entire records, you cannot insert or update them. For
example, the following statement is illegal:

INSERT INTO dept VALUES (dept_rec); —illegal

Using Aliases

Select-list items fetched from a cursor associated with %ROWTYR&ust have simple
names or, if they are expressions, must have aliases. In the following example, you
use an alias called wages:

—available online infile ‘'examp4’
DECLARE
CURSOR my_cursor IS SELECT sal + NVL(comm, 0) wages, ename
FROM emp;
my_rec my_cursoreROWTYPE;
BEGIN
OPENmy_cursor,
LOOP
FETCHmy_cursor INTO my _rec;
EXIT WHEN my_cursor%NOTFOUND;
IF my_recwages >2000 THEN
INSERT INTO temp VALUES (NULL, my_rec.wages,
my_recename);
ENDIF;
END LOOP;
CLOSE my_cursor,
END;

Fundamentals 2-33

Naming Conventions

Restrictions

PL/SQL does not allow forward references. You must declare a variable or constant
before referencing it in other statements, including other declarative statements. For
example, the following declaration of maxi is illegal:

maxi INTEGER =2 *mini; —illegal

mini INTEGER =15;

However, PL/SQL does allow the forward declaration of subprograms. For more
information, see “Forward Declarations” on page 7-8.

Some languages allow you to declare a list of variables that have the same
datatype. PL/SQL does not allow this. For example, the following declaration is
illegal:

i,j, K SMALLINT; —ilegal

The legal version follows:

i SMALLINT;
j SMALLINT;
k SMALLINT;

Naming Conventions

The same naming conventions apply to all PL/SQL program items and units
including constants, variables, cursors, cursor variables, exceptions, procedures,
functions, and packages. Names can be simple, qualified, remote, or both qualified
and remote. For example, you might use the procedure name raise_salary in
any of the following ways:

raise_salary(...); —simple
emp_actions.raise_salary(...); —qualified
raise_salary@newyork(...); —remote

emp_actionsraise_salary@newyork(...); —qualified and remote

In the first case, you simply use the procedure name. In the second case, you must
gualify the name using dot notation because the procedure is stored in a package
called emp_actions . In the third case, using the remote access indicator (@, you
reference the database link newyork because the procedure is stored in a remote
database. In the fourth case, you qualify the procedure name and reference a
database link.

2-34 PL/SQL User's Guide and Reference

Naming Conventions

Synonyms
You can create synonyms to provide location transparency for remote schema
objects such as tables, sequences, views, stand-alone subprograms, and packages.
However, you cannot create synonyms for items declared within subprograms or
packages. That includes constants, variables, cursors, cursor variables, exceptions,
and packaged procedures.

Scoping

Within the same scope, all declared identifiers must be unique. So, even if their
datatypes differ, variables and parameters cannot share the same name. For
example, two of the following declarations are illegal:

DECLARE
valid_id BOOLEAN,;
valid_id VARCHAR2(5); - illegal duplicate identifier
FUNCTION bonus (valid_id IN INTEGER) RETURN REALIS ...
— illegal triplicate identifier

For the scoping rules that apply to identifiers, see “Scope and Visibility” on
page 2-37.

Case Sensitivity

Like other identifiers, the names of constants, variables, and parameters are not
case sensitive. For instance, PL/SQL considers the following names to be the same:

DECLARE
Zip_code INTEGER;
Zip_Code INTEGER; —-same aszip_code
ZIP_CODE INTEGER; —same as zip_code and Zip_Code

Name Resolution

In potentially ambiguous SQL statements, the names of local variables and formal
parameters take precedence over the names of database tables. For example, the
following UPDATEstatement fails because PL/SQL assumes that emprefers to the
loop counter:

FORempIN 1.5LOOP

UPDATE emp SET bonus =500 WHERE ...
END LOOP;

Fundamentals 2-35

Naming Conventions

Likewise, the following SELECTstatement fails because PL/SQL assumes that emp
refers to the formal parameter:

PROCEDURE calc_bonus (emp NUMBER, bonus OUT REAL) IS
avg_sal REAL,

BEGIN
SELECT AVG(sal) INTO avg_sal FROM emp WHERE ...

In such cases, you can prefix the table name with a username, as follows, but a
better programming practice is to rename the variable or formal parameter:

PROCEDURE calc_bonus (emp NUMBER, bonus OUT REAL) IS
avg_sal REAL;

BEGIN
SELECT AVG(sal) INTO avg_sal FROM scott.emp WHERE ...

Unlike the names of tables, the names of columns take precedence over the names
of local variables and formal parameters. For example, the following DELETE
statement removes all employees from the emptable, not just ‘KING’ , because
Oracle assumes that both enames in the WHERI[Elause refer to the database column:

DECLARE
ename VARCHAR2(10) :="KING;,
BEGIN
DELETE FROM emp WHERE ename = ename;

In such cases, to avoid ambiguity, prefix the names of local variables and formal
parameters with my , as follows:

DECLARE
my_ename VARCHAR2(10);

Or, use a block label to qualify references, as in

<<main>>
DECLARE
ename VARCHAR2(10) :="KING’;
BEGIN
DELETE FROM emp WHERE ename = main.ename;

2-36 PL/SQL User's Guide and Reference

Scope and Visibility

The next example shows that you can use a subprogram name to qualify references
to local variables and formal parameters:

FUNCTION bonus (deptno INNUMBER, ...) RETURN REAL IS
job CHAR(10);

BEGIN
SELECT ... WHERE deptno = bonus.deptno AND job = bonus,job;

For a full discussion of name resolution, see Appendix E.

Scope and Visibility
References to an identifier are resolved according to its scope and visibility. The
scope of an identifier is that region of a program unit (block, subprogram, or
package) from which you can reference the identifier. An identifier is visible only in
the regions from which you can reference the identifier using an unqualified name.
Figure 2-2 shows the scope and visibility of a variable named x, which is declared
in an enclosing block, then redeclared in a sub-block.

Identifiers declared in a PL/SQL block are considered local to that block and global
to all its sub-blocks. If a global identifier is redeclared in a sub-block, both
identifiers remain in scope. Within the sub-block, however, only the local identifier
is visible because you must use a qualified name to reference the global identifier.

Although you cannot declare an identifier twice in the same block, you can declare
the same identifier in two different blocks. The two items represented by the
identifier are distinct, and any change in one does not affect the other. However, a
block cannot reference identifiers declared in other blocks at the same level because
those identifiers are neither local nor global to the block.

Fundamentals 2-37

Scope and Visibility

Figure 2-2 Scope and Visibility

Scope Visibility
DECLARE DECLARE
X REAL; XREAL;
BEG N BEG N
DECLARE DECLARE
Outer x X REAL; XREAL;
BEG N BEG N
END; END;
END; END;
DECLARE DECLARE
X REAL; X REAL;
BEG N BEG N
DECLARE DECLARE
Inner x X REAL: X REAL:
BEG N BEG N
END; END;
END; END;

The example below illustrates the scope rules. Notice that the identifiers declared
in one sub-block cannot be referenced in the other sub-block. That is because a
block cannot reference identifiers declared in other blocks nested at the same level.

DECLARE
aCHAR;
b REAL,
BEGIN
— identifiers available here: a (CHAR), b
DECLARE
aINTEGER,
CREAL,
BEGIN
—identifiers available here: a INTEGER), b, ¢
END;

2-38 PL/SQL User's Guide and Reference

Scope and Visibility

DECLARE
dREAL;
BEGIN
— identifiers available here: a (CHAR), b,d
END;
— identifiers available here: a (CHAR), b
END;

Recall that global identifiers can be redeclared in a sub-block, in which case the
local declaration prevails and the sub-block cannot reference the global identifier
unless you use a qualified name. The qualifier can be the label of an enclosing
block, as the following example shows:

<<outer>>
DECLARE
birthdate DATE;
BEGIN
DECLARE
birthdate DATE;
BEGIN

IF birthdate = outer.birthdate THEN ...
As the next example shows, the qualifier can also be the name of an enclosing

subprogram:

PROCEDURE check_credit(...) IS
raing NUMBER,;
FUNCTION valid (...) RETURN BOOLEAN IS
rating NUMBER;
BEGIN

IF check_creditrating <3 THEN ...

However, within the same scope, a label and a subprogram cannot have the same
name.

Fundamentals 2-39

Assignments

Assignments

Variables and constants are initialized every time a block or subprogram is entered.
By default, variables are initialized to NULL So, unless you expressly initialize a
variable, its value is undefined, as the following example shows:

DECLARE
count INTEGER,;
BEGIN
count ;= count +1; —assigns a null to count

The expression on the right of the assignment operator yields NULL because count
is null. To avoid unexpected results, never reference a variable before you assign it
a value.

You can use assignment statements to assign values to a variable. For example, the
following statement assigns a new value to the variable bonus , overwriting its old
value:

bonus :=salary * 0.15;
The expression following the assignment operator can be arbitrarily complex, but it

must yield a datatype that is the same as or convertible to the datatype of the
variable.

Boolean Values

Only the values TRUEand FALSEand the non-value NULL can be assigned to a
Boolean variable. For example, given the declaration

DECLARE
done BOOLEAN,;
the following statements are legal:

BEGIN
done :=FALSE;
WHILE NOT done LOOP

END LOOP;

When applied to an expression, the relational operators return a Boolean value. So,
the following assignment is legal:

done := (count > 500);

2-40 PL/SQL User's Guide and Reference

Expressions and Comparisons

Database Values

Alternatively, you can use the SELECTstatement to have Oracle assign values to a
variable. For each item in the select list, there must be a corresponding, type-
compatible variable in the INTO list. An example follows:

DECLARE
my_empno emp.empno%TYPE;
my_ename emp.ename%TYPE;
wages NUMBER(7,2);

BEGIN

SELECT ename, sal + comm
INTO last_name, wages FROM emp
WHERE empno =emp_id;

However, you cannot select column values into a Boolean variable.

Expressions and Comparisons

Expressions are constructed using operands and operators. An operand is a variable,
constant, literal, or function call that contributes a value to an expression. An
example of a simple arithmetic expression follows:

X/2+3

Unary operators such as the negation operator (-) operate on one operand; binary
operators such as the division operator (/) operate on two operands. PL/SQL has
no ternary operators.

The simplest expressions consist of a single variable, which yields a value directly.
PL/SQL evaluates (finds the current value of) an expression by combining the
values of the operands in ways specified by the operators. This always yields a
single value and datatype. PL/SQL determines the datatype by examining the
expression and the context in which it appears.

Fundamentals 2-41

Expressions and Comparisons

Operator Precedence

The operations within an expression are done in a particular order depending on
their precedence (priority). Table 2-2 shows the default order of operations from first
to last (top to bottom).

Table 2-2 Order of Operations

Operator Operation

= NOT exponentiation, logical negation

+ - identity, negation

*/ multiplication, division

+- addition, subtraction, concatenation
5, =, <, >, <=, >3 comparison

IS NULL, LIKE, BETWEEN, IN

AND conjunction

OR inclusion

Operators with higher precedence are applied first. For example, both of the
following expressions yield 8 because division has a higher precedence than
addition:

5+12/4
12/4+5
Operators with the same precedence are applied in no particular order.

You can use parentheses to control the order of evaluation. For example, the
following expression yields 7, not 11, because parentheses override the default
operator precedence:

B8+6)/2

In the next example, the subtraction is done before the division because the most
deeply nested subexpression is always evaluated first:

100+(0/5+(7-3))

The following example shows that you can always use parentheses to improve
readability, even when they are not needed:

(salary * 0.05) + (commission * 0.25)

2-42 PL/SQL User's Guide and Reference

Expressions and Comparisons

Logical Operators

The logical operators AND OR and NOTfollow the tri-state logic shown in
Table 2-3. ANDand ORare binary operators; NOTis a unary operator.

Table 2-3 Logic Truth Table

X y XxANDy xORYy NOT x
TRUE TRUE TRUE TRUE FALSE
TRUE FALSE FALSE TRUE

TRUE NULL NULL TRUE

FALSE TRUE FALSE TRUE TRUE
FALSE FALSE FALSE FALSE

FALSE NULL FALSE NULL

NULL TRUE NULL TRUE NULL
NULL FALSE FALSE NULL

NULL NULL NULL NULL

As the truth table shows, ANDreturns TRUEonly if both its operands are true. On
the other hand, ORreturns TRUEIf either of its operands is true. NOTreturns the
opposite value (logical negation) of its operand. For example, NOT TRUEeturns
FALSE

NOT NULLreturns NULL because nulls are indeterminate. It follows that if you
apply the NOToperator to a null, the result is also indeterminate. Be careful. Nulls
can cause unexpected results; see “Handling Nulls” on page 2-48.

Order of Evaluation

When you do not use parentheses to specify the order of evaluation, operator
precedence determines the order. Compare the following expressions:

NOT (valid ANDdone) | NOT valid AND done
If the Boolean variables valid and done have the value FALSE, the first

expression yields TRUE However, the second expression yields FALSEbecause NOT
has a higher precedence than AND therefore, the second expression is equivalent to

(NOT valid) AND done

Fundamentals 2-43

Expressions and Comparisons

In the following example, notice that when valid has the value FALSE the whole
expression yields FALSEregardless of the value of done:

valid AND done

Likewise, in the next example, when valid has the value TRUE the whole
expression yields TRUEregardless of the value of done:

valid OR done

Short-Circuit Evaluation When evaluating a logical expression, PL/SQL uses short-
circuit evaluation. That is, PL/SQL stops evaluating the expression as soon as the
result can be determined. This allows you to write expressions that might
otherwise cause an error. Consider the following ORexpression:

DECLARE
on_hand INTEGER;

on_order INTEGER,;
BEGIN

IF (on_hand=0) OR (on_order/on_hand <5) THEN

ENDIF;
END;

When the value of on_hand is zero, the left operand yields TRUE so PL/SQL need
not evaluate the right operand. If PL/SQL were to evaluate both operands before
applying the ORoperator, the right operand would cause a division by zero error. In
any case, it is a poor programming practice to rely on short-circuit evaluation.

Comparison Operators

Comparison operators compare one expression to another. The result is always
TRUE FALSE or NULL Typically, you use comparison operators in the WHERE
clause of SQL data manipulation statements and in conditional control statements.

2-44 PL/SQL User's Guide and Reference

Expressions and Comparisons

Relational Operators

The relational operators allow you to compare arbitrarily complex expressions. The
following list gives the meaning of each operator:

Operator Meaning

= equal to

<, = ~= not equal to

< less than

> greater than

<= less than or equal to

>= greater than or equal to
IS NULL Operator

The IS NULL operator returns the Boolean value TRUEif its operand is null or
FALSEIf it is not null. Comparisons involving nulls always yield NULL Therefore,
to test for nullity (the state of being null), do not use the statement

IF variable = NULL THEN ...

Instead, use the following statement;
IF variable IS NULL THEN ...

LIKE Operator

You use the LIKE operator to compare a character value to a pattern. Case is
significant. LIKE returns the Boolean value TRUEIf the character patterns match or
FALSEIf they do not match.

The patterns matched by LIKE can include two special-purpose characters called
wildcards. An underscore (_) matches exactly one character; a percent sign (%)
matches zero or more characters. For example, if the value of enameis 'JOHNSON’,
the following expression yields TRUE

ename LIKE 'J%SON’

BETWEEN Operator

The BETWEEMperator tests whether a value lies in a specified range. It means
“greater than or equal to low value and less than or equal to high value.” For
example, the following expression yields FALSE

45 BETWEEN 38 AND 44

Fundamentals 2-45

Expressions and Comparisons

IN Operator
The IN operator tests set membership. It means “equal to any member of.

The set can contain nulls, but they are ignored. For example, the following
statement does not delete rows in which the ename column is null:

DELETE FROM emp WHERE ename IN (NULL, 'KING', 'FORD);

Furthermore, expressions of the form
value NOT IN set

yield FALSEIf the set contains a null. For example, instead of deleting rows in
which the ename column is not null and not 'KING’ , the following statement
deletes no rows:

DELETE FROM emp WHERE ename NOT IN (NULL, 'KING);

Concatenation Operator

Double vertical bars (] |) serve as the concatenation operator, which appends one
string to another, as the following example shows:

‘suit' || ‘case’ = "suitcase’

If both operands have datatype CHARthe concatenation operator returns a CHAR
value. Otherwise, it returns a VARCHARZalue.

Boolean Expressions

PL/SQL lets you compare variables and constants in both SQL and procedural
statements. These comparisons, called Boolean expressions, consist of simple or
complex expressions separated by relational operators. Often, Boolean expressions
are connected by the logical operators AND OR and NOT A Boolean expression
always yields TRUE FALSE, or NULL

In a SQL statement, Boolean expressions let you specify the rows in a table that are
affected by the statement. In a procedural statement, Boolean expressions are the
basis for conditional control. There are three kinds of Boolean expressions:
arithmetic, character, and date.

2-46 PL/SQL User's Guide and Reference

Expressions and Comparisons

Arithmetic Expressions

You can use the relational operators to compare numbers for equality or inequality.
Comparisons are quantitative; that is, one number is greater than another if it
represents a larger quantity. For example, given the assignments

numberl :=75;

number2 :=70;

the following expression yields TRUE
numberl > number2

Character Expressions

Likewise, you can compare character values for equality or inequality.
Comparisons are based on the collating sequence used for the database character
set. A collating sequence is an internal ordering of the character set, in which a range
of numeric codes represents the individual characters. One character value is
greater than another if its internal numeric value is larger. For example, given the
assignments

stringl = Kathy’;

string2 := Kathleen’;

the following expression yields TRUE

stringl > string2

However, there are semantic differences between the CHARand VARCHARDase

types that come into play when you compare character values. For more
information, refer to Appendix C.

Date Expressions

You can also compare dates. Comparisons are chronological; that is, one date is
greater than another if it is more recent. For example, given the assignments

datel :='01-JAN-91’;
date2 :='31-DEC-90;

the following expression yields TRUE
datel > date?

Fundamentals 2-47

Expressions and Comparisons

Handling Nulls

Guidelines

In general, do not compare real numbers for exact equality or inequality. Real
numbers are stored as approximate values. So, for example, the following IF
condition might not yield TRUE

count:=1;
IFcount=1.0 THEN ...

It is a good idea to use parentheses when doing comparisons. For example, the
following expression is illegal because 100 < tax yields TRUEor FALSE, which
cannot be compared with the number 500:

100<tax<500 —illegal

The debugged version follows:
(100 < tax) AND (tax < 500)
A Boolean variable is itself either true or false. So, comparisons with the Boolean

values TRUEand FALSEare redundant. For example, assuming the variable done
is of type BOOLEANthe WHILE statement

WHILE NOT (done = TRUE) LOOP
END LOOP;

can be simplified as follows:
WHILE NOT done LOOP

END LOOP;

When working with nulls, you can avoid some common mistakes by keeping in
mind the following rules:

« comparisons involving nulls always yield NULL
« applying the logical operator NOTto a null yields NULL

« in conditional control statements, if the condition yields NULL, its associated
sequence of statements is not executed

2-48 PL/SQL User's Guide and Reference

Expressions and Comparisons

In the example below, you might expect the sequence of statements to execute
because x and y seem unequal. But, nulls are indeterminate. Whether or not x is
equal to y is unknown. Therefore, the IF condition yields NULLand the sequence
of statements is bypassed.

X:=5;
vy =NULL;

IFx'=y THEN - yields NULL, not TRUE
sequence_of_statements; — not executed
ENDIF;

In the next example, you might expect the sequence of statements to execute
because a and b seem equal. But, again, that is unknown, so the IF condition yields
NULL and the sequence of statements is bypassed.

a:=NULL;
b:=NULL;

IFa=bTHEN -yields NULL, not TRUE
sequence_of_statements; — not executed
ENDIF;

NOT Operator
Recall that applying the logical operator NOTto a null yields NULL Thus, the
following two statements are not always equivalent:

IFx>yTHEN | IFNOTx>yTHEN
high=x, | high=y;

ELSE | ELSE
high:=y; | high=x;
ENDIF; | ENDIF;

The sequence of statements in the ELSE clause is executed when the IF condition
yields FALSEor NULL So, if either or both x and y are null, the first IF statement
assigns the value of y to high , but the second IF statement assigns the value of x
to high . If neither x nor y is null, both IF statements assign the same value to
high .

Fundamentals 2-49

Expressions and Comparisons

Zero-Length Strings

PL/SQL treats any zero-length string like a null. This includes values returned by
character functions and Boolean expressions. For example, the following
statements assign nulls to the target variables:

null_string :=TO_VARCHAR2(";
Zip_code := SUBSTR(address, 25, 0);
valid = (name =");

So, use the IS NULL operator to test for null strings, as follows:
IF my_striing IS NULL THEN ...

Concatenation Operator
The concatenation operator ignores null operands. For example, the expression

‘apple’ || NULL || NULL || 'sauce’ = "applesauce’

Functions

If a null argument is passed to a built-in function, a null is returned except in the
following cases.

The function DECODIEompares its first argument to one or more search
expressions, which are paired with result expressions. Any search or result
expression can be null. If a search is successful, the corresponding result is
returned. In the following example, if the column rating is null, DECODEeturns
the value 1000:

SELECT DECODE(rating, NULL, 1000, 'C’, 2000, 'B', 4000, ‘A', 5000)
INTO credit_limit FROM accts WHERE acctno =my_acctno;

The function NVLreturns the value of its second argument if its first argument is
null. In the example below, if hire_date is null, NVLreturns the value of
SYSDATEOtherwise, NVLreturns the value of hire_date

start_date :=NVL(hire_date, SYSDATE);

2-50 PL/SQL User's Guide and Reference

Built-In Functions

The function REPLACEeturns the value of its first argument if its second argument
is null, whether the optional third argument is present or not. For instance, after the
assignment

new_string := REPLACE(old_string, NULL, my_string);

the values of old_string ~ and new_string are the same.

If its third argument is null, REPLACEreturns its first argument with every
occurrence of its second argument removed. For example, after the assignments

syllabified_name :='Gold-Hocks’;
name := REPLACE(syllabified_name, -, NULL);
the value of nameis 'goldilocks’

If its second and third arguments are null, REPLACEsimply returns its first
argument.

Built-In Functions

PL/SQL provides many powerful functions to help you manipulate data. These
built-in functions fall into the following categories:

« error-reporting
« number

« character

=« conversion

« date

« miscellaneous

Table 2-4 shows the functions in each category. For descriptions of the error-
reporting functions, see Chapter 11. For descriptions of the other functions, see
Oracle8 SQL Reference.

You can use all the functions in SQL statements except the error-reporting functions
SQLCODRNd SQLERRMAIso, you can use all the functions in procedural
statements except the miscellaneous functions DECODEDUMPand VSIZE.

The SQL group functions AVG MIN, MAX COUNTSUM STDDEVand VARIANCEare
not built into PL/SQL. Nevertheless, you can use them in SQL statements (but not
in procedural statements).

Fundamentals 2-51

Built-In Functions

Table 2—4 Built-in Functions

Error Number Character Conversion Misc
SQLCODE ABS ASCII CHARTOROWID ADD_MONTHS DECODE
SQLERRM ACOS CHR CONVERT DUMP
ASIN CONCAT HEXTORAW MONTHS_BETWEENGREATEST
ATAN INITCAP NLS CHARSET ID GREATEST LB
ATAN2 INSTR NLS CHARSET _NAMENEXT DAY LEAST
CEIL INSTRB RAWTOHEX LEAST UB
COSs LENGTH ROWIDTOCHAR NVL
COSH LENGTHB TO_CHAR uiD
EXP LOWER TO_DATE USER
FLOOR LPAD TO_LABEL USERENV
LN LTRIM TO_MULTI BYTE VSIZE
LOG NLS_INITCAP TO_NUMBER
MOD NLS LOWER TO_SINGLE BYTE
POWER NLS_UPPER
ROUND NLSSORT
SIGN REPLACE
SIN RPAD
SINH RTRIM
SQRT SOUNDEX
TAN SUBSTR
TANH SUBSTRB
TRUNC TRANSLATE
UPPER

2-52 PL/SQL User's Guide and Reference

3

Control Structures

One ship drives east and another drives west
With the selfsame winds that blow.
"Tis the set of the sails and not the gales
Which tells us the way to go.
Ella Wheeler Wilcox

This chapter shows you how to structure the flow of control through a PL/SQL
program. You learn how statements are connected by simple but powerful control
structures that have a single entry and exit point. Collectively, these structures can
handle any situation. And, their proper use leads naturally to a well-structured
program.

Major Topics

Overview

Conditional Control: IF Statements

Iterative Control: LOOP and EXIT Statements
Sequential Control: GOTO and NULL Statements

Control Structures 3-1

Overview

Overview

According to the structure theorem, any computer program can be written using the
basic control structures shown in Figure 3-1. They can be combined in any way
necessary to deal with a given problem.

Figure 3-1 Control Structures

Selection Iteration Sequence

+

||

v v

The selection structure tests a condition, then executes one sequence of statements
instead of another, depending on whether the condition is true or false. A condition
is any variable or expression that returns a Boolean value (TRUEor FALSE). The
iteration structure executes a sequence of statements repeatedly as long as a
condition holds true. The sequence structure simply executes a sequence of
statements in the order in which they occur.

Conditional Control; IF Statements

Often, it is necessary to take alternative actions depending on circumstances. The
IF statement lets you execute a sequence of statements conditionally. That is,
whether the sequence is executed or not depends on the value of a condition. There
are three forms of IF statements: IF-THEN , IF-THEN-ELSE , and IF-THEN-ELSIF .

3-2 PL/SQL User’s Guide and Reference

Conditional Control: IF Statements

IF-THEN

IF-THEN-ELSE

The simplest form of IF statement associates a condition with a sequence of
statements enclosed by the keywords THENand END IF (not ENDIF), as follows:

IF condition THEN
sequence_of_statements;
END IF;

The sequence of statements is executed only if the condition yields TRUE If the
condition yields FALSEor NULL, the IF statement does nothing. In either case,
control passes to the next statement. An example follows:

IF sales > quota THEN

compute_bonus(empid);

UPDATE payroll SET pay = pay + bonus WHERE empno =emp_id;
ENDIF;

You might want to place brief IF statements on a single line, as in
IF x>y THEN high :=x; END IF;

The second form of IF statement adds the keyword ELSE followed by an
alternative sequence of statements, as follows:

IF condition THEN
sequence_of_statementsl,;
ELSE
sequence_of_statements?2;
ENDIF;

The sequence of statements in the ELSE clause is executed only if the condition
yields FALSEor NULL Thus, the ELSE clause ensures that a sequence of statements
is executed. In the following example, the first or second UPDATEstatement is
executed when the condition is true or false, respectively:

IFtrans_type ='CR THEN

UPDATE accounts SET balance = balance + credit WHERE ...
ELSE

UPDATE accounts SET balance = balance - debit WHERE ...
ENDIF;

Control Structures 3-3

Conditional Control: IF Statements

The THENand ELSEclauses can include IF statements. That is, IF statements can
be nested, as the following example shows:

IF trans_type ='CR' THEN
UPDATE accounts SET balance = balance + credit WHERE ...
ELSE
IF new_balance >=minimum_balance THEN
UPDATE accounts SET balance = balance - debit WHERE ...
ELSE
RAISE insufficient_funds;
ENDIF;
ENDIF;

IF-THEN-ELSIF

Sometimes you want to select an action from several mutually exclusive
alternatives. The third form of IF statement uses the keyword ELSIF (not ELSEIF)
to introduce additional conditions, as follows:

IF condition1 THEN
sequence_of _statementsl;
ELSIF condition2 THEN
sequence_of_statements2;
ELSE
sequence_of_statements3;
ENDIF;

If the first condition yields FALSEor NULL, the ELSIF clause tests another
condition. An IF statement can have any number of ELSIF clauses; the final ELSE
clause is optional. Conditions are evaluated one by one from top to bottom. If any
condition yields TRUE its associated sequence of statements is executed and
control passes to the next statement. If all conditions yield FALSE or NULL, the
sequence in the ELSEclause is executed. Consider the following example:

BEGIN

IF sales > 50000 THEN
bonus :=1500;
ELSIF sales > 35000 THEN
bonus :=500;
ELSE
bonus :=100;
ENDIF;
INSERT INTO payroll VALUES (emp_id, bonus, ...);
END;

3-4 PL/SQL User’s Guide and Reference

Conditional Control: IF Statements

Guidelines

If the value of sales is more than 50000, the first and second conditions are true.
Nevertheless, bonus is assigned the proper value of 1500 because the second
condition is never tested. When the first condition yields TRUE its associated
statement is executed and control passes to the INSERT statement.

Avoid clumsy IF statements like those in the following example:
DECLARE

overdrawn BOOLEAN,;
BEGIN

IF new_balance < minimum_balance THEN
overdrawn := TRUE;

ELSE
overdrawn := FALSE;

ENDIF;

IF overdrawn = TRUE THEN
RAISE insufficient_funds;
ENDIF;
END;

This code disregards two useful facts. First, the value of a Boolean expression can
be assigned directly to a Boolean variable. So, you can replace the first IF statement
with a simple assignment, as follows:

overdrawn := new_balance < minimum_balance;

Second, a Boolean variable is itself either true or false. So, you can simplify the
condition in the second IF statement, as follows:

IF overdrawn THEN ...

Control Structures 3-5

Iterative Control: LOOP and EXIT Statements

When possible, use the ELSIF clause instead of nested IF statements. That way,
your code will be easier to read and understand. Compare the following IF

statements:
IF condition1 THEN | IF conditionl THEN
statement1; | statementt,;
ELSE | ELSIF condition2 THEN
IF condition2 THEN | statement;
statement2; | ELSIF condition3 THEN
ELSE | statement3;
IFcondiion3THEN | ENDIF;
statement3; |
ENDIF; |
END IF; |
ENDIF; |

These statements are logically equivalent, but the first statement obscures the flow
of logic, whereas the second statement reveals it.

lterative Control: LOOP and EXIT Statements

LOOPstatements let you execute a sequence of statements multiple times. There are
three forms of LOOPstatements: LOOPWHILE-LOOR and FOR-LOOP

LOOP

The simplest form of LOOPstatement is the basic (or infinite) loop, which encloses a
sequence of statements between the keywords LOOPand END LOORs follows:

LOOP
sequence_of_statements;
END LOOP;

With each iteration of the loop, the sequence of statements is executed, then control
resumes at the top of the loop. If further processing is undesirable or impossible,
you can use an EXIT statement to complete the loop. You can place one or more
EXIT statements anywhere inside a loop, but nowhere outside a loop. There are
two forms of EXIT statements: EXIT and EXIT-WHEN

3-6 PL/SQL User’'s Guide and Reference

Iterative Control: LOOP and EXIT Statements

EXIT

The EXIT statement forces a loop to complete unconditionally. When an EXIT
statement is encountered, the loop completes immediately and control passes to the
next statement. An example follows:

LOOP
IF credit_rating <3 THEN

EXIT; - exitloop immediately
ENDIF;
END LOOP;
— control resumes here

The next example shows that you cannot use the EXIT statement to complete a
PL/SQL block:

BEGIN
IF credit_rating < 3 THEN

EXIT; —ilegal
ENDIF;
END;

Remember, the EXIT statement must be placed inside a loop. To complete a
PL/SQL block before its normal end is reached, you can use the RETURNtatement.
For more information, see “RETURN Statement” on page 7-7.

EXIT-WHEN

The EXIT-WHENSstatement allows a loop to complete conditionally. When the EXIT
statement is encountered, the condition in the WHENIause is evaluated. If the
condition yields TRUE the loop completes and control passes to the next statement
after the loop. An example follows:

LOOP
FETCHCLINTO...
EXIT WHEN c1%NOTFOUND; - exit loop if condition is true

END LOOP;
CLOSEccL;

Control Structures 3-7

Iterative Control: LOOP and EXIT Statements

Until the condition yields TRUE the loop cannot complete. So, statements within
the loop must change the value of the condition. In the last example, if the FETCH
statement returns a row, the condition yields FALSE When the FETCHstatement
fails to return a row, the condition yields TRUE the loop completes, and control
passes to the CLOSEstatement.

The EXIT-WHENSstatement replaces a simple IF statement. For example, compare
the following statements:

IFcount>100 THEN | EXIT WHEN count> 100;
EXIT; |
ENDIF; |

These statements are logically equivalent, but the EXIT-WHENSstatement is easier to
read and understand.

Loop Labels

Like PL/SQL blocks, loops can be labeled. The label, an undeclared identifier
enclosed by double angle brackets, must appear at the beginning of the LOOP
statement, as follows:

<<label_name>>

LOOP
sequence_of_statements;

END LOOP;

Optionally, the label name can also appear at the end of the LOOPstatement, as the
following example shows:

<<my_loop>>
LOOP

END LOOP my_loop;

When you nest labeled loops, you can use ending label names to improve
readability.

3-8 PL/SQL User’s Guide and Reference

Iterative Control: LOOP and EXIT Statements

WHILE-LOOP

With either form of EXIT statement, you can complete not only the current loop,
but any enclosing loop. Simply label the enclosing loop that you want to complete.
Then, use the label in an EXIT statement, as follows:

<<outer>>
LOOP

LOOP
EXIT outer WHEN ... —exit both loops
END LOOP;

END LOOP outer,

Every enclosing loop up to and including the labeled loop is exited.

The WHILE-LOOPstatement associates a condition with a sequence of statements
enclosed by the keywords LOOPand END LOORs follows:

WHILE condition LOOP
sequence_of_statements;
END LOOP;

Before each iteration of the loop, the condition is evaluated. If the condition yields
TRUE the sequence of statements is executed, then control resumes at the top of the
loop. If the condition yields FALSE or NULL, the loop is bypassed and control
passes to the next statement. An example follows:

WHILE total <= 25000 LOOP

SELECT sal INTO salary FROM emp WHERE ...
total :=total + salary;
END LOOP;

The number of iterations depends on the condition and is unknown until the loop
completes. Since the condition is tested at the top of the loop, the sequence might

execute zero times. In the last example, if the initial value of total is greater than
25000, the condition yields FALSEand the loop is bypassed.

Control Structures 3-9

Iterative Control: LOOP and EXIT Statements

FOR-LOOP

Some languages have a LOOP UNTILor REPEAT UNTILstructure, which tests the
condition at the bottom of the loop instead of at the top. Therefore, the sequence of
statements is executed at least once. PL/SQL has no such structure, but you can
easily build one, as follows:

LOOP

sequence_of_statements;

EXIT WHEN boolean_expression;
END LOOP;

To ensure that a WHILE loop executes at least once, use an initialized Boolean
variable in the condition, as follows:

done =FALSE;

WHILE NOT done LOOP
sequence_of_statements;
done :=boolean_expression;

END LOOP,;

A statement inside the loop must assign a new value to the Boolean variable.
Otherwise, you have an infinite loop. For example, the following LOOPstatements
are logically equivalent:

WHILETRUELOOP | LOOP

| .
ENDLOOP; | ENDLOOP;

Whereas the number of iterations through a WHILE loop is unknown until the loop
completes, the number of iterations through a FORIloop is known before the loop is
entered. FORIloops iterate over a specified range of integers. (Cursor FORIloops,
which iterate over the result set of a cursor, are discussed in Chapter 5.) The range
is part of an iteration scheme, which is enclosed by the keywords FORand LOOPA
double dot (..) serves as the range operator. The syntax follows:

FOR counter IN [REVERSE] lower_bound..higher_bound LOOP
sequence_of_statements;
END LOOP;

The range is evaluated when the FORIloop is first entered and is never re-evaluated.

3-10 PL/SQL User's Guide and Reference

Iterative Control: LOOP and EXIT Statements

As the next example shows, the sequence of statements is executed once for each
integer in the range. After each iteration, the loop counter is incremented.

FORIiIN1.3LOOP -assignthevalues1,23toi
sequence_of_statements; — executes three times
END LOOP;

The following example shows that if the lower bound equals the higher bound, the
sequence of statements is executed once:

FORIiIN3.3LOOP -assignthe value 3toi
sequence_of_statements; — executes one time
END LOOP;

By default, iteration proceeds upward from the lower bound to the higher bound.
However, if you use the keyword REVERSEiteration proceeds downward from the
higher bound to the lower bound, as the example below shows. After each
iteration, the loop counter is decremented.

FORIiINREVERSE 1.3LOOP -assignthevalues3211toi
sequence_of_statements; — executes three times
END LOOP;

Nevertheless, you write the range bounds in ascending (not descending) order.

Inside a FORIloop, the loop counter can be referenced like a constant. So, the loop
counter can appear in expressions but cannot be assigned values, as the following
example shows;

FORctrIN 1..10 LOOP
IF NOT finished THEN
INSERT INTO ... VALUES (ctr, ...); —legal
factor =ctr*2; —legal
ELSE
ctr:=10; —illegal
ENDIF;
END LOOP;

[teration Schemes

The bounds of a loop range can be literals, variables, or expressions but must
evaluate to integers. For example, the following iteration schemes are legal:

iIN5.5

k IN REVERSE first.last

step IN 0. TRUNC(high/low) * 2
code IN ASCII(A).ASCII()

Control Structures 3-11

Iterative Control: LOOP and EXIT Statements

As you can see, the lower bound need not be 1. However, the loop counter
increment (or decrement) must be 1. Some languages provide a STEPclause, which
lets you specify a different increment. An example written in BASIC follows:

FORJ=5TO 15 STEP5 :REM assign values 5,10,15t0 J
sequence_of statements — J has values 5,10,15
NEXT J

PL/SQL has no such structure, but you can easily build one. Consider the
following example:

FORJjIN5.15LOOP -assignvalues5,6,7,...t0]
IF MOD(j, 5)=0THEN - pass multtiples of 5
sequence_of_statements; —jhas values 5,10,15
ENDIF;
END LOOP,;

This loop is logically equivalent to the previous BASIC loop. Within the sequence
of statements, the loop counter has only the values 5, 10, and 15.

You might prefer the less elegant but more efficient method shown in the example
below. Within the sequence of statements, each reference to the loop counter is
multiplied by the increment.

FORjIN 1.3 LOOP -assignvalues 1,2,310j
sequence_of_statements; —each j becomesj*b
END LOOP;

Dynamic Ranges

PL/SQL lets you determine the loop range dynamically at run time, as the
following example shows:

SELECT COUNT(empno) INTO emp_count FROM emp;
FORIIN 1..emp_countLOOP

END LOOP;

The value of emp_count is unknown at compile time; the SELECTstatement
returns the value at run time.

3-12 PL/SQL User's Guide and Reference

Iterative Control: LOOP and EXIT Statements

What happens if the lower bound of a loop range evaluates to a larger integer than
the upper bound? As the next example shows, the sequence of statements within
the loop is not executed and control passes to the next statement:
—limit becomes 1
FORIIN 2.limit LOOP

sequence_of statements; — executes zero times

END LOOP;
— control passes here

Scope Rules

The loop counter is defined only within the loop. You cannot reference it outside
the loop. After the loop is exited, the loop counter is undefined, as the following
example shows;

FORctrIN1..10 LOOP

END LOOP;
sum :=ctr-1; —illegal

You need not explicitly declare the loop counter because it is implicitly declared as
a local variable of type INTEGER The next example shows that the local
declaration hides any global declaration:

DECLARE
cr INTEGER,;
BEGIN

FORctrIN 1.25 LOOP
IFctr>10 THEN ... —refers to loop counter
END LOOP;
END;

To reference the global variable in this example, you must use a label and dot
notation, as follows:

<<main>>
DECLARE

ctr INTEGER,;
BEGIN

FORctrIN 1..25 LOOP

Control Structures 3-13

Iterative Control: LOOP and EXIT Statements

IF main.ctr > 10 THEN ... — refers to global variable
END LOOP;
END main;

The same scope rules apply to nested FORloops. Consider the example below. Both
loop counters have the same name. So, to reference the outer loop counter from the
inner loop, you must use a label and dot notation, as follows:

<<outer>>
FOR stepIN 1..25 LOOP
FORstepIN 1..10 LOOP

IF outerstep> 15 THEN ...
END LOOP,;
END LOOP ouiter;

Using the EXIT Statement

The EXIT statement allows a FORloop to complete prematurely. For example, the
following loop normally executes ten times, but as soon as the FETCHstatement
fails to return a row, the loop completes no matter how many times it has executed:

FORjIN1.10LOOP
FETCHC1INTO emp _rec;
EXIT WHEN c1%NOTFOUND,;

END LOOP;

Suppose you must exit from a nested FORIloop prematurely. You can complete not
only the current loop, but any enclosing loop. Simply label the enclosing loop that
you want to complete. Then, use the label in an EXIT statement to specify which
FORIoop to exit, as follows:

<<outer>>
FORIiIN1.5LOOP

FORjIN 1.10LOOP
FETCH c1INTO emp_rec;
EXIT outer WHEN c1%NOTFOUND; - exit both FOR loops

END LOOP;

END LOOP ouiter;
— control passes here

3-14 PL/SQL User's Guide and Reference

Sequential Control: GOTO and NULL Statements

Sequential Control: GOTO and NULL Statements

Unlike the IF and LOOPstatements, the GOTGand NULL statements are not crucial
to PL/SQL programming. The structure of PL/SQL is such that the GOTGtatement
is seldom needed. Occasionally, it can simplify logic enough to warrant its use. The
NULL statement can make the meaning and action of conditional statements clear
and so improve readability.

Overuse of GOTGtatements can result in complex, unstructured code (sometimes
called spaghetti code) that is hard to understand and maintain. So, use GOTO
statements sparingly. For example, to branch from a deeply nested structure to an
error-handling routine, raise an exception rather than use a GOTGtatement.

GOTO Statement

The GOTGtatement branches to a label unconditionally. The label must be unique
within its scope and must precede an executable statement or a PL/SQL block.
When executed, the GOTGtatement transfers control to the labeled statement or
block. In the following example, you go to an executable statement farther down in
a sequence of statements:

BEGIN
GOTOinsert_row,
<<insert_row>>
INSERT INTO emp VALUES. ...
END;

In the next example, you go to a PL/SQL block farther up in a sequence of
statements:

BEGIN
<<update_row>>
BEGIN

UPDATE emp SET ...
END;
GOTO update_row;

END;

Control Structures 3-15

Sequential Control: GOTO and NULL Statements

The label <<end_loop>> in the following example is illegal because it does not
precede an executable statement:

DECLARE
done BOOLEAN,;
BEGIN

FORIiIN1.50 LOOP
IF done THEN
GOTOend_loop;
ENDIF;

<<end_loop>> —illegal
END LOOP; - notan executable statement
END,;

To debug the last example, simply add the NULL statement, as follows;

DECLARE
done BOOLEAN,;
BEGIN

FORIiIN 1.50 LOOP
IF done THEN
GOTOend _loop;
ENDIF;

<<end_loop>>
NULL; —an executable statement
END LOOP;

END,;

As the following example shows, a GOTGtatement can branch to an enclosing
block from the current block:

DECLARE
my_ename CHAR(10);
BEGIN

<<get_name>>
SELECT ename INTO my_ename FROM emp WHERE ...
BEGIN

GOTO get_name; — branch to enclosing block

END;
END;

3-16 PL/SQL User's Guide and Reference

Sequential Control: GOTO and NULL Statements

The GOTGtatement branches to the first enclosing block in which the referenced
label appears.

Restrictions

Some possible destinations of a GOTGtatement are illegal. Specifically,a GOTO
statement cannot branch into an IF statement, LOOPstatement, or sub-block. For
example, the following GOTGtatement is illegal:

BEGIN
GOTO update_row; —illegal branch into IF statement
IF valid THEN

<<update_row>>
UPDATE emp SET ...
ENDIF;
END;

Also, a GOTGtatement cannot branch from one IF statement clause to another, as
the following example shows:
BEGIN

IF valid THEN

GOTO update_row; — illegal branch into ELSE clause
ELSE

<<update_row>>
UPDATE emp SET ...
ENDIF;
END;

The next example shows that a GOTGtatement cannot branch from an enclosing
block into a sub-block:

BEGIN
IF status ="OBSOLETE THEN
GOTO delete_part; —illegal branch into sub-block
ENDIF;

BEGIN

Control Structures 3-17

Sequential Control: GOTO and NULL Statements

<<delete part>>
DELETE FROM parts WHERE ..
END;
END;

Also, a GOTGtatement cannot branch out of a subprogram, as the following
example shows:

DECLARE

PROCEDURE compute_bonus (emp_id NUMBER) IS
BEGIN

GOTO update_row; — illegal branch out of subprogram
END;
BEGIN

<<update_row>>
UPDATEemp SET ...
END;

Finally, a GOTGtatement cannot branch from an exception handler into the current
block. For example, the following GOTGtatement is illegal:
DECLARE

pe_ratio REAL;
BEGIN

SELECT price / NVL(eamings, 0) INTO pe_ratio FROM ...
<<insert_row>>
INSERT INTO stats VALUES (pe_ratio, ...);

EXCEPTION
WHEN ZERO_DIVIDE THEN
pe_ratio =0;
GOTOinsert_row; —illegal branchinto current block
END;

However, a GOTGtatement can branch from an exception handler into an
enclosing block.

3-18 PL/SQL User's Guide and Reference

Sequential Control: GOTO and NULL Statements

NULL Statement

The NULL statement explicitly specifies inaction; it does nothing other than pass
control to the next statement. It can, however, improve readability. In a construct
allowing alternative actions, the NULL statement serves as a placeholder. It tells
readers that the associated alternative has not been overlooked, but that indeed no
action is necessary. In the following example, the NULL statement shows that no
action is taken for unnamed exceptions:

EXCEPTION

WHEN ZERO_DIVIDE THEN
ROLLBACK;

WHEN VALUE_ERROR THEN
INSERT INTO errors VALUES ...
COMMIT;

WHEN OTHERS THEN
NULL,;

END;

Each clause in an IF statement must contain at least one executable statement. The
NULL statement meets this requirement. So, you can use the NULL statement in
clauses that correspond to circumstances in which no action is taken. In the
following example, the NULL statement emphasizes that only top-rated employees
receive bonuses:

IF rating>90 THEN
compute_bonus(emp_id);
ELSE
NULL;
ENDIF;

Also, the NULL statement is a handy way to create stubs when designing
applications from the top down. A stub is dummy subprogram that allows you to
defer the definition of a procedure or function until you test and debug the main
program. In the following example, the NULL statement meets the requirement that
at least one statement must appear in the executable part of a subprogram:

PROCEDURE debit_account (acct_id INTEGER, amount REAL) IS
BEGIN

NULL;
END debit_account;

Control Structures 3-19

Sequential Control: GOTO and NULL Statements

3-20 PL/SQL User's Guide and Reference

A

Collections and Records

Knowledge is that area of ignorance that we arrange and classify.
Ambrose Bierce

Increasingly, programmers are using collection types such as arrays, bags, lists,
nested tables, sets, and trees in traditional database applications. To meet the
growing demand, PL/SQL provides the datatypes TABLEand VARRAYwhich
allow you to declare nested tables and variable-size arrays. In this chapter, you
learn how those types let you reference and manipulate collections of data as whole
objects. You also learn how the datatype RECORIets you treat related but
dissimilar data as a logical unit.

Major Topics

What Is a Collection?

Initializing and Referencing Collections
Assigning and Comparing Collections
Manipulating Collections

Using Collection Methods

Avoiding Collection Exceptions

What Is a Record?

Defining and Declaring Records
Initializing and Referencing Records
Assigning and Comparing Records
Manipulating Records

Collections and Records 4-1

What Is a Collection?

What Is a Collection?

A collection is an ordered group of elements, all of the same type (for example, the
grades for a class of students). Each element has a unique subscript that determines
its position in the collection. PL/SQL offers two kinds of collections: nested tables
and varrays (short for variable-size arrays).

Collections work like the arrays found in most third-generation programming
languages. However, collections can have only one dimension and must be indexed
by integers. (In some languages such as Ada and Pascal, arrays can have multiple
dimensions and can be indexed by enumeration types.)

Collections can store instances of an object type and, conversely, can be attributes of
an object type. Also, collections can be passed as parameters. So, you can use them
to move columns of data into and out of database tables or between client-side
applications and stored subprograms. Furthermore, you can define collection types
in a PL/SQL package, then use them programmatically in your applications.

Note: To use nested tables and varrays, you must have the Oracle8
Enterprise Edition and the Objects Option. For more information, see
Getting to Know Oracle8 and the Oracle8 Enterprise Edition.

Understanding Nested Tables

Items of type TABLEare called nested tables. Within the database, they can be
viewed as one-column database tables. Oracle stores the rows of a nested table in
no particular order. But, when you retrieve the nested table into a PL/SQL variable,
the rows are given consecutive subscripts starting at 1. That gives you array-like
access to individual rows.

Within PL/SQL, nested tables are like one-dimensional arrays. However, nested
tables differ from arrays in two important ways. First, arrays have a fixed upper
bound, but nested tables are unbounded (see Figure 4-1). So, the size of a nested
table can increase dynamically.

4-2 PL/SQL User's Guide and Reference

What Is a Collection?

Figure 4-1 Array versus Nested Table

Array of Integers

[321 [17 [o0 [407] 83 [622 [105 | 19 | 67 [278] | [xed
Bound

x(1) x(2) x(3) x@) x(B) x(6) x(7) x(8) x(9) x(10)

Nested Table after Deletions

| 321 - 99 | 407 - 622 | 105 | 19 - 278 | Unbounded

x(1) X(3) x(4) x(6) x(7) x(8) x(10)

Second, arrays must be dense (have consecutive subscripts). So, you cannot delete
individual elements from an array. Initially, nested tables are dense, but they can be
sparse (have nonconsecutive subscripts). So, you can delete elements from a nested
table using the built-in procedure DELETE That might leave gaps in the index, but
the built-in function NEXTlets you iterate over any series of subscripts.

Differences Between Nested Tables and Index-by Tables
Nested tables differ from Version 2 PL/SQL tables (called index-by tables from here

on) in the following ways:
« In SQL, you can manipulate nested tables but not index-by tables.
« Nested tables are initially dense, but index-by tables are initially sparse.

« The following element types are allowed for index-by tables but not for nested
tables: BINARY_INTEGER BOOLEANLONGLONG RAWNATURALNATURALN
PLS_INTEGER POSITIVE, POSITIVEN, SIGNTYPE and STRING

« Unlike nested table types, index-by table types are defined using the clause
INDEX BY BINARY_INTEGER

« Anuninitialized nested table is atomically null (that is, the table itself is null,
not its elements), but an uninitialized index-by table is merely empty. So, you
can apply the IS NULL comparison operator to nested tables but not to index-
by tables.

« At run time, index-by tables become non-null automatically. But, nested tables
become non-null only when explicitly assigned a value.

« Nested tables can be null, but index-by tables cannot. So, the predefined
exception COLLECTION_IS_NULLapplies only to nested tables.

Collections and Records 4-3

What Is a Collection?

« For nested tables, the legal subscript range is 1 .. 2147483647. But, for index-by

tables, the range is -2147483647 .. 2147483647. So, unlike nested tables, index-by
tables can have negative subscripts.

« Subscripts for a nested table are constrained, but subscripts for an index-by

table are not. So, the predefined exceptions SUBSCRIPT_OUTSIDE_LIMIT and
SUBSCRIPT_BEYOND_COUIMpply only to nested tables.

« Toextend a nested table, you must use the built-in procedure EXTENDBuUt, to

extend an index-by table, you just specify larger subscripts.

« The built-in procedures EXTENDand TRIM can be applied only to nested tables.

Understanding Varrays

Items of type VARRAYare called varrays. They allow you to associate a single
identifier with an entire collection. This association lets you manipulate the
collection as a whole and reference individual elements easily. To reference an
element, you use standard subscripting syntax (see Figure 4-2). For example,
Grade(3) references the third element in varray Grades .

Figure 4-2 Varray of Size 10

Varray Grades
lelcfalafclofe] | | |
“m @ 6 @ 6 6 O

Maximum
Size =10

A varray has a maximum size, which you must specify in its type definition. Its
index has a fixed lower bound of 1 and an extensible upper bound. For example,
the current upper bound for varray Grades is 7, but you can extend it to 8, 9, or 10.
Thus, a varray can contain a varying number of elements, from zero (when empty)
to the maximum specified in its type definition.

Varrays versus Nested Tables

4-4 PL/SQL User"

Nested tables differ from varrays in the following ways:
« Varrays have a maximum size, but nested tables do not.

« Varrays are always dense, but nested tables can be sparse. So, you can delete
individual elements from a nested table but not from a varray.

s Guide and Reference

Defining and Declaring Collections

« Oracle stores varray data in-line (in the same tablespace). But, Oracle stores
nested table data out-of-line in a store table, which is a system-generated
database table associated with the nested table.

=« When stored in the database, varrays retain their ordering and subscripts, but
nested tables do not.

Which collection type should you use? That depends on your wants and the size of
the collection. A varray is stored as an opaque object, whereas a nested table is
stored in a storage table with every element mapped to a row in the storage table.
So, if you want efficient queries, use nested tables. If you want to retrieve entire
collections as a whole, use varrays. However, when collections get very large, it
becomes impractical to retrieve more than subsets. So, varrays are better suited for
small collections.

Defining and Declaring Collections

To create collections, you define a collection type, then declare collections of that
type. You can define TABLEand VARRAMypes in the declarative part of any
PL/SQL block, subprogram, or package. For nested tables, you use the syntax

TYPE type_name IS TABLE OF element _type [NOT NULL];

and for varrays, you use the following syntax:

TYPE type_name IS{VARRAY | VARYING ARRAY} (size_limit)
OF element _type [NOT NULL];

where type _name is a type specifier used later to declare collections, size limit
is a positive integer literal, and element type is any PL/SQL datatype except

BINARY_INTEGER
BOOLEAN

LONG

LONG RAW
NATURAL
NATURALN
NCHAR

NCLOB
NVARCHAR?2
object types with TABLEor VARRAYattributes
PLS_INTEGER
POSITIVE
POSITIVEN

Collections and Records 4-5

Defining and Declaring Collections

REF CURSOR
SIGNTYPE
STRING
TABLE
VARRAY

If element type is arecord type, every field in the record must be a scalar type or
an object type.

For index-by tables, you use the syntax

TYPE type_name IS TABLE OF element _type [NOT NULL]
INDEX BY BINARY_INTEGER,;

Though not allowed for nested tables or varrays, the following element types are
allowed for index-by tables: BINARY_INTEGER BOOLEANLONGLONG RAW
NATURALNATURALNPLS_INTEGER POSITIVE, POSITIVEN, SIGNTYPE and
STRING That is because nested tables and varrays are intended primarily to be
columns of database tables. As such, they cannot access PL/SQL-specific types.
When declared locally, they could theoretically use those types, but the restriction
is preserved for consistency.

Unlike nested tables, which are initially dense, index-by tables are initially sparse.
That enables you, for example, to store reference data in a temporary index-by table
using a numeric primary key as the index. In the example below, you declare an
index-by table of records. Each element of the table stores a row from the emp
database table.

DECLARE
TYPE EmpTabTyp IS TABLE OF emp%ROWTYPE
INDEX BY BINARY_INTEGER,;
emp_tab EmpTabTyp;
BEGIN
F* Retrieve employee record. */
SELECT *INTO emp_tab(7468) WHERE empno = 7468;

When defining a VARRAMype, you must specify its maximum size. In the
following example, you define a type that stores up to 366 dates:

DECLARE
TYPE Calendar IS VARRAY(366) OF DATE;

4-6 PL/SQL User's Guide and Reference

Defining and Declaring Collections

To specify the element type, you can use %TYPEwhich provides the datatype of a
variable or database column. Also, you can use %ROWTYPR®&hich provides the
rowtype of a cursor or database table. Two examples follow:

DECLARE
TYPE EmplList IS TABLE OF emp.ename%T YPE; - based on column
CURSOR 1 IS SELECT * FROM dept;
TYPE DeptFile IS VARRAY(20) OF c1%ROWTYPE; — based on cursor

In the next example, you use a RECORIDype to specify the element type:

DECLARE
TYPE Entry IS RECORD (
term VARCHAR2(20),
meaning VARCHAR2(200));
TYPE Glossary IS VARRAY(250) OF Entry;

In the final example, you impose a NOT NULLconstraint on the element type:

DECLARE
TYPE EmplList IS TABLE OF emp.empno%TYPE NOT NULL;

An initialization clause is not required (or allowed).

Declaring Collections

Once you define a collection type, you can declare collections of that type, as the
following SQL*Plus script shows:

CREATE TYPE Courselist AS TABLE OF VARCHAR2(10) - define TABLE type
/
CREATE TYPE Student AS OBJECT (- create object
id_num INTEGER(4),
name VARCHAR2(25),
address VARCHAR2(35),
status CHAR(2),
courses Courselist) — declare nested table as attribute
/

The identifier courses represents an entire nested table. Each element of courses
will store the code name of a college course such as “Math 1020.”

Collections and Records 4-7

Defining and Declaring Collections

The script below creates a database column that stores varrays. Each element of the
varrays will store a Project object.

CREATE TYPE Project AS OBJECT(—create object
project_no NUMBER(2),
ite VARCHAR2(35),
cost NUMBER(7,2)
/
CREATE TYPE ProjectList AS VARRAY(50) OF Project — define VARRAY type
/
CREATE TABLE department (— create database table
dept_id NUMBER(2),
name VARCHAR2(15),
budget NUMBER(11,2),
projects ProjectList) — declare varray as column

The following example shows that you can use % TYPRo provide the datatype of a
previously declared collection:

DECLARE
TYPE Platoon IS VARRAY/(20) OF Soldier;
pl Platoon;
P2 p1%TYPE;

You can declare collections as the formal parameters of functions and procedures.
That way, you can pass collections to stored subprograms and from one
subprogram to another. In the following example, you declare a nested table as the
formal parameter of a packaged procedure:

CREATE PACKAGE personnel AS

TYPE Staff IS TABLE OF Employee;

PROCEDURE award_bonuses (members IN Staff);
Also, you can specify a collection type in the RETURNIlause of a function
specification, as the following example shows:

DECLARE
TYPE SalesForce IS VARRAY(25) OF Salesperson;
FUNCTION top_performers (n INTEGER) RETURN SalesForce IS ...

4-8 PL/SQL User's Guide and Reference

Initializing and Referencing Collections

Collections follow the usual scoping and instantiation rules. In a block or
subprogram, collections are instantiated when you enter the block or subprogram
and cease to exist when you exit. In a package, collections are instantiated when
you first reference the package and cease to exist when you end the database
session.

Initializing and Referencing Collections

Until you initialize it, a collection is atomically null (that is, the collection itself is
null, not its elements). To initialize a collection, you use a constructor, which is a
system-defined function with the same name as the collection type. This function
“constructs” collections from the elements passed to it. In the following example,
you pass six elements to constructor CourseList() , which returns a nested table
containing those elements:

DECLARE
my_courses CourseList;
BEGIN
my_courses := CourseList’Econ 2010', 'Acct 3401, 'Mgmt 3100',
'PoSc 3141, 'Mkig 3312, 'Engl 2005);

In the next example, you pass three objects to constructor ProjectList() , Which
returns a varray containing those objects:

DECLARE
accounting_projects ProjectList;
BEGIN
accounting_projects =
ProjectList(Project(1, Design New Expense Report, 3250),
Project(2, ‘'Outsource Payroll, 12350),
Project(3, ‘Audit Accounts Payable', 1425));

You need not initialize the whole varray. For example, if a varray has a maximum
size of 50, you can pass fewer than 50 elements to its constructor.

If you did not impose the NOT NULLconstraint or specify a record type for
elements, you can pass null elements to a constructor. An example follows:

BEGIN
my_courses := CourseList(Math 3010', NULL, NULL, 'Stat 3202, ...);

Collections and Records 4-9

Initializing and Referencing Collections

The next example shows that you can initialize a collection in its declaration, which
is a good programming practice:

DECLARE
my_courses CourseList := CourseList(Art 1111, 'Hist 3100, ...);

If you call a constructor without arguments, you get an empty but non-null
collection, as the following example shows:

DECLARE

TYPE Clientele IS VARRAY(100) OF Customer;

vips Clientele := Clientele(); - initialize empty varray
BEGIN

IFvips IS NOT NULL THEN ... — condition yields TRUE

Except for index-by tables, PL/SQL never calls a constructor implicitly, so you
must call it explicitly. Constructor calls are allowed wherever function calls are
allowed. That includes the SELECT VALUES and SET clauses. In the example
below, you insert a Student object into object table sophomores . The table
constructor CourseList() provides a value for attribute courses .

BEGIN
INSERT INTO sophomores
VALUES (Student(5035, Janet Alvarez', "122 Brighton St, 'F T,
CourseList{Econ 2010, "Acct 3401", Mgmt 3100, ...));

In the final example, you insert a row into database table department . The varray
constructor ProjectList() provides a value for column projects

BEGIN
INSERT INTO department
VALUES(60, ‘Security, 750400,
ProjectList(Project(1, 'lssue New Employee Badges', 13500),
Project(2, 'Find Missing Computer Chips', 2750),
Project(3, 'Inspect Emergency Exits', 1900)));

4-10 PL/SQL User’s Guide and Reference

Initializing and Referencing Collections

Referencing Collection Elements

Every element reference includes a collection name and a subscript enclosed in
parentheses. The subscript determines which element is processed. To reference an
element, you specify its subscript using the syntax

collection_name(subscript)

where subscript is an expression that yields a positive integer. For nested tables,
the integer must lie in the range 1 .. 2147483647. For varrays, the integer must lie in
the range 1 .. maximum_size .

You can reference a collection in all expression contexts. In the following example,
you reference an element in nested table names:

DECLARE
TYPE Roster IS TABLE OF VARCHAR2(15);
names Roster := Roster(J Hamil','D Caruso’, 'R Singh’, ...);
iBINARY_INTEGER;

BEGIN

IF names()) ='J Hamil THEN ...
The next example shows that you can reference the elements of a collection in

subprogram calls:

DECLARE
TYPE Roster IS TABLE OF VARCHAR2(15);
names Roster := Roster(J Hamil,'D Caruso’, 'R Singh’, ...);
iBINARY_INTEGER;

BEGIN

verify_name(names(); — call procedure

When calling a function that returns a collection, you use the following syntax to
reference elements in the collection:

function_name(parameter_list)(subscript)

Collections and Records 4-11

Assigning and Comparing Collections

For example, the following call references the third element in the varray returned
by function new_hires

DECLARE
TYPE Staff IS VARRAY(20) OF Employee;
staffer Employee;
FUNCTION new_hires (hiredate DATE) RETURN Staff IS
BEGIN
END;
BEGIN
staffer :=new_hires(16-OCT-96')(3); — call function

Assigning and Comparing Collections

One collection can be assigned to another by an INSERT, UPDATEFETCH or
SELECTstatement, an assignment statement, or a subprogram call. As the example
below shows, the collections must have the same datatype. Having the same
element type is not enough.

DECLARE
TYPE Clientele IS VARRAY(100) OF Customer,
TYPE Vips IS VARRAY(100) OF Customer,
groupl Clientele := Clientele(...);
group?2 Clientele := Clientele(...);
group3 Vips = Vips(...);

BEGIN

group?2 :=groupl;
group3 = group2; —illegal; different datatypes

If you assign an atomically null collection to another collection, the other collection
becomes atomically null (and must be reinitialized). Consider the following
example:

DECLARE
TYPE Clientele IS TABLE OF Customer;
groupl Clientele := Clientele(...); — initialized
group2 Clientele; — atomically null
BEGIN
IF groupl IS NULL THEN ... — condition yields FALSE
groupl :=group2;
IF groupl IS NULL THEN ... — condition yields TRUE

4-12 PL/SQL User’s Guide and Reference

Assigning and Comparing Collections

Likewise, if you assign the non-value NULL to a collection, the collection becomes
atomically null.

Assigning Collection Elements

You can assign the value of an expression to a specific element in a collection using
the syntax

collection_name(subscript) := expression;

where expression yields a value of the type specified for elements in the
collection type definition. If subscript is null or not convertible to an integer,
PL/SQL raises the exception VALUE_ERRORf the collection is atomically null,
PL/SQL raises COLLECTION_IS_NULL Some examples follow:

DECLARE
TYPE NumList IS TABLE OF INTEGER;
nums NumList := NumList(10,20,30);
ints NumlList;

BEGIN
nums(1) := TRUNC(highlow);
nums(3) := nums(1);
nums(2) := ASCII(B);
F Assume that execution continues despite the raised exception. */

nums(A) = 40; - raises VALUE_ERROR
ints(1) :=15; - raises COLLECTION IS NULL

Comparing Whole Collections

Collections can be atomically null, so they can be tested for nullity, as the following
example shows:

DECLARE
TYPE Staff IS TABLE OF Employes;
members Staff;

BEGIN

IF members IS NULL THEN ... — condition yields TRUE;

Collections and Records 4-13

Manipulating Collections

However, collections cannot be compared for equality or inequality. For instance,
the following IF condition is illegal:

DECLARE
TYPE Clientele IS TABLE OF Customer;
groupl Clientele := Clientele(...);
group2 Clientele := Clientele(...);

BEGIN

IF groupl = group2 THEN ... — causes compilation error

This restriction also applies to implicit comparisons. For example, collections
cannot appear in a DISTINCT, GROUP BYr ORDER BYist.

Manipulating Collections

Within PL/SQL, collections add flexibility and procedural power. A big advantage
is that your program can compute subscripts to process specific elements. Within
SQL, you can manipulate whole collections easily.

Some Nested Table Examples
In SQL*Plus, suppose you define object type Course , as follows:

SQL>CREATE TYPE Course AS OBJECT (
2 course_no NUMBER(®4),
3 tte VARCHAR2(35),
4 credis NUMBER(L);

Next, you define TABLEtype CourseList , which stores Course objects:
SQL>CREATE TYPE CourseList AS TABLE OF Course;

Finally, you create database table department , which has a column of type
CourselList , as follows:

SQL>CREATE TABLE department
2 name VARCHAR2(20),
3 director VARCHAR2(20),
4 office VARCHAR2(20),
5 courses CourseList)
6 NESTED TABLE courses STORE AS courses_tab;

4-14 PL/SQL User’s Guide and Reference

Manipulating Collections

Each item in column courses is a nested table that will store the courses offered
by a given department. The NESTED TABLElause is required because
department has a nested table column. The clause identifies the nested table and
names a system-generated store table, in which Oracle stores data out-of-line (in
another tablespace).

Now, you can populate database table department . In the following example,
notice how table constructor CourseList() provides values for column courses

BEGIN
INSERT INTO department
VALUES(Psychology’, 'Irene Friedman’, 'Fufton Hall 133,
CourseList(Course(1000, 'General Psychology’, 5),
Course(2100, 'Experimental Psychology, 4),
Course(2200, ‘Psychological Tests), 3),
Course(2250, ‘Behavior Modification', 4),
Course(3540, 'Groups and Organizations, 3),
Course(3552, 'Human Factors in the Workplace), 4),
Course(4210, Theories of Leaming', 4),
Course(4320, 'Cognitive Processes), 4),
Course(4410, ‘Abnomal Psychology, 4)));
INSERT INTO department
VALUES(History, 'John Whalen',’Applegate Hall 142,
CourseList(Course(1011, History of Europe I', 4),
Course(1012, History of Europe II', 4),
Course(1202, ‘American History', 5),
Course(2130, The Renaissance, 3),
Course(2132, The Reformation), 3),
Course(3105, History of Ancient Greece, 4),
Course(3321, 'Early Japan', 4),
Course(3601, 'Latin America Since 1825, 4),
Course(3702, 'Medieval Islamic History’, 4)));
INSERT INTO department
VALUES(English', 'Lynn Saunders’, ‘Breakstone Hall 205/,
CourseList(Course(1002, 'Expository Wiiting', 3),
Course(2020, 'Fim and Literature', 4),
Course(2418, 'Modem Science Fiction', 3),
Course(2810, ‘Discursive Whiting', 4),
Course(3010, Modem English Grammar’, 3),
Course(3720, 'Introduction to Shakespeare!, 4),
Course(3760, Modem Drama, 4),
Course(3822, The Short Stary, 4),
Course(3870, The American Novel, 5)));

Collections and Records 4-15

Manipulating Collections

In the following example, you revise the list of courses offered by the English
Department:

DECLARE
new_courses CourselList .=
CourseList(Course(1002, 'Expository Whiting', 3),
Course(2020, 'Fim and Literature', 4),
Course(2810, 'Discursive Whiting), 4),
Course(3010, 'Modem English Grammar’, 3),
Course(3550, 'Realism and Naturalism, 4),
Course(3720, 'Introduction to Shakespeare, 4),
Course(3760, Modem Drama, 4),
Course(3822, The Short Stary, 4),
Course(3870, The American Novel, 4),
Course(4210, "20th-Century Poetry, 4),
Course(4720, 'Advanced Workshop in Fiction', 5),
Course(4725, 'Advanced Workshop in Poetry, 5));
BEGIN
UPDATE department
SET courses = new_courses WHERE name =English’;

In the next example, you retrieve all the courses offered by the Psychology
Department into a local nested table:

DECLARE
psyc_courses CourselList;
BEGIN
SELECT courses INTO psyc_courses FROM department
WHERE name ="Psychology’;

Some Varray Examples
In SQL*Plus, suppose you define object type Project , as follows:

SQL> CREATE TYPE Project AS OBJECT (

2 project_no NUMBER(2),

3tie VARCHAR2(35),

4 cost NUMBER(7.2));

Next, you define VARRAMype ProjectList , Which stores Project objects:

SQL> CREATE TYPE ProjectList AS VARRAY(50) OF Project;

4-16 PL/SQL User’s Guide and Reference

Manipulating Collections

Finally, you create relational table department , which has a column of type
ProjectList , as follows:

SQL> CREATE TABLE department (
2 dept id NUMBER(2),

3 name VARCHAR2(15),

4 budget NUMBER(11,2),

5 projects ProjectList);

Each item in column projects s a varray that will store the projects scheduled
for a given department.

Now, you are ready to populate relational table department . In the following
example, notice how varray constructor ProjectList() provides values for
column projects

BEGIN
INSERT INTO department
VALUES(30, ‘Accounting’, 1205700,

ProjectList(Project(1, 'Design New Expense Report, 3250),

Project(2, 'Outsource Payroll, 12350),
Project(3, 'Evaluate Merger Proposal, 2750),
Project(4, ‘Audit Accounts Payable', 1425)));
INSERT INTO department
VALUES(50, 'Maintenance', 925300,

ProjectList(Project(1, ‘Repair Leak in Roof, 2850),
Project(2, 'Install New Door Locks), 1700),

Project(3, 'Wash Front Windows), 975),
Project(4, ‘Repair Faulty Wiring', 1350),
Project(5, Winterize Cooling Systen, 1125)));
INSERT INTO department
VALUES(60, ‘Security, 750400,

ProjectList(Project(1, 'lssue New Employee Badges', 13500),
Project(2, 'Find Missing Computer Chips', 2750),
Project(3, 'Upgrade Alarm System’, 3350),

Project(4, 'Inspect Emergency Exits', 1900)));

In the following example, you update the list of projects assigned to the Security
Department:

DECLARE
new_projects ProjectList :=
ProjectList(Project(1, ‘lssue New Employee Badges', 13500),
Project(2, 'Develop New Patrol Plan', 1250),
Project(3, 'Inspect Emergency Exits', 1900),

Collections and Records 4-17

Manipulating Collections

Project(4, 'Upgrade Alarm System’, 3350),
Project(5, ‘Analyze Local Crime Statistics', 825));
BEGIN
UPDATE department
SET projects = new_projects WHERE dept_id = 60;

In the next example, you retrieve all the projects for the Accounting Department
into a local varray:

DECLARE
my_projects Projectlist;
BEGIN
SELECT projects INTO my_projects FROM department
WHERE dept_id =30;

In the final example, you delete the Accounting Department and its project list
from table department

BEGIN
DELETE FROM department WHERE dept _id = 30;

Manipulating Individual Elements

So far, you have manipulated whole collections. Within SQL, to manipulate the
individual elements of a nested table, you must use the operator THE However,
THEcannot operate on varrays. So, to manipulate the individual elements of a
varray, you must use PL/SQL procedural statements.

Some Nested Table Examples

In the following example, you add a row to the History Department nested table
stored in column courses :

BEGIN
INSERT INTO
THE(SELECT courses FROM department
WHERE name =History’)
VALUES(3340, Modem China, 4);

The operand of THEis a subquery that returns a single column value for you to
manipulate. The column value must be a nested table. Otherwise, you get a
runtime error. Because the value is a nested table, not a scalar value, Oracle must be
informed, which is what operator THEdoes.

4-18 PL/SQL User’s Guide and Reference

Manipulating Collections

In the following example, you revise the number of credits for two courses offered
by the Psychology Department:

DECLARE
adjustment INTEGER DEFAULT 1;

BEGIN
UPDATE
THE(SELECT courses FROM department
WHERE name ="Psychology)

SET credits = credits + adjustment
WHERE course_no IN (2200, 3540);

In the next example, you retrieve the number and title of a specific course offered
by the History Department:

DECLARE
my_course_no NUMBER(4);
my _tite VARCHAR2(35);
BEGIN
SELECT course_no, file INTO my_course_no, my_title
FROM THE(SELECT courses FROM department

WHERE name = History))
WHERE course_no =3105;

In the final example, you delete all 5-credit courses offered by the English
Department:

BEGIN
DELETE THE(SELECT courses FROM department
WHERE name =English’)
WHERE credits =5;

Some Varray Examples

Remember, within SQL, you cannot manipulate the individual elements of a varray.
You must use PL/SQL procedural statements. In the following example, stored
procedure add _project inserts a new project into a department’s project list at a
given position:

CREATE PROCEDURE add_project (
dept no INNUMBER,
new_project IN Project,
position IN NUMBER) AS

Collections and Records 4-19

Manipulating Collections

my_projects Projectlist
BEGIN
P Retrieve project listinto local varray. */
SELECT projects INTO my_projects FROM department
WHERE dept_no =dept_id FOR UPDATE OF projects;
F* Extend varray to make room for new project. */
my_projects.EXTEND,;
FMove varray elements forward. */
FOR i IN REVERSE position.my_projects.LAST - 1 LOOP
my_projects(i + 1) :=my_projects();
END LOOP;
¥ Insert new project. */
my_projects(position) := new_project;
F Update department table. */
UPDATE department SET projects =my_projects
WHERE dept_no =dept id;
END add_project;

The following stored procedure updates a given project:

CREATE PROCEDURE update_project (
dept no INNUMBER,
proj no INNUMBER,
new._tite IN VARCHAR2 DEFAULT NULL,
new_cost IN NUMBER DEFAULT NULL) AS
my_projects ProjectList;
BEGIN
SELECT projects INTO my_projects FROM department
WHERE dept_no =dept_id FOR UPDATE OF projects;
FFind project, update it, then exit loop immediately. */
FORiIN my_projects.FIRST..my_projectsLAST LOOP
IF my_projects(i).project_no=proj no THEN
IF new_title ISNOT NULL THEN
my_projects(i).tite := new _title;
ENDIF;
IF new_costIS NOT NULL THEN
my_projects(i).cost := new_cost;
ENDIF;
EXIT;
ENDIF;
END LOOP;
UPDATE department SET projects =my_projects
WHERE dept_no =dept id;
END update_project;

4-20 PL/SQL User’s Guide and Reference

Using Collection Methods

In the final example, you call stand-alone procedure update project to revise
the cost of a project:

DECLARE
dept_numNUMBER,;
proj_num NUMBER,;

BEGIN
update_project(dept_num, proj_num, new_cost =>3750);

Using Collection Methods

The following collection methods help generalize code, make collections easier to
use, and make your applications easier to maintain:

EXISTS

COUNT

LIMIT

FIRST and LAST
PRIORand NEXT
EXTEND

TRIM

DELETE

A collection method is a built-in function or procedure that operates on collections
and is called using dot notation. The syntax follows:

collection_name.method_namef(parameters)]

Collection methods can be called from procedural statements but not from SQL
statements. EXISTS, COUNJILIMIT , FIRST, LAST, PRIOR and NEXTare functions,
which appear as part of an expression. EXTENDTRIM, and DELETEare procedures,
which appear as a statement. Also, EXISTS, PRIOR NEXT TRIM, EXTENDand
DELETEtake parameters. Each parameter must be an expression that yields an
integer.

Only EXISTS can be applied to atomically null collections. If you apply another
method to such collections, PL/SQL raises COLLECTION_IS_NULL

Collections and Records 4-21

Using Collection Methods

Using EXISTS

Using COUNT

Using LIMIT

EXISTS(n) returns TRUEIf the nth element in a collection exists. Otherwise,
EXISTS(n) returns FALSE Mainly, you use EXISTS with DELETEto maintain
sparse nested tables. You can also use EXISTS to avoid raising an exception when
you reference a nonexistent element. In the following example, PL/SQL executes
the assignment statement only if element j exists:

IF courses.EXISTS(i) THEN
courses(i) := new_Ccourse; ...

When passed an out-of-range subscript, EXISTS returns FALSE instead of raising
SUBSCRIPT_OUTSIDE_LIMIT.

COUNTreturns the number of elements that a collection currently contains. For
instance, if varray projects contains 15 elements, the following IF condition is
true:

IF projects.COUNT = 15 THEN ...

COUNTis useful because the current size of a collection is not always known. For
example, if you fetch a column of Oracle data into a nested table, how many
elements does the table contain? COUNTgives you the answer.

You can use COUNWwherever an integer expression is allowed. In the next example,
you use COUNTo specify the upper bound of a loop range:

FORIIN 1..courses.COUNT LOORP ...
For varrays, COUNTalways equals LAST. For nested tables, COUNThormally equals

LAST. But, if you delete elements from the middle of a nested table, COUNT
becomes smaller than LAST.

When tallying elements, COUNTignores deleted elements.

For nested tables, which have no maximum size, LIMIT returns NULL For varrays,
LIMIT returns the maximum number of elements that a varray can contain (which
you specify in its type definition). For instance, if the maximum size of varray
projects is 25 elements, the following IF condition is true:

IF projects.LIMIT = 25 THEN ...

4-22 PL/SQL User’s Guide and Reference

Using Collection Methods

You can use LIMIT wherever an integer expression is allowed. In the following
example, you use LIMIT to determine if you can add 20 more elements to varray
projects

IF (projects.COUNT + 20) < projects.LIMIT THEN
- add 20 more elements

Using FIRST and LAST

FIRST and LAST return the first and last (smallest and largest) index numbers in a
collection. If the collection is empty, FIRST and LAST return NULL If the collection
contains only one element, FIRST and LAST return the same index number, as the
following example shows;

IF courses.FIRST = courses.LAST THEN ... - only one element

The next example shows that you can use FIRST and LAST to specify the lower
and upper bounds of a loop range provided each element in that range exists:
FORI IN courses.FIRST..courses.LAST LOOP ...

In fact, you can use FIRST or LAST wherever an integer expression is allowed. In
the following example, you use FIRST to initialize a loop counter:

i:=courses.FIRST;

WHILE i ISNOT NULL LOOP ...

For varrays, FIRST always returns 1 and LAST always equals COUNTFor nested
tables, FIRST normally returns 1. But, if you delete elements from the beginning of
a nested table, FIRST returns a number larger than 1. Also for nested tables, LAST
normally equals COUNTBuULt, if you delete elements from the middle of a nested
table, LAST becomes larger than COUNT

When scanning elements, FIRST and LAST ignore deleted elements.

Using PRIOR and NEXT

PRIOR(n) returns the index number that precedes index n in a collection. NEXT(n)
returns the index number that succeeds index n. If n has no predecessor, PRIOR(n)
returns NULL Likewise, if n has no successor, NEXT(n) returns NULL

PRIORand NEXTdo not wrap from one end of a collection to the other. For
example, the following statement assigns NULLto n because the first element in a
collection has no predecessor:

n := courses.PRIOR(courses.FIRST); —assigns NULL ton

Collections and Records 4-23

Using Collection Methods

PRIORIs the inverse of NEXT For instance, if element j exists, the following
statement assigns element j to itself;

projects(i) := projects.PRIOR(projects NEXT(); — assigns elementi
You can use PRIORor NEXTto traverse collections indexed by any series of

subscripts. In the following example, you use NEXTto traverse a nested table from
which some elements have been deleted:

i .= courses.FIRST; - get subscript of first element\When tallying elements,
WHILE i 1S NOT NULL LOOP

— do something with courses(j)
i := courses.NEXT(i); — get subscript of next element
END LOOP;

When traversing elements, PRIORand NEXTignore deleted elements.

Using EXTEND

To increase the size of a collection, you use EXTENDThis procedure has three
forms. EXTENDappends one null element to a collection. EXTEND(1) appends n
null elements to a collection. EXTEND(n, i) appends n copies of the i th element to
a collection. For example, the following statement appends 5 copies of element 1 to
nested table courses:

courses.EXTEND(5,2);

You cannot use EXTENDXo initialize an atomically null collection. Also, if you
impose the NOT NULLconstraint on a TABLEor VARRAMype, you cannot apply the
first two forms of EXTENDto collections of that type.

EXTENDoperates on the internal size of a collection, which includes any deleted

elements. So, if EXTENDencounters deleted elements, it includes them in its tally.
PL/SQL keeps placeholders for deleted elements so that you can replace them if
you wish. Consider the following example:

DECLARE
TYPE Courselist IS TABLE OF VARCHAR2(10);
courses CourselList;

BEGIN
courses = CourseList(Biol 4412, 'Psyc 3112, ’Anth 3001);
courses.DELETE(3); — delete element 3
FPL/ISQL keeps a placeholder for element 3. So, the

next statement appends element 4, not element 3. */

courses.EXTEND; — append one null element

4-24 PL/SQL User’s Guide and Reference

Using Collection Methods

Using TRIM

f*Now element 4 exists, so the next statement does
not raise SUBSCRIPT_BEYOND COUNT. ¥
courses(d) :="Engl 2005;

When it includes deleted elements, the internal size of a nested table differs from
the values returned by COUNTand LAST. For instance, if you initialize a nested
table with five elements, then delete elements 2 and 5, the internal size is 5, COUNT
returns 3, and LAST returns 4. All deleted elements (whether leading, medial, or
trailing) are treated alike.

