Oracle® Enterprise Manager
Application Developer’s Guide

Release 1.6

June 1998
Part No. A63733-01

ORACLE

Enabling the Information Age™

Oracle Enterprise Manager Application Developer’s Guide
Part No. A63733-01

Release 1.6

Copyright © 1996, 1998, Oracle Corporation. All rights reserved.

Contributors: Robert Abbott, Eric Belden, Maureen Byrne, Dennis Lee, Yong-Chwen Liu, Dimitri
Nakos, Bob Purvy, Jay Rossiter, Michael Stern, Dave Stowell

The programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be licensee’s responsibility to take all appropriate fail-safe,
back up, redundancy and other measures to ensure the safe use of such applications if the Programs
are used for such purposes, and Oracle disclaims liability for any damages caused by such use of the
Programs.

This Program contains proprietary information of Oracle Corporation; it is provided under a license
agreement containing restrictions on use and disclosure and is also protected by copyright patent and
other intellectual property law. Reverse engineering of the software is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error free.

If this Program is delivered to a U.S. Government Agency of the Department of Defense, then it is
delivered with Restricted Rights and the following legend is applicable:

Restricted Rights Legend Programs delivered subject to the DOD FAR Supplement are ‘commercial
computer software' and use, duplication and disclosure of the Programs shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement. Otherwise, Programs delivered subject to
the Federal Acquisition Regulations are 'restricted computer software' and use, duplication and
disclosure of the Programs shall be subject to the restrictions in FAR 52..227-14, Rights in Data -- General,
including Alternate Il (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065.

Oracle, Oracle Enterprise Manager, Oracle Enterprise Manager Performance Pack, Oracle Server
Manager, Oracle Trace, and SQL*Net are registered trademarks of Oracle Corporation. Net8, Oracle
Expert, Oracle7, Oracle8, and PL/SQL are trademarks of Oracle Corporation. Windows, Windows NT,
Visual C++, and OLE are trademarks of Microsoft Corporation. All trade names referenced are the
service mark, trademark, or registered trademark of the respective manufacturer.

All other products or company names are used for identification purposes only, and may be trademarks
of their respective owners.

OraTcl - Copyright 1993 Tom Poindexter and US West Advanced Technologies, Inc. Permission to use,
copy, modify, and distribute the software and its documentation for any purpose and without fee is
hereby granted, provided that the copyright notice appear in all copies. Tom Poindexter and U S WEST
make no representations about the suitability of this software for any purpose. It is provided as is
without express or implied warranty. By use of this software the user agrees to indemnify and hold
harmless Tom Poindexter and U S WEST from any claims or liability for loss arising out of such use.

cContents

SENA US YOUT COMIMENTES .ottt et ees e et seeeeeseseseeeaeeeeeseseseseseseseseseseeeeeseeeeeens Vii
o Y = (o1 < NN USROS TP OTRT TR OTRTTOTRR iX

1 Introduction

Components of Oracle ENtErprise ManagErcoe it 1-2
(@] o] 1101 X @ aT=T o1 (=To I 1= o | o ISR 1-2
(0] o E<]o] 1= OO TSROSO 1-3
MenuUS and TOOI PAIELLEScoiiiiiiiiie et 1-4
CONSOIE SEIVICESovieeiiieete ettt bbbt bbbttt n e 1-4

LT 010 1 (0] Y7 S PR 1-4
DISCOVETY CACKEvicitct bbbt en e 1-5

N EEAYATo T 1 (0] =T aTe IV - o TSRS 1-5

o] o JSTod o 1= 111 1T a o 0SSR 1-6

EVENt MANAGEMENTciiiiiii e 1-6
General Programming CONSIAEIAtIONS.ccocviieiiireieie e sre et eeneas 1-7

2 Tool Palette and Menu Integration

Integrating an Application into the CONSOIE..........cccvv i 2-2
Registering an Application with the Console. ... 2-2
Required REGISTIatioN KEYScoiiiiiiiiii ettt et s b e e e 2-4
Optional REQISIration KEYScviiiiiieiiiiieesise ettt et se e e estesrestesae e nanren 2-5
Credential PrECEABNCE.ciieece ettt n e s benes 2-7
Passing Contextual Information to an OLE Automation Server Applicationc..cc........ 2-8

OLE Launching CONSIAEIAtIONScccviiiiiieiiries e s st se e e snenaeneeseanens 2-8

Passing Contextual Information to a non-OLE Automation Server Application 2-8
Defining a Custom TOOI PAlettecccciiiiiecc e 2-10
Registering @ CUStOM PAlBLEccvcicieiie st 2-10
F N = (=T = o (ot ST UR R 2-11
=] {0 o To) 0]) (0] = SR 2-11

3 General Coding Techniques

(070 FY0] LIS T V7 [T @ 1 oY T=Tod £ SP 3-2
Initializing and Disposing DiSPatCh DIIVEIS..........ccoiiiiiiiiieiee e 3-2
THE JOD OBDJECT ...ttt b ettt b e e b e be b sb e e b s e et b e e e nbeane s 3-3
Retrieving Error INfOrmation...........coo i e ens 3-4
LTl =T g (o] o 1] {0 TP TSP 3-4
VoxErrorUnpacker Class and Methods...........coocoiiiiiiii e 3-5
LCT=] 1= o T g = S PP PR TS PR PR 3-5
(1= 1= o] (O LU T OO PR USRPROTT 3-5
(1= 1=l g o] DT 7 WSO P U RS PPTUROP 3-6
SUCCESS -ttt etttk ettt R R R e AR R R e R Rt Rt r e r e ne e 3-6
FAITUNE .ttt bbb e b st e st e Rt et e e R b e b et st et e e eneens 3-6

4 Repository Control Integration

ACCESSING The REPOSITONY ..ottt bbbt b e b et bbb e 4-2
Request Connection Information from the Console...........coccoiiiiiiinc i 4-2
CONNECE 10 the REPOSITONY ...ecvviiceiciicicee ettt se e sa e e e eneene e 4-2

Getting Preferred Credentials ... e e 4-3
Request Preferred CredentialS ... e 4-3

REPOSITOrY API REFEIENCE ...ttt sttt e e e e neens 4-3
COMMON PAIAMETEIS ...ttt bttt bttt se e sbeea b e sb e nbeebeebesbeeneas 4-3
(€11 (@d0] g Yo oAV =T § 1o] o OSSPSR 4-4
GetPreferredCredentialSo 4-5
GEtREPLOGONINTO ..ottt 4-6

5 Navigator and Map Integration

INTEGratioN OF SEIVICES .. .oiuiiiiiiiieeiee et ettt b e b e b se e e bt ene b s 5-2

N Lo) (oo Tl o (e g = L IEST=T V7 (1= 5-3

REGISEITNG SEIVICE TYPES .. eitiuieieieeieiie ettt sttt sttt be bttt eb e b et b et e be b e b ene e e bt enesbeene e 5-3
Integrating APPHICALION’S APIS......ccii e st se e ere e ere s 5-4
COMIMON PAFAMELEIS. .. .ottt ettt bbb ne et eb e neene 5-4
(DT E o0)T USRS 5-4
GBEICONLIST....v ettt ettt b et 5-5
GetDefaultDISPIAYINTO. ..ot 5-6
QUICKEGIT ...t e sttt ettt e be s beseesbe st eneeneaneenen 5-7

6 Discovery Cache Integration

RetrieVing NOAES aNA SEIVICES ..ot e 6-2
Retrieving User-Defined GrOUPSccocie ettt 6-2
SEIVICE TYPIBS vttt ittt ettt t ettt h et bbbt bt b e e bt e s eb e At bt e bt e b e e bt eb e ebeebeeeeebeee et eneen b et e eneebe et e rs 6-3
DISCOVEITNG SEIVICESviitiiiitiie ettt sttt sttt e et eh e s et e e seebe st e be s b et e sbe e e beneeneeneeneareene e 6-4
Discovery Cache API REFEIENCEcccviiie e re e e 6-5
COMMON PAAMETETS.ottt bbb bt et a e ae e be st e e be st e enbesnbe s 6-5
GEtGIOUPSOTTYPE .ttt bbb bbbt bbbt eb e 6-6
(CT (@] o] [=To1 { I | v TSR 6-7
GETODJECTLIST ...ttt bbb bbb bbb 6-8
GEtODJECISINGIOUD ettt bbbt bbbt nb et eb e en et e e 6-10
LG (@] o] (=01 15 v= L (= RS 6-11
LTy T V7 Tor=] Ao o [TSRS 6-12
GELUNIQUESEIVICES ...ttt b ekt b bbb bbbt bt sb ettt nb et eb e en et e enas 6-13

7 Job Scheduling Integration

SUDMITEING 8 JOD .. bt bbb e se e ettt e s e be st e 7-2
SUbMILEING @ BALCh JODciiicie et ene 7-2
Submitting an INteractive JOD ... 7-3

Deleting @ BAtCh JODcooii et 7-4

JOD NOTITICALION ... 7-5
Extracting Job Notification INformation............ccocoiiii i 7-5
Flushing the JOD QUEUE ...t 7-5

WHO IS NOTIFIEA ... s 7-5
JOD NOTITICAtION IMESSAGESovviviiiiirieie ettt 7-5
JOD SCIIPTING ottt bbb bbbt n et 7-6

Sending Jobs that Execute SQL*PIUS SCHIPLS.....ccoviiiiiiieriiie e 7-7

JOb Scheduling APT RETEIENCEc.ooiiie e e 7-8
10700 1] 1 01 ST PROTRRPRRPRPPN 7-8
DRIBTEIOD ...ttt r e 7-9
INITIALIZE ...ttt e et e e e b e et et e e ar e beeaeenre e aeereteeaeenes 7-9
JODINOTITICALION ...ttt bbb st b sbereanas 7-10
REQISTEFAPPIICALION ...t ettt sbe e eneas 7-11
L (@1 g=To (= oY A T= 1 KRS PP TOSRRPTRSRN 7-11
SEEDESHINATIONSEX ...eviviieiciise ettt sttt ne 7-12
L] A o] o AN Ty =TSP SRSUSRPTRSRN 7-13
SetNOtificatioNODJECIPIOGIDci i 7-14
SEESCNEAUIE ... e ettt 7-15
SBESCIIIIE. .ttt bbbttt b et E bbb bbbt bbbt b 7-19

VoxJobNotifyUnpacker Class and Methods...........cccoeiiiiiinieneeeee e 7-20
GOEDALE. ...ttt R R R et r et n e ne R e e ne s 7-20
(1= 1=t o o PRSP 7-21
(7= ALo] o] | B OSSOSO TOTOPRRTRRSPN 7-21
GEENOAE ...t bbb bbbt bt bt bbbt bt bbb e e b s 7-21
GEEOULPUL ...t bttt b e b e er e bt en e e e er s 7-22
(1=] 71 1 S POSSN 7-22

Event Management Integration

LEVElS OF INTEGIALION ...c..oiiiiiie ettt bbb bbb b 8-2
(01 11T a1] Lo [T N gk 1= | = Lo o o 1T 8-2
Uniqueness Of REGISTIAtIONcviiiiiiiiieie et e 8-2

[N o A3 o= A To] o [OOSR PSSR 8-3
WHO IS NOLIFIEA ... bbbt 8-3
Discovery Cache Event Management..........coo oot 8-3

EVENT INTEIEST. ...ttt sb et b et bt e e e b e e sae et 8-4
STV =T] To [T LN (=T | = L o o TSR 8-4
Event Management SYSTEM APIS ... 8-5
COMMON PAAMETEIS ...ttt ettt e ree bttt e b et e st e st e sbe e b e sbeeneas 8-5
CANCEIATIEVENTS ...ttt sttt sttt sttt et bbbt et 8-5

(O T Tot= V=T o) (=T =] SRR 8-6
EVENENOTITICAtIONottt seeneenen 8-7

(RETO IS (=1 ¢7AY o] o] 1oz 1 o o 1SRRI 8-7

REGISTETEVENTINTEIEST ...t bbbttt be bt e e 8-8
VOXEVENTNOLITYUNPACKETottt ene e ne s 8-9
GBEDIALE ...tk E Rt E b E e r e e e e s 8-9
GREEVENTINAIMIE ...ttt bt b be b e b e s b e st e e bt et e ebe e sbesaeesbeseesbe e e 8-9
GEEFINAIRESUIL ...ttt bbbt 8-9
L€1o AN (oo [NN F- 1o 1= OSSPSR 8-10
GELODJECTNGIMIE ...ttt bbb bbbttt s 8-10
L T=] =AY =Y 1 YRS PTRS 8-10

Jobs and Events Scripts

STo] o (T T IV g Vo U o = RSSO 9-2
Tcl Language DeSCHIPTION.couiiiiiieieeie et ettt eb et sb et sb e s 9-2
OFaTCl DESCHIPLION ...ttt et b et b et be e sb et e bebesne b 9-4

e L] o] LI @ T W ol STt T | SRS 9-4

Server Message and Error INfOrmation ..o s 9-6
OraMSQ EIBMEBNTS. ...ttt be e ene 9-6

Use of Tcl with the INtelligent AQENt.........oov oo 9-9

NLS 1SSUES aNd EFTON IMIESSAJESc.viitiiitiiiieieeie ettt ettt nnes 9-10

OraTcl FUNCLIONS aNd PAramMeLerSc.ooviiiiiiieie sttt st sttt ene e enea 9-11
COMMON PAFBMELETS.ciiiiiiiieeiee e r e e n e nnes 9-12
(o7 L] 1= OSSPSR 9-12
(ol0] 0 Tor- 1 g F=1 0 [TP P O R TPPRPRPPPN 9-13
CONVEITIN ...ttt b bt bbbt b s e et e s b b e Rt eb e bt bt e bt b nb et e e e s e et e e ne e 9-13
(601 01V /T o (016) T T TR PP UP P PPPTOPRTP 9-14
AISKUSBGE ..ottt bbb b bt bbb bbbt bttt bbbt bt 9-14
BCNOTIIE ...ttt et et b e 9-15
2D q 010] o TP PP PRV 9-15
(L ap] o] o SO SO OSSO O TPV T TR ST PP ROUPPOPRPRPRO 9-15
(0= Vo [=T T TSRS P U U PP P URUUPRTPPO 9-16
L0 4150 | 0 ST P PP 9-16
L0 4150 0 B TSRO PR PP PRURN 9-17
NIV TTLR bt bbbt b et b bbbt e bt bbb bt nas 9-17
(o] E- LU | 010l 0] 1 o H U TP PR PPPOTPTPPN 9-18
Lo Tor T Lo =Y SRS 9-18

(0] = (o] [0 1T 9-19

(o] 7 Tolo] SO PRSP PRPURO 9-19
(o] 7= To7o] .01 0 11 SO OO OSSOSOV 9-20
Lo TV | 0151 0] 1] o SRS 9-20
(o1 1 - U] PSSP 9-21
OFATEICN ...ttt ettt 9-21
OFAGETTIIE ..ttt bbb bbbttt 9-22
(o] - U1 0} {0 T OSSPSR 9-23
Lo T TT0] 0 1) r= | TSR 9-24
OFAIOGOTT ..ottt 9-24
OFAIOGON ..ttt bbb bbbt E et b et b b bRt bbbttt bt 9-25
(o] = To] 0 1< o FU PP PPUPPRPTRTPN 9-25
OFAPIEXEC .ttt bt bbbt b ettt 9-26
Lol 1o | (o] oo [N O OO SO T TR T SR T SO T TP TU R PP SOPRPO 9-26
(o] =1 g=] 010 3V L=] o S SRR PRTUPRRPRPTN 9-27
(o] - U] | SRR 9-29
OFASIERID ..ttt bbb bbbttt 9-29
(o] 2=] 0] o FO SO PO PRTPPRPRRPN 9-30
o] 7= Ko | OO TSP SO TSSOSO PRSP URPTPOPRPOO 9-31
(0] 2 Y £= 1 o ST O T PR TP PR UPPVPTPRPOPRTPN 9-32
(0] 21 (0] o PR PPRPTRPN 9-32
Lo X1 = TSR 9-33
OFAWITEEIONG ...ttt b et bbbttt 9-33
L0001 {1 T USRS SPTSRRTTROO 9-33
(1< 0] oo L1 SR OO OO ST PR PP URPPROPRRPRTR 9-34
L0 0 0] o) {1 OO OO PO TP PROURPRPRTORPRRPRTOR 9-34
A NLS Codes

Index

Vi

Send Us Your Comments

Oracle Enterprise Manager Application Developer’s Guide Release 1.6
Part No. A63733-01

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?
What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the chapter,
section, and page number (if available). You can send comments to us in the following ways

electronic mail - infosmp@us.oracle.com

FAX - (650) 506-7200. Attn: Oracle System Management Products
postal service

Oracle Corporation

Oracle System Management Products Documentation Manager
500 Oracle Parkway

Redwood Shores, CA 94065 U.S.A.

If you would like a reply, please give your name, address, and telephone number below.

Vii

viii

Preface

This preface describes the purpose and organization of the Oracle Enterprise Manager
Application Developer’s Guide. It also illustrates the conventions used in this guide.
The preface contains the following information:

« Purpose of this Guide

« Knowledge Assumed of the Reader
« Code Examples

« How this Guide Is Organized

= Documentation Set

= Related Publications

= Conventions Used in This Guide

=« Your Comments Are Welcome

Purpose of this Guide

This guide presents a general overview of developing applications that integrate
into Oracle Enterprise Manager (OEMGR). It also discusses common services and
using Tcl and OraTcl to write job and event scripts. This guide is written for
software developers who wish to integrate their applications into Oracle Enterprise
Manager.

Note: Information in this guide applies to Oracle Enterprise Manager running on
the Windows NT 32 Bit platforms.

Knowledge Assumed of the Reader

This guide assumes you are familiar with the Oracle Enterprise Manager and the
administration tasks that you can perform with Enterprise Manager components. If
you are not, refer to the Oracle Enterprise Manager documentation set for a
description of the tasks that you can perform with Enterprise Manager tools. In
addition, this guide assumes you are familiar with the Oracle database server. For
information about the Oracle database, see the Oracle server documentation set for
specific and thorough descriptions of the database administration tasks and
recommendations on how to administer your database optimally.

This guide also assumes that you are familiar with the operation of Microsoft
Windows NT, Microsoft’s Object Linking and Embedding (OLE) technology, the
Microsoft Foundation Classes (MFC) and the Microsoft Visual C++ language. Please
refer to the appropriate Microsoft documentation, if necessary.

Code Examples

Throughout this book there are references to source code files where you can find
examples of the functionality that is being discussed. The code examples are
included in the Enterprise Manager Software Developer’s Kit (SDK) installation
option that is available with the Oracle Enterprise Manager release. For information
about installing Oracle Enterprise Manager components, see the Oracle Enterprise
Manager installation and configuration documentation.

The installed code samples are installed in subdirectories of the ORACLE _

HOVE\ SYSMAN\ SDK directory. Microsoft Visual C++ makefiles have been included
with the code, allowing you to build and debug the application yourself. You may
need to make minor modifications to the makefiles to successfully build the sample
application. See the SDK r eadn® file in the ORACLE_HOVE\ SYSMAN\ SDK directory

for information on how to modify the makefiles and install the application after it is
built.

How this Guide Is Organized

This guide is divided into the following chapters.
Chapter 1, "Introduction”

This chapter describes the components of Oracle Enterprise Manager, the common
services, and some programming considerations.

Chapter 2, "Tool Palette and Menu Integration”

This chapter describes how to register and launch an application from the
Enterprise Manager Console.

Chapter 3, "General Coding Techniques"

This chapter describes initializing an application’s document object, initializing
dispatch drivers, and error handling.

Chapter 4, "Repository Control Integration”

This chapter describes how to store and retrieve Enterprise Manager repository
information.

Chapter 5, "Navigator and Map Integration"

This chapter describes how to integrate with the Navigator and Map components.
Chapter 6, "Discovery Cache Integration”

This chapter describes how to retrieve information from the discovery cache.
Chapter 7, "Job Scheduling Integration"

This chapter describes how to integrate with the Job Scheduling system.
Chapter 8, "Event Management Integration”

This chapter describes how to integrate with the Event Management system.
Chapter 9, "Jobs and Events Scripts"

This chapter describes how to write job and event scripts using the Tcl language.
Appendix A, "NLS Codes"

This appendix lists the National Language Support codes.

Xi

Documentation Set

The Oracle Enterprise Manager product documentation includes the following:

Xii

The Oracle Enterprise Manager Readme provides important notes regarding the
updates to the software, documentation, and late-breaking news.

The Oracle Enterprise Manager Installation Guide provides information about
installing Oracle Enterprise Manager components. This guide is in an insert in
the Enterprise Manager CDRom.

The Oracle Enterprise Manager Configuration Guide provides information about
configuring Oracle Enterprise Manager components.

The Oracle Enterprise Manager Concepts Guide provides an overview of the
Enterprise Manager system.

The Oracle Enterprise Manager Administrator’s Guide describes how to use the
components and features of the Oracle Enterprise Manager system.

The Oracle Performance Monitoring User’s Guide, Oracle Expert User’s Guide, Oracle
Trace Developer’s Guide, and Oracle Trace User’s Guide provide information about
performance monitoring applications.

The Oracle Enterprise Manager Messages Manual describes the Oracle Enterprise
Manager error messages and methods for diagnosing the messages.

The Oracle Enterprise Manager Application Developer’s Guide provides information
on programming external interfaces to Oracle Enterprise Manager. The guide
includes information on using Tcl and OraTcl to write custom job and event
scripts.

The Oracle Enterprise Manager SNMP Support Reference Guide describes the
Oracle SNMP support feature and the public and private MIBs that support its
use with various products.

The guides are available on the Oracle Enterprise Manager CD in HTML format for
viewing with a web browser. In addition to the Enterprise Manager documentation,
extensive online help is provided for Oracle Enterprise Manager components.

