Oracle8 [

Tuning

Release 8.0

December, 1997
Part No. A58246-01

ORACLE"

Enabling the Information Age™

8TM

Oracle8 Tuning

Part No. A58246-01

Release 8.0

Copyright © 1997 Oracle Corporation. All Rights Reserved.
Primary Author: Rita Moran

Primary Contributors: Graham Wood, Anjo Kolk, Gary Hallmark

Contributors: Tomohiro Akiba, David Austin, Andre Bakker, Allen Brumm, Dave Colello, Carol Col-
rain, Benoit Dageville, Dean Daniels, Dinesh Das, Michael Depledge, Joyce Fee, John Frazzini, Jyotin
Gautam, Jackie Gosselin, Scott Gossett, John Graham, Todd Guay, Mike Hartstein, Scott Heisey, Alex Ho,
Andrew Holdsworth, Hakan Jakobssen, Sue Jang, Robert Jenkins, Jan Klokkers, Paul Lane, Dan Leary,
Tirthankar Lahiri, Juan Loaiza, Diana Lorentz, George Lumpkin, Roderick Manalac, Sheryl Maring, Ravi
Mirchandaney, Ken Morse, Jeff Needham, Kotaro Ono, Cetin Ozbutun, Orla Parkinson, Doug Rady,
Mary Rhodes, Ray Roccaforte, Hari Sankar, Leng Leng Tan, Lawrence To, Dan Tow, Peter Vasterd, Sandy
Venning, Radek Vingralek, Bill Waddington, Mohamed Zait

Graphic Designer: Valarie Moore

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inher-
ently dangerous applications. It shall be licensee's responsibility to take all appropriate fail-safe, back
up, redundancy and other measures to ensure the safe use of such applications if the Programs are
used for such purposes, and Oracle disclaims liability for any damages caused by such use of the Pro-
grams.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright patent and
other intellectual property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free.

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is deliv-
ered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are ‘commercial
computer software' and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are ‘restricted computer software' and use, duplication and disclo-
sure of the Programs shall be subject to the restrictions in FAR 52..227-14, Rights in Data -- General,
including Alternate 111 (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle, SQL*Loader, Secure Network Services, and SQL*Plus are registered trademarks of Oracle
Corporation, Redwood Shores, California. Oracle Call Interface, Oracle8, Oracle Forms, Oracle TRACE,
Oracle Expert, Oracle Enterprise Manager, Oracle Enterprise Manager Performance Pack, Oracle Parallel
Server, Oracle Server Manager, Net8, PL/SQL, and Pro*C are trademarks of Oracle Corporation,
Redwood Shores, California.

All other products or company names are used for identification purposes only, and may be trademarks
of their respective owners.

Contents

Y=g (o WO ET o 10 SO0] 1 110 01=1 01 £ Xix
o =) =01 = T XXi
Part| Introduction

1 Introduction to Oracle Performance Tuning

What IS Performance TUNINQ?ooiiioi et ettt be b 1-2
Trade-offs Between Response Time and Throughput ... 1-2
CrItICAI RESOUICTES ...ttt 1-4
Effects of EXCESSIVE DEMANM.........cccoiiiiiiiiieiee et 1-6
Adjustments t0 REHEVE ProbDIEMSooiiiiiiiiie s 1-7

WO TUNES? ..ot e bbbt bbbt 1-8

Setting Performance TArQELSottt ettt sbe bbb 1-9

Setting USer EXPECIAIONS.......coiviiiiiitiiieice bbbttt 1-9

Evaluating PerfOrmManCeccoov ittt e et et 1-10

2 Performance Tuning Method

When Is TUNING MOSE EFFECHIVE?ocii e 2-2
Proactive Tuning While Designing and Developing a SyStem..........cccccoeieiiininininicnienns 2-2
Reactive Tuning to Improve a Production SYSTEM ... 2-3

Prioritized Steps of the TUNING MEethod............ccov i 2-5
Step 1: Tune the BUSINESS RUIES........c.oiiciii et 2-7
Step 2: TUNE the Data DESIGNccuoiiiiiee ettt 2-8

Step 3: Tune the APPLICAtioN DESIGNoceiiiiiiiieieie e 2-9

Step 4: Tune the Logical Structure of the Database ..o 2-9
Step 5: Tune Database OPEratiONs........c.cicvieieriirierierieeeeeiese e e e erennes 2-10
Step 6: TuNE the ACCESS PANS ..o s 2-10
Step 7: TuNe MemOory AOCALIONciiiiiiiieee e 2-11
Step 8: Tune 1/0 and PhysSical StrUCLUIE.........coooeieieececece e 2-12
Step 9: Tune RESOUICE CONTENTIONciiiiriiiieiiee e 2-12
Step 10: Tune the Underlying Platform (). 2-12
How to Apply the TUNING Methodcoov i 2-13
Set Clear Goals fOr TUNINGocoviiiic ettt e e sre e sre e 2-13
Create Minimum Repeatable TeSTS ..o 2-14
LIRS A 1Y/ 010] € =T 2-14
KEBEP RECOIAS ...ttt b bbb b bbb et et e st et et ebeebesbe b 2-14
ANV o] o M @oTq a1 aqTe] o N =1 g o] ¢SSR 2-15
Stop Tuning When the Objectives Are MEtcccoeieicicieie e 2-16
Demonstrate Meeting the ObJECLIVES.........cccoveiii e 2-16

3 Diagnosing Performance Problems in an Existing System

Tuning Factors for a Well-Designed EXiSting SYSteM..........cccocveviiiviii i 3-2
INSUTTICIENT CPU ...ttt et e st e et e e be et e s aeebeeaeentesneesreaneas 3-5
Lo Uy 1o [T a1 AV 1= 5 o] Y/ 3-5
INSUTTICIENT 1O ..ttt e et e bt et e s ae e teaneente e e nreanes 3-6
NEEWOIK CONSTIAINTS ..ottt e be et s e e s re s be e s besteesbeeteesbeenbesbeenresbeenns 3-7
SOTIWAIE CONSIFAINTS ..ot e e e e eseeresnearesresrennens 3-7

4 Overview of Diagnostic Tools

Sources Of Data fOr TUNINQ ..o.voviiiiie et ne s e e e eresrenrennen 4-2
DAL VOIUMIES ...ttt bbb bbb bt bbbt e bt et b ettt b b e 4-2
ONliNg Data DICTIONAIYccuiiiiiiiciiieist ettt b bbbttt 4-3
Operating SYSEM TOOIS........cci i reeresrenre s 4-3
Dynamic Performance TabIEScoiveiiiiiiiec e et 4-3
SQL TraCe FACHITY ...ttt bbbttt 4-3
A 1= o o o PSSP 4-3
APPlication Program OULPUL.........coeiiiiieeeeeeese sttt sne s 4-4
L0 T OO PV URTPRURTTRO 4-4

INItIAliZAtION PArameter FIlESooiiieii ettt eraa e s 4-4

PrOgram TEXE. ... e et b e 4-4
Design (ANalysiS) DICLIONAIYcccccviiiirireierceeee st e e snesre e s 4-4
COMPATALIVE DATA.......ciuiieiiiie ettt b bbbt bbb bbb e 4-5
Dynamic PerfOrmanCe VIBWScccouiiiiiriiinieiiniet sttt ettt sttt nn e ane e 4-5
(@1 To] 1= T [0 IS AN A\ | = 0T o o] o 4-5
EXPLAIN PLAN L.ttt bbbttt bbbt 4-6
The SQL Trace Facility and TKPROF ..o e 4-6
S U] o] oToT i (=0 RS Tod o 1 o <SS 4-6
APPLICAtION REGISTIALION ..ottt ettt ettt sb b b e 4-7
Oracle Enterprise Manager APPlICATIONS. ..o e 4-7
Introduction to Oracle ENterprise Manager........ccccveverereeieriereeieeesesie s e e 4-7
Oracle Performance MaNAQJETccveuiiieiiiee sttt st et e et e e sneenae e e sreanes 4-8
OraCle TOPSESSIONS......c.eiitirieteeieie ettt ettt b et b et b et b ettt ettt 4-9
1O = To] (- o Tol SO 4-10
Oracle TableSPace IMANAGETcoui it bbbttt be st sbesne s 4-11
OFACIE EXPEIT.....eieciieciiee et bbbt bbbttt 4-12
Oracle Parallel SErver ManagemeNt..........cccoeiuiierereeieeeie e e e ne e sresnens 4-13
Tools You May Have DEeVEIOPEA..........cocoiiiiiiiiieeeee e e 4-13

Part Il Designing and Developing for Performance

5 Evaluating Your System’s Performance Characteristics

TYPES OF APPIICALION ... ettt b et st be b b 5-2
Online Transaction Processing (OLTP) ..ottt 5-2
(D 1tz VAV =T~ g o103 o T S 5-4
MUItipUrPOSE APPIICALIONSooviiiiitiitirei ettt 5-6

Oracle CONFIQUIALIONS ..ottt bbbttt 5-7
(DT ES] €] o0 (L0 [Y £S) 1= o S 5-7
The Oracle Parallel SEIVET ... 5-9
Client/Server CONfIQUIALIONSccoiiiiiiieiie ettt 5-9

6 Designing Data Warehouse Applications

[T Y d goTo [U]w1 A To] o [PPSR 6-2
Features for Building a Data Ware€hOUSE............ccccveieiieiiscse et 6-2
Parallel CREATE TABLE . . . AS SELECT ..ottt 6-3
Parallel INAeX Creationcc.ccciciiiicc et e be b et e s ae e ste e e steaneas 6-3
FASE FUIT TNAEX SCAN ...ttt bbbt sttt b bbb b abe e 6-3
Partitioned TaDIES ..o 6-4
ANALYZE COMMANG.....cciiiiiiiiicic ettt st s be e st a st e sbeesbesbeesbesneesreaneas 6-4
Parallel LOBA.........ciiiiiieiee bbbttt sb et bbb are e 6-4
Features for Querying a Data WarehOUSEccoeiieii i 6-5
Oracle Parallel SErver OPTION ... 6-5
Parallel-AWare OPLIMIZEL ... re e nesresne s 6-6
Parallel EXECULIONcoiiiiiiieiie et bbbttt b e bt 6-6
BItMAP INOEXES ..ot bbbt e bt et nb et b et eb et b et ane e 6-7
STAN QUETIES ...ttt ettt sttt b e st et e e te e beebt e b e eabeebeeabesbeeabesbeebesbeesbesba e bestbesbeenbebesnsebeenns 6-7
Star TranSTOFrMATION.oiiiii bbb ettt be b b e 6-8
Backup and Recovery of the Data WarehouUSE. ... 6-8

Part Il Optimizing Database Operations

7 Tuning Database Operations

TUNTNG GOAIS ...ttt bbbt bbbt b et bt b et bbb e et 7-2
Tuning a Serial SQL StateMENtcccoviiieieicree e nre s 7-2
Tuning Parallel OPErations ..o et 7-3
TUNING OLTP APPHCALIONScviiiiiiieiiitiee et 7-4
Tuning Data Warehouse APPIICALIONSc..coeveieiiciiire s 7-4

Methodology for Tuning Database OPErationsccccuoiiiriiiiineie e 7-5
Step 1: Find the Statements that Consume the MOSt RESOUICEScccoverieriereeieienenceeniee 7-5
Step 2: Tune These Statements SO They Use LeSS RESOUICES........cccvvvreriereriereeieesieseseseeens 7-6

Approaches to SQL StatemMent TUNINGcoooiiiieee e 7-6
RESTIUCTUIE the TNUEXES ...ttt be e 7-7
ReStructure the STAtEMENTcooviiiiiie bbb 7-7
RESTIUCTUIE The DALA.......couiieiiiie i e ettt sbe s 7-16

vi

8 Optimization Modes and Hints

Using Cost-Based OPtiMmiZationcccoiiiiiiiiiie s 8-2
When to Use the Cost-Based APProachoccoeeiiiciiieiins e 8-2
How to Use the Cost-Based APPIrOACKH ..ot e 8-3
Using Histograms for Nonuniformly Distributed Datacccccoviniiineinenieeeee 8-3
GENEIAtING STALISTICS....iuiiviiiie ittt eeseereeresnesresrenreneenen 8-4
Choosing a Goal for the Cost-Based APPrOaCh ... 8-6
Parameters that Affect Cost-Based Optimization PIans ... 8-7
Tips for Using the Cost-Based APProach...........ccccviiviiiiiiiine e 8-9

Using Rule-Based OPtiMIZation ...t 8-10

INTrOAUCTION 10 HINES ..ottt be b e 8-11

HOW t0 SPECITY HINTS ..o et ne e re e 8-11

Hints for Optimization Approaches and Goals.............ccocviiiiiiiiinie e 8-14
ALL_ROWVS ...ttt bbbt bbbtk ket ek bbbttt 8-14
FIRST_ROWS ..ottt b ettt 8-15
CHOOSE ...t bbbt b bbb bbb bbbttt 8-16
RULE .ttt bbb bbb bbb bbbkt b bt 8-16

HiNts for ACCESS METNOUS ..o s 8-17
FULL bbb bbbt bbbttt 8-17
ROWVID ...ttt bbbt b bbbt b bbb bbbt et b bbbt ne s 8-18
CLUSTER ..ottt b et r et n s 8-18
HASH bbbt bbbttt 8-18
HASH AT bbbt bbbt bbb £t b et b bbbttt et 8-19
HASH _SU . e 8-19
INIDEX ..ottt bbb b bbb bbbttt 8-19
INDEX _ASC ...ttt bbbt bbbt b ket e bbbt bbb bbbttt nn b 8-21
INDEX_COMBINE ..ottt 8-21
INDEX _DESC ...ttt bbbttt bbbttt 8-21
INDEX _FFS... ettt ettt bbb bbbt bbbt bbbttt 8-22
MERGE_AU ...ttt 8-22
IMIERGE_SJ ...ttt bbbttt bbbttt bbbttt 8-22
AND _EQUAL ...tttk bbbttt ekttt b bbb 8-23
USE_CON CAT ..ttt r et b et n et n s 8-23

vii

ORDERED. ..ottt ettt b e b ettt et et e e et e st et e s b et e s b e R e e b e e b e re e re e ereean 8-24
ST AR bbb R ke e bt bt et R bt bbbt b et b et be e ae e 8-24
HiINES TOr JOIN OPEIAtIONS ...ttt bbb e ettt abeene 8-25
L8] N | USSR 8-25
USE_IMERGE ...ttt et b bbbttt ettt 8-26
USE_HASH ..ottt b ettt ettt ettt bbb e ne e 8-27
DRIVING SITE ..ottt bbbttt ettt b et nennns 8-27
Hints for Parallel EXECULION ...t 8-28
PARALLEL ..ottt sttt ettt sttt bt r e 8-28
NOPARALLEL ..ottt ettt bttt sttt ettt b et nennne 8-29
APPEND ..ottt bbb e bt b et bt ettt 8-29
INOAPPEND ..ottt sttt bbb se b e st e st s be et e s e be s e be b ebenberenene 8-30
PARALLEL _INDEX ..itititiititeitete ettt sttt ettt sttt sttt b s snns 8-30
NOPARALLEL_INDEX ...ttt ettt s 8-31
AAITIONAL HINTS Lo et ettt ene 8-32
(O N O | TR USS PSRRI 8-32
NOCACHE ... bbb bbbttt sttt bbbt b e nrne 8-32
IMIERGE ...ttt ekttt bbb 8-33
NO_MERGE ...ttt bbbttt bbbt b e rns 8-33
PUSH_JOIN_PRED......coiitititiiiie ettt ettt bbb 8-34
NO_PUSH_JOIN_PRED ..ottt sttt snne 8-34
PUSH _SUBQ.....coiitiiitititet ettt sttt sttt b e s b et ettt be s te st et et e be st e te st eresbenenrns 8-35
STAR_TRANSFORMATION ..ottt ettt sb e sb e e sne et 8-35
USING HINES WITN VIBWS.......ooiiiiii ettt sttt e s ta e sne e 8-36
Hints and Mergeable VIBWS ..o e 8-36
Hints and NoONMErgeable VIBWS ..ot ane s 8-37

9 Tuning Distributed Queries

viii

Remote and Distributed QUEIIESc.ooviiviiiiie ettt ae s be e aesbaebesreens 9-2
Remote Data Dictionary INfOrmationccooviiiiii i 9-2
REMOtE SQL STALEMIENTS.eiiiiiiiiiti ettt bbb bttt sbe e sbesneas 9-3
Distributed SQL STtatEMENTScceiiiiirieieeriecte ettt e be et s beerbesbeebesaeeebesaeeabeanees 9-4
EXPLAIN PLAN and SQL DeCOMPOSITIONcccoiiiiiiirieiinie e e 9-7
PArtitioN VIBWS......oiiii ettt et e et e st e e s e s beenbeebeetesaeestesaeesteares 9-8

10

11

Distributed QUENY RESIIICLIONS.........ciiiiiice et re s 9-12
TranSPArENt GATEWWAYS.ccuoiiiiiiririiisrese sttt e e et seearenns 9-13
Summary: Optimizing Performance of Distributed QUErIes.........cccccoceveievivcieieieeeceseiens 9-14

Data Access Methods

L0 YT Lo 1 g Lo 1= =TS 10-2
WHEN 10 Create INAEXES.......ciuiiiiiiiie ittt bbb bbbttt sbe e 10-3
TuNing the LOGICal SIIUCTUIEc.oouiiiieiee e 10-3
How to Choose ColUMNS 10 INAEXciiiiiiiiiiiiie e 10-5
How to Choose COMPOSITE INAEXES........oiviiiiiiieieieee e 10-6
How to Write Statements that UsSe INAEXEScc.cviiiiiiiiiiiire et 10-7
How to Write Statements that Avoid Using INAEXEScccvvivvieverinieriiereseeeeeee e 10-8
ASSeSSING the Value Of INAEXESocvveiiicece et 10-8
FAST FUTT TNAEX SCAN......oiiiiiitieieie ettt st bbb sttt s e ne b ebe st e 10-9
RE-Creating an INUEXccccvoiiiie ittt s e e erenns 10-10
Using Existing Indexes to ENforce UNIQUENESS...........coiiiiiirininene e 10-11
USIiNG ENTOrced CONSTIAINTSciiveiiiieiiiiisiese ettt 10-11

USING BItMAaP INUEXESoviieicicecece sttt sttt ne e e enenns 10-13
When to Use Bitmap INAEXING ..ot 10-13
How to Create a Bitmap INAEXcociiiiiiiieie e 10-16
Initialization Parameters for Bitmap INAeXing........cccocevveeveirieiiinisie s 10-18
Using Bitmap Access Plans on Regular B*-tree INAeXes.........ccccoveririneninencicieieccee 10-19
Estimating Bitmap INAEX SIZE.........cooiiiiiiiiiieee e 10-20
Bitmap INdeX RESTFICHIONScccviiieie e renns 10-23

(0] o T O 1051 (= OSSPSR 10-24

USING HASN CHUSTETS ..ottt bbbt 10-25
When to Use @ Hash CIUSTEN ..o 10-25
HOW t0 USe @ HaSh CIUSTET ..o 10-26

Oracle8 Transaction Modes

USING DISCrete TranSACTIONSccviiiicii ettt te et te e steeaesraesre s e e seenreens 11-2
Deciding When to Use Discrete TranSactionsc.coeovieriincinieinieesieesee e 11-2
How Discrete Transactions WOIKcoeiiiiiiiiiiiie e 11-3
Errors DUring Discrete TranSaCtiONSc.cccvoviieiiieieeie ettt sre e 11-3

12

LU ST= T (oI AN Lo (L TP P R TPPRURI 11-4

EXBIMPIE ...ttt 11-4
Using Serializable TranSaCtioNSccvv e srenrs 11-6
Managing SQL and Shared PL/SQL Areas
INEFOTUCTION L.ttt et ekttt bbbt b et e b st ab e e et e et e ebe e 12-2
Comparing SQL Statements and PL/SQL BIOCKS...........ccocooiiiiniiini e 12-2

Testing for Identical SQL StatemMENTS.........cviiiiiiriiiree s 12-3

Aspects of Standardized SQL FOrmMatting.........cccovevveieiriiiiininse s 12-3
Keeping Shared SQL and PL/SQL in the Shared POlccocoiiiinininiiicceee 12-4

Reserving Space for Large AOCALIONScociiiiieiicisese e 12-4

Preventing Objects from Being Aged OUL...........ccooviiiiiiiieienin e 12-4

Part IV Optimizing Oracle Instance Performances

13

14

Tuning CPU Resources

Understanding CPU ProbIemS ... sne e 13-2

How to Detect and Solve CPU ProbIems ..o 13-4
Checking System CPU ULIHIIZAtIONcccoiiiiiiiiiiiie e 13-4
Checking Oracle CPU ULIIZAtION........c..ccccviiiniieereeeceeese e 13-6

Solving CPU Problems by Changing System Architecture.............cccocevevveieinccece e, 13-10
SINGIE TIEN TO TWO-TIEE ..ottt 13-11
Multi-Tier: Using Smaller Client Machingscccooiviviiiieiin i 13-11
Two-Tier to Three-Tier: Using a Transaction Processing Monitor..........c.cccocceviviveinenn, 13-12
Three-Tier: Using MUItiple TP MONITOTS........cciiiiiiineiricieeseeseese e 13-12
Oracle Parallel SEIVETco i 13-13

Tuning Memory Allocation

Understanding Memory AHOCAtioN ISSUES..........cccveiiiiiciese s sre s 14-2

How to Detect Memory Allocation Problems ... 14-3

How to Solve Memory Allocation Problems ... 14-3

Tuning Operating System Memory ReQUIFEMENTSc.covciviieiiienie e 14-4
Reducing Paging and SWaPPINGcocoeieiiiiieesee e et 14-4
Fitting the System Global Area into Main MemoOry ... 14-5

15

Allocating Enough Memory to Individual USErScccceieieiie i 14-6

Tuning the REdO LOG BUTTEL ..o e 14-7
Tuning Private SQL and PL/SQL AT8S.......ccccceiueiueieieiesesesiesesese e stes e seeseessessesesssssessessessesees 14-7
Identifying Unnecessary Parse CallS ... 14-8
Reducing Unnecessary Parse CallS ... 14-9
TUNING the SNAred POOIcovi et e e ene e e ene s 14-11
Tuning the Library Cache...........ccooioiiiicece et 14-13
Tuning the Data Dictionary Cache..........coooiiiiiiiie e 14-19
Tuning the Shared Pool with the Multithreaded Server..........ccccocvoviiiiievinceresceeee 14-20
Tuning Reserved Space from the Shared POOI ... 14-22
TUNING the BUTTEr CACNE ... 14-26
Evaluating Buffer Cache Activity by Means of the Cache Hit Ratiocccccoevvevennne. 14-26
Raising Cache Hit Ratio by Reducing Buffer Cache MiSSeS..........ccccccovvivevieiviieiieinenns 14-29
Removing Unnecessary Buffers when Cache Hit Ratio Is High.........c.cccooeiiiciinn, 14-32
Tuning Multiple BUFFEr POOIS ...ttt ene s 14-36
Overview of the Multiple Buffer POOI FEATUIE...........ccciiiiiiiiiiiie e 14-37
When to Use Multiple BUFfer POOIS ..o 14-38
Tuning the Buffer Cache Using Multiple Buffer POOISccccccovivvivivninescnececee 14-39
Enabling Multiple BUTFEr POOIScoooiiiiec s 14-39
Using Multiple BUTTEE POOIS.........ccciiiiiiiiieie bbb 14-40
Dictionary Views Showing Default BUffer POOIS...........cccooviiiivii i 14-42
How to Size Each BUffer POOL ... 14-42
How to Recognize and Eliminate LRU Latch Contentionccoecevvieneieneicncicnccnnes 14-45
TUNING SO ATAS ...cvcveeveeie ettt sttt e e st e s e e e aeetestesbe st e s besae st e testeseenseneeseeneenenrenneanens 14-46
R H LoTor= 1A Lo AV, [=T 0 o Lo oY OSSR 14-46
Reducing Total MEmOry USAQEc..cceiiiiiiieieiiee ettt 14-47
Tuning 1/0
Understanding 1/O ProbIems ..o 15-2
Tuning I70:; Top Down and BOttOmM UPcvoioiiiiiiccese e 15-2
ANAlYZiNg 170 REQUITEMENTS ..ottt bttt ebe s 15-3
Planning File STOFA0Eo.ciriiiiiie bbbttt 15-5
Choosing Data BIOCK SIZE........ccccviiiiiiieiescce et 15-15
Evaluating Device BandWidth ... 15-16

Xi

[[0)VVR (o T B LY (= Tox VL@ I e] o] [=1 1 1O 15-17

Checking System 170 ULIlIZationcccooiiiiiiiiiiiiee e 15-17
Checking Oracle 170 ULIHZAtION ..ot s aneas 15-18
HOW t0 SOIVE 1/O ProbIEMIS ... e 15-20
Reducing Disk Contention by Distributing 1/O..........cccccoiiiiiiiiniceees 15-21
What IS DiSK CONTENTION?....c..iuiiiiiiiecee et 15-21
Separating Datafiles and Redo Log Files. ... 15-21
SEHPING TADIE DALA......c.civiiitiieieieie ettt bbbttt 15-22
Separating Tables and INAEXESc.ccvcviviiieie e e e eneas 15-22
Reducing Disk 170 Unrelated t0 Oracle ... ieiie i 15-22
SEPING DISKS ...t b bbbttt e 15-23
RTA A F= L ESS 1 11 T RSSO 15-23
170 Balancing and STFIPINGc.ooiiiriiiiiie et e 15-23
How to Stripe DiskS ManUallY.............ccooiiiiiiiiiice s 15-24
How to Stripe Disks with Operating System SOftware...........ccocvevievieiie v 15-25
How to Do Hardware Striping With RAIDccciiiiiiii e 15-26
Avoiding Dynamic Space ManagemMEeNTccooiiriiiiirieiriee ettt 15-26
Detecting DYNamic EXTENSIONccciiiieiiiriiieieece ettt s 15-27
PN | To oo] o T T (=] oL USSR 15-28
Evaluating Unlimited EXIENTS..........ooiiiiiiiie e 15-29
Evaluating MUItIPIE EXTENTS......c.cviiircece et 15-30
Avoiding Dynamic Space Management in Rollback Segments..........ccccooceveiiiiiiicennn 15-30
Reducing Migrated and Chained ROWSccccciiiiiiiiiiieceesee e 15-32
Modifying the SQL.BSQ FilEccviiiiiie et 15-34
LIS L 11T TS] £ SRS SRSS 15-35
SOITING TO IMBIMOTY ...ttt ettt bbbt 15-36
[T YOU DO SOIt 10 DISKouviviieiiiieiiiieeie sttt ettt et ettt 15-37
Optimizing Sort Performance with Temporary Tablespaces..........c.ccooveneriieiciciiiens 15-38
Using NOSORT to Create Indexes Without SOrting...........c.ccoveviiniieninnineiceceeee 15-39
GROUP BY NOSORT ...ttt sttt sttt sttt sttt sttt sb bbb st nesans 15-39
Optimizing Large Sorts with SORT_DIRECT_WRITESccccoiiiiiiiiniie s 15-40
TUNING CHECKPOINTS ...t bbb bbbt 15-41
How Checkpoints Affect PErfOrmMance............coooveveveiii e 15-41
Choosing CheckpOiNt FIEQUENCYooiiiiiiiiiiiieieieeeie ettt e 15-42
Reducing the Performance Impact of a Checkpoint...........coccoviiiiniininneeee 15-42

Xii

16

17

18

Tuning LGWR and DBWNN IOocvoiieece ettt sttt st ste e nte e 15-43

TUNING LGWR 1O .ottt ettt 15-43
TUNING DBWNN 1O ...ttt sttt sttt sttt ne e erenne e 15-44
Configuring the Large POOL ..ottt 15-48
Tuning Networks
How to Detect NetWOrk ProbBIEMS.........ccooiiiiic et 16-2
How t0 Solve NetWOrK ProbI@mMSc.oviiie e e 16-2
USING AFTAY INTEITACESeiui ittt e r e reeneere e s 16-3
USING Prestarted PrOCESSES.ccuiiiiiiiieite sttt ste s te e ste e sae st e et e e sse e be st e sbeansesreaneesreannes 16-3
Adjusting Session Data Unit BUTTEr SIZe..........cccooiiiiiiiiiiieceee e 16-3
Increasing the Listener QUEUE SIZE.......cccvveveieiericeieeee et e e e sre e sne s 16-3
USING TCP.NODELALY ...ttt ettt ettt ne st st enensenen 16-4
Using Shared Server Processes Rather than Dedicated Server Processes...........ccocoeevneene. 16-4
USIiNG CoONNECLION IMANAGETocveiveieiieriiieie ettt sttt sr et e e neeneereeneaneerenrenns 16-4
Tuning the Operating System

Understanding Operating System Performance ISSUESc.cccovvvvivnevenineie e 17-2
OVEBIVIBWV. ...ttt et ettt h bbbt bt bbbt bt eb e bt nb e eb et e b e e e neeb e e b e e bt ebenbenbenre s 17-2
Operating System and Hardware CaCheS..........ccoiiiiirienee e 17-2
RAW DBVICES ..ottt sttt bbb bbb s bbbt b et bbbt bbbt enen 17-3
PrOCESS SCREAUIBTS. ...t e ettt eb e b 17-3

How to Detect Operating System Problems..........coooiiiiiiiiiiee e 17-4

How to Solve Operating System Problems ... 17-5
Performance on UNIX-Based SYSIEMScccvciiiiiiiicic et 17-5
Performance 0N NT SYSTEIMS ...t 17-6
Performance on Mainframe COMPULETS........cc.coeieieieire s e 17-6

Tuning Resource Contention

Understanding CONteNtioN ISSUES...........cciiiiiiiiriiereseeeees e sa e ere e snesrenrenes 18-2
How to Detect Contention ProblemS ..o e 18-3
How to Solve Contention Problems..........c.coi it 18-3
Reducing Contention for Rollback SEgMENTS..........ccccoveiiiiiiicisi e 18-4

Identifying Rollback Segment CONteNtiON...........cccooiiiiiii i 18-4

xii

Creating ROIDACK SEOMENTS........coiiiie et sre s 18-5

Reducing Contention for Multithreaded Server ProCessesccoocoieinernennenseneeseennene 18-6
Reducing Contention for DiSpatCher PrOCESSEScvvvviirierevineseseesieeseeseee s e 18-6
Reducing Contention for Shared SErver PrOCESSES........ccovvveiieieiicieie e 18-9

Reducing Contention for Parallel Server PrOCESSES.........ccouiiiiiriinieiesee s 18-11
Identifying Contention for Parallel SErver ProCESSES........ccovvivrvriereseneseseeiesieneeeenenns 18-11
Reducing Contention for Parallel SEerver PrOoCESSES........ccccvvvveiieiiiereeie e 18-12

Reducing Contention for Redo Log Buffer LatChes ... 18-12
Detecting Contention for Space in the Redo Log BUFfer..........ccccvovvviviivicnciccccee 18-12
Detecting Contention for Redo Log Buffer LatChes...........ccccccovoeviieieve e 18-13
Examining Red0O LOG ACHIVITY ..ot 18-14
Reducing Latch CONtENTION..........cviiii et 18-16

Reducing Contention for the LRU LatCh..........cco o 18-16

Reducing Free LISt CONTENTION. ..ot 18-17
Identifying Free List CONTENTIONcccvviiiieiec e 18-17
AdAING MOTE Free LISTS ..ccuviiiiii ettt sb e sne e 18-18

PartV Optimizing Parallel Execution

19

Xiv

Tuning Parallel Execution

Introduction to Parallel EXeCUtiON TUNINGccccoveiiiieiisic et 19-2
Step 1: Tuning System Parameters for Parallel EXeCUtionccccooveiiiniinnincinceneee 19-3
Parameters Affecting Resource Consumption for All Parallel Operations............c........... 19-3
Parameters Affecting Resource Consumption for Parallel DML & Parallel DDL...... 19-13
Parameters ENabling NeW FEATUIES.........coiiiiiiiciee e 19-16
Parameters Related tO 17O, ... 19-19
Step 2: Tuning Physical Database Layout for Parallel Execution ..., 19-22
TYPES OF PAralleliSImcoooiiiiiii bbb 19-22
R (T oYL Te i I L = PSSR 19-24
PartitioNiNg Data..........cccceiiiiiiiice e nr et re e re e 19-31
Determining the Degree of ParalleliSm ... 19-32
Populating the Database Using Parallel Load...........ccccocoveviiiiciinieninninse e 19-33
Setting Up Temporary Tablespaces for Parallel Sort and Hash Join.........c.ccocooeieiines 19-40

20

21

Creating Indexes iN Parallel ..o e 19-41

Additional Considerations for Parallel DML ONly ... 19-42
StEP 3: ANAIYZING DALAcvcicecice et 19-45
Understanding Parallel Execution Performance Issues
Understanding Parallel Execution Performance ISSUESc.cccoovvvvivievenineieseeeeee e 20-2

The Formula for Memory, Users, and Parallel Server ProCesses..........cccovevviiveieiieninnnens 20-2

Setting Buffer Pool Size for Parallel Operations ..o 20-4

How to Balance the FOrMUIA ... 20-5

Examples: Balancing Memory, Users, and ProCeSSES...........ccocurirererienenieieeieisese s 20-8

Parallel Execution Space Management ISSUES..........cccoeircireineineesee s 20-12

Optimizing Parallel Execution on Oracle Parallel Server.........cccccocvivievviciciciccen, 20-13
Parallel Execution TUNING TECANIQUESc.ooiiiiiiiiiieicc s 20-17

Overriding the Default Degree of Parallelism...........cccoooiiiiiiiiicce 20-17

Rewriting SQL StateMENTScccviiii e neenn 20-18

Creating and Populating Tables in Parallel ... 20-19

Creating Indexes in Parallel ... s 20-20

Refreshing Tables in Parallel...........cccoiiiiiiieccces e 20-22

Using Hints with Cost Based OptimizZation ..o 20-24

Tuning Parallel INSert PerfOrMancCe ..o 20-25
Diagnosing Parallel Execution Performance Problems
Diagnosing ProbIEMS ... e 21-2

IS THEIE REGIESSION?....c.iiiceiceieece sttt e ettt st e st e ae e e e en e seeneeneerennenrens 21-4

IS There @ Plan ChanQe?..........oov it reesaenreens 21-4

ISThere @ Parallel PIANT..........o ettt 21-4

IS THEre @ SErial PIANTcov i e e 21-5

IS There Parallel EXECULIONTcoiiiiiiiiiiiee e e 21-5

IS TREIE SKEWW Y.ttt ettt b et st sb e et et e s e et e e neenesbenbesnen 21-6
Executing Parallel SQL StatemMents........ccccviiiviiiiierecces e 21-7
Using EXPLAIN PLAN to See How an Operation Is Parallelized............ccccocooiiiiiiiinnn 21-8
Using the Dynamic Performance VIBWS..........cociiiiieiiniiieise it 21-10

VB I L E ST AT e bbbt b etttk ettt bbbt b b ane 21-10

VEPARAMETER ..ottt ettt bttt ettt sttt sttt nans 21-10

VEBPQ _SESSTAT ..ottt bbbt bbbt b bbbkt b kbbbt bt 21-10

XV

AV =T I I\ V7 =IO 21-11

VBPQ SY ST AT ittt ettt ettt st et e st et e sb e s e e b e e e be e e be e e be e tesretenrate e 21-11
VBPQ _TOST AT ettt etttk ettt bbbt bt bt b et b ettt ettt enes 21-11
VESESSTAT ANA VESYSSTAT ..ottt ane s 21-12
Querying the Dynamic Performance Views: EXample..........ccoconiiniiniinninenee 21-12
Checking Operating System StatiStiCS.......cccuivieriiiierieecre e 21-14
MiINIMUM RECOVENY TIIME. ..ottt sttt te e e s te e te e e ae s e e besteebeene e 21-14
Parallel DML RESIIICTIONS ..ottt ettt sttt e e s e neeneas 21-15

Part VI Performance Diagnostic Tools

22 The Dynamic Performance Views

Instance-Level VIeWs TOr TUNING ..o 22-2
Session-Level or Transient Views for TUNING.......ccccooiiiriiiiisn e 22-3
Current Statistic Value and Rate 0f Change ..o 22-4
Finding the Current Value of @ STAtiSTICcccoveiriineiese e 22-4
Finding the Rate of Change of @ StatiStiC..........ccoviiiiivini i 22-5

23 The EXPLAIN PLAN Command

INEFOAUCTION .ottt n et 23-2
Creating the OULPUL TADIE..........coiiiie e 23-3
OULPUL TABDIE COIUMNS. ..ottt ettt bbb 23-4
Bitmap Indexes and EXPLAIN PLAN ..o 23-10
INLIST ITERATOR and EXPLAIN PLANcoooiiiiiiieieees e 23-11
Formatting EXPLAIN PLAN OULDUL.........cciiiiiiiriiiieisieesi e 23-13
How to RUN EXPLAIN PLAN 23-13
Selecting PLAN_TABLE Output in Table FOrmatccocooiiiiiinine e 23-14
Selecting PLAN_TABLE Output in Nested FOrmatcccoveiiiniiineinenee e 23-15
EXPLAIN PLAN RESTIICIIONS ..ot 23-16

24 The SQL Trace Facility and TKPROF

11 (0o 11 o] A o) o PSS 24-2
About the SQL Trace FaCHlityccccceiiiieiiee e 24-2
ADOUL TKPROF ...ttt ettt sttt ettt e b te b s sbne 24-3

XVi

How to Use the SQL Trace Facility and TKPROFcccccoc i 24-3

Step 1: Set Initialization Parameters for Trace File Managementcccccovvniniinccnenn 24-4
Step 2: Enable the SQL Trace FaCHlity ..o 24-5
Enabling the SQL Trace Facility for Your Current SESSiONcccocvveveveeienesiese e, 24-5
Enabling the SQL Trace Facility for a Different User SeSSion.........c.ccccovvrvineiinencenienns 24-6
Enabling the SQL Trace Facility for an INStancCeccocvovvvviriiniece e 24-6
Step 3: Format Trace Files With TKPROF ... 24-7
SAMPIE TKPROF OULPULcuetiiiitiitiiet ettt 24-8
SYNLAX OF TKKPROFcci ettt e e e s e seeneenenrenrenrens 24-9
TKPROF Statement EXAMPIEScoiiiiiiiiiiie e 24-12
Step 4: Interpret TKPROF OUEPUL........oiiiiiieecs e 24-13
TADUIAE STALISTICS .. et 24-13
(] o = U VA O Tod T TN Y TS 24-15
StAtEMENT TEUNCALIONccuiitiiiiiiite ittt ettt neereene e 24-16
User Issuing the SQL StatemMENT.........cccoveieieeceece e 24-16
EXECUTION PIAN......oiii bbb bbbt eb et 24-16
Deciding Which Statements t0 TUNEccoieiiiiiiiieise e 24-17
Step 5: Store SQL Trace Facility StatiStiCS.......cooviiiiicicicc e 24-18
Generating the TKPROF Output SQL SCIPt.......ccociiiiiiiiiie e 24-18
Editing the TKPROF Output SQL SCHIPT......coiiiiiiiieiirieireeienieiesieesie e 24-18
Querying the OULPUL TabI.......ccooiiiiie e 24-19
Avoiding Pitfalls in TKPROF INtErpretation ... 24-22
Finding Which Statements Constitute the Bulk of the Load...........ccccoviriiniiccncenne 24-22
I LI AN o [0 T LT A I o PP 24-22
The Read CONSISTENCY TIAP ...cviieiiiirieitirie ettt bbb et 24-23
THE SCHEMIA TTAP ..ottt bbb 24-23
LTI T I o PSP 24-24
LT I (o o =] I o F OSSO PR PRSP 24-25
B LT O ¢ (=Tot Y =T 51 [o PSPPSR 24-25
TKPROF OULPUL EXAMPIE......oiiiiiiie ettt sttt e e eneeresneanens 24-26
[(== Vo 1T TSSO TP PO PRPRURPRURN 24-26
BOOY .t b bbbt r et b et bt b ere e 24-26
RS TU] T 0= 1 2T 24-33

XVii

25

26

XViii

Using Oracle Trace
oY1 oo LU Tod Ao] o KOTSRS 25-2
Using Oracle Trace for Server Performance Data Collectioncccccocvvvvvevevccicvciecseen, 25-3
Using Initialization Parameters to Control Oracle Tracecccocveveiieveiiee v s 25-4
Enabling Oracle Trace COIECIONS ..o e 25-4
Determining the Event Set Which Oracle Trace Collects.........ccocvvvvrieieicnciciceceiieeene 25-5
Using Stored Procedure Packages to Control Oracle Tracecccccvvveveice v 25-6
Using the Oracle Trace Command-Line INTerface ... 25-7
Oracle Trace Collection RESUILS...........cci i e 25-8
Oracle Trace Detail REPOITS.ciiiiiiiii e eeas 25-9
Formatting Oracle Trace Data to Oracle TabIesS ... 25-10
Registering Applications
OVBIVIBW ...ttt bttt et s e s e s e e Rt e bt e b e e Rt e bt e b e eE e e b e ke b se et es b et eneeneebeebeabeeteneeee 26-2
RegiStering APPHICAtIONScccv it re e erenns 26-2
DBMS_APPLICATION_INFO PACKAGE ...c.coveviiiiririeiiiiisisieesiee et 26-2
PrIVIIEOES ..ottt b bbbttt 26-2
Setting the ModUIE NAIME ..o et nre s 26-3
EXAIMIPIE ...t b bt bbb e bt bttt bbbt 26-3
SYNTAX ..ttt bRttt 26-3
Setting the ACION NAIME........ccoiii e e e e e e s e s e aneerenrees 26-4
EXAIMIPIE ..t bbb bbb e b bt ettt b bbb e 26-4
SYNTAX ..ttt bRttt 26-4
Setting the Client INFOrmMatioN ... e 26-5
)Y - PR UPRRIN 26-5
Retrieving Application INfOrMationccoviiiiiiii e 26-6
QUENYING VESQLAREA ...ttt b et sb et be e b et 26-6
READ_MODULE SYNEAX ...c.titiiitiieieiete ettt sttt sttt sttt st sbenesans 26-7
READ_CLIENT _INFO SYNTAX ..tivitiieieiieeiieesieesteesteesteeste s ste s ss st ssetessesessesessesessesessesessns 26-7

Send Us Your Comments

Oracle8 ™ Tuning, Release 8.0
Part No. A58246-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

« Didyou find any errors?

« Isthe information clearly presented?

« Do you need more information? If so, where?

= Are the examples correct? Do you need more examples?
« What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways:

« infodev@us.oracle.com
« FAX-650-506-7228. Attn: Oracle8 Tuning
« postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, 40P12

Redwood Shores, CA 94065

US.A.

If you would like a reply, please give your name, address, and telephone number below.

XiX

XX

Preface

You can enhance Oracle performance by adjusting database applications, the data-
base itself, and the operating system. Making such adjustments is known as tuning.
Proper tuning of Oracle provides the best possible database performance for your
specific application and hardware configuration.

Note: Oracle8 Tuning contains information that describes the features and function-
ality of the Oracle8 and the Oracle8 Enterprise Edition products. Oracle8 and
Oracle8 Enterprise Edition have the same basic features. However, several
advanced features are available only with the Enterprise Edition, and some of these
are optional. For example, to use application failover, you must have the Enterprise
Edition and the Parallel Server Option.

For information about the differences between Oracle8 and the Oracle8 Enterprise
Edition and the features and options that are available to you, please refer to Get-
ting to Know Oracle8 and the Oracle8 Enterprise Edition.

XXi

Intended Audience

Structure

XXii

This manual is an aid for people responsible for the operation, maintenance, and
performance of Oracle. To use this book, you could be a database administrator,
application designer, or programmer. You should be familiar with Oracle8, the oper-
ating system, and application design before reading this manual.

This manual contains six parts:

Part 1: Introduction

Chapter 1: Introduction to Oracle This chapter provides an overview of tuning

Performance Tuning issues. It defines performance tuning and the
roles of people involved in the process.

Chapter 2: Performance Tuning This chapter presents the recommended tun-
Method ing method, and outlines its steps in order of
priority.

Chapter 3: Diagnosing Perfor- This chapter provides an overview of perfor-

mance Problems in an Existing mance factors in existing systems that have

System been properly designed.

Chapter 4: Overview of Diagnostic This chapter introduces the full range of diag-

Tools nostic tools available for monitoring produc-
tion systems and determining performance
problems.

Part 2: Designing and Developing for Performance

Chapter 5: Evaluating Your Sys- This chapter describes the various types of

tem’s Performance Characteristics application that use Oracle databases and the
suggested approaches and features available
when designing each.

Chapter 6: Designing Data Ware- This chapter introduces integrated Oracle8
house Applications features for tuning enterprise-scale data ware-
houses.

Part 3: Writing Efficient SQL Statements
Chapter 7: Tuning Database Oper- This chapter explains the fundamentals of
ations tuning database operations.

Chapter 8: Optimization Modes This chapter explains when to use the avail-
and Hints able optimization modes and how to use
hints to enhance Oracle performance.

Chapter 9: Tuning Distributed This chapter provides guidelines for tuning
Queries distributed queries.

Chapter 10: Data Access Methods This chapter provides an overview of data
access methods that can enhance perfor-
mance, and warns of situations to avoid.

Chapter 11: Oracle8 Transaction This chapter describes the different methods
Modes in which read consistency is performed.

Chapter 12: Managing SQL and This chapter explains the use of shared SQL
Shared PL/SQL Areas to improve performance.

Part 4: Optimizing Oracle Instance Performance
Chapter 13: Tuning CPU Resources This chapter describes how to identify and
solve problems with CPU resources.

Chapter 14: Tuning Memory Allo- This chapter explains how to allocate mem-

cation ory to database structures. Proper sizing of
these structures can greatly improve data-
base performance.

Chapter 15: Tuning I/0 This chapter explains how to avoid 1/0 bot-
tlenecks that could prevent Oracle from per-
forming at its maximum potential.

Chapter 16: Tuning Networks This chapter introduces networking issues
that affect tuning, and points to the use of
array interfaces, out-of-band breaks, and
other tuning techniques.

Chapter 17: Tuning the Operating This chapter explains how to tune the operat-
System ing system for optimal performance of Oracle.

Chapter 18: Tuning Resource Con- This chapter explains how to detect and
tention reduce contention that affects performance.

XXili

XXiV

Part 5: Optimizing Parallel Execution

Chapter 19: Tuning Parallel Execu-
tion

Chapter 20: Understanding Paral-
lel Execution Performance Issues

Chapter 21: Diagnosing Parallel
Execution Performance Problems

This chapter explains how to use parallel exe-
cution features for improved performance.

This chapter provides a conceptual explana-
tion of parallel execution performance issues.

This chapter explains how to diagnose and
solve performance problems in parallel exe-
cution.

Part 6: Performance Diagnostic Tools

Chapter 22: The Dynamic Perfor-
mance Views

Chapter 23: The EXPLAIN PLAN
Command

Chapter 24: The SQL Trace Facility
and TKPROF

Chapter 25: Using Oracle Trace

Chapter 26: Registering Applica-
tions

This chapter describes views that are of the
greatest use for both performance tuning and
ad hoc investigation

This chapter shows how to use the SQL com-
mand EXPLAIN PLAN, and format its out-
put.

This chapter describes the use of the SQL
trace facility and TKPROF, two basic perfor-
mance diagnostic tools that can help you
monitor and tune applications that run
against the Oracle Server.

This chapter provides an overview of Oracle
Trace usage and describes the Oracle Trace
initialization parameters.

This chapter describes how to register an
application with the database and retrieve
statistics on each registered module or code
segment.

Related Documents

This manual assumes you have already read Oracle8 Concepts, the Oracle8 Applica-
tion Developer’s Guide, and Oracle8 Administrator’s Guide.

For more information about Oracle Enterprise Manager and its optional applica-
tions, please see the following publications:

Oracle Enterprise Manager Concepts Guide

Oracle Enterprise Manager Administrator’s Guide

Oracle Enterprise Manager Application Developer’s Guide
Oracle Enterprise Manager: Introducing Oracle Expert
Oracle Enterprise Manager: Oracle Expert User’s Guide

Oracle Enterprise Manager Performance Monitoring User’s Guide. This manual
describes how to use Oracle TopSessions, Oracle Monitor, and Oracle Tablespace
Manager.

Conventions
This section explains the conventions used in this manual including the following:
« text
« syntax diagrams and notation

« code examples

Text
This section explains the conventions used within the text:

UPPERCASE Characters

Uppercase text is used to call attention to command keywords, object names,
parameters, filenames, and so on.

For example, “If you create a private rollback segment, the name must be included
in the ROLLBACK_SEGMENTS parameter of the parameter file.”

Italicized Characters
Italicized words within text are book titles or emphasized words.

XXV

XXVi

Syntax Diagrams and Notation

The syntax diagrams and notation in this manual show the syntax for SQL com-
mands, functions, hints, and other elements. This section tells you how to read syn-
tax diagrams and examples and write SQL statements based on them.

Keywords

Keywords are words that have special meanings in the SQL language. In the syntax
diagrams in this manual, keywords appear in uppercase. You must use keywords
in your SQL statements exactly as they appear in the syntax diagram, except that
they can be either uppercase or lowercase. For example, you must use the CREATE
keyword to begin your CREATE TABLE statements just as it appears in the CRE-
ATE TABLE syntax diagram.

Parameters

Parameters act as place holders in syntax diagrams. They appear in lowercase.
Parameters are usually names of database objects, Oracle datatype names, or
expressions. When you see a parameter in a syntax diagram, substitute an object or
expression of the appropriate type in your SQL statement. For example, to write a
CREATE TABLE statement, use the name of the table you want to create, such as
EMP, in place of the table parameter in the syntax diagram. (Note that parameter
names appear in italics in the text.)

This list shows parameters that appear in the syntax diagrams in this manual and
examples of the values you might substitute for them in your statements:

Parameter Description Examples

table The substitution value must be the emp
name of an object of the type speci-
fied by the parameter.

‘text’ The substitution value must be a ’Employee Records’
character literal in single quotes.

condition The substitution value must be a ename >’A’
condition that evaluates to TRUE or
FALSE.

date The substitution value must be a TO_DATE (
date constant or an expression of

d '01-Jan-1996’
DATE datatype. '

DD-MON-YYYY’)

expr The substitution value can be an sal + 1000
expression of any datatype.

integer The substitution value must be an 72
integer.

rowid The substitution value must be an 00000462.0001.0001
expression of datatype ROWID.

subquery The substitution value must be a SELECT ename
SELECT statement contained in FROM em
another SQL statement. P

statement_name The substitution value must be an sl

block_name identifier for a SQL statement or b1

PL/SQL block.

XXVil

Code Examples

SQL and SQL*Plus commands and statements appear separated from the text of
paragraphs in a monospaced font. For example:

INSERT INTO emp (empno, ename) VALUES (1000, ' SMITH?);
ALTER TABLESPACE users ADD DATAFILE 'users2.ora’ SIZE 50K;

Example statements may include punctuation, such as commas or quotation marks.
All punctuation in example statements is required. All example statements termi-
nate with a semicolon (;). Depending on the application, a semicolon or other termi-
nator may or may not be required to end a statement.

Uppercase words in example statements indicate the keywords within Oracle SQL.
When you issue statements, however, keywords are not case sensitive.

Lowercase words in example statements indicate words supplied only for the con-
text of the example. For example, lowercase words may indicate the name of a
table, column, or file.

Your Comments Are Welcome

XXViii

We value and appreciate your comments as an Oracle user and reader of the manu-
als. As we write, revise, and evaluate our documentation, your opinions are the
most important input we receive. Please use the reader’s comment form to tell us
what you like and dislike about this manual or other Oracle manuals. If the form is
not available, please use the following address:

« infodev@us.oracle.com
« FAX-650-506-7228. Attn: Oracle8 Tuning
« postal service:

Oracle Corporation

Server Technologies Documentation
500 Oracle Parkway, 40P12
Redwood Shores, CA 94065

US.A.

Part |

Introduction

Part | provides an overview of the concepts encountered in tuning the Oracle
Server. The chapters in this part are:

« Chapter 1, “Introduction to Oracle Performance Tuning”
« Chapter 2, “Performance Tuning Method”
« Chapter 3, “Diagnosing Performance Problems in an Existing System”

« Chapter 4, “Overview of Diagnostic Tools”

1

Introduction to Oracle Performance Tuning

The Oracle Server is a sophisticated and highly tunable software product. Its flexi-
bility allows you to make small adjustments that affect database performance. By
tuning your system, you can tailor its performance to best meet your needs.

This chapter gives an overview of tuning issues. Topics in this chapter include:

What Is Performance Tuning?
Who Tunes?

Setting Performance Targets
Setting User Expectations

Evaluating Performance

Introduction to Oracle Performance Tuning 1-1

What Is Performance Tuning?

What Is Performance Tuning?

Performance must be built in! Performance tuning cannot be performed optimally
after a system is put into production. To achieve performance targets of response
time, throughput, and constraints you must tune application analysis, design, and
implementation. This section introduces some fundamental concepts:

« Trade-offs Between Response Time and Throughput
« Critical Resources
« Effects of Excessive Demand

« Adjustments to Relieve Problems

Trade-offs Between Response Time and Throughput

Goals for tuning vary, depending on the needs of the application. Online transac-
tion processing (OLTP) applications define performance in terms of throughput.
These applications must process thousands or even millions of very small transac-
tions per day. By contrast, decision support systems (DSS applications) define per-
formance in terms of response time. Demands on the database that are made by
users of DSS applications vary dramatically. One moment they may enter a query
that fetches only a few records, and the next moment they may enter a massive par-
allel query that fetches and sorts hundreds of thousands of records from various
different tables. Throughput becomes more of an issue when an application must
support a large number of users running DSS queries.

Response Time

Because response time equals service time plus wait time, you can increase perfor-
mance in two ways:

« by reducing service time
« by reducing wait time

Figure 1-1 illustrates ten independent tasks competing for a single resource.

1-2 Oracle8 Tuning

What Is Performance Tuning?

Figure 1-1 Sequential Processing of Multiple Independent Tasks

TOTAL ELAPSED TIME

SEQUENTIAL 1 @

TASKS) = @
3 e - @
4---.
5 oo o o o @
6-----'
7 o> o> o o o o @
G e» @ o> ow @
9--------.
10 a0 a0 a0 v @ o> ®» @ » @

@ servicetime
e waittime

In this example only task 1 runs without having to wait. Task 2 must wait until task
1 has completed; task 3 must wait until tasks 1 and 2 have completed, and so on.
(Although the figure shows the independent tasks as the same size, the size of the
tasks will vary.)

Note: In parallel processing, if you have multiple resources, then more resources
can be assigned to the tasks. Each independent task executes immediately using its
own resource: no wait time is involved.

System Throughput

System throughput equals the amount of work accomplished in a given amount of
time. Two techniques of increasing throughput exist:

« Get more work done with the same resources (reduce service time).

« Get the work done quicker by reducing overall response time. To do this, look
at the wait time. You may be able to duplicate the resource for which all the
users are waiting. For example, if the system is CPU bound you can add more
CPUs.

Introduction to Oracle Performance Tuning 1-3

What Is Performance Tuning?

Wait Time

The service time for a task may stay the same, but wait time will go up as conten-
tion increases. If many users are waiting for a service that takes 1 second, the tenth
user must wait 9 seconds for a service that takes 1 second.

Figure 1-2 Wait Time Rising with Increased Contention for a Resource

Wait Time

Contention for a Resource

Critical Resources

Resources such as CPUs, memory, 1/0 capacity, and network bandwidth are key to
reducing service time. Added resources make possible higher throughput and
swifter response time. Performance depends on the following:

« How many resources are available?

« How many clients need the resource?

« How long must they wait for the resource?
« How long do they hold the resource?

Figure 1-3 shows that as the number of units requested rises, the time to service
completion rises.

1-4 Oracle8 Tuning

What Is Performance Tuning?

Figure 1-3 Time to Service Completion vs. Demand Rate

Time to service completion

bemand Rate —m—mmoo-n >

To manage this situation, you have two options:
= You can limit demand rate to maintain acceptable response times.

« Alternatively, you can add multiple resources: another CPU or disk.

Introduction to Oracle Performance Tuning 1-5

What Is Performance Tuning?

Effects of Excessive Demand

Excessive demand gives rise to:
« greatly increased response time
« reduced throughput

If there is any possibility of demand rate exceeding achievable throughput, a
demand limiter is essential.

Figure 1-4 Increased Response Time/Reduced Throughput

Throughput

Demand Rate

1-6 Oracle8 Tuning

What Is Performance Tuning?

Adjustments to Relieve Problems
Performance problems can be relieved by making the following adjustments:

adjusting unit consumption You can relieve some problems by using less
resource per transaction or by reducing service
time. Or you can take other approaches, such as
reducing the number of 1/0s per transaction.

adjusting functional demand Other problems can be abated by rescheduling
or redistributing the work.

adjusting capacity You can also relieve problems by increasing or
reallocating resource. If you start using multiple
CPUs, going from a single CPU to a symmetric
multiprocessor, you will have multiple
resources you can use.

For example, if your system’s busiest times are from 9:00 AM until 10:30, and from
1:00 PM until 2:30, you can plan to run batch jobs in the background after 2:30,
when more capacity is available. In this way you can spread out the demand more
evenly. Alternatively, you can allow for delays at peak times.

Figure 1-5 Adjusting Capacity and Functional Demand

Functional Demand

Introduction to Oracle Performance Tuning 1-7

Who Tunes?

Who Tunes?

Everyone involved with the system has some role in the tuning process. When peo-
ple communicate and document the system’s characteristics, tuning becomes signif-
icantly easier and faster.

Figure 1-6 Who Tunes the System?

1-8 Oracle8 Tuning

Business Rules

Business Implementation Management

Procedures

&7 &7 &7 &U

Business Application Application Database
Executive Designer Developer Administrator

Business executives must define and then reexamine business rules and proce-
dures to provide a clear and adequate model for application design. They must
identify the specific kinds of rules and procedures that can influence the perfor-
mance of the whole system.

Application designers must design around potential performance bottlenecks.
They must communicate the system design so that everyone can understand
the flow of data in an application.

Application developers must communicate the implementation strategies they
choose so that modules and SQL statements can be quickly and easily identi-
fied during statement tuning.

Database administrators (DBAs) must carefully monitor and document system
activity so that they can identify and correct unusual system performance.

Hardware and software administrators must document and communicate the
configuration of the system so that everyone can design and administer the sys-
tem effectively.

Setting User Expectations

Decisions made in application development and design have the most impact on
performance. Once the application is deployed, the database administrator usually
has the primary responsibility for tuning—within the limitations of the design.

See Also: Chapter 3, “Diagnosing Performance Problems in an Existing System”
for keys that can help database administrators (DBASs) to identify performance
problems and solve them reactively.

Setting Performance Targets

Whether you are designing or maintaining a system, you should set specific perfor-
mance goals so that you know when to tune. You can spend needless time tuning
your system without significant gain if you attempt to alter initialization parame-
ters or SQL statements without a specific goal.

When designing your system, set a specific goal: for example, an order entry
response time of less than three seconds. If the application does not meet that goal,
identify the bottleneck causing the slowdown (for example, 1/0 contention), deter-
mine the cause, and take corrective action. During development, you should test
the application to determine whether it meets the designed performance goals
before deploying the application.

Tuning is usually a series of trade-offs. Once you have determined the bottlenecks,
you may have to sacrifice some other areas to achieve the desired results. For exam-
ple, if I/0 is a problem, you may need to purchase more memory or more disks. If
a purchase is not possible, you may have to limit the concurrency of the system to
achieve the desired performance. However, if you have clearly defined goals for
performance, the decision on what to trade for higher performance is simpler
because you have identified the most important areas.

Setting User Expectations

Application developers and database administrators must be careful to set appro-
priate performance expectations for users. When the system carries out a particu-
larly complicated operation, response time may be slower than when it is
performing a simple operation. In cases like this, the slower response time is not
unreasonable.

If a DBA should promise 1-second response time, consider how this might be inter-
preted. The DBA might mean that the operation would take 1 second in the data-
base—and might well be able to achieve this goal. However, users querying over a
network might experience a delay of a couple of seconds due to network traffic:
they will not receive the response they expect in 1 second.

Introduction to Oracle Performance Tuning 1-9

Evaluating Performance

Evaluating Performance

With clearly defined performance goals, you can readily determine when perfor-
mance tuning has been successful. Success depends on the functional objectives
you have established with the user community, your ability to measure objectively
whether or not the criteria are being met, and your ability to take corrective action
to overcome any exceptions. The rest of this tuning manual describes the tuning
methodology in detail, with information about diagnostic tools and the types of cor-
rective actions you can take.

DBAs who are responsible for solving performance problems must keep a wide
view of the all the factors that together determine response time. The perceived
area of performance problems is frequently not the actual source of the problem.
Users in the preceding example might conclude that there is a problem with the
database, whereas the actual problem is with the network. A DBA must monitor
the network, disk, CPU, and so on, to find the actual source of the problem—rather
than simply assume that all performance problems stem from the database.

Ongoing performance monitoring enables you to maintain a well-tuned system.
Keeping a history of the application’s performance over time enables you to make
useful comparisons. With data about actual resource consumption for a range of
loads, you can conduct objective scalability studies and from these predict the
resource requirements for load volumes you may anticipate in the future.

See Also: Chapter 4, “Overview of Diagnostic Tools”

1-10 Oracle8 Tuning

2

Performance Tuning Method

Methodology is key to success in performance tuning. Different tuning strategies
offer diminishing returns, and it is important to use the strategies with the maxi-
mum gains first. Furthermore, systems with different purposes, such as online
transaction processing systems and decision support systems, may require different
approaches.

Topics in this chapter include

« When Is Tuning Most Effective?

« Prioritized Steps of the Tuning Method
« How to Apply the Tuning Method

See Also: "Oracle Expert" on page 4-12. Oracle Expert automates the process of col-
lecting and analyzing data, and contains rules that provide database tuning recom-
mendations, implementation scripts, and reports.

Performance Tuning Method 2-1

When Is Tuning Most Effective?

When Is Tuning Most Effective?
For dramatically better results, tune during the design phase rather than waiting to
tune after implementing your system.
« Proactive Tuning While Designing and Developing a System

« Reactive Tuning to Improve a Production System

Proactive Tuning While Designing and Developing a System

By far the most effective approach to tuning is to work proactively. Start off at the
beginning of the method described in this chapter, and work your way down.

Business executives must collaborate with application designers to establish justifi-
able performance goals and set realistic performance expectations from the start.
During design and development, the application designers can then determine
which combination of system resources and available Oracle features will best meet
these needs.

By designing a system to perform well, you can minimize its eventual cost and frus-
tration. Figure 2-1 illustrates the relative cost of tuning during the life of an applica-
tion.

Figure 2-1 Cost of Tuning During the Life of an Application

Design Development Production

To complement this view, Figure 2-2 shows that the relative benefit of tuning an
application over the course of its life is inversely proportional to the cost expended.

2-2 Oracle8 Tuning

When Is Tuning Most Effective?

Figure 2-2 Benefit of Tuning During the Life of an Application

-
=
Q
c
3]
m

Design Development Production

As you can see, the most effective time to tune is during the design phase: you get
the maximum benefit at the lowest cost.

Reactive Tuning to Improve a Production System

Many people believe the tuning process begins when users complain about poor
response time. This is usually too late in the process to use some of the most effec-
tive tuning strategies. At that point, if you are unwilling to completely redesign the
application, you may only improve performance marginally by reallocating mem-
ory and tuning 1/0.

Consider, for example, a bank which employs one teller and one manager. It has a
business rule that the manager must approve any withdrawals exceeding $20.
Upon investigation, you may find that there is a long queue of customers, and
deduce that you need more tellers. You may add 10 more tellers, but then find that
the bottleneck moves to the manager’s function. However, the bank may determine
that it is too expensive to hire additional managers. Regardless of how carefully
you may tune the system using the existing business rule, getting better perfor-
mance will be very expensive.

Upon stepping back, you may see that a change to the business rule may be neces-
sary to make the system more scalable. If you change the rule such that the man-
ager need only approve withdrawals exceeding $150, you have come up with a
scalable solution. In this situation, effective tuning could only be done at the high-
est design level, rather than at the end of the process.

Performance Tuning Method 2-3

When Is Tuning Most Effective?

It is nonetheless possible to work reactively to tune an existing production system.
To take this approach, start at the bottom of the method and work your way up,
finding and fixing any bottlenecks. A common goal is to make Oracle run faster on
the given platform. You may find, however, that both Oracle Server and the operat-
ing system are working well: to get additional performance gains you may have to
tune the application or add resources. Only then can you take full advantage of the
many features Oracle provides that can greatly improve performance when prop-
erly used in a well-designed system.

Note that even the performance of well-designed systems can degrade with use.
Ongoing tuning is therefore an important part of proper system maintenance.

See Also: Part 4: Optimizing Oracle Instance Performance, which contains chapters
that describe in detail how to tune CPU, memory, I/0, networks, contention, and
the operating system.

Oracle8 Concepts: To find performance bottlenecks quickly and easily and determine
the corrective action for a production system, you must have a firm understanding
of Oracle Server architecture and features.

2-4 Oracle8 Tuning

Prioritized Steps of the Tuning Method

Prioritized Steps of the Tuning Method

The recommended method for tuning an Oracle database prioritizes steps in order
of diminishing returns: steps with the greatest impact on performance are listed
first. For optimal results, therefore, tackle tuning issues in the order listed: from the
design and development phases through instance tuning.

Step 1: Tune the Business Rules

Step 2: Tune the Data Design

Step 3: Tune the Application Design

Step 4: Tune the Logical Structure of the Database
Step 5: Tune Database Operations

Step 6: Tune the Access Paths

Step 7: Tune Memory Allocation

Step 8: Tune 170 and Physical Structure

Step 9: Tune Resource Contention

Step 10: Tune the Underlying Platform(s)

After completing the steps of the tuning method, reassess your database perfor-
mance and decide whether further tuning is necessary.

Note that this is an iterative process. Performance gains made in later steps may
pave the way for further improvements in earlier steps, so additional passes
through the tuning process may be useful.

Figure 2-3 illustrates the tuning method:

Performance Tuning Method 2-5

Prioritized Steps of the Tuning Method

Figure 2-3 The Tuning Method

v

1 Tune the business rules
I
2 Tune the data design
I
3 Tune the application design <«
4 ;I;]une the logical ltructure of
e database

5 Tune database operations
I

6 Tune the access paths
I

7 Tune memory allocation <
I

8 Tune the I/O and physical structure | <=
I

9 Tune the resource contention <
I

10 Tune the underlying platform(s)

Decisions you make in one step may influence subsequent steps. For example, in
step 5 you may rewrite some of your SQL statements. These SQL statements may
have significant bearing on parsing and caching issues addressed in step 7. Also,

2-6 Oracle8 Tuning

Prioritized Steps of the Tuning Method

disk 1/0, which is tuned in step 8, depends on the size of the buffer cache, which is
tuned in step 7. Although the figure shows a loop back to step 1, you may need to
loop back from any step to any previous step.

Step 1: Tune the Business Rules

For optimal performance, you may have to adapt business rules. These concern the
high-level analysis and design of an entire system. Configuration issues are consid-
ered at this level, such as whether or not to use a multithreaded server system-
wide. In this way, the planners ensure that the performance requirements of the sys-
tem correspond directly to concrete business needs.

Performance problems encountered by the DBA may actually be caused by prob-
lems in design and implementation, or by inappropriate business rules. People
commonly get in too deep when they write the business functions of an applica-
tion. They document an implementation, rather than simply the function that must
be performed. If business executives use care in abstracting the business function
or requirement from the implementation, then designers have a wider field from
which to choose the appropriate implementation.

Consider, for example, the business function of check printing. The actual require-
ment is to pay money to people; the requirement is not necessarily to print up
pieces of paper. Whereas it would be very difficult to print up a million checks per
day, it would be relatively easy to record that many direct deposit payments on a
tape which could be sent to the bank for processing.

Business rules should be consistent with realistic expectations for the number of
concurrent users, the transaction response time, and the number of records stored
online that the system can support. For example, it would not make sense to run a
highly interactive application over slow wide area network lines.

Similarly, a company soliciting users for an Internet service might advertise 10 free
hours per month for all new subscribers. If 50,000 users per day signed up for this
service, the demand would far exceed the capacity for a client/server configura-
tion. The company should instead consider using a multitier configuration. In addi-
tion, the signup process must be simple: it should require only one connection from
the user to the database, or connection to multiple databases without dedicated con-
nections, making use of a multithreaded server or transaction monitor approach.

Performance Tuning Method 2-7

Prioritized Steps of the Tuning Method

Step 2: Tune the Data Design

In the data design phase, you must determine what data is needed by your applica-
tions. You need to consider what relations are important, and what their attributes
are. Finally you need to structure the information to best meet performance goals.

The database design process generally undergoes a normalization stage, in which
data is analyzed to ensure that no redundant data will be held anywhere. One fact
should be stated in one and only one place in the database. Once the data is care-
fully normalized, however, you may need to denormalize it for performance rea-
sons. You might, for example, decide that the database should hold frequently
required summary values. Rather than forcing an application to recalculate the
total price of all the lines in a given order each time it is accessed, you might decide
to include the total value of each order in the database. You could set up primary
key and foreign key indexes to access this information quickly.

Another data design consideration is the avoidance of contention on data. Consider
a database 1 terabyte in size, on which a thousand users access only 0.5% of the
data. This “hot spot” in the data could cause performance problems.

Try also to localize access to the data: localize it to each process, to each instance,
and to each partition. Contention begins when access becomes remote, and the
amount of contention determines scalability.

In Oracle Parallel Server, look for synchronization points—any point in time, or
part of an application, that must run sequentially, one process at a time. The require-
ment of having sequential order numbers, for example, is a synchronization point
that results from poor design.

Consider two Oracle8 enhancements that can help you to tune the data design to
avoid contention:

« Consider whether or not to partition your data.
« Consider whether to use local or global indexes.

See Also: Chapter 2, “Performance Tuning Method”
"Partitioning Data" on page 19-23
Oracle8 Concepts for discussions of partitioning and indexes

2-8 Oracle8 Tuning

Prioritized Steps of the Tuning Method

Step 3: Tune the Application Design

Business executives and application designers need to translate business goals into
an effective system design. Business processes concern a particular application
within a system, or a particular part of an application.

An example of intelligent process design is strategically caching data. For example,
in a retail application you can select the tax rate once at the beginning of each day;,
and cache it within the application. In this way you avoid retrieving the same infor-
mation over and over during the course of the day.

At this level also, you can consider configuration of individual processes. For exam-
ple, some PC users may be accessing the central system using mobile agents,
whereas other users may be directly connected. Although they are running on the
same system, the architecture is different. They may also require different mail serv-
ers and different versions of the application.

Step 4: Tune the Logical Structure of the Database

After the application and the system have been designed, you can plan the logical
structure of the database. This primarily concerns fine-tuning the index design, to
ensure that the data is neither over- nor under-indexed. In the data design stage
(Step 2) you determine the primary and foreign key indexes. In the logical structure
design stage you may create additional indexes to support the application.

Performance problems due to contention often involve inserts into the same block
or incorrect use of sequence numbers. Use particular care in designing the use and
location of indexes, the sequence generator, and clusters.

See Also: "Using Indexes" on page 10-2

Performance Tuning Method 2-9

Prioritized Steps of the Tuning Method

Step 5: Tune Database Operations

System designers and application developers must understand Oracle’s query pro-
cessing mechanism to write effective SQL statements. Chapter 8, “Optimization
Modes and Hints”, discusses Oracle’s query optimizer and how to write statements
that achieve the fastest results.

Before tuning the Oracle Server itself, be certain that your application is taking full
advantage of the SQL language and the Oracle features designed to speed applica-
tion processing. Use features and techniques such as the following based on the
needs of your application:

« Array processing

« The Oracle optimizer

« The row-level lock manager
. PL/SQL

See Also: “Part 3: Optimizing Database Operations”

Step 6: Tune the Access Paths

Ensure that there is efficient access to data. Consider the use of clusters, hash clus-
ters, B*-tree indexes and bitmap indexes.

Ensuring efficient access may mean adding indexes, or adding indexes for a particu-
lar application and then dropping them again. It may mean revisiting your design
after you have built the database. You may want to do more normalization or cre-
ate alternative indexes at this point. Upon testing the application you may find that
you’re still not obtaining the required response time. Look for more ways to
improve the design.

See Also: Chapter 10, “Data Access Methods”

2-10 Oracle8 Tuning

Prioritized Steps of the Tuning Method

Step 7: Tune Memory Allocation

Appropriate allocation of memory resources to Oracle memory structures can have
a large impact on performance.

Oracle8 shared memory is allocated dynamically to the following structures, which
are all part of the shared pool. Although you explicitly set the total amount of mem-
ory available in the shared pool, the system dynamically sets the size of each struc-
ture contained within it;

« The data dictionary cache

« The library cache

« Context areas (if running a multithreaded server)

You can explicitly set memory allocation for the following structures:
« Buffer cache

« Log buffer

= Sequence caches

Proper allocation of memory resources can improve cache performance, reduce
parsing of SQL statements, and reduce paging and swapping.

Process local areas include:

« Context areas (for systems not running a multithreaded server)
« Sortareas

« Hash areas

Be careful not to allocate to the system global area (SGA) such a large percentage of
the machine’s physical memory that it causes paging or swapping.

See Also: Chapter 14, “Tuning Memory Allocation”
Oracle8 Concepts for information about memory structures and processes

Performance Tuning Method 2-11

Prioritized Steps of the Tuning Method

Step 8: Tune 1/0 and Physical Structure

Disk 1/0 tends to reduce the performance of many software applications. Oracle
Server, however, is designed so that its performance need not be unduly limited by
I/0. Tuning I/0 and physical structure involves these procedures:

« Distributing data so that 170 is distributed, thus avoiding disk contention

« Storing data in data blocks for best access: setting the right number of free lists,
and proper values for PCTFREE and PCTUSED

« Creating extents large enough for your data so as to avoid dynamic extension
of tables, which would hurt high-volume OLTP applications

« Evaluating the use of raw devices
See Also: Chapter 15, “Tuning 1/0”

Step 9: Tune Resource Contention

Concurrent processing by multiple Oracle users may create contention for Oracle
resources. Contention may cause processes to wait until resources are available.
Take care to reduce the following kinds of contention:

« Block contention

« Shared pool contention

« Lock contention

« Pinging (in a parallel server environment)
« Latch contention

See Also: Chapter 18, “Tuning Resource Contention”

Step 10: Tune the Underlying Platform(s)

See your platform-specific Oracle documentation to investigate ways of tuning the
underlying system. For example, on UNIX-based systems you might want to tune
the following:

« Size of the UNIX buffer cache
« Logical volume managers
« Memory and size for each process

See Also: Chapter 17, “Tuning the Operating System”

2-12 Oracle8 Tuning

How to Apply the Tuning Method

How to Apply the Tuning Method

This section explains how to apply the tuning method:
« Set Clear Goals for Tuning

« Create Minimum Repeatable Tests

« Test Hypotheses

« Keep Records

« Avoid Common Errors

« Stop Tuning When the Objectives Are Met

« Demonstrate Meeting the Objectives

Set Clear Goals for Tuning

Never begin tuning without having first established clear objectives: you cannot
succeed if there is no definition of “success.”

“Just make it go as fast as you can” may sound like an objective, but it will be very
difficult to determine whether this has been achieved. It will be even more difficult
to tell whether your results have met the underlying business requirements. A
more useful statement of objectives is the following: “We need to have as many as
20 operators each entering 20 orders per hour, and the packing lists produced
within 30 minutes of the end of the shift.”

Keep your goals in mind as you consider each tuning measure; consider its perfor-
mance benefits in light of your goals.

Also bear in mind that your goals may conflict. For example, to achieve best perfor-
mance for a specific SQL statement, you may have to sacrifice the performance of
other SQL statements running concurrently on your database.

Performance Tuning Method 2-13

How to Apply the Tuning Method

Create Minimum Repeatable Tests

Create a series of minimum reproducible cases. For example, if you manage to iden-
tify a single SQL statement that is causing a performance problem, then run both
the original and the revised version of that statement in SQL*Plus (with the SQL
trace facility or Oracle Trace enabled) so that you can see statistically the difference
in performance. In many cases, a tuning effort can succeed simply by identifying
one SQL statement that was causing the performance problem.

If you must cut a 4-hour run down to 2 hours duration, you will probably find that
repeated timings take too long. Perform your initial trials against a test environ-
ment that exhibits a profile similar to the real one. For example, you could impose
some additional restrictive condition such as processing one department instead of
all 500 of them. The ideal test case will run for more than 1 minute, so that improve-
ments can be seen intuitively, as well as measured using timing features. It should
run for less than 5 minutes, however, so that test execution does not consume an
excessive proportion of the time available.

Test Hypotheses

With a minimum repeatable test established, and with a script both to conduct the
test and to summarize and report the results, you can test various hypotheses to see
the effect.

Bear in mind that Oracle’s caching algorithms mean that the first time data is vis-
ited there is an additional overhead. Thus, if two approaches are tried one after the
other, the second will always have a tactical advantage: data which it would other-
wise have had to read from disk may be left in the cache.

Keep Records

Keep records of the effect of each change: incorporate record keeping in the script
being used to run the test. You should automate the testing process for a number of
reasons:

« For cost effectiveness in terms of the tuner’s ability to conduct tests quickly

= To ensure that the tests are conducted in the same way, using the same instru-
mentation, for each hypothesis being tested

Anecdotal results from tests should be checked against the objective data before
being accepted.

2-14 Oracle8 Tuning

How to Apply the Tuning Method

Avoid Common Errors

A common error made by inexperienced tuners is to cling to preconceived notions
about what may be causing the problem at hand. The next most common error is to
try various approaches at random.

Each time you think that you are onto something, try explaining it to someone else.
Often you yourself will spot mistakes, simply from having gone through the disci-
pline of articulating your ideas. For best results you should build a team of people
to resolve performance problems. While a performance tuner can tune SQL state-
ments without knowing the application in detail, the team should include someone
who does understand the application and who can validate the solutions that the
SQL tuner may devise.

Avoid Rash Actions

Beware of doing something rash. Once you have a hypothesis, you may be tempted
to implement it globally throughout the system and then wait to see the results.
You can ruin a perfectly good system in this way!

Avoid Preconceptions

Try to avoid preconceptions when you come to a tuning problem. Get users to tell
you the symptoms they perceive—but do not expect them to know why the prob-
lem exists.

One user, for example, had serious system memory problems over a long period of
time. In the morning the system ran well, but performance then dropped off very
rapidly. A consultant called in to tune the system was told that a PL/SQL memory
leak was the cause. As it turned out, this was not at all the problem. Rather, the
user had set SORT_AREA_SIZE to 10 MB on a machine with 64 MB of memory,
and had 20 users. When users came on to the system, the first time they did a sort
they would get their sort area. The system thus was burdened with 200 MB of vir-
tual memory and was hopelessly swapping and paging.

Many people will speculate about the cause of the problem. Ask questions of those
affected, and of those responsible for the system. Listen to the symptoms that users
describe, but do not accept prima facie their notions as to the cause!

Avoid “Hit and Hope”

Avoid seizing on panaceas that may be bandied about in database folklore, such as
“set the GO_FASTER parameter and everything will work faster.” Be wary of apoc-
ryphal tales—such as the false notion that all tables must be in a single extent for
performance to be acceptable.

Performance Tuning Method 2-15

How to Apply the Tuning Method

Stop Tuning When the Objectives Are Met

One of the great advantages of having targets for tuning is that it becomes possible
to define success. Past a certain point, it is no longer cost effective to continue tun-
ing a system.

Demonstrate Meeting the Objectives

As the tuner you may be confident that the performance targets have been met.
You nonetheless must demonstrate this to two communities:

« the users affected by the problem

« those responsible for the application’s success

2-16 Oracle8 Tuning

Diagnosing Performance Problems in an
Existing System

This chapter provides an overview of factors affecting performance in existing sys-
tems that have been properly designed. Note, however, that tuning these factors
cannot compensate for poor design!

« Tuning Factors for a Well-Designed Existing System
« Insufficient CPU

« Insufficient Memory

« Insufficient 1/0

« Network Constraints

« Software Constraints

Later chapters discuss each of these factors in depth.

Diagnosing Performance Problems in an Existing System 3-1

Tuning Factors for a Well-Designed Existing System

Tuning Factors for a Well-Designed Existing System

The following figure illustrates the many factors involved in Oracle system perfor-
mance, when considering a well-designed existing application.

Attention: Tuning these factors is effective only after you have tuned the business
process and the application, as described in “Performance Tuning Method”. Tuning
these factors cannot make up for the performance gains that must be designed into
the system.

3-2 Oracle8 Tuning

Tuning Factors for a Well-Designed Existing System

Figure 3—1 Major Performance Factors in a Well-designed System

Sample Tuning Approach

Reduce number
of packets

Reduce size
of packets

Major Performance Factor

Network Issues

CPU Issues CPU CPU CPU CPU Reduce CPU
service time

Memory Issues Memory | | Memory || Memory | | Memory Reduce memory
usage by
sharing SQL

Software Issues Oracle8 Tune the instance
Database

Evenly distribute

1/0 Issues
1/0 Channels /0

Diagnosing Performance Problems in an Existing System 3-3

Tuning Factors for a Well-Designed Existing System

Performance problems tend to be interconnected rather than isolated. The follow-
ing table provides a key to performance factors in an existing system, and the areas
in which symptoms may appear. Buffer cache problems, for example, may show up
as issues of CPU, memory, or 1/0. Tuning the buffer cache for CPU may in turn
improve 1/0.

Table 3-1 Key to Tuning Areas for Existing Systems

ORACLE TUNING AREAS LIMITING RESOURCES

CPU Memory 1/O Network Software

Application
Design/Architecture
DML SQL

Query SQL
Client/Server Roundtrips

X X X X
X X X X

Instance
Buffer Cache
Shared Pool

Sort Area

X X X X

Physical Structure of Data/DB
File 1I/0

x

Log File 1/0 X
Archiver 170 X

Rollback Segments

Locking X X

X X X X X

Backups

Operating System

Memory Management X
1/0 Management

Process Management X

X X X X

Network Management

3-4 Oracle8 Tuning

Insufficient Memory

Insufficient CPU

In a CPU-bound system, the CPU resource is completely used up, service time is
too high and you want to achieve more. Alternatively, you have too much idle
time, want to achieve more, and the CPU is not completely used up. There is room
to do more: you need to determine why so much time is spent waiting.

To diagnose insufficient CPU, you must check CPU utilization by your entire sys-
tem, not only utilization by Oracle Server processes. At the beginning of a workday,
for example, the mail system may consume a very large amount of the available
CPU while employees check their messages. Later in the day, the mail system may
be much less heavily used, and its CPU utilization will drop accordingly.

Workload is a very important factor when evaluating your system’s level of CPU
utilization. During peak workload hours, 90% CPU utilization with 10% idle and
waiting time may be understandable and acceptable; 30% utilization at a time of
low workload may also be understandable. However, if your system shows high
utilization at normal workload, there is not room for peak workload. You have a
CPU problem if idle time and time waiting for 1/0 are both close to zero (less than
5%) at a normal or low workload.

See Also: Chapter 13, “Tuning CPU Resources”

Insufficient Memory

Sometimes a memory problem may be detected as an I/0 problem. There are two
kinds of memory requirements: Oracle and system. Oracle memory requirements
affect the system requirements. Memory problems may be the cause of all the pag-
ing and swapping that goes on in the machine. Make sure that your system does
not start swapping and paging. The whole system should be able to run within the
limitations set by internal memory.

System memory requirements for non-Oracle processes plus Oracle memory
requirements should be equal to or less than internal memory. To achieve this, you
can trim some elements of the Oracle requirements, most likely buffer cache,

shared pool, or redo log buffer. On the system level you can trim the number of pro-
cesses and/or the amount of memory each process uses. You can also identify
which processes are using the most memory. One way to reduce memory usage
might be by sharing SQL.

See Also: Chapter 14, “Tuning Memory Allocation”

Diagnosing Performance Problems in an Existing System 3-5

Insufficient 1/0

Insufficient I/O

Be sure to distribute 1/0 evenly across disks and channels. 170 resources involve:
« Channel bandwidth: number of 1/0 channels

« Device bandwidth: number of disks

« Device latency: latency will be part of your wait time

170 problems may result from limitations of your hardware configuration. Your
system needs enough disks and SCSI busses to support the transaction throughput
you desire. You can evaluate the configuration by figuring the number of messages
all your disks and busses can potentially support, and comparing that to the num-
ber of messages required by your peak workload.

If the response time of an 1/0 becomes too high, the most common problem is that
wait time has gone up (response time = service time + wait time). If wait time goes
up, it means that there are too many 170 requests for this device. If service time
goes up, this normally means that the 1/0 requests are larger, so you write more
bytes.

The different background processes (DBWR, ARCH, and so on) perform different
kinds of 1/0, and each process has different 1/0 characteristics. Some read and
write in the block size of the database, some read and write in larger chunks. If ser-
vice time is too high, stripe the file over different devices.

Mirroring can also be a cause of 170 bottlenecks unless the data is mirrored on the
same number of disks as the database itself.

See Also: Chapter 15, “Tuning 1/0”

3-6 Oracle8 Tuning

Software Constraints

Network Constraints

Network constraints are similar to 170 constraints. You need to consider:

« Network bandwidth: Each transaction requires that a certain number of pack-
ets be sent over the network. If you know the number of packets required for
one transaction, you can compare that to the bandwidth to determine whether
your system is capable of supporting the desired workload.

« Message rates: You can reduce the number of packets on the network by batch-
ing them rather than sending lots of small packets.

« Transmission time

As the number of users and the demand rises, the network can sometimes quietly
become the bottleneck in an application. You may be spending a lot of time waiting
for network availability. Use available operating system tools to see how busy your
network is.

See Also: Chapter 16, “Tuning Networks”

Software Constraints

Operating system software determines:
« The maximum number of processes you can support
« The maximum number of processes you can connect

Before you can tune Oracle effectively, you must ensure that the operating system
is at its peak performance. Work closely with the hardware/software system admin-
istrators to ensure that Oracle is allocated the proper operating system resources.

Note: On NT systems there are no pre-set or configurable maximum numbers of
processes that can be supported or connected.

See Also: Operating system tuning is different for every platform. Refer to your
operating system hardware/software documentation as well as your Oracle operat-
ing system-specific documentation for more information.

In addition, see Chapter 17, “Tuning the Operating System”.

Diagnosing Performance Problems in an Existing System 3-7

Software Constraints

3-8 Oracle8 Tuning

A

Overview of Diagnostic Tools

This chapter introduces the full range of diagnostic tools that are available for moni-
toring production systems and determining performance problems.

Topics in this chapter include

Sources of Data for Tuning

Dynamic Performance Views

Oracle and SNMP Support

EXPLAIN PLAN

The SQL Trace Facility and TKPROF
Supported Scripts

Application Registration

Oracle Enterprise Manager Applications
Oracle Parallel Server Management

Tools You May Have Developed

Overview of Diagnostic Tools 4-1

Sources of Data for Tuning

Sources of Data for Tuning

This section describes the various sources of data for tuning. Note that many of
these sources may be transient. They include:

= Data Volumes

« Online Data Dictionary

« Operating System Tools

« Dynamic Performance Tables
« SQL Trace Facility

« AlertLog

« Application Program Output
=« Users

« Initialization Parameter Files
« Program Text

« Design (Analysis) Dictionary

« Comparative Data

Data Volumes

The tuning data source most often overlooked is the data itself. The data may con-
tain information that can tell you how many transactions were performed, at what
time. The number of rows added to an audit table, for example, can be the best mea-
sure of the amount of useful work done (the throughput). Where such rows contain
a time stamp, you can query the table and use a graphics package to plot the
throughput against date and time. Such a date-time stamp need not be apparent to
the rest of the application.

If your application does not contain an audit table, you might not want to add one:
it would delay performance. Consider the trade-off between the value of obtaining
the information and the performance cost of doing so.

4-2 Oracle8 Tuning

Sources of Data for Tuning

Online Data Dictionary

The Oracle online data dictionary is a rich source of tuning data when used with
the SQL statement ANALYZE object-type. This statement stores cluster, table, col-
umn, and index statistics within the dictionary, primarily for use by the cost based
optimizer. The dictionary also defines the indexes that are available to help (or pos-
sibly hinder) performance.

Operating System Tools

Tools that gather data at the operating system level are primarily useful for deter-
mining scalability, but you should also consult them at an early stage in any tuning
activity. In this way you can ensure that no part of the hardware platform is satu-
rated (operating at or close to its maximum capacity). Network monitors are also
required in distributed systems, primarily to check that no network resource is
overcommitted. In addition, you can use a simple mechanism such as the UNIX
command ping to establish message turnaround time.

See Also: Your operating system documentation for more information on platform-
specific tools.

Dynamic Performance Tables

A number of V$ dynamic performance views are available to help you tune your
system, and investigate performance problems. They allow users access to memory
structures within the SGA.

See Also: Chapter 22, “The Dynamic Performance Views”
Oracle8 Concepts provides detailed information about each view.

SQL Trace Facility

Alert Log

SQL trace files record the SQL statements issued by a connected process and the
resources used by these statements. In general, use the virtual tables to tune the
instance, and use SQL trace file output to tune the applications.

See Also: Chapter 24, “The SQL Trace Facility and TKPROF”

Whenever something unexpected happens in an Oracle environment, it is worth
checking the alert log to see if there is an entry at or around the time of the event.

Overview of Diagnostic Tools 4-3

Sources of Data for Tuning

Application Program Output

Users

In some projects, all application processes (client-side) are instructed to record their
own resource consumption to an audit trail. Where database calls are being made
through a library, the response time of the client/server mechanism can be quite
inexpensively recorded at the per-call level using an audit trail mechanism. Even
without these levels of sophistication (which are not expensive to build or to run),
simply preserving the resource usages reported by a batch queue manager pro-
vides an excellent source of data for use in tuning.

Users normally provide a stream of information as they encounter performance
problems.

Initialization Parameter Files

Program Text

It is vital to have accurate data on exactly what the system was instructed to do and
how it was to go about doing it. Some of this data is available from the Oracle
parameter file(s).

Data on what the application was to do is also available from the code of the pro-
grams or procedures where both the program logic and the SQL statements reside.
Server-side code (stored procedures, constraints, and triggers) can be considered
part of the same data population as client-side code, in this context. Tuners must
frequently work in situations where the program source code is not available,
either as a result of a temporary problem or because the application is a package for
which the source code is not released. In such cases it is still important for the tuner
to acquire program-to-object cross-reference information. For this reason executable
code is a legitimate data source. Fortunately, SQL is held in text even in executable
programs.

Design (Analysis) Dictionary

A design or analysis dictionary can also be used to track the intended action and
resource usage of the application system. Only where the application has been
entirely produced by code generators, however, can the design dictionary provide
all of the data which would otherwise have to be extracted from the programs and
procedures themselves.

4-4 Oracle8 Tuning

Oracle and SNMP Support

Comparative Data

Comparative data is invaluable in most tuning situations. Tuning is often con-
ducted from a cold start at each site; the tuners arrive with whatever expertise and
experience they may have, plus a few tools for extracting the data. Experienced tun-
ers may recognize similarities in particular situations, and try to apply a solution
that worked elsewhere. Normally, diagnoses such as these are purely subjective.

Tuning is much easier if a baseline exists, such as a capacity study performed for
this application or (even better) data from this or another site running the same
application with acceptable performance. The task is then to identify all differences
between the two environments and attempt to bring them back into line.

If no directly relevant data can be found, you can check data from similar platforms
and similar applications to see if they have the same performance profile. There is
no point in trying to tune out a particular effect if it turns out to be ubiquitous!

Dynamic Performance Views

A primary tool for monitoring the performance of Oracle is the collection of
dynamic performance views that Oracle provides to monitor your system. These
views have names beginning with “V$”, and this manual demonstrates their use in
performance tuning. The database user SYS owns these views, and administrators
can grant any database user access to them. Only some of these views are relevant
to tuning your system.

See Also: Chapter 22, “The Dynamic Performance Views”
Oracle8 Concepts provides detailed information about each view.

Oracle and SNMP Support

The Simple Network Management Protocol (SNMP) enables users to write their
own tools and applications. It is acknowledged as the standard, open protocol for
heterogeneous management applications. Oracle SNMP support enables Oracle
databases to be discovered on the network, identified, and monitored by any
SNMP-based management application. Oracle supports several database manage-
ment information bases (MIBs): the standard MIB for any database management
system (independent of vendor), and Oracle-specific MIBs which contain Oracle-
specific information. Some statistics mentioned in this manual are supported by
these MIBs, and others are not. If a statistic mentioned in this manual can be
obtained through SNMP, this fact is noted.

See Also: Oracle SNMP Support Reference Guide

Overview of Diagnostic Tools 4-5

EXPLAIN PLAN

EXPLAIN PLAN

EXPLAIN PLAN is a SQL statement that lists the access path determined by the
guery optimizer. Each plan has a row with ID = 0, which gives the statement type.

EXPLAIN PLAN results should be interpreted with some discretion. Just because a
plan does not seem efficient on the surface does not necessarily mean that the state-
ment will run slowly. Choose statements for tuning based upon their actual
resource consumption, not upon a subjective view of their execution plan.