This procedure has two forms. TRIM removes one element from the end of a
collection. TRIM(n) removes n elements from the end of a collection. For example,
the following statement removes the last three elements from nested table

courses :

courses. TRIM(3);

If nis greater than COUNJTTRIM(n) raises SUBSCRIPT_BEYOND_COUNT

TRIM operates on the internal size of a collection. So, if TRIM encounters deleted
elements, it includes them in its tally. Consider the following example:

DECLARE
TYPE Courselist IS TABLE OF VARCHAR2(10);
courses CourseList;
BEGIN
courses := CourseList(Biol 4412, 'Psyc 3112, ’Anth 3001,
courses.DELETE(courses.LAST); — delete element 3
F At this point, COUNT equals 2, the number of valid
elements remaining. So, you might expect the next
statement to empty the nested table by trimming
elements 1 and 2. Instead, it frims valid element 2
and deleted element 3 because TRIM includes deleted
elementsin its tally. */
courses. TRIM(courses.COUNT);
DBMS_OUTPUT.PUT_LINE(courses(1)); — prints 'Biol 4412’

In general, do not depend on the interaction between TRIM and DELETE It is better
to treat nested tables like fixed-size arrays and use only DELETE or to treat them
like stacks and use only TRIM and EXTEND

PL/SQL does not keep placeholders for trimmed elements. So, you cannot replace
a trimmed element simply by assigning it a new value.

Collections and Records 4-25

Using Collection Methods

Using DELETE

This procedure has three forms. DELETEremoves all elements from a collection.
DELETE(n) removes the nth element from a nested table. If nis null, DELETE(n)
does nothing. DELETE(m n) removes all elements in the range m..n from a nested
table. If mis larger than n or if mor nis null, DELETE(m n) does nothing. Some
examples follow:

BEGIN

courses.DELETE(2); - deletes element2
courses.DELETE(7,7), - deletes element 7
courses.DELETE(6,3); - does nothing
courses.DELETE(3,6); — deletes elements 3 through 6
projects.DELETE; - deletes all elements

END;

Varrays are dense, so you cannot delete their individual elements.

If an element to be deleted does not exist, DELETEsimply skips it; no exception is
raised. PL/SQL keeps placeholders for deleted elements. So, you can replace a
deleted element simply by assigning it a new value.

DELETEallows you to maintain sparse nested tables. In the following example, you
retrieve nested table prospects into a temporary table, prune it, then store it back
in the database:

DECLARE
my_prospects ProspectList;
revenue NUMBER,;
BEGIN
SELECT prospects INTO my_prospects FROM customers WHERE ...
FORiIN my_prospects.FIRST..my_prospects.LAST LOOP
estimate_revenue(my_prospects(i), revenue); — call procedure
IF revenue < 25000 THEN
my_prospects. DELETE();
ENDIF;
END LOOP;
UPDATE customers SET prospects =my_prospects WHERE ...

The amount of memory allocated to a nested table can increase or decrease

dynamically. As you delete elements, memory is freed page by page. If you delete
the entire table, all the memory is freed.

4-26 PL/SQL User’s Guide and Reference

Avoiding Collection Exceptions

Applying Methods to Collection Parameters

Within a subprogram, a collection parameter assumes the properties of the
argument bound to it. So, you can apply methods FIRST, LAST, COUN;Tand so on
to such parameters. In the following example, a nested table is declared as the
formal parameter of a packaged procedure:

CREATE PACKAGE personnel AS
TYPE Staff IS TABLE OF Employee;

PROCEDURE award_bonuses (members IN Staff);
END personnel;
CREATE PACKAGE BODY personnel AS

PROCEDURE award_bonuses (members IN Staff) IS
BEGIN

IF members.COUNT > 10 THEN - apply method

ENDIF;
END;;
END personnel;

For varray parameters, the value of LIMIT is always derived from the parameter
type definition, regardless of the parameter mode.

Avoiding Collection Exceptions

In most cases, if you reference a nonexistent collection element, PL/SQL raises a
predefined exception. Consider the following example:

DECLARE
TYPE NumList IS TABLE OF NUMBER;
nums NumList; — atomically null

BEGIN
F Assume that execution continues despite the raised exceptions. */
nums(1) = 1; —raises COLLECTION IS NULL (1)

nums :=NumList(1,2); - initialize table

nums(NULL) :=3 —raises VALUE_ERROR @
nums(0) =3; - raises SUBSCRIPT_OUTSIDE_LIMIT (3)
nums(3) =3; —raises SUBSCRIPT_BEYOND_COUNT (4)
nums.DELETE(L); — delete element 1

IF nums(1) =1 THEN ... —raises NO_DATA FOUND ®)

Collections and Records 4-27

What Is a Record?

In the first case, the nested table is atomically null. In the second case, the subscript
is null. In the third case, the subscript is outside the legal range. In the fourth case,
the subscript exceeds the number of elements in the table. In the fifth case, the
subscript designates a deleted element.

The following list shows when a given exception is raised:

Exception Raised when ...
COLLECTION_IS_NULL collection is atomically null
NO_DATA _FOUND subscript designates an element that was deleted

SUBSCRIPT_BEYOND_COUNT subscript exceeds number of elements in collection
SUBSCRIPT_OUTSIDE _LIMIT subscript is outside the legal range
VALUE_ERROR subscript is null or not convertible to an integer

In some cases, you can pass “invalid” subscripts to a method without raising an
exception. For instance, when you pass a null subscript to procedure DELETE it
does nothing. Also, you can replace deleted elements without raising
NO_DATA_FOUNs the following example shows:

DECLARE
TYPE NumList IS TABLE OF NUMBER,;
nums NumList := NumList(10,20,30); - initialize table

BEGIN
nums.DELETE(-1); — does not raise SUBSCRIPT_OUTSIDE_LIMIT
nums.DELETE(3); — delete 3rd element
DBMS_OUTPUT.PUT_LINE(nums.COUNT); — prints 2
nums(3) := 30; —does notraise NO_DATA FOUND
DBMS_OUTPUT.PUT_LINE(nums.COUNT); — prints 3

What Is a Record?

A record is a group of related data items stored in fields, each with its own name and
datatype. Suppose you have various data about an employee such as name, salary,
and hire date. These items are logically related but dissimilar in type. A record
containing a field for each item lets you treat the data as a logical unit. Thus,
records make it easier to organize and represent information.

The attribute %ROWTYHELs you declare a record that represents a row in a
database table. However, you cannot specify the datatypes of fields in the record or
declare fields of your own. The datatype RECORIDifts those restrictions and lets
you define your own records.

4-28 PL/SQL User’s Guide and Reference

Defining and Declaring Records

Defining and Declaring Records

To create records, you define a RECORIype, then declare records of that type. You
can define RECORMDypes in the declarative part of any PL/SQL block, subprogram,
or package using the syntax

TYPE type_name IS RECORD (field_declaration, field_declaration]...);

where field_declaration stands for
field_name field_type [NOT NULL] {:= | DEFAULT} expression]
and where type_name is a type specifier used later to declare records,

field _type is any PL/SQL datatype except REF CURSQRNd expression
yields a value of type field type

Note: Unlike TABLEand VARRAMypes, RECORDypes cannot be
CREATH and stored in the database.

You can use %TYPEnd %ROWTY R specify field types. In the following example,
you define a RECORRype named DeptRec :

DECLARE
TYPE DeptRec IS RECORD (
dept_id dept.deptno%TYPE,
dept_name VARCHAR2(15),
dept_loc VARCHAR2(15));

Notice that field declarations are like variable declarations. Each field has a unique
name and specific datatype. So, the value of a record is actually a collection of
values, each of which is of some simpler type.

As the example below shows, PL/SQL lets you define records that contain objects,
collections, and other records (called nested records). However, object types cannot
have attributes of type RECORD

DECLARE

TYPE TimeRec IS RECORD (
seconds SMALLINT,
minutes SMALLINT,
hours SMALLINT);

TYPE FlightRec IS RECORD (
fight no INTEGER,
plane_id VARCHAR2(10),

Collections and Records 4-29

Defining and Declaring Records

captain Employee, — declare object
passengers Passengerlist, — declare varray
depart_time TimeRec, — declare nested record
airport_code VARCHAR2(10));

The next example shows that you can specify a RECORIype in the RETURNlause
of a function specification. That allows the function to return a user-defined record
of the same type.

DECLARE
TYPE EmpRec IS RECORD (
emp_id INTEGER
last name VARCHAR2(15),
dept_num INTEGER(2),
job_tite VARCHAR2(15),
selary REAL(7.2));

FUNCTION nth_highest_salary (n INTEGER) RETURN EmpRecS ...

Declaring Records

Once you define a RECORype, you can declare records of that type, as the
following example shows:

DECLARE
TYPE Stockltem IS RECORD (
item no INTEGER(3),
description VARCHAR2(50),
quantty INTEGER,
pice REAL(7,2));
item_info Stckitem; — declare record

The identifier item_info represents an entire record.

Like scalar variables, user-defined records can be declared as the formal parameters
of procedures and functions. An example follows;

DECLARE
TYPE EmpRec IS RECORD (
emp_id emp.empno%TYPE,
last_name VARCHAR2(10),
job_tile VARCHAR2(15),
salary NUMBER(7,2));

PROCEDURE raise_salary (emp_info EmpRec);

4-30 PL/SQL User's Guide and Reference

Initializing and Referencing Records

Initializing and Referencing Records

The example below shows that you can initialize a record in its type definition.
When you declare a record of type TimeRec, its three fields assume an initial value
of zero.

DECLARE
TYPE TimeRec IS RECORD (
seconds SMALLINT =0,
minutes SMALLINT =0,
hours SMALLINT :=0);

The next example shows that you can impose the NOT NULLconstraint on any field,
and so prevent the assigning of nulls to that field. Fields declared as NOT NULL
must be initialized.

DECLARE
TYPE Stockiter IS RECORD (
item no INTEGER(3) NOT NULL := 999,
description VARCHAR2(50),
quantty INTEGER,
pice REAL(7,2));

Referencing Records

Unlike elements in a collection, which are accessed using subscripts, fields in a
record are accessed by name. To reference an individual field, you use dot notation
and the following syntax:

record_namefield name

For example, you reference field hire_date in record emp_info as follows:
emp_info.hire_date ...

When calling a function that returns a user-defined record, you use the following
syntax to reference fields in the record:

function_name(parameters)field_name

For example, the following call to function nth_highest sal references the field
salary inrecord emp_info :

DECLARE
TYPE EmpRec IS RECORD (
emp_id NUMBER(4),
job_tite CHAR(14),

Collections and Records 4-31

Initializing and Referencing Records

salary REAL(7.2));

middle_sal REAL;

FUNCTION nth_highest_sal (n INTEGER) RETURN EmpRec IS
emp_info EmpRec;

BEGIN

RETURN emp_info; — retum record
END;
BEGIN
middle_sal :=nth_highest_sal(10).salary; — call function

When calling a parameterless function, you use the following syntax:

function_name()field_name — note empty parameter list

To reference nested fields in a record returned by a function, you use extended dot
notation. For instance, the following call to function jitem references the nested
field minutes in record item_info

DECLARE

TYPE TimeRec IS RECORD (
minutes SMALLINT,
hours SMALLINT);

TYPE Agendaltem IS RECORD (
priority INTEGER,
subject VARCHAR2(100),
duration TimeRec);

FUNCTION item (n INTEGER) RETURN Agendaltem IS
item_info Agendaltem;

BEGIN

RETURN item_info; — retum record
END;
BEGIN

IF item(3).duration.minutes > 30 THEN ... — call function
You also use extended dot notation to reference the attributes of an object stored in

a field, as the following example shows:

DECLARE
TYPE FlightRec IS RECORD (
fight no INTEGER,
plane id VARCHAR2(10),

4-32 PL/SQL User's Guide and Reference

Assigning and Comparing Records

captain Employee, — declare object
passengers PassengerlList, — declare varray
depart_time TimeRec, — declare nested record
airport_code VARCHAR2(10));
flight FlightRec;
BEGIN

IFflight.captain.name ='H Rawiins’ THEN ...

Assigning and Comparing Records

You can assign the value of an expression to a specific field in a record using the
following syntax:

record_namefield_name := expression;

In the following example, you convert an employee name to upper case:

emp_info.ename := UPPER(emp_info.ename);

Instead of assigning values separately to each field in a record, you can assign
values to all fields at once. This can be done in two ways.

First, you can assign one user-defined record to another if they have the same
datatype. Having fields that match exactly is not enough. Consider the following
example:

DECLARE
TYPE DeptRec IS RECORD (
dept_num NUMBER(2),
dept_name VARCHAR2(14),
location VARCHAR2(13));
TYPE Deptlitem IS RECORD (
dept_num NUMBER(2),
dept_name VARCHAR2(14),
location VARCHAR2(13));
deptl_info DeptRec;
dept2_info Deptitem;
BEGIN

deptl_info :=dept2_info; - illegal; different datatypes

Collections and Records 4-33

Assigning and Comparing Records

As the next example shows, you can assign a %ROWTYPE record to a user-defined
record if their fields match in number and order, and corresponding fields have
compatible datatypes:

DECLARE
TYPE DeptRec IS RECORD (
dept_num NUMBER(2),
dept_name CHAR(14),
location CHAR(13));
deptl_info DeptRec;
dept2_info dept¥oROWTYPE;
BEGIN
SELECT *INTO dept2_info FROM dept WHERE deptno = 10;
deptl_info :=dept2_info;

Second, you can use the SELECTor FETCHstatement to fetch column values into a
record, as the example below shows. The columns in the select-list must appear in
the same order as the fields in your record.

DECLARE
TYPE DeptRec IS RECORD (
dept_num NUMBER(2),
dept_name CHAR(14),
location CHAR(13));
dept_info DeptRec;
BEGIN
SELECT deptno, dname, loc INTO dept_info FROM dept WHERE deptno = 20;

However, you cannot use the INSERT statement to insert user-defined records into
a database table. So, the following statement is illegal:

INSERT INTO dept VALUES (dept_info); —ilegal

Also, you cannot assign a list of values to a record using an assignment statement.
Therefore, the following syntax is illegal:

record_name = (valuel, value2, value3, ...); —illegal

The example below shows that you can assign one nested record to another if they
have the same datatype. Such assignments are allowed even if the enclosing
records have different datatypes.

DECLARE
TYPE TimeRec IS RECORD (minutes SMALLINT, hours SMALLINT);
TYPE MeetingRec IS RECORD (
day DATE,

4-34 PL/SQL User's Guide and Reference

Manipulating Records

time TimeRec, —nested record
room_no INTEGER(4));

TYPE PartyRec IS RECORD (
day DATE,
time TimeRec, — nested record
place VARCHAR2(25));

seminar MeetingRec;

party PartyRec;

BEGIN

party.ime := seminar.time;

Comparing Records

Records cannot be tested for nullity, equality, or inequality. For instance, the
following IF conditions are illegal:

BEGIN

IFemp_info IS NULL THEN ... —illegal
IF dept2_info >deptl_info THEN ... —illegal

Manipulating Records

The datatype RECORIets you collect information about the attributes of
something. The information is easy to manipulate because you can refer to the
collection as a whole. In the following example, you collect accounting figures from
database tables assets and liabilities , then use ratio analysis to compare the
performance of two subsidiary companies:

DECLARE
TYPE FiguresRec IS RECORD (cash REAL, notes REAL, ...);
subl figs FiguresRec;
sub?_figs FiguresRec;

FUNCTION acid_test (figs FiguresRec) RETURN REAL IS ...
BEGIN
SELECT cash, notes, ... INTO subl_figs FROM assets, liabiliies
WHERE assets.sub = 1 AND liabilites.sub =1;
SELECT cash, notes, ... INTO sub2_figs FROM assets, liabiliies
WHERE assets.sub = 2 AND liabiliies.sub = 2;
IFacid_test(subl _figs) >acid_test(sub2 figs) THEN ...

END;

Collections and Records 4-35

Manipulating Records

Notice how easy it is to pass the collected figures to the function acid_test
which computes a financial ratio.

In SQL*Plus, suppose you define object type Passenger , as follows:

SQL>CREATE TYPE Passenger AS OBJECT(
2 fiight_ no NUMBER(3),
3 name VARCHAR2(20),
4 seat CHAR®));

Next, you define VARRAMype PassengertList , which stores Passenger
objects:

SQL> CREATE TYPE PassengerList AS VARRAY(300) OF Passenger;

Finally, you create relational table flights , which has a column of type
PassengerList , as follows:

SQL>CREATE TABLE fiights (
2 fiight no NUMBER(3),

3 gate CHAR(),

4 departure CHAR(15),

5 amval CHAR(15),

6 passengers PassengerList);

Each item in column passengers is a varray that will store the passenger list for a
given flight.

Now, you can populate database table flights , as follows:

BEGIN
INSERT INTO flights
VALUES(109, '80','DFW 6:35PM,'HOU 7:40PM,
PassengerList(Passenger(109, 'Paula Trusdale', '13C),
Passenger(109, 'Louis Jemenez, '22F),
Passenger(109, Joseph Braun', '11B), ...));
INSERT INTO flights
VALUES(114, "12B', 'SFO 9:45AM, 'LAX 12:10PM,
PassengerList(Passenger(114, 'Earl Benton', 23A),
Passenger(114, 'Alma Breckenridge', '10E),
Passenger(114, Mary Rizutto', '11C), ...));
INSERT INTO flights
VALUES(27,'34', JFK 7:05AM, MIA 9:55AM,
PassengerList(Passenger(27, Raymond Kiey, '34D),
Passenger(27, Beth Steinberg’, '3A),
Passenger(27, 'Jean Lafevre', '19C), ...));

4-36 PL/SQL User's Guide and Reference

Manipulating Records

In the example below, you fetch rows from database table flights into record
flight_info . That way, you can treat all the information about a flight, including

its passenger list, as a logical unit.

DECLARE
TYPE FlightRec IS RECORD (
fight no NUMBER(3),
gate CHAR(),
departure CHAR(15),
amval CHAR(15),
passengers PassengerlList);
flight_info FlightRec;
CURSOR c1 IS SELECT * FROM fiights;
BEGIN
OPENCcI;
LOOP
FETCH c1 INTO fiight_info;
EXIT WHEN c1%NOTFOUND;
FORIIN 1.fiight_info.passengers.LAST LOOP
IFfiight_info.passengers(i).seat="NA'THEN
DBMS_OUTPUT.PUT_LINE(fiight_info.passengers(j).name);
RAISE seat_not_available;
ENDIF;

END LOOP;
END LOOP;
CLOSE],
EXCEPTION
WHEN seat_not _available THEN

END;

Collections and Records 4-37

Manipulating Records

4-38 PL/SQL User's Guide and Reference

D

Interaction with Oracle

Knowledge is of two kinds. We know a subject ourselves, or we know where we can find
information upon it.
Samuel Johnson

This chapter helps you harness the power of Oracle. You learn how PL/SQL
supports the SQL commands, functions, and operators that let you manipulate
Oracle data. You also learn how to manage cursors, use cursor variables, and
process transactions.

Major Topics

SQL Support

Using DDL and Dynamic SQL
Managing Cursors

Packaging Cursors

Using Cursor FOR Loops
Using Cursor Variables

Using Cursor Attributes
Processing Transactions

Interaction with Oracle 5-1

SQL Support

SQL Support

By extending SQL, PL/SQL offers a unique combination of power and ease of use.
You can manipulate Oracle data flexibly and safely because PL/SQL supports all
SQL data manipulation commands (except EXPLAIN PLAN), transaction control
commands, functions, pseudocolumns, and operators. Also, PL/SQL conforms to
SQL92, the current ANSI/ISO SQL standard.

Note: PL/SQL does not support data definition commands such as
ALTERand CREATEFor an explanation and workaround, see “Using
DDL and Dynamic SQL” on page 5-7.

Data Manipulation

To manipulate Oracle data, you use the INSERT, UPDATEDELETE SELECTand
LOCK TABLEEommands. INSERT adds new rows of data to database tables;
UPDATEModifies rows; DELETEremoves unwanted rows; SELECTretrieves rows
that meet your search criteria; and LOCK TABLEemporarily limits access to a table.

Transaction Control

Oracle is transaction oriented; that is, Oracle uses transactions to ensure data
integrity. A transaction is a series of SQL data manipulation statements that does a
logical unit of work. For example, two UPDATEstatements might credit one bank
account and debit another.

Simultaneously, Oracle makes permanent or undoes all database changes made by
a transaction. If your program fails in the middle of a transaction, Oracle detects
the error and rolls back the transaction. Thus, the database is restored to its former
state automatically.

You use the COMMITROLLBACKSAVEPOINTand SET TRANSACTIONommands
to control transactions. COMMITmakes permanent any database changes made
during the current transaction. ROLLBACkKends the current transaction and undoes
any changes made since the transaction began. SAVEPOINTmarks the current point
in the processing of a transaction. Used with ROLLBACKSAVEPOINTundoes part
of a transaction. SET TRANSACTIONstablishes a read-only transaction.

5-2 PL/SQL User’s Guide and Reference

SQL Support

SQL Functions

PL/SQL lets you use all the SQL functions including the following group functions,
which summarize entire columns of Oracle data: AVG COUN;IMAX MIN, STDDEY
SUMand VARIANCE

The group functions GLBand LUB are available only with Trusted Oracle. GLBand
LUBreturn the greatest lower bound and least upper bound of two or more
operating system labels, respectively. For more information, see your Trusted
Oracle documentation.

You can use the group functions in SQL statements, but not in procedural
statements. Group functions operate on entire columns unless you use the SELECT
GROUP BYtatement to sort returned rows into subgroups. If you omit the GROUP
BY clause, the group function treats all returned rows as a single group.

You call a group function using the syntax

function_name([ALL | DISTINCT] expr)

where expr is an expression that refers to one or more database columns. If you
specify the ALL option (the default), the group function considers all column values

including duplicates. For example, the following statement returns the sample
standard deviation (s) of all values in the comncolumn:

SELECT STDDEV(comm) INTO comm_sigma FROM emp;
If you specify the DISTINCT option, the group function considers only distinct

values. For example, the following statement returns the number of different job
titles in the emptable:

SELECT COUNT(DISTINCT job) INTO job_count FROM emp;

The COUNTunction lets you specify the asterisk (*) option, which returns the
number of rows in a table. For example, the following statement returns the
number of employees in the emptable:

SELECT COUNT(*) INTO emp_count FROM emp;

Except for COUNT(*), all group functions ignore nulls.

Interaction with Oracle 5-3

SQL Support

SQL Pseudocolumns

PL/SQL recognizes the following SQL pseudocolumns, which return specific data
items: CURRVALLEVEL, NEXTVAL ROWIDand ROWNUM

Pseudocolumns are not actual columns in a table but they behave like columns. For
example, you can select values from a pseudocolumn. However, you cannot insert
values into, update values in, or delete values from a pseudocolumn.

You can use pseudocolumns in SQL statements, but not in procedural statements.
In the following example, you use the database sequence empno_seq and the
pseudocolumn NEXTVAL(which returns the next value in a database sequence) to
insert a new employee number into the emptable:

INSERT INTO emp VALUES (empno_seq.NEXTVAL, new_ename, ...);

Brief descriptions of the pseudocolumns follow. For more information, see Oracle8
SQL Reference.

CURRVAL and NEXTVAL

A sequence is a schema object that generates sequential numbers. When you create a
sequence, you can specify its initial value and an increment.

CURRVAIlreturns the current value in a specified sequence. Before you can
reference CURRVALN a session, you must use NEXTVALto generate a number. A
reference to NEXTVALstores the current sequence humber in CURRVALNEXTVAL
increments the sequence and returns the next value. To obtain the current or next
value in a sequence, you must use dot notation, as follows:

sequence_name.CURRVAL
sequence_name.NEXTVAL

After creating a sequence, you can use it to generate unique sequence numbers for
transaction processing. However, you can use CURRVAland NEXTVALonly in a
select list, the VALUESclause, and the SET clause. In the following example, you
use a sequence to insert the same employee number into two tables:

INSERT INTO emp VALUES (empno_seq.NEXTVAL, my_ename, ...);
INSERT INTO sals VALUES (empno_seq.CURRVAL, my_s4|, ...);

If a transaction generates a sequence number, the sequence is incremented
immediately whether you commit or roll back the transaction.

5-4 PL/SQL User’'s Guide and Reference

SQL Support

LEVEL

You use LEVEL with the SELECT CONNECT BYatement to organize rows from a
database table into a tree structure. LEVEL returns the level number of a node in a
tree structure. The root is level 1, children of the root are level 2, grandchildren are
level 3, and so on.

You specify the direction in which the query walks the tree (down from the root or
up from the branches) with the PRIORoperator. In the START WITHlause, you
specify a condition that identifies the root of the tree.

ROWID

ROWIDreturns the rowid (binary address) of a row in a database table. Recall that
PL/SQL provides a datatype also named ROWIDYou can use variables of type
ROWIDto store rowids in a readable format. In the following example, you declare a
variable named row _id for that purpose:

DECLARE
row_id ROWID;

When you select or fetch a rowid into a ROWIDvariable, you can use the function
ROWIDTOCHARvhich converts the binary value to an 18-byte character string.
Then, you can compare the ROW!IDvariable to the ROWIDpseudocolumn in the
WHERElause of an UPDATEor DELETEstatement to identify the latest row fetched
from a cursor. For an example, see “Fetching Across Commits” on page 5-53.

ROWNUM

ROWNURMturns a number indicating the order in which a row was selected from a
table. The first row selected has a ROWNUBS 1, the second row has a ROWNUMf 2,
and so on. If a SELECTstatement includes an ORDER B¥lause, ROWNU\re
assigned to the retrieved rows before the sort is done.

You can use ROWNUM an UPDATEstatement to assign unique values to each row
in a table. Also, you can use ROWNUM the WHERElause of a SELECTstatement to
limit the number of rows retrieved, as follows:

DECLARE
CURSOR ¢1 IS SELECT empno, sal FROM emp
WHERE sal > 2000 AND ROWNUM < 10; — retums 10 rows

The value of ROWNUMCcreases only when a row is retrieved, so the only
meaningful use of ROWNUM a WHEREIlause is

... WHERE ROWNUM < constant;

Interaction with Oracle 5-5

SQL Support

SQL Operators

PL/SQL lets you use all the SQL comparison, set, and row operators in SQL
statements. This section briefly describes some of these operators. For more
information, see Oracle8 SQL Reference.

Comparison Operators

Typically, you use comparison operators in the WHERI[Elause of a data
manipulation statement to form predicates, which compare one expression to
another and always yields TRUE FALSE, or NULL You can use all the comparison
operators listed below to form predicates. Moreover, you can combine predicates
using the logical operators AND OR and NOT

ALL Compares a value to each value in a list or returned by a
subquery and yields TRUEIf all of the individual
comparisons yield TRUE

ANY,SOME Compares a value to each value in a list or returned by a
subquery and yields TRUEif any of the individual
comparisons yields TRUE

BETWEEN Tests whether a value lies in a specified range.
EXISTS Returns TRUEIf a subquery returns at least one row.
IN Tests for set membership.

ISNULL Tests for nulls.

LIKE Tests whether a character string matches a specified
pattern, which can include wildcards.

Set Operators

Set operators combine the results of two queries into one result. INTERSECT
returns all distinct rows selected by both queries. MINUSreturns all distinct rows
selected by the first query but not by the second. UNIONreturns all distinct rows
selected by either query. UNION ALLreturns all rows selected by either query,
including all duplicates.

5-6 PL/SQL User’s Guide and Reference

Using DDL and Dynamic SQL

Row Operators

Row operators return or reference particular rows. ALL retains duplicate rows in
the result of a query or in an aggregate expression. DISTINCT eliminates duplicate
rows from the result of a query or from an aggregate expression. PRIOR refers to
the parent row of the current row returned by a tree-structured query. You must
use this operator in the CONNECT B¥ause of such a query to define the parent-
child relationship.

SQL92 Conformance

In late 1992, the American National Standards Institute (ANSI) and the
International Organization for Standardization (ISO) adopted the current SQL
standard known informally as SQL92, which greatly extends SQL89, the previous
SQL standard.

SQL92 specifies a “conforming SQL language” and, to allow implementation in
stages, defines three language levels:

« FullsQL

« Intermediate SQL (a subset of Full SQL)

« Transitional SQL (a subset of Intermediate SQL)
« Entry SQL (a subset of Transitional SQL)

A conforming SQL implementation must support at least Entry SQL. PL/SQL fully
supports Entry SQL.

Using DDL and Dynamic SQL

This section explains why PL/SQL does not support SQL data definition language
(DDL) or dynamic SQL, then shows how to solve the problem.

Efficiency versus Flexibility

Before a PL/SQL program can be executed, it must be compiled. The PL/SQL
compiler resolves references to Oracle schema objects by looking up their
definitions in the data dictionary. Then, the compiler assigns storage addresses to
program variables that will hold Oracle data so that Oracle can look up the
addresses at run time. This process is called binding.

Interaction with Oracle 5-7

Using DDL and Dynamic SQL

How a database language implements binding affects runtime efficiency and
flexibility. Binding at compile time, called static or early binding, increases efficiency
because the definitions of schema objects are looked up then, not at run time. On
the other hand, binding at run time, called dynamic or late binding, increases
flexibility because the definitions of schema objects can remain unknown until then.

Designed primarily for high-speed transaction processing, PL/SQL increases
efficiency by bundling SQL statements and avoiding runtime compilation. Unlike
SQL, which is compiled and executed statement-by-statement at run time (late
binding), PL/SQL is processed into machine-readable p-code at compile time (early
binding). At run time, the PL/SQL engine simply executes the p-code.

Some Limitations

However, this design imposes some limitations. For example, the p-code includes
references to schema objects such as tables and stored procedures. The PL/SQL
compiler can resolve such references only if the schema objects are known at
compile time. In the following example, the compiler cannot process the procedure
because the table is undefined until the procedure is executed at run time:

CREATE PROCEDURE create_table AS
BEGIN
CREATE TABLE dept (deptno NUMBER(), ..); —ilegal

END;
In the next example, the compiler cannot bind the table reference in the DROP

TABLE statement because the table name is unknown until the procedure is
executed:

CREATE PROCEDURE drop_table (table_name IN VARCHAR2) AS
BEGIN
DROP TABLE table_name; —illegal

END;
Overcoming the Limitations

However, the package DBMS_SQLwhich is supplied with Oracle, allows PL/SQL
to execute SQL data definition and data manipulation statements dynamically at
run time. For example, when called, the following stored procedure drops a
specified database table:

CREATE PROCEDURE drop_table (table_name IN VARCHAR2) AS
cid INTEGER,;

5-8 PL/SQL User’s Guide and Reference

Managing Cursors

BEGIN
FOpen new cursor and retum cursor ID. */
cid =DBMS_SQL.OPEN_CURSOR,;
F Parse and immediately execute dynamic SQL statement built by
concatenating table name to DROP TABLE command. */
DBMS_SQL.PARSE(cid,'DROP TABLE '’ || table_name, dbms_sql.v7);
F Close cursor. */
DBMS_SQL.CLOSE_CURSOR(cid);
EXCEPTION
* If an exception is raised, close cursor before exiting. */
WHEN OTHERS THEN
DBMS_SQL.CLOSE_CURSOR(cid);
RAISE; - reraise the exception
END drop_table;

For more information about package DBMS_SQlsee Oracle8 Application Developer’s
Guide.

Managing Cursors

Recall from Chapter 1 that PL/SQL uses two types of cursors: implicit and explicit.
PL/SQL declares a cursor implicitly for all SQL data manipulation statements,
including queries that return only one row. However, for queries that return more
than one row, you must declare an explicit cursor or use a cursor FORIloop.

Explicit Cursors

The set of rows returned by a query can consist of zero, one, or multiple rows,
depending on how many rows meet your search criteria. When a query returns
multiple rows, you can explicitly declare a cursor to process the rows. You can
declare a cursor in the declarative part of any PL/SQL block, subprogram, or
package.

You use three commands to control a cursor: OPENFETCH and CLOSEFirst, you
initialize the cursor with the OPENstatement, which identifies the result set. Then,
you use the FETCHstatement to retrieve the first row. You can execute FETCH
repeatedly until all rows have been retrieved. When the last row has been
processed, you release the cursor with the CLOSEstatement. You can process
several queries in parallel by declaring and opening multiple cursors.

Interaction with Oracle 5-9

Managing Cursors

Declaring a Cursor

Forward references are not allowed in PL/SQL. So, you must declare a cursor before
referencing it in other statements. When you declare a cursor, you name it and
associate it with a specific query using the syntax

CURSOR cursor_name [(parameter], parameter]...)]
[RETURN retum_type] IS select_statement;

where return_type must represent a record or a row in a database table, and
parameter stands for the following syntax:

cursor_parameter_name [IN] datatype [{:= | DEFAULT} expr]

For example, you might declare cursors named c1 and c2, as follows:

DECLARE
CURSOR c1 IS SELECT empno, ename, job, sal FROM emp
WHERE sal >2000;
CURSOR ¢2 RETURN dept%oROWTYPE IS
SELECT * FROM dept WHERE deptno = 10;

The cursor name is an undeclared identifier, not the name of a PL/SQL variable.
You cannot assign values to a cursor name or use it in an expression. However,
cursors and variables follow the same scoping rules. Naming cursors after database
tables is allowed but not recommended.

A cursor can take parameters, which can appear in the associated query wherever
constants can appear. The formal parameters of a cursor must be IN parameters.
Therefore, they cannot return values to actual parameters. Also, you cannot impose
the NOT NULLconstraint on a cursor parameter.

As the example below shows, you can initialize cursor parameters to default
values. That way, you can pass different numbers of actual parameters to a cursor,
accepting or overriding the default values as you please. Also, you can add new
formal parameters without having to change every reference to the cursor.

DECLARE
CURSOR c1 (low INTEGER DEFAULT 0,
high INTEGER DEFAULT 99) IS SELECT ...

The scope of cursor parameters is local to the cursor, meaning that they can be
referenced only within the query specified in the cursor declaration. The values of
cursor parameters are used by the associated query when the cursor is opened.

5-10 PL/SQL User's Guide and Reference

Managing Cursors

Opening a Cursor

Opening the cursor executes the query and identifies the result set, which consists
of all rows that meet the query search criteria. For cursors declared using the FOR
UPDATEclause, the OPENstatement also locks those rows. An example of the OPEN
statement follows:

DECLARE
CURSOR c1 IS SELECT ename, job FROM emp WHERE sal < 3000;
BEGIN
OPENCc1;
END;
Rows in the result set are not retrieved when the OPENstatement is executed.
Rather, the FETCHstatement retrieves the rows.

Passing Parameters

You use the OPENstatement to pass parameters to a cursor. Unless you want to
accept default values, each formal parameter in the cursor declaration must have a
corresponding actual parameter in the OPENstatement. For example, given the
cursor declaration

DECLARE
emp_name emp.ename%TYPE;
salary emp.sal%TYPE;
CURSOR c1 (name VARCHAR2, salary NUMBER) IS SELECT ..

any of the following statements opens the cursor:

OPEN cl(emp_name, 3000);
OPEN c1(ATTLEY’, 1500);
OPEN cl(emp_name, salary);

In the last example, when the identifier salary is used in the cursor declaration, it
refers to the formal parameter. But, when it is used in the OPENstatement, it refers
to the PL/SQL variable. To avoid confusion, use unique identifiers.

Formal parameters declared with a default value need not have a corresponding
actual parameter. They can simply assume their default values when the OPEN
statement is executed.

Interaction with Oracle 5-11

Managing Cursors

You can associate the actual parameters in an OPENstatement with the formal
parameters in a cursor declaration using positional or named notation. (See
“Positional and Named Notation” on page 7-12.) The datatypes of each actual
parameter and its corresponding formal parameter must be compatible.

Fetching with a Cursor

The FETCHstatement retrieves the rows in the result set one at a time. After each
fetch, the cursor advances to the next row in the result set. An example of the
FETCHstatement follows:

FETCH c1INTO my_empno, my_ename, my_deptno;

For each column value returned by the query associated with the cursor, there must
be a corresponding variable in the INTO list. Also, their datatypes must be
compatible. Typically, you use the FETCHstatement as follows:

LOOP
FETCH c1INTO my_record,
EXIT WHEN c1%NOTFOUND;
— process data record

END LOOP;

The query can reference PL/SQL variables within its scope. However, any variables
in the query are evaluated only when the cursor is opened. In the following
example, each retrieved salary is multiplied by 2, even though factor is
incremented after each fetch:

DECLARE

my_sal emp.sal%TYPE;

my_job emp.job%TYPE;

factor INTEGER =2,

CURSOR c1 IS SELECT factorsal FROM emp WHERE job = my _job;
BEGIN

OPEN c1; — here factor equals 2

LOOP
FETCHCc1INTOmy_sal;
EXIT WHEN c1%NOTFOUND;
factor :=factor + 1; — does not affect FETCH
END LOOP;
END;

To change the result set or the values of variables in the query, you must close and
reopen the cursor with the input variables set to their new values.

5-12 PL/SQL User's Guide and Reference

Managing Cursors

However, you can use a different INTO list on separate fetches with the same
cursor. Each fetch retrieves another row and assigns values to the target variables,
as the following example shows:

DECLARE
CURSOR c1 IS SELECT ename FROM emp;
namel emp.ename%T YPE;
name2 emp.ename%T YPE;
name3 emp.ename%T YPE;

BEGIN
OPENCc1;
FETCH c1 INTO namel; - this fetches first row
FETCH c1 INTO name2; - this fetches second row
FETCH c1 INTO name3; - this fetches third row

CLOSE],
END;

If you fetch past the last row in the result set, the values of the target variables are
indeterminate.

Note: Eventually, the FETCHstatement must fail to return a row; so
when that happens, no exception is raised. To detect the failure, you
must use the cursor attribute %FOUNDr %NOTFOUNBor more
information, see “Using Cursor Attributes” on page 5-38.

Closing a Cursor

The CLOSEstatement disables the cursor, and the result set becomes undefined. An
example of the CLOSEstatement follows:

CLOSEcL;

Once a cursor is closed, you can reopen it. Any other operation on a closed cursor
raises the predefined exception INVALID _CURSOR

Interaction with Oracle 5-13

Managing Cursors

Implicit Cursors

Using Subqueries

A subquery is a query (usually enclosed by parentheses) that appears within
another SQL data manipulation statement. When evaluated, the subquery provides
a value or set of values to the statement. Often, subqueries are used in the WHERE
clause. For example, the following query returns employees not located in Chicago:

DECLARE
CURSOR c1 IS SELECT empno, ename FROM emp
WHERE deptno IN (SELECT deptno FROM dept
WHERE loc < 'CHICAGO));

Using a subquery in the FROMIlause, the following query returns the number and
name of each department with five or more employees:

DECLARE
CURSOR c1 IS SELECT tl.deptno, dname, "STAFF’
FROM dept tl, (SELECT deptno, COUNT(¥) "STAFF’
FROM emp GROUP BY deptno) 2
WHERE t1.deptno = t2.deptno AND "STAFF’ >=5;

Whereas a subquery is evaluated only once per table, a correlated subquery is
evaluated once per row. Consider the query below, which returns the name and
salary of each employee whose salary exceeds the departmental average. For each
row in the emptable, the correlated subquery computes the average salary for that
row’s department. The row is returned if that row’s salary exceeds the average.

DECLARE
CURSOR c1 IS SELECT deptno, ename, sal FROM empt
WHERE sal > (SELECT AVG(sal) FROM emp
WHERE tdeptno = deptno)
ORDER BY deptno;

Oracle implicitly opens a cursor to process each SQL statement not associated with
an explicitly declared cursor. PL/SQL lets you refer to the most recent implicit
cursor as the SQLcursor.

You cannot use the OPENFETCH and CLOSEstatements to control the SQLcursor.
But, you can use cursor attributes to get information about the most recently
executed SQL statement. See “Using Cursor Attributes” on page 5-38.

5-14 PL/SQL User's Guide and Reference

Packaging Cursors

Packaging Cursors

You can separate a cursor specification from its body for placement in a package.
That way, you can change the cursor body without having to change the cursor
specification. You code the cursor specification in the package specification using
the syntax

CURSOR cursor_name [(parameter], parameter]...)]
RETURN retum_type;

In the following example, you use the %ROWTY R#tribute to provide a record type
that represents a row in the database table emp

CREATE PACKAGE emp_actions AS
¥ Declare cursor specification. */
CURSOR c1 RETURN emp%ROWTYPE;

END emp_actions;

CREATE PACKAGE BODY emp_actions AS
* Define cursor body. */
CURSOR c1 RETURN emp%ROWTYPE IS
SELECT * FROM emp WHERE sal > 3000;

END emp_actions;

The cursor specification has no SELECTstatement because the RETURNIlause
defines the datatype of the result value. However, the cursor body must have a
SELECTstatement and the same RETURNIause as the cursor specification. Also,
the number and datatypes of select items in the SELECTstatement must match the
RETURNIlause.

Packaged cursors increase flexibility. For instance, you can change the cursor body
in the last example, as follows, without having to change the cursor specification:

CREATE PACKAGE BODY emp_actions AS
F* Define cursor body. */
CURSOR c1 RETURN emp%ROWTYPE IS
SELECT * FROM emp WHERE deptno = 20; — new WHERE clause

END emp_actions;

Interaction with Oracle 5-15

Using Cursor FOR Loops

Using Cursor FOR Loops

In most situations that require an explicit cursor, you can simplify coding by using
a cursor FORIoop instead of the OPENFETCH and CLOSEstatements. A cursor
FORIloop implicitly declares its loop index as a %ROWTYRicord, opens a cursor,
repeatedly fetches rows of values from the result set into fields in the record, and
closes the cursor when all rows have been processed.

Consider the PL/SQL block below, which computes results from an experiment,
then stores the results in a temporary table. The FORIloop index ¢1_rec is
implicitly declared as a record. Its fields store all the column values fetched from
the cursor c1. Dot notation is used to reference individual fields.

— available online in file ‘'examp?’
DECLARE
result temp.col1%TYPE;
CURSORCc1IS
SELECT n1, n2,n3 FROM data_table WHERE exper_num=1;
BEGIN
FORc1 recINcl1LOOP
f* calculate and store the results */
result:=cl recn2/(cl _recnl+cl recn3);
INSERT INTO temp VALUES (resuit, NULL, NULL);
END LOOP,
COMMIT;
END;

When the cursor FORIloop is entered, the cursor name cannot belong to a cursor
that was already opened by an OPENstatement or by an enclosing cursor FORIloop.
Before each iteration of the FORloop, PL/SQL fetches into the implicitly declared
record, which is equivalent to a record explicitly declared as follows:

cl rec c1%ROWTYPE;

The record is defined only inside the loop. You cannot refer to its fields outside the
loop. For example, the following reference is illegal:

FORcl_recINclLOOP

END LOOP;
result:=cl_rec.n2+3; —ilegal

5-16 PL/SQL User's Guide and Reference

Using Cursor FOR Loops

The sequence of statements inside the loop is executed once for each row that
satisfies the query associated with the cursor. When you leave the loop, the cursor
is closed automatically—even if you use an EXIT or GOTGtatement to leave the
loop prematurely or an exception is raised inside the loop.

Using Subqueries

Using Aliases

You need not declare a cursor because PL/SQL lets you substitute a subquery. The
following cursor FORIloop calculates a bonus, then inserts the result into a database
table:

DECLARE
bonus REAL;
BEGIN
FOR emp_rec IN (SELECT empno, sal, comm FROM emp) LOOP
bonus :=(emp_rec.sal * 0.05) + (emp_rec.comm * 0.25);
INSERT INTO bonuses VALUES (emp_rec.empno, bonus);
END LOOP;
COMMIT;
END;

Fields in the implicitly declared record hold column values from the most recently
fetched row. The fields have the same names as corresponding columns in the
guery select list. But, what happens if a select item is an expression? Consider the
following example:

CURSORCc1IS

SELECT empno, sal+NVL(comm,0), job FROM ...
In such cases, you must include an alias for the select-item. In the next example,
wages is an alias for the select item sal+NVL(comm,0)
CURSORCcLIS

SELECT empno, sal+NVL(comm,0) wages, job FROM ...
To reference the corresponding field, you use the alias instead of a column name, as
follows:

IF emp_recwages <1000 THEN ...

Interaction with Oracle 5-17

Using Cursor Variables

Passing Parameters

You can pass parameters to the cursor used in a cursor FORIloop. In the following
example, you pass a department number. Then, you compute the total wages paid
to employees in that department. Also, you determine how many employees have
salaries higher than $2000 and how many have commissions larger than their
salaries.

—avallable online in file ‘'examp8’
DECLARE
CURSOR emp_cursor(dnum NUMBER) IS
SELECT sal, comm FROM emp WHERE deptno = dnum;
total wages NUMBER(11,2) =0;
high_paid NUMBER(®4) :=0;
higher_comm NUMBER(4) :=0;

BEGIN
FThe number of iterations will equal the number of rows *
*retumed by emp_cursor. ki

FOR emp_record IN emp_cursor(20) LOOP
emp_record.comm := NVL(emp_record.comm, O);
total wages = total_wages +emp_record.sal +
emp_record.comm;

IF emp_record.sal >2000.00 THEN
high_paid := high_paid + 1,

ENDIF;

IF emp_record.comm >emp_record.sal THEN
higher_comm := higher_comm + 1;

ENDIF;

END LOOP;

INSERT INTO temp VALUES (high_paid, higher_comm,
Total Wages: ' || TO_CHAR(total_wages));

COMMIT;

END;

Using Cursor Variables

Like a cursor, a cursor variable points to the current row in the result set of a multi-
row query. But, cursors differ from cursor variables the way constants differ from
variables. Whereas a cursor is static, a cursor variable is dynamic because it is not
tied to a specific query. You can open a cursor variable for any type-compatible
query. This gives you more flexibility.

Also, you can assign new values to a cursor variable and pass it as a parameter to
subprograms, including subprograms stored in an Oracle database. This gives you
an easy way to centralize data retrieval.

5-18 PL/SQL User's Guide and Reference

Using Cursor Variables

Cursor variables are available to every PL/SQL client. For example, you can
declare a cursor variable in a PL/SQL host environment such as an OCI or Pro*C
program, then pass it as input host variable (bind variable) to PL/SQL. Moreover,
application development tools such as Oracle Forms and Oracle Reports, which
have a PL/SQL engine, can use cursor variables entirely on the client side.

The Oracle server also has a PL/SQL engine. So, you can pass cursor variables back
and forth between an application and server via remote procedure calls (RPCs).

What Are Cursor Variables?

Cursor variables are like C or Pascal pointers, which hold the memory location
(address) of some item instead of the item itself. So, declaring a cursor variable
creates a pointer, not an item. In PL/SQL, a pointer has datatype REF X, where REF
is short for REFERENCENd Xstands for a class of objects. Therefore, a cursor
variable has datatype REF CURSOR

To execute a multi-row query, Oracle opens an unnamed work area that stores
processing information. To access the information, you can use an explicit cursor,
which names the work area. Or, you can use a cursor variable, which points to the
work area.

Whereas a cursor always refers to the same query work area, a cursor variable can
refer to different work areas. So, cursors and cursor variables are not interoperable;
that is, you cannot use one where the other is expected.

Why Use Cursor Variables?

Mainly, you use cursor variables to pass query result sets between PL/SQL stored
subprograms and various clients. Neither PL/SQL nor any of its clients owns a
result set; they simply share a pointer to the query work area in which the result set
is stored. For example, an OCI client, Oracle Forms application, and Oracle server
can all refer to the same work area.

A query work area remains accessible as long as any cursor variable points to it.
Therefore, you can pass the value of a cursor variable freely from one scope to
another. For example, if you pass a host cursor variable to a PL/SQL block
embedded in a Pro*C program, the work area to which the cursor variable points
remains accessible after the block completes.

If you have a PL/SQL engine on the client side, calls from client to server impose
no restrictions. For example, you can declare a cursor variable on the client side,
open and fetch from it on the server side, then continue to fetch from it back on the
client side.

Interaction with Oracle 5-19

Using Cursor Variables

Also, you can reduce network traffic by having a PL/SQL block open (or close)
several host cursor variables in a single round trip.

Defining REF CURSOR Types

To create cursor variables, you take two steps. First, you define a REF CURSOR/pe,
then declare cursor variables of that type. You can define REF CURSOR/pes in any
PL/SQL block, subprogram, or package using the syntax

TYPE ref_type_name IS REF CURSOR RETURN retum_type;

where ref_type _name is a type specifier used in subsequent declarations of
cursor variables and return_type must represent a record or a row in a database
table. In the following example, you specify a return type that represents a row in
the database table dept :

DECLARE
TYPE DeptCurTyp IS REF CURSOR RETURN dept%ROWTYPE;

REF CURSORypes can be strong (restrictive) or weak (nonrestrictive). As the next
example shows, a strong REF CURSORy/pe definition specifies a return type, but a
weak definition does not:

DECLARE
TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE; — strong
TYPE GenericCurTyp IS REF CURSOR; —weak

Strong REF CURSORypes are less error prone because the PL/SQL compiler lets
you associate a strongly typed cursor variable only with type-compatible queries.
However, weak REF CURSORypes are more flexible because the compiler lets you
associate a weakly typed cursor variable with any query.

Declaring Cursor Variables

Once you define a REF CURSORype, you can declare cursor variables of that type
in any PL/SQL block or subprogram. In the following example, you declare the
cursor variable dept _cv :

DECLARE
TYPE DeptCurTyp IS REF CURSOR RETURN dept%eROWTYPE;
dept_cv DeptCurTyp; — declare cursor variable

5-20 PL/SQL User's Guide and Reference

Using Cursor Variables

Note: You cannot declare cursor variables in a package. Unlike
packaged variables, cursor variables do not have persistent state.
Remember, declaring a cursor variable creates a pointer, not an item. So,
cursor variables cannot be saved in the database.

Cursor variables follow the usual scoping and instantiation rules. Local PL/SQL
cursor variables are instantiated when you enter a block or subprogram and cease
to exist when you exit.

In the RETURNIlause of a REF CURSORype definition, you can use %ROWTY RB
specify a record type that represents a row returned by a strongly (not weakly)
typed cursor variable, as follows:

DECLARE
TYPE TmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
tmp_cv TmpCurTyp; — declare cursor variable
TYPE EmpCurTyp IS REF CURSOR RETURN tmp_cv/6ROWTYPE;
emp_cv EmpCurTyp; — declare cursor variable

Likewise, you can use %TYPRo provide the datatype of a record variable, as the
following example shows:

DECLARE
dept_rec dept¥eROWTYPE; — declare record variable
TYPE DeptCurTyp IS REF CURSOR RETURN dept_rec%TYPE;
dept_cv DeptCurTyp; — declare cursor variable

In the final example, you specify a user-defined RECORIype in the RETURNlause:

DECLARE
TYPE EmpRecTyp IS RECORD (
empno NUMBER(4),
ename VARCHAR2(10),
sal NUMBER(7,2);
TYPE EmpCurTyp IS REF CURSOR RETURN EmpRecTyp;
emp_cv EmpCurTyp; — declare cursor variable

Interaction with Oracle 5-21

Using Cursor Variables

As Parameters

You can declare cursor variables as the formal parameters of functions and
procedures. In the following example, you define the REF CURSOR/pe
EmpCurTyp, then declare a cursor variable of that type as the formal parameter of a
procedure:

DECLARE
TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
PROCEDURE open_emp_cv (emp_cvIN OUT EmpCurTyp) IS ...

Controlling Cursor Variables

You use three statements to control a cursor variable: OPEN-FORFETCH and
CLOSEFirst, you OPENa cursor variable FORa multi-row query. Then, you FETCH
rows from the result set one at a time. When all the rows are processed, you CLOSE
the cursor variable.

Opening a Cursor Variable

The OPEN-FORstatement associates a cursor variable with a multi-row query,
executes the query, and identifies the result set. The statement syntax is

OPEN {cursor_variable_name | :host_cursor_variable_name}
FOR select_statement;

where host _cursor_variable _name identifies a cursor variable declared in a
PL/SQL host environment such as an OCI or Pro*C program.

Unlike cursors, cursor variables do not take parameters. No flexibility is lost,
however, because you can pass whole queries (not just parameters) to a cursor
variable. The query can reference host variables and PL/SQL variables, parameters,
and functions but cannot be FOR UPDATE

In the example below, you open the cursor variable emp_cv. Notice that you can
apply cursor attributes (%FOUNDONOTFOUNBRISOPENand %ROWCOUND a
cursor variable.

IFNOT emp_cv6ISOPEN THEN

F* Open cursor variable. */

OPEN emp_cv FOR SELECT * FROM emp;
END IF;

5-22 PL/SQL User's Guide and Reference

Using Cursor Variables

Other OPEN-FORstatements can open the same cursor variable for different
gueries. You need not close a cursor variable before reopening it. (Recall that
consecutive OPEN of a static cursor raise the predefined exception
CURSOR_ALREADY_OPEWhen you reopen a cursor variable for a different
guery, the previous query is lost.

In a Stored Procedure

Typically, you open a cursor variable by passing it to a stored procedure that
declares a cursor variable as one of its formal parameters. For example, the
following packaged procedure opens the cursor variable emp_cv:

CREATE PACKAGE emp_data AS

TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp);
END emp_data;

CREATE PACKAGE BODY emp_data AS

PROCEDURE open_emp_cv (emp_cvIN OUT EmpCurTyp) IS
BEGIN
OPEN emp_cv FOR SELECT * FROM emp;
END open_emp_cv;
END emp_data;

When you declare a cursor variable as the formal parameter of a subprogram that
opens the cursor variable, you must specify the IN OUT mode. That way, the
subprogram can pass an open cursor back to the caller.

Alternatively, you can use a stand-alone procedure to open the cursor variable.
Simply define the REF CURSOR/pe in a separate package, then reference that type
in the stand-alone procedure. For instance, if you create the following (bodiless)
package, you can create stand-alone procedures that reference the types it defines:

CREATE PACKAGE cv_types AS
TYPE GenericCurTyp IS REF CURSOR;
TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
TYPE DeptCurTyp IS REF CURSOR RETURN dept¥oROWTYPE;

END cv_types,

Interaction with Oracle 5-23

Using Cursor Variables

In the following example, you create a stand-alone procedure that references the
REF CURSOR/pe EmpCurTyp, which is defined in the package cv_types

CREATE PROCEDURE open_emp_cv (emp_cv IN OUT cv_types.EmpCurTyp) AS
BEGIN

OPEN emp_cv FOR SELECT * FROM emp;
END open_emp_cv,

To centralize data retrieval, you can group type-compatible queries in a stored
procedure. In the example below, the packaged procedure declares a selector as one
of its formal parameters. (In this context, a selector is a variable used to select one of
several alternatives in a conditional control statement.) When called, the procedure
opens the cursor variable emp_cv for the chosen query.

CREATE PACKAGE emp_data AS
TYPE GenericCurTyp IS REF CURSOR,;
TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp,
choice IN NUMBER);
END emp_data;

CREATE PACKAGE BODY emp_data AS
PROCEDURE open_emp_cv (emp_cvIN OUT EmpCurTyp,
choice INNUMBER) IS
BEGIN
IF choice =1 THEN
OPEN emp_cv FOR SELECT * FROM emp WHERE comm IS NOT NULL;
ELSIF choice =2 THEN
OPEN emp_cvFOR SELECT * FROM emp WHERE sal > 2500;
ELSIF choice =3 THEN
OPEN emp_cv FOR SELECT * FROM emp WHERE deptno = 20;
ENDIF;
END open_emp_cv;
END emp_data;

For more flexibility, you can pass a cursor variable and selector to a stored
procedure that executes queries with different return types. Consider the following
example:

CREATE PACKAGE BODY emp_data AS
PROCEDURE open_cv (generic_cv IN OUT GenericCurTyp,
choice INNUMBER)IS
BEGIN
IF choice =1 THEN
OPEN generic_cv FOR SELECT * FROM emp;

5-24 PL/SQL User's Guide and Reference

Using Cursor Variables

ELSIF choice =2 THEN
OPEN generic_cv FOR SELECT * FROM dept;
ELSIF choice =3 THEN
OPEN generic_cv FOR SELECT * FROM salgrade;
ENDIF;
END open_cv;
END emp_data;

Using a Host Variable

You can declare a cursor variable in a PL/SQL host environment such as an OCI or
Pro*C program. To use the cursor variable, you must pass it as a host variable to
PL/SQL. In the following Pro*C example, you pass a host cursor variable and
selector to a PL/SQL block, which opens the cursor variable for the chosen query:

EXEC SQL BEGIN DECLARE SECTION,;

* Declare host cursor variable. */
SQL_CURSOR generic_cv,
int choice;

EXEC SQL END DECLARE SECTION;

¥ Initialize host cursor variable. */
EXEC SQL ALLOCATE :generic _cv;,

¥ Pass host cursor variable and selector to PL/SQL block. */
EXEC SQL EXECUTE
BEGIN
IF :choice =1 THEN
OPEN :generic_cv FOR SELECT * FROM emp;
ELSIF :choice =2 THEN
OPEN :generic_cv FOR SELECT * FROM dept;
ELSIF :choice =3 THEN
OPEN :generic_cv FOR SELECT * FROM salgrade;
ENDIF;
END;
END-EXEC;

Host cursor variables are compatible with any query return type. They behave just
like weakly typed PL/SQL cursor variables.

Interaction with Oracle 5-25

Using Cursor Variables

Fetching from a Cursor Variable

The FETCHstatement retrieves rows one at a time from the result set of a multi-row
guery. The statement syntax follows:

FETCH {cursor_variable_name | host_cursor_variable_name}
INTO {variable_name], variable_name]... | record_name};

In the next example, you fetch rows from the cursor variable emp_cv into the user-
defined record emp_rec :

LOOP
F Fetch from cursor variable. */
FETCH emp_cvINTO emp_rec;
EXIT WHEN emp_cvoNOTFOUND; — exit when last row is fetched
— process data record
END LOOP;

Any variables in the associated query are evaluated only when the cursor variable
is opened. To change the result set or the values of variables in the query, you must
reopen the cursor variable with the variables set to their new values. However, you
can use a different INTO clause on separate fetches with the same cursor variable.
Each fetch retrieves another row from the same result set.

PL/SQL makes sure the return type of the cursor variable is compatible with the
INTO clause of the FETCHstatement. For each column value returned by the query
associated with the cursor variable, there must be a corresponding, type-
compatible field or variable in the INTO clause. Also, the number of fields or
variables must equal the number of column values. Otherwise, you get an error.

The error occurs at compile time if the cursor variable is strongly typed or at run
time if it is weakly typed. At run time, PL/SQL raises the predefined exception
ROWTYPE_MISMAT@kfore the first fetch. So, if you trap the error and execute the
FETCHstatement using a different INTO clause, no rows are lost.

When you declare a cursor variable as the formal parameter of a subprogram that
fetches from the cursor variable, you must specify the IN (or IN OUT) mode.
However, if the subprogram also opens the cursor variable, you must specify the
IN OUT mode.

If you try to fetch from a closed or never-opened cursor variable, PL/SQL raises the
predefined exception INVALID_CURSOR

5-26 PL/SQL User's Guide and Reference

Using Cursor Variables

Example 1

Closing a Cursor Variable

The CLOSEstatement disables a cursor variable. After that, the associated result set
is undefined. The statement syntax follows:

CLOSE {cursor_variable_name | :host_cursor_variable_name);

In the following example, when the last row is processed, you close the cursor
variable emp_cv:

LOOP
FETCHemp_cvINTO emp_rec;
EXIT WHEN emp_cv/oNOTFOUND;
— process data record

END LOOP;

P Close cursor variable. */

CLOSE emp_cv,

When declaring a cursor variable as the formal parameter of a subprogram that
closes the cursor variable, you must specify the IN (or IN OUT) mode.

If you try to close an already-closed or never-opened cursor variable, PL/SQL
raises the predefined exception INVALID CURSOR

Consider the stored procedure below, which searches the database of a main library
for books, periodicals, and tapes. A master table stores the title and category code
(1 = book, 2 = periodical, 3 = tape) of each item. Three detail tables store category-
specific information. When called, the procedure searches the master table by title,
uses the associated category code to pick an OPEN-FORstatement, then opens a
cursor variable for a query of the proper detail table.

CREATE PACKAGE cv_types AS
TYPE LibCurTyp IS REF CURSOR;

END cv_types;

CREATE PROCEDURE find_item (tite VARCHAR2(100),
lib_cvIN OUT cv_types.LibCurTyp) AS
code BINARY _INTEGER;
BEGIN
SELECT item_code FROM tittes INTO code
WHERE item _title =fitle;
IF code=1THEN
OPEN ib_cv FOR SELECT * FROM books

Interaction with Oracle 5-27

Using Cursor Variables

WHERE book_title =title;
ELSIF code =2 THEN
OPEN lib_cvFOR SELECT * FROM periodicals
WHERE periodical_title = title;
ELSIF code =3 THEN
OPEN lib_cvFOR SELECT * FROM tapes
WHERE tape _title = title;
ENDIF;
ENDfind_item;

Example 2

A client-side application in a branch library might use the following PL/SQL block
to display the retrieved information:

DECLARE
ib_cv cv_typesLibCurTyp;
book rec books%ROWTYPE;
periodical_rec periodicals¥eROWTYPE;
tape_rec tapes¥%ROWTYPE;
BEGIN
get title(tile); — tite is a host variable
find_item(:title, lib_cv);
FETCHIib_cvINTO book_rec;
display_book(book_rec);
EXCEPTION
WHEN ROWTYPE_MISMATCH THEN
BEGIN
FETCHIib_cvINTO periodical_rec;
display_periodical(periodical_rec);
EXCEPTION
WHEN ROWTYPE_MISMATCH THEN
FETCHIib_cvINTOtape_rec;
display_tape(tape:_rec);
END;
END;

5-28 PL/SQL User's Guide and Reference

Using Cursor Variables

Example 3

#include <stdio.h>
#include <sgica.h>
void sgl_error();
main()

char temp[32];

EXEC SQL BEGIN DECLARE SECTION,;
char * uid = "scottftiger”;
SQL_CURSOR generic_cv; /* cursor variable */
int table_num; Fselector ¥
struct FEMPrecord %

{
int emp_num,;
char emp_name[11];
char job _title[10];
int manager;
char hire_date[10];
float salary;
float commission;
int dept_num;
}emp_rec;
struct *DEPT record %/
{
int dept_num,;
char dept_name[15];
char location[14];
}dept rec;
struct #BONUS record */
{
char emp_name[11];
char job _title[10];
float salary;
}bonus rec;

EXEC SQL END DECLARE SECTION,;

f*Handle Oracle errors. */

EXEC SQL WHENEVER SQLERROR DO sql_error();

f* Connect to Oracle. */
EXEC SQL CONNECT :uid;

The following Pro*C program prompts the user to select a database table, opens a
cursor variable for a query of that table, then fetches rows returned by the query:

Interaction with Oracle 5-29

Using Cursor Variables

* Initialize cursor variable. */
EXEC SQL ALLOCATE :generic_cv;

* Exit loop when done fetching. */
EXEC SQL WHENEVER NOT FOUND DO break;

for(5)

{
printf(\n1 = EMP, 2 = DEPT, 3=BONUS"),
printfC\nEnter table number (0 to quit): ”);
getstemp);
table_num = atoittempy);
if (table_num <=0) break;

F Open cursor variable.
EXEC SQL EXECUTE
BEGIN
IF table_num=1THEN
OPEN :generic_cv FOR SELECT * FROM emp;
ELSIF :table num=2THEN
OPEN :generic_cv FOR SELECT *FROM dept;
ELSIF :table_num =3 THEN
OPEN :generic_cv FOR SELECT * FROM bonus;
END IF;
END;
END-EXEC;
for ()
{
switch (table_num)
{
case 1: /* Fetch row into EMP record. */
EXEC SQL FETCH :generic_cvINTO :emp_rec;
break;
case 2: *Fetch rowinto DEPT record. */
EXEC SQL FETCH :generic_cv INTO :dept rec;
break;
case 3: /* Fetch row into BONUS record. */
EXEC SQL FETCH :generic_cv INTO :bonus _rec;
break;
}
P Process data record here. */
}
F Close cursor variable. */
EXEC SQL CLOSE :generic_cv,
}

5-30 PL/SQL User's Guide and Reference

Using Cursor Variables

Example 4

ext(0);
}
void sgl_error()
{
f*Handle SQL error here. */

}

A host variable is a variable you declare in a host environment, then pass to one or
more PL/SQL programs, which can use it like any other variable. In the SQL*Plus
environment, to declare a host variable, you use the command VARIABLE. For
example, you declare a variable of type NUMBERSs follows:

VARIABLE retum_code NUMBER

Both SQL*Plus and PL/SQL can reference the host variable, and SQL*Plus can
display its value.

Note: If you declare a host variable with the same name as a PL/SQL
program variable, the latter takes precedence.

To reference a host variable in PL/SQL, you must prefix its name with a colon (:),
as the following example shows:

retum_code =0;

IF credit_check _ok(acct_no) THEN
retum_code =1,

END IF;

To display the value of a host variable in SQL*Plus, you use the PRINT command,
as follows:

SQL> PRINT retum_code
RETURN_CODE

1

Interaction with Oracle 5-31

Using Cursor Variables

In the script below, you declare a host variable of type REFCURSORThe SQL*Plus
datatype REFCURSORts you declare cursor variables, which you can use to return
guery results from stored subprograms.) You use the SQL*Plus command SET
AUTOPRINT ONo display the query results automatically.

CREATE PACKAGE emp_data AS
TYPE EmpRecTyp IS RECORD (
emp_id NUMBER(),
emp_name CHAR(10),
job_tite CHAR(9),
dept_name CHAR(14),
dept_loc CHAR(13));
TYPE EmpCurTyp IS REF CURSOR RETURN EmpRecTyp;
PROCEDURE get _staff (dept_no INNUMBER, emp_cv IN OUT EmpCurTyp);
END;
/
CREATE PACKAGE BODY emp_data AS
PROCEDURE get_staff (dept_no IN NUMBER, emp_cv IN OUT EmpCurTyp) IS
BEGIN
OPENemp_cvFOR
SELECT empno, ename, job, dname, loc FROM emp, dept
WHERE emp.deptno =dept_no AND
emp.deptno = deptdeptno
ORDER BY empno;
END;
END;
/
COLUMN EMPNO HEADING Number
COLUMN ENAME HEADING Name
COLUMN JOB HEADING JobTite
COLUMN DNAME HEADING Department
COLUMN LOC HEADING Location
SET AUTOPRINT ON
VARIABLE cv REFCURSOR
EXECUTE emp_data.get staff(20, :cv)

5-32 PL/SQL User's Guide and Reference

Using Cursor Variables

Reducing Network Traffic

When passing host cursor variables to PL/SQL, you can reduce network traffic by
grouping OPEN-FORstatements. For example, the following PL/SQL block opens
five cursor variables in a single round trip:

F anonymous PL/SQL block in host environment */
BEGIN
OPEN :emp_cvFOR SELECT * FROM emp;
OPEN :dept_cv FOR SELECT * FROM dept;
OPEN :grade_cv FOR SELECT * FROM salgrade;
OPEN :pay_cv FOR SELECT * FROM payroll;
OPEN:ins_cv FOR SELECT * FROM insurance;
END;

This might be useful in Oracle Forms, for instance, when you want to populate a
multi-block form.

When you pass host cursor variables to a PL/SQL block for opening, the query
work areas to which they point remain accessible after the block completes. That
allows your OCI or Pro*C program to use these work areas for ordinary cursor
operations. In the following example, you open several such work areas in a single
round trip:

BEGIN
OPEN :c1 FOR SELECT 1 FROM duél;
OPEN :¢2 FOR SELECT 1 FROM duél;
OPEN :c3 FOR SELECT 1 FROM dual;
OPEN :c4 FOR SELECT 1 FROM dual;
OPEN :c5 FOR SELECT 1 FROM duél;

END;
The cursors assigned to c1, c2, ¢3, ¢4, and c5 behave normally, and you can use

them for any purpose. When finished, simply release the cursors, as follows:

BEGIN
CLOSE «c1;
CLOSE 2,
CLOSE «c3;
CLOSE ¢4,
CLOSE c5;

END;

Interaction with Oracle 5-33

Using Cursor Variables

Avoiding Exceptions

If both cursor variables involved in an assignment are strongly typed, they must
have the same datatype. In the following example, even though the cursor
variables have the same return type, the assignment raises an exception because
they have different datatypes:

DECLARE
TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
TYPE TmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;

PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp,
tmp_cvIN OUT TmpCurTyp) IS
BEGIN

emp_cv :=tmp_cv; —causes Wrong type’ eror
END;

However, if one or both cursor variables are weakly typed, they need not have the
same datatype.

If you try to fetch from, close, or apply cursor attributes to a cursor variable that
does not point to a query work area, PL/SQL raises the predefined exception
INVALID_CURSOR You can make a cursor variable (or parameter) point to a query
work area in two ways:

« OPENhe cursor variable FORthe query.

« Assign to the cursor variable the value of an already OPENd host cursor
variable or PL/SQL cursor variable.

The following example shows how these ways interact:

DECLARE
TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
emp_cvl EmpCurTyp;
emp_cv2 EmpCurTyp;
emp_rec emp%ROWTYPE;
BEGIN
FThe following assignment is useless because emp_cvl
does not point to a query work area yet. */
emp_cv2 =emp_cvl; —useless
FMake emp_cv1 pointto a query work area. */
OPEN emp_cv1 FOR SELECT * FROM emp;
FUse emp_cv1 to fetch first row from emp table. */
FETCHemp_cv1INTO emp_rec;

5-34 PL/SQL User's Guide and Reference

Using Cursor Variables

F*The following fetch raises an exception because emp_cv2
does not paint to a query work area yet. */
FETCH emp_cv2 INTO emp_rec; —raises INVALID_ CURSOR
EXCEPTION
WHEN INVALID_CURSOR THEN
FMake emp_cv1 and emp_cv2 point to same work area. */
emp_cv2:=emp_cvi,
FUse emp_cv2 to fetch second row from emp table. */
FETCHemp_cv2 INTO emp _rec;
F Reuse work area for another query. */
OPEN emp_cv2 FOR SELECT * FROM old_emp;
FUse emp_cv1 to fetch first row from old_emp table.
The following fetch succeeds because emp_cvl and
emp_cv2 paint to the same query work area. */
FETCH emp_cv1 INTO emp_rec; — succeeds
END;

Be careful when passing cursor variables as parameters. At run time, PL/SQL
raises ROWTYPE_MISMATGHhe return types of the actual and formal parameters
are incompatible.

In the Pro*C example below, you define a packaged REF CURSORype, specifying
the return type empoROWTYPHRext, you create a stand-alone procedure that
references the new type. Then, inside a PL/SQL block, you open a host cursor
variable for a query of the dept table. Later, when you pass the open host cursor
variable to the stored procedure, PL/SQL raises ROWTYPE_MISMATQidcause the
return types of the actual and formal parameters are incompatible.

F*bodiless package */
CREATE PACKAGE cv_types AS
TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;

END cv_types;

* stand-alone procedure */
CREATE PROCEDURE open_emp_cv (emp_cv IN OUT cv_types.EmpCurTyp) AS
BEGIN
OPENemp_cv FOR SELECT * FROM emp;
END open_emp_cv,

F* anonymous PL/SQL block in Pro*C program */
EXEC SQL EXECUTE
BEGIN
OPEN :cv FOR SELECT * FROM dept;

Interaction with Oracle 5-35

Using Cursor Variables

open_emp_cv(:cv); — raises ROWTYPE_MISMATCH because emp and
- dept tables have different rowtypes
END;
END-EXEC;

Guarding Against Aliasing

Like all pointers, cursor variables introduce the possibility of aliasing. Consider the
example below. After the assignment, emp_cv2 is an alias of emp_cv1 because
both point to the same query work area. So, both can alter its state. That is why the
first fetch from emp_cv2 fetches the third row (not the first) and why the second
fetch from emp_cv2 fails after you close emp_cv1.

PROCEDURE get emp_data (emp_cv1 IN OUT EmpCurTyp,
emp_cv2 IN OUT EmpCurTyp) IS

emp_rec emp%ROWTYPE;

BEGIN
OPEN emp_cvl FOR SELECT * FROM emp;
emp_cv2:=emp_cvl,
FETCH emp_cv1 INTO emp_rec; — fetches first row
FETCH emp_cv1 INTO emp_rec; —fetches second row
FETCH emp_cv2 INTO emp_rec; —fetches third row
CLOSE emp_cv1,;
FETCH emp_cv2 INTO emp_rec; —raises INVALID_CURSOR

END get emp_data;

Aliasing also occurs when the same actual parameter appears twice in a
subprogram call. Unless both formal parameters are IN parameters, the result is
indeterminate, as the following example shows:

DECLARE
TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
emp_cv EmpCurTyp;
emp_rec emp%ROWTYPE;
PROCEDURE open_emp_cv (cv1 IN OUT EmpCurTyp,
cv2 INOUT EmpCurTyp) IS
BEGIN
OPEN cv1 FOR SELECT * FROM emp WHERE ename ='KING;
OPEN cv2 FOR SELECT * FROM emp WHERE ename = 'BLACK;
END open_emp _cv;
BEGIN
open_emp_cv(emp_cv, emp_cv);
FETCH emp_cvINTO emp_rec; — indeterminate; might retum
—row for KING' or'BLACK’

5-36 PL/SQL User's Guide and Reference

Using Cursor Variables

Restrictions

Currently, cursor variables are subject to the following restrictions, some of which
future releases of PL/SQL will remove:

You cannot declare cursor variables in a package because they do not have
persistent state.

Remote subprograms on another server cannot accept the values of cursor
variables. Therefore, you cannot use RPCs to pass cursor variables from one
server to another.

If you pass a host cursor variable to PL/SQL, you cannot fetch from it on the
server side unless you also open it there on the same server call.

The query associated with a cursor variable in an OPEN-FORstatement cannot
be FOR UPDATE

You cannot use comparison operators to test cursor variables for equality,
inequality, or nullity.

You cannot assign nulls to a cursor variable.

You cannot use REF CURSORypes to specify column types in a CREATE TABLE
or CREATE VIEWtatement. So, database columns cannot store the values of
cursor variables.

You cannot use a REF CURSORype to specify the element type of a collection,
which means that elements in a nested table, index-by table, or varray cannot
store the values of cursor variables.

You cannot use cursor variables with dynamic SQL.

Cursors and cursor variables are not interoperable; that is, you cannot use one
where the other is expected. For example, the following cursor FORIoop is
illegal:

DECLARE
CURSOR emp_cur IS SELECT * FROM emp; — static cursor
TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
emp_cv EmpCurTyp; — cursor variable

BEGIN

FOR emp_recINemp_cvLOOP ... —illegal

END LOOP;
END;

Interaction with Oracle 5-37

Using Cursor Attributes

Using Cursor Attributes

Each cursor or cursor variable has four attributes: %FOUNDBAISOPEN %NOTFOUND
and %ROWCOUNVhen appended to the cursor or cursor variable, these attributes
return useful information about the execution of a data manipulation statement.

You can use cursor attributes in procedural statements but not in SQL statements.

Explicit Cursor Attributes

Explicit cursor attributes return information about the execution of a multi-row
guery. When an explicit cursor or a cursor variable is opened, the rows that satisfy
the associated query are identified and form the result set. Rows are fetched from
the result set one at a time.

%FOUND

After a cursor or cursor variable is opened but before the first fetch, %FOUNBields
NULL Thereafter, it yields TRUEIf the last fetch returned a row, or FALSEif the last
fetch failed to return a row. In the following example, you use %FOUNID select an

action:

LOOP
FETCH c1INTO my_ename, my_sal, my_hiredate;
IF c1%FOUND THEN - fetch succeeded

ELSE - fetch failed, so exitloop
EXIT;
ENDIF;
END LOOP;

If a cursor or cursor variable is not open, referencing it with %FOUNIEaises the
predefined exception INVALID_CURSOR

%ISOPEN

%ISOPENyields TRUEIf its cursor or cursor variable is open; otherwise, %ISOPEN
yields FALSE In the following example, you use %ISOPENOo select an action:

IF c1%ISOPEN THEN - cursor is open
ELSE - cursoris closed, so open it

OPENCcI;
ENDIF;

5-38 PL/SQL User's Guide and Reference

Using Cursor Attributes

%NOTFOUND

%NOTFOUNBthe logical opposite of %FOUNDANOTFOUNelds FALSE if the last
fetch returned a row, or TRUEIf the last fetch failed to return a row. In the following
example, you use %NOTFOUND exit a loop when FETCHfails to return a row:

LOOP
FETCH c1INTO my_ename, my_sal, my_hiredate;
EXIT WHEN c1%NOTFOUND,;

END LOOP;

Before the first fetch, %NOTFOUN#&aluates to NULL So, if FETCHnever executes
successfully, the loop is never exited. That is because the EXIT WHENstatement
executes only if its WHENondition is true. To be safe, you might want to use the
following EXIT statement instead:

EXIT WHEN c1%NOTFOUND OR c¢i%NOTFOUND IS NULL;

If a cursor or cursor variable is not open, referencing it with %NOTFOUN{Rises
INVALID_CURSOR

%ROWCOUNT

When its cursor or cursor variable is opened, %ROWCOUMNTzeroed. Before the first
fetch, %oROWCOUNMiEIds 0. Thereafter, it yields the number of rows fetched so far.
The number is incremented if the last fetch returned a row. In the next example,
you use %ROWCOURbTtake action if more than ten rows have been fetched:

LOOP
FETCH c1INTO my_ename, my_deptno;
IF c1%ROWCOUNT > 10 THEN
ENDIF;

END LOOP;

If a cursor or cursor variable is not open, referencing it with %ROWCOUNRises
INVALID_CURSOR

Interaction with Oracle 5-39

Using Cursor Attributes

Table 5-1 shows what each cursor attribute yields before and after you execute an
OPENFETCH or CLOSEstatement.

Table 5—-1 Cursor Attribute Values

%FOUND %ISOPEN %NOTFOUND %ROWCOUNT

OPEN before exception FALSE exception exception
after NULL TRUE NULL 0
First FETCH before NULL TRUE NULL 0
after TRUE TRUE FALSE 1
Next FETCH(es) before TRUE TRUE FASE 1
after TRUE TRUE FASE data dependent
Last FETCH before TRUE TRUE FASE data dependent
after FALSE TRUE TRUE data dependent
CLOSE before FALSE TRUE TRUE data dependent
after exception FALSE exception exception
Notes:

1. Referencing %FOUNDANOTFOUNDr %ROWCOUNdTore a cursor is opened or after
it is closed raises INVALID_CURSOR

2. After the first FETCH if the result set was empty, %FOUNBields FALSE %NOTFOUND
yields TRUE and %ROWCOUMiEIds 0.

Some Examples

Suppose you have a table named data_table that holds data collected from
laboratory experiments, and you want to analyze the data from experiment 1. In
the following example, you compute the results and store them in a database table
named temp:

—avallable online in file ‘'examp5’
DECLARE
numl data tablenl%TYPE; — Declare variables
num2 data_table.n2%TYPE; —having same types as
num3 data_table.n3%TYPE; - database columns
result temp.col1%TYPE;
CURSORCc1IS
SELECT n1, n2, n3 FROM data._table WHERE exper num=1,

5-40 PL/SQL User's Guide and Reference

Using Cursor Attributes

BEGIN
OPENCc1;
LOOP
FETCH c1 INTO num1, num2, num3;
EXIT WHEN c1%NOTFOUND; - yields TRUE when FETCH
—finds no more rows
result := num2/(num2 + num?3);
INSERT INTO temp VALUES (result, NULL, NULL);
END LOOP;
CLOSE c1;
COMMIT;
END;

In the next example, you check all storage bins that contain part number 5469,
withdrawing their contents until you accumulate 1000 units:

—available online infile ‘'examp6’
DECLARE
CURSOR hin_cur(part_number NUMBER) IS
SELECT amt_in_bin FROM bins
WHERE part_num = part_number AND amt_in_bin>0
ORDER BY bin_num
FOR UPDATE OF amt_in_bin;
bin amt binsamt in_bin%TYPE;
total so_far NUMBER(5) =0,
amount_needed CONSTANT NUMBER(5) := 1000
bins_looked at NUMBER(3) :=0;
BEGIN
OPEN bin_cur(5469);

WHILE total_so_far <amount_needed LOOP
FETCH bin_cur INTO bin_amt;
EXIT WHEN bin_cur%eNOTFOUND;

—ifwe exit, there’s not enough to fill the order
bins_looked at:=hins looked at+1;
IFtotal_so_far +hbin_amt <amount_needed THEN

UPDATE bins SET amt_in_bin=0

WHERE CURRENT OF bin_cur;
—take everything in the bin
total so far:=total so far+bin_ant;
ELSE - we finally have enough
UPDATE bins SET amt_in_bin=amt _in_bin
- (@mount_needed -total_so_far)
WHERE CURRENT OF bin_cur;
total_so_far :=amount_needed;

Interaction with Oracle 5-41

Using Cursor Attributes

ENDIF;
END LOOP;

CLOSE bin_cur;

INSERT INTO temp
VALUES (NULL, bins_looked_at, '<- bins looked at);
COMMIT;
END;

Implicit Cursor Attributes
Implicit cursor attributes return information about the execution of an INSERT,
UPDATEDELETE or SELECT INTOstatement. The values of the cursor attributes
always refer to the most recently executed SQL statement. Before Oracle opens the
SQL cursor, the implicit cursor attributes yield NULL

%FOUND

Until a SQL data manipulation statement is executed, %FOUNBields NULL
Thereafter, %FOUNBields TRUEIf an INSERT, UPDATE or DELETEstatement
affected one or more rows, or a SELECT INTOstatement returned one or more

rows. Otherwise, %FOUNBields FALSE In the following example, you use %FOUND
to insert a row if a delete succeeds:

DELETE FROM emp WHERE empno =my_empno;
IF SQLY%FOUND THEN - delete succeeded
INSERT INTO new_emp VALUES (my_empno, my_ename, ...);

%ISOPEN

Oracle closes the SQL cursor automatically after executing its associated SQL
statement. As a result, %ISOPENalways yields FALSE

%NOTFOUND

%NOTFOUNBthe logical opposite of %FOUNDoONOTFOUNelds TRUEIf an
INSERT, UPDATEor DELETEstatement affected no rows, or a SELECT INTO
statement returned no rows. Otherwise, %NOTFOUNyelds FALSE

5-42 PL/SQL User's Guide and Reference

Using Cursor Attributes

%ROWCOUNT

%ROWCOUMiIEIds the number of rows affected by an INSERT, UPDATEor DELETE
statement, or returned by a SELECT INTOstatement. %ROWCOUMiIEIds 0 if an
INSERT, UPDATEor DELETEstatement affected no rows, or a SELECT INTO
statement returned no rows. In the following example, you use %ROWCOUtake
action if more than ten rows have been deleted:

DELETE FROM emp WHERE ...
IF SQLY%ROWCOUNT >10 THEN —more than 10 rows were deleted

ENDIF;

If a SELECT INTOstatement returns more than one row, PL/SQL raises the
predefined exception TOO_MANY_ROVESd %ROWCOUNMiEIds 1, not the actual
number of rows that satisfy the query.