Related Publications

The Oracle Enterprise Manager Administrator’s Guide refers to important information
in the related publications. Depending on the version of the Oracle database, you
would refer to the Oracle7 or Oracle8 documentation. The related books referred to
in this guide are listed below:

For general information about the Oracle Server and how it works, see the
Oracle Server Concepts Guide.

For information about administering the Oracle Server, see the Oracle Server
Administrator’s Guide.

For information about administering Oracle Parallel Servers, see the Oracle
Parallel Server Support for the Oracle Enterprise Manager Console Guide.

For information about developing database applications within the Oracle
Server, see the Oracle Server Application Developer’s Guide.

For the procedures on migrating from a previous version of Oracle, see the
Oracle Server Migration.

For information on Oracle’s SQL commands and functions, see the Oracle Server
SQL Reference.

For information about Oracle’s procedural language extension to SQL, PL/SQL,
see the PL/SQL User’s Guide and Reference.

For information about Oracle messages and codes, refer to Oracle Server
Messages.

For information about the utilities bundled with the Oracle Server, including
Export, Import, and SQL*Loader, refer to the Oracle Server Utilities.

For information about distributing and replicating data, refer to the Oracle
server distributed database systems and replication documentation.

For information about the Oracle networking system for Oracle8, see the Net8
documentation, which includes the Net8 Administrator’s Guide. For information
about SQL*Net, see the SQL*Net documentation, which includes the Oracle
Network Manager Administrator’s Guide.

For information specific to the Oracle Server working on your host operating
system, see your operating system-specific Oracle documentation (specific book
titles vary by operating system) and system release bulletins, if available.

Xiii

Conventions Used in This Guide

This section explains the conventions used in this guide.

Special Words

Special words are provided to alert you to particular information within the body of
this guide and within other manuals.

Note: Alerts you of important information.

Additional Information: References other guides and operating system-specific
documentation.

Attention: Highlights information that is important to remember.
Suggestion: Signifies helpful suggestions and practical hints.

Warning: Indicates information that you should be aware of before you perform
the action described.

Code Conventions
Code examples are shown in the following font:
conmand

When describing the syntax of code examples, arguments in square brackets
‘l opti onl| opti on2]’ are optional. The ‘]’ signifies the ‘or’ condition.

Your Comments Are Welcome

Xiv

We value and appreciate your comments as an Oracle user and reader of the
manuals. As we write, revise, and evaluate our documentation, your opinions are
the most important input we receive. Included in our manuals is a Reader’s
Comment Form, which we encourage you to use to tell us what you like and dislike
about this manual or other Oracle manuals. If the form is not available, please use
the following address.

Documentation Manager

System Management Products
Oracle Corporation

500 Oracle Parkway

Redwood Shores, CA 94065 U.SA.

1

Introduction

This chapter introduces Oracle Enterprise Manager (OEMGR) and the process of
integrating applications with Enterprise Manager. Topics include:

« Components of Oracle Enterprise Manager
« Console

« General Programming Considerations

Introduction 1-1

Components of Oracle Enterprise Manager

Components of Oracle Enterprise Manager

Oracle Enterprise Manager (OEMGR) is Oracle’s new generation of enterprise-wide
system management tools that solves the problem of managing distributed Oracle
systems with:

=« A management Console that provides a single point-of-control.

=« A Communication Daemon that provides communication between the Console
and the intelligent agents.

« Intelligent agents that communicate with the Console to provide information
about services located on the node where the agent is located.

« A set of common services.
« Asetof integrated applications and utilities.

System management applications and utilities developed by Oracle or by
third-party vendors can be integrated with the Console, providing a single point of
control for system management.

Object-Oriented Design

The Console and integrated applications communicate using Microsoft’s OLE2
technology. This technology allows applications to easily integrate into the Console.
This guide describes the set of application programmer interfaces (APIs) to
Enterprise Manager Console and its services. These external interfaces allow
developers to create tools that integrate into the Console. By adding applications
that Oracle, third-parties, or you create, you can enhance or increase the scope of
Oracle Enterprise Manager’s capabilities.

1-2 Oracle Enterprise Manager Application Developer’'s Guide

Console

Console

To the end user of Oracle Enterprise Manager, the Console looks like a window with
several components. See Figure 1-1, "Oracle Enterprise Manager Console".

Figure 1-1 Oracle Enterprise Manager Console

B e lireete By b Bl [eh Eeb

IR EL S

[Ty [T re— p—p—]

SR r—

& ol Db

§ 8 e ekl

1 T el

| AL ekt
i =TT i
Bl yept T vk

= kol

L= o
0 L

L
W
-
"

. B i3

o

[Feva e Py

At bk | Ity | 1o by]

i Pl o
i Pl [P corsmand
! A S0 Sl

. il e,
T ik v
Than ey e

=yt
V15 comrand
SEL Pl ropd

el Heill Ll
g Tuachs L L
| D D Fipali

| Dl [i

Frwcimrraed [cle Dorsbegrn L il ey Evmnd 7
St v Ul i b St Ll B e 5mt
Sredaeed Juch Lottrad gl pos el &
rwceieed (1 scls Danabgen Ml E-vurd Tl
e vl b L ne F i o B e

1 gt chagch 1 sshatsge s saw B b (o

L B e T

I R O O 5

The components that function with the Oracle Enterprise Manager Console are:

Menus and tool palettes

Repository
Discovery Cache
Navigator

Map

Job Scheduling

Event Management

Intelligent Agent

Introduction 1-3

Console

Menus and Tool Palettes

You can launch an application from the Console by clicking the application’s icon in
a tool palette or by selecting the application’s menu item in the Tools menu. When
you integrate your application, your application’s icon appears in the appropriate
tool palette, and a menu item for your application appears in the Tools menu.

You can integrate your application into Oracle Enterprise Manager Console with
tool palette and menu integration. See Chapter 2, "Tool Palette and Menu
Integration".

Console Services

Underlying the Console are various common services that applications can use.
These services are:

« Repository

« Discovery Cache

« Navigator and Map - user interface (Ul) only
« Job Scheduling System - Ul and back-end

« Event Management System - Ul and back-end

« Intelligent Agent

Repository

The repository is used to store system information that Oracle Enterprise Manager
collects and uses. The repository consists of a set of internal tables installed in an
Oracle database either locally on the host PC or remotely on the network. The
repository external interfaces allow application developers to retrieve user
preferences from the repository and to store their own information in the repository.
See Chapter 4, "Repository Control Integration".

1-4 Oracle Enterprise Manager Application Developer’'s Guide

Console

Discovery Cache

The discovery cache is responsible for servicing requests for information about the
network and its services. The cache holds the current state of each node and service
on the network. The discovery cache keeps track of:

« Nodes

« Listeners

« User-defined groups

« Oracle databases, including parallel instances
« External services (third-party services)

Information in the discovery cache is retrieved with the Navigator Service
Discovery option or by reading Oracle Parallel Server information in the t opo_
ops. or a file. The discovery cache also keeps track of user-defined groups. A
Console user can create named groups of nodes or services. A group can contain
only nodes or services of the same type. For example, a user can create a group of
listeners or a group of databases. A group can also contain a sub-group. The
sub-group must be of the same type as the group. For example, a group of
databases can also contain a sub-group of databases.

The discovery cache is also responsible for discovering and maintaining lists of all
user-defined service types. User-defined services are accounted for in the same way
as internally defined service types.

The discovery cache interfaces allow application developers to retrieve information
about nodes, services, and user-defined groups. See Chapter 6, "Discovery Cache
Integration"”.

Navigator and Map

The Navigator provides a tree listing of the nodes, objects, services, and other
objects that can be administrated in the system. Each object type is identified by an
icon. You specify the icons you want to appear for the services. You can administer
each of these objects individually, and you can navigate between them by
expanding and collapsing parts of the Navigator tree. The Map provides a graphical
view of the objects in the system.

You can define your own service types to appear within the Navigator and on the
Map. You must implement an interface that the discovery cache will call to discover
which services are a part of the network environment. After these services have
been discovered, they appear in the Navigator and the Map just as any
internally-defined service type, such as databases or listeners.

Introduction 1-5

Console

You can use the Related Tools menu to launch applications to administer selected
services. You can also use the Quick Edit command to launch property sheets from
the Console user interface. From within the Console, you can specify preferred
credentials for each of your services.

See Chapter 5, "Navigator and Map Integration".

Job Scheduling

The Job Scheduling system allows users to create, schedule, and delete jobs. The
Console user interface provides property sheets and dialog boxes to perform these
operations, and to view information about jobs in the system. The Job Scheduling
system interfaces allow you to submit both batch and interactive jobs.

A job is a Tcl script that is executed remotely via the Oracle intelligent agent. There
are predefined jobs that ship with Enterprise Manager, but applications developers
can write new job scripts using the Tcl language. For information on job scripts, see
Chapter 9, "Jobs and Events Scripts".

The Job Scheduling system external interfaces allow application developers to
create and manage jobs. The Job Scheduling system can also notify the submitter of
a job whenever there is a change in the job’s status. See Chapter 7, "Job Scheduling
Integration".

Event Management

The Event Management system (EMS) allows you to set up, register, and manage
events on selected destinations in the network. EMS provides a mechanism for
alerting administrators about possible or actual problems with selected services,
such as databases or nodes. An event is a Tcl script that is executed remotely via the
Oracle intelligent agent. There are numerous predefined events that ship with
Enterprise Manager.

You can integrate into the EMS in two ways. On the Console machine, you can build
an application which registers interest in a set of events and gets notifications when
they are fired. On a remote node, you can send your own customized event
information through the Oracle Intelligent Agent back to the Console machine.
Integrating in both of these ways together can provide a powerful end-to-end
communications from your remote services to your administration applications. See
Chapter 8, "Event Management Integration".

1-6 Oracle Enterprise Manager Application Developer’s Guide

General Programming Considerations

General Programming Considerations

Some general programming considerations are:

Language Examples Use of OLE2 does not commit the third-party developer to
the use of any particular programming language or model. However, throughout
the documentation and code examples, Microsoft Foundation Classes (MFC) and
Microsoft Visual C++ conventions are used. You do not have to use this class library
or compiler, but it is strongly recommended.

Header and Library Files The SDK provides a library of C++ classes and functions
which make the development of integrated applications much easier. Classes are
provided to save you the trouble of implementing much of the routine,
uninteresting, or complicated OLE2 process.

All of the code you need to build using the library is provided within the
SYSMAN\ SDK\ VOX subdirectory in the ORACLE_HOVE directory.

Note: The ORACLE_HOME directory is the location where Oracle products have
been installed. The default for Windows NT is the ORANT directory.

Two static import libraries are provided within the SYSMAN\ SDK\ VOX\ LI B
subdirectory: vox. | i b for release builds, and voxd. | i b for debug builds. These
correspond to the two DLLs that your applications will use, vox. dl | and

voxd. dl |, both of which are supplied with the Oracle Enterprise Manager
Console. Note that you can link with and run the debug DLL with a debug version
of your application yet still execute side-by-side with the release (hon-debug)
version of the console. All of the header files that you might need to include can be
found in the ORACLE_HOVE\SYSMAN\ SDK\ VOX\ | NCLUDE subdirectory.

Sample Applications The SDK comes with two sample applications that provide
examples of calls to the Oracle Enterprise Manager Console OLE APIs and
demonstrate the use of the VOX library. The first application, snpsr v (SMP sample
SeRVer), demonstrates the use of almost all the functionality exposed by the
console, including launch in context, repository and discovery cache calls, job
submission and notification, and event registration and notification. The second
application, snpxsrvc (SMP eXternal SeRViCe), is an example of how to create an
OLE service for Navigator and Map integration. All of the files necessary to each
project can be found within the SYSMAN\ SDK\ subdirectories.

Makefiles are included with the samples in order to build working executables. The
makefiles are configured based on the assumption that your ORACLE_HOVE is
C: \ ORANT. If it is not, you will need to reconfigure them accordingly. Move the

Introduction 1-7

General Programming Considerations

executables into the ORACLE_HOME\ BI N subdirectory after they have been built,
and then execute either snpsrv. r eg or snpxsrvc. r eg as appropriate. You then
have working examples that you can use and debug. Most likely you will find it
very useful during the development of your application to test its functionality
against that of the snpsr v application.

Both of the sample applications are designed to be used primarily as examples of
code use and integration techniques. They have not been developed as full fledged
applications for end user use; their user interfaces are functional but unrefined.
Most of the dialogs in snpsr v, for example, are just thin wrappers around the
underlying API they are meant to demonstrate. They do not pretend to maintain
state or re-synchronize properly, and as such should be used for one invocation of
the API and then dismissed.

Throughout this book there are references to the source code files where you can
find examples for the functionality that is being discussed.

Wide Characters All strings that are returned to your application are buffers of
wide characters (UNICODE).

1-8 Oracle Enterprise Manager Application Developer’s Guide

2

Tool Palette and Menu Integration

This chapter covers the Tool palette and menu interface. It describes:

Integrating an Application into the Console

Registering an Application with the Console

Credential Precedence

Passing Contextual Information to an OLE Automation Server Application
Passing Contextual Information to a non-OLE Automation Server Application
Defining a Custom Tool Palette

API Reference

Tool Palette and Menu Integration 2-1

Integrating an Application into the Console

Integrating an Application into the Console

The Oracle Enterprise Manager Console allows you to register and launch an
application directly from a tool palette or a pull-down menu. If you have registered
an application in the NT registry, the Console uses registration information to make
an application available to Console users. The Console can:

« Launch an application from a palette or menu.

« Launch an application and pass it connection details from the selected service
or node.

In order for Oracle Enterprise Manager to know about an application, you must
register it in the NT registry. When the Console starts up, it reads the registry and
looks for applications that are to be made available in the Console.

= To have the Console simply launch an application, you need to register an
application in the NT registry. See Registering an Application with the Console on
page 2-2.

= To have the Console pass an application connection details, you must either
implement a Set Logonl nf oEx OLE automation interface or process the
command line parameters that Oracle Enterprise Manager passes if you are
using a non-OLE automation server. See Passing Contextual Information to an
OLE Automation Server Application on page 2-8 or Passing Contextual Information
to a non-OLE Automation Server Application on page 2-8.

Registering an Application with the Console

To register an application with the Enterprise Manager Console, entries must be
made into the NT registry. Each application must define a unique application key
under the HKEY_CLASSES ROOT\ Or acl eSnpConsol e\ Appl i cati ons key. To
avoid naming collisions with applications developed by other companies, you
should begin the name of all of the application keys with a substring uniquely
identifying your company. All of the details that the Console needs to know about
the application should be placed underneath its application key. The syntax for an
application’s NT registration keys is:

HEY_AASSES ROON O acl eSnpGonsol e\ Appl i cat i ons\ AppNaneKey\ r egkey = regkeyval ue
where:

« Oracl eSmpConsol e\ Appl i cati ons identifies the application as one that
should be displayed in the Console. This is the specific location where the
Enterprise Manager Console looks for all registered applications.

2-2 Oracle Enterprise Manager Application Developer’s Guide

Registering an Application with the Console

« AppNaneKey, such as Snpsr v, is the key that is used by the NT Registry to
organize the subkeys that relate to the application. This key is also used by the
Console internally to refer to an application.

« regkey, such as ExeType, is one of registration keys.

« regkeyval ue, such as OLE_ AUTOMATION, is a registration key value.

Figure 2-1, "Example of an NT Registry" shows a sample NT registry. It includes an
entry for the SnpSr v test application registered with the Console. For a complete
example of the keys used to register an application in the registry, see the

snpsrv. reg file.

Figure 2-1 Example of an NT Registry

HEEY CLASSES RINT s Laausd Mo b

& OrscleSmplomecls
= applcatons
- C8 OE KB s b pikAanspar
B CE RDhmiskd mrage
80 CE Wisatn rewdorgar
1=1CE) OE W0 o Lz hAad b s
88 O kv u Mo reior
5 CEWDrede Tables paeidap
8 OE WiOvac] o TopSer sinns
88 OEWESchem aliareger
5 O MSimcuniydicnegar
~C] =0
— (27 Epscutn bk
—[] ExaTyvps

s
9 Molafwa
— Tepas
8 OE WS Wik Sh et
3 CEMSmmp oklansger
58 Ovascia E et
8 Ol Trace
0 £ okwore_tdorcgar

t Er\

& <M Mamper SEL_SE C Umoe Securly Menage

b |

The Console uses an application’s registration information to:

« Gather details relating to how the application should be launched.

« Determine the application’s National Language Support (NLS) name.

« Display an application’s icon in the appropriate tool palette.

« Include a menu item for an application in the appropriate submenu of the Tool

menu.

Tool Palette and Menu Integration 2-3

Registering an Application with the Console

Required Registration Keys

To register an application with the Enterprise Manager, you must specify the
following four keys:

1. The application key: The internal name for the application.

2. Name: The readable application name key, with NLS subkeys.
3. Executable: The executable filename.
4.

ExeType: The executable type.

Application Key

The value of the application key is the string that is used internally by the Console
to identify the application. Both the application key and value must be unique. For
example:

HKEY_QLASSES ROON O acl eSnpConsol e\ Appl i cati ons\ CEMBanpl e = CBVBanpl e

Note: Make sure that there are no spaces trailing the application key string
because these spaces are considered part of the key value.

Readable Name

This is the name displayed by the Console in the Tools menu. The name is also
displayed in bubble help and status bar help for the palette. All readable strings that
Oracle Enterprise Manager requires to be specified in the registry, including the
application names, handle national language translation in the same way. The Nane
key’s value is the default name for the application, which should be in American
English. The console will use this string if it is running in a language for which no
NLS subkey has been specified. For example:

HEY_AASSES ROON O acl eSnpConsol e\ Appl i cat i ons\ CEvBanpl e\ Nane =
CEMBanpl e Application

For every language the application can support, an NLS subkey, or language code,
should be specified. For example, the Japanese name would include JA instead of
US in the registration key syntax. For a list of the subkeys, see Appendix A, "NLS
Codes". The value of a subkey is the name of the application in the appropriate
language. For example:

HKEY_QLASSES ROON O acl eSnpConsol e\ Appl i cat i ons\ CEMBanpl e\ Nane\ US =
CEMBanpl e Application

2-4 Oracle Enterprise Manager Application Developer’s Guide

Registering an Application with the Console

Executable Filename

The executable name of the application. The executable itself must be installed in
either your ORACLE_HQOVE\ Bl N subdirectory or within the current path. If the
executable is located anywhere else, the application will fail to appear in the tool
palettes and menus you desire. The executable file name should be supplied
without path information. For example:

HEY_AASSES ROON O acl eSnpConsol e\ Appl i cat i ons\ CEvBanpl e\ Execut abl e =
SWSRV. EXE

Executable Type
The type of executable file. The executable type can be one of the values listed in
Table 2-1, "Executable Types".

Table 2—1 Executable Types

Value Meaning Comments
OLE_AUTOMATION | OLE Server Overwhelmingly recommended. Must
implement SetLogonInfoEx interface
EXEC Simple executable Simple launch without context
EXEC_PARAMS Command line Same context info as in SetLogonInfoEX,
launch-in-context but passed on the command line
For example:

HEY_AASSES ROON O acl eSnpGonsol e\ Appl i cat i ons\ CEMBanpl e\ ExeType =
QLE_AUTQWATI N

Additional steps that are necessary to launch each of the executable types are
discussed in following sections of this chapter.

Optional Registration Keys

There are several optional keys that each application can specify: the Pal et t es,
Types, CLSI D, and | con keys. Oracle recommends that you specify Pal et t es
and Type. CLSI Dis required to register an OLE Automation server application.

Palettes

This key determines the list of palettes where the application is displayed, usually
only one. Multiple entries are separated by commas. Use of the Pal et t es key is
optional but strongly recommended. Define this key to specify on which Tools
Palette the application will appear within the console.

Tool Palette and Menu Integration 2-5

Registering an Application with the Console

If you list a particular Tools Palette, the application’s icon will appear, and its (NLS)
name will appear in Tooltips and status bar help when the mouse lingers over that
icon for a brief period of time. In addition, there will be a corresponding menu item
included in the appropriate location in the Tools menu.

Tools palettes are specified by their internal names. Multiple tools palettes can be
specified: the value of the “Palettes” key should be a comma separated list. For
example:

HEY_AASSES ROON O acl eSnpConsol e\ Appl i cati ons\ CEMBanpl e\ Pal ettes =
Q acl eApps, Sanpl eApps

There is a default tool palette whose internal name is Or acl eApps. Its external
name is simply Appl i cat i ons, which is generic enough that most applications
can be put there. It is also possible to define your own tool palette. See Defining a
Custom Tool Palette on page 2-10.

Types

This key determines the types of objects that this application administers. If you
specify the Types key, the application will appear in the Related Tools contextual
menu for all the types you list in the key’s value. Types are specified by their
internal type name. Multiple entries are separated by commas. For example:

HEY_AASSES ROON O acl eSnpConsol e\ Appl i cat i ons\ CBvBanpl e\ Types =
DATABASE, NCLE, LI STENER

Types specified can be those defined by Oracle Enterprise Manager itself as they
appear in the header file voxt ype. h, or can be those which you or another
third-party vender define as external service types. See Chapter 5, "Navigator and
Map Integration".

Related Tools menus pop up when you click the right mouse button on an object in
the Navigator. A list of applications which are appropriate to the administration of
objects of that type appear as a submenu. Selection of one of these applications
launches it with the context of the selected object.

CLSID

To register an OLE Automation server application, one additional registry key is
required, the CLSI D key. Specify the CLSID of the OLE server as the value of this
key. For example:

HKEY_QLASSES ROON O acl eSnpConsol e\ Appl i cati ons\ CBvBanpl e\ ALSI D =
{ FC2BOF50- 0036- 110~ BEF1- 0020AF0CL4D1}

2-6 Oracle Enterprise Manager Application Developer’s Guide

Credential Precedence

The server must implement and expose the Set Logonl nf oEx interface to receive
launch-in-context information.