See Also: Chapter 23, “The EXPLAIN PLAN Command”

The SQL Trace Facility and TKPROF

The SQL trace facility can be enabled for any session. It records in an operating sys-
tem text file the resource consumption of every parse, execute, fetch, commit, or
rollback request made to the server by the session.

TKPROF summarizes the trace files produced by the SQL trace facility, optionally
including the EXPLAIN PLAN output. TKPROF reports each statement executed
with the resources it has consumed, the number of times it was called, and the num-
ber of rows it processed. It is thus quite easy to locate individual statements that

are using the greatest resource. With experience or with baselines available, you

can gauge whether the resources used are reasonable, given the work accomplished.

See Also: Chapter 24, “The SQL Trace Facility and TKPROF”

Supported Scripts

Oracle provides many PL/SQL packages, thus a good number of SQL*Plus scripts
that support instance tuning are available. Examples include UTLBSTAT.SQL and
UTLESTAT,; SQLUTLCHAIN.SQL, UTLDTREE.SQL, and UTLLOCKT.SQL.

These statistical scripts support instance management, allowing a history to be
built up over time. They can be used for the following purposes:

« Toremove the need to issue DDL each time statistics are gathered

« To separate data gathering from reporting, and to allow a range of observations
to be taken at intervals during a period of representative system operation, and
then to allow the statistics to be reported from any start point to any end point

« Toreport a number of indicative ratios you can check to determine whether the
instance is adequately tuned

« To present LRU statistics from the buffer cache in a usable form

4-6 Oracle8 Tuning

Oracle Enterprise Manager Applications

Application Registration

You can register with the database the name of an application and actions per-
formed by that application. Registering the application allows system administra-
tors and tuners to track performance by module. System administrators can also
use this information to track resource usage by module. When an application regis-
ters with the database, its name and actions are recorded in the V$SESSION and
V$SQLAREA views.

See Also: Chapter 26, “Registering Applications”

Oracle Enterprise Manager Applications

This section describes Oracle Enterprise Manager and several of its most useful
diagnostic and tuning tools. It covers:

« Introduction to Oracle Enterprise Manager
« Oracle Performance Manager

« Oracle TopSessions

« Oracle Trace

« Oracle Tablespace Manager

« Oracle Expert

Introduction to Oracle Enterprise Manager

Oracle Enterprise Manager is a major new infrastructure and tool set for managing
Oracle environments. You can use Oracle Enterprise Manager to manage the wide
range of Oracle implementations: departmental to enterprise, replication configura-
tions, web servers, media servers, and so forth. Oracle Enterprise Manager includes:

« A windows-based console for central administration and monitoring of Oracle
databases

« Common services for event management, service discovery, security, and job
creation/execution

« A server-side intelligent agent for monitoring events, running jobs, and com-
municating with the console

« Applications for administering Oracle databases for security, storage, backup,
recovery, import, and software distribution

Overview of Diagnostic Tools 4-7

Oracle Enterprise Manager Applications

« Layered applications for managing replication, media, web, text, mobile agents,
and other Oracle servers

« Optional products for Oracle monitoring and tuning, known as the Oracle Per-
formance Pack

The Oracle Enterprise Manager Performance Pack is a set of windows-based appli-
cations built on the new Oracle Enterprise Manager systems management technol-

ogy. These applications address many Oracle performance management areas, such
as graphical monitoring, analysis, and automated tuning of Oracle databases.

Oracle Performance Manager

The Oracle Performance Manager captures, computes, and presents performance
data that allows you to monitor key metrics required to use memory effectively,
minimize disk 1/0, and avoid resource contention. It provides a graphical, real-
time view of Oracle performance metrics, and lets you drill down into a monitoring
view for quick access to detailed data for performance problem solving. Oracle
dynamic performance data is captured and displayed in real-time mode, and can
be recorded for replay. The graphical monitor is customizable and extensible. You
can display monitored information in a variety of two or three dimensional graphi-
cal views, such as tables, line, bar, cube, and pie charts, and can customize the rate
of monitoring. You can also extend the system by defining charts for their own
monitored sources (additional database performance data or application statistics).

The Oracle Performance Manager tracks real-time memory performance in several
ways, providing data that can be put to use immediately for memory performance
management. For example, the Parse Ratio Chart gives you a measure of the appli-
cation’s success at finding available parsed SQL in the database’s library cache
buffer, potentially indicating that shared pool memory allocation is insufficient.
Monitor Charts can also be linked together, allowing you to drill down in a logical
progression of analysis. For example, if you detect a performance problem with the
Library Cache Hit Ratio, you can drill down to the Library Cache Details Chart.
Other memory monitoring charts include: Data Dictionary Cache Hit Ratio, Mem-
ory Allocated, and Sort Hit Ratio, to name a few.

Using the Oracle Performance Manager, you can chart virtually any data in your
database, whether this data is database performance related or data from your busi-
ness application tables that you want to chart. Oracle Monitor provides dialog
boxes for entering the SQL to retrieve the data, for defining operations to be per-
formed on the data, and for selecting the type of chart best suited to graphically dis-
play the data. This ability to define your own charts can be combined with the
power of Oracle Trace to create custom charts for monitoring application perfor-

4-8 Oracle8 Tuning

Oracle Enterprise Manager Applications

mance, application audit trails, or business transaction data. Using Oracle Trace in
this way will be discussed in more detail later.

Performance problems detected by using the Oracle Monitor can be corrected by
using other Oracle Enterprise Manager applications. For example, memory manage-
ment problems that arise from inappropriate buffer sizes can be corrected easily
using the Oracle Instance Manager application to reset buffer size parameters. Like-
wise, you can address 1/0 or contention problems by using the Oracle Storage
Manager application to reset storage parameters, or the Oracle Tablespace Manager
application to further analyze the problem and defragment tables if necessary.

In addition, when you detect performance problems through the Oracle Monitor
you can obtain a far greater degree of detail through two other Performance Pack
applications: Oracle TopSessions and Oracle Trace. Ultimately, you can elect to have
a detailed tuning analysis conducted by the Oracle Expert automated performance
tuning application. Oracle Expert produces recommendations and scripts for
improving the performance of the database being monitored.

Oracle TopSessions

Often a DBA needs more information than provided by general database monitor-
ing. For example, a DBA using the Oracle Performance Manager may detect a file I/
O problem. In order to solve the problem quickly, it would be helpful to know
which particular user sessions are causing the greatest 1/0 activity.

Oracle TopSessions provides the DBA with a focused view of performance activity
for the top set of Oracle sessions at any given time. Oracle TopSessions extracts and
analyzes sample Oracle dynamic performance data, automatically determining the
top Oracle user sessions based on a specific selection criterion, such as file /0
activity. Using Oracle TopSessions, the DBA can quickly detect which user sessions
are causing the greatest file 1/0 activity and require further investigation.

Oracle TopSessions provides two views of session data: an Overview of a select
number of top sessions, and a Session Details view. The application starts with an
overview of the top ten sessions connected to the database instance, with an initial
default sort based on session PGA memory usage. The data displayed in the ini-
tial overview includes items such as session 1D, node, application, username, last
session command executed, and the status of the session (idle, active, blocked, or
killed). You can then customize the display by changing the number of sessions to
be monitored and selecting the type of statistical filtering and sorting to be done for
the Overview display of monitored sessions.

The Session Details display allows you to drill down into a particular session, pro-
viding pages for detailed displays of general session information, session statistics,

Overview of Diagnostic Tools 4-9

Oracle Enterprise Manager Applications

Oracle Trace

cursors, and locks. The Session Details General page expands the information pro-
vided in the Overview display, adding information such as identifiers for the
schema, SQL, deadfalls, rows, and blocks as applicable. The Statistics page displays
detailed performance statistics for the session that are captured from the
V$SESSTAT view. The Cursors page provides information on all shared cursors

for the session, including SQL statements and EXPLAIN PLAN output. You can dis-
play the session’s currently executing SQL statements, or all SQL statements that
have been and will be executed for the session. The Session Details Locks page dis-
plays information about the database locks held or requested by session.

When monitoring multiple instances, you can open as many Oracle TopSessions
displays as necessary. The information displayed in Oracle TopSessions is static
until refreshed. Oracle TopSessions allows you to determine whether the refresh
should be manual or automatic, and the frequency of automatic refresh.

Most data used in performance monitoring applications is collected based on sam-
pling methodologies. For example, Oracle Performance Manager and Oracle
TopSessions use this technique by periodically collecting data from the Oracle
dynamic performance views.

Oracle Trace provides a new data collection methodology that goes a significant
step further than sampling techniques. Oracle Trace collects performance data for
each and every occurrence of key events in an application being monitored. It pro-
vides an entire census of performance data, rather than a sample of data, for a soft-
ware application or database event. This allows performance problems detected
through sampling techniques to be pinpointed to specific occurrences of a software
product’s execution.

Oracle Trace collects performance data for predefined events in products such as
the Oracle Server, Net8, and any other Oracle or third-party application that has
been programmed with the Oracle Trace data collection API. An Oracle Trace
“event” is an occurrence within the software product containing the Oracle Trace
API calls. For example, specific events have been identified in the Oracle Server,
such as a SQL parse, execute, and fetch. These events have been delimited with API
calls, which are invoked when the event occurs during a scheduled Oracle Trace
collection for the Oracle Server. Another example of an event to be monitored for
performance data would be a transaction in an application, such as a deposit in a
banking application. Any product can be programmed with Oracle Trace API calls
for event-based data collection.

The type of performance data collected for events includes extensive resource utili-
zation data, such as CPU time, memory usage, and page faults, as well as perfor-

4-10 Oracle8 Tuning

Oracle Enterprise Manager Applications

mance data specific to the product being monitored. For example, user and form
identification data would likely be collected for business application events, in
addition to resource utilization data for those events. In addition, Oracle Trace pro-
vides the unique capability to correlate the performance data collected across any
end-to-end client/server application containing Oracle Trace instrumented prod-
ucts. Performance can be tracked across multiple products involved in the enter-
prise transaction, allowing the application developer, DBA, or systems manager to
easily identify the source of performance problems.

From a DBA's perspective, the value of Oracle Trace is embodied in the products
that use Oracle Trace data for analysis and performance management. DBAs and
other users do not have to instrument an application in order to use Oracle Trace.
Rather, the majority of users will employ Oracle Trace to collect data for a product
that already contains the API calls, and will likely use the collected data in some
other tool that performs monitoring or analysis. For example, Oracle Server and
Net8 contain Oracle Trace API calls for event data collection. An Oracle Trace user
can schedule a collection of Oracle Trace data for either of these products, format
the data and review it in reports. In addition, Oracle Trace data for Oracle Server
can be imported into the Oracle Expert database tuning application, where it will
be automatically analyzed for Oracle server tuning.

See Also: Chapter 25, “Using Oracle Trace”

Oracle Tablespace Manager

If you suspect database performance problems due to tablespace disorganization,
you can use the Oracle Tablespace Manager to investigate and correct structure
problems. The Oracle Tablespace Manager consists of two major features: a
Tablespace Viewer and a tablespace defragmentation function.

The Tablespace Viewer provides a complete picture of the characteristics of all
tablespaces associated with a particular Oracle instance, including tablespace data-
files and segments, total data blocks, free data blocks and percentage of free blocks
available in the tablespace’s current storage allocation. You can display all seg-
ments for a tablespace or all segments for a datafile. The Tablespace Viewer also
provides a map of the organization of a tablespace’s segments. This map graphi-
cally displays the sequential allocation of space for segment extents within a
selected tablespace or datafile. For example, a table segment may consist of three
extents, all of which are physically separated by other segment extents. The map
will highlight the locations of the three extents within the tablespace or datafile. It
will also show the amount of free space available for each segment. In this way, the
Tablespace Viewer map provides an easy bird’s-eye view of tablespace fragmenta-
tion.

Overview of Diagnostic Tools 4-11

Oracle Enterprise Manager Applications

Oracle Expert

When tablespace fragmentation is detected, you can use the Oracle Tablespace Man-
ager defragmentation feature to correct the problem automatically. You can select a
table for defragmentation from the list of table segments. The defragmentation pro-
cess uses the Oracle export/import functions on the target table, and ensures that
all rows, indexes, constraints and grants remain intact. Before the table export
occurs, you are presented with a dialog box for modifying the storage parameters
for the selected table if desired. The new parameters are then used in the re-cre-
ation of the defragmented table. You also have the option of compressing the

table’s extents into one large initial extent.

In addition to managing fragmentation, a DBA must watch for opportunities to use
available database resources more effectively. A database incurring lots of updates
and deletes will develop empty data blocks—pockets of free space that are too
small for new extents. The Tablespace Viewer allows you to visually identify free
blocks. If these free blocks are adjacent, they can be joined automatically using the
Oracle Tablespace Manager’s coalesce feature. In this way they will become more
useful space for future extents.

Oracle Expert provides automated performance tuning. Performance problems
detected by the Oracle Performance Manager, Oracle TopSessions, and Oracle Trace
can be analyzed and solved with Oracle Expert. Oracle Expert automates the pro-
cess of collecting and analyzing data, and contains rules that provide database tun-
ing recommendations, implementation scripts, and reports. Oracle Expert monitors
several factors in the database environment and provides tuning recommendations
in three major tuning categories:

« Access method tuning
« Instance parameter tuning
« Database structure sizing and placement

You can select a single tuning category for focused tuning or multiple categories for
more comprehensive tuning. Tuning can also be focused on a specific portion of the
database, such as a table or index. You can graphically view and edit the data col-
lected by Oracle Expert, including database workload, systems environment, data-
base schema, instance parameters and statistics, tablespace data, and so forth. You
can also modify Oracle Expert’s rule values, for example, increasing or decreasing a
rule’s decision threshold. This powerful feature allows you to play a part in the
analysis and recommendations produced by Oracle Expert. You can employ this
capability to customize the collected data in order to test various tuning scenarios
and to influence the final results.

4-12 Oracle8 Tuning

Tools You May Have Developed

After Oracle Expert has analyzed the data, you can review the recommendations,
including selectively viewing the detailed analysis. You can choose to accept spe-
cific recommendations before generating the recommended implementation files,
which generally consist of new instance parameter files and implementation
scripts. You have full control over the implementation process: invoke the imple-
mentation files when you are ready, and they will automatically implement the
changes you have accepted. Oracle Expert also produces a series of reports to docu-
ment the data and analysis behind the recommendations. These reports provide
extensive documentation for the database and tuning process. For the less experi-
enced DBA, they can be a valuable education in the factors that drive database per-
formance.

In summary, Oracle Expert, along with the other Performance Pack applications,
provides you with a useful set of tools for monitoring and tuning Oracle databases.

Oracle Parallel Server Management

Oracle Parallel Server Management (OPSM) is a comprehensive and integrated sys-
tem management solution for the Oracle Parallel Server. OPSM allows you to man-
age multi-instance databases running in heterogeneous environments through an
open client-server architecture.

In addition to managing parallel databases, OPSM allows you to schedule jobs, per-
form event management, monitor performance, and obtain statistics to tune paral-
lel databases.

For more information about OPSM, refer to the Oracle Parallel Server Management
Configuration Guide for UNIX and the Oracle Parallel Server Management User's Guide.
For installation instructions, refer to your platform-specific installation guide.

Tools You May Have Developed

At some sites, DBAs have designed in-house performance tools over the course of
several years. Such tools might include free space monitors, to determine whether
tables have enough space to be able to extend; lock monitoring tools; schema
description scripts to show tables and all associated indexes; and tools to show
default and temporary tablespaces per user. You can integrate such programs with
Oracle by setting them to run automatically.

Overview of Diagnostic Tools 4-13

Tools You May Have Developed

4-14 Oracle8 Tuning

Part |

Designing and Developing for Performance

Part Il provides background information on designing and developing applications
for optimal performance. The chapters in Part Il are:

« Chapter 5, “Evaluating Your System’s Performance Characteristics”

« Chapter 6, “Designing Data Warehouse Applications”

D

Evaluating Your System’s Performance
Characteristics

This chapter describes the various types of application that use Oracle databases
and the suggested approaches and features available when designing each type.
Topics in this chapter include

« Types of Application

« Oracle Configurations

Evaluating Your System’s Performance Characteristics 5-1

Types of Application

Types of Application

You can build thousands of types of applications on top of an Oracle Server. This
section categorizes the most popular types of application and describes the design
considerations for each. Each section lists topics that are crucial for performance for
that type of system.

« Online Transaction Processing (OLTP)
« Data Warehousing
« Multipurpose Applications

See Also: Oracle8 Concepts, Oracle8 Application Developer’s Guide, and Oracle8 Admin-
istrator’s Guide for more information on these topics and how to implement them in
your system.

Online Transaction Processing (OLTP)

Online transaction processing (OLTP) applications are high-throughput, insert/
update-intensive systems. These systems are characterized by constantly growing
large volumes of data that several hundred users access concurrently. Typical OLTP
applications are airline reservation systems, large order-entry applications, and
banking applications. The key goals of an OLTP system are availability (sometimes
7 day/24 hour availability); speed (throughput); concurrency; and recoverability.

Figure 5-1 illustrates the interaction between an OLTP application and an Oracle
Server.

Figure 5-1 Online Transaction Processing Systems

X <D
Data

Database

5-2 Oracle8 Tuning

Types of Application

When you design an OLTP system, you must ensure that the large number of con-
current users does not interfere with the system’s performance. You must also
avoid excessive use of indexes and clusters, because these structures slow down
insert and update activity.

The following issues are crucial in tuning an OLTP system:

rollback segments

indexes, clusters, and hashing

discrete transactions

data block size

dynamic allocation of space to tables and rollback segments
transaction processing monitors and the multithreaded server
the shared pool

well-tuned SQL statements

integrity constraints

client/server architecture

dynamically changeable initialization parameters

procedures, packages, and functions

See Also: Oracle8 Concepts and Oracle8 Administrator’s Guide for a description of
each of these topics. Read about these topics before designing your system and
decide which features can benefit your particular situation.

Evaluating Your System’s Performance Characteristics 5-3

Types of Application

Data Warehousing

Data warehousing applications distill large amounts of information into under-
standable reports. Typically, decision support applications perform queries on the
large amount of data gathered from OLTP applications. Decision makers in an orga-
nization use these applications to determine what strategies the organization
should take, based on the available information. Figure 5-2 illustrates the interac-
tion between a decision support application and an Oracle Server.

Figure 5-2 Data Warehousing Systems

q‘_
q‘_

An example of a decision support system is a marketing tool that determines the
buying patterns of consumers based on information gathered from demographic
studies. The demographic data is assembled and entered into the system, and the
marketing staff queries this data to determine which items sell best in which loca-
tions. This report helps to decide which items to purchase and market in the vari-
ous locations.

Database

The key goals of a data warehousing system are response time, accuracy, and avail-
ability. When you design a decision support system, you must ensure that queries
on large amounts of data can be performed within a reasonable time frame. Deci-
sion makers often need reports on a daily basis, so you may need to guarantee that
the report can complete overnight.

The key to performance in a decision support system is properly tuned queries and
proper use of indexes, clusters, and hashing. The following issues are crucial in tun-
ing a decision support system:

« Indexes (B*-tree and bitmap)
« Clusters, hashing
« Datablock size

« Parallel execution

5-4 Oracle8 Tuning

Types of Application

« Star query

« The optimizer

« Using hints in queries

« PL/SQL functions in SQL statements

One way to improve the response time in data warehousing systems is to use paral-
lel execution, which enables multiple processes to work together simultaneously to
process a single SQL statement. By dividing the work necessary to process a state-
ment among multiple server processes, the Oracle Server can process the statement
more quickly than if only a single server process processed it.

Figure 5-3 illustrates the parallel execution feature of the Oracle Server.

Figure 5-3 Parallel Query Processing

iy <=

Parallel execution can dramatically improve performance for data-intensive opera-
tions associated with decision support applications or very large database environ-
ments. Symmetric multiprocessing (SMP), clustered, or massively parallel systems
gain the largest performance benefits from parallel execution, because the opera-
tion can be effectively split among many CPUs on a single system.

Parallel execution helps system performance scale when adding hardware
resources. If your system’s CPUs and disk controllers are already heavily loaded,
you need to alleviate the system’s load before using parallel execution to improve
performance.

See Also: Chapter 6, “Designing Data Warehouse Applications” for an introduction
to Oracle data warehousing functionality.

Chapter 19, “Tuning Parallel Execution”, introduces performance aspects of paral-
lel execution.

Oracle8 Concepts provides general information about parallel execution.

Evaluating Your System’s Performance Characteristics 5-5

Types of Application

Multipurpose Applications

Many applications rely on several configurations and Oracle options. You must
decide what type of activity your application performs and determine which fea-
tures are best suited for it. One typical multipurpose configuration is a combination
of OLTP and data warehousing systems. Often data gathered by an OLTP applica-
tion “feeds” a data warehousing system.

Figure 5-4 illustrates multiple configurations and applications accessing an Oracle
Server.

Figure 5-4 A Hybrid OLTP/Data Warehousing System

Data
Database Database

s B
L201)
One example of a combination OLTP/data warehousing system is a marketing tool
that determines the buying patterns of consumers based on information gathered
from retail stores. The retail stores gather a large amount of data from daily pur-
chases, and the marketing staff queries this data to determine which items sell best

in which locations. This report is then used to determine inventory levels for partic-
ular items in each store.

In this example, both systems could use the same database, but the conflicting

goals of OLTP and data warehousing cause performance problems for both parts of
the system. To solve this problem, an OLTP database stores the data gathered by
the retail stores, then an image of that data is copied into a second database, which
is queried by the data warehousing application. This configuration slightly compro-
mises the goal of accuracy for the data warehousing application (the data is copied
only once per day), but the trade-off is significantly better performance from both
systems.

5-6 Oracle8 Tuning

Oracle Configurations

For hybrid systems you must determine which goals are most important. You may
need to compromise on meeting lower-priority goals to achieve acceptable perfor-
mance across the whole system.

Oracle Configurations

You can configure your system depending on the hardware and software available
to you. The basic configurations are:

« Distributed Systems
« The Oracle Parallel Server
« Client/Server Configurations

Depending on your application and your operating system, each of these or a com-
bination of these configurations will best suit your needs.

Distributed Systems

Distributed applications involve spreading data over multiple databases on multi-
ple machines. Several smaller server machines can be cheaper and more flexible
than one large, centrally located server. This configuration takes advantage of
small, powerful server machines and cheaper connectivity options. Distributed sys-
tems allow you to have data physically located at several sites, and each site can
transparently access all of the data.

Figure 5-5 illustrates the distributed database configuration of the Oracle Server.

Evaluating Your System’s Performance Characteristics 5-7

Oracle Configurations

Figure 5-5 Distributed Database System

Database

Database

&

Database

(0D—(I[
N

An example of a distributed database system is a mail order application with order
entry clerks in several locations across the country. Each clerk has access to a copy
of the central inventory database, but the clerks perform local operations on an
order-entry system. The local orders are forwarded each day to the central shipping
department. While the inventory and shipping departments are centrally located,
the clerks are spread across the country for the convenience of the customers.

The key goals of a distributed database system are availability, accuracy, concur-
rency, and recoverability. When you design a distributed database system, the loca-
tion of the data is the most important factor. You must ensure that local clients have
quick access to the data they use most frequently, and that remote operations do
not occur often. Replication is one means of dealing with the issue of data location.
The following issues are crucial to the design of distributed database systems:

« Network configuration

« Distributed database design

« Symmetric replication

« Table snapshots and snapshot logs

« Procedures, packages, and functions

See Also: Oracle8 Distributed Database Systems and Oracle8 Replication
Chapter 9, “Tuning Distributed Queries”

5-8 Oracle8 Tuning

Oracle Configurations

The Oracle Parallel Server

The Oracle Parallel Server is available on clustered or massively parallel systems. A
parallel server allows multiple machines to have separate instances all accessing
the same database. This configuration greatly enhances data throughput.

Figure 5-6 illustrates the Parallel Server option of the Oracle Server.

Figure 5-6 An Oracle Parallel Server

\

When you configure a system with the Parallel Server option, your key concern is
data contention among the various nodes. Each node that requires updatable data
must first obtain a lock on that data to ensure data consistency. If multiple nodes all
want to access the same data, that data must first be written to disk, and then the
next node can obtain the lock. This type of contention can significantly slow a paral-
lel server; on such systems data must be effectively partitioned among the various
nodes for optimal performance. (Note that read-only data can be efficiently shared
across the parallel server without the problem of lock contention.)

See Also: Oracle8 Parallel Server Concepts & Administration

Client/Server Configurations

Client/server architecture distributes the work of a system between the client
(application) machine and the server (in this case an Oracle Server). Typically, client
machines are workstations that execute a graphical user interface (GUI) application
connected to a larger server machine that houses the Oracle Server.

See Also: "Solving CPU Problems by Changing System Architecture" on page 13-10
for information about multi-tier systems.

Evaluating Your System’s Performance Characteristics 5-9

Oracle Configurations

5-10 Oracle8 Tuning

6

Designing Data Warehouse Applications

This chapter introduces integrated Oracle8 features for tuning enterprise-scale data
warehouses. By intelligently tuning the system, the data layout, and the applica-
tion, you can build a high performance, scalable data warehouse.

Topics in this chapter include

« Introduction

« Features for Building a Data Warehouse
« Features for Querying a Data Warehouse

» Backup and Recovery of the Data Warehouse

Designing Data Warehouse Applications 6-1

Introduction

Introduction

Data warehousing applications process a substantial amount of data by means of
many CPU- and I/0-bound, data-intensive tasks such as

« loading, indexing, and summarizing tables
« scanning, joining, sorting, aggregating, and fetching data

The resource required to complete the tasks on many gigabytes of data distin-
guishes data warehousing applications from other types of data processing. The
bulk and complexity of your data may clearly indicate that you need to deploy mul-
tiple CPUs, investigate parallel processing, or consider specific data processing fea-
tures that are directly relevant to the tasks at hand.

For example, in a typical data warehousing application, data-intensive tasks might
be performed on 100 gigabytes of data. At a processing speed of 0.2 G to 2 G of
data per hour per CPU, a single CPU might need from 2 days to more than 2 weeks
to perform a task. With more than a single gigabyte of data (certainly with upwards
of 10G), you need to consider increasing the number of CPUs.

Similarly, if you need to copy 10 gigabytes of data, consider that using Export/
Import might take a single CPU 10 hours. By contrast, using parallel CREATE
TABLE . .. AS SELECT on 10 CPUs might take only 1 hour.

Actual processing time depends on many factors, such as the complexity of the que-
ries, the processing speed to which a particular hardware configuration can be
tuned, and so on. Always run simple tests on your own system to find out its per-
formance characteristics with regard to particular operations.

Features for Building a Data Warehouse

This section outlines Oracle8 features useful for building a data warehouse. It
includes:

« Parallel CREATE TABLE ... ASSELECT
« Parallel Index Creation

« Fast Full Index Scan

« Partitioned Tables

« ANALYZE Command

« Parallel Load

See Also: Oracle8 Concepts and Oracle8 SQL Reference

6-2 Oracle8 Tuning

Features for Building a Data Warehouse

Parallel CREATE TABLE . . . AS SELECT

The ability to CREATE TABLE ... AS SELECT in parallel enables you to reorganize
extremely large tables efficiently. You might find it prohibitive to take a serial
approach to reorganizing or reclaiming space in a table containing tens or thou-
sands of gigabytes of data. Using Export/Import to perform such a task might
result in an unacceptable amount of downtime. If you have a lot of temporary
space available, you can use CREATE TABLE . .. AS SELECT to perform such tasks
in parallel. With this approach, redefining integrity constraints is optional. This fea-
ture is often used for creating summary tables, which are precomputed results
stored in the data warehouse.

See Also: "Creating and Populating Tables in Parallel” on page 19-51
Oracle8 Concepts

Parallel Index Creation

The ability to create indexes in parallel benefits both data warehousing and OLTP
applications. On extremely large tables, rebuilding an index may take a long time.
Periodically DBAs may load a large amount of data and rebuild the index. With the
ability to create indexes in parallel, you may be able to drop an index before load-
ing new data, and re-create it afterward.

See Also: "Creating Indexes in Parallel" on page 19-53
Chapter 19, “Tuning Parallel Execution”

Fast Full Index Scan

FAST FULL SCAN on the index is a faster alternative to a full table scan when an
existing index already contains all the columns that are needed for the query. It can
use multiblock 170 and can be parallelized just like a table scan. The hint
INDEX_FFS enforces fast full index scan.

See Also: "Fast Full Index Scan" on page 10-9
"INDEX_FFS" on page 8-22

Designing Data Warehouse Applications 6-3

Features for Building a Data Warehouse

Partitioned Tables

You can avoid downtime with very large or mission-critical tables by using parti-
tions. You can divide a large table into multiple physical tables using partitioning
criteria. In a data warehouse you can manage historical data by partitioning by
date. You can then perform on a partition level all of the operations you might nor-
mally perform on the table level, such as backup and restore. You can add space for
new data by adding a new partition, and delete old data by dropping an existing
partition. Queries that use a key range to select from a partitioned table retrieve
only the partitions that fall within that range. In this way partitions offer significant
improvements in availability, administration and table scan performance.

Note: For performance reasons, in Oracle8 partitioned tables should be used rather
than partition views. Please see Oracle8 Migration for instructions on migrating
from partition views to partitioned tables.

See Also: Oracle8 Concepts for information about partitioned tables
"Partitioning Data" on page 19-23

ANALYZE Command

Parallel Load

You can use the ANALYZE command to analyze the storage characteristics of
tables, indexes, and clusters to gather statistics which are then stored in the data
dictionary. The optimizer uses these statistics in a cost-based approach to deter-
mine the most efficient execution plan for the SQL statements you issue. Note that
statistics can be either computed or estimated, depending on the amount of over-
head you are willing to allow for this purpose.

See Also: "Step 3: Analyzing Data" on page 19-36
Oracle8 Administrator’s Guide

When very large amounts of data must be loaded, the destination table may be
unavailable for an unacceptable amount of time. The ability to load data in parallel
can dramatically slash the amount of downtime necessary.

See Also: Chapter 19, “Tuning Parallel Execution”, especially "Using Parallel Load"

on page 19-25
Oracle8 Utilities for a description of SQL Loader conventional and direct path loads.

6-4 Oracle8 Tuning

Features for Querying a Data Warehouse

Features for Querying a Data Warehouse

This section summarizes Oracle8 features useful for querying a data warehouse. It
includes:

« Oracle Parallel Server Option
« Parallel-Aware Optimizer

« Parallel Execution

« Bitmap Indexes

« Star Queries

« Star Transformation

Oracle Parallel Server Option

The Oracle Parallel Server option provides benefits important to both OLTP and
data warehousing applications:

« application failover

« scalable performance
« load balancing

« multiuser scalability

Oracle Parallel Server failover capability (the ability of the application to reconnect
automatically if the connection to the database is broken) results in improved avail-
ability, a primary benefit for OLTP applications. Likewise, scalability in the number
of users that can connect to the database is a major benefit in OLTP environments.
OLTP performance on Oracle Parallel Server can scale as well, if an application’s
data is isolated onto a single server.

For data warehousing applications, scalability of performance is a primary benefit
of Oracle Parallel Server. The architecture of Oracle Parallel Server allows parallel
guery to perform excellent load balancing of work at runtime. If a node in an Ora-
cle Parallel Server cluster or MPP is temporarily slowed down, work that was origi-
nally assigned to parallel query servers on that node (but not yet commenced by
those servers) may be performed by servers on other nodes, hence preventing that
node from becoming a serious bottleneck. Even though Oracle Parallel Server is a
cornerstone of parallel query on clusters and MPPs, in a mostly query environment
the overhead on the distributed lock manager is minimal.

See Also: Oracle8 Parallel Server Concepts & Administration

Designing Data Warehouse Applications 6-5

Features for Querying a Data Warehouse

Parallel-Aware Optimizer

Knowledge about parallelism is incorporated into the Oracle8 cost-based optimizer.
Parallel execution considerations are thus a fundamental component in arriving at
guery execution plans. In addition, you can control the trade-off of throughput for
response time in plan selection.

The optimizer chooses intelligent defaults for the degree of parallelism based on
available processors and the number of disk drives storing data the query will
access. Access path choices (such as table scans vs. index access) take into account
the degree of parallelism, resulting in plans that are optimized for parallel execu-
tion. Execution plans are more scalable, and there is improved correlation between
optimizer cost and execution time for parallel query.

The initialization parameter OPTIMIZER_PERCENT_PARALLEL defines the
weighting that the optimizer uses to minimize response time in its cost functions.

See Also: "OPTIMIZER_PERCENT_PARALLEL" on page 19-4

Parallel Execution
The Oracle8 provides for improved performance through use of parallel execution.

Parallel execution enables multiple processes to work together simultaneously to
process a single query or DML statement. By dividing the task among multiple
server processes, Oracle can execute the operation more quickly than if only one
server process were used.

Parallel execution can dramatically improve performance for data-intensive data
warehousing operations. It helps systems scale in performance when adding hard-
ware resources. The greatest performance benefits are on symmetric multiprocess-
ing (SMP), clustered, or massively parallel systems where query processing can be
effectively spread out among many CPUs on a single system.

See Also: Chapter 19, “Tuning Parallel Execution”
Oracle8 Concepts for conceptual background on parallel execution.

6-6 Oracle8 Tuning

Features for Querying a Data Warehouse

Bitmap Indexes

Star Queries

Regular B*-tree indexes work best when each key or key range references only a
few records, such as employee names. Bitmap indexes, by contrast, work best when
each key references many records, such as employee gender.

Bitmap indexing provides the same functionality as regular indexes, but uses a dif-
ferent internal representation, which makes it very fast and space efficient. Bitmap
indexing benefits data warehousing applications that have large amounts of data
and ad hoc queries, but a low level of concurrent transactions. It provides reduced
response time for many kinds of ad hoc queries; considerably reduced space usage
compared to other indexing techniques; and dramatic performance gains even on
very low end hardware. Bitmap indexes can be created in parallel and are com-
pletely integrated with cost-based optimization.

See Also: "Using Bitmap Indexes" on page 10-13

One type of data warehouse design is known as a “star” schema. This typically con-
sists of one or more very large “fact” tables and a number of much smaller “dimen-
sion” or reference tables. A star query is one that joins several of the dimension
tables, usually by predicates in the query, to one of the fact tables.

Oracle cost-based optimization recognizes star queries and generates efficient exe-
cution plans for them; indeed, you must use cost-based optimization to get efficient
star query execution. To enable cost-based optimization, simply ANALYZE your
tables and be sure that the OPTIMIZER_MODE initialization parameter is set to its
default value of CHOOSE.

See Also: Oracle8 Concepts regarding optimization of star queries
"STAR" on page 8-24 for information about the STAR hint

Designing Data Warehouse Applications 6-7

Backup and Recovery of the Data Warehouse

Star Transformation

Star transformation is a cost-based transformation designed to execute star queries
efficiently. Whereas star optimization works well for schemas with a small number
of dimensions and dense fact tables, star transformation works well for schemas
with a large number of dimensions and sparse fact tables.

Star transformation is enabled by setting the initialization parameter
STAR_TRANSFORMATION_ENABLED to TRUE. You can use the
STAR_TRANSFORMATION hint to make the optimizer use the best plan in which
the transformation has been used.

See Also: Oracle8 Concepts for a full discussion of star transformation.

Oracle8 Reference describes the STAR_TRANSFORMATION_ENABLED initializa-
tion parameter.

"STAR_TRANSFORMATION" on page 8-35 explains how to use this hint.

Backup and Recovery of the Data Warehouse

Recoverability has various levels: recovery from disk failure, human error, software
failure, fire, and so on, requires different procedures. Oracle8 provides only part of

the solution. Organizations must decide how much to spend on backup and recov-

ery by considering the business cost of a long outage.

The NOLOGGING option enables you to perform certain operations without the
overhead of generating a log. Even without logging, you can avoid disk failure if
you use disk mirroring or RAID technology. If you load your warehouse from tapes
every day or week, you might satisfactorily recover from all failures simply by sav-
ing copies of the tape in several remote locations and reloading from tape when
something goes wrong.

At the other end of the spectrum, you could both mirror disks and take backups
and archive logs, and maintain a remote standby system. The mirrored disks pre-
vent loss of availability for disk failure, and also protect against total loss in the
event of human error (such as dropping the wrong table) or software error (such as
disk block corruption). In the event of fire, power failure, or other problems at the
primary site, the backup site prevents long outages.

See Also: For more information on recovery and the NOLOGGING option, see the
Oracle8 Administrator’s Guide and Oracle8 SQL Reference.
"[NOJLOGGING Option" on page 19-35

6-8 Oracle8 Tuning

Part ||

Optimizing Database Operations

Part 3 discusses how to tune your database and the various methods you use to
access data for optimal database performance. The chapters in Part 3 are:

Chapter 7, “Tuning Database Operations”

Chapter 8, “Optimization Modes and Hints”

Chapter 9, “Tuning Distributed Queries”

Chapter 10, “Data Access Methods”

Chapter 11, “Oracle8 Transaction Modes”

Chapter 12, “Managing SQL and Shared PL/SQL Areas”

v

Tuning Database Operations

Structured Query Language (SQL) is used to perform all database operations,
although some Oracle tools and applications simplify or mask its use. This chapter
provides an overview of the issues involved in tuning database operations:

« Tuning Goals
« Methodology for Tuning Database Operations
« Approaches to SQL Statement Tuning

Tuning Database Operations 7-1

Tuning Goals

Tuning Goals

This section introduces:

« Tuning a Serial SQL Statement

« Tuning Parallel Operations

« Tuning OLTP Applications

« Tuning Data Warehouse Applications

Always approach the tuning of database operations from the standpoint of the par-
ticular goals of your application. Are you tuning serial SQL statements, or parallel
operations? Do you have an online transaction processing (OLTP) application, or a
data warehousing application?

« Data warehousing has a high correlation with parallel operations and high data
volume.

« OLTP applications have a high correlation with serial operations and high
transaction volume.

As a result, these applications have contrasting goals for tuning.

Table 7-1 Contrasting Goals for Tuning

Tuning Situation Goal
Serial SQL Statement Minimize resource utilization by the operation.
Parallel Operations Maximize throughput for the hardware.

Tuning a Serial SQL Statement
The goal of tuning one SQL statement in isolation can be stated as follows:

To minimize resource utilization by the operation being performed.

You can explore alternative syntax for SQL statements without actually modifying
your application. Simply use the EXPLAIN PLAN command with the alternative
statement that you are considering and compare its execution plan and cost with
that of the existing statement. The cost of a SQL statement appears in the POSI-
TION column of the first row generated by EXPLAIN PLAN. However, you must
run the application to see which statement can actually be executed more quickly.

See Also: Chapter 23, “The EXPLAIN PLAN Command”
"Approaches to SQL Statement Tuning" on page 7-6

7-2 Oracle8 Tuning

Tuning Goals

Tuning Parallel Operations
The goal of tuning parallel operations can be stated thus:

To maximize throughput for the given hardware.

If you have a powerful system and a massive, high-priority SQL statement to run,
you want to parallelize the statement so that it utilizes all available resources.

Oracle can perform the following operations in parallel:

parallel query

parallel DML (includes INSERT, UPDATE, DELETE; APPEND hint; parallel
index scans)

parallel DDL
parallel recovery
parallel loading

parallel propagation (for replication)

Look for opportunities to parallelize operations in the following situations:

long elapsed time

Whenever an operation you are performing in the database takes a long
elapsed time, whether it is a query or a batch job, you may be able to reduce the
elapsed time by using parallel operations.

high number of rows processed

You can split up the rows so they are not all done by a single process.

See Also: Chapter 19, “Tuning Parallel Execution”

Oracle8 Concepts, for basic principles of parallel execution

Tuning Database Operations 7-3

Tuning Goals

Tuning OLTP Applications

Tuning OLTP applications mostly involves tuning serial SQL statements. You
should take into consideration two design issues: use of SQL and shared PL/SQL,
and use of different transaction modes.

SQL and Shared PL/SQL

To minimize parsing, use bind variables in SQL statements within OLTP applica-
tions. In this way all users will be able to share the same SQL statements, and fewer
resources will be required for parsing.

Transaction Modes
Sophisticated users can use discrete transactions if performance is of the utmost
importance, and if they are willing to design the application accordingly.

Serializable transactions can be used if the application must be ANSI compatible.
Because of the overhead inherent in serializable transactions, Oracle strongly rec-
ommends the use of read-committed transactions instead.

See Also: Chapter 11, “Oracle8 Transaction Modes”

Tuning Data Warehouse Applications

Tuning data warehouse applications involves both serial and parallel SQL state-
ment tuning.

Shared SQL is not recommended with data warehousing applications. Use literal
values in these SQL statements, rather than bind variables. If you use bind vari-
ables, the optimizer will make a blanket assumption about the selectivity of the col-
umn. If you specify a literal value, by contrast, the optimizer can use value
histograms and so provide a better access plan.

See Also: Chapter 12, “Managing SQL and Shared PL/SQL Areas”

7-4 Oracle8 Tuning

Methodology for Tuning Database Operations

Methodology for Tuning Database Operations

Whether you are writing new SQL statements or tuning problematic statements in
an existing application, your methodology for tuning database operations essen-
tially concerns CPU and disk 1/0 resources.

« Step 1: Find the Statements that Consume the Most Resources

« Step 2: Tune These Statements so They Use Less Resources

Step 1. Find the Statements that Consume the Most Resources

Focus your tuning efforts on those statements where the benefit of tuning will
demonstrably exceed the cost of tuning. Use tools such as TKPROF, the SQL trace
facility, and Oracle Trace to find the problem statements and stored procedures.
Alternatively, you can query the VSSORT_USAGE view, which gives the session
and SQL statement associated with a temporary segment.

The statements that have the most potential to improve performance, if tuned,
include:

« those consuming greatest resource overall
« those consuming greatest resource per row
« those executed most frequently

In the V$SQLAREA view you can find those statements still in the cache that have
done a great deal of disk 1/0 and buffer gets. (Buffer gets show approximately the
amount of CPU resource used.)

See Also: Chapter 24, “The SQL Trace Facility and TKPROF”
Chapter 25, “Using Oracle Trace”
Oracle8 Reference for more information about dynamic performance views

Tuning Database Operations 7-5

Approaches to SQL Statement Tuning

Step 2: Tune These Statements so They Use Less Resources

Remember that application design is fundamental to performance. No amount of
SQL statement tuning can make up for inefficient design. If you encounter stum-
bling blocks in SQL statement tuning, perhaps you need to change the application
design.

You can use two strategies to reduce the resources consumed by a particular state-
ment:

« Get the statement to use less resources when it is used.
« Use the statement less frequently.

Statements may use the most resources because they do the most work, or because
they perform their work inefficiently—or they may do both. However, the lower
the resource used per unit of work (per row processed), the more likely it is that
you can significantly reduce resources used only by changing the application itself.
That is, rather than changing the SQL, it may be more effective to have the applica-
tion process fewer rows, or process the same rows less frequently.

These two approaches are not mutually exclusive. The former is clearly less expen-
sive, because you should be able to accomplish it either without program change
(by changing index structures) or by changing only the SQL statement itself rather
than the surrounding logic.

See Also: Chapter 13, “Tuning CPU Resources”
Chapter 15, “Tuning I/0”

Approaches to SQL Statement Tuning

This section describes three strategies you can use to speed up SQL statements:
« Restructure the Indexes

« Restructure the Statement

« Restructure the Data

Note: These guidelines are oriented to production SQL that will be executed fre-
guently. Most of the techniques that are discouraged here can legitimately be
employed in ad hoc statements or in applications run infrequently, where perfor-
mance is not critical.

7-6 Oracle8 Tuning

Approaches to SQL Statement Tuning

Restructure the Indexes

Restructuring the indexes is a good starting point, because it has more impact on
the application than does restructuring the statement or the data.

« Remove nonselective indexes to speed the DML.

« Index performance-critical access paths.

« Consider hash clusters, but watch uniqueness.

« Consider index clusters only if the cluster keys are similarly sized.

Do not use indexes as a panacea. Application developers sometimes think that per-
formance will improve if they just write enough indexes. If a single programmer
creates an appropriate index, this might indeed improve the application’s perfor-
mance. However, if 50 programmers each create an index, application performance
will probably be hampered!

Restructure the Statement

After restructuring the indexes, you can try restructuring the statement. Rewriting
an inefficient SQL statement is often easier than repairing it. If you understand the
purpose of a given statement, you may be able to quickly and easily write a new
statement that meets the requirement.

Consider Alternative SQL Syntax

Because SQL is a flexible language, more than one SQL statement may meet the
needs of your application. Although two SQL statements may produce the same
result, Oracle may process one faster than the other. You can use the results of the
EXPLAIN PLAN statement to compare the execution plans and costs of the two
statements and determine which is more efficient.

This example shows the execution plans for two SQL statements that perform the
same function. Both statements return all the departments in the DEPT table that
have no employees in the EMP table. Each statement searches the EMP table with a
subquery. Assume there is an index, DEPTNO_INDEX, on the DEPTNO column of
the EMP table.

This is the first statement and its execution plan:

SELECT dname, deptno
FROM dept
WHERE deptno NOT IN
(SELECT deptno FROM emp);

Tuning Database Operations 7-7

Approaches to SQL Statement Tuning

Figure 7-1 Execution Plan with Two Full Table Scans

1

FILTER

TABLE ACCESS TABLE ACCESS

(FULL) (FULL)
dept emp

Step 3 of the output indicates that Oracle executes this statement by performing a
full table scan of the EMP table despite the index on the DEPTNO column. This full
table scan can be a time-consuming operation. Oracle does not use the index
because the subquery that searches the EMP table does not have a WHERE clause
that makes the index available.

However, this SQL statement selects the same rows by accessing the index:

SELECT dname, deptno
FROM dept
WHERE NOT EXISTS
(SELECT deptno
FROM emp
WHERE dept.deptno = emp.deptno);

7-8 Oracle8 Tuning

Approaches to SQL Statement Tuning

Figure 7-2 Execution Plan with a Full Table Scan and an Index Scan

1

FILTER

TABLE ACCESS TABLE ACCESS

(FULL) (RANGE SCAN)
dept deptno_index

See Also: The optimizer chapter in Oracle8 Concepts for more information on inter-
preting execution plans.

The WHERE clause of the subquery refers to the DEPTNO column of the EMP
table, so the index DEPTNO_INDEX is used. The use of the index is reflected in
Step 3 of the execution plan. The index range scan of DEPTNO_INDEX takes less
time than the full scan of the EMP table in the first statement. Furthermore, the first
guery performs one full scan of the EMP table for every DEPTNO in the DEPT
table. For these reasons, the second SQL statement is faster than the first.

If you have statements in your applications that use the NOT IN operator, as the
first query in this example does, you should consider rewriting them so that they
use the NOT EXISTS operator. This would allow such statements to use an index, if
one exists.

Compose Predicates Using AND and =

Use equijoins. Without exception, statements that perform equijoins on untrans-
formed column values are the easiest to tune.

Choose an Advantageous Join Order

Join order can have a significant impact on performance. The main objective of SQL
tuning is to avoid performing unnecessary work to access rows that do not affect
the result. This leads to three general rules:

Tuning Database Operations 7-9

Approaches to SQL Statement Tuning

Avoid doing a full-table scan if it is more efficient to get the required rows
through an index.

Avoid using an index that fetches 10,000 rows from the driving table if you
could instead use another index that fetches 100 rows.

Choose the join order so as to join fewer rows to tables later in the join order.

The following example shows how to tune join order effectively:

SELECT stuff
FROM taba a, tabb b, tabc ¢

WHERE a.acol between :alow and :ahigh
AND b.bcol between :blow and :bhigh
AND c.ccol between :clow and :chigh
AND akeyl =bkeyl
AMD akey2 =ckey2;

7-10 Oracle8 Tuning

Choose the driving table and the driving index (if any).

The first three conditions in the example above are filter conditions applying to
only a single table each. The last two conditions are join conditions.

Filter conditions dominate the choice of driving table and index. In general, the
driving table should be the one containing the filter condition that eliminates
the highest percentage of the table. Thus, if the range of :alow to :ahigh is nar-
row compared with the range of acol, but the ranges of :b* and :c* are relatively
large, then taba should be the driving table, all else being equal.

Choose the right indexes.

Once you know your driving table, choose the most selective index available to
drive into that table. Alternatively, choose a full table scan if that would be
more efficient. From there, the joins should all happen through the join indexes,
the indexes on the primary or foreign keys used to connect that table to an ear-
lier table in the join tree. Rarely should you use the indexes on the non-join con-
ditions, except for the driving table. Thus, once taba is chosen as the driving
table, you should use the indexes on b.key1 and c.key? to drive into tabb and
tabc, respectively.

Choose the best join order, driving to the best unused filters earliest.

The work of the following join can be reduced by first joining to the table with
the best still-unused filter. Thus, if “bcol between ... is more restrictive (rejects
a higher percentage of the rows seen) than “ccol between ...“, the last join can
be made easier (with fewer rows) if tabb is joined before tabc.

Approaches to SQL Statement Tuning

Use Untransformed Column Values
Use untransformed column values. For example, use

WHERE a.order_no=b.order_no

rather than
WHERE TO_NUMBER (substr(a.order_no, instr(b.order_no,) - 1)
=TO_NUMBER (substr(a.order_no, instr(b.order_no, ") - 1)

Do not use SQL functions in predicate clauses or WHERE clauses. The use of an
aggregate function, especially in a subquery, often indicates that you could have
held a derived value on a master record.

Avoid Mixed-Mode Expressions

Avoid mixed-mode expressions, and beware of implicit type conversions. When
you want to use an index on the VARCHAR?2 column charcol, but the WHERE
clause looks like this:

AND charcol = <numexpr>
where numexpr is an expression of number type (for example, 1, USERENV('SES-
SIONID"), numcol, numcol+0,...), Oracle will translate that expression into

AND to_number(charcol) = numexpr

This has the following consequences:

« Any expression using a column, such as a function having the column as its
argument, will cause the optimizer to ignore the possibility of using an index
on that column, even a unique index.

« If the system processes even a single row having charcol as a string of charac-
ters that does not translate to a number, an error will be returned.

You can avoid this problem by replacing the top expression with the explicit conver-
sion

AND charcol =to_char(<numexpr>)

Alternatively, make all type conversions explicit. The statement

numcol = charexpr

Tuning Database Operations 7-11

Approaches to SQL Statement Tuning

allows use of an index on numcol because the default conversion is always charac-
ter-to-number. This behavior, however, is subject to change. Making type conver-
sions explicit also makes it clear that charexpr should always translate to a number.

Write Separate SQL Statements for Specific Values

SQL is not a procedural language. Using one piece of SQL to do many different
things is not a good idea: it usually results in a less than optimal result for each
task. If you want SQL to accomplish different things, then write two different state-
ments rather than writing one statement that will do different things depending on
the parameters you give it.

Optimization (determining the execution plan) takes place before the database
knows what values will be substituted into the query. An execution plan should
not, therefore, depend on what those values are. For example:

SELECT stuff from tables

WHERE ...
AND somecolumn BETWEEN decode(loval,'ALL", somecolumn, :loval)
AND decode(hival, ‘ALL', somecolumn, :hival);

Written as shown, the database cannot use an index on the somecolumn column
because the expression involving that column uses the same column on both sides
of the BETWEEN.

This is not a problem if there is some other highly selective, indexable condition
you can use to access the driving table. Often, however, this is not the case. Fre-
guently you may want to use an index on a condition like that shown, but need to
know the values of :loval, and so on, in advance. With this information you can
rule out the ALL case, which should not use the index.

If you want to use the index whenever real values are given for :loval and :hival
(that is, if you expect narrow ranges, even ranges where :loval often equals :hival),
you can rewrite the example in the following logically equivalent form:

SELECT # change this half of union all if other half changes */ stuff
FROM tables

WHERE ...
AND somecolumn between :loval and :hival
AMD (chival I="ALL" and :loval I="ALL’)

UNION ALL

SELECT / Change this half of union all if other half changes. */ stuff
FROM tables

WHERE ...
AND (hival ='ALL' OR :loval ='ALLY);

7-12 Oracle8 Tuning

Approaches to SQL Statement Tuning

If you run EXPLAIN PLAN on the new query, you seem to obtain both a desirable
and an undesirable execution plan. However, the first condition the database evalu-
ates for either half of the UNION ALL will be the combined condition on whether
:hival and :loval are ALL. The database evaluates this condition before actually get-
ting any rows from the execution plan for that part of the query. When the condi-
tion comes back false for one part of the UNION ALL query, that part is not
evaluated further. Only the part of the execution plan that is optimum for the val-
ues provided is actually carried out. Since the final conditions on :hival and :loval
are guaranteed to be mutually exclusive, then only one half of the UNION ALL
will actually return rows. (The ALL in UNION ALL is logically valid because of
this exclusivity. It allows the plan to be carried out without an expensive sort to
rule out duplicate rows for the two halves of the query.)

Use Hints to Control Access Paths

Use optimizer hints, such as /*+ORDERED */ to control access paths. This is a bet-
ter approach than using traditional techniques or “tricks of the trade” such as
CUST_NO + 0. For example, use

SELECT A+ FULL(EMP) * EENAME
FROMEMP E
WHERE E.JOB ="CLERK;;

rather than

SELECT EENAME
FROMEMP E
WHERE E.JOB || " ="CLERK;;

Use Care When Using IN and NOT IN with a Subquery
Remember that WHERE (NOT) EXISTS is a useful alternative.

Use Care When Embedding Data Value Lists in Applications
Data value lists are normally a sign that an entity is missing. For example:

WHERE TRANSPORT IN (BMW, 'CITROEN’, FORD', HONDA)
The real objective in the WHERE clause above is to determine whether the mode of

transport is an automobile, and not to identify a particular make. A reference table
should be available in which transport type="AUTOMOBILE’.

Minimize the use of DISTINCT. DISTINCT always creates a SORT; all the data
must be instantiated before your results can be returned.

Tuning Database Operations 7-13

Approaches to SQL Statement Tuning

Reduce the Number of Calls to the Database

When appropriate, use INSERT, UPDATE, or DELETE RETURNING to select and
modify data with a single call. This technique improves performance by reducing
the number of calls to the database.

See Also: Oracle8 SQL Reference for more information.

Use Care When Managing Views

Be careful when joining views, when performing outer joins to views, and when
you consider recycling views.

Use Care When Joining Views. The shared SQL area in Oracle reduces the cost of
parsing queries that reference views. In addition, optimizer improvements make
the processing of predicates against views very efficient. Together these factors
make possible the use of views for ad hoc queries. Despite this, joins to views are
not recommended, particularly joins from one complex view to another.

The following example shows a query upon a column which is the result of a
GROUP BY. The entire view is first instantiated, and then the query is run against
the view data.

CREATE VIEW DX(deptno, dname, totsal)
AS SELECT D.deptno, D.dname, E.sum(sal)
FROM emp E, dept D
WHERE E.deptno = D.deptno
GROUP BY deptno, dname
SELECT * FROM DX WHERE deptno=10;

Use Care When Performing Outer Joins to Views. An outer join to a multitable
view can be problematic. For example, you may start with the usual emp and dept
tables with indexes on e.empno, e.deptno, and d.deptno, and create the following
view:

CREATE VIEW EMPDEPT (EMPNO, DEPTNO, ename, dname)
AS SELECT E.EMPNO, E.DEPTNO, e.ename, d.dname
FROM DEPT D, EMP E
WHERE E.DEPTNO = D.DEPTNO(+);

You may then construct the simplest possible query to do an outer join into this
view on an indexed column (e.deptno) of a table underlying the view:

7-14 Oracle8 Tuning

Approaches to SQL Statement Tuning

SELECT e.ename, d.loc
FROM dept d, empdepte
WHERE d.deptno = e.deptno(+)
AND d.deptno = 20;

The following execution plan results:
QUERY_PLAN

MERGE JOIN OUTER
TABLE ACCESS BY ROWID DEPT
INDEX UNIQUE SCAN DEPT_U1: DEPTNO
FILTER
VIEW EMPDEPT
NESTED LOOPS OUTER
TABLE ACCESS FULL EMP
TABLE ACCESS BY ROWID DEPT
INDEX UNIQUE SCAN DEPT_U1: DEPTNO

Until both tables of the view are joined, the optimizer does not know whether the
view will generate a matching row. The optimizer must therefore generate all the
rows of the view and perform a MERGE JOIN OUTER with all the rows returned
from the rest of the query. This approach would be extremely inefficient if all you
want is a few rows from a multitable view with at least one very large table.

To solve this problem is relatively easy, in the preceding example. The second refer-
ence to dept is not needed, so you can do an outer join straight to emp. In other
cases, the join need not be an outer join. You can still use the view simply by get-
ting rid of the (+) on the join into the view.

Do Not Recycle Views. Beware of writing a view for one purpose and then using it
for other purposes, to which it may be ill-suited. Consider this example:

SELECT dname from DX
WHERE deptno=10;

You can obtain dname and deptno directly from the DEPT table. It would be ineffi-
cient to obtain this information by querying the DX view (which was declared ear-
lier in the present example). To answer the query, the view would perform a join of
the DEPT and EMP tables, even though you do not need any data from the EMP
table.

Tuning Database Operations 7-15

Approaches to SQL Statement Tuning

Restructure the Data

After restructuring the indexes and the statement, you can consider restructuring
the data.

« Introduce derived values. Avoid GROUP BY in response-critical code.
« Implement missing entities and intersection tables.
« Reduce the network load. Migrate, replicate, partition data.

The overall purpose of any strategy for data distribution is to locate each data
attribute such that its value makes the minimum number of network journeys. If
the current number of journeys is excessive, then moving (migrating) the data is a
natural solution.

Often, however, no single location of the data reduces the network load (or mes-
sage transmission delays) to an acceptable level. In this case, consider either hold-
ing multiple copies (replicating the data) or holding different parts of the data in
different places (partitioning the data).

Where distributed queries are necessary, it may be effective to code the required
joins procedurally either in PL/SQL within a stored procedure, or within the user
interface code.

When considering a cross-network join, note that you can either bring the data in
from a remote node and perform the join locally, or you can perform the join
remotely. The option you choose should be determined by the relative volume of
data on the different nodes.

7-16 Oracle8 Tuning

8

Optimization Modes and Hints

This chapter explains when to use the available optimization modes and how to
use hints to enhance Oracle performance.

Topics include:

Using Cost-Based Optimization

Using Rule-Based Optimization

Introduction to Hints

How to Specify Hints

Hints for Optimization Approaches and Goals
Hints for Access Methods

Hints for Join Orders

Hints for Join Operations

Hints for Parallel Execution

Additional Hints

Using Hints with Views

See Also: Oracle8 Concepts for an introduction to the optimizer, access methodes, join
operations, and parallel execution.

Optimization Modes and Hints 8-1

Using Cost-Based Optimization

Using Cost-Based Optimization

This section discusses:

« When to Use the Cost-Based Approach

« How to Use the Cost-Based Approach

« Using Histograms for Nonuniformly Distributed Data
« Generating Statistics

« Choosing a Goal for the Cost-Based Approach

« Parameters that Affect Cost-Based Optimization Plans

« Tips for Using the Cost-Based Approach

When to Use the Cost-Based Approach

Attention: In general, you should always use the cost-based optimization
approach. The rule-based approach is available for the benefit of existing applica-
tions, but all new optimizer functionality uses the cost-based approach.

The following features are available only with cost-based optimization; you must
analyze your tables to get good plans:

« partitioned tables

« index-only tables

= reverse indexes

« parallel query

« star transformation
« starjoin

The cost-based approach generally chooses an execution plan that is as good as or
better than the plan chosen by the rule-based approach, especially for large queries
with multiple joins or multiple indexes. The cost-based approach also improves
productivity by eliminating the need to tune your SQL statements yourself. Finally,
many Oracle performance features are available only through the cost-based
approach.

Cost-based optimization must be used for efficient star query performance. Simi-
larly, it must be used with hash joins and histograms. Cost-based optimization is
always used with parallel query and with partitioned tables. You must use the
ANALYZE command in order to keep the statistics current.

8-2 Oracle8 Tuning

Using Cost-Based Optimization

How to Use the Cost-Based Approach

To use cost-based optimization for a statement, first collect statistics for the tables
accessed by the statement. Then enable cost-based optimization in one of these
ways:

« Make sure the OPTIMIZER_MODE initialization parameter is set to its default
value of CHOOSE.

« To enable cost-based optimization for your session only, issue an ALTER SES-
SION ... OPTIMIZER_MODE statement with the ALL_ROWS or
FIRST_ROWS option.

« To enable cost-based optimization for an individual SQL statement, use any
hint other than RULE.

The plans generated by the cost-based optimizer depend on the sizes of the tables.
When using the cost-based optimizer with a small amount of data to test an applica-
tion prototype, do not assume that the plan chosen for the full database will be the
same as that chosen for the prototype.

Using Histograms for Nonuniformly Distributed Data

For nonuniformly distributed data, you should create histograms describing the
data distribution of particular columns. For this type of data, histograms enable the
cost-based optimization approach to accurately guess the cost of executing a partic-
ular statement. For data that is uniformly distributed, the optimizer does not need
histograms to accurately estimate the selectivity of a query.

How to Use Histograms

Create histograms on columns that are frequently used in WHERE clauses of que-
ries and have a highly skewed data distribution. You create a histogram by using
the ANALYZE TABLE command. For example, if you want to create a 10-bucket
histogram on the SAL column of the EMP table, issue the following statement:

ANALYZE TABLE emp COMPUTE STATISTICS FOR COLUMNS sal SIZE 10;
The SIZE keyword states the maximum number of buckets for the histogram. You

would create a histogram on the SAL column if there were an unusual number of
employees with the same salary and few employees with other salaries.

See Also: Oracle8 SQL Reference for more information about the ANALYZE com-
mand and its options.

Optimization Modes and Hints 8-3

Using Cost-Based Optimization

Choosing the Number of Buckets for a Histogram

The default number of buckets is 75. This value provides an appropriate level of
detail for most data distributions. However, since the number of buckets in the his-
togram, the sampling rate, and the data distribution all affect the usefulness of a his-
togram, you may need to experiment with different numbers of buckets to obtain
the best results.

If the number of frequently occurring distinct values in a column is relatively small,
then it is useful to set the number of buckets to be greater than the number of fre-
guently occurring distinct values.

Viewing Histograms
You can find information about existing histograms in the database through the fol-
lowing data dictionary views:

USER_HISTOGRAMS
ALL_HISTOGRAMS
DBA_HISTOGRAMS

Find the number of buckets in each column’s histogram in:

USER_TAB_COLUMNS
ALL_TAB_COLUMNS
DBA_TAB_COLUMNS

See Also: Oracle8 Concepts for column descriptions of data dictionary views, as well
as histogram use and restrictions.

Generating Statistics

Since the cost-based approach relies on statistics, you should generate statistics for
all tables, clusters, and indexes accessed by your SQL statements before using the
cost-based approach. If the size and data distribution of these tables changes fre-
guently, generate these statistics regularly to ensure that they accurately represent
the data in the tables.

Oracle can generate statistics using these techniques:
« estimation based on random data sampling

« exact computation

8-4 Oracle8 Tuning

Using Cost-Based Optimization

Use estimation, rather than computation, unless you think you need exact values,
because:

« Computation always provides exact values, but can take longer than estima-
tion. The time necessary to compute statistics for a table is approximately the
time required to perform a full table scan and a sort of the rows of the table.

« Estimation is often much faster than computation, especially for large tables,
because estimation never scans the entire table.

To perform a computation, Oracle requires enough space to perform a scan and
sort of the table. If there is not enough space in memory, temporary space may be
required. For estimations, Oracle requires enough space to perform a scan and sort
of all of the rows in the requested sample of the table.

Because of the time and space required for the computation of table statistics, it is
usually best to perform an estimation for tables and clusters. For indexes, computa-
tion does not take up as much time or space, so it is best to perform a computation.

When you generate statistics for a table, column, or index, if the data dictionary
already contains statistics for the analyzed object, Oracle updates the existing statis-
tics with the new ones. Oracle invalidates any currently parsed SQL statements that
access any of the analyzed objects. When such a statement is next executed, the
optimizer automatically chooses a new execution plan based on the new statistics.
Distributed statements issued on remote databases that access the analyzed objects
use the new statistics when they are next parsed.

Some statistics are always computed, regardless of whether you specify computa-
tion or estimation. If you choose estimation and the time saved by estimating a sta-
tistic is negligible, Oracle computes the statistic.

You can generate statistics with the ANALYZE command.
Example: This example generates statistics for the EMP table and its indexes:

ANALYZE TABLE emp
ESTIMATE STATISTICS;

Optimization Modes and Hints 8-5

Using Cost-Based Optimization

Choosing a Goal for the Cost-Based Approach

The execution plan produced by the optimizer can vary depending upon the opti-
mizer’s goal. Optimizing for best throughput is more likely to result in a full table
scan rather than an index scan, or a sort-merge join rather than a nested loops join.
Optimizing for best response time is more likely to result in an index scan or a
nested loops join.

For example, consider a join statement that can be executed with either a nested
loops operation or a sort-merge operation. The sort-merge operation may return
the entire query result faster, while the nested loops operation may return the first
row faster. If the goal is best throughput, the optimizer is more likely to choose a
sort-merge join. If the goal is best response time, the optimizer is more likely to
choose a nested loops join.

Choose a goal for the optimizer based on the needs of your application:

For applications performed in batch, such as Oracle Reports applications, opti-
mize for best throughput. Throughput is usually more important in batch appli-
cations, because the user initiating the application is only concerned with the
time necessary for the application to complete. Response time is less important
because the user does not examine the results of individual statements while
the application is running.

For interactive applications, such as Oracle Forms applications or SQL*Plus
gueries, optimize for best response time. Response time is usually important in
interactive applications because the interactive user is waiting to see the first
row accessed by the statement.

For queries that use ROWNUM to limit the number of rows, optimize for best
response time. Because of the semantics of ROWNUM queries, optimizing for
response time provides the best results.

By default, the cost-based approach optimizes for best throughput. You can change
the goal of the cost-based approach in these ways:

To change the goal of the cost-based approach for all SQL statements in your
session, issue an ALTER SESSION...OPTIMIZER_MODE statement with the
ALL_ROWS or FIRST_ROWS option.

To specify the goal of the cost-based approach for an individual SQL statement,
use the ALL_ROWS or FIRST_ROWS hint.

Example: This statement changes the goal of the cost-based approach for your ses-
sion to best response time:

ALTER SESSION SET OPTIMIZER_MODE =FIRST_ROWS,;

8-6 Oracle8 Tuning

Using Cost-Based Optimization

Parameters that Affect Cost-Based Optimization Plans
The following parameters affect cost-based optimization plans:

OPTIMIZER_FEATURES_ENABLED

OPTIMIZER_MODE

OPTIMIZER_PERCENT_PARALLEL

HASH_AREA SIZE

SORT_AREA_SIZE

DB_FILE_MULTIBLOCK_READ_COUNT

COMPLEX_VIEW_MERGING

PUSH_JOIN_PREDICATE

Turns on a number of optimizer features, including:
B_TREE_BITMAP_PLANS,
COMPLEX_VIEW_MERGING,
PUSH_JOIN_PREDICATE,
FAST_FULL_SCAN_ENABLED

As initialization parameter, sets the mode of the
optimizer at instance startup: rule-based, cost based
optimized for throughput or response time, or a
choice based on presence of statistics. Use
OPTIMIZER_MODE option of ALTER SESSION
statement to change the value dynamically during a
session.

Defines the amount of parallelism that the opti-
mizer uses in its cost functions.

Larger value causes hash join costs to be cheaper,
giving more hash joins.

Large value causes sort costs to be cheaper, giving
more sort merge joins.

Large value gives cheaper table scan cost and favors
table scans over indexes.

Controls complex view merging.

Enables the optimizer to evaluate whether or not to
push individual join predicates into the view query
block.

Optimization Modes and Hints 8-7

Using Cost-Based Optimization

The following parameters often need to be set in a data warehousing application:

ALWAYS_ANTI_JOIN

HASH_JOIN_ENABLED

SORT_DIRECT_WRITES

Sets the type of antijoin that Oracle uses:
NESTED_LOOPS/MERGE/HASH.

Enables or disables the hash join feature; should
always be set to TRUE for data warehousing appli-
cations.

Gives lower sort costs and more sort merge joins.

The following parameters rarely need to be changed:

HASH_MULTIBLOCK_IO_COUNT

SORT_WRITE_BUFFER_SIZE

OPTIMIZER_SEARCH_LIMIT

BITMAP_MERGE_AREA_SIZE

Larger value causes hash join costs to be cheaper,
giving more hash joins.

Large value causes sort costs to be cheaper, giving
more sort merge joins.

The maximum number of tables in the FROM clause
for which all possible join permutations will be con-
sidered.

The size of the area used to merge the different bit-
maps that match a range predicate. Larger size will
favor use of bitmap indexes for range predicates.

Note: The following sort parameters can be modified using ALTER SESSION ...
SET or ALTER SYSTEM ... SET DEFERRED:

SORT_AREA SIZE

SORT_AREA _RETAINED_SIZE

SORT_DIRECT_WRITES
SORT_WRITE_BUFFERS

SORT_WRITE_BUFFER_SIZE

SORT_READ_FAC

See Also: Oracle8 Reference for complete information about each parameter.

8-8 Oracle8 Tuning

Using Cost-Based Optimization

COMPLEX_VIEW_MERGING
Recommended value: default

When set to FALSE, this parameter causes complex views or subqueries to be evalu-
ated before the referencing query. In this case, you can cause a view to be merged
on a per-query basis by using the MERGE hint.

When set to TRUE, this parameter causes complex views or subqueries to be
merged. In this case, you can use the NO_MERGE hint within the view to prevent
one particular view from being merged. Alternatively, you can use the NO_MERGE
hint in the surrounding query, and specify the name of the view that should not be
merged.

PUSH_JOIN_PREDICATE
Recommended value: TRUE

When this parameter is set to TRUE, the optimizer can evaluate, on a cost basis,
whether or not to push individual join predicates into the view query block. This
can enable more efficient access path and join methods, such as transforming hash
joins into nested loop joins, and full table scans to index scans.

If PUSH_JOIN_PREDICATE is TRUE, you can use the NO_PUSH_JOIN_PRED hint
to prevent pushing join predicates into the view.

If PUSH_JOIN_PREDICATE is FALSE, you can use the PUSH_JOIN_PRED hint to
force pushing of a join predicate into the view.

Tips for Using the Cost-Based Approach

The cost-based optimization approach assumes that a query will be executed on a
multiuser system with a fairly low buffer cache hit rate. Thus a plan selected by
cost-based optimization may not be the best plan for a single user system with a
large buffer cache. Timing a query plan on a single user system with a large cache
may not be a good predictor of performance for the same query on a busy mul-
tiuser system.

Analyzing a table uses more system resources than analyzing an index. It may be
helpful to analyze the indexes for a table separately, with a higher sampling rate.

Use of access path and join method hints invokes cost-based optimization. Since
cost-based optimization is dependent on statistics, it is important to analyze all
tables referenced in a query that has hints, even though rule-based optimization
may have been selected as the system default.

Optimization Modes and Hints 8-9

Using Rule-Based Optimization

Using Rule-Based Optimization

Rule-based optimization is supported in Oracle8, but you are advised to write any
new applications using cost-based optimization. Cost-based optimization should

be used for new applications and for data warehousing applications, because it sup-
ports new and enhanced features. Much of the functionality in Oracle8 (such as
hash joins, improved star query processing, and histograms) is available only
through cost-based optimization.

If you have developed existing OLTP applications using version 6 of Oracle and
have tuned your SQL statements carefully based on the rules of the optimizer, you
may want to continue using rule-based optimization when you upgrade these
applications to Oracle8.

If you neither collect statistics nor add hints to your SQL statements, your state-
ments will use rule-based optimization. However, you should eventually migrate
your existing applications to use the cost-based approach, because the rule-based
approach will not be available in future versions of Oracle.

If you are using an application provided by a third-party vendor, check with the
vendor to determine which type of optimization is best suited to that application.

You can enable cost-based optimization on a trial basis simply by collecting statis-
tics. You can then return to rule-based optimization by deleting them or by setting
either the value of the OPTIMIZER_MODE initialization parameter or the
OPTIMIZER_MODE option of the ALTER SESSION command to RULE. You can
also use this value if you want to collect and examine statistics for your data with-
out using the cost-based approach.

8-10 Oracle8 Tuning

How to Specify Hints

Introduction to Hints

As an application designer, you may know information about your data that the
optimizer cannot. For example, you may know that a certain index is more selec-
tive for certain queries than the optimizer can determine. Based on this informa-
tion, you may be able to choose a more efficient execution plan than the optimizer
can. In such a case, you can use hints to force the optimizer to use your chosen exe-
cution plan.

Hints are suggestions that you give the optimizer for optimizing a SQL statement.
Hints allow you to make decisions usually made by the optimizer. You can use
hints to specify

« the optimization approach for a SQL statement

« the goal of the cost-based approach for a SQL statement
« the access path for a table accessed by the statement

« the join order for a join statement

« ajoin operation in a join statement

Note, however, that the use of hints involves extra code that must also be managed,
checked, controlled.

How to Specify Hints

Hints apply only to the optimization of the statement block in which they appear.
A statement block is any one of the following statements or parts of statements:

« asimple SELECT, UPDATE, or DELETE statement
« aparent statement or subquery of a complex statement
« apart of acompound query

For example, a compound query consisting of two component queries combined by
the UNION operator has two statement blocks, one for each component query. For
this reason, hints in this first component query apply only to its optimization, not
to the optimization of the second component query.

You can send hints for a SQL statement to the optimizer by enclosing them in a
comment within the statement.

See Also: For more information on comments, see Oracle8 SQL Reference.

Optimization Modes and Hints 8-11

How to Specify Hints

A statement block can have only one comment containing hints. This comment can
only follow the SELECT, UPDATE, or DELETE keyword. The syntax diagrams
show the syntax for hints contained in both styles of comments that Oracle sup-
ports within a statement block.

=
=

or:

ELETE

==
T

where:
DELETE Isa DELETE, SELECT, or UPDATE keyword that begins a state-
SELECT ment block. Comments containing hints can appear only after these

UPDATE keywords.

+ Is a plus sign that causes Oracle to interpret the comment as a list of
hints. The plus sign must immediately follow the comment delim-
iter (no space is permitted).

hint Is one of the hints discussed in this section. If the comment contains
multiple hints, each pair of hints must be separated by at least one
space.

text Is other commenting text that can be interspersed with the hints.

8-12 Oracle8 Tuning

How to Specify Hints

If you specify hints incorrectly, Oracle ignores them but does not return an error;

« Oracle ignores hints if the comment containing them does not follow a
DELETE, SELECT, or UPDATE keyword.

« Oracle ignores hints containing syntax errors, but considers other correctly
specified hints within the same comment.

« Oracle ignores combinations of conflicting hints, but considers other hints
within the same comment.

« Oracle also ignores hints in all SQL statements in those environments that use
PL/SQL Version 1, such as SQL*Forms Version 3 triggers, Oracle Forms 4.5,
and Oracle Reports 2.5.

The optimizer recognizes hints only when using the cost-based approach. If you
include any hint (except the RULE hint) in a statement block, the optimizer auto-
matically uses the cost-based approach.

The following sections show the syntax of each hint.

Optimization Modes and Hints 8-13

Hints for Optimization Approaches and Goals

Hints for Optimization Approaches and Goals

The hints described in this section allow you to choose between the cost-based and
the rule-based optimization approaches and, with the cost-based approach,
between the goals of best throughput and best response time.

. ALL_ROWS

. FIRST_ROWS
. CHOOSE

. RULE

If a SQL statement contains a hint that specifies an optimization approach and goal,
the optimizer uses the specified approach regardless of the presence or absence of
statistics, the value of the OPTIMIZER_MODE initialization parameter, and the
OPTIMIZER_MODE parameter of the ALTER SESSION command.

Note: The optimizer goal applies only to queries submitted directly. Use hints to
determine the access path for any SQL statements submitted from within PL/SQL.
The ALTER SESSION ... SET OPTIMIZER_MODE statement does not affect SQL
that is run from within PL/SQL.

ALL_ROWS

The ALL_ROWS hint explicitly chooses the cost-based approach to optimize a state-
ment block with a goal of best throughput (that is, minimum total resource con-
sumption).

Syntax of this hint is as follows:

(P Amoms (D

For example, the optimizer uses the cost-based approach to optimize this statement
for best throughput:

SELECT A+ ALL_ROWS * empno, ename, sal, job
FROM emp
WHERE empno = 7566;

8-14 Oracle8 Tuning

Hints for Optimization Approaches and Goals

FIRST ROWS

The FIRST_ROWS hint explicitly chooses the cost-based approach to optimize a
statement block with a goal of best response time (minimum resource usage to
return first row).

This hint causes the optimizer to make these choices:
« Ifanindex scan is available, the optimizer may choose it over a full table scan.

« Ifanindex scan is available, the optimizer may choose a nested loops join over
a sort-merge join whenever the associated table is the potential inner table of
the nested loops.

« Ifanindex scan is made available by an ORDER BY clause, the optimizer may
choose it to avoid a sort operation.

Syntax of this hint is as follows:

(P {Frstroms J:(7)

For example, the optimizer uses the cost-based approach to optimize this statement
for best response time:

SELECT A+ FRST_ROWS * empno, ename, sal, job
FROM emp
WHERE empno = 7566;

The optimizer ignores this hint in DELETE and UPDATE statement blocks and in
SELECT statement blocks that contain any of the following syntax:

« setoperators (UNION, INTERSECT, MINUS, UNION ALL)

= GROUP BY clause

=« FOR UPDATE clause

« group functions

« DISTINCT operator

These statements cannot be optimized for best response time because Oracle must
retrieve all rows accessed by the statement before returning the first row. If you
specify this hint in any of these statements, the optimizer uses the cost-based
approach and optimizes for best throughput.

If you specify either the ALL_ROWS or FIRST_ROWS hint in a SQL statement and
the data dictionary contains no statistics about any of the tables accessed by the
statement, the optimizer uses default statistical values (such as allocated storage for

Optimization Modes and Hints 8-15

Hints for Optimization Approaches and Goals

CHOOSE

RULE

such tables) to estimate the missing statistics and subsequently to choose an execu-
tion plan. These estimates may not be as accurate as those generated by the ANA-
LYZE command; therefore, you should use the ANALYZE command to generate
statistics for all tables accessed by statements that use cost-based optimization. If
you specify hints for access paths or join operations along with either the
ALL_ROWS or FIRST_ROWS hint, the optimizer gives precedence to the access
paths and join operations specified by the hints.

The CHOOSE hint causes the optimizer to choose between the rule-based approach
and the cost-based approach for a SQL statement based on the presence of statistics
for the tables accessed by the statement. If the data dictionary contains statistics for
at least one of these tables, the optimizer uses the cost-based approach and opti-
mizes with the goal of best throughput. If the data dictionary contains no statistics
for any of these tables, the optimizer uses the rule-based approach.

Syntax of this hint is as follows:

GIE=310

For example:

SELECT A+ CHOOSE * empno, ename, sal, job
FROM emp
WHERE empno = 7566;

The RULE hint explicitly chooses rule-based optimization for a statement block. It
also makes the optimizer ignore any other hints specified for the statement block.

Syntax of this hint is as follows:

EHFED

For example, the optimizer uses the rule-based approach for this statement:

SELECT —+ RULE empno, ename, sal, job
FROM emp
WHERE empno = 7566;
The RULE hint, along with the rule-based approach, may not be supported in
future versions of Oracle.

8-16 Oracle8 Tuning

Hints for Access Methods

Hints for Access Methods

FULL

Each hint described in this section suggests an access method for a table.
« FULL

. ROWID
. CLUSTER
. HASH
. HASH_AJ
. INDEX

. INDEX_ASC
. INDEX_COMBINE
. INDEX_DESC

. INDEX_FFS

. MERGE_AJ

. AND_EQUAL

. USE_CONCAT

Specifying one of these hints causes the optimizer to choose the specified access
path only if the access path is available based on the existence of an index or cluster
and the syntactic constructs of the SQL statement. If a hint specifies an unavailable
access path, the optimizer ignores it.

You must specify the table to be accessed exactly as it appears in the statement. If
the statement uses an alias for the table, you must use the alias, rather than the
table name, in the hint. The table name within the hint should not include the
schema name, if the schema name is present in the statement.

The FULL hint explicitly chooses a full table scan for the specified table.

Syntax of this hint is as follows:
Q. 0:CD0:0.

where table specifies the name or alias of the table on which the full table scan is to
be performed.

Optimization Modes and Hints 8-17

Hints for Access Methods

ROWID

CLUSTER

HASH

For example, Oracle performs a full table scan on the ACCOUNTS table to execute
this statement, even if there is an index on the ACCNO column that is made avail-
able by the condition in the WHERE clause:

SELECT A+ FULL(a) Don't use the index on ACCNO * accno, bal
FROM accounts a
WHERE accno = 7086854;

Note: Because the ACCOUNTS table has an alias, A, the hint must refer to the table
by its alias, rather than by its name. Also, do not specify schema names in the hint,
even if they are specified in the FROM clause.

The ROWID hint explicitly chooses a table scan by ROWID for the specified table.
The syntax of the ROWID hint is:

(P70 WD @HDAD

where table specifies the name or alias of the table on which the table access by
ROWID is to be performed.

The CLUSTER hint explicitly chooses a cluster scan to access the specified table. It
applies only to clustered objects. The syntax of the CLUSTER hint is:

(DT O DAD

where table specifies the name or alias of the table to be accessed by a cluster scan.
The following example illustrates the use of the CLUSTER hint.

SELECT —+ CLUSTER emp ename, deptno
FROM emp, dept
WHERE deptno =10 AND

emp.deptno = dept.deptno;

The HASH hint explicitly chooses a hash scan to access the specified table. It
applies only to tables stored in a cluster. The syntax of the HASH hint is:

OABSTHOAEHDAD

where table specifies the name or alias of the table to be accessed by a hash scan.

8-18 Oracle8 Tuning

Hints for Access Methods

HASH_AJ

HASH_SJ

INDEX

The HASH_AJ hint transforms a NOT IN subquery into a hash anti-join to access
the specified table. The syntax of the HASH_AJ hint is:

(s 1D

The HASH_SJ hint transforms a correlated EXISTS subquery into a hash semi-join
to access the specified table. The syntax of the HASH_SJ hint is:

S D

The INDEX hint explicitly chooses an index scan for the specified table. The syntax
of the INDEX hint is:

.index
GIEI0ICOSE=N 010

where:

table Specifies the name or alias of the table associated with the index to
be scanned.

index Specifies an index on which an index scan is to be performed.

This hint may optionally specify one or more indexes:

« If this hint specifies a single available index, the optimizer performs a scan on
this index. The optimizer does not consider a full table scan or a scan on
another index on the table.

« If this hint specifies a list of available indexes, the optimizer considers the cost
of a scan on each index in the list and then performs the index scan with the
lowest cost. The optimizer may also choose to scan multiple indexes from this
list and merge the results, if such an access path has the lowest cost. The opti-
mizer does not consider a full table scan or a scan on an index not listed in the
hint.

« If this hint specifies no indexes, the optimizer considers the cost of a scan on
each available index on the table and then performs the index scan with the
lowest cost. The optimizer may also choose to scan multiple indexes and merge

Optimization Modes and Hints 8-19

Hints for Access Methods

the results, if such an access path has the lowest cost. The optimizer does not
consider a full table scan.

For example, consider this query, which selects the name, height, and weight of all
male patients in a hospital:

SELECT name, height, weight
FROM patients
WHERE sex="M;

Assume that there is an index on the SEX column and that this column contains the
values M and F. If there are equal numbers of male and female patients in the hospi-
tal, the query returns a relatively large percentage of the table’s rows and a full
table scan is likely to be faster than an index scan. However, if a very small percent-
age of the hospital’s patients are male, the query returns a relatively small percent-
age of the table’s rows and an index scan is likely to be faster than a full table scan.

The number of occurrences of each distinct column value is not available to the
optimizer. The cost-based approach assumes that each value has an equal probabil-
ity of appearing in each row. For a column having only two distinct values, the opti-
mizer assumes each value appears in 50% of the rows, so the cost-based approach

is likely to choose a full table scan rather than an index scan.

If you know that the value in the WHERE clause of your query appears in a very
small percentage of the rows, you can use the INDEX hint to force the optimizer to
choose an index scan. In this statement, the INDEX hint explicitly chooses an index
scan on the SEX_INDEX, the index on the SEX column:

SELECT A+ INDEX(patients sex_index) Use SEX_INDEX, since there are few
male patients */
name, height, weight
FROM patients
WHERE sex="M;

The INDEX hint applies to inlist predicates; it forces the optimizer to use the hinted
index, if possible, for an inlist predicate. Multi-column inlists will not use an index.

8-20 Oracle8 Tuning

Hints for Access Methods

INDEX_ASC

The INDEX_ASC hint explicitly chooses an index scan for the specified table. If the
statement uses an index range scan, Oracle scans the index entries in ascending
order of their indexed values. The syntax of the INDEX_ASC hint is:

1'#&%%”
B WO =L

Each parameter serves the same purpose as in the INDEX hint.

Because Oracle’s default behavior for a range scan is to scan index entries in ascend-
ing order of their indexed values, this hint does not currently specify anything

more than the INDEX hint. However, you may want to use the INDEX_ASC hint to
specify ascending range scans explicitly, should the default behavior change.

INDEX_COMBINE

INDEX_DESC

If no indexes are given as arguments for the INDEX_COMBINE hint, the optimizer
will use on the table whatever Boolean combination of bitmap indexes has the best
cost estimate. If certain indexes are given as arguments, the optimizer will try to
use some Boolean combination of those particular bitmap indexes. The syntax of
INDEX_COMBINE is:

'ﬁﬂﬁg)
IO CDS SN 0O

The INDEX_DESC hint explicitly chooses an index scan for the specified table. If
the statement uses an index range scan, Oracle scans the index entries in descend-
ing order of their indexed values. Syntax of the INDEX_DESC hint is:

index

BT WO @0 =)

Each parameter serves the same purpose as in the INDEX hint. This hint has no
effect on SQL statements that access more than one table. Such statements always
perform range scans in ascending order of the indexed values.

Optimization Modes and Hints 8-21

Hints for Access Methods

INDEX_FFS
This hint causes a fast full index scan to be performed rather than a full table scan.
The syntax of INDEX_FFS is:
™ D@ =L@
See Also: "Fast Full Index Scan" on page 10-9
MERGE_AJ
The MERGE_AIJ hint transforms a NOT IN subquery into a merge anti-join to
access the specified table. The syntax of the MERGE_AJ hint is:
™ ®@
MERGE_SJ

The MERGE_SJ hint transforms a correlated EXISTS subquery into a merge semi-
join to access the specified table. The syntax of the MERGE_SJ hint is:

(P EES (D

8-22 Oracle8 Tuning

Hints for Access Methods

AND_EQUAL

The AND_EQUAL hint explicitly chooses an execution plan that uses an access
path that merges the scans on several single-column indexes. The syntax of the
AND_EQUAL hint is:

(index) ﬁ.j@ ﬁ.j@
O EEO @@ O

where:

table Specifies the name or alias of the table associated with the indexes
to be merged.

index Specifies an index on which an index scan is to be performed. You
must specify at least two indexes. You cannot specify more than
five.

USE_CONCAT

The USE_CONCAT hint forces combined OR conditions in the WHERE clause of a
guery to be transformed into a compound query using the UNION ALL set opera-
tor. Normally, this transformation occurs only if the cost of the query using the con-
catenations is cheaper than the cost without them.

The USE_CONCAT hint turns off inlist processing and OR-expands all disjunc-
tions, including inlists.

Syntax of this hint is;

(T (D)

Optimization Modes and Hints 8-23

Hints for Join Orders

Hints for Join Orders

ORDERED

STAR

The hints in this section suggest join orders:
« ORDERED
« STAR

The ORDERED hint causes Oracle to join tables in the order in which they appear
in the FROM clause.

Syntax of this hint is;
™ ®

For example, this statement joins table TABL1 to table TAB2 and then joins the result
to table TAB3:

SELECT /+ ORDERED */ tab1.coll, tab2.col2, tab3.col3
FROM tab1, tab2, tab3
WHERE tab1.col1 = tab2.coll
AND tab2.coll =tab3.coll;

If you omit the ORDERED hint from a SQL statement performing a join, the opti-
mizer chooses the order in which to join the tables. You may want to use the
ORDERED hint to specify a join order if you know something about the number of
rows selected from each table that the optimizer does not. Such information would
allow you to choose an inner and outer table better than the optimizer could.

The STAR hint forces a star query plan to be used if possible. A star plan has the
largest table in the query last in the join order and joins it with a nested loops join
on a concatenated index. The STAR hint applies when there are at least 3 tables, the
large table’s concatenated index has at least 3 columns, and there are no conflicting
access or join method hints. The optimizer also considers different permutations of
the small tables.

Syntax of this hint is;

GBI O

8-24 Oracle8 Tuning

Hints for Join Operations

Usually, if you analyze the tables the optimizer will choose an efficient star plan.
You can also use hints to improve the plan. The most precise method is to order the
tables in the FROM clause in the order of the keys in the index, with the large table
last. Then use the following hints:

/+ ORDERED USE_NL(facts) INDEX(facts fact_concat)*/

Where “facts” is the table and “fact_concat” is the index. A more general method is
to use the STAR hint.

See Also: Oracle8 Concepts for more information about star plans.

Hints for Join Operations

USE_NL

Each hint described in this section suggests a join operation for a table.
. USE_NL

. USE_MERGE

. USE_HASH

. USE_HASH

« DRIVING_SITE

You must specify a table to be joined exactly as it appears in the statement. If the
statement uses an alias for the table, you must use the alias rather than the table
name in the hint. The table name within the hint should not include the schema
name, if the schema name is present in the statement.

Use of the USE_NL and USE_MERGE hints is recommended with the ORDERED
hint. Oracle uses these hints when the referenced table is forced to be the inner
table of a join, and they are ignored if the referenced table is the outer table.

The USE_NL hint causes Oracle to join each specified table to another row source
with a nested loops join using the specified table as the inner table. The syntax of
the USE_NL hint is:

EHTER - L@

where table is the name or alias of a table to be used as the inner table of a nested
loops join.

Optimization Modes and Hints 8-25

Hints for Join Operations

USE_MERGE

For example, consider this statement, which joins the ACCOUNTS and CUSTOM-
ERS tables. Assume that these tables are not stored together in a cluster:

SELECT accounts.balance, customers.last_name, customersfirst name
FROM accounts, customers
WHERE accounts.custno = customers.custno;

Since the default goal of the cost-based approach is best throughput, the optimizer
will choose either a nested loops operation or a sort-merge operation to join these
tables, depending on which is likely to return all the rows selected by the query
more quickly.

However, you may want to optimize the statement for best response time, or the
minimal elapsed time necessary to return the first row selected by the query, rather
than best throughput. If so, you can force the optimizer to choose a nested loops
join by using the USE_NL hint. In this statement, the USE_NL hint explicitly
chooses a nested loops join with the CUSTOMERS table as the inner table:

SELECT A+ ORDERED USE_NL(customers) Use N-L to get first row faster */
accounts.balance, customerslast_name, customersfirst_name

FROM accounts, customers
WHERE accounts.custno = customers.custno;

In many cases, a nested loops join returns the first row faster than a sort-merge join.
A nested loops join can return the first row after reading the first selected row from
one table and the first matching row from the other and combining them, while a
sort-merge join cannot return the first row until after reading and sorting all
selected rows of both tables and then combining the first rows of each sorted row
source.

The USE_MERGE hint causes Oracle to join each specified table with another row
source with a sort-merge join. The syntax of the USE_MERGE hint is:

FH{sEmERE WD (@ DD

where table is a table to be joined to the row source resulting from joining the previ-
ous tables in the join order using a sort-merge join.

8-26 Oracle8 Tuning

Hints for Join Operations

USE_HASH

DRIVING_SITE

The USE_HASH hint causes Oracle to join each specified table with another row
source with a hash join. The syntax of the USE_HASH hint is:

TR D L@ DD

where table is a table to be joined to the row source resulting from joining the previ-
ous tables in the join order using a hash join.

The DRIVING_SITE hint forces query execution to be done at a different site than
that selected by Oracle. This hint can be used with either rule-based or cost-based
optimization. Syntax of this hint is:

FH{omme s WD (@ D)

where table is the name or alias for the table at which site the execution should take
place.

Example:
SELECT /+DRIVING_SITE(dept)*/ * FROM emp, dept@rsite
WHERE emp.deptno = dept.deptno;

If this query is executed without the hint, rows from DEPT will be sent to the local
site and the join will be executed there. With the hint, the rows from EMP will be
sent to the remote site and the query will be executed there, returning the result to
the local site.

Optimization Modes and Hints 8-27

Hints for Parallel Execution

Hints for Parallel Execution

The hints described in this section determine how statements are parallelized or
not parallelized when using parallel execution.

« PARALLEL
« NOPARALLEL
« APPEND

« NOAPPEND
« PARALLEL_INDEX
« NOPARALLEL_INDEX

See Also: Chapter 19, “Tuning Parallel Execution”

PARALLEL

The PARALLEL hint lets you specify the desired number of concurrent servers that
can be used for a parallel operation. The hint applies to the INSERT, UPDATE, and
DELETE portions of a statement as well as to the table scan portion. If any parallel
restrictions are violated, the hint is ignored. The syntax is:

, DEFAULT

Gy

@ olC: Q>

The PARALLEL hint must use the table alias if an alias is specified in the query. The
hint can then take two values separated by commas after the table name. The first
value specifies the degree of parallelism for the given table, the second value speci-
fies how the table is to be split among the instances of a parallel server. Specifying
DEFAULT or no value signifies that the query coordinator should examine the set-
tings of the initialization parameters (described in a later section) to determine the
default degree of parallelism.