Guidelines

The values of the cursor attributes always refer to the most recently executed SQL
statement, wherever that statement is. It might be in a different scope (for example,
in a sub-block). So, if you want to save an attribute value for later use, assign it to a
Boolean variable immediately. In the following example, relying on the IF
condition is dangerous because the procedure check status might have changed
the value of %NOTFOUND

UPDATE parts SET quantity = quantity - 1 WHERE partno = part_id;
check_status(part_id); — procedure call
IF SQLY%NOTFOUND THEN - dangerous!

You can debug the code as follows:

UPDATE parts SET quantity = quantity - 1 WHERE partno = part_id;
sql_notfound := SQL%NOTFOUND; - assign value to Boolean variable
check_status(part_id);

IF sgl_notfound THEN ...

Interaction with Oracle 5-43

Processing Transactions

If a SELECT INTOstatement fails to return a row, PL/SQL raises the predefined
exception NO_DATA_FOUN®hether you check %NOTFOUN®N the next line or not.
Consider the following example:

BEGIN

SELECT sal INTO my_sal FROM emp WHERE empno =my_empno;
—mightraise NO_DATA FOUND

IF SQLY%NOTFOUND THEN - condition tested only when false
... —this actionis never taken

ENDIF;

The check is useless because the IF condition is tested only when %NOTFOUNB
false. When PL/SQL raises NO_DATA_ FOUNDormal execution stops and control
transfers to the exception-handling part of the block.

However, a SELECT INTOstatement that calls a SQL group function never raises
NO_DATA_ FOUNBecause group functions always return a value or a null. In such
cases, %0NOTFOUN{elds FALSE, as the following example shows:

BEGIN

SELECT MAX(sal) INTO my_sal FROM emp WHERE deptno =my_deptno;
—never raises NO_DATA _FOUND
IF SQLY%NOTFOUND THEN - always tested but never true
... —this action is never taken
ENDIF;
EXCEPTION
WHENNO_DATA FOUND THEN ... —never invoked

Processing Transactions

This section explains how to do transaction processing. You learn the basic
techniques that safeguard the consistency of your database, including how to
control whether changes to Oracle data are made permanent or undone.

The jobs or tasks that Oracle manages are called sessions. A user session is started
when you run an application program or an Oracle tool and connect to Oracle. To
allow user sessions to work “simultaneously” and share computer resources,
Oracle must control concurrency, the accessing of the same data by many users.
Without adequate concurrency controls, there might be a loss of data integrity. That
is, changes to data might be made in the wrong order.

5-44 PL/SQL User's Guide and Reference

Processing Transactions

Oracle uses locks to control concurrent access to data. A lock gives you temporary
ownership of a database resource such as a table or row of data. Thus, data cannot
be changed by other users until you finish with it. You need never explicitly lock a
resource because default locking mechanisms protect Oracle data and structures.
However, you can request data locks on tables or rows when it is to your advantage
to override default locking. You can choose from several modes of locking such as
row share and exclusive.

A deadlock can occur when two or more users try to access the same schema object.
For example, two users updating the same table might wait if each tries to update a
row currently locked by the other. Because each user is waiting for resources held
by another user, neither can continue until Oracle breaks the deadlock by signaling
an error to the last participating transaction.

When a table is being queried by one user and updated by another at the same
time, Oracle generates a read-consistent view of the data for the query. That is, once
a query begins and as it proceeds, the data read by the query does not change. As
update activity continues, Oracle takes snapshots of the table’s data and records
changes in a rollback segment. Oracle uses rollback segments to build read-consistent
guery results and to undo changes if necessary.

How Transactions Guard Your Database

Oracle is transaction oriented; that is, it uses transactions to ensure data integrity. A
transaction is a series of one or more logically related SQL statements that
accomplish a task. Oracle treats the series of SQL statements as a unit so that all the
changes brought about by the statements are either committed (made permanent) or
rolled back (undone) at the same time. If your program fails in the middle of a
transaction, the database is automatically restored to its former state.

The first SQL statement in your program begins a transaction. When one
transaction ends, the next SQL statement automatically begins another transaction.
Thus, every SQL statement is part of a transaction. A distributed transaction includes
at least one SQL statement that updates data at multiple nodes in a distributed
database.

The COMMITand ROLLBACKstatements ensure that all database changes brought
about by SQL operations are either made permanent or undone at the same time.
All the SQL statements executed since the last commit or rollback make up the
current transaction. The SAVEPOINTstatement names and marks the current point
in the processing of a transaction.

Interaction with Oracle 5-45

Processing Transactions

Using COMMIT

The COMMITstatement ends the current transaction and makes permanent any
changes made during that transaction. Until you commit the changes, other users
cannot access the changed data; they see the data as it was before you made the
changes.

Consider a simple transaction that transfers money from one bank account to
another. The transaction requires two updates because it debits the first account,
then credits the second. In the example below, after crediting the second account,
you issue a commit, which makes the changes permanent. Only then do other users
see the changes.

BEGIN

UPDATE accts SET bal=my_bal - debit
WHERE acctno = 7715,

UPDATE accts SET bal =my_bal + credit
WHERE acctno =7720;
COMMIT WORK;
END;

The COMMITstatement releases all row and table locks. It also erases any
savepoints (discussed later) marked since the last commit or rollback. The optional
keyword WORHKas no effect other than to improve readability. The keyword END
signals the end of a PL/SQL block, not the end of a transaction. Just as a block can
span multiple transactions, a transaction can span multiple blocks.

The COMMENGdIause lets you specify a Comment to be associated with a
distributed transaction. When you issue a commit, changes to each database
affected by a distributed transaction are made permanent. However, if a network or
machine fails during the commit, the state of the distributed transaction might be
unknown or in doubt. In that case, Oracle stores the text specified by COMMENIh
the data dictionary along with the transaction ID. The text must be a quoted literal
up to 50 characters long. An example follows:

COMMIT COMMENT 'In-doubt order transaction; notify Order Entry’;
PL/SQL does not support the FORCElause, which, in SQL, manually commits an

in-doubt distributed transaction. For example, the following COMMITstatement is
illegal:

COMMIT FORCE '2351.54’; —illegal

5-46 PL/SQL User's Guide and Reference

Processing Transactions

Using ROLLBACK

The ROLLBACKtatement ends the current transaction and undoes any changes
made during that transaction. Rolling back is useful for two reasons. First, if you
make a mistake like deleting the wrong row from a table, a rollback restores the
original data. Second, if you start a transaction that you cannot finish because an
exception is raised or a SQL statement fails, a rollback lets you return to the starting
point to take corrective action and perhaps try again.

Consider the example below, in which you insert information about an employee
into three different database tables. All three tables have a column that holds
employee numbers and is constrained by a unique index. If an INSERT statement
tries to store a duplicate employee number, the predefined exception
DUP_VAL_ON_INDEXs raised. In that case, you want to undo all changes. So, you
issue a rollback in the exception handler.

DECLARE
emp_id INTEGER;

BEGIN
SELECT empno, ... INTO emp_id, ... FROM new_emp WHERE ...
INSERT INTO emp VALUES (emp _id, ...);

INSERT INTO tax VALUES (emp_id, ..);
INSERT INTO pay VALUES (emp id, ..J;

EXCEPTION
WHEN DUP_VAL_ON_INDEX THEN
ROLLBACK;

END;
Statement-Level Rollbacks

Before executing a SQL statement, Oracle marks an implicit savepoint. Then, if the
statement fails, Oracle rolls it back automatically. For example, if an INSERT
statement raises an exception by trying to insert a duplicate value in a unique
index, the statement is rolled back. Only work started by the failed SQL statement
is lost. Work done before that statement in the current transaction is kept.

Oracle can also roll back single SQL statements to break deadlocks. Oracle signals
an error to one of the participating transactions and rolls back the current statement
in that transaction.

Interaction with Oracle 5-47

Processing Transactions

Before executing a SQL statement, Oracle must parse it, that is, examine it to make
sure it follows syntax rules and refers to valid schema objects. Errors detected while
executing a SQL statement cause a rollback, but errors detected while parsing the
statement do not.

Using SAVEPOINT

SAVEPOINTnames and marks the current point in the processing of a transaction.
Used with the ROLLBACK TGtatement, savepoints let you undo parts of a
transaction instead of the whole transaction. In the example below, you mark a
savepoint before doing an insert. If the INSERT statement tries to store a duplicate
value in the empno column, the predefined exception DUP_VAL_ON_INDEXs
raised. In that case, you roll back to the savepoint, undoing just the insert.

DECLARE
emp_id emp.empno%TYPE;
BEGIN

UPDATE emp SET ... WHERE empno =emp_id;
DELETE FROM emp WHERE ...

SAVEPOINT do_insert;
INSERT INTO emp VALUES (emp_id, ...);
EXCEPTION
WHEN DUP_VAL_ON_INDEX THEN
ROLLBACK TO do_insert,
END;

When you roll back to a savepoint, any savepoints marked after that savepoint are
erased. However, the savepoint to which you roll back is not erased. For example, if
you mark five savepoints, then roll back to the third, only the fourth and fifth are
erased. A simple rollback or commit erases all savepoints.

If you mark a savepoint within a recursive subprogram, new instances of the
SAVEPOINTstatement are executed at each level in the recursive descent. However,
you can only rollback to the most recently marked savepoint.

Savepoint names are undeclared identifiers and can be reused within a transaction.
This moves the savepoint from its old position to the current point in the
transaction. Thus, a rollback to the savepoint affects only the current part of your
transaction. An example follows:

BEGIN

SAVEPOINT my_point;

5-48 PL/SQL User's Guide and Reference

Processing Transactions

UPDATE emp SET ... WHERE empno =emp_id;

SAVEPOINT my_point; —move my_point to current point
INSERT INTO emp VALUES (emp_id, ...);

EXCEPTION
WHEN OTHERS THEN
ROLLBACK TOmy_point;
END;

The number of active savepoints per session is unlimited. An active savepoint is one
marked since the last commit or rollback.

Implicit Rollbacks

Before executing an INSERT, UPDATEor DELETEstatement, Oracle marks an
implicit savepoint (unavailable to you). If the statement fails, Oracle rolls back to
the savepoint. Normally, just the failed SQL statement is rolled back, not the whole
transaction. However, if the statement raises an unhandled exception, the host
environment determines what is rolled back.

If you exit a stored subprogram with an unhandled exception, PL/SQL does not
assign values to OUTparameters. Also, PL/SQL does not roll back database work
done by the subprogram.

Ending Transactions

A good programming practice is to commit or roll back every transaction explicitly.
Whether you issue the commit or rollback in your PL/SQL program or in the host
environment depends on the flow of application logic. If you neglect to commit or
roll back a transaction explicitly, the host environment determines its final state.

For example, in the SQL*Plus environment, if your PL/SQL block does not include
a COMMITor ROLLBACKtatement, the final state of your transaction depends on
what you do after running the block. If you execute a data definition, data control,
or COMM ITstatement or if you issue the EXIT, DISCONNEC;Tor QUIT command,
Oracle commits the transaction. If you execute a ROLLBACKstatement or abort the
SQL*Plus session, Oracle rolls back the transaction.

In the Oracle Precompiler environment, if your program does not terminate
normally, Oracle rolls back your transaction. A program terminates normally when
it explicitly commits or rolls back work and disconnects from Oracle using the
RELEASEparameter, as follows:

EXEC SQL COMMIT WORK RELEASE;

Interaction with Oracle 5-49

Processing Transactions

Using SET TRANSACTION

You use the SET TRANSACTIONtatement to begin a read-only or read-write
transaction, establish an isolation level, or assign your current transaction to a
specified rollback segment. Read-only transactions are useful for running multiple
gueries against one or more tables while other users update the same tables.

During a read-only transaction, all queries refer to the same snapshot of the
database, providing a multi-table, multi-query, read-consistent view. Other users
can continue to query or update data as usual. A commit or rollback ends the
transaction. In the example below, as a store manager, you use a read-only
transaction to gather sales figures for the day, the past week, and the past month.
The figures are unaffected by other users updating the database during the
transaction.

DECLARE
daily sales REAL;
weekly sales REAL;
monthly_sales REAL;
BEGIN

COMMIT; —-ends previous transaction

SET TRANSACTION READ ONLY;

SELECT SUM(amt) INTO daily_sales FROM sales
WHERE dte = SYSDATE;

SELECT SUM(amt) INTO weekly_sales FROM sales
WHERE dte > SYSDATE - 7;

SELECT SUM(amt) INTO monthly_sales FROM sales
WHERE dte > SYSDATE - 30;

COMMIT; - ends read-only transaction

END;
The SET TRANSACTIONtatement must be the first SQL statement in a read-only
transaction and can only appear once in a transaction. If you set a transaction to

READ ONLYubsequent queries see only changes committed before the transaction
began. The use of READ ONLYloes not affect other users or transactions.

Restrictions

Only the SELECT INTQ OPENFETCH CLOSE LOCK TABLECOMMITand
ROLLBACKtatements are allowed in a read-only transaction. Also, queries cannot
be FOR UPDATE

5-50 PL/SQL User's Guide and Reference

Processing Transactions

Overriding Default Locking

By default, Oracle locks data structures for you automatically. However, you can
request specific data locks on rows or tables when it is to your advantage to
override default locking. Explicit locking lets you share or deny access to a table for
the duration of a transaction.

With the SELECT FOR UPDATdatement, you can explicitly lock specific rows of a
table to make sure they do not change before an update or delete is executed.
However, Oracle automatically obtains row-level locks at update or delete time. So,
use the FOR UPDATElause only if you want to lock the rows before the update or
delete.

You can explicitly lock entire tables using the LOCK TABLEstatement.

Using FOR UPDATE

When you declare a cursor that will be referenced in the CURRENT O8&lause of an
UPDATEor DELETEstatement, you must use the FOR UPDATElause to acquire
exclusive row locks. An example follows:

DECLARE
CURSOR ¢1 IS SELECT empno, sal FROM emp
WHERE job ="SALESMAN' AND comm > sal FOR UPDATE NOWAIT;

The FOR UPDATElause identifies the rows that will be updated or deleted, then
locks each row in the result set. This is useful when you want to base an update on
the existing values in a row. In that case, you must make sure the row is not
changed by another user before the update.

The optional keyword NOWAITtells Oracle not to wait if the table has been locked
by another user. Control is immediately returned to your program so that it can do
other work before trying again to acquire the lock. If you omit the keyword
NOWAITOracle waits until the table is available. The wait has no limit unless the
table is remote, in which case the Oracle initialization parameter
DISTRIBUTED_LOCK_TIMEOUT ets a limit.

All rows are locked when you open the cursor, not as they are fetched. The rows
are unlocked when you commit or roll back the transaction. So, you cannot fetch
from a FOR UPDATEursor after a commit. (For a workaround, see “Fetching
Across Commits” on page 5-53.)

Interaction with Oracle 5-51

Processing Transactions

When querying multiple tables, you can use the FOR UPDATElause to confine row
locking to particular tables. Rows in a table are locked only if the FOR UPDATE OF
clause refers to a column in that table. For example, the following query locks rows
in the emptable but not in the dept table:

DECLARE
CURSOR c1 IS SELECT ename, dname FROM emp, dept
WHERE emp.deptno = deptdeptno AND job ='MANAGER’
FOR UPDATE OF s4;

You use the CURRENT O€&lause in an UPDATEor DELETEstatement to refer to the
latest row fetched from a cursor, as the following example shows:

DECLARE
CURSOR c1 IS SELECT empno, job, sal FROM emp FOR UPDATE;

BEGIN
OPENCcL;

LOOP
FETCHCLINTO...

UPDATE emp SET sal = new_sal WHERE CURRENT OF c1;
END LOOP;

Using LOCK TABLE

You use the LOCK TABLEstatement to lock entire database tables in a specified lock
mode so that you can share or deny access to them. For example, the statement
below locks the emptable in row share mode. Row share locks allow concurrent
access to a table; they prevent other users from locking the entire table for exclusive
use. Table locks are released when your transaction issues a commit or rollback.

LOCK TABLE emp IN ROW SHARE MODE NOWAIT;

The lock mode determines what other locks can be placed on the table. For
example, many users can acquire row share locks on a table at the same time, but
only one user at a time can acquire an exclusive lock. While one user has an
exclusive lock on a table, no other users can insert, delete, or update rows in that
table. For more information about lock modes, see Oracle8 Application Developer’s
Guide.

A table lock never keeps other users from querying a table, and a query never
acquires a table lock. Only if two different transactions try to modify the same row
will one transaction wait for the other to complete.

5-52 PL/SQL User's Guide and Reference

Processing Transactions

Fetching Across Commits

Remember, the FOR UPDATElause acquires exclusive row locks. All rows are
locked when you open the cursor, and they are unlocked when you commit your
transaction. So, you cannot fetch from a FOR UPDATEursor after a commit. If you
do, PL/SQL raises an exception. In the following example, the cursor FORloop fails
after the tenth insert:

DECLARE
CURSOR c1 IS SELECT ename FROM emp FOR UPDATE OF sal;
cir NUMBER :=0;

BEGIN
FOR emp_recINc1 LOOP —FETCHes implicity

ctri=ctr+1,

INSERT INTO temp VALUES (ctr, 'still going’);
IFctr>=10THEN
COMMIT; —releases locks
ENDIF;
END LOOP;
END;

If you want to fetch across commits, do not use the FOR UPDATENnd CURRENT OF
clauses. Instead, use the ROWIDpseudocolumn to mimic the CURRENT O&lause.
Simply select the rowid of each row into a ROWIDvariable. Then, use the rowid to
identify the current row during subsequent updates and deletes. An example
follows:

DECLARE
CURSOR c1 IS SELECT ename, job, rowid FROM emp;
my_ename emp.ename%TYPE;
my_job emp,job%TYPE;
my_rowid ROWID;
BEGIN
OPENCcI;
LOOP
FETCH c1INTOmy_ename, my_job, my_rowid;
EXIT WHEN c1%NOTFOUND,;
UPDATE emp SET sal = sal * 1.05 WHERE rowid = my_rowid,;
— this mimics WHERE CURRENT OF c1
COMMIT;
END LOOP;
CLOSEccl;
END;

Interaction with Oracle 5-53

Processing Transactions

Be careful. In the last example, the fetched rows are not locked because no FOR
UPDATEclause is used. So, other users might unintentionally overwrite your
changes. Also, the cursor must have a read-consistent view of the data, so rollback
segments used in the update are not released until the cursor is closed. This can
slow down processing when many rows are updated.

The next example shows that you can use the %ROWTY Pdtribute with cursors that
reference the ROWIDpseudocolumn:

DECLARE
CURSOR c1 IS SELECT ename, sal, rowid FROM emp;
emp_rec c1%ROWTYPE;
BEGIN
OPENCcI;
LOOP
FETCHC1INTO emp_rec;
EXIT WHEN c1%NOTFOUND,;

IF.. THEN
DELETE FROM emp WHERE rowid = emp_rec.rowid;
ENDIF;
END LOOP;
CLOSE c1;
END;

Improving Performance

This section gives several techniques for improving performance and explains how
your applications can use them.

Use Object Types and Collections

Collection types (see Chapter 4) and object types (see Chapter 9) increase your
productivity by allowing for realistic data modeling. Complex real-world entities
and relationships map directly into object types. And, a well-constructed object
model can improve application performance by eliminating table joins, reducing
round trips, and so on.

Client programs, including PL/SQL programs, can declare objects and collections,
pass them as parameters, store them in the database, retrieve them, and so on. Also,
by encapsulating operations with data, object types let you move data-maintenance
code out of SQL scripts and PL/SQL blocks into methods.

5-54 PL/SQL User's Guide and Reference

Processing Transactions

Objects and collections are more efficient to store and retrieve because they can be
manipulated as a whole. Also, object support is integrated architecturally with the
database, so it can take advantage of the many scalability and performance
improvements built into Oracle8.

Use the RETURNING Clause

Often, applications need information about the row affected by a SQL operation,
for example, to generate a report or take a subsequent action. The INSERT,
UPDATEand DELETEstatements can include a RETURNING: lause, which returns
column values from the affected row into PL/SQL variables or host variables. This
eliminates the need to SELECTthe row after an insert or update, or before a delete.
The results are fewer network round trips, less server CPU use, and (because fewer
cursors are used) less server memory use.

In the following example, you update the salary of an employee and at the same
time retrieve the employee's name and new salary into PL/SQL variables.

PROCEDURE update_salary (emp_id NUMBER) IS
name VARCHAR2(15),
new_sal NUMBER;
BEGIN
UPDATE emp SET sal=sal*1.1
WHERE empno =emp_id
RETURNING ename, sal INTO name, new_sal;
END;

Use Serially Reusable Packages

To help you manage the use of memory, PL/SQL provides the pragma
SERIALLY_REUSABLEwhich lets you mark some packages as serially reusable. You
can so mark a package if its state is needed only for the duration of one call to the
server (for example, an OCI call to the server, a PL/SQL client-to-server RPC, or a
server-to-server RPC).

The global memory for such packages is pooled in the System Global Area (SGA),
not allocated to individual users in the User Global Area (UGA). That way, the
package work area can be reused. When the call to the server ends, the memory is
returned to the pool. Each time the package is reused, its public variables are
initialized to their default values or to NULL

Interaction with Oracle 5-55

Processing Transactions

The maximum number of work areas needed for a package is the number of
concurrent users of that package, which is usually much less than the number of
logged-on users. The increased use of SGA memory is more than offset by the
decreased use of UGA memory. Also, Oracle ages-out work areas not in use if it
needs to reclaim SGA memory.

For packages without a body, you code the pragma in the package specification
using the following syntax:

PRAGMA SERIALLY_REUSABLE;

For packages with a body, you must code the pragma in the specification and body.
You cannot code the pragma only in the body. The following example shows how a
public variable in a serially reusable package behaves across call boundaries:

CREATE OR REPLACE PACKAGE sr_pkg IS
PRAGMA SERIALLY_REUSABLE;
num NUMBER =0
PROCEDURE init_pkg_state(n NUMBER);
PROCEDURE print_pkg_state;
END sr_pkg;
/
CREATE OR REPLACE PACKAGE BODY sr_pkg IS
PRAGMA SERIALLY_REUSABLE;
F Initialize package state. */
PROCEDURE init_pkg_state (n NUMBER) IS
BEGIN
sr_pkg.num:=n;
END;
F Print package state. */
PROCEDURE print_pkg_state IS
BEGIN
DBMS_OUTPUT.PUT_LINE(Numiis: || sr_pkg.num);
END;
END sr_pkg;
/
BEGIN
F Iniialize package state. */
sr_pkg.nit_pkg_state(4);
/¥ On same server call, print package state. */
sr_pkg.print_pkg_state; — prints 4
END;
/

5-56 PL/SQL User's Guide and Reference

Processing Transactions

— subsequent server call

BEGIN
- package’s public variable will be initialized to its
— default value automatically
sr_pkg.print_pkg state; — prints 0

END;

/

For more information, see Oracle8 Application Developer’s Guide.

Use External Procedures

External procedures (see Chapter 10) extend the functionality of the Oracle server
by providing an interface for calling routines written in other languages. Standard
libraries already written and available in other languages can be called from
PL/SQL programs. This promotes reusability, efficiency, and modularity.

To speed up execution, you can rewrite computation-bound programs in C (for
example). Also, you can move such programs from client to server, where they will
execute faster thanks to more computing power and less across-network
communication.

For example, you can write methods for an image object type in C, store them in a
dynamic link library (DLL), register the library with PL/SQL, then call it from your
applications. At run time, the library loads dynamically and, for safety, runs in a
separate address space (implemented as a separate process).

Use the DBMS_SQL Array Interface

The PL/SQL package DBMS_SQIsupports an array interface that gives you OCI-
like array bind functionality. You can fetch multiple rows from a database table into
a PL/SQL index-by table in one call to the server. Conversely, you can insert all
rows from an index-by table into a database table in one call.

This reduces server CPU use significantly because fewer calls are made to the SQL
engine. For client-side PL/SQL execution, fewer round trips are needed, which
increases throughput. In the following example, you use the array interface to
fetch employee names from the emp database table into an index-by table:

DECLARE

sric_cur PLS_INTEGER;

num_rows PLS INTEGER,;

emp_tbl DBMS_SQL.VARCHAR2 TABLE;
BEGIN

Interaction with Oracle 5-57

Processing Transactions

FOpen and parse cursor. */
src_cur:=DBMS_SQL.OPEN_CURSOR,;
DBMS_SQL.PARSE(src_cur, 'SELECT ename FROM emp', DBMS_SQL.V7);
F* Define select item 1 as an aray-fetch into emp_thl.
Rows will be fetched 10 at a time, starting at index 1. */
DBMS_SQL.DEFINE_ARRAY(src_cur, 1,emp_thl, 10, 1);
P Execute the cursor. */
num_rows := DBMS_SQL.EXECUTE(src_cur);
F Fetch all rows. */
LOOP
num_rows :=DBMS_SQLFETCH_ROWS(src_cur);
DBMS_SQL.COLUMN_VALUE(src_cur, 1,emp_thl);
IF (num_rows <10) THEN EXIT; END IF;
END LOOP;
—at this point the data is available in emp_tbl(1..emp_thl. COUNT)
END;

For more information, see Oracle8 Application Developer’s Guide.

Use the PLS_INTEGER Datatype

When you need to declare an integer variable, use the datatype PLS_INTEGER
which is the most efficient numeric type. That is because PLS_INTEGERvalues
require less storage than INTEGERor NUMBERalues, which are represented
internally as 22-byte Oracle numbers. Also, PLS_INTEGERoperations use machine
arithmetic, so they are faster than BINARY_INTEGER INTEGER or NUMBER
operations, which use library arithmetic.

Furthermore, INTEGER NATURALNATURALNPOSITIVE, POSITIVEN, and
SIGNTYPEare constrained subtypes. So, their variables require precision checking
at run time, which can affect performance.

Avoid the NOT NULL Constraint

In PL/SQL, using the NOT NULLconstraint incurs a performance cost. Consider the
following example:

PROCEDURE calc mIS
m NUMBER NOT NULL;
aNUMBER,;

b NUMBER,;

BEGIN

m=a+b;

5-58 PL/SQL User's Guide and Reference

Processing Transactions

Because mis constrained by NOT NULL.the result of expression a + b is assigned
to a temporary variable, which is then tested for nullity. If the variable is not null,
its value is assigned to m Otherwise, an exception is raised. However, if mwere not
constrained, the expression result would be assigned to mdirectly.

A more efficient way to write the last example follows:

PROCEDURE calc mIS
mNUMBER; - no constraint
aNUMBER;

b NUMBER,;

BEGIN

m=a+b;
IFm IS NULL THEN ... — enforce constraint programmatically

Note that the subtypes NATURALMNNnd POSTIVENare defined as NOT NULLSo,
using them incurs the same performance cost.

Avoid Implicit Datatype Conversions

At run time, PL/SQL converts between structurally different datatypes implicitly.
For instance, assigning a PLS_INTEGERvariable to a NUMBERariable results in a
conversion because their internal representations are different.

Avoiding implicit conversions can improve performance. Look at the example
below. The integer literal 15 is represented internally as a signed 4-byte quantity, so
PL/SQL must convert it to an Oracle number before the addition. However, the
floating-point literal 15.0 is represented as a 22-byte Oracle number, so no
conversion is necessary.

DECLARE
n NUMBER,;
cCHAR(5),
BEGIN
n:=n+15; - converted
n:=n+15.0; —not converted

Another example follows:

DECLARE
cCHAR(5),

BEGIN
c:=25; -converted
¢:='25; —not converted

Interaction with Oracle 5-59

Processing Transactions

Dealing with Size Limitations

PL/SQL was designed primarily for high-speed transaction processing. As a result,
the compiler limits the number of tokens (identifiers, keywords, operators, and so
on) that a program unit (block, subprogram, or package) can contain. Units that
exceed the limit cause a program too large compilation error. Generally, units larger
than 128K exceed the token limit. However, smaller units can also exceed the limit
if they contain many variables or complex SQL statements.

Typically, this problem occurs with package bodies or anonymous blocks. With a
package, the best solution is to divide it into smaller packages. With a block, the
best solution is to redefine it as a series of subprograms, which can be stored in the
database. For more information, see Chapter 7.

Another solution is to break the block into two sub-blocks. Consider the SQL*Plus
script below. Before the first block terminates, it inserts any data the second block
needs into a database table called temp. When the second block starts executing, it
selects the data from temp. This approximates the passing of parameters from one
procedure to another.

DECLARE
mode NUMBER;
median NUMBER;
BEGIN

INSERT INTO temp (col1, col2, col3)
VALUES (mode, median, 'blockA);
END;
/
DECLARE
mode NUMBER,;
median NUMBER,;
BEGIN
SELECT coll, col2 INTO mode, median FROM temp
WHERE col3 = "blockA;
END;
/
The previous method works unless you must re-execute the first block while the
second block is still executing, or unless two or more users must run the script
concurrently.

5-60 PL/SQL User's Guide and Reference

Processing Transactions

Alternatively, you can embed the blocks in a host language such as C, COBOL, or
FORTRAN. That way, you can re-execute the first block using flow-of-control
statements. Also, you can store data in global host variables instead of a database
table. In the following example, you embed two blocks in a Pro*C program:

EXEC SQL BEGIN DECLARE SECTION,;
int my_empno;
float my_sal, my_comm;
shortcomm_ind;

EXEC SQL END DECLARE SECTION,;

EXEC SQL EXECUTE
BEGIN
SELECT sal, comm INTO :my_sal, :my_comm:comm_ind FROM emp
WHERE empno =:my_empno;
IF :my_comm:comm_ind IS NULL THEN

ENDIF;
END;
END-EXEC;
EXEC SQL EXECUTE
BEGIN

IF :my_comm:comm_ind >1000 THEN
‘my_sal:=:my_sal*1.10;
UPDATE emp SET sal =:my_sal WHERE empno =:my_empno;
ENDIF;
END;
END-EXEC;

Ensuring Backward Compatibility

PL/SQL Version 2 allows some abnormal behavior that \ersion 8 disallows.
Specifically, Version 2 allows you to

« make forward references to RECORRNnd TABLEtypes when declaring variables

« specify the name of a variable (not a datatype) in the RETURNlause of a
function specification

« assign values to the elements of an index-by table IN parameter

« pass the fields of a record IN parameter to another subprogram as OUT
parameters

Interaction with Oracle 5-61

Processing Transactions

« use the fields of a record OUTparameter on the right-hand side of an
assignment statement

« use OUTparameters in the FROMist of a SELECTstatement

For backward compatibility, you might want to keep this particular Version 2
behavior. You can do that by setting the PLSQL_V2_COMPATIBILITY flag. On the
server side, you can set the flag in two ways:

« Add the following line to the Oracle initialization file:
PLSQL V2 _COMPATIBILITY=TRUE

« Execute one of the following SQL statements:

ALTER SESSION SET PLSQL_V2_COMPATIBILITY =TRUE;
ALTER SYSTEM SET PLSQL_V2_COMPATIBILITY = TRUE;

If you specify FALSE (the default), only Version 8 behavior is allowed.

On the client side, a command-line option sets the flag. For example, in the Oracle
Precompilers environment, you specify the runtime option DBMSn the command
line, as follows:

..DBMS=V7 ...

5-62 PL/SQL User's Guide and Reference

6

There is nothing more exhilarating than to be shot at without result.

Error Handling

Winston Churchill

Runtime errors arise from design faults, coding mistakes, hardware failures, and
many other sources. Although you cannot anticipate all possible errors, you can
plan to handle certain kinds of errors meaningful to your PL/SQL program.

With many programming languages, unless you disable error checking, a runtime
error such as stack overflow or division by zero stops normal processing and returns
control to the operating system. With PL/SQL, a mechanism called exception
handling lets you “bulletproof” your program so that it can continue operating in

the presence of errors.

Major Topics

Overview

Advantages of Exceptions
Predefined Exceptions
User-Defined Exceptions
How Exceptions Are Raised
How Exceptions Propagate
Reraising an Exception
Handling Raised Exceptions
Useful Techniques

Error Handling 6-1

Overview

Overview

In PL/SQL, a warning or error condition is called an exception. Exceptions can be
internally defined (by the runtime system) or user defined. Examples of internally
defined exceptions include division by zero and out of memory. Some common
internal exceptions have predefined names, such as ZERO_DIVIDE and
STORAGE_ERRORhe other internal exceptions can be given names.

You can define exceptions of your own in the declarative part of any PL/SQL
block, subprogram, or package. For example, you might define an exception named
insufficient_funds to flag overdrawn bank accounts. Unlike internal
exceptions, user-defined exceptions must be given names.

When an error occurs, an exception is raised. That is, normal execution stops and
control transfers to the exception-handling part of your PL/SQL block or
subprogram. Internal exceptions are raised implicitly (automatically) by the
runtime system. User-defined exceptions must be raised explicitly by RAISE
statements, which can also raise predefined exceptions.

To handle raised exceptions, you write separate routines called exception handlers.
After an exception handler runs, the current block stops executing and the
enclosing block resumes with the next statement. If there is no enclosing block,
control returns to the host environment.

In the example below, you calculate and store a price-to-earnings ratio for a
company with ticker symbol XYZ. If the company has zero earnings, the
predefined exception ZERO_DIVIDE is raised. This stops normal execution of the
block and transfers control to the exception handlers. The optional OTHERShandler
catches all exceptions that the block does not name specifically.

DECLARE
pe_ratio NUMBER(3,1);
BEGIN
SELECT price / eamings INTO pe_ratio FROM stocks
WHERE symbol ='XYZ’; — might cause division-by-zeroermor INSERT
INTO stats (symbol, ratio) VALUES (XYZ, pe_ratio);
COMMIT;
EXCEPTION - exception handlers begin
WHEN ZERO_DIVIDE THEN - handles 'division by zero’ error
INSERT INTO stats (symbol, ratio) VALUES (XYZ', NULL);
COMMIT;

WHEN OTHERS THEN - handles all other errors
ROLLBACK;
END; - exception handlers and block end here

6-2 PL/SQL User’s Guide and Reference

Advantages of Exceptions

The last example illustrates exception handling, not the effective use of INSERT
statements. For example, a better way to do the insert follows:

INSERT INTO stats (symbol, ratio)
SELECT symbol, DECODE(eamings, 0, NULL, price / eamings)
FROM stocks WHERE symbol =’XYZ;,

In this example, a subquery supplies values to the INSERT statement. If earnings
are zero, the function DECODEeturns a null. Otherwise, DECODEeturns the price-
to-earnings ratio.

Advantages of Exceptions

Using exceptions for error handling has several advantages. Without exception
handling, every time you issue a command, you must check for execution errors, as
follows:

BEGIN
SELECT ...
— check for 'no data found' error
SELECT ...
- check for 'no data found' emror
SELECT ...
- check for 'no data found' emror

Error processing is not clearly separated from normal processing; nor is it robust. If
you neglect to code a check, the error goes undetected and is likely to cause other,
seemingly unrelated errors.

With exceptions, you can handle errors conveniently without the need to code
multiple checks, as follows:

BEGIN
SELECT ...
SELECT ...
SELECT ...

EXCEPTION
WHENNO_DATA FOUND THEN - catches all'no data found' errors

Exceptions improve readability by letting you isolate error-handling routines. The
primary algorithm is not obscured by error recovery algorithms. Exceptions also
improve reliability. You need not worry about checking for an error at every point it
might occur. Just add an exception handler to your PL/SQL block. If the exception
is ever raised in that block (or any sub-block), you can be sure it will be handled.

Error Handling 6-3

Predefined Exceptions

Predefined Exceptions

An internal exception is raised implicitly whenever your PL/SQL program violates
an Oracle rule or exceeds a system-dependent limit. Every Oracle error has a
number, but exceptions must be handled by name. So, PL/SQL predefines some
common Oracle errors as exceptions. For example, PL/SQL raises the predefined
exception NO_DATA_FOUNIiDa SELECT INTOstatement returns no rows.

To handle other Oracle errors, you can use the OTHERShandler. The error-reporting
functions SQLCODBNd SQLERRMTre especially useful in the OTHERShandler
because they return the Oracle error code and message text. Alternatively, you can
use the pragma EXCEPTION_INIT to associate exception hames with Oracle error
numbers. (See “Using EXCEPTION_INIT” on page 6-8.)

PL/SQL declares predefined exceptions globally in package STANDARDwhich
defines the PL/SQL environment. So, you need not declare them yourself. You can
write handlers for predefined exceptions using the names shown in the list below.
Also shown are the corresponding Oracle error codes and SQLCODEeturn values.

Exception Oracle Error SQLCODE Value
ACCESS _INTO_NULL ORA-06530 -6530
COLLECTION_IS_NULL ORA-06531 -6531
CURSOR_ALREADY_ OPEN ORA-06511 -6511
DUP_VAL ON INDEX ORA-00001 -1
INVALID_CURSOR ORA-01001 -1001
INVALID_NUMBER ORA-01722 -1722
LOGIN_DENIED ORA-01017 -1017
NO_DATA-FOUND ORA-01403 +100
NOT_LOGGED_ON ORA-01012 -1012
PROGRAM_ERROR ORA-06501 -6501
ROWTYPE_MISMATCH ORA-06504 -6504
STORAGE_ERROR ORA-06500 -6500

SUBSCRIPT_BEYOND_COUNTORA-06533 -6533
SUBSCRIPT_OUTSIDE_LIMIT ORA-06532 -6532
TIMEOUT_ON_RESOURCE = ORA-00051 -51

TOO_MANY_ROWS ORA-01422 -1422
VALUE_ERROR ORA-06502 -6502
ZERO _DIVIDE ORA-01476 -1476

6-4 PL/SQL User’'s Guide and Reference

Predefined Exceptions

Brief descriptions of the predefined exceptions follow:

Exception Raised when ...

ACCESS _INTO_NULL you try to assign values to the attributes of an
uninitialized (atomically null) object.

COLLECTION_IS_NULL you try to apply collection methods other than EXISTS to
an uninitialized (atomically null) nested table or varray,
or you try to assign values to the elements of an
uninitialized nested table or varray.

CURSOR_ALREADY_OPEN you try to open an already open cursor. You must close a
cursor before you can reopen it. A cursor FORloop
automatically opens the cursor to which it refers. So, you
cannot open that cursor inside the loop.

DUP_VAL ON_INDEX you try to store duplicate values in a database column
that is constrained by a unique index.

INVALID_CURSOR you try an illegal cursor operation such as closing an
unopened cursor.

INVALID NUMBER in a SQL statement, the conversion of character string to a
number fails because the character string does not
represent a valid number. In procedural statements,
VALUE_ERROR raised.

LOGIN_DENIED you try logging on to Oracle with an invalid username
and/or password.

NO_DATA FOUND a SELECT INTOstatement returns no rows, or you
reference a deleted element in a nested table, or you
reference an uninitialized element in an index-by table.
The FETCHstatement is expected to return no rows
eventually, so when that happens, no exception is raised.
SQL group functions such as AVGand SUMalways return a
value or a null. So, a SELECT INTOstatement that calls a
group function will never raise NO_DATA_FOUND

NOT_LOGGED_ON your PL/SQL program issues a database call without
being connected to Oracle.
PROGRAM_ERROR PL/SQL has an internal problem.

Error Handling 6-5

User-Defined Exceptions

Exception

Raised when ...

ROWTYPE_MISMATCH

STORAGE_ERROR

the host cursor variable and PL/SQL cursor variable
involved in an assignment have incompatible return
types. For example, when you pass an open host cursor
variable to a stored subprogram, the return types of the
actual and formal parameters must be compatible.

PL/SQL runs out of memory or memory is corrupted.

SUBSCRIPT_BEYOND_COUNTyou reference a nested table or varray element using an

SUBSCRIPT_OUTSIDE_LIMIT

TIMEOUT ON_RESOURCE
TOO_MANY_ROWS
VALUE_ERROR

ZERO_DIVIDE

index number larger than the number of elements in the
collection.

you reference a nested table or varray element using an
index number that is outside the legal range (-1 for
example).

a time-out occurs while Oracle is waiting for a resource.
a SELECT INTOstatement returns more than one row.

an arithmetic, conversion, truncation, or size-constraint
error occurs. For example, when you select a column
value into a character variable, if the value is longer than
the declared length of the variable, PL/SQL aborts the
assignment and raises VALUE_ERRORN procedural
statements, VALUE_ERROR raised if the conversion of a
character string to a number fails. In SQL statements,
INVALID_NUMBERIs raised.

you try to divide a number by zero.

User-Defined Exceptions

PL/SQL lets you define exceptions of your own. Unlike predefined exceptions,
user-defined exceptions must be declared and must be raised explicitly by RAISE

statements.

Declaring Exceptions

Exceptions can be declared only in the declarative part of a PL/SQL block,
subprogram, or package. You declare an exception by introducing its name,
followed by the keyword EXCEPTION In the following example, you declare an
exception named past_due :

DECLARE
past_due EXCEPTION,;

6-6 PL/SQL User’'s Guide and Reference

User-Defined Exceptions

Scope Rules

Exception and variable declarations are similar. But remember, an exception is an
error condition, not a data item. Unlike variables, exceptions cannot appear in
assignment statements or SQL statements. However, the same scope rules apply to
variables and exceptions.

You cannot declare an exception twice in the same block. You can, however, declare
the same exception in two different blocks.

Exceptions declared in a block are considered local to that block and global to all its
sub-blocks. Because a block can reference only local or global exceptions, enclosing
blocks cannot reference exceptions declared in a sub-block.

If you redeclare a global exception in a sub-block, the local declaration prevails. So,
the sub-block cannot reference the global exception unless it was declared in a
labeled block, in which case the following syntax is valid:

block_label.exception_name

The next example illustrates the scope rules:

DECLARE
past_due EXCEPTION;
acct_num NUMBER;
BEGIN

DECLARE sub-block begins
past_due EXCEPTION; - this declaration prevails
acct_ num NUMBER,;

BEGIN

IF.. THEN
RAISE past_due; —thisis not handled
ENDIF;

sub-block ends

END;
EXCEPTION
WHEN past_due THEN - does not handle RAISEd exception

END;

Error Handling 6-7

User-Defined Exceptions

The enclosing block does not handle the raised exception because the declaration of
past_due in the sub-block prevails. Though they share the same name, the two
past_due exceptions are different, just as the two acct_num variables share the
same name but are different variables. Therefore, the RAISE statement and the
WHENIause refer to different exceptions. To have the enclosing block handle the
raised exception, you must remove its declaration from the sub-block or define an
OTHERShandler.

Using EXCEPTION_INIT

To handle unnamed internal exceptions, you must use the OTHERSandler or the
pragma EXCEPTION_INIT. A pragma is a compiler directive, which can be thought
of as a parenthetical remark to the compiler. Pragmas (also called
pseudoinstructions) are processed at compile time, not at run time. For example, in
the language Ada, the following pragma tells the compiler to optimize the use of
storage space:

pragma OPTIMIZE(SPACE);

In PL/SQL, the pragma EXCEPTION_INIT tells the compiler to associate an
exception name with an Oracle error number. That allows you to refer to any
internal exception by name and to write a specific handler for it.

You code the pragma EXCEPTION_INIT in the declarative part of a PL/SQL block,
subprogram, or package using the syntax

PRAGMA EXCEPTION_INIT(exception_name, Oracle_emor_number);

where exception_name is the name of a previously declared exception. The
pragma must appear somewhere after the exception declaration in the same
declarative part, as shown in the following example:

DECLARE

deadiock_detected EXCEPTION;

PRAGMA EXCEPTION_INIT(deadlock_detected, -60);
BEGIN

EXCEPTION
WHEN deadlock_detected THEN
- handle the error

END;

6-8 PL/SQL User’'s Guide and Reference

User-Defined Exceptions

Using raise_application_error
Package DBMS_STANDARWhich is supplied with Oracle, provides language
facilities that help your application interact with Oracle. For example, the
procedure raise_application_error lets you issue user-defined error
messages from stored subprograms. That way, you can report errors to your
application and avoid returning unhandled exceptions.

To call raise_application_error , You use the syntax

raise_application_error(error_number, message], {TRUE | FALSEJ));

where error_number s a negative integer in the range -20000 .. -20999 and
message is a character string up to 2048 bytes long. If the optional third parameter
is TRUE, the error is placed on the stack of previous errors. If the parameter is
FALSE (the default), the error replaces all previous errors. Package
DBMS_STANDARBan extension of package STANDARDPso you need not qualify
references to it.

An application can call raise_application_error only from an executing
stored subprogram. When called, raise _application _error ends the
subprogram and returns a user-defined error number and message to the
application. The error number and message can be trapped like any Oracle error.

In the following example, you call raise_application_error if an employee’s
salary is missing:

CREATE PROCEDURE raise_salary (emp_id NUMBER, increase NUMBER) AS
current_salary NUMBER;
BEGIN
SELECT sal INTO current_salary FROM emp
WHERE empno =emp_id;
IF cumrent_salary IS NULL THEN
*Issue user-defined eror message. */
raise_application_error(-20101, 'Salary is missing’);
ELSE
UPDATE emp SET sal = current_salary + increase
WHERE empno =emp_id;
ENDIF;
END raise_salary;

Error Handling 6-9

User-Defined Exceptions

The calling application gets a PL/SQL exception, which it can process using the
error-reporting functions SQLCODENnd SQLERRNh an OTHERSandler. Also, it
can use the pragma EXCEPTION_INIT to map specific error numbers returned by
raise_application_error to exceptions of its own, as follows:

EXEC SQL EXECUTE
DECLARE

null_salary EXCEPTION;
P Map error number retumed by raise_application_error
to user-defined exception. */
PRAGMA EXCEPTION_INIT(null_salary, -20101);
BEGIN

raise_salary(:emp_number, :amount);
EXCEPTION
WHEN null_salary THEN
INSERT INTO emp_audit VALUES (:emp_number, ...);
END;
END-EXEC;

This technique allows the calling application to handle error conditions in specific
exception handlers.

Redeclaring Predefined Exceptions

Remember, PL/SQL declares predefined exceptions globally in package
STANDARDs0 you need not declare them yourself. Redeclaring predefined
exceptions is error prone because your local declaration overrides the global
declaration.

EXCEPTION
WHEN invalid_number OR STANDARD.INVALID_NUMBER THEN
— handle the error

WHEN OTHERS THEN ...
END;

6-10 PL/SQL User's Guide and Reference

How Exceptions Are Raised

How Exceptions Are Raised

Internal exceptions are raised implicitly by the runtime system, as are user-defined
exceptions that you have associated with an Oracle error number using
EXCEPTION_INIT. However, other user-defined exceptions must be raised
explicitly by RAISE statements.

Using the RAISE Statement

PL/SQL blocks and subprograms should raise an exception only when an error
makes it undesirable or impossible to finish processing. You can place RAISE
statements for a given exception anywhere within the scope of that exception. In
the following example, you alert your PL/SQL block to a user-defined exception
named out_of stock

DECLARE
out_of stock EXCEPTION,;
number_on_hand NUMBER(4);
BEGIN

IF number_on_hand <1 THEN
RAISE out_of stock;
ENDIF;

EXCEPTION
WHEN out_of stock THEN
— handle the error
END;

You can also raise a predefined exception explicitly. That way, an exception handler
written for the predefined exception can process other errors, as the following
example shows:

DECLARE
acct type INTEGER;

BEGIN
IF acct_type NOT IN (1, 2, 3) THEN

RAISE INVALID_NUMBER; - raise predefined exception
ENDIF;

Error Handling 6-11

How Exceptions Propagate

EXCEPTION
WHEN INVALID_NUMBER THEN
ROLLBACK;

END;

How Exceptions Propagate

When an exception is raised, if PL/SQL cannot find a handler for it in the current
block or subprogram, the exception propagates. That is, the exception reproduces
itself in successive enclosing blocks until a handler is found or there are no more
blocks to search. In the latter case, PL/SQL returns an unhandled exception error to
the host environment.

However, exceptions cannot propagate across remote procedure calls (RPCs).
Therefore, a PL/SQL block cannot catch an exception raised by a remote
subprogram. For a workaround, see “Using raise_application_error” on page 6-9.

Figure 6-1, Figure 6-2, and Figure 6-3 illustrate the basic propagation rules.

Figure 6-1 Propagation Rules: Example 1

BEGIN

BEGIN
IF X=1THEN
RAISE A;
ELSIF X =2 THEN
RAISE B;
ELSE
RAISE C;
END IF;

EXCEPTION
WHEN A THEN

|
Exception A is handled
locally, then execution resumes

END; \ in the enclosing block

EXCEPTION
WHEN B THEN

END;

6-12 PL/SQL User's Guide and Reference

How Exceptions Propagate

BEGIN

BEGIN
IF X=1THEN
RAISE A;
ELSIF X =2 THEN
RAISE B;
ELSE
RAISE C;
END IF;

Figure 6-2 Propagation Rules: Example 2
EXCEPTION

D —
WHEN A THEN
EXCEPTION

WHEN B THEN
END; \

Figure 6-3 Propagation Rules: Example 3

Exception B propagates to
the first enclosing block with
an appropriate handler

END;

Exception B is handled,
then control passes to the
host environment

BEGIN

BEGIN
IFX=1THEN
RAISE A;
ELSIF X =2 THEN
RAISE B;
ELSE
RAISE C;
END IF;

EXCEPTION

WHEN A THEN

END; \
EXCEPTION 4—/ Exception C has no

WHEN B THEN handler, so an unhandled

END: exception is returned to the
' \ host environment

Error Handling 6-13

Reraising an Exception

An exception can propagate beyond its scope, that is, beyond the block in which it
was declared. Consider the following example:

BEGIN
DECLARE sub-block begins
past_due EXCEPTION;
BEGIN
IF.. THEN
RAISE past_due;
ENDIF;
END; sub-block ends
EXCEPTION
WHEN OTHERS THEN
ROLLBACK;
END;

Because the block in which it was declared has no handler for the exception named
past_due , it propagates to the enclosing block. But, according to the scope rules,
enclosing blocks cannot reference exceptions declared in a sub-block. So, only an
OTHERSandler can catch the exception.

Reraising an Exception

Sometimes, you want to reraise an exception, that is, handle it locally, then pass it to
an enclosing block. For example, you might want to roll back a transaction in the
current block, then log the error in an enclosing block.

To reraise an exception, simply place a RAISE statement in the local handler, as
shown in the following example:

DECLARE
out_of balance EXCEPTION,;
BEGIN
BEGIN sub-block begins
IF... THEN
RAISE out_of _balance; - raise the exception
ENDIF;

6-14 PL/SQL User's Guide and Reference

Handling Raised Exceptions

EXCEPTION
WHEN out_of balance THEN
—handle the emmor
RAISE; - reraise the curent exception
END;
EXCEPTION

WHEN out_of balance THEN
- handle the error differently

sub-block ends

END;
Omitting the exception name in a RAISE statement—allowed only in an exception
handler—reraises the current exception.

Handling Raised Exceptions

When an exception is raised, normal execution of your PL/SQL block or
subprogram stops and control transfers to its exception-handling part, which is
formatted as follows:

EXCEPTION
WHEN exception_namel THEN — handler
sequence_of_statementsl
WHEN exception_name2 THEN - another handler
sequence_of_statements2

WHEN OTHERS THEN — optional handler
sequence_of statements3

To catch raised exceptions, you must write exception handlers. Each handler
consists of a WHENIause, which specifies an exception, followed by a sequence of
statements to be executed when that exception is raised. These statements complete
execution of the block or subprogram; control does not return to where the
exception was raised. In other words, you cannot resume processing where you left
off.

The optional OTHER&®xception handler, which is always the last handler in a block
or subprogram, acts as the handler for all exceptions not named specifically. Thus, a
block or subprogram can have only one OTHERSandler.

Error Handling 6-15

Handling Raised Exceptions

As the following example shows, use of the OTHERShandler guarantees that no
exception will go unhandled:

EXCEPTION
WHEN ... THEN
- handle the error
WHEN ... THEN
- handle the error
WHEN OTHERS THEN
- handle all other errors
END;

If you want two or more exceptions to execute the same sequence of statements, list
the exception names in the WHENIause, separating them by the keyword OR as
follows:

EXCEPTION
WHEN over_limit OR under_limit OR VALUE_ERROR THEN
—handle the emror

If any of the exceptions in the list is raised, the associated sequence of statements is
executed. The keyword OTHERSannot appear in the list of exception names; it
must appear by itself. You can have any number of exception handlers, and each
handler can associate a list of exceptions with a sequence of statements. However,
an exception name can appear only once in the exception-handling part of a
PL/SQL block or subprogram.

The usual scoping rules for PL/SQL variables apply, so you can reference local and
global variables in an exception handler. However, when an exception is raised
inside a cursor FORIloop, the cursor is closed implicitly before the handler is
invoked. Therefore, the values of explicit cursor attributes are not available in the
handler.

Exceptions Raised in Declarations

Exceptions can be raised in declarations by faulty initialization expressions. For
example, the following declaration raises an exception because the constant /imit
cannot store numbers larger than 999:

DECLARE
limit CONSTANT NUMBER(3) :=5000; - raises an exception
BEGIN

EXCEPTION
WHEN OTHERS THEN ... — cannot catch the exception

6-16 PL/SQL User's Guide and Reference

Handling Raised Exceptions

Handlers in the current block cannot catch the raised exception because an
exception raised in a declaration propagates immediately to the enclosing block.

Exceptions Raised in Handlers

Only one exception at a time can be active in the exception-handling part of a block
or subprogram. So, an exception raised inside a handler propagates immediately to
the enclosing block, which is searched to find a handler for the newly raised
exception. From there on, the exception propagates normally. Consider the
following example:

EXCEPTION
WHEN INVALID_NUMBER THEN
INSERT INTO ... —mightraise DUP_VAL_ON_INDEX
WHEN DUP_VAL_ON_INDEX THEN ... — cannot catch the exception

Branching to or from an Exception Handler

A GOTGtatement cannot branch to an exception handler; nor can it branch from an
exception handler into the current block. For example, the following GOTO
statement is illegal:

DECLARE
pe_ratio NUMBER(3,2);
BEGIN
DELETE FROM stats WHERE symbol =’XYZ;
SELECT price / NVL(eamings, 0) INTO pe_ratio FROM stocks
WHERE symbol ='XYZ;
<<my_label>>
INSERT INTO stats (symboal, ratio) VALUES (XYZ, pe_ratio);
EXCEPTION
WHEN ZERO_DIVIDE THEN
 ratio =0;
GOTO my_label; - illegal branch into current block

However, a GOTGtatement can branch from an exception handler into an
enclosing block.

Error Handling 6-17

Handling Raised Exceptions

Using SQLCODE and SQLERRM

In an exception handler, you can use the functions SQLCODEnd SQLERRND find
out which error occurred and to get the associated error message.

For internal exceptions, SQLCODEeturns the number of the Oracle error. The
number that SQLCODEeturns is negative unless the Oracle error is no data found, in
which case SQLCODEeturns +100. SQLERRMeturns the corresponding error
message. The message begins with the Oracle error code.

For user-defined exceptions, SQLCODEeturns +1 and SQLERRMeturns the
message

User-Defined Exception

unless you used the pragma EXCEPTION_INIT to associate the exception name
with an Oracle error number, in which case SQLCODEeturns that error number
and SQLERRNeturns the corresponding error message. The maximum length of an
Oracle error message is 512 characters including the error code, nested messages,
and message inserts such as table and column names.

If no exception has been raised, SQLCODEeturns zero and SQLERRMeturns the
message

ORA-0000: normal, successful completion

You can pass an error number to SQLERRMn which case SQLERRMeturns the
message associated with that error number. Make sure you pass negative error
numbers to SQLERRMNn the following example, you pass positive numbers and so
get unwanted results:

DECLARE

em_msg VARCHAR2(100);
BEGIN
F* Get all Oracle error messages. */
FOR err_num IN 1..9999 LOOP
em_msg := SQLERRM(err_num); —wrong; should be -emr_num
INSERT INTO errors VALUES (em_msg);
END LOOP;
END;

Passing a positive number to SQLERRMIways returns the message
User-Defined Exception

6-18 PL/SQL User's Guide and Reference

Handling Raised Exceptions

unless you pass +100, in which case SQLERRNMeturns this message:
ORA-01403: no data found

Passing a zero to SQLERRMIways returns the following message:
ORA-0000: normal, successful completion

You cannot use SQLCODBr SQLERRMIirectly in a SQL statement. Instead, you
must assign their values to local variables, then use the variables in the SQL
statement, as the following example shows:

DECLARE
emr_num NUMBER,
em_msg VARCHAR2(100);
BEGIN

EXCEPTION

WHEN OTHERS THEN
er_num :=SQLCODE;
em_msg = SUBSTR(SQLERRM, 1, 100);
INSERT INTO errors VALUES (err_num, er_msg);

The string function SUBSTRensures that a VALUE_ERRORXxception (for
truncation) is not raised when you assign the value of SQLERRMb err_msg .
SQLCODBNd SQLERRMTre especially useful in the OTHER&®xception handler
because they tell you which internal exception was raised.

Unhandled Exceptions

Remember, if it cannot find a handler for a raised exception, PL/SQL returns an
unhandled exception error to the host environment, which determines the outcome.
For example, in the Oracle Precompilers environment, any database changes made
by a failed SQL statement or PL/SQL block are rolled back.

Unhandled exceptions can also affect subprograms. If you exit a subprogram
successfully, PL/SQL assigns values to OUTparameters. However, if you exit with
an unhandled exception, PL/SQL does not assign values to OUTparameters. Also,
if a stored subprogram fails with an unhandled exception, PL/SQL does not roll
back database work done by the subprogram.

You can avoid unhandled exceptions by coding an OTHERSandler at the topmost
level of every PL/SQL block and subprogram.

Error Handling 6-19

Useful Techniques

Useful Techniques

In this section, you learn three techniques that increase flexibility.

Continuing after an Exception Is Raised

An exception handler lets you recover from an otherwise “fatal” error before
exiting a block. But, when the handler completes, the block terminates. You cannot
return to the current block from an exception handler. In the following example, if
the SELECT INTOstatement raises ZERO_DIVIDE, you cannot resume with the
INSERT statement:

DECLARE

pe_ratio NUMBER(3,1);
BEGIN

DELETE FROM stats WHERE symbol =’XYZ;

SELECT price / NVL(eamings, 0) INTO pe_ratio FROM stocks

WHERE symbol =’XYZ;

INSERT INTO stats (symbol, ratio) VALUES (XYZ', pe_ratio);
EXCEPTION

WHEN ZERO_DIVIDE THEN ...

Though PL/SQL does not support continuable exceptions, you can still handle an
exception for a statement, then continue with the next statement. Simply place the
statement in its own sub-block with its own exception handlers. If an error occurs
in the sub-block, a local handler can catch the exception. When the sub-block
terminates, the enclosing block continues to execute at the point where the sub-
block ends. Consider the following example:

DECLARE
pe_ratio NUMBER(3,1);
BEGIN
DELETE FROM stats WHERE symbol =’XYZ;,
BEGIN sub-block begins
SELECT price / NVL(eamings, 0) INTO pe_ratio FROM stocks
WHERE symbol ="XYZ;,
EXCEPTION
WHEN ZERO_DIVIDE THEN
pe_ratio =0;
END; sub-block ends
INSERT INTO stats (symbol, ratio) VALUES (XYZ', pe._ratio);
EXCEPTION

6-20 PL/SQL User's Guide and Reference

Useful Techniques

In this example, if the SELECT INTOstatement raises a ZERO_DIVIDE exception,
the local handler catches it and sets pe_ratio to zero. Execution of the handler is
complete, so the sub-block terminates, and execution continues with the INSERT
statement.

Retrying a Transaction

After an exception is raised, rather than abandon your transaction, you might want
to retry it. The technique you use is simple. First, encase the transaction in a sub-
block. Then, place the sub-block inside a loop that repeats the transaction.

Before starting the transaction, you mark a savepoint. If the transaction succeeds,
you commit, then exit from the loop. If the transaction fails, control transfers to the
exception handler, where you roll back to the savepoint undoing any changes, then
try to fix the problem.

Consider the example below. When the exception handler completes, the sub-block
terminates, control transfers to the LOOPstatement in the enclosing block, the sub-
block starts executing again, and the transaction is retried. You might want to use a
FORor WHILE loop to limit the number of tries.

DECLARE

name CHAR(20);
ansl CHAR(3);
ans2 CHAR(3);
ans3 CHAR(3);
suffix NUMBER =1,
BEGIN

LOOP - could be FORIIN 1..10 LOOP to allow ten tries
BEGIN - sub-block begins
SAVEPOINT start_transaction; — mark a savepoint
F Remove rows from a table of survey resullts. */
DELETE FROM results WHERE answerl ='NO;
F Add a survey respondent's name and answers. */
INSERT INTO results VALUES (hame, ansl, ans2, ans3);
—raises DUP_VAL_ON_INDEX if two respondents
- have the same name (because there is a unique
—index on the name column)
COMMIT;
EXIT;
EXCEPTION
WHEN DUP_VAL ON_INDEX THEN
ROLLBACK TO start_transaction; — undo changes
suffix ;= suffix + 1; —trytofix

Error Handling 6-21

Useful Techniques

name :=name || TO_CHAR(sUffix); — problem

END; - sub-block ends
END LOOP;
END;

Using Locator Variables

Exceptions can mask the statement that caused an error, as the following example
shows:

BEGIN
SELECT ...
SELECT ...
SELECT ...

EXCEPTION
WHENNO_DATA FOUND THEN ...
—Which SELECT statement caused the emror?
END;

Normally, this is not a problem. But, if the need arises, you can use a locator
variable to track statement execution, as follows:

DECLARE

SIMtINTEGER :=1; - designates 1st SELECT statement
BEGIN

SELECT ...

stmt :=2; — designates 2nd SELECT statement

SELECT ...

stmt:=3; - designates 3rd SELECT statement

SELECT ...

EXCEPTION
WHEN NO_DATA_FOUND THEN
INSERT INTO errors VALUES (Error in statement ’ || stmt);

END;

6-22 PL/SQL User's Guide and Reference

v

Subprograms

Civilization advances by extending the number of important operations that we can perform
without thinking about them.
Alfred North Whitehead

This chapter shows you how to use subprograms, which let you name and
encapsulate a sequence of statements. Subprograms aid application development
by isolating operations. They are like building blocks, which you can use to
construct modular, maintainable applications.

Major Topics

What Are Subprograms?
Advantages of Subprograms
Procedures

Functions

RETURN Statement

Declaring Subprograms

Actual versus Formal Parameters
Positional and Named Notation
Parameter Modes

Parameter Default Values
Parameter Aliasing
Overloading

Recursion

Subprograms 7-1

What Are Subprograms?

What Are Subprograms?

Subprograms are named PL/SQL blocks that can take parameters and be invoked.
PL/SQL has two types of subprograms called procedures and functions. Generally,
you use a procedure to perform an action and a function to compute a value.

Like unnamed or anonymous PL/SQL blocks, subprograms have a declarative part,
an executable part, and an optional exception-handling part. The declarative part
contains declarations of types, cursors, constants, variables, exceptions, and nested
subprograms. These items are local and cease to exist when you exit the
subprogram. The executable part contains statements that assign values, control
execution, and manipulate Oracle data. The exception-handling part contains
exception handlers, which deal with exceptions raised during execution.

Consider the following procedure named debit_account , which debits a bank
account:

PROCEDURE debit_account (acct_id INTEGER, amount REAL) IS
old_balance REAL;
new_balance REAL;
overdrawn EXCEPTION;
BEGIN
SELECT bal INTO old_balance FROM accts
WHERE acct_no=acct id;
new_balance :=old_balance - amount;
IF new_balance <O THEN
RAISE overdrawn;
ELSE
UPDATE accts SET bal =new_balance
WHERE acct_no=acct id;
ENDIF;
EXCEPTION
WHEN overdrawn THEN

END debit_account;

When invoked or called, this procedure accepts an account number and a debit
amount. It uses the account number to select the account balance from the accts
database table. Then, it uses the debit amount to compute a new balance. If the new
balance is less than zero, an exception is raised; otherwise, the bank account is
updated.

7-2 PL/SQL User’s Guide and Reference

Procedures

Advantages of Subprograms

Procedures

Subprograms provide extensibility; that is, they let you tailor the PL/SQL language
to suit your needs. For example, if you need a procedure that creates new
departments, you can easily write one, as follows:

PROCEDURE create_dept (new_dname CHAR, new_loc CHAR) IS
BEGIN
INSERT INTO dept
VALUES (deptno_seq.NEXTVAL, new_dname, new_loc);
END create_dept;

Subprograms also provide modularity; that is, they let you break a program down
into manageable, well-defined logic modules. This supports top-down design and
the stepwise refinement approach to problem solving.

Also, subprograms promote reusability and maintainability. Once validated, a
subprogram can be used with confidence in any number of applications.
Furthermore, only the subprogram is affected if its definition changes. This
simplifies maintenance and enhancement.

Finally, subprograms aid abstraction, the mental separation from particulars. To use
subprograms, you must know what they do, not how they work. Therefore, you
can design applications from the top down without worrying about
implementation details. Dummy subprograms (stubs) allow you to defer the
definition of procedures and functions until you test and debug the main program.

A procedure is a subprogram that performs a specific action. You write procedures
using the syntax

PROCEDURE name [(parameter], parameter, ..J)] IS
[local declarations]

BEGIN
executable statements

[EXCEPTION
exception handlers]

END [name];

where parameter stands for the following syntax:
parameter_name [IN | OUT | IN OUT] datatype [{:= | DEFAULT} expression]

You cannot impose the NOT NULLconstraint on a parameter.

Subprograms 7-3

Procedures

Also, you cannot specify a constraint on the datatype. For example, the following
declaration of emp_id is illegal because it imposes a size constraint:

PROCEDURE raise_salary (emp_id NUMBER(4)) IS ... —illegal; should be NUMBER

A procedure has two parts: the specification and the body. The procedure
specification begins with the keyword PROCEDUR&nd ends with the procedure
name or a parameter list. Parameter declarations are optional. Procedures that take
no parameters are written without parentheses.

The procedure body begins with the keyword IS and ends with the keyword END
followed by an optional procedure name. The procedure body has three parts: a
declarative part, an executable part, and an optional exception-handling part.

The declarative part contains local declarations, which are placed between the
keywords IS and BEGIN. The keyword DECLAREwhich introduces declarations in
an anonymous PL/SQL block, is not used. The executable part contains statements,
which are placed between the keywords BEGINand EXCEPTION(or END. At least
one statement must appear in the executable part of a procedure. The NULL
statement meets this requirement. The exception-handling part contains exception
handlers, which are placed between the keywords EXCEPTIONand END

Consider the procedure raise_salary , which increases the salary of an employee:

PROCEDURE raise_salary (emp_id INTEGER, increase REAL) IS
current_salary REAL,;
salary_missing EXCEPTION,;
BEGIN
SELECT sal INTO current_salary FROM emp
WHERE empno =emp_id;
IF current_salary IS NULL THEN
RAISE salary_missing;
ELSE
UPDATE emp SET sal =sal +increase
WHERE empno =emp_id;
ENDIF;
EXCEPTION
WHEN NO_DATA_FOUND THEN
INSERT INTO emp_audit VALUES (emp_id, 'No such number);
WHEN salary_missing THEN
INSERT INTO emp_audit VALUES (emp_id, 'Salary is null);
END raise_salary,

7-4 PL/SQL User’s Guide and Reference

Functions

Functions

When called, this procedure accepts an employee number and a salary increase
amount. It uses the employee number to select the current salary from the emp
database table. If the employee number is not found or if the current salary is null,
an exception is raised. Otherwise, the salary is updated.

A procedure is called as a PL/SQL statement. For example, you might call the
procedure raise_salary as follows:

raise_salary(emp_num, amount);

A function is a subprogram that computes a value. Functions and procedures are
structured alike, except that functions have a RETURNlause. You write functions
using the syntax

FUNCTION name [(parameter], parameter, ...])] RETURN datatype IS
[local declarations]

BEGIN
executable statements

[EXCEPTION
exception handlers]

END [name];

where parameter stands for the following syntax:

parameter_name [IN | OUT | IN OUT] datatype [{:= | DEFAULT} expression]

Remember, you cannot impose the NOT NULLconstraint on a parameter, and you
cannot specify a constraint on the datatype.

Like a procedure, a function has two parts: the specification and the body. The
function specification begins with the keyword FUNCTIONand ends with the
RETURNIlause, which specifies the datatype of the result value. Parameter
declarations are optional. Functions that take no parameters are written without
parentheses.

The function body begins with the keyword IS and ends with the keyword END
followed by an optional function name. The function body has three parts: a
declarative part, an executable part, and an optional exception-handling part.

Subprograms 7-5

Functions

The declarative part contains local declarations, which are placed between the
keywords IS and BEGIN. The keyword DECLARES not used. The executable part
contains statements, which are placed between the keywords BEGIN and
EXCEPTION(or END. One or more RETURNMtatements must appear in the
executable part of a function. The exception-handling part contains exception
handlers, which are placed between the keywords EXCEPTIONand END

Consider the function sal_ok , which determines if an employee salary is out of
range:

FUNCTION sal_ok (salary REAL, tile REAL) RETURN BOOLEAN IS
min_sal REAL;
max_sal REAL;
BEGIN
SELECT losal, hisal INTO min_sal, max_sal
FROM sals
WHERE job =fitle;
RETURN (salary >=min_sal) AND (salary <= max_sal);
END sal_ok;

When called, this function accepts an employee salary and job title. It uses the job
title to select range limits from the sals database table. The function identifier,
sal_ok , is set to a Boolean value by the RETURNtatement. If the salary is out of
range, sal_ok is set to FALSE otherwise, sal ok issetto TRUE

A function is called as part of an expression. For example, the function sal_ok
might be called as follows:

IF sal_ok(new_sal, new_tite) THEN ...

The function identifier acts like a variable whose value depends on the parameters
passed to it.

Restriction

To be callable from SQL expressions, a stored function must obey certain rules
meant to control side effects. For stand-alone functions, Oracle can enforce these
rules by checking the function body. However, the body of a packaged function is
hidden. So, for packaged functions, you must use the pragma
RESTRICT_REFERENCE®® enforce the rules. For more information, see Oracle8
Application Developer’s Guide.

7-6 PL/SQL User’'s Guide and Reference

RETURN Statement

RETURN Statement

The RETURNMtatement immediately completes the execution of a subprogram and
returns control to the caller. Execution then resumes with the statement following
the subprogram call. (Do not confuse the RETURNtatement with the RETURN
clause, which specifies the datatype of the result value in a function specification.)

A subprogram can contain several RETURNtatements, none of which need be the
last lexical statement. Executing any of them completes the subprogram
immediately. However, to have multiple exit points in a subprogram is a poor
programming practice.

In procedures, a RETURNtatement cannot contain an expression. The statement
simply returns control to the caller before the normal end of the procedure is
reached.

However, in functions, a RETURNtatement must contain an expression, which is
evaluated when the RETURNMtatement is executed. The resulting value is assigned
to the function identifier, which acts like a variable of the type specified in the
RETURNIlause. Observe how the function balance returns the balance of a
specified bank account:

FUNCTION balance (acct_id INTEGER) RETURN REAL IS
acct_bal REAL;
BEGIN
SELECT bal INTO acct_bal FROM accts
WHERE acct no=acct id;
RETURN acct_bal;
END balance;

The following example shows that the expression in a function RETURNtatement
can be arbitrarily complex:

FUNCTION compound (years NUMBER,
amount NUMBER,
rate NUMBER) RETURN NUMBER IS
BEGIN
RETURN amount * POWER((rate / 100) + 1, years);
END compound,;

A function must contain at least one RETURNMNtatement. Otherwise, PL/SQL raises
the predefined exception PROGRAM_ERR@Rrun time.

Subprograms 7-7

Declaring Subprograms

Declaring Subprograms

You can declare subprograms in any PL/SQL block, subprogram, or package.
However, you must declare subprograms at the end of a declarative section after all
other program items. For example, the following procedure declaration is
misplaced:

DECLARE
PROCEDURE award_bonus(...) IS —misplaced; must come last
BEGIN
END;
rating NUMBER,;
CURSOR 1 IS SELECT * FROM emp;

Forward Declarations
PL/SQL requires that you declare an identifier before using it. Therefore, you must
declare a subprogram before calling it. For example, the following declaration of
procedure award _bonus is illegal because award _bonus calls procedure
calc_rating , which is not yet declared when the call is made:

DECLARE

PROCEDURE award_bonus(...) IS
BEGIN
calc_rating(...); —undeclared identifier

END;
PROCEDURE calc_rating(...)IS
BEGIN

END;
In this case, you can solve the problem easily by placing procedure calc_rating
before procedure award_bonus . However, the easy solution does not always
work. For example, suppose the procedures are mutually recursive (call each other)
or you want to define them in alphabetical order. PL/SQL solves this problem by

providing a special subprogram declaration called a forward declaration. You can use
forward declarations to

« define subprograms in logical or alphabetical order
« define mutually recursive subprograms (see “Recursion” on page 7-23)

=« group subprograms in a package

7-8 PL/SQL User’s Guide and Reference

Declaring Subprograms

A forward declaration consists of a subprogram specification terminated by a
semicolon. In the following example, the forward declaration advises PL/SQL that
the body of procedure calc_rating can be found later in the block:

DECLARE
PROCEDURE calc _rating (...); —forward declaration

F Define subprograms in alphabetical order. */
PROCEDURE award_bonus (...) IS
BEGIN
calc_rating(...);
END;
PROCEDURE calc rating(...) IS
BEGIN

END;
Although the formal parameter list appears in the forward declaration, it must also

appear in the subprogram body. You can place the subprogram body anywhere
after the forward declaration, but they must appear in the same program unit.

In Packages

Forward declarations also let you group logically related subprograms in a
package. The subprogram specifications go in the package specification, and the
subprogram bodies go in the package body, where they are invisible to
applications. Thus, packages allow you to hide implementation details. An
example follows:

CREATE PACKAGE emp_actions AS — package specification
PROCEDURE hire_employee (emp_id INTGER, name VARCHAR?, ...);
PROCEDURE fire_employee (emp_id INTEGER);

PROCEDURE raise_salary (emp_id INTEGER, increase REAL);

END emp_actions;

CREATE PACKAGE BODY emp_actions AS — package body
PROCEDURE hire_employee (emp_id INTGER, name VARCHAR?, ..) IS
BEGIN

INSERT INTO emp VALUES (empno, ename, ...);
END hire_employee;

Subprograms 7-9

Declaring Subprograms

PROCEDURE fire_employee (emp_id INTEGER) IS
BEGIN
DELETE FROM emp
WHERE empno =emp_id;
END fire_employee;

PROCEDURE raise_salary (emp_id INTEGER, increase REAL) IS
salary REAL,;
BEGIN
SELECT sal INTO salary FROM emp
WHERE empno =emp_id;

END raise_salary;,
END emp_actions;

You can define subprograms in a package body without declaring their
specifications in the package specification. However, such subprograms can be
called only from inside the package. For more information about packages, see
Chapter 8.

Stored Subprograms

Generally, tools (such as Oracle Forms) that incorporate the PL/SQL engine can
store subprograms locally for later, strictly local execution. However, to become
available for general use by all tools, subprograms must be stored in an Oracle
database.

To create subprograms and store them permanently in an Oracle database, you use
the CREATE PROCEDURERd CREATE FUNCTIORKtatements, which you can
execute interactively from SQL*Plus or Enterprise Manager. For example, you
might create the procedure fire_employee , as follows:

CREATE PROCEDURE fire_employee (emp_id NUMBER) AS
BEGIN

DELETE FROM emp WHERE empno =emp_id;
END;

When creating subprograms, you can use the keyword ASinstead of IS in the

specification for readability. For more information about creating and using stored
subprograms, see Oracle8 Application Developer’s Guide.

7-10 PL/SQL User's Guide and Reference

Actual versus Formal Parameters

Actual versus Formal Parameters

Subprograms pass information using parameters. The variables or expressions
referenced in the parameter list of a subprogram call are actual parameters. For
example, the following procedure call lists two actual parameters named emp_num
and amount :

raise_salary(emp_num, amount);

The next procedure call shows that expressions can be used as actual parameters:

raise_salary(emp_num, merit + cola);

The variables declared in a subprogram specification and referenced in the
subprogram body are formal parameters. For example, the following procedure
declares two formal parameters named emp_id and increase

PROCEDURE raise_salary (emp_id INTEGER, increase REAL) IS
current_salary REAL;

BEGIN
SELECT sal INTO current_salary FROM emp WHERE empno =emp _id;

UPDATE emp SET sal = sal + increase WHERE empno =emp id;
END raise_salary;

A good programming practice is to use different names for actual and formal
parameters.

When you call procedure raise_salary , the actual parameters are evaluated and
the result values are assigned to the corresponding formal parameters. Before
assigning the value of an actual parameter to a formal parameter, PL/SQL converts
the datatype of the value if necessary. For example, the following call to
raise_salary is legal:

raise_salary(emp_num, 2500);

The actual parameter and its corresponding formal parameter must have
compatible datatypes. For instance, PL/SQL cannot convert between the DATEand
REALdatatypes. Also, the result value must be convertible to the new datatype.

The following procedure call raises the predefined exception VALUE_ERROR
because PL/SQL cannot convert the second actual parameter to a number:

raise_salary(emp_num, '$2500); — note the dollar sign

For more information, see “Datatype Conversion” on page 2-25.

Subprograms 7-11

Positional and Named Notation

Positional and Named Notation

When calling a subprogram, you can write the actual parameters using either
positional or named notation. That is, you can indicate the association between an
actual and formal parameter by position or name. For example, given the
declarations

DECLARE
acct INTEGER,;
amt REAL;
PROCEDURE credit_acct (acct no INTEGER, amountREAL) IS ...

you can call the procedure credit_acct in four logically equivalent ways:

BEGIN
credit_acct(acct, amt); — positional notation
credit_acct@amount=>amt, acct_no =>acct), — named notation
credit_acct(acct_no => acct, amount=>amt); —named notation
credit_acct(acct, amount =>amt); — mixed notation

Positional Notation

The first procedure call uses positional notation. The PL/SQL compiler associates
the first actual parameter, acct , with the first formal parameter, acct_no . And,
the compiler associates the second actual parameter, amt, with the second formal
parameter, amount .

Named Notation

The second procedure call uses named notation. An arrow (=>) serves as the
association operator, which associates the formal parameter to the left of the arrow
with the actual parameter to the right of the arrow.

The third procedure call also uses named notation and shows that you can list the
parameter pairs in any order. Therefore, you need not know the order in which the
formal parameters are listed.

Mixed Notation

The fourth procedure call shows that you can mix positional and named notation.
In this case, the first parameter uses positional notation, and the second parameter
uses named notation. Positional notation must precede named notation. The
reverse is not allowed. For example, the following procedure call is illegal:

credit_acct(acct no=>acct, amt); —illegal

7-12 PL/SQL User's Guide and Reference

Parameter Modes

Parameter Modes

IN Mode

OUT Mode

You use parameter modes to define the behavior of formal parameters. The three
parameter modes, IN (the default), OUTand IN OUT, can be used with any
subprogram. However, avoid using the OUTand IN OUT modes with functions. The
purpose of a function is to take zero or more arguments (actual parameters) and
return a single value. To have a function return multiple values is a poor
programming practice. Also, functions should be free from side effects, which
change the values of variables not local to the subprogram.

An IN parameter lets you pass values to the subprogram being called. Inside the
subprogram, an IN parameter acts like a constant. Therefore, it cannot be assigned
a value. For example, the following assignment statement causes a compilation
error:

PROCEDURE debit_account (acct id IN INTEGER, amount IN REAL) IS
minimum_purchase CONSTANT REAL :=10.0;
senice_charge CONSTANT REAL :=0.50;

BEGIN

IF amount < minimum_purchase THEN
amount := amount + service_charge; — causes syntax error
ENDIF;

The actual parameter that corresponds to an IN formal parameter can be a
constant, literal, initialized variable, or expression. Unlike OUTand IN OUT
parameters, IN parameters can be initialized to default values. For more
information, see “Parameter Default Values” on page 7-15.

An OUTparameter lets you return values to the caller of a subprogram. Inside the
subprogram, an OUTparameter acts like an uninitialized variable. Therefore, its
value cannot be assigned to another variable or reassigned to itself. For instance,
the following assignment statement causes a compilation error:

PROCEDURE calc_bonus (emp_id IN INTEGER, bonus OUT REAL) IS
hire_date DATE;
BEGIN
SELECT sal*0.10, hiredate INTO bonus, hire_date FROM emp
WHERE empno =emp_id;

Subprograms 7-13

Parameter Modes

IF MONTHS_BETWEEN(SYSDATE, hire_date) >60 THEN
bonus :=bonus + 500; — causes syntax error
ENDIF;

The actual parameter that corresponds to an OUTformal parameter must be a
variable; it cannot be a constant or an expression. For example, the following
procedure call is illegal:

calc_bonus(7499, salary + commission); — causes compilation error

An OUTactual parameter can have a value before the subprogram is called.
However, the value is lost when you call the subprogram. Inside the subprogram,
an OUTformal parameter cannot be used in an expression; the only operation
allowed on the parameter is to assign it a value.

Like variables, OUTformal parameters are initialized to NULL So, before exiting a
subprogram, explicitly assign values to all OUTformal parameters. Otherwise, the
corresponding actual parameters will be null. If you exit successfully, PL/SQL
assigns values to the actual parameters. However, if you exit with an unhandled
exception, PL/SQL does not assign values to the actual parameters.