Icon
To change the icon that an application uses in the tool palette, use the | con key. The
replacement icon must be stored in bitmap format (*.bmp). For example:

HEY_QASSES ROON O acl eSnpConsol e\ Appl i cati ons\ CBVBanpl €\ | con =
%r acl e_hone% sysnan\ adni n\ vaxt pdus. bnp

If an icon is not found for an application, a default icon (or acl e_

hone\ sysman\ adni n\ vaxt pdus. bnp) is automatically used. This default icon is
also used if an integrated application is not an MFC application and its executable
does not contain an icon. The t bi con. r eg file in the or acl e_hone\ sysman\ sdk
directory currently points to the default icon.

Credential Precedence

Part of the context of an application’s launch is the logon credentials for the service
that is associated with the selected object in the Navigator tree or on the Map. These
credentials include the username and password, plus role if the object selected is a
database service. The role specifies how to connect to the database: NORMAL,
SYSOPER, or SYSDBA. The Console allows an individual user to specify preferred
credentials for any service, including those defined externally by third parties. For
information, see Chapter 5, "Navigator and Map Integration”.

Also, at any given time it may be possible to be connected to a service within the
console under arbitrary credentials entered in a Login Information dialog.
Accordingly, the precedence of the credentials which will be sent as context is
determined according to the following rules:

1. Ifthe user has already explicitly connected to the service, the arbitrary
credentials entered in a Login Information dialog or the preferred credentials at
the time of connection are sent.

2. If auser has not entered arbitrary credentials and has defined a preferred
credential for the service, these are sent.

3. Ifauser has not entered arbitrary credentials and has not defined a preferred
credential for the service, the current console logon credentials are sent.

Tool Palette and Menu Integration 2-7

Passing Contextual Information to an OLE Automation Server Application

Passing Contextual Information to an OLE Automation Server

Application

When the Console launches an OLE automation application, it calls the
application’s Set Logonl nf oEx automation interface, if such an interface has been
defined in the application. See SetLogonInfoEx on page 2-11.

Note: If an application is a non-OLE automation server, the Console can still pass
logon information if you have specified the ExecType = EXEC PARANS.

The Console passes the following connection information to the application:

« Credentials of the Console user for the node or service selected in the navigator.

« Object name and type selected in the Navigator or Map.

OLE Launching Considerations

The application must be an OLE server and must be able to launch with the OLE
Open verb. If the application is going to support external service types described in
Chapter 5, "Navigator and Map Integration”, it should also be able to launch with
the Cr eat eDi spat ch method.

Passing Contextual Information to a non-OLE Automation Server

Application

If the ExeType for an application is specified to be EXEC_PARAMS, contextual
information about the currently selected object in the Navigator tree or on the Map
will be passed to the application via the command line. An example of specifying
EXEC_PARMS is:

HKEY_QLASSES ROON O acl eSnpConsol e\ Appl i cat i ons\ CEMBanpl €\ ExeType =

BEXEC PARVG

Seven named parameters separated by spaces are passed on the command line
according to the following syntax:

par ant er __hane=val ue

2-8 Oracle Enterprise Manager Application Developer’s Guide

Passing Contextual Information to a non-OLE Automation Server Application

The meanings of each of these parameters are described in Table 2-2,
"Command-Line Parameters".

Table 2-2 Command-Line Parameters

Parameter name Meaning Notes
user Username of service Defaults according to credential
related to selected object precedence rules.
password Password of service Defaults according to credential
related to selected object precedence rules.
service Name of service related to | For example: If the selected
selected object object is a tablespace, the related
service would be the database
that tablespace is a part of.
type Type of service related to Internal service type name,
selected object either from voxtype.h, or
defined externally.
as Connect as role, for Only values are SYSOPER or
databases only. SYSDBA. If NORMAL or service
is not a database, this parameter
is not supplied.
object Name of selected object
objecttype Type of selected object Internal type name, either from
voxtype.h, or defined externally.

Tool Palette and Menu Integration 2-9

Defining a Custom Tool Palette

Defining a Custom Tool Palette

You can define custom tool palette to put applications on. However, because tool
palettes look awkward if they have less than three applications on them, you should
do this only if you have three or more applications in an application suite which
you choose to integrate. If you have less than three applications to place on a
palette, consider using the OracleApps palette. For information on specifying a
palette, see Optional Registration Keys on page 2-5.

To create a custom palette, you only need to specify an internal name for the new
palette and the human readable name, with NLS subkeys. The internal name is the
keyword which will appear in the Pal et t es key for each application you want to
place on your palette. The human readable name will be used in the title bar of the
undocked palette, and will also be used to create a new entry under the Tools menu
in the console to correspond to the new palette.

Registering a Custom Palette

To create a new tool palette that will appear in the Console, you need to add an
internal name, external name, and NLSkey to the NT Registry. These entries are added
under the HKEY_CLASSES ROOT\ O acl eSnpConsol e\ Pal et t es key.

Internal Name
Internal palette name.The name must be a unique subkey to represent the palette
you are registering. For example:

HEY_AASSES ROON O acl eSnpConsol e\ Pal et t es\ Sanpl eApps = Sanpl eApps
External Name

Default value for human readable name (US English). For example:
HEY_QASSES ROON O acl eSnpConsol e\ Pal et t es\ Sanpl eApps\ Nane =

Sanpl e Applications

NLSkey

NLS value for human readable name. For example:

HEY_AASSES ROON O acl eSnpConsol e\ Pal et t es\ Sanpl eApps\ Narre\ US =
Sanpl e Applications

After you have included the palette in the registry, you can add an application to it
as described Registering an Application with the Console on page 2-2.

2-10 Oracle Enterprise Manager Application Developer’s Guide

AP| Reference

API| Reference

In order for an OLE application to receive connection information from the Console,
the application must expose a Set Logonl nf oEx method.

Note: If you do not expose a Set Logonl nf oEx method an application will still
launch, but no credentials will be passed.

SetLogonInfoEx

Purpose Set Logonl nf oEx allows the Console to pass the Console user’s
credentials and the selected object name to an application. It should have the
following syntax:

Syntax VT_BMPTY Set Logonl nf oEx(VTS _BSTR Wser nane,
VTS BSTR Passwor d,
VTS BSTR Servi ce,
VTS BSTR Servi ceType,
VTS BSTR (onnect As,
VTS BSTR FocusedChect Nane,
VTS BSTR Focused(hj ect Type)

Parameters
Name Type Mode
Username VTS BSTR IN
Password VTS _BSTR IN
Service VTS _BSTR IN
ServiceType VTS _BSTR IN
ConnectAs VTS_BSTR IN
FocusedObjectName VTS_BSTR IN
FocusedObjectType VTS_BSTR IN

Username

Username for the service that defines an application’s launching context.

Password
Password for the service that defines an application’s launching context.

Tool Palette and Menu Integration 2-11

API Reference

Service
Name of the service or node that defines the context an application is being
launched in by the Console.

ServiceType

Type of service that defines the context an application is being launched in by the
Console. For information on type parameters, see Discovery Cache API Reference on
page 6-5.

ConnectAs
Role to be used when connecting to the database. Values are NORMAL, SYSOPER, or
SYSDBA. The value is NORMAL if the ServiceType is not a database.

StrFocusedObject
Name of the focused object in the Navigator or Map.

TypeFocusedObject
Type of the focused object in the Navigator or Map.

Comments Enterprise Manager calls Set Logonl nf oEx function to pass
contextual information about the service. After the application has obtained this
information from the Console, it can use that information to open a connection to a
service.

If the current selection in the Navigator is a container, the FocusedCbj Nane
parameter will be an empty string and the FocusedCbj Type parameter will
contain the type for that container. If the container appears under a service in the
tree, that service will appear in the Ser vi ce and Type fields, and the User nane,
Passwor d, and Connect As credentials will be those which are in force for that
service as determined by the credential precedence scheme discussed above. If the
container does not appear under a service, the Ser vi ce name will be the empty
string, the Type field will be VOXTYPE_TYPE_| NVALI D, and the credentials will be
the console logon credentials.

2-12 Oracle Enterprise Manager Application Developer’s Guide

3

General Coding Techniques

This chapter covers the general coding techniques for writing an application. Topics
include:

Console Service Objects
Initializing and Disposing Dispatch Drivers
Retrieving Error Information

VoxErrorUnpacker Class and Methods

General Coding Techniques 3-1

Console Service Objects

Console Service Objects

The Oracle Enterprise Manager Console contains an OLE2 Automation Service
object which exposes all of its external APIs, except those pertaining to job
submission. The Pr ogl D for this service is Or acl eSnmpConsol e. The Console
starts up this service upon initialization, and then declares it to be the active object
of its OLE class. As there can only be one console running at a time, it is guaranteed
that there will be one and only one object of this class. You should use the MFC call
Get Act i veObj ect to retrieve a dispatch interface for the Or acl eSnpConsol e
object. You can then use this interface to call any of the automation methods
described in this guide. For an example of the use of Get Act i ve(bj ect, see
CSmpSrvDl g: : Get Di spat chDri ver inthe snpsrvdl . cpp file.

If you are integrating tightly into the console; which means most of the application’s
functionality requires the console’s back-end services; then you will want to try to
connect to the Or acl eSnpConsol e service when the application initializes. If this
connection fails, you should display a message informing the user that the
application requires the Oracle Enterprise Manager to be running and then abort
the application.

In order for the Enterprise Manager Console to use the various interfaces that an
application exposes, you must initialize an OLE automation server object, usually
the application’s document object, and register it as the active object. To do this:

1. Getthe document’s | Unknown.
2. Find out the class ID (CLSI D) from the document object’s ProgID.
3. Register this object as the active one.

For an example illustrating how to initialize and register the Snpsr v document
object, see CSnpsr vDoc: : CSnpsr vDoc in the snpsr doc. cpp file.

Initializing and Disposing Dispatch Drivers

The following steps allow an application to call Enterprise Manager’s external
interfaces:

1. Use the service’s Pr ogl Dto get the class ID (CLSI D).

2. Ask | Unknown to get the active object of that class.

3. Call Queryl nterface togetthel Di spat ch of the service.
4

Attach the LPDI SPATCHto a CA eDi spat chDri ver and return the dispatch
driver.

3-2 Oracle Enterprise Manager Application Developer’s Guide

The Job Object

For an example illustrating how to create and initialize a dispatch driver to use in
calling the Oracle Enterprise Manager external interfaces, see
CSmpSrvDl g: : Get Di spat chDri ver inthe snpsrvdl . cpp file.

When you are done with a dispatch driver you should dispose of it. For an example
illustrating how to how to dispose a dispatch driver, see
CSmpSrvDl g: : Rel easeDi spat chDri ver inthe snpsrvdl . cpp file.

The Job Object

Every time you want to submit a new job or delete an existing one, you must create
a new OLE automation object of the class Or acl eSnpJob. An easy way to do this is
to use the MFC call Cr eat eDi spat ch. You then initialize the job and perform
whatever manipulations you desire. The Or acl eSnpJob object gets destroyed
when you are done. This method differs fundamentally from that of using any of
the other APIs, where you call Get Act i veCbj ect onthe Or acl eSnpConsol e
service which always exists and runs with the console.

For an example illustrating how to use Cr eat eDi spat ch, see
CSmpSrvDl g: : Get JobObj ect inthe snpsrvdl . cpp file.

General Coding Techniques 3-3

Retrieving Error Information

Retrieving Error Information

GetErrorinfo

Most of the functions in the Enterprise Manager external interfaces returna VT _
BOOL.

= A TRUE value indicates that the function has succeeded.
= A FALSE value indicates failure.

Whenever an API fails, call Get Er r or | nf o to retrieve more information about the
failure. Every OLE automation object in the Enterprise Manager Console
implements its own Get Er r or | nf o interface.

Purpose Get Error | nf o retrieves error information about the APl which was
executed last for a particular OLE service.

Syntax VT_VAR ANT GetErrorlnfo()

Comments This function returns a VARIANT that contains the specific error
information for the interface function that failed. Use the helper functions described
in the section VoxErrorUnpacker Class and Methods on page -5 to unpack the error
information.

Note: You may call Get Er r or | nf 0 even if the function succeeded.

For an example illustrating how to use Get Er r or | nf o to retrieve error
information and use the VoxEr r or Unpacker class to unpack that information, see
CSmpSrvDl g: : DoGet Er r or | nf o inthe snpsr vdl . cpp file. The dispatch driver
varies according to the OLE service you want to request the error information for.

3-4 Oracle Enterprise Manager Application Developer’s Guide

VoxErrorUnpacker Class and Methods

VoxErrorUnpacker Class and Methods

GetErrorText

The class VoxEr r or Unpacker has several methods which help you to unpack the
error information from the VARI ANT returned by Get Err or | nf o.

« GetErrorText

« GetErrorCause
« GetErrorData

= Success

= Failure

Note: The class definition for VoxEr r or Unpacker is in the file voxerr. h.

Purpose Call the Get Err or Text method to extract the text from the VARIANT
returned by Get Err or | nf o.

Syntax const CXring& GetErrorText ()

Comments Get Error Text returns a string which contains the error text.

GetErrorCause

Purpose Callthe Get Err or Cause method to extract the error number from the
VARIANT returned by Get Er r or | nf 0. The semantics of these numbers will be
dependent upon the function that failed.

Syntax |long GetErorCause()

Comments Get Er r or Cause returns a LONG number which represents a specific
error.

General Coding Techniques 3-5

VoxErrorUnpacker Class and Methods

GetErrorData

Success

Failure

Purpose Call the Get Er r or Dat a method to get other error data from the
VARIANT returned by Get Er r or | nf 0.

Syntax const VAR ANT& Get Error Dat a()
Comments GCet Dat aError returns a VARIANT that contains any other kind of
data which was passed back. This data will depend on which function failed and

what caused the error.

Note: Not all errors have associated data.

Purpose Call the Success method to determine if an API function succeeded or
not.

Syntax BOQ Success()

Comments Success returns a BOOLEAN that determines whether the called API
function succeeded: TRUE for success and FALSE for failure.

Purpose Call the Fai | ure method to determine if an API function failed or not.
Syntax BOQ Fail ure()

Comments Fai | ur e returns a BOOLEAN that determines whether the called API
function failed: TRUE for failure and FALSE for success.

3-6 Oracle Enterprise Manager Application Developer’s Guide

A

Repository Control Integration

This chapter covers the repository control interface. It describes:
= Accessing the Repository

« Getting Preferred Credentials

« Repository API Reference

Repository Control Integration 4-1

Accessing the Repository

Accessing the Repository
The repository control interface allows you to:

« Get the repository logon credentials so that you can store and access
information specific to an application.

« Retrieve information about a user’s preferred credentials.

If an application needs to access the repository, you need to use the repository
control interface to establish a connection. If you want, you can store information
specific to an application in the repository. Before you do this, you need to create the
tables that an application will use. This can be done in a SQL script run during
installation of the application. To store or access information in the repository:

1. Connect to the repository object. See Initializing and Disposing Dispatch Drivers
on page 3-2.

2. Request connection information from the Console.
3. Make a connection to the repository.

Enterprise Manager maintains its own tables within the repository strictly for its
private use. However, you may create your own tables within the repository to act
as a persistent store for your application data. The advantages to doing this are:

« Use of the repository’s security model to keep application data distinct. As this
mirrors the security model used by the Console, the application appears to be
more tightly integrated into the Enterprise Manager application suite.

« Centralized storage which can be accessed by the application’s users from
multiple console and application installations.

= When developing multiple applications, data in the repository can be shared.

Request Connection Information from the Console

Call Get RepLogonl nf o to retrieve repository connection information from the
Console. For an example of retrieving the information from the repository object,
see the CRepLogonDi g: : DoGet RepLogonl nf o in the r epl ogon. cpp file.

Connect to the Repository

After you have received the repository connect information from the Console, you
can connect to the repository using the ol og call of the Oracle Call Interface (OCI).
When you have connected to the repository, you can execute any SQL or PL/SQL
statements on the application’s repository structures, such as tables or views.

4-2 Oracle Enterprise Manager Application Developer’s Guide

Repository API Reference

Getting Preferred Credentials

Your application can also request a user’s preferred credentials from the repository
by calling Get Pr ef err edCr edent i al s. To retrieve the user’s preferred
credentials for a particular service you must do the following:

1. Connect to the repository object.

2. Request the user’s preferred credentials for a particular service.

Request Preferred Credentials

Call Get Pr ef erredCr edent i al s to retrieve the preferred credentials for the
indicated service. For an example illustrating how to retrieve the preferred
credentials, see CGet Pr ef Cr edDl g: : DoGet Pr ef erredCr edent i al s in the
reppr ef c. cpp file.

Repository API Reference
This section describes the external interface calls for the repository service.
« GetConsoleVerison
» GetPreferredCredentials

« GetRepLogoninfo

Common Parameters
These parameters are used in multiple API calls and are described in this section.

pConnectAs
The role that is used to connect to the database: SYSOPER, SYSDBA, or NORMAL.
If the Dest i nati onType is not a database, pConnect As is NORMAL.

pUsername
The username of the user.

pPassword
The password of the user.

Repository Control Integration 4-3

Repository API Reference

GetConsoleVerison
Purpose This function returns the release version for the Console.

Syntax VT_BOOL Get Gonsol eVer si on(VTS_PBSTR pVer si on,
VTS _PBSTR pBanner)

Parameters
Name Type Mode
pVersion VTS_PBSTR ouT
pBanner VTS_PBSTR ouT
pVersion

This identifies the console version, such as 1.2. It is used when programing.

pBanner
This is the NLS version banner string for display in the user interface (Ul), such as
the About box.

Comments For an example illustrating Get Consol eVer si on, see
CCet Ver si onDl g: : DoGet Consol eVer si on intherepver. cpp file.

4-4 Oracle Enterprise Manager Application Developer’s Guide

Repository API Reference

GetPreferredCredentials

Purpose This function returns the preferred credentials for the Console user for a
particular destination. If the user has not specifically set credentials for the
destination, the Console username and password are returned.

Syntax VT_BOL Get PreferredQ edenti al s(VIS_BSTR Desti nati onType,
VTS BSTR Desti nati on,
VTS PBSIR pUser nare,
VTS _PBSTR pPasswor d
VTS _PBSTR pQonnect As)

Parameters See Common Parameters on page 4-3.

Name Type Mode
DestinationType VTS_BSTR IN
Destination VTS_BSTR IN
pUsername VTS_PBSTR ouT
pPassword VTS_PBSTR ouT
pConnectAs VTS_PBSTR ouT

DestinationType
The service type of the destination. See Service Types on page 6-3.

Destination
The name of the destination, such as smpsun14.

Comments An application would call the Get Pr ef err edCr edent i al s function
when it wants to open a connection to a different service than the one it connected
to when it was launched. This function returns a TRUE if it succeeds, otherwise it
returns FALSE.

Repository Control Integration 4-5

Repository API Reference

GetRepLogoninfo

Purpose This function returns the username and password of the Console user,
and the service name of the repository being used by the Console user.

Syntax VT_BOL Get RepLogonl nf o(VTS _PBSTR pUser nane,
VTS _PBSTR pPasswor d,
VTS PBSTR pServi ce
VTS _PBSTR pQonnect As)

Parameters See Common Parameters on page 4-3.

Name Type Mode

pUsername VTS_PBSTR ouT

pPassword VTS_PBSTR ouT

pService VTS_PBSTR ouT

pConnectAs VTS_PBSTR ouT
pService

The Service name of the repository.

Comments This function returns a TRUE if it succeeds, otherwise it returns
FALSE.

4-6 Oracle Enterprise Manager Application Developer’s Guide

D

Navigator and Map Integration

This chapter covers the integration with the Navigator and Map. Topics include:
= Integration of Services
« Registering Service Types

« Integrating Application’s APIs

Navigator and Map Integration 5-1

Integration of Services

Integration of Services

Discovery takes place when the Console boots up, and can occur at other times. The
discovery mechanism is determined by the integrating application. Once in the
Discovery Cache, a type is available for use in the Navigator, Map, Job, and Event
interface. Anywhere there is a list of types, a new type will appear along with a list
of services of the new type with the appropriate icons.

The most direct consequence of defining an external service type is integration into
the Navigator and Map within the console user interface. The implementation
provides the necessary bitmaps and icons for display of the services. Just as for
internally-defined services, objects of external service types can be dragged and
dropped onto the map. When the Qui ckEdi t command is invoked from either the
Navigator or the Map, an executable is called to launch a property sheet for the
administration of the selected object. If the Related Tools command is selected from
the Navigator, the user can choose to launch any applications which have been
declared for the administration of the service types. Those applications will be
passed details about the selected service, including name, type, and credential
information. For more information, see Chapter 3, "General Coding Techniques".

In addition, you can schedule jobs to services of types that you have defined.
During service discovery, the implementation specifies not only the name of your
service, but also the name of the node on which the service appears. Fundamentally,
the running of a job is the execution of Tcl script by an Oracle Intelligent Agent on a
particular node. For example, a database job only differs from a node job by
description of their effects. If the nodes that you associate with your services have
agents installed upon them, you can schedule jobs to those services. For additional
information, see Chapter 6, "Discovery Cache Integration”.

The OLE service within which you define your service types is created via a call to
the CA eDi spat chDri ver: : Creat eDi spat ch API based on the CLSI Dthat you
provide in the NT registry. The OLE service gets re-created for each call to any of its
interfaces.

One OLE application service can support multiple, externally-defined service types
using the same set of APIs. Because of this, all the API’s take Type as the first
parameter. Externally-defined services get stored in the discovery cache the same as
internally-defined types. They stay discovered until the services are explicitly
deleted from the Console.