In the following example, the PARALLEL hint overrides the degree of parallelism
specified in the EMP table definition:

8-28 Oracle8 Tuning

Hints for Parallel Execution

NOPARALLEL

APPEND

SELECT A+ FULL(scott_emp) PARALLEL (scott_emp, 5) */ ename
FROM scott.emp scott_emp;

In the next example, the PARALLEL hint overrides the degree of parallelism speci-
fied in the EMP table definition and tells the optimizer to use the default degree of
parallelism determined by the initialization parameters. This hint also specifies that
the table should be split among all of the available instances, with the default
degree of parallelism on each instance.

SELECT A+ FULL(scott_emp) PARALLEL (scott_emp, DEFAULT,DEFAULT) * ename
FROM scott.emp scott_emp;

You can use the NOPARALLEL hint to override a PARALLEL specification in the
table clause. Note, in general, that hints take precedence over table clauses. Syntax
of this hint is:

EHoPRAtE (D (@ DD

The following example illustrates the NOPARALLEL hint;

SELECT 4+ NOPARALLEL(scott_emp) * ename
FROM scott.emp scott_emp;

The NOPARALLEL hint is equivalent to specifying the hint
F+PARALLEL(table 1,1)%

When you use the APPEND hint for INSERT, data is simply appended to a table.
Existing free space in the block is not used. Syntax of this hint is:

=)
@ (D

If INSERT is parallelized using the PARALLEL hint or clause, append mode will be
used by default. You can use NOAPPEND to override append mode. Note that the
APPEND hint applies to both serial and parallel insert.

Optimization Modes and Hints 8-29

Hints for Parallel Execution

The append operation is performed in LOGGING or NOLOGGING mode, depend-
ing on whether the [NO]JLOGGING option is set for the table in question. Use the
ALTER TABLE [NO]JLOGGING statement to set the appropriate value.

Certain restrictions apply to the APPEND hint; these are detailed in Oracle8 Con-
cepts. If any of these restrictions are violated, the hint will be ignored.

NOAPPEND
You can use NOAPPEND to override append mode.

PARALLEL_INDEX

Use the PARALLEL_INDEX hint to specify the desired number of concurrent serv-
ers that can be used to parallelize index range scans for partitioned indexes. The
syntax of the PARALLEL _INDEX hint is:

integer

)

, DEFAULT

2
index

(P PARALEL e (D L@»@»

where:

table Specifies the name or alias of the table associated with the index to
be scanned.

index Specifies an index on which an index scan is to be performed
(optional).

The hint can take two values separated by commas after the table name. The first
value specifies the degree of parallelism for the given table, the second value speci-
fies how the table is to be split among the instances of a parallel server. Specifying
DEFAULT or no value signifies the query coordinator should examine the settings
of the initialization parameters (described in a later section) to determine the
default degree of parallelism.

For example:

SELECT /+ PARALLEL INDEX(tablel,indexd, 3, 2) +/;

In this example there are 3 parallel server processes to be used on each of 2
instances.

8-30 Oracle8 Tuning

Hints for Parallel Execution

NOPARALLEL_INDEX

You can use the NOPARALLEL_INDEX hint to override a PARALLEL attribute set-
ting on an index. In this way you can avoid a parallel index scan operation. The
syntax of this hint is:

s
index
@ NOPARALLEL_INDEX @@ @@

Optimization Modes and Hints 8-31

Additional Hints

Additional Hints

CACHE

NOCACHE

Several additional hints are included in this section:

« CACHE
« NOCACHE
« MERGE

. NO_MERGE
. PUSH_JOIN_PRED

. NO_PUSH_JOIN_PRED

. PUSH_SUBQ

. STAR_TRANSFORMATION

The CACHE hint specifies that the blocks retrieved for this table are placed at the
most recently used end of the LRU list in the buffer cache when a full table scan is
performed. This option is useful for small lookup tables. Syntax of this hint is:

e WD (@ DD

In the following example, the CACHE hint overrides the table’s default caching
specification:

SELECT A+ FULL (scott_emp) CACHE(scott_emp) * ename
FROM scott.emp scott_emp;

The NOCACHE hint specifies that the blocks retrieved for this table are placed at
the least recently used end of the LRU list in the buffer cache when a full table scan
is performed. This is the normal behavior of blocks in the buffer cache. Syntax of
this hint is:

FHFoer (D L@ D)

The following example illustrates the NOCACHE hint:

SELECT A+ FULL(scott_emp) NOCACHE(scott_emp) */ ename
FROM scott.emp scott_emp;

8-32 Oracle8 Tuning

Additional Hints

MERGE

NO_MERGE

When the COMPLEX VIEW_MERGING parameter is set to FALSE, this parameter
causes complex views or subqueries to be evaluated before the surrounding query.
In this case, you can cause a view to be merged on a per-query basis by using the
MERGE hint. Syntax of this hint is:

FERE HOH @D

For example:

SELECT A+ MERGE(\V) ¥/ tLx, vavg_y
FROMt1
(SELECT x, avg(y) AS avg_y
FROM2
GROUPBY x)v
WHERE t1x=vXANDtlLy=1;

The NO_MERGE hint causes Oracle not to merge mergeable views. The syntax of
the NO_MERGE hint is:

(P FomERGE DABHDAD

This hint allows the user to have more influence over the way in which the view
will be accessed. For example,

SELECT A+ NO_MERGE(V) */t1.x, v.avg_y
FROMt1
(SELECT x, avg(y) AS avg_y
FROMt2
GROUPBY x)v
WHERE t1Lx=vXANDtly=1;

causes view v not to be merged.

When COMPLEX_VIEW_MERGING is set to TRUE, you can use the NO_MERGE
hint within the view to prevent one particular query from being merged.

When the NO_MERGE hint is used without an argument, it should be placed in the
view query block. When NO_MERGE is used with the view name as an argument,
it should be placed in the surrounding query.

Optimization Modes and Hints 8-33

Additional Hints

PUSH_JOIN_PRED

When the PUSH_JOIN_PREDICATE parameter is TRUE, the optimizer can evalu-
ate, on a cost basis, whether or not to push individual join predicates into the view.
This can enable more efficient access paths and join methods, such as transforming
hash joins into nested loop joins, and full table scans to index scans.

If the PUSH_JOIN_PREDICATE parameter is FALSE, you can use the
PUSH_JOIN_PRED hint to force pushing of a join predicate into the view.

Syntax of this hint is:

(PPN B2 HDAEHDAD

For example:

SELECT A+ PUSH_JOIN_PRED(V) */t1.x, vy
FROMtL

(SELECT 2,13y

FROM 2,13

SHERE2Xx=1t3X)v
WHERE t1x=vXANDtLy=1;

NO_PUSH_JOIN_PRED

If PUSH_JOIN_PREDICATE is TRUE, you can use the NO_PUSH_JOIN_PRED hint
to prevent pushing of a join predicate into the view. The syntax of this hint is:

@ NO_PUSH_JOIN_PRED () O

8-34 Oracle8 Tuning

Additional Hints

PUSH_SUBQ

The PUSH_SUBQ hint causes nonmerged subqueries to be evaluated at the earliest
possible place in the execution plan. Normally, subqueries that are not merged are
executed as the last step in the execution plan. If the subquery is relatively inexpen-
sive and reduces the number of rows significantly, it will improve performance to
evaluate the subquery earlier.

The hint has no effect if the subquery is applied to a remote table or one that is
joined using a merge join. Syntax of this hint is:

@IEEEO

STAR_TRANSFORMATION

The STAR_TRANSFORMATION hint makes the optimizer use the best plan in
which the transformation has been used. Without the hint, the optimizer could
make a cost-based decision to use the best plan generated without the transforma-
tion, instead of the best plan for the transformed query.

Note that even if the hint is given, there is ho guarantee that the transformation
will take place. The optimizer will only generate the subqueries if it seems reason-
able to do so. If no subqueries are generated, there is no transformed query, and the
best plan for the untransformed query will be used regardless of the hint. The syn-
tax of this hint is:

—(I+){ STAR_TRANSFORMATION |x(*/)>

See Also: Oracle8 Concepts for a full discussion of star transformation.
Oracle8 Reference describes STAR_TRANSFORMATION_ENABLED; this parameter
causes the optimizer to consider performing a star transformation.

Optimization Modes and Hints 8-35

Using Hints with Views

Using Hints with Views

Oracle Corporation does not encourage users to use hints inside or on views (or
subqueries). This is because views can be defined in one context and used in
another; such hints can result in unexpected plans. In particular, hints inside views
or on views are handled differently depending on whether or not the view is merge-
able into the top-level query.

Should you decide, nonetheless, to use hints with views, the following sections
describe the behavior in each case.

« Hints and Mergeable Views

« Hints and Nonmergeable Views

Hints and Mergeable Views
This section describes hint behavior with mergeable views.

Optimization Approaches and Goal Hints

Optimization approach and goal hints can occur in a top-level query or inside
views.

« Ifthere is such a hint in the top-level query, that hint is used regardless of any
such hints inside the views.

« Ifthere is no top-level optimizer mode hint, then mode hints in referenced
views are used as long as all mode hints in the views are consistent.

=« If two or more mode hints in the referenced views conflict, then all mode hints
in the views are discarded and the session mode is used, whether default or
user-specified.

Access Method and Join Hints on Views

Access method and join hints on referenced views are ignored unless the view con-
tains a single table (or references another view with a single table). For such single-
table views, an access method hint or a join hint on the view applies to the table
inside the view.

8-36 Oracle8 Tuning

Using Hints with Views

Access Method and Join Hints Inside Views
Access method and join hints can appear in a view definition.

« Ifthe view is a subquery (that is, if it appears in the FROM clause of a SELECT
statement), then all access method and join hints inside the view are preserved
when the view is merged with the top-level query.

« For views that are not subqueries, access method and join hints in the view are
preserved only if the top-level query references no other tables or views (that
is, if the FROM clause of the SELECT statement contains only the view).

Parallel Execution Hints on Views

PARALLEL, NOPARALLEL, PARALLEL_INDEX and NOPARALLEL_INDEX
hints on views are always recursively applied to all the tables in the referenced
view. Parallel execution hints in a top-level query override such hints inside a refer-
enced view.

Hints and Nonmergeable Views

With nonmergeable views, optimization approach and goal hints inside the view
are ignored: the top-level query decides the optimization mode.

Since nonmergeable views are optimized separately from the top-level query,
access method and join hints inside the view are always preserved. For the same
reason, access method hints on the view in the top-level query are ignored.

However, join hints on the view in the top-level query are preserved since, in this
case, a nonmergeable view is similar to a table.

Optimization Modes and Hints 8-37

Using Hints with Views

8-38 Oracle8 Tuning

9

Tuning Distributed Queries

Oracle supports transparent distributed queries to access data from multiple data-
bases. It also provides many other distributed features, such as transparent distrib-
uted transactions and a transparent fully automatic two-phase commit. This
chapter explains how the Oracle8 optimizer decomposes SQL statements, and how
this affects performance of distributed queries. The chapter provides guidelines on
how to influence the optimizer and avoid performance bottlenecks.

Topics include:

« Remote and Distributed Queries
« Distributed Query Restrictions

« Transparent Gateways

« Summary: Optimizing Performance of Distributed Queries

Tuning Distributed Queries 9-1

Remote and Distributed Queries

Remote and Distributed Queries

If a SQL statement references one or more remote tables, the optimizer first deter-
mines whether all remote tables are located at the same site. If all tables are located
at the same remote site, Oracle sends the entire query to the remote site for execu-
tion. The remote site sends the resulting rows back to the local site. This is called a
remote SQL statement. If the tables are located at more than one site, the optimizer
decomposes the query into separate SQL statements to access each of the remote
tables. This is called a distributed SQL statement. The site where the query is exe-
cuted, called the “driving site,” is normally the local site.

This section describes:

« Remote Data Dictionary Information

« Remote SQL Statements

« Distributed SQL Statements

« EXPLAIN PLAN and SQL Decomposition

« Partition Views

Remote Data Dictionary Information

If a SQL statement references multiple tables, then the optimizer must determine
which columns belong to which tables before it can decompose the SQL statement.
For example, with

SELECT DNAME, ENAME
FROM DEPT, EMP@REMOTE
WHERE DEPT.DEPTNO = EMP.DEPTNO

the optimizer must first determine that the DNAME column belongs to the DEPT
table and the ENAME column to the EMP table. Once the optimizer has the data
dictionary information of all remote tables, it can build the decomposed SQL state-
ments.

Column and table names in decomposed SQL statements appear between double
guotes. You must enclose in double quotes any column and table names that con-
tain special characters, reserved words, or spaces.

This mechanism also replaces an asterisk (*) in the select list with the actual column
names. For example:

SELECT * FROM DEPT@REMOTE;

9-2 Oracle8 Tuning

Remote and Distributed Queries

results in the decomposed SQL statement
SELECT A1"DEPTNO", A1."DNAME", A1."LOC" FROM "DEPT" A1,

Note: For the sake of simplicity, double quotes are not used in the remainder of this
chapter.

Remote SQL Statements
If the entire SQL statement is sent to the remote database, the optimizer uses table
aliases Al, A2, and so on, for all tables and columns in the query, in order to avoid
possible naming conflicts. For example:
SELECT DNAME, ENAME

FROM DEPT@REMOTE, EMP@REMOTE
WHERE DEPT.DEPTNO = EMP.DEPTNG;

is sent to the remote database as

SELECT A2.DNAME, A1.ENAME
FROM DEPT A2, EMP Al
WHERE A1.DEPTNO = A2.DEPTNO,;

Tuning Distributed Queries 9-3

Remote and Distributed Queries

Distributed SQL Statements

When a query accesses data on one or more databases, one site “drives” the execu-
tion of the query. This is known as the “driving site”; it is here that the data is

joined, grouped and ordered. By default, the local Oracle server will be the driving
site. A hint called DRIVING_SITE enables you to manually specify the driving site.

The decomposition of SQL statements is important because it determines the num-
ber of records or even tables that must be sent through the network. A knowledge
of how the optimizer decomposes SQL statements can help you achieve optimum
performance for distributed queries.

If a SQL statement references one or more remote tables, the optimizer must decom-
pose the SQL statement into separate queries to be executed on the different data-
bases. For example:

SELECT DNAME, ENAME

FROM DEPT, EMP@REMOTE

WHERE DEPT.DEPTNO = EMP.DEPTNO;
might be decomposed into

SELECT DEPTNO, DNAME FROM DEPT;

which is executed locally, and

SELECT DEPTNO, ENAME FROM EMP;,

which is sent to the remote database. The data from both tables is joined locally. All
this is done automatically and transparently for the user or application.

In some cases, however, it might be better to send the local table to the remote data-
base and join the two tables on the remote database. This can be achieved either by

creating a view, or by using the DRIVING_SITE hint. If you decide to create a view

on the remote database, a database link from the remote database to the local data-

base is also needed.

For example (on the remote database):

CREATE VIEW DEPT_EMP AS

SELECT DNAME, ENAME

FROM DEPT@LOCAL, EMP

WHERE DEPT.DEPTNO = EMP.DEPTNO;

Then select from the remote view instead of the local and remote tables

SELECT * FROM DEPT_EMP@REMOTE;

9-4 Oracle8 Tuning

Remote and Distributed Queries

Now the local DEPT table is sent through the network to the remote database,
joined on the remote database with the EMP table, and the result is sent back to the
local database.

See Also: "DRIVING_SITE" on page 8-27 for details about this hint.

Rule-Based Optimization

Rule-based optimization does not have information about indexes for remote
tables. It never, therefore, generates a nested loops join between a local table and a
remote table with the local table as the outer table in the join. It uses either a nested
loops join with the remote table as the outer table or a sort merge join, depending
on the indexes available for the local table.

Cost-Based Optimization

Cost-based optimization can consider more execution plans than rule-based optimi-
zation. Cost-based optimization knows whether indexes on remote tables are avail-

able, and in which cases it would make sense to use them. Cost-based optimization

considers index access of the remote tables as well as full table scans, whereas rule-

based optimization considers only full table scans.

The particular execution plan and table access that cost-based optimization chooses
depends on the table and index statistics. For example, with

SELECT DNAME, ENAME
FROM DEPT, EMP@REMOTE
WHERE DEPT.DEPTNO = EMP.DEPTNO

the optimizer might choose the local DEPT table as the driving table and access the

remote EMP table using an index. In that case the decomposed SQL statement
becomes

SELECT ENAME FROM EMP WHERE DEPTNO =:1

This decomposed SQL statement is used for a nested loops operation.

Tuning Distributed Queries 9-5

Remote and Distributed Queries

Using Views

If tables are on more than one remote site, it can be more effective to create a view
than to use the DRIVING_SITE hint. If not all tables are on the same remote data-
base, the optimizer accesses each remote table separately. For example:

SELECT D.DNAME, E1.ENAME, E2.JOB

FROM DEPT D, EMP@REMOTE E1, EMP@REMOTE E2
WHERE D.DEPTNO = E1L.DEPTNO

AND E1.MGR = E2EMPNO;

results in the decomposed SQL statements
SELECT EMPNO, ENAME FROM EMP;

and
SELECT ENAME, MGR, DEPTNO FROM EMP;

If you want to join the two EMP tables remotely, you can create a view to accom-
plish this. Create a view with the join of the remote tables on the remote database.
For example (on the remote database):

CREATE VIEW EMPS AS

SELECT EL.DEPTNO, E1.ENAME, E2.JOB
FROMEMP E1, EMP E2

WHERE E1L.MGR =E2.EMPNO;

and now select from the remote view instead of the remote tables:

SELECT D.DNAME, E.ENAME, E.JOB
FROM DEPT D, EMPS@REMOTE E
WHERE D.DEPTNO = E.DEPTNO,;

This results in the decomposed SQL statement
SELECT DEPTNO, ENAME, JOB FROM EMPS;

Using Hints

In a distributed query, all hints are supported for local tables. For remote tables,
however, you can use only join order and join operation hints. (Hints for access
methods, parallel hints, and so on, have no effect.) For remote mapped queries, all
hints are supported.

See Also: "Hints for Join Orders" on page 8-24
"Hints for Join Operations" on page 8-25

9-6 Oracle8 Tuning

Remote and Distributed Queries

EXPLAIN PLAN and SQL Decomposition

EXPLAIN PLAN gives information not only about the overall execution plan of
SQL statements, but also about the way in which the optimizer decomposes SQL
statements. EXPLAIN PLAN stores information in the PLAN_TABLE table. If
remote tables are used in a SQL statement, the OPERATION column will contain
the value REMOTE to indicate that a remote table is referenced, and the OTHER
column will contain the decomposed SQL statement that will be sent to the remote
database. For example:

EXPLAIN PLAN FOR SELECT DNAME FROM DEPT@REMOTE
SELECT OPERATION, OTHER FROM PLAN_TABLE

OPERATION OTHER

REMOTE SELECT A1"DNAME"FROM "DEPT" Al

Note the table alias and the double quotes around the column and table names.
See Also: Chapter 23, “The EXPLAIN PLAN Command”

Tuning Distributed Queries 9-7

Remote and Distributed Queries

Partition Views

You can utilize partition views to bring together tables that have the same struc-
ture, but contain different partitions of data. This can be very useful for a distrib-
uted database system, where each partition resides on a database and the data in
each partition has common geographical properties.

When a query is executed on such a partition view, and the query contains a predi-
cate that contains the result set to a subset of the view’s partitions, the optimizer
chooses a plan which skips partitions that are not needed for the query. This parti-
tion elimination takes place at run time, when the execution plan references all par-
titions.

Rules for Use

This section describes the circumstances under which a UNION ALL view enables
the optimizer to skip partitions. The Oracle server that contains the partition view
must conform to the following rules:

« The PARTITION_VIEW_ENABLED initialization parameter is set to TRUE
« The cost-based optimizer is used.

Note: To use the cost-based optimizer you must analyze all tables used in the
UNION ALL views. Alternatively, you can use a hint or set the parameter
OPTIMIZER_MODE to ALL_ROWS or FIRST_ROW. To set OPTIMIZER_MODE or
PARTITION_VIEW_ENABLED you can also use the ALTER SESSION statement.

Within a UNION ALL view there are multiple select statements, and each of these
is called a “branch”. A UNION ALL view is a partition view if each select state-
ment it defines conforms to the following rules:

« The branch has exactly one table in the FROM clause.

« The branch contains a WHERE clause that defines the subset of data from the
partition that is contained in the view.

« None of the following are used within the branch: WHERE clause with sub-
query, group by, aggregate functions, distinct, rownum, connect by/start with.

« The SELECT list of each branch is *, or explicit expansion of "*",

« The column names and column datatypes for all branches in the UNION ALL
view are exactly the same.

« All tables used in the branch must have indexes (if any) on the same columns
and number of columns.

9-8 Oracle8 Tuning

Remote and Distributed Queries

Partition elimination is based on column transitivity with constant predicates. The
WHERE clause used in the query that accesses the partition view is pushed down
to the WHERE clause of each of the branches in the UNION ALL view definition.

Consider the following example:

SELECT * FROM EMP_VIEW WHERE deptno=30;

when the view EMP_VIEW is defined as

SELECT * FROM EMP@d10 WHERE deptno=10
UNION ALL
SELECT * FROM EMP@d20 WHERE deptno=20
UNION ALL
SELECT * FROM EMP@d30 WHERE depino=30
UNIONALL
SELECT * FROM EMP@0d40 WHERE deptno=40

The "WHERE deptno=30" predicate used in the query is pushed down to the que-
ries in the UNION ALL view. For a WHERE clause such as "WHERE deptno=10
and deptno=30", the optimizer applies transitivity rules to generate an extra predi-
cate of "10=30". This extra predicate is always false, thus the table (EMP@d10) need
not be accessed.

Transitivity applies to predicates which conform to the following rules:
« The predicates in the WHERE clause for each branch are of the form

relation AND relation ...

where relation is of the form

column_name relop constant_expression

and relop isone of =, I=, >, >=, <, <=

Note that BETWEEN ... AND is allowed by these rules, but IN is not.

« At least one predicate in the query referencing the view exists in the same form.

Tuning Distributed Queries 9-9

Remote and Distributed Queries

EXPLAIN PLAN Output

To confirm that the system recognizes a partition view, check the EXPLAIN PLAN
output. The following operations will appear in the OPERATIONS column of the
EXPLAIN PLAN output, if a query was executed on a partition view:

VIEW This entry should include the optimizer cost in the COST
column.

UNION-ALL This entry should specify PARTITION in the OPTION col-
umn.

FILTER When an operation is a child of the UNION-ALL opera-

tion, FILTER indicates that a constant predicate was gen-
erated that will always be FALSE. The partition will be
eliminated.

If PARTITION does not appear in the option column of the UNION-ALL operation,
the partition view was not recognized, and no partitions were eliminated. Make
sure that the UNION ALL view adheres to the rules as defined in "Rules for Use"
on page 9-8.

Partition View Example

The following example shows a partition view CUSTOMER that is partitioned into
two partitions. The EAST database contains the East Coast customers, and the
WEST database contains the customers from the West Coast.

The WEST database contains the following table CUSTOMER_WEST:

CREATE TABLE CUSTOMER_WEST

(cust no NUMBER CONSTRAINT CUSTOMER_WEST_PK PRIMARY KEY,
cname VARCHAR2(10),

location VARCHAR2(10)

)

The EAST database contains the database CUSTOMER_EAST:

CREATE TABLE CUSTOMER_EAST

(cust no NUMBER CONSTRAINT CUSTOMER_EAST_PK PRIMARY KEY,
cname VARCHAR2(10),

location VARCHAR2(10)

)

9-10 Oracle8 Tuning

Remote and Distributed Queries

The following partition view is created at the EAST database (you could create a
similar view at the WEST database):

CREATE VIEW customer AS
SELECT *FROM CUSTOMER_EAST
WHERE location=EAST
UNION ALL
SELECT * FROM CUSTOMER_WEST@WEST
WHERE location=WEST;

If you execute the following statement, notice that the CUSTOMER_WEST table in
the WEST database is not accessed:

EXPLAIN PLAN FOR SELECT * FROM CUSTOMER WHERE location=EAST;

Note: The EAST database still needs column name and column datatype informa-
tion for the CUSTOMER_WEST table, therefore it still needs a connection to the
WEST database. Note in addition that the cost-based optimizer must be used. You
could do this, for example, by issuing the statement ALTER SESSION SET
OPTIMIZER_MODE=ALL_ROWS.

As shown in the EXPLAIN PLAN output, the optimizer recognizes that the
CUSTOMER_WEST partition need not be accessed:

SQL>r
1 selectIpad(''level*3-3)||operation operation,cost,options,
object_node, other
2 from plan_table
3 connect by parent_id = priorid
4* start with parent_id IS NULL

OPERATION COSTOPTIONS OBJECT_NOD OTHER

SELECT STATEMENT 1

VIEW 1
UNION-ALL PARTITION
TABLEACCESS 1FULL
FILTER

REMOTE 1 WEST.WORLD SELECT "CUST_NO","CNAME",
"LOCATION" FROM "CUSTOMER
_WEST""CUSTOMER_WEST"WH
ERE "LOCATION'=EAST AND
"LOCATION'=WEST

Tuning Distributed Queries 9-11

Distributed Query Restrictions

Distributed Query Restrictions

Distributed queries within the same version of Oracle have these restrictions:

9-12 Oracle8 Tuning

Cost-based optimization should be used for distributed queries. Rule-based
optimization does not generate nested loop joins between remote and local
tables when the tables are joined with equijoins.

In cost-based optimization, no more than 20 indexes per remote table are con-
sidered when generating query plans. The order of the indexes varies; if the 20-
index limitation is exceeded, random variation in query plans may result.

Reverse indexes on remote tables are not visible to the optimizer. This can pre-
vent nested-loop joins from being used for remote tables if there is an equijoin
using a column with only a reverse index.

Cost-based optimization cannot recognize that a remote object is partitioned.
Thus the optimizer may generate less than optimal plans for remote parti-
tioned objects, particularly when partition pruning would have been possible,
had the object been local.

Remote views are not merged and the optimizer has no statistics for them. It is
best to replicate all mergeable views at all sites to obtain good query plans. (See
the following exception.)

Neither cost-based nor rule-based optimization can execute joins remotely. All
joins are executed at the driving site. This can affect performance for CREATE
TABLE ... AS SELECT if all the tables in the select list are remote. In this case
you should create a view for the SELECT statement at the remote site.

Transparent Gateways

Transparent Gateways

The Transparent Gateways are used to access data from other data sources (rela-
tional databases, hierarchical databases, file systems, and so on). Transparent Gate-
ways provide a means to transparently access data from a non-Oracle system, just
as if it were another Oracle database.

Optimizing Heterogeneous Distributed SQL Statements

When a SQL statement accesses data from non-Oracle systems, it is said to be a het-
erogeneous distributed SQL statement. To optimize heterogeneous distributed SQL
statements, follow the same guidelines as for optimizing distributed SQL state-
ments that access Oracle databases only. However, you must take into consider-
ation that the non-Oracle system usually does not support all the functions and
operators that Oracle8 supports. The Transparent Gateways therefore tell Oracle (at
connect time) which functions and operators they do support. If the other data
source does not support a function or operator, Oracle will perform that function or
operator. In this case Oracle obtains the data from the other data source and applies
the function or operator locally. This affects the way in which the SQL statements
are decomposed and can affect performance, especially if Oracle is not on the same
machine as the other data source.

Gateways and Partition Views

You can use partition views with Oracle Transparent Gateways version 8 or higher.
Make sure you adhere to the rules that are defined in "Rules for Use" on page 9-8.
In particular:

« The cost-based optimizer must be used, by using hints or setting the parameter
OPTIMIZER_MODE to ALL_ROWS or FIRST_ROWS.

« Indexes used for each partition must be the same. Please consult your gateway
specific installation and users guide to find out whether the gateway will send
index information of the non-Oracle system to the Oracle Server. If the gateway
will send index information to the optimizer, make sure that each partition uses
the same number of indexes, and that you have indexed the same columns. If
the gateway does not send index information, the Oracle optimizer will not be
aware of the indexes on partitions. Indexes are therefore considered to be the
same for each partition in the non-Oracle system. Note that if one partition
resides on an Oracle server, you cannot have an index defined on that partition.

« The column names and column datatypes for all branches in the UNION ALL
view must be the same. Non-Oracle system datatypes are mapped onto Oracle
datatypes. Make sure that the datatypes of each partition that resides in the dif-

Tuning Distributed Queries 9-13

Summary: Optimizing Performance of Distributed Queries

ferent non-Oracle systems all map to the same Oracle datatype. To see how
datatypes are mapped onto Oracle datatypes, you can execute a DESCRIBE
command in SQL*Plus or Server Manager.

Summary: Optimizing Performance of Distributed Queries

You can improve performance of distributed queries in several ways:

9-14 Oracle8 Tuning

Choose the best SQL statement.

In many cases there are several SQL statements which can achieve the same
result. If all tables are on the same database, the difference in performance
between these SQL statements might be minimal; but if the tables are located
on different databases, the difference in performance might be bigger.

Use cost-based optimization.

Cost-based optimization can use indexes on remote tables, considers more exe-
cution plans than rule-based optimization, and generally gives better results.
With cost-based optimization performance of distributed queries is generally
satisfactory. Only in rare occasions is it necessary to change SQL statements,
create views, or use procedural code.

Use views.

In some situations, views can be used to improve performance of distributed
queries; for example;

« tojoin several remote tables on the remote database
« tosend a different table through the network
Use procedural code.

In some rare occasions it can be more efficient to replace a distributed query by
procedural code, such as a PL/SQL procedure or a precompiler program. Note
that this option is mentioned here only for completeness, not because it is often
needed.

10

Data Access Methods

This chapter provides an overview of data access methods that can enhance perfor-
mance, and warns of situations to avoid. You can use hints to force various
approaches. Topics in this chapter include:

» Using Indexes
« Using Bitmap Indexes
» Using Clusters

« Using Hash Clusters

Data Access Methods 10-1

Using Indexes

Using Indexes

This section describes:

10-2 Oracle8 Tuning

When to Create Indexes

Tuning the Logical Structure

How to Choose Columns to Index

How to Choose Composite Indexes

How to Write Statements that Use Indexes

How to Write Statements that Avoid Using Indexes
Assessing the Value of Indexes

Re-creating an Index

Using Existing Indexes to Enforce Uniqueness

Using Enforced Constraints

Using Indexes

When to Create Indexes

Indexes improve the performance of queries that select a small percentage of rows
from a table. As a general guideline, you should create indexes on tables that are
often queried for less than 2% or 4% of the table’s rows. This value may be higher
in situations where all data can be retrieved from an index, or where the indexed
columns can be used for joining to other tables.

This guideline is based on these assumptions:

« Rows with the same value for the column on which the query is based are uni-
formly distributed throughout the data blocks allocated to the table.

« Rows in the table are randomly ordered with respect to the column on which
the query is based.

« The table contains a relatively small number of columns.
« Most queries on the table have relatively simple WHERE clauses.
« The cache hit ratio is low and there is no operating system cache.

If these assumptions do not describe the data in your table and the queries that
access it, then an index may not be helpful unless your queries typically access at
least 25% of the table’s rows.

Tuning the Logical Structure

Although cost-based optimization is excellent at avoiding the use of nonselective
indexes within query execution, the SQL engine must continue to maintain all
indexes defined against a table whether or not they are ever used. Index mainte-
nance presents a significant CPU and 170 resource demand in any 1/0 intensive
application. Put another way, building indexes “just in case” is not a good practice;
indexes should not be built until required.

You should drop indexes that are not used. You can detect the indexes that are not
referenced in any execution plan by processing all of the application SQL through
EXPLAIN PLAN and capturing the resulting plans. Indexes not used in any plan
are typically, though not necessarily, nonselective.

Within an application, indexes sometimes have uses that are not immediately
apparent from a survey of statement execution plans. In particular, Oracle8 uses
“pins” (nontransactional locks) on foreign key indexes to avoid the need for share
locks on the parent table when enforcing foreign key constraints. In many applica-
tions this foreign key index never (or rarely) supports a query. In the example
shown in Figure 10-1, the need to locate all of the order lines for a given product

Data Access Methods 10-3

Using Indexes

may never arise. However when no index exists with LINES(PCODE) as its leading
portion (as described in "How to Choose Composite Indexes" on page 10-6), then
Oracle places a share lock on the Products table each time DML is performed
against the Lines table. Such a share lock will be a problem only if the Products
table itself is subject to frequent DML. In the example shown we might assume that
the column QTY_ON_HAND is volatile, and that table level share locks would
cause severe contention problems.

If this contention arises, then to remove it the application must either
« accept the additional load of maintaining the index
« accept the risk of running with the constraint disabled

Fortunately this issue does not normally affect traditional master/detail relation-
ships where the foreign key is generally used as the leading edge of the primary
key, as in the example.

Figure 10-1 Foreign Key Constraint

Orders Products

PK ORDR_NO PK PCODE

QTY_ON_HAND
T subject to share lock

Lines

PK ORDER NO

PK LI NE_NO

FK PCODE

10-4 Oracle8 Tuning

Using Indexes

How to Choose Columns to Index
Follow these guidelines for choosing columns to index:

Consider indexing columns that are used frequently in WHERE clauses.

Consider indexing columns that are used frequently to join tables in SQL state-
ments. For more information on optimizing joins, see the section "How to Use a
Hash Cluster" on page 10-26.

Only index columns with good selectivity. The selectivity of an index is the per-
centage of rows in a table having the same value for the indexed column. An
index’s selectivity is good if few rows have the same value.

Note: Oracle implicitly creates indexes on the columns of all unique and pri-
mary keys that you define with integrity constraints. These indexes are the
most selective and the most effective in optimizing performance.

You can determine the selectivity of an index by dividing the number of rows
in the table by the number of distinct indexed values. You can obtain these val-
ues using the ANALYZE command. Selectivity calculated in this manner
should be interpreted as a percentage.

Do not use standard B*-tree indexes on columns with few distinct values. Such
columns usually have poor selectivity and, therefore, do not optimize perfor-
mance unless the frequently selected column values appear less frequently
than the other column values. You can use bitmap indexes effectively in such
cases, unless a high concurrency OLTP application is involved.

Do not index columns that are frequently modified. UPDATE statements that
modify indexed columns and INSERT and DELETE statements that modify
indexed tables take longer than if there were no index. Such SQL statements
must modify data in indexes as well as data in tables. They also generate addi-
tional undo and redo information.

Do not index columns that appear only in WHERE clauses with functions or
operators. A WHERE clause that uses a function (other than MIN or MAX) or
an operator with an indexed column does not make available the access path
that uses the index.

Consider indexing foreign keys of referential integrity constraints in cases in
which a large number of concurrent INSERT, UPDATE, and DELETE state-
ments access the parent and child tables. With UPDATE and DELETE, such an
index allows Oracle to modify data in the child table without locking the par-
ent table.

Data Access Methods 10-5

Using Indexes

« When choosing whether to index a column, consider whether the performance
gain for queries is worth the performance loss for INSERT, UPDATE, and
DELETE statements and the use of the space required to store the index. You
may want to experiment and compare the processing times of your SQL state-
ments with and without indexes. You can measure processing time with the
SQL trace facility.

See Also: Chapter 24, “The SQL Trace Facility and TKPROF”
Oracle8 Concepts regarding the effects of foreign keys on locking

How to Choose Composite Indexes

A composite index contains more than one key column. Composite indexes can pro-
vide additional advantages over single-column indexes:

better selectivity Sometimes two or more columns, each with poor selec-
tivity, can be combined to form a composite index with
good selectivity.

additional data storage If all the columns selected by a query are in a composite
index, Oracle can return these values from the index
without accessing the table.

A SQL statement can use an access path involving a composite index if the state-
ment contains constructs that use a leading portion of the index. A leading portion
of an index is a set of one or more columns that were specified first and consecu-
tively in the list of columns in the CREATE INDEX statement that created the
index. Consider this CREATE INDEX statement:

CREATE INDEX comp_ind

ON'tabl(x,y, 2);
These combinations of columns are leading portions of the index: X, XY, and XYZ.
These combinations of columns are not leading portions of the index: YZ and Z.
Follow these guidelines for choosing columns for composite indexes:

« Consider creating a composite index on columns that are frequently used
together in WHERE clause conditions combined with AND operators, espe-
cially if their combined selectivity is better than the selectivity of either column
individually.

« If several queries select the same set of columns based on one or more column
values, consider creating a composite index containing all of these columns.

10-6 Oracle8 Tuning

Using Indexes

Of course, consider the guidelines associated with the general performance advan-
tages and trade-offs of indexes described in the previous sections. Follow these
guidelines for ordering columns in composite indexes:

« Create the index so that the columns that are used in WHERE clauses make up
a leading portion.

« If some of the columns are used in WHERE clauses more frequently, be sure to
create the index so that the more frequently selected columns make up a lead-
ing portion to allow the statements that use only these columns to use the
index.

« Ifall columns are used in WHERE clauses equally often, ordering these col-
umns from most selective to least selective in the CREATE INDEX statement
best improves query performance.

« Ifall columns are used in the WHERE clauses equally often but the data is
physically ordered on one of the columns, place that column first in the com-
posite index.

How to Write Statements that Use Indexes

Even after you create an index, the optimizer cannot use an access path that uses
the index simply because the index exists. The optimizer can choose such an access
path for a SQL statement only if it contains a construct that makes the access path
available.

To be sure that a SQL statement can use an access path that uses an index, be sure
the statement contains a construct that makes such an access path available. If you
are using the cost-based approach, you should also generate statistics for the index.
Once you have made the access path available for the statement, the optimizer may
or may not choose to use the access path, based on the availability of other access
paths.

If you create new indexes to tune statements, you can also use the EXPLAIN PLAN
command to determine whether the optimizer will choose to use these indexes
when the application is run. If you create new indexes to tune a statement that is
currently parsed, Oracle invalidates the statement. When the statement is next exe-
cuted, the optimizer automatically chooses a new execution plan that could poten-
tially use the new index. If you create new indexes on a remote database to tune a
distributed statement, the optimizer considers these indexes when the statement is
next parsed.

Also keep in mind that the means you use to tune one statement may affect the
optimizer’s choice of execution plans for others. For example, if you create an index

Data Access Methods 10-7

Using Indexes

to be used by one statement, the optimizer may choose to use that index for other
statements in your application as well. For this reason, you should re-examine your
application’s performance and rerun the SQL trace facility after you have tuned
those statements that you initially identified for tuning.

How to Write Statements that Avoid Using Indexes

In some cases, you may want to prevent a SQL statement from using an access path
that uses an existing index. You may want to do this if you know that the index is
not very selective and that a full table scan would be more efficient. If the statement
contains a construct that makes such an index access path available, you can force
the optimizer to use a full table scan through one of these methods:

= You can make the index access path unavailable by modifying the statement in
a way that does not change its meaning.

= You can use the FULL hint to force the optimizer to choose a full table scan
instead of an index scan.

= You can use the INDEX or AND_EQUAL hint to force the optimizer to use one
index or set of indexes instead of another.

The behavior of the optimizer may change in future versions of Oracle, so relying
on methods such as the first to choose access paths may not be a good long-range
plan. Instead, use hints to suggest specific access paths to the optimizer.

Assessing the Value of Indexes

A crude way to determine whether an index is good is to create it, analyze it, and
use EXPLAIN PLAN on your query to see if the optimizer uses it. If it does, keep
the index unless it is very expensive to maintain. This method, however, is very
time and resource expensive. A preferable method is to compare the optimizer cost
(in the first row of EXPLAIN PLAN output) of the plans with and without the
index.

The parallel query feature utilizes indexes effectively. It does not perform parallel
index range scans, but it does perform parallel index lookups for parallel nested
loop join execution. If an index is very selective (there are few rows per index
entry), then it may be better to use sequential index lookup than parallel table scan.

10-8 Oracle8 Tuning

Using Indexes

Fast Full Index Scan

The fast full index scan is an alternative to a full table scan when there is an index
that contains all the columns that are needed for the query. FAST FULL SCAN is
faster than a normal full index scan in that it can use multiblock 170 and can be par-
allelized just like a table scan. Unlike regular index scans, however, no keys can be
used, and the rows will not necessarily come back in sorted order. The following
qguery and plan illustrate this feature.

SELECT COUNT(*) FROM 1, 2
WHERE tl.cl1>50andtl.c2=t2.cl;
The plan is as follows:

SELECT STATEMENT
SORT AGGREGATE
HASH JOIN
TABLE ACCESSI1FULL
INDEXT2_C1 IDXFAST FULL SCAN

Since index T2_C1_IDX contains all the columns needed from table T2(C2), the opti-
mizer decides to use a fast full index scan on that index.

FAST FULL SCAN has the following restrictions:
« At least one indexed column of the table must have the NOT NULL constraint.

« There must be a parallel clause on the index, if you want to perform fast full
index scan in parallel. Note that parallel degree of the index is set indepen-
dently: the index does not inherit the degree of parallelism of the table.

« Make sure that you have analyzed the index, otherwise the optimizer may
decide not to use it.

To use this feature you must set the FAST_FULL _SCAN_ENABLED parameter to
TRUE.

FAST FULL SCAN has a special index hint, INDEX_FFS, which has the same for-
mat and arguments as the regular INDEX hint.

See Also: "INDEX_FFS" on page 8-22

Data Access Methods 10-9

Using Indexes

Re-creating an Index

You may wish to re-create an index in order to compact it and clean up fragmented
space, or to change the index’s storage characteristics. When creating a new index
that is a subset of an existing index, or when rebuilding an existing index with new
storage characteristics, Oracle uses the existing index instead of the base table to
improve performance.

Consider, for example, a table named CUST with columns NAME, CUSTID,
PHONE, ADDR, BALANCE, and an index named |_CUST_CUSTINFO on table col-
umns NAME, CUSTID and BALANCE. To create a new index named
I_CUST_CUSTNO on columns CUSTID and NAME, you would enter:

CREATE INDEX|_CUST_CUSTNO on CUST(CUSTID,NAME);

Oracle automatically uses the existing index (I_CUST_CUSTINFO) to create the
new index rather than accessing the entire table. Note that the syntax used is the
same as if the index |_CUST_CUSTINFO did not exist.

Similarly, if you have an index on the EMPNO and MGR columns of the EMP table,
and you want to change the storage characteristics of that composite index, Oracle
can use the existing index to create the new index.

Use the ALTER INDEX ... REBUILD statement to reorganize or compact an existing
index or to change its storage characteristics. The REBUILD uses the existing index
as the basis for the new index. All index storage commands are supported, such as
STORAGE (for extent allocation), TABLESPACE (to move the index to a new
tablespace), and INITRANS (to change the initial number of entries).

ALTER INDEX ... REBUILD is usually faster than dropping and re-creating an
index, because it utilizes the fast full scan feature. It thus reads all the index blocks
using multiblock 170, then discards the branch blocks. A further advantage of this
approach is that the old index is still available for queries (but not for DML) while
the rebuild is in progress.

See Also: Oracle8 SQL Reference for more information about the CREATE INDEX
and ALTER INDEX commands.

10-10 Oracle8 Tuning

Using Indexes

Using Existing Indexes to Enforce Uniqueness

You can use an existing index on a table to enforce uniqueness, either for UNIQUE
constraints or the unique aspect of a PRIMARY KEY constraint. The advantage of
this approach is that the index remains available and valid when the constraint is
disabled. Therefore, enabling a disabled UNIQUE or PRIMARY KEY constraint
does not require that you rebuild the unique index associated with the constraint.
This can yield significant time savings on enable operations for large tables.

Using a nonunique index to enforce uniqueness also allows you to eliminate redun-
dant indexes. You do not need a unique index on a primary key column if that col-
umn already is included as the prefix of a composite index. The existing index can
be used to enable and enforce the constraint and you can save significant space by
not duplicating the index.

Nonunique indexes also have significant advantages when enabling enforced con-
straints (described in the next section). If you use a nonunique index to enforce a
UNIQUE constraint, then when you change the constraint from disabled to
enforced, you do not need to rebuild the constraint's index. The existing index is
used and the enable operation happens very quickly.

Using Enforced Constraints

An enforced constraint behaves similarly to an enabled constraint. Placing a con-
straint in the enforced state signifies that any new data entered into the table must
conform to the constraint. Existing data is not checked. Placing a constraint in the
enforced state allows you to enable the constraint without locking the table.

If you change an enforced constraint from disabled to enabled, the table must be
locked. No new DML, queries, or DDL can occur, because no mechanism exists to
ensure that operations on the table conform to the constraint during the enable
operation. The enforced state ensures that no operation violating the constraint can
be performed upon the table. Therefore, a constraint can go from enabled to
enforced with a parallel, consistent-read query of the table to determine whether
any data violates the constraint. No locking is performed, and the enable operation
does not block readers or writers to the table. In addition, enforced constraints can
be enabled in parallel: multiple constraints can be enabled at the same time, and
each constraint's validity check can performed using parallel query processors.

Data Access Methods 10-11

Using Indexes

The best approach to creating a table with integrity constraints is as follows:

1.

For UNIQUE or PRIMARY KEY constraints, create the table with the con-
straints disabled. For all other constraints, create the table with the constraints
enabled.

For UNIQUE or PRIMARY KEY constraints, create a nonunique index on the
UNIQUE or PRIMARY KEY columns.

For UNIQUE or PRIMARY KEY constraints, enable the constraints.
Begin entering data into the table.

During an IMPORT or load operation, you may wish to disable the constraint
for faster processing.

Immediately after the IMPORT or load, place the constraint into the
ENFORCED state.

After enforcing the constraint, perform an ALTER TABLE ... ENABLE CON-
STRAINT operation for all of the constraints on the table.

Constraints can be created as enforced. Disabled constraints can be made enforced
with the statement

ALTER TABLE tablename ENFORCE CONSTRAINT constraint;

This statement is about as fast as ALTER TABLE tablename DISABLE, since both
statements lock the table but need not check anything.

The IMPORT utility automatically enforces, then enables, named constraints. It
enables constraints more slowly if the name is system generated.

See Also: Oracle8 Concepts for a complete discussion of integrity constraints.

10-12 Oracle8 Tuning

Using Bitmap Indexes

Using Bitmap Indexes

This section describes:

When to Use Bitmap Indexing

How to Create a Bitmap Index

Initialization Parameters for Bitmap Indexing

Using Bitmap Access Plans on Regular B*-tree Indexes
Estimating Bitmap Index Size

Bitmap Index Restrictions

See Also: Oracle8 Concepts, for a general introduction to bitmap indexing.

When to Use Bitmap Indexing

This section describes three aspects of the indexing scheme you must evaluate
when considering whether to use bitmap indexing on a given table: performance,
storage, and maintenance.

Performance Considerations

Bitmap indexes can substantially improve performance of queries with the follow-
ing characteristics:

The WHERE clause contains multiple predicates on low- or medium-cardinal-
ity columns.

The individual predicates on these low- or medium-cardinality columns select
a large number of rows.

Bitmap indexes have been created on some or all of these low- or medium-car-
dinality columns.

The tables being queried contain many rows.

You can use multiple bitmap indexes to evaluate the conditions on a single table.
Bitmap indexes are thus highly advantageous for complex ad hoc queries that con-
tain lengthy WHERE clauses. Bitmap indexes can also provide optimal perfor-
mance for aggregate queries.

Data Access Methods 10-13

Using Bitmap Indexes

Storage Considerations

Bitmap indexes can provide considerable storage savings over the use of multicol-
umn (or concatenated) B*-tree indexes. In databases that contain only B*-tree
indexes, a DBA must anticipate the columns that would commonly be accessed
together in a single query, and create a composite B*-tree index on these columns.
Not only would this B*-tree index require a large amount of space, but it would
also be ordered. That is, a B*-tree index on (MARITAL_STATUS, REGION, GEN-
DER) is useless for a query that only accesses REGION and GENDER. To com-
pletely index the database, the DBA would have to create indexes on the other
permutations of these columns. For the simple case of three low-cardinality col-
umns, there are six possible composite B*-tree indexes. DBAs must consider the
trade-offs between disk space and performance needs when determining which
composite B*-tree indexes to create.

Bitmap indexes solve this dilemma. Bitmap indexes can be efficiently combined
during query execution, so three small single-column bitmap indexes can do the
job of six three-column B*-tree indexes. Although the bitmap indexes may not be
quite as efficient during execution as the appropriate composite B*-tree indexes, the
space savings more than justifies their use.

If a bitmap index is created on a unique key column, it requires more space than a
regular B*-tree index. However, for columns where each value is repeated hun-
dreds or thousands of times, a bitmap index typically is less than 25% of the size of
a regular B*-tree index. The bitmaps themselves are stored in compressed format.

Simply comparing the relative sizes of B*-tree and bitmap indexes is not an accu-
rate measure of effectiveness, however. Because of their different performance char-
acteristics, you should keep B*-tree indexes on high-cardinality data, while creating
bitmap indexes on low-cardinality data.

10-14 Oracle8 Tuning

Using Bitmap Indexes

Maintenance Considerations

Bitmap indexes benefit data warehousing applications, but are not appropriate for
OLTP applications with a heavy load of concurrent insert, update, and delete opera-
tions. In a data warehousing environment, data is usually maintained by way of
bulk inserts and updates. Index maintenance is deferred until the end of each DML
operation. For example, if you insert 1000 rows, the inserted rows are all placed

into a sort buffer and then the updates of all 1000 index entries are batched. (This is
why SORT_AREA_SIZE must be set properly for good performance with inserts
and updates on bitmap indexes.) Thus each bitmap segment is updated only once
per DML operation, even if more than one row in that segment changes.

Note: The sorts described above are regular sorts and use the regular sort area,
determined by SORT_AREA_SIZE. The BITMAP_MERGE_AREA_SIZE and
CREATE_BITMAP_AREA_SIZE parameters described in "Initialization Parameters
for Bitmap Indexing" on page 10-18 only affect the specific operations indicated by
the parameter names.

DML and DDL statements such as UPDATE, DELETE, DROP TABLE, and so on,
affect bitmap indexes the same way they do traditional indexes: the consistency
model is the same. A compressed bitmap for a key value is made up of one or more
bitmap segments, each of which is at most half a block in size (but may be smaller).
The locking granularity is one such bitmap segment. This may affect performance
in environments where many transactions make simultaneous updates. If numer-
ous DML operations have caused increased index size and decreasing performance
for queries, you can use the ALTER INDEX ... REBUILD command to compact the
index and restore efficient performance.

A B*-tree index entry contains a single ROWID. Therefore, when the index entry is
locked, a single row is locked. With bitmap indexes, an entry can potentially con-
tain a range of ROWIDs. When a bitmap index entry is locked, the entire range of
ROWIDs is locked. The number of ROWIDs in this range affects concurrency. For
example, a bitmap index on a column with unique values would lock one ROWID
per value: concurrency would be the same as for B*-tree indexes. As ROWIDs
increase in a bitmap segment, concurrency decreases.

Locking issues affect DML operations, and thus may affect heavy OLTP environ-
ments. Locking issues do not, however, affect query performance. As with other
types of indexes, updating bitmap indexes is a costly operation. Nonetheless, for
bulk inserts and updates where many rows are inserted or many updates are made
in a single statement, performance with bitmap indexes can be better than with reg-
ular B*-tree indexes.

Data Access Methods 10-15

Using Bitmap Indexes

How to Create a Bitmap Index

To create a bitmap index, use the BITMAP keyword in the CREATE INDEX com-
mand:

CREATE BITMAP INDEX ...

All CREATE INDEX parameters except NOSORT are applicable to bitmap indexes.
Multi-column (concatenated) bitmap indexes are supported; they can be defined
over at most 30 columns. Other SQL statements concerning indexes, such as DROP,
ANALYZE, ALTER, and so on, can refer to bitmap indexes without any extra key-
word.

Note: The COMPATIBLE initialization parameter must be set to 7.3.2 or higher, for
bitmap indexing to be available.

Index Type

System index views USER_INDEXES, ALL_INDEXES, and DBA_INDEXES indi-
cate bitmap indexes by the word BITMAP appearing in the TYPE column. A bit-
map index cannot be declared as UNIQUE.

Using Hints
The INDEX hint works with bitmap indexes in the same way as with traditional
indexes.

The INDEX_COMBINE hint indicates to the optimizer the indexes that are cost
effective to use. The optimizer recognizes all indexes that can potentially be com-
bined, given the predicates in the WHERE clause. However, it may not be cost effec-
tive to use all of them.

In deciding which of them actually to use, the optimizer includes nonhinted
indexes that look cost effective as well as indexes that are named in the hint. If cer-
tain indexes are given as arguments for the hint, the optimizer tries to use some
combination of those particular bitmap indexes.

If no indexes are named in the hint, all indexes are considered hinted. Hence, the
optimizer will try to combine as many as is possible given the WHERE clause, with-
out regard to cost effectiveness. The optimizer always tries to use hinted indexes in
the plan, whether or not it considers them cost effective.

See Also: "INDEX_COMBINE" on page 8-21

10-16 Oracle8 Tuning

Using Bitmap Indexes

Performance and Storage Tips

To obtain optimal performance and disk space usage with bitmap indexes, note the
following considerations:

« Large block sizes improve the efficiency of storing, and hence retrieving, bit-
map indexes.

« Inorder to make the compressed bitmaps as small as possible, you should
declare NOT NULL constraints on all columns that cannot contain null values.

« Fixed-length datatypes are more amenable to a compact bitmap representation
than variable length datatypes.

See Also: Chapter 23, “The EXPLAIN PLAN Command” for information about bit-
map EXPLAIN PLAN output.

Indexing Null Values

Bitmap indexes index null values, whereas all other index types do not. Consider,
for example, a table with STATE and PARTY columns, on which you want to per-
form the following query:

SELECT COUNT(*) FROM people WHERE state="CA’ and party =R’

Indexing nulls enables a bitmap minus plan where bitmaps for party equal to 'R’
and NULL are subtracted from state bitmaps equal to '"CA’. The EXPLAIN PLAN
output would look like this:

SELECT STATEMENT
SORT AGGREGATE
BITMAP CONVERSION COUNT
BITMAP MINUS
BITMAP MINUS
BITMAP INDEX SINGLEVALUE STATE BM
BITMAP INDEX SINGLEVALUE PARTY_BM
BITMAPINDEX SINGLEVALUE PARTY_BM

Note that if a NOT NULL constraint existed on party the second minus operation
(where party is null) would be left out because it is not needed.

Data Access Methods 10-17

Using Bitmap Indexes

Initialization Parameters for Bitmap Indexing
The following two initialization parameters have an impact on performance.

CREATE_BITMAP_AREA_SIZE

This parameter determines the amount of memory allocated for bitmap creation.
The default value is 8 Mb. A larger value may lead to faster index creation. If cardi-
nality is very small, you can set a small value for this parameter. For example, if car-
dinality is only 2, then the value can be on the order of kilobytes rather than
megabytes. As a general rule, the higher the cardinality, the more memory is
needed for optimal performance. This parameter is not dynamically alterable at the
session level.

BITMAP_MERGE_AREA_SIZE

This parameter determines the amount of memory used to merge bitmaps
retrieved from a range scan of the index. The default value is 1 Mb. A larger value
should improve performance, because the bitmap segments must be sorted before
being merged into a single bitmap. This parameter is not dynamically alterable at
the session level.

10-18 Oracle8 Tuning

Using Bitmap Indexes

Using Bitmap Access Plans on Regular B*-tree Indexes

If there exists at least one bitmap index on the table, the optimizer will consider
using a bitmap access path using regular B*-tree indexes for that table. This access
path may involve combinations of B*-tree and bitmap indexes, but might not
involve any bitmap indexes at all. However, the optimizer will not generate a bit-
map access path using a single B*-tree index unless instructed to do so by a hint.

In order to use bitmap access paths for B*-tree indexes, the ROWIDs stored in the
indexes must be converted to bitmaps. Once such a conversion has taken place, the
various Boolean operations available for bitmaps can be used. As an example, con-
sider the following query, where there is a bitmap index on column C1, and regular
B*-tree indexes on columns C2 and C3.

EXPLAIN PLAN FOR
SELECT COUNT(*) FROM T
WHERE
C1=2ANDC2=6
OR
C3BETWEEN 10 AND 20,
SELECT STATEMENT
SORT AGGREGATE
BITMAP CONVERSION COUNT
BITMAP OR
BITMAP AND
BITMAP INDEX C1_IND SINGLE VALUE
BITMAP CONVERSION FROM ROWIDS
INDEX C2_IND RANGE SCAN
BITMAP CONVERSION FROM ROWIDS
SORT ORDER BY
INDEX C3_IND RANGE SCAN

Here, a COUNT option for the BITMAP CONVERSION row source counts the
number of rows matching the query. There are also conversions FROM ROWIDS in
the plan in order to generate bitmaps from the ROWIDs retrieved from the B*-tree
indexes. The occurrence of the ORDER BY sort in the plan is due to the fact that the
conditions on columns C3 result in more than one list of ROWIDs being returned
from the B*-tree index. These lists are sorted before they can be converted into a bit-
map.

Data Access Methods 10-19

Using Bitmap Indexes

Estimating Bitmap Index Size

Although it is not possible to size a bitmap index exactly, you can estimate its size.
This section describes how to extrapolate the size of a bitmap index for a table from
the computed size of a B*-tree index. It also illustrates how cardinality, NOT NULL
constraints and number of distinct values, affects bitmap size.

To estimate the size of a bitmap index for a given table, you may extrapolate from
the size of a B*-tree index for the table. Use the following approach:

1. Use the standard formula described in Oracle8 Concepts to compute the size of a
B*-tree index for the table.

2. Determine the cardinality of the table data.

3. From the cardinality value, extrapolate the size of a bitmap index according to
the graph in Figure 10-2 or Figure 10-3.

For a 1 million row table, Figure 10-2 shows index size on columns with different
numbers of distinct values, for B*-tree indexes and bitmap indexes. Using

Figure 10-2 you can estimate the size of a bitmap index relative to that of a B*-tree
index for the table. Sizing is not exact: results will vary somewhat from table to
table.

Note that randomly distributed data was used to generate the graph. If, in your
data, particular values tend to cluster close together, you may generate consider-
ably smaller bitmap indexes than indicated by the graph. Bitmap indexes may be
slightly smaller than those in the graph if columns contain NOT NULL constraints.

Figure 10-3 shows similar data for a table with 5 million rows. Note that when car-
dinality exceeds 100,000, bitmap index size does not increase as fast as it does in
Figure 10-2. For a table with more rows, there are more repeating values for a given
cardinality.

10-20 Oracle8 Tuning

Using Bitmap Indexes

Figure 10-2 Extrapolating Bitmap Index Size: 1 Million Row Table

30 —
25 |—
20 |—
15 |-
—
10 |-
5 -
8 b
A I A N
a
[o~ < [Te) o Te] o o o o o o o
=) - ~ o o o) o) o o S
@ — < - - < < S
= — o o o o o
=1 < S Ire} S
=1 R\ Ire}

1,000,000

Cardinality

e——ff}— B*-tree Index Size

el Bitmap Index Size

Data Access Methods 10-21

Using Bitmap Indexes

Figure 10-3 Extrapolating Bitmap Index Size: 5 Million Row Table

75

70 —m {0 i i i

65 |—

60

50 —

45 —

40 —

35 —

Megabytes
o

25
100
1,000

10,000
40,000
100,000
250,000
500,000

Cardinality

——{f— B*-tree Index Size

=—{ll—Bijtmap Index Size

10-22 Oracle8 Tuning

Using Bitmap Indexes

Bitmap Index Restrictions
Bitmap indexes have the following restrictions:

« For bitmap indexes with direct load, the SORTED_INDEX flag does not apply.

« Performing an ALTER TABLE command that adds or modifies a bitmap-
indexed column may cause indexes to be invalidated.

« Bitmap indexes are not considered by the rule-based optimizer.

« Bitmap indexes cannot be used for referential integrity checking.

Data Access Methods 10-23

Using Clusters

Using Clusters

Follow these guidelines when deciding whether to cluster tables:

Consider clustering tables that are often accessed by your application in join
statements.

Do not cluster tables if your application joins them only occasionally or modi-
fies their common column values frequently. Modifying a row’s cluster key
value takes longer than modifying the value in an unclustered table, because
Oracle may have to migrate the modified row to another block to maintain the
cluster.

Do not cluster tables if your application often performs full table scans of only
one of the tables. A full table scan of a clustered table can take longer than a full
table scan of an unclustered table. Oracle is likely to read more blocks because
the tables are stored together.

Consider clustering master-detail tables if you often select a master record and
then the corresponding detail records. Detail records are stored in the same
data block(s) as the master record, so they are likely still to be in memory when
you select them, requiring Oracle to perform less 1/0.

Consider storing a detail table alone in a cluster if you often select many detail
records of the same master. This measure improves the performance of queries
that select detail records of the same master but does not decrease the perfor-
mance of a full table scan on the master table.

Do not cluster tables if the data from all tables with the same cluster key value
exceeds more than one or two Oracle blocks. To access a row in a clustered
table, Oracle reads all blocks containing rows with that value. If these rows
take up multiple blocks, accessing a single row could require more reads than
accessing the same row in an unclustered table.

Consider the benefits and drawbacks of clusters with respect to the needs of your
application. For example, you may decide that the performance gain for join state-
ments outweighs the performance loss for statements that modify cluster key val-
ues. You may want to experiment and compare processing times with your tables
both clustered and stored separately. To create a cluster, use the CREATE CLUSTER
command.

See Also: For more information on creating clusters, see the Oracle8 Application
Developer’s Guide.

10-24 Oracle8 Tuning

Using Hash Clusters

Using Hash Clusters

Hash clusters group table data by applying a hash function to each row’s cluster
key value. All rows with the same cluster key value are stored together on disk.
Consider the benefits and drawbacks of hash clusters with respect to the needs of
your application. You may want to experiment and compare processing times with
a particular table as it is stored in a hash cluster, and as it is stored alone with an
index. This section describes:

When to Use a Hash Cluster

How to Use a Hash Cluster

When to Use a Hash Cluster
Follow these guidelines for choosing when to use hash clusters:

Consider using hash clusters to store tables that are often accessed by SQL state-
ments with WHERE clauses if the WHERE clauses contain equality conditions
that use the same column or combination of columns. Designate this column or
combination of columns as the cluster key.

Store a table in a hash cluster if you can determine how much space is required
to hold all rows with a given cluster key value, including rows to be inserted
immediately as well as rows to be inserted in the future.

Do not use hash clusters if space in your database is scarce and you cannot
afford to allocate additional space for rows to be inserted in the future.

Do not use a hash cluster to store a constantly growing table if the process of
occasionally creating a new, larger hash cluster to hold that table is impractical.

Do not store a table in a hash cluster if your application often performs full
table scans and you must allocate a great deal of space to the hash cluster in
anticipation of the table growing. Such full table scans must read all blocks allo-
cated to the hash cluster, even though some blocks may contain few rows. Stor-
ing the table alone would reduce the number of blocks read by full table scans.

Do not store a table in a hash cluster if your application frequently modifies the
cluster key values. Modifying a row’s cluster key value can take longer than
modifying the value in an unclustered table, because Oracle may have to
migrate the modified row to another block to maintain the cluster.

Storing a single table in a hash cluster can be useful, regardless of whether the
table is often joined with other tables, provided that hashing is appropriate for
the table based on the previous points in this list.

Data Access Methods 10-25

Using Hash Clusters

How to Use a Hash Cluster

To create a hash cluster, use the CREATE CLUSTER command with the HASH and
HASHKEYS parameters.

When you create a hash cluster, you must use the HASHKEYS parameter of the
CREATE CLUSTER statement to specify the number of hash values for the hash
cluster. For best performance of hash scans, choose a HASHKEYS value that is at
least as large as the number of cluster key values. Such a value reduces the chance
of collisions, or multiple cluster key values resulting in the same hash value. Colli-
sions force Oracle to test the rows in each block for the correct cluster key value
after performing a hash scan. Collisions reduce the performance of hash scans.

Oracle always rounds up the HASHKEYS value that you specify to the nearest
prime number to obtain the actual number of hash values. This rounding is
designed to reduce collisions.

See Also: For more information on creating hash clusters, see the Oracle8 Applica-
tion Developer’s Guide.

10-26 Oracle8 Tuning

11

Oracle8 Transaction Modes

This chapter describes the different modes in which read consistency is performed.
Topics in this chapter include:

« Using Discrete Transactions

« Using Serializable Transactions

Oracle8 Transaction Modes 11-1

Using Discrete Transactions

Using Discrete Transactions

You can improve the performance of short, nondistributed transactions by using
the BEGIN_DISCRETE_TRANSACTION procedure. This procedure streamlines
transaction processing so short transactions can execute more rapidly. This section
describes:

« Deciding When to Use Discrete Transactions
« How Discrete Transactions Work

« Errors During Discrete Transactions

« Usage Notes

« Example

Deciding When to Use Discrete Transactions
Discrete transaction processing is useful for transactions that:

« modify only a few database blocks

= hever change an individual database block more than once per transaction

« do not modify data likely to be requested by long-running queries

« do not need to see the new value of data after modifying the data

« do not modify tables containing any LONG values

In deciding to use discrete transactions, you should consider the following factors:

« Can the transaction be designed to work within the constraints placed on dis-
crete transactions, as described in "Usage Notes" on page 11-4?

« Does using discrete transactions result in a significant performance improve-
ment under normal usage conditions?

Discrete transactions can be used concurrently with standard transactions. Choos-
ing whether to use discrete transactions should be a part of your normal tuning pro-
cedure. Although discrete transactions can be used only for a subset of all
transactions, for sophisticated users with advanced application requirements,
where speed is the most critical factor, the performance improvements can make
working within the design constraints worthwhile.

11-2 Oracle8 Tuning

Using Discrete Transactions

How Discrete Transactions Work

During a discrete transaction, all changes made to any data are deferred until the
transaction commits. Redo information is generated, but is stored in a separate loca-
tion in memory.

When the transaction issues a commit request, the redo information is written to
the redo log file (along with other group commits) and the changes to the database
block are applied directly to the block. The block is written to the database file in
the usual manner. Control is returned to the application once the commit com-
pletes. This eliminates the need to generate undo information, because the block is
not actually modified until the transaction is committed, and the redo information
is stored in the redo log buffers.

As with other transactions, the uncommitted changes of a discrete transaction are
not visible to concurrent transactions. For regular transactions, undo information is
used to re-create old versions of data for queries that require a consistent view of
the data. Because no undo information is generated for discrete transactions, a dis-
crete transaction that starts and completes during a long query can cause the query
to receive the “snapshot too old” error if the query requests data changed by the
discrete transaction. For this reason, you might want to avoid performing queries
that access a large subset of a table that is modified by frequent discrete transac-
tions.

To use the BEGIN_DISCRETE_TRANSACTION procedure, the
DISCRETE_TRANSACTIONS_ENABLED initialization parameter must be set to
TRUE. If this parameter is set to FALSE, all calls to
BEGIN_DISCRETE_TRANSACTION are ignored and transactions requesting this
service are handled as standard transactions.

See Also: Oracle8 Reference for information about setting initialization parameters.

Errors During Discrete Transactions

Any errors encountered during processing of a discrete transaction cause the pre-
defined exception DISCRETE_TRANSACTION_FAILED to be raised. These errors
include the failure of a discrete transaction to comply with the usage notes outlined
below. (For example, calling BEGIN_DISCRETE_TRANSACTION after a transac-
tion has begun, or attempting to modify the same database block more than once
during a transaction, raises the exception.)

Oracle8 Transaction Modes 11-3

Using Discrete Transactions

Usage Notes

The BEGIN_DISCRETE_TRANSACTION procedure must be called before the first
statement in a transaction. This call to the procedure is effective only for the dura-
tion of the transaction (that is, once the transaction is committed or rolled back, the
next transaction is processed as a standard transaction).

Transactions that use this procedure cannot participate in distributed transactions.

Although discrete transactions cannot see their own changes, you can obtain the
old value and lock the row, using the FOR UPDATE clause of the SELECT state-
ment, before updating the value.

Because discrete transactions cannot see their own changes, a discrete transaction
cannot perform inserts or updates on both tables involved in a referential integrity
constraint.

For example, assume the EMP table has a FOREIGN KEY constraint on the
DEPTNO column that refers to the DEPT table. A discrete transaction cannot
attempt to add a department into the DEPT table and then add an employee
belonging to that department, because the department is not added to the table
until the transaction commits and the integrity constraint requires that the depart-
ment exist before an insert into the EMP table can occur. These two operations must
be performed in separate discrete transactions.

Because discrete transactions can change each database block only once, some com-
binations of data manipulation statements on the same table are better suited for
discrete transactions than others. One INSERT statement and one UPDATE state-
ment used together are the least likely to affect the same block. Multiple UPDATE
statements are also unlikely to affect the same block, depending on the size of the
affected tables. Multiple INSERT statements (or INSERT statements that use que-
ries to specify values), however, are likely to affect the same database block. Multi-
ple DML operations performed on separate tables do not affect the same database
blocks, unless the tables are clustered.

Example

An application for checking out library books is an example of a transaction type
that uses the BEGIN_DISCRETE_TRANSACTION procedure. The following proce-
dure is called by the library application with the book number as the argument.
This procedure checks to see if the book is reserved before allowing it to be checked
out. If more copies of the book have been reserved than are available, the status
RES is returned to the library application, which calls another procedure to reserve
the book, if desired. Otherwise, the book is checked out and the inventory of books
available is updated.

11-4 Oracle8 Tuning

Using Discrete Transactions

CREATE PROCEDURE checkout (bookno IN NUMBER (10)

status OUT VARCHAR(5))

AS

DECLARE
tot_books NUMBER(3);
checked_out NUMBER(3);
res NUMBER(Q);

BEGIN
dbms_transaction.begin_discrete_transaction;
FORIiIN1..2LOOP

BEGIN
SELECT total, num_out, num_res
INTOtot_books, checked out, res
FROM books
WHERE book_num =bookno
FOR UPDATE;
IF res >= (tot_books - checked_out)
THEN
status :='RES,
ELSE
UPDATE books SET num_out=checked out+1
WHERE book_num =bookno;
status :=’AVAIL’
ENDIF,
COMMIT;
EXIT,;
EXCEPTION
WHEN dbms_transaction.discrete_transaction_failed THEN
ROLLBACK;
END;
END LOOP;
END;

Note the above loop construct. If the DISCRETE_TRANSACTION_FAILED excep-
tion occurs during the transaction, the transaction is rolled back, and the loop exe-
cutes the transaction again. The second iteration of the loop is not a discrete
transaction, because the ROLLBACK statement ended the transaction; the next
transaction processes as a standard transaction. This loop construct ensures that the
same transaction is attempted again in the event of a discrete transaction failure.

Oracle8 Transaction Modes 11-5

Using Serializable Transactions

Using Serializable Transactions

Oracle allows application developers to set the isolation level of transactions. The
isolation level determines what changes the transaction and other transactions can
see. The ISO/ANSI SQL3 specification details the following levels of transaction
isolation.

SERIALIZABLE Transactions lose no updates, provide repeatable reads,
and do not experience phantoms. Changes made to a
serializable transaction are visible only to the transac-
tion itself.

READ COMMITTED Transactions do not have repeatable reads and changes
made in this transaction or other transactions are visible
to all transactions. This is the default transaction isola-
tion.

If you wish to set the transaction isolation level, you must do so before the transac-
tion begins. Use the SET TRANSACTION ISOLATION LEVEL statement for a par-
ticular transaction, or the ALTER SESSION SET ISOLATION_LEVEL statement for
all subsequent transactions in the session.

See Also: Oracle8 SQL Reference for more information on the syntax of SET TRANS-
ACTION and ALTER SESSION.

11-6 Oracle8 Tuning

12

Managing SQL and Shared PL/SQL Areas

This chapter explains the use of shared SQL to improve performance. Topics in this
chapter include

« Introduction
« Comparing SQL Statements and PL/SQL Blocks
» Keeping Shared SQL and PL/SQL in the Shared Pool

Managing SQL and Shared PL/SQL Areas 12-1

Introduction

Introduction

Oracle compares SQL statements and PL/SQL blocks issued directly by users and
applications as well as recursive SQL statements issued internally by a DDL state-
ment. If two identical statements are issued, the SQL or PL/SQL area used to pro-
cess the first instance of the statement is shared, or used for the processing of the
subsequent executions of that same statement.

Shared SQL and PL/SQL areas are shared memory areas; any Oracle process can
use a shared SQL area. The use of shared SQL areas reduces memory usage on the
database server, thereby increasing system throughput.

Shared SQL and PL/SQL areas are aged out of the shared pool by way of a least
recently used algorithm (similar to database buffers). To improve performance and
prevent reparsing, you may want to prevent large SQL or PL/SQL areas from
aging out of the shared pool.

Comparing SQL Statements and PL/SQL Blocks

This section describes
« Testing for Identical SQL Statements
« Aspects of Standardized SQL Formatting

12-2 Oracle8 Tuning

Comparing SQL Statements and PL/SQL Blocks

Testing for Identical SQL Statements

Oracle automatically notices when two or more applications send identical SQL
statements or PL/SQL blocks to the database. It does not have to parse a statement
to determine whether it is identical to another statement currently in the shared
pool. Oracle distinguishes identical statements using the following steps:

1. The text string of an issued statement is hashed. If the hash value is the same as
a hash value for an existing SQL statement in the shared pool, Oracle proceeds
to Step 2.

2. The text string of the issued statement, including case, blanks, and comments,
is compared to all existing SQL statements that were identified in Step 1.

3. The objects referenced in the issued statement are compared to the referenced
objects of all existing statements identified in Step 2. For example, if two users
have EMP tables, the statement

SELECT * FROM emp;

is not considered identical because the statement references different tables for
each user.

4. The bind types of bind variables used in a SQL statement must match.

Note: Most Oracle products convert the SQL before passing statements to the data-
base. Characters are uniformly changed to upper case, white space is compressed,
and bind variables are renamed so that a consistent set of SQL statements is pro-
duced.

Aspects of Standardized SQL Formatting

It is neither necessary nor useful to have every user of an application attempt to
write SQL statements in a standardized way. It is unlikely that 300 people writing
ad hoc dynamic statements in standardized SQL will generate the same SQL state-
ments. The chances that they will all want to look at exactly the same columns in
exactly the same tables in exactly the same order is quite remote. By contrast, 300
people running the same application—executing command files—will generate the
same SQL statements.

Within an application there is a very minimal advantage to having 2 statements
almost the same, and 300 users using them; there is a major advantage to having
one statement used by 600 users.

Managing SQL and Shared PL/SQL Areas 12-3

Keeping Shared SQL and PL/SQL in the Shared Pool

Keeping Shared SQL and PL/SQL in the Shared Pool

This section describes two techniques of keeping shared SQL and PL/SQL in the
shared pool:

« Reserving Space for Large Allocations

« Preventing Objects from Being Aged Out

Reserving Space for Large Allocations

A problem can occur if users fill the shared pool, and then a large package ages out.
If someone should then call the large package back in, an enormous amount of
maintenance must be done to create space for it in the shared pool. You can avoid
this problem by reserving space for large allocations with the
SHARED_POOL_RESERVED_SIZE initialization parameter. This parameter sets
aside room in the shared pool for allocations larger than the value specified by the
SHARED_POOL_RESERVED_SIZE_MIN_ALLOC parameter.

Note: Although Oracle8 uses segmented codes to reduce the need for large areas of
contiguous memory, it may still be valuable for performance reasons for you to pin
large objects in memory.

Preventing Objects from Being Aged Out

The DBMS_SHARED_POOL package lets you keep objects in shared memory, so
that they will not be aged out with the normal LRU mechanism. The DBM-
SPOOL.SQL and PRVTPOOL.PLB procedure scripts create the package specifica-
tion and package body for DBMS_SHARED_POOL.

By using the DBMS_SHARED_POOL package and by loading early these SQL and
PL/SQL areas (before memory fragmentation occurs), the objects can be kept in
memory, instead of aging out with the normal LRU mechanism. This procedure
ensures that memory is available and prevents sudden, seemingly inexplicable
slowdowns in user response time that occur when SQL and PL/SQL areas are
accessed after aging out.

12-4 Oracle8 Tuning

Keeping Shared SQL and PL/SQL in the Shared Pool

When to Use DBMS_SHARED_POOL

The procedures provided with the DBMS_SHARED_ POOL package may be useful
when loading large PL/SQL objects, such as the STANDARD and DIUTIL pack-
ages.

When large PL/SQL objects are loaded, users’ response time is affected because of
the large number of smaller objects that need to be aged out from the shared pool
to make room (due to memory fragmentation). In some cases, there may be insuffi-
cient memory to load the large objects.

DBMS_SHARED_POOL is also useful for frequently executed triggers. You may
want to keep compiled triggers on frequently used tables in the shared pool.

Note in addition that DBMS_SHARED_POOL supports sequences. Sequence hum-
bers are lost when a sequence is aged out of the shared pool.
DBMS_SHARED_POOL is useful for keeping sequences in the shared pool and
thus preventing the loss of sequence numbers.

Managing SQL and Shared PL/SQL Areas 12-5

Keeping Shared SQL and PL/SQL in the Shared Pool

How to Use DBMS_SHARED_POOL

To use the DBMS_SHARED_POOL package to pin a SQL or PL/SQL area, com-
plete the following steps.

1. Decide which packages/cursors you would like pinned in memory.
2. Start up the database.
3. Make the call to DBMS_SHARED_POOL.KEEP to pin it.

This procedure ensures that your system does not run out of the shared memory
before the object is loaded. Finally, by pinning the object early in the life of the
instance, this procedure prevents the memory fragmentation that could result from
pinning a large chunk of memory in the middle of the shared pool.

The procedures provided with the DBMS_SHARED_ POOL package are described
below.

DBMS_SHARED_POOL.SIZES

This procedure shows the objects in the shared pool that are larger than the speci-
fied size.

dbms_shared_pool.sizes(minsize IN NUMBER)

Input Parameter:

minsize Display objects in shared pool larger than this size, where
size is measured in kilobytes.

To display the results of this procedure, before calling this procedure issue the fol-
lowing command using Server Manager or SQL*Plus:

SET SERVEROUTPUT ON SIZE minsize
You can use the results of this command as arguments to the KEEP or UNKEEP pro-
cedures.

For example, to show the objects in the shared pool that are larger than 2000 kilo-
bytes, issue the following Server Manager or SQL*Plus commands:

SQL> SET SERVEROUTPUT ON SIZE 2000
SQL>EXECUTE DBMS_SHARED_POOL.SIZES(2000);

12-6 Oracle8 Tuning

Keeping Shared SQL and PL/SQL in the Shared Pool

DBMS_SHARED_POOL.KEEP

This procedure lets you keep an object in the shared pool. This procedure may not
be supported in future releases.

dbms_shared _pool.keep(object IN VARCHAR2,
[type IN CHAR DEFAULT PJ)

Input Parameters:

object Either the parameter name or the cursor address of the object to be
kept in the shared pool. This is the value displayed when you call
the SIZES procedure.

type The type of the object to be kept in the shared pool. Types include:
P procedure
C cursor
R trigger
Q sequence

DBMS_SHARED_POOL.UNKEEP

This procedure allows an object that you have requested to be kept in the shared
pool now to be aged out of the shared pool.

Note: This procedure may not be supported in the future.
dboms_shared_pool.unkeep(object IN VARCHARZ,

[type IN CHAR DEFAULT P))
Input Parameters:

object Either the parameter name or the cursor address of the object that
you no longer want kept in the shared pool. This is the value dis-
played when you call the SIZES procedure.

type Type of the object to be aged out of the shared pool. Types include:
P procedure
C cursor
R trigger
Q sequence

Managing SQL and Shared PL/SQL Areas 12-7

Keeping Shared SQL and PL/SQL in the Shared Pool

12-8 Oracle8 Tuning

PartlV

Optimizing Oracle Instance Performances

Part IV describes how to tune various elements of your database system in order to
optimize performance of an Oracle instance. The chapters are:

Chapter 13, “
Chapter 14, “
“Tuning I/0”
Chapter 16, “
Chapter 17, “
Chapter 18, “

Chapter 15,

Tuning CPU Resources”

Tuning Memory Allocation”

Tuning Networks”
Tuning the Operating System”

Tuning Resource Contention”

13

Tuning CPU Resources

This chapter describes how to identify and solve problems with central processing
unit (CPU) resources. Topics in this chapter include

« Understanding CPU Problems
« How to Detect and Solve CPU Problems
« Solving CPU Problems by Changing System Architecture

Tuning CPU Resources 13-1

Understanding CPU Problems

Understanding CPU Problems

Establish appropriate expectations for the amount of CPU resources your system
should be using. You can then distinguish whether or not sufficient CPU resources
are available, and know when your system is consuming too much of those
resources. Begin by determining the amount of CPU resources the Oracle instance
utilizes in three cases:

« while the machine is idle
« ataverage workload
« at peak workload

Workload is a very important factor when evaluating your system’s level of CPU
utilization. During peak workload hours, 90% CPU utilization with 10% idle and
waiting time may be understandable and acceptable; 30% utilization at a time of
low workload may also be understandable. However, if your system shows high
utilization at normal workload, there is no room for peak workload. For example,
Figure 13-1 illustrates workload over time for an application which has peak peri-
ods at 10:00 AM and 2:00 PM.

Figure 13-1 Average Workload and Peak Workload

Functional Demand

8:00 10:00 12:00 14:00 16:00

Average Workload
Peak Workload

This example application has 100 users working 8 hours a day, for a total of 800
hours per day. If each user enters one transaction every 5 minutes, this would mean

13-2 Oracle8 Tuning

Understanding CPU Problems

9,600 transactions per day. Over the course of 8 hours, the system must support
1,200 transactions per hour, which is an average of 20 transactions per minute. If
the demand rate were constant, you could build a system to meet this average
workload.

However, usage patterns form peaks and valleys—and in this context 20 transac-
tions per minute can be understood as merely a minimum requirement. If the peak
rate you need to achieve is 120 transactions per minute, then you must configure a
system that can support this peak workload.

For this example, assume that at peak workload Oracle can use 90% of the CPU
resource. For a period of average workload, then, Oracle should be using no more
than about 15% of the available CPU resource.

15% = 20 tpm/120 tpm * 90%

If the system requires 50% of the CPU resource to achieve 20 transactions per
minute, then it is clear that a problem exists: the system cannot possibly achieve
120 transactions per minute using 90% of the CPU. However, if you could tune this
system so that it does achieve 20 transactions per minute using only 15% of the
CPU, then (assuming linear scalability) the system might indeed attain 120 transac-
tions per minute using 90% of the CPU resources.

Note that as users are added to an application over time, the average workload can
rise to what had previously been peak levels. No further CPU capacity is then avail-
able for the new peak rate, which is actually higher than before.

Tuning CPU Resources 13-3

How to Detect and Solve CPU Problems

How to Detect and Solve CPU Problems

If you suspect a problem with CPU usage, you must evaluate two areas:
« Checking System CPU Utilization
« Checking Oracle CPU Utilization

Checking System CPU Utilization

Oracle statistics report CPU utilization only of Oracle sessions, whereas every pro-
cess running on your system affects the available CPU resources. Effort spent tun-
ing non-Oracle factors can thus result in better Oracle performance.

Use operating system monitoring tools to see what processes are running on the
system as a whole. If the system is too heavily loaded, check the memory, I/0, and
process management areas described later in this section.

Tools such as sar -u on many UNIX-based systems enable you to examine the level
of CPU utilization on your entire system. CPU utilization in UNIX is described in
statistics that show user time, system time, idle time, and time waiting for 1/0. A
CPU problem exists if idle time and time waiting for 1/0 are both close to zero (less
than 5%) at a normal or low workload.

Performance Monitor is used on NT systems to examine CPU utilization. It pro-
vides statistics on processor time, user time, privileged time, interrupt time, and
DPC time. (NT Performance Monitor is not the same as Performance Manager,
which is an Oracle Enterprise Manager tool.)

Attention: This section describes how to check system CPU utilization on most
UNIX-based and NT systems. For other platforms, please check your operating sys-
tem documentation.

Memory Management
Check the following memory management issues:
Paging and Swapping. Use the appropriate tools (such as sar or vmstat on UNIX

or Performance Monitor on NT) to investigate the cause of paging and swapping,
should they occur.

Oversize Page Tables. On UNIX systems, if the processing space becomes too
large, it may result in the page tables becoming too large. This is not an issue on NT
systems.

13-4 Oracle8 Tuning

How to Detect and Solve CPU Problems

I/O Management
Check the following 1/0 management issues:

Thrashing. Make sure that your workloads fits in memory so that the machine is
not thrashing (swapping and paging processes in and out of memory). The operat-
ing system allocates fixed slices of time during which CPU resources are available
to your process. If the process squanders a large portion of each time slice checking
to be sure that it can run, that all needed components are in the machine, it may be
using only 50% of the time allotted to actually perform work.

Client/Server Round Trips. The latency of sending a message may result in CPU
overload. An application often generates messages that need to be sent through the
network over and over again. This results in a lot of overhead that must be com-
pleted before the message is actually sent. To alleviate this problem you can batch
the messages and perform the overhead only once, or reduce the amount of work.
For example, you can use array inserts, array fetches, and so on.

Process Management
Check the following process management issues:

Scheduling and Switching. The operating system may spend a lot of time in sched-
uling and switching processes. Examine the way in which you are using the operat-
ing system: you could be using too many processes. On NT systems, do not
overload your server with a great deal of non-Oracle processes.

Context Switching. Due to operating system specific characteristics, your system
could be spending a lot of time in context switches. This could be expensive, espe-
cially with a very large SGA. Note that context switching is not an issue on NT,
which has only one process per instance; all threads share the same page table.

Programmers often create single-purpose processes on the fly; then they exit the
process, and create a new one so that the process is re-created and destroyed all the
time. This is very CPU intensive, especially with large SGAs, because you have to
build up the page tables each time. The problem is aggravated when you nail or
lock shared memory, because you have to touch every page.

For example, if you have a 1 gigabyte SGA, you may have page table entries for
every 4K, and a page table entry may be 8 bytes. You could end up with

(1G 7Z4K) * 8B entries. This becomes expensive, because you have to continually
make sure that the page table is loaded.

Parallel query and multithreaded server are areas of concern here if MINSERVICE
has been set too low (set to 10, for example, when you need 20).

Tuning CPU Resources 13-5

How to Detect and Solve CPU Problems

For the user, doing small lookups may not be wise. In a situation like this, it
becomes inefficient for the user and for the system as well.

Checking Oracle CPU Utilization

This section explains how to examine the processes running in Oracle. Two
dynamic performance views provide information on Oracle processes:

« VS$SYSSTAT shows Oracle CPU usage for all sessions. The statistic “CPU used
by this session” actually shows the aggregate CPU used by all sessions.

« VS$SESSTAT shows Oracle CPU usage per session. You can use this view to see
which particular session is using the most CPU.

For example, if you have 8 CPUs, then for any given minute in real time, you have
8 minutes of CPU time available. On NT and UNIX-based systems this can be
either user time or time in system mode (“privileged” mode, in NT). If your pro-
cess is not running, it is waiting. CPU time utilized by all systems may thus be
greater than one minute per interval.

At any given moment you know how much time Oracle has utilized the system. So
if 8 minutes are available and Oracle uses 4 minutes of that time, then you know
that 50% of all CPU time is used by Oracle. If your process is not consuming that
time, then some other process is. Go back to the system and find out what process
is using up the CPU time. Identify the process, determine why it is using so much
CPU time, and see if you can tune it.

The major areas to check for Oracle CPU utilization are:
« Reparsing SQL Statements

« Inefficient SQL Statements

« Read Consistency

« Scalability Limitations within the Application

« Latch Contention

This section describes each area, and indicates the corresponding Oracle statistics
to check.

13-6 Oracle8 Tuning

How to Detect and Solve CPU Problems

Reparsing SQL Statements
Ineffective SQL sharing can result in reparsing.

1.

Begin by checking V$SYSSTAT to see if parsing in general is a problem:

SELECT * FROM V$SYSSTAT
WHERE NAME IN

(parse time cpu’, ‘parse time elapsed', 'parse count (hard));
In interpreting these statistics, remember

« response time = service time + wait time, therefore response time = elapsed
time

= service time = CPU time, therefore elapsed time - CPU time = wait time

In this way you can detect the general response time on parsing. The more
your application is parsing, the more contention exists and the more time you
will spend waiting. Note that

« Wait time/parse count = average wait time per parse

« The average wait time should be extremely low, approaching zero.
(V$SYSSTAT also indicates the average wait time per parse.)

Next, query V3SQLAREA to find frequently reparsed statements:

SELECT SQL_TEXT, PARSE_CALLS, EXECUTIONS FROM V$SQLAREA
ORDER BY PARSE_CALLS;

Now that you have identified problematic statements, you have the following
three options for tuning them:

« Rewrite the application so statements do not continually reparse.

« If this is not possible, reduce parsing by using the initialization parameter
SESSION_CACHED_CURSORS.

« If the parse count is small, the execute count is small, and the SQL state-
ments are very similar except for the WHERE clause, you may find that
hard coded values are being used instead of bind variables. Change to bind
variables in order to reduce parsing.

Tuning CPU Resources 13-7

How to Detect and Solve CPU Problems

Inefficient SQL Statements

Inefficient SQL statements can consume large amounts of CPU resource. To detect
such statements, enter the following query. You may be able to reduce CPU usage
by tuning SQL statements that have a high number of buffer gets.

SELECT BUFFER_GETS, EXECUTIONS, SQL_TEXT FROM V$SQLAREA,

See Also: "Approaches to SQL Statement Tuning" on page 7-6

Read Consistency

Your system could spend a lot of time rolling back changes to blocks in order to
maintain a consistent view.

13-8 Oracle8 Tuning

If there are many small transactions and an active long-running query is run-
ning in the background on the same table where the inserts are happening, the
guery may have to roll back many changes.

If the number of rollback segments is too small, your system could also be
spending a lot of time rolling back the transaction table. Your query may have
started long ago; because the number of rollback segments and transaction
tables is very small, your system frequently needs to reuse transaction slots.

A solution is to make more rollback segments, or to increase the commit rate.
For example, if you batch ten transactions and commit them once, you reduce
the number of transactions by a factor of ten.

If your system has to scan too many buffers in the foreground to find a free
buffer, it wastes CPU resources. To alleviate this problem, tune the DBWn pro-
cess(es) to write more frequently.

You can also increase the size of the buffer cache to enable the database writer

process(es) to keep up. To find the average number of buffers the system scans
at the end of the least recently used list (LRU) to find a free buffer, use the fol-

lowing formula:

1 + value of "free buffers inspected™

= . buff d
"free buffers inspected” avg. butlers scanne

Normally you would expect to see 1 or 2 buffers scanned, on average. If more
than this number are being scanned, increase the size of the buffer cache or
tune the DBWn process(es).

How to Detect and Solve CPU Problems

You can apply the following formula to find the number of buffers that were
dirty at the end of the LRU:

"dirty buffers inspected™
"free buffers inspected"

= dirty buffers

If many dirty buffers exist, it could mean that the DBWn process(es) cannot
keep up. Again, increase buffer cache size or tune DBWn.

Scalability Limitations Within the Application

In most of this CPU tuning discussion we assume linear scalability, but this is never
actually the case. How flat or nonlinear the scalability is indicates how far away
from the ideal you are. Problems in your application might be hurting scalability:
examples include too many indexes, right-hand index problems, too much data in
blocks, or not partitioning the data. Contention problems like these waste CPU
cycles and prevent the application from attaining linear scalability.

Latch Contention

Latch contention is a symptom; it is not normally the cause of CPU problems. Your
task is to translate the latch contention to an application area: track down the con-
tention to determine which part of your application is poorly written.

The spin count may be set too high. Some other process may be holding a latch that
your process is attempting to get, and your process may be spinning and spinning
in an effort to get the latch. After a while your process may go to sleep before wak-
ing up to repeat its ineffectual spinning.

= Check the Oracle latch statistics. The “latch free” event in V$SYSTEM_EVENT
shows how long you have been waiting on latches. If there is no latch conten-
tion, this statistic will not appear.

« Check the value of the SPINCOUNT initialization parameter. SPINCOUNT
depends heavily on CPU speed: appropriate values vary significantly from plat-
form to platform.

If there is a lot of contention, it may be better for a process to go to sleep at once
when it cannot obtain a latch, rather than use up a great deal of CPU time by
actively spinning and waiting.

« Look for the ratio of CPUs to processes. If there are large numbers of both, then
many process can run. But if a single process is holding a latch on a system
with ten CPUs, and that process should be rescheduled so that it is not run-

Tuning CPU Resources 13-9

Solving CPU Problems by Changing System Architecture

ning, then ten other processes may run ineffectively, trying to get the same
latch. That situation will waste, in parallel, some CPU resource.

» Check VSLATCH_MISSES, which indicates where in the Oracle code most of
the contention occurs.

Solving CPU Problems by Changing System Architecture

If you have reached the limit of CPU power available on your system, and have
exhausted all means of tuning its CPU usage, then you must consider redesigning
your system. Consider whether moving to a different architecture might result in
adequate CPU power. This section describes various possibilities.