IN OUT Mode

An IN OUT parameter lets you pass initial values to the subprogram being called
and return updated values to the caller. Inside the subprogram, an IN OUT
parameter acts like an initialized variable. Therefore, it can be assigned a value and
its value can be assigned to another variable. That means you can use an IN OUT
formal parameter as if it were a normal variable. You can change its value or
reference the value in any way, as the following example shows:

PROCEDURE calc_bonus (emp_id IN INTEGER, bonus IN OUT REAL) IS
hire_date DATE;
bonus_missing EXCEPTION,;
BEGIN
SELECT sal*0.10, hiredate INTO bonus, hire_date FROM emp
WHERE empno =emp_id;
IF bonus IS NULL THEN
RAISE bonus_missing;
ENDIF;
IF MONTHS_BETWEEN(SYSDATE, hire_date) >60 THEN
bonus := bonus + 500;
ENDIF;

7-14 PL/SQL User's Guide and Reference

Parameter Default Values

EXCEPTION
WHEN bonus_missing THEN

END calc_bonus;

The actual parameter that corresponds to an IN OUT formal parameter must be a
variable; it cannot be a constant or an expression. Table 7-1 summarizes all you
need to know about the parameter modes.

Table 7-1 Parameter Modes

IN ouT IN OUT

the default must be specified must be specified

passes values to a returns values to the caller passes initial values to a
subprogram subprogram and returns

updated values to the caller

formal parameter acts like a formal parameter acts like ~ formal parameter acts like
constant an uninitialized variable an initialized variable

formal parameter cannot be formal parameter cannot be formal parameter should be
assigned a value used in an expression and assigned a value
must be assigned a value

actual parameter can be a actual parameter must be a actual parameter must be a
constant, initialized variable, variable variable
literal, or expression

actual parameter is passed actual parameter is passed actual parameter is passed
by reference (a pointer to the by value (a copy of the by value (a copy of the
value is passed in) value is passed out) value is passed in and out)

Parameter Default Values

As the example below shows, you can initialize IN parameters to default values.
That way, you can pass different numbers of actual parameters to a subprogram,
accepting or overriding the default values as you please. Moreover, you can add
new formal parameters without having to change every call to the subprogram.

PROCEDURE create_dept (
new_dname CHAR DEFAULT TEMP,
new_loc CHAR DEFAULT TEMP) IS
BEGIN
INSERT INTO dept
VALUES (deptno_seq.NEXTVAL, new_dname, new_loc);

Subprograms 7-15

Parameter Default Values

If an actual parameter is not passed, the default value of its corresponding formal
parameter is used. Consider the following calls to create_dept

create_dept;
create_dept(MARKETING));
create_dept(MARKETING', NEW YORK);

The first call passes no actual parameters, so both default values are used. The
second call passes one actual parameter, so the default value for new_loc is used.
The third call passes two actual parameters, so neither default value is used.

Usually, you can use positional notation to override the default values of formal
parameters. However, you cannot skip a formal parameter by leaving out its actual
parameter. For example, the following call incorrectly associates the actual
parameter 'NEW YORK'’ with the formal parameter new_dname:

create_dept!NEW YORK); —incorrect

You cannot solve the problem by leaving a placeholder for the actual parameter.
For example, the following call is illegal:

create_dept(,'NEW YORK); —illegal

In such cases, you must use named notation, as follows:

create_dept(new_loc =>"NEW YORK);

Also, you cannot assign a null to an uninitialized formal parameter by leaving out
its actual parameter. For example, given the declaration

DECLARE
FUNCTION gross_pay (emp_id INNUMBER,
st_hours IN NUMBER DEFAULT 40,
ot_hours INNUMBER) RETURN REAL IS

the following function call does not assign a null to ot_hours

IF gross_pay(emp_num) >max_pay THEN ... —illegal

Instead, you must pass the null explicitly, as in

IF gross_pay(emp_num, ot_hour =>NULL) >max_pay THEN ...

or you can initialize ot_hours to NULL, as follows:
ot_hours INNUMBER DEFAULT NULL;

7-16 PL/SQL User's Guide and Reference

Parameter Aliasing

Finally, when creating a stored subprogram, you cannot use bind variables in the
DEFAULTclause. The following SQL*Plus example raises a bad bind variable
exception because at the time of creation, numis just a placeholder whose value
might change:

SQL>VARIABLE num NUMBER
SQL>CREATE FUNCTION gross_pay (emp_id INNUMBER DEFAULT :num, ...

Parameter Aliasing

To optimize a subprogram call, the PL/SQL compiler can choose between two
methods of parameter passing. With the by-value method, the value of an actual
parameter is passed to the subprogram. With the by-reference method, only a
pointer to the value is passed, in which case the actual and formal parameters
reference the same item.

Passing large composite types by value is inefficient. So, in most cases—but never
across client/server boundaries—PL/SQL passes composite types by reference,
which saves time.

The easy-to-avoid problem of aliasing occurs when a global variable appears as an
actual parameter in a subprogram call and then is referenced within the
subprogram. The result is indeterminate because it depends on the method of
parameter passing chosen by the compiler. In the example below, procedure

add _entry refers to varray lexicon in two different ways: as a parameter and as
a global variable. So, when add_entry is called, the identifiers word_list and
lexicon name the same varray.

DECLARE

TYPE Definition IS RECORD (

word VARCHAR2(20),

meaning VARCHAR2(200));
TYPE Dictionary IS VARRAY(2000) OF Definition;
lexicon Dictionary := Dictionary();
PROCEDURE add_entry (word_list IN OUT Dictionary) IS
BEGIN

F Atthis point, if the varray was passed by reference,

it has two names. Hence, the term ‘aliasing’. */

word_list(1).word = ‘aardvark;

lexicon(1).word := ‘aardwolf;
END;

Subprograms 7-17

Overloading

Overloading

BEGIN
lexicon.EXTEND;
add_entry(lexicony;
DBMS_OUTPUT.PUT_LINE(exicon(L).word);
— prints 'aardvark if parameter was passed by value
— prints "aardwolf if parameter was passed by reference
END;

The result depends on the method of parameter passing chosen by the compiler. If
the compiler chooses the by-value method, word list and lexicon are separate
copies of the same varray. So, changing one does not affect the other. But, if the
compiler chooses the by-reference method, word _list and lexicon are just
different names for the same varray. So, changing the value of lexicon(1) also
changes the value of word _list(1)

PL/SQL lets you overload subprogram names. That is, you can use the same name
for several different subprograms as long as their formal parameters differ in
number, order, or datatype family.

Suppose you want to initialize the first n rows in two index-by tables that were
declared as follows:

DECLARE
TYPE DateTabTyp IS TABLE OF DATE INDEX BY BINARY_INTEGER;
TYPE RealTabTyp IS TABLE OF REAL INDEX BY BINARY_INTEGER;
hiredate_tab DateTabTyp;
sal tab RealTabTyp;

You might write the following procedure to initialize the index-by table named
hiredate_tab

PROCEDURE initialize (tab OUT DateTabTyp, n INTEGER) IS
BEGIN
FORIiIN 1..nLOOP
tab()) .= SYSDATE;
END LOOP;
END initialize;

7-18 PL/SQL User's Guide and Reference

Overloading

Restrictions

And, you might write the next procedure to initialize the index-by table named
sal tab

PROCEDURE initialize (tab OUT RealTabTyp, n INTEGER) IS
BEGIN
FORIiIN1.nLOOP
tab() =0.0;
END LOOP;
END initialize;

Because the processing in these two procedures is the same, it is logical to give
them the same name.

You can place the two overloaded initialize procedures in the same block,
subprogram, or package. PL/SQL determines which of the two procedures is being
called by checking their formal parameters.

Consider the example below. If you call initialize with a DateTabTyp
parameter, PL/SQL uses the first version of initialize . But, if you call
initialize with a RealTabTyp parameter, PL/SQL uses the second version.

DECLARE
TYPE DateTabTyp IS TABLE OF DATE INDEX BY BINARY_INTEGER,;
TYPE RealTabTyp IS TABLE OF REAL INDEX BY BINARY_INTEGER;
hiredate_tab DateTabTyp;
comm _tab RealTabTyp;
indx BINARY _INTEGER,;
BEGIN
indx :=50;
inttialize(hiredate_tab, indx); — calls first version
initialize(comm_tab, indx); - calls second version

END;

Only local or packaged subprograms can be overloaded. Therefore, you cannot
overload stand-alone subprograms. Also, you cannot overload two subprograms if
their formal parameters differ only in name or parameter mode. For example, you
cannot overload the following two procedures:

PROCEDURE reconcile (acct_no ININTEGER) IS
BEGIN

END;

Subprograms 7-19

Overloading

PROCEDURE reconcile (acct no OUT INTEGER) IS
BEGIN

END;
Furthermore, you cannot overload two subprograms if their formal parameters
differ only in datatype and the different datatypes are in the same family. For

instance, you cannot overload the following procedures because the datatypes
INTEGERand REALare in the same family:

PROCEDURE charge_back (amount INTEGER) IS
BEGIN

END;

PROCEDURE charge_back (amount REAL) IS

BEGIN

END;

Likewise, you cannot overload two subprograms if their formal parameters differ
only in subtype and the different subtypes are based on types in the same family.

For example, you cannot overload the following procedures because the base types
CHARand LONGare in the same family:

DECLARE
SUBTYPE Delimiter IS CHAR,;
SUBTYPE Text IS LONG;

PROCEDURE scan (x Delimiter) IS
BEGIN

END;
PROCEDURE scan (x Text) IS
BEGIN

END;

7-20 PL/SQL User's Guide and Reference

Overloading

Finally, you cannot overload two functions that differ only in return type (the
datatype of the result value) even if the types are in different families. For example,
you cannot overload the following functions;

FUNCTION acct_ok (acct_id INTEGER) RETURN BOOLEAN IS
BEGIN

END;
FUNCTION acct_ok (acct_id INTEGER) RETURN INTEGER IS
BEGIN

END;
How Calls Are Resolved

Figure 7-1 shows how the PL/SQL compiler resolves subprogram calls. When the
compiler encounters a procedure or function call, it tries to find a declaration that
matches the call. The compiler searches first in the current scope and then, if
necessary, in successive enclosing scopes. The compiler stops searching if it finds
one or more subprogram declarations in which the subprogram name matches the
name of the called subprogram.

To resolve a call among possibly like-named subprograms at the same level of
scope, the compiler must find an exact match between the actual and formal
parameters. That is, they must match in number, order, and datatype (unless some
formal parameters were assigned default values). If no match is found or if
multiple matches are found, the compiler generates a syntax error.

In the following example, you call the enclosing procedure swap from within the
function valid . However, the compiler generates an error because neither
declaration of swap within the current scope matches the procedure call:

PROCEDURE swap (d1 DATE, d2 DATE) IS
datel DATE;
date2 DATE;
FUNCTION valid (d DATE) RETURN BOOLEAN IS
PROCEDURE swap (n1 INTEGER, n2 INTEGER) IS BEGIN .. END swap;
PROCEDURE swap (n1 REAL, n2 REAL) IS BEGIN ... END swap;
BEGIN

swap(datel, date?);

END valid;
BEGIN

Subprograms 7-21

Overloading

Figure 7-1 How the PL/SQL Compiler Resolves Calls

encounter
subprogram call

compare name of
called subprogram with
names of any
subprograms declared
in current scope

¢—

go to enclosing scope

match(es) found?

compare actual
parameter list in
subprogram call with
formal parameter list in
subprogram declaration(s)

match(es) found?

multiple matches?

enclosing scope?

A 4

resolve call

generate syntax error

7-22 PL/SQL User's Guide and Reference

Recursion

Recursion

Avoiding Errors

PL/SQL declares built-in functions globally in package STANDARDRedeclaring
them locally is error prone because your local declaration overrides the global
declaration. Consider the following example, in which you declare a function
named sign , then within the scope of that declaration, try to call the built-in
function SIGN:

DECLARE
xNUMBER;
BEGIN
DECLARE
FUNCTION sign (n NUMBER) RETURN NUMBER IS
BEGIN
IFn<OTHEN RETURN-1; ELSERETURN 1, END IF;
END;
BEGIN

X :=SIGN(0); —assigns 1tox
END;

x = SIGN(Q); —assigns 0tox
END;

Inside the sub-block, PL/SQL uses your function definition, not the built-in
definition. To call the built-in function from inside the sub-block, you must use dot
notation, as follows:

x = STANDARD.SIGN(0); — assigns 0to x

Recursion is a powerful technique for simplifying the design of algorithms.
Basically, recursion means self-reference. In a recursive mathematical sequence, each
term is derived by applying a formula to preceding terms. The Fibonacci sequence
(1,1,2,3,5, 8,13, 21, ...), which was first used to model the growth of a rabbit
colony, is an example. Each term in the sequence (after the second) is the sum of the
two terms that immediately precede it.

In a recursive definition, something is defined in terms of simpler versions of itself.
Consider the definition of n factorial (n!), the product of all integers from 1 to n:

n'=n*(n-21)

Subprograms 7-23

Recursion

Recursive Subprograms

A recursive subprogram is one that calls itself. Think of a recursive call as a call to
some other subprogram that does the same task as your subprogram. Each
recursive call creates a new instance of any items declared in the subprogram,
including parameters, variables, cursors, and exceptions. Likewise, new instances
of SQL statements are created at each level in the recursive descent.

Be careful where you place a recursive call. If you place it inside a cursor FORloop
or between OPENand CLOSEstatements, another cursor is opened at each call. As a
result, your program might exceed the limit set by the Oracle initialization
parameter OPEN_CURSORS

There must be at least two paths through a recursive subprogram: one that leads to
the recursive call and one that does not. That is, at least one path must lead to a
terminating condition. Otherwise, the recursion would (theoretically) go on forever.
In practice, if a recursive subprogram strays into infinite regress, PL/SQL
eventually runs out of memory and raises STORAGE_ERROR

Example 1

To solve some programming problems, you must repeat a sequence of statements
until a condition is met. You can use iteration or recursion to solve such problems.
Use recursion when the problem can be broken down into simpler versions of
itself. For example, you can evaluate 3! as follows:

0'=1 - by definition
U=1*0=1
21=2*11=2
3=3*21=6

To implement this algorithm, you might write the following recursive function,
which returns the factorial of a positive integer:

FUNCTION fac (n POSITIVE) RETURN INTEGERIS - retums n!
BEGIN
IFn=1THEN - terminating condition
RETURN 1;
ELSE
RETURN n*fac(n - 1); —recursive call
ENDIF;
END fac;

At each recursive call, n is decremented. Eventually, n becomes 1 and the recursion
stops.

7-24 PL/SQL User's Guide and Reference

Recursion

Example 2

Consider the procedure below, which finds the staff of a given manager. The
procedure declares two formal parameters, mgr_no and tier , which represent the
manager’s employee number and a tier in his or her departmental organization.
Staff members reporting directly to the manager occupy the first tier. When called,
the procedure accepts a value for mgr_no but uses the default value of tier . For
example, you might call the procedure as follows:

find_staff(7839);

The procedure passes mgr_no to a cursor in a cursor FORloop, which finds staff
members at successively lower tiers in the organization. At each recursive call, a
new instance of the FORIloop is created and another cursor is opened, but prior
cursors stay positioned on the next row in their result sets. When a fetch fails to
return a row, the cursor is closed automatically and the FORIoop is exited. Since the
recursive call is inside the FORloop, the recursion stops.

PROCEDURE find_staff (mgr_no NUMBER, tier NUMBER :=1) IS
boss_name CHAR(10);
CURSOR c1 (boss_no NUMBER) IS
SELECT empno, ename FROM emp WHERE mgr =hbaoss_no;
BEGIN
F* Get manager's name. */
SELECT ename INTO boss_name FROM emp WHERE empno =mgr_no;
IFter=1THEN
INSERT INTO staff — single-column output table
VALUES (boss_name ||’ manages the staff);
ENDIF;
F Find staff members who report directly to manager. */
FOR ee IN c1 (mgr_no) LOOP
INSERT INTO staff
VALUES (boss_name ||’ manages’ || ee.ename
|’ ontier’ || to_char(tier));

 Drop to next tier in organization. */
find_staff(ee.empno, tier + 1); — recursive call
END LOOP;
COMMIT;
END;

Unlike the initial call, each recursive call passes a second actual parameter (the next
tier) to the procedure.

Subprograms 7-25

Recursion

The last example illustrates recursion, not the efficient use of set-oriented SQL
statements. You might want to compare the performance of the recursive procedure
to that of the following SQL statement, which does the same task:

INSERT INTO staff
SELECT PRIOR ename || manages’ || ename
|’ ontier’ || to_char(LEVEL - 1)
FROMemp
START WITH empno = 7839
CONNECT BY PRIOR empno =mgr;

The SQL statement is appreciably faster. However, the procedure is more flexible.
For example, a multi-table query cannot contain the CONNECT B¥ause. So, unlike
the procedure, the SQL statement cannot be modified to do joins. (A join combines
rows from two or more database tables.) In addition, a procedure can process data
in ways that a single SQL statement cannot.

Mutual Recursion

Subprograms are mutually recursive if they directly or indirectly call each other. In
the example below, the Boolean functions odd and even, which determine whether
a number is odd or even, call each other directly. The forward declaration of odd is
necessary because even calls odd, which is not yet declared when the call is made.
(See “Forward Declarations” on page 7-8.)

FUNCTION odd (n NATURAL) RETURN BOOLEAN; - forward declaration

FUNCTION even (n NATURAL) RETURN BOOLEAN IS
BEGIN
IFNn=0THEN
RETURN TRUE;
ELSE
RETURN odd(n - 1); — mutually recursive call
ENDIF;
END even;

FUNCTION odd (n NATURAL) RETURN BOOLEAN IS
BEGIN
IFNn=0THEN
RETURN FALSE;
ELSE
RETURN even(n - 1); —mutually recursive call
ENDIF;
END odd;

7-26 PL/SQL User's Guide and Reference

Recursion

When a positive integer n is passed to odd or even, the functions call each other by
turns. At each call, n is decremented. Ultimately, n becomes zero and the final call
returns TRUEor FALSE For instance, passing the number 4 to odd results in this
sequence of calls:

odd(4)

even(3)

odd(2)

even(l)

0dd(0) —retums FALSE

On the other hand, passing the number 4 to even results in the following sequence
of calls:

even(4)

odd(3)

even(2)

odd(1)

even(0) —retums TRUE

Recursion versus lteration

Unlike iteration, recursion is not essential to PL/SQL programming. Any problem
that can be solved using recursion can be solved using iteration. Also, the iterative
version of a subprogram is usually easier to design than the recursive version.
However, the recursive version is usually simpler, smaller, and therefore easier to
debug. Compare the following functions, which compute the nth Fibonacci number:

— recursive version
FUNCTION fib (n POSITIVE) RETURN INTEGER IS
BEGIN
IF(n=1)OR (n=2) THEN
RETURN 1,
ELSE
RETURN fib(n - 1) +fib(n - 2);
ENDIF;
END fib;

— iterative version

FUNCTION fib (n POSITIVE) RETURN INTEGER IS
posl INTEGER =1,
pos2 INTEGER :=0;
cum INTEGER;

Subprograms 7-27

Recursion

BEGIN
IF(h=1)OR (n=2) THEN
RETURN 1;
ELSE
cum :=posl +pos2;
FORIiIN 3.nLOOP
pos2 = posl;
posl :=cum;
cum :=posl + pos2;
END LOOP;
RETURN cum;
ENDIF;
END fib;

The recursive version of fib
the iterative version is more efficient; it runs faster and uses less storage. That is

because each recursive call requires additional time and memory. As the number of
recursive calls gets larger, so does the difference in efficiency. Still, if you expect the
number of recursive calls to be small, you might choose the recursive version for its

readability.

7-28 PL/SQL User's Guide and Reference

is more elegant than the iterative version. However,

8

Packages

Good as it is to inherit a library, it is better to collect one.
Augustine Birrell

This chapter shows you how to bundle related PL/SQL programming constructs
into a package. The packaged constructs might include a collection of procedures
or a pool of type definitions and variable declarations. For example, a Human
Resources package might contain hiring and firing procedures. Once written, your
general-purpose package is compiled, then stored in an Oracle database, where,
like a library unit, its contents can be shared by many applications.

Major Topics

What Is a Package?
Advantages of Packages
The Package Specification
The Package Body

Some Examples

Private versus Public Items
Overloading

Package STANDARD
Product-specific Packages

Packages 8-1

What Is a Package?

What Is a Package?

A package is a schema object that groups logically related PL/SQL types, items, and
subprograms. Packages usually have two parts, a specification and a body,
although sometimes the body is unnecessary. The specification is the interface to
your applications; it declares the types, variables, constants, exceptions, cursors,
and subprograms available for use. The body fully defines cursors and
subprograms, and so implements the specification.

Unlike subprograms, packages cannot be called, parameterized, or nested. Still, the
format of a package is similar to that of a subprogram:

CREATE PACKAGE name AS - specification (visible part)
— public type and item declarations
— subprogram specifications

END [name];

CREATE PACKAGE BODY name AS - body (hidden part)

— private type and item declarations

— subprogram bodies
[BEGIN

—initialization statements)
END [name];
The specification holds public declarations, which are visible to your application.
The body holds implementation details and private declarations, which are hidden
from your application. As Figure 8-1 shows, you can think of the specification as
an operational interface and of the body as a “black box”:

Figure 8—1 Package Interface

Application Package Database

= [spocicaion
body

8-2 PL/SQL User’s Guide and Reference

What Is a Package?

You can debug, enhance, or replace a package body without changing the interface
(package specification) to the package body.

To create packages and store them permanently in an Oracle database, you use the
CREATE PACKAGEhd CREATE PACKAGE BOBrdtements, which you can execute
interactively from SQL*Plus or Enterprise Manager. For more information, see
Oracle8 Application Developer’s Guide.

In the example below, you package a record type, a cursor, and two employment
procedures. Notice that the procedure hire_employee uses the database
sequence empno_seq and the function SYSDATHRo insert a new employee number
and hire date, respectively.

CREATE PACKAGE emp_actions AS - specification
TYPE EmpRecTyp IS RECORD (emp_id INTEGER, salary REAL);
CURSOR desc_salary RETURN EmpRecTyp;
PROCEDURE hire_employee (

ename VARCHAR2,
job VARCHAR?2,
mgr NUMBER,
sal NUMBER,
comm NUMBER,
deptno NUMBER);
PROCEDURE fire_employee (emp_id NUMBER);
END emp_actions;

CREATE PACKAGE BODY emp_actions AS — body
CURSOR desc_salary RETURN EmpRecTyp IS
SELECT empno, sal FROM emp ORDER BY sal DESC;
PROCEDURE hire_employee (
ename VARCHAR2,
job VARCHAR?2,
mgr NUMBER,
sal NUMBER,
comm NUMBER,
deptno NUMBER) IS
BEGIN
INSERT INTO emp VALUES (empno_seq.NEXTVAL, ename, job,
mgr, SYSDATE, sal, comm, deptno);
END hire_employee;
PROCEDURE fire_employee (emp_id NUMBER) IS
BEGIN
DELETE FROM emp WHERE empno =emp_id;
END fire_employee;
END emp_actions;

Packages 8-3

Advantages of Packages

Only the declarations in the package specification are visible and accessible to
applications. Implementation details in the package body are hidden and
inaccessible. So, you can change the body (implementation) without having to
recompile calling programs.

Advantages of Packages

Packages offer several advantages: modularity, easier application design,
information hiding, added functionality, and better performance.

Modularity

Packages let you encapsulate logically related types, items, and subprograms in a
named PL/SQL module. Each package is easy to understand, and the interfaces
between packages are simple, clear, and well defined. This aids application
development.

Easier Application Design

When designing an application, all you need initially is the interface information in
the package specifications. You can code and compile a specification without its
body. Then, stored subprograms that reference the package can be compiled as
well. You need not define the package bodies fully until you are ready to complete
the application.

Information Hiding

With packages, you can specify which types, items, and subprograms are public
(visible and accessible) or private (hidden and inaccessible). For example, if a
package contains four subprograms, three might be public and one private. The
package hides the definition of the private subprogram so that only the package
(not your application) is affected if the definition changes. This simplifies
maintenance and enhancement. Also, by hiding implementation details from users,
you protect the integrity of the package.

Added Functionality

Packaged public variables and cursors persist for the duration of a session. So, they
can be shared by all subprograms that execute in the environment. Also, they allow
you to maintain data across transactions without having to store it in the database.

8-4 PL/SQL User’'s Guide and Reference

The Package Specification

Better Performance

When you call a packaged subprogram for the first time, the whole package is
loaded into memory. So, later calls to related subprograms in the package require
no disk I/0. Also, packages stop cascading dependencies and so avoid
unnecessary recompiling. For example, if you change the definition of a packaged
function, Oracle need not recompile the calling subprograms because they do not
depend on the package body.

The Package Specification

The package specification contains public declarations. The scope of these
declarations is local to your database schema and global to the package. So, the
declared items are accessible from your application and from anywhere in the
package. Figure 8-2 illustrates the scoping.

Figure 8-2 Package Scope

~

procedure
package spec < package body function
procedure

~

schema

~

function

package spec { package body { function
procedure

I

other objects

The specification lists the package resources available to applications. All the
information your application needs to use the resources is in the specification. For
example, the following declaration shows that the function named fac takes one
argument of type INTEGERand returns a value of type INTEGER

FUNCTION fac (n INTEGER) RETURN INTEGER; —retumsn!

Packages 8-5

The Package Specification

That is all the information you need to call the function. You need not consider the
underlying implementation of fac (whether it is iterative or recursive, for
example).

Only subprograms and cursors have an underlying implementation or definition.
So, if a specification declares only types, constants, variables, and exceptions, the
package body is unnecessary. Consider the following bodiless package:

—abodiless package
CREATE PACKAGE frans_data AS
TYPE TimeRec IS RECORD (
minutes SMALLINT,
hours SMALLINT);
TYPE TransRec IS RECORD (
category VARCHAR2,
account INTEGER,
amount REAL,
time TimeRec);
minimum_balance CONSTANT REAL :=10.00;
number_processed INTEGER,;
insufficient_funds EXCEPTION,;
END trans_data;

The package trans_data needs no body because types, constants, variables, and
exceptions do not have an underlying implementation. Such packages let you
define global variables—usable by subprograms and database triggers—that
persist throughout a session.

Referencing Package Contents

To reference the types, items, and subprograms declared within a package
specification, you use dot notation, as follows:

package_name.type name
package_name.tem_name
package_name.subprogram_name

You can reference package contents from a database trigger, a stored subprogram,
an Oracle Precompiler application, an OCI application, or an Oracle tool such as
SQL*Plus. For example, you might call the packaged procedure hire_employee
from SQL*Plus, as follows:

SQL> EXECUTE emp.actions.hire_employee(TATE,'CLERK, ...);

8-6 PL/SQL User’'s Guide and Reference

The Package Body

In the example below, you call the same procedure from an anonymous PL/SQL
block embedded in a Pro*C program. The actual parameters nameand title are
host variables.

EXEC SQL EXECUTE
BEGIN
emp_actions.hire_employee(name, fite, ...);

Restrictions

You cannot reference remote packaged variables directly or indirectly. For example,
you cannot call the following procedure remotely because it references a packaged
variable in a parameter initialization clause:

CREATE PACKAGE random AS
seed NUMBER;
PROCEDURE initialize (starter IN NUMBER :=seed, ...);

Also, you cannot reference variables declared in a host environment (bind
variables) inside a package.

The Package Body

The package body implements the package specification. That is, the package body
contains the definition of every cursor and subprogram declared in the package
specification. Keep in mind that subprograms defined in a package body are
accessible outside the package only if their specifications also appear in the
package specification.

To match subprogram specifications and bodies, PL/SQL does a token-by-token
comparison of their headers. So, except for white space, the headers must match
word for word. Otherwise, PL/SQL raises an exception, as the following example
shows:

CREATE PACKAGE emp_actions AS

PROCEDURE calc_bonus (date_hired emp.hiredate%TYPE, ...);
END emp_actions;

CREATE PACKAGE BODY emp_actions AS
PROCEDURE calc_bunus (date_hired DATE, ..) IS

— parameter declaration raises an exception because 'DATE'
- does not match 'emp.hiredate%6 TYPE’ word for word

Packages 8-7

Some Examples

BEGIN

END calc_bonus;
END emp_actions;

The package body can also contain private declarations, which define types and
items necessary for the internal workings of the package. The scope of these
declarations is local to the package body. Therefore, the declared types and items
are inaccessible except from within the package body. Unlike a package
specification, the declarative part of a package body can contain subprogram
bodies.

Following the declarative part of a package body is the optional initialization part,
which typically holds statements that initialize some of the variables previously
declared in the package.

The initialization part of a package plays a minor role because, unlike
subprograms, a package cannot be called or passed parameters. As a result, the
initialization part of a package is run only once, the first time you reference the
package.

Recall that if a specification declares only types, constants, variables, and
exceptions, the package body is unnecessary. However, the body can still be used to
initialize items declared in the specification.

Some Examples

Consider the package below named emp_actions . The package specification
declares the following types, items, and subprograms:

« types EmpRecTypand DeptRecTyp

« cursor desc_salary

« exception salary_missing

« functions hire_employee, nth_highest_salary , and rank
« procedures fire_employee and raise_salary

After writing the package, you can develop applications that reference its types,
call its subprograms, use its cursor, and raise its exception. When you create the
package, it is stored in an Oracle database for general use.

8-8 PL/SQL User’'s Guide and Reference

Some Examples

CREATE PACKAGE emp_actions AS

¥ Declare extemally visible types, cursor, exception. */

TYPE EmpRecTyp IS RECORD (emp_id INTEGER, salary REAL);

TYPE DeptRecTyp IS RECORD (dept_id INTEGER, location VARCHAR?);
CURSOR desc_salary RETURN EmpRecTyp;

salary_missing EXCEPTION,;

¥ Declare extemally callable subprograms. */
FUNCTION hire_employee (
ename VARCHAR2,
job VARCHAR?2,
mgr NUMBER,
sal NUMBER,
comm NUMBER,
deptno NUMBER) RETURN INTEGER;
PROCEDURE fire_employee (emp_id INTEGER);
PROCEDURE raise_salary (emp_id INTEGER, increase NUMBER);
FUNCTION nth_highest_salary (n INTEGER) RETURN EmpRecTyp;
END emp_actions;

CREATE PACKAGE BODY emp_actions AS
number_hired INTEGER; — visible only in this package

F Fully define cursor specified in package. */
CURSOR desc_salary RETURN EmpRecTyp IS
SELECT empno, sal FROM emp ORDER BY sal DESC;

F Fully define subprograms specified in package. */
FUNCTION hire_employee (
ename VARCHAR?2,
job VARCHAR?2,
mgr NUMBER,
sal NUMBER,
comm NUMBER,
deptno NUMBER) RETURN INTEGER IS
new_empno INTEGER;
BEGIN
SELECT empno_seq.NEXTVAL INTO new_empno FROM dual;
INSERT INTO emp VALUES (new_empno, ename, job,
mgr, SYSDATE, sal, comm, deptno);
number_hired := number_hired + 1;
RETURN new_empno;
END hire_employee;

Packages 8-9

Some Examples

PROCEDURE fire_employee (emp_id INTEGER) IS
BEGIN

DELETE FROM emp WHERE empno =emp_id;
END fire_employes;

PROCEDURE raise_salary (emp_id INTEGER, increase NUMBER) IS
current_salary NUMBER;
BEGIN
SELECT sal INTO current_salary FROM emp
WHERE empno =emp_id;
IF current_salary IS NULL THEN
RAISE salary_missing;
ELSE
UPDATE emp SET sal = sal +increase
WHERE empno =emp_id;
ENDIF;
END raise_salary;

FUNCTION nth_highest_salary (n INTEGER) RETURN EmpRecTyp IS
emp_rec EmpRecTyp;
BEGIN
OPEN desc_salary;
FORIiIN 1.nLOOP
FETCH desc_salary INTO emp_rec;
END LOOP;
CLOSE desc_salary;
RETURN emp_rec;
END nth_highest_salary;

 Define local function, available only in package. */
FUNCTION rank (emp_id INTEGER, job _tile VARCHAR?)
RETURN INTEGER IS
FRetum rank (highest = 1) of employee in a given
job classification based on performance rating. */
head_count INTEGER,;
score NUMBER;
BEGIN
SELECT COUNT(*) INTO head_count FROM emp
WHERE job =job title;
SELECT rating INTO score FROM reviews
WHERE empno =emp_id;
score = score / 100; — maximum score is 100
RETURN (head_count+ 1) - ROUND(head_count * score);
END rank;

8-10 PL/SQL User's Guide and Reference

Some Examples

BEGIN - inttiglization part starts here
INSERT INTO emp_audit VALUES (SYSDATE, USER, EMP_ACTIONS));
number_hired :=0;

END emp_actions;

Remember, the initialization part of a package is run just once, the first time you
reference the package. So, in the last example, only one row is inserted into the
database table emp_audit . Likewise, the variable number_hired is initialized
only once.

Every time the procedure hire_employee s called, the variable number_hired

is updated. However, the count kept by number_hired is session specific. That is,
the count reflects the number of new employees processed by one user, not the
number processed by all users.

In the next example, you package some typical bank transactions. Assume that
debit and credit transactions are entered after business hours via automatic teller
machines, then applied to accounts the next morning.

CREATE PACKAGE bank_transactions AS
F* Declare extemnally visible constant. */
minimum_balance CONSTANT NUMBER :=100.00;
¥ Declare extemally callable procedures. */
PROCEDURE apply_transactions;
PROCEDURE enter_transaction (
acct NUMBER,
kind CHAR,
amount NUMBERY);
END bank_transactions;

CREATE PACKAGE BODY bank_transactions AS
* Declare global variable to hold transaction status. */
new_status VARCHAR2(70) := 'Unknown’;

¥ Use forward declarations because apply_transactions

calls credit_account and debit_account, which are not

yet declared when the calls are made. */
PROCEDURE credit_account (acct NUMBER, credit REAL);
PROCEDURE dehit_account (acct NUMBER, debit REAL);
F Fully define procedures specified in package. */
PROCEDURE apply_transactions IS
F* Apply pending transactions in transactions table

to accounts table. Use cursor to fetch rows. */

CURSOR trans_cursor IS

SELECT acct id, kind, amount FROM transactions

Packages 8-11

Some Examples

WHERE status ="Pending’
ORDER BY time_tag
FOR UPDATE OF status; —to lock rows
BEGIN
FOR trans IN trans_cursor LOOP
IF ranskind="D' THEN
debit_account(trans.acct_id, trans.amount);
ELSIF transkind ="C THEN
credit_account(rans.acct _id, trans.amount);
ELSE
new_status :="'Rejected;
ENDIF;
UPDATE transactions SET status = new_status
WHERE CURRENT OF frans_cursor,
END LOOP;
END apply_transactions;

PROCEDURE enter_transaction (
* Add a transaction to fransactions table. */

acct NUMBER,

kind CHAR,

amount NUMBER) IS
BEGIN

INSERT INTO transactions

VALUES (acct, kind, amount, 'Pending’, SYSDATE);

END enter_transaction;

F Define local procedures, available only in package. */
PROCEDURE do_joumal_entry (
F* Record transaction in joumal. */
acct NUMBER,
kind CHAR,
new_bal NUMBER) IS
BEGIN
INSERT INTO joumal
VALUES (acct, kind, new_bal, sysdate);
IFkind ="D' THEN
new_status :='Debit applied’;
ELSE
new_status :='Credit applied’;
ENDIF;
END do_joumal_entry;
PROCEDURE credit_account (acct NUMBER, credit REAL) IS
* Credit account unless account number is bad. */
old_balance NUMBER,;

8-12 PL/SQL User's Guide and Reference

Some Examples

new_balance NUMBER;
BEGIN
SELECT balance INTO old_balance FROM accounts
WHERE acct_id =acct
FOR UPDATE OF balance; - to lock the row
new_balance :=old_balance + credtt;
UPDATE accounts SET balance = new_balance
WHERE acct_id=acct;
do_joumal_entry(acct, 'C', new_balance);
EXCEPTION
WHEN NO_DATA FOUND THEN
new_status :='Bad account number’;
WHEN OTHERS THEN
new_status := SUBSTR(SQLERRM,1,70);
END credit_account

PROCEDURE dehit_account (acct NUMBER, debit REAL) IS
F Debit account unless account number is bad or
account has insufficient funds. */
old_balance NUMBER;
new_balance NUMBER,;
insufficient_funds EXCEPTION,;
BEGIN
SELECT balance INTO old_balance FROM accounts
WHERE acct _id=acct
FOR UPDATE OF balance; - to lock the row
new_balance :=old_balance - debit;
IF new_balance >= minimum_balance THEN
UPDATE accounts SET balance =new_balance
WHERE acct_id =acct;
do_joumal_entry(acct, 'D', new_balance);
ELSE
RAISE insufficient_funds;
END IF,
EXCEPTION
WHEN NO_DATA FOUND THEN
new_status :='Bad account number’;
WHEN insufficient_funds THEN
new_status :=Insufficient funds’;
WHEN OTHERS THEN
new_status := SUBSTR(SQLERRM,1,70);
END debit_account;
END bank_transactions;

In this package, the initialization part is not used.

Packages 8-13

Private versus Public ltems

Private versus Public Items

Overloading

Look again at the package emp_actions . The package body declares a variable
named number_hired , which is initialized to zero. Unlike items declared in the
specification of emp_actions , items declared in the body are restricted to use
within the package. Therefore, PL/SQL code outside the package cannot reference
the variable number_hired . Such items are termed private.

However, items declared in the specification of emp_actions such as the
exception salary_missing are visible outside the package. Therefore, any
PL/SQL code can reference the exception salary_missing . Such items are
termed public.

When you must maintain items throughout a session or across transactions, place
them in the declarative part of the package body. For example, the value of
number_hired is retained between calls to hire_employee . Remember,
however, that the value of number_hired is session specific.

If you must also make the items public, place them in the package specification. For
example, the constant minimum_balance declared in the specification of the
package bank_transactions is available for general use.

Note: When you call a packaged subprogram remotely, the whole
package is reinstantiated and its previous state is lost.

Recall from Chapter 7 that PL/SQL allows two or more packaged subprograms to
have the same name. This option is useful when you want a subprogram to accept
parameters that have different datatypes. For example, the following package
defines two procedures named journalize

CREATE PACKAGE joumal_entries AS
PROCEDURE joumalize (amount NUMBER, trans_date VARCHAR?2);
PROCEDURE joumalize (amount NUMBER, trans_date NUMBER);
END joumal_entries;

CREATE PACKAGE BODY joumal_entries AS
PROCEDURE joumalize (@amount NUMBER, trans_date VARCHAR?2) IS
BEGIN
INSERT INTO joumel
VALUES (amount, TO_DATE(trans_date, DD-MON-YYYY));
END joumalize;
PROCEDURE joumalize (amount NUMBER, trans_date NUMBER) IS

8-14 PL/SQL User's Guide and Reference

Package STANDARD

BEGIN
INSERT INTO joumal
VALUES (amount, TO_DATE(trans_date, 'J);
END joumalize;
END joumal_entries;

The first procedure accepts trans_date as a character string, while the second
procedure accepts it as a number (the Julian day). Yet, each procedure handles the
data appropriately.

Package STANDARD

A package named STANDARD@efines the PL/SQL environment. The package
specification globally declares types, exceptions, and subprograms, which are
available automatically to every PL/SQL program. For example, package
STANDARIDIeclares the following built-in function named ABS which returns the
absolute value of its argument:

FUNCTION ABS (n NUMBER) RETURN NUMBER,;

The contents of package STANDARIre directly visible to applications. So, you can
call ABSfrom a database trigger, a stored subprogram, an Oracle Precompiler
application, an OCI application, and various Oracle tools including Oracle Forms,
Oracle Reports, and SQL*Plus.

If you redeclare ABSin a PL/SQL program, your local declaration overrides the
global declaration. However, you can still call the built-in function by using dot
notation, as follows:

.. STANDARD ABS(X) ...
Most built-in functions are overloaded. For example, package STANDARIBontains
the following declarations:

FUNCTION TO_CHAR (iight DATE) RETURN VARCHAR?;

FUNCTION TO_CHAR (left NUMBER) RETURN VARCHAR?2;

FUNCTION TO_CHAR (eft DATE, right VARCHAR2) RETURN VARCHAR?;
FUNCTION TO_CHAR (left NUMBER, right VARCHAR2) RETURN VARCHAR?;

PL/SQL resolves a call to TO_CHARy matching the number and datatypes of the
formal and actual parameters.

Packages 8-15

Product-specific Packages

Product-specific Packages

Oracle and various Oracle tools are supplied with product-specific packages that
help you build PL/SQL-based applications. For example, Oracle is supplied with
many utility packages, a few of which are highlighted below. For more information,
see Oracle8 Application Developer’s Guide.

DBMS_STANDARD

Package DBMS_STANDAR®rovides language facilities that help your application
interact with Oracle. For instance, the procedure raise_application_error

lets you issue user-defined error messages. That way, you can report errors to an
application and avoid returning unhandled exceptions. For an example, see “Using
raise_application_error” on page 6-9.

DBMS_OUTPUT

Package DBMS_OUTPUdnables you to display output from PL/SQL blocks and
subprograms, which makes it easier to test and debug them. The procedure
put_line outputs information to a buffer in the SGA. You display the information
by calling the procedure get line or by setting SERVEROUTPUT QNSQL*Plus
or Enterprise Manager.

For example, suppose you create the following stored procedure:

CREATE PROCEDURE calc_payroll (payroll INOUT REAL) AS
CURSOR c1 IS SELECT sal,comm FROM emp;
BEGIN
payroll :=0;
FOR clrec IN c1 LOOP
clrec.comm :=NVL(clrec.comm, 0);
payroll := payroll + clrec.sal + clrec.comm;
END LOOP;
F Display debug info. */
dbms_outputput_line(payroll: ' || TO_CHAR(payroll);
END calc_payroll;

When you issue the following commands, SQL*Plus displays the value of payroll
calculated by the procedure:

SQL> SET SERVEROUTPUT ON
SQL>VARIABLE num NUMBER
SQL>EXECUTE calc_payroll(:num)

8-16 PL/SQL User's Guide and Reference

Product-specific Packages

DBMS_PIPE

UTL_FILE

UTL_HTTP

DBMS_SQL

Package DBMS_PIPEallows different sessions to communicate over named pipes.
(A pipe is an area of memory used by one process to pass information to another.)
You can use the procedures pack _message and send _message to pack a
message into a pipe, then send it to another session in the same instance.

At the other end of the pipe, you can use the procedures receive_message and
unpack_message to receive and unpack (read) the message. Named pipes are
useful in many ways. For example, you can write routines in C that allow external
servers to collect information, then send it through pipes to procedures stored in an
Oracle database.

Package UTL_FILE allows your PL/SQL programs to read and write operating
system (OS) text files. It provides a restricted version of standard OS stream file
170, including open, put, get, and close operations.

When you want to read or write a text file, you call the function fopen , which
returns a file handle for use in subsequent procedure calls. For example, the
procedure put_line writes a text string and line terminator to an open file. The
procedure get line reads a line of text from an open file into an output buffer.

PL/SQL file 170 is available on both the client and server sides. However, on the
server side, file access is restricted to those directories explicitly listed in the
accessible directories list, which is stored in the Oracle initialization file.

Package UTL_HTTPallows your PL/SQL programs to make hypertext transfer
protocol (HTTP) callouts. You can use it to retrieve data from the internet, or to call
Oracle Web Server cartidges. The package has two entry points, each of which
accepts a URL (universal resource locator) string, contacts the specified site, and
returns the requested data, which is usually in hypertext markup language (HTML)
format.

Package DBMS_SQlallows PL/SQL to execute SQL data definition and data
manipulation statements dynamically at run time. For an example, see “Using DDL
and Dynamic SQL” on page 5-7.

Packages 8-17

Guidelines

DBMS_ALERT

Guidelines

Package DBMS_ALERTets you use database triggers to alert an application when
specific database values change. The alerts are transaction based and asynchronous
(that is, they operate independently of any timing mechanism). For example, a
company might use this package to update the value of its investment portfolio as
new stock and bond quotes arrive.

When writing packages, keep them as general as possible so they can be reused in
future applications. Avoid writing packages that duplicate some feature already
provided by Oracle.

Package specifications reflect the design of your application. So, define them before
the package bodies. Place in a specification only the types, items, and subprograms
that must be visible to users of the package. That way, other developers cannot
misuse the package by basing their code on irrelevant implementation details.

To reduce the need for recompiling when code is changed, place as few items as
possible in a package specification. Changes to a package body do not require
Oracle to recompile dependent procedures. However, changes to a package
specification require Oracle to recompile every stored subprogram that references
the package.

8-18 PL/SQL User's Guide and Reference

9

Object Types

... It next will be right
To describe each particular batch:
Distinguishing those that have feathers, and bite,
From those that have whiskers, and scratch.
Lewis Carroll

Object-oriented programming is rapidly gaining acceptance because it can reduce
the cost and time required to build complex applications. In PL/SQL, object-
oriented programming is based on object types. They provide abstract templates
for real-world objects, and so are an ideal modeling tool. They also provide black-
box encapsulation like an integrated component that can be plugged into various
electronic devices. To plug an object type into your programs, you need to know
only what it does, not how it works.

Major Topics

The Role of Abstraction

What Is an Object Type?

Why Use Object Types?

Structure of an Object Type
Components of an Object Type
Defining Object Types

Declaring and Initializing Objects
Accessing Attributes

Calling Constructors and Methods
Sharing Objects

Manipulating Objects

Object Types 9-1

The Role of Abstraction

The Role of Abstraction

An abstraction is a high-level description or model of a real-world entity.
Abstractions keep our daily lives manageable. They help us reason about an object,
event, or relationship by suppressing irrelevant detail. For example, to drive a car,
you need not know how its engine works. A simple interface consisting of a
gearshift, steering wheel, accelerator, and brake, lets you use the car effectively. The
details of what happens under the hood are not important for day-to-day driving.

Abstractions are central to the discipline of programming. For example, you use
procedural abstraction when you suppress the details of a complex algorithm by
writing a procedure and passing it parameters. A single procedure call hides the
details of your implementation. To try a different implementation, you simply
replace the procedure with another having the same name and parameters. Thanks
to abstraction, programs that call the procedure need not be modified.

You use data abstraction when you specify the datatype of a variable. The datatype
stipulates a set of values and a set of operations appropriate for those values. For
instance, a variable of type POSITIVE can hold only positive integers, and can only
be added, subtracted, multiplied, and so on. To use the variable, you need not
know how PL/SQL stores integers or implements arithmetic operations; you
simply accept the programming interface.

Object types are a generalization of the built-in datatypes found in most
programming languages. PL/SQL provides a variety of built-in scalar and
composite datatypes, each of which is associated with a set of predefined
operations. A scalar type (such as CHAR has no internal components. A composite
type (such as RECORPhas internal components that can be manipulated
individually. Like the RECORIDype, an object type is a composite type. However, its
operations are user-defined, not predefined.

Currently, you cannot define object types within PL/SQL. They must be CREATE
and stored in an Oracle database, where they can be shared by many programs. A
program that uses object types is called a client program. It can declare and
manipulate an object without knowing how the object type represents data or
implements operations. This allows you to write the program and object type
separately, and to change the implementation of the object type without affecting
the program. Thus, object types support both procedural and data abstraction.

Note: To use object types, you must have the Oracle8 Enterprise Edition
and the Objects Option. For more information, see Getting to Know Oracle8
and the Oracle8 Enterprise Edition.

9-2 PL/SQL User’s Guide and Reference

What Is an Object Type?

What Is an Object Type?

An object type is a user-defined composite datatype that encapsulates a data
structure along with the functions and procedures needed to manipulate the data.
The variables that form the data structure are called attributes. The functions and
procedures that characterize the behavior of the object type are called methods.

We usually think of an object (such as a person, car, or bank account) as having
attributes and behaviors. For example, a baby has the attributes gender, age, and
weight, and the behaviors eat, drink, and sleep. Object types let you maintain this
perspective when you sit down to write an application.

When you define an object type using the CREATE TYPEtatement, you create an
abstract template for some real-world object. The template specifies only those
attributes and behaviors the object will need in the application environment. For
example, an employee has many attributes, but usually only a few are needed to fill
the requirements of an application (see Figure 9-1).

Figure 9—1 Form Follows Function

name

address
phone_number
date_born

sex
marital_status
education_level
military_service
hobbies
id_number
Ss_number
user_id
phone_extension

Employee Attributes

date_hired
status
department
job_title

salary
commission
rank
work_history
office_location
office_size
benefits_choices
dependents
beneficiaries

Payroll Application

name
id_number
ss_number
salary
commission
benefits_choices
dependents

Space Planning Application

id_number
job_title
department
office_location
office_size

Suppose you must write a program to allocate employee bonuses. Not all employee
attributes are needed to solve this problem. So, you design an abstract employee
who has the following problem-specific attributes: name, id_number, department,
job title, salary, and rank. Then, you identify the operations needed to handle an
abstract employee. For example, you need an operation that lets Management
change the rank of an employee.

Object Types 9-3

What Is an Object Type?

Next, you define a set of variables (attributes) to represent the data, and a set of
subprograms (methods) to perform the operations. Finally, you encapsulate the
attributes and methods in an object type.

The data structure formed by the set of attributes is public (visible to client
programs). However, well-behaved programs do not manipulate it directly.
Instead, they use the set of methods provided. That way, the employee data is kept
in a proper state. (Future releases of Oracle will let you define private data
structures, which can be manipulated only by the methods you provide.)

At run time, when the data structure is filled with values, you have created an
instance of an abstract employee. You can create as many instances (usually called
objects) as you need. Each object has the name, number, job title, and so on of an
actual employee (see Figure 9-2). This data is accessed or changed only by the
methods associated with it. Thus, object types let you create objects with well-
defined attributes and behavior.

Figure 9-2 Object Type and Objects (Instances) of That Type

Object Type Employee
Attributes Methods

name calculate_bonus
id_number change_dept
department change_job_title
job_title change_salary
salary change_rank
rank

Object

name: Hart Bell
id_number: 8022

department: Accounting
job_title: Clerk
salary: 1750
rank: 4

Object

name: Ann Polk
id_number: 8835
department: Marketing
job_title: Analyst
salary: 3200
rank: 3

9-4 PL/SQL User’'s Guide and Reference

Structure of an Object Type

Why Use Object Types?

Object types reduce complexity by breaking down a large system into logical
entities. This allows you to create software components that are modular,
maintainable, and reusable. It also allows different teams of programmers to
develop software components concurrently.

By encapsulating operations with data, object types let you move data-maintenance
code out of SQL scripts and PL/SQL blocks into methods. Object types minimize
side effects by allowing access to data only through approved operations. Also,
object types hide implementation details, so that you can change the details
without affecting client programs.

Object types allow for realistic data modeling. Complex real-world entities and
relationships map directly into object types. Moreover, object types map directly
into classes defined in object-oriented languages such as C++. Now your programs
can better reflect the world they are trying to simulate.

Structure of an Object Type

Like a package, an object type has two parts: a specification and a body (refer to
Figure 9-3). The specification is the interface to your applications; it declares a data
structure (set of attributes) along with the operations (methods) needed to
manipulate the data. The body fully defines the methods, and so implements the
specification.

Figure 9-3 Object Type Structure

specification
[attribute declarations |

public interface

| method specifications |

body
[method bodies | private implementation

All the information a client program needs to use the methods is in the
specification. Think of the specification as an operational interface and of the body
as a black box. You can debug, enhance, or replace the body without changing the
specification—and without affecting client programs.

Object Types 9-5

Structure of an Object Type

In an object type specification, all attributes must be declared before any methods.
Only subprograms have an underlying implementation. So, if an object type
specification declares only attributes, the object type body is unnecessary. You
cannot declare attributes in the body.

All declarations in the object type specification are public (visible outside the object
type). However, the object type body can contain private declarations, which define
methods necessary for the internal workings of the object type. The scope of private
declarations is local to the object type body.

To understand the structure better, study the example below, in which an object
type for complex numbers is defined. For now, it is enough to know that a complex
number has two parts, a real part and an imaginary part, and that several
arithmetic operations are defined for complex numbers.

CREATE TYPE Complex AS OBJECT (
mpart REAL,
ipart REAL,
MEMBER FUNCTION plus (x Complex) RETURN Complex,
MEMBER FUNCTION less (x Complex) RETURN Complex,
MEMBER FUNCTION times (x Complex) RETURN Complex,
MEMBER FUNCTION divby (x Complex) RETURN Complex

)

CREATE TYPE BODY Complex AS
MEMBER FUNCTION plus (x Complex) RETURN Complex IS
BEGIN
RETURN Complex(rpart + x.rpart, ipart + x.ipart);

END plus;
MEMBER FUNCTION less (x Complex) RETURN Complex IS
BEGIN

RETURN Complex(rpart - x.rpart, ipart - x.ipart);
END less;
MEMBER FUNCTION times (x Complex) RETURN Complex IS
BEGIN

RETURN Complex(rpart * x.rpart - ipart * x.ipart,

part* x.ipart + ipart * x.rpart);

END times;
MEMBER FUNCTION divby (x Complex) RETURN Complex IS

z REAL = x.part™2 + x.ipart™2;
BEGIN

RETURN Complex((rpart * x.rpart + ipart * x.ipart) / z,

(ipart* x.rpart - rpart * xipart) /);
END divby;
END;

9-6 PL/SQL User’'s Guide and Reference

Components of an Object Type

Components of an Object Type

Attributes

An object type encapsulates data and operations. So, you can declare attributes and
methods in an object type specification, but not constants, exceptions, cursors, or
types. At least one attribute is required (the maximum is 1000); methods are
optional.

Like a variable, an attribute is declared with a name and datatype. The nhame must
be unique within the object type (but can be reused in other object types). The
datatype can be any Oracle type except

= LONGand LONG RAW
« NCHARNCLOBand NVARCHAR
« MLSLABELand ROWID

« the PL/SQL-specific types BINARY_INTEGER(and its subtypes), BOOLEAN
PLS INTEGER RECOR[REF CURSORATYPEand %ROWTYPE

« types defined inside a PL/SQL package

For example, the REALvariables rpart and ipart are attributes of object type
Complex (defined in the previous section).

You cannot initialize an attribute in its declaration using the assignment operator or
DEFAULTclause. Also, you cannot impose the NOT NULLconstraint on an attribute.
However, objects can be stored in database tables on which you can impose
constraints.

The kind of data structure formed by a set of attributes depends on the real-world
object being modeled. For example, to represent a rational number, which has a
numerator and a denominator, you need only two INTEGERvariables. On the other
hand, to represent a college student, you need several VARCHARZariables to hold
a name, address, phone number, status, and so on, plus a VARRAWariable to hold
courses and grades.

The data structure can be very complex. For example, the datatype of an attribute
can be another object type (called a nested object type). That lets you build a
complex object type from simpler object types. Some object types such as queues,
lists, and trees are dynamic, meaning that they can grow as they are used.
Recursive object types, which contain direct or indirect references to themselves,
allow for highly sophisticated data models.

Object Types 9-7

Components of an Object Type

Methods

In general, a method is a subprogram declared in an object type specification using
the keyword MEMBERThe method cannot have the same name as the object type or
any of its attributes.

Like packaged subprograms, most methods have two parts: a specification and a
body. The specification consists of a method name, an optional parameter list, and,
for functions, a return type. The body is the code that executes to perform a specific
operation. For example, the functions plus , less |, times , and divby are methods
of object type Complex . These methods are always available to Complex objects.

For each method specification in an object type specification, there must be a
corresponding method body in the object type body. To match method
specifications and bodies, the PL/SQL compiler does a token-by-token comparison
of their headers. So, the headers must match word for word.

In an object type, methods can reference attributes and other methods without a
gualifier, as the example below shows.

CREATE TYPE Stack AS OBJECT (
top INTEGER,
MEMBER FUNCTION full RETURN BOOLEAN,
MEMBER PROCEDURE push (n IN INTEGER),

)
CREATE TYPE BODY Stack AS

MEMBER PROCEDURE push (nIN INTEGER) IS
BEGIN
IFNOT ful THEN
top =top+1,

END push;
END;

Parameter SELF

All methods in an object type accept an instance of that type as their first
parameter. The name of this built-in parameter is SELE Whether declared
implicitly or explicitly, SELF is always the first parameter passed to a method. For
example, method transform declares SELF as an IN OUT parameter:

CREATE TYPE Complex AS OBJECT (
MEMBER FUNCTION transform (SELF IN OUT Complex) ...

9-8 PL/SQL User’'s Guide and Reference

Components of an Object Type

In member functions, if SELFis not declared, its parameter mode defaults to IN .
However, in member procedures, if SELF is not declared, its parameter mode
defaults to IN OUT. You cannot specify a different datatype for SELF

In a method body, SELF denotes the object whose method was called. As the
following example shows, methods can reference the attributes of SELF without a
qualifier;

CREATE FUNCTION ged (X INTEGER, y INTEGER) RETURN INTEGER AS
—find greatest common divisor of xand y
ans INTEGER;
BEGIN
IF (y<=x) AND (x MODy=0) THEN ans =;
ELSIF x <y THEN ans := gcd(y, X);
ELSE ans :=gcd(y, x MODY);
ENDIF;
RETURN ans;
END;

CREATE TYPE Rational AS OBJECT (
num INTEGER,
den INTEGER,
MEMBER PROCEDURE nomalize,

N

CREATE TYPE BODY Rational AS

MEMBER PROCEDURE nomalize IS
gINTEGER;

BEGIN
— the next two statements are equivalent
g :=gcd(SELF.num, SELF.den);
g :=gcd(num, den);
num:=num/g;
den:=den/g;

END nomalize;

END;

Object Types 9-9

Components of an Object Type

Overloading

Like packaged subprograms, methods of the same kind (functions or procedures)
can be overloaded. That is, you can use the same name for different methods if
their formal parameters differ in number, order, or datatype family. When you call
one of the methods, PL/SQL finds it by comparing the list of actual parameters
with each list of formal parameters.

You cannot overload two methods if their formal parameters differ only in
parameter mode. Also, you cannot overload two member functions that differ only
in return type. For more information, see “Overloading” on page 7-18.

Map and Order Methods

The values of a scalar datatype such as CHARor REALhave a predefined order,
which allows them to be compared. But, instances of an object type have no
predefined order. To put them in order, PL/SQL calls a map method supplied by
you. In the following example, the keyword MAPindicates that method convert
orders Rational objects by mapping them to REALvalues:

CREATE TYPE Rational AS OBJECT (
num INTEGER,
den INTEGER,
MAP MEMBER FUNCTION convert RETURN REAL,

N

CREATE TYPE BODY Rational AS
MAP MEMBER FUNCTION convert RETURN REAL IS
— convert rational number to real number
BEGIN
RETURN num/den;
END convert;

EKID;
PL/SQL uses the ordering to evaluate Boolean expressions suchas x >y ,and to
do comparisons implied by the DISTINCT, GROUP B¥ind ORDER B¥lauses. Map

method convert returns the relative position of an object in the ordering of all
Rational obijects.

An object type can contain only one map method, which must be a parameterless
function with one of the following scalar return types: DATE NUMBERVARCHAR2
an ANSI SQL type such as CHARACTERr REAL

9-10 PL/SQL User's Guide and Reference

Components of an Object Type

Alternatively, you can supply PL/SQL with an order method. In the example below,
the keyword ORDERnNdicates that method match compares two objects. Every
order method takes just two parameters: the built-in parameter SELF and another
object of the same type.

If c1 and c2 are Customer obijects, a comparison such as c1 >c¢2 calls method
match automatically. The method returns a negative number, zero, or a positive
number signifying that SELF is respectively less than, equal to, or greater than the
other parameter.

CREATE TYPE Customer AS OBJECT (
id NUMBER,
name VARCHAR2(20),
addr VARCHAR2(30),
ORDER MEMBER FUNCTION match (c Customer) RETURN INTEGER

)

CREATE TYPE BODY Customer AS
ORDER MEMBER FUNCTION match (c Customer) RETURN INTEGER IS
BEGIN
IFid <cid THEN
RETURN -1; — any negative number will do
ELSIFid > cid THEN
RETURN 1; -any positive number will do
ELSE
RETURNO;
ENDIF;
END;
END;

An object type can contain only one order method, which must be a function that
returns a numeric result.

Guidelines A map method, acting like a hash function, maps object values into
scalar values (which are easier to compare), then compares the scalar values. An
order method simply compares one object value to another.

You can declare a map method or an order method but not both. If you declare
either method, you can compare objects in SQL and procedural statements.
However, if you declare neither method, you can compare objects only in SQL
statements and only for equality or inequality. (Two objects of the same type are
equal only if the values of their corresponding attributes are equal.)

Object Types 9-11

Components of an Object Type

When sorting or merging a large number of objects, use a map method. One call
maps all the objects into scalars, then sorts the scalars. An order method is less
efficient because it must be called repeatedly (it can compare only two objects at a
time). You must use a map method for hash joins because PL/SQL hashes on the
object value.

Constructor Methods

Every object type has a constructor method (constructor for short), which is a system-
defined function with the same name as the object type. You use the constructor to
initialize and return an instance of that object type.

Oracle generates a default constructor for every object type. The formal parameters
of the constructor match the attributes of the object type. That is, the parameters
and attributes are declared in the same order and have the same names and
datatypes.

PL/SQL never calls a constructor implicitly, so you must call it explicitly.
Constructor calls are allowed wherever function calls are allowed. For more
information, see “Calling Constructors and Methods” on page 9-26.

Pragma RESTRICT_REFERENCES

To execute a SQL statement that calls a member function, Oracle must know the
purity level of the function, that is, the extent to which the function is free of side
effects. (In this context, side effects are references to database tables or packaged
variables.)

Side effects can prevent the parallelization of a query, yield order-dependent (and
therefore indeterminate) results, or require that package state be maintained across
user sessions (which is not allowed). So, the following rules apply to a member
function called from SQL statements:

« Itcannotinsert into, update, or delete from database tables.

« It cannot be executed remotely or in parallel if it reads or writes the values of
packaged variables.

« It cannot write the values of packaged variables unless it is called from a
SELECT VALUES or SET clause.

« It cannot call another method or subprogram that breaks one of the foregoing
rules. Also, it cannot reference a view that breaks one of the rules. (Oracle
replaces references to a view with a stored SELECToperation, which can
include function calls.)

9-12 PL/SQL User's Guide and Reference

Components of an Object Type

You use the pragma (compiler directive) RESTRICT _REFERENCE® enforce these
rules. The pragma tells the PL/SQL compiler to deny the member function
read/write access to database tables, packaged variables, or both.

In the object type specification, you code the pragma somewhere after the method
to which it applies. The syntax follows:

PRAGMA RESTRICT REFERENCES (DEFAULT | method_name},
{RNDS | WNDS | RNPS | WNPSY], {RNDS | WNDS | RNPS | WNPS}..);

For example, the following pragma constrains map method convert to read no
database state (RNDS, write no database state (WNDJ read no package state
(RNPS, and write no package state (WNP3$3

CREATE TYPE Rational AS OBJECT (
num INTEGER,
den INTEGER,
MAP MEMBER FUNCTION convert RETURN REAL,

PRAGMA RESTRICT REFERENCES (convert, RNDS,WNDS,RNPS,WNPS)
)

You can specify up to four constraints in any order. To call the method from parallel
gueries, you must specify all four constraints. No constraint implies another. For
example, WNPS&loes not imply RNPS

If you specify the keyword DEFAULTinstead of a method name, the pragma
applies to all member functions including the system-defined constructor. For
example, the following pragma constrains all member functions to write no
database or package state:

PRAGMA RESTRICT_REFERENCES (DEFAULT, WNDS, WNPS)
You can declare the pragma for any member function. Such pragmas override the
default pragma. However, a non-default pragma can apply to only one method. So,

among overloaded methods, the pragma always applies to the nearest preceding
method.

For more information about pragma RESTRICT_REFERENCESee Oracle8
Application Developer’s Guide.

Object Types 9-13

Defining Object Types

Defining Object Types

An object type can represent any real-world entity. For example, an object type can
represent a student, bank account, computer screen, rational number, or data
structure such as a queue, stack, or list. This section gives several complete
examples, which teach you a lot about the design of object types and prepare you
to start writing your own.

Currently, you cannot define object types in a PL/SQL block, subprogram, or
package. However, you can define them interactively in SQL*Plus or Enterprise
Manager using the following syntax:

CREATE TYPE type_name{IS| AS}OBJECT (
attribute_name datatype], attribute_name datatype]...
{MAP | ORDER} MEMBER function_specification,]
[MEMBER {procedure_specification | function_specification}
| restrict_references_pragma
[MEMBER {procedure_specification | function_specification}
| restrict_references_pragmall...);

[CREATE TYPE BODY type_name {IS | AS}
{{MAP | ORDER} MEMBER function_bodly:;
| MEMBER {procedure_body | function_body};}
[MEMBER {procedure_body | function_body}]... END;]

Object Type Stack

A stack holds an ordered collection of data items. As the name implies, stacks have

a top and a bottom. But, items can be added or removed only at the top. So, the last
item added to a stack is the first item removed. (Think of the stack of clean serving

trays in a cafeteria.) The operations push and pop update the stack while preserving
last in, first out (LIFO) behavior.

Stacks have many applications. For example, they are used in systems
programming to prioritize interrupts and to manage recursion. The simplest
implementation of a stack uses an integer array. Integers are stored in array
elements, with one end of the array representing the top of the stack.

PL/SQL provides the datatype VARRAYwhich allows you to declare variable-size
arrays (varrays for short). To declare a varray attribute, we must first define its
type. However, we cannot define types in an object type specification. So, we define
a stand-alone varray type, specifying its maximum size, as follows:

CREATE TYPE IntArray AS VARRAY(25) OF INTEGER,;

9-14 PL/SQL User's Guide and Reference

Defining Object Types

Now, we can write our object type specification, as follows:

CREATE TYPE Stack AS OBJECT (
max_size INTEGER,
top INTEGER,
position IntAray,
MEMBER PROCEDURE initialize,
MEMBER FUNCTION full RETURN BOOLEAN,
MEMBER FUNCTION empty RETURN BOOLEAN,
MEMBER PROCEDURE push (n IN INTEGER),
MEMBER PROCEDURE pop (n OUT INTEGER)

)

Finally, we write the object type body, as follows:

CREATE TYPE BODY Stack AS

MEMBER PROCEDURE initialize IS

BEGIN
top =0;
F Call constructor for varray and set element 1 to NULL. ¥/
position := IntArray(NULL);
max_size := position.LIMIT; — get varray size constraint (25)
position.EXTEND(max_size - 1, 1); - copy element 1 into 2..25

END initialize;

MEMBER FUNCTION full RETURN BOOLEAN IS
BEGIN

RETURN (top =max_size); —retum TRUE if stack is full
END full;

MEMBER FUNCTION empty RETURN BOOLEAN IS
BEGIN

RETURN (top =0); — retum TRUE if stack is empty
END empty;

MEMBER PROCEDURE push (nIN INTEGER) IS
BEGIN
IFNOT ful THEN
top :=top + 1; — push integer onto stack
position(top) = n;
ELSE - stackisfull
RAISE_APPLICATION_ERROR(-20101, ‘stack overflow’);
ENDIF;
END push;

MEMBER PROCEDURE pop (n OUT INTEGER) IS

Object Types 9-15

Defining Object Types

BEGIN
IF NOT empty THEN
n := position(top);
top =top-1; — pop integer off stack
ELSE - stackis empty
RAISE_APPLICATION_ERROR(-20102, ‘stack underfiow);
ENDIF;
END pop;
END;

Notice that in member procedures push and pop, we use the built-in procedure
raise_application_error to issue user-defined error messages. That way, we
report errors to the client program and avoid returning unhandled exceptions to
the host environment. The client program gets a PL/SQL exception, which it can
process using the error-reporting functions SQLCODEBNnd SQLERRNh an OTHERS
exception handler, as follows:

DECLARE
emr_num NUMBER,
em_msg VARCHAR2(100);
BEGIN

EXCEPTION

WHEN OTHERS THEN
emr_num = SQLCODE;
em_msg = SUBSTR(SQLERRM, 1, 100);
DBMS_OUTPUT.PUT_LINE(TO_CHAR(em_num) ||’ || emr_msg);

The string function SUBSTRensures that a VALUE_ERRORXxception (for
truncation) is not raised when you assign the value of SQLERRNb err_msg .

Alternatively, the program can use pragma EXCEPTION_INIT to map the error
numbers returned by raise _application_error to named exceptions, as the
following example shows:

DECLARE
stack_overflow EXCEPTION,;
stack_underflow EXCEPTION;
PRAGMA EXCEPTION_INIT(stack_overflow, -20101);
PRAGMA EXCEPTION_INIT(stack _underflow, -20102);
BEGIN

EXCEPTION
WHEN stack_overfiow THEN ...

9-16 PL/SQL User's Guide and Reference

Defining Object Types

Object Type Ticket Booth

Consider a chain of low-budget, triplex movie theatres. Each theatre has a ticket
booth where tickets for three different movies are sold. All tickets are priced at
$2.50. Periodically, ticket receipts are collected and the stock of tickets is
replenished.

Before defining an object type that represents a ticket booth, we must consider the
data and operations needed. For a simple ticket booth, the object type needs
attributes for the ticket price, quantity of tickets on hand, and receipts. It also needs
methods for the following operations: purchase ticket, take inventory, replenish
stock, and collect receipts.

For receipts, we use a three-element varray. Elements 1, 2, and 3 record the ticket
receipts for movies 1, 2, and 3, respectively. To declare a varray attribute, we must
first define its type, as follows;

CREATE TYPE RealArray AS VARRAY(3) OF REAL,;

Now, we can write our object type specification, as follows:

CREATE TYPE Ticket_Booth AS OBJECT (
pice REAL,
qty_on_hand INTEGER,
receipts RealAray,
MEMBER PROCEDURE initialize,
MEMBER PROCEDURE purchase (
movie INTEGER,
amount REAL,
change OUT REAL),
MEMBER FUNCTION inventory RETURN INTEGER,
MEMBER PROCEDURE replenish (quantity INTEGER),
MEMBER PROCEDURE collect (movie INTEGER, amount OUT REAL)

)

Finally, we write the object type body, as follows:

CREATE TYPE BODY Ticket_Booth AS

MEMBER PROCEDURE inttialize IS

BEGIN
price :=2.50;
qty_on_hand :=5000; — provide initial stock of tickets
— call constructor for varray and set elements 1..3 to zero
receipts := RealArray(0,0,0);

END initialize;

Object Types 9-17

Defining Object Types

MEMBER PROCEDURE purchase (

movie INTEGER,

amount REAL,

change OUT REAL) IS

BEGIN

IFgty_on_hand=0THEN
RAISE_APPLICATION ERROR(-20103, ‘out of stock));

ENDIF;

IF amount >= price THEN
qty_on_hand:=qty_on_hand-1;
receipts(movie) := receipts(movie) + price;
change :=amount - price;

ELSE -amount is not enough
change :=amount; —so retum fullamount

ENDIF;

END purchase;

MEMBER FUNCTION inventory RETURN INTEGER IS
BEGIN

RETURN gty_on_hand;
END inventory;

MEMBER PROCEDURE replenish (quantity INTEGER) IS
BEGIN

qty_on_hand :=qty_on_hand + quantity;
END replenish;

MEMBER PROCEDURE collect (movie INTEGER, amount OUT REAL) IS
BEGIN
amount := receipts(movie); — get receipts for a given movie
receipts(movie) := 0; — reset receipts for that movie to zero
END collect;
END;

9-18 PL/SQL User's Guide and Reference

Defining Object Types

Object Type Bank_Account

Before defining an object type that represents a bank account, we must consider the
data and operations needed. For a simple bank account, the object type needs
attributes for an account number, balance, and status. It also needs methods for the
following operations: open account, verify account number, close account, deposit
money, withdraw money, and return balance.

First, we write the object type specification, as follows;

CREATE TYPE Bank_Account AS OBJECT (
acct_number INTEGER(5),
balance REAL,
status VARCHARZ2(10),
MEMBER PROCEDURE open (amount IN REAL),
MEMBER PROCEDURE verify_acct (hum IN INTEGER),
MEMBER PROCEDURE close (num IN INTEGER, amount OUT REAL),
MEMBER PROCEDURE deposit (num IN INTEGER, amount IN REAL),
MEMBER PROCEDURE withdraw (num IN INTEGER, amount IN REAL),
MEMBER FUNCTION cum_bal (SELF IN OUT Bank_Account, num IN INTEGER)

RETURN REAL

)
Then, we write the object type body, as follows:

CREATE TYPE BODY Bank_AccountAS

MEMBER PROCEDURE open (amount IN REAL) IS

— open account with initial deposit

BEGIN
IFNOT amount >0 THEN

RAISE_APPLICATION ERROR(-20104, ‘bad amount);

ENDIF;
SELECT acct_sequence.NEXTVAL INTO acct_number FROM dual;
status :=‘open’;
balance :=amount;

END open,

MEMBER PROCEDURE verify_acct (num IN INTEGER) IS
— check for wrong account number or closed account
BEGIN
IF (hum <> acct_number) THEN
RAISE_APPLICATION_ERROR(-20105, ‘wrong number);
ELSIF (status = ‘closed’) THEN
RAISE_APPLICATION_ERROR(-20106, ‘account closed);
ENDIF;
END verify_acct;

Object Types 9-19

Defining Object Types

MEMBER PROCEDURE close (num IN INTEGER, amount OUT REAL) IS
- close account and retum balance
BEGIN
verify_acct(num);
status ;= ‘closed;;
amount := balance;
END close;

MEMBER PROCEDURE deposit (num IN INTEGER, amount IN REAL) IS
BEGIN

verify_acct(num);

IFNOT amount >0 THEN

RAISE_APPLICATION ERROR(-20104, ‘bad amount);

ENDIF;

balance = balance +amount;
END depost;

MEMBER PROCEDURE withdraw (num IN INTEGER, amount IN REAL) IS
—if account has enough funds, withdraw
- given amount; else, raise an exception
BEGIN
verify_acct(num);
IF amount <= balance THEN
balance :=balance - amount;
ELSE
RAISE_APPLICATION_ERROR(-20107, ‘insufficient funds’);
ENDIF;
END withdraw;

MEMBER FUNCTION curr_bal (SELF IN OUT Bank_Account, num IN INTEGER)
RETURN REAL IS
BEGIN
verify_acct(num);
RETURN balance;
END curr_bal;
END,;

9-20 PL/SQL User's Guide and Reference

Defining Object Types

Object Type Rational

A rational number is a number expressible as the quotient of two integers, a
numerator and a denominator. Like most languages, PL/SQL does not have a
rational number type or predefined operations on rational numbers. Let us remedy
that omission by defining object type Rational . First, we write the object type
specification, as follows:

CREATE TYPE Rational AS OBJECT (
num INTEGER,
den INTEGER,
MAP MEMBER FUNCTION convert RETURN REAL,
MEMBER PROCEDURE normalize,
MEMBER FUNCTION reciprocal RETURN Rational,
MEMBER FUNCTION plus (x Rational) RETURN Rational,
MEMBER FUNCTION less (x Rational) RETURN Rational,
MEMBER FUNCTION times (x Rational) RETURN Rational,
MEMBER FUNCTION divby (x Rational) RETURN Rational,
PRAGMA RESTRICT_REFERENCES (DEFAULT, RNDS WNDS,RNPS WNPS)

)

PL/SQL does not allow the overloading of operators. That is why we define
methods named plus , less (the word minus is reserved), times , and divby
instead of overloading the infix operators +, —, *, and / .

Next, we create the following stand-alone stored function, which will be called by
method normalize

CREATE FUNCTION ged (X INTEGER, y INTEGER) RETURN INTEGER AS
—find greatest common divisor of xand y
ans INTEGER;
BEGIN
IF (y<=x) AND (x MODy=0) THEN
ans =y;
ELSIFx<yTHEN
ans :=gced(y, X); —recursive call
ELSE
ans :=ged(y, x MODY); —recursive call
ENDIF;
RETURN ans;
END;

Object Types 9-21

Defining Object Types

Then, we write the object type body, as follows:

CREATE TYPE BODY Rational AS
MAP MEMBER FUNCTION convert RETURN REAL IS
— convert rational number to real number
BEGIN
RETURN num/den;
END convert;

MEMBER PROCEDURE nomialize IS
- reduce fraction num / den to lowest terms
gINTEGER;
BEGIN
g:=gcd(num, deny;
num:=num/g;
den:=den/g;
END nomalize;

MEMBER FUNCTION reciprocal RETURN Rational IS
- retum reciprocal of num/den
BEGIN
RETURN Rational(den, num); — call constructor
END reciprocal,

MEMBER FUNCTION plus (x Rational) RETURN Rational IS
- retum sum of SELF +x
r Rational
BEGIN
r ;= Rational(num * x.den + x.num * den, den * x.den);
rnormalize;
RETURNT,
END plus;

MEMBER FUNCTION less (x Rational) RETURN Rational IS
- retum difference of SELF - x
r Rational
BEGIN
r := Rational(num * x.den - x.num* den, den * x.den);
r.normalize;
RETURNT;
END less;

MEMBER FUNCTION times (x Rational) RETURN Rational IS

- retum product of SELF *x
r Rational,

9-22 PL/SQL User's Guide and Reference

Declaring and Initializing Objects

BEGIN
r := Rational(num * x.num, den * x.den);
r.nomalize;
RETURNT;

END times;

MEMBER FUNCTION divby (x Rational) RETURN Rational IS
- retum quotient of SELF / x
r Rational
BEGIN
r := Rational(num * x.den, den * x.num);
rnormalize;
RETURNT;
END divby;
END;

Declaring and Initializing Objects

Once an object type is defined and installed in the schema, you can use it to declare
objects in any PL/SQL block, subprogram, or package. For example, you can use
the object type to specify the datatype of an attribute, column, variable, bind
variable, record field, table element, formal parameter, or function result. At run
time, instances of the object type are created; that is, objects of that type are
instantiated. Each object can hold different values.

Such objects follow the usual scope and instantiation rules. In a block or
subprogram, local objects are instantiated when you enter the block or subprogram
and cease to exist when you exit. In a package, objects are instantiated when you
first reference the package and cease to exist when you end the database session.

Declaring Objects

You can use object types wherever built-in types such as CHARor NUMBERan be
used. In the block below, you declare object r of type Rational . Then, you call the
constructor for object type Rational to initialize the object. The call assigns the
values 6 and 8 to attributes numand den, respectively.

DECLARE
r Rational;

BEGIN
r := Rational(6, 8);
DBMS_OUTPUT.PUT_LINE(r.num); — prints 6

Object Types 9-23

Declaring and Initializing Objects

You can declare objects as the formal parameters of functions and procedures. That
way, you can pass objects to stored subprograms and from one subprogram to
another. In the next example, you use object type Account to specify the datatype
of a formal parameter:

DECLARE
PROCEDURE open_acct (new_acctIN OUT Account) IS ...

In the following example, you use object type Account to specify the return type
of a function:

DECLARE

FUNCTION get_acct (acct id IN INTEGER) RETURN Account S ...

Initializing Objects

Until you initialize an object by calling the constructor for its object type, the object
is atomically null. That is, the object itself is null, not just its attributes. Consider the
following example:

DECLARE

r Rational; —r becomes atomically null
BEGIN

r = Rational(2,3); —rbecomes 2/3

A null object is never equal to another object. In fact, comparing a null object with
any other object always yields NULL Also, if you assign an atomically null object to
another object, the other object becomes atomically null (and must be reinitialized).
Likewise, if you assign the non-value NULL to an object, the object becomes
atomically null, as the following example shows:

DECLARE
r Rational;
BEGIN
r Rational := Rational(1,2); — r becomes 1/2
r:=NULL; —-rbecomes atomically null
IFrIS NULL THEN ... — condition yields TRUE

A good programming practice is to initialize an object in its declaration, as shown
in the following example:

DECLARE
r Rational := Rational(2,3); - r becomes 2/3

9-24 PL/SQL User's Guide and Reference

Accessing Attributes

How PL/SQL Treats Uninitialized Objects

In an expression, attributes of an uninitialized object evaluate to NULL Trying to
assign values to attributes of an uninitialized object raises the predefined exception
ACCESS_INTO_NULLWhen applied to an uninitialized object or its attributes, the
IS NULL comparison operator yields TRUE

The following example illustrates the difference between null objects and objects
with null attributes:

DECLARE
r Rational; —ris atomically null
BEGIN
IFrISNULL THEN ... —yields TRUE
IF r.num IS NULL THEN ... —yields TRUE
r:= Rational(NULL, NULL); —initializes r
r.num :=4; — succeeds because r is no longer atomically null
—even though all its attributes are null
r:=NULL; —rbecomes atomically null again
rnum :=4; —raises ACCESS _INTO_NULL
EXCEPTION
WHENACCESS_INTO_NULL THEN

ENE);
Calls to methods of an uninitialized object are allowed, in which case SELFis
bound to NULL When passed as arguments to IN parameters, attributes of an

uninitialized object evaluate to NULL When passed as arguments to OUTor IN OUT
parameters, they raise an exception if you try to write to them.

Accessing Attributes

You can refer to an attribute only by name (not by its position in the object type). To
access or change the value of an attribute, you use dot notation. In the example
below, you assign the value of attribute den to variable denominator . Then, you
assign the value stored in variable numerator to attribute num

DECLARE
r Rational := Rational(NULL, NULL);
numerator INTEGER;
denominator INTEGER;

BEGIN

denominator :=r.den;
r.NUM = numerator;

Object Types 9-25

Calling Constructors and Methods

Attribute names can be chained, which allows you to access the attributes of a
nested object type. For example, suppose we define object types Address and
Student , as follows:

CREATE TYPE Address AS OBJECT (
street VARCHAR2(30),

cty VARCHAR2(20),

state CHAR(2),

Zip_code VARCHAR2(5)

)

CREATE TYPE Student AS OBJECT (
name VARCHAR2(20),
home_address Address,
phone_number VARCHAR2(10),
status VARCAHR2(10),
advisor_name VARCHAR2(20),

);'...