5-2 Oracle Enterprise Manager Application Developer’s Guide

Registering Service Types

Notes on External Services

When defining an external service in the Navigator tree, the following limitations
apply to this release:

= The service objects can only be displayed in the top-level container defined for
the service types.

= The object cannot appear in or have subtrees.

Registering Service Types

For each service type you want to add, enter a unique subkey into the NT registry
under HKEY_CLASSES ROOT\ Or acl eSnmpConsol e\ Navi gat or\ Obj ect s. You
must provide values for the internal and external name keys, and CLSI D. See the
snpxsrvc. r eg file for a complete example of a registration file.

Internal Type

This is the name of the type as it is represented internally within the discovery
cache. It also serves as the string which represents the type for all of the APIs within
the SDK. This internal type name must be unique. Compare it to other types under
HKEY_CLASSES ROOT\ Or acl eSmpConsol e\ Navi gat or\ Obj ect s and to those
defined in the voxt ype. h header to ensure that this is the case. Oracle
recommends that you use the company name as a prefix. You supply the internal
type name as a value for the subkey which represents your type. For example:

HKEY_QLASSES ROON O acl eSnpConsol e\ Navi gat or \ (oj ect s\ Appl e = APPLE

External (NLS) Type
This is the name string that Enterprise Manager uses in its user interface to list the
type among others. For example:

HEY_AASSES ROON O acl eSnpConsol e\ Navi gat or \ (oj ect s\ Appl e\ Nane = Appl es
HEY_AASSES ROON O acl eSnpConsol e\ Navi gat or \ (oj ect s\ Appl e\ Nane\ US = Appl es

See Integrating an Application into the Console on page 2-2 for information on
registering an application in the NT registry. See Chapter 2, "Tool Palette and Menu
Integration” for the method of defaulting and translation of this string.

CLSID
This provides the Enterprise Manager Console with the CLSI D of the OLE service
that defines the type. For example:

HEY_AASSES ROON O acl eSnpGonsol e\ Navi gat or \ (bj ect s\ Appl e\ALS D =
{46@D44FG C541- 110~ 8F38- 0020AFF2B3FF}

Navigator and Map Integration 5-3

Integrating Application’s APIs

Integrating Application’s APIs

An application should expose the following APIs:
« Discover

« GetlconList

« GetDefaultDisplaylnfo

« QuickEdit

Common Parameters

Discover

This parameter is used by multiple Integrating APIs and is described in this section.
Type

The internal name for that type as it appears in the registry. See Optional Registration
Keys on page 2-5.

Purpose The Console calls this when it needs to discover the list of services, which
will be stored in the Discovery Cache. For services that can be discovered by the
agent, see Discovering Services on page 6-4.

Syntax VTS BOL D scover (VIS BSTR Type, VIS PVAR ANT pSer vi ces)

Parameters See Common Parameters on page 5-4.

Name Type Mode

Type VTS_BSTR IN

pServices VTS_PVARIANT ouT
pServices

A list of the names of the services of a specified type. pServices is an array of the
form:

{ { Nanel, Nodel }
{ Nane2, Node2 }

{”Namex, Nodex } }

5-4 Oracle Enterprise Manager Application Developer’s Guide

Integrating Application’s APIs

GetlconList

where Namex is the service name. Nodex is the name of the node the service is
located on. This is used for job submission and event registration.

Comments One OLE service can discover multiple types over multiple calls.

Purpose Used by the Console to get the icons it needs to use in the Navigator and
map when displaying your services. This function is obsolete in Enterprise Manager
release 1.3.5 and later releases. See GetDefaultDisplaylnfo on page 5-6.

Syntax VT_BOOL Getl conli st (VTS BSTR Type, VIS PVAR ANT pl con(F f set s)

Parameters See Common Parameters on page 5-4.

Name Type Mode
Type VTS_BSTR IN
plconOffsets VTS_PVARIANT ouT

plconOffsets
An array of offsets that reference which icons to use for the specified type.
plconOffsets contains exactly four VTS 14 which represent, in order:

1. Offset of the tree icon (13x13)

2. Offset of the tree group icon (13x13) [not yet used]
3. Offset of the map icon (32x32)

4. Offset of the map group icon (32x32)

You must always pass a 32x32 icon, but for tree bitmaps, the Console only uses the
upper left hand 13x13 portion of the icon. The unused area for small bitmaps
(13x13) is ignored. A large icon is 32x32.

Comments These offsets correspond to the order in which the icons are listed in

the .exe file. These are the same as the offsets you would use in a call to the
Windows SDK ::Extracticon API.

Navigator and Map Integration 5-5

Integrating Application’s APIs

GetDefaultDisplayInfo

Purpose Used by the Console to get the icons it needs to use in the Navigator and
map when displaying your services.

Syntax VT_BOOL Get Defaul t O spl ayl nf o(VTS BSTR Type,
VTS PBSTR pbst r O spl ayNane
VTS _PBSTR pbstr | con)

Parameters See Common Parameters on page 5-4.

Name Type Mode
Type VTS _BSTR IN
pbstrDisplayName VTS _PBSTR ouT
pbstricon VTS _PBSTR ouT

pbstrDisplayName
This is the NLS display name for this type.

pbstricon

This is the string listing of the icons to use for this type. Four numeric values are
expected. These values correspond to the resource Ids (in the . h resource file) for
the icons. The offset are, in order:

1. Offset of the tree icon (13x13)

2. Offset of the tree group icon (13x13) [not yet used]
3. Offset of the map icon (32x32)

4. Offset of the map group icon (32x32)

Comments This function returns TRUE if the Ty pe was handled successfully.

5-6 Oracle Enterprise Manager Application Developer’s Guide

Integrating Application’s APIs

QuickEdit

Purpose This is called to launch a property sheet to administer an object

hj ect Nane of type Type. It is called when the Quick Edit menu item is selected
for an object of the selected type in the Navigator. This property sheet should
remain under the OLE server’s control until the user explicitly closes it.

Syntax VT_BOL Qui ckEdit (VTS BSTR Type, VTS BSTR (yj ect Nane)

Parameters See Common Parameters on page 5-4.

Name Type Mode

Type VTS_BSTR IN

ObjectName VTS_BSTR IN
ObjectName

The name of the service object.

Comments It is expected that your OLE service will launch a property sheet in
response to Qui ckEdi t which looks and works similarly to all of those which get
launched from the Enterprise Manager Console Navigator. This dialog should be
mode-less but should dismiss after use. There may be multiple Qui ckEdi t
property sheets invoked for objects of your type at once, but there should be at most
one for each object of your type.

Navigator and Map Integration 5-7

Integrating Application’s APIs

5-8 Oracle Enterprise Manager Application Developer’s Guide

S

Discovery Cache Integration

This chapter covers the discovery cache interface. It describes:

Retrieving Nodes and Services
Retrieving User-Defined Groups
Service Types

Discovering Services

Discovery Cache API Reference

Discovery Cache Integration 6-1

Retrieving Nodes and Services

Retrieving Nodes and Services
The discovery cache interface allows your application to retrieve:
= The nodes and services available to the Console.
« The state of nodes and services.

An application can retrieve information about the databases, listeners, nodes, and
third-party (external) service types that have been discovered by Oracle Enterprise
Manager. You can retrieve both the names of these nodes and services and state
information.

State information is only maintained in the discovery cache for nodes and services
which have Up/Down events registered on them. If an Up/Down event is not
registered for a node or service, the state is VOXEXT_SERVI CE_UNMONI TORED. A
consequence of this is that no externally defined service types can be monitored in
this release. If the Up/Down event is registered for a node or service, the status can
be either VOXEXT_SERVI CE_UP or VOXEXT _SERVI CE_DOMN.

For an example of how to retrieve a list of nodes or services objects of a certain type,
see Get Obj ect Li st of CGet Obj Li st DI g: : DoGet Obj ect Li st inthe

dcobj | st. cpp file. For an example of how to retrieve state of a node or service
object, see Get Obj ect St at e of CGet Obj St at eDl g: : DoGet Obj ect St at e in the
dcobj st a. cpp file.

Retrieving User-Defined Groups

You can create groups in Console that contains nodes or services objects of the same
type. An application can retrieve:

« Groups of a specified type

= Objects in a specified group, including subgroups

= Objects in a specified group, excluding subgroups, and their respective states
= Node name where the service is located.

For an example of how to retrieve a list of groups of a certain type, see
CGet G oupsOF Type of CGet GroupsOf TypeDl g: : DoGet G oupsOf Type in the

dcgr ptyp. cpp file.
For an example of how to retrieve a list of objects, including subgroups, in a

specified group, see Get Obj ect sl nG oup of
CCet Obj | NnGr oupDl g: : DoGet Obj ect sl nG oup in the dcobj gr p. cpp file.

6-2 Oracle Enterprise Manager Application Developer’s Guide

Service Types

For an example of how to retrieve a list of objects in a group with their states, see
Get Uni queSer vi ces of CGet Uni queSrvD g: : DoGet Uni queSer vi ces in the
dcungsrv. cpp file. The list is flattened and objects only appear once in the list.

For an example of how to retrieve the node name where the service is located, see
CGet Ser vi ceNode of CGet Ser vi ceNodeDl g: : DoGet Ser vi ceNode in the
dcsrvnod. cpp file.

Service Types

Most of the discovery cache APIs, as well as many other APls of other categories,
use a VTS_BSTRto indicate service types. Service types can be those which are
defined by Enterprise Manager itself, sometimes referred to as internally-defined
service types, or those which third parties have defined themselves, sometimes
referred to as externally-defined or user defined service types. The
internally-defined service types used in this release are:

Table 6-1 Service Types

Type Value (from voxt ype. h) Service
VOXEXT_TYPE_AGENT Oracle Intelligent Agent
VOXTYPE_TYPE_DATABASE Oracle Database
VOXTYPE_TYPE_LISTENER Oracle SQL*Net Listener
VOXTYPE_TYPE_NAMESERVER Oracle Names Server
VOXTYPE_TYPE_NODE Host machine
VOXTYPE_TYPE_OPS Oracle Parallel Server
VOXEXT_TYPE_RDBDATABASE Oracle Rdb Database
VOXEXT_TYPE_TRACE Oracle Trace

The internal type names specified in the NT registry serve as the type values for
externally-defined service types. There is no difference between the way the
discovery cache treats internally and externally-defined service types or objects.

In almost all cases where you need to specify a service type as a parameter, you can
use either internally or externally-defined types. For more information on
externally-defined services, see Chapter 5, "Navigator and Map Integration”.

Discovery Cache Integration 6-3

Discovering Services

Discovering

Services

Every time the agent starts, it executes the nimi conf . t ¢l script which reads
configuration files (or at ab, | i st ener . or a, and t nsnanes. or a) and writes the
servi ces. or a file to the $ORACLE_HOVE\ net wor k\ adm n directory. This text
file contains information about services on the node. This information is used to
populate the Navigator tree when retrieved by the Navigator Discovery option.

The nmi conf . t cl script can execute additional Tcl scripts written specifically to
discover other services, such as the Oracle Web Server, on the node. If other scripts
are used, they should be installed with nni conf . t cl inthe $ORACLE

HOVE\ net wor k\ agent \ conf i g directory (Windows platforms), and their names
should be listed, one script per line, in the nni conf . | st file located in the same
directory. If errors occur during discovery, these are written to the SORACLE _
HOVE\ net wor k\ | og\ nm conf . | og file.

The Tcl scripts must be generate lines in the ser vi ces. or a file of the form:
NewSer vi ce = (servi cetype, host, data)

This entry allows this service to be discovered by the Navigator discovery option.

For example, to generate the following entry in the services.ora file:

M/NewServi ce = (MY_SEHRM CE, M/Hbst, M/ new servi ce)

you would create a Tcl script in following format:
set Paranet er s(MY_SERVI CE) { Servi ceType Host Nane Dat a};

set M/NewServi ce "M/NewServi ce";

set Servi ceType($M/NewSer vi ce) MY_SERV CE,
set Host Nane($M/NewSer vi ce) "Mtbst™;

set Data($MyNewService) "My new service™;

lappend ServiceNames $MyNewService;

After the Navigator Discovery wizard has discovered the MyHost node, a hew
folder named MY_SERVI CE is added to the Navigator tree. MyNewSer vi ce is
located in the MY_SERVI CE folder. See GetObjectData on page 6-7 for information on
retrieving this information.

6-4 Oracle Enterprise Manager Application Developer’s Guide

Discovery Cache API Reference

Discovery Cache API Reference
This section describes the external interfaces for the discovery cache system.
« GetGroupsOfType
« GetObjectData
« GetObjectList
« GetObjectsinGroup
« GetObjectState
« GetServiceNode

« GetUniqueServices

Common Parameters

These parameters are used with multiple discovery cache external interfaces and
the descriptions are provided in this section.

Type
The service type of objects. See Service Types on page 6-3.

GroupName
The name of the user-defined group from which the services are to be extracted.

pData
Pointer to VARIANT containing retrieved data. Contains a SAFEARRAY. For
example:

{
Nanel, S atel}

Nane2, S ate?}

.{ .N.arrex, Satex}
}

where Namex contains the node, service, or group name and Statex is an integer
indicating:

VOXEXT_SERVI CE_LP
VOXEXT_SERVI CE_DOM
VOXEXT_SERVI CE_UNMIN TCRED

Discovery Cache Integration 6-5

Discovery Cache APl Reference

Note: These states are listed in the voxext . h file.

GetGroupsOfType

Purpose Get GroupsOF Type retrieves a list of all the user-defined groups of a
specified type.

Syntax VT_BOOL Get G oupsT Type(VTS BSTR Type, VIS PVAR ANT pDat a)

Parameters See Common Parameters on page 6-5.

Name Type Mode
Type VTS _BSTR IN
pData VTS_PVARIANT ouT

pData
pData is an array of the form:

{
{ G ouphanel},
{ QG ouphNane2},

I{ Gr oupNanex}
}

where GroupNamex is the name of the user-defined group.

Comments This function returns TRUE if it succeeds, otherwise it returns FALSE.

6-6 Oracle Enterprise Manager Application Developer’s Guide

Discovery Cache API Reference

GetObjectData

Purpose GCet Cbj ect Dat a retrieves data about objects in the Navigator tree.

Syntax VT_BOOL Get (bj ect Dat a(VTS _BSTR Ser vi ceNane,
VTS BSTR Servi ceType,
VTS BSIR Locati on,
VTS PSTR pServi ceDat a) ;

Parameters See Common Parameters on page 6-5.

Name Type Mode
ServiceName VTS_BSTR IN
ServiceType VTS_BSTR IN
Location VTS_BSTR IN
pServiceData VTS_PBSTR ouT

ServiceName
The name of the third-party discovered service for which you want to get the
associated data.

ServiceType
The third-party service type that was used during the agent auto-discovery.

Location
The name of the node on which the service resides.

pServiceData
The data associated with the service. This is an arbitrary string that is a maximum
of 1024 bytes.

Comments This function will only work for services that have been discovered

from an agent using the agent’s third-party discovery integration mechanism. See
Discovering Services on page 6-4.

Discovery Cache Integration 6-7

Discovery Cache APl Reference

GetObjectList

Purpose Get Obj ect Li st retrieves a list of objects of a specified type.

Syntax VT_BOOL Get pj ect Li st (VTS _BSTR Type,
VTS BSTR Locati on,
VTS BSIR Locat i onType
VTS BOOL Wt hAgent,
VTS PVAR ANT pDat a)

Parameters See Common Parameters on page 6-5.

Name Type Mode

Type VTS_BSTR IN

Location VTS_BSTR IN

LocationType VTS_BSTR IN

WithAgent VTS_BOOL IN

pData VTS_PVARIANT ouT
Type

Table 6-2, "Type Parameter Behavior" describes the behavior of Get Obj ect Li st
for different values of the parameter Type.

Table 62 Type Parameter Behavior

Value of Type Behavior

LISTENER Retrieves a list of all listeners on the node specified by
Location. If Location is NULL returns a list of all listeners.

NAMESERVER Retrieves a list of all name servers on the node specified by
Location. If Location is NULL returns a list of all name
servers.

DATABASE Retrieves a list of all Oracle databases on the node specified
by Location. If Location is NULL, returns a list of all Oracle
databases.

NODE Retrieves a list of all known nodes. Location is ignored.

Externally-defined types Retrieves a list of externally-defined types. Location is
ignored.

6-8 Oracle Enterprise Manager Application Developer’s Guide

Discovery Cache API Reference

Location
Name of node or service object that the service is associated with.

LocationType

Type of service specified in Location field. If LocationType is VOXTYPE_TYPE_NULL
and Location is an empty string, Get Obj ect Li st returns a list of all of the objects
of type Ser vi ceType in the discovery cache. Otherwise, the following situations
are defined and no others.

Table 6-3 Location Types

ServiceType LocationType Meaning

VOXTYPE_TYPE_DATABASE VOXTYPE_TYPE_LISTENER Returns a list of databases
associated with listener
with name Location

VOXTYPE_TYPE_DATABASE VOXTYPE_TYPE_OPS Returns a list of database
instances associated with
the Parallel Server with
name Location

Any (including external types) VOXTYPE_TYPE_NODE Returns a list of services of
type ServiceType
associated with node with
name Location

WithAgent
If TRUE, Get Obj ect Li st returns a list of services of the specified type that reside
on nodes with agents

pData
pData is an array of the form:

{
{Nanel, Satel},

{Nane2, Sate2},

l{ lN.amex, Satex}
}

Discovery Cache Integration 6-9

Discovery Cache APl Reference

where Namex contains the node, service, or group name and Statex is an integer
indicating:

VOXEXT_SERVI CE_LP
VOXEXT_SERVI CE_DOM
VOXEXT_SERVI CE_UNVON TGRED

Comments This function returns TRUE if it succeeds, otherwise it returns FALSE.

GetObjectsInGroup

Purpose Get Obj ect sl nG oup retrieves a list of the objects in the specified
group.

Syntax VT_BOOL Get (pj ect sl nG oup(VTS _BSTR G oupNane,
VTS PVAR ANT pDat a)

Parameters See Common Parameters on page 6-5.

Name Type Mode
GroupName VTS_BSTR IN
pData VTS_PVARIANT ouT
pData
pData is an array of the form:
{

{Nanel, Goup_H agl},
{Nane2, Goup_H ag2},

{Nanex, QG oup_H agx}
}

where Namex contains the node, service, or group name and Group_Flagx is set to
TRUE if Namex is a group name, otherwise FALSE.

Comments A user-defined group may contain other groups. The list returned by
Get Obj ect sl nG oup in pData may contain other group names, which are
designated by GROUP_FLAGset to TRUE.

This function returns a TRUE if it succeeds, otherwise it returns FALSE.

6-10 Oracle Enterprise Manager Application Developer’s Guide

Discovery Cache API Reference

GetObjectState
Purpose Cet Cbj ect St at e retrieves the state of a specified node or service.
Syntax VT_BOOL Get (bj ect St at e(VTS BSTR Type,
VTS BSTR Nare,
VTS BAL G oup,
VTS Pl 2 pReturnS at e)

Parameters See Common Parameters on page 6-5.

Name Type Mode

Type VTS_BSTR IN

Name VTS_BSTR IN

Group VTS_BOOL IN

pReturnState VTS_PI2 ouT
Group

Determines whether the object is a group or not.
pReturnState
The state of the node, service, or group

VOXEXT_SERVI CE_LP
VOXEXT_SERVI CE_DOM
VOXEXT_SERVI CE_UNVON TGRED

Comments This function returns a TRUE if it succeeds, otherwise it returns
FALSE.

Discovery Cache Integration 6-11

Discovery Cache APl Reference

GetServiceNode
Purpose GetServiceNode retrieves the node name where the service is located.
Syntax VTS BOL Get Servi ceNode(VTS BSTR Servi ceNane,

VTS BSTR Servi ceType,
VTS _PBSTR pNodeNane) ;

Parameters
Name Type Mode
ServiceName VTS _BSTR IN
ServiceType VTS _BSTR IN
pNodeName VTS_BSTR ouT

ServiceName
Name of service you want to find the node for.

ServiceType
Type of objects to be retrieved. These types are listed in the voxt ype. h file. See
Table 6-1, "Service Types".

pNodeName
Retrieves name of node where the service identified by Ser vi ceNane is located.

Comments An example is in the dcsr vnod. cpp file.

6-12 Oracle Enterprise Manager Application Developer’s Guide

Discovery Cache API Reference

GetUniqueServices

Purpose Cet Uni queSer vi ces retrieves all services within a group, including
those within subgroups, without duplication of services.

Syntax VT_BOOL Get Lhi queSer vi ces(VTS BSTR G oupNane,
VTS PVAR ANT pDat a)

Parameters See Common Parameters on page 6-5.

Name Type Mode
GroupName VTS_BSTR IN
pData VTS_PVARIANT ouT
pData
pData is an array of the form:
{

{Nanel, Satel}
{Nane2, Sate2}

:{ .N.arrex, Satex}
}

where Namex contains the node, service, or group name and Statex is an integer
indicating:

VOXEXT_SERVI CE_LP
VOXEXT_SERVI CE_DOM
VOXEXT_SERVI CE_UNMIN TCRED

Comments This function returns a TRUE if it succeeds, otherwise it returns FALSE

Discovery Cache Integration 6-13

Discovery Cache APl Reference

6-14 Oracle Enterprise Manager Application Developer’s Guide

v

Job Scheduling Integration

This chapter covers the Job Scheduling system Interface. It describes:

Submitting a Job

Deleting a Batch Job

Job Noatification

Job Scripting

Job Scheduling API Reference
VoxJobNotifyUnpacker Class and Methods

Job Scheduling Integration 7-1

Submitting a Job

Submitting a Job

The Job Scheduling system interface allows you to submit both batch and
interactive jobs. The steps for creating and submitting a job depend on whether the
job is a batch job or an interactive job. See Submitting a Batch Job on page 7-2 or
Submitting an Interactive Job on page 7-3.