« Single Tier to Two-Tier

« Multi-Tier: Using Smaller Client Machines

« Two-Tier to Three-Tier: Using a Transaction Processing Monitor
« Three-Tier: Using Multiple TP Monitors

« Oracle Parallel Server

Attention: If you are running a multi-tier system, check all levels for CPU utiliza-
tion. For example, on a three-tier system you might learn that your server is mostly
idle and your second tier is completely busy. The solution then would be clear: tune
the second tier, rather than the server or the third tier. In a multi-tier situation, it is
usually not the server that has a performance problem: it is usually the clients and
the middle tier.

13-10 Oracle8 Tuning

Solving CPU Problems by Changing System Architecture

Single Tier to Two-Tier
Consider whether changing from clients and server all running on a single machine

(single tier) to a two-tier client/server configuration could help to relieve CPU prob-
lems.

Figure 13-2 Single Tier to Two-Tier

Client Client Client Client Client Client
Server Server

Multi-Tier: Using Smaller Client Machines

Consider whether CPU usage might be improved if you used smaller clients, rather

than multiple clients on bigger machines. This strategy may be helpful with either
two-tier or three-tier configurations.

Figure 13-3 Multi-Tier Using Smaller Clients

Clients
|
Client Client Client Client w W
Server Server

Tuning CPU Resources 13-11

Solving CPU Problems by Changing System Architecture

Two-Tier to Three-Tier: Using a Transaction Processing Monitor

If your system currently runs with multiple layers, consider whether moving from
a two-tier to three-tier configuration, introducing the use of a transaction process-
ing monitor, might be a good solution.

Figure 13-4 Two-Tier to Three-Tier

Client Client Client Client Client Client
> ™
Server Monitor
Server

Three-Tier: Using Multiple TP Monitors

Consider whether using multiple transaction processing monitors might be a good
solution.

Figure 13-5 Three-Tier with Multiple TP Monitors

Client Client Client Client Client Client Client Client
"4
N\ 7 \ 7 \ 7
TP ' TP TP
Monitor Monitor Monitor
| \ /
Server Server

13-12 Oracle8 Tuning

Solving CPU Problems by Changing System Architecture

Oracle Parallel Server

Consider whether your CPU problems could be solved by incorporating Oracle Par-
allel Server.

Figure 13-6 Oracle Parallel Server

Client Client Client Client Client Client Client Client
"4
~>\ 7 \ 7 \ 7
Server) Server Server

Database Database

Tuning CPU Resources 13-13

Solving CPU Problems by Changing System Architecture

13-14 Oracle8 Tuning

14

Tuning Memory Allocation

This chapter explains how to allocate memory to database structures. Proper sizing
of these structures can greatly improve database performance. The following topics
are covered:

Understanding Memory Allocation Issues

How to Detect Memory Allocation Problems

How to Solve Memory Allocation Problems

Tuning Operating System Memory Requirements

Tuning the Redo Log Buffer

Tuning Private SQL and PL/SQL Areas
Tuning the Shared Pool

Tuning the Buffer Cache

Tuning Multiple Buffer Pools

Tuning Sort Areas

Reallocating Memory

Reducing Total Memory Usage

Tuning Memory Allocation 14-1

Understanding Memory Allocation Issues

Understanding Memory Allocation Issues

Oracle stores information in memory and on disk. Memory access is much faster
than disk access, so it is better for data requests to be satisfied by access to memory
rather than access to disk. For best performance, store as much data as possible in
memory rather than on disk. However, memory resources on your operating sys-
tem are likely to be limited. Tuning memory allocation involves distributing avail-
able memory to Oracle memory structures.

Oracle’s memory requirements depend on your application; therefore, you should
tune memory allocation after tuning your application and SQL statements. If you
allocate memory before tuning your application and SQL statements, you may
need to resize some Oracle memory structures to meet the needs of your modified
statements and application.

Tune memory allocation before you tune 1/0. Allocating memory establishes the
amount of 170 necessary for Oracle to operate. This chapter shows you how to allo-
cate memory to perform as little 1/0 as possible.

The following terms are used in this discussion:
block A unit of disk storage. A segment is stored in many blocks.

buffer A container in memory for a block. At any point in time a
buffer holds a single block. Over time a buffer may hold dif-
ferent blocks, as when a new block is needed an old block is
discarded and replaced with the new one.

buffer pool A collection of buffers.

cache or buffer All buffers and buffer pools.

cache

segment A segment is a set of extents that have been allocated for a

specific type of database object such as a table, index, cluster.

See Also: Chapter 15, “Tuning 1/0”, shows you how to perform 1/0 as efficiently
as possible.

14-2 Oracle8 Tuning

How to Solve Memory Allocation Problems

How to Detect Memory Allocation Problems

When you use operating system tools such as ps -efl or ps - aux on UNIX-based sys-
tems to look at the size of Oracle processes, you may notice that the processes seem
relatively large. To interpret the statistics shown, you must determine how much of
the process size is attributable to shared memory, heap, and executable stack, and
how much is the actual amount of memory the given process consumes.

The SZ statistic is given in units of page size (hormally 4K), and normally includes
the shared overhead. To calculate the private, or per-process memory usage, sub-
tract shared memory and executable stack figures from the value of SZ. For exam-

ple:

SZ +20,000
minus SHM - 15,000
minus EXECUTABLE - 1,000
actual per-process memory 4,000

In this example, the individual process consumes only 4,000 pages; the other 16,000
pages are shared by all processes.

See Also: Oracle for UNIX Performance Tuning Tips, or your operating system docu-
mentation.

How to Solve Memory Allocation Problems

The rest of this chapter explains in detail how to tune memory allocation. For best
results, you should tackle memory issues in the order they are presented here:

Tuning Operating System Memory Requirements
Tuning the Redo Log Buffer

Tuning Private SQL and PL/SQL Areas

Tuning the Shared Pool

Tuning the Buffer Cache

Tuning Multiple Buffer Pools

Tuning Sort Areas

Reallocating Memory

© © N o g~ w N PR

Reducing Total Memory Usage

Tuning Memory Allocation 14-3

Tuning Operating System Memory Requirements

Tuning Operating System Memory Requirements

Begin tuning memory allocation by tuning your operating system with these goals:
« Reducing Paging and Swapping

« Fitting the System Global Area into Main Memory

« Allocating Enough Memory to Individual Users

These goals apply in general to most operating systems, but the details of operating
system tuning vary.

See Also: Refer to your operating system hardware and software documentation as
well as your Oracle operating system-specific documentation for more information
on tuning operating system memory usage.

Reducing Paging and Swapping
Your operating system may store information in any of these places:
« real memory
« Virtual memory
« expanded storage
« disk

The operating system may also move information from one storage location to
another, a process known as “paging” or “swapping.” Many operating systems
page and swap to accommodate large amounts of information that do not fit into
real memory. However, excessive paging or swapping can reduce the performance
of many operating systems.

Monitor your operating system behavior with operating system utilities. Excessive
paging or swapping indicates that new information is often being moved into mem-
ory. In this case, your system’s total memory may not be large enough to hold
everything for which you have allocated memory. Either increase the total memory
on your system or decrease the amount of memory you have allocated.

See Also: "Oversubscribe, with Attention to Paging" on page 19-39

14-4 Oracle8 Tuning

Tuning Operating System Memory Requirements

Fitting the System Global Area into Main Memory

Since the purpose of the System Global Area (SGA) is to store data in memory for
fast access, the SGA should always be contained in main memory. If pages of the
SGA are swapped to disk, its data is no longer so quickly accessible. On most oper-
ating systems, the disadvantage of excessive paging significantly outweighs the
advantage of a large SGA.

Although it is best to keep the entire SGA in memory, the contents of the SGA will
be split logically between hot and cold parts. The hot parts will always be in mem-
ory because they are always being referenced. Some of the cold parts may be paged
out, and a performance penalty may result from bringing them back in. A perfor-
mance problem is very likely, however, if the hot part of the SGA cannot stay in
memory.

Remember that data is swapped to disk because it is not being referenced. You can
cause Oracle to read the entire SGA into memory when you start your instance by
setting the value of the initialization parameter PRE_PAGE_SGA to YES. Operating
system page table entries are then prebuilt for each page of the SGA. This setting
may increase the amount of time necessary for instance startup, but it is likely to
decrease the amount of time necessary for Oracle to reach its full performance
capacity after startup. (Note that this setting does not prevent your operating sys-
tem from paging or swapping the SGA after it is initially read into memory.)

PRE_PAGE_SGA may also increase the amount of time needed for process startup,
because every process that starts must attach to the SGA. The cost of this strategy is
fixed, however: you may simply determine that 20,000 pages must be touched
every time a process is started. This approach may be useful with some applica-
tions, but not with all applications. Overhead may be significant if your system cre-
ates and destroys processes all the time (by doing continual logon/logoff, for
example).

The advantage that PRE_PAGE_SGA can afford depends on page size. For exam-
ple, if the SGA is 80 MB in size, and the page size is 4K, then 20,000 pages must be
touched in order to refresh the SGA (80,000/4 = 20,000). If the system permits you
to set a 4MB page size, then only 20 pages must be touched to refresh the SGA
(80,000/4,000 = 20). Note that the page size is operating-system specific and gener-
ally cannot be changed. Some operating systems, however, have a special imple-
mentation for shared memory whereby you can change the page size.

You can see how much memory is allocated to the SGA and each of its internal
structures by issuing this Server Manager statement:

SVRMGR> SHOW SGA

Tuning Memory Allocation 14-5

Tuning Operating System Memory Requirements

The output of this statement might look like this:

Total System Global Area 3554188 bytes
Fixed Size 22208 bytes
Variable Size 3376332 bytes
Database Buffers 122880 bytes
Redo Buffers 32768 bytes

Some operating systems for IBM mainframe computers are equipped with
expanded storage or special memory, in addition to main memory, to which paging
can be performed very quickly. These operating systems may be able to page data
between main memory and expanded storage faster than Oracle can read and write
data between the SGA and disk. For this reason, allowing a larger SGA to be
swapped may lead to better performance than ensuring that a smaller SGA stays in
main memory. If your operating system has expanded storage, you can take advan-
tage of it by allocating a larger SGA despite the resulting paging.

Allocating Enough Memory to Individual Users

On some operating systems, you may have control over the amount of physical
memory allocated to each user. Be sure all users are allocated enough memory to
accommodate the resources they need in order to use their application with Oracle.

Depending on your operating system, these resources may include:
« the Oracle executable image

« the SGA

« Oracle application tools

« application-specific data

On some operating systems, Oracle software can be installed so that a single execut-
able image can be shared by many users. By sharing executable images among
users, you can reduce the amount of memory required by each user.

14-6 Oracle8 Tuning

Tuning Private SQL and PL/SQL Areas

Tuning the Redo Log Buffer

The LOG_BUFFER parameter reserves space for the redo log buffer, which is fixed
in size. On machines with fast processors and relatively slow disks, the processor(s)
may be filling the rest of the buffer in the time it takes the redo log writer to move a
portion of the buffer out to disk. The log writer process (LGWR) is always started
when the buffer begins to fill. For this reason a larger buffer makes it less likely that
new entries will collide with the part of the buffer still being written.

Figure 14-1 Redo Log Buffer

Being filled by
DML users))
Being written to

disk by LGWR

The log buffer is normally small compared with the total SGA size, and a modest
increase can significantly enhance throughput. A key ratio is the space request
ratio: redo log space requests / redo entries. If this ratio is greater than 1:5000, then
increase the size of the redo log buffer until the space request ratio stops falling.

Tuning Private SQL and PL/SQL Areas
This section explains how to tune private SQL and PL/SQL areas.
« ldentifying Unnecessary Parse Calls
« Reducing Unnecessary Parse Calls

A trade-off exists between memory and reparsing. If a lot of reparsing occurs, less
memory is heeded. If you reduce reparsing (by creating more SQL statements),
then the memory requirement on the client side increases. This is due to an increase
in the number of open cursors.

Tuning Memory Allocation 14-7

Tuning Private SQL and PL/SQL Areas

Tuning private SQL areas entails identifying unnecessary parse calls made by your
application and then reducing them. To reduce parse calls, you may have to
increase the number of private SQL areas that your application can have allocated
at once. Throughout this section, information about private SQL areas and SQL
statements also applies to private PL/SQL areas and PL/SQL blocks.

Identifying Unnecessary Parse Calls
This section describes three techniques for identifying unnecessary parse calls.

Technique 1

One way to identify unnecessary parse calls is to run your application with the
SQL trace facility enabled. For each SQL statement in the trace output, the “count”
statistic for the Parse step tells you how many times your application makes a
parse call for the statement. This statistic includes parse calls that are satisfied by
access to the library cache as well as parse calls that result in actually parsing the
statement.

Note: This statistic does not include implicit parsing that occurs when an applica-
tion executes a statement whose shared SQL area is no longer in the library cache.
For information on detecting implicit parsing, see "Examining Library Cache Activ-
ity" on page 14-13.

If the “count” value for the Parse step is near the “count” value for the Execute step
for a statement, your application may be deliberately making a parse call each time
it executes the statement. Try to reduce these parse calls through your application
tool.

Technique 2
Another way to identify unnecessary parse calls is to check the VSSQLAREA view.
Enter the following query:

SELECT sql_text, parse_count, executions
FROM V$SQLAREA

When the parse_count value is close to the execution value for a given statement,
you may be continually reparsing that particular SQL statement.

Technique 3

You can also identify unnecessary parse calls by identifying the session that gives
rise to them. It may be that particular batch programs or types of application do
most of the reparsing. Execute the following query:

14-8 Oracle8 Tuning

Tuning Private SQL and PL/SQL Areas

SELECT * FROM V$STATNAME
WHERE name in (parse_count (hard)’,'execute_count)

The results of the query will look something like this:
statistic#, name

100 parse_count
0 execute_count

Then run a query like the following:

SELECT * FROM V$SESSTAT
WHERE statistics#in (90,100)
ORDER BY value, sid;

The result will be a list of all sessions and the amount of reparsing they do. For
each system identifier (sid), go to V$SESSION to find the name of the program that
causes the reparsing.

Reducing Unnecessary Parse Calls

Depending on the Oracle application tool you are using, you may be able to control
how frequently your application performs parse calls and allocates and deallocates
private SQL areas. Whether your application reuses private SQL areas for multiple
SQL statements determines how many parse calls your application performs and
how many private SQL areas the application requires.

In general, an application that reuses private SQL areas for multiple SQL state-
ments does not need as many private SQL areas as an application that does not
reuse private SQL areas. However, an application that reuses private SQL areas
must perform more parse calls, because the application must make a new parse call
whenever an existing private SQL is reused for a new SQL statement.

Be sure that your application can open enough private SQL areas to accommodate
all of your SQL statements. If you allocate more private SQL areas, you may need
to increase the limit on the number of cursors permitted for a session. You can
increase this limit by increasing the value of the initialization parameter
OPEN_CURSORS. The maximum value for this parameter depends on your operat-
ing system. The minimum value is 5.

The ways in which you control parse calls and allocation and deallocation of pri-
vate SQL areas depends on your Oracle application tool. The following sections
introduce the methods used for some tools. Note that these methods apply only to
private SQL areas and not to shared SQL areas.

Tuning Memory Allocation 14-9

Tuning Private SQL and PL/SQL Areas

Reducing Parse Calls with the Oracle Precompilers

When using the Oracle precompilers, you can control private SQL areas and parse
calls by setting three options. In Oracle mode, the options and their defaults are as
follows:

« HOLD_CURSOR =yes
. RELEASE_CURSOR =no
« MAXOPENCURSORS = desired value

Oracle recommends that you not use ANSI mode, in which the values of
HOLD_CURSOR and RELEASE_CURSOR are switched.

The precompiler options can be specified in two ways:
= onthe precompiler command line
= within the precompiler program

With these options, you can employ different strategies for managing private SQL
areas during the course of the program.

See Also: Pro*C/C++ Precompiler Programmer’s Guide for more information on these
calls

Reducing Parse Calls with Oracle Forms

With Oracle Forms, you also have some control over whether your application
reuses private SQL areas. You can exercise this control in three places:

« atthe trigger level
« atthe form level
« atruntime

See Also: For more information on the reuse of private SQL areas by Oracle Forms,
see the Oracle Forms Reference manual.

14-10 Oracle8 Tuning

Tuning the Shared Pool

Tuning the Shared Pool

This section explains how to allocate memory for key memory structures of the
shared pool. Structures are listed in order of importance for tuning.

« Tuning the Library Cache

« Tuning the Data Dictionary Cache

« Tuning the Shared Pool with the Multithreaded Server
« Tuning Reserved Space from the Shared Pool

Note: If you are using a reserved size for the shared pool, refer to
"SHARED_POOL_SIZE Too Small" on page 14-25.

The algorithm that Oracle uses to manage data in the shared pool tends to hold dic-
tionary data in memory longer than library cache data. Therefore, tuning the

library cache to an acceptable cache hit ratio often ensures that the data dictionary
cache hit ratio is also acceptable. Allocating space in the shared pool for session
information is necessary only if you are using the multithreaded server architecture.

In the shared pool, some of the caches are dynamic—they grow or shrink as
needed. These dynamic caches include the library cache and the data dictionary
cache. Objects are paged out of these caches if in the shared pool runs out of room.
For this reason you may have to increase shared pool size if the “hot” (often
needed) set of data does not fit within it. A cache miss on the data dictionary cache
or library cache is more expensive than a miss on the buffer cache. For this reason,
you should allocate sufficient memory for the shared pool first.

For most applications, shared pool size is critical to Oracle performance. (Shared
pool size is less important only for applications that issue a very limited number of
discrete SQL statements.) The shared pool holds both the data dictionary cache and
the fully parsed or compiled representations of PL/SQL blocks and SQL state-
ments. PL/SQL blocks include procedures, functions, packages, triggers and any
anonymous PL/SQL blocks submitted by client-side programs.

If the shared pool is too small, then the server must dedicate resources to managing
the limited space available. This consumes CPU resources and causes contention,
because restrictions must be imposed on the parallel management of the various
caches. The more you use triggers and stored procedures, the larger the shared pool
must be. It may even reach a size measured in hundreds of megabytes.

Because it is better to measure statistics over a specific period rather than from star-
tup, you can determine the library cache and row cache (data dictionary cache) hit

Tuning Memory Allocation 14-11

Tuning the Shared Pool

ratios from the following queries. The results show the miss rates for the library
cache and row cache. (In general, the number of reparses reflects the library cache.)

select (sum(pins - reloads)) / sum(pins) “Lib Cache™
from v$librarycache;

select (sum(gets - getmisses - usage - fixed)) / sum(gets) "Row Cache"
from vérowcache;

The amount of free memory in the shared pool is reported in V3SGASTAT. The
instantaneous value can be reported using the query

select * from v§sgastat where name = 'free memory’;

If there is always free memory available within the shared pool, then increasing the
size of the pool will have little or no beneficial effect. However, just because the
shared pool is full does not necessarily mean that there is a problem. If the ratios
discussed above are close to 1, there is no need to increase the pool size.

Once an entry has been loaded into the shared pool it cannot be moved. As more
entries are loaded, the areas of free memory are broken up and the shared pool
may become fragmented. On UNIX-based systems, you can use the PL/SQL pack-
age DBMS_SHARED_POOL, located in dbmspool.sgl, to manage the shared pool.
The comments in the code describe how to use the procedures within the package.

Oracle8 uses segmented codes to reduce the need for large areas of contiguous
memory. For performance reasons, however, you may still want to pin a large
object in memory. Using the DBMS_SHARED_POOL package, you can keep large
objects permanently pinned in the shared pool.

The library cache hit ratio and row cache hit ratio are important. If free memory is
close to zero and either the library cache hit ratio or the row cache hit ratio is less
than 0.95, then increase the shared pool until the ratios stop improving.

14-12 Oracle8 Tuning

Tuning the Shared Pool

Tuning the Library Cache

The library cache contains shared SQL and PL/SQL areas. This section tells you
how to tune the library cache. Information presented here about shared SQL areas
and SQL statements also applies to shared PL/SQL areas and PL/SQL blocks.

Examining Library Cache Activity

Library cache misses can occur on either the parse or the execute step in the pro-
cessing of a SQL statement.

Parse If an application makes a parse call for a SQL statement and the parsed repre-
sentation of the statement does not already exist in a shared SQL area in the library
cache, Oracle parses the statement and allocates a shared SQL area. You may be
able to reduce library cache misses on parse calls by ensuring that SQL statements
can share a shared SQL area whenever possible.

Execute If an application makes an execute call for a SQL statement and the shared
SQL area containing the parsed representation of the statement has been deallo-
cated from the library cache to make room for another statement, Oracle implicitly
reparses the statement, allocates a new shared SQL area for it, and executes it. You
may be able to reduce library cache misses on execution calls by allocating more
memory to the library cache.

Determine whether misses on the library cache are affecting the performance of
Oracle by querying the dynamic performance table VSLIBRARYCACHE.

The V$LIBRARYCACHE Table You can monitor statistics reflecting library cache activ-
ity by examining the dynamic performance table VSLIBRARYCACHE. These statis-
tics reflect all library cache activity since the most recent instance startup. By
default, this table is available only to the user SYS and to users granted SELECT
ANY TABLE system privilege, such as SYSTEM.

Each row in this table contains statistics for one type of item kept in the library
cache. The item described by each row is identified by the value of the
NAMESPACE column. Rows of the table with the following NAMESPACE values
reflect library cache activity for SQL statements and PL/SQL blocks:

. SQL AREA
. TABLE/PROCEDURE
. BODY

. TRIGGER

Tuning Memory Allocation 14-13

Tuning the Shared Pool

Rows with other NAMESPACE values reflect library cache activity for object defini-
tions that Oracle uses for dependency maintenance.

These columns of the VSLIBRARYCACHE table reflect library cache misses on exe-

cution calls:

PINS This column shows the number of times an item in the
library cache was executed.

RELOADS This column shows the number of library cache misses on

execution steps.

Querying the VSLIBRARYCACHE Table Monitor the statistics in the VSLIBRARY-
CACHE table over a period of time with this query:

SELECT SUM(pins) "Executions”,

SUM(reloads) "Cache Misses while Executing*

FROM vsiibrarycache;
The output of this query might look like this:
Executions Cache Misses while Executing

320871 549

Interpreting the VSLIBRARYCACHE Table ~ Examining the data returned by the sample
query leads to these observations:

« The sum of the “Executions” column indicates that SQL statements, PL/SQL
blocks, and object definitions were accessed for execution a total of 320,871
times.

« The sum of the “Cache Misses while Executing” column indicates that 549 of
those executions resulted in library cache misses causing Oracle to implicitly
reparse a statement or block or reload an object definition because it had aged
out of the library cache.

« The ratio of the total misses to total executions is about 0.17%. This value
means that only 0.17% of executions resulted in reparsing.

Total misses should be near 0. If the ratio of misses to executions is more than 1%,
try to reduce the library cache misses through the means discussed in the next sec-
tion.

14-14 Oracle8 Tuning

Tuning the Shared Pool

Reducing Library Cache Misses
You can reduce library cache misses by:

« allocating additional memory for the library cache

« writing identical SQL statements whenever possible

Allocating Additional Memory for the Library Cache You may be able to reduce library
cache misses on execution calls by allocating additional memory for the library
cache. To ensure that shared SQL areas remain in the cache once their SQL state-
ments are parsed, increase the amount of memory available to the library cache
until the VSLIBRARYCACHE.RELOADS value is near 0. To increase the amount of
memory available to the library cache, increase the value of the initialization param-
eter SHARED_POOL_SIZE. The maximum value for this parameter depends on
your operating system. This measure will reduce implicit reparsing of SQL state-
ments and PL/SQL blocks on execution.

To take advantage of additional memory available for shared SQL areas, you may
also need to increase the number of cursors permitted for a session. You can do this
by increasing the value of the initialization parameter OPEN_CURSORS.

Be careful not to induce paging and swapping by allocating too much memory for
the library cache. The benefits of a library cache large enough to avoid cache misses
can be partially offset by reading shared SQL areas into memory from disk when-
ever you need to access them.

See Also: "SHARED_POOL_SIZE Too Small" on page 14-25

Writing Identical SQL Statements: Criteria~ You may be able to reduce library cache
misses on parse calls by ensuring that SQL statements and PL/SQL blocks use a
shared SQL area whenever possible. Two separate occurrences of a SQL statement
or PL/SQL block can use a shared SQL area if they are identical according to these
criteria:

« The text of the SQL statements or PL/SQL blocks must be identical, character
for character, including spaces and case. For example, these statements cannot
use the same shared SQL area:

SELECT * FROM emp;
SELECT* FROM emp;

These statements cannot use the same shared SQL area:

SELECT * FROM emp;
SELECT * FROM Emp;

Tuning Memory Allocation 14-15

Tuning the Shared Pool

References to schema objects in the SQL statements or PL/SQL blocks must
resolve to the same object in the same schema.

For example, if the schemas of the users BOB and ED both contain an EMP
table and both users issue the following statement, their statements cannot use
the same shared SQL area:

SELECT * FROM emp;
SELECT * FROM emp;

If both statements query the same table and qualify the table with the schema,
as in the following statement, then they can use the same shared SQL area:

SELECT * FROM bob.emp;

Bind variables in the SQL statements must match in name and datatype. For
example, these statements cannot use the same shared SQL area:

SELECT * FROM emp WHERE deptno = :department_no;
SELECT * FROM emp WHERE deptno =:d_no;

The SQL statements must be optimized using the same optimization approach
and, in the case of the cost-based approach, the same optimization goal. For
information on optimization approach and goal, see "Choosing a Goal for the
Cost-Based Approach" on page 8-6.

Writing Identical SQL Statements: Strategies Shared SQL areas are most useful for
reducing library cache misses for multiple users running the same application. Dis-
cuss these criteria with the developers of such applications and agree on strategies
to ensure that the SQL statements and PL/SQL blocks of an application can use the
same shared SQL areas:

14-16 Oracle8 Tuning

Use bind variables rather than explicitly specified constants in your statements
whenever possible.

For example, the following two statements cannot use the same shared area
because they do not match character for character:

SELECT ename, empno FROM emp WHERE deptno = 10;
SELECT ename, empno FROM emp WHERE deptno =20;

You can accomplish the goals of these statements by using the following state-
ment that contains a bind variable, binding 10 for one occurrence of the state-
ment and 20 for the other:

SELECT ename, empno FROM emp WHERE deptno = :department_no;

Tuning the Shared Pool

The two occurrences of the statement can then use the same shared SQL area.

« Be sure that users of the application do not change the optimization approach
and goal for their individual sessions.

« You can also increase the likelihood that SQL statements issued by different
applications can share SQL areas by establishing these policies among the
developers of the applications:

« Standardize naming conventions for bind variables and spacing conven-
tions for SQL statements and PL/SQL blocks.

« Use stored procedures whenever possible. Multiple users issuing the same
stored procedure automatically use the same shared PL/SQL area. Since
stored procedures are stored in a parsed form, they eliminate run-time pars-
ing altogether.

Using CURSOR_SPACE_FOR_TIME to Speed Access to Shared SQL Areas:

If you have no library cache misses, you may still be able to speed execution calls
by setting the value of the initialization parameter CURSOR_SPACE_FOR_TIME.
This parameter specifies whether a shared SQL area can be deallocated from the
library cache to make room for a new SQL statement.

« If the value of this parameter is FALSE (the default), a shared SQL area can be
deallocated from the library cache regardless of whether application cursors
associated with its SQL statement are open. In this case, Oracle must verify that
a shared SQL area containing the SQL statement is in the library cache.

« If the value of this parameter is TRUE, a shared SQL area can be deallocated
only when all application cursors associated with its statement are closed. In
this case, Oracle need not verify that a shared SQL area is in the cache, because
the shared SQL area can never be deallocated while an application cursor asso-
ciated with it is open.

Setting the value of the parameter to TRUE saves Oracle a small amount of time
and may slightly improve the performance of execution calls. This value also pre-
vents the deallocation of private SQL areas until associated application cursors are
closed.

Do not set the value of CURSOR_SPACE_FOR_TIME to TRUE if you have found
library cache misses on execution calls. Such library cache misses indicate that the
shared pool is not large enough to hold the shared SQL areas of all concurrently
open cursors. If the value is TRUE and the shared pool has no space for a new SQL
statement, the statement cannot be parsed and Oracle returns an error saying that
there is no more shared memory. If the value is FALSE and there is no space for a

Tuning Memory Allocation 14-17

Tuning the Shared Pool

new statement, Oracle deallocates an existing shared SQL area. Although deallocat-
ing a shared SQL area results in a library cache miss later, it is preferable to an error
halting your application because a SQL statement cannot be parsed.

Do not set the value of CURSOR_SPACE_FOR_TIME to TRUE if the amount of
memory available to each user for private SQL areas is scarce. This value also pre-
vents the deallocation of private SQL areas associated with open cursors. If the pri-
vate SQL areas for all concurrently open cursors fills the user’s available memory
so that there is no space to allocate a private SQL area for a new SQL statement, the
statement cannot be parsed and Oracle returns an error indicating that there is not
enough memory.

Caching Session Cursors

If an application repeatedly issues parse calls on the same set of SQL statements,
the reopening of the session cursors can affect system performance. Session cursors
can be stored in a session cursor cache. This feature can be particularly useful for
applications designed using Oracle Forms, because switching from one form to
another closes all session cursors associated with the first form.

Oracle uses the shared SQL area to determine whether more than three parse
requests have been issued on a given statement. If so, Oracle assumes the session
cursor associated with the statement should be cached and moves the cursor into
the session cursor cache. Subsequent requests to parse that SQL statement by the
same session will then find the cursor in the session cursor cache.

To enable caching of session cursors, you must set the initialization parameter
SESSION_CACHED_CURSORS. The value of this parameter is a positive integer
specifying the maximum number of session cursors kept in the cache. A least
recently used (LRU) algorithm ages out entries in the session cursor cache to make
room for new entries when needed.

You can also enable the session cursor cache dynamically with the statement
ALTER SESSION SET SESSION_CACHED_CURSORS.

To determine whether the session cursor cache is sufficiently large for your
instance, you can examine the session statistic “session cursor cache hits” in the
V$SESSTAT view. This statistic counts the number of times a parse call found a cur-
sor in the session cursor cache. If this statistic is a relatively low percentage of the
total parse call count for the session, you should consider setting
SESSION_CACHED_CURSORS to a larger value.

14-18 Oracle8 Tuning

Tuning the Shared Pool

Tuning the Data Dictionary Cache

This section describes how to monitor data dictionary cache activity and reduce
misses.

Monitoring Data Dictionary Cache Activity

Determine whether misses on the data dictionary cache are affecting the perfor-
mance of Oracle. You can examine cache activity by querying the VS ROWCACHE
table as described in the following sections.

Misses on the data dictionary cache are to be expected in some cases. Upon
instance startup, the data dictionary cache contains no data, so any SQL statement
issued is likely to result in cache misses. As more data is read into the cache, the
likelihood of cache misses should decrease. Eventually the database should reach a
“steady state” in which the most frequently used dictionary data is in the cache. At
this point, very few cache misses should occur. To tune the cache, examine its activ-
ity only after your application has been running.

The VEROWCACHE View Statistics reflecting data dictionary activity are kept in the
dynamic performance table VEROWCACHE. By default, this table is available only
to the user SYS and to users granted SELECT ANY TABLE system privilege, such
as SYSTEM.

Each row in this table contains statistics for a single type of the data dictionary
item. These statistics reflect all data dictionary activity since the most recent
instance startup. These columns in the VEROWCACHE table reflect the use and
effectiveness of the data dictionary cache:

PARAMETER Identifies a particular data dictionary item. For each row, the
value in this column is the item prefixed by dc_. For exam-
ple, in the row that contains statistics for file descriptions,
this column has the value dc_files.

GETS Shows the total number of requests for information on the
corresponding item. For example, in the row that contains
statistics for file descriptions, this column has the total num-
ber of requests for file descriptions data.

GETMISSES Shows the number of data requests resulting in cache misses.

Tuning Memory Allocation 14-19

Tuning the Shared Pool

Querying the VSROWCACHE Table Use the following query to monitor the statistics in
the VSROWCACHE table over a period of time while your application is running:

SELECT SUM(gets) "Data Dictionary Gets",
SUM(getmisses) "Data Dictionary Cache Get Misses"
FROM v$rowcache;

The output of this query might look like this:

Data Dictionary Gets Data Dictionary Cache Get Misses

1439044 3120

Interpreting the VEROWCACHE Table Examining the data returned by the sample
guery leads to these observations:

« The sum of the GETS column indicates that there were a total of 1,439,044
requests for dictionary data.

« The sum of the GETMISSES column indicates that 3120 of the requests for dic-
tionary data resulted in cache misses.

« The ratio of the sums of GETMISSES to GETS is about 0.2%.

Reducing Data Dictionary Cache Misses

Examine cache activity by monitoring the sums of the GETS and GETMISSES col-
umns. For frequently accessed dictionary caches, the ratio of total GETMISSES to
total GETS should be less than 10% or 15%. If the ratio continues to increase above
this threshold while your application is running, you should consider increasing
the amount of memory available to the data dictionary cache. To increase the mem-
ory available to the cache, increase the value of the initialization parameter
SHARED_POOL_SIZE. The maximum value for this parameter depends on your
operating system.

Tuning the Shared Pool with the Multithreaded Server

In the multithreaded server architecture, Oracle stores session information in the
shared pool rather than in the memory of user processes. Session information
includes private SQL areas. If you are using the multithreaded server architecture,
you may need to make your shared pool larger to accommodate session informa-
tion. You can increase the size of the shared pool by increasing the value of the
SHARED_POOL_SIZE initialization parameter. This section discusses measuring
the size of session information by querying the dynamic performance table
V$SESSTAT.

14-20 Oracle8 Tuning

Tuning the Shared Pool

With very high numbers of connected users, the only way to reduce memory usage
to an acceptable level may be to go to three-tier connections. This by-product of
using a TP monitor is feasible only with a pure transactional model, because no
locks or uncommitted DML can be held between calls. Oracle’s multithreaded
server (MTS) is much less restrictive of the application design than a TP monitor. It
dramatically reduces operating system process count, because it normally requires
only 5 threads per CPU. It still requires a minimum of about 300K bytes of context
per connected user.

The V$SESSTAT Table

Oracle collects statistics on total memory used by a session and stores them in the
dynamic performance table V$SESSTAT. By default, this table is available only to
the user SYS and to users granted SELECT ANY TABLE system privilege, such as
SYSTEM. These statistics are useful for measuring session memory use:

session uga memory The value of this statistic is the amount of memory in
bytes allocated to the session.

session uga memory The value of this statistic is the maximum amount of
max memory in bytes ever allocated to the session.

To find the value, query V$STATNAME as described in "Technique 3" on page 14-8.

Querying the VSSESSTAT Table

You can use this query to decide how much larger to make the shared pool if you
are using a multithreaded server. Issue these queries while your application is run-
ning:

SELECT SUM(value) || bytes' "Total memory for all sessions”
FROM v$sesstat, véstatname
WHERE name ='session uga memory’
AND v$sesstat statistict = v@statname . statistic;
SELECT SUM(value) || bytes’'"Total max mem for all sessions"
FROM v$sesstat, véstatname
WHERE name =session uga memory max'
AND v$sesstat statistict = véstatname.statistict;

These queries also select from the dynamic performance table V$STATNAME to

obtain internal identifiers for session memory and max session memory. The results of
these queries might look like this:

Tuning Memory Allocation 14-21

Tuning the Shared Pool

Total memory for all sessions
157125 bytes
Total max mem for all sessions

417381 bytes

Interpreting the VESESSTAT Table

The result of the first query indicates that the memory currently allocated to all ses-
sions is 157,125 bytes. This value is the total memory whose location depends on
how the sessions are connected to Oracle. If the sessions are connected to dedicated
server processes, this memory is part of the memories of the user processes. If the
sessions are connected to shared server processes, this memory is part of the shared
pool.

The result of the second query indicates the sum of the maximum sizes of the mem-
ories for all sessions is 417,381 bytes. The second result is greater than the first,
because some sessions have deallocated memory since allocating their maximum
amounts.

You can use the result of either of these queries to determine how much larger to
make the shared pool if you use a multithreaded server. The first value is likely to
be a better estimate than the second unless nearly all sessions are likely to reach
their maximum allocations at the same time.

Tuning Reserved Space from the Shared Pool

On busy systems the database may have difficulty finding a contiguous piece of
memory to satisfy a large request for memory. This search may disrupt the behav-
ior of the shared pool, leading to fragmentation and thus affecting performance.

The DBA can reserve memory within the shared pool to satisfy large allocations
during operations such as PL/SQL compilation and trigger compilation. Smaller
objects will not fragment the reserved list, helping to ensure that the reserved list
will have large contiguous chunks of memory. Once the memory allocated from the
reserved list is freed, it returns to the reserved list.

14-22 Oracle8 Tuning

Tuning the Shared Pool

Reserved List Tuning Parameters

The size of the reserved list, as well as the minimum size of the objects that can be
allocated from the reserved list are controlled by two initialization parameters:

SHARED_POOL_RESERVED _ Controls the amount of SHARED_POOL_SIZE

SIZE reserved for large allocations. The fixed view
V$SHARED_POOL_RESERVED helps you
tune these parameters. Begin this tuning only
after performing all other shared pool tuning
on the system.

SHARED_ POOL_RESERVED _ Controls allocation for the reserved memory.

MIN_ALLOC To create a reserved list,
SHARED_POOL_RESERVED_SIZE must be
greater than
SHARED_POOL_RESERVED_MIN_ALLOC.
Only allocations larger than
SHARED_POOL_RESERVED_POOL_MIN_
ALLOC can allocate space from the reserved
list if a chunk of memory of sufficient size is
not found on the shared pool’s free lists. The
default value of
SHARED_POOL_RESERVED_MIN_ALLOC
should be adequate for most systems.

Controlling Space Reclamation of the Shared Pool

The ABORTED_REQUEST_THRESHOLD procedure, in the package
DBMS_SHARED_POOL, lets you limit the size of allocations allowed to flush the
shared pool if the free lists cannot satisfy the request size. The database incremen-
tally flushes unused objects from the shared pool until there is sufficient memory to
satisfy the allocation request. In most cases, this frees enough memory for the allo-
cation to complete successfully. If the database flushes all objects currently not in
use on the system without finding a large enough piece of contiguous memory, an
error occurs. Flushing all objects, however, affects other users on the system as well
as system performance. The ABORTED_REQUEST_THRESHOLD procedure
allows the DBA to localize the error to the process that could not allocate memory.

Tuning Memory Allocation 14-23

Tuning the Shared Pool

Initial Parameter Values

Set the initial value of SHARED_POOL_RESERVED_SIZE to 10% of the
SHARED_POOL_SIZE. For most systems, this value should be sufficient, if you
have already done some tuning of the shared pool. The default value for
SHARED_POOL_RESERVED_MIN_ALLOC is usually adequate. If you increase
this value, then the database will allow fewer allocations from the reserved list and
will request more memory from the shared pool list.

Ideally, you should make SHARED POOL_RESERVED_SIZE large enough to sat-
isfy any request for memory on the reserved list without flushing objects from the
shared pool. The amount of operating system memory, however, may constrain the
size of the SGA. Making the SHARED_POOL_RESERVED_SIZE large enough to
satisfy any request for memory is, therefore, not a feasible goal.

Statistics from the VSSHARED_POOL_RESERVED view can help you tune these
parameters. On a system with ample free memory to increase the SGA, the goal is
to have REQUEST_MISSES = 0. If the system is constrained for OS memory, the
goal is as follows:

« REQUEST_FAILURES =0 or not increasing
« LAST_FAILURE_SIZE > SHARED_POOL_RESERVED_MIN_ALLOC
« AVG_FREE_SIZE >SHARED POOL_RESERVED_MIN_ALLOC

If neither the second nor the third of these goals is met, increase
SHARED_POOL_RESERVED_SIZE. Also increase SHARED_POOL_SIZE by the
same amount, because the reserved list is taken from the shared pool.

See Also: Oracle8 Reference for details on setting the LARGE_POOL_SIZE and
LARGE_POOL_MIN_ALLOC parameters

SHARED POOL_ RESERVED_SIZE Too Small
The reserved pool is too small when:

« REQUEST_FAILURES >0 (and increasing)

and at least one of the following is true:

« LAST_FAILURE_SIZE > SHARED_POOL_RESERVED_MIN_ALLOC
. MAX_FREE_SIZE < SHARED_POOL_RESERVED_MIN_ALLOC

« FREE_SPACE < SHARED_POOL_RESERVED_MIN_ALLOC

14-24 Oracle8 Tuning

Tuning the Shared Pool

You have two options, depending on SGA size constraints:

« Increase SHARED POOL_RESERVED_SIZE and SHARED_POOL_SIZE
accordingly.

« Increase SHARED POOL_RESERVED MIN_ALLOC (but you may need to
increase SHARED_ POOL_SIZE).

The first option increases the amount of memory available on the reserved list with-
out having an impact on users not allocating memory from the reserved list. The
second options reduces the number of allocations allowed to use memory from the
reserved list; doing so, however, increases the normal shared pool, which may have
an impact on other users on the system.

SHARED_POOL_RESERVED_SIZE Too Large
Too much memory may have been allocated to the reserved list if:

« REQUEST_MISS =0 or not increasing

« FREE_MEMORY = >50% of SHARED_POOL_RESERVED_SIZE minimum
You have two options:

. Decrease SHARED POOL_RESERVED SIZE.

« Decrease SHARED POOL_RESERVED_MIN_ALLOC (if not the default value).

SHARED_POOL_SIZE Too Small

The V$SHARED_POOL_RESERVED fixed table can also indicate when
SHARED_POOL_SIZE is too small. This may be the case if:

» REQUEST_FAILURES >0 and increasing

« LAST FAILURE_SIZE <SHARED POOL_RESERVED MIN_ALLOC
Then you have two options, if you have enabled the reserved list:

« Decrease SHARED POOL_RESERVED SIZE.

« Decrease SHARED_POOL_RESERVED_MIN_ALLOC (if set larger than the
default).

If you have not enabled the reserved list, you could:
« Increase SHARED_POOL_SIZE.

Tuning Memory Allocation 14-25

Tuning the Buffer Cache

Tuning the Buffer Cache

You can use or bypass the Oracle buffer cache for particular operations. Note that
Oracle bypasses the buffer cache for sorting and parallel reads. For operations that
do use the buffer cache, this section explains:

« Evaluating Buffer Cache Activity by Means of the Cache Hit Ratio
« Raising Cache Hit Ratio by Reducing Buffer Cache Misses
« Removing Unnecessary Buffers when Cache Hit Ratio Is High

After tuning private SQL and PL/SQL areas and the shared pool, you can devote
the remaining available memory to the buffer cache. It may be necessary to repeat
the steps of memory allocation after the initial pass through the process. Subse-
guent passes allow you to make adjustments in earlier steps based on changes in
later steps. For example, if you increase the size of the buffer cache, you may need
to allocate more memory to Oracle to avoid paging and swapping.

Evaluating Buffer Cache Activity by Means of the Cache Hit Ratio

Physical 1/0 takes significant time (typically in excess of 15 msec) and also
increases the CPU resource required, owing to the path length in device drivers
and operating system event schedulers. Your goal is to reduce this overhead as far
as possible by making it more likely that the required block will be in memory. The
extent to which you achieve this is measured using the cache hit ratio. Within Ora-
cle this term applies specifically to the database buffer cache.

Calculating the Cache Hit Ratio

Oracle collects statistics that reflect data access and stores them in the dynamic per-
formance table V$SYSSTAT. By default, this table is available only to the user SYS
and to users (such as SYSTEM) who have been granted SELECT ANY TABLE sys-
tem privilege. Information in the V$SYSSTAT table can also be obtained through
the Simple Network Management Protocol (SNMP).

These statistics are useful for tuning the buffer cache:

db block gets, The sum of the values of these statistics is the total number of
consistent gets requests for data. This value includes requests satisfied by
access to buffers in memory.

physical reads The value of this statistic is the total number of requests for
data resulting in access to datafiles on disk.

14-26 Oracle8 Tuning

Tuning the Buffer Cache

Monitor these statistics as follows over a period of time while your application is
running:

SELECT name, value

FROM v$sysstat
WHERE name IN (db block gets’, ‘consistent gets’,

‘physical reads);

The output of this query might look like this:

NAME VALUE
db block gets 85792
consistent gets 278888
physical reads 23182

Calculate the hit ratio for the buffer cache with this formula:
Hit Ratio = 1 - (physical reads / (db block gets + consistent gets))

Based on the statistics obtained by the example query, the buffer cache hit ratio is
94%.

Evaluating the Cache Hit Ratio

When looking at the cache hit ratio, bear in mind that blocks encountered during a
“long” full table scan are not put at the head of the LRU list; therefore repeated
scanning will not cause the blocks to be cached.

Repeated scanning of the same large table is rarely the most efficient approach. It
may be better to perform all of the processing in a single pass, even if this means
that the overnight batch suite can no longer be implemented as a SQL*Plus script
which contains no PL/SQL. The solution therefore lies at the design or implementa-
tion level.

Note: The CACHE_SIZE_ THRESHOLD parameter sets the maximum size of a
table to be cached, in blocks; it is equal to one tenth of DB_BLOCK_BUFFERS. On a
per-table basis, this parameter enables you to determine which tables should and
should not be cached.

Production sites running with thousands or tens of thousands of buffers rarely use
memory effectively. In any large database running an OLTP application, in any
given unit of time, most rows will be accessed either one or zero times. On this
basis there is little point in keeping the row (or the block that contains it) in mem-
ory for very long following its use.

Tuning Memory Allocation 14-27

Tuning the Buffer Cache

Finally, the relationship between cache hit ratio and number of buffers is far from a
smooth distribution. When tuning the buffer pool, avoid the use of additional buff-
ers that contribute little or nothing to the cache hit ratio. As illustrated in the follow-
ing figure, only narrow bands of values of DB_BLOCK_BUFFERS are worth
considering. The effect is not completely intuitive.

Figure 14-2 Buffer Pool Cache Hit Ratio

Phys 1/0O Ratio

Buffers

Actual ...

Intuitive

Attention: A common mistake is to continue increasing the value of
DB _BLOCK_BUFFERS. Such increases will make no difference at all if you are
doing full table scans and other operations that do not even use the buffer pool.

As a rule of thumb, increase DB_BLOCK_BUFFERS while:

« cache hit ratio is less than 0.9

« there is no evidence of undue page faulting

the previous increase of DB_BLOCK_BUFFERS was effective

14-28 Oracle8 Tuning

Tuning the Buffer Cache

Determining Which Buffers Are in the Pool

The CATPARR.SQL script creates the view V$BH, which shows the file number
and block number of blocks that currently reside within the SGA. Although CAT-
PARR.SQL is primarily intended for use in parallel server environments, you can
run it as SYS even if the instance is always started in exclusive mode.

Perform a query like the following:

SELECT file#, COUNT(block#), COUNT (DISTINCT fike# || block#)
FROM V$BH
GROUP BY fiett

Raising Cache Hit Ratio by Reducing Buffer Cache Misses

If your hit ratio is low, perhaps less than 60% or 70%, then you may want to
increase the number of buffers in the cache to improve performance. To make the
buffer cache larger, increase the value of the initialization parameter
DB_BLOCK_BUFFERS.

Oracle can collect statistics that estimate the performance gain that would result
from increasing the size of your buffer cache. With these statistics, you can estimate
how many buffers to add to your cache.

The VSRECENT_BUCKET View

The virtual table VSRECENT_BUCKET contains statistics that estimate the perfor-
mance of a larger cache. Each row in the table reflects the relative performance
value of adding a buffer to the cache. This table can only be accessed only by the
user SYS. The following are the columns of the VSRECENT_BUCKET view

ROWNUM The value of this column is one less than the number of buffers that
would potentially be added to the cache.

COUNT The value of this column is the number of additional cache hits that
would be obtained by adding buffer number ROWNUM-+1 to the
cache.

For example, in the first row of the table, the ROWNUM value is 0 and the COUNT
value is the number of cache hits to be gained by adding the first additional buffer
to the cache. In the second row, the ROWNUM value is 1 and the COUNT value is
the number of cache hits for the second additional buffer.

Note: The GV$CURRENT_BUCKET and GV$RECENT_BUCKET views provide
the instance identifier (INST_ID) along with the count. If necessary, you can infer

Tuning Memory Allocation 14-29

Tuning the Buffer Cache

the INDX value: the nth entry for a particular instance would reflect index n for
that instance.

Enabling the VSRECENT_BUCKET View

The collection of statistics in the VSRECENT_BUCKET view is controlled by the ini-
tialization parameter DB_BLOCK_LRU_EXTENDED_STATISTICS. The value of
this parameter determines the number of rows in the VSRECENT_BUCKET view.
The default value of this parameter is 0, which means the default behavior is not to
collect statistics.

To enable the collection of statistics in the VSRECENT_BUCKET view, set the value
of DB_BLOCK_LRU_EXTENDED_STATISTICS. For example, if you set the value of
the parameter to 100, Oracle will collect 100 rows of statistics, each row reflecting
the addition of one buffer, up to 100 extra buffers.

Collecting these statistics incurs some performance overhead, which is propor-
tional to the number of rows in the table. To avoid this overhead, collect statistics
only when you are tuning the buffer cache; disable the collection of statistics when
you are finished tuning.

Querying the VSRECENT_BUCKET View

From the information in the VSRECENT_BUCKET view, you can predict the poten-
tial gains of increasing the cache size. For example, to determine how many more
cache hits would occur if you added 20 buffers to the cache, query the
V$RECENT_BUCKET view with the following SQL statement:

SELECT SUM(count) ach
FROM V$RECENT_BUCKET
WHERE ROWNUM < 20

You can also determine how these additional cache hits would affect the hit ratio.
Use the following formula to calculate the hit ratio based on the values of the statis-
tics db block gets, consistent gets, and physical reads and the number of additional
cache hits (ACH) returned by the query:

Hit Ratio = 1 - (physical reads - ACH 7 (db block gets + consistent gets))

14-30 Oracle8 Tuning

Tuning the Buffer Cache

Grouping Rows in the VSRECENT_BUCKET View

Another way to examine the VSRECENT_BUCKET view is to group the additional
buffers in large intervals. You can query the table with a SQL statement similar to
this:

SELECT 250*TRUNC(ROWNUM/250)+1]| to [[250*(TRUNC(ROWNUM/250)+1)
"Interval’, SUM(count) "Buffer Cache Hits”

FROM V$RECENT_BUCKET

GROUP BY TRUNC(ROWNUM/250);

The result of this query might look like this:
Interval Buffer Cache Hits

1t0250 16080

251t0500 10950

501to 750 710

751101000 23140

where:

Interval Is the interval of additional buffers to be added to the cache.

Buffer Cache Hits Is the number of additional cache hits to be gained by add-
ing the buffers in the INTERVAL column.

Tuning Memory Allocation 14-31

Tuning the Buffer Cache

Examining the query output leads to these observations:
« If 250 buffers were added to the cache, 16,080 cache hits would be gained.

« If 250 more buffers were added for a total of 500 additional buffers, 10,950
cache hits would be gained in addition to the 16,080 cache hits from the first
250 buffers. This means that adding 500 buffers would yield a total of 27,030
additional cache hits.

« |If 250 more buffers were added for a total of 750 additional buffers, 710 cache
hits would be gained, yielding a total of 27,740 additional cache hits.

« |If 250 buffers were added to the cache for a total of 1000 additional buffers,
23,140 cache hits would be gained, yielding a total of 50,880 additional cache
hits.

Based on these observations, decide how many buffers to add to the cache. In this
case, you may make these decisions:

« Itiswise to add 250 or 500 buffers, provided memory resources are available.
Both of these increments offer significant performance gains.

« Itis unwise to add 750 buffers. Nearly the entire performance gain made by
such an increase can be made by adding 500 buffers instead. Also, the memory
allocated to the additional 250 buffers may be better used by some other Oracle
memory structure.

« Itiswise to add 1000 buffers, provided memory resources are available. The
performance gain from adding 1000 buffers to the cache is significantly greater
than the gains from adding 250, 500, or 750 buffers.

Removing Unnecessary Buffers when Cache Hit Ratio Is High

If your hit ratio is high, your cache is probably large enough to hold your most fre-
guently accessed data. In this case, you may be able to reduce the cache size and
still maintain good performance. To make the buffer cache smaller, reduce the
value of the initialization parameter DB_BLOCK_BUFFERS. The minimum value
for this parameter is 4. You can apply any leftover memory to other Oracle memory
structures.

Oracle can collect statistics to predict buffer cache performance based on a smaller
cache size. Examining these statistics can help you determine how small you can
afford to make your buffer cache without adversely affecting performance.

14-32 Oracle8 Tuning

Tuning the Buffer Cache

The VSCURRENT_BUCKET View

The V$CURRENT_BUCKET view contains the statistics that estimate the perfor-
mance of a smaller cache. The V$CURRENT_ BUCKET view is similar in structure
to the VSRECENT_BUCKET view. This table can be accessed only by the user SYS.
The following are the columns of the VSCURRENT_BUCKET view:

ROWNUM The potential number of buffers in the cache.
COUNT The number of cache hits attributable to buffer number ROWNUM.

The number of rows in this table is equal to the number of buffers in your buffer
cache. Each row in the table reflects the number of cache hits attributed to a single
buffer. For example, in the second row, the ROWNUM value is 1 and the COUNT
value is the number of cache hits for the second buffer. In the third row, the
ROWNUM value is 2 and the COUNT value is the number of cache hits for the
third buffer.

The first row of the table contains special information. The ROWNUM value is 0
and the COUNT value is the total number of blocks moved into the first buffer in
the cache.

Enabling the VECURRENT_BUCKET View

The collection of statistics in the VSCURRENT_BUCKET view is controlled by the
initialization parameter DB_BLOCK_LRU_STATISTICS. The value of this parame-
ter determines whether Oracle collects the statistics. The default value for this
parameter is FALSE, which means that the default behavior is not to collect statis-
tics.

To enable the collection of statistics in the VSCURRENT_BUCKET view, set the
value of DB_BLOCK_LRU_STATISTICS to TRUE.

Collecting these statistics incurs some performance overhead. To minimize this
overhead, collect statistics only when you are tuning the buffer cache; disable the
collection of statistics when you are finished tuning.

Tuning Memory Allocation 14-33

Tuning the Buffer Cache

Querying the VSCURRENT_BUCKET View

From the information in the V$CURRENT_BUCKET view, you can predict the num-
ber of additional cache misses that would occur if the number of buffers in the
cache were reduced. If your buffer cache currently contains 100 buffers, you may
want to know how many more cache misses would occur if it had only 90. To deter-
mine the number of additional cache misses, query the VSCURRENT_BUCKET
view with the SQL statement:

SELECT SUM(count) acm
FROM V$CURRENT_BUCKET
WHERE ROWNUM >=90;

You can also determine the hit ratio based on this cache size. Use the following for-
mula to calculate the hit ratio based on the values of the statistics DB BLOCK
GETS, CONSISTENT GETS, and PHYSICAL READS and the number of additional
cache misses (ACM) returned by the query:

Hit Ratio = 1 - (physical reads + ACM / (db block gets + consistent gets))

Another way to examine the VSCURRENT_BUCKET view is to group the buffers
in intervals. For example, if your cache contains 100 buffers, you may want to
divide the cache into four 25-buffer intervals. You can query the table with a SQL
statement similar to this one:

SELECT 25 TRUNC(ROWNUM/25)+1|[to '|25*(TRUNC(ROWNUM/25)+1)
"Interval”, SUM(count) "Buffer Cache Hits"

FROM VSCURRENT_BUCKET

WHERE ROWNUM >0 GROUP BY TRUNC(ROWNUM/25);

Note that the WHERE clause prevents the query from collecting statistics from the
first row of the table. The result of this query might look like

Interval Buffer Cache Hits

1t025 1900

26t050 1100

51to75 1360

7610100 230

where:

INTERVAL Is the interval of buffers in the cache.

BUFFER CACHE HITS Is the number of cache hits attributable to the buffers
in the INTERVAL column.

14-34 Oracle8 Tuning

Tuning the Buffer Cache

Examining the query output leads to these observations:

The last 25 buffers in the cache (buffers 76 to 100) contribute 230 cache hits. If
the cache were reduced in size by 25 buffers, 230 cache hits would be lost.

The third 25-buffer interval (buffers 51 to 75) contributes 1,360 cache hits. If

these buffers were removed from the cache, 1,360 cache hits would be lost in
addition to the 230 cache hits lost for buffers 76 to 100. Removing 50 buffers
would result in losing a total of 1,590 cache hits.

The second 25-buffer interval (buffers 26 to 50) contributes 1,100 cache hits.
Removing 75 buffers from the cache would result in losing a total of 2,690
cache hits.

The first 25 buffers in the cache (buffers 1 to 25) contribute 1,900 cache hits.

Based on these observations, decide whether to reduce the size of the cache. In this
case, you may make these decisions:

If memory is scarce, it may be wise to remove 25 buffers from the cache. The
buffers 76 to 100 contribute relatively few cache hits compared to the total
cache hits contributed by the entire cache. Removing 25 buffers will not signifi-
cantly reduce cache performance, and the leftover memory may be better used
by other Oracle memory structures.

It is unwise to remove more than 25 buffers from the cache. For example,
removing 50 buffers would reduce cache performance significantly. The cache
hits contributed by these buffers is a significant portion of the total.

Tuning Memory Allocation 14-35

Tuning Multiple Buffer Pools

Tuning Multiple Buffer Pools

This section covers:

14-36 Oracle8 Tuning

Overview of the Multiple Buffer Pool Feature

When to Use Multiple Buffer Pools

Tuning the Buffer Cache Using Multiple Buffer Pools
Enabling Multiple Buffer Pools

Using Multiple Buffer Pools

Dictionary Views Showing Default Buffer Pools
How to Size Each Buffer Pool

How to Recognize and Eliminate LRU Latch Contention

Tuning Multiple Buffer Pools

Overview of the Multiple Buffer Pool Feature

Schema objects are referenced with varying usage patterns; therefore, their cache
behavior may be quite different. Multiple buffer pools enable you to address these
differences. You can use a “keep” buffer pool to maintain an object in the buffer
cache, and a “recycle” buffer pool to prevent an object from taking up unnecessary
space in the cache. When an object is allocated to a cache, all blocks from that object
are placed in that cache. Oracle maintains a default cache for objects that have not
been assigned to one of the buffer pools.

Each buffer pool in Oracle8 comprises a number of working sets. A different num-
ber of sets can be allocated for each buffer pool. All sets use the same LRU replace-
ment policy. A strict LRU aging policy provides very good hit rates in most cases,
but you can sometimes improve the hit rate by providing some hints.

The main problem with the LRU list occurs when a very large segment is accessed
frequently in a random fashion. Here, “very large” means large compared to the
size of the cache. Any single segment that accounts for a substantial portion (more
than 10%) of nonsequential physical reads is probably one of these segments. Ran-
dom reads to such a large segment can cause buffers that contain data for other seg-
ments to be aged out of the cache. The large segment ends up consuming a large
percentage of the cache, but does not benefit from the cache.

Very frequently accessed segments are not affected by large segment reads, because
their buffers are warmed frequently enough that they do not age out of the cache.
The main trouble occurs with “warm” segments that are not accessed frequently
enough to survive the buffer flushing caused by the large segment reads.

You have two options for solving this problem. One is to move the large segment
into a separate “recycle” cache so that it does not disturb the other segments. The
recycle cache should be smaller than the default cache and should reuse buffers
more quickly than the default cache.

The other approach is to move the small warm segments into a separate “keep”
cache that is not used at all for large segments. The keep cache can be sized to mini-
mize misses in the cache. You can make the response times for specific queries
more predictable by putting the segments accessed by the queries in the keep cache
to ensure that they are never aged out.

Tuning Memory Allocation 14-37

Tuning Multiple Buffer Pools

When to Use Multiple Buffer Pools

When you examine system I/0 performance, you should analyze the schema and
determine whether or not multiple buffer pools would be advantageous. Consider
a keep cache if there are small, frequently accessed tables that require quick
response time. Very large tables with random 1/0 are good candidates for a recycle
cache.

Use the following steps to determine the percentage of the cache used by an indi-
vidual object at a given point in time:

1.

Find the Oracle internal object number of the segment by entering:
SELECT data._object id, object_type FROM user_objects
WHERE object_name ='<segment_name>',

Since two objects can have the same name (if they are different types of object),
you can use the OBJECT_TYPE column to identify the object of interest. If the
object is owned by another user, then use the view DBA_OBJECTS or
ALL_OBIJECTS instead of USER_OBJECTS.

Find the number of buffers in the buffer cache for segment_name:
SELECT count(*) buffers FROM x$bh WHERE obj = <data_object id>;

where data_object_id is from Step 1.

Find the total number of buffers in the instance:
SELECT value "total buffers" FROM v@parameter

WHERE name ='db_block_buffers’;

Calculate the ratio of buffers to total buffers, to obtain the percentage of the
cache currently used by segment_name.

buffers (Step 2)

% cache used by segment_name =
’ Y Y s - total buffers (Step 3)

Note: This technique works only for a single segment; for a partitioned object,
the query must be run for each partition.

If the number of local block gets equals the number of physical reads for statements
involving such objects, consider employing a recycle cache because of the limited
usefulness of the buffer cache for the objects.

14-38 Oracle8 Tuning

Tuning Multiple Buffer Pools

Tuning the Buffer Cache Using Multiple Buffer Pools

When you partition your buffer cache into multiple buffer pools, each buffer pool
can be used for blocks from objects that are accessed in different ways. If the blocks
of a particular object are likely to be reused, then you should keep that object in the
buffer cache so that the next use of the block will not require another disk 170 oper-
ation. Conversely, if a block probably will not be reused within a reasonable period
of time, there is no reason to keep it in the cache; the block should be discarded to
make room for a more popular block.

By properly allocating objects to appropriate buffer pools, you can:
« reduce or eliminate 1/0s
« isolate an object in the cache

« restrict or limit an object to a part of the cache

Enabling Multiple Buffer Pools
You can create multiple buffer pools for each database instance. The same set of
buffer pools need not be defined for each instance of the database. Between
instances a buffer pool may be different sizes or not defined at all. Each instance
should be tuned separately.

Defining New Buffer Pools

You can define each buffer pool using the BUFFER_POOL_name initialization
parameter. You can specify two attributes for each buffer pool: the number of buff-
ers in the buffer pool and the number of LRU latches allocated to the buffer pool.

The initialization parameters used to define buffer pools are:

BUFFER_POOL_KEEP Defines the keep buffer pool.
BUFFER_POOL_RECYCLE Defines the RECYCLE buffer pool.
DB BLOCK BUFFERS Defines the number of buffers for the database

instance. Each individual buffer pool is created
from this total amount with the remainder allo-
cated to the default buffer pool.

DB BLOCK LRU_LATCHES Defines the number of LRU latches for the
entire database instance.Each buffer pool
defined takes from this total in a fashion simi-
lar to DB_BLOCK_BUFFERS.

Tuning Memory Allocation 14-39

Tuning Multiple Buffer Pools

For example:

BUFFER_POOL KEEP=(buffers:400, Ir_latches:3")
BUFFER_POOL RECYCLE=(ouffers:50, Inu_latches:1")

The size of each buffer pool is subtracted from the total number of buffers defined
for the entire buffer cache (that is, the value of the DB_BLOCK_BUFFERS parame-
ter). The aggregate number of buffers in all of the buffer pools cannot, therefore,
exceed this value. Likewise, the number of LRU latches allocated to each buffer
pool is taken from the total number allocated to the instance by the
DB_BLOCK_LRU_LATCHES parameter. If either constraint is violated then an
error occurs and the database is not mounted.

The minimum number of buffers that you must allocate to each buffer pool is 50
times the number of LRU latches. For example, a buffer pool with 3 LRU latches
must have at least 150 buffers.

Oracle8 defines three buffer pools: KEEP, RECYCLE, and DEFAULT. The default
buffer pool always exists. It is equivalent to the single buffer cache in Oracle7. You
do not explicitly define the size of the default buffer pool and number of working
sets assigned to the default buffer pool. Rather, each value is inferred from the total
number allocated minus the number allocated to every other buffer pool. There is
no requirement that any buffer pool be defined for another buffer pool to be used.

Using Multiple Buffer Pools

This section describes how to establish a default buffer pool for an object. All
blocks for the object will go in the specified buffer pool.

The BUFFER_POOL clause is used to define the default buffer pool for an object.
This clause is valid for CREATE and ALTER table, cluster, and index DDL state-
ments. The buffer pool name is case insensitive. The blocks from an object without
an explicitly set buffer pool go into the DEFAULT buffer pool.

If a buffer pool is defined for a partitioned table or index then each partition of the
object inherits the buffer pool from the table or index definition unless overridden
with a specific buffer pool.

When the default buffer pool of an object is changed using the ALTER statement,
all buffers that currently contain blocks of the altered segment remain in the buffer
pool they were in before the ALTER statement. Newly loaded blocks and any
blocks that have aged out and are reloaded will go into the new buffer pool.

14-40 Oracle8 Tuning

Tuning Multiple Buffer Pools

The syntax is: BUFFER_POOL { KEEP | RECYCLE | DEFAULT }

For example,

BUFFER_POOL KEEP

or

BUFFER_POOL RECYCLE

The following DDL statements accept the buffer pool clause:

CREATE TABLE table name ... STORAGE (buffer_pool_clause)

A buffer pool is not permitted for a clustered table. The buffer pool for a clus-
tered table is specified at the cluster level.

For an index-organized table, a buffer pool can be defined on both the index
and the overflow segment.

For a partitioned table, a buffer pool can be defined on each partition. The
buffer pool is specified as a part of the storage clause for each partition.

For example:

CREATE TABLE table_name (col_1 number, col_2 number)

PARTITION BY RANGE (col_1)

(PARTITION ONE VALUES LESS THAN (10)

STORAGE (INITIAL 10k BUFFER_POOL RECYCLE),

PARTITION TWO VALUES LESS THAN (20) STORAGE (BUFFER_POOL KEEP));
CREATE INDEX index name ... STORAGE (buffer_pool_clause)

For a global or local partitioned index, a buffer pool can be defined on each par-
tition.

CREATE CLUSTER cluster_name...STORAGE (buffer_pool_clause)
ALTER TABLE table_name ... STORAGE (buffer_pool_clause)

A buffer pool can be defined during a simple alter table as well as modify parti-
tion, move partition, add partition, and split partition (for both new partitions).

ALTER INDEX index_name ... STORAGE (buffer_pool_clause)

A buffer pool can be defined during a simple alter index as well as rebuild,
modify partition, split partition (for both new partitions), and rebuild partition.

ALTER CLUSTER cluster_name ... STORAGE (buffer_pool_clause)

Tuning Memory Allocation 14-41

Tuning Multiple Buffer Pools

Dictionary Views Showing Default Buffer Pools

The following dictionary views have a BUFFER POOL column, which indicates the
default buffer pool for the given object.

USER_CLUSTERS ALL_CLUSTERS DBA_CLUSTERS
USER_INDEXES ALL_INDEXES DBA_INDEXES
USER_SEGMENTS DBA_SEGMENTS

USER_TABLES USER_OBJECT_TABLES USER_ALL_TABLES
ALL_TABLES ALL_OBJECT_TABLES ALL_ALL_TABLES
DBA_TABLES DBA_OBJECT_TABLES DBA_ALL_TABLES
USER_PART_TABLES ALL_PART_TABLES DBA_PART_TABLES
USER_PART_INDEXES ALL_PART_INDEXES DBA_PART_INDEXES
USER_TAB_PARTITIONS ALL_TAB_PARTITIONS DBA_TAB_PARTITIONS
USER_IND_PARTITIONS ALL_IND_PARTITIONS DBA_IND_PARTITIONS

The views V$BUFFER_POOL_STATISTICS and GV$BUFFER_POOL_STATISTICS
describe the buffer pools allocated on the local instance and entire database, respec-
tively. To create these views you must run the CATPERF.SQL file.

How to Size Each Buffer Pool

This section explains how to size the keep and recycle buffer pools.

Keep Buffer Pool

The goal of the keep buffer pool is to retain objects in memory, thus avoiding 1/0
operations. The size of the keep buffer pool therefore depends on the objects that
you wish to keep in the buffer cache. You can compute an approximate size for the
keep buffer pool by adding together the sizes of all objects dedicated to this pool.
Use the ANALYZE command to obtain the size of each object. Although the ESTI-
MATE option provides a rough measurement of sizes, the COMPUTE STATISTICS
option is preferable because it provides the most accurate value possible.

The buffer pool hit ratio can be determined using the formula:

physical reads

hit ratio=1 - -
(block gets + consistent gets)

14-42 Oracle8 Tuning

Tuning Multiple Buffer Pools

where the values of physical reads, block gets, and consistent gets can be obtained
for the keep buffer pool from the following query:

SELECT PHYSICAL READS, BLOCK_GETS, CONSISTENT_GETS
FROM V$BUFFER_POOL_STATISTICS WHERE NAME ='KEEP”;

The keep buffer pool will have a 100% hit ratio only after the buffers have been
loaded into the buffer pool. Therefore, do not compute the hit ratio until after the
system has been running for a while and has achieved steady-state performance.
Calculate the hit ratio by taking two snapshots of system performance using the
above query and using the delta values of physical reads, block gets, and consistent
gets.

Keep in mind that a 100% buffer pool hit ratio may not be necessary. Often you can
decrease the size of your keep buffer pool by quite a bit and still maintain a suffi-
ciently high hit ratio. Those blocks can be allocated to other buffer pools.

Note: If an object grows in size, then it may no longer fit in the keep buffer pool.
You will begin to lose blocks out of the cache.

Remember, each object kept in memory results in a trade-off: it is beneficial to keep
frequently accessed blocks in the cache, but retaining infrequently used blocks
results in less space being available for other, more active blocks.

Recycle Buffer Pool

The goal of the recycle buffer pool is to eliminate blocks from memory as soon as
they are no longer needed. If an application accesses the blocks of a very large
object in a random fashion then there is little chance of reusing a block stored in the
buffer pool before it is aged out. This is true regardless of the size of the buffer pool
(given the constraint of the amount of available physical memory). Because of this,
the object’s blocks should not be cached; those cache buffers can be allocated to
other objects.

Be careful, however, not to discard blocks from memory too quickly. If the buffer
pool is too small then it is possible for a block to age out of the cache before the
transaction or SQL statement has completed execution. For example, an application
may select a value from a table, use the value to process some data, and then
update the tuple. If the block is removed from the cache after the select statement
then it must be read from disk again to perform the update. The block needs to be
retained for the duration of the user transaction.

By executing statements with a SQL statement tuning tool such as Oracle Trace or
with the SQL trace facility enabled and running TKPROF on the trace files, you can
get a listing of the total number of data blocks physically read from disk. (This is

Tuning Memory Allocation 14-43

Tuning Multiple Buffer Pools

given in the “disk” column in the TKPROF output.) The number of disk reads for a
particular SQL statement should not exceed the number of disk reads of the same
SQL statement with all objects allocated from the default buffer pool.

Two other statistics can tell you whether the recycle buffer pool is too small. If the
“free buffer waits” statistic ever becomes high then the pool is probably too small.
Likewise, the number of “log file sync” wait events will increase. One way to size
the recycle buffer pool is to run the system with the recycle buffer pool disabled. At
steady state the number of buffers in the default buffer pool that are being con-
sumed by segments that would normally go in the recycle buffer pool can be
divided by four. That number can be used to size the recycle cache.

Identifying Segments to Put into the Keep and Recycle Buffer Pools

A good candidate for a segment to put into the recycle buffer pool is a segment that
is at least twice the size of the default buffer pool and has incurred at least a few
percent of the total 1/0s in the system.

A good candidate for a segment to put into the keep pool is a segment that is
smaller than 10% of the size of the default buffer pool and has incurred at least 1%
of the total 1/0s in the system.

The trouble with these rules is that it can sometimes be difficult to determine the
number of 1/0s per segment if a tablespace has more than one segment. One way
to solve this problem is to sample the 1/0s that occur over a period of time by
selecting from V$SESSION_WAIT to determine a statistical distribution of 1/0s per
segment.

Another option is to look at the positions of the blocks of a segment in the buffer
cache. In particular the ratio of the count of blocks for a segment in the hot half of
the cache to the count in the cold half for the same segment can give a good indica-
tion of which segments are hot and which are cold. If the ratio for a segment is
close to 1, then buffers for that segment are not frequently heated and the segment
may be a good candidate for the recycle cache. If the ratio is high (perhaps 3) then
buffers are frequently heated and the segment might be a good candidate for the
keep cache.

14-44 Oracle8 Tuning

Tuning Multiple Buffer Pools

How to Recognize and Eliminate LRU Latch Contention

LRU latches regulate the least recently used (LRU) buffer lists used by the buffer
cache. If there is latch contention then processes are waiting and spinning before
obtaining the latch.

You can set the overall number of latches in the database instance using the

DB BLOCK_ LRU_LATCHES parameter. When each buffer pool is defined, a num-
ber of these LRU latches can be reserved for the buffer pool. The buffers of a buffer
pool are divided evenly between the LRU latches of the buffer pool.

To determine whether your system is experiencing latch contention, begin by deter-
mining whether there is LRU latch contention for any individual latch.

SELECT child#, sleeps/ gets ratio
FROM VS$LATCH CHILDREN
WHERE name =cache buffers Iru chair’;

The miss ratio for each LRU latch should be less than 1%. A ratio above 1% for any
particular latch is indicative of LRU latch contention and should be addressed. You
can determine the buffer pool to which the latch is associated as follows:

SELECT name FROM V$BUFFER_POOL_STATISTICS

WHERE lo_setid<= chid_latch_number

AND hi_setid >= chid latch_number ;

where child_latch_number is the child# from the previous query.

You can alleviate LRU latch contention by increasing the overall number of latches
in the system and also the number of latches allocated to the buffer pool indicated
in the second query.

The maximum number of latches allowed is the lower of
number_of cpus*2*3

and

number_of_buffers / 50

This is because no set can have fewer than 50 buffers. If you specify a value larger
than the maximum, then the number of latches is automatically reset to the largest
value allowed by the formula.

For example, if the number of CPUs is 4 and the number of buffers is 200, then a
maximum of 4 latches would be allowed (minimum of 4*2*3, 200/50). If the num-
ber of CPUs is 4 and number of buffers is 10000,then the maximum number of
latches allowed is 24 (minimum of 4*2*3, 10000/50).

Tuning Memory Allocation 14-45

Tuning Sort Areas

Tuning Sort Areas

If large sorts occur frequently, consider increasing the value of the parameter
SORT_AREA_SIZE with either or both of two goals in mind:

« toincrease the number of sorts that can be conducted entirely within memory
« tospeed up those sorts that cannot be conducted entirely within memory

Large sort areas can be used effectively if you combine a large SORT_AREA_SIZE
with a minimal SORT_AREA_RETAINED_SIZE. If memory is not released until the
user disconnects from the database, large sort work areas could cause problems.
The SORT_AREA_RETAINED_SIZE parameter lets you specify the level down to
which memory should be released as soon as possible following the sort. Set this
parameter to zero if large sort areas are being used in a system with many simulta-
neous users.

Note that SORT_AREA_RETAINED_SIZE is maintained for each sort operation in
a query. Thus if 4 tables are being sorted for a sort merge, Oracle maintains 4 areas
of SORT_AREA _RETAINED_SIZE.

See Also: “Chapter 19, “Tuning Parallel Execution”

Reallocating Memory

After resizing your Oracle memory structures, reevaluate the performance of the
library cache, the data dictionary cache, and the buffer cache. If you have reduced
the memory consumption of any one of these structures, you may want to allocate
more memory to another structure. For example, if you have reduced the size of
your buffer cache, you may now want to take advantage of the additional available
memory by using it for the library cache.

Tune your operating system again. Resizing Oracle memory structures may have
changed Oracle memory requirements. In particular, be sure paging and swapping
are not excessive. For example, if the size of the data dictionary cache or the buffer
cache has increased, the SGA may be too large to fit into main memory. In this case,
the SGA could be paged or swapped.

While reallocating memory, you may determine that the optimum size of Oracle
memory structures requires more memory than your operating system can pro-
vide. In this case, you may improve performance even further by adding more
memory to your computer.

14-46 Oracle8 Tuning

Reducing Total Memory Usage

Reducing Total Memory Usage

If the overriding performance problem is that the server simply does not have
enough memory to run the application as currently configured, and the application
is logically a single application (that is, it cannot readily be segmented or distrib-
uted across multiple servers), then only two possible solutions exist:

« Increase the amount of memory available.
« Decrease the amount of memory used.

The most dramatic reductions in server memory usage always come from reducing
the number of database connections, which in turn can resolve issues relating to the
number of open network sockets and the number of operating system processes.
However in order to reduce the number of connections without reducing the num-
ber of users, the connections that remain must be shared. This forces the user pro-
cesses to adhere to a paradigm in which every (request) message sent to the
database describes a complete or atomic transaction.

Writing applications to conform to this model is not necessarily either restrictive or
difficult, but it is most certainly different. Conversion of an existing application,
such as an Oracle Forms suite, to conform is not normally possible without a com-
plete rewrite.

The Oracle multithreaded server (MTS) represents a compromise solution that is
highly effective at reducing the number of operating system processes on the
server, but less effective in reducing the overall memory requirement. Use of the
MTS has no effect on the number of network connections.

Shared connections are possible in an Oracle Forms environment by using an inter-
mediate server that is also a client, and using the dbms_pipe mechanism to trans-
mit atomic requests from the user’s individual connection on the intermediate
server to a shared daemon in the intermediate server. This in turn owns a connec-
tion to the central server.

Tuning Memory Allocation 14-47

Reducing Total Memory Usage

14-48 Oracle8 Tuning

15

Tuning 1/O

This chapter explains how to avoid 170 bottlenecks that could prevent Oracle from
performing at its maximum potential. It covers the following topics:

Understanding 1/0 Problems

How to Detect 1/0 Problems

How to Solve 1/0 Problems

Reducing Disk Contention by Distributing 1/0
Striping Disks

Avoiding Dynamic Space Management
Tuning Sorts

Tuning Checkpoints

Tuning LGWR and DBWn 1/0

Configuring the Large Pool

Tuning /0 15-1

Understanding I/0 Problems

Understanding 1/O Problems

This section introduces 170 performance issues. It covers:
« Tuning I70: Top Down and Bottom Up

« Analyzing 1/0 Requirements

« Planning File Storage

« Choosing Data Block Size

« Evaluating Device Bandwidth

The performance of many software applications is inherently limited by disk input/
output (170). Often, CPU activity must be suspended while 1/0 activity completes.
Such an application is said to be “I/0 bound”. Oracle is designed so that perfor-
mance need not be limited by 1/0.

Tuning 170 can enhance performance if a disk containing database files is operat-
ing at its capacity. However, tuning 170 cannot help performance in “CPU bound”
cases—or cases in which your computer’s CPUs are operating at their capacity.

It is important to tune 1/0 after following the recommendations presented in
Chapter 14, “Tuning Memory Allocation”. That chapter explains how to allocate
memory so as to reduce 1/0 to a minimum. After reaching this minimum, follow
the instructions in this chapter to perform the necessary 170 as efficiently as possi-
ble.

Tuning 1/0: Top Down and Bottom Up

When designing a hew system, you should analyze 1/0 needs from the top down,
determining what resources you will require in order to achieve the desired perfor-
mance.

For an existing system, you should approach |70 tuning from the bottom up:
1. Determine the number of disks on the system.

2. Determine the number of disks that are being used by Oracle.

3. Determine the type of 1/0s that your system performs.

4. Ascertain whether the 1/0s are going to the file system or to raw devices.
5

Determine how to spread objects over multiple disks, using either manual strip-
ing or striping software.

6. Calculate the level of performance you can expect.

15-2 Oracle8 Tuning

Understanding I/0 Problems

Analyzing I/0 Requirements
This section explains how to determine your system’s 1/0 requirements.

1.

Calculate the total throughput your application will require.

Begin by figuring out the number of reads and writes involved in each transac-
tion, and distinguish the objects against which each operation is performed.

In an OLTP application, for example, each transaction might involve:
« 1read from object A

« 1read from object B

« 1write to object C

One transaction in this example thus requires 2 reads and 1 write, all to differ-
ent objects.

Define the 1/0 performance target for this application by specifying the num-
ber of transactions per second (or “tps”) which the system must support.

In this example, the designer might specify that 100 tps would constitute an
acceptable level of performance. To achieve this, the system must be able to per-
form 300 1/0s per second:

« 100 reads from object A

« 100 reads from object B

« 100 writes to object C

Determine the number of disks needed to achieve this performance.

To do this, ascertain the number of 1/0s that each disk can perform per second.
This will depend on three factors:

« speed of your particular disk hardware
« Whether the I1/0s needed are reads or writes

« whether you are using the file system or raw devices

Tuning /0 15-3

Understanding I/0 Problems

In general, disk speed tends to have the following characteristics:

Table 15-1 Relative Disk Speed

Disk Speed: File System Raw Devices
Reads per second fast slow
Writes per second slow fast

Table 15-2 Disk I/O Analysis Worksheet

Lay out in a table like this the relative speed per operation of your disks:

Disk Speed:

File System

Raw Devices

Reads per second

Writes per second

The disks in the current example have the following characteristics:

Table 15-3 Sample Disk I/O Analysis

Disk Speed: File System Raw Devices
Reads per second 50 45
Writes per second 20 50
4. Figure the number of disks needed to achieve your I/0 performance target.

Table 15-4 Disk I/O Requirements Worksheet

Use a table like this:

If Stored on File System f Stored on Raw Devices

R/W Disk R/IW R/W Disk R/IW

Needed Capabil. Disks Needed Capabil. Disks
Object per Sec. | per Sec. Needed per Sec. per Sec. Needed
A
B
Cc
Disks
Reqgd

15-4 Oracle8 Tuning

Understanding I/0 Problems

Table 15-5 shows the values from this example.

Table 15-5 Sample Disk I/O Requirements

If Stored on File System f Stored on Raw Devices
R/W Disk R/W R/W Disk R/W
Needed Capabil. Disks Needed Capabil. Disks
Object per Sec. | per Sec. Needed per Sec. per Sec. Needed
A 100 50 reads 2 disks 100 reads | 45 reads 2 disks
reads
B 100 50 reads 2 disks 100 reads | 45 reads 2 disks
reads
C 100 20 writes 5 disks 100 50 writes 2 disks
writes writes
Disks 9 disks 6 disks
Reqgd

Planning File Storage

This section explains how to determine whether your application will run best on
the disks you have available, if you store the data on raw devices, block devices, or
directly on the file system.

Design Approach
Use the following approach to design file storage:

1. Identify the operations required by your application.

2. Test the performance of your system’s disks for the different operations
required by your application.

3. Finally, evaluate what kind of disk layout will give you the best performance
for the operations that predominate in your application.

Tuning I/0 15-5

Understanding I/0 Problems

Identifying the Required Read/Write Operations

Evaluate your application to determine how often it requires each type of 1/0 oper-
ation. Table 15-6 shows the types of read and write operations performed by each
of the background processes, by foreground processes, and by parallel query slaves.

Table 15-6 Read/Write Operations Performed by Oracle Processes

Process
Fore- PQ

Operation LGWR DBWn ARCH SMON PMON CKPT ground Slave
Sequential X X X X X
Read
Sequential X X X
Write
Random Read X X
Random Write X

In this discussion, a sample application might involve 50% random reads, 25%
sequential reads, and 25% random writes.

Testing the Performance of Your Disks

This section illustrates relative performance of read/write operations by a particu-
lar test system. On raw devices, reads and writes are done on the character level; on
block devices, these operations are done on the block level. (Note also that many
concurrent processes may generate overhead due to head and arm movement of
the disk drives.)

Attention: The figures provided in this example do not constitute a rule of thumb.
They were generated by an actual UNIX-based test system using particular disks.
These figures will differ significantly for different platforms and different disks! To make
accurate judgments, you must test your own system using an approach like the one
demonstrated in this section. Alternatively, contact your system vendor for informa-
tion on relative disk performance for the different operations.

15-6 Oracle8 Tuning

Understanding I/0 Problems

Table 15-7 and Figure 15-1 show speed of sequential read in milliseconds per 170,
for each of the three disk layout options on a test system.

Table 15-7 Block Size and Speed of Sequential Read (Sample Data)

Speed of Sequential Read on:

Block Size Raw Device Block Device UNIX File System
512 bytes 14 0.6 0.4
1K 14 0.6 0.3
2K 15 11 0.6
4K 16 1.8 1.0
8K 2.7 3.0 15
16K 51 5.3 3.7
32K 10.1 10.3 8.1
64K 20.0 20.3 18.0
128K 40.4 41.3 36.1
256K 80.7 80.3 61.3

Doing research like this helps you pick the right stripe size. In this example, it takes
at most 5.3 milliseconds to read 16 K. If your data were in chunks of 256 K, you
could stripe the data over 16 disks (as described on page 15 - 23) and maintain this
low read time. By contrast, if all the data were on one disk, read time would be 80
milliseconds. Thus the test results show that on this particular set of disks, things
look quite different from what might be expected: it is sometimes beneficial to have

a smaller stripe size, depending on the size of the I/0.

Tuning I/0 15-7

Understanding I/0 Problems

Figure 15-1 Block Size and Speed of Sequential Read (Sample Data)

Miliseconds

512 1K 2K 4K 8K 16K 32K 64K 128K 256K

Block Size (bytes)

B Raw Devices
[Block Devices
M urs

15-8 Oracle8 Tuning

Understanding I/0 Problems

Table 15-8 and Figure 15-2 show speed of sequential write in milliseconds per 170,

for each of the three disk layout options on the test system.

Table 15-8 Block Size and Speed of Sequential Write (Sample Data)

Speed of Sequential Write on

Block Size Raw Device Block Device UNIX File System
512 bytes 11.2 11.8 17.9
1K 11.7 11.9 18.3
2K 11.6 13.0 19.0
4K 12.3 13.8 19.8
8K 135 13.8 21.8
16K 16.0 27.8 35.3
32K 19.3 55.6 62.2
64K 315 1111 1151
128K 62.5 224.5 221.8
256K 115.6 446.1 429.0

Tuning /0 15-9

Understanding I/0 Problems

Figure 15-2 Block Size and Speed of Sequential Write (Sample Data)

180

160 [~

140 [~

120 —

100

80

60

40

N
o

Miliseconds

o

512 1K 2K 4K 8K 16K 32K 64K 128K 256K
Block Size (bytes)

B Rraw Devices
[Block Devices
M UFs

15-10 Oracle8 Tuning

Understanding I/0 Problems

Table 15-9 and Figure 15-3 show speed of random read in milliseconds per 1/0, for

each of the three disk layout options on the test system.

Table 15-9 Block Size and Speed of Random Read (Sample Data)

Speed of Random Read on

Block Size Raw Device Block Device UNIX File System
512 bytes 12.3 13.8 155
1K 12.0 14.3 141
2K 134 13.7 15.0
4K 13.9 14.1 15.3
8K 154 86.9 14.4
16K 19.1 86.1 39.7
32K 25.7 88.8 39.9
64K 38.1 106.4 40.2
128K 64.3 128.2 62.2
256K 115.7 176.1 91.2

Tuning I/0 15-11

Understanding 1/0 Problems

Figure 15-3 Block Size and Speed of Random Read (Sample Data)

450

400

350

300

250

200

150

100

a
o

Miliseconds

o

512 1K 2K 4K 8K 16K 32K 64K 128K 256K

Block Size (bytes)
B Raw Devices

[Block Devices
M UFs

15-12 Oracle8 Tuning

Understanding I/0 Problems

Table 15-10 and Figure 15-4 show speed of random write in milliseconds per 1/0,

for each of the three disk layout options on the test system.

Table 15-10 Block Size and Speed of Random Write (Sample Data)

Speed of Random Write on

Block Size Raw Device Block Device UNIX File System
512 bytes 12.3 25.2 40.7
1K 12.0 245 41.4
2K 12.6 256 41.6
4K 13.8 25.0 41.4
8K 14.8 155 32.8
16K 17.7 30.7 45.6
32K 24.8 59.8 71.6
64K 38.0 118.7 123.8
128K 74.4 235.9 230.3
256K 137.4 471.0 441.5

Tuning I/O 15-13

Understanding 1/0 Problems

Figure 15-4 Block Size and Speed of Random Write (Sample Data)

450

400

350

300

250

200

150

100

50

Miliseconds

512 1K 2 K 4K 8K 16K 32K 64K 128K 256K
Block Size (bytes)

M Raw Devices
[Block Devices
M urs

15-14 Oracle8 Tuning

Understanding I/0 Problems

Evaluate Disk Layout Options

Knowing the types of operation that predominate in your application and the
speed with which your system can process the corresponding 1/0s, you can
choose the disk layout that will maximize performance.

For example, with the sample application and test system described previously, the
UNIX file system would be a good choice. With random reads predominating (50%
of all I/0 operations), 8K would be a good block size. Raw devices and UNIX file
system provide comparable performance of random reads at this block size. Fur-
thermore, the UNIX file system in this example processes sequential reads (25% of
all 170 operations) almost twice as fast as raw devices, given an 8K block size.

Attention: Figures shown in the preceding example will differ significantly on different
platforms, and with different disks! To plan effectively you must test I/0 performance
on your own system!

Choosing Data Block Size

Table data in the database is stored in data blocks. This section describes how to
allocate space within data blocks for best performance. With single block 170 (ran-
dom read), for best performance you want to get all the desired data from a single
block in one read. How you store the data determines whether or not this perfor-
mance objective will be achieved. It depends on two factors: storage of the rows,
and block size.

The operating system 1/0 size should be equal to or greater than the database
block size. Sequential read performance will improve if operating system 1/0 size
is twice or three times the database block size (as in the example in "Testing the Per-
formance of Your Disks" on page 15-6). This assumes that the operating system can
buffer the 170 so that the next block will be read from that particular buffer.

Figure 15-5 illustrates the suitability of various block sizes to online transaction pro-
cessing (OLTP) or decision support (DSS) applications.

Figure 15-5 Block Size and Application Type

o —
N —
~—
[ee]

16 32 64

OLTP <« P DSS

Tuning I/O 15-15

Understanding I/0 Problems

See Also: Your Oracle platform-specific documentation for information on the mini-
mum and maximum block size on your platform.

Block Size Advantages and Disadvantages
This section describes advantages and disadvantages of different block sizes.

Table 15-11 Block Size Advantages and Disadvantages

Block Size Advantages Disadvantages
Small (2K-4K) Reduces block contention. Has relatively large overhead.
Good for small rows, or lots of random You may end up storing only a small
access. number of rows, depending on the size of
the row.
Medium (8K) If rows are of medium size, you can bring Space in the buffer cache will be wasted if

Large (16K-32K)

a number of rows into the buffer cache
with a single I70. With 2K or 4K block
size, you may only bring in a single row.

There is relatively less overhead, thus
more room to store useful data.

Good for sequential access, or very large
rows.

you are doing random access to small
rows and have a large block size. For
example, with an 8K block size and 50B
row size, you would be wasting 7,950B in
the buffer cache when doing random
access.

Large block size is not good for index
blocks used in an OLTP type environ-
ment, because they increase block conten-
tion on the index leaf blocks.

Evaluating Device Bandwidth

The number of 1/0s a disk can perform depends on whether the operations

involve reading or writing to objects stored on raw devices or on the file system.
This affects the number of disks you must use to achieve the desired level of perfor-
mance.

15-16

Oracle8 Tuning

How to Detect I/0 Problems

How to Detect I/O Problems

If you suspect a problem with 170 usage, you must evaluate two areas:
« Checking System I/0 Utilization
« Checking Oracle 1/0 Utilization

Oracle compiles file 1/0 statistics that reflect disk access to database files. Note,
however, that these statistics report only the 1/0 utilization of Oracle sessions—yet
every process running on your system affects the available 1/0 resources. Tuning
non-Oracle factors can thus result in better Oracle performance.

Checking System I/0 Utilization

Use operating system monitoring tools to determine what processes are running on
the system as a whole, and to monitor disk access to all files. Remember that disks
holding datafiles and redo log files may also hold files that are not related to Ora-
cle. Try to reduce any heavy access to disks that contain database files. Access to
non-Oracle files can be monitored only through operating system facilities rather
than through the V$FILESTAT table.

Tools such as sar -d on many UNIX systems enable you to examine the iostat 1/0
statistics for your entire system. (Some UNIX-based platforms have an iostat com-
mand.) On NT systems, use Performance Monitor.

Attention: For information on other platforms, please check your operating system
documentation.

See Also: Oracle platform-specific documentation.

Tuning I/O 15-17

How to Detect I/0 Problems

Checking Oracle 1/O Utilization

This section identifies the views and processes that provide Oracle 1/0 statistics,
and shows how to check statistics using VSFILESTAT.

Which Dynamic Performance Tables Contain I/O Statistics

Table 15-12 shows dynamic performance tables to check for 1/0 statistics relating
to Oracle database files, log files, archive files, and control files.

Table 15-12 Where to Find Statistics about Oracle Files

File Type Where to Find Statistics

Database Files VS$FILESTAT

Log Files V$SYSSTAT, V$SYSTEM_EVENT, V$SESSION_EVENT
Archive Files V$SYSTEM_EVENT, V$SESSION_EVENT

Control Files V$SYSTEM_EVENT, V$SESSION_EVENT

Which Processes Reflect Oracle File I/0

Table 15-13 lists processes whose statistics reflect 1/0 throughput for the different
Oracle file types.