Notice that zip_code is an attribute of object type Address and that Address is
the datatype of attribute home_address in object type Student . If s is a Student
object, you access the value of its zip_code attribute as follows:

shome_address.zip_code

Calling Constructors and Methods

Calls to a constructor are allowed wherever function calls are allowed. Like all
functions, a constructor is called as part of an expression, as the following example
shows:

DECLARE
rl Rational := Rational(2, 3);
FUNCTION average (x Rational, y Rational) RETURN Rational IS
BEGIN
END;
BEGIN
rl .= average(Rational(3, 4), Rational(7, 11));
IF (Rational(5, 8) > r1) THEN

ENDIF;
END;

9-26 PL/SQL User's Guide and Reference

Calling Constructors and Methods

Passing Parameters to a Constructor

When you pass parameters to a constructor, the call assigns initial values to the
attributes of the object being instantiated. You must supply a parameter for every
attribute because, unlike constants and variables, attributes cannot have DEFAULT
clauses. As the following example shows, the nth parameter assigns a value to the
nth attribute:

DECLARE
r Rational,

BEGIN
r := Rational(5, 6); —assign 5 to num, 6 to den
—nowris5/6

You can call a constructor using named notation instead of positional notation, as
the following example shows:

BEGIN
r := Rational(den => 6, num =>5); —assign 5to num, 6toden

Calling Methods

Like packaged subprograms, methods are called using dot notation. In the example
below, you call method normalize, which divides attributes numand den by
their greatest common divisor.

DECLARE
r Rational,
BEGIN
r := Rational(6, 8);
rnomalize;;
DBMS_OUTPUT.PUT_LINE(r.numy); — prints 3

As the example below shows, you can chain method calls. Execution proceeds from
left to right. First, member function reciprocal is called, then member procedure
normalize is called.

DECLARE
r Rational := Rational(6, 8);

BEGIN
r.reciprocal().normalize;
DBMS_OUTPUT.PUT_LINE(r.num); — prints 4

Object Types 9-27

Sharing Objects

In SQL statements, calls to a parameterless method require an empty parameter
list. In procedural statements, an empty parameter list is optional unless you chain
calls, in which case it is required for all but the last call.

You cannot chain additional method calls to the right of a procedure call because
procedures are called as statements, not as part of an expression. For example, the
following statement is illegal:

r.nomalize().reciprocal; —illegal

Also, if you chain two function calls, the first function must return an object that
can be passed to the second function.

Sharing Objects

Most real-world objects are considerably larger and more complex than objects of
type Rational . Consider the following object types:

CREATE TYPE Address AS OBJECT (
street_address VARCHAR2(35),

city VARCHAR2(15),

state CHAR(2),

Zip_code INTEGER
)

CREATE TYPE Person AS OBJECT (
fist name VARCHAR2(15),
last name VARCHAR2(15),
birthday DATE,
home_address Address, — nested object type
phone_number VARCHAR2(15),
ss_number INTEGER,

N

Address objects have twice as many attributes as Rational objects, and Person
objects have still more attributes including one of type Address . When an object is
large, it is inefficient to pass copies of it from subprogram to subprogram. It makes
more sense to share the object. You can do that if the object has an object identifier.
To share the object, you use references (refs for short). A ref is a pointer to an object.

Sharing has two important advantages. First, data is not replicated unnecessarily.
Second, when a shared object is updated, the change occurs in only one place, and
any ref can retrieve the updated values instantly.

9-28 PL/SQL User's Guide and Reference

Sharing Objects

Using Refs

In the following example, we gain the advantages of sharing by defining object
type Homeand then creating a table that stores instances of that object type:

CREATE TYPE Home AS OBJECT (
address VARCHAR2(35),
owner VARCHAR2(25),
age INTEGER,
style VARCHAR(15),
floor plan BLOB,
price REAL(9,2),

)

CREATE TABLE homes OF Home;

By revising object type Person , we can model a community in which several
people might share the same home. We use the type modifier REFto declare refs,
which hold pointers to objects.

CREATE TYPE Person AS OBJECT (
first_name VARCHAR2(10),
last name VARCHAR2(15),
birthday DATE,
home_address REF Home, — can be shared by family
phone_number VARCHAR2(15),
ss_number INTEGER,
mother REF Person, — family members refer to each other
father REF Person,

N

Notice how references from persons to homes and between persons model real-
world relationships.

You can declare refs as variables, parameters, fields, or attributes. And, you can use
refs as input or output variables in SQL data manipulation statements. However,
you cannot navigate through refs. Given an expression such as x.attribute ,
where x is a ref, PL/SQL cannot navigate to the table in which the referenced object
is stored. For example, the following assignment is illegal:

DECLARE
p_ref REF Person;
phone_no VARCHAR2(15);

Object Types 9-29

Sharing Objects

BEGIN
phone_no :=p_refphone_number; —illegal

Instead, you must use the operator DERERO access the object. For some examples,
see “Using Operator DEREF” on page 9-34.

Forward Type Definitions

You can refer only to schema objects that already exist. In the following example,
the first CREATE TYPEtatement is illegal because it refers to object type
Department , which does not yet exist.

CREATE TYPE Employee AS OBJECT (
name VARCHAR2(20),
dept REF Department, —illegal

)

CREATE TYPE Department AS OBJECT (
number INTEGER,

manager Employee,
)

Switching the CREATE TYPEtatements does not help because the object types are
mutually dependent; that is, one depends on the other through a ref. To solve this
problem, you use a special CREATE TYPBEtatement called a forward type definition,
which lets you define mutually dependent object types.

To debug the last example, simply precede it with the following statement:

CREATE TYPE Department; —forward type definition
- at this point, Department is an incomplete object type

The object type created by a forward type definition is called an incomplete object
type because (until it is defined fully) it has no attributes or methods.

An impure incomplete object type has attributes but compiles with semantic (not
syntactic) errors because it refers to an undefined type. For example, the following
CREATE TYPEtatement compiles with a semantic error because object type
Address is undefined:

CREATE TYPE Customer AS OBJECT (
id NUMBER,
name VARCHAR2(20),

9-30 PL/SQL User's Guide and Reference

Manipulating Objects

addr Address, - not yet defined
phone VARCHAR2(15)

)

This allows you to defer the definition of object type Address . Moreover, the
incomplete type Customer can be made available to other application developers
for use in refs.

Manipulating Objects

You can use an object type in the CREATE TABLEtatement to specify the datatype
of a column. Once the table is created, you can use SQL statements to insert an
object, select its attributes, call its methods, and update its state.

In the SQL*Plus script below, the INSERT statement calls the constructor for object
type Rational , then inserts the resulting object. The SELECTstatement retrieves
the value of attribute num The UPDATEstatement calls member method

reciprocal , which returns a Rational value after swapping attributes numand
den. Notice that a table alias is required when you reference an attribute or
method. (For an explanation, see Appendix E.)

CREATE TABLE numbers (m Rational, ...)

{NSERT INTO numbers (m) VALUES (Rational(3, 62)) — inserts 3/62
/SELECT n.m.num INTO my_num FROM numbers nWHERE ... —retums 3
/UPDATE numbers n SET n.m = nm.reciprocal WHERE ... —yields 62/3

/

When you instantiate an object this way, it has no identity outside the database
table. However, the object type exists independently of any table, and can be used
to create objects in other ways.

In the next example, you create a table that stores objects of type Rational in its

rows. Such tables, having rows of objects, are called object tables. Each column in a

row corresponds to an attribute of the object type. Rows can have different column
values.

CREATE TABLE rational_nums OF Rational;

Each row in an object table has an object identifier, which uniquely identifies the
object stored in that row and serves as a reference to the object.

Object Types 9-31

Manipulating Objects

Selecting Objects

Assume that you have run the following SQL*Plus script, which creates object type
Person and object table persons , and that you have populated the table:

CREATE TYPE Person AS OBJECT (
first_ name VARCHAR2(15),
last name VARCHAR2(15),
bithday DATE,
home_address Address,
phone_number VARCHAR2(15))

/

CREATE TABLE persons OF Person

/

The following subquery produces a result set of rows containing only the attributes
of Person objects:

BEGIN
INSERT INTO employees - another object table of type Person
SELECT * FROM persons p
WHERE plast_name LIKE ‘%Smith’;

To return a result set of objects, you must use the operator VALUE which is
discussed in the next section.

Using Operator VALUE

As you might expect, the operator VALUEreturns the value of an object. VALUE
takes as its argument a correlation variable. (In this context, a correlation variable is a
row variable or table alias associated with a row in an object table.) For example, to
return a result set of Person objects, you use VALUE as follows:

BEGIN
INSERT INTO employees
SELECT VALUE(p) FROM persons p
WHERE plast_name LIKE ‘%Smith’;

In the next example, you use VALUEto return a specific Person object:

DECLARE
p1 Person;
p2 Person;
BEGIN
SELECT VALUE(p) INTO p1 FROM persons p
WHERE plast_name = Kral;

9-32 PL/SQL User's Guide and Reference

Manipulating Objects

p2:=pl;
END;

At this point, p1 holds a local Person object, which is a copy of the stored object
whose last name is 'Kroll’ , and p2 holds another local Person object, which is a
copy of p1. As the following example shows, you can use these variables to access
and update the objects they hold:

BEGIN
pllast name :=pllast_name||'Jr;

Now, the local Person object held by p1 has the last name 'Kroll Jr’

Using Operator REF

You can retrieve refs using the operator REF which, like VALUE takes as its
argument a correlation variable. In the following example, you retrieve one or more
refs to Person objects, then insert the refs into table person_refs

BEGIN
INSERT INTO person_refs
SELECT REF(p) FROM persons p
WHERE p.ast_name LIKE %Smith’;

In the next example, you retrieve a ref and attribute at the same time:

DECLARE
p_ref REF Person;
taxpayer_id VARCHAR2(9);
BEGIN
SELECT REF(p), p.ss_number INTO p_ref, taxpayer_id
FROM persons p
WHERE plast_name ='Parker’; — must retum one row

END;
In the final example, you update the attributes of a Person object:

DECLARE
p_ref REF Person;
my_last name VARCHAR2(15);

BEGIN

Object Types 9-33

Manipulating Objects

SELECT REF(p) INTO p_ref FROM persons p
WHERE plast name=my _last name;
UPDATE persons p
SET p = Person(Jill,'’Anders, "11-NOV-67,, ...
WHERE REF(p) = p_ref;
END;

Testing for Dangling Refs

If the object to which a ref points is deleted, the ref is left dangling (pointing to a
nonexistent object). To test for this condition, you can use the SQL predicate IS
DANGLINGFor example, suppose column manager in relational table
department holds refs to Employee objects stored in an object table. You can use
the following UPDATEstatement to convert any dangling refs into nulls:

BEGIN
UPDATE department SET manager = NULL WHERE manager IS DANGLING;

Using Operator DEREF

You cannot navigate through refs within PL/SQL procedural statements. Instead,
you must use the operator DEREHFN a SQL statement. (DEREHRS short for
dereference. When you dereference a pointer, you get the value to which it points.)
DERERakes as its argument a reference to an object, then returns the value of that
object. If the ref is dangling, DEREFReturns a null object.

In the example below, you dereference a ref to a Person object. Notice that you
select the ref from dummy table dual . You need not specify an object table and
search criteria because each object stored in an object table has a unique, immutable
object identifier, which is part of every ref to that object.

DECLARE
pl Person;
p_ref REF Person;
name VARCHAR2(15);
BEGIN

P Assume that p_ref holds a valid reference

to an object stored in an object table. */
SELECT DEREF(p_ref) INTO p1 FROM dual;
name = pllast name;

9-34 PL/SQL User's Guide and Reference

Manipulating Objects

You can use DEREHRN successive SQL statements to dereference refs, as the
following example shows;

CREATE TYPE PersonRef AS OBJECT (p_ref REF Person)
/
DECLARE
name VARCHAR2(15);
pr_ref REF PersonRef;
pr PersonRef;
p Person;
BEGIN

F Assume pr_ref holds a valid reference. */
SELECT DEREF(pr_ref) INTO pr FROM dual;
SELECT DEREF(pr.p_ref) INTO p FROM dual;
name = p.last_name;
END
/
The next example shows that you cannot use operator DEREFwithin procedural
statements:

BEGIN
pl = DEREF(p_ref);, —illegal

Within SQL statements, you can use dot notation to navigate through object
columns to ref attributes and through one ref attribute to another. You can also
navigate through ref columns to attributes if you use a table alias. For example, the
following syntax is legal:

table_alias.object_column.ref attribute
table_alias.object_column.ref_attribute.attribute
table_alias.ref_column.attribute

Assume that you have run the following SQL*Plus script, which creates object
types Address and Person and object table persons

CREATE TYPE Address AS OBJECT (
street VARCHAR2(35),
cty VARCHAR2(15),
state CHAR(2),
Zip_code INTEGER)
/

Object Types 9-35

Manipulating Objects

CREATE TYPE Person AS OBJECT (
first_ name VARCHAR2(15),
last name VARCHAR2(15),
bithday DATE,
home_address REF Address, — shared with other Person objects
phone_number VARCHAR2(15))
/
CREATE TABLE persons OF Person
/

Ref attribute home_address corresponds to a column in object table persons that
holds refs to Address objects stored in some other table. After populating the
tables, you can select a particular address by dereferencing its ref, as follows:

DECLARE
addrl Address,
addr2 Address,
BEGIN
SELECT DEREF(home_address) INTO addrl FROM persons p
WHERE plast_name = ‘Derringer’;

In the example below, you navigate through ref column home_address to
attribute street . In this case, a table alias is required.
DECLARE
my_street VARCHAR2(25),
BEGIN
SELECT p.home_address.street INTO my_street FROM persons p
WHERE plast_name =‘Lucas’;

Inserting Objects

You use the INSERT statement to add objects to an object table. In the following
example, you insert a Person obiject into object table persons :

BEGIN
INSERT INTO persons
VALUES (Jenifer, Lapidus, ...);

9-36 PL/SQL User's Guide and Reference

Manipulating Objects

Alternatively, you can use the constructor for object type Person to insert an object
into object table persons :

BEGIN
INSERT INTO persons
VALUES (Person(Albert, ‘Brooker’, ...));

In the next example, you use the RETURNINGlause to store Person refs in local
variables. Notice how the clause mimics a SELECTstatement.You can also use the
RETURNINGIlause in UPDATEand DELETEstatements.

DECLARE
pl_ref REF Person;
p2_ref REF Person;
BEGIN
INSERT INTO persons p
VALUES (Person(Paul,'Chang, ...))
RETURNING REF(p) INTO p1._ref;
INSERT INTO persons p
VALUES (Person(Ana, Thome, ...))
RETURNING REF(p) INTO p2_ref;

To insert objects into an object table, you can use a subquery that returns objects of
the same type. An example follows:

BEGIN
INSERT INTO persons2
SELECT VALUE(p) FROM persons p
WHERE plast_name LIKE %Jones);

The rows copied to object table persons2 are given new object identifiers. No
object identifiers are copied from object table persons .

The script below creates a relational table named department , which has a
column of type Person , then inserts a row into the table. Notice how constructor
Person() provides a value for column manager.

CREATE TABLE department (
dept_name VARCHAR2(20),
manager Person,
location VARCHAR2(20))

/

Object Types 9-37

Manipulating Objects

INSERT INTO department
VALUES (Payroll, Person(Alan’, Tsal, ...), 'Los Angeles))
/

The new Person object stored in column manager is not referenceable because it
is stored in a column (not a row) and therefore has no object identifier.

Updating Objects

To modify the attributes of objects in an object table, you use the UPDATE
statement, as the following example shows:

BEGIN
UPDATE persons p SET p.home_address ='341 Oakdene Ave’
WHERE plast_name ='Brody’;

GPDATE persons p SET p = Person(Beth, 'Steinberg’, ...)
WHERE plast_name ='Steinway’;
EKID;
Deleting Objects

You use the DELETEstatement to remove objects (rows) from an object table. To
remove objects selectively, you use the WHERElause, as the following example
shows:

BEGIN
DELETE FROM persons p
WHERE p.home_address ="108 Palm Dr’;

END;

9-38 PL/SQL User's Guide and Reference

10

External Procedures

Well, if I called the wrong number, why did you answer the phone?
James Thurber

PL/SQL is a powerful development tool; you can use it for almost any purpose.
But, it is specialized for SQL transaction processing. So, some tasks are more
quickly or easily done in a lower-level language such as C, which is more efficient
at machine-precision calculations. For example, a Fast Fourier Transform (FFT)
routine written in C runs faster than one written in PL/SQL.

To support such special-purpose processing, PL/SQL provides an interface for
calling routines written in other languages. This makes the strengths and
capabilities of those languages available to you. No longer are you restricted to one
language with its inherent limitations.

Major Topics

What Is an External Procedure?

Creating an External Procedure
Registering an External Procedure

Calling an External Procedure

How PL/SQL Calls an External Procedure
Passing Parameters to an External Procedure
Using Service Routines

Doing Callbacks

Debugging External Procedures
Guidelines for External Procedures
Restrictions on External Procedures

External Procedures 10-1

What Is an External Procedure?

What Is an External Procedure?

An external procedure is a third-generation-language routine stored in a dynamic
link library (DLL), registered with PL/SQL, and called by you to do special-
purpose processing. The routine must be callable from C but can be written in any
language.

At run time, PL/SQL loads the library dynamically, then calls the routine as if it
were a PL/SQL subprogram. To safeguard your database, the routine runs in a
separate address space. But, it participates fully in the current transaction.
Furthermore, the routine can call back to the database to do SQL operations.

External procedures promote reusability, efficiency, and modularity. DLLs already
written and available in other languages can be called from PL/SQL programs. The
DLLs are loaded only when needed, so memory is conserved. Moreover, the DLLs
can be enhanced without affecting the calling programs.

Typically, external procedures are used to interface with embedded systems, solve
scientific and engineering problems, analyze data, or control real-time devices and
processes. For example, you might use external procedures to send instructions to a
robot, solve partial differential equations, process signals, analyze time series, or
create animation on a video display.

Moreover, external procedures enable you to

=« move computation-bound programs from client to server, where they will
execute faster thanks to more computing power and less across-network
communication

« interface the database server with external systems and data sources

« extend the functionality of the database server itself

Note: This feature is available only on platforms that support DLLs or
dynamically loadable shared libraries such as Solaris .so libraries.

Creating an External Procedure

To create an external procedure, you and your DBA take the following steps:

1. Set Up the Environment Your DBA sets up the environment for calling external
procedures by adding entries to the files tnsnames.ora and listener.ora and by starting
a Listener process exclusively for external procedures. For details, see Oracle8
Administrator’s Guide.

10-2 PL/SQL User's Guide and Reference

Registering an External Procedure

2. Identify the DLL In this context, a DLL is any dynamically loadable operating-
system file that stores external procedures. For safety, your DBA controls access to
the DLL. Using the CREATE LIBRARYstatement, the DBA creates a schema object
called an alias library, which represents the DLL. Then, if you are an authorized
user, the DBA grants you EXECUTHBprivileges on the alias library.

If the DBA grants you CREATE ANY LIBRARYrivileges, you can create your own
alias libraries using the following syntax:

CREATE LIBRARY library_name {IS | AS} file_path;

You must specify the full path to the DLL because the linker cannot resolve
references to just the DLL name. In the following example, you create alias library
c_utils ,which represents DLL utils.so

create library ¢ _utils as /DLLs/utils.so’;

3. Designate the External Procedure You find or write a new routine, then add it to the
DLL, or simply designate a routine already in the DLL.

4. Register the External Procedure Before you can call the external procedure, you
must register it. That is, you must tell PL/SQL where to find the procedure, how to
call it, and what to pass it. After registering the external procedure, you can call it
from any PL/SQL program. It executes with the privileges granted to your userid.

Registering an External Procedure

You do that by writing a special kind of PL/SQL stand-alone or packaged
subprogram, which acts like a proxy for the external procedure. (By default, they
have the same name.)

You write the PL/SQL stored subprogram in the usual way except that, in its body;,
instead of declarations and a BEGIN ... ENDblock, you code the EXTERNALclause.
This clause records information about the external procedure such as its location,
its name, the programming language in which it was written, and the calling
standard under which it was compiled. The syntax follows:

EXTERNAL LIBRARY library_name
[NAME extemal_procedure_name]
[LANGUAGE language_name]
[CALLING STANDARD {C | PASCAL}]

[WITH CONTEXT]
[PARAMETERS (extemal_parameter], extemal_prameter]...)];

External Procedures 10-3

Registering an External Procedure

where external_parameter stands for

{ CONTEXT
[{parameter_name | RETURN} [property] [BY REF] [extemal_datatypel}

and property stands for
{INDICATOR | LENGTH | MAXLEN | CHARSETID | CHARSETFORM}

Understanding the EXTERNAL Clause

The EXTERNALclause is the interface between PL/SQL and an external procedure.
The following subclauses tell PL/SQL where to find the procedure, how to call it,
and what to pass it. (Only the LIBRARY subclause is required.)

LIBRARY

Specifies a local alias library. (You cannot use a database link to specify a remote
library.) The library name is a PL/SQL identifier. So, if you enclose the name in
double quotes, it becomes case sensitive. (By default, the name is stored in upper
case.) You must have EXECUTHBprivileges on the alias library.

NAME

Specifies the external procedure to be called. If you enclose the procedure name in
double quotes, it becomes case sensitive. (By default, the name is stored in upper
case.) If you omit this subclause, the procedure name defaults to the upper-case
name of the PL/SQL subprogram.

LANGUAGE

Specifies the third-generation language in which the external procedure was
written. Currently, only the language name C is allowed. If you omit this subclause,
the language name defaults to C.

CALLING STANDARD

Specifies the Windows NT calling standard (C or Pascal) under which the external
procedure was compiled. (Under the Pascal Calling Standard, arguments are
reversed on the stack and the called function must pop the stack.) If you omit this
subclause, the calling standard defaults to C.

10-4 PL/SQL User's Guide and Reference

Calling an External Procedure

An Example

WITH CONTEXT

Specifies that a context pointer will be passed to the external procedure. The
context data structure is opaque to the external procedure but is available to service
routines called by the external procedure. For more information, see “Using the
WITH CONTEXT Clause” on page 10-16.

PARAMETERS

Specifies the positions and datatypes of parameters passed to the external
procedure. It can also specify parameter properties such as current length and
maximum length, and the preferred parameter passing method (by value or by
reference). For more information, see “Using the PARAMETERS Clause” on
page 10-12.

Assume that C routine ¢_gcd , which finds the greatest common divisor of two
numbers, is stored in DLL utils.so and that you have EXECUTHBprivileges on
alias library ¢_utils . The C prototype for ¢_gcd follows:

intc_ged(intx_val, inty val);

In the following example, you write a PL/SQL stand-alone function named gcd
that registers C routine ¢_gcd as an external function:

CREATE FUNCTION ged (

—find greatest common divisor of x and y
XBINARY _INTEGER,
yBINARY_INTEGER)

RETURN BINARY _INTEGER AS EXTERNAL
LIBRARY c_utils
NAME "c_ged" — quotes preserve lower case
LANGUAGEC;

Calling an External Procedure

You do not call an external procedure directly. Instead, you call the PL/SQL
subprogram that registered the external procedure. Such calls, which you code in
the usual way, can appear in

« anonymous blocks
« stand-alone and packaged subprograms

« methods of an object type

External Procedures 10-5

Calling an External Procedure

« database triggers

« SQL statements (calls to packaged functions only)

Note: To call a packaged function from SQL statements, you must use
the pragma RESTRICT_REFERENCESvhich asserts the purity level of
the function (the extent to which the function is free of side effects).
PL/SQL cannot check the purity level of the corresponding external
routine. So, make sure the routine does not violate the pragma.
Otherwise, you might get unexpected results. For more information
about the pragma, see Oracle8 Application Developer’s Guide.

Any PL/SQL block or subprogram executing on the server side or on the client side
(for example, in a Developer/2000 tool such as Oracle Forms) can call an external
procedure. The only requirement is that you call the external procedure from C
code.

On the server side, the external procedure runs in a separate process address space,
which safeguards your database. Figure 10-1 shows how Oracle8 and an external
procedure interact.

Figure 10-1 Oracle8 Interacting with an External Procedure

Code

Oracle Database

E PUSQL| | ged—i—pp | | cC Code :

Oracle Address Space Separate Address Space

10-6 PL/SQL User's Guide and Reference

How PL/SQL Calls an External Procedure

An Example

In the last example, you wrote PL/SQL function gcd, which registered external
procedure ¢_gcd , as follows:

CREATE FUNCTION ged (

—find greatest common divisor of xand y
XBINARY_INTEGER,
y BINARY_INTEGER)

RETURN BINARY_INTEGER AS EXTERNAL
LIBRARY c_utils
NAME "c_ged" — quotes preserve lower case
LANGUAGEC;

In the example below, you call PL/SQL function ged from an anonymous block.
PL/SQL passes the two integer parameters to external function ¢_gecd , which
returns their greatest common divisor.

DECLARE
gBINARY INTEGER;
aBINARY INTEGER;
bBINARY INTEGER;

BEGIN
g:=gcd(a, b); —callfunction
IFgIN (24,8 THEN ...

How PL/SQL Calls an External Procedure

To call an external procedure, PL/SQL must know in which DLL it resides. So,
PL/SQL looks up the alias library in the EXTERNALclause of the subprogram that
registered the external procedure, then has Oracle look up the DLL in the data
dictionary.

Next, PL/SQL alerts a Listener process, which in turn spawns (launches) a session-
specific agent named extproc. Then, the Listener hands over the connection to
extproc. PL/SQL passes to extproc the name of the DLL, the name of the external
procedure, and any parameters.

Then, extproc loads the DLL and runs the external procedure. Also, extproc handles
service calls (such as raising an exception) and callbacks to the Oracle server.
Finally, extproc passes to PL/SQL any values returned by the external procedure.
Figure 10-2 shows the flow of control.

External Procedures 10-7

How PL/SQL Calls an External Procedure

Figure 10-2 How an External Procedure Is Called

Oracle PL/SQL 4P| Listener

- extproc
Database T

DLLs/utils.so

/

After the external procedure completes, extproc remains active throughout your
Oracle session. (When you log off, extproc is killed.) So, you incur the cost of
spawning extproc only once no matter how many calls you make. Still, you should
call an external procedure only when the computational benefits outweigh the cost

Note: The Listener must start extproc on the machine that runs the
Oracle server. Starting extproc on a different machine is not supported.

Environment Variables

The Listener sets a few required environment variables (such as ORACLE_HOME
ORACLE_SIDand LD_LIBRARY_PATH for extproc. Otherwise, it provides extproc
with a “clean” environment. The environment variables set for extproc are
independent of those set for the client, server, and Listener. So, external procedures,
which run in the extproc process, cannot read environment variables set for the
client, server, or Listener process.

10-8 PL/SQL User's Guide and Reference

Passing Parameters to an External Procedure

Passing Parameters to an External Procedure

Passing parameters to an external procedure is complicated by several
circumstances:

The set of PL/SQL datatypes does not correspond one-to-one with the set of C
datatypes.

PL/SQL parameters can be NULL whereas C parameters cannot. (Unlike C,
PL/SQL includes the RDBMS concept of nullity.)

The external procedure might need the current length or maximum length of
CHARLONG RAVRAWand VARCHARDarameters.

The external procedure might need character set information about CHAR
VARCHARZand CLOBparameters.

PL/SQL might need the current length, maximum length, or null status of
values returned by the external procedure.

In the following sections, you learn how to specify a parameter list that deals with
these circumstances.

Specifying Datatypes
You do not pass parameters to an external procedure directly. Instead, you pass
them to the PL/SQL subprogram that registered the external procedure. So, you
must specify PL/SQL datatypes for the parameters. For guidance, see Table 10-1.
Each PL/SQL datatype maps to a default external datatype. (In turn, each external
datatype maps to a C datatype.) PL/SQL does all the datatype conversions for you.

Table 10-1 Parameter Datatype Mappings

PL/SQL Type Supported External Types Default External Type
BINARY_INTEGER [UNSIGNED] CHAR INT
BOOLEAN [UNSIGNED] SHORT
PLS INTEGER [UNSIGNED] INT
[UNSIGNED] LONG
SB1, SB2, SB4
UB1, UB2, UB4
SIZE T

External Procedures 10-9

Passing Parameters to an External Procedure

Table 10-1 Parameter Datatype Mappings (Cont.)

PL/SQL Type Supported External Types Default External Type
NATURAL [UNSIGNED] CHAR UNSIGNED INT
NATURALN [UNSIGNED] SHORT
POSITIVE [UNSIGNED] INT
POSITIVEN [UNSIGNED] LONG
SIGNTYPE SB1, SB2, SB4
UBL, UB2, UB4
SIZE T
FLOAT FLOAT FLOAT
REAL
DOUBLE PRECISION DOUBLE DOUBLE
CHAR STRING STRING
CHARACTER
LONG
NCHAR
NVARCHAR2
ROWID
VARCHAR
VARCHAR2
LONG RAW RAW RAW
RAW
BFILE OCILOBLOCATOR OCILOBLOCATOR
BLOB
CLOB
NCLOB

In some cases, you can use the PARAMETERG8ause to override the default datatype
mappings. For example, you can re-map the PL/SQL datatype BOOLEANrom
external datatype INT to external datatype CHAR

10-10 PL/SQL User’s Guide and Reference

Passing Parameters to an External Procedure

To avoid errors when declaring C prototype parameters, refer to Table 10-2, which
shows the C datatype to specify for a given external datatype and PL/SQL
parameter mode. For example, if the external datatype of an OUTparameter is
STRING specify the datatype char * in your C prototype.

Table 10-2 External Datatype Mappings

IN by Ref,
External Datatype IN, RETURN RETURN by Ref IN OUT, OUT
CHAR char char* char*

UNSIGNED CHAR unsigned char unsigned char* unsigned char*
SHORT short short* short*
UNSIGNED SHORT unsigned short unsigned short* unsigned short *

INT int int * int*
UNSIGNED INT unsigned int unsigned int * unsigned int *
LONG long long * long *
UNSIGNED LONG unsigned long unsignedlong* unsigned long *
SIZE'T size t Size t* Size t*
SB1 shl shl* shl*
UBl ubl ubl* ubl*
SB2 sh2 sh2* sh2*
uB2 ub2 ub2* ub2*
SB4 sb4 sha * sh4 *
uB4 ub4 ub4* ub4*
FLOAT float float * float *
DOUBLE double double * double *
STRING char* char* char*
RAW unsignedchar* unsignedchar* unsigned char*

OCILOBLOCATOR OClLobLocator* OClLobLocator* OClLobLocator **

External Procedures 10-11

Passing Parameters to an External Procedure

Using the PARAMETERS Clause

Generally, the PL/SQL subprogram that registers an external procedure declares a
list of formal parameters, as the following example shows:

CREATE FUNCTION interp (
—find the value of y at X degrees using Lagrange interpolation
XIN FLOAT,
y IN FLOAT)
RETURN FLOAT AS EXTERNAL
NAME "interp”
LIBRARY mathiib
LANGUAGEC;

Each formal parameter declaration specifies a name, parameter mode, and PL/SQL
datatype (which maps to the default external datatype). That might be all the
information the external procedure needs. If not, you can provide more information
using the PARAMETERS8ause, which lets you specify

« hon-default external datatypes

« the current and/or maximum length of a parameter

« hull/not null indicators for parameters

« character set IDs and forms

« the positions of parameters in the list

« how IN parameters are passed (by value or by reference)

For every formal parameter, there must be a corresponding parameter in the
PARAMETERS8ause. If you include the WITH CONTEXTlause, you must specify
the parameter CONTEX Twhich shows the position of the context pointer in the
parameter list. Also, if the external routine is a function, you must specify the
parameter RETURNN the last position.

Specifying Properties

You can also use the PARAMETERG&ause to pass additional information about
PL/SQL formal parameters and function results to an external procedure. You do
that by specifying the following properties:

INDICATOR
LENGTH
MAXLEN
CHARSETID
CHARSETFORM

10-12 PL/SQL User’s Guide and Reference

Passing Parameters to an External Procedure

Table 10-3 shows the external datatypes, PL/SQL datatypes, and PL/SQL
parameter modes allowed for a given property. Notice that MAXLENannot be
applied to an IN parameter.

Table 10-3 Property Datatype Mappings

C Parameter PL/SQL Parameter

Allowed External Default External

Property Types Type Allowed Types Allowed Modes
INDICATOR SHORT SHORT all scalars IN
INT INOUT
LONG ouT
RETURN
LENGTH [UNSIGNED] SHORT INT CHAR IN
[UNSIGNED] INT LONG RAW INOUT
[UNSIGNED] LONG RAW ouTt
VARCHAR2 RETURN
MAXLEN [UNSIGNED] SHORT INT CHAR INOUT
[UNSIGNED] INT LONG RAW ouTt
[UNSIGNED] LONG RAW RETURN
VARCHAR2
CHARSETID UNSIGNED SHORT UNSIGNED INT CHAR IN
CHARSETFORM UNSIGNED INT CLOB INOUT
UNSIGNED LONG VARCHAR2 ouT
RETURN

In the following example, we use the PARAMETERS8ause to specify properties for
the PL/SQL formal parameters and function result:

CREATE FUNCTION parse (
X IN BINARY_INTEGER,
Y IN OUT CHAR)
RETURN CHAR AS EXTERNAL
LIBRARY c_utils
NAME “c_parse”
LANGUAGEC
CALLING STANDARD PASCAL
PARAMETERS (
X, — stores value of x
X INDICATOR, - stores null status of x
Y, — stores value of y

External Procedures 10-13

Passing Parameters to an External Procedure

yLENGTH, - stores currentlength of y
yMAXLEN, - stores maximum length of y
RETURN INDICATOR,

RETURN);

With this PARAMETERS8ause, the C prototype becomes

char*c_parse(intx, short x_ind, char*y, int*y_len,
int*y_maxlen, short *retind);

The additional parameters in the C prototype correspond to the INDICATOR,
LENGTHand MAXLENoarameters in the PARAMETERS8ause. The parameter
RETURNorresponds to the C function identifier, which stores the result value.

Using INDICATOR An indicator is a parameter whose value “indicates” whether or
not another parameter is null. PL/SQL does not need indicators because the
RDBMS concept of nullity is built into the language. However, an external
procedure might need to know if a parameter or function result is null. Also, an
external procedure might need to signal the server that a returned “value” is
actually a null, and should be treated accordingly.

In such cases, you can use the property INDICATOR to associate an indicator with a
formal parameter. If the PL/SQL subprogram is a function, you can also associate
an indicator with the function result.

To check the value of an indicator, you can use the constants OCI_IND_NULL and
OCI_IND_NOTNULL If the indicator equals OCI_IND_NULL, the associated
parameter or function result is null. If the indicator equals OCI_IND_NOTNULL, the
parameter or function result is not null.

For IN parameters, INDICATOR is passed by value (unless you specify BY REF)
and is read-only (even if you specify BY REF). For OUTIN OUT, and RETURN
parameters, INDICATOR is passed by reference.

Using LENGTH and MAXLEN In PL/SQL, there is no standard way to indicate the
length of a raw or string parameter. However, in many cases, you want to pass the
length of a parameter to and from an external procedure. Using the properties
LENGTHand MAXLENyou can specify parameters that store the current length and
maximum length of a formal parameter.

Note: With parameters of type RAWr LONG RAWou must use the
property LENGTH

10-14 PL/SQL User’s Guide and Reference

Passing Parameters to an External Procedure

For IN parameters, LENGTHs passed by value (unless you specify BY REF) and is
read-only (even if you specify BY REF). For OUTIN OUT, and RETURNparameters,
LENGTHs passed by reference.

MAXLENdJoes not apply to IN parameters. For OUTIN OUT, and RETURN
parameters, MAXLENS passed by reference but is read-only.

Using CHARSETID and CHARSETFORM Oracle provides national language support,
which lets you process single-byte and multi-byte character data and convert
between character sets. It also lets your applications run in different language
environments.

The properties CHARSETIDand CHARSETFORMentify the nondefault character
set from which the character data being passed was formed. With CHARCLOB and
VARCHARDarameters, you can use CHARSETIDand CHARSETFORM pass the
character set ID and form to the external procedure.

For IN parameters, CHARSETIDand CHARSETFORMte passed by value (unless
you specify BY REF) and are read-only (even if you specify BY REF). For OUTIN
OUTand RETURNparameters, CHARSETIDand CHARSETFORAfe passed by
reference but are read-only.

The OCI attribute names for these properties are OCI_ATTR_CHARSET _IDand
OCI_ATTR_CHARSET_FORMor more information about using NLS data with the
OCIl, see Oracle Call Interface Programmer’s Guide.

Repositioning Parameters

Remember, each formal parameter must have a corresponding parameter in the
PARAMETERSause. Their positions can differ because PL/SQL associates them by
name, not by position. However, the PARAMETERGS8ause and the C prototype for
the external procedure must have the same number of parameters in the same
order.

Passing Parameters by Reference

In C, you can pass IN scalar parameters by value (the value of the parameter is
passed) or by reference (a pointer to the value is passed). When an external
procedure expects a pointer to a scalar, specify the BY REFphrase to pass the
parameter by reference. An example follows:

CREATE PROCEDURE find_root (
xINREAL, ..)

AS EXTERNAL
LIBRARY c_utis

External Procedures 10-15

Passing Parameters to an External Procedure

NAME “c_find_root”
PARAMETERS (
xBY REF, ...);

In this case, the C prototype would be
void c_find_root(float *x, ...);

rather than the default
void ¢_find_root(float x, ...);

Using the WITH CONTEXT Clause

By including the WITH CONTEXTlause, you can give an external procedure access
to information about parameters, exceptions, memory allocation, and the user
environment. The WITH CONTEXTlause specifies that a context pointer will be
passed to the external procedure. For example, if you write the following PL/SQL
function

CREATE FUNCTION get_num (
x IN REAL)
RETURN BINARY_INTEGER AS EXTERNAL
LIBRARY ¢ _utiis
NAME “c_get num’
LANGUAGE C
WITH CONTEXT
PARAMETERS (
CONTEXT,
x BY REF,
RETURN INDICATORY;

then the C prototype would be

intc_get num(
OCIExtProcContext *with_context,
float *x,
short *retind);

The context data structure is opaque to the external procedure but is available to
service routines called by the external procedure.

If you also include the PARAMETERS8ause, you must specify the parameter
CONTEXTwhich shows the position of the context pointer in the parameter list. If
you omit the PARAMETERS8ause, the context pointer is the first parameter passed
to the external procedure.

10-16 PL/SQL User’s Guide and Reference

Using Service Routines

Using Service Routines

When called from an external procedure, a service routine can raise exceptions,
allocate memory, and get OCI (Oracle Call Interface) handles for callbacks to the
server. To use the functions, you must specify the WITH CONTEXTlause, which lets
you pass a context structure to the external procedure. The context structure is
declared in header file ociextp.h as follows:

typedef struct OCIExtProcContext OCIExtProcContext,

Nowy, let us see how service routines use the context information.

OCIExtProcAllocCallMemory

This service routine allocates n bytes of memory for the duration of the external
procedure call. Any memory allocated by the function is freed automatically as
soon as control returns to PL/SQL.

Note: The external procedure need not (and should not) call the C
function free() to free memory allocated by this service routine.

The C prototype for this function follows:

dvoid *OCIExtProcAllocCallMemory(
OCIEXtProcContext *with_context,
size_tamount);

The parameters with_context and amount are the context pointer and number
of bytes to allocate, respectively. The function returns an untyped pointer to the
allocated memory. A return value of zero indicates failure.

In SQL*Plus, suppose you register external function concat , as follows:

SQL> CREATE FUNCTION concat (
2 str1INVARCHAR?,

3 str2INVARCHAR?)

4 RETURN VARCHAR2 AS EXTERNAL
5 NAME "concat'

6 LIBRARY stringib

7 WITH CONTEXT

8 PARAMETERS (

9 CONTEXT,

10 stl STRING,

11 strl INDICATORSshor,

External Procedures 10-17

Using Service Routines

12 sr2 STRING,

13 str2 INDICATOR short,

14 RETURNINDICATOR short,
15 RETURNLENGTH short,
16 RETURNSTRING);

When called, concat concatenates two strings, then returns the result. If either
string is null, the result is also null. As the following example shows, concat uses
OCIExtProcAllocCallMemory to allocate memory for the result string:

char *concat(ctx, strl, strl i, str2, str2 i, ret i, ret _[)
OCIExtProcContext *ctx;
char *strl;
short strl i
char *str2;
short str2 i;
short *ret i;
short *ret [;
{
char*tmp;
shortlen;
 Check for null inputs. */
if (strl_i=OCI_IND_NULL) || (str2_i==0OCI_IND_NULL))
{
*ret_i=(shor)OCI_IND_NULL;
FPL/SQL has no notion of a null ptr, so
retum a zero-byte string. */
tmp = OCIExtProcAllocCallMemory(ctx, 1);
tmp[0] =10;
retum(tmp);
}
 Allocate memory for result string, including null terminator. */
len =stren(strl) + strien(str2);
tmp = OCIExtProcAllocCallMemory(ctx, len + 1);

strepy(tmp, strl);
streat(tmp, str2);

F Setnull indicator and length. */
*ret_i=(shor)OCI_IND_NOTNULL;
*ret [=len;

F Retum pointer, which PL/SQL frees later. */
retum(tmp);

10-18 PL/SQL User’s Guide and Reference

Using Service Routines

OCIExtProcRaiseExcp
This service routine raises a predefined exception, which must have a valid Oracle
error number in the range 1 .. 32767. After doing any necessary cleanup, the
external procedure must return immediately. (No values are assigned to OUTor IN
OUTparameters.) The C prototype for this function follows:

int OCIExtProcRaiseExcp(
OCIExtProcContext *with_context,
size_temor_number);

The parameters with_context and error_number are the context pointer and
Oracle error number. The return values OCIEXTPROC_SUCCES®Hd
OCIEXTPROC_ERRGRdicate success or failure.

In SQL*Plus, suppose you register external procedure divide , as follows:

SQL>CREATE PROCEDURE dide (
2 dividend IN BINARY_INTEGER,
3 divisor IN BINARY_INTEGER,

4 resut OUT FLOAT)
5 AS EXTERNAL

6 NAME "divide"

7 LIBRARY mathiib

8 WITH CONTEXT

9 PARAMETERS (

10 CONTEXT,
11 dividendint,
12 divisor int,

13 result float);

When called, divide finds the quotient of two numbers. As the following example
shows, if the divisor is zero, divide uses OCIExtProcRaiseExcp to raise the
predefined exception ZERO_DIVIDE:

void divide (ctx, dividend, divisor, resut)
OCIExtProcContext *ctx;
int dividend,
int divisor;
float *resul;
{
* Check for zero divisor. */
if (divisor == (int)0)
{

¥ Raise exception ZERO_DIVIDE, which is Oracle error 1476. */
if (OCIExtProcRaiseExcp(ctx, (int)1476) = OCIEXTPROC_SUCCESS)

External Procedures 10-19

Using Service Routines

F Incorrect parameters were passed. */
assert(0);
}}
*result = (float)dividend / (float)divisor;
}

OCIExtProcRaiseExcpWithMsg

This service routine raises a user-defined exception and returns a user-defined
error message. The C prototype for this function follows:

int OCIExtProcRaiseExcpWithMsg(
OCIEXtProcContext *with_context,
Size_temor_number,
text *error_message,
size t len);

The parameters with_context , error_number ,and error_message are the
context pointer, Oracle error number, and error message text. The parameter len
stores the length of the error message. If the message is a null-terminated string,
len is zero. The return values OCIEXTPROC_SUCCES®d OCIEXTPROC_ERROR

indicate success or failure.
In the previous example, you registered external procedure divide , as follows:

SQL> CREATE PROCEDURE divide
2 dividend IN BINARY INTEGER,
3 divisor INBINARY_INTEGER,

4 result OUT FLOAT)

5 AS EXTERNAL

6 NAME "dvide"

7 LIBRARY mathio

8 WITH CONTEXT

9 PARAMETERS(

10 CONTEXT,
11 dividendint,
12 divisor int,

13 result float);

10-20 PL/SQL User’s Guide and Reference

Using Service Routines

In the example below, you use a different version of divide . With this version, if
the divisor is zero, divide uses OCIExtProcRaiseExcpWithMsg to raise a user-
defined exception:

void divide (ctx, dividend, divisor, resut)
OCIExtProcContext *ctx;
int dividend;
int divisor,
float *result;
F Check for zero divisor. */
if (divisor == (int)0)
{
¥ Raise a user-defined exception, which is Oracle error 20100,
and retum a nullterminated eror message. */
if (OCIExtProcRaiseExcpWithMsg(ctx, (int)20100,
"divisor is zero", 0) == OCIEXTPROC_SUCCESS)
{
retum;
}
else
{
F Incorrect parameters were passed. */
assert(0);
}
}
*result = dividend / divisor,
}

OCIExtProcGetEnv

This service routine enables OCI callbacks to the database during an external
procedure call. Use the OCI handles obtained by this function only for callbacks. If
you use them for standard OCI calls, the handles establish a new connection to the
database and cannot be used for callbacks in the same transaction. In other words,
during an external procedure call, you can use OCI handles for callbacks or a new
connection but not for both.

The C prototype for this function follows:

sword OCIExtProcGetEnv(
OCIEXtProcContext *with_context,
OCIEnv *envh,
OCISvcCix **svch,
OCIEror *errh);

External Procedures 10-21

Doing Callbacks

The parameter with_context is the context pointer, and the parameters envh,
svch , and errh are the OCI environment, service, and error handles, respectively.
The return values OCIEXTPROC_SUCCES®d OCIEXTPROC_ERRORdicate
success or failure.

The next section shows how OCIExtProcGetEnv might be used in callbacks. For a
working example, see “Demo Program” on page 10-24.

Doing Callbacks

An external procedure executing on the Oracle server can call a service routine to
obtain OCI environment and service handles. With the OCI, you can use callbacks
to execute SQL statements and PL/SQL subprograms, fetch data, and manipulate
LOBs. Moreover, callbacks and external procedures operate in the same user session
and transaction context. So, they have the same user privileges.

In SQL*Plus, suppose you run the following script:

CREATE TABLE emptab (empno NUMBER(10))
/
CREATE PROCEDURE insert_emptab (
empno BINARY_INTEGER)
AS EXTERNAL
NAME "insert_emptab”
LIBRARY insert_lib
WITH CONTEXT
PARAMETERS (
CONTEXT,
empno LONG)
/

Later, you might call service routine OCIExtProcGetEnv from external procedure
insert_ emptab , as follows:

#include <stdio.h>
#include <stdlib.h>
#include <oratypes.h>
#include <oci.h>

void insert_emptab (ctx, empno)
OCIExtProcContext *ctx;
long empno;
{
OCIEnv *envhp;
OCISveCix *svchp;

10-22 PL/SQL User’s Guide and Reference

Doing Callbacks

OCIErmor *erhp;
int em

e = OCIExtProcGetEnv(ctx, &envhp, &svchp, &enhp);

}...

Restrictions on Callbacks

With callbacks, the following SQL commands and OCI routines are not supported:

transaction control commands such as COMMIT
data definition commands such as CREATE
object-oriented OCI routines such as OCIRefClear
polling-mode OCI routines such as OCIGetPiecelnfo
all these OCI routines:

OCIEnvinit
OClInitialize
OClIPasswordChange
OCIServerAttach
OClIServerDetach
OClISessionBegin
OCISessionEnd
OCISvcCtxTolda
OClITransCommit
OClITransDetach
OClITransRollback
OClITransStart

Also, with OCI routine OCIHandleAlloc , the following handle types are not
supported:

OCI_HTYPE_SERVER
OCI_HTYPE_SESSION
OCI_HTYPE_SVCCTX
OCI_HTYPE_TRANS

External Procedures 10-23

Debugging External Procedures

Debugging External Procedures

Usually, when an external procedure fails, its C prototype is faulty. That is, the
prototype does not match the one generated internally by PL/SQL. This can
happen if you specify an incompatible C datatype. For example, to pass an OUT
parameter of type REAL you must specify float *. Specifying float, double *, or any
other C datatype will result in a mismatch.

In such cases, you might get a lost RPC connection to external procedure agent error,
which means that agent extproc terminated abnormally because the external
procedure caused a core dump. To avoid errors when declaring C prototype
parameters, refer to Table 10-2.

Using Package DEBUG_EXTPROC

To help you debug external procedures, PL/SQL provides the utility package
DEBUG_EXTPROTo install the package, run the script dbgextp.sq/ , which you
can find in the PL/SQL demo directory. (For the location of the directory, see your
Oracle installation or user’s guide.)

To use the package, follow the instructions in dbgextp.sq/ . Your Oracle account
must have EXECUTHBprivileges on the package and CREATE LIBRARYprivileges.

Note: DEBUG_EXTPRO®orks only on platforms with debuggers that
can attach to a running process.

Demo Program

Also in the PL/SQL demo directory is the script extproc.sql/ , which
demonstrates the calling of an external procedure. The companion file extproc.c
contains the C source code for the external procedure.

To run the demo, follow the instructions in extproc.sq/ . You must use the
SCOTT/TIGER account, which must have CREATE LIBRARYprivileges.

10-24 PL/SQL User’s Guide and Reference

Restrictions on External Procedures

Guidelines for External Procedures

In future releases, extproc might be a multi-threaded process. So, be sure to write
thread-safe external procedures. That way, they will continue to run properly if
extproc becomes multi-threaded. In particular, avoid using static variables, which
can be shared by routines running in separate threads. Otherwise, you might get
unexpected results.

For help in creating a dynamic link library, look in the RDBMS subdirectory
/public , where a template makefile can be found.

When calling external procedures, never write to IN parameters or overflow the
capacity of OUTparameters. (PL/SQL does no runtime checks for these error
conditions.) Likewise, never read an OUTparameter or a function result. Also,
always assign a value to IN OUT and OUTparameters and to function results.
Otherwise, your external procedure will not return successfully.

If you include the WITH CONTEX&nd PARAMETERG&auses, you must specify the
parameter CONTEXTwhich shows the position of the context pointer in the
parameter list. If you omit the PARAMETERS8ause, the context pointer is the first
parameter passed to the external procedure.

If you include the PARAMETERS&ause and the external routine is a function, you
must specify the parameter RETURNnot RETURNMNbroperty) in the last position.

For every formal parameter, there must be a corresponding parameter in the

PARAMETERS8ause. Also, make sure that the datatypes of parameters in the
PARAMETERS8ause are compatible with those in the C prototype because no
implicit conversions are done.

With a parameter of type RAWbr LONG RAWou must use the property LENGTH
Also, if that parameter is IN OUT or OUTand null, you must set the length of the
corresponding C parameter to zero.

Restrictions on External Procedures

Currently, the following restrictions apply to external procedures:
« This feature is available only on platforms that support DLLs.
« Only routines callable from C code (not C++ code) are supported.

« You cannot pass PL/SQL cursor variables, records, collections, or instances of
an object type to an external procedure.

External Procedures 10-25

Restrictions on External Procedures

« Inthe LIBRARY subclause, you cannot use a database link to specify a remote
library.

« The Listener must start agent extproc on the machine that runs the Oracle
server. Starting extrproc on a different machine is not supported.

« The maximum number of parameters that you can pass to a C external
procedure is 128. However, if you pass float or double parameters by value,
the maximum is less than 128. How much less depends on the number of such
parameters and your operating system. To get a rough estimate, count each
float or double passed by value as two parameters.

10-26 PL/SQL User’s Guide and Reference

11

Grammar, which knows how to control even kings.

Language Elements

Moliere

This chapter is a quick reference guide to PL/SQL syntax and semantics. It shows
you how commands, parameters, and other language elements are sequenced to
form PL/SQL statements. Also, to save you time and trouble, it provides usage

notes and short examples.

Major Topics
Assignment Statement
Blocks

CLOSE Statement
Collection Methods
Collections

Comments

COMMIT Statement
Constants and Variables
Cursor Attributes
Cursor Variables
Cursors

DELETE Statement
EXCEPTION_INIT Pragma
Exceptions

EXIT Statement
Expressions

External Procedures
FETCH Statement
Functions

Language Elements 11-1

GOTO Statement

IF Statement

INSERT Statement
Literals

LOCK TABLE Statement
LOOP Statements

NULL Statement

Object Types

OPEN Statement
OPEN-FOR Statement
Packages

Procedures

RAISE Statement
Records

RETURN Statement
ROLLBACK Statement
%ROWTYPE Attribute
SAVEPOINT Statement
SELECT INTO Statement
SET TRANSACTION Statement
SQL Cursor

SQLCODE Function
SQLERRM Function
%TYPE Attribute
UPDATE Statement

Reading the Syntax Diagrams

When you are unsure of the syntax to use in a PL/SQL statement, trace through its
syntax diagram, reading from left to right and top to bottom. You can verify or
construct any PL/SQL statement that way.

The diagrams are graphic representations of Bachus-Naur Form (BNF) productions.
Within the diagrams, keywords are enclosed in boxes, delimiters in circles, and
identifiers in ovals.

Each diagram defines a syntactic element. Every path through the diagram
describes a possible form of that element. Follow in the direction of the arrows. If a
line loops back on itself, you can repeat the element enclosed by the loop.

11-2 PL/SQL User's Guide and Reference

Assignment Statement

Assignment Statement

An assignment statement sets the current value of a variable, field, parameter, or
element. The statement consists of an assignment target followed by the
assignment operator and an expression. When the statement is executed, the
expression is evaluated and the resulting value is stored in the target. For more
information, see “Assignments” on page 2-40.

Syntax

assignment_statement

A collection_name)
(' cursor_variable_name)
—@-)Chost_cursor_variable_name)

O
host_variable_name
e . attribute_name e o
—(object_name)

—(parameter_name)
. field_name
—(record_name)

(variable_name)

Keyword and Parameter Description

o index o

collection_name

This identifies a nested table, index-by table, or varray previously declared within
the current scope.

Language Elements 11-3

Assignment Statement

cursor_variable_name

This identifies a PL/SQL cursor variable previously declared within the current
scope. Only the value of another cursor variable can be assigned to a cursor
variable.

host_cursor_variable name

This identifies a cursor variable declared in a PL/SQL host environment and
passed to PL/SQL as a bind variable. The datatype of the host cursor variable is
compatible with the return type of any PL/SQL cursor variable. Host variables
must be prefixed with a colon.

host_variable_name

This identifies a variable declared in a PL/SQL host environment and passed to
PL/SQL as a bind variable. Host variables must be prefixed with a colon.

object_name

This identifies an object (instance of an object type) previously declared within the
current scope.

indicator_name

This identifies an indicator variable declared in a PL/SQL host environment and
passed to PL/SQL. Indicator variables must be prefixed with a colon. An indicator
variable “indicates” the value or condition of its associated host variable. For
example, in the Oracle Precompiler environment, indicator variables let you detect
nulls or truncated values in output host variables.

parameter_name

This identifies a formal OUTor IN OUT parameter of the subprogram in which the
assignment statement appears.

index

This is a numeric expression that must yield a value of type BINARY_INTEGERor a
value implicitly convertible to that datatype.

record_name.field_name

This identifies a field in a user-defined or %ROWTYREcord previously declared
within the current scope.

11-4 PL/SQL User's Guide and Reference

Assignment Statement

Usage Notes

variable_name
This identifies a PL/SQL variable previously declared within the current scope.

expression

This is an arbitrarily complex combination of variables, constants, literals,
operators, and function calls. The simplest expression consists of a single variable.
For the syntax of expression , see “Expressions” on page 11-59. When the
assignment statement is executed, the expression is evaluated and the resulting
value is stored in the assignment target. The value and target must have compatible
datatypes.

By default, unless a variable is initialized in its declaration, it is initialized to NULL
every time a block or subprogram is entered. So, never reference a variable before
you assign it a value.

You cannot assign nulls to a variable defined as NOT NULLIf you try, PL/SQL
raises the predefined exception VALUE_ERROR

Only the values TRUEand FALSEand the non-value NULL can be assigned to a
Boolean variable. When applied to an expression, the relational operators return a
Boolean value. So, the following assignment is legal:

DECLARE
out_of range BOOLEAN,;

BEGIN
out_of range = (salary < minimum) OR (salary > maximum);

As the next example shows, you can assign the value of an expression to a specific
field in a record:

DECLARE
emp_rec emp%ROWTYPE;
BEGIN

emp_rec.sal = curent_salary +increase;

Language Elements 11-5

Assignment Statement

Examples

Related Topics

Moreover, you can assign values to all fields in a record at once. PL/SQL allows
aggregate assignment between entire records if their declarations refer to the same
cursor or table. For example, the following assignment is legal:

DECLARE
emp_recl emp%ROWTYPE;
emp_rec2 emp%ROWTYPE;
dept_rec dept%oROWTYPE;
BEGIN

emp_recl :=emp_rec2,
The next assignment is illegal because you cannot use the assignment operator to
assign a list of values to a record:
dept_rec = (60, PUBLICITY’, LOS ANGELES));
Using the following syntax, you can assign the value of an expression to a specific
element in a collection:
collection_name(index) := expression;
In the following example, you assign the uppercase value of last nhame to the
third row in nested table ename _tab :
ename_tab(3) := UPPER(last_name);

Several examples of assignment statements follow:

wages = hours_worked * hourly_salary;
country :=France’;

costs :=labor + supplies;

done = (count > 100);

dept _recloc :='BOSTON;
comm_tab(5) :=sales*0.15;

Constants and Variables, Expressions, SELECT INTO Statement

11-6 PL/SQL User's Guide and Reference

Blocks

Blocks

Syntax

The basic program unit in PL/SQL is the block. A PL/SQL block is defined by the
keywords DECLAREBEGIN, EXCEPTION and END These keywords partition the
PL/SQL block into a declarative part, an executable part, and an exception-
handling part. Only the executable part is required. You can nest a block within
another block wherever you can place an executable statement. For more
information, see “Block Structure” on page 1-2 and “Scope and Visibility” on
page 2-37.

plsqgl_block

function_declaration
' procedure_declaration '

type_definition
)

—| BEGIN PW

ﬂ EXCEPTION |->Q exception_handler L
=)
END O

type_definition

record_type_definition

ref_cursor_type_definition

table_type_definition
' varray_type_definition -

Language Elements 11-7

Blocks

item_declaration

collection_declaration

constant_declaration

i

cursor_declaration

—(cursor_variable_declaration)—

exception_declaration

object_declaration

record_declaration

i

variable_declaration

statement

assignment_statement

exit_statement

goto_statement

if_statement

® O\ e

null_statement

plsql_block
raise_statement

return_statement

sql_statement

ueibudhn

11-8 PL/SQL User's Guide and Reference

Blocks

sql_statement
close_statement
commit_statement
delete_statement
fetch_statement
insert_statement
lock_table_statement
——(open_statement —

open—for_statement

rollback_statement
savepoint_statement

select_statement

i

—Cset_transaction_statement}—

|

update_statement

Keyword and Parameter Description

label_name

This is an undeclared identifier that optionally labels a PL/SQL block. If used,
label_name must be enclosed by double angle brackets and must appear at the
beginning of the block. Optionally, label name can also appear at the end of the
block.

A global identifier declared in an enclosing block can be redeclared in a sub-block,
in which case the local declaration prevails and the sub-block cannot reference the
global identifier. To reference the global identifier, you must use a block label to
gualify the reference, as the following example shows:

<<outer>>

DECLARE
XINTEGER,;

BEGIN

DECLARE

Language Elements 11-9

Blocks

XINTEGER,;
BEGIN

IF x=outerx THEN - refers to global x

ENDIF;
END;
END outer;

DECLARE

This keyword signals the start of the declarative part of a PL/SQL block, which
contains local declarations. Items declared locally exist only within the current
block and all its sub-blocks and are not visible to enclosing blocks. The declarative
part of a PL/SQL block is optional. It is terminated implicitly by the keyword
BEGIN, which introduces the executable part of the block.

PL/SQL does not allow forward references. So, you must declare an item before
referencing it in other statements, including other declarative statements. Also, you
must declare subprograms at the end of a declarative section after all other
program items.

collection_declaration

This identifies a nested table, index-by table, or varray previously declared within
the current scope. For the syntax of collection_declaration , see
“Collections” on page 11-21.

constant_declaration

This construct declares a constant. For the syntax of constant _declaration , See
“Constants and Variables” on page 11-29.

cursor_declaration

This construct declares an explicit cursor. For the syntax of
cursor_declaration , see “Cursors” on page 11-45.

cursor_variable_ declaration

This construct declares a cursor variable. For the syntax of
cursor_variable _declaration , see “Cursor Variables” on page 11-38.

11-10 PL/SQL User’s Guide and Reference

Blocks

exception_declaration

This construct declares an exception. For the syntax of exception_declaration :
see “Exceptions” on page 11-54.

object_declaration

This identifies an object (instance of an object type) previously declared within the
current scope. For the syntax of object _declaration , see “Object Types” on
page 11-103.

record_declaration

This construct declares a user-defined record. For the syntax of
record_declaration , see “Records” on page 11-128.

variable_declaration

This construct declares a variable. For the syntax of variable _declaration , see
“Constants and Variables” on page 11-29.

function_declaration

This construct declares a function. For the syntax of function_declaration , see
“Functions” on page 11-79.

procedure_declaration

This construct declares a procedure. For the syntax of procedure _declaration ,
see “Procedures” on page 11-121.

BEGIN

This keyword signals the start of the executable part of a PL/SQL block, which
contains executable statements. The executable part of a PL/SQL block is required.
That is, a block must contain at least one executable statement. The NULL statement
meets this requirement.

statement

This is an executable (not declarative) statement that you use to create algorithms.
A sequence of statements can include procedural statements such as RAISE, SQL
statements such as UPDATEand PL/SQL blocks (sometimes called block
statements).

Language Elements 11-11

Blocks

Example

PL/SQL statements are free format. That is, they can continue from line to line if
you do not split keywords, delimiters, or literals across lines. A semicolon (;)
serves as the statement terminator.

PL/SQL supports a subset of SQL statements that includes data manipulation,
cursor control, and transaction control statements but excludes data definition and
data control statements such as ALTER CREATEGRANTand REVOKE

EXCEPTION

This keyword signals the start of the exception-handling part of a PL/SQL block.
When an exception is raised, normal execution of the block stops and control
transfers to the appropriate exception handler. After the exception handler
completes, execution proceeds with the statement following the block.

If there is no exception handler for the raised exception in the current block, control
passes to the enclosing block. This process repeats until an exception handler is
found or there are no more enclosing blocks. If PL/SQL can find no exception
handler for the exception, execution stops and an unhandled exception error is
returned to the host environment. For more information, see Chapter 6.

exception_handler

This construct associates an exception with a sequence of statements, which is
executed when that exception is raised. For the syntax of exception_handler ,
see “Exceptions” on page 11-54.

END

This keyword signals the end of a PL/SQL block. It must be the last keyword in a
block. Neither the END IF in an IF statement nor the END LOORn a LOOP
statement can substitute for the keyword END

ENDdoes not signal the end of a transaction. Just as a block can span multiple
transactions, a transaction can span multiple blocks.

The following PL/SQL block declares several variables and constants, then
calculates a ratio using values selected from a database table:

—available online in file ‘exampl1l’
DECLARE
numerator NUMBER,;
denominator NUMBER;
the ratio NUMBER;

11-12 PL/SQL User’s Guide and Reference

Blocks

lower_limit CONSTANT NUMBER :=0.72;
samp_num CONSTANT NUMBER =132,
BEGIN
SELECT x, y INTO numerator, denominator FROM result_table
WHERE sample_id =samp_num;
the_ratio := numerator/denominator;
IFthe_ratio > lower_limit THEN
INSERT INTO ratio VALUES (samp_num, the_ratio);
ELSE
INSERT INTO ratio VALUES (samp_num, -1);
ENDIF;
COMMIT;
EXCEPTION
WHEN ZERO_DIVIDE THEN
INSERT INTO ratio VALUES (samp_num, Q);
COMMIT;
WHEN OTHERS THEN
ROLLBACK;
END;

Related Topics

Constants and Variables, Exceptions, Functions, Procedures

Language Elements 11-13

CLOSE Statement

CLOSE Statement

The CLOSEstatement allows resources held by an open cursor or cursor variable to
be reused. No more rows can be fetched from a closed cursor or cursor variable. For
more information, see “Managing Cursors” on page 5-9.

Syntax

close_statement

cursor_name

cursor_variable_name

—>| CLOSE

host_cursor_variable_name

Keyword and Parameter Description

cursor_name

This identifies an explicit cursor previously declared within the current scope and
currently open.

cursor_variable_name

This identifies a PL/SQL cursor variable (or parameter) previously declared within
the current scope and currently open.

host_cursor_variable_ name

This identifies a cursor variable declared in a PL/SQL host environment and
passed to PL/SQL as a bind variable. The datatype of the host cursor variable is
compatible with the return type of any PL/SQL cursor variable. Host variables
must be prefixed with a colon.

Usage Notes

Once a cursor or cursor variable is closed, you can reopen it using the OPENor
OPEN-FORstatement, respectively. If you reopen a cursor without closing it first,
PL/SQL raises the predefined exception CURSOR_ALREADY_OPHHbwever, you
need not close a cursor variable before reopening it.

11-14 PL/SQL User’s Guide and Reference

CLOSE Statement

If you try to close an already-closed or never-opened cursor or cursor variable,
PL/SQL raises the predefined exception INVALID_CURSOR

Example

In the following example, after the last row is fetched and processed, you close the
cursor variable emp_cv:

LOOP
FETCH emp_cvINTO emp_rec;
EXIT WHEN emp_cvW/eNOTFOUND;
... — process data record

END LOOP;

 Close cursor variable. */

CLOSE emp_cv,

Related Topics
FETCH Statement, OPEN Statement, OPEN-FOR Statement

Language Elements 11-15

Collection Methods

Collection Methods

A collection method is a built-in function or procedure that operates on collections
and is called using dot notation. The methods EXISTS, COUN]LIMIT , FIRST,
LAST, PRIOR NEXTEXTENDTRIM, and DELETEhelp generalize code, make
collections easier to use, and make your applications easier to maintain.

EXISTS, COUNJILIMIT , FIRST, LAST, PRIOR, and NEXTare functions, which
appear as part of an expression. EXTENDTRIM, and DELETEare procedures, which
appear as a statement. EXISTS, PRIOR NEXT TRIM, EXTENDand DELETEtake
integer parameters. For more information, see “Using Collection Methods” on
page 4-21.

Syntax

collection_method_call

/| COUNT

—| DELETE
D@D

O of
EXTEND
0 E: ’

E10IEDI¢
[Fom (D00

\| TRIM

11-16 PL/SQL User’s Guide and Reference

Collection Methods

Keyword and Parameter Description

collection_name

This identifies a nested table, index-by table, or varray previously declared within
the current scope.

COUNT

COUNTreturns the number of elements that a collection currently contains, which is
useful because the current size of a collection is not always known. You can use
COUNMwherever an integer expression is allowed.

For varrays, COUNTlways equals LAST. For nested tables, normally, COUNEquals
LAST. But, if you delete elements from the middle of a nested table, COUNTis
smaller than LAST.

DELETE

This procedure has three forms. DELETEremoves all elements from a collection.
DELETE(n) removes the nth element from a nested table. If nis null, DELETE(n)
does nothing. DELETE(m n) removes all elements in the range m..n from a
nested table. If mis larger than n or if mor nis null, DELETE(m n) does nothing.

index

This is an expression that must yield (or convert implicitly to) an integer. For more
information, see “Datatype Conversion” on page 2-25.

EXISTS

EXISTS(n) returns TRUEIf the nth element in a collection exists. Otherwise,
EXISTS(n) returns FALSE Mainly, you use EXISTS with DELETEto maintain
sparse nested tables. You can also use EXISTS to avoid raising an exception when
you reference a nonexistent element.

When passed an out-of-range subscript, EXISTS returns FALSE instead of raising
SUBSCRIPT_OUTSIDE_LIMIT.

EXTEND

This procedure has three forms. EXTENDappends one null element to a collection.
EXTEND() appends n null elements to a collection. EXTEND(n, i) appends n
copies of the / th element to a collection.

Language Elements 11-17

Collection Methods

Usage Notes

EXTENDoperates on the internal size of a collection. So, if EXTENDencounters
deleted elements, it includes them in its tally.

FIRST, LAST

FIRST and LAST return the first and last (smallest and largest) index numbers in a
collection. If the collection is empty, FIRST and LAST return NULL If the collection
contains only one element, FIRST and LAST return the same index number.

For varrays, FIRST always returns 1 and LAST always equals COUNTFor nested
tables, normally, LAST equals COUNTBuLt, if you delete elements from the middle
of a nested table, LAST is larger than COUNT

LIMIT

For nested tables, which have no maximum size, LIMIT returns NULL For varrays,
LIMIT returns the maximum number of elements that a varray can contain (which
you specify in its type definition).

NEXT, PRIOT

PRIOR(n) returns the index number that precedes index n in a collection.
NEXT(n) returns the index number that succeeds index n. If n has no predecessor,
PRIOR(n) returns NULL Likewise, if n has no successor, NEXT(n) returns NULL

TRIM

This procedure has two forms. TRIM removes one element from the end of a
collection. TRIM(n) removes n elements from the end of a collection. If nis
greater than COUNTTRIM(n) raises SUBSCRIPT_BEYOND_COUNT

TRIM operates on the internal size of a collection. So, if TRIM encounters deleted
elements, it includes them in its tally.

You cannot use collection methods in a SQL statement. If you try, you get a
compilation error.

Only EXISTS can be applied to atomically null collections. If you apply another
method to such collections, PL/SQL raises COLLECTION_IS NULL

You can use PRIORor NEXTto traverse collections indexed by any series of
subscripts. For example, you can use PRIORor NEXTto traverse a nested table from
which some elements have been deleted.

11-18 PL/SQL User’s Guide and Reference

Collection Methods

Examples

EXTENDoperates on the internal size of a collection, which includes deleted
elements. You cannot use EXTENDto initialize an atomically null collection. Also, if
you impose the NOT NULLconstraint on a TABLEor VARRAMype, you cannot
apply the first two forms of EXTENDto collections of that type.

If an element to be deleted does not exist, DELETEsimply skips it; no exception is
raised. Varrays are dense, so you cannot delete their individual elements.

PL/SQL keeps placeholders for deleted elements. So, you can replace a deleted
element simply by assigning it a new value. However, PL/SQL does not keep
placeholders for trimmed elements.

The amount of memory allocated to a nested table can increase or decrease
dynamically. As you delete elements, memory is freed page by page. If you delete
the entire table, all the memory is freed.

In general, do not depend on the interaction between TRIM and DELETE It is better
to treat nested tables like fixed-size arrays and use only DELETE or to treat them
like stacks and use only TRIM and EXTEND

Within a subprogram, a collection parameter assumes the properties of the
argument bound to it. So, you can apply methods FIRST, LAST, COUN;Tand so on
to such parameters. For varray parameters, the value of LIMIT is always derived
from the parameter type definition, regardless of the parameter mode.

In the following example, you use NEXTto traverse a nested table from which some
elements have been deleted:

i .= courses.FIRST; — get subscript of first element
WHILE i 1S NOT NULL LOOP

- do something with courses(i)
i := courses.NEXT(i); — get subscript of next element
END LOOP;

In the following example, PL/SQL executes the assignment statement only if
element j exists:

IF courses.EXISTS(j) THEN
courses(l) := new_course;
ENDIF;

Language Elements 11-19

Collection Methods

The next example shows that you can use FIRST and LAST to specify the lower
and upper bounds of a loop range provided each element in that range exists:

FORI IN courses.FIRST..courses.LAST LOOP ...

In the following example, you delete elements 2 through 5 from a nested table:
courses.DELETE(2, 5);

In the next example, you use LIMIT to determine if you can add 20 more elements
to varray projects

IF (projects.COUNT + 20) < projects.LIMIT THEN
— add 20 more elements

Related Topics
Collections

11-20 PL/SQL User’s Guide and Reference

Collections

Collections

Syntax

A collection is an ordered group of elements, all of the same type (for example, the
grades for a class of students). Each element has a unique subscript that determines
its position in the collection. PL/SQL offers two kinds of collections: nested tables
and varrays (short for variable-size arrays).

Collections work like the arrays found in most third-generation programming
languages. However, collections can have only one dimension and must be indexed
by integers. (In some languages such as Ada and Pascal, arrays can have multiple
dimensions and can be indexed by enumeration types.)

Collections can store instances of an object type and, conversely, can be attributes of
an object type. Also, collections can be passed as parameters. So, you can use them
to move columns of data into and out of database tables or between client-side
applications and stored subprograms. For more information, see “Defining and
Declaring Collections” on page 4-5.

table_type_definition

NOT NULL
—>| TYPE Ktype_nameH IS TABLE OF Kelement_type)
f—)| INDEX BY BINARY_INTEGER |—\

varray_type_definition

VARRAY
e) OO
-NOT NULL
element_type A O

collection_declaration

—><co|Iection_name)»(type_name)e@

Language Elements 11-21

Collections

element_type

{cursor_name ROWTYPE I

ROWTYPE

CEATD N

—Cobject_name TYPE I

REF

] “ object_type_name —

|

—Crecord_name TYPE |
—(record_type_name)
(scalar_datatype_name)
i |
\Cvanable_name TYPE |

Keyword and Parameter Description

type_name

This identifies a user-defined type specifier, which is used in subsequent
declarations of collections.

element_type

This is any PL/SQL datatype except BOOLEANNCHARNCLOBNVARCHARZREF
CURSORTABLE and VARRAYor is any object type except those with TABLEor
VARRANYattributes. If element _type s a record type, every field in the record
must be a scalar type or an object type.

INDEX BY BINARY_INTEGER

This optional clause lets you define Version 2 PL/SQL tables, which are called
index-by tables in Version 8.

size_limit

This is a positive integer literal that specifies the maximum size of a varray, which
is the maximum number of elements the varray can contain.

11-22 PL/SQL User’s Guide and Reference

Collections

Usage Notes

Every element reference includes the collection name and a subscript enclosed in
parentheses; the subscript determines which element is processed. Except for index-
by tables, collection subscripts have a fixed lower bound of 1.

Nested tables can be sparse (have non-consecutive subscripts), but varrays are
always dense (have consecutive subscripts). Unlike nested tables, varrays retain
their ordering and subscripts when stored in the database.

You can define collection types in the declarative part of any PL/SQL block,
subprogram, or package. In SQL, collection types can be CREATH and stored in
the database.

Collections follow the usual scoping and instantiation rules. In a package,
collections are instantiated when you first reference the package and cease to exist
when you end the database session. In a block or subprogram, local collections are
instantiated when you enter the block or subprogram and cease to exist when you
exit.

Until you initialize it, a collection is atomically null (that is, the collection itself is
null, not its elements). To initialize a collection, you use a constructor, which is a

system-defined function with the same name as the collection type. This function
“constructs” a collection from the elements passed to it.

Because collections can be atomically null, they can be tested for nullity. However,
collections cannot be compared for equality or inequality. This restriction also
applies to implicit comparisons. For example, collections cannot appear in a
DISTINCT, GROUP BYr ORDER Bist.

Collections can store instances of an object type and, conversely, can be attributes of
an object type. Also, nested tables and varrays can be passed as parameters. So, you
can use them to move collections of data into and out of database tables or between
client-side applications and stored subprograms.

When calling a function that returns a collection, you use the following syntax to
reference elements in the collection:

collection_name(parameter_list)(subscript)
With the Oracle Call Interface (OCI) or the Oracle Precompilers, you can bind host

arrays to collections declared as the formal parameters of a subprogram. That
allows you to pass host arrays to stored functions and procedures.

Language Elements 11-23

Collections

Examples

To specify the element type of a collection, you can use %TYPEr %ROWTYPRES the
following example shows;

DECLARE
TYPE JobList IS VARRAY(10) OF emp.job%TYPE; — based on column
CURSOR c1 IS SELECT * FROM dept;
TYPE DeptFile IS TABLE OF c1%ROWTYPE; - based on cursor
TYPE EmpFile IS VARRAY(150) OF emp%ROWTYPE; —based on database table

In the next example, you use a RECORIype to specify the element type:

DECLARE
TYPE Entry IS RECORD (
term VARCHAR2(20),
meaning VARCHAR2(200));
TYPE Glossary IS VARRAY(250) OF Entry;

When defining a VARRAMype, you must specify its maximum size. In the
following example, you define a type that stores up to 366 dates:

DECLARE
TYPE Calendar IS VARRAY(366) OF DATE;

Once you define a collection type, you can declare collections of that type, as the
following SQL*Plus script shows:

CREATE TYPE Project AS OBJECT(
project_no NUMBER(2),
ite VARCHAR2(35),
cost NUMBER(7,2))
/
CREATE TYPE ProjectList AS VARRAY/(50) OF Project —define VARRAY type
/
CREATE TABLE department
idnum NUMBER(2),
name VARCHAR2(15),
budget NUMBER(11,2),
projects ProjectList) — declare varray
/

The identifier projects represents an entire varray. Each element of projects
will store a Project object.

11-24 PL/SQL User’s Guide and Reference

Collections

Related Topics

In the following example, you declare a nested table as the formal parameter of a
packaged procedure:

CREATE PACKAGE personnel AS
TYPE Staff IS TABLE OF Employes;

PROCEDURE award_bonuses (members IN Staff);

You can specify a collection type in the RETURNIlause of a function specification,
as the following example shows:

DECLARE
TYPE SalesForce IS VARRAY(20) OF Salesperson;
FUNCTION top_performers (n INTEGER) RETURN SalesForce IS ...

In the following example, you update the list of projects assigned to the Security
Department:

DECLARE
new_projects ProjectList .=
ProjectList(Project(1, 'lssue New Employee Badges', 13500),
Project(2, 'Inspect Emergency Exits', 1900),
Project(3, 'Upgrade Alarm System’, 3350),
Project(4, ‘Analyze Local Crime Statistics', 825));
BEGIN
UPDATE department
SET projects = new_projects WHERE name ="Security’;

In the next example, you retrieve all the projects for the Accounting Department
into a local varray:
DECLARE
my_projects Projectlist;
BEGIN

SELECT projects INTO my_projects FROM department
WHERE name ="Accounting’;

Collection Methods, Object Types, Records

Language Elements 11-25

Comments

Comments

Syntax

Usage Notes

Examples

Comments describe the purpose and use of code segments and so promote
readability. PL/SQL supports two comment styles: single-line and multi-line.
Single-line comments begin with a double hyphen (--) anywhere on a line and
extend to the end of the line. Multi-line comments begin with a slash-asterisk (/*),
end with an asterisk-slash (*/), and can span multiple lines. For more information,
see “Comments” on page 2-9.

comment

Comments can appear within a statement at the end of a line. However, you cannot
nest comments.

You cannot use single-line comments in a PL/SQL block that will be processed
dynamically by an Oracle Precompiler program because end-of-line characters are
ignored. As a result, single-line comments extend to the end of the block, not just to
the end of a line. Instead, use multi-line comments.

While testing or debugging a program, you might want to disable a line of code.
The following example shows how you can “comment-out” the line:

— UPDATE dept SET loc=my_loc WHERE deptno =my_deptno;

You can use multi-line comment delimiters to comment-out whole sections of code.

The following examples show various comment styles:

- compute the area of a circle
area = pi*radius*2; — pi equals 3.14159
F Compute the area

ofacircle.*/

area = pi*radius*2; /*pi equals 3.14159*

11-26 PL/SQL User’s Guide and Reference

COMMIT Statement

COMMIT Statement

Syntax

The COMMITstatement explicitly makes permanent any changes made to the
database during the current transaction. Changes made to the database are not
considered permanent until they are committed. A commit also makes the changes
visible to other users. For more information, see “Processing Transactions” on
page 5-44.

commit_statement

m— f—)l WORK |-\ f—)l COMMENT O

Keyword and Parameter Description

Usage Notes

WORK
This keyword is optional and has no effect except to improve readability.

COMMENT

This keyword specifies a comment to be associated with the current transaction and
is typically used with distributed transactions. The text must be a quoted literal no
more than 50 characters long.

The COMMITstatement releases all row and table locks. It also erases any
savepoints you marked since the last commit or rollback. Until your changes are
committed, the following conditions hold:

= You can see the changes when you query the tables you modified, but other
users cannot see the changes.

« If you change your mind or need to correct a mistake, you can use the
ROLLBACHKtatement to roll back (undo) the changes.

Language Elements 11-27

COMMIT Statement

Related Topics

If you commit while a cursor that was declared using FOR UPDATES open, a
subsequent fetch on that cursor raises an exception. The cursor remains open,
however, so you should close it. For more information, see “Using FOR UPDATE”
on page 5-51.

When a distributed transaction fails, the text specified by COMMENTHelps you
diagnose the problem. If a distributed transaction is ever in doubt, Oracle stores the
text in the data dictionary along with the transaction ID. For more information
about distributed transactions, see Oracle8 Concepts.

PL/SQL does not support the FORCEtlause, which, in SQL, manually commits an
in-doubt distributed transaction. For example, the following COMMITstatement is
illegal:

COMMIT FORCE '2351.54’; —illegal

With embedded SQL, the optional RELEASEparameter is allowed after COMMIT
WORKThe keyword RELEASEActs like a “disconnect” statement, which logs you
off the database once your transaction is committed. PL/SQL does not support
data control statements such as CONNECTGRANTor REVOKETherefore, it does not
support the RELEASEparameter.

ROLLBACK Statement, SAVEPOINT Statement

11-28 PL/SQL User’s Guide and Reference

Constants and Variables

Constants and Variables

Syntax

You can declare constants and variables in the declarative part of any PL/SQL
block, subprogram, or package. Declarations allocate storage space for a value,
specify its datatype, and name the storage location so that you can reference it.
Declarations can also assign an initial value and impose the NOT NULLconstraint.
For more information, see “Declarations” on page 2-28.

variable_declaration

expression

—><variab|e_name>{datatype) J

datatype

/(collection_name TYPE I

(' collection_type_name)
(D[Fowrvee
O

“ object_type_name

Ol
—(record_type_name)
—(ref_cursor_type_name)
—(scalar_datatype_name)

i |
\(vanable_name TYPE |

Language Elements 11-29

Constants and Variables

constant_declaration

db_table name)s@{column name)a.a| TYPE |\
field_| name TYPE l—

record_name

—><constam_name)—>| CONSTANT

scalar_datatype_name

vanable name

NOT NULL
expressmn
DEFAULT

Keyword and Parameter Description

constant_name

This identifies a program constant. For naming conventions, see “ldentifiers” on
page 2-4.