Submitting a Batch Job

A batch job is one that is submitted to the Job Scheduling system. The Enterprise
Manager Console gathers the job’s details and schedules the job with the agent on
the node on which the job will run. A batch job can be scheduled to run more than
once according to a specified schedule. All batch jobs can be observed from the
Console.

Note: Unless it is read-only, an externally-submitted batch job can be deleted from
the Console.
To submit a batch job:

1. Create a OraTcl job script for the job. See Chapter 9, “Jobs and Events Scripts”
for more information about writing job scripts.

2. Copy the job’s script to an accessible directory. Place a copy of the scriptin a
directory on a file system accessible to the Console.

3. Create and initialize a job object, as described in Initialize on page 7-9. When
submitting a new batch job, set Jobl Dto zero and Bat ch to TRUE in the call to
Initialize.Ifyouwantto create a read-only job, set the ReadOnl y
parameter to TRUE.

4. Submit the job details, setting the destinations first. The functions available for
specifying job details are:

a. Set Desti nati onsEx to submit the services or nodes on which to run the
job, as well as to specify parameters for each destination and the names of
the input files. See SetDestinationsEx on page 7-12.

b. Set Scri pt to submit the name of the script for the job. See SetScript on
page 7-19.

c. Set JobNarme to provide a clear-text name for the Console to display when
referring to the job. See SetJobName on page 7-13.

d. Set Schedul e to set the job schedule. See SetSchedule on page 7-15.

7-2 Oracle Enterprise Manager Application Developer’s Guide

Submitting a Job

e. SetNotificationObjectProgl Dtosubmitthe class name of the OLE
automation server to receive notifications about the job (optional). See
SetNotificationObjectProglD on page 7-14.

f. Set Credenti al s to specify the host username and password for the job.
See SetCredentials on page 7-11.

Commit the job and store the Jobl Dif you plan to coordinate job notifications.
See Commit on page 7-8.

Process the job notifications as they return if
Set Noti fi cati onObj ect Progl Dwas called.

Submitting an Interactive Job

An interactive job is one that is submitted and executed immediately. Typically
these are jobs that require the application user to wait until the job is completed.
When an interactive job is submitted, the communication daemon tries to contact
the agent immediately. If the daemon cannot contact the agent, the job fails.

Interactive jobs are not logged in the same way as batch jobs. From the Console
user’s point of view these jobs do not exist. These jobs provide a service for other
applications, such as database backup or recovery. Only the third-party application
user sees that the application has performed an action on a remote node.

To submit an interactive job:

1.

Create a OraTcl job script for the job. See Chapter 9, “Jobs and Events Scripts”
for more information about writing job scripts.

Copy the job’s script to an accessible directory. Place a copy of the scriptin a
directory on a file system accessible to the Console.

Create and initialize a job object. Initialize a job object, as described in Initialize
on page 7-9. Because you are submitting an interactive job, set Jobl Dto zero,
and Bat ch and ReadOnl y to FALSE inthecalltolniti al i ze.

Submit the job details, setting destinations first. The functions available for
specifying job details are:

a. SetDesti nati onsEx to submit the service or node on which to run the
job, as well as to specify parameters for each destination and the names of
the input files. See SetDestinationsEx on page 7-12.

b. Set Scri pt tosubmit the fully qualified name of the script. See SetScript on
page 7-19.

Job Scheduling Integration 7-3

Deleting a Batch Job

c. SetNotificationObjectProgl Dtosubmitthe name of the OLE
automation server to receive notifications about the job. See
SetNotificationObjectProglD on page 7-14.

Note: SetNotificati onQbject Progl Dis required for interactive jobs.

d. Set Credenti al s (optional) to submit the username and password to be
used for the job. See SetCredentials on page 7-11.

Note: Set Credenti al s is optional for interactive jobs. If you do not explicitly set
the job credentials, the Console submits the job using the preferred credentials
specified for the target destination.

5. Commit the job. For an interactive job, the call to the function Conmi t causes
the daemon to contact the appropriate agent and submit the interactive job
immediately. If the daemon successfully passes the job to the agent, it passes
back a VOXJOB_STATUS SCHEDULED notification. If the daemon is
unsuccessful, it passes back an error code. See Commit on page 7-8.

Deleting a Batch Job

Only batch jobs can be deleted. If a job is currently running when it is deleted, the
agent will kill the process running the job. If you are deleting a job that was created
with a service to be notified when the job’s status changed, then you will receive a
notification with the status VOXJOBNT _STATUS DELETED when the job has been
deleted. To delete a batch job:

1. Initialize a job object. Initialize a job object, as described in Submitting a Batch Job
on page 7-2. Set Jobl Dto the ID of the job you want to delete and Bat ch to
TRUE inthecalltolnitialize.

2. Delete the job. Call the function Del et eJob to delete a job.

Note: Interactive jobs cannot be deleted.

7-4 Oracle Enterprise Manager Application Developer’s Guide

Job Notification

Job Notification

In order to submit an interactive job or to receive messages about status changes for
batch jobs, an OLE automation server that exposes a JobNot i fi cat i on method
must be exposed by your application.

If you configure the job to receive notifications, then the job’s output and any
output parameters can be returned to you. If you do not, the Job Scheduling system
will not notify you programmatically of any changes in the job’s status, nor will it
return any output parameters to you.

Extracting Job Notification Information

Use the helper function VoxJobNot i f yUnpacker to extract all the information
from the VARIANT passed to your application’s JobNot i f i cati on method.

Flushing the Job Queue

When an application is launched, use the function Regi st er Appl i cat i on to
inform the Job Scheduling system to send any notifications that have been pending
since an application had last run.

Who Is Notified

Just as in event notifications (see Notification on page 8-3), jobs are referenced by

Pr ogl Dand current Console user. This ensures that a user receives only
notifications from the jobs that the user submits and that each application maintains
its own notification queue. The application does not have to pass the console
username because the Console already knows it.

Job Notification Messages

When you submit a job, you will receive one of the following notifications:
« VOXEXT_JOB _STATUS SUBM TTED if the submission succeeds.
« VOXEXT_JOB_STATUS_FAI LEDif it did not.

When a job initiates, you will receive a VOXEXT_JOB_STATUS_STARTED
notification. Next you will receive one of the following notifications:

« VOXEXT_JOB_STATUS_COVPLETED f the job succeeded.
« VOXEXT_JOB_STATUS_FAI LEDIf it failed.

Job Scheduling Integration 7-5

Job Scripting

This sequence will continue to repeat itself for batch jobs which have repeating
schedules. After the last scheduled job execution completes, whether successfully or
not, you will receive a VOXEXT _JOB_STATUS EXPI RED natification, which is the
last notification in the sequence for any given job. Note that you still get VOXEXT _
JOB_STATUS EXPI RED notifications for one-time or immediate jobs, including all
interactive jobs.

After the successful deletion of a batch job, you receive a VOXEXT _JOB_STATUS _
CANCELED notification.

Intermediate job status is not a part of the typical sequence of job notifications. It is
provided for applications which want to record the progress or intermediate status
of a job in the middle of its execution. The VOXEXT_JOB_STATUS | NTERVED
notification is sent only when a job script containing the or aj obst at OraTcl verb
is invoked. For information on or aj obst at , in see OraTcl Functions and Parameters
on page 9-12. For an example of the use of or aj obst at , see the i nt er med. t cl
sample script in the ORACLE_HOVE\ SYSMAN\ SDK\ TCL directory.

Job Scripting

Every job is a Tcl script that is executed by the Oracle Intelligent Agent on a
particular node. Jobs cannot be executed on nodes which do not have an agent
running. Jobs are categorized in the Job Scheduling system of the Console according
to different service types, such as database or listener jobs. However, all jobs are
fundamentally node jobs and categories simply signify the script’s effects. The
credentials specified using the Set Cr edent i al s API are the node credentials with
which the Tcl script executes.

The Tcl script does not get executed as if it were executed directly in the Tcl shell on
that node. The Tcl scripts are framed within a Tcl program called the Master Tcl
Script by the Job Scheduling system before the script gets sent to the agent. The
Master Tcl script sets up the majority of the environment needed for jobs sent from
the Enterprise Manager Console’s user interface. However, there are some side
effects of the Master Tcl Script environment that you can take advantage of. For
example, the following variables are defined for your use:

Table 7-1 Tcl Variables

Variable Meaning

$SMP_USER user name of job credential
$SMP_PASSWORD password of job credential
$SMP_SERVICE service name of job destination

7-6 Oracle Enterprise Manager Application Developer’s Guide

Job Scripting

If a job needs to send files other than the actual Tcl script, send them as input files.
You can specify these files using the Set Scri pt APIL. One example is a Tcl job
script that executes SQL and uses input files that contain SQL scripts. Another
example is a job that invokes SQL*Plus with a SQL script, or Export with a
specification file.

Input files get copied to the destination’s node from the location specified on the
console file system. You can find out the names of the input files on the
destination’s file system by referencing the OraTcl array or ansg(orainput).

or anmsg(orainput), defined for jobs only, is a Tcl list that contains the names of the
job’s input files. For more information on or ansg, see oramsg Elements on page 9-6.

Sending Jobs that Execute SQL*Plus Scripts

The file exec_sql . t cl isincluded in the SDK to provide jobs that execute
SQL*Plus scripts. To send a job which does this, specify exec_sql . t ¢l witha
fully qualified path as the script for a specific job in the Scr i pt Nane parameter to
the Set Scri pt API, and pass in the fully qualified path name of the SQL*Plus
script to be executed as the sole input file in the | nput Fi | enanes parameter. The
output of the SQL*Plus script will be sent to the application via the

JobNot i fi cati on mechanism as the output string in the VOXEXT_JOB_STATUS
COVPLETED notification.

Job Scheduling Integration 7-7

Job Scheduling API Reference

Job Scheduling API Reference

Commit

The following section describes the external interface calls for the Job Scheduling
system.

= Commit
=« Deletelob
« Initialize

= JobNatification

« RegisterApplication

= SetCredentials

= SetDestinationsEx

« SetNotificationObjectProglD
= SetSchedule

= SetlobName

« SetScript

Purpose Conmit causes the job object to schedule the job.

Syntax VT _BOOL Commit (VTS P14 pJobl D)

Parameters
Name Type Mode
pJobl D VTS_Pl 4 I N oUT
pJoblD

The unique identifier for a job.

Comments If Commi t is not called, the job is not submitted. This function returns
a TRUE if it succeeds, otherwise it returns FALSE. pJobl Dis passed out after the
commit has succeeded.

For an example illustrating how to use Conmmi t , see
CJobBat chCreat eDl g: : DoConmi t in the j obbat ch. cpp file.

7-8 Oracle Enterprise Manager Application Developer’s Guide

Job Scheduling APl Reference

DeleteJob

Initialize

Purpose Del et eJob allows for the deletion and the removal of the job from the
remote nodes schedule.

Syntax VT_BOOL Del et eJob()
Parameters None

Comments Interactive jobs cannot be deleted. This function returns a TRUE if it
succeeds, otherwise it returns FALSE.

Note: | niti alize mustbe called before Del et eJob.

Purpose | niti ali ze initializes a newly-created a job object.

Syntax VT_BOL Initialize(VTS |4 JoblD,
VTS BOO. Bat ch,
VTS BOO. ReadOnl y)

Parameters
Name Type Mode
Jobl D VTS | 4 I'N
Bat ch VTS_BOOL I'N
ReadOnl y VTS_BOOL I'N
JobID

The unique identifier for a job. Set to zero to create a new job.

Batch
Indicates whether the job is an interactive or batch job. This parameter only applies
if Jobl Dis zero.

ReadOnly
Indicates whether the job can be modified by the Console user or not. This
parameter only applies if the job is batch and Jobl Dis zero.

Job Scheduling Integration 7-9

Job Scheduling API Reference

Comments If you are initializing the job object in order to create a job, set Jobl D
to zero. If you are initializing the job object in order to delete a job, then set Jobl D
to the ID of the job you plan to delete. This is the Jobl Dreturned as an out
parameter from the Conmi t call when the job was submitted.

You cannot delete an interactive job. Therefore, the parameter Bat ch applies only
when Jobl Dis zero indicating that the job object should be placed in create mode.

Set the ReadOnl y parameter to TRUE if you do not want a Console user to be able
to delete the job. ReadOnly jobs cannot be altered by the Console, but they can be
deleted programmatically through API calls.

This function returns a TRUE if it succeeds, otherwise it returns FALSE.

For an example illustrating the steps for initializing a job object, see
CSmpSrvDl g: : Get JobObj ect inthe snpsrvdl . cpp file.

JobNotification

Purpose The Job Scheduling system uses this method to notify your application
about job status changes. This interface gets called by the daemon directly.

Syntax VT_MA D JobNotification(VTS VAR ANT Notification)

Parameters
Name Type Mode
Notification VTS_VARI ANT I'N
Notification

This contains all the notification information that is returned by the daemon.

Comments In order to receive messages about job status changes, an application
must contain an OLE automation server that exposes a JobNoti fi cati on
method. When the status of a job changes, the Intelligent Agent notifies the
Communication Daemon, which calls this interface of the application. If the job is a
batch job, the change in job status is also reflected in the Console.

The VOX library provides a class, VoxJobNot i f yUnpacker to make the
unpacking of the VARIANT passed to the JobNot i fi cati on interface easy and
error-free. Simply declare an object of this class passing the VARIANT to the
constructor, and then call any of the following class member functions to access the
data. For related information, see VoxJobNot i f yUnpacker.

7-10 Oracle Enterprise Manager Application Developer’s Guide

Job Scheduling APl Reference

RegisterApplication

Purpose Regi st er Appli cati on is used to flush queued job and event
notifications.

Syntax VT_BOOL Regi sterApplication(VIS BSTR Progl D :

Parameters
Name Type Mode
Progl D VTS_BSTR I'N
ProgID

The name of the OLE service which implements the JobNot i fi cati on API.

Comments Whenever the OLE service that exposes the JobNot i fi cati on APl is
temporarily unavailable, such as when the application is not running, the
communication daemon queues its job notifications. In order to retrieve the queued
notifications, call the Regi st er Appl i cat i on API. Typically, you will call this API
when the application or OLE service initializes.

Note: You must call Regi st er Appl i cat i on to resend job notifications that have
been queued.

SetCredentials

Purpose Set Credenti al s is used to set operating systems credentials,
username and password, for the job.

Syntax VT_BOL Set Oredential s(VTS BSTR Wsernane, VTS BSTR Passwor d)

Parameters
Name Type Mode
User nane VTS BSTR I N
Password VTS BSTR I'N
Username

The username for the job.

Job Scheduling Integration 7-11

Job Scheduling API Reference

Password
The password for the job.

Comments This function returns a TRUE if it succeeds, otherwise it returns
FALSE.

Note: Set Credenti al s isoptional. If you do not explicitly set the job
credentials, the Console submits the job using the preferred credentials specified for
the target destination.

For an example illustrating how to use Set Cr edent i al s, see
CJobCredsDi g: : DoSet Credenti al s inthej obcr eds. cpp file.

SetDestinationsEx

Purpose Set Desti nati onsEx submits the services or nodes against which the
job is to be run and the destination-specific parameters.

Syntax VT_BOOL SetDestinati onsEx(VTS BSTR Desti nati onType,
VTS VAR ANT Desti nati ons)

Parameters
Name Type Mode
Desti nati onType VTS_BSTR I'N
Destinati ons VTS VARI ANT I'N

DestinationType
For information on the types, see Service Types on page 6-3.

Destinations
A VTS_VARIANT containing a two-dimensional SAFEARRAY of VT_BSTR of the
form:

{
{Nanel, Paraneterlistl},

{Nane2, Paraneterlist2},

{Nanen, ParaneterListn}

}

7-12 Oracle Enterprise Manager Application Developer’s Guide

Job Scheduling APl Reference

SetJobName

where Namex is a VT_BSTR containing the service or node name and ParameterListx
isa VT_BSTR which contains a curly-brace delimited list of arguments. For
example, Dest i nat i ons could be set to:

systeml, {scott/tiger@ra8db.worl d}

To pass a NULL parameter just use two curly braces that delimit nothing. There can
be only one parameter list per destination.

Comments The destination types are defined in the voxt ype. h file. There must
be at least one destination. This function returns a TRUE if it succeeds, otherwise it
returns FALSE.

For an example illustrating how to use Set Dest i nat i onsEx, see
ClobDest DI g: : DoSet Dest i nati onsEx inthe j obcr eds. cpp file.

Purpose Set JobNane associates a clear-text name with the job. This text is used
by the Console when it displays the job’s name.

Syntax VT_BOOL Set JobNanme(VTS BSTR JobNane)

Parameters
Name Type Mode
JobNanme VTS_BSTR I'N
JobName

The name by which the Console refers to the job object.

Comments This function returns a TRUE if it succeeds, otherwise it returns
FALSE.

Note: This function should only be used for batch jobs.

For an example illustrating how to use Set JobNane, see
CJobNaneDl g: : DoSet JobNan® in the j obnaned. cpp file.

Job Scheduling Integration 7-13

Job Scheduling API Reference

SetNotificationObjectProgID
Purpose Set Notificati onObj ect Progl Dis used to submit the name of your
application’s OLE automation server, so that the Job Scheduling system can send

notification information to your application when a job’s status changes.

Syntax VT_BOL SetNotificati onChj ect Progl (VTS _BSTR Progl D

Parameters
Name Type Mode
Progl D VTS_BSTR I'N
ProgID

The name of the OLE automation server that will be informed when any status
changes occur for the job, such as Snpsrv. Docunent . The server must be declared
to be the active object in order for the Communication Daemon to locate the
JobNot i fi cati on interface.

Comments See Job Notification on page 7-5 for a description of the messages
returned when the job state has changed. This function returns a TRUE if it
succeeds, otherwise it returns FALSE.

Note: This call is optional for a batch job. For an example illustrating how to use
Set Noti fi cati onObj ect Progl D, see

CJobServi ceDl g: : DoSet Noti fi cati onObj ect Progl Dinthej observi.cpp
file.

For related information, see JobNot i fi cati on.

7-14 Oracle Enterprise Manager Application Developer’s Guide

Job Scheduling APl Reference

SetSchedule

Purpose Set Schedul e sets the date, time, and frequency at which to run the job.

Syntax VT_BOOL Set Schedul e(VTS _BSTR Schedul e)

Parameters
Name Type Mode
Schedul e VTS BSTR I'N
Schedule

The schedul e string is divided into several clauses:
» Repeat Frequency

« Start Time

« End Time

« Time Zone

Repeat Frequency Clause

This clause is mandatory and specifies the frequency with which the job is executed.
There are six different repeat modes, specified by the /R keyword. Some modes
require a frequency to be specified as well. This is accomplished with the /F or
/0N keywords.

All repetitions, except immediate execution, execute initially at the start time and
date. If an end time and date are specified, the job ends on the last repetition which
occurs before or on that time and date. All times are interpreted relative to the time
zone specified.

For those repeat modes which only specify what days an execution is scheduled for,
that execution will take place at the time specified by start time of that day. End
times need not be specified for such schedules. Multiple repeat clauses can be
specified. If this is done, jobs will be executed whenever any of the repeat clauses
specify.

Job Scheduling Integration 7-15

Job Scheduling API Reference

.Repeat Mode: Immediate

Table 7-2 Repeat Mode: Immediate

Format Interpretation Examples
/R=l Execute immediately. /R=l
Repeat Mode: Once
Table 7-3 Repeat Mode: Once
Format Interpretation Examples
/R=0 Execute once at start date | /R=0
and time.
Repeat Mode: Every Time Interval
Table 7-4 Repeat Mode: Every Time Interval
Format Interpretation Examples

/R=H /F=HH:MM:SS

Execute repeatedly every
specified interval. All
fields must be specified.

/R=H /F=02:30:00
Execute every 2 hours, 30
minutes, 0 seconds.

Repeat Mode: Every Day Interval

Table 7-5 Repeat Mode: Every Day Interval

Format

Interpretation

Examples

/R=D /F=<# of days>

Execute once every

specified number of days.

/R=D /F=2
Execute once every two
days.

7-16 Oracle Enterprise Manager Application Developer’s Guide

Job Scheduling APl Reference

Repeat Mode: Every Day of Week Interval

Table 7-6 Repeat Mode: Every Day of Week Interval

Format

Interpretation

Examples

/R=W /ON=Sun, Mon,
..., Sat where Day is taken
from {Sun, Mon, Tue,
Wed, Thu, Fri, Sat}

Execute every specified
day of the week.

/R=W /ON=Mon, Wed,
Fri

Execute every Monday,

Wednesday, and Friday.

Repeat Mode: Every Date of Month

Table 7-7 Repeat Mode: Every Date of Month

Format

Interpretation

Examples

/R=M/0ON=1, 2, ..., 31
where Date is a number
from 1 to 31 representing
a date of the month.

Execute on every
specified date of the
month.

/R=M /0ON=12

Execute every 12th of the
month.

/R=M /0ON=7, 15, 30
Execute every 7th, 15th,
and 30th of the month.

Start Time Clause

This clause specifies the start date and start time for the schedule. Inclusion of a
start time clause is mandatory for all repeat modes except immediate execution.

Time is interpreted relative to the time zone specified.

For those repeat modes which only specify what days an execution is scheduled for,

that execution will take place at the time specified by start time of that day.

Table 7-8 Start Time Clause

Format Interpretation

Examples

/SD=MM/DD/YY Start date of specified

/ST=HH:MM month, date, and year.
For years on or after 2000, | Start time of specified
use YYYY. time on 24 hour clock.