Table 15-13 File Throughput Statistics for Oracle Processes

Process
Fore- PQ
File LGWR DBWn ARCH SMON PMON CKPT ground Slave
Database Files X X X X X X
Log Files X
Archive Files
Control Files X X X X X X X

V$SYSTEM_EVENT, for example, shows the total number of 1/0s and average
duration, by type of I/0. You can thus determine which types of 1/0 are too slow.
If there are Oracle-related 1/0 problems, tune them. But if your process is not con-
suming the available 1/0 resources, then some other process is. Go back to the sys-
tem to identify the process that is using up so much 1/0, and determine why. See if
you can tune this process.

15-18 Oracle8 Tuning

How to Detect I/0 Problems

Note: Different types of 170 in Oracle require different tuning approaches. Tuning
1/0 for data warehousing applications that perform large sequential reads is differ-
ent from tuning 170 for OLTP applications that perform random reads and writes.
See also "Planning File Storage" on page 15-5.

How to Check Oracle Datafile 1/0 with V$FILESTAT

Examine disk access to database files through the dynamic performance table
VS$FILESTAT. This view shows the following information for database 1/0 (but not
for log file 170):

= humber of physical reads and writes
« number of blocks read and written
« total 170 time for reads and writes

By default, this table is available only to the user SYS and to users granted SELECT
ANY TABLE system privilege, such as SYSTEM. The following column values
reflect the number of disk accesses for each datafile:

PHYRDS The number of reads from each database file.
PHYWRTS The number of writes to each database file.

Use the following query to monitor these values over some period of time while
your application is running:

SELECT name, phyrds, phywrts
FROM vadatafile df, vfilestat fs
WHERE dffilett = fsfile#;

This query also retrieves the name of each datafile from the dynamic performance
table V$DATAFILE. Sample output might look like this:

NAME PHYRDS PHYWRTS
Joraclefora70/dbs/ora_system.dbf 7679 2735
Joraclefora70/dbs/ora_temp.dbf 32 546

The PHYRDS and PHYWRTS columns of V$FILESTAT can also be obtained
through SNMP.

The total 1/0 for a single disk is the sum of PHYRDS and PHYWRTS for all the
database files managed by the Oracle instance on that disk. Determine this value
for each of your disks. Also determine the rate at which 170 occurs for each disk by

Tuning I/O 15-19

How to Solve 1/0 Problems

dividing the total 170 by the interval of time over which the statistics were col-

lected.

How to Solve I/O Problems

The rest of this chapter describes various techniques of solving 1/0 problems:

15-20 Oracle8 Tuning

Reducing Disk Contention by Distributing I/0
Striping Disks

Avoiding Dynamic Space Management
Tuning Sorts

Tuning Checkpoints

Tuning LGWR and DBWn I/0

Configuring the Large Pool

Reducing Disk Contention by Distributing 1/0

Reducing Disk Contention by Distributing I/0

This section describes how to reduce disk contention.
« What Is Disk Contention?

« Separating Datafiles and Redo Log Files

« Striping Table Data

« Separating Tables and Indexes

« Reducing Disk 1/0 Unrelated to Oracle

What Is Disk Contention?

Disk contention occurs when multiple processes try to access the same disk simulta-
neously. Most disks have limits on both the number of accesses and the amount of
data they can transfer per second. When these limits are reached, processes may
have to wait to access the disk.

In general, consider the statistics in the V$FILESTAT table and your operating sys-
tem facilities. Consult your hardware documentation to determine the limits on the
capacity of your disks. Any disks operating at or near full capacity are potential
sites for disk contention. For example, 40 or more 1/0s per second is excessive for
most disks on VMS or UNIX operating systems.

To reduce the activity on an overloaded disk, move one or more of its heavily
accessed files to a less active disk. Apply this principle to each of your disks until
they all have roughly the same amount of 1/0. This is referred to as distributing 1/0O.

Separating Datafiles and Redo Log Files

Oracle processes constantly access datafiles and redo log files. If these files are on
common disks, there is potential for disk contention. Place each datafile on a sepa-
rate disk. Multiple processes can then access different files concurrently without
disk contention.

Place each set of redo log files on a separate disk with no other activity. Redo log
files are written by the Log Writer process (LGWR) when a transaction is commit-
ted. Information in a redo log file is written sequentially. This sequential writing
can take place much faster if there is no concurrent activity on the same disk. Dedi-
cating a separate disk to redo log files usually ensures that LGWR runs smoothly
with no further tuning attention. Performance bottlenecks related to LGWR are
rare. For information on tuning LGWR, see the section "Detecting Contention for
Redo Log Buffer Latches" on page 18-13.

Tuning I/0 15-21

Reducing Disk Contention by Distributing I/O

Note: Mirroring redo log files, or maintaining multiple copies of each redo log file
on separate disks, does not slow LGWR considerably. LGWR writes to each disk in
parallel and waits until each part of the parallel write is complete. Since the time
required for your operating system to perform a single-disk write may vary;,
increasing the number of copies increases the likelihood that one of the single-disk
writes in the parallel write will take longer than average. A parallel write will not
take longer than the longest possible single-disk write. There may also be some
overhead associated with parallel writes on your operating system.

Dedicating separate disks and mirroring redo log files are important safety precau-
tions. Dedicating separate disks to datafiles and redo log files ensures that the data-
files and the redo log files cannot both be lost in a single disk failure. Mirroring
redo log files ensures that a redo log file cannot be lost in a single disk failure.

Striping Table Data
Striping, or spreading a large table’s data across separate datafiles on separate
disks, can also help to reduce contention. This strategy is fully discussed in the sec-
tion "Striping Disks" on page 15-23.

Separating Tables and Indexes
It is not necessary to separate a frequently used table from its index. During the
course of a transaction, the index is read first, and then the table is read. Because
these 1/0s occur sequentially, the table and index can be stored on the same disk
without contention.

Reducing Disk 1/0 Unrelated to Oracle

If possible, eliminate 1/0 unrelated to Oracle on disks that contain database files.
This measure is especially helpful in optimizing access to redo log files. Not only
does this reduce disk contention, it also allows you to monitor all activity on such
disks through the dynamic performance table V$FILESTAT.

15-22 Oracle8 Tuning

Striping Disks

Striping Disks
This section describes:
« What Is Striping?
« 1/0 Balancing and Striping
« How to Stripe Disks Manually
« How to Stripe Disks with Operating System Software
« How to Do Hardware Striping with RAID

What Is Striping?

“Striping” is the practice of dividing a large table’s data into small portions and
storing these portions in separate datafiles on separate disks. This permits multiple
processes to access different portions of the table concurrently without disk conten-
tion. Striping is particularly helpful in optimizing random access to tables with
many rows. Striping can either be done manually (described below), or through
operating system striping utilities.

/O Balancing and Striping

Benchmark tuners in the past tried hard to ensure that the 1/0 load was evenly bal-
anced across the available devices. Currently, operating systems are providing the
ability to stripe a heavily used container file across many physical devices. How-
ever, such techniques are productive only where the load redistribution eliminates
or reduces some form of queue.

If /0 queues exist or are suspected, then load distribution across the available
devices is a natural tuning step. Where larger numbers of physical drives are avail-
able, consider dedicating two drives to carrying redo logs (two because redo logs
should always be mirrored either by the operating system or using Oracle redo log
group features). Since redo logs are written serially, any drive dedicated to redo log
activity will normally require very little head movement. This will significantly
speed up log writing.

When archiving, it is beneficial to use extra disks so that LGWR and ARCH do not
compete for the same read/write head. This is achieved by placing logs on alternat-
ing drives.

Note that mirroring can also be a cause of 1/0 bottlenecks. The process of writing
to each mirror is normally done in parallel, and does not cause a bottleneck. How-
ever, if each mirror is striped differently, then the 1/0 is not completed until the

Tuning I/O 15-23

Striping Disks

slowest member is finished. To avoid 1/0 problems, striping should be done on the
same number of disks as the data itself.

For example, if you have 160K of data striped over 8 disks, but the data is mirrored
onto only one disk, then regardless of how quickly the data is processed on the 8
disks, the 170 is not completed until 160K has been written onto the mirror disk. It
might thus take 20.48 milliseconds to write the database, but 137 milliseconds to
write the mirror.

How to Stripe Disks

Manually

To stripe disks manually, you need to relate the object’s storage requirements to its
170 requirements.

1.

15-24 Oracle8 Tuning

Begin by evaluating the object’s disk storage requirements. You need to know
« the size of the object
« the size of the disk

For example, if the object requires 5G in Oracle storage space, you would need
one 5G disk or two 4G disks to accommodate it. On the other hand, if the sys-
tem is configured with 1G or 2G disks, the object may require 5 or 3 disks,
respectively.

Compare to this the application’s /0 requirements, as described in "Analyzing
170 Requirements" on page 15-3. You must take the larger of the storage
requirement and the 170 requirement.

For example, if the storage requirement is 5 disks (1G each), and the I/0
requirement is 2 disks, then your application requires the higher value: 5 disks.

Create a tablespace with the CREATE TABLESPACE command. Specify the
datafiles in the DATAFILE clause. Each of the files should be on a different disk.

CREATE TABLESPACE stripedtabspace
DATAFILE ‘fle_on_disk 1’ SIZE 1GB,
fle_on_disk 2 SIZE 1GB,
fle_on disk 3 SIZE 1GB,
file_on disk 4 SIZE 1GB,
fle_on disk 5 SIZE 1GB;

Then create the table with the CREATE TABLE command. Specify the newly
created tablespace in the TABLESPACE clause.

Also specify the size of the table extents in the STORAGE clause. Store each
extent in a separate datafile. The table extents should be slightly smaller than

Striping Disks

the datafiles in the tablespace to allow for overhead. For example, when prepar-
ing for datafiles of 1G (1024MB), you can set the table extents to be 1023MB:

CREATE TABLE stripeditab (
col 1 NUMBER(),
col 2 VARCHAR2(10))
TABLESPACE stipedtabspace
STORAGE (INITIAL 1023MB NEXT 1023VB
MINEXTENTS 5 PCTINCREASE 0);

(Alternatively, you can stripe a table by entering an ALTER TABLE ALLOCATE
EXTENT statement, with a DATAFILE ’size’ SIZE clause.)

These steps result in the creation of table STRIPEDTAB. STRIPEDTAB has 5 initial
extents, each of size 1023MB. Each extent takes up one of the datafiles named in the
DATAFILE clause of the CREATE TABLESPACE statement. Each of these files is on
a separate disk. The 5 extents are all allocated immediately, because MINEXTENTS
is 5.

See Also: Oracle8 SQL Reference for more information on MINEXTENTS and the
other storage parameters.

How to Stripe Disks with Operating System Software

An alternative to striping disks manually, you can use operating system striping
software, such as a logical volume manager (LVM), to stripe disks. With striping
software, the biggest concern is choosing the right stripe size. This depends on Ora-
cle block size and type of disk access.

Table 15-14 Minimum Stripe Size

Disk Access Minimum Stripe Size

Random reads and The minimum stripe size is twice the Oracle block size.
writes

Sequential reads The minimum stripe size is twice the value of

DB_FILE_MULTIBLOCK_READ_COUNT.

In striping, uniform access to the data is assumed. If the stripe size is too big you
can end up with a hot spot on one disk or on a small humber of disks. You can
avoid this problem by making the stripe size smaller, thus spreading the data over
more disks.

Tuning I/O0 15-25

Avoiding Dynamic Space Management

Consider an example in which 100 rows of fixed size are evenly distributed over 5
disks, with each disk containing 20 sequential rows. If access is needed only to
rows 35 through 55, then only 2 disks must handle all the 1/0. At this rate, the sys-
tem cannot achieve the desired level of performance.

You can correct this problem by spreading the rows of interest across more disks. In
the current example, if there were two rows per block, then we could place rows 35
and 36 on the same disk, and rows 37 and 38 on a different disk. Taking this
approach, we could spread the data of interest over all the disks and 170 through-
put would be much improved.

How to Do Hardware Striping with RAID

Redundant arrays of inexpensive disks (RAID) can offer significant advantages in
their failure resilience features. They also permit striping to be achieved quite eas-
ily, but do not appear to provide any significant performance advantage. In fact,
they may impose a higher cost in 1/0 overhead.

In some instances, performance can be improved by not using the full features of
RAID technology. In other cases, RAID technology’s resilience to single component
failure may justify its cost in terms of performance.

Avoiding Dynamic Space Management

When an object such as a table or rollback segment is created, space is allocated in
the database for the data. This space is called a segment. If subsequent database
operations cause the data to grow and exceed the space allocated, Oracle extends
the segment. Dynamic extension can reduce performance. This section discusses

» Detecting Dynamic Extension

« Allocating Extents

« Evaluating Unlimited Extents

« Evaluating Multiple Extents

« Avoiding Dynamic Space Management in Rollback Segments
« Reducing Migrated and Chained Rows

. Modifying the SQL.BSQ File

15-26 Oracle8 Tuning

Avoiding Dynamic Space Management

Detecting Dynamic Extension

Dynamic extension causes Oracle to execute SQL statements in addition to those
SQL statements issued by user processes. These SQL statements are called recursive
calls because Oracle issues these statements itself. Recursive calls are also generated
by these activities:

= misses on the data dictionary cache
« firing of database triggers
« execution of Data Definition Language statements

« execution of SQL statements within stored procedures, functions, packages,
and anonymous PL/SQL blocks

« enforcement of referential integrity constraints

Examine the RECURSIVE CALLS statistic through the dynamic performance table
V$SYSSTAT. By default, this table is available only to the user SYS and to users
granted the SELECT ANY TABLE system privilege, such as SYSTEM. Monitor this
statistic over some period of time while your application is running, with this
query:
SELECT name, value

FROM v$sysstat

WHERE name ='recursive calls’;

The output of this query might look like this:
NAME VALUE

recursive calls 626681

If Oracle continues to make excessive recursive calls while your application is run-
ning, determine whether these recursive calls are due to one of the activities that
generate recursive calls other than dynamic extension. If you determine that these
recursive calls are caused by dynamic extension, you should try to reduce this
extension by allocating larger extents.

Tuning I/O 15-27

Avoiding Dynamic Space Management

Allocating Extents
Follow these steps to avoid dynamic extension:

1. Determine the maximum size of your object. For formulas to estimate how
much space to allow for a table, see the Oracle8 Administrator’s Guide.

2. Choose storage parameter values so that Oracle allocates extents large enough
to accommodate all of your data when you create the object.

Larger extents tend to benefit performance for these reasons:

« Blocks in a single extent are contiguous, so one large extent is more contiguous
than multiple small extents. Oracle can read one large extent from disk with
fewer multiblock reads than would be required to read many small extents.

« Segments with larger extents are less likely to be extended.

However, since large extents require more contiguous blocks, Oracle may have diffi-
culty finding enough contiguous space to store them. To determine whether to allo-
cate few large extents or many small extents, consider the benefits and drawbacks
of each in light of your plans for the growth and use of your tables.

Automatically resizable datafiles can also cause a problem with dynamic extension.
Avoid using the automatic extension. Instead, manually allocate more space to a
datafile during times when the system is relatively inactive.

15-28 Oracle8 Tuning

Avoiding Dynamic Space Management

Evaluating Unlimited Extents

Even though an object may have unlimited extents, this does not mean that having
a large number of small extents is acceptable. For optimal performance you may
decide to reduce the number of extents.

Extent maps list all the extents for a particular segment. The number of extents per
Oracle block depends on operating system block size and platform. Although an
extent is a data structure inside Oracle, the size of this data structure depends on
the operating system. Accordingly, this affects the number of extents which can be
stored in a single operating system block. Typically, this value is as follows:

Table 15-15 Block Size and Maximum Number of Extents (Typical Values)

Block Size (K) Max. Number of Extents
2 121

4 255

8 504

16 1032

32 2070

For best performance, you should be able to read the extent map with a single 1/0.
Performance will degrade if multiple 1/0s are necessary for a full table scan to get
the extent map.

Furthermore, a large number of extents can degrade data dictionary performance.
Performance would suffer, for example, if you had 8,000 extents, and had to bring
them all into the dictionary cache.

Tuning I/O 15-29

Avoiding Dynamic Space Management

Evaluating Multiple Extents
This section explains various ramifications of the use of multiple extents.

You cannot put very large segments into single extents because of file size and file
system size limitations. When you enable segments to allocate new extents over
time, you can take advantage of faster, less expensive disks. Note also:

« For atable that is never full-table scanned, it makes no difference in terms of
guery performance whether the table has one extent or multiple extents.

« The performance of searches using an index is not affected by the index having
one extent or multiple extents.

« Using more than one extent in a table, cluster, or temporary segment does not
materially affect the performance of full scans on an operational multi-user sys-
tem.

« Using more than one extent in a table, cluster, or temporary segment does not
materially affect the performance of full scans on a dedicated single-user batch
processing system if the extents are properly sized, and if the application is
designed to avoid expensive DDL operations.

« If extent sizes are appropriately matched to the 1/0 size, the performance cost
of having many extents in a segment will be minimized.

« For rollback segments, many extents are preferable to few extents. Having
many extents reduces the number of recursive SQL calls to perform dynamic
extent allocations on the segments.

Avoiding Dynamic Space Management in Rollback Segments

The size of rollback segments can affect performance. Rollback segment size is
determined by the rollback segment’s storage parameter values. Your rollback seg-
ments must be large enough to hold the rollback entries for your transactions. As
with other objects, you should avoid dynamic space management in rollback seg-
ments.

Use the SET TRANSACTION command to assign transactions to rollback segments
of the appropriate size based on the recommendations in the following sections. If
you do not explicitly assign a transaction to a rollback segment, Oracle automati-
cally assigns it to a rollback segment.

For example, the following statement assigns the current transaction to the rollback
segment OLTP_13:

SET TRANSACTION USE ROLLBACK SEGMENT olp_13

15-30 Oracle8 Tuning

Avoiding Dynamic Space Management

Warning: If you are running multiple concurrent copies of the same application, be
careful not to assign the transactions for all copies to the same rollback segment.
This leads to contention for that rollback segment.

Also monitor the shrinking, or dynamic deallocation, of rollback segments based
on the OPTIMAL storage parameter. For information on choosing values for this
parameter, monitoring rollback segment shrinking, and adjusting OPTIMAL
accordingly, see Oracle8 Administrator’s Guide.

For Long Queries

Assign large rollback segments to transactions that modify data which is concur-
rently selected by long queries. Such queries may require access to rollback seg-
ments to reconstruct a read-consistent version of the modified data. The rollback
segments must be large enough to hold all the rollback entries for the data while
the query is running.

For Long Transactions

Assign large rollback segments to transactions that modify large amounts of data.
A large rollback segment can improve the performance of such a transaction. Such
transactions generate large rollback entries. If a rollback entry does not fit into a
rollback segment, Oracle extends the segment. Dynamic extension reduces perfor-
mance and should be avoided whenever possible.

For OLTP Transactions

OLTP applications are characterized by frequent concurrent transactions, each of
which modifies a small amount of data. Assign to OLTP transactions to small roll-
back segments, provided that their data is not concurrently queried. Small rollback
segments are more likely to remain stored in the buffer cache where they can be
accessed quickly. A typical OLTP rollback segment might have 2 extents, each
approximately 10 kilobytes in size. To best avoid contention, create many rollback
segments and assign each transaction to its own rollback segment.

Tuning I/O 15-31

Avoiding Dynamic Space Management

Reducing Migrated and Chained Rows

If an UPDATE statement increases the amount of data in a row so that the row no
longer fits in its data block, Oracle tries to find another block with enough free
space to hold the entire row. If such a block is available, Oracle moves the entire
row to the new block. This is called migrating a row. If the row is too large to fit into
any available block, Oracle splits the row into multiple pieces and stores each piece
in a separate block. This is called chaining a row. Rows can also be chained when
they are inserted.

Dynamic space management, especially migration and chaining, is detrimental to
performance:

« UPDATE statements that cause migration and chaining perform poorly.
« Queries that select migrated or chained rows must perform more 1/0.

You can identify migrated and chained rows in a table or cluster by using the ANA-
LYZE command with the LIST CHAINED ROWS option. This command collects
information about each migrated or chained row and places this information into a
specified output table. The definition of a sample output table named
CHAINED_ROWS appears in a SQL script available on your distribution medium.
The common name of this script is UTLCHAIN.SQL, although its exact name and
location may vary depending on your operating system. Your output table must
have the same column names, datatypes, and sizes as the CHAINED_ROWS table.

To reduce migrated and chained rows in an existing table, follow these steps:

1. Use the ANALYZE command to collect information about migrated and
chained rows. For example:

ANALYZE TABLE order_hist LIST CHAINED ROWS;

2. Query the output table:

SELECT*
FROM chained_rows
WHERE table_name ='ORDER_HIST,

OWNER_NAME TABLE NAME CLUST... HEAD_ROWID TIMESTAMP

SCOTT ORDER _HIST .. AAAAIVAAHAAAAATAAA 04-MAR-96
SCOTT ORDER _HIST .. AAAAIUAAHAAAAATAAB 04-MAR-96
SCOTT ORDER HIST .. AAAAIUAAHAAAAATIAAC 04-MAR-96

The output lists all rows that are either migrated or chained.

15-32 Oracle8 Tuning

Avoiding Dynamic Space Management

3.

If the output table shows that you have many migrated or chained rows, you
can eliminate migrated rows with the following steps:

a.

Create an intermediate table with the same columns as the existing table to
hold the migrated and chained rows:

CREATE TABLE int_order _hist
AS SELECT*
FROM order_hist
WHERE ROWID IN
(SELECT head _rowid
FROM chained_rows
WHERE table_name =’"ORDER_HIST);

Delete the migrated and chained rows from the existing table:

DELETE FROM order_hist
WHERE ROWID IN
(SELECT head _rowid
FROM chained_rows
WHERE table_name ='"ORDER_HIST);

Insert the rows of the intermediate table into the existing table:

INSERT INTO order_hist
SELECT*
FROMint_order_hist;
Drop the intermediate table:
DROP TABLE int_order_history;

Delete the information collected in step 1 from the output table:

DELETE FROM chained_rows
WHERE table_name ='"ORDER_HIST;

Use the ANALYZE command again and query the output table.

Any rows that appear in the output table are chained. You can eliminate
chained rows only by increasing your data block size. It may not be possible to
avoid chaining in all situations. Chaining is often unavoidable with tables that
have a LONG column or long CHAR or VARCHAR2 columns.

Retrieval of migrated rows is resource intensive; therefore, all tables subject to
UPDATE should have their distributed free space set to allow enough space within
the block for the likely update.

Tuning I/O 15-33

Avoiding Dynamic Space Management

You can detect migrated or chained rows by checking the “table fetch continued
row” statistic in V$SYSSTAT. Increase PCTFREE to avoid migrated rows. If you
leave more free space available in the block, the row will have room to grow. You
can also reorganize (re-create) tables and indexes with a high deletion rate.

Note: PCTUSED is not the opposite of PCTFREE; it concerns space management.

See Also: Oracle8 Concepts for more information.

Modifying the SQL.BSQ File

The SQL.BSQ file is run when you issue the CREATE DATABASE statement. This
file contains the actual table definitions that make up the Oracle Server. The views
that you use as a DBA are based on these tables. Oracle Corporation recommends
that users strictly limit their modifications to SQL.BSQ.

« If necessary, you can increase the value of the following storage parameters:
INITIAL, NEXT, MINEXTENTS, MAXEXTENTS, PCTINCREASE, FREELISTS,
FREELIST GROUPS, and OPTIMAL.

« With the exception of PCTINCREASE, you should not decrease the setting of a
storage parameter to a value below the default. (If the value of MAXEXTENTS
is large, you can make PCTINCREASE small—or even zero.)

« No other changes to SQL.BSQ are supported. In particular, you should not add,
drop, or rename a column.

Note: Oracle may add, delete, or change internal data dictionary tables from release
to release. For this reason, any modifications you make will not be carried forward
when the dictionary is migrated to later releases.

See Also: Oracle8 SQL Reference for complete information about these parameters.

15-34 Oracle8 Tuning

Tuning Sorts

Tuning Sorts

There is a trade-off between performance and memory usage. For best perfor-
mance, most sorts should occur in memory; sorts to disk affect performance. If the
sort area size is too big, too much memory may be utilized; if the sort area size is
too small, many sorts to disk may result, with correspondingly worse performance.
This section describes:

Sorting to Memory

If You Do Sort to Disk

Optimizing Sort Performance with Temporary Tablespaces
Using NOSORT to Create Indexes Without Sorting
GROUP BY NOSORT

Optimizing Large Sorts with SORT_DIRECT_WRITES

Tuning I/O 15-35

Tuning Sorts

Sorting to Memory

The default sort area size is adequate to hold all the data for most sorts. However, if
your application often performs large sorts on data that does not fit into the sort
area, you may want to increase the sort area size. Large sorts can be caused by any
SQL statement that performs a sort on many rows.

See Also: Oracle8 Concepts lists SQL statements that perform sorts.

Recognizing Large Sorts

Oracle collects statistics that reflect sort activity and stores them in the dynamic per-
formance table V$SYSSTAT. By default, this table is available only to the user SYS
and to users granted the SELECT ANY TABLE system privilege. These statistics
reflect sort behavior:

SORTS(MEMORY) The number of sorts small enough to be performed
entirely in sort areas without 170 to temporary seg-
ments on disk.

SORTS(DISK) The number of sorts too large to be performed entirely
in the sort area, requiring 1/0 to temporary segments
on disk.

Use the following query to monitor these statistics over a period of time while your
application is running:

SELECT name, value

FROM v$sysstat
WHERE name IN (sorts (memory), 'sorts (disk));

The output of this query might look like this:

NAME VALUE
sorts(memory) 965
sorts(disk) 8

The information in V$SYSSTAT can also be obtained through the Simple Network
Management Protocol (SNMP).

15-36 Oracle8 Tuning

Tuning Sorts

Increasing SORT_AREA_SIZE to Avoid Sorting to Disk

SORT_AREA_SIZE is a dynamically modifiable initialization parameter that speci-
fies the maximum amount of program global area (PGA) memory to use for a sort.
There is a trade-off between SORT_AREA_SIZE and PGA.

If a significant number of sorts require disk 1/0 to temporary segments, then your
application’s performance may benefit from increasing the size of the sort area. In
this case, increase the value of SORT_AREA_SIZE. The maximum value of this
parameter depends on your operating system. You need to determine how large a
SORT_AREA_SIZE makes sense. If it is big enough, most sorts should not go to
disk (unless, for example, you are sorting a 10 gigabyte table). If the sort does not
go to disk, you have the option of writing or not writing to the buffer cache.

See Also: "Optimizing Large Sorts with SORT_DIRECT_WRITES" on page 15-40
"SORT_AREA_SIZE" on page 19-9

Performance Benefits of Large Sort Areas

Increasing the sort area increases the size of each run and decreases the total num-
ber of runs. Reducing the total number of runs may reduce the number of merges
Oracle must perform to obtain the final sorted result.

Performance Trade-offs for Large Sort Areas

Increasing the size of the sort area causes each Oracle process that sorts to allocate
more memory. This increase reduces the amount of memory available for private
SQL and PL/SQL areas. It can also affect operating system memory allocation and
may induce paging and swapping. Before increasing the size of the sort area, be
sure enough free memory is available on your operating system to accommodate a
larger sort area.

If you increase sort area size, consider decreasing the retained size of the sort area,
or the size to which Oracle reduces the sort area if its data is not expected to be ref-
erenced soon. To do this, decrease the value of the SORT_AREA RETAINED_SIZE
parameter. A smaller retained sort area reduces memory usage but causes addi-
tional 1/0 to write and read data to and from temporary segments on disk.

If You Do Sort to Disk

If you do sort to disk, make sure that PCTINCREASE is set to zero for the
tablespace used for sorting. Also, INITIAL and NEXT should be the same size. This
reduces fragmentation of the tablespaces used for sorting. You set these parameters
using the STORAGE option of ALTER TABLE. (See Oracle8 Concepts for more infor-
mation on PCTINCREASE.)

Tuning I/O 15-37

Tuning Sorts

Optimizing Sort Performance with Temporary Tablespaces

You can optimize sort performance by specifying a tablespace as TEMPORARY
upon creation (or subsequently altering that tablespace) and performing the sort in
that tablespace. Normally, a sort may require many space allocation calls to allocate
and deallocate temporary segments. If a tablespace is specified as TEMPORARY,
one sort segment in that tablespace is cached and used for each instance requesting
a sort operation. This scheme bypasses the normal space allocation mechanism and
can greatly improve performance of medium-sized sorts that cannot be done com-
pletely in memory.

To specify a tablespace as temporary, use the TEMPORARY keyword of the CRE-
ATE TABLESPACE or ALTER TABLESPACE commands. TEMPORARY cannot be
used with tablespaces that contain permanent objects (such as tables or rollback seg-
ments).

The temporary tablespace should be striped over many disks, preferably with some
operating system striping tool. For example, if the temporary tablespace is only
striped over 2 disks with a maximum of 50 1/0s per second each, then you can
only do 100 I/0Os per second. This restriction could become a problem, making sort
operations take a very long time. You could speed up sorts fivefold if you were to
stripe the temporary tablespace over 10 disks. This would enable 500 1/0Os per sec-
ond.

Change the SORT_READ_FAC parameter, which is a ratio describing the amount
of time necessary to read a single database block divided by the block transfer rate.
The value is operating system specific; the default value is typically 5, but the
parameter should usually be set to 16 or 32. This allows the system to read more
blocks per pass from a temporary table. For temporary tablespaces,
SORT_READ_FAC plays a role similar to the parameter
DB_FILE_MULTIBLOCK_READ_COUNT.

See Also: Oracle8 SQL Reference for more information about the syntax of the CRE-
ATE TABLESPACE and ALTER TABLESPACE commands.

15-38 Oracle8 Tuning

Tuning Sorts

Using NOSORT to Create Indexes Without Sorting

One cause of sorting is the creation of indexes. Creating an index for a table
involves sorting all the rows in the table based on the values of the indexed col-
umns. Oracle also allows you to create indexes without sorting. If the rows in the
table are loaded in ascending order, you can create the index faster without sorting.

The NOSORT Option

To create an index without sorting, load the rows into the table in ascending order
of the indexed column values. Your operating system may provide a sorting utility
to sort the rows before you load them. When you create the index, use the
NOSORT option on the CREATE INDEX command. For example, this CREATE
INDEX statement creates the index EMP_INDEX on the ENAME column of the
EMP table without sorting the rows in the EMP table:

CREATE INDEX emp_index
ON emp(ename)
NOSORT;

Note: Specifying NOSORT in a CREATE INDEX statement negates the use of PAR-
ALLEL INDEX CREATE, even if PARALLEL (DEGREE n) is specified.

When to Use the NOSORT Option

Presorting your data and loading it in order may not always be the fastest way to
load a table.

« If you have a multiple-CPU computer, you may be able to load data faster
using multiple processors in parallel, each processor loading a different portion
of the data. To take advantage of parallel processing, load the data without sort-
ing it first. Then create the index without the NOSORT option.

« If you have a single-CPU computer, you should sort your data before loading,
if possible. Then create the index with the NOSORT option.

GROUP BY NOSORT

Sorting can be avoided when performing a GROUP BY operation when you know
that the input data is already ordered so that all rows in each group are clumped
together. This may be the case, for example, if the rows are being retrieved from an
index that matches the grouped columns, or if a sort-merge join produces the rows
in the right order. ORDER BY sorts can be avoided in the same circumstances.
When no sort takes place, the EXPLAIN PLAN output indicates GROUP BY
NOSORT.

Tuning I/O 15-39

Tuning Sorts

Optimizing Large Sorts with SORT_DIRECT_WRITES

If memory and temporary space are abundant on your system, and you perform
many large sorts to disk, you can set the initialization parameter
SORT_DIRECT_WRITES to increase sort performance.

Behavior of SORT_DIRECT_WRITES

When this parameter is set to TRUE, each sort allocates several large buffers in
memory for direct disk 1/0. You can set the initialization parameters
SORT_WRITE_BUFFERS and SORT_WRITE_BUFFER_SIZE to control the number
and size of these buffers. The sort will write an entire buffer for each 1/0 operation.
The Oracle process performing the sort writes the sort data directly to the disk,
bypassing the buffer cache.

The default value of SORT_DIRECT_WRITES is AUTO. When the parameter is
unspecified or set to AUTO, Oracle automatically allocates direct write buffers if
the SORT_AREA _SIZE is at least ten times the minimum direct write buffer config-
uration.

The memory for the direct write buffers is subtracted from the sort area, so the total
amount of memory used for each sort is still SORT_AREA_SIZE. Setting
SORT_WRITE_BUFFERS and SORT_WRITE_BUFFER_SIZE has no effect when
SORT_DIRECT_WRITES is AUTO.

Performance Trade-offs of Direct Disk /O for Sorts

Setting SORT_DIRECT_WRITES to TRUE causes each Oracle process that sorts to
allocate memory in addition to that already allocated for the sort area. The addi-
tional memory allocated is calculated as follows:

SORT_WRITE_BUFFERS * SORT_WRITE_BUFFER_SIZE

The minimum direct write configuration on most platforms is two 32K buffers
(2 * 32K), so direct write is generally allocated only if the sort area is 640K or
greater. With a sort area smaller than this, direct write will not be performed.

Ensure that your operating system has enough free memory available to accommo-
date this increase. Also, sorts that use direct writes tend to consume more tempo-
rary segment space on disk.

One way to avoid increasing memory usage is to decrease the sort area by the
amount of memory allocated for direct writes. Note that reducing the sort area may
increase the number of sorts to disk, which will decrease overall performance. A
good rule of thumb is that the total memory allocated for direct write buffers
should be less than one-tenth of the memory allocated for the sort area. If the mini-

15-40 Oracle8 Tuning

Tuning Checkpoints

mum configuration of the direct write buffers is greater than one-tenth of your sort
area, then you should not trade sort area for direct write buffers.

Tuning Checkpoints

A checkpoint is an operation that Oracle performs automatically. Checkpoints can
momentarily reduce performance. This section explains:

« How Checkpoints Affect Performance
« Choosing Checkpoint Frequency

« Reducing the Performance Impact of a Checkpoint

How Checkpoints Affect Performance
Checkpoints affect:

« recovery time performance
« run-time performance

Frequent checkpoints can reduce recovery time in the event of an instance failure. If
checkpoints are relatively frequent, then relatively few changes to the database are
made between checkpoints. In this case, relatively few changes must be rolled for-
ward for recovery.

However, a checkpoint can momentarily reduce run-time performance for these rea-
sons:

« Checkpoints cause DBWn processes to perform 1/0.

« If CKPT is not enabled, checkpoints cause LGWR to update datafiles and may
momentarily prevent LGWR from writing redo entries.

The overhead associated with a checkpoint is usually small and affects perfor-
mance only while Oracle performs the checkpoint.

Tuning I/0 15-41

Tuning Checkpoints

Choosing Checkpoint Frequency

Choose a checkpoint frequency based on your performance concerns. If you are
more concerned with efficient run-time performance than recovery time, choose a
lower checkpoint frequency. If you are more concerned with fast recovery time
than run-time performance, choose a higher checkpoint frequency.

Because checkpoints on log switches are necessary for redo log maintenance, you
cannot eliminate checkpoints entirely. However, you can reduce checkpoint fre-
guency to a minimum by setting these parameters:

« Set the value of the LOG_CHECKPOINT_INTERVAL initialization parameter
(in multiples of physical block size) to be larger than the size of your largest
redo log file.

« Set the value of the LOG_CHECKPOINT_TIMEOUT initialization parameter to
0. This value eliminates time-based checkpoints.

Such settings eliminate all checkpoints except those that occur on log switches.

You can further reduce checkpoints by reducing the frequency of log switches. To
reduce log switches, increase the size of your redo log files so that the files do not
fill as quickly.

Reducing the Performance Impact of a Checkpoint

To reduce the performance impact of checkpoints, make sure that DBWn pro-
cess(es) write enough during periods of normal (nonpeak) activity. DBWn activity
sometimes has a pattern of sharp peaks and valleys. If DBWhn is tuned to be more
aggressive in writing, then the average level of its activity will be raised, and it will
not fall behind.

DB BLOCK_CHECKPOINT_BATCH specifies the number of blocks the DBWn pro-
cess(es) can write out in one batch as part of a checkpoint. If the internal Oracle
write batch size is 512 buffers, and DB_ BLOCK _CHECKPOINT_BATCH is set to 8,
then the checkpoint may take a very long time. Because you only write 8 blocks at a
time, the start and end of a checkpoint will take a long time, going through 512 buff-
ers, 8 at a time.

Note that only current or consistent read blocks are checkpoints. By contrast, sort
blocks are not checkpointed.

See Also: Oracle8 Concepts for a complete discussion of checkpoints.

15-42 Oracle8 Tuning

Tuning LGWR and DBWn 1/O

Tuning LGWR and DBWn I/0

This section describes how to tune 1/0 for the log writer and database writer back-
ground processes:

« Tuning LGWR I/0
« Tuning DBWn 1I/0

Tuning LGWR 1/0

Applications with a lot of INSERTS, or with LONG/RAW activity may benefit from
tuning LGWR I/0. The size of each 170 write depends on the size of the log buffer,
which is set by the initialization parameter LOG_BUFFER. It is thus important to
choose the right log buffer size. LGWR starts writing if the buffer is one third full,
or when it is posted by a foreground process such as a COMMIT. Too large a log
buffer size might delay the writes. Too small a log buffer might also be inefficient,
resulting in frequent, small 1/0s.

If the average size of the /0 becomes quite large, the log file could become a bottle-
neck. To avoid this problem, you can stripe the redo log files, going in parallel to
several disks. You must use an operating system striping tool, because manual
striping is not possible in this situation.

Stripe size is likewise important. You can figure an appropriate value by dividing
the average redo 1/0 size by the number of disks over which you want to stripe the
buffer.

If you have a large number of datafiles or are in a high OLTP environment, you
should always have the CHECKPOINT_PROCESS initialization parameter set to
TRUE. This setting enables the CKPT process, ensuring that during a checkpoint
LGWR keeps on writing redo information, while the CKPT process updates the
datafile headers.

Tuning I/O 15-43

Tuning LGWR and DBWn 1/O

Tuning DBWn 1/O

Multiple Database Writer (DBWn) Processes

Using the DB_WRITER_PROCESSES initialization parameter, you can create multi-
ple database writer processes (from DBWO0 to DBW9). These may be useful for high-
end systems such as NUMA machines and SMP systems which have a large num-
ber of CPUs. Note that these background processes are not the same as the 1/0
server processes (set with DBWR_IO_SLAVES); the latter can die without the
instance failing. You cannot concurrently run 1/0 server processes and multiple
DBWn processes on the same system.

Internal Write Batch Size

Database writer (DBWn) process(es) use the internal write batch size, which is set to
the lowest of the following three values (A, B, or C):

« Value A is calculated as follows:

DB_FILES * DB_FILE_SIMULTANEOUS_WRITES
2

» Value B is the port-specific limit. (See your Oracle platform-specific documenta-
tion.)

« Value C is one-fourth the value of DB_BLOCK_BUFFERS.

= Value A

Setting the write batch too large may result in very uneven response times.

For best results, you can influence the internal write batch size by changing the
parameter values by which Value A in the formula above is calculated. Take the fol-
lowing approach:

1. Determine the files to which you must write, and the number of disks on which
those files reside.

Determine the number of 1/0s you can perform against these disks.
Determine the number of writes that your transactions require.

Make sure you have enough disks to sustain this rate.

S S N

Adjust the current write batch size so that it equals the number of writes you
need plus the number of writes needed for checkpointing (specified by
DB_BLOCK_CHECKPOINT_BATCH). You can calculate the desired internal
write batch size (IWBS) as follows:

newlWBS = DB_BLOCK_CHECKPOINT_BATCH + currentlWBS

15-44 Oracle8 Tuning

Tuning LGWR and DBWn 1/O

LRU Latches with a Single Buffer Pool

When you have multiple database writer (DBWn) processes and only one buffer
pool, the buffer cache is divided up among the processes by LRU latches; each LRU
latch is for one LRU list.

The default value of the DB_BLOCK_LRU_LATCHES parameter is the number of
CPUs in the system. You can adjust this value to be equal to, or a multiple of, the
number of CPUs. The objective is to cause each DBWn process to have the same
number of LRU lists, so that they have equivalent loads.

For example, if you have 2 database writer processes and 4 LRU lists (and thus 4
latches), the DBWn processes obtain latches in a round-robin fashion. DBWO
obtains latch 1, DBW1 obtains latch 2, then DBW?2 obtains latch 3 and DBW3
obtains latch 4. Similarly, if your system has 8 CPUs and 3 DBWn processes, you
would want to have 9 latches.

Tuning I/O 15-45

Tuning LGWR and DBWn 1/O

LRU Latches with Multiple Buffer Pools

However, if you are using multiple buffer pools and multiple database writer
(DBWNn) processes, the number of latches in each pool (DEFAULT, KEEP, and RECY-
CLE) should be equal to, or a multiple of, the number of processes. This is recom-
mended so that each DBWn process will be equally loaded. (Note, too, that when
there are multiple buffer pools, each buffer pool has a contiguous range of LRU
latches.)

Consider an example in which there are 3 DBWn processes and 2 latches for each of
the 3 buffer pools, for a total of 6 latches. Each buffer pool would obtain a latch in
round robin fashion.

Figure 15-6 LRU Latches with Multiple Buffer Pools: Example 1

DEFAULT RECYCLE KEEP
Buffer Pool Buffer Pool Buffer Pool
1fo)0 1f(f)0
250 250 Buffers Buffers
Buffers Buffers
LRU 5 6
iste 500 500
Lists Buffers Buffers
3 4

Latches 1 2

The DEFAULT buffer pool has 500 buffers for each LRU list. The RECYCLE buffer
pool has 250 buffers for each LRU list. The KEEP buffer pool has 100 buffers for
each LRU.

DBWO gets latch 1 (500) and latch 4 (250) for 750
DBW!1 gets latch 2 (500) and latch 6 (100) for 600
DBW?2 gets latch 3 (250) and latch 5 (100) for 350

Thus the load carried by each of the DBWn processes differs, and performance suf-
fers. If, however, there are 3 latches in each pool, the DBWn processes have equal
loads and performance is optimized.

Note in particular that the different buffer pools have different rates of block
replacement. Ordinarily, blocks are rarely modified in the KEEP pool and fre-

15-46 Oracle8 Tuning

Tuning LGWR and DBWn 1/O

guently modified in the RECYCLE pool; this means that you need to write out
blocks more frequently from the RECYCLE pool than from the KEEP pool. As a
result, owning 100 buffers from one pool is not the same as owning 100 buffers
from the other pool. To be perfectly load balanced, each DBWn process should have
the same number of LRU lists from each type of buffer pool.

A well configured system might have 3 DBWn processes and 9 latches, with 3
latches in each buffer pool

Figure 15-7 LRU Latches with Multiple Buffer Pools: Example 2

DEFAULT RECYCLE KEEP
Buffer Pool Buffer Pool Buffer Pool
Blf?O Blf(f)o Blf?()
250 250 250 uffers uffers uffers
Buffers Buffers Buffers
ERU 500 500 500 7 8 9

Buffers Buffers Buffers

Latches 1 2 3

The DEFAULT buffer pool has 500 buffers for each LRU list. The RECYCLE buffer
pool has 250 buffers for each LRU list. The KEEP buffer pool has 100 buffers for
each LRU list.

DBWO gets latch 1 (500) and latch 4 (250) and latch 7 (100) for 750
DBW!1 gets latch 2 (500) and latch 5 (250) and latch 8 (100) for 750
DBW?2 gets latch 3 (500) and latch 6 (250) and latch 9 (100) for 750

Tuning I/O 15-47

Configuring the Large Pool

Configuring the Large Pool

You can optionally configure the large pool so that Oracle has a separate pool from
which it can request large memory allocations. This prevents competition with
other subsystems for the same memory. As Oracle allocates more shared pool mem-
ory for the multithreaded server (MTS) session memory, the amount of shared pool
memory available for the shared SQL cache decreases. If you allocate session mem-
ory from another area of shared memory, Oracle can use the shared pool primarily
for caching shared SQL and not incur the performance overhead from shrinking
the shared SQL cache.

For 1/0 server processes and backup and restore operations, Oracle allocates buff-
ers that are a few hundred kilobytes in size. Although the shared pool may be
unable to satisfy this request, the large pool will be able to do so. Note that the
large pool does not have an LRU list; Oracle will not attempt to age memory out of
the large pool.

Use the following parameters to configure the large pool:
« LARGE_POOL_MIN_ALLOC
« LARGE_POOL_SIZE

To see in which pool (shared pool or large pool) the memory for an object resides,
see the column POOL in V$SGASTAT.

See Also: Oracle8 Concepts for further information about the large pool.

Oracle8 Reference for complete information about initialization parameters.

15-48 Oracle8 Tuning

16

Tuning Networks

This chapter introduces networking issues that affect tuning. Topics in this chapter
include

« How to Detect Network Problems

= How to Solve Network Problems

Tuning Networks 16-1

How to Detect Network Problems

How to Detect Network Problems

Networks entail overhead that adds a certain amount of delay to processing. To
optimize performance, you must ensure that your network throughput is fast, and
that you reduce the number of messages that must be sent over the network.

Measuring the amount of delay the network adds to performance can be difficult.
Three dynamic performance views are useful in this regard: V$SESSION_EVENT,
V$SESSION_WAIT, and V$SESSTAT.

In V$SESSION_EVENT, the AVERAGE_WAIT column indicates the amount of time
that Oracle waits between messages. You can use this statistic as a yardstick to eval-
uate the effectiveness of the network.

In V$SESSION_WAIT, the EVENT column lists the events for which active sessions
are waiting. The “sqlnet message from client” wait event indicates that the shared
or foreground process is waiting for a message from a client. If this wait event has
occurred, you can check to see whether the message has been sent by the user or
received by Oracle.

You can investigate hangups by looking at V$SESSION_WAIT to see what the ses-
sions are waiting for. If a client has sent a message, you can determine whether Ora-
cle is responding to it or is still waiting for it.

In V$SESSTAT you can see the number of bytes that have been received from the
client, the number of bytes sent to the client, and the number of calls the client has
made.

How to Solve Network Problems

This section describes several techniques for enhancing performance and solving
network problems.

« Using Array Interfaces

« Using Prestarted Processes

« Adjusting Session Data Unit Buffer Size

« Increasing the Listener Queue Size

« Using TCP.NODELAY

« Using Shared Server Processes Rather than Dedicated Server Processes
« Using Connection Manager

See Also: The Oracle Net8 Administrator’s Guide

16-2 Oracle8 Tuning

How to Solve Network Problems

Using Array Interfaces

Reduce network calls by using array interfaces. Instead of fetching one row at a
time, it is more efficient to fetch ten rows with a single network round trip.

See Also: Pro*C/C++ Precompiler Programmer’s Guide and Pro*COBOL Precompiler
Programmer’s Guide for more information on array interfaces.

Using Prestarted Processes

Prestarting processes can improve connect time with a dedicated server. This is par-
ticularly true of heavily loaded systems not using multithreaded servers, where
connect time is slow. If prestarted processes are enabled, the listener can hand off
the connection to an existing process with no wait time whenever a connection
request arrives. Connection requests do not have to wait for new processes to be
started.

Adjusting Session Data Unit Buffer Size

Before sending data across the network, Net8 buffers data into the session data unit
(SDU). It sends the data stored in this buffer when the buffer is full or when an
application tries to read the data. When large amounts of data are being retrieved
and when packet size is consistently the same, it may speed retrieval to adjust the
default SDU size.

Optimal SDU size depends on the normal packet size. Use a sniffer to find out the
frame size, or set tracing on to its highest level to check the number of packets sent
and received, and to see if they are fragmented. Tune your system to limit the
amount of fragmentation.

Use Oracle Network Manager to configure a change to the default SDU size on
both the client and the server; SDU size should generally be the same on both.

See Also: Oracle Net8 Administrator’s Guide

Increasing the Listener Queue Size

The network listener active on the database server monitors and responds to con-
nection requests. You can increase the listening queue for a listening process in
order to handle larger numbers of concurrent requests dynamically.

Tuning Networks 16-3

How to Solve Network Problems

Using TCP.NODELAY

When a session is established, Net8 packages and sends data between server and
client using packets. Use the TCP.NODELAY option, which causes packets to be
flushed on to the network more frequently. If you are streaming large amounts of
data, there is no buffering and hence no delay.

Although Net8 supports many networking protocols, TCP tends to have the best
scalability.

See Also: Your platform-specific Oracle documentation

Using Shared Server Processes Rather than Dedicated Server Processes

Shared server processes, such as multithreaded server dispatchers, tend to provide
better performance than dedicated server processes. Dedicated server processes are
committed to one session only, and exist for the duration of that session. In con-
trast, a shared server process enables many clients to connect to the same server
without the need for a dedicated server process for each client. A dispatcher han-
dles multiple incoming session requests to the shared server.

Using Connection Manager

In Net8 you can use the Connection Manager to conserve system resources by mul-
tiplexing: funneling many client sessions through a single transport connection to a
server destination. In this way you can increase the number of sessions that a pro-
cess can handle.

Connection Manager you control client access to dedicated servers. In addition, it
provides multiple protocol support so that a client and server with different net-
working protocols can communicate with each other.

See Also: Oracle Net8 Administrator’s Guide

16-4 Oracle8 Tuning

1/

Tuning the Operating System

This chapter explains how to tune the operating system for optimal performance of
the Oracle Server. Topics include:

« Understanding Operating System Performance Issues
« How to Detect Operating System Problems

« How to Solve Operating System Problems

Tuning the Operating System 17-1

Understanding Operating System Performance Issues

Understanding Operating System Performance Issues

Overview

« Overview
« Operating System and Hardware Caches
« Raw Devices

« Process Schedulers

Operating system performance issues commonly involve process management,
memory management, and scheduling. If you have tuned the Oracle instance per-
formance and still need faster performance, you should verify your work or try to
reduce system time. Make sure there is enough 1/0 bandwidth, CPU power, and
swap space. Do not expect, however, that further tuning of the operating system
will have a big effect on application performance. Sometimes there is simply not a
lot of room for improvement on the operating system side. Changes in the Oracle
configuration or in the application itself are likely to make a bigger difference in
operating system efficiency than changing the O/S directly.

For example, if your application gives rise to a lot of buffer busy waits, the number
of system calls will increase. If you reduce the buffer busy waits by tuning the
application, then the number of system calls will go down. Similarly, if you turn on
the Oracle initialization parameter TIMED_STATISTICS, then the number of sys-
tem calls will increase; if you turn it off, then system calls will decrease.

See Also: For detailed information, see your Oracle platform-specific documenta-
tion and your operating system vendor’s documentation.

Operating System and Hardware Caches

Operating systems and device controllers provide data caches which do not
directly conflict with Oracle’s own cache management, but which can consume
resources with no benefit to the user. This occurrence is most marked on a UNIX
system with the database container files held in the UNIX file store: by default all
database 170 will go through the file system cache. On some UNIX-based systems,
direct 170 is available to the filestore. This arrangement allows the database con-
tainer files to be accessed within the UNIX file system, bypassing the file system
cache. It saves CPU resource and allows the file system cache to be dedicated to
nondatabase activity such as program texts and spool files.

On NT this problem does not arise. All file requests by the database bypass the
caches in the file system.

17-2 Oracle8 Tuning

Understanding Operating System Performance Issues

Raw Devices

Evaluate the use of raw devices on your system. They involve a lot of work on the
part of the DBA, but may provide some performance benefit.

Raw devices impose a penalty on full table scans, but may be essential on UNIX-
based systems if the UNIX implementation does not support write through cache.
The UNIX file system speeds up full table scans by reading ahead when the server
starts requesting contiguous data blocks. It also caches full table scans. If your
UNIX-based system does not support the write-through option on writes to the file
system, then it is essential to use raw devices to ensure that at commit and check-
point, the data which the server assumes is safely established on disk has actually
gotten there. If this is not the case, then recovery from a UNIX or system crash may
not be possible.

Raw devices on NT are similar to UNIX raw devices; however, all NT devices sup-
port write through cache.

Process Schedulers

Many processes (“threads” on NT systems) are involved in the operation of Oracle,
and they all access the shared memory resources in the SGA.

Be sure that all Oracle processes, both background processes and user processes,
have the same process priority. When you install Oracle, all background processes
are given the default priority for your operating system. Do not change the priori-
ties of background processes. Verify that all user processes have the default operat-
ing system priority.

Assigning different priorities to Oracle processes may exacerbate the effects of con-
tention. Your operating system may not grant processing time to a low-priority pro-
cess if a high-priority process also requests processing time. If a high-priority
process needs access to a memory resource held by a low-priority process, the high-
priority process may wait indefinitely for the low-priority process to obtain the
CPU, process, and release the resource.

Tuning the Operating System 17-3

How to Detect Operating System Problems

How to Detect Operating System Problems

The key statistics to extract from any operating system monitor are
=« CPU load

« device queues

« hetwork activity (queues)

« memory management (paging/swapping)

Look at CPU utilization to see the ratio between time spent running in application
mode and time spent running in operating system mode. Look at run queues to see
how many processes are runable and how many system calls are being executed.
See if paging or swapping is occurring, and check the number of 1/0s being per-
formed.

See Also: Your Oracle platform-specific documentation and your operating system
vendor’s documentation.

17-4 Oracle8 Tuning

How to Solve Operating System Problems

How to Solve Operating System Problems

This section provides hints for tuning various systems.
« Performance on UNIX-Based Systems

« Performance on NT Systems

« Performance on Mainframe Computers

Familiarize yourself with platform-specific issues, so that you know what perfor-
mance options your operating system provides. For example, some platforms have
post wait drivers, which allow you to map system time and thus reduce system
calls, enabling faster 1/0.

See Also: Your Oracle platform-specific documentation and your operating system
vendor’s documentation.

Performance on UNIX-Based Systems

On UNIX-based systems, try to find a good ratio between the amount of time the
operating system runs (fulfilling system calls and doing process scheduling), and
the amount of time the application runs. Your goal should be running 60% to 75%
of the time in application mode, and 25% to 40% of the time in operating system
mode. If you find that the system is spending 50% of its time in each mode, then
you should investigate to determine what is wrong.

The ratio of time spent in each mode is only a symptom of the underlying problem,
which might have to do with:

=« Swapping
« executing too many O/S system calls
= running too many processes

If such conditions exist, then there is less time available for the application to run.
The more time you can release from the operating system side, the more transac-
tions your application can perform.

Tuning the Operating System 17-5

How to Solve Operating System Problems

Performance on NT Systems

On NT systems, as with UNIX-based systems, you should establish an appropriate
ratio between time in application mode and time in system mode. On NT you can
easily monitor many factors with Performance Monitor: CPU, network, 1/0, and
memory are all displayed on the same graph, to assist you in avoiding bottlenecks
in any of these areas. Note that the term “process” as used in this tuning manual
refers to a “thread” in the NT environment.

Performance on Mainframe Computers

Consider the paging parameters on a mainframe, and remember that Oracle can
exploit a very large working set.

Free memory in a VAX/VMS environment is actually memory that is not currently
mapped to any operating system process. On a busy system, free memory is likely
to contain a page that belongs to one or more currently active process. When that
access occurs a “soft page fault” takes place, and the page is included in the work-
ing set for the process. If the process cannot expand its working set, then one of the
pages currently mapped by the process must be moved to the free set.

Any number of processes may have pages of shared memory within their working
sets. The sum of the sizes of the working sets can thus markedly exceed the avail-
able memory. When Oracle Server is running, the SGA, the Oracle kernel code, and
the Oracle Forms runtime executable are normally all sharable and account for per-
haps 80% or 90% of the pages accessed.

Adding more buffers is not necessarily better. Each application has a threshold
number of buffers at which the cache hit ratio stops rising. This is typically quite
low (approximately 1500 buffers). Setting higher values simply increases the man-
agement load for both Oracle and the operating system.

17-6 Oracle8 Tuning

18

Tuning Resource Contention

Contention occurs when multiple processes try to access the same resource simulta-
neously. Some processes must then wait for access to various database structures.
Topics discussed in this chapter include:

« Understanding Contention Issues

« How to Detect Contention Problems

« How to Solve Contention Problems

Reducing Contention for Rollback Segments

Reducing Contention for Multithreaded Server Processes
Reducing Contention for Parallel Server Processes
Reducing Contention for Redo Log Buffer Latches
Reducing Contention for the LRU Latch

Reducing Free List Contention

Tuning Resource Contention 18-1

Understanding Contention Issues

Understanding Contention Issues

Symptoms of resource contention problems can be found in V3SYSTEM_EVENT.
This view reveals various system problems that may be impacting performance,
problems such as latch contention, buffer contention, 1/0 contention. It is impor-
tant to remember that these are only symptoms of problems—not the actual causes.

For example, by looking at V$SYSTEM_EVENT you might notice lots of buffer-
busy waits. It may be that many processes are inserting into the same block and
must wait for each other before they can insert. The solution might be to introduce
free lists for the object in question.

Buffer busy waits may also have caused some latch free waits. Since most of these
waits were caused by misses on the cache buffer hash chain latch, this was also a
side effect of trying to insert into the same block. Rather than increasing SPIN-
COUNT to reduce the latch free waits (a symptom), you should change the object
to allow for multiple processes to insert into free blocks. This approach will effec-
tively reduce contention.

See Also: Oracle8 Administrator’s Guide to understand which resources are used by
various Oracle8 features.

18-2 Oracle8 Tuning

How to Solve Contention Problems

How to Detect Contention Problems

The VSRESOURCE_LIMIT view provides information about current and maximum
global resource utilization for some system resources. This information enables you
to make better decisions when choosing values for resource limit-controlling
parameters.

If the system has idle time, start your investigation by checking
V$SYSTEM_EVENT. Examine the events with the highest average wait time, then
take appropriate action on each. For example, if you find a high number of latch
free waits, look in VSLATCH to see which latch is the problem.

For excessive buffer busy waits, look in VSWAITSTAT to see which block type has
the highest wait count and the highest wait time. Look in V$SESSION_WAIT for
cache buffer waits so you can decode the file and block number of an object.

The rest of this chapter describes common contention problems. Remember that the
different forms of contention are symptoms which can be fixed by making changes
in one of two places:

« changes in the application
« changes in Oracle

Sometimes you have no alternative but to change the application in order to over-
come performance constraints.

How to Solve Contention Problems

The rest of this chapter examines various kinds of contention and explains how to
resolve problems. Contention may be for rollback segments, multithreaded server
processes, parallel server processes, redo log buffer latches, LRU latch, or for free
lists.

Tuning Resource Contention 18-3

Reducing Contention for Rollback Segments

Reducing Contention for Rollback Segments

In this section, you will learn how to reduce contention for rollback segments. The
following issues are discussed:

« ldentifying Rollback Segment Contention
« Creating Rollback Segments

Identifying Rollback Segment Contention

Contention for rollback segments is reflected by contention for buffers that contain
rollback segment blocks. You can determine whether contention for rollback seg-
ments is reducing performance by checking the dynamic performance table
VSWAITSTAT.

VSWAITSTAT contains statistics that reflect block contention. By default, this table
is available only to the user SYS and to other users who have SELECT ANY TABLE
system privilege, such as SYSTEM. These statistics reflect contention for different
classes of block:

SYSTEM UNDO HEADER the number of waits for buffers containing
header blocks of the SYSTEM rollback segment
SYSTEM UNDO BLOCK the number of waits for buffers containing

blocks of the SYSTEM rollback segment other
than header blocks

UNDO HEADER the number of waits for buffers containing
header blocks of rollback segments other than
the SYSTEM rollback segment

UNDO BLOCK the number of waits for buffers containing
blocks other than header blocks of rollback seg-
ments other than the SYSTEM rollback segment

Use the following query to monitor these statistics over a period of time while your
application is running:

SELECT class, count
FROM v$waitstat
WHERE class IN (system undo header’, 'system undo block,
‘undo header’, 'undo block);

18-4 Oracle8 Tuning

Reducing Contention for Rollback Segments

The result of this query might look like this:
CLASS COUNT

systemundo header 2089
systemundoblock 633
undo header 1235
undo block 942

Compare the number of waits for each class of block with the total number of
requests for data over the same period of time. You can monitor the total number of
requests for data over a period of time with this query:

SELECT SUM(value)
FROM V$sysstat

WHERE name IN (db block gets', ‘consistent gets));
The output of this query might look like this:
SUM(VALUE)

929530

The information in V$SYSSTAT can also be obtained through SNMP.,

If the number of waits for any class is greater than 1% of the total number of
requests, consider creating more rollback segments to reduce contention.

Creating Rollback Segments

To reduce contention for buffers containing rollback segment blocks, create more
rollback segments. Table 18-1 shows some general guidelines for choosing how
many rollback segments to allocate based on the number of concurrent transactions
on your database. These guidelines are appropriate for most application mixes.

Table 18-1 Choosing the Number of Rollback Segments

Number of Rollback Segments

Number of Current Transactions (n) Recommended
n<16 4

16<=n<32 8

32<=n n/4

Tuning Resource Contention 18-5

Reducing Contention for Multithreaded Server Processes

Reducing Contention for Multithreaded Server Processes

In this section, you will learn how to reduce contention for some of the processes
used by the Oracle’s multithreaded server architecture:

« Reducing Contention for Dispatcher Processes

« Reducing Contention for Shared Server Processes

Reducing Contention for Dispatcher Processes

This section discusses how to identify contention for dispatcher processes, how to
add dispatcher processes, and how to enable connection pooling.

Identifying Contention for Dispatcher Processes
Contention for dispatcher processes can be reflected by either of these symptoms:

« high busy rates for existing dispatcher processes

» Steady increase in waiting time for responses in the response queues of existing
dispatcher processes

Examining Busy Rates for Dispatcher Processes V$DISPATCHER contains statistics
reflecting the activity of dispatcher processes. By default, this table is available only
to the user SYS and to other users who have SELECT ANY TABLE system privi-
lege, such as SYSTEM. These columns reflect busy rates for dispatcher processes:

IDLE the idle time for the dispatcher process in hundredths of a
second

BUSY the busy time for the dispatcher process in hundredths of a
second

Use the following query to monitor these statistics over a period of time while your
application is running:

SELECT network "Protocol”,
SUM(busy) / (SUM(busy) + SUM(dle)) "Total Busy Rate"
FROM védispatcher
GROUP BY network;

This query returns the total busy rate for the dispatcher processes of each protocol;
that is, the percentage of time the dispatcher processes of each protocol are busy.
The result of this query might look like this:

18-6 Oracle8 Tuning

Reducing Contention for Multithreaded Server Processes

Protocol Total Busy Rate

decnet .004589828
tcp 029111042

From this result, you can make these observations:
« DECnet dispatcher processes are busy nearly 0.5% of the time.
« TCP dispatcher processes are busy nearly 3% of the time.

If the database is only in use 8 hours per day, statistics need to be normalized by
the effective work times. You cannot simply look at statistics from the time the
instance started; rather, you must check statistics relevant to the workload you are
applying. Thus, if the dispatcher processes for a specific protocol are busy more
than 50% of the effective work time, then by adding dispatcher processes you may
be able to improve performance for users connected to Oracle using that protocol.

Examining Wait Times for Dispatcher Process Response Queues V$QUEUE contains sta-
tistics reflecting the response queue activity for dispatcher processes. By default,
this table is available only to the user SYS and to other users who have SELECT
ANY TABLE system privilege, such as SYSTEM. These columns show wait times
for responses in the queue:

WAIT the total waiting time, in hundredths of a second, for all
responses that have ever been in the queue

TOTALQ the total number of responses that have ever been in the
gqueue

Use the following query to monitor these statistics occasionally while your applica-
tion is running:

SELECT network "Protocol’,

DECODE(SUM(totalq), 0, 'No Responses),
SUM(wait)SUM(totalq) || * hundredths of seconds’)

"Average Wait Time per Response”

FROM v$queue g, védispatcherd

WHERE qtype = 'DISPATCHER'
AND qg.paddr = d.paddr

GROUP BY network;

This query returns the average time, in hundredths of a second, that a response

waits in each response queue for a dispatcher process to route it to a user process.
This query uses the V$DISPATCHER table to group the rows of the VSQUEUE

Tuning Resource Contention 18-7

Reducing Contention for Multithreaded Server Processes

table by network protocol. The query also uses the DECODE syntax to recognize
those protocols for which there have been no responses in the queue. The result of
this query might look like this:

Protocol Average Wait Time per Response

decnet 1739130 hundredths of seconds
tcp NoResponses

From this result, you can tell that a response in the queue for DECNET dispatcher
processes waits an average of 0.17 hundredths of a second and that there have been
no responses in the queue for TCP dispatcher processes.

If the average wait time for a specific network protocol continues to increase
steadily as your application runs, then by adding dispatcher processes you may be
able to improve performance of those user processes connected to Oracle using that
protocol.

Adding Dispatcher Processes

To add dispatcher processes while Oracle is running, use the MTS_DISPATCHERS
parameter of the ALTER SYSTEM command.

The total number of dispatcher processes across all protocols is limited by the value
of the initialization parameter MTS_MAX_DISPATCHERS. You may need to
increase this value before adding dispatcher processes. The default value of this
parameter is 5 and the maximum value varies depending on your operating system.

See Also: Oracle8 Administrator’s Guide for more information on adding dispatcher
processes.

Enabling Connection Pooling

MTS_DISPATCHERS lets you enable various attributes for each dispatcher. Previ-
ously you could specify a protocol and an initial number of dispatchers. These
attributes are specified in a position-dependent, comma-separated string assigned
to MTS_DISPATCHERS. For example:

MTS_DISPATCHERS ="TCP, 3"
While remaining backwardly compatible with this format, Oracle8 supports a

name-value syntax to let you specify existing and additional attributes in a position-
independent case-insensitive manner. For example:

MTS_DISPATCHERS ="(PROTOCOL=TCP)DISPATCHERS=3)"

18-8 Oracle8 Tuning

Reducing Contention for Multithreaded Server Processes

One and only one of the following attributes is required: PROTOCOL, ADDRESS,
or DESCRIPTION. Additional attributes are optional.

Note that the optional attribute POOL (or POO) is used to enable the Net8 connec-
tion pooling feature.

See Also: Oracle8 SQL Reference and the Oracle Net8 Administrator’s Guide for more
information about MTS_DISPATCHER specification and connection pooling.

Reducing Contention for Shared Server Processes

This section discusses how to identify contention for shared server processes and
how to increase the maximum number of shared server processes.

Identifying Contention for Shared Server Processes

Contention for shared server processes can be reflected by a steady increase in wait-
ing time for requests in the request queue. The dynamic performance table
V$QUEUE contains statistics reflecting the request queue activity for shared server
processes. By default, this table is available only to the user SYS and to other users
who have SELECT ANY TABLE system privilege, such as SYSTEM. These columns
show wait times for requests in the queue:

WAIT the total waiting time, in hundredths of a second, for all
requests that have ever been in the queue

TOTALQ the total number of requests that have ever been in the queue

Monitor these statistics occasionally while your application is running:

SELECT DECODE(totalg, 0, 'No Requests),
waititotalq || " hundredths of seconds))
"Average Wait Time Per Requests”
FROM v$queue
WHERE type ='"COMMON;

This query returns the total wait time for all requests and total number of requests
for the request queue. The result of this query might look like this:

Average Wait Time per Request
090909 hundredths of seconds

From the result, you can tell that a request waits an average of 0.09 hundredths of a
second in the queue before it is processed.

Tuning Resource Contention 18-9

Reducing Contention for Multithreaded Server Processes

You can also determine how many shared server processes are currently running
by issuing this query:
SELECT COUNT(*) “Shared Server Processes"

FROM vs$shared_servers
WHERE status I="QUIT;

The result of this query might look like this:

Shared Server Processes

10

Adding Shared Server Processes

Oracle automatically adds shared server processes if the load on existing processes
increases drastically. Therefore, you are unlikely to improve performance simply by
explicitly adding more shared server processes. However, if the number of shared
server processes has reached the limit established by the initialization parameter
MTS_MAX_SERVERS and the average wait time in the requests queue is still
increasing, you may be able to improve performance by increasing the
MTS_MAX_SERVERS value. The default value of this parameter is 20 and the maxi-
mum value varies depending on your operating system. You can then either allow
Oracle to add shared server processes automatically, or explicitly add shared pro-
cesses through one of these means:

« the MTS_SERVERS initialization parameter
« the MTS_SERVERS parameter of the ALTER SYSTEM command

See Also: Oracle8 Administrator’s Guide for more information on adding shared
Server processes.

18-10 Oracle8 Tuning

Reducing Contention for Parallel Server Processes

Reducing Contention for Parallel Server Processes

This section describes how to detect and alleviate contention for parallel server pro-
cesses when using parallel execution:

« ldentifying Contention for Parallel Server Processes

« Reducing Contention for Parallel Server Processes

Identifying Contention for Parallel Server Processes

Statistics in the V3PQ_SYSSTAT view are useful for determining the appropriate
number of parallel server processes for an instance. The statistics that are particu-
larly useful are SERVERS BUSY, SERVERS IDLE, SERVERS STARTED, and SERV-
ERS SHUTDOWN.

Frequently, you will not be able to increase the maximum number of parallel server
processes for an instance because the maximum number is heavily dependent upon
the capacity of your CPUs and your 1/0 bandwidth. However, if servers are contin-
uously starting and shutting down, you should consider increasing the value of the
parameter PARALLEL_MIN_SERVERS.

For example, if you have determined that the maximum number of concurrent par-
allel server processes that your machine can manage is 100, you should set
PARALLEL_MAX_SERVERS to 100. Next, determine how many parallel server pro-
cesses the average parallel operation needs, and how many parallel operations are
likely to be executed concurrently. For this example, assume you will have two con-
current operations with 20 as the average degree of parallelism. Thus at any given
time there could be 80 parallel server processes busy on an instance. Thus you
should set the PARALLEL_MIN_SERVERS parameter to 80.

Periodically examine V$PQ_SYSSTAT to determine whether the 80 parallel server
processes for the instance are actually busy. To do so, issue the following query:

SELECT * FROM V$PQ_SYSSTAT
WHERE statistic ="Servers Busy",

The result of this query might look like this:
STATISTIC VALUE

Servers Busy 70

Tuning Resource Contention 18-11

Reducing Contention for Redo Log Buffer Latches

Reducing Contention for Parallel Server Processes

If you find that typically there are fewer than PARALLEL_MIN_SERVERS busy at
any given time, your idle parallel server processes constitute system overhead that
is not being used. Consider decreasing the value of the parameter
PARALLEL_MIN_SERVERS. If you find that there are typically more parallel

server processes active than the value of PARALLEL_MIN_SERVERS and the SERV-
ERS STARTED statistic is continuously growing, consider increasing the value of
the parameter PARALLEL_MIN_SERVERS.

Reducing Contention for Redo Log Buffer Latches

Contention for redo log buffer access rarely inhibits database performance. How-
ever, Oracle provides methods to monitor and reduce any latch contention that
does occur. This section covers:

« Detecting Contention for Space in the Redo Log Buffer
« Detecting Contention for Redo Log Buffer Latches
« Examining Redo Log Activity

« Reducing Latch Contention

Detecting Contention for Space in the Redo Log Buffer

When LGWR writes redo entries from the redo log buffer to a redo log file, user pro-
cesses can then copy new entries over the entries that have been written to disk.
LGWR normally writes fast enough to ensure that space is always available in the
buffer for new entries, even when access to the redo log is heavy.

The statistic REDO BUFFER ALLOCATION RETRIES reflects the number of times
a user process waits for space in the redo log buffer. This statistic is available
through the dynamic performance table V$SYSSTAT. By default, this table is avail-
able only to the user SYS and to users granted SELECT ANY TABLE system privi-
lege, such as SYSTEM. Use the following query to monitor these statistics over a
period of time while your application is running:

SELECT name, value

FROM vs$sysstat
WHERE name = redo buffer allocation refries’;

The information in V$SYSSTAT can also be obtained through the Simple Network
Management Protocol (SNMP).

18-12 Oracle8 Tuning

Reducing Contention for Redo Log Buffer Latches

The value of REDO BUFFER ALLOCATION RETRIES should be near 0. If this
value increments consistently, processes have had to wait for space in the buffer.
The wait may be caused by the log buffer being too small, or by checkpointing or
log switching. Increase the size of the redo log buffer, if necessary, by changing the
value of the initialization parameter LOG_BUFFER. The value of this parameter,
expressed in bytes, must be a multiple of DB_BLOCK_SIZE. Alternatively, improve
the checkpointing or archiving process.

Note: Multiple archiver processes are not recommended. A single automatic ARCH
process can archive redo logs, keeping pace with the LGWR process.

Detecting Contention for Redo Log Buffer Latches

Access to the redo log buffer is regulated by two types of latch: the redo allocation
latch and redo copy latches

The Redo Allocation Latch

The redo allocation latch controls the allocation of space for redo entries in the redo
log buffer. To allocate space in the buffer, an Oracle user process must obtain the
redo allocation latch. Since there is only one redo allocation latch, only one user pro-
cess can allocate space in the buffer at a time. The single redo allocation latch
enforces the sequential nature of the entries in the buffer.

After allocating space for a redo entry, the user process may copy the entry into the
buffer. This is called “copying on the redo allocation latch”. A process may only
copy on the redo allocation latch if the redo entry is smaller than a threshold size.

The maximum size of a redo entry that can be copied on the redo allocation latch is
specified by the initialization parameter LOG_SMALL_ENTRY_MAX_SIZE. The
value of this parameter is expressed in bytes. The minimum, maximum, and
default values vary depending on your operating system.

Redo Copy Latches

The user process first obtains the copy latch. Then it obtains the allocation latch,
performs allocation, and releases the allocation latch. Next the process performs the
copy under the copy latch, and releases the copy latch. The allocation latch is thus
held for only a very short period of time, as the user process does not try to obtain
the copy latch while holding the allocation latch.

If the redo entry is too large to copy on the redo allocation latch, the user process
must obtain a redo copy latch before copying the entry into the buffer. While hold-
ing a redo copy latch, the user process copies the redo entry into its allocated space
in the buffer and then releases the redo copy latch.

Tuning Resource Contention 18-13

Reducing Contention for Redo Log Buffer Latches

If your computer has multiple CPUs, your redo log buffer can have multiple redo
copy latches. These allow multiple processes to copy entries to the redo log buffer
concurrently. The number of redo copy latches is determined by the parameter
LOG_SIMULTANEOUS_COPIES; its default value is the number of CPUs available
to your Oracle instance.

On single-CPU computers, there should be no redo copy latches, because only one
process can by active at once. In this case, all redo entries are copied on the redo
allocation latch, regardless of size.

Examining Redo Log Activity

Heavy access to the redo log buffer can result in contention for redo log buffer
latches. Latch contention can reduce performance. Oracle collects statistics for the
activity of all latches and stores them in the dynamic performance table VSLATCH.
By default, this table is available only to the user SYS and to other users who have
SELECT ANY TABLE system privilege, such as SYSTEM.

Each row in the VSLATCH table contains statistics for a different type of latch. The

columns of the table reflect activity for different types of latch requests. The distinc-
tion between these types of requests is whether the requesting process continues to
request a latch if it is unavailable:

WILLING-TO- If the latch requested with a willing-to-wait request is not

WAIT available, the requesting process waits a short time and
requests the latch again. The process continues waiting and
requesting until the latch is available.

IMMEDIATE If the latch requested with an immediate request is not avail-
able, the requesting process does not wait, but continues pro-
cessing.

These columns of the VSLATCH table reflect willing-to-wait requests:

GETS shows the number of successful willing-to-wait requests for
a latch
MISSES shows the number of times an initial willing-to-wait request

was unsuccessful

SLEEPS shows the number of times a process waited and requested a
latch after an initial willing-to-wait request

For example, consider the case in which a process makes a willing-to-wait request
for a latch that is unavailable. The process waits and requests the latch again and

18-14 Oracle8 Tuning

Reducing Contention for Redo Log Buffer Latches

the latch is still unavailable. The process waits and requests the latch a third time
and acquires the latch. This activity increments the statistics as follows;

« The GETS value increases by one, since one request for the latch (the third
request) was successful.

« The MISSES value increases by one, since the initial request for the latch
resulted in waiting.

« The SLEEPS value increases by two, since the process waited for the latch
twice, once after the initial request and again after the second request.

These columns of the VSLATCH table reflect immediate requests:

IMMEDIATE GETS This column shows the number of successful imme-
diate requests for each latch.
IMMEDIATE MISSES This column shows the number of unsuccessful

immediate requests for each latch.

Use the following query to monitor the statistics for the redo allocation latch and
the redo copy latches over a period of time:

SELECT In.name, gets, misses, immediate_gets, immediate_misses
FROM v$latch |, v$latchname In
WHERE In.name IN (‘redo allocation’, redo copy’)
AND In.latch#t = | latch#,

The output of this query might look like this:

NAME GETS MISSES IMMEDIATE_GETS IMMEDIATE_MISSES
redoallo.. 252867 83 0 0
redo copy 0 0 22830 0

From the output of the query, calculate the wait ratio for each type of request.
Contention for a latch may affect performance if either of these conditions is true:
« if the ratio of MISSES to GETS exceeds 1%

« ifthe ratio of IMMEDIATE_MISSES to the sum of IMMEDIATE_GETS and
IMMEDIATE_MISSES exceeds 1%

If either of these conditions is true for a latch, try to reduce contention for that
latch. These contention thresholds are appropriate for most operating systems,
though some computers with many CPUs may be able to tolerate more contention
without performance reduction.

Tuning Resource Contention 18-15

Reducing Contention for the LRU Latch

Reducing Latch Contention

Most cases of latch contention occur when two or more Oracle processes concur-
rently attempt to obtain the same latch. Latch contention rarely occurs on single-
CPU computers, where only a single process can be active at once.

Reducing Contention for the Redo Allocation Latch

To reduce contention for the redo allocation latch, you should minimize the time
that any single process holds the latch. To reduce this time, reduce copying on the
redo allocation latch. Decreasing the value of the
LOG_SMALL_ENTRY_MAX_SIZE initialization parameter reduces the number
and size of redo entries copied on the redo allocation latch.

Reducing Contention for Redo Copy Latches

On multiple-CPU computers, multiple redo copy latches allow multiple processes
to copy entries to the redo log buffer concurrently. The default value of
LOG_SIMULTANEOUS_COPIES is the number of CPUs available to your Oracle
instance.

If you observe contention for redo copy latches, add more latches by increasing the
value of LOG_SIMULTANEOUS_COPIES. It can help to have up to twice as many
redo copy latches as CPUs available to your Oracle instance.

Reducing Contention for the LRU Latch

The LRU (least recently used) latch controls the replacement of buffers in the buffer
cache. For symmetric multiprocessor (SMP) systems, Oracle automatically sets the
number of LRU latches to be one half the number of CPUs on the system. For non-
SMP systems, one LRU latch is sufficient.

Contention for the LRU latch can impede performance on SMP machines with a
large number of CPUs. You can detect LRU latch contention by querying
VSLATCH, V$SESSION_EVENT, and V$SYSTEM_EVENT. To avoid contention,
consider bypassing the buffer cache or redesigning the application.

You can specify the number of LRU latches on your system with the initialization
parameter DB_BLOCK_LRU_LATCHES. This parameter sets the maximum value
for the desired number of LRU latches. Each LRU latch controls a set of buffers;
Oracle balances allocation of replacement buffers among the sets.

To select the appropriate value for DB_BLOCK_LRU_LATCHES, consider the fol-
lowing:

18-16 Oracle8 Tuning

Reducing Free List Contention

« The maximum number of latches is twice the number of CPUs in the system.
That is, the value of DB_ BLOCK _LRU_LATCHES can range from 1 to twice the
number of CPUs.

« Alatch should have no less than 50 buffers in its set; for small buffer caches
there is no added value if you select a larger number of sets. The size of the
buffer cache determines a maximum boundary condition on the number of sets.

« Do not create multiple latches when Oracle runs in single process mode. Oracle
automatically uses only one LRU latch in single process mode.

« If the workload on the instance is large, then you should have a higher number
of latches. For example, if you have 32 CPUs in your system, choose a number
between half the number of CPUs (16) and actual number of CPUs (32) in your
system.

Note: You cannot dynamically change the number of sets during the lifetime of the
instance.

Reducing Free List Contention

Free list contention can reduce the performance of some applications. This section
covers:

« ldentifying Free List Contention
« Adding More Free Lists

Identifying Free List Contention

Contention for free lists is reflected by contention for free data blocks in the buffer
cache. You can determine whether contention for free lists is reducing performance
by querying the dynamic performance table VSWAITSTAT.

The VSWAITSTAT table contains block contention statistics. By default, this table is
available only to the user SYS and to other users who have SELECT ANY TABLE
system privilege, such as SYSTEM.

Use the following procedure to find the segment names and free lists that have con-
tention:

1. Check VSWAITSTAT for contention on DATA BLOCKS.
2. Check V$SYSTEM_EVENT for BUFFER BUSY WAITS.

High numbers indicate that some contention exists.

Tuning Resource Contention 18-17

Reducing Free List Contention

3. Inthis case, check V$SESSION_WAIT to see, for each buffer busy wait, the val-
ues for FILE, BLOCK, and ID.

4. Construct a query as follows to obtain the name of the objects and free lists that
have the buffer busy waits:

SELECT SEGMENT _NAME, SEGMENT_TYPE
FROM DBA _EXTENTS

WHEREFILE D= file

AND BLOCK BETWEENlock id AND block id + blocks ;

This will return the segment name (segment) and type (type).
5. To find the free lists, query as follows:

SELECT SEGMENT_NAME, FREELISTS
FROM DBA SEGMENTS

WHERE SEGMENT_NAMEsegment
AND SEGMENT_TYPE =type ;

Adding More Free Lists

To reduce contention for the free lists of a table, re-create the table with a larger
value for the FREELISTS storage parameter. Increasing the value of this parameter
to the number of Oracle processes that concurrently insert data into the table may
improve performance of the INSERT statements.

Re-creating the table may simply involve dropping and creating it again. However,
you may want to use one of these means instead:

« Re-create the table by selecting data from the old table into a new table, drop-
ping the old table, and renaming the new one.

« Use Export and Import to export the table, drop the table, and import the table.
This measure avoids consuming space by creating a temporary table.

18-18 Oracle8 Tuning

Part V

Optimizing Parallel Execution

Part V discusses parallel execution tuning. The chapters in Part 5 are:
« Chapter 19, “Tuning Parallel Execution”
« Chapter 20, “Understanding Parallel Execution Performance Issues”

« Chapter 21, “Diagnosing Parallel Execution Performance Problems”

19

Tuning Parallel Execution

Parallel execution can dramatically reduce response time for data-intensive opera-
tions on very large databases. This chapter explains how to tune your system for
optimal performance of parallel operations.

« Introduction to Parallel Execution Tuning
« Step 1. Tuning System Parameters for Parallel Execution
« Step 2: Tuning Physical Database Layout for Parallel Execution

« Step 3: Analyzing Data

See Also: Oracle8 Concepts, for basic principles of parallel execution.

See your operating system-specific Oracle documentation for more information
about tuning while using parallel execution.

Tuning Parallel Execution 19-1

Introduction to Parallel Execution Tuning

Introduction to Parallel Execution Tuning

Parallel execution is useful for operations that access a large amount of data by way
of large table scans, large joins, the creation of large indexes, partitioned index
scans; bulk inserts, updates, deletes; aggregation or copying. It benefits systems
with all of the following characteristics:

« symmetric multiprocessors (SMP), clusters, or massively parallel systems
« high 170 bandwidth (that is, many datafiles on many different disk drives)

« underutilized or intermittently used CPUs (for example, systems where CPU
usage is typically less than 30%)

« sufficient memory to support additional memory-intensive processes such as
sorts, hashing, and 1/0 buffers

If any one of these conditions is not true for your system, parallel execution may not
significantly help performance. In fact, on over-utilized systems or systems with
small 170 bandwidth, parallel execution can impede system performance.

Note: In this chapter the term “parallel server process” designates a process (or a
thread, on NT systems) that is performing a parallel operation, as distinguished
from the product “Oracle Parallel Server”.

19-2 Oracle8 Tuning

Step 1: Tuning System Parameters for Parallel Execution

Step 1: Tuning System Parameters for Parallel Execution

Many initialization parameters affect parallel execution performance. For best
results, start with an initialization file that is appropriate for the intended applica-
tion.

Before starting the Oracle Server, set the initialization parameters described in this
section. The recommended settings are guidelines for a large data warehouse (more
than 100 gigabytes) on a typical high-end shared memory multiprocessor with one
or two gigabytes of memory. Each section explains how to modify these settings for
other configurations. Note that you can change some of these parameters dynami-
cally with ALTER SYSTEM or ALTER SESSION statements. The parameters are
grouped as follows:

« Parameters Affecting Resource Consumption for All Parallel Operations
« Parameters Affecting Resource Consumption for Parallel DML & Parallel DDL
« Parameters Enabling New Features

« Parameters Related to 170

Parameters Affecting Resource Consumption for All Parallel Operations

The parameters discussed in this section affect the consumption of memory and
other resources for all parallel operations, and in particular for parallel query.
Chapter 20, “Understanding Parallel Execution Performance Issues” describes in
detail how these parameters interrelate.

You must configure memory at two levels:

« atthe Oracle level, so that the system uses an appropriate amount of memory
from the operating system

« at the operating system level, for consistency. On some platforms you may
need to set operating system parameters which control the total amount of vir-
tual memory available, summed across all processes.

The SGA is typically part of the real physical memory. The SGA is static, of fixed
size; if you want to change its size you must shut down the database, make the
change, and restart the database.

The memory used in data warehousing operations is much more dynamic. It comes
out of process memory: and both the size of a process’ memory and the number of
processes can vary greatly.

Tuning Parallel Execution 19-3

Step 1: Tuning System Parameters for Parallel Execution

Process memory, in turn, comes from virtual memory. Total virtual memory should
be somewhat larger than available real memory, which is the physical memory
minus the size of the SGA. Virtual memory generally should not exceed twice the
size of the physical memory less the SGA size. If you make it many times more
than real memory, the paging rate may go up when the machine is overloaded at
peak times.

As a general guideline for memory sizing, note that each process needs address
space big enough for its hash joins. A dominant factor in heavyweight data ware-
housing operations is the relationship between memory, number of processes, and
number of hash join operations. Hash joins and large sorts are memory-intensive
operations, so you may want to configure fewer processes, each with a greater limit
on the amount of memory it can use. Bear in mind, however, that sort performance
degrades with increased memory use.

HASH_AREA_SIZE

Recommended value: Hash area size should be approximately half of the square
root of S, where S is the size (in MB) of the smaller of the inputs to the join opera-
tion. (The value should not be less than 1MB.)

This relationship can be expressed as follows:

HASH_AREA_SIZE >= “/_g

For example, if S equals 16MB, a minimum appropriate value for the hash area
might be 2MB, summed over all the parallel processes. Thus if you have 2 parallel
processes, a minimum appropriate size might be 1MB hash area size. A smaller
hash area would not be advisable.

For a large data warehouse, HASH_AREA_SIZE may range from 8MB to 32MB or
more.

This parameter provides for adequate memory for hash joins. Each process that per-
forms a parallel hash join uses an amount of memory equal to HASH_AREA_SIZE.

Hash join performance is more sensitive to HASH_AREA_SIZE than sort perfor-
mance is to SORT_AREA _SIZE. As with SORT_AREA_SIZE, too large a hash area
may cause the system to run out of memory.

The hash area does not cache blocks in the buffer cache; even low values of
HASH_AREA_SIZE will not cause this to occur. Too small a setting could, however,
affect performance.

19-4 Oracle8 Tuning

Step 1: Tuning System Parameters for Parallel Execution

Note that HASH_AREA_SIZE is relevant to parallel query operations, and to the
guery portion of DML or DDL statements.

See Also: "SORT_AREA _SIZE" on page 19-12

OPTIMIZER_PERCENT_PARALLEL
Recommended value: 100/number_of concurrent_users

This parameter determines how aggressively the optimizer attempts to parallelize a
given execution plan. OPTIMIZER_PERCENT_PARALLEL encourages the opti-
mizer to use plans that have low response time because of parallel execution, even
if total resource used is not minimized.

The default value of OPTIMIZER_PERCENT_PARALLEL is 0, which parallelizes
the plan that uses the least resource, if possible. Here, the execution time of the
operation may be long because only a small amount of resource is used. A value of
100 causes the optimizer always to choose a parallel plan unless a serial plan would
complete faster.

Note: Given an appropriate index a single record can be selected very quickly from
a table, and does not require parallelism. A full scan to find the single row can be
executed in parallel. Normally, however, each parallel process examines many
rows. In this case response time of a parallel plan will be higher and total system
resource use will be much greater than if it were done by a serial plan using an
index. With a parallel plan, the delay is shortened because more resource is used.
The parallel plan could use up to D times more resource, where D is the degree of
parallelism. A value between 0 and 100 sets an intermediate trade-off between
throughput and response time. Low values favor indexes; high values favor table
scans.

A nonzero setting of OPTIMIZER_PERCENT_PARALLEL will be overridden if you
use a FIRST_ROWS hint or set OPTIMIZER_MODE to FIRST_ROWS.

Tuning Parallel Execution 19-5

Step 1: Tuning System Parameters for Parallel Execution

PARALLEL_MAX_ SERVERS
Recommended value: 2 * CPUs * number_of concurrent_users

Most parallel operations need at most twice the number of parallel server processes
(sometimes called “query servers”) as the maximum degree of parallelism attrib-
uted to any table in the operation. By default this is at most twice the number of
CPUs. The following figure illustrates how the recommended value is derived.

Figure 19-1 PARALLEL_MAX_SERVERS =2 * CPUs * Users

CPU1 CPU 2 CPU 3 CPU 4

e B
@@@@@@@S’U'-

User 1

® ®© © 6 6 O @_‘-q‘_l]!_

User 2

e B
® ® ® ® @S’U‘—

User 3

To support concurrent users, add more parallel server processes. You probably
want to limit the number of CPU-bound processes to be a small multiple of the
number of CPUs (perhaps 4 to 16 times the number of CPUs). This would limit the
number of concurrent parallel execution statements to be in the range of 2 to 8.

Note that if a database’s users start up too many concurrent operations, Oracle may
run out of parallel server processes. In this case, Oracle executes the operation
sequentially or gives an error if PARALLEL_MIN_PERCENT is set.

19-6 Oracle8 Tuning

Step 1: Tuning System Parameters for Parallel Execution

When concurrent users use too many parallel server processes, memory contention
(paging), 170 contention, or excessive context switching can occur. This contention
could reduce system throughput to a level lower than if no parallel execution were
used. Increase the PARALLEL _MAX_SERVERS value only if your system has suffi-
cient memory and 1/0 bandwidth for the resulting load. Limiting the total number
of parallel server processes may restrict the number of concurrent users that can
execute parallel operations, but system throughput will tend to remain stable.

To increase the number of concurrent users, you could restrict the number of con-
current sessions that various classes of user can have. For example:

« You can set a large limit for users running batch jobs.
« You could set a medium limit for users performing analyses.
= You could prohibit a particular class of user from using parallelism at all.

You can limit the amount of parallelism available to a given user by setting up a
resource profile associated with the user. In this way you can limit the number of
sessions or concurrent logons, which limits the number of parallel processes the
user can have. (Each parallel server process working on your parallel execution
statement is logged on as you—it counts against your limit of concurrent sessions.)
For example, to limit a user to 10 processes, the DBA would set the user’s limit to
11: one process for the parallel coordinator, and ten more parallel processes which
would consist of two server sets. The user’s maximum degree of parallelism would
thus be 5.

On Oracle Parallel Server, if you have reached the limit of
PARALLEL_MAX_SERVERS on an instance and you attempt to query a GV$ view,
one additional parallel server process will be spawned for this purpose. The extra
process is not available for any parallel operation other than GV$ queries.

See Also: "The Formula for Memory, Users, and Parallel Server Processes" on page
20-2 for further information on balancing concurrent users, degree of parallelism,
and resources consumed.

Oracle8 Administrator’s Guide for more information about managing resources with
user profiles.

Oracle8 Parallel Server Concepts & Administration for more information on querying
GV$ views.

Tuning Parallel Execution 19-7

Step 1: Tuning System Parameters for Parallel Execution

PARALLEL_MIN_SERVERS
Recommended value: PARALLEL_MAX_SERVERS

The system parameter PARALLEL_MIN_SERVERS allows you to specify the num-
ber of processes to be started and reserved for parallel operations at startup in a sin-
gle instance. The syntax is:

PARALLEL_MIN_SERVERS=n

where n is the number of processes you want to start and reserve for parallel opera-
tions. Sometimes you may not be able to increase the maximum number of parallel
server processes for an instance, because the maximum number depends on the
capacity of the CPUs and the 1/0 bandwidth (platform-specific issues). However, if
servers are continuously starting and shutting down, you should consider increas-
ing the value of the parameter PARALLEL_MIN_SERVERS.

For example, if you have determined that the maximum number of concurrent par-
allel server processes that your machine can manage is 100, you should set
PARALLEL_MAX_SERVERS to 100. Next determine how many parallel server pro-
cesses the average operation needs, and how many operations are likely to be exe-
cuted concurrently. For this example, assume you will have two concurrent
operations with 20 as the average degree of parallelism. At any given time, there
could be 80 parallel server processes busy on an instance. You should therefore set
the parameter PARALLEL_MIN_SERVERS to 80.

Consider decreasing PARALLEL_MIN_SERVERS if fewer parallel server processes
than this value are typically busy at any given time. Idle parallel server processes
constitute unnecessary system overhead.