CONSTANT

This keyword denotes the declaration of a constant. You must initialize a constant
in its declaration. Once initialized, the value of a constant cannot be changed.

record_name.field_name

This identifies a field in a user-defined or %ROWTYREcord previously declared
within the current scope.

scalar_type_name

This identifies a predefined scalar datatype such as BOOLEANNUMBERor
VARCHARZFor more information, see “Datatypes” on page 2-10.

db_table_name.column_name
This identifies a database table and column that must be accessible when the

declaration is elaborated.

variable_name
This identifies a program variable.

11-30 PL/SQL User’s Guide and Reference

Constants and Variables

collection_name

This identifies a nested table, index-by table, or varray previously declared within
the current scope.

cursor_name
This identifies an explicit cursor previously declared within the current scope.

cursor_variable_name

This identifies a PL/SQL cursor variable previously declared within the current
scope.

object_name

This identifies an object (instance of an object type) previously declared within the
current scope.

record_name
This identifies a user-defined record previously declared within the current scope.

db_table_name

This identifies a database table (or view) that must be accessible when the
declaration is elaborated.

%ROWTYPE

This attribute provides a record type that represents a row in a database table or a
row fetched from a previously declared cursor. Fields in the record and
corresponding columns in the row have the same names and datatypes.

%TYPE

This attribute provides the datatype of a previously declared collection, cursor
variable, field, object, record, database column, or variable.

NOT NULL

This constraint prevents the assigning of nulls to a variable or constant. At run
time, trying to assign a null to a variable defined as NOT NULLraises the predefined
exception VALUE_ERROR he constraint NOT NULLmust be followed by an
initialization clause.

Language Elements 11-31

Constants and Variables

Usage Notes

Examples

Related Topics

expression

This is an arbitrarily complex combination of variables, constants, literals,
operators, and function calls. The simplest expression consists of a single variable.
When the declaration is elaborated, the value of expression s assigned to the
constant or variable. The value and the constant or variable must have compatible
datatypes.

Constants and variables are initialized every time a block or subprogram is entered.
By default, variables are initialized to NULL So, unless you expressly initialize a
variable, its value is undefined.

Whether public or private, constants and variables declared in a package
specification are initialized only once per session.

An initialization clause is required when declaring NOT NULLvariables and when
declaring constants.

You cannot use the attribute %ROWTYRB declare a constant. If you use %ROWTYPE
to declare a variable, initialization is not allowed.

Several examples of variable and constant declarations follow:

credit_imit CONSTANT NUMBER :=5000;

invaid BOOLEAN :=FALSE;

acct id INTEGER(@) NOT NULL DEFAULT 9999;
pi CONSTANT REAL :=3.14159;

last name VARCHAR2(20);

my_ename emp.ename%TYPE;

Assignment Statement, Expressions, %ROWTYPE Attribute, %TYPE Attribute

11-32 PL/SQL User’s Guide and Reference

Cursor Attributes

Cursor Attributes

Syntax

Cursors and cursor variables have four attributes that give you useful information
about the execution of a data manipulation statement. For more information, see
“Using Cursor Attributes” on page 5-38.

cursor_attribute

Cl

ursor_name

cursor_variable_name

host_cursor_variable_name

Keyword and Parameter Description

Cursor_name
This identifies an explicit cursor previously declared within the current scope.

cursor_variable_name

This identifies a PL/SQL cursor variable (or parameter) previously declared within
the current scope.

host_cursor_variable_ name

This identifies a cursor variable declared in a PL/SQL host environment and
passed to PL/SQL as a bind variable. The datatype of the host cursor variable is
compatible with the return type of any PL/SQL cursor variable. Host variables
must be prefixed with a colon.

SQL

This is the name of the implicit SQLcursor. For more information, see “SQL
Cursor” on page 11-144.

Language Elements 11-33

Cursor Attributes

Usage Notes

%FOUND

This is a cursor attribute, which can be appended to the name of a cursor or cursor
variable. Before the first fetch from an open cursor, cursor_name %FOUNBields
NULL Thereafter, it yields TRUEIf the last fetch returned a row, or FALSE if the last
fetch failed to return a row.

Until a SQL statement is executed, SQL%FOUNelds NULL Thereafter, it yields
TRUEIf the statement affected any rows, or FALSEIf it affected no rows.

%ISOPEN

This is a cursor attribute, which can be appended to the name of a cursor or cursor
variable. If a cursor is open, cursor_name %ISOPENyields TRUE otherwise, it
yields FALSE

Oracle automatically closes the implicit SQLcursor after executing its associated
SQL statement, so SQL%ISOPEMNIways yields FALSE

%NOTFOUND

This is a cursor attribute, which can be appended to the name of a cursor or cursor
variable. Before the first fetch from an open cursor, cursor_name %NOTFOUND
yields NULL Thereafter, it yields FALSEIf the last fetch returned a row, or TRUEIf
the last fetch failed to return a row.

Until a SQL statement is executed, SQL%NOTFOUNI/kelds NULL Thereafter, it
yields FALSE if the statement affected any rows, or TRUEIf it affected no rows.

%ROWCOUNT

This is a cursor attribute, which can be appended to the name of a cursor or cursor
variable. When a cursor is opened, %ROWCOUMNTzeroed. Before the first fetch,
cursor_name %ROWCOUNMiIEIds 0. Thereafter, it yields the number of rows
fetched so far. The number is incremented if the latest fetch returned a row.

Until a SQL statement is executed, SQL%ROWCOUN@Ids NULL Thereafter, it
yields the number of rows affected by the statement. SQL%ROWCOUWN®Ids 0 if the
statement affected no rows.

The cursor attributes apply to every cursor or cursor variable. So, for example, you
can open multiple cursors, then use %FOUNDr %NOTFOUNID tell which cursors
have rows left to fetch. Likewise, you can use %ROWCOURbItell how many rows
have been fetched so far.

11-34 PL/SQL User’s Guide and Reference

Cursor Attributes

Examples

If a cursor or cursor variable is not open, referencing it with %FOUNDANOTFOUND
or %ROWCOUMKiIses the predefined exception INVALID _CURSOR

When a cursor or cursor variable is opened, the rows that satisfy the associated
guery are identified and form the result set. Rows are fetched from the result set
one at a time.

If a SELECT INTOstatement returns more than one row, PL/SQL raises the
predefined exception TOO_MANY_ROVE&d sets %bROWCOUMII1, not the actual
number of rows that satisfy the query.

Before the first fetch, %NOTFOUN#&aluates to NULL So, if FETCHnever executes
successfully, the loop is never exited. That is because the EXIT WHENstatement
executes only if its WHENondition is true. To be safe, you might want to use the
following EXIT statement instead:

EXIT WHEN c1%NOTFOUND OR c¢i%NOTFOUND IS NULL;

You can use the cursor attributes in procedural statements but not in SQL
statements.

The PL/SQL block below uses %FOUNID select an action. The IF statement either
inserts a row or exits the loop unconditionally.

—available online in file ‘'exampl2’
DECLARE
CURSOR numl_cur IS SELECT num FROM numl_tab
ORDER BY sequence;
CURSOR num2_cur IS SELECT num FROM num?2_tab
ORDER BY sequence;
numl numl tab.num%TYPE;
num2 num2_tab.num%TYPE;
pair_num NUMBER =0
BEGIN
OPEN num1_cur;
OPEN num2_cur;
LOOP - loop through the two tables and get pairs of numbers
FETCHnum21_cur INTO num,
FETCH num2_cur INTO num2;
IF (hum1_cur%FOUND) AND (hum2_cur%FOUND) THEN
pair_num := pair_num + 1,
INSERT INTO sum_tab VALUES (pair_num, num1 + num2);
ELSE
EXIT;

Language Elements 11-35

Cursor Attributes

ENDIF;
END LOOP,;
CLOSE num1_cur;
CLOSE num2_cur;
END;

The next example uses the same block. However, instead of using %FOUNI an IF
statement, it uses %NOTFOUND an EXIT WHENstatement.

—available online infile ‘'exampl3’
DECLARE
CURSOR num1_cur IS SELECT num FROM num1._tab
ORDER BY sequence;
CURSOR num2_cur IS SELECT num FROM num?2_tab
ORDER BY sequence;
numl numl tab.num%TYPE;
num2 num2_tab.num9%TYPE;
pair_num NUMBER :=0;
BEGIN
OPEN num1_cur;
OPEN num2_cur;
LOOP - loop through the two tables and get
— pairs of numbers
FETCH num1_cur INTO num,
FETCH num2_cur INTO num2;
EXIT WHEN (hum2_cur%NOTFOUND) OR (num2_cur%eNOTFOUND);
pair_num = pair_num+1;
INSERT INTO sum_tab VALUES (pair_num, num1 + num2);
END LOOP;
CLOSE num1_cur;
CLOSE num2_cur;
END;

In the following example, you use %ISOPENoO make a decision:

IFNOT (emp_cur%ISOPEN) THEN
OPENemp_cur;

ENDIF;

FETCH emp_cur INTO emp_rec;

The following PL/SQL block uses %ROWCOURMIfetch the names and salaries of
the five highest-paid employees:

—available online in file ‘'exampl4’
DECLARE
CURSORCclis

11-36 PL/SQL User’s Guide and Reference

Cursor Attributes

SELECT ename, empno, sal FROM emp
ORDER BY sal DESC; - start with highest-paid employee
my_ename CHAR(10);
my_empno NUMBER(4);
my_sal NUMBER(7,2);
BEGIN
OPENCcI;
LOOP
FETCH c1INTO my_ename, my_empno, my_sal;
EXIT WHEN (c1%ROWCOUNT > 5) OR (c1%6NOTFOUND);
INSERT INTO temp VALUES (my_sal, my_empno, my_ename);
COMMIT;
END LOOP;
CLOSEcc1;
END;

In the final example, you use %ROWCOUMTraise an exception if an unexpectedly
high number of rows is deleted:

DELETE FROM accts WHERE status ='BAD DEBT;
IF SQL%ROWCOUNT > 10 THEN

RAISE out_of_bounds;
ENDIF;

Related Topics
Cursors, Cursor Variables

Language Elements 11-37

Cursor Variables

Cursor Variables

Syntax

To execute a multi-row query, Oracle opens an unnamed work area that stores
processing information. To access the information, you can use an explicit cursor,
which names the work area. Or, you can use a cursor variable, which points to the
work area. Whereas a cursor always refers to the same query work area, a cursor
variable can refer to different work areas. To create cursor variables, you define a
REF CURSORype, then declare cursor variables of that type.

Cursor variables are like C or Pascal pointers, which hold the memory location
(address) of some item instead of the item itself. So, declaring a cursor variable
creates a pointer, not an item. For more information, see “Using Cursor Variables”
on page 5-18.

ref_cursor_type_definition

—>| TYPE Ktype_name)al IS REF CURSOR |->

,(db_table_name ROWTYPE |——
®
—(cursor_variable_name ROWTYPE |

cursor_variable_declaration

—><cursor_variabIe_name){type_name)s@

Keyword and Parameter Description

type_name

This is a user-defined type specifier, which is used in subsequent declarations of
PL/SQL cursor variables.

11-38 PL/SQL User’s Guide and Reference

Cursor Variables

REF CURSOR

In PL/SQL, pointers have datatype REF X, where REFis short for REFERENCENd
Xstands for a class of objects. Therefore, cursor variables have datatype REF
CURSOR

RETURN

This keyword introduces the RETURNIlause, which specifies the datatype of a
cursor variable result value. You can use the %ROWTY Pdtribute in the RETURN
clause to provide a record type that represents a row in a database table or a row
returned by a cursor or strongly typed cursor variable. Also, you can use the
%TYPEattribute to provide the datatype of a previously declared record.

cursor_name
This identifies an explicit cursor previously declared within the current scope.

cursor_variable_name
This identifies a PL/SQL cursor variable previously declared within the current
scope.

record_name
This identifies a user-defined record previously declared within the current scope.

record_type_name
This identifies a RECORDRype previously defined within the current scope.

db_table_name

This identifies a database table (or view) that must be accessible when the
declaration is elaborated.

%ROWTYPE

This attribute provides a record type that represents a row in a database table or a
row fetched from a cursor or strongly typed cursor variable. Fields in the record
and corresponding columns in the row have the same names and datatypes.

%TYPE
This attribute provides the datatype of a previously declared user-defined record.

Language Elements 11-39

Cursor Variables

Usage Notes

Cursor variables are available to every PL/SQL client. For example, you can
declare a cursor variable in a PL/SQL host environment such as an OCI or Pro*C
program, then pass it as a bind variable to PL/SQL. Moreover, application
development tools such as Oracle Forms and Oracle Reports, which have a
PL/SQL engine, can use cursor variables entirely on the client side.

The Oracle server also has a PL/SQL engine. So, you can pass cursor variables back
and forth between an application and server via remote procedure calls (RPCs).
And, if you have a PL/SQL engine on the client side, calls from client to server
impose no restrictions. For example, you can declare a cursor variable on the client
side, open and fetch from it on the server side, then continue to fetch from it back
on the client side.

Mainly, you use cursor variables to pass query result sets between PL/SQL stored
subprograms and various clients. Neither PL/SQL nor any of its clients owns a
result set; they simply share a pointer to the query work area in which the result set
is stored. For example, an OCI client, Oracle Forms application, and Oracle server
can all refer to the same work area.

REF CURSORypes can be strong (restrictive) or weak (nonrestrictive). A strong REF
CURSORype definition specifies a return type, but a weak definition does not.
Strong REF CURSORypes are less error prone because the PL/SQL compiler lets
you associate a strongly typed cursor variable only with type-compatible queries.
However, weak REF CURSORypes are more flexible because the compiler lets you
associate a weakly typed cursor variable with any query.

Once you define a REF CURSORype, you can declare cursor variables of that type.
Yu can use %TYPHo provide the datatype of a record variable. Also, in the RETURN
clause of a REF CURSORype definition, you can use %ROWTYR& specify a record
type that represents a row returned by a strongly (not weakly) typed cursor
variable.

You use three statements to control a cursor variable: OPENFOR FETCH and
CLOSEFirst, you OPENa cursor variable FORa multi-row query. Then, you FETCH
rows from the result set one at a time. When all the rows are processed, you CLOSE
the cursor variable.

Other OPENFORstatements can open the same cursor variable for different queries.
You need not close a cursor variable before reopening it. When you reopen a cursor
variable for a different query, the previous query is lost.

11-40 PL/SQL User’s Guide and Reference

Cursor Variables

PL/SQL makes sure the return type of the cursor variable is compatible with the
INTO clause of the FETCHstatement. For each column value returned by the query
associated with the cursor variable, there must be a corresponding, type-
compatible field or variable in the INTO clause. Also, the number of fields or
variables must equal the number of column values. Otherwise, you get an error.

If both cursor variables involved in an assignment are strongly typed, they must
have the same datatype. However, if one or both cursor variables are weakly typed,
they need not have the same datatype.

When declaring a cursor variable as the formal parameter of a subprogram that
fetches from or closes the cursor variable, you must specify the IN (or IN OUT)
mode. If the subprogram opens the cursor variable, you must specify the IN OUT
mode.

Be careful when passing cursor variables as parameters. At run time, PL/SQL
raises ROWTYPE_MISMATGHhe return types of the actual and formal parameters
are incompatible.

You can apply the cursor attributes %FOUNDB6ONOTFOUNBISOPENand
%ROWCOUMITa cursor variable. For more information, see “Using Cursor
Attributes” on page 5-38.

If you try to fetch from, close, or apply cursor attributes to a cursor variable that
does not point to a query work area, PL/SQL raises the predefined exception
INVALID_CURSOR You can make a cursor variable (or parameter) point to a query
work area in two ways:

« OPENhe cursor variable FORthe query.

« Assign to the cursor variable the value of an already OPENd host cursor
variable or PL/SQL cursor variable.

A query work area remains accessible as long as any cursor variable points to it.
Therefore, you can pass the value of a cursor variable freely from one scope to
another. For example, if you pass a host cursor variable to a PL/SQL block
embedded in a Pro*C program, the work area to which the cursor variable points
remains accessible after the block completes.

Currently, cursor variables are subject to the following restrictions, some of which
future releases of PL/SQL will remove:

= You cannot declare cursor variables in a package because they do not have
persistent state.

Language Elements 11-41

Cursor Variables

Examples

« Remote subprograms on another server cannot accept the values of cursor
variables. Therefore, you cannot use RPCs to pass cursor variables from one
server to another.

« If you pass a host cursor variable (bind variable) to PL/SQL, you cannot fetch
from it on the server side unless you also open it there on the same server call.

« The query associated with a cursor variable in an OPEN-FORstatement cannot
be FOR UPDATE

= You cannot use comparison operators to test cursor variables for equality,
inequality, or nullity.

= You cannot assign nulls to a cursor variable.

=« You cannot use REF CURSORypes to specify column types in a CREATE TABLE
or CREATE VIEWtatement. So, database columns cannot store the values of
cursor variables.

« Cursors and cursor variables are not interoperable; that is, you cannot use one
where the other is expected.

= You cannot use a REF CURSORype to specify the element type of a collection,
which means that elements in a collection cannot store the values of cursor
variables.

= You cannot use cursor variables with dynamic SQL.

You can declare a cursor variable in a PL/SQL host environment such as an OCI or
Pro*C program. To use the host cursor variable, you must pass it as a bind variable
to PL/SQL. In the following Pro*C example, you pass a host cursor variable and
selector to a PL/SQL block, which opens the cursor variable for the chosen query:

EXEC SQL BEGIN DECLARE SECTION,;

* Declare host cursor variable. */
SQL_CURSOR generic_cv,
int choice;

EXEC SQL END DECLARE SECTION,;

* Initialize host cursor variable. */
EXEC SQL ALLOCATE :generic cv,

¥ Pass host cursor variable and selector to PL/SQL block. */
EXEC SQL EXECUTE

11-42 PL/SQL User’s Guide and Reference

Cursor Variables

BEGIN
IF :choice =1 THEN
OPEN :generic_cv FOR SELECT * FROM emp;
ELSIF :choice =2 THEN
OPEN :generic_cv FOR SELECT * FROM degpt;
ELSIF :choice =3 THEN
OPEN :generic_cv FOR SELECT * FROM salgrade;
ENDIF;
END;
END-EXEC;

Host cursor variables are compatible with any query return type. They behave just
like weakly typed PL/SQL cursor variables.

When passing host cursor variables to PL/SQL, you can reduce network traffic by
grouping OPEN-FORstatements. For example, the following PL/SQL block opens
three cursor variables in a single round-trip:

F anonymous PL/SQL block in host environment */
BEGIN
OPEN :emp_cv FOR SELECT * FROM emp;
OPEN :dept_cv FOR SELECT * FROM dept;
OPEN :grade_cv FOR SELECT * FROM salgrade;
END;

You can also pass a cursor variable to PL/SQL by calling a stored procedure that
declares a cursor variable as one of its formal parameters. To centralize data
retrieval, you can group type-compatible queries in a packaged procedure, as the
following example shows:

CREATE PACKAGE emp_data AS
TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
PROCEDURE open_emp_cv (emp_cvIN OUT EmpCurTyp,
choice IN NUMBER);
END emp_datz;

CREATE PACKAGE BODY emp_data AS
PROCEDURE open_emp_cv (emp_cvIN OUT EmpCurTyp,
choice IN NUMBER) IS
BEGIN
IF choice =1 THEN
OPEN emp_cv FOR SELECT * FROM emp WHERE comm IS NOT NULL;
ELSIF choice =2 THEN
OPEN emp_cv FOR SELECT * FROM emp WHERE sal > 2500;
ELSIF choice =3 THEN
OPEN emp_cv FOR SELECT * FROM emp WHERE deptno = 20;

Language Elements 11-43

Cursor Variables

ENDIF;
END open_emp _cv;
END emp_datz;

Alternatively, you can use a stand-alone procedure to open the cursor variable.
Simply define the REF CURSORype in a separate package, then reference that type
in the stand-alone procedure. For instance, if you create the following (bodiless)
package, you can create stand-alone procedures that reference the types it defines:

CREATE PACKAGE cv_types AS
TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
TYPE DeptCurTyp IS REF CURSOR RETURN dept96ROWTYPE;
TYPE BonusCurTyp IS REF CURSOR RETURN bonus76ROWTYPE;

END cv_types;

Related Topics

CLOSE Statement, Cursor Attributes, Cursors, FETCH Statement, OPEN-FOR
Statement

11-44 PL/SQL User’s Guide and Reference

Cursors

Cursors
To execute a multi-row query, Oracle opens an unnamed work area that stores
processing information. A cursor lets you name the work area, access the
information, and process the rows individually. For more information, see
“Managing Cursors” on page 5-9.

Syntax
cursor_declaration M\

N\

cursor_parameter_declaration

o

—>| CURSOR Kcursor_name)

f—)| RETURN |—>| rowtype |—\
IS select_statement o

cursor_specification N\
N\

cursor_parameter_declaration

2
o

—>| CURSOR Kcursor_name)

—{ RETURN |4 rowtype |->®

cursor_body Q

cursor_parameter_declaration

2
o

—>| CURSOR Kcursor_name)

[

cursor_parameter_declaration

expression

°
)

F—=\ e

Language Elements 11-45

Cursors

rowtype

db_table_name @ ROWTYPE

cursor_name ROWTYPE

record_name @ TYPE

record_type_name

Keyword and Parameter Description

select_statement

This is a query that returns a result set of rows. Its syntax is like that of
select _into_statement without the INTO clause. See “SELECT INTO
Statement” on page 11-139. If the cursor declaration declares parameters, each
parameter must be used in the query.

RETURN

This keyword introduces the RETURNIlause, which specifies the datatype of a
cursor result value. You can use the %ROWTYRétribute in the RETURNIause to
provide a record type that represents a row in a database table or a row returned by
a previously declared cursor. Also, you can use the %TYPEattribute to provide the
datatype of a previously declared record.

A cursor body must have a SELECTstatement and the same RETURNIlause as its
corresponding cursor specification. Also, the number, order, and datatypes of select
items in the SELECTclause must match the RETURNlause.

parameter_name

This identifies a cursor parameter; that is, a variable declared as the formal
parameter of a cursor. A cursor parameter can appear in a query wherever a
constant can appear. The formal parameters of a cursor must be IN parameters. The
guery can also reference other PL/SQL variables within its scope.

db_table_name

This identifies a database table (or view) that must be accessible when the
declaration is elaborated.

11-46 PL/SQL User’s Guide and Reference

Cursors

Usage Notes

cursor_name
This identifies an explicit cursor previously declared within the current scope.

record_name
This identifies a user-defined record previously declared within the current scope.

record_type_name
This identifies a RECORype previously defined within the current scope.

%ROWTYPE

This attribute provides a record type that represents a row in a database table or a
row fetched from a previously declared cursor. Fields in the record and
corresponding columns in the row have the same names and datatypes.

%TYPE

This attribute provides the datatype of a previously declared collection, cursor
variable, field, object, record, database column, or variable.

datatype

This is a type specifier. For the syntax of datatype , see “Constants and Variables”
on page 11-29.

expression

This is an arbitrarily complex combination of variables, constants, literals,
operators, and function calls. The simplest expression consists of a single variable.
When the declaration is elaborated, the value of expression s assigned to the
parameter. The value and the parameter must have compatible datatypes.

You must declare a cursor before referencing it in an OPENFETCH or CLOSE
statement. And, you must declare a variable before referencing it in a cursor
declaration. The word SQL is reserved by PL/SQL for use as the default name for
implicit cursors and cannot be used in a cursor declaration.

You cannot assign values to a cursor name or use it in an expression. However,
cursors and variables follow the same scoping rules. For more information, see
“Scope and Visibility” on page 2-37.

Language Elements 11-47

Cursors

Examples

Related Topics

You retrieve data from a cursor by opening it, then fetching from it. Because the
FETCHstatement specifies the target variables, using an INTO clause in the SELECT
statement of a cursor_declaration is redundant and invalid.

The scope of cursor parameters is local to the cursor, meaning that they can be
referenced only within the query used in the cursor declaration. The values of
cursor parameters are used by the associated query when the cursor is opened. The
guery can also reference other PL/SQL variables within its scope.

The datatype of a cursor parameter must be specified without constraints. For
example, the following parameter declarations are illegal:

CURSOR c1 (emp_id NUMBER NOT NULL, dept_no NUMBER(2)) - ilegal

Some examples of cursor declarations follow:

CURSOR c1 IS SELECT empno, ename, job, sal FROM emp
WHERE sal > 2000;

CURSOR c2 RETURN dept%eROWTYPE IS
SELECT * FROM dept WHERE deptno = 10;

CURSOR c3 (start_date DATE) IS
SELECT empno, sal FROM emp WHERE hiredate > start_date;

CLOSE Statement, FETCH Statement, OPEN Statement, SELECT INTO Statement

11-48 PL/SQL User’s Guide and Reference

DELETE Statement

DELETE Statement

Syntax

The DELETEstatement removes entire rows of data from a specified table or view.
For a full description of the DELETEstatement, see Oracle8 SQL Reference.

delete_statement

table_reference

search_condition

CURRENT OF Kcursor_name

M)
(N

variable_name
'l host_variable_name '

row_expression INTO

O

table_reference

schema_name)(.) db_table_name (@)>(dblink_name

Keyword and Parameter Description

table reference
This specifies a table or view, which must be accessible when you execute the
DELETEstatement, and for which you must have DELETEprivileges.

Language Elements 11-49

DELETE Statement

Usage Notes

THE

The operand of THEIs a subquery that returns a single column value to the DELETE
statement. The column value must be a nested table. Operator THEinforms Oracle
that the value is a nested table, not a scalar value.

subquery
This is a select statement that provides a value or set of values to the DELETE
statement. Its syntax is like that of select_into_statement without the INTO

clause. See “SELECT INTO Statement” on page 11-139.

alias

This is another (usually short) name for the referenced table or view and is
typically used in the WHEREIlause.

WHERE search_condition

This clause conditionally chooses rows to be deleted from the referenced table or
view. Only rows that meet the search condition are deleted. If you omit the WHERE
clause, all rows in the table or view are deleted.

WHERE CURRENT OF cursor_name

This clause refers to the latest row processed by the FETCHstatement associated
with the cursor identified by cursor_name . The cursor must be FOR UPDATENd
must be open and positioned on a row. If the cursor is not open, the CURRENT OF
clause causes an error.

If the cursor is open, but no rows have been fetched or the last fetch returned no
rows, PL/SQL raises the predefined exception NO_DATA_ FOUND

RETURNING

This clause lets you return values from the deleted row, thereby eliminating the
need to SELECTthe row beforehand. You can retrieve the column values into
variables and/or host variables.

You can use the DELETE WHERE CURRENTdB#tement after a fetch from an open
cursor (this includes implicit fetches executed in a cursor FORIloop), provided the
associated query is FOR UPDATEThis statement deletes the current row; that is, the
one just fetched.

11-50 PL/SQL User’s Guide and Reference

DELETE Statement

Example

Related Topics

The implicit SQL cursor and the cursor attributes %NOTFOUNBSFOUNRNd
%ROWCOURNT you access useful information about the execution of a DELETE
statement.

A DELETEstatement might delete one or more rows or no rows. If one or more
rows are deleted, you get the following results:

» SQL%NOTFOUNIklds FALSE

« SQL%FOUN{elds TRUE

« SQL%ROWCOUWN®Ids the number of rows deleted
If no rows are deleted, you get these results:

« SQL%NOTFOUNElds TRUE

» SQL%FOUN{elds FALSE

» SQL%ROWCOUN#Ids 0

The following statement deletes from the bonus table all employees whose sales
were below quota:

DELETE FROM bonus WHERE sales_amt < quota;

The following statement returns column sal from deleted rows and stores the
column values in the elements of a host array:

DELETE FROM emp WHERE job = ‘CLERK’ AND sal > 3000
RETURNING sal INTO :clerk_sals;

FETCH Statement, SELECT Statement

Language Elements 11-51

EXCEPTION_INIT Pragma

EXCEPTION_INIT Pragma

Syntax

The pragma EXCEPTION_INIT associates an exception name with an Oracle error
number. That allows you to refer to any internal exception by name and to write a
specific handler for it instead of using the OTHERShandler. For more information,
see “Using EXCEPTION_INIT” on page 6-8.

exception_init_pragma

—>| PRAGMA EXCEPTION_INIT @{exception_name}@{error_number)@@

Keyword and Parameter Description

Usage Notes

PRAGMA

This keyword signifies that the statement is a pragma (compiler directive). Pragmas
are processed at compile time, not at run time. They do not affect the meaning of a
program; they simply convey information to the compiler.

exception_name
This identifies a user-defined exception previously declared within the current
scope.

error_number

This is any valid Oracle error number. These are the same error numbers returned
by the function SQLCODE

You can use EXCEPTION_INIT in the declarative part of any PL/SQL block,
subprogram, or package. The pragma must appear in the same declarative part as
its associated exception, somewhere after the exception declaration.

Be sure to assign only one exception name to an error number.

11-52 PL/SQL User’s Guide and Reference

EXCEPTION_INIT Pragma

Example

The following pragma associates the exception deadlock detected with Oracle
error 60:

DECLARE

deadlock_detected EXCEPTION,;

PRAGMA EXCEPTION_INIT(deadlock_detected, -60);
BEGIN

EXCEPTION
WHEN deadlock_detected THEN
- handle the error
END;
Related Topics
Exceptions, SQLCODE Function

Language Elements 11-53

Exceptions

Exceptions

Syntax

An exception is a runtime error or warning condition, which can be predefined or
user-defined. Predefined exceptions are raised implicitly (automatically) by the
runtime system. User-defined exceptions must be raised explicitly by RAISE
statements. To handle raised exceptions, you write separate routines called
exception handlers. For more information, see Chapter 6.

exception_declaration

{exception_name)->| EXCEPTION |»®

exception_handler

| [—>| OR Kexception_nameh I
exception_name
WHEN H THEN statement

OTHERS

Keyword and Parameter Description

WHEN

This keyword introduces an exception handler. You can have multiple exceptions
execute the same sequence of statements by following the keyword WHENwvith a list
of the exceptions, separating them by the keyword OR If any exception in the list is
raised, the associated statements are executed.

exception_name

This identifies a predefined exception such as ZERO_DIVIDE, or a user-defined
exception previously declared within the current scope.

OTHERS

This keyword stands for all the exceptions not explicitly named in the exception-
handling part of the block. The use of OTHERSs optional and is allowed only as
the last exception handler. You cannot include OTHERSn a list of exceptions
following the keyword WHEN

11-54 PL/SQL User’s Guide and Reference

Exceptions

Usage Notes

statement

This is an executable statement. For the syntax of statement , see “Blocks” on
page 11-7.

An exception declaration can appear only in the declarative part of a block,
subprogram, or package. The scope rules for exceptions and variables are the same.
But, unlike variables, exceptions cannot be passed as parameters to subprograms.

Some exceptions are predefined by PL/SQL. For a list of these exceptions, see
“Predefined Exceptions” on page 6-4. PL/SQL declares predefined exceptions
globally in package STANDARDso you need not declare them yourself.

Redeclaring predefined exceptions is error prone because your local declaration
overrides the global declaration. In such cases, you must use dot notation to specify
the predefined exception, as follows;

EXCEPTION
WHEN invalid_number OR STANDARD.INVALID_NUMBER THEN ...

The exception-handling part of a PL/SQL block is optional. Exception handlers
must come at the end of the block. They are introduced by the keyword
EXCEPTION The exception-handling part of the block is terminated by the same
keyword ENDthat terminates the entire block.

An exception should be raised only when an error occurs that makes it impossible
or undesirable to continue processing. If there is no exception handler in the
current block for a raised exception, the exception propagates according to the
following rules:

« If there is an enclosing block for the current block, the exception is passed on to
that block. The enclosing block then becomes the current block. If a handler for
the raised exception is not found, the process repeats.

« Ifthere is no enclosing block for the current block, an unhandled exception error
is passed back to the host environment.

However, exceptions cannot propagate across remote procedure calls (RPCs).
Therefore, a PL/SQL block cannot catch an exception raised by a remote
subprogram. For a workaround, see “Using raise_application_error” on page 6-9.

Language Elements 11-55

Exceptions

Example

Related Topics

Only one exception at a time can be active in the exception-handling part of a
block. Therefore, if an exception is raised inside a handler, the block that encloses
the current block is the first block searched to find a handler for the newly raised
exception. From there on, the exception propagates normally.

An exception handler can reference only those variables that the current block can
reference.

The following PL/SQL block has two exception handlers:

DELARE
bad _emp_id EXCEPTION;
bad_acct no EXCEPTION,;

BEGIN
EXCEPTION
WHEN bad_emp_id OR bad_acct no THEN - user-defined
ROLLBACK;
WHEN ZERO_DIVIDE THEN - predefined
INSERT INTO inventory VALUES (part_number, quantity);

COMMIT;
END;

Blocks, EXCEPTION_INIT Pragma, RAISE Statement

11-56 PL/SQL User’s Guide and Reference

EXIT Statement

EXIT Statement

Syntax

You use the EXIT statement to exit a loop. The EXIT statement has two forms: the
unconditional EXIT and the conditional EXIT WHENWith either form, you can
name the loop to be exited. For more information, see “Iterative Control: LOOP and
EXIT Statements” on page 3-6.

exit_statement

/el WHEN Kboolean_expressionh
—>| EXIT O

Keyword and Parameter Description

Usage Notes

EXIT

An unconditional EXIT statement (that is, one without a WHENIause) exits the
current loop immediately. Execution resumes with the statement following the loop.

label_name

This identifies the loop to be exited. You can exit not only the current loop but any
enclosing labeled loop.

boolean_expression

This is an expression that yields the Boolean value TRUE FALSE or NULL It is
evaluated with each iteration of the loop in which the EXIT WHENstatement
appears. If the expression yields TRUE the current loop (or the loop labeled by
label_name) is exited immediately. For the syntax of boolean_expression , see
“Expressions” on page 11-59.

The EXIT statement can be used only inside a loop. PL/SQL allows you to code an
infinite loop. For example, the following loop will never terminate normally:

WHILE TRUE LOORP ... END LOORP;

In such cases, you must use an EXIT statement to exit the loop.

Language Elements 11-57

EXIT Statement

Examples

Related Topics

If you use an EXIT statement to exit a cursor FORloop prematurely, the cursor is
closed automatically. The cursor is also closed automatically if an exception is
raised inside the loop.

The EXIT statement in the following example is illegal because you cannot exit
from a block directly; you can exit only from a loop:

DECLARE
amount NUMBER;
maximum NUMBER;
BEGIN

BEGIN

IF amount >= maximum THEN
EXIT; —illegal
ENDIF;
END;

The following loop normally executes ten times, but it will exit prematurely if there
are less than ten rows to fetch:

FORIiIN1.10

FETCHC1INTO emp_rec;

EXIT WHEN c1%NOTFOUND;

total_comm :=total comm +emp_rec.comm;
END LOOP;

The following example illustrates the use of loop labels:

<<outer>>
FORIiIN 1..10 LOOP

<<inner>>
FORjIN 1..100 LOOP

EXIT outer WHEN ... —exits both loops

END LOOP inner,
END LOOP ouiter;

Expressions, LOOP Statements

11-58 PL/SQL User’s Guide and Reference

Expressions

Expressions

Syntax

An expression is an arbitrarily complex combination of variables, constants, literals,
operators, and function calls. The simplest expression is a single variable.

The PL/SQL compiler determines the datatype of an expression from the types of
the variables, constants, literals, and operators that comprise the expression. Every
time the expression is evaluated, a single value of that type results. For more
information, see “Expressions and Comparisons” on page 2-41.

expression

boolean_expression
character_expression

date_expression

numeric_expression

boolean_expression

boolean_constant_name

boolean_function_call

NOT

boolean_literal

boolean_variable_name

other_boolean_form

boolean_constant_name

boolean_function_call

boolean_literal

AND NOT

boolean_variable_name

other_hoolean_form

Language Elements 11-59

Expressions

other_boolean_form

,(relationaI_operator){expression)

—Ccollection_name)»@->| EXISTS

NOT
jgip) D

NOT
T o

L

BETWEEN |—>(expression)->| AND |—>Cexpression)—

FOUND

==

)

character_expression

/(character_constant_name)

—(character_function_call)}

—(character_literal)
—

—Ccharacter_variable_name)

’ indicator_name

N)3(host_variable_name ')

,(character_constant_name)

H(character_function_call)

—(character_literal }

—(character_variable_name)

‘ indicator_name

N 1 p(host_variable_name)

11-60 PL/SQL User’s Guide and Reference

Expressions

date_expression

A date_constant_name)
—(date_function_call)
H(date_literal)
— —
—(date_variable_name)
O

N)3(host_variable_name)

numeric_expression

numeric_expression

cursor_variable_name

host_cursor_variable_name

ROWCOUNT

‘ indicator_name

H : }>(host_variable_name)

—(numeric_constant_name)

—(numeric_function_call)

° exponent

—(numeric_literal)

—(numeric_variable_name)

—| FIRST

1 0]GDI0

collection_name ‘

Language Elements 11-61

Expressions

cursor_variable_name

‘ host_cursor_variable_name

ROWCOUNT

‘ indicator_name

H :)(host_variable_name)

—(numeric_constant_name)

e exponent
—(numeric_function_call)}
—(numeric_literal)

—(numeric_variable_name)

SEle

collection_name .

Keyword and Parameter Description

boolean_expression
This is an expression that yields the Boolean value TRUE FALSE or NULL

character_expression
This is an expression that yields a character or character string.

date_expression
This is an expression that yields a date/time value.

numeric_expression
This is an expression that yields an integer or real value.

11-62 PL/SQL User’s Guide and Reference

Expressions

NOT, AND, OR

These are logical operators, which follow the tri-state logic of Table 2-3 on

page 2-43. ANDreturns the value TRUEonly if both its operands are true. ORreturns
the value TRUEIf either of its operands is true. NOTreturns the opposite value
(logical negation) of its operand. NOT NULLreturns NULL because nulls are
indeterminate. For more information, see “Logical Operators” on page 2-43.

boolean_constant_name

This identifies a constant of type BOOLEANwhich must be initialized to the value
TRUEor FALSEor the non-value NULL Arithmetic operations on Boolean constants
are illegal.

boolean_function_call
This is any function call that returns a Boolean value.

boolean_literal

This is the predefined value TRUEor FALSE or the non-value NULL, which stands
for a missing, unknown, or inapplicable value. You cannot insert the value TRUEor
FALSEiinto a database column.

boolean_variable_name

This identifies a variable of type BOOLEANONIly the values TRUEand FALSEand
the non-value NULL can be assigned to a BOOLEANariable. You cannot select or
fetch column values into a BOOLEANariable. Also, arithmetic operations on
Boolean variables are illegal.

relational_operator

This operator allows you to compare expressions. For the meaning of each
operator, see “Comparison Operators” on page 2-44.

IS [NOT] NULL

This comparison operator returns the Boolean value TRUEIf its operand is null, or
FALSEIf its operand is not null.

[NOT] LIKE

This comparison operator compares a character value to a pattern. Case is
significant. LIKE returns the Boolean value TRUEIf the character patterns match, or
FALSEIf they do not match.

Language Elements 11-63

Expressions

pattern

This is a character string compared by the LIKE operator to a specified string
value. It can include two special-purpose characters called wildcards. An
underscore (_) matches exactly one character; a percent sign (%) matches zero or
more characters.

[NOT] BETWEEN

This comparison operator tests whether a value lies in a specified range. It means
“greater than or equal to low value and less than or equal to high value.”

[NOT] IN
This comparison operator tests set membership. It means “equal to any member
of.” The set can contain nulls, but they are ignored. Also, expressions of the form

value NOT IN set

yield FALSEIf the set contains a null.

cursor_name
This identifies an explicit cursor previously declared within the current scope.

cursor_variable_name

This identifies a PL/SQL cursor variable previously declared within the current
scope.

host_cursor_variable name

This identifies a cursor variable declared in a PL/SQL host environment and
passed to PL/SQL as a bind variable. Host cursor variables must be prefixed with a
colon.

SQL

This identifies a cursor opened implicitly by Oracle to process a SQL data
manipulation statement. The implicit SQLcursor always refers to the most recently
executed SQL statement.

11-64 PL/SQL User’s Guide and Reference

Expressions

%FOUND, %ISOPEN, %NOTFOUND, %ROWCOUNT

These are cursor attributes. When appended to the name of a cursor or cursor
variable, these attributes return useful information about the execution of a multi-
row query. You can also append them to the implicit SQL cursor. For more
information, see “Using Cursor Attributes” on page 5-38.

EXISTS, COUNT, FIRST, LAST, LIMIT, NEXT, PRIOR

These are collection methods. When appended to the name of a collection, these
methods return useful information. For example, EXISTS(n) returns TRUEIf the
nth element of a collection exists. Otherwise, EXISTS(n) returns FALSE For more
information, see “Collection Methods” on page 11-16.

index

This is a humeric expression that must yield a value of type BINARY_INTEGERor a
value implicitly convertible to that datatype.

host_variable_name

This identifies a variable declared in a PL/SQL host environment and passed to
PL/SQL as a bind variable. The datatype of the host variable must be implicitly
convertible to the appropriate PL/SQL datatype. Also, host variables must be
prefixed with a colon.

indicator_name

This identifies an indicator variable declared in a PL/SQL host environment and
passed to PL/SQL. Indicator variables must be prefixed with a colon. An indicator
variable “indicates” the value or condition of its associated host variable. For
example, in the Oracle Precompiler environment, indicator variables can detect
nulls or truncated values in output host variables.

numeric_constant_name

This identifies a previously declared constant that stores a numeric value. It must
be initialized to a numeric value or a value implicitly convertible to a numeric
value.

numeric_function_call

This is a function call that returns a numeric value or a value implicitly convertible
to a numeric value.

Language Elements 11-65

Expressions

numeric_literal

This is a literal that represents a numeric value or a value implicitly convertible to a
numeric value.

collection_name

This identifies a nested table, index-by table, or varray previously declared within
the current scope.

numeric_variable_name
This identifies a previously declared variable that stores a numeric value.

NULL

This keyword represents a null; it stands for a missing, unknown, or inapplicable
value. When NULL s used in a numeric or date expression, the result is a null.

exponent
This is an expression that must yield a numeric value.

+l © /l *1 *x
These symbols are the addition, subtraction, division, multiplication, and
exponentiation operators, respectively.

characte r_constant_name

This identifies a previously declared constant that stores a character value. It must
be initialized to a character value or a value implicitly convertible to a character
value.

character_function_call

This is a function call that returns a character value or a value implicitly convertible
to a character value.

character_literal

This is a literal that represents a character value or a value implicitly convertible to
a character value.

character_variable_name
This identifies a previously declared variable that stores a character value.

11-66 PL/SQL User’s Guide and Reference

Expressions

Usage Notes

This is the concatenation operator. As the following example shows, the result of
concatenating stringl with string2 is a character string that contains stringl
followed by string2:

'Good || moming!” ='Good moming

The next example shows that nulls have no effect on the result of a concatenation:
‘suit’ || NULL || ‘case’ = suitcase’

A string zero characters in length (") is called a null string and is treated like a
null.

date_constant_name

This identifies a previously declared constant that stores a date value. It must be
initialized to a date value or a value implicitly convertible to a date value.

date_function_call

This is a function call that returns a date value or a value implicitly convertible to a
date value.

date_literal

This is a literal that represents a date value or a value implicitly convertible to a
date value.

date_variable_name
This identifies a previously declared variable that stores a date value.

In a Boolean expression, you can only compare values that have compatible
datatypes. For more information, see “Datatype Conversion” on page 2-25.

In conditional control statements, if a Boolean expression yields TRUE its
associated sequence of statements is executed. But, if the expression yields FALSE
or NULL, its associated sequence of statements is not executed.

Language Elements 11-67

Expressions

Examples

The relational operators can be applied to operands of type BOOLEANByY
definition, TRUEIs greater than FALSE Comparisons involving nulls always yield
a null. The value of a Boolean expression can be assigned only to Boolean variables,
not to host variables or database columns. Also, datatype conversion to or from
type BOOLEANS not supported.

You can use the addition and subtraction operators to increment or decrement a
date value, as the following examples show:

hire_date :='10-MAY-95;,
hire_date ;= hire_date + 1; — makes hire_date '11-MAY-95'
hire_date := hire_date - 5; — makes hire_date '06-MAY-95'

When PL/SQL evaluates a boolean expression, NOThas the highest precedence,
ANDhas the next-highest precedence, and ORhas the lowest precedence. However,
you can use parentheses to override the default operator precedence.

Within an expression, operations occur in their predefined order of precedence.
From first to last (top to bottom), the default order of operations is

parentheses

exponents

unary operators

multiplication and division

addition, subtraction, and concatenation

PL/SQL evaluates operators of equal precedence in no particular order. When
parentheses enclose an expression that is part of a larger expression, PL/SQL
evaluates the parenthesized expression first, then uses the result value in the larger
expression. When parenthesized expressions are nested, PL/SQL evaluates the
innermost expression first and the outermost expression last.

Several examples of expressions follow:

(@at+b)y>c - Boolean expression

NOT finished — Boolean expression
TO_CHAR(acct no) —character expression
Fat’||’cats’ - character expression

"15-NOV-95 — date expression
MONTHS_BETWEEN(d1, d2) — date expression
pi*re2 —numeric expression

emp_cvWoROWCOUNT - numeric expression

11-68 PL/SQL User’s Guide and Reference

Expressions

Related Topics

Assignment Statement, Constants and Variables, EXIT Statement, IF Statement,
LOOP Statements

Language Elements 11-69

External Procedures

External Procedures

Syntax

An external procedure is a third-generation-language routine stored in a dynamic
link library (or shared library that loads dynamically), registered with PL/SQL,
and called by you to do special-purpose processing. At run time, PL/SQL loads the
library dynamically, then calls the routine as if it were a PL/SQL subprogram. To
safeguard your database, the routine runs in a separate address space.

A dynamic link library (DLL) is an operating-system file that stores external
procedures. For safety, your DBA controls access to the DLL. Using the CREATE
LIBRARY statement, the DBA creates a schema object called an alias library, which
represents the DLL. Then, if you are an authorized user, the DBA grants you
EXECUTHBrivileges on the alias library. After registering an external procedure,
you can call it from any PL/SQL program. It executes with the privileges granted
to your userid. For more information, see Chapter 10.

external_clause

[—>| NAME |—>(externa|_procedure_nameh
—>| EXTERNAL |->| LIBRARY |-><|ibrary_name)

c
CALLING STANDARD .H
f_)| LANGUAGE Manguage_nameh PASCAL
| external_parameter I

PARAMETERS

WITH CONTEXT

external_parameter

O

CONTEXT

RETURN

BY REF external_datatype }_>

11-70 PL/SQL User’s Guide and Reference

External Procedures

property

INDICATOR

LENGTH

MAXLEN

CHARSETID

CHARSETFORM

Keyword and Parameter Description

LIBRARY

This clause specifies the name of the alias library. The name is a PL/SQL identifier.
So, if you enclose the name in double quotes, it becomes case sensitive. You must
have EXECUTHBprivileges on the alias library.

NAME

This clause specifies the external procedure to be called. If you enclose the
procedure name in double quotes, it becomes case sensitive. If you omit this clause,
the procedure name defaults to the upper case name of the PL/SQL subprogram.

LANGUAGE

This clause specifies the third-generation language in which the external procedure
was written. Currently, the only language name allowed is C. If you omit this
clause, the language name defaults to C.

CALLING STANDARD

This clause specifies the Windows NT calling standard (C or Pascal) under which
the external procedure was compiled. (Under the Pascal Calling Standard,
arguments are reversed on the stack and the called function must pop the stack.) If
you omit this clause, the calling standard defaults to C.

WITH CONTEXT

This clause specifies that a context pointer will be passed to the external procedure.
The context data structure is opaque to the external procedure but is available to
service routines called by the external procedure.

Language Elements 11-71

External Procedures

By including the WITH CONTEXTlause, you can give an external procedure access
to information about parameters, exceptions, memory allocation, and the user
environment.

PARAMETERS

This clause specifies the positions and datatypes of parameters passed to the
external procedure. It can also specify parameter properties such as current length
and maximum length, and the preferred parameter passing method (by value or by
reference).

You do not pass parameters to an external procedure directly. Instead, you pass
them to the PL/SQL subprogram that registered the external procedure. So, you
must specify PL/SQL datatypes for the parameters. For guidance, see Table 10-1
on page 10-9. Each PL/SQL datatype maps to a default external datatype. (In turn,
each external datatype maps to a C datatype.)

To avoid errors when declaring C prototype parameters, refer to Table 10-2 on
page 10-11, which shows the C datatype to specify for a given external datatype
and PL/SQL parameter mode.

You can also use the PARAMETERS8ause to pass additional information about
PL/SQL formal parameters and function results to an external procedure. You do
that by specifying the following properties: INDICATOR, LENGTHMAXLEN
CHARSETID CHARSETFORM

CONTEXT

This parameter cannot be repeated. If you include the WITH CONTEX@and
PARAMETERS8auses, you must specify this parameter, which shows the position
of the context pointer in the parameter list. If you omit the PARAMETERS8ause, the
context pointer is the first parameter passed to the external procedure.

INDICATOR

This property lets you associate a null/not null indicator with a formal parameter.
If the PL/SQL subprogram is a function, you can also associate an indicator with
the return value.

LENGTH, MAXLEN

These properties let you specify parameters that store the current length and
maximum length of a formal parameter. With parameters of type RAWor LONG RAW
you must use the property LENGTH

11-72 PL/SQL User’s Guide and Reference

External Procedures

Usage Notes

CHARSETID, CHARSETFORM

The properties CHARSETIDand CHARSETFORMentify the nondefault character
set from which the character data being passed was formed. With CHARCLOB and
VARCHARDarameters, you can use CHARSETIDand CHARSETFOR®M pass the
character set ID and form to the external procedure. The OCI attribute names for
these properties are OCI_ATTR_CHARSET_IDand OCI_ATTR_CHARSET_FORM

BY REF

In C, you can pass IN parameters by value (the value of the parameter is passed) or
by reference (a pointer to the value is passed). When an external procedure expects
a pointer, BY REFlets you pass the parameter by reference.

When calling external procedures, never write to IN parameters or overflow the
capacity of OUTparameters. (PL/SQL does no runtime checks for these error
conditions.) Likewise, never read an OUTparameter or a function result. Also,
always assign a value to IN OUT and OUTparameters and to function results.
Otherwise, your external procedure will not return successfully.

If you include the WITH CONTEX#a&nd PARAMETERS8auses, you must specify the
parameter CONTEX;Twhich shows the position of the context pointer in the
parameter list. If you omit the PARAMETERS8ause, the context pointer is the first
parameter passed to the external procedure.

If you include the PARAMETERGS8ause and the external routine is a function, you
must specify the parameter RETURNnot RETURNbroperty) in the last position.

For every formal parameter, there must be a corresponding parameter in the

PARAMETERSause. Also, make sure that the datatypes of parameters in the
PARAMETERS8ause are compatible with those in the C prototype because no
implicit conversions are done.

To check the value of an indicator, you can use the constants OCI_IND_NULL and
OCI_IND_NOTNULL If the indicator equals OCI_IND_NULL, the associated
parameter or function result is null. If the indicator equals OCI_IND_NOTNULL, the
parameter or function result is not null.

With a parameter of type RAWor LONG RAWou must use the property LENGTH
Also, if that parameter is IN OUT or OUTand null, you must set the length of the
corresponding C parameter to zero.

Currently, the following restrictions apply to external procedures:

Language Elements 11-73

External Procedures

« This feature is available only on platforms that support DLLs.
« Only routines callable from C code (not C++ code) are supported.

« You cannot pass PL/SQL cursor variables, records, collections, or instances of
an object type to an external procedure.

« Inthe LIBRARY clause, you cannot use a database link to specify a remote
library.

« The Listener must start agent extproc on the machine that runs the Oracle
server. Starting extproc on a different machine is not supported.

« The maximum number of parameters that you can pass to a C external
procedure is 128. However, if you pass float or double parameters by value,
the maximum is less than 128. How much less depends on the number of such
parameters and your operating system. To get a rough estimate, count each
float or double passed by value as two parameters.

Examples

Assume that C routine ¢_gcd , which finds the greatest common divisor of two
numbers, is stored in DLL utils.dll and that you have EXECUTHEprivileges on
alias library ¢_utils . The C prototype for ¢_gcd follows:

intc_ged(intx_val, inty_val);

In the following example, you write a PL/SQL stand-alone function named gcd
that registers the C routine ¢_gcd as an external function:

CREATE FUNCTION ged (

—find greatest common divisor of xand y
XBINARY_INTEGER,
yBINARY_INTEGER)

RETURN BINARY_INTEGER AS EXTERNAL
LIBRARY c_utils
NAME "c_ged" — quotes preserve lower case
LANGUAGE C;

In the example below, you call PL/SQL function ged from an anonymous block.
PL/SQL passes the two integer parameters to external function ¢_ged , which
returns their greatest common divisor.

DECLARE
gINTEGER;
aINTEGER;
b INTEGER,

11-74 PL/SQL User’s Guide and Reference

External Procedures

BEGIN
g:=gcd(a, b); —callfunction
IFgIN (24,8 THEN ...

The following example uses the PARAMETERS8ause to specify properties for the
PL/SQL formal parameters and function result:

CREATE FUNCTION parse (
xIN BINARY_INTEGER,
Y INOUT CHAR)
RETURN CHAR AS EXTERNAL
LIBRARY c_utils
NAME “c_parse”
LANGUAGEC
CALLING STANDARD PASCAL
PARAMETERS (
X, — stores value of x
X INDICATOR, - stores null status of x
Y, — stores value of y
yLENGTH, - stores currentlength of y
yMAXLEN, - stores maximum length of y
RETURN INDICATOR,
RETURN);

The corresponding C prototype follows:

char*c_parse(intx, short x_ind, char*y, int*y_len,
int*y_maxlen, short *retind);

Related Topics

Functions, Procedures

Language Elements 11-75

FETCH Statement

FETCH Statement

The FETCHstatement retrieves rows of data one at a time from the result set of a
multi-row query. The data is stored in variables or fields that correspond to the
columns selected by the query. For more information, see “Managing Cursors” on
page 5-9.

Syntax

fetch_statement

cursor_name

l
)

—>| FETCH

cursor_variable_name

variable_name
l record_name ‘

host_cursor_variable_name

Keyword and Parameter Description

cursor_name
This identifies an explicit cursor previously declared within the current scope.

cursor_variable_name

This identifies a PL/SQL cursor variable (or parameter) previously declared within
the current scope.

host_cursor_variable_ name

This identifies a cursor variable declared in a PL/SQL host environment and
passed to PL/SQL as a bind variable. The datatype of the host cursor variable is
compatible with the return type of any PL/SQL cursor variable. Host variables
must be prefixed with a colon.

variable_name][, variable_name]...

This identifies a list of previously declared scalar variables into which column
values are fetched. For each column value returned by the query associated with
the cursor or cursor variable, there must be a corresponding, type-compatible
variable in the list.

11-76 PL/SQL User’s Guide and Reference

FETCH Statement

Usage Notes

record_name

This identifies a user-defined or %ROWTYREcord into which rows of values are
fetched. For each column value returned by the query associated with the cursor or
cursor variable, there must be a corresponding, type-compatible field in the record.

You must use either a cursor FORIloop or the FETCHstatement to process a multi-
row query.

Any variables in the WHERI[Elause of the query are evaluated only when the cursor
or cursor variable is opened. To change the result set or the values of variables in
the query, you must reopen the cursor or cursor variable with the variables set to
their new values.

To reopen a cursor, you must close it first. However, you need not close a cursor
variable before reopening it.

You can use different INTO lists on separate fetches with the same cursor or cursor
variable. Each fetch retrieves another row and assigns values to the target variables.

If you FETCHpast the last row in the result set, the values of the target fields or
variables are indeterminate and the %NOTFOUNdRtribute yields TRUE

PL/SQL makes sure the return type of a cursor variable is compatible with the
INTO clause of the FETCHstatement. For each column value returned by the query
associated with the cursor variable, there must be a corresponding, type-
compatible field or variable in the INTO clause. Also, the number of fields or
variables must equal the number of column values.

When you declare a cursor variable as the formal parameter of a subprogram that
fetches from the cursor variable, you must specify the IN (or IN OUT) mode.
However, if the subprogram also opens the cursor variable, you must specify the
IN OUT mode.

Eventually, the FETCHstatement must fail to return a row; so when that happens,
no exception is raised. To detect the failure, you must use the cursor attribute
%FOUNDr %NOTFOUNBor more information, see “Using Cursor Attributes” on
page 5-38.

PL/SQL raises the predefined exception INVALID _CURSORIf you try to fetch from
a closed or never-opened cursor or cursor variable.

Language Elements 11-77

FETCH Statement

Examples

Related Topics

The following example shows that any variables in the query associated with a
cursor are evaluated only when the cursor is opened:

DECLARE
my_sal NUMBER(7,2);
n INTEGERQ) =2
CURSOR emp_cur IS SELECT n*sal FROM emp;
BEGIN
OPEN emp_cur; — nequals 2 here
LOOP
FETCH emp_curINTO my_sal;
EXIT WHEN emp_cur%eNOTFOUND;
— process the data
n:= n+1; —does not affect next FETCH; sal will be multiplied by 2
END LOOP;

In the following Pro*C example, you fetch rows from a host cursor variable into a
host record (struct) named emp_rec :

[Exitloop when done fetching. */
EXEC SQL WHENEVER NOTFOUND DO break;
for (;)
{
* Fetch row into record. */
EXEC SQL FETCH :emp_cur INTO :emp_rec;

}

The next example shows that you can use a different INTO clause on separate
fetches with the same cursor variable. Each fetch retrieves another row from the
same result set.
for (;)
{

* Fetch row from resullt set. */

EXEC SQL FETCH :emp_cur INTO :emp_recl,

* Fetch next row from same result set. */

EXEC SQL FETCH :emp_cur INTO :emp_rec2,

}

CLOSE Statement, Cursors, Cursor Variables, LOOP Statements, OPEN Statement,
OPEN-FOR Statement

11-78 PL/SQL User’s Guide and Reference

Functions

Functions

Syntax

A function is a subprogram, which can take parameters and be invoked. Generally,
you use a function to compute a value. A function has two parts: the specification
and the body. The function specification begins with the keyword FUNCTIONand
ends with the RETURNIlause, which specifies the datatype of the result value.
Parameter declarations are optional. Functions that take no parameters are written
without parentheses. The function body begins with the keyword IS and ends with
the keyword ENDfollowed by an optional function name.

The function body has three parts: an optional declarative part, an executable part,
and an optional exception-handling part. The declarative part contains declarations
of types, cursors, constants, variables, exceptions, and subprograms. These items
are local and cease to exist when you exit the function. The executable part contains
statements that assign values, control execution, and manipulate Oracle data. The
exception-handling part contains exception handlers, which deal with exceptions
raised during execution. For more information, see “Functions” on page 7-5.

function_specification O

o parameter_declaration o

—>| FUNCTION Kfunction_name\

)
—{ RETURN Kdatatype)s@

function_body | function_declaration O

o parameter_declaration o

—| FUNCTION b function_name)

—J{ RETURN |->(datatype

| type_definition . I function_declaration '
item_declaration procedure_declaration

Language Elements 11-79

Functions

—{ BEGIN F@@_’
f—)| EXCEPTION PQ exception_handler p—\
-
Jq END O

parameter_declaration

©
=
DEFAULT

—(parameter_name) ¥ datatype)

Keyword and Parameter Description

function_name
This identifies a user-defined function.

parameter_name

This identifies a formal parameter, which is a variable declared in a function
specification and referenced in the function body.

IN, OUT, IN OUT

These parameter modes define the behavior of formal parameters. An IN
parameter lets you pass values to the subprogram being called. An OUTparameter
lets you return values to the caller of the subprogram. An IN OUT parameter lets
you pass initial values to the subprogram being called and return updated values
to the caller.

datatype

This is a type specifier. For the syntax of datatype , see “Constants and Variables”
on page 11-29.

:= | DEFAULT
This operator or keyword allows you to initialize IN parameters to default values.

11-80 PL/SQL User’s Guide and Reference

Functions

Usage Notes

expression

This is an arbitrarily complex combination of variables, constants, literals,
operators, and function calls. The simplest expression consists of a single variable.
When the declaration is elaborated, the value of expression s assigned to the
parameter. The value and the parameter must have compatible datatypes.

RETURN

This keyword introduces the RETURNIlause, which specifies the datatype of the
result value.

type_definition
This specifies a user-defined datatype. For the syntax of type_definition , see
“Blocks” on page 11-7.

item_declaration

This declares a program object. For the syntax of item_declaration , See
“Blocks” on page 11-7.

function_declaration

This construct declares a function. For the syntax of function_declaration , see
“Functions” on page 11-79.

procedure_declaration

This construct declares a procedure. For the syntax of procedure _declaration ,
see “Procedures” on page 11-121.

exception_handler

This construct associates an exception with a sequence of statements, which is
executed when that exception is raised. For the syntax of exception _handler ,
see “Exceptions” on page 11-54.

A function is called as part of an expression. For example, the function sal_ok
might be called as follows:

promotable :=sal_ok(new_sal, new_title) AND (rating > 3);

Every function must contain at least one RETURNtatement. Otherwise, PL/SQL
raises the predefined exception PROGRAM_ERR@Run time.

Language Elements 11-81

Functions

Example

Related Topics

To be callable from SQL expressions, a stored function must obey certain rules
meant to control side effects. For packaged functions, you must use the pragma
RESTRICT_REFERENCE® enforce the rules. For more information, see Oracle8
Application Developer’s Guide.

You can write the function specification and body as a unit. Or, you can separate
the function specification from its body. That way, you can hide implementation
details by placing the function in a package. You can define functions in a package
body without declaring their specifications in the package specification. However,
such functions can be called only from inside the package.

Inside a function, an IN parameter acts like a constant. Therefore, it cannot be
assigned a value. An OUTparameter acts like an uninitialized variable. So, its value
cannot be assigned to another variable or reassigned to itself. An IN OUT parameter
acts like an initialized variable. Therefore, it can be assigned a value, and its value
can be assigned to another variable. For summary information about the parameter
modes, see Table 7-1 on page 7-15.

Avoid using the OUTand IN OUT modes with functions. The purpose of a function
is to take zero or more parameters and return a single value. Also, functions should
be free from side effects, which change the values of variables not local to the
subprogram.

Functions can be defined using any Oracle tool that supports PL/SQL. However, to
become available for general use, functions must be CREATH and stored in an
Oracle database. You can issue the CREATE FUNCTIOBtatement interactively from
SQL*Plus or Enterprise Manager. For the full syntax of the CREATE FUNCTION
statement, see Oracle8 SQL Reference.

The following function returns the balance of a specified bank account:

FUNCTION balance (acct_id INTEGER) RETURN REAL IS
acct bal REAL;

BEGIN
SELECT bal INTO acct_bal FROM accts WHERE acctno = acct id;
RETURN acct_bal;

END balance;

Collections, Packages, Procedures, Records

11-82 PL/SQL User’s Guide and Reference

GOTO Statement

GOTO Statement

Syntax

The GOTGtatement branches unconditionally to a statement label or block label.
The label must be unique within its scope and must precede an executable
statement or a PL/SQL block. The GOTGtatement transfers control to the labelled
statement or block. For more information, see “GOTO Statement” on page 3-15.

label_declaration

e label_name e

goto_statement

—>| GOTO |—><Iabel_name>s®

Keyword and Parameter Description

Usage Notes

label_name
This is an undeclared identifier that labels an executable statement or a

PL/SQL block. You use a GOTGtatement to transfer control to the statement or
block following <<label name>>

Some possible destinations of a GOTGtatement are illegal. In particular, a GOTO
statement cannot branch into an IF statement, LOOPstatement, or sub-block. For
example, the following GOTGtatement is illegal:

BEGIN
éOTO update_row; - illegal branch into IF statement
IF valid THEN
;<update_rwv>>

UPDATE emp SET ...
ENDIF;

Language Elements 11-83

GOTO Statement

Examples

From the current block, a GOTGtatement can branch to another place in the block
or into an enclosing block, but not into an exception handler. From an exception
handler, a GOTGtatement can branch into an enclosing block, but not into the
current block.

If you use the GOTGtatement to exit a cursor FORloop prematurely, the cursor is
closed automatically. The cursor is also closed automatically if an exception is
raised inside the loop.

A given label can appear only once in a block. However, the label can appear in
other blocks including enclosing blocks and sub-blocks. If a GOTGtatement cannot
find its target label in the current block, it branches to the first enclosing block in
which the label appears.

A GOTdabel cannot precede just any keyword. It must precede an executable
statement or a PL/SQL block. For example, the following GOTGtatement is illegal:

FORctrIN 1..50 LOOP
DELETE FROM emp WHERE ...
IF SQLY%FOUND THEN
GOTOend_loop; —illegal
ENDIF;

<<end_loop>>
END LOOP; - notan executable statement

To debug the last example, simply add the NULL statement, as follows:

FORctrIN 1.50 LOOP
DELETE FROM emp WHERE ...
IF SQL%FOUND THEN
GOTO end_loop;
ENDIF;

<<end_loop>>
NULL; -—an executable statement that specifies inaction
END LOOP;

For more examples of legal and illegal GOTGtatements, see “GOTO Statement” on
page 3-15.

11-84 PL/SQL User’s Guide and Reference

IF Statement

|F Statement

Syntax

The IF statement lets you execute a sequence of statements conditionally. Whether
the sequence is executed or not depends on the value of a Boolean expression. For
more information, see “Conditional Control: IF Statements” on page 3-2.

if_statement

boolean_expression)a| THEN }»@@—)

[[a| ELSIF |—><b00|ean_expressi0n)—>| THEN }—)—@:@—\ ’
f—)| ELSE }»@@-\
END IF |—>{)

Keyword and Parameter Description

boolean_expression

This is an expression that yields the Boolean value TRUE FALSE or NULL It is
associated with a sequence of statements, which is executed only if the expression
yields TRUE

THEN

This keyword associates the Boolean expression that precedes it with the sequence
of statements that follows it. If the expression yields TRUE the associated sequence
of statements is executed.

ELSIF

This keyword introduces a Boolean expression to be evaluated if the expression
following IF and all the expressions following any preceding ELSIF s yield FALSE
or NULL

Language Elements 11-85

|F Statement

Usage Notes

Examples

ELSE

If control reaches this keyword, the sequence of statements that follows it is
executed.

There are three forms of IF statements: IF-THEN , IF-THEN-ELSE , and IF-THEN-
ELSIF. The simplest form of IF statement associates a Boolean expression with a
sequence of statements enclosed by the keywords THENand END IF. The sequence
of statements is executed only if the expression yields TRUE If the expression
yields FALSEor NULL, the IF statement does nothing. In either case, control passes
to the next statement.

The second form of IF statement adds the keyword ELSEfollowed by an
alternative sequence of statements. The sequence of statements in the ELSE clause
is executed only if the Boolean expression yields FALSEor NULL Thus, the ELSE
clause ensures that a sequence of statements is executed.

The third form of IF statement uses the keyword ELSIF to introduce additional
Boolean expressions. If the first expression yields FALSEor NULL, the ELSIF clause
evaluates another expression. An IF statement can have any number of ELSIF
clauses; the final ELSE clause is optional. Boolean expressions are evaluated one by
one from top to bottom. If any expression yields TRUE its associated sequence of
statements is executed and control passes to the next statement. If all expressions
yield FALSEor NULL, the sequence in the ELSE clause is executed.

An IF statement never executes more than one sequence of statements because
processing is complete after any sequence of statements is executed. However, the
THENand ELSE clauses can include more IF statements. That is, [F statements can
be nested.

In the example below, if shoe count has a value of 10, both the first and second
Boolean expressions yield TRUE Nevertheless, order_quantity is assigned the
proper value of 50 because processing of an IF statement stops after an expression
yields TRUEand its associated sequence of statements is executed. The expression
associated with ELSIF is never evaluated and control passes to the INSERT
statement.

IF shoe_count <20 THEN
order_quantity :=50;

ELSIF shoe_count<30 THEN
order_quantity :=20;

11-86 PL/SQL User’s Guide and Reference

IF Statement

ELSE
order_quantity := 10;
ENDIF;

INSERT INTO purchase_order VALUES (shoe_type, order_quantity);

In the following example, depending on the value of score , one of two status
messages is inserted into the grades table:

IF score <70 THEN

fail :=fail + 1;

INSERT INTO grades VALUES (student _id, 'Failed’);
ELSE

pass :=pass+1;

INSERT INTO grades VALUES (student_id, Passed);
ENDIF;

Related Topics
Expressions

Language Elements 11-87

INSERT Statement

INSERT Statement

Syntax

The INSERT statement adds new rows of data to a specified database table or view.
For a full description of the INSERT statement, see Oracle8 SQL Reference.

insert_statement

table_reference

INSERT INTO

subquery2

row_expression INTO

Keyword and Parameter Description

table_reference

This identifies a table or view that must be accessible when you execute the
INSERT statement, and for which you must have INSERT privileges. For the
syntax of table_reference , see “DELETE Statement” on page 11-49.

column_name|[, column_name]...

This identifies a list of columns in a database table or view. Column names need
not appear in the order in which they were defined by the CREATE TABLEr
CREATE VIEWtatement. However, no column name can appear more than once in
the list. If the list does not include all the columns in a table, the missing columns
are set to NULL or to a default value specified in the CREATE TABLEtatement.

11-88 PL/SQL User’s Guide and Reference

INSERT Statement

sql_expression
This is any expression valid in SQL. For more information, see Oracle8 SQL
Reference.

VALUES (...)

This clause assigns the values of expressions to corresponding columns in the
column list. If there is no column list, the first value is inserted into the first column
defined by the CREATE TABLEtatement, the second value is inserted into the
second column, and so on.

There must be only one value for each column in the column list. The first value is
associated with the first column, the second value is associated with the second
column, and so on. If there is ho column list, you must supply a value for each
column in the table.

The datatypes of the values being inserted must be compatible with the datatypes
of corresponding columns in the column list.

THE

The operand of THEIs a subquery that returns a single column value to the INSERT
statement. The column value must be a nested table. Operator THEinforms Oracle
that the value is a nested table, not a scalar value.

subqueryl
This is a select statement that provides a value or set of values to the INSERT
statement. Its syntax is like that of select_into_statement without the INTO

clause. See “SELECT INTO Statement” on page 11-139.

As many rows are added to the table as are returned by the subquery in the
VALUESclause. The subquery must return a value for every column in the column
list or for every column in the table if there is no column list.

subquery2

This is a select statement that provides a value or set of values to the VALUES
clause. The subquery must return only one row containing a value for every
column in the column list or for every column in the table if there is no column list.

Language Elements 11-89

INSERT Statement

Usage Notes

Examples

Related Topics

RETURNING

This clause lets you return values from the inserted row, thereby eliminating the
need to SELECTthe row afterward. You can retrieve the column values into
variables and/or host variables.

All character and date literals in the VALUESIist must be enclosed by single quotes
(). Numeric literals are not enclosed by quotes.

The implicit SQLcursor and cursor attributes %NOTFOUNBFOUNDAROWCOUNT
and %ISOPENet you access useful information about the execution of an INSERT
statement.

An INSERT statement might insert one or more rows or no rows. If one or more
rows are inserted, you get the following results:

« SQL%NOTFOUNIelds FALSE

. SQL%FOUNZelds TRUE

» SQL%ROWCOUWNEIds the number of rows inserted
If no rows are inserted, you get these results:

. SQL%NOTFOUNIEIds TRUE

« SQL%FOUNf{Aelds FALSE

= SQL%ROWCOUW@Ids 0

The following examples show various forms of INSERT statement:

INSERT INTO bonus SELECT ename, job, sal, comm FROM emp
WHERE comm > sal *0.25;

INSERT INTO emp (empno, ename, job, sal, comm, deptno)
VALUES (4160, 'STURDEVIN', 'SECURITY GUARD', 2045, NULL, 30);

INSERT INTO dept
VALUES (my_deptno, UPPER(my_dname), CHICAGO));

SELECT Statement

11-90 PL/SQL User’s Guide and Reference

Literals

Literals
A literal is an explicit numeric, character, string, or Boolean value not represented
by an identifier. The numeric literal 135 and the string literal "hello world’ are
examples. For more information, see “Literals” on page 2-7.

Syntax

numeric_literal

real_number

integer
(G
real_number
. e integer
integer . h e
I

integer

character_literal

0lCDY0
I

string_literal

o)

fomill

Language Elements 11-91

Literals

boolean_literal

Keyword and Parameter Description

Usage Notes

integer
This is an optionally signed whole number without a decimal point.

real_number
This is an optionally signed whole or fractional number with a decimal point.

digit
This is one of the numerals 0 .. 9.

char

This is a member of the PL/SQL character set. For more information, see
“Character Set” on page 2-2.

TRUE, FALSE
This is a predefined Boolean value.

NULL

This is a predefined non-value, which stands for a missing, unknown, or
inapplicable value.

Two kinds of numeric literals can be used in arithmetic expressions: integers and
reals. Numeric literals must be separated by punctuation. Space characters can be
used in addition to the punctuation.

A character literal is an individual character enclosed by single quotes
(apostrophes). Character literals include all the printable characters in the PL/SQL
character set: letters, numerals, spaces, and special symbols.

11-92 PL/SQL User’s Guide and Reference

Literals

Examples

Related Topics

PL/SQL is case sensitive within character literals. So, for example, PL/SQL
considers the literals'Q’ and’q’ to be different.

A string literal is a sequence of zero or more characters enclosed by single quotes.
The null string (") contains zero characters. To represent an apostrophe within a
string, write two single quotes. PL/SQL is case sensitive within string literals. So,
for example, PL/SQL considers the literals 'white’ and 'White’ to be different.

Also, trailing blanks are significant within string literals, so 'White’ and
'White ’ are different. How a string literal compares to a variable does not
depend on the variable; trailing blanks in a literal are never trimmed.

Unlike the non-value NULL, the Boolean values TRUEand FALSE cannot be
inserted into a database column.

Several examples of numeric literals follow:

25 634 7TE2 25¢03 1 1. +17 44

Several examples of character literals follow:
1H1 1&1 1 19! Y-‘IV ng

A few examples of string literals follow:

'02-AUG-87'
‘Don'tleave without saving your work.’

Constants and Variables, Expressions

Language Elements 11-93

LOCK TABLE Statement

LOCK TABLE Statement

Syntax

The LOCK TABLEstatement lets you lock entire database tables in a specified lock
mode so that you can share or deny access to tables while maintaining their
integrity. For more information, see “Using LOCK TABLE” on page 5-52.

lock_table_statement

NOWAIT
—>| LOCK TABLE table_reference Iock_mode>a| MODE i O

Keyword and Parameter Description

Usage Notes

table_reference

This identifies a table or view that must be accessible when you execute the LOCK
TABLE statement. For the syntax of table_reference , see “DELETE Statement”
on page 11-49.

lock_mode

This parameter specifies the lock mode. It must be one of the following: ROW
SHAREROW EXCLUSIVEHARE UPDATEBHARESHARE ROW EXCLUSIVE
EXCLUSIVE

NOWAIT

This optional keyword tells Oracle not to wait if the table has been locked by
another user. Control is immediately returned to your program, so it can do other
work before trying again to acquire the lock.

If you omit the keyword NOWAIT Oracle waits until the table is available; the wait
has no set limit. Table locks are released when your transaction issues a commit or
rollback.

A table lock never keeps other users from querying a table, and a query never
acquires a table lock.

11-94 PL/SQL User’s Guide and Reference

LOCK TABLE Statement

If your program includes SQL locking statements, make sure the Oracle users
requesting locks have the privileges needed to obtain the locks. Your DBA can lock
any table. Other users can lock tables they own or tables for which they have a
privilege, such as SELECT INSERT, UPDATEor DELETE

Example
The following statement locks the accts table in shared mode:

LOCK TABLE accts IN SHARE MODE;

Related Topics
COMMIT Statement, ROLLBACK Statement, UPDATE Statement

Language Elements 11-95

LOOP Statements

LOOP Statements

Syntax

LOOPstatements execute a sequence of statements multiple times. The loop
encloses the sequence of statements that is to be repeated. PL/SQL provides the
following types of loop statements:

« basic loop

« WHILEloop

« FORIloop

« cursor FORIloop

For more information, see “Iterative Control: LOOP and EXIT Statements” on
page 3-6.

basic_loop_statement

['Loop }»@@_4 END LOOP | O

while_loop_statement

e label_name e

I N
I WHILE |—><b00|ean_expre33|on)—>

m
| :
—{ Loop statement END LOOP | O

for_loop_statement

e label_name e

REVERSE
lower_bound ° upper_bound
G
| -
—Jf Loop statement END LOOP | O

11-96 PL/SQL User’s Guide and Reference

LOOP Statements

cursor_for_loop_statement

e label_name °

I FOR |—><record_name

(M)
N
cursor_parameter_name
cursor_name)_)
o select_statement)

m
| B
—Jf Loop statement END LOOP | O

Keyword and Parameter Description

label_name

This is an undeclared identifier that optionally labels a loop. If used, label_name
must be enclosed by double angle brackets and must appear at the beginning of the
loop. Optionally, label name can also appear at the end of the loop.

You can use label_name inan EXIT statement to exit the loop labelled by
label_name

You cannot reference the index of a FORIloop from a nested FORIoop if both
indexes have the same name unless the outer loop is labeled by label name and
you use dot notation, as follows:

label name.index_name
In the following example, you compare two loop indexes that have the same name,
one used by an enclosing loop, the other by a nested loop:

<<outer>>
FORctrIN 1..20 LOOP

<<inner>>
FORctrIN1..10 LOOP
IF outer.ctr > ctr THEN ...

END LOOP inner,
END LOOP outer;

Language Elements 11-97

LOOP Statements

basic_loop_statement

The simplest form of LOOPstatement is the basic (or infinite) loop, which encloses a
sequence of statements between the keywords LOOPand END LOORNith each
iteration of the loop, the sequence of statements is executed, then control resumes
at the top of the loop. If further processing is undesirable or impossible, you can
use the EXIT, GOTQor RAISE statement to complete the loop. A raised exception
will also complete the loop.

while_loop_statement

The WHILE-LOOPstatement associates a Boolean expression with a sequence of
statements enclosed by the keywords LOOPand END LOORBefore each iteration of
the loop, the expression is evaluated. If the expression yields TRUE the sequence of
statements is executed, then control resumes at the top of the loop. If the expression
yields FALSE or NULL, the loop is bypassed and control passes to the next
statement.

boolean_expression

This is an expression that yields the Boolean value TRUE FALSE or NULL It is
associated with a sequence of statements, which is executed only if the expression
yields TRUE For the syntax of boolean_expression , see “Expressions” on
page 11-59.

for_loop_statement

Whereas the number of iterations through a WHILE loop is unknown until the loop
completes, the number of iterations through a FORIloop is known before the loop is
entered. Numeric FORIoops iterate over a specified range of integers. (Cursor FOR
loops, which iterate over the result set of a cursor, are discussed later.) The range is
part of an iteration scheme, which is enclosed by the keywords FORand LOOP

The range is evaluated when the FORIoop is first entered and is never re-evaluated.
The sequence of statements in the loop is executed once for each integer in the
range defined by lower_bound..upper_bound . After each iteration, the loop
index is incremented.

index_name

This is an undeclared identifier that names the loop index (sometimes called a loop
counter). Its scope is the loop itself. Therefore, you cannot reference the index
outside the loop.

11-98 PL/SQL User’s Guide and Reference

LOOP Statements

The implicit declaration of index_name overrides any other declaration outside
the loop. So, another variable with the same name cannot be referenced inside the
loop unless a label is used, as follows:

<main>>
DECLARE

num NUMBER;
BEGIN

FOR numIN 1..10 LOOP

IF main.num>5THEN - refers to the variable num,
- notto the loop index
ENDIF;
END LOOP,;
END main;

Inside a loop, its index is treated like a constant. The index can appear in
expressions, but cannot be assigned a value.

lower_bound, upper_bound

These are expressions that must yield integer values. The expressions are evaluated
only when the loop is first entered.

By default, the loop index is assigned the value of lower_bound . If that value is
not greater than the value of upper_bound , the sequence of statements in the loop
is executed, then the index is incremented. If the value of the index is still not
greater than the value of upper_bound , the sequence of statements is executed
again. This process repeats until the value of the index is greater than the value of
upper_bound . At that point, the loop completes.

REVERSE

By default, iteration proceeds upward from the lower bound to the upper bound.
However, if you use the keyword REVERSEiteration proceeds downward from the
upper bound to the lower bound.

An example follows:

FORIiINREVERSE 1..10 LOOP -istartsat 10, endsat 1
- statements here execute 10 times
END LOOP;

Language Elements 11-99

LOOP Statements

The loop index is assigned the value of upper_bound . If that value is not less than
the value of lower_bound , the sequence of statements in the loop is executed,
then the index is decremented. If the value of the index is still not less than the
value of lower_bound , the sequence of statements is executed again. This process
repeats until the value of the index is less than the value of lower_bound . At that
point, the loop completes.

cursor_for_loop_ statement

A cursor FORIloop implicitly declares its loop index as a %o ROWTY Ricord, opens a
cursor, repeatedly fetches rows of values from the result set into fields in the record,
and closes the cursor when all rows have been processed. Thus, the sequence of
statements in the loop is executed once for each row that satisfies the query
associated with cursor_name .

cursor_name

This identifies an explicit cursor previously declared within the current scope.
When the cursor FORIloop is entered, cursor_name cannot refer to a cursor
already opened by an OPENstatement or an enclosing cursor FORIloop.

record_name

This identifies an implicitly declared record. The record has the same structure as a
row retrieved by cursor_name and is equivalent to a record declared as follows:

record_name cursor_name%ROWTYPE;

The record is defined only inside the loop. You cannot refer to its fields outside the
loop. The implicit declaration of record_name overrides any other declaration
outside the loop. So, another record with the same name cannot be referenced
inside the loop unless a label is used.