/SD=04/17/98 /ST=13:30
Execute starting on April
17,1998 at 1:30 PM

Job Scheduling Integration 7-17

Job Scheduling API Reference

End Time Clause

This clause specifies the end date and end time for the schedule. Time is interpreted
relative to the specified time zone. Use of an end time clause is mandatory for all
modes except immediate and one-time execution. Use an end date in the distant
future for an indefinite execution. The end time phrase of this clause can be omitted
for all but the Every Time Interval Repeat Mode. For those repeat modes which only
specify what days an execution is scheduled for, that execution ceases at the time
specified by start time of that day if no end time is specified. Otherwise, the
execution will cease on the execution scheduled just before the end time and date.

Table 7-9 End Time Clause

Format Interpretation Examples
/ED=MM/DD/YY End date of specified /ED=04/20/2000
/ET=HH:MM month, date, and year. /ET=09:00

For years on or after 2000, | End time of specified time | Execute ending on April
use YYYY. on 24 hour clock. 20, 2000 at 9:00 AM.

/ED=12/01/2001 Execute
ending on December 1,
2001 at start time.

Time Zone Clause

This clause is optional and specifies the time zone for which all times should be
interpreted. Omission of this clause means that the string should be interpreted
relative to the time zone of the host on which the computation is being performed.

Table 7-10 Time Zone Clause

Format Interpretation Examples

/GMT+offset Times should be /GMT Times are
interpreted relative to Greenwich Mean Time.
Greenwich Mean Time, /GMT-2 Times are two
offset as specified. Offsets | hours behind Greenwich
can be positive or Mean Time (GMT).
negative, and can also be /GMT+5.5 Times are 5.5
expressed as decimals. hours ahead of GMT.

Comments This function returns a TRUE if it succeeds, otherwise it returns
FALSE. This function should only be used for batch jobs. Interactive jobs execute
immediately. For an example illustrating how to use Set Schedul e, see
CJobSchedDl g: : DoSet Schedul e inthe j obsched. cpp file.

7-18 Oracle Enterprise Manager Application Developer’s Guide

Job Scheduling APl Reference

SetScript

Purpose Set Scri pt submits the Tcl script which defines the job, plus a list of the
input files for the job.

Syntax VT_BOL Set Scri pt (VIS _BSTR Scri pt Nane,
VTS VAR ANT | nput Fi | enanes)

Parameters
Name Type Mode
Scri pt Nane VTS_BSTR IN
I nput Fi | enanes VTS_VARI ANT I'N
ScriptName

A fully-qualified path name of a Tcl script such as,
c:\orant\sysman\sdk\tcl\exec_sql.tcl

InputFilenames
A VTS _VARIANT containing a SAFEARRAY of the form;

{
{F | enarmel}

{F | enane2}

{F | enaner}

}

where Filenamex is a VT_BSTR containing the fully qualified filenames of the input
files, such as c: \ or ant \ sysnman\ sdk\ sanpl es\ snpsrv\sanple.tcl.

Comments This function returns a TRUE if it succeeds, otherwise it returns
FALSE. or ansg(or ai nput), defined for jobs only, is a Tcl list that contains the
names of the job’s input files. For more information on or ansg, see oramsg Elements
on page 9-6.

For an exampleillustrating how to use SetScript, see CJobScri pt Dl g: : DoSet Scr i pt
inthej obscri p. cpp file.

Job Scheduling Integration 7-19

VoxJobNotifyUnpacker Class and Methods

VoxJobNotifyUnpacker Class and Methods

The class VoxJobNot i f yUnpacker extracts job notification information from the
VARIANT vt Not i fi cati on parameter of the application’s JobNot i fi cati on
interface. Call any of the following class member functions to access the data.

GetDate
GetError
GetloblD
GetNode
GetOutput
GetStatus

For an example illustrating how to use VoxJobNot i f yUnpacker, see the
snpsrdoc. cpp file. For related information, see JobNotification on page 7-10.

GetDate

Purpose Get Dat e returns textual representation of time and date of notification.

Syntax const C3ring& GetDate() const;

Comments None.

7-20 Oracle Enterprise Manager Application Developer’s Guide

VoxJobNotifyUnpacker Class and Methods

GetError
Purpose Get Error returns an error code in case of error condition.
Syntax UWONG GetEror() const;
Comments Get Er r or returns an error code as follows:
VOJB ERRR QBELE - queue facility error
VOJB ERRR FILE - file operation error
VOJCB ERRCR M nenory - nanager error
VOXJIB ERRR TAL - Tcl error
VOXIB ERRR N QE - job nane is not uni que
VOB ERRR JNOTFAUND - job is not found
VOB ERRR SNOTFAUND - Tel script is not found
VOB ERROR MANDATCRY - mandatory input is mssing
VOB ERRCR MAXLEN - exceeded nmaxi numstring | ength
VOB ERRCR SCHEDULE - schedul ing error
VOXIB ERRCR MAXI NP - exceeded nmaxi num nunber of input files
VOB ERRR NOUSER - no such user
VOB ERRR | NTERJPT - outstandi ng Tcl exists, cannot interrupt
VOB ERROR GONNECTION - failed to connect to agent
GetJobID
Purpose GCet Jobl Dreturns the ID of job that the notification corresponds to.
Syntax UW.ONG Get Jobl () const;
Comments Returns ID of 0 if unpacking of VARIANT failed.
GetNode

Purpose Cet Node returns name of hode upon which job was scheduled for
execution.

Syntax const C3ring& Get Node() const;

Comments None.

Job Scheduling Integration 7-21

VoxJobNotifyUnpacker Class and Methods

GetOutput

Purpose Get Qut put returns output for notification.
Syntax const C3Xring& GetQutput() const;

Comments Only used for notifications with status VOXEXT _JOB_STATUS _
COVPLETED, VOXEXT_JOB_STATUS_FAI LED, or VOXEXT_JOB_STATUS _

| NTERMED. In the latter two cases, the output is what would appear as stdout for
the Tcl of your job. Intermediate job status output is under user control. See Job
Notification Messages on page 7-5.

GetStatus

Purpose GCet St at us returns the status of this notification.
Syntax UWONG Get Satus() const;

Comments Get St at us returns the status as follows:

VOXEXT_JCB_STATUS NONE
VOXEXT_JCB_STATUS SUBM TTED
VOXEXT_JCB_STATUS STARTED
VOXEXT_JCB_STATUS CANCELED
VOXEXT_JCB_STATUS FA LED
VOXEXT_JCB_STATUS COMPLETED
VOXEXT_JCB_STATUS EXP! RED
VOXEXT_JCB_STATUS | NTERVED

Note: The statuses are listed in the voxext . h file.

7-22 Oracle Enterprise Manager Application Developer’s Guide

8

Event Management Integration

This chapter describes integration with the Event Management system (EMS).
Topics include:

Levels of Integration

Client-Side Integration
Server-Side Integration

Event Management System APIs
VoxEventNotifyUnpacker

Event Management Integration 8-1

Levels of Integration

Levels of Integration
There are two levels of integration with the Event Management System. They are:
« Application support for event registration and notification.
« Agent interfaces for generation of events by third-party services.

These can be implemented separately or together, depending on your needs.

Client-Side Integration

An application must register interest in an event by calling the
Regi st er Event | nt er est API. You must register an event set with the Console
Event Management system before calling Regi st er Event | nt er est .

For the Console to monitor third-party events, you need to create an event set with
the Event Management system. When you create the event set, check the "Accept
Third-Party Events" box in the Event Set General page. You do not need to enter any
information in the Events or Parameters pages. After the event set is created,
register it on all destinations where an application registers interest. This
registration will monitor all third-party events on the specified destination.

Uniqueness of Registration

All event registrations have to be unique, and EMS will return an error if an
application tries to register the same event at the same node more than once. The
uniqueness is defined by the application, event name, and the system name.
However, the string "*" is an exception and can be used as a wildcard event name or
destination.

An application may register "*", and "/user/rdbms/fault/event1" at node "smpsunl14".
EMS handles these as two registrations. If the application tries to register the "*" or
the "/user/rdbms/fault/eventl” event again at node "smpsun14", EMS raises an error.
However, the application can register the same event at other systems. For
information on the format of event names, see eventname on page 9-28.

8-2 Oracle Enterprise Manager Application Developer’s Guide

Client-Side Integration

Notification

For a particular event, an application will be notified only once. For example, in
Table 8-1, "A Sample Event Registration Database", if "/user/rdbms/fault/eventl" fires
at "smpsunl14", the application will be notified only once.

Table 8—1 A Sample Event Registration Database

Application Event Name System Name
DbApp /user/rdbms/fault/eventl smpsunl4
DbApp /user/rdbms/fault/event2 smpsunl4
DbApp * *

DbApp * smpsunl4
DbApp /user/rdbms/fault/eventl *

DbApp * smpsunl5

In order for an application to be notified of an event you must expose the function
Event Not i fi cati on. This function is called whenever an event you have
registered interest in is triggered. The VoxEvent Not i f yUnpacker class in the
vox. dl | is provided to unpack the parameters from the variant returned by
Event Noti fi cati on.

If an application is not active when the event is triggered, the Event Management
System queues the event notifications. Also, the OLE object service must be
declared the active object. When the application next comes up and calls

Regi st er Appl i cat i on for the user who owns the event, all the queued events
are forwarded.

Who Is Notified

Just as in job notifications (see Who Is Notified on page 7-5), events are referenced by
Pr ogl Dand current Console user. This means that a user gets only notifications for
the events that the user submits. Your server application does not need to pass the
username because the Console already knows it.

Discovery Cache Event Management

The Event Management System sets up the discovery cache event-level based on the
internally-defined event name that is returned by the intelligent agent. For example,
if the event returned is/ user/ rdbns/ f aul t/ event 1, then the Event
Management System tries to locate the object name as a database, and updates the
discovery cache, resulting in the map displaying the appropriate color.

Event Management Integration 8-3

Server-Side Integration

Event Interest

There is one API to register interest in events: Regi st er Event | nt er est . There
are two API calls that allow you to cancel interest in events:
Cancel Event I nt erest and Cancel Al | Event s

Server-Side Integration

An unsolicited event is an event that is not discovered by the agent running a Tcl
script itself, which is the normal way for events to get triggered. There are a number
of reasons why this might occur, such as:

= Athird-party, such as the operating system vendor or a systems management
vendor, might discover the condition and want to have it appear on the
Enterprise Manager Console. A key feature of Enterprise Manager is that it is
open to third parties.

=« An OEM job might discover the condition. An example of this is the Software
Management component of Enterprise Manager, where a job is going to install a
new package on the host, and then wants to report the event "new package
discovered", rather than relying on the job reporting mechanisms. This provides
uniform handling of the condition when there is a new package on this host.

You can raise unsolicited events with the Oracle Intelligent Agent using:
« Theorareportevent OraTcl verb in Tcl scripts.

« Theoenevent executable located in or acl e_hone\ bi n on a Unix platform or
or acl e_hone\ agent bi n on a Windows NT machine.

The syntax for or ar epor t event and oenevent is:

orareportevent eventnane object severity nessage [resul ts]
oenevent eventnane obj ect severity nessage [resul ts]

The parameters are the same for both except for sever i t y. See orareportevent on
page 9-28.

8-4 Oracle Enterprise Manager Application Developer’s Guide

Event Management System APIs

Event Management System APIs
The Event Management system has the following API calls:
« CancelAllEvents
» CancelEventinterest
« EventNotification
« RegisterApplication

« RegisterEventlnterest

Common Parameters

These parameters are used in multiple EMS API calls and are described in this
section.

ProglID
Identifies the OLE service that is interested in the event.

EventName
The name of the event that the application is interested in. This can be "*", which
means all events.

Destination
The name of the system on which the event occurs. This can be ™", which means all
destinations that have agents

CancelAllEvents

Purpose Cancel Al | Event s removes all event registration entries for the
application specified.

Syntax VT _BOOL Cancel Al | Event s(VTS BSTR Progl D

Parameters See Common Parameters on page 8-5.

Name Type Mode
Progld VTS _BSTR IN

Comments None.

Event Management Integration 8-5

Event Management System APIs

CancelEventinterest
Purpose Cancel Event | nt er est cancels interest for the specified event.

Syntax Cancel Event | nterest (VIS BSTR Progl D,
VTS _BSTR Event Nane,
VTS BSTR Desti nati on)

Parameters See Common Parameters on page 8-5.

Name Type Mode
Progld VTS_BSTR IN
EventName VTS_BSTR IN
Destination VTS_BSTR IN

Comments This is a one to one match with the Regi st er Event | nt er est
function.
Examples For example, the following commands register interest in events:

Regi st er Event | nt er est (" Spsr v. Docunent *, "/ user/ rdbns/ faul t/ event 1", "syst enl") ;
Regi st er Event | nt er est (" Spsrv. Docunent ™, "*", " *");

The foll ow ng conmand renoves t he second entry al one.

Cancel Bvent I nt er est (" Shpsrv. Docunent ™, " *" "*")

To cancel the first event, the application has to call:

Cancel Bvent I nt er est (" Snhpsrv. Docunent ", "/ user/ rdbns/ faul t/ event 1", " syst enl")

8-6 Oracle Enterprise Manager Application Developer’s Guide

Event Management System APIs

EventNotification

Purpose The Communication Daemon calls this function to notify an application
when a registered event has been triggered.

Syntax VT_MAD Event Notificati on(VTS VAR ANT Notification)

Parameters
Name Type Mode
Notification VTS _VARIANT IN
Notification

A VARIANT containing information regarding the event’s name, node, object, date,
and severity. Use the unpacker functions to access the information

Comments Oracle provides a variant unpacker class,

VoxEvent Not i f yUnpacker, to ease the unpacking of the parameters from the
variant. This is present in the vox. dl | .

RegisterApplication
Purpose Regi st er Appli cati on is used to flush queued notifications.

Syntax VT_BOOL Regi sterApplication(VTS BSTR Progl D

Parameters
Name Type Mode
Progld VTS_BSTR IN
ProgID

The name of the OLE service which implements the JobNot i fi cati on API.

Comments None.

Event Management Integration 8-7

Event Management System APIs

RegisterEventinterest

Purpose Regi st er Event | nt erest is used to register an application’s interest
in any events.

Syntax VT_BOOL Regi sterBEvent | nterest (VIS BSTR Progl D,
VTS _BSTR Event Nane,
VTS BSTR Desti nati on)

Parameters See Common Parameters on page 8-5.

Name Type Mode
Progld VTS_BSTR IN
EventName VTS_BSTR IN
Destination VTS_BSTR IN

Comments If an application wants to register an interest in multiple events, it has
to call this API multiple times with different event names. You can use "*" to register
interest in all events. For example, the following commands register interest in
events:

Regi st er Event | nt er est (" Spsr v. Docunent ", "/ user/ rdbns/ faul t/ event 1", "syst enl") ;
Regi st er Event | nt erest (" Snpsrv. Docunent ™, "*", "*");

This service must implement the Event Not i fi cati on API to receive notices of
triggered events. You must register an event set with the Console Event
Management system before calling Regi st er Event | nt er est . For information on
events available with Enterprise Manager, see the "Event Management System"
chapter of the Oracle Enterprise Manager Administrator’s Guide.

Regi st er Event | nt er est does not return errors when errors occur.

8-8 Oracle Enterprise Manager Application Developer’s Guide

VoxEventNotifyUnpacker

VoxEventNotifyUnpacker
The VoxEventNotifyUnpacker methods are:
« GetDate
« GetEventName
» GetFinalResult
« GetNodeName
« GetObjectName
« GetSeverity

GetDate
Purpose Cet Dat e returns the date and time that the event was triggered.
Syntax const C3ring& GetDate();
Comments None.

GetEventName

Purpose Get Event Nane returnsthe name of the event.
Syntax const CXring& Get Event Nane();

Comments None.

GetFinalResult

Purpose GCet Fi nal Resul t returnsthe result string from Tcl event script.
Syntax const CXring& GetH nal Result();

Comments None.

Event Management Integration 8-9

VoxEventNotifyUnpacker

GetNodeName
Purpose Get NodeNane returns the node name where the event occurred.

Syntax const C3ring& Get NodeNane();

Comments None.

GetObjectName

Purpose Get Obj ect Narme returns the name of service object.
Syntax const C3ring& Get (bj ect Nane();

Comments None.

GetSeverity
Purpose Get Severi ty returnsthe severity of the event.
Syntax int GetSeverity();

Comments The severity of the eventis - 1 (clear), 1 (warning), or 2 (alert)

8-10 Oracle Enterprise Manager Application Developer’s Guide

9

Jobs and Events Scripts

This chapter describes jobs and event scripts. Topics include:
« Scripting Language

« Server Message and Error Information

« Use of Tcl with the Intelligent Agent

« NLS Issues and Error Messages

= OraTcl Functions and Parameters

Jobs and Events Scripts 9-1

Scripting Language

Scripting Language

The Tcl Language with OraTcl extensions is used to write the job and events scripts.
Tcl is used for the scripts because it fulfills the necessary requirements, such as:

= Host system access for handling with files and devices, launching programs,
and executing operating system functions.

« SQL and PL/SQL functions for accessing the RDBMS.
« RDBMS administration functions.

« SNIMP accessing, both for the database MIB variables that the agent itself
supports, and for external MIBs, like the host’s or other SNMP-enabled services.

« Communication with the Oracle Intelligent Agent and other Oracle software,
such as Oracle Trace.

« A syntax for describing job and event scripts that:
« Can be used to drive the user interface.

« Provide information on the nature of the job or event, and any input or
output.

« Allow access to the Oracle message file system for NLS support.

Tcl Language Description

Tcl originated with Dr. John Ousterhout from the University of California, Berkeley,
California. Tcl, current release version 7.5, stands for Tool Command Language.

Tcl is both a language and a library. Tcl is a simple textual language that is intended
primarily for issuing commands to interactive programs, such as text editors,
debuggers, illustrators, and shells. Tcl has a simple syntax and is programmable. Tcl
users can write command procedures to provide more powerful commands than
those in the built-in set.

Tcl is also a library package that can be embedded in application programs. The Tcl
library consists of a parser for the Tcl language, routines to implement the Tcl
built-in functions, and procedures that allow each application to extend Tcl with
additional commands specific to that application. The application program
generates Tcl commands and passes them to the Tcl parser for execution.
Commands may be generated by reading characters from an input source, or by
associating command strings with elements of the application’s user interface, such
as menu entries, buttons, or keystrokes. When the Tcl library receives commands it
parses them into component fields and executes built-in commands directly. For

9-2 Oracle Enterprise Manager Application Developer’s Guide

Scripting Language

commands implemented by the application, Tcl calls back to the application to
execute the commands. In many cases commands will invoke recursive invocations
of the Tcl interpreter by passing in additional strings to execute. Procedures, looping
commands, and conditional commands all work in this way.

An application program gains several advantages by using Tcl for its command
language.

« Tcl provides a standard syntax. After you learn Tcl, you are able to issue
commands easily to any Tcl-based application.

« Tcl provides programmability. All a Tcl application needs to do is to implement
a few application-specific low-level commands. Tcl provides many utility
commands plus a general programming interface for building up complex
command procedures. By using Tcl, applications do not need to re-implement
these features.

« Extensions to Tcl provide mechanisms for communicating between applications
by sending Tcl commands back and forth. The common Tcl language
framework makes it easier for applications to communicate.

Tcl was designed with the philosophy that one should actually use two or more
languages when designing large software systems. One for manipulating complex
internal data structures, or where performance is key, and another, such as Tcl, for
writing small scripts that tie together the ¢ programming pieces and provide hooks
for others to extend. For the Tcl scripts, ease of learning, ease of programming and
ease of integrating are more important than performance or facilities for complex
data structures and algorithms. Tcl was designed to make it easy to drop into a
lower language when you come across tasks that make more sense at a lower level.
In this way, the basic core functionality can remain small and one need only bring
along pieces that one particular wants or needs. For more information on Tcl/Tk,
access the following web sites:

« http://sunscript.sun.com/
« http://www.neosoft.com/tcl
« ftp://ftp.smli.com/pub/tcl/

Note: World Wide Web site locations often change and the addresses may not be
available in the future.

Jobs and Events Scripts 9-3

Scripting Language

OraTcl Description

Agent jobs and event scripts require both host system access for handling files and
devices, launching programs, executing operating system functions, and accessing
Oracle databases. OraTcl was developed to extend Tcl for Oracle usage and SNMP
accessing. The categories of OraTcl functions are:

SQL and PL/SQL functions

RDBMS administration functions

SNIMP accessing

Communication with the intelligent agent and other Oracle software
Character set conversion and error handling verbs

General purpose utility functions

For descriptions of the OraTcl functions and variables, see OraTcl Functions and
Parameters on page 9-12.

Example: OraTcl Script
The following example illustrates the basic use of OraTcl.

#! [usr/local /bin/Tcl -f

#

nmont hl y_pay. Tcl

#

usage: nonthly pay. Tcl [connect _string]

or Tcl -f nonthly_pay. Tcl [connect_string]
#

sanpl e programfor QO aTcl

Tom Poi ndext er

#

exanpl e of sqgl, pl/sqgl, miltiple cursors

uses O acle deno tabl e SCOIT. BW

uses id/ pass fromcomand |ine,

or "scott/tiger" if not specified

#

this exanpl e does not illustrate efficient sql!
a sinple report is produced of the nonthly payroll
for each jobcl ass

#

gl obal oransg

set find_ jobs_sql { select distinct job from SOOIT. EWP }
set nonthly pay pl {

9-4 Oracle Enterprise Manager Application Developer’s Guide

Scripting Language

begi n
sel ect sunfsal) into :nonthly

from SQOTT. BWP

vwhere job like :jobcl ass;

end;

}

set idpass $argv

if {[string | ength $idpass] = O} {
set idpass "scott/tiger"

}

set | da [oral ogon $i dpass]

set curl [oraopen $l da]

set cur2 [oraopen $l da]

orasqgl $curl $find_j obs_sql

set job [orafetch $curil]

while {$oransg(rc) == 0} {
orapl exec $cur2 $nonthly _pay pl :nonthly "" :jobcl ass "$ ob"
set total for_job [lindex [orafetch $cur2] 0]
puts stdout "Total nonthly salary for job class $ob =\$ $total for_job"
set job [orafetch $curil]

}

oracl ose $curl

oracl ose $cur2

oral ogoff $l da

exit

Jobs and Events Scripts 9-5

Server Message and Error Information

Server Message and Error Information

OraTcl creates and maintains a Tcl global array or ansg to provide feedback of
Oracle server messages. or ansg is also used to communicate with the OraTcl
interface routines to specify NULL return values and LONG limits. In all cases
except for NULLVALUE and MAXLONG each element is reset to NULL upon
invocation of any OraTcl command, and any element affected by the command is
set. The or ansg array is shared among all open OraTcl handles.