Consider increasing PARALLEL_MIN_SERVERS if more parallel server processes
than this value are typically active, and the “Servers Started” statistic of
V$PQ_SYSSTAT is continuously growing.

The advantage of starting these processes at startup is the reduction of process cre-
ation overhead. Note that Oracle reserves memory from the shared pool for these
processes; you should therefore add additional memory using the initialization
parameter SHARED_POOL_SIZE to compensate. Use the following formula to
determine how much memory to add:

(CPUs + 2) * (PARALLEL_MIN_SERVERS) * 1.5 * (BLOCK_SIZE)

19-8 Oracle8 Tuning

Step 1: Tuning System Parameters for Parallel Execution

PARALLEL_ADAPTIVE_MULTI_USER
Recommended value: FALSE

On sites that have no clear usage profile, no consistent pattern of usage, you can
use the PARALLEL_ADAPTIVE_MULTI_USER parameter to tune parallel execu-
tion for a multi-user environment. When set to TRUE, this parameter automatically
reduces the requested degree of parallelism based on the current number of active
parallel execution users on the system. The effective degree of parallelism is based
on the degree of parallelism set by the table attributes or hint, divided by the total
number of parallel execution users. Oracle assumes that the degree of parallelism
provided has been tuned for optimal performance in a single user environment.

Note: This approach may not be suited for the general tuning policies you have
implemented at your site. For this reason you should test and understand its
effects, given your normal workload, before deciding to use it.

Note in particular that the degree of parallelism is not dynamic, but adaptive. It
works best during a steady state when the number of users remains fairly constant.
When the number of users increases or decreases drastically, the machine may be
over- or under-utilized. For best results, use a parallel degree which is slightly
greater than the number of processors. Based on available memory, the system can
absorb an extra load. Once the degree of parallelism is chosen, it is kept during the
entire query.

Consider, for example, a 16 CPU machine with the default degree of parallelism set
to 32. If one user issues a parallel query, that user gets a degree of 32, effectively uti-
lizing all of the CPU and memory resources in the system. If two users issue paral-
lel queries, each gets a degree of 16. As the number of users on the system
increases, the degree of parallelism continues to be reduced until a maximum of 32
users are running with degree 1 parallelism.

This parameter works best when used in single-node symmetric multiprocessors
(SMPs). However, it can be set to TRUE when using Oracle Parallel Server if all of
the following conditions are true:

* All parallel execution users connect to the same node.
* Instance groups are not configured.
* Each node has more than one CPU.

In this case, Oracle attempts to reduce the instances first, then the degree. If any of
the above conditions is not met, and the parameter is set to TRUE, the algorithm
may reduce parallelism excessively, causing unnecessary idle time.

Tuning Parallel Execution 19-9

Step 1: Tuning System Parameters for Parallel Execution

SHARED_POOL_SIZE

Recommended value: default plus
(3 * msgbuffer_size) * (CPUs + 2) * PARALLEL_MAX_SERVERS

Increase the initial value of this parameter to provide space for a pool of message
buffers that parallel server processes can use to communicate with each other.

Note: The message buffer size might be 2 K or 4 K, depending on the platform.
Check your platform vendor’s documentation for details.

As illustrated in the following figure, assuming 4 concurrent users and 2 K buffer
size, you would increase SHARED_POOL_SIZE by 6 K * (CPUs + 2) *
PARALLEL_MAX_SERVERS for a pool of message buffers that parallel server pro-
cesses use to communicate. This value grows quadratically with the degree of paral-
lelism, if you set PARALLEL_MAX_SERVERS to the recommended value. (This is
because the recommended values of PARALLEL_MAX_SERVERS and
SHARED_POOL_SIZE both are calculated using the square root of the number of
CPUs—a quadratic function.)

Figure 19-2 Increasing SHARED_POOL_SIZE with Degree of Parallelism

140

120
100
80
60
40

20

Additional Shared Pool Size (MB)

10 20 30 40 50 60 70

Number of CPUs

19-10 Oracle8 Tuning

Step 1: Tuning System Parameters for Parallel Execution

Parallel plans take up about twice as much space in the SQL area as serial plans,
but additional space allocation is probably not necessary because generally they are
not shared.

On Oracle Parallel Server, multiple CPUs can exist in a single node, and parallel
operation can be performed across nodes. Whereas symmetric multiprocessor
(SMP) systems use 3 buffers for connection, 4 buffers are used to connect between
instances on Oracle Parallel Server. Thus you should normally have 4 buffers in
shared memory: 2 in the local shared pool and 2 in the remote shared pool. The for-
mula for increasing the value of SHARED_ POOL_SIZE on Oracle Parallel Server
becomes:

(4 * msgbuffer_size) * ((CPUs_per_node * #nodes) + 2) * (PARALLEL_MAX_SERVERS * #nodes)

Note that the degree of parallelism on Oracle Parallel Server is expressed by the
number of CPUs per node multiplied by the number of nodes.

Tuning Parallel Execution 19-11

Step 1: Tuning System Parameters for Parallel Execution

SORT_AREA_SIZE
Sample Range: 256 Kto 4 M

This parameter specifies the amount of memory to allocate per parallel server pro-
cess for sort operations. If memory is abundant on your system, you can benefit
from setting SORT_AREA_SIZE to a large value. This can dramatically increase the
performance of hash operations, because the entire operation is more likely to be
performed in memory. However, if memory is a concern for your system, you may
want to limit the amount of memory allocated for sorts and hashing operations.
Instead, increase the size of the buffer cache so that data blocks from temporary
sort segments can be cached in the buffer cache.

If the sort area is too small, an excessive amount of 1/0 will be required to merge a
large number of runs. If the sort area size is smaller than the amount of data to sort,
then the sort will spill to disk, creating sort runs. These must then be merged again
using the sort area. If the sort area size is very small, there will be many runs to
merge, and multiple passes may be necessary. The amount of I/0 increases as the
sort area size decreases.

If the sort area is too large, the operating system paging rate will be excessive. The
cumulative sort area adds up fast, because each parallel server can allocate this
amount of memory for each sort. Monitor the operating system paging rate to see if
too much memory is being requested.

Note that SORT_AREA_SIZE is relevant to parallel query operations and to the
guery portion of DML or DDL statements. All CREATE INDEX statements must do
some sorting to generate the index. These include:

« CREATE INDEX

« direct-load INSERT (if an index is involved)
« ALTERINDEX ... REBUILD

See Also: "HASH_AREA_SIZE" on page 19-4

19-12 Oracle8 Tuning

Step 1: Tuning System Parameters for Parallel Execution

Parameters Affecting Resource Consumption for Parallel DML & Parallel DDL

Parallel INSERT, UPDATE, and DELETE require more resources than do serial
DML operations. Likewise, PARALLEL CREATE TABLE ... AS SELECT and PAR-
ALLEL CREATE INDEX may require more resources. For this reason you may
need to increase the value of several additional initialization parameters. Note that
these parameters do not affect resources for queries.

See Also: Oracle8 SQL Reference for complete information about parameters.

TRANSACTIONS

For parallel DML, each parallel server process starts a transaction. The parallel coor-
dinator uses the two-phase commit protocol to commit transactions; therefore the
number of transactions being processed increases by the degree of parallelism. You
may thus need to increase the value of the TRANSACTIONS initialization parame-
ter, which specifies the maximum number of concurrent transactions. (The default
assumes no parallelism.) For example, if you have degree 20 parallelism you will
have 20 more new server transactions (or 40, if you have two server sets) and 1
coordinator transaction; thus you should increase TRANSACTIONS by 21 (or 41), if
they are running in the same instance.

ROLLBACK_SEGMENTS

The increased number of transactions for parallel DML necessitates many rollback
segments. For example, one command with degree 5 parallelism uses 5 server trans-
actions, which should be distributed among different rollback segments. The roll-
back segments should belong to tablespaces that have free space. The rollback
segments should be unlimited, or you should specify a high value for the MAXEX-
TENTS parameter of the STORAGE clause. In this way they can extend and not run
out of space.

LOG_BUFFER

Check the statistic “redo buffer allocation retries” in the V$SYSSTAT view. If this
value is high, try to increase the LOG_BUFFER size. A common LOG_BUFFER size
for a system generating lots of logs is 3 to 5SMB. If the number of retries is still high
after increasing LOG_BUFFER size, a problem may exist with the disk where the
log buffers reside. In that case, stripe the log files across multiple disks in order to
increase the 1/0 bandwidth.

Note that parallel DML generates a good deal more redo than does serial DML,
especially during inserts, updates and deletes.

Tuning Parallel Execution 19-13

Step 1: Tuning System Parameters for Parallel Execution

DML_LOCKS

This parameter specifies the maximum number of DML locks. Its value should
equal the grand total of locks on tables referenced by all users. A parallel DML
operation’s lock and enqueue resource requirement is very different from serial
DML. Parallel DML holds many more locks, so you should increase the value of the
ENQUEUE_RESOURCES and DML_LOCKS parameters, by a equal amounts.

The following table shows the types of lock acquired by coordinator and server pro-
cesses, for different types of parallel DML statements. Using this information you
can figure the value required for these parameters. Note that a server process can
work on one or more partitions, but a partition can only be worked on by one
server process (this is different from parallel query).

Table 19-1 Locks Acquired by Parallel DML Statements

Type of statement Coordinator acquires: Each server process acquires:
Parallel UPDATE/DELETE into 1 table lock SX 1 table lock SX
partitioned table; WHERE clause 1 partition lock X, per partition 1 partition lock NULL per partition

specifies the partition involved

1 partition-wait lock X per partition

Parallel UPDATE/DELETE/ 1 table lock SX 1 table lock SX

INSERT into partitioned table

partition locks X for all partitions 1 partition lock NULL per partition

1 partition-wait lock X per partition

Parallel INSERT into non-parti- 1 table lock X none

tioned table

Note: Table, partition, and partition-wait DML locks all appear as TM locks in the
V$LOCK view.

19-14 Oracle8 Tuning

Step 1: Tuning System Parameters for Parallel Execution

Consider a table with 600 partitions, running with parallel degree 100, assuming all
partitions are involved in the parallel UPDATE/DELETE statement.

The coordinator acquires: 1 table lock SX
600 partition locks X
Total server processes acquire: 100 table locks SX
600 partition locks NULL
600 partition-wait locks X

ENQUEUE_RESOURCES

This parameter sets the number of resources that can be locked by the distributed
lock manager. Parallel DML operations require many more resources than serial
DML. Therefore, you should increase the value of the ENQUEUE_RESOURCES
and DML_LOCKS parameters, by equal amounts.

See Also: "DML_LOCKS" on page 19-14

Tuning Parallel Execution 19-15

Step 1: Tuning System Parameters for Parallel Execution

Parameters Enabling New Features
Set these parameters in order to use the latest available Oracle 8 functionality.

Note: Use partitioned tables instead of partition views. Partition views will be obso-
leted in a future release.

ALWAYS_ANTI_JOIN
Recommended value: HASH

When set to HASH, this parameter causes the NOT IN operator to be evaluated in
parallel using a parallel hash anti-join. Without this parameter set to HASH, NOT
IN is evaluated as a (sequential) correlated subquery.

Figure 19-3 Parallel Hash Anti-join

EMP DEPT

IN, JOIN NOT IN, ANTI-JOIN
Employees in Employees not in
(Shipping, Receiving) (Shipping, Receiving)

As illustrated above, the SQL IN predicate can be evaluated using a join to intersect
two sets. Thus emp.deptno can be joined to dept.deptno to yield a list of employees
in a set of departments.

Alternatively, the SQL NOT IN predicate can be evaluated using an anti-join to sub-
tract two sets. Thus emp.deptno can be anti-joined to dept.deptno to select all
employees who are not in a set of departments. Thus you can get a list of all
employees who are not in the Shipping or Receiving departments.

For a specific query, place the MERGE_AJ or HASH_AJ hints into the NOT IN sub-
guery. MERGE_AJ uses a sort-merge anti-join and HASH_AJ uses a hash anti-join.

19-16 Oracle8 Tuning

Step 1: Tuning System Parameters for Parallel Execution

For example:

SELECT *FROM emp

WHERE ename LIKE 'J% AND

deptno IS NOT NULL AND

deptno NOT IN (SELECT /+HASH_AJ* deptno FROM dept
WHERE deptno IS NOT NULL AND

loc="DALLAS);

If you wish the anti-join transformation always to occur if the conditions in the pre-
vious section are met, set the ALWAYS_ANTI_JOIN initialization parameter to
MERGE or HASH. The transformation to the corresponding anti-join type then
takes place whenever possible.

ALWAYS_SEMI_JOIN
Recommended value: default

When set to HASH, this parameter converts a correlated EXISTS subquery into a
view query block and semi-join which is evaluated in parallel.

For a specific query, place the HASH_SJ or MERGE_SJ hint into the EXISTS sub-
qguery. HASH_SJ uses a hash semi-join and MERGE_SJ uses a sort merge semi-join.
For example:

SELECT *FROMtL

WHERE EXISTS (SELECT /++ HASH_SJ** FROM 2
WHERE tL.c1=t2.cl
AND 2.3 >5);

This converts the subquery into a special type of join between t1 and t2 that pre-
serves the semantics of the subquery; that is, even if there is more than one match-
ing row in t2 for a row in t1, the row in t1 will be returned only once.

A subquery will be evaluated as a semi-join only with the following limitations:

= There can only be one table in the subquery.

« The outer query block must not itself be a subquery.

« The subquery must be correlated with an equality predicate.

« The subquery must have no GROUP BY, CONNECT BY, or rownum references.

If you wish the semi-join transformation always to occur if the conditions in the pre-
vious section are met, set the ALWAYS_SEMI_JOIN initialization parameter to
HASH or MERGE. The transformation to the corresponding semi-join type then
takes place whenever possible.

Tuning Parallel Execution 19-17

Step 1: Tuning System Parameters for Parallel Execution

COMPATIBLE
Sample Value: 8.0.0
This parameter enables new features that may prevent you from falling back to an

earlier release. To be sure that you are getting the full benefit of the latest perfor-
mance features, set this parameter equal to the current release.

Note: Make a full backup before you change the value of this parameter.

PARALLEL_BROADCAST _ENABLE
Recommended value: default

You can set this parameter to TRUE if you are joining a very large join result set
with a very small result set (size being measured in bytes, rather than number of
rows). In this case, the optimizer has the option of broadcasting the row sources of
the small result set, such that a single table queue will send all of the small set’s
rows to each of the parallel servers which are processing the rows of the larger set.
The result is enhanced performance.

Note that this parameter, which cannot be set dynamically, affects only hash joins
and merge joins.

19-18 Oracle8 Tuning

Step 1: Tuning System Parameters for Parallel Execution

Parameters Related to I/0

Tune the following parameters to ensure that 1/0 operations are optimized for par-
allel execution.

DB_BLOCK_BUFFERS

When you perform parallel updates and deletes, the buffer cache behavior is very
similar to any system running a high volume of updates. For more information see
"Tuning the Buffer Cache" on page 14-26.

DB_BLOCK_SIZE
Recommended value: 8K or 16K

The database block size must be set when the database is created. If you are creat-
ing a new database, use a large block size.

DB _FILE_MULTIBLOCK_READ_COUNT
Recommended value: 8, for 8K block size; 4, for 16K block size

This parameter determines how many database blocks are read with a single oper-
ating system READ call. Many platforms limit the number of bytes read to 64K, lim-
iting the effective maximum for an 8K block size to 8. Other platforms have a
higher limit. For most applications, 64K is acceptable. In general, use the formula:

DB_FILE_MULTIBLOCK_READ_COUNT = 64K/DB_BLOCK_SIZE.

HASH_MULTIBLOCK_IO_COUNT
Recommended value: 4

This parameter specifies how many blocks a hash join reads and writes at once.
Increasing the value of HASH_MULTIBLOCK_10_COUNT decreases the number
of hash buckets. If a system is 1/0 bound, you can increase the efficiency of 1/0 by
having larger transfers per 1/0.

Because memory for 1/0 buffers comes from the HASH_AREA_SIZE, larger 1/0
buffers mean fewer hash buckets. There is a trade-off, however. For large tables
(hundreds of gigabytes in size) it is better to have more hash buckets and slightly
less efficient 1/0s. If you find an I/0 bound condition on temporary space during
hash join, consider increasing the value of HASH_MULTIBLOCK_IO_COUNT.

Tuning Parallel Execution 19-19

Step 1: Tuning System Parameters for Parallel Execution

PARALLEL_EXECUTION_MESSAGE_SIZE
Recommended value: default
This parameter specifies the size of messages for parallel execution. The default

value, which is operating system specific, should be adequate for most applica-
tions. Larger values would require a larger shared pool.

SORT_DIRECT_WRITES
Recommended value: AUTO

When this parameter is set to AUTO and SORT_AREA_SIZE is greater than 10
times the buffer size, this parameter causes the buffer cache to be bypassed for the
writing of sort runs.

Reading through the buffer cache may result in greater path length, excessive mem-
ory bus utilization, and LRU latch contention on SMPs. Avoiding the buffer cache
can thus provide performance improvement by a factor of 3 or more. It also
removes the need to tune buffer cache and DBWn parameters.

Excessive paging is a symptom that the relationship of memory, users, and parallel
server processes is out of balance. To rebalance it, you can reduce the sort or hash
area size. You can limit the amount of memory for sorts if SORT_DIRECT_WRITES
is set to AUTO but the SORT_AREA_SIZE is small. Then sort blocks will be cached
in the buffer cache. Note that SORT_DIRECT_WRITES has no effect on hashing.

See Also: "HASH_AREA_SIZE" on page 19-4

SORT_READ_FAC
Recommended value: depends on disk speed

This value is a ratio that sets the amount of time needed to read a single database
block, divided by the block transfer rate.

See Also: Oracle8 Reference and your Oracle platform-specific documentation for
more information about setting this parameter.

19-20 Oracle8 Tuning

Step 1: Tuning System Parameters for Parallel Execution

DISK_ASYNCH_IO and TAPE_ASYNCH_IO
Recommended value: TRUE

These parameters enable or disable the operating system’s asynchronous 1/0 facil-
ity. They allow parallel server processes to overlap 1/0 requests with processing
when performing table scans. If the operating system supports asynchronous 1/0,
leave these parameters at the default value of TRUE.

Figure 19-4 Asynchronous Read

Synchronous read

1/0: CPU: 1/0: CPU:
read block #1 process block #1 | read block #2 process block #2

Asynchronous read

1/0: CPU:
read block #1 process block #1
1/0: CPU:
read block #2 process block #2

Asynchronous operations are currently supported with parallel table scans and
hash joins only. They are not supported for sorts, or for serial table scans. In addi-
tion, this feature may require operating system specific configuration and may not
be supported on all platforms. Check your Oracle platform-specific documentation.

Note: If asynchronous 1/0 behavior is not natively available, you can simulate it by
deploying 1/0 server processes using the following parameters:
DBWR_IO_SLAVES, LGWR_IO_SLAVES, BACKUP_DISK_IO_SLAVES, and
BACKUP_TAPE_IO_SLAVES. Whether or not you use 170 servers is independent
of the availability of asynchronous 1/0 from the platform. Although 1/0 server
processes can be deployed even when asynchronous 1/0 is available, Oracle does
not recommend this practice.

Tuning Parallel Execution 19-21

Step 2: Tuning Physical Database Layout for Parallel Execution

Step 2: Tuning Physical Database Layout for Parallel Execution

This section describes how to tune the physical database layout for optimal perfor-
mance of parallel execution.

« Types of Parallelism

« Striping Data

« Partitioning Data

« Determining the Degree of Parallelism

« Populating the Database Using Parallel Load

« Setting Up Temporary Tablespaces for Parallel Sort and Hash Join
« Creating Indexes in Parallel

« Additional Considerations for Parallel DML Only

Types of Parallelism

Different parallel operations use different types of parallelism. The physical data-
base layout you choose should depend on what parallel operations are most preva-
lent in your application.

The basic unit of parallelism is a called a granule. The operation being parallelized
(atable scan, table update, or index creation, for example) is divided by Oracle into
granules. Parallel server processes execute the operation one granule at a time. The
number of granules and their size affect the degree of parallelism you can use, and
how well the work is balanced across parallel server processes.

Block Range Granules

Block range granules are the basic unit of most parallel operations (exceptions
include such operations as parallel DML and CREATE LOCAL INDEX). This is
true even on partitioned tables; it is the reason why, on Oracle, the parallel degree
is not related to the number of partitions. Block range granules are ranges of physi-
cal blocks from the table. Because they are based on physical data addresses, you
can size block range granules to allow better load balancing. Block range granules
permit dynamic parallelism that does not depend on static preallocation of tables
or indexes. On SMP systems granules are located on different devices in order to
drive as many disks as possible. On many MPP systems, block range granules are
preferentially assigned to parallel server processes that have physical proximity to
the disks storing the granules. Block range granules are used with global striping.

19-22 Oracle8 Tuning

Step 2: Tuning Physical Database Layout for Parallel Execution

When block range granules are used predominantly for parallel access to a table or
index, administrative considerations such as recovery, or using partitions for delet-
ing portions of data, may influence partition layout more than performance consid-
erations. If parallel execution operations frequently take advantage of partition
pruning, it is important that the set of partitions accessed by the query be striped
over at least as many disks as the degree of parallelism.

See Also: For MPP systems, see your platform-specific documentation

Partition Granules

When partition granules are used, a parallel server process works on an entire parti-
tion of a table or index. Because partition granules are statically determined when a
table or index is created, partition granules do not allow as much flexibility in paral-
lelizing an operation. This means that the degree of parallelism possible might be
limited, and that load might not be well balanced across parallel server processes.

Partition granules are the basic unit of parallel index range scans and parallel opera-
tions that modify multiple partitions of a partitioned table or index. These opera-
tions include parallel update, parallel delete, parallel direct-load insert into
partitioned tables, parallel creation of partitioned indexes, and parallel creation of
partitioned tables.

When partition granules are used for parallel access to a table or index, it is impor-
tant that there be a relatively large number of partitions (at least three times the
degree of parallelism), so that work can be balanced across the parallel server pro-
cesses.

See Also: Oracle8 Concepts for information on disk striping and partitioning.

Tuning Parallel Execution 19-23

Step 2: Tuning Physical Database Layout for Parallel Execution

Striping Data

To avoid 1/0 bottlenecks, you should stripe all tablespaces accessed in parallel
over at least as many disks as the degree of parallelism. Stripe over at least as many
devices as CPUs. You should stripe tablespaces for tables, tablespaces for indexes,
and temporary tablespaces. You must also spread the devices over controllers, 1/0
channels, and/or internal busses.

Figure 19-5 Striping Objects Over at Least as Many Devices as CPUs

l:ControIIer:I_\ EControIIer 2:|

N N— 1 N— 1

1 1 i 1 — tablespacel
N1 N——1 MN——— N

2 2 ‘12 2 | tablespace 2
N N——1 N— 1 N

3 3 i 3 | tablespace 3
N N N——— N———

4 4 4 4 —+— tablespace 4

To stripe data during load, use the FILE= clause of parallel loader to load data from
multiple load sessions into different files in the tablespace. For any striping to be
effective, you must ensure that enough controllers and other 1/0 components are
available to support the bandwidth of parallel data movement into and out of the
striped tablespaces.

The operating system or volume manager can perform striping (OS striping), or
you can perform striping manually for parallel operations.

Operating system striping with a large stripe size (at least 64K) is recommended,
when possible. This approach always performs better than manual striping, espe-
cially in multi-user environments.

19-24 Oracle8 Tuning

Step 2: Tuning Physical Database Layout for Parallel Execution

Operating System Striping

Operating system striping is usually flexible and easy to manage. It supports multi-
ple users running sequentially as well as single users running in parallel. Two main
advantages make OS striping preferable to manual striping, unless the system is
very small or availability is the main concern:

« For parallel scan operations (such as full table scan or fast full scan), operating
system striping increases the number of disk seeks. Nevertheless, this is largely
compensated by the large 1/0 size (DB_BLOCK_SIZE *
MULTIBLOCK_READ_COUNT), which should enable this operation to reach
the maximum 170 throughput that your platform can deliver. Note that this
maximum is in general limited by the number of controllers or I/0 buses of the
platform, not by the number of disks (unless you have a very small configura-
tion).

» For index probes (for example, within a nested loop join or parallel index range
scan), operating system striping enables you to avoid hot spots: /0 will be
more evenly distributed across the disks.

Stripe size must be at least as large as the 170 size. If stripe size is larger than 1/0
size by a factor of 2 or 4, then certain tradeoffs may arise. The large stripe size can
be beneficial because it allows the system to perform more sequential operations on
each disk; it decreases the number of seeks on disk. The disadvantage is that it
reduces the 1/0 parallelism so that fewer disks are active at the same time. If you
should encounter problems in this regard, increase the 1/0 size of scan operations
(going, for example, from 64K to 128K), rather than changing the stripe size. Note
that the maximum 1/0 size is platform specific (in a range, for example, of 64K to
1MB).

With OS striping, from a performance standpoint, the best layout is to stripe data,
indexes, and temporary tablespaces across all the disks of your platform. In this
way, maximum 170 performance (both in term of throughput and number of 1/0s
per second) can be reached when one object is accessed by a parallel operation. If
multiple objects are accessed at the same time (as in a multi-user configuration),
striping will automatically limit the contention. If availability is a major concern,
associate this scheme with hardware redundancy (for example RAID5), which per-
mits both performance and availability.

Tuning Parallel Execution 19-25

Step 2: Tuning Physical Database Layout for Parallel Execution

Manual Striping

Manual striping can be done on all platforms. This requires more DBA planning
and effort to set up. For manual striping add multiple files, each on a separate disk,
to each tablespace. The main problem with manual striping is that the degree of
parallelism is more a function of the number of disks than of the number of CPUs.
This is because it is necessary to have one server process per datafile to drive all the
disks and limit the risk of being 170 bound. Also, this scheme is very sensitive to
any skew in the datafile size which can affect the scalability of parallel scan opera-
tions.

See Also: Oracle8 Concepts for information on disk striping and partitioning.
For MPP systems, see your platform-specific Oracle documentation regarding the
advisability of disabling disk affinity when using operating system striping.

Local and Global Striping

Local striping, which applies only to partitioned tables and indexes, is a form of
non-overlapping disk-to-partition striping. Each partition has its own set of disks
and files, as illustrated in Figure 19-6. There is no overlapping disk access, and no
overlapping files.

Advantages of local striping are that if one disk fails it will not affect other parti-
tions, and you still have some striping even if you have data in only one partition.

A disadvantage of local striping is that you need many more disks to implement
it—each partition requires a few disks of its own. Another major disadvantage is
that after partition pruning to only a single or a few partitions, the system will have
limited 170 bandwidth. As a result, local striping is not very practical for parallel
operations. For this reason, consider local striping only if your main concern is
availability, and not parallel execution. A good compromise might be to use global
striping associated with RAIDS5, which permits both performance and availability.

Figure 19-6 Local Striping

Partition 1 Partition 2

Stripe 1 Stripe 3
Stripe 2 Stripe 4

19-26 Oracle8 Tuning

Step 2: Tuning Physical Database Layout for Parallel Execution

Global striping, illustrated in Figure 19-7, entails overlapping disks and partitions.

Figure 19-7 Global Striping

Partition 1 Partition 2

SSeS

Global striping is advantageous if you have partition pruning and need to access
data only in one partition. Spreading the data in that partition across many disks
improves performance for parallel query operations. A disadvantage of global strip-
ing is that if one disk fails, all partitions are affected.

See Also: "Striping and Media Recovery" on page 19-30

Tuning Parallel Execution 19-27

Step 2: Tuning Physical Database Layout for Parallel Execution

How to Analyze Striping
Relationships. To analyze striping, consider the following relationships:

Figure 19-8 Cardinality of Relationships

1 1 1

p s f
table < partitions > tablespace < files devices

W 3
/N>

Figure 19-8 shows the cardinality of the relationships between objects in the stor-
age system. For every table there may be p partitions; there may be s partitions for
every tablespace, f files for every tablespace, and m files to n devices (a many-to-
many relationship).

Goals. You may wish to stripe an object across devices for the sake of one of three
goals:

« Goal 1: To optimize full table scans. This translates to placing a table on many
devices.

« Goal 2: To optimize availability. This translates to restricting the tablespace to
few devices.

« Goal 3: To optimize partition scans. This translates to achieving intra-partition
parallelism by placing each partition on many devices.

To attain both Goal 1 and Goal 2 (having the table reside on many devices, with the
highest possible availability) you can maximize the number of partitions (p) and
minimize the number of partitions per tablespace (s).

For highest availability, but least intra-partition parallelism, place each partition in
its own tablespace; do not used striped files; and use one file per tablespace. To min-
imize #2, set fand n equal to 1.

Notice that the solution that minimizes availability maximizes intra-partition paral-
lelism. Goal 3 conflicts with Goal 2 because you cannot simultaneously maximize
the formula for Goal 3 and minimize the formula for Goal 2. You must compromise
if you are interested in both goals.

19-28 Oracle8 Tuning

Step 2: Tuning Physical Database Layout for Parallel Execution

Goal 1: To optimize full table scans. Having a table on many devices is beneficial
because full table scans are scalable.

Calculate the number of partitions multiplied by the number of files in the
tablespace multiplied by the number of devices per file. Divide this product by the
number of partitions that share the same tablespace, multiplied by the number of
files that share the same device. The formula is as follows:

pefen
Sem

Number of devices per table =
You can do this by having t partitions, with every partition in its own tablespace, if
every tablespace has one file, and these files are not striped.
tx1/px1x1, uptotdevices

If the table is not partitioned, but is in one tablespace, one file, it should be striped
over n devices.

1x1lxn

Maximum t partitions, every partition in its own tablespace, f files in each
tablespace, each tablespace on striped device:

t x f x n devices

Goal 2: To optimize availability. Restricting each tablespace to a small number of
devices and having as many partitions as possible helps you achieve high availabil-
ity.

fen

Number of devices per tablespace =

Availability is maximized when f = n=m =1 and p is much greater than 1.

Goal 3: To optimize partition scans. Achieving intra-partition parallelism is benefi-
cial because partition scans are scalable. To do this, place each partition on many
devices.

fen

Number of devices per partition = —
Sem

Partitions can reside in a tablespace that can have many files. There could be either
« many files per tablespace, or

« striped file

Tuning Parallel Execution 19-29

Step 2: Tuning Physical Database Layout for Parallel Execution

Striping and Media Recovery

Striping affects media recovery. Loss of a disk usually means loss of access to all
objects that were stored on that disk. If all objects are striped over all disks, then
loss of any disk takes down the entire database. Furthermore, you may need to
restore all database files from backups, even if each file has only a small fraction
actually stored on the failed disk.

Often, the same OS subsystem that provides striping also provides mirroring. With
the declining price of disks, mirroring can provide an effective supplement to back-
ups and log archival--but not a substitute for them. Mirroring can help your system
recover from a device failure more quickly than with a backup, but is not as robust.
Mirroring does not protect against software faults and other problems that an inde-
pendent backup would protect your system against. Mirroring can be used effec-
tively if you are able to reload read-only data from the original source tapes. If you
do have a disk failure, restoring the data from the backup could involve lengthy
downtime, whereas restoring it from a mirrored disk would enable your system to
get back online quickly.

Even cheaper than mirroring is RAID technology, which avoids full duplication in
favor of more expensive write operations. For read-mostly applications, this may
suffice.

Note: RAID5 technology is particularly slow on write operations. This slowness
may affect your database restore time to a point that RAID5 performance is unac-
ceptable.

See Also: For a discussion of manually striping tables across datafiles, refer to
"Striping Disks" on page 15-23.

For a discussion of media recovery issues, see "Backup and Recovery of the Data
Warehouse" on page 6-8.

For more information about automatic file striping and tools you can use to deter-
mine I/0 distribution among your devices, refer to your operating system docu-
mentation.

19-30 Oracle8 Tuning

Step 2: Tuning Physical Database Layout for Parallel Execution

Partitioning Data

Partitioned tables and indexes can improve the performance of operations in a data
warehouse. Partitioned tables and indexes allow at least the same parallelism as
non-partitioned tables and indexes. In addition, partitions of a table can be pruned
based on predicates and values in the partitioning column. Range scans on parti-
tioned indexes can be parallelized, and insert, update and delete operations can be
parallelized.

To avoid 1/0 bottlenecks when not all partitions are being scanned (because some
have been eliminated), each partition should be spread over a number of devices.
On MPP systems, those devices should be spread over multiple nodes.

Partitioned tables and indexes facilitate administrative operations by allowing
them to operate on subsets of data. For example, a new partition can be added, an
existing partition can be reorganized, or an old partition can be dropped with less
than a second of interruption to a read-only application.

Consider using partitioned tables in a data warehouse when:

« very large tables are frequently scanned by a range predicate on a column that
would make a good partitioning column (such as ORDER_DATE or
PURCHASE_DATE)

« new data is loaded and old data is purged periodically and this can be trans-
lated into an add/drop of partitions

« administrative operations on large tables do not fit in the allotted batch window

« there is a need for parallel DML operations

Tuning Parallel Execution 19-31

Step 2: Tuning Physical Database Layout for Parallel Execution

Determining the Degree of Parallelism

If the data being accessed by a parallel operation (after partition pruning is
applied) is spread over at least as many disks as the degree of parallelism, then
most operations will be CPU-bound and a degree of parallelism ranging from the
total number of CPUs to twice that number, is appropriate. Operations that tend to
be 1/0 bandwidth bound can benefit from a higher degree of parallelism, espe-
cially if the data is spread over more disks. On sites with multiple users, you might
consider using the PARALLEL_ADAPTIVE_MULTI_USER parameter to tune the
requested degree of parallelism based on the current number of active parallel exe-
cution users. The following discussion is intended more for a single user environ-
ment.

Operations that tend to be 1/0 bandwidth bound are:

« selecting and counting all records in a table with a very simple or nonexistent
WHERE clause

« hested loop joins using an index

Parallel operations that perform random 1/0 access (such as index maintenance of
parallel update and delete operations) can saturate the 1/0 subsystem with a high
number of 1/0s, very much like an OLTP system with high concurrency. To ease
this I/0 problem, the data should be spread among more devices and disk control-
lers. Increasing the degree of parallelism will not help.

Oracle automatically computes the default parallel degree of a table as the mini-
mum of the number of disks storing the table and the number of CPUs available. If,
as recommended, you have striped objects over at least as many disks as you have
CPUs, the default parallelism will always be the number of CPUs. Warehouse oper-
ations are typically CPU bound; thus the default is a good choice, especially if you
are using the asynchronous readahead feature. However, because some operations
are by nature synchronous (index probes, for example) an explicit setting of the par-
allel degree to twice the number of CPUs might be more appropriate. Consider
reducing parallelism for objects that are frequently accessed by two or more concur-
rent parallel operations.

If you find that some operations are 1/0 bound with the default parallelism, and
you have more disks than CPUs, you can override the usual parallelism with a hint
that increases parallelism up to the number of disks, or until the CPUs become satu-
rated.

See Also: Oracle8 Concepts
"PARALLEL_ADAPTIVE_MULTI_USER" on page 19-9

19-32 Oracle8 Tuning

Step 2: Tuning Physical Database Layout for Parallel Execution

Populating the Database Using Parallel Load

This section presents a case study which illustrates how to create, load, index, and
analyze a large data warehouse fact table with partitions, in a typical star schema.
This example uses SQL Loader to explicitly stripe data over 30 disks.

The example 120 G table is named FACTS.

The system is a 10 CPU shared memory computer with more than 100 disk
drives.

Thirty disks (4 G each) will be used for base table data, 10 disks for index, and
30 disks for temporary space. Additional disks are needed for rollback seg-
ments, control files, log files, possible staging area for loader flat files, and so on.

The FACTS table is partitioned by month into 12 logical partitions. To facilitate
backup and recovery each partition is stored in its own tablespace.

Each partition is spread evenly over 10 disks, so that a scan which accesses few
partitions, or a single partition, can still proceed with full parallelism. Thus
there can be intra-partition parallelism when queries restrict data access by par-
tition pruning.

Each disk has been further subdivided using an OS utility into 4 OS files with
names like /dev/D1.1, /dev/D1.2, ..., /dev/D30.4.

Four tablespaces are allocated on each group of 10 disks. To better balance /0
and parallelize table space creation (because Oracle writes each block in a data-
file when it is added to a tablespace), it is best if each of the four tablespaces on
each group of 10 disks has its first datafile on a different disk. Thus the first
tablespace has /dev/D1.1 as its first datafile, the second tablespace has /dev/
D4.2 as its first datafile, and so on, as illustrated in Figure 19-9.

Tuning Parallel Execution 19-33

Step 2: Tuning Physical Database Layout for Parallel Execution

Figure 19-9 Datafile Layout for Parallel Load Example

TSfacts1 |, . ./ | /dev/D1.1 o J] Idevip2.1 < ./ 2| Idev/D10.1
Tsfacts2 | + + 4 /dewD1.2 + + + | Idev/D2.2 .+« 4| idevipi0.2
TSfacts3 /dev/D1.3 /dev/D2.3 C /dev/D10.3
TSfacts4 | I ||\ /deviD1.4 N\ Il | /deviD2.4 I | rdevip10.4
TSfacts5 ’\ ST /dev/D11.1 /\ ; //\ ~ | /deviD12.1 O /dev/D20.1
TSfacts6 * * 4 /deviD1l.2 * + + | JdeviD12.2 .|t * *| IdeviD20.2
+ + + + o+ oo+ +
TSfacts7 /dev/D11.3 /dev/D12.3 ... /dev/D20.3
TSfacts8 » '\ IdeviD11.4 W /dev/D12.4 ~ '\ IdeviD20.4
Tsfacts9 |- - \ .| /deviD21.1 -7 2| idevip22.1 .= 2] idewip3o.
TSfacts10 |+ + .+ | /dev/D21.2 .4 devip222 ke LT idewp3o2
TSfacts11 /deviD21.3 IdeviD22.3 . /deviD30.3
TSfacts12 Y, /// \ /dev/D21.4 \ Y, /dev/iD22.4 ey /// /dev/D30.4

Step 1. Create the Tablespaces and Add Datafiles in Parallel

Below is the command to create a tablespace named "Tsfacts1". Other tablespaces
are created with analogous commands. On a 10-CPU machine, it should be possible
to run all 12 CREATE TABLESPACE commands together. Alternatively, it might be
better to run them in two batches of 6 (two from each of the three groups of disks).

CREATE TABLESPACE Tsfacts1

DATAFILE /deviD1.1' SIZE 1024MB REUSE
DATAFILE /deviD2.1' SIZE 1024MB REUSE
DATAFILE /deviD3.1" SIZE 1024MB REUSE
DATAFILE /deviD4.1' SIZE 1024MB REUSE
DATAFILE /deviD5.1' SIZE 1024MB REUSE
DATAFILE /deviD6.1" SIZE 1024MB REUSE
DATAFILE /deviD7.1" SIZE 1024MB REUSE
DATAFILE /deviD8.1' SIZE 1024MB REUSE
DATAFILE /deviD9.1" SIZE 1024MB REUSE
DATAFILE /dev/D10.1 SIZE 1024MB REUSE
DEFAULT STORAGE (INITIAL 100MB NEXT 100MB PCTINCREASE 0)
CREATE TABLESPACE Tsfacts2

DATAFILE /deviD4.2' SIZE 1024MB REUSE

19-34 Oracle8 Tuning

Step 2: Tuning Physical Database Layout for Parallel Execution

DATAFILE /deviD5.2' SIZE 1024MB REUSE

DATAFILE /deviD6.2' SIZE 1024MB REUSE

DATAFILE /deviD7.2' SIZE 1024MB REUSE

DATAFILE /deviD8.2' SIZE 1024MB REUSE

DATAFILE /deviD9.2' SIZE 1024MB REUSE

DATAFILE /dev/D10.2 SIZE 1024MB REUSE

DATAFILE /deviD1.2' SIZE 1024MB REUSE

DATAFILE /deviD2.2' SIZE 1024MB REUSE

DATAFILE /deviD3.2' SIZE 1024MB REUSE

DEFAULT STORAGE (INITIAL 100MB NEXT 100MB PCTINCREASE 0)

CREATE TABLESPACE Tsfacts4

DATAFILE /deviD104" SIZE 1024MB REUSE
DATAFILE /deviD14' SIZE 1024MB REUSE
DATAFILE /deviD2 4 SIZE 1024MB REUSE
DATAFILE /deviD34 SIZE 1024MB REUSE
DATAFILE /deviD4.4' SIZE 1024MB REUSE
DATAFILE /deviD54' SIZE 1024MB REUSE
DATAFILE /deviD6.4' SIZE 1024MB REUSE
DATAFILE /deviD7.4' SIZE 1024MB REUSE
DATAFILE /deviD8.4' SIZE 1024MB REUSE
DATAFILE /deviD94' SIZE 1024MB REUSE
DEFAULT STORAGE (INITIAL 100MB NEXT 100MB PCTINCREASE 0)

CREATE TABLESPACE Tsfacts12
DATAFILE /deviD304" SIZE 1024MB REUSE
DATAFILE /deviD21.4' SIZE 1024MB REUSE
DATAFILE /deviD22.4' SIZE 1024MB REUSE
DATAFILE /deviD234 SIZE 1024MB REUSE
DATAFILE /deviD24.4' SIZE 1024MB REUSE
DATAFILE /deviD254" SIZE 1024MB REUSE
DATAFILE /deviD26.4 SIZE 1024MB REUSE
DATAFILE /deviD27.4' SIZE 1024MB REUSE
DATAFILE /deviD28 4' SIZE 1024MB REUSE
DATAFILE /deviD29.4' SIZE 1024MB REUSE
DEFAULT STORAGE (INITIAL 100MB NEXT 100MB PCTINCREASE 0)

Extent sizes in the STORAGE clause should be multiples of the multiblock read
size, where

blocksize * MULTIBLOCK_READ_COUNT = multiblock read size

Note that INITIAL and NEXT should normally be set to the same value. In the case
of parallel load, make the extent size large enough to keep the number of extents
reasonable, and to avoid excessive overhead and serialization due to bottlenecks in

Tuning Parallel Execution 19-35

Step 2: Tuning Physical Database Layout for Parallel Execution

the data dictionary. When PARALLEL=TRUE is used for parallel loader, the INI-
TIAL extent is not used. In this case you can override the INITIAL extent size speci-
fied in the tablespace default storage clause with the value that you specify in the
loader control file (such as, for example, 64K).

Tables or indexes can have an unlimited number of extents provided you have set
the COMPATIBLE system parameter and use the MAXEXTENTS keyword on the
CREATE or ALTER command for the tablespace or object. In practice, however, a
limit of 10,000 extents per object is reasonable. A table or index has an unlimited
number of extents, so the PERCENT_INCREASE parameter should be set to zero in
order to have extents of equal size.

Note: It is not desirable to allocate extents faster than about 2 or 3 per minute. See
"ST (Space Transaction) Enqueue for Sorts and Temporary Data" on page 20-12 for
more information. Thus, each process should get an extent that will last for 3to 5
minutes. Normally such an extent is at least 50MB for a large object. Too small an
extent size will incur a lot of overhead, and this will affect performance and scal-
ability of parallel operations. The largest possible extent size for a 4GB disk evenly
divided into 4 partitions is 1GB. 100MB extents should work nicely. Each partition
will have 100 extents. The default storage parameters can be customized for each
object created in the tablespace, if needed.

Step 2: Create the Partitioned Table

We create a partitioned table with 12 partitions, each in its own tablespace. The
table contains multiple dimensions and multiple measures. The partitioning col-
umn is named “dim_2" and is a date. There are other columns as well.

CREATE TABLE fact (dim_1 NUMBER, dim_2 DATE, ...
meas_1NUMBER, meas_2 NUMBER, ...)

PARALLEL

(PARTITION BY RANGE (dim_2)

PARTITION jan95 VALUES LESS THAN (02-01-1995) TABLESPACE
TSfacts1

PARTITION feb5 VALUES LESS THAN (03-01-1995) TABLESPACE
TSfacts2

PARTITION dec95 VALUES LESS THAN (01-01-1996) TABLESPACE
TSfacts12)

1

19-36 Oracle8 Tuning

Step 2: Tuning Physical Database Layout for Parallel Execution

Step 3: Load the Partitions in Parallel
This section describes four alternative approaches to loading partitions in parallel.

The different approaches to loading help you manage the ramifications of the PAR-
ALLEL=TRUE keyword of SQL*Loader, which controls whether or not individual
partitions are loaded in parallel. The PARALLEL keyword entails restrictions such
as the following:

« Indexes cannot be defined.

= You need to set a small initial extent, because each loader session gets a new
extent when it begins, and it doesn’t use any existing space associated with the
object.

« Space fragmentation issues arise.

However, regardless of the setting of this keyword, if you have one loader process
per partition, you are still effectively loading into the table in parallel.

Casel

In this approach, assume 12 input files that are partitioned in the same way as your
table. The DBA has 1 input file per partition of the table to be loaded. The DBA
starts 12 SQL*Loader sessions in parallel, entering statements like these:

SQLLDR DATASjan95.dat DIRECT=TRUE CONTROL=jan95.ct
SQLLDR DATA=feb95.dat DIRECT=TRUE CONTROL=feb95.ct

SQLLDR DATA=dec95.dat DIRECT=TRUE CONTROL~dec95.ct

Note that the keyword PARALLEL=TRUE is not set. A separate control file per par-
tition is necessary because the control file must specify the partition into which the
loading should be done. It contains a statement such as:

LOAD INTO fact partition(jan95)

Advantages of this approach are that local indexes are maintained by SQL*Loader.
You still get parallel loading, but on a partition level—without the restrictions of
the PARALLEL keyword.

A disadvantage is that you must partition the input manually.

Tuning Parallel Execution 19-37

Step 2: Tuning Physical Database Layout for Parallel Execution

Case 2

In another common approach, assume an arbitrary number of input files that are
not partitioned in the same way as the table. The DBA can adopt a strategy of per-
forming parallel load for each input file individually. Thus if there are 7 input files,
the DBA can start 7 SQL*Loader sessions, using statements like the following:

SQLLDR DATA=filel.dat DIRECT=TRUE PARALLEL=TRUE

Oracle will partition the input data so that it goes into the correct partitions. In this
case all the loader sessions can share the same control file, so there is no need to
mention it in the statement.

The keyword PARALLEL=TRUE must be used because each of the 7 loader ses-
sions can write into every partition. (In case 1, every loader session would write
into only 1 partition, because the data was already partitioned outside Oracle.)
Hence all the PARALLEL keyword restrictions are in effect.

In this case Oracle attempts to spread the data evenly across all the files in each of
the 12 tablespaces—however an even spread of data is not guaranteed. Moreover,
there could be 1/0 contention during the load when the loader processes are
attempting simultaneously to write to the same device.

Case 3

In Case 3 (illustrated in the example), the DBA wants precise control of the load. To
achieve this the DBA must partition the input data in the same way as the datafiles
are partitioned in Oracle.

This example uses 10 processes loading into 30 disks. To accomplish this, the DBA
must split the input into 120 files beforehand. The 10 processes will load the first
partition in parallel on the first 10 disks, then the second partition in parallel on the
second 10 disks, and so on through the 12th partition. The DBA runs the following
commands concurrently as background processes:

SQLLDR DATA=jan95 filel.dat DIRECT=TRUE PARALLEL=TRUE FILE=/dev/D1.1

SQLLDR DATA=jan95.file10.dat DIRECT=TRUE PARALLEL=TRUE FILE=/dev/D10.1
WAIT,

SQLLDR DATA=dec95ilel.dat DIRECT=TRUE PARALLEL=TRUE FILE=/dev/D30.4

SQLLDR DATA=dec95/fle10.dat DIRECT=TRUE PARALLEL~TRUE FILE=/dev/D29.4

19-38 Oracle8 Tuning

Step 2: Tuning Physical Database Layout for Parallel Execution

For Oracle Parallel Server, divide the loader session evenly among the nodes. The
datafile being read should always reside on the same node as the loader session.
NFS mount of the data file on a remote node is not an optimal approach.

The keyword PARALLEL=TRUE must be used, because multiple loader sessions
can write into the same partition. Hence all the restrictions entailed by the PARAL-
LEL keyword are in effect. An advantage of this approach, however, is that it guar-
antees that all of the data will be precisely balanced, exactly reflecting your
partitioning.

Note: Although this example shows parallel load used with partitioned tables, the
two features can be used independent of one another.

Case 4

For this approach, all of your partitions must be in the same tablespace. You need
to have the same number of input files as datafiles in the tablespace, but you do not
need to partition the input the same way in which the table is partitioned.

For example, if all 30 devices were in the same tablespace, then you would arbi-
trarily partition your input data into 30 files, then start 30 SQL*Loader sessions in
parallel. The statement starting up the first session would be like the following:

SQLLDR DATA=filel.dat DIRECT=TRUE PARALLEL =TRUE FILE=/dev/D1
SQLLDR DATA=file30.dat DIRECT=TRUE PARALLEL~=TRUE FILE=/dev/D30

The advantage of this approach is that, as in Case 3, you have control over the exact
placement of datafiles, because you use the FILE keyword. However, you are not
required to partition the input data by value: Oracle does that.

A disadvantage is that this approach requires all the partitions to be in the same
tablespace; this minimizes availability.

Tuning Parallel Execution 19-39

Step 2: Tuning Physical Database Layout for Parallel Execution

Setting Up Temporary Tablespaces for Parallel Sort and Hash Join

For optimal space management performance you can use dedicated temporary
tablespaces. As with the TSfacts tablespace, we first add a single datafile and later
add the remainder in parallel.

CREATE TABLESPACE TStemp TEMPORARY DATAFILE '/dev/iD31'
SIZE 4096MB REUSE
DEFAULT STORAGE (INITIAL 10MB NEXT 10MB PCTINCREASE 0);

Size of Temporary Extents

Temporary extents are all the same size, because the server ignores the PCTIN-
CREASE and INITIAL settings and only uses the NEXT setting for temporary
extents. This helps to avoid fragmentation.

As a general rule, temporary extents should be smaller than permanent extents,
because there are more demands for temporary space, and parallel processes or
other operations running concurrently must share the temporary tablespace. Nor-
mally, temporary extents should be in the range of 1MB to 10MB. Once you allocate
an extent it is yours for the duration of your operation. If you allocate a large extent
but only need to use a small amount of space, the unused space in the extent is tied

up.

At the same time, temporary extents should be large enough that processes do not
have to spend all their time waiting for space. Temporary tablespaces use less over-
head than permanent tablespaces when allocating and freeing a new extent. How-
ever, obtaining a new temporary extent still requires the overhead of acquiring a
latch and searching through the SGA structures, as well as SGA space consumption
for the sort extent pool. Also, if extents are too small, SMON may take a long time
dropping old sort segments when new instances start up.

Operating System Striping of Temporary Tablespaces

Operating system striping is an alternative technique you can use with temporary
tablespaces. Media recovery, however, offers subtle challenges for large temporary
tablespaces. It does not make sense to mirror, use RAID, or back up a temporary
tablespace. If you lose a disk in an OS striped temporary space, you will probably
have to drop and recreate the tablespace. This could take several hours for our 120
GB example. With Oracle striping, simply remove the bad disk from the tablespace.
For example, if /dev/D50 fails, enter:

ALTER DATABASE DATAFILE /dev/D50' RESIZE 1K;
ALTER DATABASE DATAFILE ‘/dev/D50’' OFFLINE;

19-40 Oracle8 Tuning

Step 2: Tuning Physical Database Layout for Parallel Execution

Because the dictionary sees the size as 1K, which is less than the extent size, the bad
file will never be accessed. Eventually, you may wish to recreate the tablespace.

Be sure to make your temporary tablespace available for use:
ALTER USER scott TEMPORARY TABLESPACE TStemp;

See Also: For MPP systems, see your platform-specific documentation regarding
the advisability of disabling disk affinity when using operating system striping.

Creating Indexes in Parallel

Indexes on the fact table can be partitioned or non-partitioned. Local partitioned
indexes provide the simplest administration. The only disadvantage is that a search
of a local non-prefixed index requires searching all index partitions.

The considerations for creating index tablespaces are similar to those for creating
other tablespace. Operating system striping with a small stripe width is often a
good choice, but to simplify administration it is best to use a separate tablespace for
each index. If it is a local index you may want to place it into the same tablespace as
the partition to which it corresponds. If each partition is striped over a number of
disks, the individual index partitions can be rebuilt in parallel for recovery. Alterna-
tively, operating system mirroring can be used. For these reasons the NOLOG-
GING option of the index creation statement may be attractive for a data
warehouse.

Tablespaces for partitioned indexes should be created in parallel in the same man-
ner as tablespaces for partitioned tables.

Partitioned indexes are created in parallel using partition granules, so the maxi-
mum degree of parallelism possible is the number of granules. Local index cre-
ation has less inherent parallelism than global index creation, and so may run faster
if a higher degree of parallelism is used. The following statement could be used to
create a local index on the fact table.

CREATE INDEX | onfact(dim_1,dim 2,dim_3) LOCAL
PARTITION jan95 TABLESPACE Tsidx1,
PARTITION feb95 TABLESPACE Tsidx2,
PARALLEL(DEGREE 12) NOLOGGING;

To back up or restore January data, you need only manage tablespace Tsidx1.

See Also: Oracle8 Concepts for a discussion of partitioned indexes.

Tuning Parallel Execution 19-41

Step 2: Tuning Physical Database Layout for Parallel Execution

Additional Considerations for Parallel DML Only

When parallel insert, update, or delete are to be performed on a data warehouse,
some additional considerations are needed when designing the physical database.
Note that these considerations do not affect parallel query operations. This section
covers:

« Limitation on the Degree of Parallelism

« Using Local and Global Striping

« Increasing INITRANS and MAXTRANS

« Limitation on Available Number of Transaction Free Lists
« Using Multiple Archivers

. [NO]LOGGING Option

Limitation on the Degree of Parallelism

If you are performing parallel insert, update, or delete operations, the degree of par-
allelism will be equal to or les than the number of partitions in the table.

See Also: "Determining the Degree of Parallelism" on page 19-32

Using Local and Global Striping

Parallel DML works mostly on partitioned tables. It does not use asynchronous 1/0
and may generate a high number of random 1/0 requests during index mainte-
nance of parallel UPDATE and DELETE operations. For local index maintenance,
local striping is most efficient in reducing 1/0 contention, because one server pro-
cess will only go to its own set of disks and disk controllers. Local striping also
increases availability in the event of one disk failing.

For global index maintenance, (partitioned or non-partitioned), globally striping
the index across many disks and disk controllers is the best way to distribute the
number of 1/0s.

Increasing INITRANS and MAXTRANS

If you have global indexes, a global index segment and global index blocks will be
shared by server processes of the same parallel DML statement. Even if the opera-
tions are not performed against the same row, the server processes may share the
same index blocks. Each server transaction needs one transaction entry in the index
block header before it can make changes to a block. Therefore, in the CREATE
INDEX or ALTER INDEX statements, you should set INITRANS (the initial hum-

19-42 Oracle8 Tuning

Step 2: Tuning Physical Database Layout for Parallel Execution

ber of transactions allocated within each data block) to a large value, such as the
maximum degree of parallelism against this index. Leave MAXTRANS, the maxi-
mum number of concurrent transactions that can update a data block, at its default
value, which is the maximum your system can support (not to exceed 255).

If you run degree 10 parallelism against a table with a global index, all 10 server
processes might attempt to change the same global index block. For this reason you
must set MAXTRANS to at least 10 so that all the server processes can make the
change at the same time. If MAXTRANS is not large enough, the parallel DML
operation will fail.

Limitation on Available Number of Transaction Free Lists

Once a segment has been created, the number of process and transaction free lists is
fixed and cannot be altered. If you specify a large number of process free lists in the
segment header, you may find that this limits the number of transaction free lists
that are available. You can abate this limitation the next time you recreate the seg-
ment header by decreasing the number of process free lists; this will leave more
room for transaction free lists in the segment header.

For UPDATE and DELETE operations, each server process may require its own
transaction free list. The parallel DML degree of parallelism is thus effectively lim-
ited by the smallest number of transaction free lists available on any of the global
indexes which the DML statement must maintain. For example, if you have two
global indexes, one with 50 transaction free lists and one with 30 transaction free
lists, the degree of parallelism is limited to 30.

Note that the FREELISTS parameter of the STORAGE clause is used to set the num-
ber of process free lists. By default, no process free lists are created.

The default number of transaction free lists depends on the block size. For example,
if the number of process free lists is not set explicitly, a 4K block has about 80 trans-
action free lists by default. The minimum number of transaction free lists is 25.

See Also: Oracle8 Parallel Server Concepts & Administration for information about
transaction free lists.

Using Multiple Archivers

Parallel DDL and parallel DML operations may generate a large amount of redo
logs. A single ARCH process to archive these redo logs might not be able to keep
up. To avoid this problem, you can spawn multiple archiver processes. This can be
done manually or by using a job queue.

Tuning Parallel Execution 19-43

Step 2: Tuning Physical Database Layout for Parallel Execution

Database Writer Process (DBWn) Workload

Parallel DML operations dirty a large number of data, index, and undo blocks in
the buffer cache during a short period of time. If you see a high number of
“free_buffer_waits” in the V$SYSSTAT view, tune the DBWn process(es).

See Also: "Tuning the Redo Log Buffer" on page 14-7

[NOJLOGGING Option

The [NO]JLOGGING option applies to tables, partitions, tablespaces, and indexes.
Virtually no log is generated for certain operations (such as direct-load INSERT) if
the NOLOGGING option is used. The NOLOGGING attribute is not specified at
the INSERT statement level, but is instead specified when using the ALTER or CRE-
ATE command for the table, partition, index, or tablespace.

When a table or index has NOLOGGING set, neither parallel nor serial direct-load
INSERT operations generate undo or redo logs. Processes running with the
NOLOGGING option set run faster because no redo is generated. However, after a
NOLOGGING operation against a table, partition, or index, if a media failure
occurs before a backup is taken, then all tables, partitions, and indexes that have
been modified may be corrupted.

Note: Direct-load INSERT operations (except for dictionary updates) never gener-
ate undo logs. The NOLOGGING attribute does not affect undo, but only redo. To
be precise, NOLOGGING allows the direct-load INSERT operation to generate a
negligible amount of redo (range-invalidation redo, as opposed to full image redo).

For backward compatibility, [UN]JRECOVERABLE is still supported as an alternate
keyword with the CREATE TABLE statement in Oracle8 Server, release 8.0. This
alternate keyword may not be supported, however, in future releases.

AT the tablespace level, the logging clause specifies the default logging attribute for
all tables, indexes, and partitions created in the tablespace. When an existing
tablespace logging attribute is changed by the ALTER TABLESPACE statement,
then all tables, indexes, and partitions created after the ALTER statement will have
the new logging attribute; existing ones will not change their logging attributes.
The tablespace level logging attribute can be overridden by the specifications at the
table, index, or partition level).

The default logging attribute is LOGGING. However, if you have put the database
is in NOARCHIVELOG mode (by issuing ALTER DATABASE NOARCHIVELOG),
then all operations that can be done without logging will not generate logs, regard-
less of the specified logging attribute.

See Also: Oracle8 SQL Reference

19-44 Oracle8 Tuning

Step 3: Analyzing Data

Step 3: Analyzing Data

After the data is loaded and indexed, analyze it. It is very important to analyze the
data after any DDL changes or major DML changes. The ANALYZE command
does not execute in parallel against a single table or partition. However, many dif-
ferent partitions of a partitioned table can be analyzed in parallel. Use the stored
procedure DBMS_UTILITY.ANALYZE_PART_OBJECT to submit jobs to a job
gueue in order to analyze a partitioned table in parallel.

ANALYZE must be run twice in the following sequence to gather table and index
statistics, and to create histograms. (The second ANALYZE statement creates histo-
grams on columns.)

ANALYZE TABLE xyz ESTIMATE STATISTICS,;
ANALYZE TABLE xyz ESTIMATE STATISTICS FOR ALL COLUMNS;

ANALYZE TABLE gathers statistics at the table level (for example, the number of
rows and blocks), and for all dependent objects, such as columns and indexes. If
run in the reverse sequence, the table-only ANALYZE will destroy the histograms
built by the column-only ANALYZE.

An ESTIMATE of statistics produces accurate histograms for small tables only.
Once the table is more than a few thousand rows, accurate histograms can only be
ensured if more than the default number of rows is sampled. The sample size you
choose depends on several factors: the objects to be analyzed (table, indexes, col-
umns); the nature of the data (skewed or not); whether you are building histo-
grams; as well as the performance you expect. The sample size for analyzing an
index or a table need not be big; 1 percent is more than enough for tables contain-
ing more than 2000 rows.

Queries with many joins are quite sensitive to the accuracy of the statistics. Use the
COMPUTE option of the ANALYZE command if possible (it may take quite some
time and a large amount of temporary space). If you must use the ESTIMATE
option, sample as large a percentage as possible (for example, 10%). If you use too
high a sample size for ESTIMATE, however, this process may require practically
the same execution time as COMPUTE. A good rule of thumb, in this case, is not to
choose a percentage which causes you to access every block in the system. For
example, if you have 20 blocks, and each block has 1000 rows, estimating 20% will
cause you to touch every block. You may as well have computed the statistics!

Use histograms for data that is not uniformly distributed. Note that a great deal of
data falls into this classification.

When you analyze a table, Oracle also analyzes all the different objects that are
defined on that table: the table as well as its columns and indexes. Note that you

Tuning Parallel Execution 19-45

Step 3: Analyzing Data

can use the ANALYZE INDEX statement to analyze the index separately. You may
wish to do this when you add a new index to the table; it enables you to specify a
different sample size. You can analyze all partitions of facts (including indexes) in
parallel in one of two ways:

« Execute the following command. Make sure that job queues are enabled before
the command is executed.

EXECUTE DBMS_UTILITY.ANALYZE_PART_OBJECT(OBJECT_NAME=>facts),
COMMAND_TYPE=>C),

« Concurrently, you can issue multiple ANALYZE commands concurrently.

It is worthwhile computing or estimating with a larger sample size the indexed col-
umns, rather than the measure data. The measure data is not used as much: most of
the predicates and critical optimizer information comes from the dimensions. A
DBA should know which columns are the most frequently used in predicates.

For example, you might analyze the data in two passes. In the first pass you could
obtain some statistics by analyzing 1% of the data. Run the following command to
submit analysis commands to the job queues:

EXECUTE DBMS_UTILITY.ANALYZE_PART OBJECT(OBJECT NAME=>facts,
COMMAND _TYPE=>E,
SAMPLE_CLAUSE=>SAMPLE 1 PERCENT);

In a second pass, you could refine statistics for the indexed columns and the index
(but not the non-indexed columns):

EXECUTE DBMS_UTILITY.ANALYZE_PART_OBJECT(OBJECT_NAME=>facts),
COMMAND_TYPE=>C,

COMMAND_OPT=>FOR ALL INDEXED

COLUMNS SIZE 1Y,

EXECUTE DBMS_UTILITY.ANALYZE PART_OBJECT(OBJECT_NAME=>facts,
COMMAND_TYPE=>C,

COMMAND_OPT=>FOR ALL INDEXES):

The result will be a faster plan because you have collected accurate statistics on the
most sensitive columns. You are spending more resources to get good statistics on
high-value columns (indexes and join columns), and getting baseline statistics for
the rest of the data.

Note: Cost-based optimization is always used with parallel execution and with par-
titioned tables. You must therefore analyze partitioned tables or tables used with
parallel query.

19-46 Oracle8 Tuning

20

Understanding Parallel Execution
Performance Issues

This chapter provides a conceptual explanation of parallel execution performance
issues, and additional performance techniques.

« Understanding Parallel Execution Performance Issues

« Parallel Execution Tuning Techniques

See Also: Oracle8 Concepts, for basic principles of parallel execution.

See your operating system-specific Oracle documentation for more information
about tuning while using parallel execution.

Understanding Parallel Execution Performance Issues 20-1

Understanding Parallel Execution Performance Issues

Understanding Parallel Execution Performance Issues

« The Formula for Memory, Users, and Parallel Server Processes
« Setting Buffer Pool Size for Parallel Operations

« How to Balance the Formula

« Examples: Balancing Memory, Users, and Processes

« Parallel Execution Space Management Issues

« Optimizing Parallel Execution on Oracle Parallel Server

The Formula for Memory, Users, and Parallel Server Processes

Key to the tuning of parallel operations is an understanding of the relationship
between memory requirements, the number of users (processes) a system can sup-
port, and the maximum number of parallel server processes. The goal is to obtain
the dramatic performance enhancement made possible by parallelizing certain
operations, and by using hash joins rather than sort merge joins. This performance
goal must often be balanced with the need to support multiple users.

In considering the maximum number of processes a system can support, it is useful
to divide the processes into three classes, based on their memory requirements.
Table 20-1 defines high, medium, and low memory processes.

Analyze the maximum number of processes that can fit in memory as follows:

Figure 20-1 Formula for Memory/Users/Server Relationship

sga_size
+ (# low_memory_processes * low_memory_required)
+ (# medium_memory_processes * medium_memory_required)
+ (# high_memory_processes * high_memory_required)

total memory required

20-2 Oracle8 Tuning

Understanding Parallel Execution Performance Issues

Table 20-1 Memory Requirements for Three Classes of Process

Class

Description

Low Memory Processes:
100K to 1IMB

Medium Memory Processes:

1MB to 10MB

High Memory Processes:
10MB to 100MB

These processes include table scans; index lookups; index nested loop
joins; single-row aggregates (such as sum or average with no GROUP BYs,
or very few groups); sorts that return only a few rows; and direct loading.

This class of Data Warehousing process is similar to OLTP processes in the
amount of memory required. Process memory could be as low as a few
hundred kilobytes of fixed overhead. You could potentially support thou-
sands of users performing this kind of operation. You can take this require-
ment even lower by using the multithreaded server, and support even
more users.

This class of process includes large sorts; sort merge join; GROUP BY or
ORDER BY operations returning a large number of rows; parallel insert
operations which involve index maintenance; and index creation.

These processes require the fixed overhead needed by a low memory pro-
cess, plus one or more sort areas, depending on the operation. For exam-
ple, a typical sort merge join would sort both its inputs—resulting in two
sort areas. GROUP BY or ORDER BY operations with many groups or
rows also require sort areas.

Look at the EXPLAIN PLAN output for the operation to identify the num-
ber and type of joins, and the number and type of sorts. Optimizer statis-
tics in the plan show the size of the operations. When planning joins,
remember that you do have a number of choices.

High memory processes include one or more hash joins, or a combination
of one or more hash joins with large sorts.

These processes require the fixed overhead needed by a low memory pro-
cess, plus hash area. The hash area size required might range from 8MB to
32MB, and you might need two of them. If you are performing 2 or more
serial hash joins, each process uses 2 hash areas. In a parallel operation,
each parallel server process does at most 1 hash join at a time; therefore,
you would need 1 hash area size per server.

In summary, the amount of hash join memory for an operation equals par-
allel degree multiplied by hash area size, multiplied by the lesser of either
2, or the number of hash joins in the operation.

Note: The process memory requirements of parallel DML and parallel DDL opera-
tions also depend upon the query portion of the statement.

Understanding Parallel Execution Performance Issues 20-3

Understanding Parallel Execution Performance Issues

Setting Buffer Pool Size for Parallel Operations

The formula whereby you can calculate the maximum number of processes your
system can support (referred to here as max_processes) is:

low_memory_processes
+ # medium_memory_processes
+ # high_memory_processes

maX_processes

In general, if max_processes is much bigger than the number of users, you can con-
sider running parallel operations. If max_processes is considerably less than the num-
ber of users, you must consider other alternatives, such as those described in “How
to Balance the Formula” on page 5.

With the exception of parallel update and delete, parallel operations do not gener-
ally benefit from larger buffer pool sizes. Parallel update and delete benefit from a
larger buffer pool when they update indexes. This is because index updates have a
random access pattern and 1/0 activity can be reduced if an entire index or its inte-
rior nodes can be kept in the buffer pool. Other parallel operations can benefit only
if the buffer pool can be made larger and thereby accommodate the inner table or
index for a nested loop join.

See Also: Oracle8 Concepts for a comparison of hash joins and sort merge joins.
"Tuning the Buffer Cache" on page 14-26 on setting buffer pool size.

20-4 Oracle8 Tuning

Understanding Parallel Execution Performance Issues

How to Balance the Formula

Use the following techniques to balance the memory/users/server formula given
in Figure 20-1:

« Oversubscribe, with Attention to Paging
« Reduce the Number of Memory-Intensive Processes
« Decrease Data Warehousing Memory per Process

« Decrease Parallelism for Multiple Users

Oversubscribe, with Attention to Paging

You can permit the potential workload to exceed the limits recommended in the for-
mula. Total memory required, minus the SGA size, can be multiplied by a factor of
1.2, to allow for 20% oversubscription. Thus, if you have 1G of memory, you might
be able to support 1.2G of demand: the other 20% could be handled by the paging
system.

You must, however, verify that a particular degree of oversubscription will be via-
ble on your system by monitoring the paging rate and making sure you are not
spending more than a very small percent of the time waiting for the paging sub-
system. Your system may perform acceptably even if oversubscribed by 60%, if on
average not all of the processes are performing hash joins concurrently. Users

might then try to use more than the available memory, so you must monitor paging
activity in such a situation. If paging goes up dramatically, consider another alterna-
tive.

On average, no more than 5% of the time should be spent simply waiting in the
operating system on page faults. More than 5% wait time indicates an 1/0 bound
paging subsystem. Use your operating system monitor to check wait time: The sum
of time waiting and time running equals 100%. If you are running close to 100%
CPU, then you are not waiting. If you are waiting, it should not be on account of

paging.

If wait time for paging devices exceeds 5%, it is a strong indication that you must
reduce memory requirements in one of these ways:

« Reducing the memory required for each class of process
« Reducing the number of processes in memory-intensive classes
« Adding memory

If the wait time indicates an 1/0 bottleneck in the paging subsystem, you could
resolve this by striping.

Understanding Parallel Execution Performance Issues 20-5

Understanding Parallel Execution Performance Issues

Reduce the Number of Memory-Intensive Processes

Adjusting the Degree of Parallelism. You can adjust not only the number of opera-
tions that run in parallel, but also the degree of parallelism with which operations
run. To do this, issue an ALTER TABLE statement with a PARALLEL clause, or use
a hint. See the Oracle8 SQL Reference for more information.

You can limit the parallel pool by reducing the value of
PARALLEL_MAX_SERVERS. Doing so places a system-level limit on the total
amount of parallelism, and is easy to administer. More processes are then forced to
run in serial mode.

Scheduling Parallel Jobs. Queueing jobs is another way to reduce the number of
processes but not reduce parallelism. Rather than reducing parallelism for all opera-
tions, you may be able to schedule large parallel batch jobs to run with full parallel-
ism one at a time, rather than concurrently. Queries at the head of the queue would
have a fast response time, those at the end of the queue would have a slow

response time. However, this method entails a certain amount of administrative
overhead.

Decrease Data Warehousing Memory per Process

Note: The following discussion focuses upon the relationship of
HASH_AREA_SIZE to memory, but all the same considerations apply to
SORT_AREA_SIZE. The lower bound of SORT_AREA_SIZE, however, is not as crit-
ical as the 8MB recommended minimum HASH_AREA _SIZE.

If every operation performs a hash join and a sort, the high memory requirement
limits the number of processes you can have. To allow more users to run concur-
rently you may need to reduce the DSS process memory.

Moving Processes from High to Medium Memory Requirements. You can move a
process from the high-memory to the medium-memory class by changing from
hash join to merge join. You can use initialization parameters to limit available
memory and thus force the optimizer to stay within certain bounds.

To do this, you can reduce HASH_AREA_SIZE to well below the recommended
minimum (for example, to 1 or 2MB). Then you can let the optimizer choose sort
merge join more often (as opposed to telling the optimizer never to use hash joins).
In this way, hash join can still be used for small tables: the optimizer has a memory
budget within which it can make decisions about which join method to use. Alter-
natively, you can use hints to force only certain queries (those whose response time
is not critical) to use sort-merge joins rather than hash joins.

20-6 Oracle8 Tuning

Understanding Parallel Execution Performance Issues

Remember that the recommended parameter values provide the best response
time. If you severely limit these values you may see a significant effect on response
time.

Moving Processes from High or Medium Memory Requirements to Low Mem-
ory Requirements. If you need to support thousands of users, you must create
access paths such that operations do not touch much data.

« Decrease the demand for index joins by creating indexes and/or summary
tables.

« Decrease the demand for GROUP BY sorting by creating summary tables and
encouraging users and applications to reference summaries rather than
detailed data.

« Decrease the demand for ORDER BY sorts by creating indexes on frequently
sorted columns.

Decrease Parallelism for Multiple Users

In general there is a trade-off between parallelism for fast single-user response time
and efficient use of resources for multiple users. For example, a system with 2G of
memory and a HASH_AREA _SIZE of 32MB can support about 60 parallel server
processes. A 10 CPU machine can support up to 3 concurrent parallel operations (2
* 10 * 3 = 60). In order to support 12 concurrent parallel operations, you could over-
ride the default parallelism (reduce it); decrease HASH_AREA_SIZE; buy more
memory, or use some combination of these three strategies. Thus you could ALTER
TABLE t PARALLEL (DEGREE 5) for all parallel tables t, set HASH_AREA_SIZE to
16MB, and increase PARALLEL_MAX_SERVERS to 120. By reducing the memory
of each parallel server by a factor of 2, and reducing the parallelism of a single oper
ation by a factor of 2, the system can accommodate 2 * 2 = 4 times more concurrent
parallel operations.

The penalty for taking such an approach is that when a single operation happens to
be running, the system will use just half the CPU resource of the 10 CPU machine.
The other half will be idle until another operation is started.

To determine whether your system is being fully utilized, you can use one of the
graphical system monitors available on most operating systems. These monitors
often give you a better idea of CPU utilization and system performance than moni-
toring the execution time of an operation. Consult your operating system documen-
tation to determine whether your system supports graphical system monitors.

Understanding Parallel Execution Performance Issues 20-7

Understanding Parallel Execution Performance Issues

Examples: Balancing Memory, Users, and Processes

The examples in this section show how to evaluate the relationship between mem-
ory, users, and parallel server processes, and balance the formula given in

Figure 20-1. They show concretely how you might adjust your system workload so
as to accommodate the necessary number of processes and users.

Example 1

Assume that your system has 1G of memory, the degree of parallelism is 10, and
that your users perform 2 hash joins with 3 or more tables. If you need 300MB for
the SGA, that leaves 700MB to accommodate processes. If you allow a generous
hash area size (32MB) for best performance, then your system can support:

1 parallel operation (32MB * 10 * 2 = 640MB)
1 serial operation (32MB * 2 = 64MB)

This makes a total of 704MB. (Note that the memory is not significantly oversub-
scribed.)

Remember that every parallel, hash, or sort merge join operation takes a number of
parallel server processes equal to twice the degree of parallelism (utilizing 2 server
sets), and often each individual process of a parallel operation uses a lot of mem-
ory. Thus you can support many more users by having them run serially, or by hav-
ing them run with less parallelism.

To service more users, you can drastically reduce hash area size to 2MB. You may
then find that the optimizer switches some operations to sort merge join. This con-
figuration can support 17 parallel operations, or 170 serial operations, but response
times may be significantly higher than if you were using hash joins.

Notice the trade-off above: by reducing memory per process by a factor of 16, you
can increase the number of concurrent users by a factor of 16. Thus the amount of
physical memory on the machine imposes another limit on total number of parallel
operations you can run involving hash joins and sorts.

20-8 Oracle8 Tuning

Understanding Parallel Execution Performance Issues

Example 2

In a mixed workload example, consider a user population with diverse needs, as
described in Table 20-2. In this situation, you would have to make some choices.
You could not allow everyone to run hash joins—even though they outperform sort
merge joins—because you do not have the memory to support this level of work-
load.

You might consider it safe to oversubscribe at 50% because of the infrequent batch
jobs during the day: 700MB * 1.5 = 1.05GB. This would give you enough virtual
memory for the total workload.

Table 20-2 How to Accommodate a Mixed Workload

User Needs How to Accommodate

DBA: runs nightly batch jobs, and occa- You might take 20 parallel server processes, and set
sional batch jobs during the day. These ~ HASH_AREA_SIZE to a mid-range value, perhaps 20MB, for a sin-

might be parallel operations that do gle powerful batch job in the high memory class. (This might be a

hash joins that use a lot of memory. big GROUP BY with join to produce a summary of data.) Twenty
servers multiplied by 20MB equals 400MB of memory.

Analysts: interactive users who pull You might plan for 10 analysts running serial operations that use

data into their spreadsheets complex hash joins accessing a large amount of data. (You would

not allow them to do parallel operations because of memory require-
ments.) Ten such serial processes at 40MB apiece equals 400MB of
memory.

Users: Several hundred users doing sim- To support hundreds of users doing low memory processes at about
ple lookups of individual customer 0.5MB apiece, you might reserve 200MB.

accounts, making reports on already

joined, partially summarized data

Understanding Parallel Execution Performance Issues 20-9

Understanding Parallel Execution Performance Issues

Example 3

Suppose your system has 2G of memory, and you have 200 parallel server pro-
cesses and 100 users doing heavy data warehousing operations involving hash
joins. You decide to leave such tasks as index retrievals and small sorts out of the
picture, concentrating on the high memory processes. You might have 300 pro-
cesses, of which 200 must come from the parallel pool and 100 are single threaded.
One quarter of the total 2G of memory might be used by the SGA, leaving 1.5G of
memory to handle all the processes. You could apply the formula considering only
the high memory requirements, including a factor of 20% oversubscription:

Figure 20-2 Formula for Memory/Uset/Server Relationship: High-Memory Processes

i total_memory 15G*1.2 1.8G
high_memory_req'd = - * 1.2 = =
high-memory_processes 300 300

Here, 5SMB = 1.8G/300. Less than 5MB of hash area would be available for each pro-
cess, whereas 8MB is the recommended minimum. If you must have 300 processes,
you may need to force them to use other join methods in order to change them
from the highly memory-intensive class to the moderately memory-intensive class.
Then they may fit within your system’s constraints.

Example 4

Consider a system with 2G of memory and 10 users who want to run intensive data
warehousing parallel operations concurrently and still have good performance. If
you choose parallelism of degree 10, then the 10 users will require 200 processes.
(Processes running big joins need twice the number of parallel server processes as
the degree of parallelism, so you would set PARALLEL_MAX_SERVERS to 10 * 10
* 2.) In this example each process would get 1.8G/200—or about 9MB of hash
area—which should be adequate.

With only 5 users doing large hash joins, each process would get over 16MB of
hash area, which would be fine. But if you want 32MB available for lots of hash
joins, the system could only support 2 or 3 users. By contrast, if users are just com-
puting aggregates the system needs adequate sort area size—and can have many
more users.

20-10 Oracle8 Tuning

Understanding Parallel Execution Performance Issues

Example 5

If a system with 2G of memory needs to support 1000 users, all of them running big
operations, you must evaluate the situation carefully. Here, the per-user memory
budget is only 1.8MB (that is, 1.8G divided by 1,000). Since this figure is at the low
end of the medium memory process class, you must rule out parallel operations,
which use even more resources. You must also rule out big hash joins. Each sequen-
tial process could require up to 2 hash areas plus the sort area, so you would have
to set HASH_AREA_SIZE to the same value as SORT_AREA_SIZE, which would
be 600K (1.8MB/3). Such a small hash area size is likely to be ineffective, so you
may opt to disable hash joins altogether.

Given the organization’s resources and business needs, is it reasonable for you to
upgrade your system’s memory? If memory upgrade is not an option, then you
must change your expectations. To adjust the balance you might:

= Accept the fact that the system will actually support a limited number of users
doing big hash joins.

» Expect to support the 1000 users doing index lookups and joins that do not
require large amounts of memory. Sort merge joins require less memory, but
throughput will go down because they are not as efficient as hash joins.

« Give the users access to summary tables, rather than to the whole database.

« Classify users into different groups, and give some groups more memory than
others. Instead of all users doing sorts with a small sort area, you could have a
few users doing high-memory hash joins, while most users use summary tables
or do low-memory index joins. (You could accomplish this by forcing users in
each group to use hints in their queries such that operations are performed in a
particular way.)

Understanding Parallel Execution Performance Issues 20-11

Understanding Parallel Execution Performance Issues

Parallel Execution Space Management Issues
This section describes space management issues that come into play when using
parallel execution.
« ST (Space Transaction) Enqueue for Sorts and Temporary Data
« External Fragmentation

These issues become particularly important for parallel operation running on a par-
allel server, the more nodes involved, the more tuning becomes critical.

ST (Space Transaction) Enqueue for Sorts and Temporary Data

Every space management transaction in the database (such as creation of tempo-
rary segments in PARALLEL CREATE TABLE, or parallel direct-load inserts of non-
partitioned tables) is controlled by a single ST enqueue. A high transaction rate
(more than 2 or 3 per minute) on the ST enqueue may result in poor scalability on
Oracle Parallel Server systems with many nodes, or a timeout waiting for space
management resources.

Try to minimize the number of space management transactions, in particular:
« the number of sort space management transactions

« the creation and removal of objects

« transactions caused by fragmentation in a tablespace.

Use dedicated temporary tablespaces to optimize space management for sorts. This
is particularly beneficial on a parallel server. You can monitor this using
V$SORT_SEGMENT.

Set INITIAL and NEXT extent size to a value in the range of 1MB to 10MB. Pro-
cesses may use temporary space at a rate of up to 1MB per second. Do not accept
the default value of 40K for next extent size, because this will result in many
requests for space per second.

If you are unable to allocate extents for various reasons, you can recoalesce the
space by using the ALTER TABLESPACE ... COALESCE SPACE command. This
should be done on a regular basis for temporary tablespaces in particular.

See Also: "Setting Up Temporary Tablespaces for Parallel Sort and Hash Join" on
page 19-40

20-12 Oracle8 Tuning

Understanding Parallel Execution Performance Issues

External Fragmentation

External fragmentation is a concern for parallel load, direct-load insert, and PARAL-
LEL CREATE TABLE ... AS SELECT. Memory tends to become fragmented as
extents are allocated and data is inserted and deleted. This may result in a fair
amount of free space that is unusable because it consists of small, non-contiguous
chunks of memory. To reduce external fragmentation on partitioned tables, set all
extents to the same size. Set MINEXTENTS to the same value as NEXT, which
should be equal to INITIAL; set PERCENT_INCREASE to zero. The system can
handle this well with a few thousand extents per object, so you can set MAXEX-
TENTS to a few thousand. For tables that are not partitioned, the initial extent
should be small.

Optimizing Parallel Execution on Oracle Parallel Server
This section describe several aspects of parallel execution on Oracle Parallel Server.

Lock Allocation

This section provides parallel execution tuning guidelines for optimal lock manage-
ment on Oracle Parallel Server.

To optimize parallel execution on Oracle Parallel Server, you need to correctly set
GC_FILES TO_LOCKS. On Oracle Parallel Server a certain number of parallel
cache management (PCM) locks are assigned to each data file. Data block address
(DBA) locking in its default behavior assigns one lock to each block. During a full
table scan a PCM lock must then be acquired for each block read into the scan. To
speed up full table scans, you have three possibilities:

« For data files containing truly read-only data, set the tablespace to read only.
Then there will be no PCM locking at all.

« Alternatively, for data that is mostly read-only, assign very few hashed PCM
locks (for example, 2 shared locks) to each data file. Then these will be the only
locks you have to acquire when you read the data.

« If you want DBA or fine-grain locking, group together the blocks controlled by
each lock, using the ! option. This has advantages over default DBA locking
because with the default, you would need to acquire a million locks in order to
read 1 million blocks. When you group the blocks you reduce the number of
locks allocated by the grouping factor. Thus a grouping of 110 would mean that
you would only have to acquire one tenth as many PCM locks as with the
default. Performance improves due to the dramatically reduced amount of lock
allocation. As a rule of thumb, performance with a grouping of '10 might be
comparable to the speed of hashed locking.

Understanding Parallel Execution Performance Issues 20-13

Understanding Parallel Execution Performance Issues

To speed up parallel DML operations, consider using hashed locking rather
than DBA locking. A parallel server process works on non-overlapping parti-
tions; it is recommended that partitions not share files. You can thus reduce the
number of lock operations by having only 1 hashed lock per file. Since the par-
allel server process only works on non-overlapping files, there will be no lock
pings.

The following guidelines impact memory usage, and thus indirectly affect perfor-
mance:

« Never allocate PCM locks for datafiles of temporary tablespaces.

« Never allocate PCM locks for datafiles that contain only rollback segments.
These are protected by GC_ROLLBACK_LOCKS and
GC_ROLLBACK_SEGMENTS.

« Allocate specific PCM locks for the SYSTEM tablespace. This practice ensures
that data dictionary activity such as space management never interferes with
the data tablespaces at a cache management level (error 1575).

For example, on a read-only database with a data warehousing application’s
guery-only workload, you might create 500 PCM locks on the SYSTEM
tablespace in file 1, then create 50 more locks to be shared for all the data in the
other files. Space management work will then never interfere with the rest of
the database.

See Also: Oracle8 Parallel Server Concepts & Administration for a thorough discussion
of PCM locks and locking parameters.

Allocation of Processes and Instances

Parallel execution assigns each instance a unique number, which is determined by
the INSTANCE_NUMBER initialization parameter. The instance number regulates
the order of instance startup.

Note: For Oracle Parallel Server, the PARALLEL _INSTANCE_GROUP parameter
determines what instance group will be used for a particular operation. For more
information, see Oracle8 Parallel Server Concepts & Administration.

Oracle computes a target degree of parallelism by examining the maximum of the
degree for each table and other factors, before run time. At run time, a parallel oper-
ation is executed sequentially if insufficient parallel server processes are available.
PARALLEL_MIN_PERCENT sets the minimum percentage of the target number of
parallel server processes that must be available in order for the operation to run in
parallel. When PARALLEL_MIN_PERCENT is set to n, an error message is sent if n

20-14 Oracle8 Tuning

Understanding Parallel Execution Performance Issues

percent parallel server processes are not available. If no parallel server processes
are available, a parallel operation is executed sequentially.

Load Balancing for Multiple Concurrent Parallel Operations

Load balancing is the distribution of parallel server processes to achieve even CPU
and memory utilization, and to minimize remote 1/0 and communication between
nodes.

When multiple concurrent operations are running on a single node, load balancing
is done by the operating system. For example, if there are 10 CPUs and 5 parallel
server processes, the operating system distributes the 5 processes among the CPUs.
If a second node is added, the operating system still distributes the workload.

For a parallel server, however, no single operating system performs the load balanc-
ing: instead, parallel execution performs this function.

If an operation requests more than one instance, allocation priorities involve table
caching and disk affinity.

Thus, if there are 5 parallel server processes, it is advantageous for them to run on
as many nodes as possible.

In Oracle Server release 8.0, allocation of processes and instances is based on
instance groups. With instance groups a parallel server system will be partitioned
into disjoint logical subsystems. Parallel resources will be allocated out of a particu-
lar instance group only if the parallel coordinator is part of the group. This
approach supports application and data partitioning.

See Also: Oracle8 Parallel Server Concepts & Administration for more information
about instance groups.

Disk Affinity

Some Oracle Parallel Server platforms use disk affinity. Without disk affinity, Ora-
cle tries to balance the allocation evenly across instances; with disk affinity, Oracle
tries to allocate parallel server processes for parallel table scans on the instances
that are closest to the requested data. Disk affinity minimizes data shipping and
internode communication on a shared nothing architecture. It can significantly
increase parallel operation throughput and decrease response time.

Disk affinity is used for parallel table scans, parallel temporary tablespace alloca-
tion, parallel DML, and parallel index scan. It is not used for parallel table creation
or parallel index creation. Access to temporary tablespaces preferentially uses local
datafiles. It guarantees optimal space management extent allocation. Disks striped
by the operating system are treated by disk affinity as a single unit.

Understanding Parallel Execution Performance Issues 20-15

Understanding Parallel Execution Performance Issues

In the following example of disk affinity, table T is distributed across 3 nodes, and a
full table scan on table T is being performed.

Figure 20-3 Disk Affinity Example

Instance Instance Instance Instance
1 2 3 4

« Ifaquery requires 2 instances, then two instances from the set 1, 2, and 3 are
used.

« Ifaquery requires 3 instances, then instances 1, 2, and 3 are used.
« Ifaquery requires 4 instances, then all four instances are used.

« If there are two concurrent operations against table T, each requiring 3
instances (and enough processes are available on the instances for both opera-
tions), then both operations will use instances 1, 2, and 3. Instance 4 will not be
used. In contrast, without disk affinity instance 4 would be used.

Resource Timeout

A parallel DML transaction spanning Oracle Parallel Server instances may be wait-
ing too long for a resource due to potential deadlock involving this transaction and
other parallel or non-parallel DML transactions. Set the
PARALLEL_TRANSACTION_RESOURCE_TIMEOUT parameter to specify how
long a parallel DML transaction should wait for a resource before aborting.

See Also: Oracle8 SQL Reference

20-16 Oracle8 Tuning

Parallel Execution Tuning Techniques

Parallel Execution Tuning Techniques

This section describes performance techniques for parallel operations.
« Overriding the Default Degree of Parallelism

« Rewriting SQL Statements

« Creating and Populating Tables in Parallel

« Creating Indexes in Parallel

« Refreshing Tables in Parallel

« Using Hints with Cost Based Optimization

« Tuning Parallel Insert Performance

Overriding the Default Degree of Parallelism

The default degree of parallelism is appropriate for reducing response time while
guaranteeing use of CPU and I/0 resources for any parallel operations. If an opera-
tion is 1/0 bound, you should consider increasing the default degree of parallel-
ism. If it is memory bound, or several concurrent parallel operations are running,
consider decreasing the default degree.

Oracle uses the default degree of parallelism for tables that have PARALLEL attrib-
uted to them in the data dictionary, or when the PARALLEL hint is specified. If a
table does not have parallelism attributed to it, or has NOPARALLEL (the default)
attributed to it, then that table is never scanned in parallel—regardless of the
default degree of parallelism that would be indicated by the number of CPUs,
instances, and devices storing that table.

Use the following guidelines when adjusting the degree of parallelism:

= You can adjust the degree of parallelism either by using ALTER TABLE or by
using hints.

« Toincrease the number of concurrent parallel operations, reduce the degree of
parallelism.

« For I/0-bound parallel operations, first spread the data over more disks than
there are CPUs. Then, increase parallelism in stages. Stop when the query
becomes CPU bound.

For example, assume a parallel indexed nested loop join is 1/0 bound perform-
ing the index lookups, with #CPUs=10 and #disks=36. The default degree of par-
allelism is 10, and this is /0 bound. You could first try parallel degree 12. If

Understanding Parallel Execution Performance Issues 20-17

Parallel Execution Tuning Techniques

still 170 bound, you could try parallel degree 24; if still 1/0 bound, you could
try 36.

To override the default degree of parallelism:
1. Determine the maximum number of query servers your system can support.

2. Divide the parallel server processes among the estimated number of concurrent
gueries.

Rewriting SQL Statements

The most important issue for parallel query execution is ensuring that all parts of
the query plan that process a substantial amount of data execute in parallel. Use
EXPLAIN PLAN to verify that all plan steps have an OTHER_TAG of
PARALLEL_TO_PARALLEL, PARALLEL_TO_SERIAL,
PARALLEL_COMBINED_WITH_PARENT, or

PARALLEL_COMBINED _WITH_CHILD. Any other keyword (or null) indicates
serial execution, and a possible bottleneck.

By making the following changes you can increase the optimizer’s ability to gener-
ate parallel plans:

« Convert subqueries, especially correlated subqueries, into joins. Oracle can par-
allelize joins more efficiently than subqueries. This also applies to updates.

« Use aPL/SQL function in the WHERE clause of the main query, instead of a
correlated subquery.

« Rewrite queries with distinct aggregates as nested queries. For example, rewrite
SELECT COUNT(DISTINCT C) FROMT;

to
SELECT COUNT(*)FROM (SELECT DISTINCT CFROMT);

See Also: "Updating the Table" on page 20-22

20-18 Oracle8 Tuning

Parallel Execution Tuning Techniques

Creating and Populating Tables in Parallel

Oracle cannot return results to a user process in parallel. If a query returns a large
number of rows, execution of the query may indeed be faster; however, the user
process can only receive the rows serially. To optimize parallel query performance
with queries that retrieve large result sets, use PARALLEL CREATE TABLE ... AS
SELECT or direct-load insert to store the result set in the database. At a later time,
users can view the result set serially.

Note: Parallelism of the SELECT does not influence the CREATE statement. If the
CREATE is parallel, however, the optimizer tries to make the SELECT run in paral-
lel also.

When combined with the NOLOGGING option, the parallel version of CREATE
TABLE ... AS SELECT provides a very efficient intermediate table facility.

For example:

CREATE TABLE summary PARALLEL NOLOGGING
AS SELECT dim_1,dim 2.., SUM (meas_1) FROM facts
GROUPBY dim_1,dim_2;

These tables can also be incrementally loaded with parallel insert. You can take
advantage of intermediate tables using the following techniques:

« Common subqueries can be computed once and referenced many times. This
may be much more efficient than referencing a complex view many times.

« Decompose complex queries into simpler steps in order to provide application-
level checkpoint/restart. For example, a complex multi-table join on a database
1 terabyte in size could run for dozens of hours. A crash during this query
would mean starting over from the beginning. Using CREATE TABLE ... AS
SELECT and/or PARALLEL INSERT AS SELECT, you can rewrite the query as
a sequence of simpler queries that run for a few hours each. If a system failure
occurs, the query can be restarted from the last completed step.