Fields in the record store column values from the implicitly fetched row. The fields
have the same names and datatypes as their corresponding columns. To access field
values, you use dot notation, as follows:

record_namefield_name
Select-items fetched from the FORIloop cursor must have simple names or, if they

are expressions, must have aliases. In the following example, wages is an alias for
the select item sal+NVL(comm,0)

CURSOR c1 IS SELECT empno, sa+NVL(comm,0) wages, job ...

11-100 PL/SQL User’'s Guide and Reference

LOOP Statements

Usage Notes

Example

Related Topics

cursor_parameter_name

This identifies a cursor parameter; that is, a variable declared as the formal
parameter of a cursor. A cursor parameter can appear in a query wherever a
constant can appear. The formal parameters of a cursor must be IN parameters. For
the syntax of cursor_parameter_declaration , see “Cursors” on page 11-45.

select_statement

This is a query associated with an internal cursor unavailable to you. Its syntax is
like that of select_into_statement without the INTO clause. See “SELECT
INTO Statement” on page 11-139. PL/SQL automatically declares, opens, fetches
from, and closes the internal cursor. Because select statement is not an
independent statement, the implicit SQL cursor does not apply to it.

You can use the EXIT WHENstatement to exit any loop prematurely. If the Boolean
expression in the WHENMIause yields TRUE the loop is exited immediately.

When you exit a cursor FORIoop, the cursor is closed automatically even if you use
an EXIT or GOTGtatement to exit the loop prematurely. The cursor is also closed
automatically if an exception is raised inside the loop.

The following cursor FORIoop calculates a bonus, then inserts the result into a
database table:

DECLARE
bonus REAL;
CURSOR c1 IS SELECT empno, sal, comm FROM emp;
BEGIN
FOR clrecIN c1 LOOP
bonus :=(clrec.sal * 0.05) + (clrec.comm* 0.25);
INSERT INTO bonuses VALUES (c1rec.empno, bonus);
END LOOP;
COMMIT;
END;

Cursors, EXIT Statement, FETCH Statement, OPEN Statement, %ROWTYPE
Attribute

Language Elements 11-101

NULL Statement

NULL Statement

Syntax

Usage Notes

Examples

The NULL statement explicitly specifies inaction; it does nothing other than pass
control to the next statement. In a construct allowing alternative actions, the NULL
statement serves as a placeholder. For more information, see “NULL Statement” on
page 3-19.

null_statement

WL hO)

The NULL statement improves readability by making the meaning and action of
conditional statements clear. It tells readers that the associated alternative has not
been overlooked, but that indeed no action is necessary.

Each clause in an IF statement must contain at least one executable statement. The
NULL statement meets this requirement. So, you can use the NULL statement in
clauses that correspond to circumstances in which no action is taken. The NULL
statement and Boolean non-value NULL are unrelated.

In the following example, the NULL statement emphasizes that only salespeople
receive commissions:

IF job_tite ="SALESPERSON' THEN
compute_commission(emp_id);
ELSE
NULL;
ENDIF;

In the next example, the NULL statement shows that no action is taken for unnamed
exceptions:
EXCEPTION

WHEN OTHERS THEN
NULL,;

11-102 PL/SQL User’'s Guide and Reference

Object Types

Object Types

Syntax

An object type is a user-defined composite datatype that encapsulates a data
structure along with the functions and procedures needed to manipulate the data.
The variables that form the data structure are called attributes. The functions and
procedures that characterize the behavior of the object type are called methods.

Currently, you cannot define object types within PL/SQL. They must be CREATE
and stored in an Oracle database, where they can be shared by many programs.
When you define an object type (in SQL*Plus for example) using the CREATE TYPE
statement, you create an abstract template for some real-world object. The template
specifies only those attributes and behaviors the object will need in the application
environment.

The data structure formed by the set of attributes is public (visible to client
programs). However, well-behaved programs do not manipulate it directly.
Instead, they use the set of methods provided. That way, the data is kept in a
proper state. At run time, when the data structure is filled with values, you have
created an instance of an object type. You can create as many instances (usually
called objects) as you need. For more information, see Chapter 9.

object_type

(M)
N
-IS
—>| CREATE TYPE |—>Ctype_name H OBJECT o attribute_name)e(attribute_type)L
-AS

MAP
H MEMBER |e(member_function_specification
ORDER

M)
(N

member_procedure_specification
MEMBER

member_function_specification
restrict_references pragma\

Language Elements 11-103

Object Types

object_type_body

IS
—>| CREATE TYPE BODY |{type_name A

MAP

H MEMBER Kmember_function_body
ORDER

member_procedure_body

member_function_body

restrict_references_pragma

—>| PRAGMA RESTRICT REFERENCES o

Keyword and Parameter Description

type_name
This identifies a user-defined type specifier, which is used in subsequent
declarations of objects.

attribute_name

This identifies an object attribute. The name must be unique within the object type
(but can be reused in other object types). You cannot initialize an attribute in its
declaration using the assignment operator or DEFAULTclause. Also, you cannot
impose the NOT NULLconstraint on an attribute.

attribute_datatype

This is any Oracle datatype except LONGLONG RAWILSLABEL NCHARNCLOB
NVARCHARZROWIDthe PL/SQL-specific types BINARY_INTEGER(and its
subtypes), BOOLEANPLS_INTEGER RECORPREF CURSORATYPEand
%ROWTYRENd types defined inside a PL/SQL package.

11-104 PL/SQL User’'s Guide and Reference

Object Types

MEMBER

This keyword allows you to declare a function or procedure in an object type
specification. The method cannot have the same name as the object type or any of
its attributes.

Like packaged subprograms, methods have two parts: a specification and a body.
The specification consists of a method name, an optional parameter list, and, for
functions, a return type. The body is the code that executes to perform a specific
operation.

For each method specification in an object type specification, there must be a
corresponding method body in the object type body. To match method
specifications and bodies, the compiler does a token-by-token comparison of their
headers. So, the headers must match word for word.

All methods in an object type accept an instance of that type as their first
parameter. The name of this built-in parameter is SELFE Whether declared
implicitly or explicitly, SELF is always the first parameter passed to a method. In a
method body, SELF denotes the object whose method was called.

In member functions, if SELFis not declared, its parameter mode defaults to IN .
However, in member procedures, if SELF is not declared, its parameter mode
defaults to IN OUT. You cannot specify a different datatype for SELF

MAP

This keyword indicates that a method orders objects by mapping them to values of
a scalar datatype such as CHARor REAL, which have a predefined order. PL/SQL
uses the ordering to evaluate Boolean expressions such as x >y , and to do
comparisons implied by the DISTINCT, GROUP B¥nd ORDER B¥lauses. A map
method returns the relative position of an object in the ordering of all such objects.

An object type can contain only one map method, which must be a parameterless
function having the return type DATE NUMBERVARCHARRor an ANSI SQL type
such as CHARACTERNTEGER or REAL

ORDER

This keyword indicates that a method compares two objects. Every order method
takes just two parameters: the built-in parameter SELF and another object of the
same type. If 01 and 02 are objects, a comparison such as 01 > 02 automatically
calls the order method with parameters 01 and 02. The method returns a negative
number, zero, or a positive number signifying that SELF is less than, equal to, or
greater than the other parameter, respectively.

Language Elements 11-105

Object Types

An object type can contain only one order method, which must be a function that
returns a numeric result.

member_function_specification

This construct declares the interface to a member function. Its syntax is like that of
function_specification without the terminator. See “Functions” on
page 11-79.

member_procedure_specification

This construct declares the interface to a member procedure. Its syntax is like that
of procedure_specification without the terminator. See “Procedures” on
page 11-121.

member_function_body

This construct defines the underlying implementation of a member function. Its
syntax is like that of function_body without the terminator. See “Functions” on
page 11-79.

member_procedure_body

This construct defines the underlying implementation of a member procedure. Its
syntax is like that of procedure_body without the terminator. See “Procedures”
on page 11-121.

restrict_references_pragma

You use this pragma (compiler directive) to enforce rules that control side effects.
The pragma tells the PL/SQL compiler to deny the member function read/write
access to database tables, packaged variables, or both.

In the object type specification, you code the pragma somewhere after the method
to which it applies. You can specify up to four constraints in any order, but you
must specify WNDSTo call the method from parallel queries, you must also specify
WNPSRNDSand RNPS No constraint implies another.

If you specify the keyword DEFAULTinstead of a method name, the pragma
applies to all member functions including the system-defined constructor. You can
declare the pragma for any member function. Such pragmas override the default
pragma. However, a non-default pragma can apply to only one method. So, among
overloaded methods, the pragma always applies to the nearest preceding method.

11-106 PL/SQL User’'s Guide and Reference

Object Types

Usage Notes

Once an object type is defined and installed in the schema, you can use it to declare
objects in any PL/SQL block, subprogram, or package. For example, you can use
the object type to specify the datatype of an attribute, column, variable, bind
variable, record field, table element, formal parameter, or function result.

Like a package, an object type has two parts: a specification and a body. The
specification is the interface to your applications; it declares a data structure (set of
attributes) along with the operations (methods) needed to manipulate the data. The
body fully defines the methods, and so implements the specification.

All the information a client program needs to use the methods is in the
specification. Think of the specification as an operational interface and of the body
as a black box. You can debug, enhance, or replace the body without changing the
specification.

An object type encapsulates data and operations. So, you can declare attributes and
methods in an object type specification, but not constants, exceptions, cursors, or
types. At least one attribute is required; methods are optional.

In an object type specification, all attributes must be declared before any methods.
Only subprograms have an underlying implementation. So, if an object type
specification declares only attributes, the object type body is unnecessary. You
cannot declare attributes in the body.

All declarations in the object type specification are public (visible outside the object
type). However, the object type body can contain private declarations, which define
methods necessary for the internal workings of the object type. The scope of private
declarations is local to the object type body.

You can refer to an attribute only by name (not by its position in the object type). To
access or change the value of an attribute, you use dot notation. Attribute names
can be chained, which allows you to access the attributes of a nested object type.

In an object type, methods can reference attributes and other methods without a
gualifier. In SQL statements, calls to a parameterless method require an empty
parameter list. In procedural statements, an empty parameter list is optional unless
you chain calls, in which case it is required for all but the last call.

You can declare a map method or an order method but not both. If you declare
either method, you can compare objects in SQL and procedural statements.
However, if you declare neither method, you can compare objects only in SQL
statements and only for equality or inequality. Two objects of the same type are
equal only if the values of their corresponding attributes are equal.

Language Elements 11-107

Object Types

Like packaged subprograms, methods of the same kind (functions or procedures)
can be overloaded. That is, you can use the same name for different methods if
their formal parameters differ in number, order, or datatype family.

Every object type has a constructor method (constructor for short), which is a
system-defined function with the same name as the object type. You use the
constructor to initialize and return an instance of that object type. PL/SQL never
calls a constructor implicitly, so you must call it explicitly. Constructor calls are
allowed wherever function calls are allowed.

Examples

In the SQL*Plus script below, an object type for a stack is defined. The last item
added to a stack is the first item removed. The operations push and pop update the
stack while preserving last in, first out (LIFO) behavior. The simplest
implementation of a stack uses an integer array. Integers are stored in array
elements, with one end of the array representing the top of the stack.

CREATE TYPE IntArray AS VARRAY(25) OF INTEGER
/
CREATE TYPE Stack AS OBJECT (
max_size INTEGER,
top INTEGER,
position IntAray,
MEMBER PROCEDURE initialize,
MEMBER FUNCTION full RETURN BOOLEAN,
MEMBER FUNCTION empty RETURN BOOLEAN,
MEMBER PROCEDURE push (n IN INTEGER),
MEMBER PROCEDURE pop (n OUT INTEGER)
)
/
CREATE TYPE BODY Stack AS
MEMBER PROCEDURE initialize IS
—fill stack with nulls
BEGIN
top =0;
- call constructor for varray and set element 1 to NULL
position := IntArray(NULL);
max_size := position.LIMIT; — use varray size constraint (25)
position.EXTEND(max_size - 1, 1); - copy element 1 into 2..25
END initialize;
MEMBER FUNCTION ful RETURN BOOLEAN IS

—retum TRUE if stack is full
BEGIN

11-108 PL/SQL User’'s Guide and Reference

Object Types

RETURN (top =max_size);
END ful;

MEMBER FUNCTION empty RETURN BOOLEAN IS
- retum TRUE if stack is empty
BEGIN
RETURN (top =0);
END empty;

MEMBER PROCEDURE push (n IN INTEGER) IS
— push integer onto stack
BEGIN
IFNOT ful THEN
top =top+1,
pasition(top) :=n;
ELSE - stackisfull
RAISE_APPLICATION_ERROR(-20101, ‘stack overflow);
ENDIF;
END push;

MEMBER PROCEDURE pop (n OUT INTEGER) IS
- pop integer off stack and retum its value
BEGIN
IFNOT empty THEN
n:= postion(top);
top =top-1;
ELSE - stackis empty
RAISE_APPLICATION_ERROR(-20102, ‘stack underfiow’);
ENDIF;
END pop;
END;

Notice that in member procedures push and pop, we use the built-in procedure
raise_application_error to issue user-defined error messages. That way, we
can report errors to the client program and avoid returning unhandled exceptions
to the host environment.

The following example shows that you can nest object types:

CREATE TYPE Address AS OBJECT (
street_address VARCHAR2(35),

city VARCHAR2(15),

state CHAR(2),

Zip_code INTEGER

)

Language Elements 11-109

Object Types

CREATE TYPE Person AS OBJECT (
first name VARCHAR2(15),
last name VARCHAR2(15),
birthday ~DATE,
home_address Address, - nested object type
phone_number VARCHAR2(15),
ss_number INTEGER,

Related Topics
Functions, Packages, Procedures

11-110 PL/SQL User’'s Guide and Reference

OPEN Statement

OPEN Statement

Syntax

The OPENstatement executes the multi-row query associated with an explicit
cursor. It also allocates resources used by Oracle to process the query and identifies
the result set, which consists of all rows that meet the query search criteria. The
cursor is positioned before the first row in the result set. For more information, see
“Managing Cursors” on page 5-9.

open_statement

(M)
N
cursor_parameter_name
—>| OPEN |—><cursor_name) O

Keyword and Parameter Description

Usage Notes

cursor_name

This identifies an explicit cursor previously declared within the current scope and
not currently open.

cursor_parameter_name

This identifies a cursor parameter; that is, a variable declared as the formal
parameter of a cursor. A cursor parameter can appear in a query wherever a
constant can appear. For the syntax of cursor_parameter_ declaration , see
“Cursors” on page 11-45.

Generally, PL/SQL parses an explicit cursor only the first time it is opened and
parses a SQL statement (thereby creating an implicit cursor) only the first time the
statement is executed. All the parsed SQL statements are cached. A SQL statement
must be reparsed only if it is bumped out of the cache by a new SQL statement.

So, although you must close a cursor before you can reopen it, PL/SQL need not
reparse the associated SELECTstatement. If you close, then immediately reopen the
cursor, a reparse is definitely not needed.

Language Elements 11-111

OPEN Statement

Examples

Related Topics

Rows in the result set are not retrieved when the OPENstatement is executed. The
FETCHstatement retrieves the rows. With a FOR UPDATEursor, the rows are
locked when the cursor is opened.

If formal parameters are declared, actual parameters must be passed to the cursor.
The formal parameters of a cursor must be IN parameters. Therefore, they cannot
return values to actual parameters. The values of actual parameters are used when
the cursor is opened. The datatypes of the formal and actual parameters must be
compatible. The query can also reference PL/SQL variables declared within its
scope.

Unless you want to accept default values, each formal parameter in the cursor
declaration must have a corresponding actual parameter in the OPENstatement.
Formal parameters declared with a default value need not have a corresponding
actual parameter. They can simply assume their default values when the OPEN
statement is executed.

You can associate the actual parameters in an OPENstatement with the formal
parameters in a cursor declaration using positional or named notation. For more
information, see “Positional and Named Notation” on page 7-12.

If a cursor is currently open, you cannot use its name in a cursor FORloop.

Given the cursor declaration
CURSOR parts_cur IS SELECT part_num, part_price FROM parts;

the following statement opens the cursor:
OPEN parts_cur,

Given the cursor declaration

CURSOR emp_cur(my_ename CHAR, my_comm NUMBER DEFAULT 0)
IS SELECT * FROM emp WHERE ...

any of the following statements opens the cursor:

OPEN emp_cur(LEE);
OPEN emp_cur(BLAKE, 300);
OPEN emp_cur(employee_name, 150);

CLOSE Statement, Cursors, FETCH Statement, LOOP Statements

11-112 PL/SQL User’'s Guide and Reference

OPEN-FOR Statement

OPEN-FOR Statement

Syntax

The OPEN-FORstatement executes the multi-row query associated with a cursor
variable. It also allocates resources used by Oracle to process the query and
identifies the result set, which consists of all rows that meet the query search
criteria. The cursor variable is positioned before the first row in the result set. For
more information, see “Using Cursor Variables” on page 5-18.

open_for_statement

cursor_variable_name
OPEN

host_cursor_variable_name

FOR Kselect_statement)»@

Keyword and Parameter Description

cursor_variable_name

This identifies a cursor variable (or parameter) previously declared within the
current scope.

host_cursor_variable_ name

This identifies a cursor variable previously declared in a PL/SQL host environment
and passed to PL/SQL as a bind variable. The datatype of the host cursor variable
is compatible with the return type of any PL/SQL cursor variable. Host variables
must be prefixed with a colon.

select_statement

This is a query associated with cursor_variable , Which returns a set of values.
The query can reference bind variables and PL/SQL variables, parameters, and
functions but cannot be FOR UPDATEThe syntax of select_statement is similar
to the syntax for select _into_statement defined in “SELECT INTO
Statement” on page 11-139, except that select statement cannot have an INTO
clause.

Language Elements 11-113

OPEN-FOR Statement

Usage Notes

Examples

You can declare a cursor variable in a PL/SQL host environment such as an OCI or
Pro*C program. To open the host cursor variable, you can pass it as a bind variable
to an anonymous PL/SQL block. You can reduce network traffic by grouping
OPEN-FORstatements. For example, the following PL/SQL block opens five cursor
variables in a single round-trip:

Fanonymous PL/SQL block in hast environment */
BEGIN
OPEN :emp_cv FOR SELECT * FROM emp;
OPEN :dept_cv FOR SELECT * FROM dept;
OPEN :grade_cvFOR SELECT * FROM salgrade;
OPEN :pay_cvFOR SELECT * FROM payrol;
OPEN ins_cv FOR SELECT * FROM insurance;
END;

Other OPEN-FORstatements can open the same cursor variable for different
gueries. You need not close a cursor variable before reopening it. When you reopen
a cursor variable for a different query, the previous query is lost.

Unlike cursors, cursor variables do not take parameters. No flexibility is lost,
however, because you can pass whole queries (not just parameters) to a cursor
variable.

You can pass a cursor variable to PL/SQL by calling a stored procedure that
declares a cursor variable as one of its formal parameters. However, remote
subprograms on another server cannot accept the values of cursor variables.
Therefore, you cannot use a remote procedure call (RPC) to open a cursor variable.

When you declare a cursor variable as the formal parameter of a subprogram that
opens the cursor variable, you must specify the IN OUT mode. That way, the
subprogram can pass an open cursor back to the caller.

In the following Pro*C example, you pass a host cursor variable and selector to a
PL/SQL block, which opens the cursor variable for the chosen query:

EXEC SQL BEGIN DECLARE SECTION,

* Declare host cursor variable. */
SQL_CURSOR generic_cv,
int choice;

EXEC SQL END DECLARE SECTION;

11-114 PL/SQL User’'s Guide and Reference

OPEN-FOR Statement

[* Initialize host cursor variable. */
EXEC SQL ALLOCATE :generic _cv,

¥ Pass host cursor variable and selector to PL/SQL block. */
EXEC SQL EXECUTE
BEGIN
IF :choice =1 THEN
OPEN :generic_cv FOR SELECT * FROM emp;
ELSIF :choice =2 THEN
OPEN :generic_cv FOR SELECT * FROM dept;
ELSIF :choice =3 THEN
OPEN :generic_cv FOR SELECT * FROM salgrade;
ENDIF;
END;
END-EXEC;

To centralize data retrieval, you can group type-compatible queries in a stored
procedure. When called, the following packaged procedure opens the cursor

variable emp_cv for the chosen query:

CREATE PACKAGE emp_data AS
TYPE GenericCurTyp IS REF CURSOR,;

TYPE EmpCurTyp IS REF CURSOR RETURN emp%ROWTYPE;
PROCEDURE open_emp_cv (emp_cvIN OUT EmpCurTyp,

choice IN NUMBERY);
END emp_data;

CREATE PACKAGE BODY emp_data AS

PROCEDURE open_emp_cv (emp_cv IN OUT EmpCurTyp,

choice IN NUMBER) IS
BEGIN
IF choice=1THEN

OPEN emp_cv FOR SELECT * FROM emp WHERE comm IS NOT NULL;

ELSIF choice =2 THEN

OPEN emp_cv FOR SELECT * FROM emp WHERE sal > 2500,

ELSIF choice =3 THEN

OPEN emp_cv FOR SELECT * FROM emp WHERE deptno = 20;

ENDIF;
END open_emp_cv;
END emp_data;

Language Elements 11-115

OPEN-FOR Statement

For more flexibility, you can pass a cursor variable to a stored procedure that
executes queries with different return types, as follows:

CREATE PACKAGE BODY emp_data AS
PROCEDURE open_cv (generic_cv IN OUT GenericCurTyp,
choice INNUMBER)IS
BEGIN
IF choice =1 THEN
OPEN generic_cv FOR SELECT * FROM emp;
ELSIF choice =2 THEN
OPEN generic_cv FOR SELECT * FROM dept;
ELSIF choice =3 THEN
OPEN generic_cv FOR SELECT * FROM salgrade;
ENDIF;
END open_cv,
END emp_data;

Related Topics
CLOSE Statement, Cursor Variables, FETCH Statement, LOOP Statements

11-116 PL/SQL User’'s Guide and Reference

Packages

Packages

Syntax

A package is a schema object that groups logically related PL/SQL types, items,
and subprograms. Packages have two parts: a specification and a body. For more

information, see Chapter 8.

package_specification

IS

—>| CREATE PACKAGE |{package_name H

/(coIIection_type_definition%

record_type_definition
—(package_item_decIaration)—

cursor_specification

function_specification

procedure_specification

—>| END O

package_body

IS

—>| CREATE PACKAGE BODY |—>Cpackage_name -

pragma_declaration

f(colIection_type_definition%

record_type_definition

—(package_item_declaration)—

function_body

procedure_body

— .
END O

i

Language Elements 11-117

Packages

package_item_declaration
collection_declaration
constant_declaration
exception_declaration
object_declaration

record_declaration

variable_declaration

Keyword and Parameter Description

package name
This identifies a package. For naming conventions, see “ldentifiers” on page 2-4.

collection_declaration

This identifies a nested table, index-by table, or varray previously declared within
the current scope. For the syntax of collection_declaration , See
“Collections” on page 11-21.

constant_declaration

This construct declares a constant. For the syntax of constant_declaration , see
“Constants and Variables” on page 11-29.

exception_declaration

This construct declares an exception. For the syntax of exception_declaration :
see “Exceptions” on page 11-54.

object_declaration

This identifies an object (instance of an object type) previously declared within the
current scope. For the syntax of object_declaration , see “Object Types” on
page 11-103.

record_declaration

This construct declares a user-defined record. For the syntax of
record_declaration , see “Records” on page 11-128.

11-118 PL/SQL User’'s Guide and Reference

Packages

Usage Notes

variable_declaration

This construct declares a variable. For the syntax of variable declaration , see
“Constants and Variables” on page 11-29.

cursor_specification

This construct declares the interface to an explicit cursor. For the syntax of
cursor_specification , see “Cursors” on page 11-45.

function_specification

This construct declares the interface to a function. For the syntax of
function_specification , see “Functions” on page 11-79.

procedure_specification

This construct declares the interface to a procedure. For the syntax of
procedure_specification , see “Procedures” on page 11-121.

cursor_body

This construct defines the underlying implementation of an explicit cursor. For the
syntax of cursor_body , see “Cursors” on page 11-45.

function_body

This construct defines the underlying implementation of a function. For the syntax
of function_body , see “Functions” on page 11-79.

procedure_body

This construct defines the underlying implementation of a procedure. For the
syntax of procedure _body , see “Procedures” on page 11-121.

You cannot define packages in a PL/SQL block or subprogram. However, you can
use any Oracle tool that supports PL/SQL to create and store packages in an Oracle
database. You can issue the CREATE PACKAGIhd CREATE PACKAGE BODY
statements interactively from SQL*Plus or Enterprise Manager and from an Oracle
Precompiler or OCI host program. For the full syntax of the CREATE PACKAGE
statement, see Oracle8 SQL Reference.

Language Elements 11-119

Packages

Related Topics

Most packages have a specification and a body. The specification is the interface to
your applications; it declares the types, variables, constants, exceptions, cursors,
and subprograms available for use. The body fully defines cursors and
subprograms, and so implements the specification.

Only subprograms and cursors have an underlying implementation (definition).
So, if a specification declares only types, constants, variables, and exceptions, the
package body is unnecessary. However, the body can still be used to initialize items
declared in the specification, as the following example shows:

CREATE PACKAGE emp_actions AS

number_hired INTEGER;
END emp_actions;

CREATE PACKAGE BODY emp_actions AS
BEGIN

number_hired :=0;
END emp_actions;

You can code and compile a specification without its body. Once the specification
has been compiled, stored subprograms that reference the package can be compiled
as well. You need not define the package bodies fully until you are ready to
complete the application.

Furthermore, you can debug, enhance, or replace a package body without changing
the interface (package specification) to the package body. That means you need not
recompile calling programs.

Cursors and subprograms declared in a package specification must be defined in
the package body. Other program items declared in the package specification
cannot be redeclared in the package body.

To match subprogram specifications and bodies, PL/SQL does a token-by-token
comparison of their headers. So, except for white space, the headers must match
word for word. Otherwise, PL/SQL raises an exception.

Collections, Cursors, Exceptions, Functions, Procedures, Records

11-120 PL/SQL User’'s Guide and Reference

Procedures

Procedures

Syntax

A procedure is a subprogram, which can take parameters and be invoked.
Generally, you use a procedure to perform an action. A procedure has two parts:
the specification and the body. The procedure specification begins with the
keyword PROCEDUR&Nd ends with the procedure name or a parameter list.
Parameter declarations are optional. Procedures that take no parameters are
written without parentheses. The procedure body begins with the keyword IS and
ends with the keyword ENDfollowed by an optional procedure name.

The procedure body has three parts: an optional declarative part, an executable
part, and an optional exception-handling part. The declarative part contains
declarations of types, cursors, constants, variables, exceptions, and subprograms.
These items are local and cease to exist when you exit the procedure. The
executable part contains statements that assign values, control execution, and
manipulate Oracle data. The exception-handling part contains exception handlers,
which deal with exceptions raised during execution. For more information, see
“Procedures” on page 7-3.

procedure_specification O

—>| PROCEDURE |—>Cprocedure_name) 0 a O

- M
procedure_body | procedure_declaration),

© 0
—>| PROCEDURE |—><procedure_name) % IS |—>

type_definition

I

function_declaration
l procedure_declaration '

item_declaration

Language Elements 11-121

Procedures

—| BEGIN }»@@
f—)| EXCEPTION PQ exception_handler p—\
-
Jq END O

parameter_declaration

expression

e
=

—(parameter_name) ¥ datatype)

Keyword and Parameter Description

procedure_name
This identifies a user-defined procedure.

parameter_name

This identifies a formal parameter, which is a variable declared in a procedure
specification and referenced in the procedure body.

IN, OUT, IN OUT

These parameter modes define the behavior of formal parameters. An IN
parameter lets you pass values to the subprogram being called. An OUTparameter
lets you return values to the caller of the subprogram. An IN OUT parameter lets
you pass initial values to the subprogram being called and return updated values
to the caller.

datatype
This is a type specifier. For the syntax of datatype , see “Constants and Variables
on page 11-29.

:= | DEFAULT
This operator or keyword allows you to initialize IN parameters to default values.

11-122 PL/SQL User’'s Guide and Reference

Procedures

Usage Notes

expression

This is an arbitrarily complex combination of variables, constants, literals,
operators, and function calls. The simplest expression consists of a single variable.
When the declaration is elaborated, the value of expression s assigned to the
parameter. The value and the parameter must have compatible datatypes.

type_definition
This specifies a user-defined datatype. For the syntax of type_definition , see
“Blocks” on page 11-7.

item_declaration

This declares a program object. For the syntax of item_declaration , see
“Blocks” on page 11-7.

function_declaration

This construct declares a function. For the syntax of function_declaration , see
“Functions” on page 11-79.

procedure_declaration

This construct declares a procedure. For the syntax of procedure_declaration ,
see “Procedures” on page 11-121.

exception_handler

This construct associates an exception with a sequence of statements, which is
executed when that exception is raised. For the syntax of exception _handler ,
see “Exceptions” on page 11-54.

A procedure is called as a PL/SQL statement. For example, the procedure
raise_salary might be called as follows:

raise_salary(emp_num, amount);

Inside a procedure, an IN parameter acts like a constant. Therefore, it cannot be
assigned a value. An OUTparameter acts like an uninitialized variable. So, its value
cannot be assigned to another variable or reassigned to itself. An IN OUT parameter
acts like an initialized variable. Therefore, it can be assigned a value, and its value
can be assigned to another variable. For summary information about the parameter
modes, see Table 7-1 on page 7-15.

Language Elements 11-123

Procedures

Unlike OUTand IN OUT parameters, IN parameters can be initialized to default
values. For more information, see “Parameter Default Values” on page 7-15.

Before exiting a procedure, explicitly assign values to all OUTformal parameters.
Otherwise, the values of corresponding actual parameters are indeterminate. If you
exit successfully, PL/SQL assigns values to the actual parameters. However, if you
exit with an unhandled exception, PL/SQL does not assign values to the actual
parameters.

You can write the procedure specification and body as a unit. Or, you can separate
the procedure specification from its body. That way, you can hide implementation
details by placing the procedure in a package. You can define procedures in a
package body without declaring their specifications in the package specification.
However, such procedures can be called only from inside the package.

Procedures can be defined using any Oracle tool that supports PL/SQL. To become
available for general use, however, procedures must be CREATIH and stored in an
Oracle database. You can issue the CREATE PROCEDUREtement interactively
from SQL*Plus or Enterprise Manager. For the full syntax of the CREATE
PROCEDURS§atement, see Oracle8 SQL Reference.

At least one statement must appear in the executable part of a procedure. The NULL
statement meets this requirement.

Examples
The following procedure debits a bank account:

PROCEDURE debit_account (acct_id INTEGER, amount REAL) IS
old_balance REAL;
new_balance REAL;
overdrawn EXCEPTION,;
BEGIN
SELECT bal INTO old_balance FROM accts WHERE acctno = acct id;
new_balance :=old_balance - amount;
IF new_balance <O THEN
RAISE overdrawn;
ELSE
UPDATE accts SET bal =new_balance WHERE acctno =acct id;
ENDIF;
EXCEPTION
WHEN overdrawn THEN

END debit_account

11-124 PL/SQL User’'s Guide and Reference

Procedures

In the following example, you call the procedure using named notation:

debit_account(amount =>500, acct_id =>10261);

Related Topics
Collections, Functions, Packages, Records

Language Elements 11-125

RAISE Statement

RAISE Statement

The RAISE statement stops normal execution of a PL/SQL block or subprogram
and transfers control to the appropriate exception handler. Normally, predefined
exceptions are raised implicitly by the runtime system. However, RAISE statements
can also raise predefined exceptions. User-defined exceptions must be raised
explicitly by RAISE statements. For more information, see “User-Defined
Exceptions” on page 6-6.

Syntax

raise_statement

—>| RAISE O

Keyword and Parameter Description

exception_name

This identifies a predefined or user-defined exception. For a list of the predefined
exceptions, see “Predefined Exceptions” on page 6-4.

Usage Notes

PL/SQL blocks and subprograms should RAISE an exception only when an error
makes it impractical or impossible to continue processing. You can code a RAISE
statement for a given exception anywhere within the scope of that exception.

When an exception is raised, if PL/SQL cannot find a handler for it in the current
block, the exception propagates. That is, the exception reproduces itself in
successive enclosing blocks until a handler is found or there are no more blocks to
search. In the latter case, PL/SQL returns an unhandled exception error to the host
environment.

Omitting the exception name in a RAISE statement, which is allowed only in an
exception handler, reraises the current exception. When a parameterless RAISE
statement executes in an exception handler, the first block searched is the enclosing
block, not the current block.

11-126 PL/SQL User’'s Guide and Reference

RAISE Statement

Example

In the following example, you raise an exception when an inventoried part is out of
stock:

IF quantity on_hand=0THEN
RAISE out_of stock;
ENDIF;

Related Topics
Exceptions

Language Elements 11-127

Records

Records

Syntax

Records are items of type RECORIRecords have uniquely named fields that can
store data values of different types. For more information, see “What Is a Record?”
on page 4-28.

record_type_definition o
—{ TYPE [x(type_name)-f Is RECORD

NOT NULL
field_declaration
—><fie|d_name)—><datatype) J

expression

record_declaration

—><record_name>—>(type_name)—>®

Keyword and Parameter Description

record_type_name
This identifies a user-defined type specifier, which is used in subsequent
declarations of records.

NOT NULL

This constraint prevents the assigning of nulls to a field. At run time, trying to
assign a null to a field defined as NOT NULLraises the predefined exception
VALUE_ERROR he constraint NOT NULLmust be followed by an initialization
clause.

datatype
This is a type specifier. For the syntax of datatype , see “Constants and Variables”
on page 11-29.

11-128 PL/SQL User’'s Guide and Reference

Records

Usage Notes

= | DEFAULT
This operator or keyword allows you to initialize fields to default values.

expression

This is an arbitrarily complex combination of variables, constants, literals,
operators, and function calls. The simplest expression consists of a single variable.
For the syntax of expression , see “Expressions” on page 11-59. When the
declaration is elaborated, the value of expression is assigned to the field. The
value and the field must have compatible datatypes.

You can define RECORDRypes and declare user-defined records in the declarative
part of any block, subprogram, or package. Also, a record can be initialized in its
declaration, as the following example shows:

DECLARE
TYPE TimeTyp IS RECORD(
second SMALLINT =0,
minute SMALLINT :=0,
hour SMALLINT :=Q);

The next example shows that you can use the % TYPHEattribute to specify a field
datatype. It also shows that you can add the NOT NULLconstraint to any field
declaration and so prevent the assigning of nulls to that field.

DECLARE
TYPE DeptRecTyp IS RECORD(
depno NUMBER(2) NOT NULL,
dname deptdname%TYPE,
loc deptloc%TYPE),
dept_rec DeptRecTyp;

To reference individual fields in a record, you use dot notation. For example, you
might assign a value to the dnamefield in the dept_rec record as follows:

dept _rec.dname :='PURCHASING;;

Instead of assigning values separately to each field in a record, you can assign
values to all fields at once. This can be done in two ways. First, you can assign one
user-defined record to another if they have the same datatype. (Having fields that
match exactly is not enough.) You can assign a %ROWTYPE record to a user-
defined record if their fields match in number and order, and corresponding fields
have compatible datatypes.

Language Elements 11-129

Records

Second, you can use the SELECTor FETCHstatement to fetch column values into a
record. The columns in the select-list must appear in the same order as the fields in
your record.

You can declare and reference nested records. That is, a record can be the
component of another record, as the following example shows;

DECLARE

TYPE TimeTyp IS RECORD(
minute SMALLINT,
hour SMALLINT);

TYPE MeetingTyp IS RECORD(
day DATE,
ime TimeTyp, - nested record
place CHAR(20),
purpose CHAR(S0));

TYPE PartyTyp IS RECORD(
day DATE,
ime TmeTyp, - nested record
loc CHAR(15));

meeting MeetingTyp;

seminar MeetingTyp;

party PartyTyp;

The next example shows that you can assign one nested record to another if they
have the same datatype:

seminar.ime := meeting.ime;

Such assignments are allowed even if the containing records have different
datatypes.

User-defined records follow the usual scoping and instantiation rules. In a package,
they are instantiated when you first reference the package and cease to exist when
you exit the application or end the database session. In a block or subprogram, they
are instantiated when you enter the block or subprogram and cease to exist when
you exit the block or subprogram.

Like scalar variables, user-defined records can be declared as the formal parameters
of procedures and functions. The restrictions that apply to scalar parameters also
apply to user-defined records.

11-130 PL/SQL User’'s Guide and Reference

Records

Example

Related Topics

You can specify a RECORDRype in the RETURNIause of a function specification.
That allows the function to return a user-defined record of the same type. When
calling a function that returns a user-defined record, you use the following syntax
to reference fields in the record:

function_name(parameters).field_name

To reference nested fields in a record returned by a function, you use the following
syntax:

function_name(parameters)field_name.nested field_name

Currently, you cannot use the syntax above to call a parameterless function because
PL/SQL does not allow empty parameter lists. That is, the following syntax is
illegal:

function_name().field_name - illegal; empty parameter list

You cannot just drop the empty parameter list because the following syntax is also
illegal:

function_namefield_name —illegal; no parameter list

Instead, declare a local user-defined record to which you can assign the function
result, then reference its fields directly.

In the following example, you define a RECORDRype named DeptRecTyp , declare
a record named dept_rec , then select a row of values into the record:

DECLARE
TYPE DeptRecTyp IS RECORD(
deptno NUMBER(2),
dname CHAR(14),
loc CHAR(13));
dept_rec DeptRecTyp;
BEGIN
SELECT deptno, dname, loc INTO dept_rec FROM dept
WHERE deptno = 20;

Assignment Statement, Collections, Functions, Procedures

Language Elements 11-131

RETURN Statement

RETURN Statement

The RETURNMtatement immediately completes the execution of a subprogram and
returns control to the caller. Execution then resumes with the statement following
the subprogram call. In a function, the RETURNtatement also sets the function
identifier to the result value. For more information, see “RETURN Statement” on
page 7-7.

Syntax

return_statement

N N
—>| RETURN O

Keyword and Parameter Description

expression

This is an arbitrarily complex combination of variables, constants, literals,
operators, and function calls. The simplest expression consists of a single variable.
When the RETURNMtatement is executed, the value of expression is assigned to
the function identifier.

Usage Notes

Do not confuse the RETURMtatement with the RETURNIlause, which specifies the
datatype of the result value in a function specification.

A subprogram can contain several RETURMNtatements, none of which need be the
last lexical statement. Executing any of them completes the subprogram
immediately. However, to have multiple exit points in a subprogram is a poor
programming practice.

In procedures, a RETURNtatement cannot contain an expression. The statement
simply returns control to the caller before the normal end of the procedure is
reached.

11-132 PL/SQL User’'s Guide and Reference

RETURN Statement

Example

Related Topics

However, in functions, a RETURNtatement must contain an expression, which is
evaluated when the RETURNMtatement is executed. The resulting value is assigned
to the function identifier. Therefore, a function must contain at least one RETURN
statement. Otherwise, PL/SQL raises the predefined exception PROGRAM_ERR@R
run time.

The RETURNMtatement can also be used in an anonymous block to exit the block
(and all enclosing blocks) immediately, but the RETURMNtatement cannot contain
an expression.

In the following example, the function balance RETURN the balance of a specified
bank account:

FUNCTION balance (acct_id INTEGER) RETURN REAL IS
acct_bal REAL,;

BEGIN
SELECT bal INTO acct_bal FROM accts WHERE acctno = acct id;
RETURN acct bal;

END balance;

Functions, Procedures

Language Elements 11-133

ROLLBACK Statement

ROLLBACK Statement

Syntax

The ROLLBACIKstatement is the inverse of the COMMITstatement. It undoes some
or all database changes made during the current transaction. For more information,
see “Processing Transactions” on page 5-44.

rollback_statement

SAVEPOINT
WORK ,a| TO savepoint_name)—
—>| ROLLBACK O

Keyword and Parameter Description

ROLLBACK

When a parameterless ROLLBACKstatement is executed, all database changes made
during the current transaction are undone.

WORK
This keyword is optional and has no effect except to improve readability.

ROLLBACK TO

This statement undoes all database changes (and releases all locks acquired) since
the savepoint identified by savepoint_name was marked.

SAVEPOINT
This keyword is optional and has no effect except to improve readability.

savepoint_name

This is an undeclared identifier, which marks the current point in the processing of
a transaction. For naming conventions, see “Identifiers” on page 2-4.

11-134 PL/SQL User’'s Guide and Reference

ROLLBACK Statement

Usage Notes

Related Topics

All savepoints marked after the savepoint to which you roll back are erased.
However, the savepoint to which you roll back is not erased. For example, if you
mark savepoints A, B, C, and D in that order, then roll back to savepoint B, only
savepoints C and D are erased.

An implicit savepoint is marked before executing an INSERT, UPDATEor DELETE
statement. If the statement fails, a rollback to the implicit savepoint is done.
Normally, just the failed SQL statement is rolled back, not the whole transaction.
However, if the statement raises an unhandled exception, the host environment
determines what is rolled back.

COMMIT Statement, SAVEPOINT Statement

Language Elements 11-135

%ROWTYPE Attribute

%ROWTYPE Attribute

Syntax

The %ROWTY Pdtribute provides a record type that represents a row in a database
table. The record can store an entire row of data selected from the table or fetched
from a cursor or cursor variable. Fields in a record and corresponding columns in a
row have the same names and datatypes.

You can use the %ROWTY R#tribute in variable declarations as a datatype specifier.
Variables declared using %ROWTY Pdte treated like those declared using a datatype
name. For more information, see “Using %ROWTYPE” on page 2-31.

rowtype_attribute
(o)
cursor_variable_name

Keyword and Parameter Description

Usage Notes

cursor_name
This identifies an explicit cursor previously declared within the current scope.

cursor_variable_name

This identifies a PL/SQL strongly (not weakly) typed cursor variable previously
declared within the current scope.

table_name

This identifies a database table (or view) that must be accessible when the
declaration is elaborated.

The %ROWTYR#tribute lets you declare records structured like a row of data in a
database table.

11-136 PL/SQL User’'s Guide and Reference

%ROWTYPE Attribute

Examples

Related Topics

To reference a field, you use dot notation. For example, you might reference the
deptno field as follows:

IFemp_recdeptno=20 THEN ...

You can assign the value of an expression to a specific field, as the following
example shows:

emp_rec.sal :=average * 1.15;

There are two ways to assign values to all fields in a record at once. First, PL/SQL
allows aggregate assignment between entire records if their declarations refer to the
same table or cursor.

Second, you can assign a list of column values to a record by using the SELECTor
FETCHstatement. The column names must appear in the order in which they were
defined by the CREATE TABLBr CREATE VIEV$tatement. Select-items fetched
from a cursor associated with %ROWTYRBust have simple names or, if they are
expressions, must have aliases.

In the example below, you use %ROWTYR#& declare two records. The first record
stores a row selected from the emptable. The second record stores a row fetched
from the c1 cursor.

DECLARE
emp_rec empY%ROWTYPE;
CURSOR c1 IS SELECT deptno, dname, loc FROM dept;
dept_rec c1%ROWTYPE;

In the next example, you select a row from the emptable into a %ROWTYRcord:

DECLARE
emp_rec emp%ROWTYPE;

BEGIN
SELECT *INTO emp_rec FROM emp WHERE empno =my_empno;
IF (emp_rec.deptno =20) AND (emp_rec.sal >2000) THEN

ENDIF;
END;

Constants and Variables, Cursors, Cursor Variables, FETCH Statement

Language Elements 11-137

SAVEPOINT Statement

SAVEPOINT Statement

Syntax

The SAVEPOINTstatement names and marks the current point in the processing of
a transaction. With the ROLLBACK TGtatement, savepoints let you undo parts of a
transaction instead of the whole transaction. For more information, see “Processing
Transactions” on page 5-44.

savepoi nt_statement

—>| SAVEPOINT |—>Csavepoint_name>—>®

Keyword and Parameter Description

Usage Notes

Related Topics

savepoint_name

This is an undeclared identifier, which marks the current point in the processing of
a transaction.

When you roll back to a savepoint, any savepoints marked after that savepoint are
erased. However, the savepoint to which you roll back is not erased. A simple
rollback or commit erases all savepoints. Savepoint names can be reused within a
transaction. This moves the savepoint from its old position to the current point in
the transaction.

If you mark a savepoint within a recursive subprogram, new instances of the
SAVEPOINTstatement are executed at each level in the recursive descent. However,
you can only roll back to the most recently marked savepoint.

An implicit savepoint is marked before executing an INSERT, UPDATEor DELETE
statement. If the statement fails, a rollback to the implicit savepoint is done.
Normally, just the failed SQL statement is rolled back, not the whole transaction.
However, if the statement raises an unhandled exception, the host environment
determines what is rolled back.

COMMIT Statement, ROLLBACK Statement

11-138 PL/SQL User’'s Guide and Reference

SELECT INTO Statement

SELECT INTO Statement

Syntax

The SELECT INTOstatement retrieves data from one or more database tables, then
assigns the selected values to variables or fields. For a full description of the
SELECTstatement, see Oracle8 SQL Reference.

select_into_statement

DISTINCT

-
ALL

' variable_name '
l record_name ‘

—>| SELECT

select_item

GanDle

table_name

AS
‘!l

schema_name ‘

 column_name -

Language Elements 11-139

SELECT INTO Statement

Keyword and Parameter Description

select_item

This is a value returned by the SELECTstatement, then assigned to the
corresponding variable or field in the INTO clause.

variable_name[, variable_name]...

This identifies a list of previously declared scalar variables into which

select _item values are fetched. For each select item value returned by the
guery, there must be a corresponding, type-compatible variable in the list.

record_name

This identifies a user-defined or %ROWTYREcord into which rows of values are
fetched. For each select jitem value returned by the query, there must be a
corresponding, type-compatible field in the record.

table_reference

This identifies a table or view that must be accessible when you execute the
SELECTstatement, and for which you must have SELECTprivileges. For the
syntax of table_reference , see “DELETE Statement” on page 11-49.

THE

The operand of THEIs a subquery that returns a single column value to the SELECT
statement. The column value must be a nested table. Operator THEinforms Oracle
that the value is a nested table, not a scalar value.

subquery
This is query that provides a value or set of values to the SELECTstatement. Its
syntax is like that of select_into_statement without the INTO clause. See

“SELECT INTO Statement” on page 11-139.

alias
This is another (usually short) name for the referenced column, table, or view.

rest_of statement
This is anything that can legally follow the FROMlause in a SELECTstatement.

11-140 PL/SQL User’'s Guide and Reference

SELECT INTO Statement

Usage Notes

Example

Related Topics

The implicit SQLcursor and the cursor attributes %NOTFOUNBFOUND
%ROWCOUMMNd %ISOPENet you access useful information about the execution of
a SELECT INTOstatement.

When you use a SELECT INTO statement to assign values to variables, it should
return only one row. If it returns more than one row, you get the following results:

« PL/SQL raises the predefined exception TOO_MANY_ROWS
« SQLCODEHEeturns -1422 (Oracle error code ORA-01422)

« SQLERRMeturns the Oracle error message single-row query returns more than one
row

« SQL%NOTFOUNIelds FALSE

« SQL%FOUNf{delds TRUE

« SQL%ROWCOUN@Ids 1

If no rows are returned, you get these results:

« PL/SQL raises the predefined exception NO_DATA_FOUNDnNless the SELECT
statement called a SQL group function such as AVGor SUM(SQL group
functions always return a value or a null. So, a SELECT INTOstatement that
calls a group function never raises NO_DATA_FOUND

« SQLCODEHEeturns +100 (Oracle error code ORA-01403)

« SQLERRMeturns the Oracle error message no data found
« SQL%NOTFOUNI/elds TRUE

« SQL%FOUNf{delds FALSE

« SQL%ROWCOUN#Ids 0

The following SELECTstatement returns an employee’s name, job title, and salary
from the empdatabase table:

SELECT ename, job, sal INTO my_ename, my_job, my_sal FROM emp
WHERE empno =my_empno;

Assignment Statement, FETCH Statement, %ROWTYPE Attribute

Language Elements 11-141

SET TRANSACTION Statement

SET TRANSACTION Statement

The SET TRANSACTIONtatement begins a read-only or read-write transaction,
establishes an isolation level, or assigns the current transaction to a specified
rollback segment. Read-only transactions are useful for running multiple queries
against one or more tables while other users update the same tables. For more
information, see “Using SET TRANSACTION” on page 5-50.

Syntax

set_transaction_statement

READ ONLY

READ WRITE

ISOLATION LEVEL

USE ROLLBACK SEGMENT |—>(ro||back_segment_name>/

—)| SET TRANSACTION

SERIALIZABLE

READ COMMITTED

Keyword and Parameter Description

READ ONLY

This clause establishes the current transaction as read-only. If a transaction is set to
READ ONLMXubsequent queries see only changes committed before the transaction
began. The use of READ ONLYoes not affect other users or transactions.

READ WRITE

This clause establishes the current transaction as read-write. The use of READ
WRITEdoes not affect other users or transactions. If the transaction executes a data
manipulation statement, Oracle assigns the transaction to a rollback segment.

ISOLATION LEVEL

This clause specifies how transactions that modify the database are handled. When
you specify SERIALIZABLE, if a serializable transaction tries to execute a SQL data
manipulation statement that modifies any table already modified by an
uncommitted transaction, the statement fails.

11-142 PL/SQL User’'s Guide and Reference

SET TRANSACTION Statement

To enable SERIALIZABLE mode, your DBA must set the Oracle initialization
parameter COMPATIBLEo 7.3.0 or higher.

When you specify READ COMMITTELS a transaction includes SQL data
manipulation statements that require row locks held by another transaction, the
statement waits until the row locks are released.

USE ROLLBACK SEGMENT

This clause assigns the current transaction to the specified rollback segment and
establishes the transaction as read-write. You cannot use this parameter with the
READ ONLYsarameter in the same transaction because read-only transactions do
not generate rollback information.

Usage Notes

The SET TRANSACTIONtatement must be the first SQL statement in your
transaction and can appear only once in the transaction.

Example
In the following example, you establish a read-only transaction:

COMMIT; —end previous transaction
SET TRANSACTION READ ONLY;
SELECT ... FROM emp WHERE ...
SELECT ... FROM dept WHERE ...
SELECT ... FROM emp WHERE ...
COMMIT; —end read-only transaction

Related Topics
COMMIT Statement, ROLLBACK Statement, SAVEPOINT Statement

Language Elements 11-143

SQL Cursor

SQL Cursor
Oracle implicitly opens a cursor to process each SQL statement not associated with
an explicit cursor. PL/SQL lets you refer to the most recent implicit cursor as the
SQLcursor, which has four attributes: %FOUND6ISOPEN%NOTFOUNBNd
%ROWCOUNTey give you information about the execution of data manipulation
statements. For more information, see “Managing Cursors” on page 5-9.

Syntax

sql_cursor

Keyword and Parameter Description

SQL
This is the name of the implicit SQLcursor.

%FOUND

This attribute yields TRUEIf an INSERT, UPDATE or DELETEstatement affected
one or more rows or a SELECT INTOstatement returned one or more rows.
Otherwise, it yields FALSE

%ISOPEN

This attribute always yields FALSEbecause Oracle closes the SQLcursor
automatically after executing its associated SQL statement.

%NOTFOUND

This attribute is the logical opposite of %FOUNDt yields TRUEIf an INSERT,
UPDATE or DELETEstatement affected no rows, or a SELECT INTOstatement
returned no rows. Otherwise, it yields FALSE

11-144 PL/SQL User’'s Guide and Reference

SQL Cursor

Usage Notes

Examples

Related Topics

%ROWCOUNT

This attribute yields the number of rows affected by an INSERT, UPDATE.o or
DELETEstatement, or returned by a SELECT INTOstatement.

You can use cursor attributes in procedural statements but not in SQL statements.
Before Oracle opens the SQLcursor automatically, the implicit cursor attributes
yield NULL

The values of cursor attributes always refer to the most recently executed SQL
statement, wherever that statement appears. It might be in a different scope. So, if
you want to save an attribute value for later use, assign it to a Boolean variable
immediately.

If a SELECT INTOstatement fails to return a row, PL/SQL raises the predefined
exception NO_DATA_FOUN®@hether you check SQL%NOTFOUNMNID the next line or
not.

However, a SELECT INTOstatement that calls a SQL group function never raises
NO_DATA FOUNDhat is because group functions such as AVGand SUMalways
return a value or a null. In such cases, SQL%NOTFOUNI/ilds FALSE

In the following example, %NOTFOUNBused to insert a row if an update affects
Nno rows:

UPDATE emp SET sal =sal * 1.05 WHERE empno =my_empno;
IF SQLY%NOTFOUND THEN

INSERT INTO emp VALUES (my_empno, my_ename, ...);
ENDIF;

In the next example, you use %ROWCOUMIraise an exception if more than 100
rows are deleted:

DELETE FROM parts WHERE status ='OBSOLETE,

IF SQL%ROWCOUNT > 100 THEN — more than 100 rows were deleted
RAISE large_deletion;

END IF;

Cursors, Cursor Attributes

Language Elements 11-145

SQLCODE Function

SQLCODE Function

Syntax

Usage Notes

Related Topics

The function SQLCODEeturns the number code associated with the most recently
raised exception. SQLCODHs meaningful only in an exception handler. Outside a
handler, SQLCODHRIways returns zero.

For internal exceptions, SQLCODEeturns the number of the associated Oracle
error. The number that SQLCODEeturns is negative unless the Oracle error is no
data found, in which case SQLCODEeturns +100.

For user-defined exceptions, SQLCODEeturns +1 unless you used the pragma
EXCEPTION_INIT to associate the exception with an Oracle error number, in
which case SQLCODEeturns that error number. For more information, see “Using
SQLCODE and SQLERRM” on page 6-18.

sglcode_function

You cannot use SQLCODAHlirectly in a SQL statement. First, you must assign the
value of SQLCODHo a local variable. An example follows:

DECLARE
my_sgicode NUMBER;
BEGIN

EXCEPTION
WHEN OTHERS THEN
my_sglcode := SQLCODE;
INSERT INTO errors VALUES (my_sgjcode, ...);
END;

SQLCODHs especially useful in the OTHERS®xception handler because it lets you
identify which internal exception was raised.

Exceptions, SQLERRM Function

11-146 PL/SQL User’'s Guide and Reference

SQLERRM Function

SQLERRM Function

Syntax

The function SQLERRNMeturns the error message associated with its error-number
argument or, if the argument is omitted, with the current value of SQLCODE
SQLERRMvith no argument is meaningful only in an exception handler. Outside a
handler, SQLERRMvith no argument always returns the message normal, successful
completion.

For internal exceptions, SQLERRNMeturns the message associated with the Oracle
error that occurred. The message begins with the Oracle error code.

For user-defined exceptions, SQLERRMeturns the message user-defined exception
unless you used the pragma EXCEPTION_INIT to associate the exception with an
Oracle error number, in which case SQLERRMeturns the corresponding error
message. For more information, see “Using SQLCODE and SQLERRM” on

page 6-18.

sglerrm_function

® ®
—)| SQLERRM

Keyword and Parameter Description

Usage Notes

error_number

This must be a valid Oracle error number. For a list of Oracle errors, see Oracle8
Error Messages.

You can pass an error number to SQLERRMn which case SQLERRMeturns the
message associated with that error number. The error number passed to SQLERRM
should be negative. Passing a zero to SQLERRMIways returns the following
message:

ORA-0000: normal, successful completion

Language Elements 11-147

SQLERRM Function

Related Topics

Passing a positive number to SQLERRMIways returns the message
User-Defined Exception

unless you pass +100, in which case SQLERRMeturns the following message:
ORA-01403: no data found
You cannot use SQLERRMlirectly in a SQL statement. First, you must assign the
value of SQLERRNMbD a local variable. An example follows:
DECLARE
my_sglerm CHAR(150);
BEGIN
EXCEPTION
WHEN OTHERS THEN
my_sqglerm := SUBSTR(SQLERRM, 1, 150);

INSERT INTO errors VALUES (my_sglemm, ...);
END;

The string function SUBSTRensures that a VALUE_ERRORXxception (for
truncation) is not raised when you assign the value of SQLERRMb my_sglerrm .
SQLERRNE especially useful in the OTHERS®xception handler because it lets you
identify which internal exception was raised.

Exceptions, SQLCODE Function

11-148 PL/SQL User’'s Guide and Reference

%TYPE Attribute

%TYPE Attribute

Syntax

The %TYPEttribute provides the datatype of a field, record, nested table, database
column, or variable. You can use the %TYPEattribute as a datatype specifier when
declaring constants, variables, fields, and parameters. For more information, see
“Using %TYPE” on page 2-30.

type_attribute

A_ collection_name)
cursor_variable_name

object_name

= O ®
—(record_name)

—Cdb_table_name)»@{column_name)—
(variable_name)

!

Keyword and Parameter Description

collection_name

This identifies a nested table, index-by table, or varray previously declared within
the current scope.

cursor_variable_name

This identifies a PL/SQL cursor variable previously declared within the current
scope. Only the value of another cursor variable can be assigned to a cursor
variable.

object_name

This identifies an object (instance of an object type) previously declared within the
current scope.

Language Elements 11-149

%TYPE Attribute

Usage Notes

Related Topics

record_name

This identifies a user-defined or %ROWTYREcord previously declared within the
current scope.

record_name.field_name

This identifies a field in a user-defined or %ROWTYREcord previously declared
within the current scope.

table_name.column_name

This refers to a table and column that must be accessible when the declaration is
elaborated.

variable_name
This is the name of a variable previously declared in the same scope.

The %TYPHEattribute is particularly useful when declaring variables, fields, and
parameters that refer to database columns. However, the NOT NULLcolumn
constraint does not apply to items declared using % TYPE

Constants and Variables, %ROWTYPE Attribute

11-150 PL/SQL User’'s Guide and Reference

UPDATE Statement

UPDATE Statement

The UPDATEstatement changes the values of specified columns in one or more

rows in a table or view. For a full description of the UPDATEstatement, see Oracle8
SQL Reference.

Syntax

update_statement

table_reference

row_expression

Keyword and Parameter Description

table_reference

This identifies a table or view that must be accessible when you execute the
UPDATEstatement, and for which you must have UPDATBprivileges. For the
syntax of table_reference , see “DELETE Statement” on page 11-49.

Language Elements 11-151

UPDATE Statement

THE

The operand of THEIs a subquery that returns a single column value to the UPDATE
statement. The column value must be a nested table. Operator THEinforms Oracle
that the value is a nested table, not a scalar value.

subqueryl
This is a select statement that provides a value or set of values to the UPDATE
statement. Its syntax is like that of select_into_statement without the INTO

clause. See “SELECT INTO Statement” on page 11-139.

alias

This is another (usually short) name for the referenced table or view and is
typically used in the WHEREIlause.

column_name

This is the name of the column (or one of the columns) to be updated. It must be
the name of a column in the referenced table or view. A column name cannot be
repeated in the column_name list. Column names need not appear in the UPDATE
statement in the same order that they appear in the table or view.

sgl_expression
This is any valid SQL expression. For more information, see Oracle8 SQL Reference.

SET column_name = sqgl_expression

This clause assigns the value of sql_expression to the column identified by
column_name . If sql_expression contains references to columns in the table
being updated, the references are resolved in the context of the current row. The old
column values are used on the right side of the equal sign.

In the following example, you increase every employee’s salary by 10%. The
original value of the sal/ column is multiplied by 1.1, then the result is assigned to
the sal column.

UPDATE emp SET sal=sal*1.1;

SET column_name = (subquery?2)

This clause assigns the value retrieved from the database by subquery? to the
column identified by column_name . The subquery must return exactly one row
and one column.

11-152 PL/SQL User’'s Guide and Reference

UPDATE Statement

Usage Notes

SET (column_name, column_name, ...) = (subquery3)

This clause assigns the values retrieved from the database by subquery3 to the
columns in the column_name list. The subquery must return exactly one row that
includes all the columns listed.

The column values returned by the subquery are assigned to the columns in the
column list in order. Thus, the first value is assigned to the first column in the list,
the second value is assigned to the second column in the list, and so on.

In the following correlated query, the column jitem_id is assigned the value stored
in item_num , and the column price is assigned the value stored in item_price
UPDATE inventory inv —alias
SET (item_id, price) = (SELECT item_num, item_price FROM item_table
WHERE item_name =inv.item_name);

WHERE search_condition

This clause chooses which rows to update in the database table. Only rows that
meet the search condition are updated. If you omit the search condition, all rows in
the table are updated.

WHERE CURRENT OF cursor_name

This clause refers to the latest row processed by the FETCHstatement associated
with the cursor identified by cursor_name . The cursor must be FOR UPDATENd
must be open and positioned on a row.

If the cursor is not open, the CURRENT O€&lause causes an error. If the cursor is
open, but no rows have been fetched or the last fetch returned no rows, PL/SQL
raises the predefined exception NO_DATA FOUND

RETURNING

This clause lets you return values from the updated row, thereby eliminating the
need to SELECTthe row afterward. You can retrieve the column values into
variables and/or host variables.

You can use the UPDATE WHERE CURRENTs@Eement after a fetch from an open
cursor (this includes implicit fetches executed in a cursor FORIloop), provided the
associated query is FOR UPDATEThis statement updates the current row; that is,
the one just fetched.

Language Elements 11-153

UPDATE Statement

The implicit SQLcursor and the cursor attributes %NOTFOUNBFOUND
%ROWCOUNMN %ISOPENet you access useful information about the execution of
an UPDATEstatement.

An UPDATEstatement might update one or more rows or no rows. If one or more
rows are updated, you get the following results:

. SQL%NOTFOUN/elds FALSE

« SQL%FOUNields TRUE

« SQL%ROWCOUWN#Ids the number of rows updated
If no rows are updated, you get these results:

« SQL%NOTFOUNfelds TRUE

« SQL%FOUNZelds FALSE

= SQL%ROWCOUW@Ids 0

Examples

In the following example, a 10% raise is given to all analysts and clerks in
department 20:

UPDATE emp SET sal=sal*1.10

WHERE (job ="ANALYST OR job ='CLERK’) AND DEPTNO =20;
In the next example, an employee named Ford is promoted to the position of
Analyst and her salary is raised by 15%:
UPDATE emp SET job ='ANALYST, sal = sal * 1.15 WHERE ename ='FORD;
In the final example, you return values from an updated row and store them in
variables:

UPDATE emp SET sal =sal + 500
WHERE ename ='MILLER’ RETURNING sal, ename INTO my_sal, my_ename;

Related Topics
DELETE Statement, FETCH Statement

11-154 PL/SQL User’'s Guide and Reference

A

New Features

This appendix surveys the new features in release 8.0 of PL/SQL. Designed to meet
your practical needs, these features will help you build effective, reliable
applications.

Major Topics
External Procedures
Object Types
Collections

LOB Types

NLS Types

New Features A-1

External Procedures

External Procedures

To support special-purpose processing and promote reuse of code, PL/SQL
provides an interface for calling routines written in other languages. This makes
the strengths and capabilities of those languages available to you.

An external procedure is a third-generation-language routine stored in a dynamic
link library (DLL), registered with PL/SQL, and called by you to do
special-purpose processing. At run time, PL/SQL loads the library dynamically,
then calls the routine as if it were a PL/SQL subprogram. Typically, external
procedures are used to interface with embedded systems, solve scientific and
engineering problems, analyze data, or control real-time devices and processes.

For more information, see Chapter 10.

Object Types

Object-oriented programming is based on the concept of interacting objects. In,
PL/SQL, objects are instances of object types. When you define an object type using
the CREATE TYPEtatement (in SQL*Plus for example), you create an abstract
template for some real-world object.

An object type encapsulates a data structure along with the functions and
procedures needed to manipulate the data. At run time, when the data structure is
filled with values, you have created an object. You can create as many objects as
you need. Each object stores different real-world values.

Object types, which map directly into classes defined in object-oriented languages
such as C++, reduce complexity by breaking down a large system into logical
entities. This allows you to create software components that are modular,
maintainable, and reusable.

For more information, see Chapter 9.

Collections

The collection types TABLEand VARRAYallow you to declare nested tables and
variable-size arrays (varrays for short). A collection is an ordered group of
elements, all of the same type. Each element has a unique subscript that determines
its position in the collection.

A-2 PL/SQL User's Guide and Reference

NLS Types

LOB Types

NLS Types

Collections work like the arrays found in most third-generation programming
languages. They can store instances of an object type and, conversely, can be
attributes of an object type. Also, collections can be passed as parameters. So, you
can use them to move columns of data into and out of database tables or between
client-side applications and stored subprograms.

For more information, see Chapter 4.

The LOB(large object) datatypes BFILE , BLOB CLOB and NCLOBlet you store
blocks of unstructured data up to four gigabytes in size. And, they allow efficient,
random, piece-wise access to the data.

LOBtypes store values, called locators, that specify the location of large objects
stored out-of-line or in an external file. PL/SQL operates on LOBs through the
locators. To manipulate LOBs, you use the supplied package DBMS_LOBwhich is
discussed in Oracle8 Application Developer’s Guide.

For more information, see “Datatypes” on page 2-10.

Oracle8 offers extended NLS (National Language Support) including national
character sets and the datatypes NCHARind NVARCHAR which store NLS data.
With NLS, number and date formats adapt automatically to the language
conventions specified for a user session. So, users around the world can interact
with Oracle in their native languages. NLS is discussed in Oracle8 Reference.

Besides the database character set, which is used for identifiers and source code,
PL/SQL now supports a second character set called the national character set, which
is used for NLS data. The PL/SQL datatypes NCHARind NVARCHARZ2llow you to
store character strings formed from the national character set.

For more information, see “Datatypes” on page 2-10.

New Features A-3

NLS Types

A-4 PL/SQL User's Guide and Reference

B

Sample Programs

This appendix provides several PL/SQL programs to guide you in writing your
own. The sample programs illustrate several important PL/SQL concepts and
features.

Major Topics

Running the Programs

Sample 1. FOR Loop

Sample 2. Cursors

Sample 3. Scoping

Sample 4. Batch Transaction Processing
Sample 5. Embedded PL/SQL

Sample 6. Calling a Stored Procedure

Sample Programs B-1

Running the Programs

Running the Programs

All the sample programs in this appendix and several others throughout this guide
are available online. So, they are preceded by the following comment:

—avallable online in file '<flename>'
You can find the online files in the PL/SQL demo directory. For the location of the

directory, see the Oracle installation or user’s guide for your system. The following
list shows the names of the files and their locations in this guide:

Filename Location in Guide

exampl on page 1-2

examp?2 on page 1-9

examp3 on page 1-10
examp4 on page 2-33
examp5 on page 5-40
examp6 on page 5-41
examp? on page 5-16
examp8 on page 5-18

exampll on page 11-12
exampl2 on page 11-35
exampl3 on page 11-36
exampl14 on page 11-36
samplel on page B-11
sample2 on page B-12
sample3 on page B-13
sampled on page B-15
sampleb on page B-19
sample6 on page B-23

You run some samples interactively from SQL*Plus, others from Pro*C programs.
You can experiment with the samples from any Oracle account. However, the
Pro*C examples expect you to use the SCOTT/TIGER account.

Before trying the samples, you must create some database tables, then load the
tables with data. You do that by running two SQL*Plus scripts, exampbld and
examplod , supplied with PL/SQL. You can find these scripts in the PL/SQL demo
directory.

B-2 PL/SQL User's Guide and Reference

Running the Programs

Creating the Tables

Below is a listing of the SQL*Plus script exampbld . The CREATEstatements in this
script build the database tables processed by the sample programs. To run the
script, invoke SQL*Plus, then issue the following command:

SQL> START exampbld

exampbld Script

set compatibility V7

/

drop table accounts

/

create table accounts(
account_id number(4) not null,
bal number(11,2))

/

create unigue index accounts_index on accounts (account_id)

/

drop table action

/

create table action(
account_id number(4) not null,
oper_type char(2) notnull,
new_value number(11,2),
status char(4b),
ime_tag date notnull)

/

drop table bins

/

create table bins(
bin_num number(2) not null,
part_num number(4),
amt_in_bin number(4))

/

drop table data_table

/

create table data._table(
exper_num number(2),
nl number(5),
n2 number(5),
n3 number(5))

/

Sample Programs B-3

Running the Programs

drop table emp

/

create table emp(
empno number(4) not null,
ename varchar2(10),
job varchar2(9),
mgr number(4),
hiredate date,
sal number(7,2),
comm number(7,2),
deptno number(2))

/

drop table inventory

/

create table inventory(
prod_id number(5) not null,
product char(15),
quantity number(5))

/

drop table joumal

/

create table journal(
account_id number(4) not null,
action char(45) not null,
amount number(11,2),
date tag date notnull)

/

drop table num1._tab

/

create table num2._tal(
sequence number(3) not null,
num number(4))

/

drop table num2_tab

/

create table num?2_tal(
sequence number(3) not null,
num number(4))

/

drop table purchase_record

/

B-4 PL/SQL User's Guide and Reference

Running the Programs

create table purchase_record(
mesg char(45),
purch_date date)

/

drop table ratio

/

create table ratio(
sample_id number(3) not null,
raio number)

/

drop table result_table

/

create table result_table(
sample_id number(3) not null,

X number,
y number)
/
drop table sum_tab

/

create table sum_tab(
sequence number(3) not null,
sum number(5))

/

drop table temp

/

create table temp(
num_coll number(9,4),
num_col2 number(9,4),
char_col char(55))

create or replace package personnel as
type charArray Typ is table of varchar2(10)

index by binary_integer;

type numAray Typ is table of float

index by binary_integer;
procedure get_employees(
dept_numberin integer,
batch size in integer,
found inoutinteger,
done_fetch out integer,

emp_name out charArayTyp,

jobile out charArayTyp,
salary out numArayTyp);
end personnel;
/

Sample Programs B-5

Running the Programs

create or replace package body personnel as
cursor get_emp (dept_number integer) is
select ename, job, sal from emp
where deptno =dept_number;
procedure get_employees(
dept_numberin integer,
batch size in integer,
found inoutinteger,
done _fetch out integer,
emp_name out charAmrayTyp,
job_tile out charAmayTyp,
salary out numArmayTyp)is
begin
if not get_emp%isopen then
open get_emp(dept_number);
endif,
done_fetch:=0;
found =0;
foriin 1..batch_size loop
fetch get_empinto emp_name(j),
job_titie((), salary(i);
if get_emp%onotfound then
close get_emp;
done_fetch:=1;
ext,
else
found :=found + 1;
endif;
end loop;
end get_employees;
end personnel;
/

B-6 PL/SQL User's Guide and Reference

Running the Programs

Loading the Data

Below is a listing of the SQL*Plus script examplod . The INSERT statements in this
script load (or reload) the database tables processed by the sample programs. To
run the script, invoke SQL*Plus in the same Oracle account from which you ran
exampbld , then issue the following command:

SQL> START examplod

examplod Script

delete from accounts

{nsert into accounts values (1,1000.00)

{nsert into accounts values (2,2000.00)

{nsert into accounts values (3,1500.00)

{nsert into accounts values (4,6500.00)

{nsert into accounts values (5,500.00)

élelete from action

{nsert into action values (3,'u’,599,null,sysdate)
{nsert into action values (6,,20099,null,sysdate)
{nsert into action values (5,'d’,null,null,sysdate)
{nsert into action values (7,'u’,1599,null,sysdate)
{nsert into action values (1,7,399,nullsysdate)
{nsert into action values (9,'d’,null,null,sysdate)
{nsert into action values (10, ,null,null sysdate)
{jelete from bins

{nsert into bins values (1, 5469, 650)

/

Sample Programs B-7

Running the Programs

insertinto bins values (2, 7243, 450)
{nsert into bins values (3, 5469, 120)
{nsert into bins values (4, 5469, 300)
{nsert into bins values (5, 6085, 415)
{nsert into bins values (6, 5469, 280)
{nsert into bins values (7, 8159, 619)
{jelete from data._table
{nsert into data_table values (1, 10, 167, 17)
{nsert into data._table values (1, 16, 223, 35)
{nsert into data._table values (2, 34, 547, 2)
{nsert into data_table values (3, 23, 318, 11)
{nsert into data._table values (1, 17, 266, 15)
{nsert into data._table values (1, 20, 117, 9)
élelete fromemp
{nsert into emp values
(7369,'SMITH'CLERK'’,7902,TO_DATE(12-17-80", MM-DD-YY),800,NULL,20)
{nsert into emp values
(7499,ALLEN''SALESMAN', 7698, TO_DATE(02-20-81', MM-DD-YY’),1600,300,30)
{nsert into emp values
(7521, WARD',SALESMAN', 7698 TO_DATE(02-22-81"MM-DD-YY"),1250,500,30)
{nsert into emp values
(7566, JONES, MANAGER',7839,TO_DATE(04-02-81', MM-DD-YY),2975,NULL,20)
{nsert into emp values
(7654, MARTIN',SALESMAN',7698,TO_DATE(09-28-81'MM-DD-YY’),1250,1400,30)
/

B-8 PL/SQL User's Guide and Reference

Running the Programs

insertinto emp values
(7698, BLAKE ' MANAGER',7839,TO_DATE(05-1-81',MM-DD-YY"),2850,NULL,30)
/
insertinto emp values
(7782,CLARKMANAGER!,7839,TO_DATE(06-9-81"MM-DD-YY),2450,NULL,10)
/
insertinto emp values (7788,'SCOTT, ANALYST',7566,SYSDATE-85,3000,NULL,20)
/
insertinto emp values
(7839, KING’,PRESIDENT ,NULL, TO_DATE(11-17-81')MM-DD-YY’),5000,NULL,10)
/
insertinto emp values
(7844, TURNER',SALESMAN',7698,TO_DATE(09-8-81',MM-DD-YY"),1500,0,30)
/
insertinto emp values (7876, ADAMS''CLERK’,7788,SYSDATE-51,1100,NULL,20)
/
insertinto emp values
(7900,JAMES',CLERK,7698,TO_DATE('12-3-81',MM-DD-YY"),950,NULL,30)
/
insertinto emp values
(7902,FORD',ANALYST,7566,TO_DATE('12-3-81"MM-DD-YY’),3000,NULL,20)
/
insertinto emp values
(7934, MILLER',CLERK,7782,TO_DATE(01-23-82MM-DD-YY),1300,NULL,10)
/
delete from inventory
/
insertinto inventory values (TENNIS RACKET, 3)
/
insertinto inventory values (GOLF CLUB', 4)
/
insertinto inventory values (SOCCER BALL’, 2)
/
delete from joumal
/
delete from num1_tab
/
insertinto num2_tab values (1, 5)
/
insertinto num2_tab values (2, 7)
/
insertinto num2_tab values (3, 4)

Sample Programs B-9

Running the Programs

{nsert into numX_tab values (4, 9)

{jelete from num2_tab

{nsert into num2_tab values (1, 15)

{nsert into num2_tab values (2, 19)

{nsert into num2_tab values (3, 27)

/delete from purchase_record

ijelete from ratio

{jelete from result_table

{nsert into result_table values (130, 70, 87)
{nsert into result_table values (131, 77, 194)
{nsert into result_table values (132, 73, 0)
{nsert into result_table values (133, 81, 98)
ijelete fromsum_tab

{jelete from temp

/commit

B-10 PL/SQL User's Guide and Reference

Sample 1. FOR Loop

Sample 1. FOR Loop

The following example uses a simple FORIloop to insert ten rows into a database
table. The values of a loop index, counter variable, and either of two character
strings are inserted. Which string is inserted depends on the value of the loop index.

Input Table

PL/SQL Block

Output Table

Not applicable.

—avallable online in file 'samplel’
DECLARE
x NUMBER :=100;
BEGIN
FORIiIN 1.10 LOOP
IFMOD(,2)=0THEN -iiseven
INSERT INTO temp VALUES (j, X, 'iis even’);
ELSE
INSERT INTO temp VALUES (i, x, 'iis odd);
ENDIF;
X:=x+100;
END LOOP;
COMMIT;
END;

SQL> SELECT * FROM temp ORDER BY coll;

COL1 COL2 MESSAGE
100 iisodd
200 iiseven
300 iisodd
400 iiseven
iisodd
600 iiseven
700 iisodd
800 iiseven
900 iisodd
10 1000 iiseven

Iy

O©CoOoO~NOOUDWN

10 records selected.

Sample Programs B-11

Sample 2. Cursors

Sample 2. Cursors

The following example uses a cursor to select the five highest paid employees from
the emptable.

Input Table
SQL> SELECT ename, empno, sal FROM emp ORDER BY sal DESC;
ENAME EMPNO SAL
KING 7839 5000
SCOTT 7788 3000
FORD 7902 3000
JONES 7566 2975
BLAKE 7698 2850
CLARK 7782 2450
ALLEN 7499 1600
TURNER 7844 1500
MILLER 7934 1300
WARD 7521 1250
MARTIN 7654 1250
ADAMS 7876 1100
JAMES 7900 950
SMITH 7369 800
14 records selected.
PL/SQL Block
— available online in file 'sample2’
DECLARE
CURSORCclis
SELECT ename, empno, sal FROM emp
ORDER BY sal DESC; - startwith highest paid employee
my_ename CHAR(10);
my_empno NUMBER(4);
my_sal NUMBER(7,2);
BEGIN
OPENCc1;
FORiIN1.5LOOP
FETCH c1INTO my_ename, my_empno, my_sal;
EXIT WHEN c1%NOTFOUND; /*in case the number requested */
Fismorethanthetotal ¥/
F number of employees kil
B-12 PL/SQL User's Guide and Reference

Sample 3. Scoping

INSERT INTO temp VALUES (my_sal, my_empno, my_ename);
COMMIT;
END LOOP;
CLOSEcc1;
END;

Output Table
SQL> SELECT * FROM temp ORDER BY coll DESC;

COL1 COL2 MESSAGE
5000 7839 KING

3000 7902 FORD
3000 7788 SCOTT
2975 7566 JONES
2850 7698 BLAKE

Sample 3. Scoping

The following example illustrates block structure and scope rules. An outer block
declares two variables named x and counter and loops four times. Inside this
loop is a sub-block that also declares a variable named x. The values inserted into
the temp table show that the two x ’s are indeed different.

Input Table
Not applicable.

PL/SQL Block

—available online in file 'sample3’
DECLARE
X NUMBER :=0;
counter NUMBER =0;
BEGIN
FORIiIN1..4LOOP
X =X+ 1000;
counter ;= counter +1;
INSERT INTO temp VALUES (X, counter, 'outer loop));
f* start an inner block */
DECLARE
x NUMBER :=0; —thisis a local version of x

Sample Programs B-13

Sample 3. Scoping

BEGIN
FORIIN 1.4 LOOP
X=X+ 1; —this increments the local x
counter := counter + 1;
INSERT INTO temp VALUES (X, counter, ‘inner loop’);
END LOORP;
END;
END LOOP;
COMMIT;
END;

Output Table
SQL> SELECT * FROM temp ORDER BY col2;

COL1 COL2 MESSAGE
1000 1 OUTERIoop
2 innerloop
3 innerloop
4 innerloop
5 innerloop
6 OUTER loop
7 innerloop
8 innerloop
9 innerloop
10 innerloop
11 OUTER loop
12 innerloop
13 innerloop
14 innerloop
15 innerloop
16 OUTER loop
17 innerloop
18 innerloop
19 innerloop
20 innerloop

N
ththwNHgbwl\)l—‘gwal—‘

20 records selected.

B-14 PL/SQL User’s Guide and Reference

Sample 4. Batch Transaction Processing

Sample 4. Batch Transaction Processing

Input Tables

In the next example the accounts table is modified according to instructions
stored in the action table. Each row in the action table contains an account
number, an action to be taken (I, U, or D for insert, update, or delete), an amount by
which to update the account, and a time tag used to sequence the transactions.

On an insert, if the account already exists, an update is done instead. On an update,
if the account does not exist, it is created by an insert. On a delete, if the row does
not exist, no action is taken.

SQL> SELECT * FROM accounts ORDER BY account id;

ACCOUNT ID BAL
1000
2000
1500
6500
500

abwnN R

SQL> SELECT * FROM action ORDER BY time_tag;

ACCOUNT_ID O NEW_VALUE STATUS TIME_TAG
3u 599 18-NOV-88
6i 20099 18-NOV-88
5d 18-NOV-88
7u 1599 18-NOV-88
1i 399 18-NOV-88
9d 18-NOV-88
10 x 18-NOV-88
7 records selected.

Sample Programs B-15

Sample 4. Batch Transaction Processing

PL/SQL Block

—avallable online in file 'sample4’
DECLARE
CURSORCc1IS
SELECT account _id, oper_type, new_value FROM action
ORDER BY time_tag
FOR UPDATE OF status;
BEGIN
FOR acctIN c1 LOOP - process each row one atatime

acctoper_type :=upper(acctoper_type);

I~ */
f*Process an UPDATE. Ifthe accountto */
* be updated doesn't exist, create a new */
Fxaccount. *
I~ *
IF acctoper_type="U THEN
UPDATE accounts SET bal =acctnew_value
WHERE account_id =acctaccount id;

IF SQLY%NOTFOUND THEN - account didn't exist. Create it
INSERT INTO accounts
VALUES (acctaccount_id, acctnew_value);
UPDATE action SET status =
'Update: ID not found. Value inserted.’
WHERE CURRENT OF c1;
ELSE
UPDATE action SET status ='Update: Success.’
WHERE CURRENT OFc1;
ENDIF;

P *
F*Process an INSERT. If the account already */
[exists, do an update of the account ¥/

f*instead. *

e *

ELSIF acctoper_type =" THEN
BEGIN

INSERT INTO accounts
VALUES (acctaccount_id, acctnew_value);
UPDATE action set status = 'Insert: Success.’
WHERE CURRENT OF c1;

B-16 PL/SQL User's Guide and Reference

Sample 4. Batch Transaction Processing

EXCEPTION
WHEN DUP_VAL ON_INDEX THEN - account already exists

UPDATE accounts SET bal = acctnew_value
WHERE account_id =acctaccount id;

UPDATE action SET status =
Insert: Acct exists. Updated instead.’
WHERE CURRENT OFcl;

END;

lig *
FProcess a DELETE. Ifthe account doesn't */
Fexist, setthe status field to say that */
*the account wasn't found. *
i *
ELSIF acctoper_type="D' THEN

DELETE FROM accounts

WHERE account_id =acctaccount_id;

IF SQL%NOTFOUND THEN - account didn't exist.
UPDATE action SET status = 'Delete: ID not found.’
WHERE CURRENT OF ¢,
ELSE
UPDATE action SET status = 'Delete: Success.’
WHERE CURRENT OF ¢,
ENDIF;

F ¥
FThe requested operationisinvalid. ~ */
lig A
ELSE - oper_typeisinvalid
UPDATE action SET status =
Invalid operation. No action taken.’
WHERE CURRENT OF c1;

ENDIF;
END LOOP;

COMMIT;
END;

Sample Programs B-17

Sample 4. Batch Transaction Processing

Output Tables
SQL> SELECT * FROM accounts ORDER BY account id;

ACCOUNT_ID BAL
399

2000
599

6500

20099

1599

~NOoO b~ WNBE

6 records selected.