Note: or ansg should be defined with the global statement in any Tcl procedure
that needs it.

or ansg Elements
The following are or ansg elements.

oramsg (agent_characterset)

The character set of the agent, such as US7ASCII. This is used with the convertin
and convert out verbs to convert character sets. See convertin on page 9-14 and
convertout on page 9-15.

oramsg (db_characterset)

The character set of the database, such as US7ASCII. This is used with the
convertinandconvert out verbsto convert character sets. See convertin on page
9-14 and convertout on page 9-15.

oramsg (collengths)
A Tcl list of the lengths of the columns returned by or acol s. col | engt hs is only
set by or acol s.

oramsg (colprecs)
A Tcl list of the precision of the numeric columns returned by or acol s. col precs
is only set by or acol s. For non-numeric columns, the list entry is a null string.

oramsg (colscales)
A Tcl list of the scale of the numeric columns returned by or acol s. Col scal es is
only set by or acol s. For non-numeric columns, the list entry is a null string.

oramsg (coltypes)
A Tcl list of the types of the columns returned by or acol s. coltypes is only set by
or acol s. Possible types returned are: CHAR, VARCHAR? (Version 7), NUMBER,

9-6 Oracle Enterprise Manager Application Developer’s Guide

Server Message and Error Information

LONG, rowid, DATE, RAW, LONG_RAW, MLSLABEL, RAW_MLSLABEL, or
unknown.

oramsg (errortxt)

The message text associated with r ¢. Because the or apl exec function may invoke
several SQL statements, there is a possibility that several messages may be received
from the server.

oramsg (handle)

Indicates the handle of the last OraTcl function. The handle, a mapping in memory
used to track commands, is set on every OraTcl command except where an invalid
handle is used.

oramsg (jobid)
The job Id of the current job. Defined for job scripts only.

oramsg (language)
The NLS language of the Console, such as AMERICAN_AMERICA.US7ASCII.

oramsg (maxlong)

Can be set by the programmer to limit the amount of LONGor LONG RAWdata
returned by or af et ch. The default is 32K Bytes. The maximum is 64K (Version 6)
or 2147483647 (Version 7) bytes. Any value less than or equal to zero is ignored. Any
change to maxlong becomes effective on the next call to or asql . See notes on
MAXLONGusage with or af et ch.

oramsg (nullvalue)

Can be set by the programmer to indicate the string value returned for any NULL
result. Setting or ansg(nullvalue) to DEFAULT will return 0 for numeric null data
types, such as INTEGER, FLOAT, and MONEY, and a NULL string for all other data
types. NULLVALUE is initially set to def aul t .

oramsg (ocifunc)
The number OCI code of the last OCI function called by OraTcl. See the
Programmer’s Guide to the Oracle Call Interface for descriptions.

oramsg (oraobject)
Contains the object upon which this script is acting. Defined for event scripts only.

oramsg (orahome)
The ORACLE_HOME directory.

Jobs and Events Scripts 9-7

Server Message and Error Information

oramsg (oraindex)
A Tcl list of the SNMP index values from the snnp. or a configuration file.

oramsg (orainput)

A Tcl list that contains the names of the job’s input files. Probably most jobs will not
need input files, but a job which invokes SQL*Plus with a SQL script, or Export
with a specification file, would use this feature. Defined for job scripts only.

oramsg (rc)

Indicates the results of the last SQL command and subsequent or af et ch
processing. r ¢ is set by or asql , or af et ch, or apl exec, and is the numeric return
code from the last OCI library function called by an OraTcl command.

See the Oracle Error Messages and Codes Manual for detailed information.Typical
values are listed in Table 9-1, "Error Messages".

Table 9—1 Error Messages

Error Meaning
0000 Function completed normally, without error.
0900 - 0999 Invalid SQL statement, invalid sgl statements, missing key-

words, invalid column names, etc.

1000 - 1099 Program interface error. For example, no sgl statement,
logon denied, or insufficient privileges.

1400 - 1499 Execution errors or feedback.
1403 End of data was reached on an or af et ch command.
1406 A columnfetched by or af et ch wastruncated. Can occur

when fetching a LONG or LONG RAW, and the maxlong
value is smaller than the actual data size.

oramsg (rows)
The number of rows affected by an insert, update, or delete in an or asq|l
command, or the cumulative number of rows fetched by or af et ch.

oramsg (sqlfunc)
The numeric OCI code of the last SQL function performed. See the Programmer’s
Guide to the Oracle Call Interface for descriptions.

9-8 Oracle Enterprise Manager Application Developer’s Guide

Server Message and Error Information

oramsg (starttime)
The time at which the job was scheduled to be started. Defined for jobs only.

Jobs and Events Scripts 9-9

Use of Tcl with the Intelligent Agent

Use of Tcl with the Intelligent Agent

Tcl scripts are used by the intelligent agent for jobs and events. While both are Tcl
scripts, they are distinct in the agent and in the user interface.

Jobs are scripts scheduled to run once or multiple times. They typically cause
side-effects, such as starting up a database, performing a backup, or sending output
to the screen via the puts command, and can potentially have long execution times.
Jobs can have output files and input files, such as a SQL script, while event scripts
do not. Note that output files on Unix, DOS, or OS/2 are st dout redirected.

Event scripts, on the other hand, are used uniquely for detecting exceptions. A Tcl
event script can monitor databases, host systems, or SQL*Net services by using a
variety of means. If the script determines that a certain condition has occurred, it
can send a return code to the agent that states the severity of the event. Event scripts
tend to run more frequently than jobs and so they are expected to have relatively
short execution times. Also, it is assumed that event scripts do not cause any side
effects.

While both jobs and events use Tcl to accomplish their tasks, they are very different
in nature and as such have different execution environments. Specifically, on UNIX
systems, jobs are forked into a separate process, while events are usually executed
in-line with the agent code.

The Tcl interpreter state is saved between executions and the value of Tcl global
variables is preserved, for inline event scripts only, to give the illusion of a virtual
process. This allows an event script to maintain a history so that the event does not
get raised over and over again. For example, after you have notified the console that
a value has gone above 90, you can refrain from notifying it again until the value
goes below 80 and then back above 90. Database connections using the or al ogon
function are cached across all inline event scripts, so that repeated event scripts that
use the same connect string can utilize the same connection.

Not all commands and global variables are available to both jobs and events. Jobs
will not have the or aobj ect global variable that tells an event what service it is
running against. Events will not have the or ai nput global that jobs use for
SQL*Plus scripts.

9-10 Oracle Enterprise Manager Application Developer’s Guide

NLS Issues and Error Messages

NLS Issues and Error Messages

When a user registers for an event or schedules a job, the user’s language preference
is available to the agent. There is a special remote procedure call which reports the
language and current address of each console user. The agent proceeds to issue an
ALTER SESSION command to the specified language every time the or al ogon
function is called. This means that any subsequent messages or output coming from
the Oracle server will be in the user’s language. In addition, character set
conversion is explicitly not done on the agent, so that the Console can do it on the
user’s side.

If an event script or a job script fails execution, an error message is sent back to the
Console in the user’s language. Typically this will be an Oracle message returned by
one of the Oracle Tcl extensions, if the verb was given inadequate parameters. For
example or al ogon might return the error: "ERROR: ORA-01017: invalid
username/password; logon denied" if it is given an incorrect connect string.
However, the error message could also be a Tcl specific message, such as: "ERROR:
Tcl-00456: division by zero error”, which will be stored in a message file and thus
can be returned in the user’s preferred language. The default language used by the
agent will be American English if no user language preference is specified or if an
error message text does not exist in the user’s language.

Jobs and Events Scripts 9-11

OraTcl Functions and Parameters

OraTcl Functions and Parameters

This section lists the OraTcl functions and parameters. Functions or other words
that appear in OraTcl syntax are shown in this font: f unct i on. Parameters in
square brackets ‘[opt i on] " are optional, and the ‘]’ character means ‘or’. All
parameters are passed into the functions and are IN mode.

« SQL and PL/SQL functions

oraautocom oracancel oraclose oracols oracommit
orafetch oralogoff oralogon oraopen oraplexec
orareadlong oraroll orasql orawritelong

«» RDBMS administration functions
orastart orastop
=« SNMP accessing functions
oradbsnmp orasnmp
« Communication with the Intelligent Agent and other Oracle software functions
orafail oragetfile orainfo orajobstat orareportevent
« Character set conversion and error handling functions
convertin convertout msgtxt msgtxtl

« General purpose utility functions

catfile concatname diskusage echofile export
import loader mvfile orasleep oratime
rmfile tempdir tempfile

9-12 Oracle Enterprise Manager Application Developer’s Guide

OraTcl Functions and Parameters

Common Parameters

catfile

The following parameters are used in multiple OraTcl functions and the
descriptions are provided in this section.

column
The column name that is the LONG or LONG RAW column.

connect_string
A valid Oracle database connect string, in one of the forms:

nane | nane/ password | nane@: dbnane | nane/ passwor d@: dbnane

destaddress
dest addr ess is the destination address of the agent.

filename
The name of the file that contains the LONG or LONG RAW data to write into the
column or the name of the file in which to write the LONG or LONG RAW data.

logon-handle
A valid cursor-handle previously opened with or aopen. The handle is a mapping in
memory used to track functions.

rowid
The Oracle database r owi d of an existing row, and must be in the format of an
Oracle r owi d datatype.

table
The Oracle database table name that contains the row and column.

Purpose This function returns the contents of a file.
Syntax catfile fil ename

Parameters filename
The file that you want to display.

Example catfile /tnp/filesl or c:/orant/sysman/ adm n/ vobnyr. | og

Jobs and Events Scripts 9-13

OraTcl Functions and Parameters

concatname

convertin

Purpose This function returns the full pathname for a file given a list of file name
components.

Syntax concat nane conponent s

Parameters components
A list containing the filename and each directory name where the file is located.

Example concatnane [list $oransg(orahone) network agent]

Purpose This function converts the parameter string from the client’s (Console)
character set to the destination character set. The function returns the converted
string.

Syntax convertin dest_characterset string

Parameters dest_characterset

Destination character set. For database specific jobs or events, use $oramsg(db_
characterset). For node specific jobs or events, use $oramsg(agent_characterset). See
oramsg Elements on page 9-6.

string
The string that is converted.

Comments The client and the agent node may use different languages or character
sets. It is the responsibility of the Tcl script developer to perform the character set
conversion. In general, all the job or event input parameters should be converted
unless they are guaranteed to be ASCII.

9-14 Oracle Enterprise Manager Application Developer’s Guide

OraTcl Functions and Parameters

convertout

diskusage

Purpose This function converts the parameter string from the destination
character set to the client’s (Console) character set. The function returns the
converted string.

Syntax convertout dest_characterset string

Parameters dest_characterset

Destination character set. For database specific jobs or events, use $oramsg(db_
characterset). For node specific jobs or events, use $oramsg(agent_characterset). See
oramsg Elements on page 9-6.

string
The string that is converted.

Comments The client and the agent node may use different languages or
character sets. It is the Tcl script developers’ responsibility to perform the character

set conversion. In general all the job or event output should be converted unless
they are guaranteed to be ASCII.

Purpose This function returns disk usage information on a list of files. The output
is four lists: file systems, total space, available space, and mount points.

Syntax diskusage fil es
Parameters files
A list of file names. You can omit the filenames to display information on the entire

file system.

Example diskusage [list /tnp]

Jobs and Events Scripts 9-15

OraTcl Functions and Parameters

echofile

export

import

Purpose This function writes a string to a file.
Syntax echofile string fil ename

Parameters string
The string you want to write to the file.

filename
The name of the file where you want to store the string.

Example echofile asdf /tnp/tenp

Purpose This function executes the Oracle Export database tool.
Syntax export argunents

Parameters arguments
These are the command-line arguments that are used by the Export tool.

Comments For information on Export, see the Oracle7 Server Utilities User’s Guide.

Purpose This function executes the Oracle Import database tool.
Syntax inport argunents

Parameters arguments
These are the command-line arguments that are used by the Import tool.

Comments For information on Import, see the Oracle7 Server Utilities User’s Guide.

9-16 Oracle Enterprise Manager Application Developer’s Guide

OraTcl Functions and Parameters

loader

msgtxt

Purpose This function executes the Oracle SQL*Loader database tool.
Syntax |oader argunents

Parameters arguments
These are the command-line arguments that are used by the SQL*Loader tool.

Comments For information on SQL*Loader, see the Oracle7 Server Utilities User’s
Guide.

Purpose This function returns message text in the client’s (Console) language for
the given product name, facility and message number. The output is in the format of
"FACILITY-ERROR : MESSAGE TEXT".

Syntax nsgtxt product facility error_no

Parameters product
Product name. For example, r dbms.

facility
Facility name. For example, or a.

error_no
Error number. For example, 1101.

Comments This function is used to put out error messages in the job output file.
The message will be displayed in the client’s (Console) language.

Jobs and Events Scripts 9-17

OraTcl Functions and Parameters

msgtxtl

Purpose This function returns a message in the client’s (Console) language for the
given product name, facility and message number. The output is in the format of
"MESSAGE TEXT".

Syntax nsgtxtl product facility error_no

Parameters product
Product name. For example, r dbms.

facility
Facility name. For example, or a.

error_no
Error number. For example, 1101.

Comments This function is used to put out confirmation messages in the job
output file. The message will be displayed in the client’s (Console) language.

mvfile
Purpose This function moves a file to a different location/name.
Syntax nvfile filenane destination

Parameters filename
The name of the file you want to move or rename.

destination
The new destination/name.

Comments None

9-18 Oracle Enterprise Manager Application Developer’s Guide

OraTcl Functions and Parameters

oraautocom

oracancel

Purpose This function enables or disables automatic commit of SQL data
manipulation statements using a cursor opened through the connection specified by
| ogon- handl e.

Syntax oraaut ocom| ogon-handl e {on | of f}
Parameters

logon-handle
See Common Parameters on page 9-13.

Comments or aaut ocomraises a Tcl error if the | ogon- handl e specified is not
open.

Either on or of f must be specified. The automatic commit feature defaults to off.

Purpose This function cancels any pending results from a prior or asql function
that use a cursor opened through the connection specified by | ogon- handl e.

Syntax oracancel |ogon-handl e

Parameters

logon-handle
See Common Parameters on page 9-13.

Comments oracancel raises a Tcl error if the | ogon- handl e specified is not
open.

Jobs and Events Scripts 9-19

OraTcl Functions and Parameters

oraclose

oracols

oracommit

Purpose This function closes the cursor associated with | ogon- handl e.
Syntax oracl ose | ogon- handl e

Parameters

logon-handle
See Common Parameters on page 9-13.

Comments or acl ose raises a Tcl error if the | ogon- handl| e specified is not
open.

Purpose This function returns the names of the columns from the last or asql ,
or af et ch, or or apl exec function as a Tcl list. or acol s may be used after
or apl exec, in which case the bound variable names are returned.

Syntax oracol s | ogon-handl e

Parameters

logon-handle
See Common Parameters on page 9-13.

Comments oracol s raises a Tcl error if the | ogon- handl e specified is not open.

The or ansg array index col | engt hs is set to a Tcl list corresponding to the
lengths of the columns; index col t ypes is set to a Tcl list corresponding to the
types of the columns; index col pr ecs is set to a Tcl list corresponding to the
precision of the numeric columns, other corresponding non-numeric columns are a
null string (Version 7 only); index col scal es is set to a Tcl list corresponding to
the scale of the numeric columns, other corresponding non-numeric columns are a
null string (Version 7 only).

Purpose This function commits any pending transactions from prior or asq|l
functions using a cursor opened with the connection specified by | ogon- handl e.

9-20 Oracle Enterprise Manager Application Developer’s Guide

OraTcl Functions and Parameters

oradbsnmp

orafail

Syntax oracommt | ogon-handl e
Parameters

logon-handle
See Common Parameters on page 9-13.

Comments oraconmm t raises a Tcl error if the logon handle specified is not open.

Purpose This function retrieves SNMP MIB values.
Syntax oradbsnnp get | getnext object_Id

Parameters object_Id
obj ect _1 d can be either an actual MIB object Id, such as "1.3.6.1.2.1.1.1.0", or an
object name with a possible index attached to it, such as "sysDescr" or "sysDescr.0".

Comments or adbsnnp is a function for retrieving SNMP MIB values maintained
by the agent, such as the RDBMS public MIB or the Oracle RDBMS private MIB. It
does not write to the well-known UDP port for SNMP and obtains its values
directly from the agent’s internal data structures. It works if the host does not have
an SNMP master agent running on it. See orasnmp on page 9-31 for more details on
what get and get next do. There are several reasons why or adbsnnp should be
used instead of fetching the values from V$ tables with SQL commands:

= The agent maintains a cache of MIB values fetched from the V$ tables to avoid
burdening the RDBMS excessively. or adbsnnp is often faster than SQL and
imposes less overhead on the system.

=« When SGA access is implemented, it will be transparent to this function, for
those MIB variables that are fetched directly from the SGA.

= Inthe case of get next , the next obj ect _i d is the next obj ect _i d within the
private and public RDBMS MIBs, and not one of another MIB. It is impossible
to retrieve system-specific information using this function; use or asnnp.

Purpose This function forces a Tcl script to fail.

Jobs and Events Scripts 9-21

OraTcl Functions and Parameters

orafetch

Syntax orafail errornsg

Parameters errormsg

err or msg can either be a quoted string of text or a string of the form: FAC-XXXXX
where XXXXX is an Oracle message number for the given facility, such as
VOC-99999.

Comments The error message will be used for display purposes on the client side.

Purpose This function returns the next row from the last SQL statement executed
with or asqgl asa Tcl list.

Syntax orafetch | ogon-handl e [coomands]

Parameters

logon-handle
See Common Parameters on page 9-13.

commands
The optional commands allows or af et ch to repeatedly fetch rows and execute
commands for each row.

Comments or af et ch raises a Tcl error if the | ogon- handl e specified is not
open.

All returned columns are converted to character strings. A null string is returned if
there are no more rows in the current set of results. The Tcl list that is returned by
or af et ch contains the values of the selected columns in the order specified by
select.

Substitutions are made on commands before passing it to Tcl_Eval() for each row.
or af et ch interprets @n in commands as a result column specification. For
example, @1, @2, @3 refer to the first, second, and third columns in the result. @0
refers to the entire result row, as a Tcl list. Substitution columns may appear in any
order, or more than once in the same command. Substituted columns are inserted
into the commands string as proper list elements. For example, one space will be
added before and after the substitution and column values with embedded spaces
are enclosed by {} if needed.

9-22 Oracle Enterprise Manager Application Developer’s Guide

OraTcl Functions and Parameters

oragetfile

A Tcl error is raised if a column substitution number is greater than the number of
columns in the results. If the commands execute a break, or af et ch execution is
interrupted and returns with Tcl_OK. Remaining rows may be fetched with a
subsequent or af et ch function. If the commands execute return or continue, the
remaining commands are skipped and or af et ch execution continues with the next
row. or af et ch will raise a Tcl error if the commands return an error. Commands
should be enclosed in "™ or {}.

OraTcl performs conversions for all data types. Raw data is returned as a
hexadecimal string, without a leading "0x". Use the SQL functions to force a specific
conversion.

The or ansg array index r ¢ is set with the return code of the fetch. 0 indicates the
row was fetched successfully; 1403 indicates the end of data was reached. The index
of rows is set to the cumulative number of rows fetched so far.

The or ansg array index maxlong limits the amount of long or long raw data
returned for each column returned. The default is 32768 bytes. The or ansg array
index nullvalue can be set to specify the value returned when a column is null. The
default is "0" for numeric data, and " for other datatypes.

Purpose This function is used by jobs to copy a remote file into a local file.
Syntax oragetfile destaddress renotefile localfile [BIN

Parameters

destaddress
See Common Parameters on page 9-13.

remotefile
r enot ef i | e is the name of the file that is the source of the copy.

localfile
I ocal fil e isthe name of the file that is the target of the copy.

Comments oragetfil e fetches the file r enot ef i | e into the local file

| ocal fil e from the agent at dest addr ess. If the Bl Nargument is specified, the
file is transferred in binary mode.

Jobs and Events Scripts 9-23

OraTcl Functions and Parameters

orainfo

dest addr ess may be obtained from the or ai nf o function. Note that the address
provided must be the spawn address of the agent, the special address on which it
listens for file transfer requests, and not the normal address used for all other RPCs.

Additional Information: For more information on the address of an intelligent
agent, see the chapter on configuring the agent in the Oracle Enterprise Manager
Installation Guide.

Purpose This function is used by jobs to get configuration information.
Syntax orai nfo destaddress

Parameters

destaddress
See Common Parameters on page 9-13.

Comments or ai nf o fetches agent configuration information from the agent at
dest addr ess. If dest addr ess is not present, then it is fetched from the agent on
the local machine. The agent configuration is a Tcl list, as follows:

« Alist of databases monitored by this agent. The list includes the database name,
ORACLE_HQVE, and SID for each database.

« The agent’s normal RPC address, a thsnames (TNS) string.

« The agent’s file transfer address, a TNS string.