« Materialize a Cartesian product. This may allow queries against star schemas
to execute in parallel. It may also increase scalability of parallel hash joins by
increasing the number of distinct values in the join column.

Consider a huge table of retail sales data that is joined to region and to depart-
ment lookup tables. There are 5 regions and 25 departments. If the huge table is
joined to regions using parallel hash partitioning, the maximum speedup is 5.
Similarly, if the huge table is joined to departments, the maximum speedup is
25. But if a temporary table containing the Cartesian product of regions and
departments is joined with the huge table, the maximum speedup is 125.

Understanding Parallel Execution Performance Issues 20-19

Parallel Execution Tuning Techniques

« Efficiently implement manual parallel deletes by creating a new table that
omits the unwanted rows from the original table, and then dropping the origi-
nal table. Alternatively, you can use the convenient parallel delete feature,
which can directly delete rows from the original table.

« Create summary tables for efficient multidimensional drill-down analysis. For
example, a summary table might store the sum of revenue grouped by month,
brand, region, and salesperson.

« Reorganize tables, eliminating chained rows, compressing free space, and so
on, by copying the old table to a new table. This is much faster than export/
import and easier than reloading.

Note: Be sure to use the ANALYZE command on newly created tables. Also
consider creating indexes. To avoid 1/0 bottlenecks, specify a tablespace with
at least as many devices as CPUs. To avoid fragmentation in allocating space,
the number of files in a tablespace should be a multiple of the number of CPUs.

Creating Indexes in Parallel

Multiple processes can work together simultaneously to create an index. By divid-
ing the work necessary to create an index among multiple server processes, the Ora-
cle Server can create the index more quickly than if a single server process created
the index sequentially.

Parallel index creation works in much the same way as a table scan with an
ORDER BY clause. The table is randomly sampled and a set of index keys is found
that equally divides the index into the same number of pieces as the degree of par-
allelism. A first set of query processes scans the table, extracts key,ROWID pairs,
and sends each pair to a process in a second set of query processes based on key.
Each process in the second set sorts the keys and builds an index in the usual fash-
ion. After all index pieces are built, the parallel coordinator simply concatenates the
pieces (which are ordered) to form the final index.

Parallel local index creation uses a single server set. Each server process in the set is
assigned a table partition to scan, and to build an index partition for. Because half
as many server processes are used for a given degree of parallelism, parallel local
index creation can be run with a higher degree of parallelism.

You can optionally specify that no redo and undo logging should occur during
index creation. This can significantly improve performance, but temporarily ren-
ders the index unrecoverable. Recoverability is restored after the new index is
backed up. If your application can tolerate this window where recovery of the
index requires it to be re-created, then you should consider using the NOLOG-
GING option.

20-20 Oracle8 Tuning

Parallel Execution Tuning Techniques

The PARALLEL clause in the CREATE INDEX command is the only way in which
you can specify the degree of parallelism for creating the index. If the degree of par-
allelism is not specified in the parallel clause of CREATE INDEX, then the number
of CPUs is used as the degree of parallelism. If there is no parallel clause, index cre-
ation will be done serially.

Attention; When creating an index in parallel, the STORAGE clause refers to the
storage of each of the subindexes created by the query server processes. Therefore,
an index created with an INITIAL of 5MB and a PARALLEL DEGREE of 12 con-
sumes at least 60MB of storage during index creation because each process starts
with an extent of 5MB. When the query coordinator process combines the sorted
subindexes, some of the extents may be trimmed, and the resulting index may be
smaller than the requested 60MB.

When you add or enable a UNIQUE key or PRIMARY KEY constraint on a table,
you cannot automatically create the required index in parallel. Instead, manually
create an index on the desired columns using the CREATE INDEX command and
an appropriate PARALLEL clause and then add or enable the constraint. Oracle
then uses the existing index when enabling or adding the constraint.

Multiple constraints on the same table can be enabled concurrently and in parallel
if all the constraints are already in the enabled novalidate state. In the following
example, the ALTER TABLE ... ENABLE CONSTRAINT statement performs the
table scan that checks the constraint in parallel:

CREATE TABLE a (a1 NUMBER CONSTRAINT ach CHECK (a1 > 0) ENABLE NOVALIDATE)
PARALLEL5;

INSERT INTO avalues (1);

COMMIT;

ALTER TABLE a ENABLE CONSTRAINT ach;

See Also: For more information on how extents are allocated when using the paral-
lel query feature, see Oracle8 Concepts.

Refer to the Oracle8 SQL Reference for the complete syntax of the CREATE INDEX
command.

Understanding Parallel Execution Performance Issues 20-21

Parallel Execution Tuning Techniques

Refreshing Tables in Parallel

Parallel DML combined with the updatable join views facility provides an efficient
solution for refreshing the tables of a data warehouse system. To refresh tables is to
update them with the differential data generated from the OLTP production system.

In the following example, assume that you want to refresh a table named CUS-
TOMER(c_key, c_name, c_addr). The differential data contains either new rows or
rows that have been updated since the last refresh of the data warehouse. In this
example, the updated data is shipped from the production system to the data ware-
house system by means of ASCII files. These files must be loaded into a temporary
table, named DIFF_CUSTOMER, before starting the refresh process. You can use
SQL Loader with both the parallel and direct options to efficiently perform this task.

Once DIFF_CUSTOMER is loaded, the refresh process can be started. It is per-
formed in two phases:

« updating the table

« inserting the new rows in parallel

Updating the Table
A straightforward SQL implementation of the update uses subqueries:

UPDATE customer

SET(c_name, c_addr) =

(SELECT ¢_name, ¢_addr

FROM diff_customer

WHERE diff_customer.c_key = customer.c_key)
WHERE ¢_key IN(SELECT c_key FROM diff_customer);

Unfortunately, the two subqueries in the preceding statement affect the perfor-
mance.

An alternative is to rewrite this query using updatable join views. To do this you
must first add a primary key constraint to the DIFF_CUSTOMER table to ensure
that the modified columns map to a key-preserved table:

CREATE UNIQUE INDEX diff_pkey_ind on diff_customer(c_key)
PARALLEL NOLOGGING;
ALTER TABLE diff_customer ADD PRIMARY KEY (c_key);

20-22 Oracle8 Tuning

Parallel Execution Tuning Techniques

The CUSTOMER table can then be updated with the following SQL statement:

UPDATE F+PARALLEL (customer,12)*/ customer

(SELECT customer.c_name asc_name,customer.c_addr as c_addr,
diff_customer.c_name asc_newname, diff_customer.c_addrasc_newaddr
FROM customer, diff_customer

WHERE customer.c_key =diff_customer.c_key)

SET c_name =c_newname, c_addr=c_newaddr,

If the CUSTOMER table is partitioned, parallel DML can be used to further
improve the response time. It could not be used with the original SQL statement
because of the subquery in the SET clause.

See Also: "Rewriting SQL Statements"” on page 20-18
Oracle8 Application Developer’s Guide for information about key-preserved tables

Inserting the New Rows into the Table in Parallel

The last phase of the refresh process consists in inserting the new rows from the
DIFF_CUSTOMER to the CUSTOMER table. Unlike the update case, you cannot
avoid having a subquery in the insert statement:

INSERT /A+PARALLEL (customer,12)*/ INTO customer
SELECT * FROM diff_customer
WHERE diff_customer.c_key NOT IN (SELECT /+ HASH_AJ * key FROM customer);

But here, the HASH_AJ hint transforms the subquery into an anti-hash join. (The
hint is not required if the parameter ALWAYS_ANTI_JOIN is set to hash in the ini-
tialization file). Doing so allows you to use parallel insert to execute the preceding
statement very efficiently. Note that parallel insert is applicable even if the table is
not partitioned.

Understanding Parallel Execution Performance Issues 20-23

Parallel Execution Tuning Techniques

Using Hints with Cost Based Optimization

Cost-based optimization is a highly sophisticated approach to finding the best exe-
cution plan for SQL statements. Oracle automatically uses cost-based optimization
with parallel execution.

Attention: You must use ANALYZE to gather current statistics for cost-based opti-
mization. In particular, tables used in parallel should always be analyzed. Always
keep your statistics current by running ANALYZE after DDL and DML operations.

Use discretion in employing hints. If used, hints should come as a final step in tun-
ing, and only when they demonstrate a necessary and significant performance
advantage. In such cases, begin with the execution plan recommended by cost-
based optimization, and go on to test the effect of hints only after you have quanti-
fied your performance expectations. Remember that hints are powerful; if you use
them and the underlying data changes you may need to change the hints. Other-
wise, the effectiveness of your execution plans may deteriorate.

Always use cost-based optimization unless you have an existing application that
has been hand-tuned for rule-based optimization. If you must use rule-based opti-
mization, rewriting a SQL statement can give orders of magnitude improvements.

Note: If any table in a query has a parallel degree greater than one (including the
default degree), Oracle uses the cost-based optimizer for that query—even if
OPTIMIZER_MODE = RULE, or if there is a RULE hint in the query itself.

See Also: "OPTIMIZER_PERCENT_PARALLEL" on page 19-5. This parameter con-
trols parallel awareness.

20-24 Oracle8 Tuning

Parallel Execution Tuning Techniques

Tuning Parallel Insert Performance

This section provides an overview of parallel operation functionality.
« INSERT

« Direct-Load INSERT

« Parallelizing INSERT, UPDATE, and DELETE

See Also: Oracle8 Concepts for a detailed discussion of parallel Data Manipulation
Language and degree of parallelism.

For a discussion of parallel DML affinity, please see Oracle8 Parallel Server Concepts
& Administration.

INSERT
Oracle8 INSERT functionality can be summarized as follows:

Table 20-3 Summary of INSERT Features

Insert Type Parallel Serial NOLOGGING
Conventional No Yes No
Direct Load Yes: requires Yes: requires Yes: requires
Insert (Append) * i *

ALTER SESSION ENABLE PARALLEL DML APPEND hint NOLOGGING

attribute set for

* Table PARALLEL attribute or PARALLEL hint table or partition

* APPEND hint (optional)

If parallel DML is enabled and there is a PARALLEL hint or PARALLEL attribute
set for the table in the data dictionary, then inserts will be parallel and appended,
unless a restriction applies. If either the PARALLEL hint or PARALLEL attribute is
missing, then the insert is performed serially.

Understanding Parallel Execution Performance Issues 20-25

Parallel Execution Tuning Techniques

Direct-Load INSERT

Append mode is the default during a parallel insert: data is always inserted into a
new block which is allocated to the table. Therefore the APPEND hint is optional.
You should use append mode to increase the speed of insert operations—but not
when space utilization needs to be optimized. You can use NOAPPEND to override
append mode.

Note that the APPEND hint applies to both serial and parallel insert: even serial
insert will be faster if you use it. APPEND, however, does require more space and
locking overhead.

You can use NOLOGGING with APPEND to make the process even faster.
NOLOGGING means that no redo log is generated for the operation. NOLOG-
GING is never the default; use it when you wish to optimize performance. It
should not normally be used when recovery is needed for the table or partition. If
recovery is needed, be sure to take a backup immediately after the operation. Use
the ALTER TABLE [NO]JLOGGING statement to set the appropriate value.

See Also: Oracle8 Concepts

Parallelizing INSERT, UPDATE, and DELETE

When the table or partition has the PARALLEL attribute in the data dictionary, that
attribute setting is used to determine parallelism of UPDATE and DELETE state-
ments as well as queries. An explicit PARALLEL hint for a table in a statement over-
rides the effect of the PARALLEL attribute in the data dictionary.

You can use the NOPARALLEL hint to override a PARALLEL attribute for the table
in the data dictionary. Note, in general, that hints take precedence over attributes.

DML operations are considered for parallelization only if the session is in a PARAL-
LEL DML enabled mode. (Use ALTER SESSION ENABLE PARALLEL DML to
enter this mode.) The mode does not affect parallelization of queries or of the query
portions of a DML statement.

See Also: Oracle8 Concepts for more information on parallel INSERT, UPDATE and
DELETE.

20-26 Oracle8 Tuning

Parallel Execution Tuning Techniques

Parallelizing INSERT ... SELECT In the INSERT... SELECT statement you can specify a
PARALLEL hint after the INSERT keyword, in addition to the hint after the
SELECT keyword. The PARALLEL hint after the INSERT keyword applies to the
insert operation only, and the PARALLEL hint after the SELECT keyword applies
to the select operation only. Thus parallelism of the INSERT and SELECT opera-
tions are independent of each other. If one operation cannot be performed in paral-
lel, it has no effect on whether the other operation can be performed in parallel.

The ability to parallelize INSERT causes a change in existing behavior, if the user
has explicitly enabled the session for parallel DML, and if the table in question has
a PARALLEL attribute set in the data dictionary entry. In that case existing INSERT
... SELECT statements that have the select operation parallelized may also have
their insert operation parallelized.

Note also that if you query multiple tables, you can specify multiple SELECT PAR-
ALLEL hints and multiple PARALLEL attributes.

Example
Add the new employees who were hired after the acquisition of ACME.

INSERT /*+ PARALLEL (emp,4) * INTO emp
SELECT A+ PARALLEL(acme_emp4) */*
FROMacme_emp;

The APPEND keyword is not required in this example, because it is implied by the
PARALLEL hint.

Understanding Parallel Execution Performance Issues 20-27

Parallel Execution Tuning Techniques

Parallelizing UPDATE and DELETE The PARALLEL hint (placed immediately after the
UPDATE or DELETE keyword) applies not only to the underlying scan operation,
but also to the update/delete operation. Alternatively, you can specify update/
delete parallelism in the PARALLEL clause specified in the definition of the table to
be modified.

If you have explicitly enabled parallel DML for the session or transaction,
UPDATE/DELETE statements that have their query operation parallelized may
also have their UPDATE/DELETE operation parallelized. Any subqueries or updat-
able views in the statement may have their own separate parallel hints or clauses,
but these parallel directives do not affect the decision to parallelize the update or
delete. If these operations cannot be performed in parallel, it has no effect on
whether the UPDATE or DELETE portion can be performed in parallel.

Parallel UPDATE and DELETE can be done only on partitioned tables.
Example 1
Give a 10% salary raise to all clerks in Dallas.

UPDATE /*+ PARALLEL (emp,5) * emp

SET sal=sal*1.1

WHERE job=CLERK’ and

deptnoin

(SELECT deptno FROM dept WHERE location=DALLAS));

The PARALLEL hint is applied to the update operation as well as to the scan.
Example 2
Fire all employees in the accounting department, which will now be outsourced.

DELETE /+ PARALLEL(emp,2) * FROM emp
WHERE deptno IN
(SELECT deptno FROM dept WHERE dname=ACCOUNTING);

Again, the parallelism will be applied to the scan as well as update operation on
table EMP.

20-28 Oracle8 Tuning

Parallel Execution Tuning Techniques

Additional PDML Examples The following examples show the use of parallel DML.

Note: As these examples demonstrate, you must enable parallel DML before using

the PARALLEL or APPEND hints. You must issue a COMMIT or ROLLBACK com-
mand immediately after executing parallel INSERT, UPDATE, or DELETE. You can
issue no other SQL commands before committing or rolling back.

The following statement enables parallel DML:

ALTER SESSION ENABLE PARALLEL DML,

Serial as well as parallel direct-load insert requires commit or rollback immediately
afterwards.

INSERT /*+ APPEND NOPARALLEL (tablel) */ INTO table1l

A select statement issued at this point would fail, with an error message, because
no SQL can be performed before a COMMIT or ROLLBACK is issued.

ROLLBACK;

After this ROLLBACK, a SELECT statement will succeed:
SELECT *FROM V$PQ_SESSTAT;

Parallel update likewise requires commit or rollback immediately afterwards:

UPDATE /+PARALLEL(tablel,2) */ tablel
SET coll =coll +1;

COMMIT;

SELECT * FROM V$PQ_SESSTAT;

As does parallel delete:

DELETE /+PARALLEL(table3,2) * FROM table3
WHERE col2<5;

COMMIT;

SELECT * FROM V$PQ_SESSTAT;

Understanding Parallel Execution Performance Issues 20-29

Parallel Execution Tuning Techniques

20-30 Oracle8 Tuning

21

Diagnosing Parallel Execution Performance
Problems

This section summarizes common tools and techniques you can use to obtain per-
formance feedback on parallel operations.

« Diagnosing Problems

« Executing Parallel SQL Statements

« Using EXPLAIN PLAN to See How an Operation Is Parallelized
« Using the Dynamic Performance Views

« Checking Operating System Statistics

« Minimum Recovery Time

« Parallel DML Restrictions

See Also: Oracle8 Concepts, for basic principles of parallel execution.

See your operating system-specific Oracle documentation for more information
about tuning while using parallel execution.

Diagnosing Parallel Execution Performance Problems 21-1

Diagnosing Problems

Diagnosing Problems

Use the decision tree in Figure 21-1 to diagnose parallel performance problems.
Some key issues are the following:

21-2 Oracle8 Tuning

Quantify your performance expectations, to determine whether there is a prob-
lem.

Determine whether a problem pertains to optimization (such as an inefficient
plan, which may require re-analyzing tables or adding hints) or to execution
(such as simple operations like scanning, loading, grouping, or indexing run-
ning much slower than published guidelines).

Determine whether the problem arises when running in parallel (such as load
imbalance or resource bottleneck) or whether the problem is also present when
running serially.

Diagnosing Problems

Figure 21-1 Parallel Execution Performance Checklist

i Start

Memory
(paging, buffer, sort, and
hash area sizing)

Quantify/justify

ion? .
Regression? performance expectations

Parallel Plan Parallel Yes
Execution? Change? Plan?
No
- Number of distinct v
values < degree of - OPTIMIZER_PERCENT _
Yes parallellsm PARALLEL = 100
- diagnose with - study parallel portion of
V$PQ_TQSTAT EXPLAIN PLAN output
- create temp tables
- I/0: reorg base tables,
No add devices to temp v
- device contention - analyze tables
- 1/0 bound and too little - use index hints if CPU
parallelism bound
- CPU bound and too - use index-only access
much parallelism - use create table as select
- too many concurrent - convert subqueries
users to joins
- study EXPLAIN PLAN
_I output

Diagnosing Parallel Execution Performance Problems 21-3

Diagnosing Problems

Is There Regression?

Does parallel execution’s actual performance deviate from what you expected? If
performance is as you expected, can you justify the notion that there is a perfor-
mance problem? Perhaps you have a desired outcome in mind, to which you are
comparing the current outcome. Perhaps you have a justifiable performance expec-
tation which the system is not achieving. You might have achieved this level of per-
formance or particular execution plan in the past, but now, with a similar
environment and operation, this is not being met.

If performance is not as you expected, can you quantify the deviation? For data
warehousing operations, the execution plan is key. For critical data warehousing
operations, save the EXPLAIN PLAN results. Then, as you analyze the data, reana-
lyze, upgrade Oracle, and load in new data over the course of time, you can com-
pare any new execution plan with the old plan. You can take this approach either
proactively or reactively.

Alternatively, you may find that you get a plan that works better if you use hints.
You may want to understand why hints were necessary, and figure out how to get
the optimizer to generate the desired plan without the hints. Try increasing the sta-
tistical sample size: better statistics may give you a better plan. If you had to use a
PARALLEL hint, look to see whether you had OPTIMIZER_PERCENT_PARALLEL
set to 100%.

Is There a Plan Change?

If there has been a change in the execution plan, determine whether the plan is (or
should be) parallel or serial.

Is There a Parallel Plan?

If the execution plan is (or should be) parallel:

« If you want a parallel plan, but the optimizer has not given you one, try increas-
ing OPTIMIZER_PERCENT_PARALLEL to 100 and see if this improves perfor-
mance.

« Study the EXPLAIN PLAN output. Did you analyze all the tables? Perhaps you
need to use hints in a few cases. Verify that the hint gives better results.

See Also: Parallel EXPLAIN PLAN tags are defined in Table 23-2.

21-4 Oracle8 Tuning

Diagnosing Problems

Is There a Serial Plan?
If the execution plan is (or should be) serial, consider the following strategies:

Use an index. Sometimes adding the right index can greatly improve perfor-
mance. Consider adding an extra column to the index: perhaps your operation
could obtain all its data from the index, and not require a table scan. Perhaps
you need to use hints in a few cases. Verify that the hint gives better results.

If you do not analyze often, and you can spare the time, it is a good practice to
compute statistics. This particularly important if you are performing many
joins; it will result in better plans. Alternatively, you can estimate statistics.

Note: Using different sample sizes can cause the plan to change. Generally, the
higher the sample size, the better the plan.

Use histograms for non-uniform distributions.
Check initialization parameters to be sure the values are reasonable.
Replace bind variables with literals.

Note whether execution is 1/0 or CPU bound, then check the optimizer cost
model.

Convert subqueries to joins.

Use CREATE TABLE ... AS SELECT to break a complex operation into smaller
pieces. With a large query referencing five or six tables, it may be difficult to
determine which part of the query is taking the most time. You can isolate the
troublesome parts of the query by breaking it into steps and analyzing each
step.

See Also: Oracle8 Concepts regarding CREATE TABLE ... AS SELECT
"Step 3: Analyzing Data" on page 19-45 regarding COMPUTE and ESTIMATE

Is There Parallel Execution?

If the cause of regression cannot be traced to problems in the plan, then the prob-
lem must be an execution issue. For data warehousing operations, both serial and
parallel, consider memory. Check the paging rate and make sure the system is
using memory as effectively as possible. Check buffer, sort, and hash area sizing.
After you run a query or DML operation, you can look at the V$SESSTAT,
V$PQ_SESSTAT and V$PQ_SYSSTAT views to see the number of server processes
used, and other information for the session and system.

See Also: "Querying the Dynamic Performance Views: Example" on page 21-12

Diagnosing Parallel Execution Performance Problems 21-5

Diagnosing Problems

Is There Skew?

If parallel execution is occurring, is there unevenness in workload distribution
(skew)? For example, if there are 10 CPUs and a single user, you can see whether
the workload is evenly distributed across CPUs. This may vary over time, with peri-
ods that are more or less 1/0 intensive, but in general each CPU should have
roughly the same amount of activity.

The statistics in V$PQ_TQSTAT show rows produced and consumed per parallel
server process. This is a good indication of skew, and does not require single user
operation.

Operating system statistics show you the per-processor CPU utilization and per-
disk 170 activity. Concurrently running tasks make it harder to see what is going
on, however. It can be useful to run in single-user mode and check operating sys-
tem monitors which show system level CPU and I/0 activity.

When workload distribution is unbalanced, a common culprit is the presence of
skew in the data. For a hash join, this may be the case if the number of distinct val-
ues is less than the degree of parallelism. When joining two tables on a column
with only 4 distinct values, you will not get scaling on more than 4. If you have 10
CPUs, 4 of them will be saturated but 6 will be idle. To avoid this problem, change
the query: use temporary tables to change the join order such that all operations
have more values in the join column than the number of CPUs.

If /0 problems occur you may need to reorganize your data, spreading it over
more devices. If parallel execution problems occur, check to be sure you have fol-
lowed the recommendation to spread data over at least as many devices as CPUs.

If there is no skew in workload distribution, check for the following conditions:

« Is there device contention? Are there enough disk controllers to provide ade-
guate 1/0 bandwidth?

« Isthe system I/0 bound, with too little parallelism? If so, consider increasing
parallelism up to the number of devices.

« Isthe system CPU bound, with too much parallelism? Check the operating sys-
tem CPU monitor to see whether a lot of time is being spent in system calls.
The resource may be overcommitted, and too much parallelism may cause pro-
cesses to compete with themselves.

« Are there more concurrent users than the system can support?

21-6 Oracle8 Tuning

Executing Parallel SQL Statements

Executing Parallel SQL Statements

After analyzing your tables and indexes, you should be able to run operations and
see speedup that scales linearly with the degree of parallelism used. The following
operations should scale:

table scans

nested loop join
sort merge join
hash join

“notin”

group by

select distinct
union and union all
aggregation
PL/SQL functions called from SQL
order by

create table as select
create index

rebuild index
rebuild index partition
move partition

split partition
update

delete

insert ... select
enable constraint

star transformation

Start with simple parallel operations. Evaluate total 170 throughput with SELECT
COUNT(*) FROM facts. Evaluate total CPU power by adding a complex WHERE
clause. 170 imbalance may suggest a better physical database layout. After you

Diagnosing Parallel Execution Performance Problems 21-7

Using EXPLAIN PLAN to See How an Operation Is Parallelized

understand how simple scans work, add aggregation, joins, and other operations
that reflect individual aspects of the overall workload. Look for bottlenecks.

Besides query performance you should also monitor parallel load, parallel index
creation, and parallel DML, and look for good utilization of /0 and CPU resources.

Using EXPLAIN PLAN to See How an Operation Is Parallelized

Use an EXPLAIN PLAN statement to view the sequential and parallel operation
plan. The OTHER_TAG column of the plan table summarizes how each plan step is
parallelized, and describes the text of the operation used by parallel server pro-
cesses for each operation. Optimizer cost information for selected plan steps is
given in the COST, BYTES, and CARDINALITY columns. Table 23-2 summarizes
the meaning of the OTHER_TAG column.

EXPLAIN PLAN thus provides detailed information as to how specific operations
are being performed. You can then change the execution plan for better perfor-
mance. For example, if many steps are serial (where OTHER_TAG is blank, serial to
parallel, or parallel to serial), then the parallel controller could be a bottleneck. Con-
sider the following SQL statement, which summarizes sales data by region:

EXPLAIN PLAN SET STATEMENT ID ="Jan_Summary FOR
SELECT dim_1 SUM(measL1) FROM facts WHERE dim_2 < 02-01-1995
GROUPBY dim 1

This script extracts a compact hierarchical plan from the EXPLAIN PLAN output:

SELECT

SUBSTR(LPAD(', 2*(evel-1)) ||
DECODE((d, 0, statement_id, operation) ||
" || options || "* | object_name ||

‘[|| pertition_start || || partiion_stop ||
1'l| other_tag,

1,79) "step [startstop] par”

FROM plan_table
STARTWITHid=0

CONNECT BY PRIOR id = parent_id
AND PRIOR NVL(statement _id,") =
NVL(statement _id);

Following is the query plan for “Jan_Summary”:

Jan_Summary [}]
SORT GROUP BY [] PARALLEL TO SERIAL
TABLE ACCESS FULL facts [NUMBER(1),NUMBER(1)] PARALLEL. TO_PARALLEL;

21-8 Oracle8 Tuning

Using EXPLAIN PLAN to See How an Operation Is Parallelized

Each parallel server scans a portion of the first partition of the facts table. All other
partitions are pruned, as shown by the stop and start partition number.

Figure 21-2 illustrates how, with the PARALLEL_TO_PARALLEL keyword, data
from the partitioned table is redistributed to a second set of parallel server pro-
cesses for parallel grouping. Query server set 1 executes the table scan from the pre-
ceding example. The rows coming out are repartitioned through the table queue to
parallel server set 2, which executes the GROUP BY operation. Because the GROUP
BY operation indicates PARALLEL_TO_SERIAL, another table queue collects its
results and sends it to the parallel coordinator, and then to the user.

Figure 21-2 Data Redistribution among Parallel Server Processes

Parallel Server Processes Parallel Server Processes
Set 1 Set 2
P002 \ P000 \
Table / Table N Parallel
Queue \ Queue Coordinator
P003 / P001 /

As arule, if the PARALLEL_TO_PARALLEL keyword exists, there will be two sets
of parallel server processes. This means that for grouping, sort merge, or hash joins,
twice the number of parallel server processes are assigned to the operation. This
requires redistribution of data or rows from set 1 to set 2. If there is no
PARALLEL_TO_PARALLEL keyword, then the operation gets just one set of serv-
ers. Such serial processes include aggregations, such as COUNT(*) FROM facts or
SELECT * FROM facts WHERE DATE ="7/1/94".

For non-distributed operations, the OBJECT_NODE column gives the name of the
table queue. If the PARALLEL_TO_PARALLEL keyword exists, then the EXPLAIN
PLAN of the parent operation should have SQL that references the child table
gueue in its FROM clause. In this way the plan describes the order in which the out-
put from operations is consumed.

See Also: Chapter 23, “The EXPLAIN PLAN Command”

Diagnosing Parallel Execution Performance Problems 21-9

Using the Dynamic Performance Views

Using the Dynamic Performance Views

V$FILESTAT

Dynamic performance views list internal Oracle8 data structures and statistics that
you can query periodically to monitor progress of a long-running operation. When
used in conjunction with data dictionary views, these tables provide a wealth of
information. The challenge is visualizing the data and then acting upon it.

Note: On Oracle Parallel Server, global versions of these views aggregate the infor-
mation over multiple instances. The global views have analogous names such as
GVS$FILESTAT for V$FILESTAT, and so on.

See Also: Oracle8 Parallel Server Concepts & Administration for more information
about global dynamic performance views.

This view sums read and write requests, number of blocks, and service times for
every datafile in every tablespace. It can help you diagnose 1/0 problems and
workload distribution problems.

The file numbers listed in V$FILESTAT can be joined to those in the
DBA_DATA_FILES view to group 1/0 by tablespace or to find the filename for a
given file number. By doing ratio analysis you can determine the percentage of the
total tablespace activity used by each file in the tablespace. If you make a practice
of putting just one large, heavily accessed object in a tablespace, you can use this
technique to identify objects that have a poor physical layout.

You can further diagnose disk space allocation problems using the DBA_EXTENTS
view. Ensure that space is allocated evenly from all files in the tablespace. Monitor-
ing VSFILESTAT during a long-running operation and correlating 1/0 activity to
the EXPLAIN PLAN output is a good way to follow progress.

V$PARAMETER

This view lists the name, current value, and default value of all system parameters.
In addition, the view indicates whether the parameter may be modified online with
an ALTER SYSTEM or ALTER SESSION command.

V$PQ SESSTAT

This view is valid only when queried from a session that is executing parallel SQL
statements. Thus it cannot be used to monitor a long running operation. It gives
summary statistics about the parallel statements executed in the session, including
total number of messages exchanged between server processes and the actual num-
ber of parallel server processes used.

21-10 Oracle8 Tuning

Using the Dynamic Performance Views

V$PQ_ SLAVE

This view tallies the current and total CPU time and number of messages sent and
received per parallel server process. It can be monitored during a long-running
operation. Verify that there is little variance among processes in CPU usage and
number of messages processed. A variance may indicate a load-balancing problem.
Attempt to correlate the variance to a variance in the base data distribution.
Extreme imbalance could indicate that the number of distinct values in a join col-
umn is much less than the degree of parallelism. See “Parallel CREATE TABLE ...
AS SELECT” in Oracle8 Concepts for a possible workaround.

V$PQ SYSSTAT

V$PQ_TQSTAT

The V$PQ_SYSSTAT view aggregates session statistics from all parallel server pro-
cesses. It sums the total parallel server message traffic, and gives the status of the
pool of parallel server processes.

This view can help you determine the appropriate number of parallel server pro-
cesses for an instance. The statistics that are particularly useful are “Servers Busy”,
“Servers ldle”, “Servers Started”, and “Servers Shutdown”.

Periodically examine V$PQ_SYSSTAT to determine whether the parallel server pro-
cesses for the instance are actually busy, as follows:

SELECT *FROM V$PQ_SYSSTAT
WHERE statistic ="Servers Busy”;

STATISTIC VALUE

Servers Busy 70

This view provides a detailed report of message traffic at the level of the table
gueue. It is valid only when queried from a session that is executing parallel SQL
statements. A table queue is the pipeline between parallel server groups or
between the parallel coordinator and a parallel server group or between a parallel
server group and the coordinator. These table queues are represented in the plan by
the tags PARALLEL_TO_PARALLEL, SERIAL_TO_PARALLEL, or
PARALLEL_TO_SERIAL, respectively.

The view contains a row for each parallel server process that reads or writes each
table queue. A table queue connecting 10 consumers to 10 producers will have 20
rows in the view. Sum the bytes column and group by TQ_ID (table queue identi-
fier) for the total number of bytes sent through each table queue. Compare this with

Diagnosing Parallel Execution Performance Problems 21-11

Using the Dynamic Performance Views

the optimizer estimates; large variations may indicate a need to analyze the data
using a larger sample.

Compute the variance of bytes grouped by TQ_ID. Large variances indicate work-
load imbalance. Drill down on large variances to determine whether the producers
start out with unequal distributions of data, or whether the distribution itself is
skewed. The latter may indicate a low number of distinct values.

For many of the dynamic performance views, the system parameter
TIMED_STATISTICS must be set to TRUE in order to get the most useful informa-
tion. You can use ALTER SYSTEM to turn TIMED_STATISTICS on and off dynami-
cally.

See Also: Chapter 22, “The Dynamic Performance Views”

V$SESSTAT and V$SYSSTAT

The V$SESSTAT view provides statistics related to parallel execution for each ses-
sion. The statistics include total number of queries, DML and DDL statements exe-
cuted in a session and the total number of intra- and inter-instance messages
exchanged during parallel execution during the session.

V$SYSSTAT does the same as V$SESSTAT for the entire system.

Querying the Dynamic Performance Views: Example
The following example illustrates output from two of these views:

SQLDBA> update /+ parallel (lemp, 2) * iemp set empno =empno +1;
91 rows processed.

SQLDBA> commit,

Statement processed.

SQLDBA> select * from vpq_sesstat;

STATISTIC LAST_QUERY SESSION_TOTAL

Queries Parallelized 0 0
DML Parallelized 1 2
DFO Trees 1 2
Server Threads 2
Allocation Height 2 0
Allocation Width 0

Local Msgs Sent 34 60
Distr Msgs Sent 0

Local Msgs Recvd 34 60
Distr Msgs Recvd 0

11 rows selected.

21-12 Oracle8 Tuning

Using the Dynamic Performance Views

SQLDBA> select * from vépg_sysstat;
STATISTIC VALUE

Servers Busy 0
Servers Idie 2
Servers Highwater 2
Server Sessions 4
Servers Started 2
Servers Shutdown 0
Servers Cleaned Up 0
Queries Initiated 0
DML Initiated 2
DFO Trees 2
Local Msgs Sent 60
Distr Msgs Sent 0
Local Msgs Recvd 60
Distr Msgs Recvd 0
15 rows selected.

In V$PQ_SESSTAT, some of the statistics provide the following information.

DML Parallelized

Queries Parallelized

DFO Trees

Server Threads

Allocation Height
Allocation Width

number of statements with insert, delete and
update that were parallelized by the last operation
and by this session

number of all other parallel statements

number of fragments of query plan that were par-
allelized

total number of server processes (typically 2x
degree)

requested number of servers on each instance

requested number of instances

In V$PQ_SYSSTAT, the “DML Initiated” statistic indicates the number of DML
operations done in the system.

Note that statements such as INSERT ... SELECT are treated as a single DML state-
ment, not as one DML statement and one query.

See Also: Oracle8 SQL Reference for information about statistics.

Diagnosing Parallel Execution Performance Problems 21-13

Checking Operating System Statistics

Checking Operating System Statistics

There is considerable overlap between information available in Oracle and informa-
tion available though operating system utilities (such as sar and vmstat on UNIX-
based systems). Operating systems provide performance statistics on 1/0, commu-
nication, CPU, memory and paging, scheduling, and synchronization primitives.
The Oracle V$SESSTAT view provides the major categories of OS statistics as well.

Typically, Operating system information about 1/0 devices and semaphore opera-
tions is harder to map back to database objects and operations than is Oracle infor-
mation. However, some operating systems have good visualization tools and
efficient means of collecting the data.

Operating system information about CPU and memory usage is very important for
assessing performance. Probably the most important statistic is CPU usage. The
goal of low -level performance tuning is to become CPU bound on all CPUs. Once
this is achieved, you can move up a level and work at the SQL level to find an alter-
nate plan that might be more 1/0 intensive but uses less CPU.

Operating system memory and paging information is valuable for fine tuning the
many system parameters that control how memory is divided among memory-
intensive warehouse subsystems like parallel communication, sort, and hash join.

Minimum Recovery Time

If the system requires ten minutes to run an operation, it will take at least 10 min-
utes to roll back the operation: this is the best performance achievable. If there is
some instance failure and some system failure, then recovery time will increase
because not all the server processes are available to provide rollback.

21-14 Oracle8 Tuning

Parallel DML Restrictions

Parallel DML Restrictions

You must either commit or roll back directly after you issue a parallel INSERT,
UPDATE, or DELETE statement, or a serial insert with the APPEND hint. You can
perform no other SQL commands until this is done.

Discrete transactions are not supported for parallel DML.

A session that is enabled for parallel DML may put transactions in the session in a
special mode. If any DML statement in a transaction modifies a table in parallel, no
subsequent serial or parallel query or DML statement can access the same table
again in that transaction. This means that the results of parallel modifications can-
not be seen during the transaction.

A complete listing of parallel DML and direct-load insert restrictions is found in
Oracle8 Concepts. If a parallel restriction is violated, the operation is simply per-
formed serially. If a direct-load insert restriction is violated, then the APPEND hint
is ignored and a conventional insert is performed. No error message is returned.

Diagnosing Parallel Execution Performance Problems 21-15

Parallel DML Restrictions

21-16 Oracle8 Tuning

PartVI

Performance Diagnostic Tools

Part VI discusses the tools available to diagnose system problems and tune system
performance. The chapters in Part VI are:

Chapter 22, “
“The EXPLAIN PLAN Command”

“The SQL Trace Facility and TKPROF”
Chapter 25, “
Chapter 26, “

Chapter 23,
Chapter 24,

The Dynamic Performance Views”

Using Oracle Trace”

Registering Applications”

22

The Dynamic Performance Views

Dynamic performance views are useful for identifying instance-level performance
problems. Whereas the underlying X$ tables represent internal data structures that
can be modified by SQL statements, the V$ views allow users other than SYS read-
only access to this data. This chapter describes the views of the greatest use for
both performance tuning and ad hoc investigation—for example, when users
report a sudden deterioration in response time.

« Instance-Level Views for Tuning
« Session-Level or Transient Views for Tuning
« Current Statistic Value and Rate of Change

See Also: For complete information on all dynamic performance tables, see Oracle8
Reference.

The Dynamic Performance Views 22-1

Instance-Level Views for Tuning

Instance-Level Views for Tuning

These views concern the instance as a whole and record statistics either since star-
tup of the instance or (in the case of the SGA statistics) the current values, which
will remain constant until altered by some need to reallocate SGA space. Cumula-
tive statistics are from startup.

Table 22-1 Instance Level Views Important for Tuning

View Notes

V$FIXED_TABLE Lists the fixed objects present in the release.

V$INSTANCE Shows the state of the current instance.

V$LATCH Lists statistics for nonparent latches and summary statistics

V$LIBRARYCACHE

V$ROLLSTAT
V$ROWCACHE
V$SGA
V$SGASTAT

V$SORT_USAGE

V$SQLAREA

V$SQLTEXT

V$SYSSTAT
V$SYSTEM_EVENT
VSWAITSTAT

for parent latches.

Contains statistics about library cache performance and activ-
ity.

Lists the names of all online rollback segments.

Showvs statistics for data dictionary activity.

Contains summary information on the system global area.

Dynamic view. Contains detailed information on the system
global area.

shows the size of the temporary segments and the session
creating them. This information can help you identify which
processes are doing disk sorts.

Lists statistics on shared SQL area; contains one row per SQL
string. Provides statistics on SQL statements that are in mem-
ory, parsed, and ready for execution. Text limited to 1000
characters; full text is available in 64 byte chunks from
V$SQLTEXT.

Contains the text of SQL statements belonging to shared SQL
cursors in the SGA.

Contains basic instance statistics.
Contains information on total waits for an event.

Lists block contention statistics. Updated only when timed
statistics are enabled.

22-2 Oracle8 Tuning

Session-Level or Transient Views for Tuning

The single most important fixed view is V$SYSSTAT, which contains the statistic
name in addition to the value. The values from this table form the basic input to the
instance tuning process.

Session-Level or Transient Views for Tuning

These views either operate at the session level or primarily concern transient val-
ues. Session data is cumulative from connect time.

Table 22-2 Session Level Views Important for Tuning

View Notes

V$LOCK Lists the locks currently held by the Oracle8 Server and
outstanding requests for a lock or latch.

VSMYSTAT Showvs statistics from your current session.

V$PROCESS Contains information about the currently active pro-
CesSes.

V$SESSION Lists session information for each current session. Links

SID to other session attributes.
Contains row lock information.

V$SESSION_EVENT Lists information on waits for an event by a session.

V$SESSION_WAIT Lists the resources or events for which active sessions
are waiting, where WAIT_TIME = 0 for current events.

V$SESSTAT Lists user session statistics. Requires join to V$STAT-
NAME, V$SESSION.

The structure of V$SESSION_WAIT makes it easy to check in real time whether any
sessions are waiting, and if so, why. For example:

SELECT SID
, EVENT
FROM V$SESSION_EVENT
WHERE WAIT_TIME =0,

You can then investigate further to see whether such waits occur frequently and

whether they can be correlated with other phenomena, such as the use of particular
modules.

The Dynamic Performance Views 22-3

Current Statistic Value and Rate of Change

Current Statistic Value and Rate of Change

This section describes procedures for:
» Finding the Current Value of a Statistic

« Finding the Rate of Change of a Statistic

Finding the Current Value of a Statistic

Key ratios are expressed in terms of instance statistics. For example, the consistent
change ratio is consistent changes divided by consistent gets. The simplest effective
SQL*Plus script for finding the current value of a statistic is of the form:

col NAME format a35

col VALUE format 999,999,990

select NAME, VALUE from V$SYSSTAT S
where lower(NAME) like lower(%&stat_name%o)
/

Note: Two LOWER functions in the preceding query make it case insensitive and
allow it to report data from the 11 statistics whose names start with “CPU” or
“DBWR”. No other upper-case characters appear in statistic names.

You can use the following query, for example, to report all statistics containing the
word “get” in their name;

SQL> @STAT GET

It is preferable, however, to use some mechanism that records the change in the sta-
tistic(s) over a known period of time.

22-4 Oracle8 Tuning

Current Statistic Value and Rate of Change

Finding the Rate of Change of a Statistic

You can adapt the following script to show the rate of change for any statistic, latch,
or event. For a given statistic, this script tells you the number of seconds between
two checks of its value, and its rate of change.

set veri off

define secs=0

define value=0

col value format 99,999,999,990 new_value value

col secs format a10 new_value secs noprint

col delta format 9,999,990

col delta_time format 9,990

col rate format 999,990.0

col name format 230

select name,value, to_char(sysdate, sssss)) secs,
(value - &value) delta,
(to_char(sysdate, 'sssss)) - &secs) delta._time,
(value - &value) (to_char(sysdate,'sssss)) - &secs) rate
from v$sysstat
where name ='&&stat_ name’

/

Note: This script must be run at least twice, because the first time it is run, it will
initialize the SQL*Plus variables.

The Dynamic Performance Views 22-5

Current Statistic Value and Rate of Change

22-6 Oracle8 Tuning

23

The EXPLAIN PLAN Command

This chapter shows how to use the SQL command EXPLAIN PLAN. It covers the
following topics:

Introduction

Creating the Output Table

Output Table Columns

Formatting EXPLAIN PLAN Output
EXPLAIN PLAN Restrictions

See Also: For the syntax of the EXPLAIN PLAN command, see the Oracle8 SQL Ref-
erence.

The EXPLAIN PLAN Command 23-1

Introduction

Introduction

The EXPLAIN PLAN command displays the execution plan chosen by the Oracle
optimizer for SELECT, UPDATE, INSERT, and DELETE statements. A statement’s
execution plan is the sequence of operations that Oracle performs to execute the
statement. By examining the execution plan, you can see exactly how Oracle exe-
cutes your SQL statement.

EXPLAIN PLAN results alone cannot tell you which statements will perform well,
and which badly. For example, just because EXPLAIN PLAN indicates that a state-
ment will use an index does not mean that the statement will run quickly. The
index might be very inefficient! Use EXPLAIN PLAN to determine the access plan
and to test modifications to improve the performance.

It is not necessarily useful to subjectively evaluate the plan for a statement, and
decide to tune it based only on the execution plan. Instead, you should examine the
statement’s actual resource consumption. For best results, use the Oracle Trace or SQL
trace facility and TKPROF to examine performance information on individual SQL
statements.

Attention: EXPLAIN PLAN tells you the execution plan the optimizer would
choose if it were to produce an execution plan for a SQL statement at the current
time, with the current set of initialization and session parameters. However, this
plan is not necessarily the same as the plan that was used at the time the given
statement was actually executed. The optimizer bases its analysis on many pieces
of data—some of which may have changed! Furthermore, because the behavior of
the optimizer is likely to evolve between releases of the Oracle Server, output from
the EXPLAIN PLAN command will also evolve. Changes to both the optimizer and
EXPLAIN PLAN output will be documented as they arise.

The row source count values appearing in EXPLAIN PLAN output identify the
number of rows that have been processed by each step in the plan. This can help
you to identify where the inefficiency in the query lies (that is, the row source with
an access plan that is performing inefficient operations).

See also: Chapter 24, “The SQL Trace Facility and TKPROF”
Chapter 25, “Using Oracle Trace”

23-2 Oracle8 Tuning

Creating the Output Table

Creating the Output Table

Before you can issue an EXPLAIN PLAN statement, you must create a table to hold
its output. Use one of the following approaches:

« Runthe SQL script UTLXPLAN.SQL to create a sample output table called
PLAN_TABLE in your schema. The exact name and location of this script
depends on your operating system. PLAN_TABLE is the default table into
which the EXPLAIN PLAN statement inserts rows describing execution plans.

« Issue a CREATE TABLE statement to create an output table with any name you
choose. When you issue an EXPLAIN PLAN statement you can direct its out-
put to this table.

Any table used to store the output of the EXPLAIN PLAN command must have the
same column names and datatypes as the PLAN_TABLE:

CREATE TABLE plan_table
(statement_id VARCHAR2(30),
timestamp ~ DATE,
remarks VARCHAR2(80),
operaion VARCHAR2(30),
optons VARCHAR2(30),
object node VARCHAR2(128),
object owner VARCHAR2(30),
object name VARCHAR2(30),
object_instance NUMERIC,
object type VARCHAR2(30),
optimizer VARCHAR2(255),
search_columns NUMERIC,

id NUMERIC,

parent id NUMERIC,
position NUMERIC,

cost NUMERIC,
cardinality NUMERIC,

bytes NUMERIC,

other tag VARCHAR2(255)
other LONG);

The EXPLAIN PLAN Command 23-3

Output Table Columns

Output Table Columns

The PLAN_TABLE used by the EXPLAIN PLAN command contains the following

columns:

Table 23-1 PLAN_TABLE Columns

Column

Description

STATEMENT_ID

TIMESTAMP

REMARKS

OPERATION

OPTIONS

OBJECT_NODE

OBJECT_OWNER

OBJECT_NAME
OBJECT_INSTANCE

23-4 Oracle8 Tuning

The value of the optional STATEMENT_ID parameter speci-
fied in the EXPLAIN PLAN statement.

The date and time when the EXPLAIN PLAN statement was
issued.

Any comment (of up to 80 bytes) you wish to associate with
each step of the explained plan. If you need to add or change
a remark on any row of the PLAN_TABLE, use the UPDATE
statement to modify the rows of the PLAN_TABLE.

The name of the internal operation performed in this step. In
the first row generated for a statement, the column contains
one of the following values:

DELETE STATEMENT
INSERT STATEMENT
SELECT STATEMENT
UPDATE STATEMENT

A variation on the operation described in the OPERATION
column.

The name of the database link used to reference the object (a
table name or view name). For local queries using the parallel
query option, this column describes the order in which output
from operations is consumed.

The name of the user who owns the schema containing the
table or index.

The name of the table or index.

A number corresponding to the ordinal position of the object
as it appears in the original statement. The numbering pro-
ceeds from left to right, outer to inner with respect to the origi-
nal statement text. Note that view expansion will result in
unpredictable numbers.

Output Table Columns

Table 23-1 PLAN_TABLE Columns

OBJECT_TYPE

OPTIMIZER

SEARCH_COLUMNS

ID
PARENT_ID

POSITION

OTHER

OTHER_TAG

PARTITION_START
PARTITION_STOP
PARTITION_ID

COST

CARDINALITY

BYTES

A modifier that provides descriptive information about the
object; for example, NON-UNIQUE for indexes.

The current mode of the optimizer.
Not currently used.
A number assigned to each step in the execution plan.

The ID of the next execution step that operates on the output
of the ID step.

The order of processing for steps that all have the same
PARENT_ID.

Other information that is specific to the execution step that a
user may find useful.

Describes the contents of the OTHER column. See Table 23-2
for more information on the possible values for this column.

The start partition of a range of accessed partitions.
The stop partition of a range of accessed partitions.

The step that has computed the pair of values of the
PARTITION_START and PARTITION_STOP columns.

The cost of the operation as estimated by the optimizer’s cost-
based approach. For statements that use the rule-based
approach, this column is null. Cost is not determined for table
access operations. The value of this column does not have any
particular unit of measurement, it is merely a weighted value
used to compare costs of execution plans.

The estimate by the cost-based approach of the number of
rows accessed by the operation.

The estimate by the cost-based approach of the number of
bytes accessed by the operation.

The EXPLAIN PLAN Command 23-5

Output Table Columns

Table 23-2 describes the values that may appear in the OTHER_TAG column.

Table 23-2 Values of OTHER_TAG Column of the PLAN_TABLE

OTHER_TAG Text

Interpretation

(blank)
SERIAL_FROM_REMOTE
SERIAL_TO_PARALLEL

PARALLEL_TO_PARALLEL

PARALLEL_TO_SERIAL

PARALLEL_COMBINED_WITH_PARENT

PARALLEL_COMBINED_WITH_CHILD

Serial execution.
Serial execution at a remote site.

Serial execution; output of step is partitioned
or broadcast to parallel query servers.

Parallel execution; output of step is reparti-
tioned to second set of parallel query servers.

Parallel execution; output of step is returned
to serial “query coordinator” process.

Parallel execution; output of step goes to next
step in same parallel process. No interprocess
communication to parent.

Parallel execution; input of step comes from
prior step in same parallel process. No inter-
process communication from child.

23-6 Oracle8 Tuning

Output Table Columns

The following table lists each combination of OPERATION and OPTION produced
by the EXPLAIN PLAN command and its meaning within an execution plan.

Table 23-3 OPERATION and OPTION Values Produced by EXPLAIN PLAN

OPERATION

OPTION

Description

AND-EQUAL

An operation that accepts multiple sets of ROWIDs and returns
the intersection of the sets, eliminating duplicates. This opera-
tion is used for the single-column indexes access path.

BITMAP

CONVERSION

TO ROWIDS converts the bitmap representation to actual
ROWIDs that can be used to access the table.

FROM ROWIDS converts the ROWIDs to a bitmap representa-
tion.

COUNT returns the number of ROWIDs if the actual values are
not needed.

INDEX

SINGLE VALUE looks up the bitmap for a single key value in
the index.

RANGE SCAN retrieves bitmaps for a key value range.

FULL SCAN: A bitmap index full scan is performed if there is
no start or stop key.

MERGE

Merges several bitmaps resulting from a range scan into one
bitmap.

MINUS

Subtracts the bits of one bitmap from another. This row source
is used for negated predicates and can be used only if there are
some nonnegated predicates yielding a bitmap from which the
subtraction can take place. An example appears in "Bitmap
Indexes and EXPLAIN PLAN" on page 23-10.

OR

Computes the bitwise OR of two bitmaps.

CONNECT BY

A retrieval of rows in a hierarchical order for a query contain-
ing a CONNECT BY clause.

CONCATENATION

An operation that accepts multiple sets of rows and returns the
union-all of the sets.

COUNT

An operation that counts the number of rows selected from a
table.

STOPKEY

A count operation where the number of rows returned is lim-
ited by the ROWNUM expression in the WHERE clause.

The EXPLAIN PLAN Command 23-7

Output Table Columns

Table 23-4 OPERATION and OPTION Values Produced by EXPLAIN PLAN (Continued)

OPERATION OPTION Description

FILTER An operation that accepts a set of rows, eliminates some of
them, and returns the rest.

FIRST ROW A retrieval on only the first row selected by a query.

FOR UPDATE An operation that retrieves and locks the rows selected by a
query containing a FOR UPDATE clause.

HASH JOIN An operation that joins two sets of rows, and returns the
result.

(These are join operations.) ANTI A hash anti-join.

SEMI A hash semi-join.

INDEX UNIQUE SCAN A retrieval of a single ROWID from an index.

RANGE SCAN A retrieval of one or more ROWIDs from an index. Indexed

(These operations are values are scanned in ascending order.

access methods.) RANGE SCAN A retrieval of one or more ROWIDs from an index. Indexed

DESCENDING values are scanned in descending order.

INLIST ITERATOR CONCATENATED | Iterates over the operation below it, for each value in the IN
list predicate.

INTERSECTION An operation that accepts two sets of rows and returns the
intersection of the sets, eliminating duplicates.

MERGE JOIN An operation that accepts two sets of rows, each sorted by a
specific value, combines each row from one set with the
matching rows from the other, and returns the result.

(These are join operations.) — . -

OUTER A merge join operation to perform an outer join statement.
ANTI A merge anti-join.
SEMI A merge semi-join.

CONNECT BY A retrieval of rows in hierarchical order for a query contain-
ing a CONNECT BY clause.

MINUS An operation that accepts two sets of rows and returns

rows that appear in the first set but not in the second, elimi-
nating duplicates.

23-8 Oracle8 Tuning

Output Table Columns

Table 23-5 OPERATION and OPTION Values Produced by EXPLAIN PLAN (Continued)

OPERATION OPTION Description
NESTED LOOPS An operation that accepts two sets of rows, an outer set and
an inner set. Oracle compares each row of the outer set with
each row of the inner set and returns those rows that satisfy
(These are join operations.) a condition.
OUTER A nested loops operation to perform an outer join statement.
PARTITION CONCATENATED | Iterates over the operation below it, for each partition in the
range given by the PARTITION_START and
PARTITION_STOP columns.
PROJECTION An internal operation.
REMOTE A retrieval of data from a remote database.
SEQUENCE An operation involving accessing values of a sequence.
SORT AGGREGATE A retrieval of a single row that is the result of applying a
group function to a group of selected rows.
UNIQUE An operation that sorts a set of rows to eliminate duplicates.
GROUP BY An operation that sorts a set of rows into groups for a query
with a GROUP BY clause.
JOIN An operation that sorts a set of rows before a merge-join.
ORDER BY An operation that sorts a set of rows for a query with an
ORDER BY clause.
TABLE ACCESS FULL A retrieval of all rows from a table.
CLUSTER A retrieval of rows from a table based on a value of an
(These operations are indexed cluster key.
access methods.) HASH Retrieval of rows from table based on hash cluster key value.
BY ROWID A retrieval of a row from a table based on its ROWID.
UNION An operation that accepts two sets of rows and returns the
union of the sets, eliminating duplicates.
VIEW An operation that performs a view’s query and then returns

the resulting rows to another operation.

Note: Access methods and join operations are discussed in Oracle8 Concepts.

The EXPLAIN PLAN Command 23-9

Output Table Columns

Bitmap Indexes and EXPLAIN PLAN

Index row sources appear in the EXPLAIN PLAN output with the word BITMAP
indicating the type. Consider the following sample query and plan, in which the
TO ROWIDS option is used to generate the ROWIDs that are necessary for table
access.

EXPLAIN PLAN FOR
SELECT*FROMT
WHERE
C1=2ANDC2<>6
OR
C3BETWEEN 10 AND 20,
SELECT STATEMENT
TABLEACCESS T BY ROWID
BITMAP CONVERSION TO ROWIDS
BITMAP OR
BITMAP MINUS
BITMAP MINUS
BITMAP INDEX C1_IND SINGLE VALUE
BITMAP INDEX C2_IND SINGLE VALUE
BITMAP INDEX C2_IND SINGLE VALUE
BITMAP MERGE
BITMAP INDEX C3_IND RANGE SCAN

In this example, the predicate C1=2 yields a bitmap from which a subtraction can
take place. From this bitmap, the bits in the bitmap for c2 = 6 are subtracted. Also,
the bits in the bitmap for c¢2 IS NULL are subtracted, explaining why there are two
MINUS row sources in the plan. The NULL subtraction is necessary for semantic
correctness unless the column has a NOT NULL constraint.

23-10 Oracle8 Tuning

Output Table Columns

INLIST ITERATOR and EXPLAIN PLAN

An INLIST ITERATOR operation appears in the EXPLAIN PLAN output if an
index implements an IN list predicate. For example, for the query

SELECT * FROM EMP WHERE empno IN (7876, 7900, 7902);

the EXPLAIN PLAN output is as follows:
OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT

INLIST TERATOR CONCATENATED
TABLEACCESS BYROWID EMP
INDEX RANGESCAN EMP_EMPNO

The INLIST ITERATOR operation iterates over the operation below it for each
value in the IN list predicate.

For partitioned tables and indexes, the three possible types of IN list columns are
described in the following sections.

Index Column

If the IN list column EMPNO is an index column but not a partition column, then
the plan is as follows (the IN list operator appears above the table operation but
below the partition operation):

OPERATION OPTIONS = OBJECT_NAME PARTITION_START PARTITION_STOP

SELECT STATEMENT

PARTITION CONCATENATED KEY(INLIST) KEY(INLIST)
INLIST TERATOR CONCATENATED

TABLEACCESS BYROWID EMP KEY(INLIST) KEY(INLIST)
INDEX RANGESCAN EMP_EMPNO KEY(INLIST) KEY(INLIST)

The KEY(INLIST) designation for the partition start and stop keys specifies that an
IN list predicate appears on the index start/stop keys.

The EXPLAIN PLAN Command 23-11

Output Table Columns

Index and Partition Column

If EMPNO is an indexed and a partition column, then the plan contains an INLIST
ITERATOR operation above the partition operation:

OPERATION OPTIONS = OBJECT_NAME PARTITION_START PARTITION_STOP

SELECT STATEMENT

INLIST TERATOR CONCATENATED

PARTITION ~ CONCATENATED KEY(NLIST) KEY(INLIST)

TABLEACCESS BYROWID EMP KEY(NLST) KEY(INLIST)
INDEX RANGE SCAN EMP_EMPNO KEY(INLIST) KEY(INLIST)

Partition Column
If EMPNO is a partition column and there are no indexes, then no INLIST ITERA-
TOR operation is allocated:

OPERATION OPTIONS OBJECT_NAME PARTITION_START PARTITION_STOP

SELECT STATEMENT

PARTITION CONCATENATED KEY(INLIST) KEY(INLIST)

TABLEACCESS BYROWID EMP KEY(INLIST) KEY(INLIST)
INDEX RANGESCAN EMP_EMPNO KEY(INLIST) KEY(INLIST)

If EMP_EMPNO is a bitmap index, then the plan is as follows:
OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT

INLIST TERATOR CONCATENATED
TABLEACCESS BYINDEXROWID EMP
BITMAP CONVERSION TO ROWIDS
BITMAPINDEX SINGLEVALUE EMP_EMPNO

23-12 Oracle8 Tuning

Formatting EXPLAIN PLAN Output

Formatting EXPLAIN PLAN Output

This section shows options for formatting EXPLAIN PLAN output
» How to Run EXPLAIN PLAN

« Selecting PLAN_TABLE Output in Table Format

« Selecting PLAN_TABLE Output in Nested Format

Note: The output of the EXPLAIN PLAN command reflects the behavior of the Ora-
cle optimizer. As the optimizer evolves between releases of the Oracle server, out-
put from the EXPLAIN PLAN command is also likely to evolve.

How to Run EXPLAIN PLAN

The following example shows a SQL statement and its corresponding execution
plan generated by EXPLAIN PLAN. The sample query retrieves names and related
information for employees whose salary is not within any range of the SALGRADE
table:

SELECT ename, job, sal, dname
FROM emp, dept
WHERE emp.deptno = dept.deptno
AND NOT EXISTS
(SELECT*
FROM salgrade
WHERE emp.sal BETWEEN losal AND hisal);
This EXPLAIN PLAN statement generates an execution plan and places the output
in PLAN_TABLE:

EXPLAIN PLAN
SET STATEMENT_ID="Emp_Sal
FOR SELECT ename, job, sal, dname
FROM emp, dept
WHERE emp.deptno = dept.deptno
AND NOT EXISTS
(SELECT*
FROM salgrade
WHERE emp.sal BETWEEN losal AND hisal);

The EXPLAIN PLAN Command 23-13

Formatting EXPLAIN PLAN Output

Selecting PLAN_TABLE Output in Table Format
This SELECT statement generates the following output:

SELECT operation, options, object name, id, parent_id, position
FROM plan_table

WHERE statement _id ="Emp_Sal

ORDERBY id;

OPERATION OPTIONS OBJECT_NAME ID PARENT_ID POSITION COST CARDINALITY BYTES OTHER_TAG OPTIMIZER

SELECT STATEMENT 0 22 162 CHOOSE

FILTER 1 0 1

NESTED LOOPS 2 1 12 162

TABLEACCESSFULL EMP 3 2 11 1 40 ANALYZED
TABLEACCESSFULL DEPT 4 2 2 4 88 ANALYZED
TABLEACCESSFULL SALGRADE 5 1 21 113 ANALYZED

The ORDER BY clause returns the steps of the execution plan sequentially by ID
value. However, Oracle does not perform the steps in this order. PARENT_ID
receives information from 1D, yet more than one ID step fed into PARENT_ID.

For example, step 2, a merge join, and step 7, a table access, both fed into step 1. A
nested, visual representation of the processing sequence is shown in the next sec-
tion.

The value of the POSITION column for the first row of output indicates the opti-
mizer’s estimated cost of executing the statement with this plan to be 5. For the
other rows, it indicates the position relative to the other children of the same parent.

Note: A CONNECT BY does not preserve ordering. To have rows come out in the
correct order in this example, you must either truncate the table first, or else create
a view and select from the view. For example:

CREATE VIEW test AS

SELECT id, parent id,

Ipad("’, 2*(levet-1))[[operation][" [loptions| lobject_namef["|
decode(id, 0, 'Cost = ||position) "Query Plan”

FROM plan_table

START WITH id =0 and statement_id="TST

CONNECT BY prior id = parent_id and statement_id ="TST;

SELECT * FROM foo ORDER BY id, parent id;

23-14 Oracle8 Tuning

Formatting EXPLAIN PLAN Output

This yields results as follows:
ID PAR Query Plan

Select Statement Cost = 69602
0 Nested Loops
Nested Loops
Merge Join
Sort Join
Table Access Full T3
Sort Join
Table Access Full T4
Index Unique Scan T2
Table Access Full T1
10 rows selected.

0
1
2
3
4
5
6
7
8
9

P NOWRAWDNLPRE

Selecting PLAN_TABLE Output in Nested Format

This type of SELECT statement generates a nested representation of the output that
more closely depicts the processing order used for the SQL statement.

SELECT LPAD(' 2(LEVEL-1))|[operation]|’ /|options
[Illobject_name
|I"|[DECODE(id, O, '‘Cost = |position) "Query Plan”
FROM plan_table
START WITH id = 0 AND statement_id ="Emp_Sal'
CONNECT BY PRIOR id = parent_id AND statement_id =Emp_Sal;

Query Plan

SELECT STATEMENT Cost=5
FILTER
NESTED LOOPS
TABLE ACCESS FULL EMP
TABLE ACCESS FULL DEPT
TABLE ACCESS FULL SALGRADE

The order resembles a tree structure, illustrated in the following figure.

The EXPLAIN PLAN Command 23-15

EXPLAIN PLAN Restrictions

Figure 23-1 Tree Structure of an Execution Plan

1

FILTER

z

NESTED LOOPS TABLE ACCESS
(FULL)
salgrade

TABLE ACCESS TABLE ACCESS
(FULL) (FULL)
emp dept

The tree structure illustrates how operations that occur during the execution of a

SQL statement feed one another. Each step in the execution plan is assigned a num-
ber (representing the ID column of the PLAN_TABLE) and is depicted by a “node”.
The result of each node’s operation passes to its parent node, which uses it as input.

EXPLAIN PLAN Restrictions

EXPLAIN PLAN is not supported for statements that perform implicit type conver-
sion of date bind variables. With bind variables in general, the EXPLAIN PLAN
output may not represent the real execution plan. From the text of a SQL statement,
TKPROF cannot determine the type of the bind variables. It assumes that the type
is CHARACTER, and gives an error message if this is not the case. You can avoid
this limitation by putting appropriate type conversions in the SQL statement.

See Also: Chapter 24, “The SQL Trace Facility and TKPROF”

23-16 Oracle8 Tuning

24

The SQL Trace Facility and TKPROF

The SQL trace facility and TKPROF are two basic performance diagnostic tools that
can help you monitor and tune applications running against the Oracle Server. This
chapter covers:

Introduction

Step 1: Set Initialization Parameters for Trace File Management
Step 2: Enable the SQL Trace Facility

Step 3: Format Trace Files with TKPROF

Step 4: Interpret TKPROF Output

Step 5: Store SQL Trace Facility Statistics

Avoiding Pitfalls in TKPROF Interpretation

TKPROF Output Example

Note: The SQL trace facility and TKPROF program are subject to change in future
releases of the Oracle Server. Such changes will be documented as they arise.

The SQL Trace Facility and TKPROF 24-1

Introduction

Introduction

The SQL trace facility and TKPROF enable you to accurately assess the efficiency of
the SQL statements your application runs. For best results, use these tools with
EXPLAIN PLAN, rather than using EXPLAIN PLAN alone. This section covers:

« About the SQL Trace Facility
« About TKPROF
« How to Use the SQL Trace Facility and TKPROF

About the SQL Trace Facility

The SQL trace facility provides performance information on individual SQL state-
ments. It generates the following statistics for each statement:

= Parse, execute, and fetch counts

« CPU and elapsed times

« Physical reads and logical reads

« Number of rows processed

« Misses on the library cache

« Username under which each parse occurred
= Each commit and rollback

You can enable the SQL trace facility for a session or for an instance. When the SQL
trace facility is enabled, performance statistics for all SQL statements executed in a
user session or in an instance are placed into a trace file.

The additional overhead of running the SQL trace facility against an application
with performance problems is normally insignificant, compared with the inherent
overhead caused by the application’s inefficiency.

24-2 Oracle8 Tuning

Introduction

About TKPROF

You can run the TKPROF program to format the contents of the trace file and place
the output into a readable output file. Optionally, TKPROF can also

« determine the execution plans of SQL statements
« create a SQL script that stores the statistics in the database

S TKPROF reports each statement executed with the resources it has consumed, the
number of times it was called, and the number of rows which it processed. This
information lets you easily locate those statements that are using the greatest
resource. With experience or with baselines available, you can assess whether the
resources used are reasonable given the work done.

How to Use the SQL Trace Facility and TKPROF
Follow these steps to use the SQL trace facility and TKPROF:

1. Setinitialization parameters for trace file management.

2. Enable the SQL trace facility for the desired session and run your application.
This step produces a trace file containing statistics for the SQL statements
issued by the application.

3. Run TKPROF to translate the trace file created in Step 2 into a readable output
file. This step can optionally create a SQL script that stores the statistics in the
database.

4. Interpret the output file created in Step 3.

5. Optionally, run the SQL script produced in Step 3 to store the statistics in the
database.

In the following sections each of these steps is discussed in depth.

The SQL Trace Facility and TKPROF 24-3

Step 1: Set Initialization Parameters for Trace File Management

Step 1: Set Initialization Parameters for Trace File Management

When the SQL trace facility is enabled for a session, Oracle generates a trace file con-
taining statistics for traced SQL statements for that session. When the SQL trace
facility is enabled for an instance, Oracle creates a separate trace file for each process.

Before enabling the SQL trace facility, you should:

1. Check settings of the TIMED_STATISTICS, USER_DUMP_DEST, and
MAX_DUMP_FILE_SIZE parameters.

Table 24-1 SQL Trace Facility Initialization Parameters

Parameter

Notes

TIMED_STATISTICS

MAX_DUMP_FILE_SIZE

USER_DUMP_DEST

This parameter enables and disables the collection of timed statistics, such as CPU

and elapsed times, by the SQL trace facility, as well as the collection of various sta-
tistics in the dynamic performance tables. The default value of FALSE disables tim-
ing. A value of TRUE enables timing. Enabling timing causes extra timing calls for

low-level operations. This is a dynamic parameter.

When the SQL trace facility is enabled at the instance level, every call to the server
produces a text line in a file in your operating system’s file format. The maximum
size of these files (in operating system blocks) is limited by the initialization parame-
ter MAX_DUMP_FILE_SIZE. The default is 500. If you find that your trace output

is truncated, increase the value of this parameter before generating another trace
file.

This parameter must specify fully the destination for the trace file according to the
conventions of your operating system. The default value for this parameter is the
default destination for system dumps on your operating system.This value can be
modified with ALTER SYSTEM SET USER_DUMP_DEST=newdir.

2. Devise a way of recognizing the resulting trace file.

Be sure you know how to distinguish the trace files by name. Oracle writes
them to the user dump destination specified by USER_DUMP_DEST. However,
this directory may soon contain many hundreds of files, usually with generated
names. It may be difficult to match trace files back to the session or process that
created them. You can tag trace files by including in your programs a statement
like SELECT ‘program name’ FROM DUAL. You can then trace each file back
to the process that created it.

3. If your operating system retains multiple versions of files, be sure your version
limit is high enough to accommodate the number of trace files you expect the
SQL trace facility to generate.

24-4 Oracle8 Tuning

Step 2: Enable the SQL Trace Facility

4. The generated trace files may be owned by an operating system user other than
yourself. This user must make the trace files available to you before you can
use TKPROF to format them.

Step 2: Enable the SQL Trace Facility

You can enable the SQL trace facility for a session or for the instance. This section
covers:

« Enabling the SQL Trace Facility for Your Current Session
« Enabling the SQL Trace Facility for a Different User Session
« Enabling the SQL Trace Facility for an Instance

Attention: Because running the SQL trace facility increases system overhead, you
should enable it only when tuning your SQL statements, and disable it when you
are finished.

Enabling the SQL Trace Facility for Your Current Session
To enable the SQL trace facility for your current session, enter:
ALTER SESSION SET SQL_TRACE =TRUE;
Alternatively, you can enable the SQL trace facility for your session by using the
DBMS_SESSION.SET_SQL_TRACE procedure.
To disable the SQL trace facility for your session, enter:
ALTER SESSION SET SQL_TRACE =FALSE;

The SQL trace facility is automatically disabled for your session when your applica-
tion disconnects from Oracle.

Note: You may need to modify your application to contain the ALTER SESSION
command. For example, to issue the ALTER SESSION command in Oracle Forms,
invoke Oracle Forms using the -s option, or invoke Oracle Forms (Design) using
the statistics option. For more information on Oracle Forms, see the Oracle Forms
Reference.

The SQL Trace Facility and TKPROF 24-5

Step 2: Enable the SQL Trace Facility

Enabling the SQL Trace Facility for a Different User Session

To enable the SQL trace facility for a session other than your current session, you
can call the procedure DBMS_SYSTEM.SET_SQL_TRACE_IN_SESSION. This pro-
cedure can be useful for database administrators who are not located near their
users or who do not have access to the application code to set SQL trace from
within an application.

This procedure requires the session 1D and serial number of the user session in
question, which you can obtain from the V$SESSION view. In the WHERE clause
you can specify sessions by referencing the value of the OSUSER, USERNAME, or
PROGRAM column in V$SESSION. For example, the following Server Manager
line mode session obtains the session ID and serial number for the operating sys-
tem user jausten and then enables SQL trace for that user’s session:

SVRMGR> SELECT sid, serial#, osuser
2> FROM v$session
3> WHERE osuser =’jausten’,

SID SERIAL# OSUSER

8 12jausten
1 row selected.

SVRMGR> EXECUTE dbms_system.set_sql trace_in_session(8,12, TRUE);
Statement processed.

To enable SQL trace in stored procedures, use this SQL statement:
DBMS_SESSION.SET_SQL_TRACE (TRUE);

Enabling the SQL Trace Facility for an Instance

To enable the SQL trace facility for your instance, set the value of the SQL_TRACE
initialization parameter to TRUE. Statistics will be collected for all sessions.

Once the SQL trace facility has been enabled for the instance, you can disable it for
an individual session by entering:

ALTER SESSION SET SQL_TRACE =FALSE;

24-6 Oracle8 Tuning

Step 3: Format Trace Files with TKPROF

Step 3: Format Trace Files with TKPROF

This section covers:

« Sample TKPROF Output

« Syntax of TKPROF

« TKPROF Statement Examples

TKPROF accepts as input a trace file produced by the SQL trace facility and pro-
duces a formatted output file. TKPROF can also be used to generate execution
plans.

Once the SQL trace facility has generated a number of trace files, you can:

« Run TKPROF on each individual trace file, producing a number of formatted
output files, one for each session

« Concatenate the trace files and then run TKPROF on the result to produce a for-
matted output file for the entire instance

TKPROF does not report COMMITs and ROLLBACKS that are recorded in the trace
file.

The SQL Trace Facility and TKPROF 24-7

Step 3: Format Trace Files with TKPROF

Sample TKPROF Output
Sample output from TKPROF is as follows:

SELECT * FROM emp, dept WHERE emp.deptno = deptdeptno;

cal count cpu elapsed disk querycument rows

Pase 1 016 029 3 13 0 O
Execute 1 000 000 0O O O O
Fetch 1 003 026 2 2 4 14

Misses in library cache during parse: 1
Parsing user id: (8) SCOTT

Rows Execution Plan

14 MERGE JOIN

4 SORTJOIN

4 TABLE ACCESS (FULL) OF DEPT
14 SORTJOIN

14 TABLE ACCESS (FULL) OF EMP’

For this statement, TKPROF output includes the following information:

the text of the SQL statement
the SQL trace statistics in tabular form

the number of library cache misses for the parsing and execution of the state-
ment

the user initially parsing the statement
the execution plan generated by EXPLAIN PLAN

TKPROF also provides a summary of user level statements and recursive SQL calls
for the trace file.

24-8 Oracle8 Tuning

Step 3: Format Trace Files with TKPROF

Syntax of TKPROF
Invoke TKPROF using this syntax:

option

‘
=)
-SORT =
—>| TKPROF Kfilenamel){filenamez) m 1

=)
f_)| PRINT F@-)(integeh \ f_)| INSERT F@—)CﬁlenameSh

=

SYS =

1

TABLE schema.table
|
I | EXPLAIN P@{user/passwordh

f_)| RECORD F@{filenameh

If you invoke TKPROF with no arguments, online help is displayed.

The SQL Trace Facility and TKPROF 24-9

Step 3: Format Trace Files with TKPROF

Use the following arguments with TKPROF:

Table 24-2 TKPROF Arguments

Argument

Meaning

filenamel

filename2

PRINT

AGGREGATE

INSERT

SYS

TABLE

RECORD

EXPLAIN

24-10 Oracle8 Tuning

Specifies the input file, a trace file containing statistics produced by the SQL trace facility. This file
can be either a trace file produced for a single session or a file produced by concatenating individ-
ual trace files from muiltiple sessions.

Specifies the file to which TKPROF writes its formatted output.

Lists only the first integer sorted SQL statements into the output file. If you omit this parameter,
TKPROF lists all traced SQL statements. Note that this parameter does not affect the optional SQL
script. The SQL script always inserts statistics for all traced SQL statements.

If you specify AGGREGATE = NO, then TKPROF does not aggregate multiple users of the same
SQL text.

Creates a SQL script that stores the trace file statistics in the database. TKPROF creates this script
with the name filename3. This script creates a table and inserts a row of statistics for each traced
SQL statement into the table.

Enables and disables the listing of SQL statements issued by the user SYS, or recursive SQL state-
ments, into the output file. The default value of YES causes TKPROF to list these statements. The
value of NO causes TKPROF to omit them. Note that this parameter does not affect the optional
SQL script. The SQL script always inserts statistics for all traced SQL statements, including recur-
sive SQL statements.

Specifies the schema and name of the table into which TKPROF temporarily places execution plans
before writing them to the output file. If the specified table already exists, TKPROF deletes all
rows in the table, uses it for the EXPLAIN PLAN command (which writes more rows into the
table), and then deletes those rows. If this table does not exist, TKPROF creates it, uses it, and then
drops it.

The specified user must be able to issue INSERT, SELECT, and DELETE statements against the
table. If the table does not already exist, the user must also be able to issue CREATE TABLE and
DROP TABLE statements. For the privileges to issue these statements, see the Oracle8 SQL Refer-
ence.

This option allows multiple individuals to run TKPROF concurrently with the same user in the
EXPLAIN value. These individuals can specify different TABLE values and avoid destructively
interfering with each other’s processing on the temporary plan table.

If you use the EXPLAIN parameter without the TABLE parameter, TKPROF uses the table
PROF$PLAN_TABLE in the schema of the user specified by the EXPLAIN parameter. If you use
the TABLE parameter without the EXPLAIN parameter, TKPROF ignores the TABLE parameter.

Creates a SQL script with the specified filename with all of the nonrecursive SQL in the trace file.
This can be used to replay the user events from the trace file.

Determines the execution plan for each SQL statement in the trace file and writes these execution
plans to the output file. TKPROF determines execution plans by issuing the EXPLAIN PLAN com-
mand after connecting to Oracle with the user and password specified in this parameter. The speci-
fied user must have CREATE SESSION system privileges. TKPROF will take longer to process a
large trace file if the EXPLAIN option is used.

Step 3: Format Trace Files with TKPROF

Table 24-2 TKPROF Arguments

SORT Sorts traced SQL statements in descending order of specified sort option before listing them into
the output file. If more than one option is specified, the output is sorted in descending order by the
sum of the values specified in the sort options. If you omit this parameter, TKPROF lists state-
ments into the output file in order of first use. Sort options are as follows:

PRSCNT Number of times parsed

PRSCPU CPU time spent parsing

PRSELA Elapsed time spent parsing

PRSDSK Number of physical reads from disk during parse
PRSMIS Number of consistent mode block reads during parse
PRSCU Number of current mode block reads during parse
PRSMIS Number of library cache misses during parse
EXECNT Number of executes

EXECPU CPU time spent executing

EXEELA Elapsed time spent executing

EXEDSK Number of physical reads from disk during execute
EXEQRY Number of consistent mode block reads during execute
EXECU Number of current mode block reads during execute
EXEROW Number of rows processed during execute

EXEMIS Number of library cache misses during execute
FCHCNT Number of fetches

FCHCPU CPU time spent fetching

FCHELA Elapsed time spent fetching

FCHDSK Number of physical reads from disk during fetch
FCHQRY Number of consistent mode block reads during fetch
FCHCU Number of current mode block reads during fetch
FCHROW Number of rows fetched

The SQL Trace Facility and TKPROF 24-11

Step 3: Format Trace Files with TKPROF

TKPROF Statement Examples

This section provides two brief examples of TKPROF usage. For an complete exam-
ple of TKPROF output, see "TKPROF Output Example" on page 24-26.

Example 1

If you are processing a large trace file using a combination of SORT parameters and
the PRINT parameter, you can produce a TKPROF output file containing only the
highest resource-intensive statements. For example, the following statement prints
the ten statements in the trace file that have generated the most physical 1/0:

TKPROF 0ra53269.trc ora 53269.prf
SORT = (PRSDSK, EXEDSK, FCHDSK)
PRINT =10

Example 2

This example runs TKPROF, accepts a trace file named
dlsunl12_jane_fg_svrmgr_007.trc, and writes a formatted output file named out-
puta.prf:

TKPROF DLSUN12_JANE_FG_SVRMGR_007.TRC OUTPUTAPRF
EXPLAIN=SCOTT/TIGER TABLE=SCOTT.TEMP_PLAN_TABLE_A INSERT=STOREA.SQL SYS=NO
SORT=(EXECPU,FCHCPU)

This example is likely to be longer than a single line on your screen and you may
have to use continuation characters, depending on your operating system.
Note the other parameters in this example:

« The EXPLAIN value causes TKPROF to connect as the user SCOTT and use the
EXPLAIN PLAN command to generate the execution plan for each traced SQL
statement. You can use this to get access paths and row source counts.

« The TABLE value causes TKPROF to use the table TEMP_PLAN_TABLE_A in
the schema SCOTT as a temporary plan table.

« The INSERT value causes TKPROF to generate a SQL script named
STOREA.SQL that stores statistics for all traced SQL statements in the database.

« The SYS parameter with the value of NO causes TKPROF to omit recursive
SQL statements from the output file. In this way you can ignore internal Oracle
statements such as temporary table operations.

« The SORT value causes TKPROF to sort the SQL statements in order of the sum
of the CPU time spent executing and the CPU time spent fetching rows before

24-12 Oracle8 Tuning

Step 4: Interpret TKPROF Output

writing them to the output file. For greatest efficiency, always use SORT param-
eters.

Step 4: Interpret TKPROF Output
This section provides pointers for interpreting TKPROF output.
= Tabular Statistics
« Library Cache Misses
« Statement Truncation
« User Issuing the SQL Statement
= Execution Plan
« Deciding Which Statements to Tune

While TKPROF provides a very useful analysis, the most accurate measure of effi-
ciency is the actual performance of the application in question. Note that at the end
of the TKPROF output is a summary of the work done in the database engine by
the process during the period that the trace was running.

See Also: Oracle8 Reference for a description of statistics in V$SYSSTAT and
V$SESSTAT.

Tabular Statistics

TKPROF lists the statistics for a SQL statement returned by the SQL trace facility in
rows and columns. Each row corresponds to one of three steps of SQL statement
processing. The step for which each row contains statistics is identified by the value
of the CALL column:

PARSE This step translates the SQL statement into an execution
plan. This step includes checks for proper security authoriza-
tion and checks for the existence of tables, columns, and
other referenced objects.

EXECUTE This step is the actual execution of the statement by Oracle.
For INSERT, UPDATE, and DELETE statements, this step
modifies the data. For SELECT statements, the step identifies
the selected rows.

FETCH This step retrieves rows returned by a query. Fetches are
only performed for SELECT statements.

The SQL Trace Facility and TKPROF 24-13

Step 4: Interpret TKPROF Output

The other columns of the SQL trace facility output are combined statistics for all
parses, all executes, and all fetches of a statement. These values are zero (0) if
TIMED_STATISTICS is not turned on. The sum of query and current is the total num-
ber of buffers accessed.

COUNT Number of times a statement was parsed, executed, or
fetched.
CPU Total CPU time in seconds for all parse, execute, or fetch

calls for the statement.

ELAPSED Total elapsed time in seconds for all parse, execute, or fetch
calls for the statement.

DISK Total number of data blocks physically read from the data-
files on disk for all parse, execute, or fetch calls.

QUERY Total number of buffers retrieved in consistent mode for all
parse, execute, or fetch calls. Buffers are usually retrieved in
consistent mode for queries.

CURRENT Total number of buffers retrieved in current mode. Buffers
are retrieved in current mode for statements such as INSERT,
UPDATE, and DELETE.

Rows

Statistics about the processed rows appear in the ROWS column.

ROWS Total number of rows processed by the SQL statement. This
total does not include rows processed by subqueries of the
SQL statement.

For SELECT statements, the number of rows returned appears for the fetch step.
For UPDATE, DELETE, and INSERT statements, the number of rows processed
appears for the execute step.

Note: The row source counts are displayed when a cursor is closed. In SQL*Plus
there is only one user cursor, so each statement executed causes the previous cursor
to be closed; for this reason the row source counts are displayed. PL/SQL has its
own cursor handling and does not close child cursors when the parent cursor is
closed. Exiting (or reconnecting) would cause the counts to be displayed.

24-14 Oracle8 Tuning

Step 4: Interpret TKPROF Output

Resolution of Statistics

Timing statistics have a resolution of one hundredth of a second; therefore, any
operation on a cursor that takes a hundredth of a second or less may not be timed
accurately. Keep this in mind when interpreting statistics. In particular, be careful
when interpreting the results from simple queries that execute very quickly.

Recursive Calls

Sometimes in order to execute a SQL statement issued by a user, Oracle must issue
additional statements. Such statements are called recursive calls or recursive SQL
statements. For example, if you insert a row into a table that does not have enough
space to hold that row, Oracle makes recursive calls to allocate the space dynami-
cally. Recursive calls are also generated when data dictionary information is not
available in the data dictionary cache and must be retrieved from disk.

If recursive calls occur while the SQL trace facility is enabled, TKPROF produces
statistics for the recursive SQL statements and marks them clearly as recursive SQL
statements in the output file. You can suppress the listing of recursive calls in the
output file by setting the SYS command-line parameter to NO. Note that the statis-
tics for a recursive SQL statement are included in the listing for that statement, not
in the listing for the SQL statement that caused the recursive call. So when you are
calculating the total resources required to process a SQL statement, you should con-
sider the statistics for that statement as well as those for recursive calls caused by
that statement.

Library Cache Misses

TKPROF also lists the number of library cache misses resulting from parse and exe-
cute steps for each SQL statement. These statistics appear on separate lines follow-
ing the tabular statistics. If the statement resulted in no library cache misses,
TKPROF does not list the statistic. In "Sample TKPROF Output" on page 24-8, the
example, the statement resulted in one library cache miss for the parse step and no
misses for the execute step.

The SQL Trace Facility and TKPROF 24-15

Step 4: Interpret TKPROF Output

Statement Truncation
The following SQL statements are truncated to 25 characters in the SQL trace file:

SET ROLE
GRANT
ALTER USER
ALTER ROLE
CREATE USER
CREATE ROLE

User Issuing the SQL Statement

TKPROF also lists the user ID of the user issuing each SQL statement. If the SQL
trace input file contained statistics from multiple users and the statement was
issued by more than one user, TKPROF lists the ID of the last user to parse the state-
ment. The user ID of all database users appears in the data dictionary in the col-
umn ALL_USERS.USER_ID.

Execution Plan

If you specify the EXPLAIN parameter on the TKPROF command line, TKPROF
uses the EXPLAIN PLAN command to generate the execution plan of each SQL
statement traced. TKPROF also displays the number of rows processed by each
step of the execution plan.

Note: Trace files generated immediately after instance startup contain data that
reflects the activity of the startup process. In particular, they reflect a disproportion-
ate amount of 1/0 activity as caches in the system global area (SGA) are filled. For
the purposes of tuning, ignore such trace files.

See Also: Chapter 23, “The EXPLAIN PLAN Command” for more information on
interpreting execution plans.

24-16 Oracle8 Tuning

Step 4: Interpret TKPROF Output

Deciding Which Statements to Tune

The following listing shows TKPROF output for one SQL statement as it appears in
the output file:

SELECT * FROM emp, dept WHERE emp.deptno = deptdeptno;

cal count cpu elapsed disk querycument rows
Pase 11 008 018 0O O 0 O
Execute 11 023 066 0 3 6 2
Fetch 35 670 683 100 12326 2 824

toal 57 701 767 100 12329 8 826
Misses in library cache during parse: 0

10 user SQL statements in session.
0 intemal SQL statements in session.
10 SQL statements in session.

If it is acceptable to expend 7.01 CPU seconds to insert, update or delete 2 rows and
to retrieve 824 rows, then you need not look any further at this trace output. In fact,
a major use of TKPROF reports in a tuning exercise is to eliminate processes from
the detailed tuning phase.

You can also see from this summary that 1 unnecessary parse call was made
(because there were 11 parse calls, but only 10 user SQL statements) and that array
fetch operations were performed. (You know this because more rows were fetched
than there were fetches performed.)

Finally, you can see that very little physical 170 was performed; this is suspicious
and probably means that the same database blocks were being continually revisited.

Having established that the process has used excessive resource, the next step is to
discover which SQL statements are the culprits. Normally only a small percentage
of the SQL statements in any process heed to be tuned—those that use the greatest
resource.

The examples that follow were all produced with TIMED_STATISTICS=TRUE.
However, with the exception of locking problems and inefficient PL/SQL loops,
neither the CPU time nor the elapsed time are necessary to find the problem state-
ments. The key is the number of block visits both query (that is, subject to read con-
sistency) and current (not subject to read consistency). Segment headers and blocks
that are going to be updated are always acquired in current mode, but all query

The SQL Trace Facility and TKPROF 24-17

Step 5: Store SQL Trace Facility Statistics

and subquery processing requests the data in query mode. These are precisely the
same measures as the instance statistics CONSISTENT GETS and DB BLOCK GETS.

The SQL parsed as SYS is recursive SQL used to maintain the dictionary cache, and
is not normally of great benefit. If the number of internal SQL statements looks
high, you might want to check to see what has been going on. (There may be exces-
sive space management overhead.)

Step 5: Store SQL Trace Facility Statistics

This section covers:

« Generating the TKPROF Output SQL Script
« Editing the TKPROF Output SQL Script

« Querying the Output Table

You may want to keep a history of the statistics generated by the SQL trace facility
for your application and compare them over time. TKPROF can generate a SQL
script that creates a table and inserts rows of statistics into it. This script contains

« a CREATE TABLE statement that creates an output table named
TKPROF_TABLE

« INSERT statements that add rows of statistics, one for each traced SQL state-
ment, to the TKPROF_TABLE

After running TKPROF, you can run this script to store the statistics in the database.

Generating the TKPROF Output SQL Script

When you run TKPROF, use the INSERT parameter to specify the name of the gen-
erated SQL script. If you omit this parameter, TKPROF does not generate a script.

Editing the TKPROF Output SQL Script

After TKPROF has created the SQL script, you may want to edit the script before
running it.

If you have already created an output table for previously collected statistics and
you want to add new statistics to this table, remove the CREATE TABLE statement
from the script. The script will then insert the new rows into the existing table.

If you have created multiple output tables, perhaps to store statistics from different
databases in different tables, edit the CREATE TABLE and INSERT statements to
change the name of the output table.

24-18 Oracle8 Tuning

Step 5: Store SQL Trace Facility Statistics

Querying the Output Table
The following CREATE TABLE statement creates the TKPROF_TABLE:

CREATE TABLE tkprof_table
(date_of insert DATE,
cursor_num NUMBER,
depth NUMBER,
user_id NUMBER,
parse_cnt NUMBER,
parse_ cpu NUMBER,
parse_elap NUMBER,
parse_disk NUMBER,
parse_query NUMBER,
parse_current NUMBER,
parse_miss NUMBER,
exe_count NUMBER,
exe_cpu NUMBER,
exe_elap NUMBER,
exe_disk NUMBER,
exe_query NUMBER,
exe_curent NUMBER,
exe_miss NUMBER,
exe_rows NUMBER,
fetch count NUMBER,
fetch cou NUMBER,
fetch elap NUMBER,
fetch disk NUMBER,
fetch query NUMBER,
fetch_curent NUMBER,
fetch ros NUMBER,
clock ticks NUMBER,
sgl_statement LONG);

Most output table columns correspond directly to the statistics that appear in the
formatted output file. For example, the PARSE_CNT column value corresponds to
the count statistic for the parse step in the output file.

The SQL Trace Facility and TKPROF 24-19

Step 5: Store SQL Trace Facility Statistics

These columns help you identify a row of statistics:

SQL_STATEMENT

DATE_OF_INSERT

DEPTH

USER_ID

CURSOR_NUM

24-20 Oracle8 Tuning

The column value is the SQL statement for which the
SQL trace facility collected the row of statistics. Note that
because this column has datatype LONG, you cannot use
it in expressions or WHERE clause conditions.

The column value is the date and time when the row was
inserted into the table. Note that this value is not exactly the
same as the time the statistics were collected by the SQL trace
facility.

This column value indicates the level of recursion at
which the SQL statement was issued. For example, a
value of 1 indicates that a user issued the statement. A
value of 2 indicates Oracle generated the statement as a
recursive call to process a statement with a value of 1 (a
statement issued by a user). A value of n indicates Oracle
generated the statement as a recursive call to process a state-
ment with a value of n-1.

This column value identifies the user issuing the state-
ment. This value also appears in the formatted output file.

Oracle uses this column value to keep track of the cursor
to which each SQL statement was assigned. Note that the
output table does not store the statement’s execution plan.

Step 5: Store SQL Trace Facility Statistics

The following query returns the statistics from the output table. These statistics cor-
respond to the formatted output shown in the section "Sample TKPROF Output” on
page 24-8.

SELECT * FROM tkprof_table;
DATE_OF_INSERT CURSOR_NUM DEPTHUSER_ID PARSE_CNT PARSE_CPU PARSE _ELAP

27-0CT-1993 10 8 1 16 29

PARSE_DISK PARSE_QUERY PARSE_CURRENT PARSE_MISS EXE_COUNT EXE_CPU

3 13 0 1 1 0

EXE_ELAP EXE_DISK EXE_QUERY EXE_CURRENT EXE_MISS EXE_ROWS FETCH_COUNT

FETCH_CPUFETCH_ELAP FETCH_DISKFETCH_QUERY FETCH_CURRENT FETCH_ROWS

3 2 2 2 4 14

SQL_STATEMENT

SELECT * FROM EMP, DEPT WHERE EMP.DEPTNO = DEPT.DEPTNO

The SQL Trace Facility and TKPROF 24-21

Avoiding Pitfalls in TKPROF Interpretation

Avoiding Pitfalls in TKPROF Interpretation

This section describes some fine points of TKPROF interpretation:
« Finding Which Statements Constitute the Bulk of the Load

« The Argument Trap

« The Read Consistency Trap

« The Schema Trap

« The Time Trap

« The Trigger Trap

= The “Correct” Version

See Also: "EXPLAIN PLAN Restrictions" on page 23-16 for information about
TKPROF and bind variables.