SQL> SELECT * FROM action ORDER BY time tag;

ACCOUNT_ID O NEW_VALUE STATUS TIME_TAG
3u 599 Update: Success. 18-NOV-88
6 i 20099 Insert Success. 18-NOV-88
5d Delete: Success. 18-NOV-88
7 u 1599 Update: ID notfound. 18-NOV-88
Value inserted.

1i 399Insert Acctexists. 18-NOV-88
Updated instead.

9d Delete: ID notfound. 18-NOV-88

10 x Invalid operation. 18-NOV-88
No action taken.

7 records selected.

B-18 PL/SQL User's Guide and Reference

Sample 5. Embedded PL/SQL

Sample 5. Embedded PL/SQL

The following example shows how you can embed PL/SQL in a high-level host
language such as C and demonstrates how a banking debit transaction might be

Input Table

done.

SQL> SELECT * FROM accounts ORDER BY account id;

ACCOUNT ID BAL
1000
2000
1500
6500
500

abswnN R

PL/SQL Block in a C Program

* available online in file 'sample5' */
#include <stdio.h>
char bufi20];

EXEC SQL BEGIN DECLARE SECTION,;
int acct;
double debit,
double new_bal;
VARCHAR status[65];
VARCHAR uid[20];
VARCHAR pwd[20];
EXEC SQL END DECLARE SECTION,;

EXEC SQL INCLUDE SQLCA,;
main()
extem double atof();

strepy (uid.arr,"scott”;
uid len=strien(uid.ar);
strepy (pwd.ar, tiger”);
pwd.len=strien(pwd.ar);

Sample Programs B-19

Sample 5. Embedded PL/SQL

printfC\n\ntEmbedded PL/SQL Debit Transaction Demo\n\n”);
printf(Trying to connect...”);
EXEC SQL WHENEVER SQLERROR GOTO enmprint;
EXEC SQL CONNECT :uid IDENTIFIED BY :pwd;
printf(’ connected.\n";
for(;) / Loopinfinitely */
{
printf(\n** Debit which account number? (-1 to end) ™);
gets(buf);
acct = atoi(buf);
if (acct =-1) /Need to disconnect from Oracle */
{ Fand exitloop if account is -1 */
EXEC SQL COMMIT RELEASE;
exit(O);
}

printf(’ What is the debit amount? "),
gets(buf);
debit = atof{buf);

I el

/*— Begin the PLISQL block — */
I el

EXEC SQL EXECUTE

DECLARE

insufficient_funds EXCEPTION,;

old_bal NUMBER;

min_bal NUMBER :=500;

BEGIN

SELECT bal INTO old_bal FROM accounts
WHERE account_id =:acct;
— Ifthe account doesn't exist, the NO_DATA FOUND
— exception will be automatically raised.

‘new_bal :=old_bal - :debit;

IF :new_bal >=min_bal THEN
UPDATE accounts SET bal =:new_bal

WHERE account_id =:acct;
INSERT INTO joumal
VALUES (:acct, 'Debit, :debit, SYSDATE);

‘status := Transaction completed.’;

ELSE
RAISE insufficient_funds;

ENDIF;

COMMIT;

B-20 PL/SQL User's Guide and Reference

Sample 5. Embedded PL/SQL

EXCEPTION

WHEN NO_DATA FOUND THEN
‘status :='Account not found.’;
new_bal :=-1;

WHEN insufficient_funds THEN
status :="Insufficient funds.’;
‘new_bal :=old_bal;

WHEN OTHERS THEN
ROLLBACK;
status :=Enor.’ || SQLERRM(SQLCODE);
‘new_bal :=-1;

END;

END-EXEC,;

L e

F— End the PL/SQL block —*/
fr——

status.anfstatus.len] =\0’; /# nul-terminate */
Fthesting */
printf(\n\n Status: %s\n", status.arr);
if (new_bal >=0)
printf’ Balance is now: $%.2fn", new_bal);
} /*End of loop */

emprint
EXEC SQL WHENEVER SQLERROR CONTINUE;
printf(\n\n>>>>> Error during execution:\n”);
printf('%es\n”,sqlca.sglemm.sglermmc);
EXEC SQL ROLLBACK RELEASE,;
ext(1);

}

Interactive Session
Embedded PL/SQL Debit Transaction Demo

Trying to connect... connected.

** Debit which account number? (-1 to end) 1
What is the debit amount? 300

Status: Transaction completed.
Balance is now: $700.00

Sample Programs B-21

Sample 5. Embedded PL/SQL

** Debit which account number? (-1 to end) 1
What is the debit amount? 900
Status: Insufficient funds.
Balance is now: $700.00

** Debit which account number? (-1 to end) 2
What is the debit amount? 500

Status: Transaction completed.
Balance is now: $1500.00

** Debit which account number? (-1 to end) 2
What is the debit amount? 100

Status: Transaction completed.
Balance is now: $1400.00

** Debit which account number? (-1 to end) 99
What is the debit amount? 100

Status: Account not found.

** Debit which account number? (-1 to end) -1

Output Tables
SQL> SELECT * FROM accounts ORDER BY account id;

ACCOUNT ID BAL
1 700
2 1400
3 1500
4 6500
5 500

SQL> SELECT * FROM joumal ORDER BY date_tag;

ACCOUNT_ID ACTION AMOUNT DATE_TAG
1 Debit 300 28-NOV-88
2 Debit 500 28-NOV-88
2 Debit 100 28-NOV-88

B-22 PL/SQL User's Guide and Reference

Sample 6. Calling a Stored Procedure

Sample 6. Calling a Stored Procedure

This Pro*C program connects to Oracle, prompts the user for a department number,
then calls procedure get_employees , which is stored in package personnel

The procedure declares three index-by tables as OUTformal parameters, then
fetches a batch of employee data into the index-by tables. The matching actual
parameters are host arrays.

When the procedure finishes, it automatically assigns all row values in the index-by
tables to corresponding elements in the host arrays. The program calls the
procedure repeatedly, displaying each batch of employee data, until no more data
is found.

Input Table
SQL> SELECT ename, empno, sal FROM emp ORDER BY sal DESC;

ENAME EMPNO SAL
KING 7839 5000
SCOTT 7788 3000
FORD 7902 3000
JONES 7566 2975
BLAKE 7698 2850
CLARK 7782 2450
ALLEN 7499 1600
TURNER 7844 1500
MILLER 7934 1300
WARD 7521 1250
MARTIN 7654 1250
ADAMS 7876 1100
JAMES 7900 950
SMITH 7369 800

14 records selected.

Stored Procedure

F available online in file 'sample6’ */
#include <stdio.n>
#include <string.h>

typedef char asciz;

Sample Programs B-23

Sample 6. Calling a Stored Procedure

EXEC SQL BEGIN DECLARE SECTION,;
* Define type for nul-terminated strings. */
EXEC SQL TYPE asciz IS STRING(20);
asciz usemame[20];
asciz password20];
int dept_no; A which department to query*/
char emp_name[10]21];
char job[10]21];
float salary[10];
int done flag;
int amray_size;
int num_ret; #number of rows retumed */
int SQLCODE;

EXEC SQL END DECLARE SECTION,;

EXEC SQL INCLUDE sqica;

intprint_rows(); / produces program output ¥/
intsglerror(); #handles unrecoverable errors */

main()
{ . .
inti;

P Connectto Oracle. */
strepy(usemame, "SCOTTY);
strepy(password, "TIGER?);

EXEC SQL WHENEVER SQLERROR DO sqlerror();

EXEC SQL CONNECT :usemame IDENTIFIED BY :password;
printfC\nConnected to Oracle as user: %s\n\n", usemame);

printf(’Enter department number.);
scanf(*%d", &dept_no);
flush(stdin);

* Print column headers. */

printfCAn\n’);

printf("%-10.10s%-10.10s%6s\n", Employee "Job”, "Salary”);
printf('%6-10.10s%-10.10s%s\n", "——", "—", "—);

B-24 PL/SQL User's Guide and Reference

Sample 6. Calling a Stored Procedure

P Setthe array size. */
aray_size=10;

done flag=0;
num_ret=0;

* Array fetch loop - ends when NOT FOUND becomes true. */
for ;)
{
EXEC SQL EXECUTE
BEGIN personnel.get_employees
(:dept_no, :amay_size, :num_ret, :done_flag,
:emp_name, job, :salary);
END;
END-EXEC,;

print_rows(num_ret);

if (done_flag)
break;
}

* Disconnect from Oracle. */
EXEC SQL COMMIT WORK RELEASE;
exit(0);

}

print_rows(n)
intn;
{

inti;

if(n==0)

{
printf("No rows retrieved \n");
retum;

}

for (i=0;i<n;i++)
printf("%610.10s%610.10s%6.2f\",
emp_namefl, jobfil, salaryfi));

Sample Programs B-25

Sample 6. Calling a Stored Procedure

sglerror()

{
EXEC SQL WHENEVER SQLERROR CONTINUE;

printf’\nOracle error detected.”);
printf\n% .70s \n", sglca.sglemm.sglemmc);
EXEC SQL ROLLBACK WORK RELEASE;
ext(1);

}

Interactive Session
Connected to Oracle as user: SCOTT

Enter department number: 20

Employee Job Salary

SMITH CLERK 800.00
JONES MANAGER 2975.00
SCOTT ANALYST 3000.00
ADAMS CLERK 1100.00
FORD ANALYST 3000.00

B-26 PL/SQL User's Guide and Reference

C

CHAR versus VARCHAR2 Semantics

This appendix explains the semantic differences between the CHARand VARCHAR2
base types. These subtle but important differences come into play when you assign,
compare, insert, update, select, or fetch character values.

Major Topics

Assigning Character Values
Comparing Character Values
Inserting Character Values
Selecting Character Values

CHAR versus VARCHAR?2 Semantics C-1

Assigning Character Values

Assigning Character Values

When you assign a character value to a CHARvariable, if the value is shorter than
the declared length of the variable, PL/SQL blank-pads the value to the declared
length. So, information about trailing blanks is lost. For example, given the

following declaration, the value of nameincludes six trailing blanks, not just one:

name CHAR(10) :='"CHEN"; — note trailing blank
If the character value is longer than the declared length of the CHARvariable,
PL/SQL aborts the assignment and raises the predefined exception VALUE_ERROR

PL/SQL neither truncates the value nor tries to trim trailing blanks. For example,
given the declaration

acronym CHAR(4);

the following assignment raises VALUE_ERROR
acronym :="SPCA"; —note trailing blank

When you assign a character value to a VARCHAR®Xariable, if the value is shorter
than the declared length of the variable, PL/SQL neither blank-pads the value nor
strips trailing blanks. Character values are assigned intact, so no information is lost.
If the character value is longer than the declared length of the VARCHAR®Xariable,
PL/SQL aborts the assignment and raises VALUE_ERRORPL/SQL neither
truncates the value nor tries to trim trailing blanks.

Comparing Character Values

You can use the relational operators to compare character values for equality or
inequality. Comparisons are based on the collating sequence used for the database
character set. One character value is greater than another if it follows it in the
collating sequence. For example, given the declarations

namel VARCHAR2(10) :='COLES;;
name2 VARCHAR2(10) :='COLEMAN;;

the following IF condition is true:
IF namel>name2 THEN ...

C-2 PL/SQL User's Guide and Reference

Comparing Character Values

ANSI/ISO SQL requires that two character values being compared have equal
lengths. So, if both values in a comparison have datatype CHARDblank-padding
semantics are used. That is, before comparing character values of unequal length,
PL/SQL blank-pads the shorter value to the length of the longer value. For
example, given the declarations

namel CHAR(5) :="'BELLO;,

name2 CHAR(10) :="BELLO ’; — note trailing blanks

the following IF condition is true:

IF namel =name2 THEN ...

If either value in a comparison has datatype VARCHARZnon-blank-padding
semantics are used. That is, when comparing character values of unequal length,

PL/SQL makes no adjustments and uses the exact lengths. For example, given the
declarations

namel VARCHAR2(10) :='DOW;

name2 VARCHAR2(10) :='DOW ’; — note trailing blanks
the following IF condition is false:

IF namel =name2 THEN ...

If one value in a comparison has datatype VARCHAR2nNd the other value has
datatype CHARnNon-blank-padding semantics are used. But, remember, when you
assign a character value to a CHARvariable, if the value is shorter than the declared
length of the variable, PL/SQL blank-pads the value to the declared length. So,
given the declarations

namel VARCHAR2(10) :='STAUB';

name2 CHAR(10) :='STAUB’; — PL/SQL blank-pads value

the following IF condition is false because the value of nameZ2 includes five trailing
blanks:

IF namel=name2 THEN ...

All string literals have datatype CHARSo, if both values in a comparison are

literals, blank-padding semantics are used. If one value is a literal, blank-padding
semantics are used only if the other value has datatype CHAR

CHAR versus VARCHAR?2 Semantics C-3

Inserting Character Values

Inserting Character Values

When you insert the value of a PL/SQL character variable into an Oracle database
column, whether the value is blank-padded or not depends on the column type,
not on the variable type.

When you insert a character value into a CHARdatabase column, Oracle does not
strip trailing blanks. If the value is shorter than the defined width of the column,
Oracle blank-pads the value to the defined width. As a result, information about
trailing blanks is lost. If the character value is longer than the defined width of the
column, Oracle aborts the insert and generates an error.

When you insert a character value into a VARCHAR®2latabase column, Oracle does
not strip trailing blanks. If the value is shorter than the defined width of the
column, Oracle does not blank-pad the value. Character values are stored intact, so
no information is lost. If the character value is longer than the defined width of the
column, Oracle aborts the insert and generates an error.

The same rules apply when updating.

When inserting character values, to ensure that no trailing blanks are stored, use
the function RTRIM which trims trailing blanks. An example follows:

DECLARE

my_name VARCHAR2(15);
BEGIN

my_ename ='LEE ’; —note trailing blanks
INSERT INTO emp
VALUES (my_empno, RTRIM(my_ename), ...); —inserts LEE’

Selecting Character Values

When you select a value from an Oracle database column into a PL/SQL character
variable, whether the value is blank-padded or not depends on the variable type,
not on the column type.

When you select a column value into a CHARvariable, if the value is shorter than
the declared length of the variable, PL/SQL blank-pads the value to the declared
length. As a result, information about trailing blanks is lost. If the character value is
longer than the declared length of the variable, PL/SQL aborts the assignment and
raises the exception VALUE_ERROR

C-4 PL/SQL User's Guide and Reference

Selecting Character Values

When you select a column value into a VARCHARZXariable, if the value is shorter
than the declared length of the variable, PL/SQL neither blank-pads the value nor
strips trailing blanks. Character values are stored intact, so no information is lost.

For example, when you select a blank-padded CHARcolumn value into a
VARCHARZ®ariable, the trailing blanks are not stripped. If the character value is
longer than the declared length of the VARCHAR®ariable, PL/SQL aborts the
assignment and raises VALUE_ERROR

The same rules apply when fetching.

CHAR versus VARCHAR?2 Semantics C-5

Selecting Character Values

C-6 PL/SQL User's Guide and Reference

D

PL/SQL Wrapper

This appendix shows you how to run the PL/SQL Wrapper, a stand-alone utility
that converts PL/SQL source code into portable object code. You can use the
Wrapper to deliver PL/SQL applications without exposing your source code.

Major Topics

Advantages of Wrapping
Running the PL/SQL Wrapper

PL/SQL Wrapper D-1

Advantages of Wrapping

Advantages of Wrapping

The PL/SQL Wrapper converts PL/SQL source code into an intermediate form of
object code. By hiding application internals, the Wrapper prevents

« misuse of your application by other developers
« exposure of your algorithms to business competitors

Wrapped code is as portable as source code. The PL/SQL compiler recognizes and
loads wrapped compilation units automatically. Other advantages include

« platform independence—you need not deliver multiple versions of the same
compilation unit

« dynamic loading—users need not shut down and relink to add a new feature
« dynamic binding—external references are resolved at load time

« strict dependency checking—invalidated program units are recompiled
automatically

« normal importing and exporting—the Import/Export utility accepts wrapped
files

Running the PL/SQL Wrapper

To run the PL/SQL Wrapper, enter the WRARommand at your system prompt
using the following syntax:

WRAP INAME=input_file [ONAME=output file]

You can use uppercase or lowercase. Leave no space around the equal signs
because spaces delimit individual arguments.

The WRARommand requires only one argument, which is

INAME=input_file

where input_file is the path and name of the Wrapper input file. You need not

specify the file extension because it defaults to sq/ . For example, the following
commands are equivalent:

WRAP INAME=/mydirmyfile
WRAP INAME=/mydirimyfile.sq

However, you can specify a different file extension as the following example shows:
WRAP INAME=/mydirimyfile.src

D-2 PL/SQL User's Guide and Reference

Running the PL/SQL Wrapper

Optionally, the WRARommand takes a second argument, which is
ONAME=output file

where output_file is the path and name of the Wrapper output file. You need
not specify the output file because its name defaults to that of the input file and its

extension defaults to p/b (PL/SQL binary). For example, the following commands
are equivalent:

WRAP INAME=/mydirmyfile

WRAP INAME=/mydir/myfile.sql ONAME=/mydir/myfile.plb

However, you can use the option ONAMEo specify a different file name and
extension, as the following example shows:

WRAP INAME=/mydirimyfile ONAME=/yourdirfyourfile.obj

Input and Output Files

The input file can contain any combination of SQL statements. However, the
PL/SQL Wrapper wraps only the following CREATEstatements, which define
PL/SQL packages and stand-alone subprograms:

« CREATE [OR REPLACE] PACKAGE

« CREATE [OR REPLACE] PACKAGE BODY
« CREATE [OR REPLACE] FUNCTION

« CREATE [OR REPLACE] PROCEDURE

All other SQL statements are passed intact to the output file. Comment lines
(beginning with REMor --) are deleted unless they appear in a package or
subprogram definition.

A wrapped package or subprogram definition has the form

<header> WRAPPED <body>

where header begins with the reserved word CREATEand ends with the name of
the package or subprogram, and body is an intermediate form of object code that

looks like a random sequence of characters. The keyword WRAPPELREIIs the
PL/SQL compiler that the package or subprogram is wrapped.

PL/SQL Wrapper D-3

Running the PL/SQL Wrapper

The header can contain comments. For example, the Wrapper converts

CREATE OR REPLACE PACKAGE
- Author; J Smith

—Date: 11/15/94

mypkg AS ...

into

CREATE OR REPLACE PACKAGE
- Author: J Smith

—Date: 11/15/94

mypkg WRAPPED 8c724af33 ...

Generally, the output file is much larger than the input file.

Error Detection

If your input file contains syntactic errors, the PL/SQL Wrapper detects and
reports them. However, the Wrapper cannot detect semantic errors because it does
not resolve external references. That is done at compile time. So, only the PL/SQL
compiler can detect semantic errors.

D-4 PL/SQL User's Guide and Reference

E

Name Resolution

This appendix explains how PL/SQL resolves references to names in potentially
ambiguous procedural and SQL statements.

Major Topics

What Is Name Resolution?
Various Forms of References
Name-Resolution Algorithm
Understanding Capture

Avoiding Capture

Accessing Attributes and Methods
Calling Subprograms and Methods

Name Resolution E-1

What Is Name Resolution?

What Is Name Resolution?

During compilation, the PL/SQL compiler associates identifiers such as the name
of a variable with an address (memory location), datatype, or actual value. This
process is called binding. The association lasts through all subsequent executions
until a recompilation occurs, which might cause a rebinding.

Before binding the names, PL/SQL must resolve all references to them in the
compilation unit. This process is called name resolution. PL/SQL considers all

names to be in the same namespace. So, one declaration or definition in an inner
scope can hide another in an outer scope. In the following example, the declaration
of variable client hides the definition of datatype Client because PL/SQL is not
case sensitive except within string literals:

BEGIN
<<block1>>
DECLARE
TYPE Client 1S RECORD (...);
TYPE Customer IS RECORD (...);

BEGIN
DECLARE
client Customer; - hides definition of type Client
—inouter scope
leadl Client; - illegal; Client resolves to the
— variable client
lead2 blockl.Client, — OK; refers to type Client
BEGIN
NULL;
END;
END;
END;

However, you can still refer to datatype Client by qualifying the reference with
block label block1 .

In the CREATE TYPBpersonl statement below, the compiler resolves the second
reference to manager as the name of the attribute you are trying to declare. In the
CREATE TYPIperson2 statement, the compiler resolves the second reference to
manager as the name of the attribute you just declared. In both cases, the reference
to manager generates an error because the compiler expects a type name.

CREATE TYPE manager AS OBJECT (dept NUMBERY);
CREATE TYPE personl AS OBJECT (manager manager);
CREATE TYPE person2 AS OBJECT (manager NUMBER, mgr manager);

E-2 PL/SQL User’s Guide and Reference

Various Forms of References

Various Forms of References

During name resolution, the compiler can encounter various forms of references
including simple unqualified names, dot-separated chains of identifiers, indexed
components of a collection, and so on. Some examples of legal references follow:

CREATE PACKAGE packl AS
mNUMBER,;
TYPE11 1S RECORD (a NUMBERY);
\VARu
TYPE RIS TABLE OF t1 INDEX BY BINARY _INTEGER,;
V212,
FUNCTION f1 (p2 NUMBER) RETURN t1;
FUNCTION 2 (q1 NUMBER) RETURN t2;
END
/
CREATE PACKAGE BODY packl AS
FUNCTIONf1 (p2 NUMBER) RETURN LIS
nNUMBER;
BEGIN

n=m; - (1) unqualified name

n:=packlm; - (2)dot-separated chain of identifiers
- (package name used as scope qualifier
- followed by variable name)

n = packlflpl; — (3) dot-separated chain of identifiers
- (package name used as scope
- qualifier followed by function name
- also used as scope qualifier
- followed by parameter name)

n=vla, - (4)dotseparated chain ofidentfiers
- (variable name followed by
- component selector)

n:=packlvl.a; —(5)dotseparated chain of identifiers
- (package name used as scope
- qualifier followed by
- variable name followed by component
— selector)

n:=v2(10).a; - (6)indexed name followed by component
-~ selector

n:=f1(10).a; - (7)function call followed by component
— selector

n :=f2(10)(10).a; — (8) function call followed by indexing
- followed by component selector

Name Resolution E-3

Various Forms of References

n := scott.pack1.f2(10)(10).a;
(9) function call (which is a dot-

— separated chain of identifiers,
- including schema name used as
- scope qualifier followed by package
— name used as scope qualifier
- followed by function name)
- followed by component selector
— ofthe retumed result followed
— by indexing followed by component
— selector.

END;

FUNCTION 2 (g1 NUMBER) RETURN 2 IS

BEGIN

NULL;
END;
END;

/
CREATE OR REPLACE PACKAGE BODY packl AS
FUNCTION 1 (p1 NUMBER) RETURNTL IS

nNUMBER;
BEGIN
n: scottpacklfln - (10) dot-separated chain of
identifiers (schema name
— used as scope qualifier followed
— by package name also used as
- scope qualifier followed by
- function name also used as
— scope qualifier followed by
- local variable name)
END;
FUNCTION 2 (g1 NUMBER) RETURN 2 IS
BEGIN
NULL;
END;
END;

E-4 PL/SQL User’'s Guide and Reference

Name-Resolution Algorithm

Name-Resolution Algorithm

Let us take a look at the name-resolution algorithm.

The first part of name resolution involves finding the basis. The basis is the smallest
prefix to a dot-separated chain of identifiers that can be resolved by looking in the
current scope, then moving outward to schema-level scopes.

In the previous examples, the basis for (3) pack1.f1.p1 is PACKY the basis for (4)
scott.pack1.f1.n is SCOTT.PACK1 and the basis for (5) vi.a is V1. In (5), the

A'in V1.A is a component selector and resolves as field A of variable V1 because V1
is of type T1, which has a field called A.

If a basis is not found, the compiler generates a not declared error. If the basis is
found, the compiler tries to resolve the complete reference. If it fails, the compiler
generates an error.

The length of the basis is always 1, 2, or 3. And, it can be 3 only inside SQL scope
when the compiler resolves a three-part name as

schema_name.table_name.column_name

Here are more examples of bases:

variable_name

type_name

package_name
schema_name.package_name
schema_name.function_name
table_name

table_name.column_name
schema_name.table_name
schema_name.table_name.column_name

Finding the Basis
Now, let us look at the algorithm for finding the basis.

If the compiler is resolving a name in SQL scope (which includes everything in a
SQL data manipulation statement except items in the INTO clause and
schema-level table names) it first tries to find the basis in that scope. If it fails, it
tries to find the basis in PL/SQL local scopes and at the schema level just as it
would for names in non-SQL scopes.

Name Resolution E-5

Name-Resolution Algorithm

Here are the rules for finding the basis in SQL scope when the compiler expects to
find a column name:

« Given one identifier, the compiler tries to find a basis of lengthl using the
identifier as an unqualified column name in one of the tables listed in any FROM
clauses that are in scope, starting with the current scope and moving outward.

« Given a of chain two identifiers, the compiler tries to find a basis of length 2
using the identifiers as a column name qualified by a table name or table alias,
starting with the current scope and moving outward.

« Given a chain of three identifiers, the compiler tries to find in each scope that it
searches, starting with the current scope and moving outward, either

— abasis of length 3 using the three identifiers as a column name qualified by
a table name qualified by a schema name, or

— abasis of length 2 using the first two identifiers as a column name of some
user-defined type qualified by a table alias

« Given a chain of four identifiers, the compiler tries to find a basis of length 2,
using the first two identifiers as a column name of some user-defined type
gualified by a table alias, starting with the current scope and moving outward.

Once the compiler finds the basis as a column name, it tries to resolve the complete
reference by finding a component of the basis and so on depending upon the type
of the column name.

Here are the rules for finding the basis in SQL scope when the compiler expects to
find a row expression (which is a table alias that can appear by itself; it can be used
only with an object table and operator REFor VALUE or in an INSERT or UPDATE
statement for an object table):

« Given one identifier, the compiler tries to find a basis of length 1 as a table
alias, starting with the current scope and moving outward. If the table alias
does not correspond to an object table, the compiler generates an error.

« Given a chain of two or more identifiers, the compiler generates an error.

E-6 PL/SQL User’s Guide and Reference

Name-Resolution Algorithm

If the name being resolved either
« does not appear in SQL scope, or
« appears in SQL scope but the compiler cannot find a basis for it in that scope

the compiler tries to find the basis by searching all PL/SQL scopes local to the
compilation unit, starting with the current scope and moving outward. If the name
is found, the length of the basis is 1. If the name is not found, the compiler tries to
find the basis by searching for schema objects using the following rules:

« First, the compiler tries to find a basis of length 1 by searching the current
schema for a schema object whose name matches the first identifier in the chain
of identifiers. The schema object found might be a package specification,
function, procedure, table, view, sequence, synonym, or schema-level datatype.
If it is a synonym, the basis will be resolved as the base object designated by
the synonym.

« If the previous search fails, the compiler tries to find a basis of length 1 by
searching for a public synonym whose name matches the first identifier in the
chain. If this succeeds, the basis will be resolved as the base object designated
by the synonym.

« If the previous search fails and there are at least two identifiers in the chain, the
compiler tries to find a basis of length 2 by searching for a schema object whose
name matches the second identifier in the chain and which is owned by a
schema whose name matches the first identifier in the chain.

« If the compiler finds a basis as a schema object, it checks the privileges on the
base object. If the base object is not visible, the compiler generates a not declared
error because an insufficient privileges error would acknowledge the existence of
the object, which is a security violation.

« If the compiler fails to find a basis by searching for schema objects, it generates
a not declared error.

« If the compiler finds a basis, it tries to resolve the complete reference
depending on how the basis was resolved. If it fails to resolve the complete
reference, the compiler generates an error.

Name Resolution E-7

Understanding Capture

Understanding Capture

Inner Capture

When a declaration or type definition in another scope prevents the compiler from
resolving a reference correctly, that declaration or definition is said to “capture” the
reference. Usually this is the result of migration or schema evolution. There are
three kinds of capture: inner, same-scope, and outer. Inner and same-scope capture
apply only in SQL scope.

An inner capture occurs when a name in an inner scope that once resolved to an
entity in an outer scope, either

= gets resolved to an entity in an inner scope, or

= causes an error because the basis of the identifier chain got captured in an inner
scope and the complete reference could not be resolved

If the situation was resolved without error in an inner scope, the capture might
occur unbeknown to you. Consider, the following example:

CREATE TABLE tab1 (coll NUMBER, col2 NUMBER)
/
CREATE TABLE tab2 (coll NUMBER)
/
CREATE PROCEDURE proc AS

CURSOR c1 IS SELECT * FROM tabl

WHERE EXISTS (SELECT * FROM tab2 WHERE col2 = 10);

BEGIN
END
/
In this example, the reference to col2 in the inner SELECTstatement binds to

column col2 intable tabl because table tab2 has no column named col2 . If you
add a column named col2 to table tabZ2 , as follows

ALTER TABLE tab2 ADD (col2 NUMBERY);

then procedure proc is invalidated and recompiled automatically upon next use.
However, upon recompilation, the col2 in the inner SELECTstatement binds to
column col2 intable tab2 because tab2 is in the inner scope. Thus, the reference
to col2 is captured by the addition of column col2 to table tab2 .

E-8 PL/SQL User’s Guide and Reference

Understanding Capture

The use of collections and object types allows for more inner capture situations.
Consider the following example:

CREATE TYPE typel AS OBJECT (a NUMBER)

/

CREATE TABLE tabl (tab2 typel)

/

CREATE TABLE tab2 (x NUMBER)

/

SELECT * FROM tab1 s —- alias with same name as schema name
WHERE EXISTS (SELECT * FROM s.tab2 - note lack of alias

WHERE x =s1ab2.a)
/

In this example, the reference to s.tab2.a resolves to attribute a of column tab2
in table tabl via table alias s which is visible in the outer scope of the query.
Suppose you add a column named a to table s.tab2, which appears in the inner
subquery. When the query is processed, an inner capture will occur because the
reference to s.tab2.a will resolve to column a of table tab2 in schema s.

You can avoid inner captures by following the rules given in “Avoiding Capture”
on page E-10. According to those rules, you should recode the above query as
follows:

SELECT *FROM stabl p1
WHERE EXISTS (SELECT * FROM s tab2 p2 WHERE p2x = pLtab2.a);

Same-Scope Capture

Outer Capture

In SQL scope, a same-scope capture occurs when a column is added to one of two
tables in the same scope, and that column has the same name as a column in the
other table. Consider the following query (and refer to the previous example):

PROCEDURE proc IS
CURSOR c11S SELECT * FROM tab1, tab2 WHERE col2 = 10;

In the last example, the reference to col2 in the query binds to column col2 in
table tabl . If you add a column named col2 to table tab2 , the query compiles
with errors. Thus, the reference to col2 is captured by an error.

An outer capture occurs when a name in an inner scope, which once resolved to an
entity in an inner scope, gets resolved to an entity in an outer scope. Fortunately,
SQL and PL/SQL are designed to prevent outer captures.

Name Resolution E-9

Avoiding Capture

Avoiding Capture
You can avoid inner capture in DML statements by following these rules:
« Specify an alias for each table in the DML statement.
« Keep table aliases unique throughout the DML statement.
« Avoid table aliases that match schema names used in the query.
« Qualify each column reference with the table alias.

Quialifying a reference with <schema-name>.<table-name> does not prevent inner
capture if the DML statement references tables that have columns of a user-defined
object type.

Accessing Attributes and Methods

Columns of a user-defined object type allow for more inner capture situations. To
minimize problems, the following new rules were added to the name-resolution
algorithm:

« All references to attributes and methods must be qualified by a table alias. So,
when referencing a table, if you reference the attributes or methods of an object
stored in that table, the table name must be accompanied by an alias. As the
following examples show, column-qualified references to an attribute or
method are illegal if they are prefixed with a table name (or schema and table

name):

CREATE TYPE t1 AS OBJECT (x NUMBER);
CREATE TABLE th1 (col t1);

SELECT colx FROM th1, —illegal
SELECT thl.col.x FROM thl; —illegal
SELECT scott.thl.col.x FROM scottthl; —illegal
SELECT tcolx FROM b1t

UPDATE th1 SET colx=10; —illegal

UPDATE scottthl SET scott.thl.col.x=10; —ilegal
UPDATE thl tsettcolx=1,;

DELETE FROM th1 WHERE thl.colx=10; -illegal
DELETE FROM th1 t WHERE t.col.x = 10;

E-10 PL/SQL User's Guide and Reference

Calling Subprograms and Methods

« Row expressions must resolve as references to table aliases. You can pass row
expressions to operators REF and VALUE, and you can use row expressions in
the SET clause of an UPDATE statement. Some examples follow:

CREATE TYPE t1 AS OBJECT (x number);

CREATE TABLE otl OF t; — object table
SELECT REF(otl) FROM otl; ~ilegal
SELECT REF(0) FROM ot 0;

SELECT VALUE(ot1) FROM otl; ~ ilegal
SELECT VALUE(0) FROM oL 0;

DELETE FROM otl WHERE VALUE(ot1) = (t1(10)); - ilegal
DELETE FROM otl o WHERE VALUE(0) = (t1(20));
UPDATEOt1 SETotl =... —illegal
UPDATEOtLOSETO0=....

The following ways to insert into an object table are legal and do not require an
alias because there is no column list:

INSERT INTO otl VALUES (t1(10)); — no row expression
INSERT INTO ol VALUES (10); — no row expression

Calling Subprograms and Methods

Example 1

You can call a parameterless subprogram with or without an empty parameter list.
Likewise, within PL/SQL scopes, the empty parameter list is optional. However,
within SQL scopes, it is required.

CREATE FUNCTION funcl RETURN NUMBER AS
BEGIN
RETURN 10;
END;

CREATE PACKAGE pkgl AS

FUNCTION funcl RETURN NUMBER;

PRAGMA RESTRICT REFERENCES(funcl,WNDS,RNDSWNPSRNPS);
END;

CREATE PACKAGE BODY pkgl AS
FUNCTION funcl RETURN NUMBER IS BEGIN RETURN 20; END;
END;

SELECT funcl FROM dual;
SELECT funcl() FROM dual;

Name Resolution E-11

Calling Subprograms and Methods

SELECT pkgLfuncl FROM dual;
SELECT pkgLfuncl() FROM dual;

DECLARE
x NUMBER;
BEGIN
X =funcl;
x = funcl();
SELECT funcl INTO x FROM dual;
SELECT funcl() INTO x FROM dual;
SELECT pkgl.funcl INTO x FROM dual;
SELECT pkgl.funcl() INTO x FROM dual;
END;

Example 2

CREATE OR REPLACE TYPE typel AS OBJECT (

aNUMBER,

MEMBER FUNCTION f RETURN number,

PRAGMA RESTRICT REFERENCES(fWNDS,RNDSWNPS,RNPS)
)

CREATE TYPE BODY typel AS
MEMBER FUNCTION f RETURN number IS BEGIN RETURN 1; END;
END;

CREATE TABLE tab1 (coll typel);
INSERT INTO tab1 VALUES (type(10));

SELECT x.colLf FROMtablx; —illegal
SELECT x.col1.f) FROM tab1 x;

DECLARE
nNUMBER,;
ytypel;

BEGIN
FIn PL/SQL scapes, an empty parameter list is optional. */
n:=yf
n:=yf;
FIn SQL scopes, an empty parameter listis required. */
SELECT x.colLfINTOnFROMtablx; -—ilegal
SELECT x.col1.f) INTO n FROM tabl x;
SELECTyfINTONnFROMtablx;, —illegal
SELECT yf() INTO n FROM tab1 x|

END;

E-12 PL/SQL User's Guide and Reference

SQL versus PL/SQL

SQL versus PL/SQL

The name-resolution rules for SQL and PL/SQL are similar. However, there are a
few minor differences, which are not noticeable if you follow the capture avoidance
rules.

For compatibility, the SQL rules are more permissive than the PL/SQL rules. That
is, the SQL rules, which are mostly context sensitive, allow for more legal
situations. Also, the SQL rules recognize as legal more DML statements than the
PL/SQL rules recognize.

Name Resolution E-13

SQL versus PL/SQL

E-14 PL/SQL User's Guide and Reference

-

Reserved Words

The words listed in this appendix are reserved by PL/SQL; that is, they have a
special syntactic meaning to PL/SQL. So, you should not use them to name
program objects such as constants, variables, or cursors. Also, some of these words

(marked by an asterisk) are reserved by SQL. So, you should not use them to name
schema objects such as columns, tables, or indexes.

Reserved Words F-1

ABORT
ACCEPT
ACCESS*
ADD*

ALL*
ALTER*
AND*

ANY*
ARRAY
ARRAYLEN
AS*

ASC*
ASSERT
ASSIGN

AT

AUDIT*
AUTHORIZATION
AVG
BASE_TABLE
BEGIN
BETWEEN*
BINARY_INTEGER
BODY
BOOLEAN
BY*

CASE
CHAR*
CHAR BASE
CHECK*
CLOSE
CLUSTER*
CLUSTERS
COLAUTH
COLUMN*
COMMENT*
COMMIT
COMPRESS*
CONNECT*
CONSTANT
CRASH
CREATE*
CURRENT*
CURRVAL
CURSOR

DATABASE
DATA BASE
DATE*

DBA
DEBUGOFF
DEBUGON
DECLARE
DECIMAL*
DEFAULT*
DEFINTION
DELAY
DELETE*
DESC*
DIGITS
DISPOSE
DISTINCT*
DO

DROP*
ELSE*
ELSIF

END
ENTRY
EXCEPTION
EXCEPTION_INIT
EXCLUSIVE*
EXISTS*
EXIT

FALSE
FETCH
FILE*
FLOAT*
FOR*
FORM
FROM¥
FUNCTION
GENERIC
GOTO
GRANT*
GROUP*
HAVING*
IDENTIFIED*
IF
IMMEDIATE*
IN*

F-2 PL/SQL User's Guide and Reference

INCREMENT*
INDEX*
INDEXES
INDICATOR
INITIAL*
INSERT*
INTEGER*
INTERFACE
INTERSECT*
INTO*

IS*

LEVEL*
LIKE*
LIMITED
LOCK*
LONG*
LOOP

MAX
MAXEXTENTS*
MIN

MINUS*
MLSLABEL*
MOD
MODE*
NATURAL
NATURALN
NEW
NEXTVAL
NOAUDIT*
NOCOMPRESS*
NOT*
NOWAIT*
NULL*
NUMBER*
NUMBER_BASE
OF
OFFLINE*
ON*
ONLINE*
OPEN
OPTION*
OR*
ORDER*
OTHERS

out
PACKAGE
PARTITION
PCTFREE*
PLS_INTEGER
POSITIVE
POSITIVEN
PRAGMA
PRIOR*
PRIVATE
PRIVILEGES*
PROCEDURE
PUBLIC*
RAISE
RANGE
RAW*

REAL
RECORD
REF
RELEASE
REMR
RENAME*
RESOURCE*
RETURN
REVERSE
REVOKE*
ROLLBACK
ROW*
ROWID*
ROWLABEL*
ROWNUM*
ROWS*
ROWTYPE
RUN
SAVEPOINT
SCHEMA
SELECT*
SEPERATE
SESSION*
SET*
SHARE*
SIGNTYPE
SMALLINT*
SPACE

SQL
SQLCODE
SQLERRM
START*
STATEMENT
STDDEV
SUBTYPE
SUCCESSFUL*
SUM
SYNONYM*
SYSDATE*
TABAUTH
TABLE*
TABLES
TASK
TERMINATE
THEN*

TO*
TRIGGER*
TRUE
TYPE

UID*
UNION*
UNIQUE*
UPDATE*
USE

USER*
VALIDATE*
VALUES*
VARCHAR*
VARCHAR2*
VARIANCE
VIEW*
VIEWS
WHEN
WHENEVER*
WHERE*
WHILE
WITH*
WORK
WRITE
XOR

Symbols

+

=>
%

1

*%

<<
>>
/*
*/

addition/identity operator, 2-3
assignment operator, 1-4,2-4
association operator, 2-4,7-12
attribute indicator, 1-7,2-3
character string delimiter, 2-3
component selector, 1-6, 2-3
concatenation operator, 2-4, 2-46
division operator, 2-3
exponentiation operator, 2-4
expression or list delimiter, 2-3
expression or list delimiter, 2-3
host variable indicator, 2-3

item separator, 2-3

label delimiter, 2-4

label delimiter, 2-4

multi-line comment delimiter, 2-4
multi-line comment delimiter, 2-4
multiplication operator, 2-3
quoted identifier delimiter, 2-3
range operator, 2-4, 3-10
relational operator, 2-3, 2-45
relational operator, 2-3, 2-45
relational operator, 2-3, 2-45
relational operator, 2-4, 2-45
relational operator, 2-4, 2-45
relational operator, 2-4,2-45
relational operator, 2-4, 2-45
relational operator, 2-4, 2-45
remote access indicator, 2-3,2-34
single-line comment delimiter, 2-4
statement terminator, 2-3,11-12
subtraction/negation operator, 2-3

A

Index

abstraction, 7-3,9-2
ACCESS_INTO_NULL exception,
actual parameter, 5-11
address, 5-19
aggregate assignment, 2-32
alias library, 10-3
aliasing, 5-36
ALL comparison operator, 5-6
ALL option, 5-3
ALL row operator, 5-7
anonymous PL/SQL block, 7-2
ANY comparison operator, 5-6
apostrophe, 2-8
architecture, 1-18
assignment

aggregate, 2-32

character string, C-2

collection, 4-12

cursor variable, 5-34

field, 4-33

record, 4-33

semantics, C-2
assignment operator, 1-4
assignment statement

syntax, 11-3
association operator, 7-12
asterisk (*) option, 5-3
asynchronous operation, 8-18
atomically null, 9-24

6-5

Index-1

attribute, 1-7
%ROWTYPE, 2-31
%TYPE, 2-30
cursor, 5-38
object, 9-3,9-7

attribute indicator, 1-7

AVG group function, 5-3

B

base type, 2-12,2-22
basic loop, 3-6

BETWEEN comparison operator, 2-45, 5-6

BFILE datatype, 2-20
binary operator, 2-41
BINARY_INTEGER datatype, 2-11
bind variable, 5-19
binding, 5-7
blank-padding semantics, C-3
BLOB datatype, 2-20
block

anonymous, 7-2

label, 2-39

maximum size, 5-60

PL/SQL, 11-7

structure, 1-2
body

cursor, 5-15

function, 7-5

method, 9-8

object, 9-5

package, 8-7

procedure, 7-4
Boolean

expression, 2-46

literal, 2-8

value, 2-46
BOOLEAN datatype, 2-21
built-in function, 2-51
BY REF phrase, 10-15
by-reference parameter passing, 7-17
by-value parameter passing, 7-17

Index-2

C

call, subprogram, 7-12
callback, 10-22
example, 10-22
restrictions, 10-23
CALLING STANDARD clause, 10-4
carriage return, 2-3
case sensitivity
identifier, 2-5
string literal, 2-8
case, lower, xix
case, upper, Xix
CHAR column
maximum width, 2-14
CHAR datatype, 2-14
CHAR semantics, C-1
CHAR_CSvalue, 2-28
character literal, 2-7
character set, 2-2
CHARACTER subtype, 2-14
character value
assigning, C-2
comparing, C-2
inserting, C-4
selecting, C-4
CHARSETFORM property, 10-15
CHARSETID property, 10-15
client program, 9-2
CLOB datatype, 2-20
CLOSE statement, 5-13, 5-27
syntax, 11-14
collating sequence, 2-47
collection, 4-2
assigning, 4-12
comparing, 4-13
constructor, 4-9
declaring, 4-7
defining, 4-5
element type, 4-5
initializing, 4-9
referencing, 4-11
scope, 4-9
syntax, 11-21

collection exceptions

when raised, 4-28
collection method

applying to parameters, 4-27

COUNT, 4-22

DELETE, 4-26

EXISTS, 4-22

EXTEND, 4-24

FIRST, 4-23

LAST, 4-23

LIMIT, 4-22

NEXT, 4-23

PRIOR, 4-23

syntax, 11-16

TRIM, 4-25
collection types, 4-1
COLLECTION_IS_NULL exception,
column alias, 5-17

when needed, 2-33
comment, 2-9

restrictions, 2-10

syntax, 11-26
COMMENT clause, 5-46
COMMIT statement, 5-46

syntax, 11-27
comparison

of character values, C-2

of collections, 4-13

of expressions, 2-46

operators, 2-44,5-6
compilation

using the PL/SQL Wrapper, D-1
compiler, 5-7
component selector, 1-6
composite type, 2-10
compound symbol, 2-4
concatenation operator, 2-46

treatment of nulls, 2-50
concurrency, 5-44
conditional control, 3-2

constant
declaring, 2-29
syntax, 11-29

constraint
NOT NULL, 2-30
where not allowed, 2-23,7-4
constructor
collection, 4-9
object, 9-12
control structure, 3-2
conditional, 3-2
iterative, 3-6
sequential, 3-15
conventions
naming, 2-34
conversion function
when needed, 2-26
conversion, datatype, 2-25
correlated subquery, 5-14
COUNT collection method, 4-22
COUNT group function, 5-3
CREATE LIBRARY statement, 10-3
CURRENT OF clause, 5-52
currentrow, 1-5
CURRVAL pseudocolumn, 5-4
cursor, 1-5,5-9
analogy, 1-5
closing, 5-13
declaring, 5-10
explicit, 5-9
fetching from, 5-12
implicit, 5-14
opening, 5-11
packaged, 5-15
parameterized, 5-11
RETURN clause, 5-15
scope rules, 5-10
syntax, 11-45
cursor attribute
%FOUND, 5-38,5-42
%ISOPEN, 5-38,5-42
%NOTFOUND, 5-39
%ROWCOUNT, 5-39, 5-43
implicit, 5-42
syntax, 11-33
values, 5-40
cursor FOR loop, 5-16
passing parameters to, 5-18

Index-3

cursor variable, 5-18
assignment, 5-34
closing, 5-27
declaring, 5-20
fetching from, 5-26
opening, 5-22
restrictions, 5-37
syntax, 11-38
using to reduce network traffic,

CURSOR_ALREADY_OPEN exception,

D

dangling ref, 9-34
data abstraction, 9-2
data encapsulation, 1-16
data integrity, 5-44
data lock, 5-45
database changes
making permanent, 5-46
undoing, 5-47
database character set, 2-18
datatype, 2-10
BFILE, 2-20
BINARY_INTEGER, 2-11
BLOB, 2-20
BOOLEAN, 2-21
CHAR, 2-14
CLOB, 2-20
constraint, 7-4
DATE, 2-21
families, 2-10
implicit conversion, 2-26
LONG, 2-15
LONG RAW, 2-15
MLSLABEL, 2-22
NCHAR, 2-18
NCLOB, 2-21
NLS, 2-17
NUMBER, 2-12
NVARCHAR2, 2-19
PLS_INTEGER, 2-13
RAW, 2-15
RECORD, 4-28
REF CURSOR, 5-19

Index-4

ROWID, 2-16

scalar versus composite, 2-10

TABLE, 4-2

VARCHAR2, 2-16

VARRAY, 4-4
date

converting, 2-27

TO_CHAR default format, 2-27
DATE datatype, 2-21
DBMS_ALERT package, 8-18
DBMS_OUTPUT package, 8-16
DBMS_PIPE package, 8-17
DBMS_SQL package, 5-8, 8-17

array interface, 5-57
DBMS_STANDARD package, 8-16
DDL support, 5-7
deadlock, 5-45

effect on transactions, 5-47

how broken, 5-47
DEBUG_EXTPROC package, 10-24
DEC subtype, 2-13
DECIMAL subtype, 2-13
declaration

collection, 4-7

constant, 2-29

cursor, 5-10

cursor variable, 5-20

exception, 6-6

forward, 7-8

object, 9-23

record, 4-30

subprogram, 7-8

variable, 2-28
declarative part

function, 7-6

PL/SQL block, 1-3

procedure, 7-4
DECODE function

treatment of nulls, 2-50
DEFAULT keyword, 2-29
default parameter value, 7-15
default pragma, 9-13
DELETE collection method, 4-26

DELETE statement

RETURNING clause, 5-55

syntax, 11-49
delimiter, 2-3
demo, external procedure, 10-24
dense collection, 4-3
DEPT table, xx
DEREF operator, 9-34
dereference, 9-34
digits of precision, 2-12
DISTINCT option, 5-3
DISTINCT row operator, 5-7
distributed transaction, 5-45
DLL (dynamic link library), 10-3
dot notation, 1-6,1-7

for collection methods, 4-21

for global variables, 3-13

for object attributes, 9-25

for object methods, 9-27

for package contents, 8-6

for record fields, 2-32
DOUBLE PRECISION subtype, 2-13
DUP_VAL_ON_INDEX exception, 6-5
dynamic FOR-loop range, 3-12
dynamic link library (DLL), 10-3
dynamic SQL support, 5-7

E

elaboration, 2-29
element type
collection, 4-5
ellipsis, xix
ELSE clause, 3-3
ELSIF clause, 3-4
EMP table, xx
encapsulation, data, 1-16
END IF reserved words, 3-3
END LOOP reserved words, 3-9
Entry SQL support, 5-7
error message
maximum length, 6-18
evaluation, 2-41
short-circuit, 2-44
EXAMPBLD script, B-3

EXAMPLOD script, B-7
exception, 6-2
declaring, 6-6
predefined, 6-4
propagation, 6-12
raised in declaration, 6-16
raised in handler, 6-17
raising with RAISE statement, 6-11
reraising, 6-14
scope rules, 6-7
syntax, 11-54
user-defined, 6-6
WHEN clause, 6-15
exception handler, 6-15
branching from, 6-17
OTHERS handler, 6-2
using RAISE statement in, 6-15
using SQLCODE function in, 6-18
using SQLERRM function in, 6-18
EXCEPTION_INIT pragma, 6-8
syntax, 11-52
using with raise_application_error, 6-10
exception-handling part
function, 7-6
PL/SQL block, 1-3
procedure, 7-4
executable part
function, 7-6
PL/SQL block, 1-3
procedure, 7-4
execution environment, 1-18
EXISTS collection method, 4-22
EXISTS comparison operator, 5-6
EXIT statement, 3-6, 3-14
syntax, 11-57
WHEN clause, 3-7
where allowed, 3-6
explicit cursor, 5-9
expression
Boolean, 2-46
how evaluated, 2-41
parentheses in, 2-42
syntax, 11-59
EXTEND collection method, 4-24
extensibility, 7-3

Index-5

EXTERNAL clause, 10-3
components, 10-4
syntax, 11-70

external procedure, 10-2
calling, 10-5
DEBUG_EXTPROC package, 10-24
debugging, 10-24
demo program, 10-24
environment variables, 10-8
guidelines, 10-25
how PL/SQL calls, 10-7

maximum number of parameters, 10-26

passing parameters to, 10-9
registering, 10-3
restrictions, 10-25
specifying datatypes, 10-9
specifying properties, 10-12
extproc process, 10-7

F

FALSE value, 2-8

features, new, A-1

FETCH statement, 5-12, 5-26
syntax, 11-76

fetching across commits, 5-53

Fibonacci sequence, 7-23

field, 4-28

field type, 4-29

filel/0, 8-17

FIRST collection method, 4-23

flag, PLSQL_V2_COMPATIBILITY, 5-62

FLOAT subtype, 2-13

FOR loop, 3-10
dynamic range, 3-12
iteration scheme, 3-10
loop counter, 3-10
nested, 3-14

FOR loop, cursor, 5-16

FOR UPDATE clause, 5-11
restriction on, 5-22
when to use, 5-51

formal parameter, 5-11

Index-6

format
function, 7-5
package, 8-2

packaged procedure, 7-9
procedure, 7-3
format mask
when needed, 2-27
forward declaration, 7-8
when needed, 7-8, 7-26
forward reference, 2-34

forward type definition, 9-30

%FOUND cursor attribute,
function, 7-1,7-5
body, 7-5
built-in, 2-51
call, 7-6
parameter, 7-5
parts, 7-5
RETURN clause, 7-5
specification, 7-5
syntax, 11-79

G

5-38, 5-42

gigabyte, 2-20
GLB group function, 5-3
GOTO statement, 3-15

label, 3-15

misuse, 3-17

restriction, 6-17

syntax, 11-83
GROUP BY clause, 5-3
group function

AVG, 5-3

COUNT, 5-3

GLB, 5-3

LUB, 5-3

MAX, 5-3

MIN, 5-3

STDDEV, 5-3

SUM, 5-3

treatment of nulls, 5-3

VARIANCE, 5-3

H

handler, exception, 6-2
handling exceptions, 6-1
raised in declaration, 6-16
raised in handler, 6-17
using OTHERS handler, 6-15
handling of nulls, 2-48
hidden declaration, 8-2
hiding, information, 1-16
host variable, 5-19
hypertext markup language (HTML), 8-17
hypertext transfer protocol (HTTP), 8-17

identifier
forming, 2-4
maximum length, 2-5
quoted, 2-6
scope rules, 2-37
IF statement, 3-2
ELSE clause, 3-3
ELSIF clause, 3-4
syntax, 11-85
THEN clause, 3-3
implicit cursor, 5-14
attribute, 5-42
implicit datatype conversion, 2-26
effect on performance, 5-59
implicit declaration
cursor FOR loop record, 5-16
FOR loop counter, 3-13
IN comparison operator, 2-46, 5-6
IN OUT parameter mode, 7-14
IN parameter mode, 7-13
incomplete object type, 9-30
index, cursor FOR loop, 5-16
index-by table, 4-3
indicator, 10-14
INDICATOR property, 10-14
infinite loop, 3-6
information hiding, 1-16, 8-4
initialization
collection, 4-9

object, 9-24
package, 8-8
record, 4-31
using DEFAULT, 2-29
variable, 2-40
when required, 2-30
INSERT statement
RETURNING clause, 5-55
syntax, 11-88
instance, 9-4
INT subtype, 2-13
INTEGER subtype, 2-13
interoperability, cursor, 5-19
INTERSECT set operator, 5-6
INTO clause, 5-26
INTO list, 5-12
INVALID_CURSOR exception, 6-5
INVALID_NUMBER exception, 6-5
IS DANGLING predicate, 9-34
IS NULL comparison operator, 2-45, 5-6
%ISOPEN cursor attribute, 5-38, 5-42
iteration
scheme, 3-10
versus recursion, 7-27
iterative control, 3-6

J

join, 7-26

L

label
block, 2-39
GOTO statement, 3-15
loop, 3-8
LANGUAGE clause, 10-4
large object (LOB) datatypes, 2-19
LAST collection method, 4-23
LENGTH property, 10-14
LEVEL pseudocolumn, 5-5
lexical unit, 2-2
library, 8-1
LIBRARY clause, 10-4
library, alias, 10-3

Index-7

LIKE comparison operator, 2-45, 5-6
LIMIT collection method, 4-22
literal, 2-7
Boolean, 2-8
character, 2-7
numeric, 2-7
string, 2-8
syntax, 11-91
LOB (large object) datatypes, 2-19
local subprogram, 1-19
locator, 2-19
lock, 5-45
modes, 5-45
overriding, 5-51
using FOR UPDATE clause, 5-51
LOCK TABLE statement, 5-52
syntax, 11-94
LOGIN_DENIED exception, 6-5
LONG datatype, 2-15
maximum length, 2-15
restrictions, 2-15
LONG RAW datatype, 2-15
converting, 2-28
maximum length, 2-15

loop
counter, 3-10
kinds, 3-6
label, 3-8

LOOP statement, 3-6
forms, 3-6
syntax, 11-96

LUB group function, 5-3

M

maintainability, 7-3

map method, 9-10

MAX group function, 5-3

maximum length
CHAR value, 2-14
identifier, 2-5
LONG RAW value, 2-15
LONG value, 2-15
NCHAR value, 2-18
NVARCHAR?2 value, 2-19

Index-8

Oracle error message, 6-18

RAW value, 2-15

VARCHAR? value, 2-16
maximum precision, 2-12
maximum size

LOB, 2-19
MAXLEN property, 10-14
membership test, 2-46
method

COUNT, 4-22

DELETE, 4-26

EXISTS, 4-22

EXTEND, 4-24

FIRST, 4-23

LAST, 4-23

LIMIT, 4-22

map, 9-10

NEXT, 4-23

object, 9-3,9-8

order, 9-10

PRIOR, 4-23

TRIM, 4-25
method calls

chaining, 9-27
method, collection, 4-21
MIN group function, 5-3
MINUS set operator, 5-6
mixed notation, 7-12
MLSLABEL datatype, 2-22
mode, parameter

IN, 7-13

IN OUT, 7-14

OuUT, 7-13
modularity, 1-11,7-3,8-4
multi-line comment, 2-9
mutual recursion, 7-26

N

name
cursor, 5-10
qualified, 2-34
savepoint, 5-48
variable, 2-35
NAME clause, 10-4

name resolution, 2-35, E-1
named notation, 7-12
naming conventions, 2-34
national character set, 2-18
National Language Support (NLS), 2-17
NATURAL subtype, 2-12
NATURALN subtype, 2-12
NCHAR datatype, 2-18
NCHAR_CS value, 2-28
NCLOB datatype, 2-21
nested table, 4-2
manipulating, 4-14
versus index-by table, 4-3
nesting
block, 1-3
FOR loop, 3-14
object, 9-7
record, 4-29
network traffic
reducing, 1-22
new features, A-1
NEXT collection method, 4-23
NEXTVAL pseudocolumn, 5-4
nibble, 2-28
NLS (National Language Support), 2-17
NLS datatype, 2-17
NLS_CHARSET _ID function, 2-28
NLS_CHARSET_NAME function, 2-28
NO_DATA_FOUND exception, 6-5
non-blank-padding semantics, C-3
NOT logical operator
treatment of nulls, 2-49
NOT NULL constraint
effect on %TYPE declaration, 2-31
effect on performance, 5-58
restriction, 5-10, 7-3
using in collection declaration, 4-7
using in field declaration, 4-31
using in variable declaration, 2-30
NOT_LOGGED_ON exception, 6-5
notation
mixed, 7-12
positional versus named, 7-12
%NOTFOUND cursor attribute, 5-39
NOWAIT parameter, 5-51

NVARCHAR?2 datatype, 2-19
NVL function
treatment of nulls, 2-50
null handling, 2-48
NULL statement, 3-19
syntax, 11-102
using in a procedure, 7-4
nullity, 2-45
NUMBER datatype, 2-12
numeric literal, 2-7
NUMERIC subtype, 2-13

O

object, 9-4
declaring, 9-23
initializing, 9-24
manipulating, 9-31
sharing, 9-28
object attribute, 9-3,9-7
accessing, 9-25
allowed datatypes, 9-7
maximum number, 9-7
object constructor
calling, 9-26
passing parameters to, 9-27
object method, 9-3,9-8
calling, 9-27
object table, 9-31
object type, 9-1, 9-3
advantages, 9-5
defining, 9-14
examples, 9-14
structure, 9-5
syntax, 11-103
object-oriented programming, 9-1
OPEN statement, 5-11
syntax, 11-111
OPEN-FOR statement, 5-22
syntax, 11-113
operator
comparison, 2-44
concatenation, 2-46
DEREF, 9-34
precedence, 2-42

Index-9

REF, 9-33
relational, 2-45
VALUE, 9-32
OR keyword, 6-16
Oracle, Trusted, 2-10
order method, 9-10
order of evaluation, 2-42, 2-43
OTHERS exception handler, 6-2, 6-15
OUT parameter mode, 7-13
overloading, 7-18
object method, 9-10
packaged subprogram, 8-14
restrictions, 7-19
using subtypes, 7-20

P

package, 8-1,8-2
advantages, 8-4
bodiless, 8-6
body, 8-2
creating, 8-3
DEBUG_EXTPROC, 10-24
initializing, 8-8
private versus public objects, 8-14
referencing, 8-6
scope, 8-5
serially reusable, 5-55
specification, 8-2
syntax, 11-117
package, product-specific, 8-16
packaged cursor, 5-15
packaged subprogram, 1-19, 7-9
calling, 8-6
overloading, 8-14
parameter
actual versus formal, 7-11
cursor, 5-11
default values, 7-15
modes, 7-13
SELF, 9-8
parameter passing
by reference, 7-17
by value, 7-17
PARAMETERS clause, 10-5, 10-12

Index-10

parentheses, 2-42
Pascal Calling Standard, 10-4
pattern matching, 2-45
p-code, 5-8
performance, 1-22
improving, 5-54
pipe, 8-17
PL/SQL
advantages, 1-21
architecture, 1-18
block structure, 1-2
execution environments, 1-18
new features, A-1
performance, 1-22
portability, 1-23
procedural aspects, 1-2
reserved words, F-1
sample programs, B-1
support for SQL, 1-21
PL/SQL block
anonymous, 1-2,7-2
maximum size, 5-60
syntax, 11-7
PL/SQL compiler
how calls are resolved, 7-21
how it works, 5-8
how references are resolved, 5-7
PL/SQL engine, 1-18
in Oracle Server, 1-19
in Oracle tools, 1-20
PL/SQL syntax, 11-1
PL/SQL Wrapper, D-1
input and output files, D-3
running, D-2
PLS_INTEGER datatype, 2-13
PLSQL_V2_COMPATIBILITY flag, 5-62
pointer, 5-19
portability, 1-23
positional notation, 7-12
POSITIVE subtype, 2-12
POSITIVEN subtype, 2-12
pragma, 6-8
EXCEPTION_INIT, 6-8
RESTRICT_REFERENCES, 7-6,9-12
SERIALLY_REUSABLE, 5-55

precedence, operator, 2-42
precision of digits

specifying, 2-12
predefined exception

list of, 6-4

raising explicitly, 6-11

redeclaring, 6-10
predicate, 5-6
preface

Send Us Your Comments, Xxiii
PRIOR collection method, 4-23
PRIOR row operator, 5-5,5-7
private object, 8-14
procedural abstraction, 9-2
procedure, 7-1,7-3

body, 7-4

calling, 7-5

external, 10-2

parameter, 7-3

parts, 7-4

specification, 7-4

syntax, 11-121
productivity, 1-23
program unit, 1-11
PROGRAM_ERROR exception, 6-5
propagation, exception, 6-12
property

CHARSETFORM, 10-15

CHARSETID, 10-15

INDICATOR, 10-14

LENGTH, 10-14

MAXLEN, 10-14
pseudocolumn, 5-4

CURRVAL, 54

LEVEL, 5-5

NEXTVAL, 5-4

ROWID, 5-5

ROWNUM, 5-5
pseudoinstruction, 6-8
public object, 8-14
purity level, 9-12

Q

qualifier
using subprogram name as, 2-37
when needed, 2-34,2-39

query work area, 5-19

quoted identifier, 2-6

R

RAISE statement, 6-11
syntax, 11-126
using in exception handler, 6-15
raise_application_error procedure, 6-9
raising an exception, 6-11
range operator, 3-10
RAW datatype, 2-15
converting, 2-28
maximum length, 2-15
read consistency, 5-45
READ ONLY parameter, 5-50
readability, 2-2,3-19
read-only transaction, 5-50
REAL subtype, 2-13
record, 4-28
%ROWTYPE, 5-16
assigning, 4-33
comparing, 4-35
declaring, 4-30
defining, 4-29
implicit declaration, 5-16
initializing, 4-31
manipulating, 4-35
nesting, 4-29
referencing, 4-31
syntax, 11-128
RECORD datatype, 4-28
recursion, 7-23
infinite, 7-24
mutual, 7-26
terminating condition, 7-24
versus iteration, 7-27

Index-11

ref, 9-28
dangling, 9-34
declaring, 9-29
dereferencing, 9-34
REF CURSOR datatype, 5-19
defining, 5-20
REF operator, 9-33
REF type modifier, 9-29
reference type, 2-10
relational operator, 2-45
remote access indicator, 2-34
REPEAT UNTIL structure
mimicking, 3-10
REPLACE function
treatment of nulls, 2-51
reraising an exception, 6-14
reserved words, F-1
misuse of, 2-5
using as quoted identifier, 2-6
resolution, name, 2-35, E-1
RESTRICT_REFERENCES pragma,
result set, 1-5,5-11
result value, function, 7-5
RETURN clause
cursor, 5-15
function, 7-5
RETURN statement, 7-7
syntax, 11-132
return type, 5-20, 7-21
RETURNING clause, 5-55, 9-37
reusability, 7-3
reusable packages, 5-55
REVERSE reserved word, 3-11
rollback
implicit, 5-49
statement-level, 5-47
rollback segment, 5-45
ROLLBACK statement, 5-47
effect on savepoints, 5-48
syntax, 11-134
routine
external, 10-2
service, 10-17
row lock, 5-51

Index-12

9-12

row operator, 5-7

%ROWCOUNT cursor attribute, 5-39, 5-43

rowid, 2-16
ROWID datatype, 2-16
ROWID pseudocolumn, 5-5
ROWIDTOCHAR function, 5-5
ROWNUM pseudocolumn, 5-5
%ROWTYPE attribute, 2-31
syntax, 11-136
ROWTYPE_MISMATCH exception,
RPC (remote procedure call), 6-12
RTRIM function
using to insert data, C-4
runtime error, 6-1

S

6-6

sample database table
DEPT table, xx
EMP table, xx
sample programs, B-1
savepoint name
reusing, 5-48
SAVEPOINT statement, 5-48
syntax, 11-138
scalar type, 2-10
scale
specifying, 2-13
scheme, iteration, 3-10
scientific notation, 2-7

scope, 2-37
collection, 4-9
cursor, 5-10

cursor parameter, 5-10
definition, 2-37
exception, 6-7
identifier, 2-37
loop counter, 3-13
package, 8-5
SELECT INTO statement
syntax, 11-139
selector, 5-24
SELF parameter, 9-8

semantics
assignment, C-2
blank-padding, C-3
CHAR versus VARCHAR2, C-1
non-blank-padding, C-3
string comparison, C-2

Send Us Your Comments
boilerplate, xiii

separator, 2-3

sequence, 5-4

sequential control, 3-15

serially reusable package, 5-55

SERIALLY_REUSABLE pragma, 5-55

server
integration with PL/SQL, 1-23

service routine, 10-17
examples, 10-17

session, 5-44

session-specific variables, 8-11

set operator, 5-6

SET TRANSACTION statement, 5-50

syntax, 11-142
short-circuit evaluation, 2-44
side effects, 7-13,9-12
significant characters, 2-5
SIGNTYPE subtype, 2-12
simple symbol, 2-3
single-line comment, 2-9
size constraint, subtype, 2-23
size limit, varray, 4-5
SMALLINT subtype, 2-13
snapshot, 5-45
SOME comparison operator, 5-6
spaces

where allowed, 2-2
spaghetti code, 3-15
sparse collection, 4-3
specification

cursor, 5-15

function, 7-5

method, 9-8

object, 9-5

package, 8-5

procedure, 7-4

SQL
comparison operators, 5-6
data manipulation statements, 5-2
pseudocolumn, 5-4
row operators, 5-7
set operators, 5-6
support in PL/SQL, 1-21
SQL cursor
syntax, 11-144
SQL standards conformance, 5-7
SQL92 conformance, 5-7
SQLCODE function, 6-18
syntax, 11-146
SQLERRM function, 6-18
syntax, 11-147
stack, 9-14
standalone subprogram, 1-19
START WITH clause, 5-5
statement
assignment, 11-3
CLOSE, 5-13,5-27,11-14
COMMIT, 11-27
CREATE LIBRARY, 10-3
DELETE, 11-49
EXIT, 11-57
FETCH, 5-12,5-26,11-76
GOTO, 11-83
IF, 11-85
INSERT, 11-88
LOCK TABLE, 11-94
LOOP, 11-96
NULL, 11-102
OPEN, 5-11,11-111
OPEN-FOR, 5-22,11-113
RAISE, 11-126
RETURN, 11-132
ROLLBACK, 11-134
SAVEPOINT, 11-138
SELECT INTO, 11-139
SET TRANSACTION, 11-142
UPDATE, 11-151
statement terminator, 11-12
statement-level rollback, 5-47
STDDEV group function, 5-3

Index-13

STEP clause
mimicking, 3-12
stepwise refinement, 1-2
STORAGE_ERROR exception, 6-6
when raised, 7-24
store table, 4-5
stored subprogram, 1-19, 7-10
string comparison semantics, C-2
string literal, 2-8
STRING subtype, 2-17
structure theorem, 3-2
stub, 3-19,7-3
subprogram, 7-2
advantages, 7-3
declaring, 7-8
how calls are resolved, 7-21
local, 1-19
overloading, 7-18
packaged, 1-19,7-9
parts, 7-2
procedure versus function, 7-5
recursive, 7-24
standalone, 1-19
stored, 1-19, 7-10
subquery, 5-14

SUBSCRIPT_BEYOND_COUNT exception, 6-6

SUBSCRIPT_OUTSIDE_LIMIT exception, 6-6
SUBSTR function, 6-19
subtype, 2-12,2-22
CHARACTER, 2-14
compatibility, 2-24
DEC, 2-13
DECIMAL, 2-13
defining, 2-23
DOUBLE PRECISION, 2-13
FLOAT, 2-13
INT, 2-13
INTEGER, 2-13
NATURAL, 2-12
NATURALN, 2-12
NUMERIC, 2-13
overloading, 7-20
POSITIVE, 2-12
POSITIVEN, 2-12
REAL, 2-13

Index-14

SIGNTYPE, 2-12
SMALLINT, 2-13
STRING, 2-17
VARCHAR, 2-17
SUM group function, 5-3
support for SQL, 5-2
symbol
compound, 2-4
simple, 2-3
syntax definition, 11-1
syntax diagram, reading, 11-2

T

tab, 2-3
TABLE datatype, 4-2
table, index-by, 4-3
table, nested, 4-2
terminating condition, 7-24
terminator
statement, 2-3
ternary operator, 2-41
THEN clause, 3-3
TIMEOUT_ON_RESOURCE exception,
TOO_MANY_ROWS exception, 6-6
top-down design, 1-16
trailing blanks
how handled, C-4
transaction, 5-2,5-45
committing, 5-46
distributed, 5-45
ending properly, 5-49
read-only, 5-50
rolling back, 5-47
transaction processing, 5-2, 5-44
TRIM collection method, 4-25
TRUE value, 2-8
Trusted Oracle, 2-10
%TYPE attribute, 2-30
syntax, 11-149
type definition
collection, 4-5
forward, 9-30
RECORD, 4-29
REF CURSOR, 5-20

6-6

U W

unary operator, 2-41 WHEN clause, 3-7, 6-15

underscore, 2-4 WHILE loop, 3-9

unhandled exception, 6-12, 6-19 wildcard, 2-45

uninitialized object WITH CONTEXT clause, 10-5, 10-16
how treated, 9-25 words, reserved, F-1

UNION ALL set operator, 5-6 work area, query, 5-19

UNION set operator, 5-6

UPDATE statement 7
RETURNING clause, 5-55
syntax, 11-151 ZERO_DIVIDE exception, 6-6

URL (universal resource locator), 8-17
user session, 5-44
user-defined exception, 6-6
user-defined record, 4-28

declaring, 4-30

referencing, 4-31
user-defined subtype, 2-22
UTL_FILE package, 8-17
UTL_HTTP package, 8-17

\%

VALUE operator, 9-32
VALUE_ERROR exception, 6-6
VARCHAR subtype, 2-17
VARCHAR?2 datatype, 2-16
VARCHAR?2 semantics, C-1
variable
assigning values, 2-40
declaring, 2-28
initializing, 2-40
session-specific, 8-11
syntax, 11-29
VARIANCE group function, 5-3
varray
size limit, 4-5
VARRAY datatype, 4-4
visibility
of package contents, 8-2
versus scope, 2-37

Index-15

Index-16

	Up
	Contents
	Send Us Your Comments
	Preface
	1 Overview
	Main Features
	Block Structure
	Variables and Constants
	Cursors
	Cursor FOR Loops
	Cursor Variables
	Attributes
	Control Structures
	Modularity
	Data Abstraction
	Information Hiding
	Error Handling

	Architecture
	In the Oracle Server
	In Oracle Tools

	Advantages of PL/SQL
	Support for SQL
	Support for Object-Oriented Programming
	Better Performance
	Portability
	Higher Productivity
	Integration with Oracle

	2 Fundamentals
	Character Set
	Lexical Units
	Delimiters
	Identifiers
	Literals
	Comments

	Datatypes
	Number Types
	Character Types
	NLS Character Types
	LOB Types
	Other Types

	User-Defined Subtypes
	Defining Subtypes
	Using Subtypes

	Datatype Conversion
	Explicit Conversion
	Implicit Conversion
	Implicit versus Explicit Conversion
	DATE Values
	RAW and LONG RAW Values
	NLS Values

	Declarations
	Using DEFAULT
	Using NOT NULL
	Using %TYPE
	Using %ROWTYPE
	Restrictions

	Naming Conventions
	Synonyms
	Scoping
	Case Sensitivity
	Name Resolution

	Scope and Visibility
	Assignments
	Boolean Values
	Database Values

	Expressions and Comparisons
	Operator Precedence
	Logical Operators
	Comparison Operators
	Concatenation Operator
	Boolean Expressions
	Handling Nulls

	Built-In Functions

	3 Control Structures
	Overview
	Conditional Control: IF Statements
	IF-THEN
	IF-THEN-ELSE
	IF-THEN-ELSIF
	Guidelines

	Iterative Control: LOOP and EXIT Statements
	LOOP
	WHILE-LOOP
	FOR-LOOP

	Sequential Control: GOTO and NULL Statements
	GOTO Statement
	NULL Statement

	4 Collections and Records
	What Is a Collection?
	Understanding Nested Tables
	Understanding Varrays
	Varrays versus Nested Tables

	Defining and Declaring Collections
	Declaring Collections

	Initializing and Referencing Collections
	Referencing Collection Elements

	Assigning and Comparing Collections
	Comparing Whole Collections

	Manipulating Collections
	Some Nested Table Examples
	Some Varray Examples
	Manipulating Individual Elements

	Using Collection Methods
	Using EXISTS
	Using COUNT
	Using LIMIT
	Using FIRST and LAST
	Using PRIOR and NEXT
	Using EXTEND
	Using TRIM
	Using DELETE
	Applying Methods to Collection Parameters

	Avoiding Collection Exceptions
	What Is a Record?
	Defining and Declaring Records
	Declaring Records

	Initializing and Referencing Records
	Referencing Records

	Assigning and Comparing Records
	Comparing Records

	Manipulating Records

	5 Interaction with Oracle
	SQL Support
	Data Manipulation
	Transaction Control
	SQL Functions
	SQL Pseudocolumns
	SQL Operators
	SQL92 Conformance

	Using DDL and Dynamic SQL
	Efficiency versus Flexibility
	Some Limitations
	Overcoming the Limitations

	Managing Cursors
	Explicit Cursors
	Implicit Cursors

	Packaging Cursors
	Using Cursor FOR Loops
	Using Subqueries
	Using Aliases
	Passing Parameters

	Using Cursor Variables
	What Are Cursor Variables?
	Why Use Cursor Variables?
	Defining REF CURSOR Types
	Declaring Cursor Variables
	Controlling Cursor Variables
	Example 1
	Example 2
	Example 3
	Example 4
	Reducing Network Traffic
	Avoiding Exceptions
	Guarding Against Aliasing
	Restrictions

	Using Cursor Attributes
	Explicit Cursor Attributes
	Implicit Cursor Attributes

	Processing Transactions
	How Transactions Guard Your Database
	Using COMMIT
	Using ROLLBACK
	Using SAVEPOINT
	Implicit Rollbacks
	Ending Transactions
	Using SET TRANSACTION
	Overriding Default Locking
	Improving Performance
	Dealing with Size Limitations
	Ensuring Backward Compatibility

	6 Error Handling
	Overview
	Advantages of Exceptions
	Predefined Exceptions
	User-Defined Exceptions
	Declaring Exceptions
	Scope Rules
	Using EXCEPTION_INIT
	Using raise_application_error
	Redeclaring Predefined Exceptions

	How Exceptions Are Raised
	Using the RAISE Statement

	How Exceptions Propagate
	Reraising an Exception
	Handling Raised Exceptions
	Exceptions Raised in Declarations
	Exceptions Raised in Handlers
	Branching to or from an Exception Handler
	Using SQLCODE and SQLERRM
	Unhandled Exceptions

	Useful Techniques
	Continuing after an Exception Is Raised
	Retrying a Transaction
	Using Locator Variables

	7 Subprograms
	What Are Subprograms?
	Advantages of Subprograms
	Procedures
	Functions
	Restriction

	RETURN Statement
	Declaring Subprograms
	Forward Declarations
	Stored Subprograms

	Actual versus Formal Parameters
	Positional and Named Notation
	Positional Notation
	Named Notation
	Mixed Notation

	Parameter Modes
	IN Mode
	OUT Mode
	IN OUT Mode

	Parameter Default Values
	Parameter Aliasing
	Overloading
	Restrictions
	How Calls Are Resolved

	Recursion
	Recursive Subprograms
	Mutual Recursion
	Recursion versus Iteration

	8 Packages
	What Is a Package?
	Advantages of Packages
	The Package Specification
	Referencing Package Contents

	The Package Body
	Some Examples
	Private versus Public Items
	Overloading
	Package STANDARD
	Product-specific Packages
	DBMS_STANDARD
	DBMS_OUTPUT
	DBMS_PIPE
	UTL_FILE
	UTL_HTTP
	DBMS_SQL
	DBMS_ALERT

	Guidelines

	9 Object Types
	The Role of Abstraction
	What Is an Object Type?
	Why Use Object Types?
	Structure of an Object Type
	Components of an Object Type
	Attributes
	Methods
	Pragma RESTRICT_REFERENCES

	Defining Object Types
	Object Type Stack
	Object Type Ticket_Booth
	Object Type Bank_Account
	Object Type Rational

	Declaring and Initializing Objects
	Declaring Objects
	Initializing Objects
	How PL/SQL Treats Uninitialized Objects

	Accessing Attributes
	Calling Constructors and Methods
	Passing Parameters to a Constructor
	Calling Methods

	Sharing Objects
	Using Refs
	Forward Type Definitions

	Manipulating Objects
	Selecting Objects
	Inserting Objects
	Updating Objects
	Deleting Objects

	10 External Procedures
	What Is an External Procedure?
	Creating an External Procedure
	Registering an External Procedure
	Understanding the EXTERNAL Clause
	An Example

	Calling an External Procedure
	An Example

	How PL/SQL Calls an External Procedure
	Environment Variables

	Passing Parameters to an External Procedure
	Specifying Datatypes
	Using the PARAMETERS Clause
	Using the WITH CONTEXT Clause

	Using Service Routines
	OCIExtProcAllocCallMemory
	OCIExtProcRaiseExcp
	OCIExtProcRaiseExcpWithMsg
	OCIExtProcGetEnv

	Doing Callbacks
	Restrictions on Callbacks

	Debugging External Procedures
	Using Package DEBUG_EXTPROC

	Demo Program
	Guidelines for External Procedures
	Restrictions on External Procedures

	11 Language Elements
	Assignment Statement
	Blocks
	CLOSE Statement
	Collection Methods
	Collections
	Comments
	COMMIT Statement
	Constants and Variables
	Cursor Attributes
	Cursor Variables
	Cursors
	DELETE Statement
	EXCEPTION_INIT Pragma
	Exceptions
	EXIT Statement
	Expressions
	External Procedures
	FETCH Statement
	Functions
	GOTO Statement
	IF Statement
	INSERT Statement
	Literals
	LOCK TABLE Statement
	LOOP Statements
	NULL Statement
	Object Types
	OPEN Statement
	OPEN-FOR Statement
	Packages
	Procedures
	RAISE Statement
	Records
	RETURN Statement
	ROLLBACK Statement
	%ROWTYPE Attribute
	SAVEPOINT Statement
	SELECT INTO Statement
	SET TRANSACTION Statement
	SQL Cursor
	SQLCODE Function
	SQLERRM Function
	%TYPE Attribute
	UPDATE Statement

	A New Features
	External Procedures
	Object Types
	Collections
	LOB Types
	NLS Types

	B Sample Programs
	Running the Programs
	Creating the Tables
	Loading the Data

	Sample 1. FOR Loop
	Input Table
	PL/SQL Block
	Output Table

	Sample 2. Cursors
	Input Table
	PL/SQL Block
	Output Table

	Sample 3. Scoping
	Input Table
	PL/SQL Block
	Output Table

	Sample 4. Batch Transaction Processing
	Input Tables
	PL/SQL Block
	Output Tables

	Sample 5. Embedded PL/SQL
	Input Table
	PL/SQL Block in a C Program
	Interactive Session
	Output Tables

	Sample 6. Calling a Stored Procedure
	Input Table
	Stored Procedure
	Interactive Session

	C CHAR versus VARCHAR2 Semantics
	Assigning Character Values
	Comparing Character Values
	Inserting Character Values
	Selecting Character Values

	D PL/SQL Wrapper
	Advantages of Wrapping
	Running the PL/SQL Wrapper
	Input and Output Files
	Error Detection

	E Name Resolution
	What Is Name Resolution?
	Various Forms of References
	Name-Resolution Algorithm
	Finding the Basis

	Understanding Capture
	Inner Capture
	Same-Scope Capture
	Outer Capture

	Avoiding Capture
	Accessing Attributes and Methods
	Calling Subprograms and Methods
	Example 1
	Example 2

	SQL versus PL/SQL

	F Reserved Words
	Index