9-24 Oracle Enterprise Manager Application Developer’s Guide

OraTcl Functions and Parameters

orajobstat

oralogoff

Purpose This function is used by a job to send intermediate output back to the
Console.

Syntax orajobstat destaddress string

Parameters

destaddress
See Common Parameters on page 9-13.

string

st ri ng can either be a quoted string of text or a string of the form: FAC-XXXXX
where XXXXX is an Oracle message number for the given facility, such as
VOC-99999. The string is used for display on the client side.

Comments dest addr ess is the address of the agent, not the daemon. This

function is issued from a job process, not from within an agent process. The agent’s
address can be obtained with or ai nf o.

Purpose This function logs off from the Oracle server connection associated with
| ogon- handl e.

Syntax oral ogoff |ogon-handl e
Parameters

logon-handle
See Common Parameters on page 9-13.

Comments or al ogof f raises a Tcl error if the logon handle specified is not open.
or al ogof f returns a null string.

Jobs and Events Scripts 9-25

OraTcl Functions and Parameters

oralogon

oraopen

Purpose This function connects to an Oracle server using connect _stri ng.
Syntax oral ogon connect_string
Parameters

connect_string
See Common Parameters on page 9-13.

Comments A ogon- handl e is returned and should be used for all other OraTcl
functions using this connection that require al ogon- handl e. Multiple connections
to the same or different servers are allowed, up to a maximum of six total
connections.

Additional Information: The connection limit is covered in the operating
system-specific notes. When or al ogon is used in an event script, it benefits from
the connection cache. It will usually be able to reuse the connections opened by
other event scripts against the same database. See NLS Issues and Error Messages on
page 9-11 for details. or al ogon raises a Tcl error if the connection is not made for
any reason, such as login incorrect or network unavailable. If connect_string does
not include a database specification, the value of the environment variable
ORACLE_SI Dis used as the server.

Purpose This function opens an SQL cursor to the server. or aopen returns a
cursor to be used on subsequent OraTcl functions that require al ogon- handl e.

Syntax oraopen | ogon- handl e
Parameters

logon-handle
See Common Parameters on page 9-13.

Comments or aopen raises a Tcl error if the | ogon- handl e specified is not open.
Multiple cursors can be opened through the same or different logon handles, up to a
maximum of 25 total cursors.

9-26 Oracle Enterprise Manager Application Developer’s Guide

OraTcl Functions and Parameters

oraplexec

orareadlong

Purpose This function executes an anonymous PL block, optionally binding
values to PL/SQL variables.

Syntax orapl exec | ogon-handl e pl _bl ock [:varnane val ue ...]
Parameters

logon-handle
See Common Parameters on page 9-13.

pl_block
pl _bl ock may either be a complete PL/SQL procedure or a call to a stored
procedure coded as an anonymous PL/SQL block.

:varname value
: var namne val ue are optional pairs.

Comments or apl exec raises a Tcl error if the | ogon- handl e specified is not
open, or if the PL/SQL block is in error. or apl exec returns the contents of each
:varname as a Tcl list upon the termination of PL/SQL block.

Optional :varname value pairs may follow pl _bl ock. Varnames must be preceded
by a colon, and match the substitution names used in the procedure. Any :var name
that is not matched with a value is ignored. If a :var nane is used for output, the
value should be coded as a null string, "™

The or ansg array index rc contains the return code from the stored procedure.

Purpose This function reads the contents of a LONG or LONG RAW column and
write results into a file.

Syntax orareadl ong | ogon-handl e rowi d tabl e col um fil enane
Parameters

logon-handle rowid table column filename
See Common Parameters on page 9-13.

Jobs and Events Scripts 9-27

OraTcl Functions and Parameters

Comments or ar eadl ong returns a decimal number upon successful completion
of the number of bytes read from the LONG column.

or ar eadl ong raises a Tcl error if the | ogon- handl e specified is not open, or if
rowid, table, or column are invalid, or if the row does not exist.

or ar eadl ong composes and executes an SQL select statement based on the table,
column, and rowid. A properly formatted Rowid may be obtained through a prior
execution of or asql , such as "SELECT rowid FROM table WHERE ...".

orareportevent

Purpose This function is used by jobs to report an unsolicited event to the agent
and Event Management system in the Console. The oenevent executable can also
be used.

Syntax orareportevent eventnane obj ect severity nessage [results]

Parameters eventname
event nane is the name of the event. This is the four-part name of the event in the
form:

/ vendor / pr oduct / cat egor y/ nane

You can enter any character strings but all four parts and the forward slashes (/) are
required. Ifi nt er nal is used in the third position, the event is not sent to the
Outstanding Events window in the Console.

The first two levels of name have special significance and have many predefined
strings that Oracle script writers must use:

= Level one is the definer of this script, typically the integrating company name
such as or acl e, or user for unspecified customers.

« Level two is the name of the product to which this script is related, for example
rdbns, of fi ce, agent,osgeneri c, sql net, or hpux. All Oracle services
have defined names which Oracle script writers must use.

The event nane is assumed to be in 7-bit ASCII, so that it never changes regardless
of platform or language. See event def . t ¢l in the ORACLE_HOVE\ net 8\ admi n
directory (Oracle Enterprise Manager release 1.5.0 on a Windows NT platform) for a
list of defined event names.

9-28 Oracle Enterprise Manager Application Developer’s Guide

OraTcl Functions and Parameters

Note: The actual event script name may be shortened, upper-cased, or
manipulated in other ways to make it a legal, unique filename on a given platform.
The format is operating system-specific. For example,

/oracl e/ rdbns/ security/ SecurityError can be stored as $or acl e_
hone/ net wor k/ agent/ event s/ oracl e/ rdbns/ security/securityerror.
t cl ona Unix system.

object

obj ect is the name of the object that the event is monitoring, such as the database
or service name listed in the snnp. vi si bl eser vi ces parameter in the

snnp. or a file, or $or ansg(nodenane) .

severity

severi ty isthe level of severity of the event. For or ar epor t event , the value is 1
(warning), 2 (alert), or - 1 (clear). For oenevent , this is the literal text string al ert ,
war ni ng, or cl ear.

message
message is a quoted text string that is displayed in the Console, such as "File not
found."

[results]

resul t s is any results that may occur from the event. This is a Tcl list with the
specific results for the event, such as the tablespace in error or the user who had a
security violation.

Comments This is the method for any job to report an unsolicited event to the
agent, and back to the Console. For more information, see Server-Side Integration on
page 8-4. For information on the Event Management system, see the Oracle
Enterprise Manager Administrator’s Guide.

Jobs and Events Scripts 9-29

OraTcl Functions and Parameters

oraroll

orasleep

Purpose This function rolls back any pending transactions from prior or asq|l
functions that use a cursor opened through the connection specified by
| ogon- handl e.

Syntax oraroll |ogon-handl e

Parameters

logon-handle
See Common Parameters on page 9-13.

Comments orarol | raisesa Tcl error if the logon handle specified is not open.

Purpose This function causes the Tcl script to pause for a number of seconds.
Syntax orasl eep seconds
Parameters seconds

Comments or asl eep calls slcsleep() for the required number of seconds. There is
no default, minimum, or maximum value.

9-30 Oracle Enterprise Manager Application Developer’s Guide

OraTcl Functions and Parameters

orasnmp

Purpose This function performs either an SNMP get or get next operation on
the object specified by obj ect _i d.

Syntax orasnnp get | getnext object_ld

Parameters object_Id
The obj ect _I d can be either an actual MIB object Id, such as "1.3.6.1.2.1.1.1.0", or
an object name with an index attached to it, such as "sysDescr" or "sysDescr.0".

Comments Object names come from MIB text files. A full network manager, such
as OpenView, has a MIB compiler that accepts MIB files and parses the ASN.1,
creating a database of all objects in all the MIBs. The agent needs to be simpler.
There is a standard configuration directory which contains one or more two-column
ASCI|I files of the format:

"rdbnsDbPri vateM b D',
"r dbnsDbVendor Nare",

"r dbrnsCoNane”

"r dbrsDbCont act

The Tcl interpreter reads these files and does a binary search on them at runtime to
resolve an object name to an obj ect _I d.

The index values to use for Oracle services are configured via the snnp. or a file.
These indices can also be obtained from the or ai ndex global variable. See Server
Message and Error Information on page 9-6.

The result of or asnnp is a Tcl list of the form:

{object_id val ue}

where obj ect _| d is the object id associated with val ue. In the case of an
orasnnp get, obj ect I d is the same as object, while for a get next , it would be
the next logical obj ect _| d. It is assumed that the or asnnp operation applies to
the local host only. The function actually sends out an SNMP query to the
well-known SNMP port on the local host, so it is possible to query MIB variables
other than Oracle’s, such as those of the host or other applications that support
SNMP. An SNMP master agent needs to be running on the local host for this
function to work. See oradbsnmp on page 9-21 for an optimized way to retrieve the
Oracle database MIB objects. If the master agent is not running, this function fails.

Jobs and Events Scripts 9-31

OraTcl Functions and Parameters

orasql

Purpose This function sends the Oracle SQL statement SQL statement to the
server.

Syntax orasqgl |ogon-handl e sqgl _stnt

Parameters

logon-handle
See Common Parameters on page 9-13.

sqgl_stmt
sql _stnt isasingle, valid SQL statement.

Comments | ogon- handl e must be a valid handle previously opened with
or aopen. orasql raises a Tcl error if the | ogon- handl e specified is not open, or
if the SQL statement is syntactically incorrect.

or asql will return the numeric return code 0 on successful execution of the SQL
statement. The or ansg array index rc is set with the return code; the rows index is
set to the number of rows affected by the SQL statement in the case of insert,
update, or delete. Only a single SQL statement may be specified in sqgl _st nt .

or af et ch allows retrieval of return rows generated. or asql performs an implicit
or acancel if any results are still pending from the last execution of or asql .

Table inserts made with or asql should follow conversion rules in the Oracle SQL
Reference manual.

9-32 Oracle Enterprise Manager Application Developer’s Guide

OraTcl Functions and Parameters

orastart

orastop

Purpose This function starts an Oracle database instance.

Syntax orastart connect_string [init_file] [SYSDBA SYSCPER [RESTR CT]
[PARALLEL] [SHARED)

Parameters

connect_string
See Common Parameters on page 9-13.

init_file
init _fileisthepathtotheinit. orafileto use.

Comments Thedefaultforinit fileis:

QRACLE HOME dbs/ini t ${CRAALE SID}. ora

[SYSDBA|SYSOPER] are role flags for the user starting up the database.
[RESTRICT] [PARALLEL] [SHARED] are database options. If [RESTRICT] is
specified, database is started in restricted mode.

Purpose This function stops an Oracle database instance.

Syntax orastop connect_string [SYSDBA SYSCPER [| MMED ATH ABCRT]
Parameters

connect_string
See Common Parameters on page 9-13.

Comments [SYSDBA|]SYSOPER] are role flags for the user shutting down the
database. [IMMEDIATE | ABORT] are the shutdown mode flags.

Note: Shutdown normal might be expected to fail every time, because the agent

maintains its own connection to the database, but we send a special RPC to the
agent when this is done, which causes it to disconnect from the database.

Jobs and Events Scripts 9-33

OraTcl Functions and Parameters

oratime

orawritelong

rmfile

Purpose This function returns the current date and time.
Syntax oratine
Parameters None

Comments None

Purpose This function writes the contents of a file to a LONG or LONG RAW
column.

Syntax orawitel ong | ogon-handl e rowi d table col umm fil enane

Parameters

logon-handle rowid table column filename
See Common Parameters on page 9-13.

Comments oraw it el ong composes and executes an SQL update statement
based on the table, column, and rowid. or awr i t el ong returns a decimal number
upon successful completion of the number of bytes written to the LONG column. A
properly formatted ROWID may be obtained through a prior execution of the

or asql function, such as "SELECT rowid FROM table WHERE".

oraw i t el ong raises a Tcl error if the | ogon- handl e specified is not open, or if
rowid, table, or column are invalid, or if the row does not exist.

Purpose This function removes a file.
Syntax rnfile fil enane

Parameters filename
This is the file that you want to remove.

9-34 Oracle Enterprise Manager Application Developer’s Guide

OraTcl Functions and Parameters

tempdir

tempfile

Comments None

Purpose This function returns a directory name that is used to store temporary
files.

Syntax tenpdir
Parameters none

Comments On Unix platforms, the t enpdi r is usually / t np. On Windows NT
systems, the tempdir is usually \ t enp.

Purpose This function returns a temporary filename with the given extension. The
filename is generated using the timestamp.

Syntax tenpfil e extension

Parameters extension
This is the file extension of the temporary file.

Example tenpfile dd
returns the following on a Unix platform

/tnp/ 143153. dd

Jobs and Events Scripts 9-35

OraTcl Functions and Parameters

9-36 Oracle Enterprise Manager Application Developer’s Guide

A

NLS

Codes

The following are the codes used by National Language Support (NLS).

Table A-1 NLS Codes

Code Language Territory
us American America
AR Arabic UAE
PTB Brazilian Portuguese Brazil
BG Bulgarian Bulgaria
FRC Canadian French Canada
CA Catalan Catalonia
HR Croatian Croatia
CS Czech Czechoslovakia
DK Danish Denmark
NL Dutch The Netherlands
EG Egyptian Egypt
GB English United Kingdom
SF Finnish Finland
French France
D German Germany
El Greek Greece

NLS Codes A-1

Table A-1 NLS Codes

Code Language Territory
W Hebrew Israel
HU Hungarian Hungary
IS Icelandic Iceland

| Italian Italy

JA Japanese Japan
KO Korean Korea

LT Lithuanian Lithuania
ESM Mexican Spanish Mexico
N Norwegian Norway
PL Polish Poland
PT Portuguese Portugal
RO Romanian Romania
RU Russian CIs

ZHS Simplified Chinese China
SK Slovak Czechoslovakia
SL Slovenian Slovenia
E Spanish Spain

S Swedish Sweden
TH Thai Thailand
ZHT Traditional Chinese Taiwan
TR Turkish Turkey

A-2 Product Title/BookTitle as a Variable

A

access the repository
about, 4-2
administer an object
QuickEdit, 5-7
application programmer interfaces (APIs), 1-2

C
catfile, 9-13
character set

agent, 9-6
OraTcl conversion and error handling
functions, 9-12
code samples
SDK, x
codes
NLS language, A-1
COleDispatchDriver
code example, 3-3
Commit, 7-8
Communication Daemon
Console, 1-2
communication with agent functions
OraTcl, 9-12
components
Oracle Enterprise Manager, x, 1-2
concatname, 9-14
Console
about, 1-3
common services, 1-4
service objects, 3-2
services, 1-4

convertin, 9-14
convertout, 9-15
credential precedence
about, 2-7
CSmpsrvDoc
code example, 3-2

D

Index

Deletelob, 7-9
Discover, 5-4
discovery
Navigator, 6-4
discovery cache
about, 1-5
API reference, 6-5
external interfaces, 6-5
parameters, 6-5
discovery cache interface
retrieving nodes and services, 6-2
discovery mechanism
integrating application, 5-2
diskusage, 9-15
dispatch drivers
initializing and disposing, 3-2
disposing drivers, 3-3

E

echofile, 9-16
EMS

Event Management system, 1-6
error handling code

example, 3-4

Index-1

error information
retrieving, 3-4
event interest
APl calls, 8-4
Event Management system
about, 1-6
APl calls, 8-5
API parameters, 8-5
event registration and notification
application support, 8-2
event registrations
uniqueness, 8-2
events
discovery cache, 8-3
notification, 8-3
registering interest, 8-2
registering third-party, 8-2
registrations, 8-2
third-party, 8-2
unsolicited, 8-4
events by third-party services
agent interfaces, 8-2
exec_sql.tcl
executing SQL*Plus scripts, 7-7
executing SQL*Plus scripts, 7-7
export, 9-16
external interface calls
repository, 4-3
external interfaces
about, 1-2
external services
limitations, 5-3

F

Failure, 3-6

G

general purpose utility functions

OraTcl, 9-12
GetConsoleVerison, 4-4
GetDate, 7-20
GetDefaultDisplaylnfo, 5-6
GetError, 7-21

Index-2

GetErrorCause, 3-5
GetErrorData, 3-6
GetErrorinfo, 3-4
GetErrorText, 3-5
GetGroupsOfType, 6-6
code example, 6-2
GetlconList, 5-5
GetlobID, 7-21
GetNode, 7-21
GetObjectData, 6-7
GetObjectInGroup
code example, 6-2, 6-3
GetObjectList, 6-8
code example, 6-2
GetObjectsinGroup, 6-10
GetObjectState, 6-11
code example, 6-2
GetOutput, 7-22
GetPreferredCredentials, 4-5
code example, 4-3
GetRepLogoninfo, 4-6
GetServiceNode, 6-12
GetStatus, 7-22
GetUniqueServices, 6-13
code example, 6-3

H

header and library files
required, 1-7

icon

default, 2-7

tool palette, 2-6, 2-7
icons

displaying in Console, 5-5, 5-6
import, 9-16
Initialize, 7-9
initialize an OLE automation server object,
initializing drivers, 3-2
integrating APls

about, 5-4

parameters, 5-4

3-2

Intelligent Agent

Console, 1-2

version information, 6-4
Intelligent Agents

use of Tcl, 9-10

J

job and event scripts

Tcl Language, 9-2
Job Scheduling

about, 1-6,7-2

APl calls, 7-8

batch and interactive jobs, 7-2
JobNotification, 7-10

jobs
batch and interactive, 7-2
deleting, 7-4
flushing queue, 7-5
Id, 7-8
name, 7-13

notification, 7-5
schedule, 7-15
scripts, 7-6

L

language preference
NLS issues and error messages,
limitations for this release
Navigator, 5-3

loader, 9-17
M
Map
about, 1-5
menus and tool palettes, 1-4
msgtxt, 9-17
msgtxtl, 9-18
mvfile, 9-18
N

National Language Support (NLS)

codes, A-1
registration information, 2-3
Navigator
about, 1-5
Discovery, 1-5
limitations for this release, 5-3
NLS issues and error messages
about, 9-11
nmiconf.lst, 6-4
nmiconf.tcl, 6-4
NT registration key
Class ID, 2-6
executable name, 2-5
executable type, 2-5
Icon, 2-7
name, 2-4
palettes, 2-5
syntax, 2-2
NT registry
about, 2-2

@)

oemevent, 8-4,9-28

OLE Automation server application
registering, 2-6, 2-7

OLE launching considerations
about, 2-8

oraautocom, 9-19

oracancel, 9-19

Oracle Enterprise Manager (OEMGR)
components, 1-2

Oracle server messages
about, 9-6
oramsg, 9-6

ORACLE_HOME directory, 1-7

OracleSmpJob, 3-3

oraclose, 9-20

oracols, 9-20

oracommit, 9-20

oradbsnmp, 9-21

orafail, 9-21

orafetch, 9-22

oragetfile, 9-23

orainfo, 9-24

Index-3

orajobstat, 9-25
oralogoff, 9-25
oralogon, 9-26
oramsg elements, 9-6
oraopen, 9-26
oraplexec, 9-27
orareadlong, 9-27
orareportevent, 8-4,9-28
oraroll, 9-30
orasleep, 9-30
orasnmp, 9-31
orasql, 9-32
orastart, 9-33
orastop, 9-33
OraTcl

character set conversion and error handling

functions, 9-12

commands and parameters, 9-12
communication with agent functions, 9-
description, 9-4
general purpose utility functions, 9-12
job and event scripts, 9-4
RDBMS administration functions, 9-12
SNIMP accessing functions, 9-12
SQL and PL/SQL functions, 9-12
variables, 9-13

oratime, 9-34

orawritelong, 9-34

P

parameters
OraTcl, 9-13
repository API, 4-3
preferred credentials, 4-3
program
Id, 7-11
programming considerations
about, 1-7

Q

QuickEdit, 57

Index-4

R

RDBMS administration functions
OraTcl, 9-12

register and launch an application
about, 2-2

registering an OLE Automation server

application, 2-6, 2-7

registering service types, 5-3
CLSID, 5-3
external (NLS), 5-3

internal, 5-3
registration keys

optional, 2-5

required, 2-4
registrations

events, 8-2
Related publications, xiii
repository

about, 1-4

control interface, 4-2
repository connection information
retrieving, 4-2
retrieving nodes and services
discovery cache interface, 6-2
rmfile, 9-34

S

sample applications

about, 1-7
script

job, 7-6

job and event, 9-2
Send Us Your Comments, Vii
services.ora, 6-4
SetCredentials, 7-11
SetDestinations, 7-12
SetJobName, 7-13
SetLogonInfoEx automation interface

about, 2-8

SetNotificationObjectProgID, 7-11, 7-14, 8-5, 8-7

SetSchedule, 7-15
SetScript, 7-19
SNMP accessing functions

OraTcl, 9-12

Software Developer’s Kit (SDK)
code samples, xi

SQL and PL/SQL functions
OraTcl, 9-12

submitting a job, 7-2

Success, 3-6

T

Tcl language
description, 9-2
job and event scripts, 9-2
web sites, 9-3

Tcl scripting
about, 9-2
example, 9-4

tempdir, 9-35

tempfile, 9-35

third-party events, 8-2

tool palette
custom, 2-10
registering, 2-10

U

unsolicited event, 8-4

user’s preferred credentials
retrieving, 4-2,4-3

user-defined group
retrieving, 6-2

Vv

VoxErrorUnpacker, 3-5
VoxErrorUnpacker class and methods,

wW

3-5

wide characters
buffers, 1-8

Index-5

Index-6

	Up
	Preface
	1 Introduction
	2 Tool Palette and Menu Integration
	3 General Coding Techniques
	4 Repository Control Integration
	5 Navigator and Map Integration
	6 Discovery Cache Integration
	7 Job Scheduling Integration
	8 Event Management Integration
	9 Jobs and Events Scripts
	A NLS Codes
	Index