Finding Which Statements Constitute the Bulk of the Load

Look at the totals and try to identify the statements that constitute the bulk of the
load.

Do not attempt to perform many different jobs within a single query. It is more
effective to separate out the different queries that should be used when particular
optional parameters are present, and when the parameters provided contain wild
cards.

If particular parameters are not specified by the report user, the query uses bind
variables that have been set to “%”. This action has the effect of ignoring any LIKE
clauses in the query. It would be more efficient to run a query in which these
clauses are not present.

Note: TKPROF cannot determine the TYPE of the bind variables from the text of
the SQL statement. It assumes that TYPE is CHARACTER. If this is not the case,
you should put appropriate type conversions in the SQL statement.

The Argument Trap

If you are not aware of the values being bound at run time, it is possible to fall into
the “argument trap”. Especially where the LIKE operator is used, the query may be
markedly less efficient for particular values, or types of value, in a bind variable.
This is because the optimizer must make an assumption about the probable selectiv-
ity without knowing the value.

24-22 Oracle8 Tuning

Avoiding Pitfalls in TKPROF Interpretation

The Read Consistency Trap

The next example illustrates the read consistency trap. Without knowing that an
uncommitted transaction had made a series of updates to the NAME column it is
very difficult to see why so many block visits would be incurred.

Cases like this are not normally repeatable: if the process were run again, it is
unlikely that another transaction would interact with it in the same way.

select NAME._ID
from CQ_NAMES where NAME ='FLOOR’;

cal count cpu elapsed disk querycument rows

Pase 1011 021 0 O O O
Exeete 1 000 000 O O O O
Fetch 1 015 024 4 150 0 1

Misses in library cache during parse: 1
Parsing user id: 13 (DJONES)

Rows Execution Plan

0 SELECT STATEMENT
1 TABLE ACCESS (BY ROWID) OF 'CQ NAMES'
2 INDEX (RANGE SCAN) OF 'CQ_NAMES_NAME' (NON_UNIQUE)

The Schema Trap

This example shows an extreme (and thus easily detected) example of the schema
trap. At first it is difficult to see why such an apparently straightforward indexed
guery needs to look at so many database blocks, or why it should access any blocks
at all in current mode.

select NAME._ID
from CQ_NAMES where NAME ="FLOOR’;

cal count cpu elapsed disk query currentrows

Parse 1 004 012 0 O OO
Execute 1 001 001 O O 00O
Fetch 1 032 032 3B 4 31

Misses in library cache during parse: 0
Parsing userid: 13 (JAUSTEN)

The SQL Trace Facility and TKPROF 24-23

Avoiding Pitfalls in TKPROF Interpretation

The Time Trap

Rows Execution Plan
0 SELECTSTATEMENT
3519 TABLE ACCESS (BY ROWID) OF'CQ_NAMES'
0 INDEX (RANGE SCAN) OF'CQ_NAMES_NAME' (NON-UNIQUE)

Two statistics suggest that the query may have been executed via a full table scan.
These statistics are the current mode block visits, plus the number of rows originat-
ing from the Table Access row source in the execution plan. The explanation is that
the required index was built after the trace file had been produced, but before
TKPROF had been run.

Sometimes, as in the following example, you may wonder why a particular query
has taken so long.

update CQ_NAMES set ATTRIBUTES = lower(ATTRIBUTES)
where ATTRIBUTES = att

cal count cpu elapsed disk querycumrent rows
Parse 1 008 024 0 0 O 0
Execute 1 063 1963 33 526 13 7
Fech O 000 000 O O O 0

Misses in library cache during parse: 1
Parsing userid: 13 (JAUSTEN)

Rows Execution Plan

0 UPDATE STATEMENT
3519 TABLE ACCESS (FULL) OF 'CQ_NAMES'

Again, the answer is interference from another transaction. In this case another
transaction held a shared lock on the table CQ_NAMES for several seconds before
and after the update was issued. It takes a fair amount of experience to diagnose
that interference effects are occurring. On the one hand, comparative data is essen-
tial when the interference is contributing only a short delay (or a small increase in
block visits in the previous example). On the other hand, if the interference is con-
tributing only a modest overhead, and the statement is essentially efficient, its sta-
tistics may never have to be subjected to analysis.

24-24 Oracle8 Tuning

Avoiding Pitfalls in TKPROF Interpretation

The Trigger Trap

The resources reported for a statement include those for all of the SQL issued while
the statement was being processed. Therefore, they include any resources used
within a trigger, along with the resources used by any other recursive SQL (such as
that used in space allocation). With the SQL trace facility enabled, TKPROF reports
these resources twice. Avoid trying to tune the DML statement if the resource is
actually being consumed at a lower level of recursion.

You may need to inspect the raw trace file to see exactly where the resource is being
expended. The entries for recursive SQL follow the PARSING IN CURSOR entry
for the user’s statement. Within the trace file, the order is less easily defined.

The “Correct” Version

For comparison with the output that results from one of the foregoing traps, here is
the TKPROF output for the indexed query with the index in place and without any
contention effects.

select NAME._ID
flom CQ_NAMES where NAME = FLOOR

cal count cpu elapsed disk querycurrent rows
Pase 1001 001 0 0O O O
Execute 1 000 000 O O O O
Fetch 1000 000 0 4 0 1

Misses in library cache during parse: 0
Parsing userid: 13 (JAUSTEN)

Rows Execution Plan
0 SELECT STATEMENT
1 TABLE ACCESS (BY ROWID) OF 'CQ_NAMES'
2 INDEX (RANGE SCAN) OF 'CQ_NAMES NAME’ (NON-UNIQUE)

One of the marked features of this correct version is that the parse call took 10 milli-
seconds of both elapsed and CPU time, but the query apparently took no time at all
to execute and no time at all to perform the fetch. In fact, no parse took place
because the query was already available in parsed form within the shared SQL
area. These anomalies arise because the clock tick of 10 msec is too long to reliably
record simple and efficient queries.

The SQL Trace Facility and TKPROF 24-25

TKPROF Output Example

TKPROF Output Example

This section provides an extensive example of TKPROF output. Note that portions
have been edited out for the sake of brevity.

Header

Copyright () Oracle Corporation 1979, 1997. All rights reserved.
Trace file: v80_ora_27581rc
Sort options: default

count =number of imes OCI procedure was executed

cpu =cputime in seconds executing

elapsed = elapsed time in seconds executing

disk =number of physical reads of buffers from disk

query =number of buffers gotten for consistent read

current =number of buffers gotten in current mode (usually for update)
rows =number of rows processed by the fetch or execute call

The following statement encountered a error during parse:
select deptno, avg(sal) from emp e group by deptno
having exists (select deptno from dept
where dept.deptno = e.deptno
and dept.budget > avg(e.sal)) order by 1
Error encountered: ORA-00904

Body

alter session set sgl_trace =true

cal count cpu elapsed disk query cument rows
Pase 0 000 000 O O O O
Execue 1 000 015 0 O O 0
Fetch 0 000 000 O O O 0
tol 1 000 015 0 O O 0
Misses in library cache during parse: 0

Misses in library cache during execute: 1

Optimizer goal: CHOOSE

Parsing userid: 8 (SCOTT)

24-26 Oracle8 Tuning

TKPROF Output Example

select emp.ename, deptdname from emp, dept
where emp.deptno = dept.deptno

cal count cpu elapsed disk query cument rows
Pase 1 012 014 2 0 2 0
Execute 1 000 000 O O O 0
Fetch 1 000 000 2 2 4 14
tol 3 012 014 4 2 6 14
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing userid: 8 (SCOTT)
Rows Execution Plan

0 SELECT STATEMENT GOAL: CHOOSE

14 MERGE JOIN

4 SORT (JOIN)

4 TABLE ACCESS (FULL) OF DEPT

14 SORT (JOIN)

14 TABLE ACCESS (FULL) OF EMP'

select a.ename name, b.ename manager fromemp a,empb
where amgr =b.empno(+)

cal count cpu elapsed disk query cument rows
Parse 1 001 001 O 0O O 0
Execue 1 000 000 O 0 O 0
Fetch 1 001 001 1 2 14
total 3 002 002 1 4 2 14
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing userid: 8 (SCOTT)
Rows Execution Plan

0 SELECT STATEMENT GOAL: CHOOSE

13 NESTED LOOPS (OUTER)

14 TABLE ACCESS (FULL) OF EMP’

13 TABLE ACCESS (BY ROWID) OF EMP’

26 INDEX (RANGE SCAN) OF EMP_IND’ (NON-UNIQUE)

The SQL Trace Facility and TKPROF 24-27

TKPROF Output Example

select enamejob,sal
from emp
where sal=
(select max(sal)
from emp)

cal count cpu elapsed disk query cument rows
Pase 1 000 000 O O O O
Execte 1 000 00O O O 0 O
Fetch 1 000 000 O 16 4 1
todl 3 000 000 O 16 4 1
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing userid: 8 (SCOTT)
Rows Execution Plan

0 SELECT STATEMENT GOAL: CHOOSE

14 FILTER

14 TABLE ACCESS (FULL) OF EMP’

14 SORT (AGGREGATE)

14 TABLE ACCESS (FULL) OF EMP'

select deptno

from emp

where job ="clerk
group by deptno
having count(*) >= 2

cal count cpu elapsed disk query cument rows
Pase 1 000 000 O O O 0
Execute 1 000 000 O O O 0
Fetch 1 000 000 O 1 2 0

toal 3 000 000 0 1 2 0
Misses in library cache during parse: 1

Optimizer goal: CHOOSE

Parsing userid: 8 (SCOTT)

24-28 Oracle8 Tuning

TKPROF Output Example

Rows Execution Plan
0 SELECT STATEMENT GOAL: CHOOSE
0 FILTER
0 SORT (GROUP BY)
14 TABLE ACCESS (FULL) OF EMP’

select deptdeptno,dname,job,ename
from deptemp

where deptdeptno =emp.deptno(+)
order by dept.deptno

cal count cpu elapsed disk query cument rows
Pase 1 000 000 O O O 0
Execute 1 000 000 O O O 0
Fetth 1 000 000 O 2 4 15
tol 3 000 000 O 2 4 15
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing userid: 8 (SCOTT)
Rows Execution Plan

0 SELECT STATEMENT GOAL: CHOOSE

14 MERGE JOIN (OUTER)

4 SORT (JOIN)

4 TABLE ACCESS (FULL) OF DEPT

14 SORT (JOIN)

14 TABLE ACCESS (FULL) OF EMP’

select grade,job,ename,sal

from emp,salgrade

where sal between losal and hisal
order by grade job

cal count cpu elapsed disk query cument rows
Pase 1 006 008 2 18 1 0
Execute 1 000 000 O O O 0
Fetch 1 001 001 1 1 12 14
tol 3 007 009 3 29 13 14
Misses in library cache during parse: 1

Optimizer goal: CHOOSE

The SQL Trace Facility and TKPROF 24-29

TKPROF Output Example

Parsing userid: 8 (SCOTT)
Rows Execution Plan
0 SELECT STATEMENT GOAL: CHOOSE
14 SORT (ORDER BY)
14 NESTED LOOPS
5 TABLE ACCESS (FULL) OF 'SALGRADE’
70 TABLEACCESS (FULL) OF EMP’

select Ipad('’Jevel*2)|lename org_chart level,empno,mgr,job,deptno
from emp
connect by prior empno =mgr
start with ename =clark’
or ename ='blake’
order by deptno

cal count cpu elapsed disk query cument rows
Pase 1 001 000 O O O 0
Execute 1 000 000 O O O 0
Fetch 1 001 001 O 1 2 0
tol 3 002 002 O 1 2 0
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing userid: 8 (SCOTT)
Rows Execution Plan
0 SELECT STATEMENT GOAL: CHOOSE
0 SORT (ORDERBY)
0 CONNECTBY
14 TABLE ACCESS (FULL) OF EMP’
0 TABLEACCESS (BY ROWID) OF EMP’
0 TABLEACCESS (FULL) OF EMP'

24-30 Oracle8 Tuning

TKPROF Output Example

create table tkoptkp (& number, b number)

cal count cpu elapsed disk query cument rows
Parse 1 000 000 O 0O O 0
Execue 1 001 001 1 0 1 0
Fetch O 000 000 O 0 O 0
total 2 001 001 1 0 1 0
Misses in library cache during parse: 1

Optimizer goal: CHOOSE

Parsing userid: 8 (SCOTT)

Rows Execution Plan

0 CREATE TABLE STATEMENT GOAL: CHOOSE

insertinto tkoptkp
values
@1

cal count cpu elapsed disk query cument rows
Pase 1 007 009 0 0 0 0
Execute 1 001 020 2 2 3 1
Fetch 0 000 000 O O O 0

tol 2 008 020 2 2 3 1
Misses in library cache during parse: 1

Optimizer goal: CHOOSE

Parsing userid: 8 (SCOTT)

Rows Execution Plan

0 INSERT STATEMENT GOAL: CHOOSE

The SQL Trace Facility and TKPROF 24-31

TKPROF Output Example

insertinto tkoptkp select * from tkoptip

cal count cpu elapsed disk query cument rows
Pase 1 000 000 O 0O O 0
Execue 1 002 004 O 2 3 12
Fetch O 000 000 O 0 O 0
total 2 002 004 O 2 3 12
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing userid: 8 (SCOTT)
Rows Execution Plan

0 INSERT STATEMENT GOAL: CHOOSE
12 TABLE ACCESS (FULL) OF TKOPTKP'

select*
from
tkoptkp where a >2

cal count cpu elapsed disk query cument rows
Pase 1 001 000 O O O 0
Execute 1 000 000 O O O 0
Fetch 1 000 000 O 1 2 12
tol 3 001 001 O 1 2 12
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing userid: 8 (SCOTT)
Rows Execution Plan

0 SELECT STATEMENT GOAL: CHOOSE
24 TABLE ACCESS (FULL) OF TKOPTKP'

24-32 Oracle8 Tuning

TKPROF Output Example

Summary

OVERALL TOTALS FOR ALL NON-RECURSIVE STATEMENTS
cal count cpu elapsed disk query cument rows
Parse 18 040 053 30 18 3 0
Execute 19 005 041 3 7 10 16
Fetch 12 005 006 4 105 66 78
total 49 050 100 37 24 79 A
Misses in library cache during parse: 18

Misses in library cache during execute: 1

OVERALL TOTALS FOR ALL RECURSIVE STATEMENTS
cal count cpu elapsed disk query cument rows
Parse 69 049 060 9 12 8 0
Execute 103 013 054 0 O 0 0
Fetch 213 012 027 40 43 0 162
total 385 074 141 49 447 8 162
Misses in library cache during parse: 13

19 user SQL statements in session.

69 intemal SQL statements in session.

88 SQL statements in session.

17 statements EXPLAINed in this session.

Tracefie: v80_ora 2758.rc
Trace file compatibility: 7.03.02
Sort options: default
1 session in tracefile.
19 user SQL statements in trace file.
69 intemal SQL statements in trace file.
88 SQL statements in trace file.
41 unique SQL statements in trace file.
17 SQL statements EXPLAINed using schema:
SCOTT.prof$plan_table
Default table was used.
Table was created.
Table was dropped.
1017 lines in trace file.

The SQL Trace Facility and TKPROF 24-33

TKPROF Output Example

24-34 Oracle8 Tuning

25

Using Oracle Trace

This chapter describes how to use Oracle Trace to collect Oracle Server event data.
It covers:

Introduction

Using Oracle Trace for Server Performance Data Collection
Using Initialization Parameters to Control Oracle Trace
Using Stored Procedure Packages to Control Oracle Trace
Using the Oracle Trace Command-Line Interface

Oracle Trace Collection Results

Using Oracle Trace 25-1

Introduction

Introduction

Oracle Trace is a general-purpose data collection product that has been introduced
with the Oracle Enterprise Manager systems management product family. You can
use the Oracle Trace data collection API in any software product to collect data for
a variety of uses, such as performance monitoring, diagnostics, and auditing. Ora-
cle Trace collects specific data for events defined within the host product.

The server performance data that you can collect with Oracle Trace includes:

SQL statements and statistics on the frequency, duration, and resources used
for all parse, execution, and fetch events

Execution plan details

Logical and physical database transactions, including the frequency, duration,
and resources used by each transaction event

A set of statistics associated with each of these duration events, including:
UGA and PGA memory, block changes, block gets, consistent gets, physical
reads, redo entries, redo size, sorts in memory and disk

Resource usage for each database event measured in CPU time, file I/0s and
page faults

See Also: Oracle Trace User’s Guide and Oracle Trace Developer’s Guide contained in
the Oracle Enterprise Manager Performance Pack documentation set. These books
contain a complete list of events and data that can be collected for Oracle Server.

25-2 Oracle8 Tuning

Using Oracle Trace for Server Performance Data Collection

Using Oracle Trace for Server Performance Data Collection

You can use Oracle Trace to collect server performance data for a specific database
session or for the entire instance. You can also select the server event set for which
you want to collect.

Oracle Trace lets you organize host application events into event sets. Doing so
allows you to collect data for a specific subset of all potential host application
events. Oracle has defined the following event sets: ALL, DEFAULT, and EXPERT.
The ALL set includes all server events, the DEFAULT set excludes server WAIT
events, and the EXPERT set is specifically defined for use in the Oracle Expert tun-
ing application. Oracle recommends using the DEFAULT event set.

You can enable and control server collections in the following ways:

« Using the Oracle Trace Manager application, a Windows-based graphical user
interface that is supplied with the Oracle Enterprise Manager Performance
Pack (a database option you can license)

« Using nongraphical, server-based controls:
— Oracle Trace database initialization parameters
— Oracle Trace stored procedure packages
— Oracle Trace Command-Line Interface
The following sections describe the server-based controls.

See Also: Oracle Trace User’s Guide

Using Oracle Trace 25-3

Using Initialization Parameters to Control Oracle Trace

Using Initialization Parameters to Control Oracle Trace

Six parameters are set up by default to control Oracle Trace. By logging into the
internal account in your database and executing a SHOW PARAMETERS TRACE
command, you will see the following parameters::

Table 25—-1 Oracle Trace Initialization Parameters

Name Type Value
ORACLE_TRACE_COLLECTION_NAME string [null]

ORACLE_TRACE_COLLECTION_PATH string $ORACLE_HOME/rdbms/log
ORACLE_TRACE_COLLECTION SIZE integer 5242880

ORACLE_TRACE_ENABLE boolean FALSE
ORACLE_TRACE_FACILITY_NAME string oracled
ORACLE_TRACE_FACILITY_PATH string ORACLE_HOME/rdbms/admin

You can modify the Oracle Trace and use them by adding them to your initializa-
tion file.

Note: This chapter references file pathnames on UNIX-based systems. For the exact
path on other operating systems, please see your Oracle platform-specific documen-
tation.

See Also: A complete discussion of these parameters is provided in Oracle8 Refer-
ence.

Enabling Oracle Trace Collections

Note that the ORACLE_TRACE_ENABLE parameter is set to FALSE by default. A
value of FALSE disables any use of Oracle Trace for that Oracle server.

To enable Oracle Trace collections for the server, the parameter should be set to
TRUE. Setting the parameter to TRUE does not start an Oracle Trace collection, but
allows Oracle Trace to be used for that server. Oracle Trace can then be started in
one of the following ways:

« Using the Oracle Trace Manager application (supplied with the OEM Perfor-
mance Pack)

« Setting the ORACLE_TRACE_COLLECTION_NAME parameter

25-4 Oracle8 Tuning

Using Initialization Parameters to Control Oracle Trace

When ORACLE_TRACE_ENABLE is set to TRUE, you can initiate an Oracle Trace
server collection by entering a collection name in the
ORACLE_TRACE_COLLECTION_NAME parameter. The default value for this
parameter is NULL. A collection name can be up to 16 characters long. You must
then shut down your database and start it up again before the parameters take
effect. If a collection name is specified, when you start the server, you automatically
start an Oracle Trace collection for all database sessions.

To stop the collection, shut down the server instance and reset the
ORACLE_TRACE_COLLECTION_NAME to NULL. The collection name specified
in this value is also used in two collection output file names: the collection defini-
tion file (collection_name.cdf) and the binary data file (collection_name.dat).

Determining the Event Set Which Oracle Trace Collects

The ORACLE_TRACE_FACILITY_NAME determines the event set that Oracle
Trace will collect. The name of the DEFAULT event set is ORACLED. The ALL
event set is ORACLE and the EXPERT event set is ORACLEE.

If, once restarted, the database does not start collecting data, you should check the
following:

« The event set file, identified by the ORACLE_TRACE_FACILITY_NAME (with
.fdf appended to it) should be located in the directory identified by
ORACLE_TRACE_FACILITY_PATH.

« The following files should exist in your Oracle Trace admin directory:
REGID.DAT, PROCESS.DAT, and COLLECT.DAT. If they do not, you must run
the OTRCCREF executable to create them.

« The Oracle Trace parameters should be set to the values that you changed in
the initialization file.

« Look for an EPC_ERROR.LOG file. It will give you more information about
why a collection may have failed.

Using Oracle Trace 25-5

Using Stored Procedure Packages to Control Oracle Trace

Using Stored Procedure Packages to Control Oracle Trace

Using the Oracle Trace stored procedure packages you can invoke an Oracle Trace
collection for your own session or for another session. To collect Oracle Trace data
for your own database session, execute the following stored procedure package:

DBMS_ORACLE_TRACE_USER.SET_ORACLE_TRACE(TRUE/FALSE, collection_name,
server_event_sef)
« true/false = Boolean: TRUE to turn on, FALSE to turn off

« collection_name = varchar2; collection name (no file extension, 8 character max-
imum)

« server_event_set =varchar2; server event set (oracled, oracle, or oraclee)
Example:

EXECUTE DBMS_ORACLE_TRACE_USER.SET_ORACLE_TRACE (TRUE,"MYCOLL","oracle");

To collect Oracle Trace data for a database session other than your own, execute the
following stored procedure package:

DBMS_ORACLE TRACE_AGENT.SET_ORACLE TRACE_IN_SESSION(sid, serial#, trueffalse,
collection_name, server_event_set)

« sid = number: session instance from v3$session.sid

« serial# = number: session serial number from v$session.serial#

Example:

EXECUTE DBMS_ORACLE_TRACE_USER.SET_ORACLE_TRACE_IN_SESSION (8,12, TRUE,"MYCOLL",
“oracled’);

If the collection does not occur, you should check the following:

« Besure the server event set file identified by server_event_set exists. If there is
no full file specification on this field, then the file should be located in the direc-
tory identified by ORACLE_TRACE_FACILITY_PATH in the initialization file.

« The following files should exist in your Oracle Trace admin directory:
REGID.DAT, PROCESS.DAT, and COLLECT.DAT. If they do not, you must run
the otrccref executable to create them.

« The stored procedure packages should exist in the database. If the packages do
not exist, you must run the OTRCSVR.SQL file (in your Oracle Trace admin
directory) to create the packages.

25-6 Oracle8 Tuning

Using the Oracle Trace Command-Line Interface

Using the Oracle Trace Command-Line Interface

Another option for controlling Oracle Trace server collections is the Oracle Trace
command-line interface (CLI). The CLI collects event data for all server sessions
attached to the database at collection start time. Sessions that attach after the collec-
tion is started are excluded from the collection. The CLI is invoked by the otrccol
command for the following functions:

« OTRCCOL START job_id input_parameter_file

« OTRCCOL STOP job_id input_parameter_file

« OTRCCOL FORMAT input_parameter_file

« OTRCCOL DCF coll_name cdf file

« OTRCCOL DFD coll_name username password service

The parameter JOB_ID can be any numeric value. (You must remember this value
in order to stop the collection.) The input parameter file contains specific parameter
values required for each function. Examples follow. COLL_NAME (collection
name) and CDF_FLE (collection definition file) are initially defined in the START
function input parameter file.

The OTRCCOL START command invokes a collection based upon parameter val-
ues contained in the input parameter file. For example:

otrccol start 1234 my_start_input _file

where my_start_input_file contains the following input parameters:

col_name= my_collection

dat_file= <usually same as collection name>.dat
cdf_file= <usually same as collection name>.cdf
fdf_file= <server event set>.fdf

regid= 1 192216243 0 0 5 <database SID>

The server event sets that can be used as values for the fdf_file are ORACLE, ORA-
CLED, and ORACLEE. See "Using Initialization Parameters to Control Oracle
Trace" on page 25-4 for more information on the server event sets.

The OTRCCOL STOP command halts a running collection, as follows:
otrccol stop 1234 my_stop_input_file

where my_stop_input_file contains the collection name and cdf _file name.

Using Oracle Trace 25-7

Oracle Trace Collection Results

The OTRCCOL FORMAT command formats the binary collection file to Oracle
tables. An example of the FORMAT command is as follows:

otrccol format my_format_input_file

where my_format_input_file contains the following input parameters

usemame= <database usemame>
password= <database password>

senice= <database service name>

cdf file=<usually same as collection name>.cdf
full_format= <0/1>

A full_format value of 1 produces a full format; a value of 0 produces a partial for-
mat. See "Formatting Oracle Trace Data to Oracle Tables" on page 25-10 for informa-
tion on formatting part or all of an Oracle Trace collection, and other important
information on creating the Oracle Trace formatting tables prior to running the for-
mat command.

The OTRCCOL DCF command deletes collection files for a specific collection. The
OTRCCOL DFD command deletes formatted data from the Oracle Trace formatter
tables for a specific collection.

Oracle Trace Collection Results

Running an Oracle Trace collection produces the following collection files:

« collection_name.CDF is the Oracle Trace collection definition file for your col-
lection.

« collection_name.DAT files are the Oracle Trace output files containing the trace
data in binary format.

You can access the Oracle Trace data in the collection files in two ways:
= You can create Oracle Trace Detail Reports from the binary file.

« The data can be formatted to Oracle tables for SQL access and reporting.

25-8 Oracle8 Tuning

Oracle Trace Collection Results

Oracle Trace Detail Reports

Oracle Trace Detail Reports display statistics for all items associated with each
occurrence of a server event. These reports can be quite large. You can control the
report output by using command parameters. Use the following command and
optional parameters to produce a Detail Report:

OTRCREP [optional parameters] collection_name.CDF
The first step that you may want to take is to run a report called PROCESS.txt. You

can produce this report first to give you a listing of specific process identifiers for
which you want to run the detail report.

The command parameter used to produce a Process report is:
OTRCREP -P collection_name.CDF

Other optional detail report parameters are:

output_path specifies a full output path for the report files. If not
specified, the files will be placed in the current directory

-p creates a report for a specific process ID obtained from the
PROCESS report. For example, a detail report for process
1234 would use -p1234

-w# sets report width, such as -w132. The default is 80
characters.

-1# sets the number of report lines per page. The default is 63
lines per page.

-h suppresses all event and item report headers, producing a
shorter report

-S used with Net8 data only

-a creates a report containing all the events for all products, in

the order they occur in the data collection (.dat) file. The
report is a text display of all items for all events.

Using Oracle Trace 25-9

Oracle Trace Collection Results

Formatting Oracle Trace Data to Oracle Tables

Your Oracle Trace server collection can be formatted to Oracle tables for more flexi-
ble access by any SQL reporting tool. Oracle Trace will produce a separate table for
each event collected. For example, a “parses” event table is created to store data for
all parse events that occur during a server collection. Before you can format data,
you must first set up the Oracle Trace formatter tables by executing the
OTRCFMTC.SQL script on the server host machine.

Use the following command to format an Oracle Trace collection:
OTRCFMT [optional parameters] collection_name.cdf [userfpassword@database]

If user/password@database is omitted, the user will be prompted for this informa-
tion.

Oracle Trace allows data to be formatted while a collection is occurring. By default,
Oracle Trace formats only the portion of the collection that has not been formatted
previously. If you want to reformat the entire collection file, use the optional param-
eter -f.

Oracle Trace provides several SQL scripts that you can use to access the server
event tables. For more information on server event tables and scripts for accessing
event data and improving event table performance, refer to the Oracle Trace User’s
Guide

25-10 Oracle8 Tuning

20

Registering Applications

Application developers can use the DBMS_APPLICATION_INFO package with
Oracle Trace and the SQL trace facility to record the name of the executing module
or transaction in the database for use later when tracking the performance of vari-
ous modules. This chapter describes how to register an application with the data-
base and retrieve statistics on each registered module or code segment. Topics in
this chapter include:

« Overview

« Registering Applications

« Setting the Module Name

« Setting the Action Name

« Setting the Client Information

« Retrieving Application Information

Registering Applications 26-1

Overview

Overview

Oracle provides a method for applications to register the name of the application
and actions performed by that application with the database. Registering the appli-
cation allows system administrators and performance tuning specialists to track
performance by module. System administrators can also use this information to
track resource use by module. When an application registers with the database, its
name and actions are recorded in the V$SESSION and V$SQLAREA views.

Your applications should set the name of the module and name of the action auto-
matically each time a user enters that module. The module name could be the name
of a form in an Oracle Forms application, or the name of the code segment in an
Oracle Precompilers application. The action name should usually be the name or
description of the current transaction within a module.

Registering Applications

To register applications with the database, use the procedures in the
DBMS_APPLICATION_INFO package.

DBMS_APPLICATION_INFO Package

Privileges

DBMS_APPLICATION_INFO provides the following procedures:

Table 26—1 Procedures in the DBMS_APPLICATION_INFO Package

Procedure Description
SET_MODULE Sets the name of the module that is currently running.
SET_ACTION Sets the name of the current action within the current module.

SET_CLIENT_INFO Sets the client information field for the session.
READ_MODULE Reads values of module and action fields for the current session.

READ_CLIENT_INFO Reads the client information field for the current session.

Before using this package, you must run the DBMSUTL.SQL script to create the
DBMS_APPLICATION_INFO package. For more information about Oracle sup-
plied packages and executing stored procedures, see the Oracle8 Application Devel-
oper’s Guide.

26-2 Oracle8 Tuning

Setting the Module Name

Setting the Module Name

To set the name of the current application or module, use the SET_MODULE proce-
dure in the DBMS_APPLICATION_INFO package. The module name should be
the name of the procedure (if using stored procedures), or the name of the applica-
tion. The action name should describe the action performed.

Example
The following sample PL/SQL block sets the module name and action name:

CREATE PROCEDURE add_employee(
name VARCHAR2(20),
saary NUMBER(7,2),
manager NUMBER,
ite VARCHAR2(9),
commission NUMBER(7,2),
department NUMBER(2)) AS
BEGIN
DBMS_APPLICATION_INFO.SET_MODULE(
module_name =>"add_employee’,
action_name =>'insertinto emp));
INSERT INTO emp
(ename, empno, sal, mgr, job, hiredate, comm, deptno)
VALUES (name, nextemp_seq, manager, tite, SYSDATE,
commission, department);
DBMS_APPLICATION_INFO.SET_MODULE(");
END;

Syntax
Syntax and parameters for the SET_MODULE procedure are described here:

DBMS_APPLICATION_INFO.SET_MODULE(
module_name IN VARCHAR2,
action_name IN VARCHAR?2)

module_name Name of module that is currently running. When the current
module terminates, call this procedure with the name of the
new module if there is one, or null if there is not. Names
longer than 48 bytes are truncated.

action_name Name of current action within the current module. If you do
not want to specify an action, this value should be null.
Names longer than 32 bytes are truncated.

Registering Applications 26-3

Setting the Action Name

Setting the Action Name

Example

Syntax

To set the name of the current action within the current module, use the
SET_ACTION command in the DBMS_APPLICATION_INFO package. The action
name should be descriptive text about the current action being performed. You
should probably set the action name before the start of every transaction.

The following is an example of a transaction that uses the registration procedure:

CREATE OR REPLACE PROCEDURE bal_tran (amtIN NUMBER(7,2)) AS
BEGIN
— balance transfer transaction
DBMS_APPLICATION_INFO.SET_ACTION(
action_name => transfer from chk to sav’);
UPDATE chk SET bal = bal + :amt
WHERE acct# = :acct;
UPDATE sav SET bal = bal - amt
WHERE acct# = :acct;
COMMIT;
DBMS_APPLICATION_INFO.SET_ACTION(Y);
END;

Set the transaction name to null after the transaction completes so that subsequent
transactions are logged correctly. If you do not set the transaction name to null, sub-
sequent transactions may be logged with the previous transaction’s name.

The parameter for the SET_ACTION procedure is described in this section. The syn-
tax for this procedure is shown below:

DBMS_APPLICATION_INFO.SET_ACTION(action_name IN VARCHAR?2)

action_name The name of the current action within the current module.
When the current action terminates, call this procedure with
the name of the next action if there is one, or null if there is
not. Names longer than 32 bytes are truncated.

26-4 Oracle8 Tuning

Setting the Client Information

Setting the Client Information

To supply additional information about the client application, use the
SET_CLIENT_INFO procedure in the DBMS_APPLICATION_INFO package.

Syntax

The parameter for the SET_CLIENT_INFO procedure is described in this section.
The syntax for this procedure is shown below:

DBMS_APPLICATION_INFO.SET_CLIENT_INFO(client info IN VARCHAR?)
client_info Use this parameter to supply any additional information
about the client application. This information is stored in

the V$SESSIONS view. Information exceeding 64 bytes is
truncated.

Registering Applications 26-5

Retrieving Application Information

Retrieving Application Information

Module and action names for a registered application can be retrieved by querying
V$SQLAREA or by calling the READ_MODULE procedure in the
DBMS_APPLICATION_INFO package. Client information can be retrieved by que-
rying the V$SESSION view, or by calling the READ_CLIENT_INFO procedure in
the DBMS_APPLICATION_INFO package.

Querying V$SQLAREA

The following sample query illustrates the use of the MODULE and ACTION col-
umn of the V$SQLAREA.

SELECT sql _text, disk_reads, module, action
FROM v$sglarea
WHERE module ='add_employee’;

SQL_TEXT DISK_READS MODULE ACTION

INSERT INTO emp 1 add_employee insertinto emp
(ename, empno, sal,

mgr, job, hiredate,

comm, deptno)

VALUES

(name,

nextemp_seq,

manager, title,

SYSDATE, commission,

department)

1 row selected.

26-6 Oracle8 Tuning

Retrieving Application Information

READ_MODULE Syntax

The parameters for the READ_MODULE procedure are described in this section.
The syntax for this procedure is shown below:

DBMS_APPLICATION_INFO.READ_MODULE(
module_name OUT VARCHARZ2,
action name OUT VARCHAR2)

module_name The last value that the module name was set to by calling
SET_MODULE.
action_name The last value that the action name was set to by calling

SET_ACTION or SET_MODULE

READ_CLIENT_INFO Syntax

The parameter for the READ_CLIENT _INFO procedure is described in this section.
The syntax for this procedure is shown below:

DBMS_APPLICATION_INFO.READ_CLIENT_INFO(client_info OUT VARCHAR?2)

client_info The last client information value supplied to the
SET_CLIENT_INFO procedure.

Registering Applications 26-7

Retrieving Application Information

26-8 Oracle8 Tuning

A

ABORTED_REQUEST_THRESHOLD
procedure, 14-23
access path, 2-10
aggregate, 20-3, 20-18
alertlog, 4-3
ALL_HISTOGRAMS, 8-4
ALL_INDEXES view, 10-16
ALL_OBJECTS view, 14-38
ALL_ROWS hint, 8-14
ALL_TAB_COLUMNS, 8-4
allocation, of memory, 14-2
ALTER INDEX REBUILD statement, 10-10
ALTER SESSION command
examples, 24-5
SET SESSION_CACHED_CURSORS, 14-18
ALTER SYSTEM command
MTS_DISPATCHERS parameter, 18-8
ALTER TABLE command
NOLOGGING option, 20-26
ALWAYS_ANTI_JOIN parameter, 8-8, 19-16, 19-17
ALWAYS_SEMI_JOIN parameter, 19-17
analysis dictionary, 4-4
ANALYZE command, 6-4, 15-32, 19-45, 20-20,
20-24
COMPUTE option, 19-45
ESTIMATE option, 19-45
examples, 8-5
ANALYZE INDEX statement, 19-46
analyzing data, 19-45
AND_EQUAL hint, 8-23,10-8
anti-join, 19-16
APPEND hint, 8-29, 20-26

application design, 2-9
application designer, 1-8
application developer, 1-8
applications
client/server, 5-9
decision support, 5-4, 19-2
distributed databases, 5-7
OLTP, 5-2
parallel query, 5-5
parallel server, 5-9

Index

registering with the database, 4-7, 26-2

ARCH process, 18-13

ARCH process, multiple, 19-43
architecture and CPU, 13-10
array interface, 16-3
asynchronous 170, 19-21
asynchronous operation, 19-21
asynchronous readahead, 19-32
audit trail, 4-4

B

B*-tree index, 10-15, 10-19
backup
data warehouse, 6-8
disk mirroring, 19-30

BACKUP_DISK_IO_SLAVES parameter,
BACKUP_TAPE_IO_SLAVES parameter,

bandwidth, 19-2

BEGIN_DISCRETE_TRANSACTION
procedure, 11-2,11-4

benefit of tuning, 2-3

bind variables, 14-16

BITMAP CONVERSION row source,

10-19

19-21
19-21

Index-1

bitmap index, 6-7, 10-13, 10-18
creating, 10-16
inlist iterator, 23-12
maintenance, 10-15
size, 10-20
storage considerations, 10-14
when to use, 10-13
BITMAP keyword, 10-16
BITMAP_MERGE_AREA_SIZE parameter,
10-15, 10-18
block contention, 2-12
block size, 15-15
bottlenecks
disk 170, 15-21
memory, 14-2
buffer cache, 2-11
adding buffers, 14-32
memory allocation, 14-29
partitioning, 14-39
performance statistics, 14-29
reducing buffers, 14-32
reducing cache misses, 14-29
tuning, 14-26
buffer get, 7-5
buffer pool
default cache, 14-37
keep cache, 14-37
multiple, 14-37,14-38
recycle cache, 14-37
syntax, 14-40
BUFFER_POOL clause, 14-40
BUFFER_POOL_name parameter, 14-39
business rule, 1-8, 2-3, 2-7

C

8-8,

CACHE hint, 8-32

cardinality, 10-20

CATPARR.SQL script, 14-29

CATPERF.SQL file, 14-42

chained rows, 15-32

channel bandwidth, 3-6

checkpoints
choosing checkpoint frequency, 15-42
current write batch size, 15-44

Index-2

performance, 15-41
redo log maintenance, 15-42
tuning, 15-41
CHOOSE hint, 8-16
CKPT process, 15-43
client/server applications, 5-9, 13-5
CLUSTER hint, 8-18
clusters, 10-24
columns, to index, 10-5
COMPATIBLE parameter, 10-16, 19-36
and parallel query, 19-18
COMPLEX_VIEW_MERGING parameter, 8-7, 8-9,
8-33
composite indexes, 10-6
COMPUTE option, 19-45
CONNECTBY, 23-14
Connection Manager, 16-4
connection pooling, 18-9
consistency, read, 13-8
consistent gets statistic, 14-26, 14-30, 14-34, 18-5,
18-18
consistent mode, TKPROF, 24-14
constraint, 10-11
contention
disk access, 15-21
free lists, 18-17
memory, 14-2
memory access, 18-1
redo allocation latch, 18-16
redo copy latches, 18-16
rollback segments, 18-4
tuning, 18-1
tuning resource, 2-12
context area, 2-11
context switching, 13-5
cost-based optimization, 6-7, 8-2, 20-24
parallel query, 20-24
COUNT column, 14-29, 14-33
count column, SQL trace, 24-14
CPU
checking utilization, 13-4
detecting problems, 13-4
insufficient, 3-5
system architecture, 13-10
tuning, 13-1

utilization, 13-2,19-2
CPU bound operations, 19-32
cpu column, SQL trace, 24-14
CREATE CLUSTER command, 10-26
CREATE INDEX command, 20-21
examples, 15-39
NOSORT option, 15-39
CREATE TABLE AS SELECT, 6-3,20-19, 21-5
CREATE TABLE command
STORAGE clause, 15-24
TABLESPACE clause, 15-24
CREATE TABLESPACE command, 15-24
CREATE TABLESPACE statement, 15-24
CREATE_BITMAP_AREA_SIZE parameter, 10-15,
10-18
current column, SQL trace, 24-14
current mode, TKPROF, 24-14
CURSOR_NUM column
TKPROF_TABLE, 24-20
CURSOR_SPACE_FOR_TIME parameter
setting, 14-17

D

data
comparative, 4-5
sources for tuning, 4-2
volume, 4-2

data block size, 15-15

data cache, 17-2

data design
tuning, 2-8

data dictionary, 4-3

data dictionary cache, 2-11, 14-20

data warehouse
ANALYZE command, 6-4
backup, 6-8
bitmap index, 6-7
features, 6-1
introduction, 6-2
Oracle Parallel Server, 6-5
parallel aware optimizer, 6-6
parallel index creation, 6-3
parallel load, 6-4
partition, 6-4

partitioned table, 19-31
recovery, 6-8
star schema, 6-7
database administrator (DBA), 1-8
database buffers, 14-32
database layout, 19-22
database writer process (DBWn)
behavior on checkpoints, 15-41
tuning, 13-8,19-44
DATAFILE clause, 15-24
datafile placement on disk, 15-21
DATE_OF_INSERT column
TKPROF_TABLE, 24-20
DB BLOCK GETS, 14-34
db block gets statistic, 14-26, 14-30, 18-5, 18-18
DB_BLOCK_BUFFERS parameter, 14-29, 14-32,
14-40, 15-44
DB_BLOCK_CHECKPOINT_BATCH
parameter, 15-44
DB_BLOCK_LRU_EXTENDED_STATISTICS
parameter, 14-30
DB_BLOCK_LRU_LATCHES parameter, 14-40,
14-45
DB BLOCK_LRU_STATISTICS parameter, 14-33
DB_BLOCK_SIZE parameter
and parallel query, 19-19
DB_FILE_MULTIBLOCK_READ_COUNT
parameter, 8-7,15-38, 19-19
DBA locking, 20-13
DBA_DATA _FILES view, 21-10
DBA_EXTENTS view, 21-10
DBA_HISTOGRAMS, 8-4
DBA_INDEXES view, 10-16
DBA_OBJECTS view, 14-38
DBA_TAB_COLUMNS, 8-4
DBMS_APPLICATION_INFO package, 26-2, 26-4
DBMS_SHARED_POOL package, 12-4,14-12,
14-23
DBMS_SYSTEM package, 24-6
DBMS_SYSTEM.SET_SQL_TRACE_IN_SESSION
procedure, 24-6
DBMS_UTILITY.ANALYZE_PART_OBIJECT,
19-45
DBMSPOOL.SQL script, 12-4,14-12
DBMSUTL.SQL, 26-2

Index-3

DBWR_IO_SLAVES parameter, 19-21
decision support, 5-4
processes, 20-3
query characteristics, 19-4
systems (DSS), 1-2
tuning, 19-2
with OLTP, 5-6
decomposition of SQL statements, 9-4
default cache, 14-37
demand rate, 1-5,1-6
DEPTH column
TKPROF_TABLE, 24-20
design dictionary, 4-4
designing and tuning, 2-10
device bandwidth, 3-6
evaluating, 15-16
device latency, 3-6
diagnosing tuning problems, 3-1
dimension table, 6-7
direct-load insert, 19-44, 20-29
external fragmentation, 20-13
disabled constraint, 10-11
discrete transactions
example, 11-4
processing, 11-3,11-4
when to use, 11-2
disk affinity
and parallel query, 20-15
disabling with MPP, 19-26
with MPP, 19-41
disk column, SQL trace, 24-14
DISK_ASYNCH_IO parameter, 19-21
disks
contention, 15-21
distributing 170, 15-21
1/0 requirements, 15-4
layout options, 15-15
monitoring OS file activity, 15-17
number required, 15-4
placement of datafiles, 15-21
placement of redo log files, 15-21
reducing contention, 15-21
speed characteristics, 15-4
testing performance, 15-6
dispatcher processes (Dnnn), 18-8

Index-4

distributed databases, 5-7
distributed query, 9-1,9-12
distributing 170, 15-21, 15-24
DIUTIL package, 12-5
DML_LOCKS parameter, 19-14, 19-15
DSS memory, 19-3
dynamic extension, 15-27
dynamic performance views
enabling statistics, 24-4
for tuning, 22-1
parallel operations, 21-10

E

elapsed column, SQL trace, 24-14
enabled constraint, 10-11
enforced constraint, 10-11
ENQUEUE_RESOURCES parameter,
Enterprise Manager, 4-7
equijoin, 7-9
errors
common tuning, 2-15
during discrete transactions, 11-3
ESTIMATE option, 19-45
examples
ALTER SESSION command, 24-5
ANALYZE command, 8-5
CREATE INDEX command, 15-39
CREATE TABLE command, 15-24
CREATE TABLESPACE command,
DATAFILE clause, 15-24
discrete transactions, 11-4
execution plan, 7-7

EXPLAIN PLAN output, 7-7,23-13, 24-17

full table scan, 7-8
indexed query, 7-8
NOSORT option, 15-39

SET TRANSACTION command, 15-30

SQL trace facility output, 24-17

STORAGE clause, 15-24

table striping, 15-24

TABLESPACE clause, 15-24
executable code as data source, 4-4
execution plans, 23-2

examples, 7-7,24-8

parallel operations, 21-5
TKPROF, 24-8,24-10
EXISTS subquery, 19-17
expectations for tuning, 1-9
Expert, Oracle, 4-12
EXPLAIN PLAN command
examples of output, 7-7, 23-13, 24-17
introduction, 4-6
invoking with the TKPROF program, 24-10
parallel query, 21-4
PLAN_TABLE, 23-3
query parallelization, 21-8
SQL decomposition, 9-7
extents
size, 19-35
temporary, 19-40
unlimited, 15-29

F

fact table, 6-7
failover, 6-5
FAST FULL SCAN, 6-3,10-9
FAST_FULL_SCAN_ENABLED parameter, 10-9
file storage, designing, 15-5
FIRST_ROWS hint, 8-15,19-5
fragmentation, external, 20-13
free lists
adding, 18-18
contention, 18-17
reducing contention, 18-18
FREELISTS, 19-43
FULL hint, 8-17,10-8
full table scan, 7-8

G

GC_FILES_TO_LOCKS parameter, 20-13
GC_ROLLBACK_LOCKS parameter, 20-14
GC_ROLLBACK_SEGMENTS parameter, 20-14
GETMISSES, VSROWCACHE table, 14-20
GETS, VSROWCACHE table, 14-20

global dynamic performance view, 21-10

global index, 19-42

goals for tuning, 1-9, 2-13

GROUP BY
decreasing demand for, 20-7
example, 21-9
NOSORT, 15-39
GV$ views, querying, 19-7
GV$CURRENT_BUCKET view, 14-29
GVS$FILESTAT view, 21-10
GV$RECENT _BUCKET view, 14-29

H

hash area, 2-11, 20-3
HASH hint, 8-18
hash join, 19-4, 20-3
HASH parameter
CREATE CLUSTER command, 10-26
HASH_AJ hint, 8-19, 19-16, 19-17
HASH_AREA_SIZE parameter
and parallel execution, 19-4
example, 20-7
relationship to memory, 20-6
HASH_JOIN_ENABLED parameter, 8-8
HASH_MULTIBLOCK_IO_COUNT parameter,
8-8, 19-19
HASH_SJ hint, 8-19, 8-22
hashing, 10-25
HASHKEYS parameter
CREATE CLUSTER command, 10-26
hints, 8-11
access methods, 8-17
ALL_ROWS, 8-14
AND_EQUAL, 8-23,10-8
CACHE, 8-32
CLUSTER, 8-18
degree of parallelism, 8-28
FIRST_ROWS, 8-15
FULL, 8-17,10-8
HASH, 8-18
HASH_AJ, 8-19,8-22
how to use, 8-11
INDEX, 8-19, 8-25, 10-8
INDEX_ASC, 8-21
INDEX_DESC, 8-21
INDEX_FFS, 8-22
join operations, 8-25

Index-5

MERGE_AJ, 8-22

NO_MERGE, 8-33

NOCACHE, 8-32

NOPARALLEL hint, 8-29
optimization approach and goal, 8-14
ORDERED, 8-24,8-25

PARALLEL hint, 8-28

parallel query option, 8-28
PUSH_SUBQ, 8-35

ROWID, 8-18
RULE, 8-16
STAR, 8-25

USE_CONCAT, 8-23
USE_MERGE, 8-26

USE_NL, 8-25
histogram
creating, 8-3

number of buckets, 8-4
viewing, 8-4
HOLD_CURSOR, 14-10

170
analyzing needs, 15-2, 15-3
asynchronous, 19-21
balancing, 15-23
distributing, 15-21, 15-24
insufficient, 3-6
multiple buffer pools, 14-38
parallel execution, 19-2
striping to avoid bottleneck, 19-24
testing disk performance, 15-6
tuning, 2-12,15-2
ID column
PLAN_TABLE table, 23-5
INDEX hint, 8-19, 10-8, 10-16
index join, 20-7
INDEX_ASC hint, 8-21
INDEX_COMBINE hint, 10-16
INDEX_DESC hint, 8-21
INDEX_FFS hint, 6-3, 8-22, 10-9
indexes
avoiding the use of, 10-8
bitmap, 6-7,10-13, 10-16, 10-18

Index-6

choosing columns for, 10-5
composite, 10-6
creating in parallel, 20-20
design, 2-9
enforcing uniqueness, 10-11
ensuring the use of, 10-7
example, 7-8
fast full scan, 6-3, 10-9
global, 19-42
local, 19-42
modifying values of, 10-5
non-unique, 10-11
parallel, 6-3
parallel creation, 20-20, 20-21
parallel local, 20-20
placement on disk, 15-22
rebuilding, 10-10
recreating, 10-10
selectivity of, 10-5
STORAGE clause, 20-21
when to create, 10-3
INDX column, 14-29, 14-33
INITIAL extent size, 19-35, 20-13
initialization parameters
DISCRETE_TRANSACTIONS ENABLED,
for parallel execution, 19-3
MAX_DUMP_FILE_SIZE, 24-4
OPTIMIZER_MODE, 8-10, 8-14
PRE_PAGE_SGA, 14-5
SESSION_CACHED_CURSORS, 14-18
SORT_DIRECT_WRITES, 15-40
SORT_WRITE_BUFFER_SIZE, 15-40
SORT_WRITE_BUFFERS, 15-40
SQL_TRACE, 24-6
TIMED_STATISTICS, 24-4
USER_DUMP_DEST, 24-4
inlists, 8-20, 8-23
INSERT functionality, 20-25
INSERT, append, 8-29
integrity constraint, 10-12
internal write batch size, 15-44
ISOLATION LEVEL, 11-6

11-3

K

keep cache, 14-37
KEEP procedure, 12-7

L

large pool, 15-48
LARGE_POOL_MIN_ALLOC, 15-48
LARGE_POOL_SIZE, 15-48
latches
contention, 2-12,13-9
redo allocation latch, 18-13
redo copy latches, 18-13
least recently used list (LRU), 13-8
LGWR_IO_SLAVES parameter, 19-21
library cache, 2-11
memory allocation, 14-15
tuning, 14-13
listening queue, 16-3
load balancing, 6-5, 15-23
load, parallel, 6-4,19-38
local index, 19-42
local striping, 19-26
lock contention, 2-12
log, 18-12
log buffer tuning, 2-11, 14-7
log switches, 15-42
log writer process (LGWR) tuning, 15-21, 15-43
LOG_BUFFER parameter, 14-7, 15-43
and parallel execution, 19-13
setting, 18-13
LOG_CHECKPOINT_INTERVAL parameter,
15-42
LOG_CHECKPOINT_TIMEOUT parameter, 15-42
LOG_SIMULTANEOUS_COPIES parameter,
18-14, 18-16
LOG_SMALL_ENTRY_MAX_SIZE parameter,
18-13, 18-16
LOGGING option, 19-44
logical structure of database, 2-9
LRU
aging policy, 14-37
latch, 14-39, 14-40, 14-45
latch contention, 14-45, 18-16

M

Managment Information Base (MIB), 4-5
massively parallel system, 19-2
max session memory statistic, 14-21
MAX_DUMP_FILE_SIZE, 24-4
MAXEXTENTS keyword, 19-36, 20-13
MAXOPENCURSORS, 14-10
media recovery, 19-40
memory

configure at 2 levels, 19-3

insufficient, 3-5

process classification, 20-3

reducing usage, 14-47

tuning, 2-11

virtual, 19-4
memory allocation

buffer cache, 14-29

importance, 14-2

library cache, 14-15

shared SQL areas, 14-15

sort areas, 15-36

tuning, 14-2, 14-46

users, 14-6
memory/user/server relationship, 20-2
MERGE hint, 8-9, 8-33
MERGE_AJ hint, 8-22,19-16, 19-17
message rate, 3-7
method

applying, 2-13

tuning, 2-1

tuning steps, 2-5
MIB, 4-5
migrated rows, 15-32
MINEXTENT, 20-13
mirroring

disks, 19-30

redo log files, 15-22
monitoring the system, 4-5
MPP

disk affinity, 19-26
MTS_DISPATCHERS parameter, 18-8, 18-9
MTS_MAX_DISPATCHERS parameter, 18-8
MTS_MAX_SERVERS parameter, 18-10
multi-block reads, 15-28

Index-7

MULTIBLOCK_READ_COUNT parameter, 19-35
multiple archiver processes, 19-43
multiple buffer pools, 14-37, 14-38, 14-40
multi-purpose applications, 5-6
multi-threaded server, 20-3

context area size, 2-11

reducing contention, 18-6

shared pool and, 14-20

tuning, 18-6
multi-tier systems, 13-11

N

NAMESPACE column
VSLIBRARYCACHE table, 14-13
nested loop join, 19-32, 20-3
nested query, 20-18
network
array interface, 16-3
bandwidth, 3-7
constraints, 3-7
detecting performance problems, 16-2
prestarting processes, 16-3
problem solving, 16-2
Session Data Unit, 16-3
tuning, 16-1
NEXT extent, 20-13
NO_MERGE hint, 8-9, 8-33
NO_PUSH_JOIN_PRED hin, 8-9, 8-34
NOAPPEND hint, 8-30, 20-26
NOARCHIVELOG mode, 19-44
NOCACHE hint, 8-32
NOLOGGING option, 19-41, 19-44, 20-19, 20-20,
20-26
NOPARALLEL attribute, 20-17
NOPARALLEL hint, 8-29
NOPARALLEL_INDEX hint, 8-31
NOSORT option, 15-39
NOT IN operator, 19-16
NT performance, 17-6

O

OBJECT_INSTANCE column
PLAN_TABLE table, 23-4

Index-8

OBJECT_NAME column
PLAN_TABLE table, 23-4
OBJECT_NODE column, 21-9
PLAN_TABLE table, 23-4
OBJECT_OWNER column
PLAN_TABLE table, 23-4
OBJECT_TYPE column
PLAN_TABLE table, 23-5
online redo log, 15-42
online transaction processing (OLTP), 1-2,5-2
processes, 20-3
with decision support, 5-6
OPEN_CURSORS parameter
allocating more private SQL areas, 14-9
increasing cursors per session, 14-15
operating system
data cache, 17-2
monitoring disk 1/0, 15-17
monitoring tools, 4-3
striping, 19-24, 19-25
tuning, 2-12,3-7,14-4
OPERATION column
PLAN_TABLE, 23-4,23-7
OPTIMAL storage parameter, 15-31
optimization
choosing an approach and goal for, 8-2
cost-based, 8-2
parallel aware, 6-6
rule-based, 8-10
OPTIMIZER column
PLAN_TABLE, 23-5
OPTIMIZER_FEATURES_ENABLED
parameter, 8-7
OPTIMIZER_MODE, 6-7, 8-3, 8-6, 8-7, 8-10, 8-14,
20-24
OPTIMIZER_PERCENT_PARALLEL
parameter, 6-6, 8-7,19-5, 21-4
OPTIMIZER_SEARCH_LIMIT parameter, 8-8
OPTIONS column
PLAN_TABLE table, 23-4
Oracle Expert, 2-1,4-12
Oracle Forms, 24-5
control of parsing and private SQL areas, 14-10
Oracle Network Manager, 16-3
Oracle Parallel Server, 5-9, 6-5

CPU, 13-13 registering with the database, 4-7, 26-2

disk affinity, 20-15 STANDARD, 12-5
parallel load, 19-39 page table, 13-4
parallel query, 19-11, 20-13 paging, 3-5,13-5, 20-5, 21-5, 21-14
ST enqueue, 20-12 library cache, 14-15
synchronization points, 2-8 rate, 19-4
Oracle Parallel Server Management (OPSM), 4-13 reducing, 14-4
Oracle Performance Manager, 4-8 SGA, 14-46
Oracle Precompilers subsystem, 20-5
control of parsing and private SQL areas, 14-10 parallel aware optimizer, 6-6
Oracle Server PARALLEL clause, 20-25, 20-26
client/server configuration, 5-9 PARALLEL CREATE INDEX statement, 19-13
configurations, 5-7 PARALLEL CREATE TABLE AS SELECT, 6-3
Oracle striping, 19-26 external fragmentation, 20-13
Oracle Tablespace Manager, 4-11 resources required, 19-13
Oracle TopSessions, 4-9 parallel Data Manipulation Lanugage, 20-29
Oracle Trace, 4-10, 14-43, 25-1 parallel execution
command line interface, 25-7 introduction, 19-2
detail report, 25-9 resource parameters, 19-3
formatting data, 25-10 tuning parallel servers, 21-11
parameters, 25-4 tuning physical database layout, 19-22
Oracle Trace Manager, 25-4 parallel execution plan, 21-5
ORACLE_TRACE_COLLECTION_NAME PARALLEL hint, 8-28,20-17, 20-25, 21-4
parameter, 25-5 parallel index, 20-21
ORACLE_TRACE_ENABLE parameter, 25-4 creation, 6-3
ORACLE_TRACE_FACILITY_NAME parallel load, 6-4
parameter, 25-5 example, 19-38
ORDER BY, 23-14 Oracle Parallel Server, 19-39
decreasing demand for, 20-7 using, 19-33
order, preserving, 23-14 parallel query, 5-5
ORDERED hint, 8-24 adjusting workload, 20-8
OTHER column cost-based optimization, 20-24
PLAN_TABLE table, 23-5 detecting performance problems, 21-1
OTHER_TAG column, 21-8 hints, 8-28
overhead, process, 20-3 1/0 parameters, 19-19
overloaded disks, 15-21 index creation, 20-20
oversubscribing resources, 20-5, 20-9 maximum processes, 20-2
parallel server, 20-13
P parameters enabling new features, 19-16
process classification, 19-23, 19-26, 19-41, 20-4
packages query servers, 18-11
DBMS_APPLICATION_INFO, 26-2,26-4 rewriting SQL, 20-18
DBMS_SHARED_POOL, 12-4 solving problems, 20-17
DBMS_TRANSACTION, 11-4 space management, 20-12
DIUTIL, 12-5 tuning, 19-1to ??, 20-1 to 20-24

Index-9

tuning query servers, 18-11

understanding performance issues, 20-2
parallel server, 5-9

disk affinity, 20-15

parallel query tuning, 20-13
parallel server tuning, 4-13
PARALLEL_ADAPTIVE_MULTI_USER

parameter, 19-9, 19-32
PARALLEL_BROADCAST_ENABLE

parameter, 19-18
PARALLEL_EXECUTION_MESSAGE_SIZE

parameter, 19-20
PARALLEL_MAX_SERVERS parameter, 19-6,

19-8, 19-10, 20-6

and parallel query, 19-6

and SHARED_POOL_SIZE, 19-10
PARALLEL_MIN_PERCENT parameter, 19-6

PARALLEL_MIN_SERVERS parameter, 19-8, 19-9

PARALLEL_TRANSACTION_RESOURCE_

TIMEOUT parameter, 20-16
parallelism

degree on parallel server, 19-11

degree, overriding, 20-17

degree, with parallel query, 19-32
PARALLEL-TO-PARALLEL keyword, 21-9
parameter file, 4-4
PARENT_ID column

PLAN_TABLE table, 23-5
parsing, 13-7

Oracle Forms, 14-10

Oracle Precompilers, 14-10

reducing unnecessary calls, 14-9
partition elimination, 9-8
partition view, 6-4,9-8
PARTITION_VIEW_ENABLED parameter, 9-8
partitioned table, 6-4

data warehouse, 19-31

example, 19-36

parallel grouping, 21-9
PCM lock, 20-13
PCTFREE, 2-12,15-34
PCTINCREASE parameter, 15-37

and SQL.BSQ file, 15-34
PCTUSED, 2-12,15-34
performance

Index-10

client/server applications,

decision support applications,

5-9

different types of applications,
distributed databases, 5-7

evaluating,
key factors
mainframe

1-10
, 34
, 17-6

5-4

5-2

monitoring registered applications,

NT, 17-6

OLTP applications, 5-2

Parallel Server,

5-9

UNIX-based systems, 17-5
Performance Manager, 4-8

Performance Monitor, NT,

PHYRDS colu

mn

VS$FILESTAT table, 15-19

physical database layout,

PHYSICAL READ,

physical reads statistic,

PHYWRTS co

lumn

14-34
14-26, 14-30

VS$FILESTAT table, 15-19
ping UNIX command, 4-3
pinging, 2-12

PINS column

V$LIBRARYCACHE table,

PL/SQL
package,

4-6

tuning PL/SQL areas, 14-7
PLAN_TABLE table

ID column,

OBJECT_INSTANCE column,
OBJECT_NAME column,
OBJECT_NODE column,

23-5

OBJECT_OWNER column,
OBJECT_TYPE column, 23

OPERATION column,

OPTIMIZER column, 23-5

OPTIONS column,

OTHER column,
PARENT_ID column, 23-5
POSITION column, 23-5
REMARKS column, 23-4
SEARCH_COLUMNS column,
STATEMENT _ID column,

structure,

23-3

23-4
23-5

13-4

19-22

14-14

23-4
23-4

23-4

23-4

-5
23-4

23-4

23-5

4-7, 26-2

TIMESTAMP column, 23-4
POOL attribute, 18-9
POSITION column
PLAN_TABLE table, 23-5
PRE_PAGE_SGA parameter, 14-5
PRIMARY KEY constraint, 10-11, 10-12, 20-21
private SQL areas, 14-9
proactive tuning, 2-2
process
classes of parallel query, 19-23, 19-26, 19-41,
20-4
dispatcher process configuration, 18-8
DSS, 20-3
maximum number, 3-7, 20-2
maximum number for parallel query, 20-2
OLTP, 20-3
overhead, 20-3
prestarting, 16-3
scheduling, 13-5
process priority, 17-3
process scheduler, 17-3
processing, distributed, 5-9
PRVTPOOL.PLB, 12-4
PUSH_JOIN_PRED hint, 8-9, 8-34
PUSH_JOIN_PREDICATE parameter, 8-7,8-9

Q

queries
avoiding the use of indexes, 10-8
distributed, 9-1
ensuring the use of indexes, 10-7
query column, SQL trace, 24-14
query plan, 23-2
query Sserver process
tuning, 18-11,21-11
query, distributed, 9-12

R

RAID, 15-26, 19-30, 19-40
random reads, 15-6
random writes, 15-6

raw device, 17-3

reactive tuning, 2-3

read consistency, 13

-8

read/write operations, 15-6

REBUILD, 10-10

record keeping, 2-14

recovery
data warehouse,
effect of checkpoin

6-8
ts, 15-41

media, with striping, 19-30
recursive calls, 15-27, 24-15

recursive SQL, 12-2
recycle cache, 14-37
redo allocation latch,

18-13, 18

-16

REDO BUFFER ALLOCATION RETRIES, 18-12

redo copy latches, 18-13, 18-16
choosing how many, 18-14

redo log buffer tuning, 14-7

redo log files
mirroring, 15-22
placement on disk,

15-21

tuning checkpoints, 15-42

reducing
contention

dispatchers, 18-6

OS processes,
query Servers,

redo log buffer latches,

shared servers,

17-3
18-12

18-9

18-12

data dictionary cache misses, 14-20
library cache misses, 14-15

paging and swapp

ing, 14-4

rollback segment contention,
calls, 14-9

unnecessary parse
reducing buffer cache

misses,

18-5

14-29

registering applications with database,
regression, 21-4,21-5

RELEASE_CURSOR,
RELOADS column

14-10

V$LIBRARYCACHE table,

REMARKS column

PLAN_TABLE table, 23-4
remote SQL statement, 9-2

reparsing, 13-7
resource
adding, 1-4
oversubscribing,

20-5

14-14

4-7,26-2

Index-11

oversubscription, 20-9
parallel query usage, 19-3
tuning contention, 2-12
response time, 1-2, 1-3
optimizing, 8-6, 8-15
roles in tuning, 1-8
rollback segments, 13-8, 19-13
assigning to transactions, 15-30
choosing how many, 18-5
contention, 18-4
creating, 18-5
detecting dynamic extension, 15-27
dynamic extension, 15-30
ROLLBACK_SEGMENTS parameter, 19-13
ROWID hint, 8-18
rows column, SQL trace, 24-14
RULE hint, 8-16, 20-24
rule-based optimization, 8-10

S

sar UNIX command, 13-4,21-14
scalability, 6-5, 13-9
scalable operations, 21-7
SEARCH_COLUMN column
PLAN_TABLE table, 23-5
segments, 15-26
selectivity, index, 10-5
semi-join, 19-17
sequence cache, 2-11
sequential reads, 15-6
sequential writes, 15-6
serializable transactions, 11-6
server/memory/user relationship, 20-2
service time, 1-2, 1-3
Session Data Unit (SDU), 16-3
session memory statistic, 14-21
SESSION_CACHED_CURSORS parameter, 13-7,
14-18
SET TRANSACTION command, 15-30
SGA size, 14-7,19-4
SGA statistics, 22-2
shared pool, 2-11
contention, 2-12
keeping objects pinned in, 12-4

Index-12

tuning, 14-11, 14-22
shared SQL areas
finding large areas, 12-6
identical SQL statements, 12-3
keeping in the shared pool, 12-4
memory allocation, 14-15
statements considered, 12-2
SHARED_POOL_RESERVED_MIN_ALLOC
parameter, 14-25
SHARED_POOL_RESERVED_SIZE parameter,
14-24
SHARED_POOL_SIZE parameter, 14-20, 14-25
allocating library cache, 14-15
and parallel query, 19-10
on parallel server, 19-11
tuning the shared pool, 14-20
SHOW SGA command, 14-5
Simple Network Management Protocol (SNMP),
4-5
single tier, 13-11
SIZES procedure, 12-6
skew, workload, 21-6
SNMP, 4-5
sort areas
memory allocation, 15-36
process local area, 2-11
sort merge join, 20-3
SORT_AREA_RETAINED_SIZE parameter, 14-46,
15-37
SORT_AREA_SIZE parameter, 10-15, 14-46
and parallel execution, 19-12
tuning sorts, 15-37
SORT_DIRECT_WRITES parameter, 8-8, 15-40,
19-20
SORT_READ_FAC parameter, 15-38, 19-20
SORT_WRITE_BUFFER_SIZE parameter, 8-8
SORT_WRITE_BUFFERS, 15-40

sorts
avoiding on index creation, 15-39
tuning, 15-35

sorts (disk) statistic, 15-36
sorts (memory) statistic, 15-36
source data for tuning, 4-2
space management, 19-40
parallel query, 20-12

reducing transactions, 20-12
spin count, 13-9
SPINCOUNT parameter, 13-9, 18-2
SQL area tuning, 14-7
SQL Loader, 19-33
SQL statements
avoiding the use of indexes, 10-8
decomposition, 9-4
ensuring the use of indexes, 10-7
inefficient, 13-8
modifying indexed data, 10-5
recursive, 12-2
reparsing, 13-7
tuning, 2-10

SQL trace facility, 4-6, 14-8, 14-43, 24-2, 24-7

enabling, 24-5
example of output, 24-17
output, 24-14
parse calls, 14-8
statement truncation, 24-16
steps to follow, 24-3
trace file, 4-3
trace files, 24-4
SQL*Plus script, 4-6
SQL_STATEMENT column
TKPROF_TABLE, 24-20
SQL_TRACE parameter, 24-6
SQL.BSQ file, 15-34
SQLUTLCHAIN.SQL, 4-6
ST enqueue, 20-12
STANDARD package, 12-5
STAR hint, 8-25
star query, 6-7
star schema, 6-7
star transformation, 6-8, 8-35
STAR_TRANSFORMATION hint, 6-8, 8-35
STAR_TRANSFORMATION_ENABLED
parameter, 6-8, 8-35
STATEMENT _ID column
PLAN_TABLE table, 23-4
statistics, 21-5, 22-2
computing, 19-46
consistent gets, 14-26, 18-5, 18-18
current value, 22-4
db block gets, 14-26, 18-5

dispatcher processes, 18-6
enabling collection, 14-30
estimating, 19-46
generating, 8-4
max session memory, 14-21
operating system, 21-14
physical reads, 14-26
query servers, 18-11
rate of change, 22-5
session memory, 14-21
shared server processes, 18-9, 18-12
sorts (disk), 15-36
sorts (memory), 15-36
undo block, 18-4
STORAGE clause
CREATE TABLE command, 15-24
examples, 15-24
modifying parameters, 15-34
modifying SQL.BSQ, 15-34
OPTIMAL, 15-31
parallel query, 20-21
storage, file, 15-5
stored procedures
BEGIN_DISCRETE_TRANSACTION,
KEEP, 12-7
READ_MODULE, 26-7
registering with the database, 4-7, 26-2
SET_ACTION, 26-4
SET_CLIENT_INFO, 26-5
SET_MODULE, 26-3
SIZES, 12-6
UNKEEP, 12-7
striping, 15-23, 19-24
and disk affinity, 20-15
example, 19-33
examples, 15-24
local, 19-26
manual, 15-24, 19-24
media recovery, 19-30
operating system, 19-25
operating system software, 15-25
Oracle, 19-26
temporary tablespace, 19-40
subquery, correlated, 20-18
swapping, 3-5, 13-4, 13-5

11-3

Index-13

library cache, 14-15
reducing, 14-4
SGA, 14-46
switching processes, 13-5
symmetric multiprocessor, 19-2
System Global Area tuning, 14-5
system-specific Oracle documentation
software constraints, 3-7
SPIN_COUNT parameter, 13-9
USE_ASYNC_IO, 19-21

T

table queue, 21-9, 21-11
tables
placement on disk, 15-22
striping examples, 15-24
tablespace
creating, example, 19-34
dedicated temporary, 19-40
temporary, 15-38
TABLESPACE clause, 15-24
CREATE TABLE command, 15-24
Tablespace Manager, 4-11
TAPE_ASYNCH_IO parameter, 19-21
TCP.NODELAY option, 16-4
temporary extent, 19-40
TEMPORARY keyword, 15-38
temporary tablespace
optimizing sort, 15-38
size, 19-40
striping, 19-40
testing, 2-14
thrashing, 13-5
thread, 17-3
throughput, 1-3
optimizing, 8-6,8-14
tiers, 13-11
TIMED_STATISTICS parameter, 21-12, 24-4
TIMESTAMP column
PLAN_TABLE table, 23-4
TKPROF program, 14-43, 14-44, 24-3, 24-7
editing the output SQL script, 24-18
example of output, 24-17
generating the output SQL script, 24-18

Index-14

introduction, 4-6
syntax, 24-9

using the EXPLAIN PLAN command, 24-10
TKPROF_TABLE, 24-20

querying, 24-19

tool, in-house performance, 4-13

TopSessions, 4-9

Trace, Oracle, 4-10, 25-1

transaction processing
transactions

monitor, 13-12

assigning rollback segments, 15-30

discrete, 11-2
rate, 20-12
serializable, 11-6

TRANSACTIONS parameter, 19-13
transmission time, 3-7

Transparent Gateway,
tuning
access path, 2-10
and design, 2-10
application design,
business rule, 2-7
checkpoints, 15-41

9-13

2-9

client/server applications, 5-9

contention, 18-1

CPU, 131

data design, 2-8

data sources, 4-2

database logical structure, 2-9
decision support systems, 5-4
diagnosing problems, 3-1
distributed databases, 5-7

expectations, 1-9

factors, 3-2
goals, 1-9,2-13
170, 2-12,15-2

library cache, 14-13
logical structure, 10-3

memory allocation,
method, 2-1

2-11, 14-2, 14-46

monitoring registered applications,

multi-threaded serv
OLTP applications,
operating system,
parallel execution,

er, 18-6

5-2
2-12,3-7,14-4
19-22

4-7,26-2

parallel query, 5-5

parallel server, 5-9

personnel, 1-8

proactive, 2-2

production systems, 2-4

query servers, 18-11,21-11

reactive, 2-3

shared pool, 14-11, 14-20

sorts, 15-35

SQL, 2-10

SQL and PL/SQL areas, 14-7

System Global Area (SGA), 14-5
two-phase commit, 19-13
two-tier, 13-11

U

undo block statistic, 18-4
UNION ALL view, 9-8
UNIQUE constraint, 10-11, 10-12, 20-21
UNIQUE index, 10-16
uniqueness, 10-11
UNIX system performance, 17-5
UNKEEP procedure, 12-7
unlimited extents, 15-29
USE_CONCAT hint, 8-23
USE_MERGE hint, 8-26
USE_NL hint, 8-25
user memory allocation, 14-7
user/server/memory relationship, 20-2
USER_DUMP_DEST, 24-4
USER_HISTOGRAMS, 8-4
USER_ID column
TKPROF_TABLE, 24-20
USER_INDEXES view, 10-16
USER_TAB_COLUMNS, 8-4
UTLBSTAT.SQL, 4-6
UTLCHAIN.SQL, 15-32
UTLDTREE.SQL, 4-6
UTLESTAT.SQ, 4-6
UTLLOCKT.SQ, 4-6
UTLXPLAN.SQL, 23-3

\%

V$ dynamic performance views, 4-5
V$BH view, 14-29

V$BUFFER_POOL_STATISTICS view, 14-43, 14-45

V$CURRENT_BUCKET view, 14-33
V$DATAFILE view, 15-19
V$DISPATCHER view, 18-6
VSFILESTAT view
and parallel query, 21-10
disk I/0, 15-19
PHYRDS column, 15-19
PHYWRTS column, 15-19
VS$FIXED_TABLE, 22-2
VSINSTANCE, 22-2
VSLATCH view, 18-3,18-14, 22-2
VSLATCH_CHILDREN view, 14-45
VSLATCH_MISSES, 13-10
VS$LIBRARYCACHE view, 22-2
NAMESPACE column, 14-13
PINS column, 14-14
RELOADS column, 14-14
using, 14-13
VSLOCK, 22-3
VSMYSTAT, 22-3
V$PARAMETER view, 21-10
V$PQ SESSTAT view, 21-5,21-10
VS$PQ SLAVE view, 21-11
V$PQ_SYSSTAT view, 21-5,21-11
V$PQ TQSTAT view, 21-6,21-11
V$PROCESS, 22-3
V$QUEUE view, 18-7,18-9
V$SRECENT_BUCKET view, 14-29, 14-30
V$RESOURCE_LIMIT view, 18-3
VSROLLSTAT, 22-2
VSROWCACHE view, 22-2
GETMISSES column, 14-20
GETS column, 14-20
performance statistics, 14-19
using, 14-19
V$SESSION, 22-3
application registration, 4-7, 26-2
V$SESSION_EVENT view, 22-3
network information, 16-2

V$SESSION_WAIT view, 14-44,18-3, 22-3

Index-15

network information, 16-2
V$SESSTAT view, 13-6,21-12, 21-14, 22-3
network information, 16-2
using, 14-21
V$SGA, 22-2
V$SGASTAT, 22-2
V$SHARED_ POOL_RESERVED view, 14-25
V$SORT_SEGMENT view, 20-12
V$SORT_USAGE view, 7-5,22-2
V$SQLAREA, 13-7,22-2
application registration, 4-7, 26-2, 26-6
resource-intensive statements, 7-5
V$SQLTEXT, 22-2
V$SYSSTAT view, 13-6,13-7, 19-44, 21-12, 22-2
detecting dynamic extension, 15-27
examining recursive calls, 15-27
redo buffer allocation, 18-12
redo buffer allocation retries, 19-13
tuning sorts, 15-36
using, 14-26
V$SYSTEM_EVENT view, 13-9, 18-2, 18-3, 22-2
VSWAITSTAT view, 18-3, 22-2
reducing free list contention, 18-17
rollback segment contention, 18-4
Vviews
instance level, 22-2
tuning, 22-1
virtual memory, 19-4
vmstat UNIX command, 13-4, 21-14

w

wait time, 1-3, 1-4, 20-5

workload, 1-7,13-2
adjusting, 20-8
exceeding, 20-5
skew, 21-6

write batch size, 15-44

Index-16

	Up
	Contents
	Send Us Your Comments
	Preface
	1 Introduction to Oracle Performance Tuning
	What Is Performance Tuning?
	Trade-offs Between Response Time and Throughput
	Critical Resources
	Effects of Excessive Demand
	Adjustments to Relieve Problems

	Who Tunes?
	Setting Performance Targets
	Setting User Expectations
	Evaluating Performance

	2 Performance Tuning Method
	When Is Tuning Most Effective?
	Proactive Tuning While Designing and Developing a ...
	Reactive Tuning to Improve a Production System

	Prioritized Steps of the Tuning Method
	Step 1: Tune the Business Rules
	Step 2: Tune the Data Design
	Step 3: Tune the Application Design
	Step 4: Tune the Logical Structure of the Database...
	Step 5: Tune Database Operations
	Step 6: Tune the Access Paths
	Step 7: Tune Memory Allocation
	Step 8: Tune I/O and Physical Structure
	Step 9: Tune Resource Contention
	Step 10: Tune the Underlying Platform(s)

	How to Apply the Tuning Method
	Set Clear Goals for Tuning
	Create Minimum Repeatable Tests
	Test Hypotheses
	Keep Records
	Avoid Common Errors
	Stop Tuning When the Objectives Are Met
	Demonstrate Meeting the Objectives

	3 Diagnosing Performance Problems in an Existing...
	Tuning Factors for a Well-Designed Existing System...
	Insufficient CPU
	Insufficient Memory
	Insufficient I/O
	Network Constraints
	Software Constraints

	4 Overview of Diagnostic Tools
	Sources of Data for Tuning
	Data Volumes
	Online Data Dictionary
	Operating System Tools
	Dynamic Performance Tables
	SQL Trace Facility
	Alert Log
	Application Program Output
	Users
	Initialization Parameter Files
	Program Text
	Design (Analysis) Dictionary
	Comparative Data

	Dynamic Performance Views
	Oracle and SNMP Support
	EXPLAIN PLAN
	The SQL Trace Facility and TKPROF
	Supported Scripts
	Application Registration
	Oracle Enterprise Manager Applications
	Introduction to Oracle Enterprise Manager
	Oracle Performance Manager
	Oracle TopSessions
	Oracle Trace
	Oracle Tablespace Manager
	Oracle Expert

	Oracle Parallel Server Management
	Tools You May Have Developed

	5 Evaluating Your System’s Performance Character...
	Types of Application
	Online Transaction Processing (OLTP)
	Data Warehousing
	Multipurpose Applications

	Oracle Configurations
	Distributed Systems
	The Oracle Parallel Server
	Client/Server Configurations

	6 Designing Data Warehouse Applications
	Introduction
	Features for Building a Data Warehouse
	Parallel CREATE TABLE . . . AS SELECT
	Parallel Index Creation
	Fast Full Index Scan
	Partitioned Tables
	ANALYZE Command
	Parallel Load

	Features for Querying a Data Warehouse
	Oracle Parallel Server Option
	Parallel-Aware Optimizer
	Parallel Execution
	Bitmap Indexes
	Star Queries
	Star Transformation

	Backup and Recovery of the Data Warehouse

	7 Tuning Database Operations
	Tuning Goals
	Tuning a Serial SQL Statement
	Tuning Parallel Operations
	Tuning OLTP Applications
	Tuning Data Warehouse Applications

	Methodology for Tuning Database Operations
	Step 1: Find the Statements that Consume the Most ...
	Step 2: Tune These Statements so They Use Less Res...

	Approaches to SQL Statement Tuning
	Restructure the Indexes
	Restructure the Statement
	Restructure the Data

	8 Optimization Modes and Hints
	Using Cost-Based Optimization
	When to Use the Cost-Based Approach
	How to Use the Cost-Based Approach
	Using Histograms for Nonuniformly Distributed Data...
	Generating Statistics
	Choosing a Goal for the Cost-Based Approach
	Parameters that Affect Cost-Based Optimization Pla...
	Tips for Using the Cost-Based Approach

	Using Rule-Based Optimization
	Introduction to Hints
	How to Specify Hints
	Hints for Optimization Approaches and Goals
	ALL_ROWS
	FIRST_ROWS
	CHOOSE
	RULE

	Hints for Access Methods
	FULL
	ROWID
	CLUSTER
	HASH
	HASH_AJ
	HASH_SJ
	INDEX
	INDEX_ASC
	INDEX_COMBINE
	INDEX_DESC
	INDEX_FFS
	MERGE_AJ
	MERGE_SJ
	AND_EQUAL
	USE_CONCAT

	Hints for Join Orders
	ORDERED
	STAR

	Hints for Join Operations
	USE_NL
	USE_MERGE
	USE_HASH
	DRIVING_SITE

	Hints for Parallel Execution
	PARALLEL
	NOPARALLEL
	APPEND
	NOAPPEND
	PARALLEL_INDEX
	NOPARALLEL_INDEX

	Additional Hints
	CACHE
	NOCACHE
	MERGE
	NO_MERGE
	PUSH_JOIN_PRED
	NO_PUSH_JOIN_PRED
	PUSH_SUBQ
	STAR_TRANSFORMATION

	Using Hints with Views
	Hints and Mergeable Views
	Hints and Nonmergeable Views

	9 Tuning Distributed Queries
	Remote and Distributed Queries
	Remote Data Dictionary Information
	Remote SQL Statements
	Distributed SQL Statements
	EXPLAIN PLAN and SQL Decomposition
	Partition Views

	Distributed Query Restrictions
	Transparent Gateways
	Summary: Optimizing Performance of Distributed Que...

	10 Data Access Methods
	Using Indexes
	When to Create Indexes
	Tuning the Logical Structure
	How to Choose Columns to Index
	How to Choose Composite Indexes
	How to Write Statements that Use Indexes
	How to Write Statements that Avoid Using Indexes
	Assessing the Value of Indexes
	Fast Full Index Scan
	Re-creating an Index
	Using Existing Indexes to Enforce Uniqueness
	Using Enforced Constraints

	Using Bitmap Indexes
	When to Use Bitmap Indexing
	How to Create a Bitmap Index
	Initialization Parameters for Bitmap Indexing
	Using Bitmap Access Plans on Regular B*-tree Index...
	Estimating Bitmap Index Size
	Bitmap Index Restrictions

	Using Clusters
	Using Hash Clusters
	When to Use a Hash Cluster
	How to Use a Hash Cluster

	11 Oracle8 Transaction Modes
	Using Discrete Transactions
	Deciding When to Use Discrete Transactions
	How Discrete Transactions Work
	Errors During Discrete Transactions
	Usage Notes
	Example

	Using Serializable Transactions

	12 Managing SQL and Shared PL/SQL Areas
	Introduction
	Comparing SQL Statements and PL/SQL Blocks
	Testing for Identical SQL Statements
	Aspects of Standardized SQL Formatting

	Keeping Shared SQL and PL/SQL in the Shared Pool
	Reserving Space for Large Allocations
	Preventing Objects from Being Aged Out

	13 Tuning CPU Resources
	Understanding CPU Problems
	How to Detect and Solve CPU Problems
	Checking System CPU Utilization
	Checking Oracle CPU Utilization

	Solving CPU Problems by Changing System Architectu...
	Single Tier to Two-Tier
	Multi-Tier: Using Smaller Client Machines
	Two-Tier to Three-Tier: Using a Transaction Proces...
	Three-Tier: Using Multiple TP Monitors
	Oracle Parallel Server

	14 Tuning Memory Allocation
	Understanding Memory Allocation Issues
	How to Detect Memory Allocation Problems
	How to Solve Memory Allocation Problems
	Tuning Operating System Memory Requirements
	Reducing Paging and Swapping
	Fitting the System Global Area into Main Memory
	Allocating Enough Memory to Individual Users

	Tuning the Redo Log Buffer
	Tuning Private SQL and PL/SQL Areas
	Identifying Unnecessary Parse Calls
	Reducing Unnecessary Parse Calls

	Tuning the Shared Pool
	Tuning the Library Cache
	Tuning the Data Dictionary Cache
	Tuning the Shared Pool with the Multithreaded Serv...
	Tuning Reserved Space from the Shared Pool

	Tuning the Buffer Cache
	Evaluating Buffer Cache Activity by Means of the C...
	Raising Cache Hit Ratio by Reducing Buffer Cache M...
	Removing Unnecessary Buffers when Cache Hit Ratio ...

	Tuning Multiple Buffer Pools
	Overview of the Multiple Buffer Pool Feature
	When to Use Multiple Buffer Pools
	Tuning the Buffer Cache Using Multiple Buffer Pool...
	Enabling Multiple Buffer Pools
	Using Multiple Buffer Pools
	Dictionary Views Showing Default Buffer Pools
	How to Size Each Buffer Pool
	How to Recognize and Eliminate LRU Latch Contentio...

	Tuning Sort Areas
	Reallocating Memory
	Reducing Total Memory Usage

	15 Tuning I/O
	Understanding I/O Problems
	Tuning I/O: Top Down and Bottom Up
	Analyzing I/O Requirements
	Planning File Storage
	Choosing Data Block Size
	Evaluating Device Bandwidth

	How to Detect I/O Problems
	Checking System I/O Utilization
	Checking Oracle I/O Utilization

	How to Solve I/O Problems
	Reducing Disk Contention by Distributing I/O
	What Is Disk Contention?
	Separating Datafiles and Redo Log Files
	Striping Table Data
	Separating Tables and Indexes
	Reducing Disk I/O Unrelated to Oracle

	Striping Disks
	What Is Striping?
	I/O Balancing and Striping
	How to Stripe Disks Manually
	How to Stripe Disks with Operating System Software...
	How to Do Hardware Striping with RAID

	Avoiding Dynamic Space Management
	Detecting Dynamic Extension
	Allocating Extents
	Evaluating Unlimited Extents
	Evaluating Multiple Extents
	Avoiding Dynamic Space Management in Rollback Segm...
	Reducing Migrated and Chained Rows
	Modifying the SQL.BSQ File

	Tuning Sorts
	Sorting to Memory
	If You Do Sort to Disk
	Optimizing Sort Performance with Temporary Tablesp...
	Using NOSORT to Create Indexes Without Sorting
	GROUP BY NOSORT
	Optimizing Large Sorts with SORT_DIRECT_WRITES

	Tuning Checkpoints
	How Checkpoints Affect Performance
	Choosing Checkpoint Frequency
	Reducing the Performance Impact of a Checkpoint

	Tuning LGWR and DBWn I/O
	Tuning LGWR I/O
	Tuning DBWn I/O

	Configuring the Large Pool

	16 Tuning Networks
	How to Detect Network Problems
	How to Solve Network Problems
	Using Array Interfaces
	Using Prestarted Processes
	Adjusting Session Data Unit Buffer Size
	Increasing the Listener Queue Size
	Using TCP.NODELAY
	Using Shared Server Processes Rather than Dedicate...
	Using Connection Manager

	17 Tuning the Operating System
	Understanding Operating System Performance Issues
	Overview
	Operating System and Hardware Caches
	Raw Devices
	Process Schedulers

	How to Detect Operating System Problems
	How to Solve Operating System Problems
	Performance on UNIX-Based Systems
	Performance on NT Systems
	Performance on Mainframe Computers

	18 Tuning Resource Contention
	Understanding Contention Issues
	How to Detect Contention Problems
	How to Solve Contention Problems
	Reducing Contention for Rollback Segments
	Identifying Rollback Segment Contention
	Creating Rollback Segments

	Reducing Contention for Multithreaded Server Proce...
	Reducing Contention for Dispatcher Processes
	Reducing Contention for Shared Server Processes

	Reducing Contention for Parallel Server Processes
	Identifying Contention for Parallel Server Process...
	Reducing Contention for Parallel Server Processes

	Reducing Contention for Redo Log Buffer Latches
	Detecting Contention for Space in the Redo Log Buf...
	Detecting Contention for Redo Log Buffer Latches
	Examining Redo Log Activity
	Reducing Latch Contention

	Reducing Contention for the LRU Latch
	Reducing Free List Contention
	Identifying Free List Contention
	Adding More Free Lists

	19 Tuning Parallel Execution
	Introduction to Parallel Execution Tuning
	Step 1: Tuning System Parameters for Parallel Exec...
	Parameters Affecting Resource Consumption for All ...
	Parameters Affecting Resource Consumption for Para...
	Parameters Enabling New Features
	Parameters Related to I/O

	Step 2: Tuning Physical Database Layout for Parall...
	Types of Parallelism
	Striping Data
	Partitioning Data
	Determining the Degree of Parallelism
	Populating the Database Using Parallel Load
	Setting Up Temporary Tablespaces for Parallel Sort...
	Creating Indexes in Parallel
	Additional Considerations for Parallel DML Only

	Step 3: Analyzing Data

	20 Understanding Parallel Execution Performance...
	Understanding Parallel Execution Performance Issue...
	The Formula for Memory, Users, and Parallel Server...
	Setting Buffer Pool Size for Parallel Operations
	How to Balance the Formula
	Examples: Balancing Memory, Users, and Processes
	Parallel Execution Space Management Issues
	Optimizing Parallel Execution on Oracle Parallel S...

	Parallel Execution Tuning Techniques
	Overriding the Default Degree of Parallelism
	Rewriting SQL Statements
	Creating and Populating Tables in Parallel
	Creating Indexes in Parallel
	Refreshing Tables in Parallel
	Using Hints with Cost Based Optimization
	Tuning Parallel Insert Performance

	21 Diagnosing Parallel Execution Performance Pr...
	Diagnosing Problems
	Is There Regression?
	Is There a Plan Change?
	Is There a Parallel Plan?
	Is There a Serial Plan?
	Is There Parallel Execution?
	Is There Skew?

	Executing Parallel SQL Statements
	Using EXPLAIN PLAN to See How an Operation Is Para...
	Using the Dynamic Performance Views
	V$FILESTAT
	V$PARAMETER
	V$PQ_SESSTAT
	V$PQ_SLAVE
	V$PQ_SYSSTAT
	V$PQ_TQSTAT
	V$SESSTAT and V$SYSSTAT
	Querying the Dynamic Performance Views: Example

	Checking Operating System Statistics
	Minimum Recovery Time
	Parallel DML Restrictions

	22 The Dynamic Performance Views
	Instance-Level Views for Tuning
	Session-Level or Transient Views for Tuning
	Current Statistic Value and Rate of Change
	Finding the Current Value of a Statistic
	Finding the Rate of Change of a Statistic

	23 The EXPLAIN PLAN Command
	Introduction
	Creating the Output Table
	Output Table Columns
	Bitmap Indexes and EXPLAIN PLAN
	INLIST ITERATOR and EXPLAIN PLAN

	Formatting EXPLAIN PLAN Output
	How to Run EXPLAIN PLAN
	Selecting PLAN_TABLE Output in Table Format
	Selecting PLAN_TABLE Output in Nested Format

	EXPLAIN PLAN Restrictions

	24 The SQL Trace Facility and TKPROF
	Introduction
	About the SQL Trace Facility
	About TKPROF
	How to Use the SQL Trace Facility and TKPROF

	Step 1: Set Initialization Parameters for Trace Fi...
	Step 2: Enable the SQL Trace Facility
	Enabling the SQL Trace Facility for Your Current S...
	Enabling the SQL Trace Facility for a Different Us...
	Enabling the SQL Trace Facility for an Instance

	Step 3: Format Trace Files with TKPROF
	Sample TKPROF Output
	Syntax of TKPROF
	TKPROF Statement Examples

	Step 4: Interpret TKPROF Output
	Tabular Statistics
	Library Cache Misses
	Statement Truncation
	User Issuing the SQL Statement
	Execution Plan
	Deciding Which Statements to Tune

	Step 5: Store SQL Trace Facility Statistics
	Generating the TKPROF Output SQL Script
	Editing the TKPROF Output SQL Script
	Querying the Output Table

	Avoiding Pitfalls in TKPROF Interpretation
	Finding Which Statements Constitute the Bulk of th...
	The Argument Trap
	The Read Consistency Trap
	The Schema Trap
	The Time Trap
	The Trigger Trap
	The “Correct” Version

	TKPROF Output Example
	Header
	Body
	Summary

	25 Using Oracle Trace
	Introduction
	Using Oracle Trace for Server Performance Data Col...
	Using Initialization Parameters to Control Oracle ...
	Enabling Oracle Trace Collections
	Determining the Event Set Which Oracle Trace Colle...

	Using Stored Procedure Packages to Control Oracle ...
	Using the Oracle Trace Command-Line Interface
	Oracle Trace Collection Results
	Oracle Trace Detail Reports
	Formatting Oracle Trace Data to Oracle Tables

	26 Registering Applications
	Overview
	Registering Applications
	DBMS_APPLICATION_INFO Package
	Privileges

	Setting the Module Name
	Example
	Syntax

	Setting the Action Name
	Example
	Syntax

	Setting the Client Information
	Syntax

	Retrieving Application Information
	Querying V$SQLAREA
	READ_MODULE Syntax
	READ_CLIENT_INFO Syntax

	Index

